
A Distributed Graph Approach For Retrieving Linked RDF Data Using

Supercomputing Systems

by

Michael J. Lewis
B.S. (Purdue University, West Lafayette) 1993
M.S. (University of Illinois at Chicago) 2002

Thesis submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Chicago, 2018

Chicago, Illinois

Defense Committee:
Andrew Johnson, Chair and Advisor
Ugo Buy
Ajay Kshemkalyani
Jason Leigh
Venkatram Vishwanath (Argonne National Laboratory)

Copyright by

Michael J. Lewis

2018

This is thesis is dedicated to my wife who has endured all my late nights of studying

and writing, who has been my top cheerleader! To my mother who has always

supported me and to my father, may he be smiling down at me.

iii

ACKNOWLEDGMENTS

I would like to acknowledge the staff at EVL, director Maxine Brown who has always been

wonderful to me with advice and encouragement. Dr. Jason Leigh my first mentor and friend,

I have learn so much from you. Dr. Andy Johnson who has also been there for me from the

beginning and has been so invaluable. I would also like to thank the staff at Argonne National

Laboratory and the ALCF department headed by the brilliant Dr. Mike Papka, without their

funding for my research and with Maxine helping to make it happen, I would not be where I

am today. To Dr. Kshemkalyani and Dr. Thiruvathukal with their guidance and support was

so invaluable. Lastly to Dr. Buy and the rest of the committee members who have pushed me

to the finish line.

The algorithms represented in this thesis published in the conference proceedings: Inter-

national Workshop on Semantic Big Data 2017, ”A Distributed Graph Approach for Pre-

processing Linked RDF Data Using Supercomputers” come solely from my work.

iv

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1
1.0.1 Definition of terms . 4
1.0.1.1 Supercomputer terms . 4
1.0.1.2 RDF, Data Terms . 6
1.0.2 Processing terms . 7
1.0.3 Resource Descriptive Framework 8
1.0.4 Resource Description Framework Schema 9
1.0.4.1 RDF and RDFS Key Words . 9
1.0.5 Web Ontology Language OWL 9
1.0.6 Graph database and graph exploration 10
1.0.7 Graph Types . 10
1.0.7.1 Entity Graph . 11
1.0.7.2 Schema Graph . 11
1.0.7.3 Triple graph . 13
1.0.8 RDF Queries . 13
1.0.9 SPARQL . 14
1.0.10 Query graphs . 16
1.0.11 The Mantona query system . 16

2 RELATED SYSTEMS . 19
2.1 Scan Join Systems . 20
2.1.0.1 Hexastore, BitMat . 21
2.1.0.2 Property table, vertical partitioning 21
2.1.1 Key based scan . 21
2.1.1.1 Graph Partitioning Systems . 23
2.2 Map-reduce . 23
2.3 Graph exploration systems . 25
2.3.0.1 Cray Graph Engine . 27
2.3.0.2 Spark, Graph-X . 27
2.3.0.3 Trinity . 28
2.4 Path Based Indices . 29
2.5 Optimization Techniques . 29
2.5.0.1 Compressed triples . 29
2.5.0.2 Join optimization . 32
2.5.0.3 Join techniques . 33
2.5.1 Query planning . 34
2.6 Summary . 35

v

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

3 SUPERCOMPUTER ENVIRONMENT 37
3.1 Introduction . 37
3.2 Mira . 37
3.3 Cetus . 38
3.4 Cooley . 38
3.5 Communication Library . 38
3.5.1 MPI communication modes . 39
3.6 Job Submissions . 39
3.7 Summary . 42

4 TERM PROCESSING AND NEIGHBOR NODE GENERATION 43
4.1 Reduce terms . 43
4.2 Reduce triples . 45
4.3 Neighbor generation . 45
4.4 Term counts . 46
4.5 Summary . 46

5 PATH-CACHE
(PREVIOUSLY PUBLISHED AS LEWIS, MICHAEL J., ET
AL. ”A DISTRIBUTED GRAPH APPROACH FOR
PRE-PROCESSING LINKED RDF DATA USING SUPERCOM-
PUTERS.” PROCEEDINGS OF THE INTERNATIONAL
WORKSHOP ON SEMANTIC BIG DATA.
ACM, 2017 DOI 10.1145/3066911.3066913.) 48
5.1 Dataset-partitioning . 49
5.2 Mantona - cache file creation . 49
5.3 Path-signature . 49
5.4 Mantona Graph-Cache Generation Algorithm 51
5.5 cache-file . 53
5.6 Summary . 53

6 QUERY INPUT AND RETRIEVAL
(PREVIOUSLY PUBLISHED AS LEWIS, MICHAEL J., ET
AL. ”A DISTRIBUTED GRAPH APPROACH FOR
PRE-PROCESSING LINKED RDF DATA USING SUPERCOM-
PUTERS.” PROCEEDINGS OF THE INTERNATIONAL
WORKSHOP ON SEMANTIC BIG DATA.
ACM, 2017 DOI 10.1145/3066911.3066913.) 55
6.1 Introduction . 55
6.2 Query input generator . 55
6.3 Random Path Input Generator 56
6.4 Term Based Input Generator . 57

vi

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

6.4.1 Node-Traversal Algorithm . 59
6.5 Graph-Cache Analysis . 61
6.5.1 Mantona Graph-Cache formula 63
6.5.2 Traverse Node-Matching formula 65
6.6 Summary . 65

7 RESULTS . 68
7.1 Introduction . 68
7.2 Results - Related systems . 70
7.2.0.1 Datasets and Execution Environment 70
7.3 Dataset creation Results . 78
7.4 Query results . 80
7.4.1 Cetus and Cooley . 80
7.4.2 Mira . 87
7.5 Summary . 91
7.5.1 Related systems . 91
7.5.2 Mantona . 92
7.5.3 Query Loading . 94
7.5.4 Graph-cache vs Graph-exploration 95
7.5.5 Query Order . 95

8 LUBM-EXPERIMENT . 97
8.1 Description of Experiment . 97
8.2 Results . 99
8.3 Evaluation of Results . 102
8.3.1 Bottleneck locations . 103
8.3.2 How to improve the Mantona bottlenecks 103
8.3.2.1 Partition the termList and idList 104

9 CONCLUSION . 107

APPENDICES . 110
Appendix A . 111
Appendix B . 113
Appendix C . 123

CITED LITERATURE . 131

VITA . 137

vii

LIST OF TABLES

TABLE PAGE
I Features of RDF systems. 31
II Features of frameworks used by RDF systems. 32
III Query run times in seconds for the Yago dataset. 76
IV Query run-time in milliseconds on the Uniprot dataset (845 Million

triples). Table data taken from Matrix ”Bit” loaded paper. 76
V Top: Query run-time in milliseconds on the LUBM-160 dataset

(21 Million triples). Middle : query run-time in milliseconds on the
LUBM-10240 dataset (1.36 billion triples). Bottom : query run-time
in seconds on the LUBM-100000 dataset (9.96 billion triples) Table
data taken from Trinity.RDF. List of queries shown in appendix B 77

VI Top: Cetus load times using 125,000 and 400,000 triple dataset.
Middle chart: Cooley load times using 125,000 and 400,000 triple
dataset. Final chart: Mira load times with 2048, 4096 and 8192 core
sizes. 79

VII Query timings, graph-cache and exploration method 50,000 triples. 85
VIII Query timings, graph-cache and exploration method Cooley, and

Cetus, 125,000 and 50,000 triples. 86
IX Query timings on Mira for 500,000, 1,000,000 and 2,000,000 triples

over 2048, 4096 and 8192 cores. Time units are in micro-seconds
1× 10−6. 89

X Result sizes (number of triples) retrieved from the 500,000, 1,000,000
and 2,000,000 triples. Query Q3 was only done on the 2,000,000
triples dataset. 89

XI Time results in milliseconds for one hundred simultaneous queries
over 250K and 500K datasets. The number at the end of the query
type label is the result size. 90

XII Mantona query timings using the LUBM dataset, 18,464 triples. . 101
XIII LUBM Query timing in milliseconds, 21M triples. Table data taken

from Trinity.RDF paper. 101

viii

LIST OF FIGURES

FIGURE PAGE
1 An RDF - entity graph. 11
2 A schema graph and its connections 12
3 A triple graph. 12
4 Two SPARQL queries and the corresponding query graphs. 15
5 Using Map Reduce to join on bindings. 26
6 (a) Indexing paths to a grid index. (b) Ordering, sorting and remov-

ing path duplicates. 30
7 The BG/Q Architecture . 39
8 (a) Send-receive: one rank sends the data and one rank receives the

data. (b) Gather: one rank is collecting the send data from every rank. 40
9 (a) One-to-many also termed as a broadcast call. The sending rank

duplicates its data by the number of ranks and sends it to the other
ranks. (b) All-to-all: The sending rank duplicates its data by the number
of ranks and sends it to the other ranks. All the ranks receive data from
each rank. (c) All-gather: each rank receives (n ∗ d)2 amount of data
back in which n is the number of ranks and d is the data size that is to
be sent for each rank. 41

10 The representation of a triple set (tripleList) and a term set (termList). 44
11 Root-graph from root-id 3, using the RDF-graph from Figure 1. . . 50
12 Cache file, containing term,triple, neighbor data and path-cache data. 54
13 A sample input string of depth 3. 56
14 Term id table and sample SPARQL input query. 58
15 Term input signature. 61
16 A domain view of Path nodes from the Graph-cache at depth i. . . . 64
17 Query timings for 44,114,899 triple dataset covering 8 different query

types. 72
18 Query timings for the 845 Million triple dataset covering 13 different

query types. 73
19 LUBM 9.96 Billion triples. 74
20 LUBM Top: 1.36 Billion triples as dataset input. Below 21 million

triples. 75
21 (a) Cache file processing times on a 125,000 triple dataset using Coo-

ley. (b) Cache file processing times on a 125,000 triple dataset using
Cetus. 80

22 Query results. (a) Cache file processing times on a 400,000 triple
dataset using Cooley. (b) Cache file processing times on a 400,000 triple
dataset using Cetus. (c) Cache-file processing times on a 1,000,000 triple
dataset using Mira. 81

ix

LIST OF FIGURES (Continued)

FIGURE PAGE

23 Query graphs Q1 - Q6. Query used for the results shown in Figure 25. 83
24 Query timings in milliseconds. (a) Cetus exploration 50,0000 triples.

(b) Cetus path-cache 50,000 triples. (c) Cooley exploration 125,000
triples. (d) Cooley path-cache 125,000 triples. (e) Cooley exploration
400,000 triples. (f) Cooley path-cache 400,000 triples. 84

25 Query graphs Q1 - Q3. 87
26 Query results (a) .5M triple dataset. (b) 1M triple dataset. (c) 2M

triple dataset. 88
27 Query timings over 100 simultaneous queries in milliseconds. 90
28 LUBM dataset 18,464 triples. (a) Retrieval times using cache algo-

rithm. (b) Retrieval time using the Cooley exploration algorithm. (c)
Retrieval time using the exploration algorithm without using the neigh-
borList cache. 100

29 The permission of reuse for authors published under ACM is specified
at : https://authors.acm.org/main.html. 112

30 Resume . 139
31 Resume . 140
32 Resume . 141

x

LIST OF ABBREVIATIONS

API Application Interface

CGE Cray Graph Engine

DAG Directed Acyclic Graph

DBMS Database Management System

GPFS General Parallel File System

H 2RDF Hadoop to RDF

LUBM Lehigh University Benchmark

MPI Message Passing Interface

NoSQL Not only SQL

OPS Object Predicate Subject

OSP Object Subject Predicate

POS Predicate Object Subject

PSO Predicate Subject Object

RDD Resilient Distributed Datasets

RDF Resource Description Framework

RDFS Resource Description Framework Schema

SOP Subject Object Predicate

xi

LIST OF ABBREVIATIONS (Continued)

SPARQL SPARQL Protocol and RDF Language

SPO Subject Predicate Object

SQL Structured Query Language

URL Uniform Resource Locator

XML Extensible Markup Language

YARN Yet Another Resource Negotiator

xii

SUMMARY

Many RDF data systems are able to perform queries on different types of connected data

structures for a scalable range of input. Partitioning techniques, graph algorithms, and mem-

ory based indexing schemes have been heavily researched and integrated into different data

systems, in order to produce faster query results with increasing data sizes and different query

types. The focus of this work is on two types of powerful (top tier performance in aggregate

processing capacity and bandwidth capacity) clustered systems to show conditionally, and de-

finable, time improvements covering dataset preprocessing and query retrieval. Two different

algorithmic approaches are used to evaluate query retrieval. One algorithmic approach utilizes

a distributed linked data path indexing system to help retrieve queries, the other approach is

graph exploration which is finding the linked data at query time according to the connected

query patterns. Graph exploration is a common and effective approach used by a number of

large scale proprietary RDF systems. In order to implement and evaluate both approaches,

the work, called Mantona is developed. Mantona also makes it possible, through generating

a preprocessed file cache-file, the ability to evaluate performance based on the contents of the

cache-file and the type of query retrieval algorithm used. This dissertation includes a review

of effective RDF query systems and shows the implementation and ramifications of creating

a cache-file dataset from which the Mantona experiments are conducted over varied processor

sizes and query types.

xiii

CHAPTER 1

INTRODUCTION

The Semantic Web (1) (2) has become an increasing presence in today’s World Wide Web.

The web is very useful for retrieving information and accessing pages. Search engines are the

web’s query agents, keying on vocabulary words to provide a large recall of results but with

limited precision. The web is user friendly but not machine processable, meaning a machine

does not interpret the meaning of your query statements as a person can extract meaning

reading a sentence. A search engine query functions on a word by word basis and provides

links to web pages that closely match the searched words without providing the user with

contextually precise results. Berners-Lee the original architect of the web (2) envisions the

next version of the web to process web searches on a more contextual basis. This new web

will extract meaning from the language structure of the query and its association of words in

order to provide the user with results that are more accurate and in a more granular form as

opposed to an web link to a page that can be full of information that you might not need.

This new version of the web is what is called the semantic web. Processing a sentence through

its language and grammar can be ambiguous and very complex for a machine to interpret.

If a data statement can be reduced to its fundamental associative elements then processing

complexity can be reduced. The Resource Description Framework (RDF) is a data model that

is based on this fundamental premise of having the lowest denominator of word associations

– subject, predicate, object terms or triples, in the attempt to extract meaning through the

1

2

interconnection of these fundamental associations. From this basic association a subject term

has a relation with the object term through the predicate term. The Resource Description

Framework Schema (RDFS) provide rules for what constitutes a subject, predicate and object

and what defines the interconnectivity among triples in order to provide RDF datasets with

contextual characteristics. Many large-scale semantic based query systems came about based

on the availability of RDF datasets over the web in order to retrieve more contextual queries.

The aim of this work is to show that different types of clustering systems can play a role in

RDF dataset preprocessing and RDF query retrievals in ways that have not been researched

before. This work conditionally defines these timing improvements based on query, dataset,

characteristics over varying processor sizes.

Much of the evolution of RDF systems have focused on and continue to focus on the improve-

ment on retrieval times from datasets that range from an input size of one hundred thousand

triples to an input size of over one billion triples respectively. Techniques to transform inte-

ger representation of triples to a byte form in order to reduce the number of time-costly data

fetches have been used in RDF retrieval systems: RDF-3X (3), and (4). Scan-join systems

rely on matching a query clause to a database key or file storage node to access one or more

groups of triples (scan) and joining the groups of triple over a common term (join). This dis-

sertation identifies scan-join systems into two types. The first type of scan-join system is file

based. Each file has an associated group of triples that have been pre-processed and stored in

an associated file. For example, one file can contain all the triples having a common subject,

while another file may contain all triples having a common predicate or object term. These

3

systems look at the most efficient way of joining collections of triples coming from a collection

of files that correspond to a query (3), (4), (5), (6). The other type of scan join system uses

a key-value, database management systems (DBMS). Each query clause, which represents a

pattern of triples, is transformed to a key index. Each key retrieves the triples (represented as

the value) within the Database Management System (DBMS) and joins on the collection of key

queried triples (7) (8) (9). Data scalable systems (10) (11) (12) use the map-reduce algorithm

to query to scale large RDF datasets. Graph partitioning RDF systems (13) (14) utilize graph

partitioning algorithms in order to create highly coupled sub-graphs of connected triples for

the purpose of reducing node to node communication type. The challenge with these systems

is in the defining what associated group of connected triples can be defined as a sub-group

that will largely correspond with connected triples stemming from queries. Queries that do

not largely conform to any particular subgroup result in a large I/O cost in retrieving parts

of the query data for many different computational nodes. RDF graph access systems (15)

(16) (17) utilize a distributed memory graph and traverse through connected nodes in order

to retrieve query results. Path representation models (18) (19) provide techniques to represent

and access connected data structures and triples within an index form. While this approach

introduces a way to identify queries through a path based identification, the implementation of

this approach is impractical without having a very large system in essence a super-computer

to preprocess or cache all the exponential number of paths that are possible given a dataset

of triples. Mantona uses a supercomputer to preprocess and store paths up to a manageable

depth. Mantona associates a unique preprocessed partial path to processor that will always

4

match a segment of a query starting from the beginning term, if the partial path does not cover

the entire query, graph exploration method used in Neo4J (15), Cray Graph Engine (16) and

Trinity (17) will be utilized to cover the rest of the query terms.

1.0.1 Definition of terms

This dissertation uses these set of terms throughout this dissertation in order to explain

concepts and definitions regarding query preprocessing, query processing, supercomputer ar-

chitecture and its components.

1.0.1.1 Supercomputer terms

The following terms are used mostly in chapter two introducing the supercomputer archi-

tecture and how it is used in evaluating the experiments in this dissertation.

MPI - The distributed software library used on Mira and Cetus. This library provides the

ability to program the sending and receiving of data over processors in different communication

topologies in a uniform and non-uniform manner with blocking and non-blocking features.

supercomputer - A top tier computer or cluster with respect to collaborative processing power.

This research uses the system at Argonne National Laboratory, Mira. Mira can reach 10-

petaflops (10 quadrillion calculations per second) when up to full core capacity.

job - An encapsulation of a program that can be submitted to a cluster for execution. A job

includes information such as the maximum length of time the program is to be executed and

the number of processors to be used within the job.

qsub - The executable command to submit a job from the supercomputer Cetus, Mira or Cooley.

5

node - An unit that houses multiple cores. A Supercomputer’s total processing ability is defined

by the number of nodes it has and the number of cores per node.

core - A processing unit, used interchangeably with processor.

IBM BG/Q - The architecture for Mira/Cetus.

rack - The housing unit, storing the Node cards and I/O Cards and the interconnectivity

equipment within the Rack. This is also defined as cabinets. The total computing power of a

Supercomputer is equally distributed within the racks.

5D-torus - The topology used to connect nodes together. This is a 2x2x2x2 dimension where

each node has 5 neighbor nodes.

rank - A software based representation of a core within a cluster.

blocking - A rank halts until it gets notification that the communication process is complete or

a communication error.

uniform/non-uniform - Uniform is when a rank(s) sends or receives the same amount of data

to/from the other rank(s) respectively. Non-uniform is when each rank can specify different

sizes of data to send to the other ranks. These MPI collective functions have ’v’ appended to

their name.

onetoone A type of distributed communication where one processor sends data to another

processor.

alltoall - A type of distributed communication where each processor sends the same data to all

of the processors, and each processor receives data from all of the processors.

6

allgather - A type of distributed communication where each processor sends data that is

uniquely specified to each processor, and receives the complete set of data that has been dis-

tributed to all. This type of communication is useful when each processor wants to know what

each processor has received, in essence for each processor to see the complete picture, when

initially starting with part of the picture.

gather - A type of distributed communication where one specified processor receives a collection

of data coming from each processor.

1.0.1.2 RDF, Data Terms

triples - Three tuple entities of data associated with a subject, predicate and object.

triple-root - A triple that serves as the root node for a class of paths that start with this triple

at the root.

term - Represents a component within a triple represented as an id or a string.

id - An id is an integer representation of a term id, triple id or a processor id. A processor id

refers to the unique processor identification number, also referred to as a rank. This thesis uses

the term signature id to specify a hash index, used in map-reduce operations.

vertical partitioning - Partitioning data over processing units based on selected columns of data

from tables. In terms of an RDF dataset, a column refers to only subject terms, predicate

terms or object terms.

RDF data - Data composed of triples. RDF data can also have a schema (RDFS) associated

with the data, specifying the domain and range of terms and conditions for connecting terms

together. This dissertation only uses RDF data without a schema.

7

1.0.2 Processing terms

pattern - A pattern is the schema representation of a group of triples. A pattern is a triple that

contains at least one blank node.

path-cache - A tree that contains paths composed of connected triples that can be saved to a

file and retrieved.

cache-file A file containing the path-cache of a dataset as well as the term and triple listings,

and triple connectivity information.

path-node - A node within the path-cache. Each path node contains a list connected triples that

match the path characteristics of the node.

triple-product - The list of connected triples within a path-node.

query string - A series of connected patterns of a certain depth in which each pattern must

contain one literal and one variable term.

bindings - Bindings are defined as the literal terms that result from the join at the binding

variable between two patterns.

Hash joins - A hash join is an iterative join where the resultant of each join is built one pattern

to resultant join at a time. Select portion of patterns are loaded into memory in which the

bindings are put into a hash map. Upon query time, the resultant bindings are grown with

each iteration according to a join plan, in which one pattern is added to the group at a time.

On each iteration, two matching binding variables are keyed from the hash map and/or from

indexing file storage. The joins are made over the bindings variables and the hash-map at that

index is updated.

8

Merge Joins - A merge join recursively joins subgroups of data, over the overlapping variable

attribute starting at the leaf patterns.

1.0.3 Resource Descriptive Framework

RDF (20) is a language/data model used in the Semantic Web community to extract con-

textual relational and hierarchical data. The core data unit is composed of a three term

(subject,predicate,object-value) statement. The representation of subject, predicate, and ob-

ject is based on the English grammar equivalent. A subject is the main object term that is

being categorized or defined. The predicate is the type or action based characterization of the

subject, and the object is the noun that the predicate is referring to. Each term represents

either a resource or a literal value. A resource is the unique representation of a term. This rep-

resentation can be commonly linked to a Universal Resource Locator which is a unique web id

representation that does not necessarily have to link to a web site. A resource can also be some

string that has a specific single context that does not have any web associations. A literal is a

string that does not have the requirement of having a single unique meaning or representation.

A literal can only be used within the the object term. Subject, predicate and object terms

also referred to as triples, are able to link to each other like building blocks over its matching

terms: subject-subject (s-s) , predicate-predicate (p-p), (object-object) (o-o), subject-object (s-

o) object-subject (o-s), predicate-subject (p-s), subject-predicate (s-p), predicate object (p-o),

object-predicate (o-p). The most commonly used connections are (s-o), (o-s), (o-o), (p-p) and

(s-s) which are used within this work. From these connections, a dataset of triples and terms

can be transformed into a type of graph as shown in Figure 1, Figure 2, and Figure 3. This

9

dissertation expresses URL and literal string terms alike as literals, which in the work qualify

as linkable terms. The dissertation also uses terms and entities interchangeably to represent the

subject, predicate or object in a triple. Diagram representations of URL terms are abbreviated

as :<resource-name>, literal strings are in quotations and predicate terms are italicized.

1.0.4 Resource Description Framework Schema

The Resource Description Framework Schema (RDFS) is the meta-data model that gives

context and meaning to RDF data. RDFS statements are composed of the same subject, pred-

icate object terms as a triple statement but contain key words within the statement that are

used to make further classifications, relationships, and properties (21).

1.0.4.1 RDF and RDFS Key Words

RDF and RDFS key words are used within a triple term to classify a resource, in which RDF

compliant query systems can unambiguously apply inferencing rules on and/or make specific

categorizations for triples containing the key word. Some common key words are shown below

obtained from (21).

1.0.5 Web Ontology Language OWL

The web ontology language adds higher-level meta-data characterizations to an RDF dataset.

These include inferencing rules and restriction of classes. The OWL language is representative

of an ontology language in that it provides for formal semantics, describing more specifically

how data is to be interpreted and categorized. OWL allows for class constructs and class

10

hierarchies of data, enabling queries for testing for class memberships or if a class construct

belongs within a particular class hierarchy. OWL provides the vocabulary to define equivalence

of classes and for OWL compliant systems to process consistency detection in order to insure

class constructs do not include contradictory logic.

1.0.6 Graph database and graph exploration

A graph database stores its data over a network of linked nodes (containing search-able

property,entity information). This is quite different from a relational database that stores its

data in multi-column attribute tables. With a relational database, connected data is pieced

together through joins over tables. For long conjunctive queries, the application of cross-product

operations over each join to link data can be quite costly, especially for large size tables. A

graph database search, instead of applying table joins to connect data, follows the paths that

match all the clauses of a query. Within a distributed system, a search can be easily processed

in parallel. A clustered system can also hash out or partition and pair processing nodes to

RDF nodes that are only responsible for path traversals using its assigned starting node. The

other advantage of a graph database system is its granularity, meta data and data alike can be

simply added as a connecting node to existing node(s) in the graph, without cascading effects

as opposed to in a relation database.

1.0.7 Graph Types

RDF based graphs can be represented as an entity graph, schema graph and a triple graph.

11

:John

:UIC

:English
works at

teaches

can speak

:Spanish

can speak

:German

type

:University

in state
:Illinois

Triple Ids

0

1

2

3

4

5

:UIC in State :Illinois

:UIC type :University

:John works At :UIC

:John teaches :English

:John can speak :German

:John can speak :Spanish

3
2

0

1

45

Figure 1: An RDF - entity graph.

1.0.7.1 Entity Graph

The entity graph represents encompasses all of the raw RDF data. In an entity-graph the

subject, object entities are the nodes and the predicate terms represent the links. Nodes are

mapped to integer ids for fast query processing and reconverted to the string entity represen-

tation once the found entity ids are retrieved. An example is shown in Figure 1.

1.0.7.2 Schema Graph

In a schema graph, nodes represent a group of triples based on the types of the subject

and object entities Figure 2. This type of graph has some limitations, in that groups, and

associations can be unknown, which is the point of querying for the discovery of a group of

associated triples. This type of graph layout can be an appropriate mode for RDF systems if

types are already understood by the user, or predefined in a schema file.

12

0

9

7

1

2

6

3 5

4

8

ba

a

b

s

a

b

s s

s

b

a

a

a

b

Schema Graph

b

s

b

a

a
b

ab

s

 Authors*Born in*US Cities

Tom Clancy*Born_In*Baltimore

David*Born_In*Richmond

 Authors*Born in*UK Cities

Authors*Thrillers*Books

Authors*Wrote*SciFi_Books
Stan Lee*Wrote*Iron_man

Huxley*Wrote*Brave New World

John Grisham*Thrillers*The Firm

Lee Child*Thrillers*The Firm

Rowling*Born_in*Yate
Lee_Child*Born_in*Coventry

Example Triple Stores

a: Object - Subject Link

b: Subject - Object Link

s: Subject - Subject Link

Link Type

Schemas

0: Authors*Born in*US Cities

2: Books*Made to*Movies

5: Directors*Born in*UK Cities

7: Authors*Wrote Sci fi*Books

9: UK Cities*Have Universities*Universities

8: US Cities*Have Universities*Universities

4: Directors*Born in*US Cities

1: Authors*Born in*UK Cities 6: Authors*Best Selling Thrillers*Books

s

3: Movies*Won Academy Awards*Directors

Figure 2: A schema graph and its connections

Figure 3: A triple graph.

13

1.0.7.3 Triple graph

The last type of graph that is used in the work is what this dissertation terms the triple-

graph. Triples are the nodes and the connection types (s-s,o-s,s-o,o-o,p-p) between the nodes

serve as the links. This work collects and stores the paths of each of the triples graph, given a

starting node, or root node. An example is shown in Figure 3.

1.0.8 RDF Queries

A query system takes in a query to implement one or all of the following procedures : (1)

retrieving the groups of data based on the query terms in each of the query clauses, (2) filtering

the retrieved data using comparison and logical operators (3) applying joins over groups of data

(4) selecting which of the resultant data to output, (5) ordering and counting the resultant

data, (6) applying database commands such as update, edit or delete on the refined stored

data. Query languages SQL (22), SPARQL (23) provide the grammar in which all of these

procedures can be implemented on within a query system. This work selectively focuses on

how a supercomputer and less powerful large distributed systems can distributively retrieve

groups of queried data and implement connected joins.

An RDF query is a collection of query statements. A query statement can represent a URL,

value, variable ?var or blank term []. URL is a unique resource name in which the namespace

of the full resource included within the schema or query document and the base of the URL

is represented within the query term. A blank term or blank node: [] can represent any value

as long as there is an existing a triple for it. A query statement that has least one variable

or blank term is referred to as a pattern, to signify that multiple triples can belong to it.

14

For example in Figure 1, a query pattern :John can-speak ? (sp?) would include the triples:

:John can-speak :Spanish and :John can-speak :German. Queries containing blank terms are

more complex in terms of its low selectivity. With blank terms, query results sizes are larger,

however it does not necessarily mean the query extractions come from a broad range of locations

within the dataset. Longer queries with low selectivity have another type of complexity where

large groups of intermediate data have to be joined. Query input within the work focuses on

query selectivity in regards to the number of connected patterns, the number of blank terms

and variables within a query. The work does not take in account query complexity in which

inferencing and reasoning adhering to a web ontology language is involved (21).

1.0.9 SPARQL

SPARQL (23), an RDF compliant query language offers expressions to satisfy graphical

based extractions from linked triples. Dataset timings results from related systems shown in

Chapter 7 are a product of SPARQL queries. The two SPARQL queries in Figure 4 are from

the dataset of the Billion Triples Challenge.

The first query on the top of Figure 4 shows the latitude and longitude of the Eiffel tower in

France. It contains 4 connected query patterns with the merge variable over the subject term.

The prefix URL locations are the name-spaces that make each triple term that contains the

prefix unique. The first pattern has a blank node on the predicate term, requesting all triples

with the object term ”Eiffel tower”. The second pattern has two literal terms with the prefix

geo. The variable ?lat and ?long in the last two patterns are not bounded and work as a blank

node. The bounding condition in this query is the common subject over all three patterns.

15

geo: <http :// www.geonames.org/>,

pos: <http//www.w3.org /2003/01/ geo/wgs84_pos#>,

Select ?lat ?long

Where {

?a [] "Eiffel Tower".

?a geo:ontology#inCountry geo:countries /#FR.

?a pos:lat ?lat.

?a pos:long ?long.

}

geo: <http :// www.geonames.org/>,

pos: <http//www.w3.org /2003/01/ geo/wgs84_pos#>,

Select distinct ?a ?b ?lat ?long

Where {

?a dbpedia:spouse ?b.

?a dbpedia:wikilink dbpediares:actor.

?b dbpedia:wikilink dbpediares:actor.

?a dbpedia:placeOfBirth ?c.

?b dbpedia:placeOfBirth ?c.

?c owl:sameAs ?c2.

?c2 pos:lat ?lat.

?c2 pos:long ?long.

}

a []

[]

[]

a

[]
[]

[]

b

c

d

Figure 4: Two SPARQL queries and the corresponding query graphs.

16

This is a query based on only one variable that serves as the merge point. The second query

in Figure 4 requests the latitude and longitude and the names of two married actors with the

same place of birth. There are four different variables that serve as the binding connections

between patterns with subject-subject and object-subject/subject-object bindings.

1.0.10 Query graphs

There are multiple factors that show the complexity of a query. A visualization showing

the query connections and the pattern types can be used to quickly understand the linking

factors within a query. This dissertation uses query graphs, shown at the bottom in Figure 4

, to show query complexity for each query experiment conducted in Mantona and the related

experiments reported in the results chapter.

1.0.11 The Mantona query system

This dissertation introduces the work called Mantona. Mantona is an RDF query process-

ing system, written in C++ using the Message Passing Interface (MPI). Mantona is able to

preprocess conjunctive triple-triple connections, and utilize these store joins to expedite query

retrievals. The contribution of the work is the following.

1. The ability to effectively use a supercomputer to generate and store triple ids, term ids

and connected data within a single file. Query systems need to process the original

dataset to map the string terms to integer ids and produce connectivity information to

possibly cache. For standalone, low processor count query systems taking in large datasets

containing billions of triples may take hours to process. This research shows a scalable

improvement in processing time through the increasing of the number of processors. This

17

research shows also that any type of clustering system can partition the cache-file over its

number of processes for faster loading.

2. A graph-retrieval system, designed to retrieve conjunctive pattern based queries by in-

dexing the join data from the graph structure that match query patterns. This research

shows from side to side experiments within the Mantona framework (graph retrieval vs.

graph traversal) over different datasets that implementing a distributed graph-retrieval

systems reduces query timings over certain type of queries as opposed to graph traversal

methods.

3. With Mantona, one can analyze the different types of queries to determine how ordering,

pattern selectivity and query connectivity have an effect on query timings within multi-

processor systems.

The dissertation is broken into 9 chapters with Chapter one being the introduction. Chapter

two discusses retrieval techniques of related RDF query systems. Chapter three shows how a

supercomputer environment and its distributed software can be utilized for query processing

and preprocessing. Chapter four details the process of mapping strings to term ids, generating a

unique list of term ids and triple ids, generating an adjacency list of connecting triples stemming

from a root triple, and loading raw datasets and cached files. Chapter five reviews cache-file

the creation and the implementation of the Path-Cache algorithm and its complexity. Chapter

six details the Mantona query retrieval algorithms: path-cache and graph-exploration, and the

implementation of the query generation algorithms. Chapter seven reviews the results from

related systems and through Mantona over dataset size, processor count, and query configura-

18

tion. Chapter eight shows the experimental results using the LUBM dataset on Mantona, and

compares the Mantona results with the LUBM results from related systems. Lastly, chapter

nine provides the conclusion.

CHAPTER 2

RELATED SYSTEMS

This chapter reviews the works of RDF query systems with reference to how queries are

collected. This chapter reviews scan based retrievals using different configurations of table and

database structures, graph exploration methods, query retrieval using map reduce, research

that utilizes a path index to represent conjunctive queries, and optimization techniques that

speed up the join, query retrieval process.

Section one provides a review of scan join systems: Hexastore (6), RDF-3X (24), Acumulo

(25), AMADA (8), Casandra, and C-Store (26), (27). A scan-join process is used for single pro-

cessor systems, or implemented within a distributed system in which each processor implements

the scan-join query retrieval process for its section of data.

Section two covers map-reduce systems: Shard (10) HadoopRDF (28), H2RDF (29), RAPID

(30), and (31). The map-reduce algorithm is used to iteratively process joins in coordination

with a join plan of the query graph. The different type of map-reduce based joins are also

discussed within this section.

Section three covers graph-exploration query retrieval process. In a graph-exploration query

retrieval process, each processor has a data node start point, and traverses across links to

neighboring nodes that are in match with the query pattern. If the summation of explored

paths match the query graph then that query result is accumulated. This section provides

reviews of systems: Trinity (17), Neo4J (15) and Cray Graph Engine (16).

19

20

Section four covers path indexing research produced from Yamamotoa et al. (32), Matono et

al. (19), Groppe et al. (18) and the work from GRIN regarding the GRIN index representation

(33). A path indexing only solution is not feasible to implement within large datasets. Mantona

implements a partial indexing as a part of its query retrieval algorithm.

Section five covers optimization techniques through the adoption of compression, query

planning and join techniques that can expedite query retrieval.

A table is shown to chart the features of the different RDF query systems and query results

are listed in a table to provide a context of query retrieval times based on query features of

link and length. Lastly, a chapter summary is provided to give the final word of the role each

query system provides in the realm of RDF query frameworks and to show where the Mantona

research fits within this space of query frameworks.

2.1 Scan Join Systems

Scan-join is a two-step process indexing the literal query pattern terms over a database or

file system then applying a join on the overlapping triple patterns. Each scan-join system has

its own particular niche on how to look up and store its triple patterns. Triples can be grouped

and sorted over a particular term or grouped over a particular literal term (property table).

The common specification of a triple group and its ordering is the listing of the terms by the

first letter of the term. The table: POS would list all the triples sorted by the predicate term

then object then by subject. By having multiple tables such as POS SOP OPS a system can

scan the table that can be filtered to match the pattern the fastest. the last step is the joining

of the queries data.

21

2.1.0.1 Hexastore, BitMat

Hexastore (6) indexes a query pattern based on subject, predicate or object. From the index

term, Hexastore accesses one of six based tables pos, spo, osp and ops in order to materialize

the query pattern. BitMat (4) also provides pos, spo, osp and ops tables, however BitMat

tables are generated in the form of a bit cube where each axis of the cube represents a term

type.

2.1.0.2 Property table, vertical partitioning

Besides providing different column sorted combinations of storing triple data, systems: Jena

(34), Sesame (35) C-Store (26), (27) and MonetDB over XML data (36) offer both property

tables and vertical partitioning as a solution to access the queried data. For queries centered

around a term (”bush queries”), these systems would search for property tables. The system

would have tables based on the most commonly found subject, predicate or object data and

sort the table based on the highest frequency term. The vertical partitioning approach would

produces tables that would link parts of a multiple attributed values to a particular subject.

For example if a dataset structure was more subject themed with schema [Artist,Book,Release

Date,Date Of Birth] tables can be stored by [Artist, Book], [Artist, Release Date] and [Artist,

Birth Date] if queries were found to be more associated with a subject and a particular property

of that subject.

2.1.1 Key based scan

Another type of scan-join systems uses a key for as the scan phase. A key represents one or

two terms RDF-3X (24) system or a condensed representation of a two-dimensional term space.

22

RDF-3X is a query-processing engine that utilizes a RISC architecture in order to facili-

tate a faster processing of merge joins (24). RDF-3X includes a query optimizer that chooses

the optimal join order. RDF-3X (24) uses a B+-tree with a single index scan all 6 different

permutations of triple patterns in : (S)PO, (S)OP, (O)SP, (O)PS, (P)SO, (P)OS. The term in

parentheses designates the key that is scanned. The resulting triples found from a scan are put

in lexicographical order based on the order of the resulting terms; (S)PO with S representing

the key. The resulting triples are ordered by the common subject followed by the predicate

term then object term.

Accumulo (25) is an open source key-value database system. Its design is based on Google’s

BigTable (37). Accumulo provides random, real time, read/write access to large datasets in a

distributed environment using commodity hardware. Accumulo provides sorting of keys in lex-

icographical ascending order. Each key packet is encapsulated with meta data, which includes

key id, row id, column identifiers, time-stamp and value. Accumulo also provides a level secu-

rity mechanism for clients. In addition, Accumulo provides a Batch Scanner client API that

condenses all range-scan requests into one scan. This feature is particularly helpful for RDF

access involving access and linking to different triple stores required in a conjunctive query.

Casandra is a key-value data store that is also modeled after BigTable (37). Both systems

use a nested indexing key structure key : value ; the value can be another key : value pair

as in row key : superColumn key :value or an actual value or empty value, denoted as -. In

Casandra, the super column indices can be sorted or mapped to a hash value.

23

AMADA (8) uses Amazon’s simple storage service (38) to process a range of triple patterns

covering SPO,OSP,POS. H2RDF (29) is a distributed triple store that combines the Map-

Reduce framework with the NOSQL key, value store of BigTable. H2RDF materializes on 3 of

the 6 different spo permutations (spo,pos and osp). CumulusRDF (7), implemented on top of

Cassandra (39) uses nested s,p,o indices. Cassandra using the nested index can cover a range

of triple patterns: spo, sp?, ?po, s?o, ?p?, s??, ??o, ???.

2.1.1.1 Graph Partitioning Systems

The cluster based RDF systems GRIN : (33), WARP(14) and Partout (13) use a scan based

algorithms within a cluster system. Cluster based RDF systems use partitioning algorithms to

store regions of triples based on its community of neighbor nodes. Partout uses the partitioning

tool METIS (40) to find the k number of partitions that created the least amount of edges

among each other. Linked queries however can be unpredictable to predict, unlikely triples can

be found to be connected to each other through a series of s-o,o-s connections. An overlapping

strategy of duplicating triple nodes over processors is used in (10). These nodes represent a

shared link of connections across processors, but this technique can only offer a short-range

solution for pattern-linked queries.

2.2 Map-reduce

The common use for map reduce with regards to processing RDF data is in the full utilization

of all processors for joining query data. Map-reduce has also been used for join evaluations as

proposed in (41), (42),(43), (44). The two types of joins that are most widely used are standard

reparation join and the broadcast join. The standard reparation join distributes the two triple

24

products on the join key during the shuffle phase and joins them in the reduce phase. The

broadcast join is a map node only procedure. Each node broadcasts their materialized patterns

to all nodes as each map node grows its triple product.

Shard (10) was the first system to use an iterative-join query plan with Map-reduce. The

Map-reduce job is iterated n times in which n is the number of query clauses consisting of

the conjunctive triples patterns. The map nodes assign and key variable bindings to triples,

partitioned from an RDF file and the reduce node joins the triple patterns over the common

variable binding, and removes duplicates. The last iteration removes redundancies and applies

a projection on the resultant data, Figure 5.

Pig Latin (45) provides users with a language similar to nested relation algebra containing

primitives such as join, filter and union. This language is then compiled into MapReduce to

correspond with a iterative-join query plan. In PigSPARQL (46) a SPARQL query is translated

into a iterative-join query plan. The frameworks HadoopRDF (28), H2RDF (29), and RAPID

(30), (31) evaluate merges of triple stores under MapReduce with the goal of reducing the

number of iterations of a MapReduce job. HadoopRDF and H2RDF uses a heuristic to add

as many joins to a job thus providing fewer MapReduce iteration. RAPID adopts a merge

join approach. RAPID translates join tree structures into grouping operations thus creating a

shorter path and creating more bushy sub-queries. RAPID provides a data model and algebra

called Nested Triple Group Algebra (47). Each of the intermediate data within a iterative

MapReduce job are factored within a triple group. In (47) the Nested Triple Group technique

is used to reduce scans when there are repeated properties within the query graph. In (48) Map

25

nodes are only used in the scanning and joining of triples. Triples that share a common variable

are grouped and processed in a single Map iteration. Scalable Sparql (12) uses MapReduce for

query coordination and processing and RDF-3X for data accessing over a federated distribution

of processors.

2.3 Graph exploration systems

Graph exploration systems require an efficient node-to-node communication and distributed

system that can hold a large amount of memory. A graph exploration system traverses the

path of a query request over its distributed network of nodes. Each node holds a section of

terms and its related term connections as well as a link to the processor of its neighboring

term. Because of this linked traversal behavior of graph exploration systems, the underlying

distributed framework must be designed to have some type of fast, possibly memory-to-memory

connections across processors in order to minimize data accessing time over processors. RDF

data must be cached in memory in graph-exploration systems. A long conjunctive query can

visit many different processors depending on wherever the next node link points to. If for each

node visited there was an I/O request for data, at the very least there would be a I/O reduction

based on the long time it takes to access storage as opposed to memory and at the very worst

it could deadlock or dramatically slow the system with different nodes blocking to request data

from the same storage segment. This section reviews the graph exploration software systems

(Cray Graph Engine, Spark, and Trinity) that account for these I/O processor to processor

communication problems and make it easier for a developer to implement graph based query

retrieval algorithms. It has been shown through query timings and data sizes that graph

26

Graph Data

Map:

Assign Variables for 1st Clause

Reduce:

Remove duplicates

Iterate, till end
of query clause

Map:

Assign Variables for next Clause

Key on variable bindings

Reduce:

Join data on bindings

Remove duplicates

Map:

Filter on SELECT variables

Reduce:

Remove duplicates

Figure 5: Using Map Reduce to join on bindings.

27

exploration algorithms are processor scalable and have been able to hold up to 1GB in triples

for robust distributed architectures.

2.3.0.1 Cray Graph Engine

The Cray graph engine (16) uses an RDF graph database over a distributed scalable process-

ing environment and uses graph algorithms, pattern analysis and filtering methods as a means

to infer on data relationships from SPARQL queries. The Cray Graph engine is supported by

scheduling and cluster management software. YARN (49) used for HADOOP , Mesos is the

cluster management software that also houses the Cray Graph Engine and Marathon (50) is

used as the container orchestration platform. The challenge for acceptable retrieval times for

graph-based searches comes from the processing time assembling the data through the process

of path traversals in which entity points may not reside on the same processor. CGE uses a

shared memory architecture: Urika-GD (51) in order to achieve fast access times when indexing

linked data. The Cray graph engine is compatible to SPARQL queries and adds some additional

features. CGE allows for a variable representation of a an expressed sub-graph and can apply a

set of graphing algorithms e.g. community detection to that subgraph, all encompassed within

the SPARQL query.

2.3.0.2 Spark, Graph-X

Graph-X (52) is the graph engine for Spark. Spark is an open-source data-parallel, fault tol-

erant computation platform that can facilitate an in-memory Map-Reduce paradigm. It uses an

in memory architecture for fast transfers of data across processors within the cluster. Spark (53)

allows the developer to instantiate fault tolerant memory components – Resilient Distributed

28

Datasets (RDDs) that functions as application data containers. RDDs come with an API where

the developer can transparently apply different grouping operations to the represented data e.g.

(map,group-by,hash-join). Cascading operation can also be applied to an RDD. For example

a developer can create a cascading map-reduce command within one line. Spark can operate

interactively through a Scala scripts and is also Java and Python compatible. A unique feature

of Spark is its ability to automatically recreate RDDs upon failure through lineage. Lineage is

a type of providence for RDDs; each RDD has a graph representation of meta-data specifying

how the RDD was created. If an RDD fails, it can automatically be reconstructed through

its lineage. Graph-X is the graph module for Spark. It contains its own graph specification

language where one can specify the adjacency list structure of the graph as well as the vertex

data. Graph-X adopts a vertex cut as the way to partition each vertex and edge across the

cluster. A vertex is shared over each partition that is represented at the cut; edge information is

bound to a single partition within the cut. Graph-X assigns its partitions by assigning its edges

to partitions in a way that minimizes the number of vertices that are shared across processors.

2.3.0.3 Trinity

Trinity has shown through large-scale experimentation using LUBM (54) and DBpedia (55)

generated datasets to outperform RDF-3X (3) and BitMat (4). Trinity stores its data in a

memory graph where nodes are the individual triple terms. Each node has an adjacency list of

incoming and outgoing neighbor nodes. The collection of graph nodes residing on an individual

processor are grouped together based on a SPO or OPS index.

29

2.4 Path Based Indices

The connection between path indices and preprocessed joins is in the creation of an or-

ganizational structure to index paths of connected data. Early research initially covered by

Yamamotoa et al. (32) created structures for generating path indices from XML documents.

Matono et al. (19) proposed a technique for translating RDF path expressions into suffix ar-

rays using Directed Acyclic graphs (DAGS) extracted from an RDF dataset and/or schema.

All paths and links are individually labeled with a character, and put into a numerical grid, in

which every path has a unique two-dimensional index. Paths are then put into lexicographical

order, and duplicates are removed in Figure 6. In Groppe et al. (18) joins were indexed in

a hash-map over s-s,s-p,s-o,p-p,p-o and o-o connections for one join, two triple patterns and

multiple joins over multiple triple patterns. With Grin (33) the RDF-graph is partitioned over

center nodes that adhere to a particular index. Using a center indexing formula queries can be

determined if component lies within the radius of any center node.

2.5 Optimization Techniques

2.5.0.1 Compressed triples

Compressing triples can be useful in retrieving more triples faster. Each triple stored in the

B+-tree is compressed into a maximum 13 byte package. The actual triple is not stored but

instead the offsets of each term are stored with respect an triple-index within the group. The

first byte, the header, specifies the number of bytes to record the offset size of the subject, object

and predicate. The efficiency of the compression is based on the assumption that within each

30

U

V

W

X Y

u

v

w

x

y

1
u

32 4 5 76

1

2

uU wV yX Y

vU xW yX Y

(a)

W

uU wV yX Y
u wV yX Y

wV yX Y

yX Y
y Y

Y
vU xW yX Y

v xW yX Y

xW yX Y
yX Y

y Y
Y

uU wV yX Y

u wV yX Y

wV yX Y

yX Y

y Y

Y

vU xW yX Y

v xW yX Y

xW yX Y
yX Y

y Y

Y

(2,1)

(1,1)

(1,5)

(1,3)

(1,7)
(2,5)

(1,2)
(2,7)

(2,2)
(1,4)
(2,4)

(2,6)

w yX Y (2,3)

w yX Y
x yX Y

(1,6)

(1,2)

(1,1)

(1,5)

(1,3)

(1,7)
(1,6)

(2,2)
(2,1)

(2,3)
(2,4)
(2,5)

(2,7)

(1,4)

(2,6)

yX Y
x

uU wV yX Y

u wV yX Y

wV yX Y

vU xW yX Y

v xW yX Y

xW yX Y
yX Y

y Y

Y

(2,1)

(1,1)

(1,5)

(1,3)

(1,7)
(1,2)
(2,2)
(1,4)
(2,4)

(2,3)

w yX Y
x yX Y

(1,6)

a) paths in indexed order b) lexicographically
 ordered paths

c) removed duplicates

(b)

Figure 6: (a) Indexing paths to a grid index. (b) Ordering, sorting and removing path dupli-
cates.

31

The table below shows the common query retrieval and storage characteristics from a list of
RDF query systems.

RDF − Systems Vertical
Partition

Map
Reduce

Graph
Partition

Graph
Access

Path
Index

HexaStore X - - - -

Jena X - - - -

Sesame X - - - -

C-Store X - - - -

Amada X - - - -

H2RDF X - - - -

CumulusRDF X - - - -

Trinity - - - X -

Grin - - X - X

RDF-3X X - - - -

Matono et al - - - - X

Scalable Sparql X X - - -

Shard - X - - -

HadoopRDF - X - - -

H2RDF - X - - -

RAPID - X - - -

Partout - - X - -

BitMat X - - - -

Neo4J - - - X -

CGE - - - X -

TABLE I: Features of RDF systems.

32

RDFHelper − Systems Key
Storage

WorkFlow
Systems

Partition
Systems

Comm.
Based

Spark - X - -

MPI - - - X

Hadoop - X - -

BigTable X - - -

Apache Accumulo X - - -

Dynamo DB X - - -

HBase X - - -

AWS X X - -

METIS - - X -

TABLE II: Features of frameworks used by RDF systems.

triple pattern, all triples values slightly deviate from each other with respect to lexicographical

proximity.

2.5.0.2 Join optimization

The selection of join order within a query system, can make a significant difference in query

time retrievals. Join order is the order of join connection from the query graph. The same

join type over the same connected triple patterns will output the same result for different join

orders. The join order that reduces the number of join matches early, reflect the join order that

uses the less amount of computations. RDF-3X can get query results for a single connected

query graph, or a disconnected query graph. From a disconnected graph, based on the type of

query the results of the two graphs are combined. The technique used to find the optimum join

plan is through bottom-up dynamic programming using a cost estimate based on selectivity

estimates. A selectivity estimate determines through statistics, the probability of a pattern or

33

individual term coming up in a query. RDF-3X proposes two types of statistics; one is to create

a histogram of pattern types. Each bucket in the histogram stores a pattern containing a one

or two term literal. The bucket information includes the cardinality of the triple pattern, the

number join types that can be connected to the pattern. The second type of statistics is from

storing the most frequent paths. Each path is composed of sub-paths and each sub-path is its

own path containing its own selectivity number from the cardinality of the connected joins. The

problem with the first method is that the cardinality statistics over a pattern does not take in

account connectivity information in how like would a pattern connect to other patterns. The

problem with the second selectivity method is that not all path combinations are covered, and

for those that are not covered, the histogram method independent of connections is used.

2.5.0.3 Join techniques

The join algorithm is the following: create a map entry for all the variables in the query. The

key represents the variable for a clause, the map value is the bindings associated with that key.

Pick a triple pattern stemming from a query clause and put the associated bindings within the

variable map. Traverse through every other query clause that contains the same variable and

produce its bindings. If there are no bindings for that variable that match the current binding

entries within the map, then remove that variable key as a map entry. If there is a triple

pattern that refers to multiple variables and one of the variables was removed from the map,

then the other variable must be removed from the map. Continue to remove variables based on

this cascading procedure. Find the next triple pattern and conduct the same procedure on a

34

variable. After all the triples patterns have been examined and bindings or variables extracted,

then the variable that are left and the associated binding are the return results of the query.

2.5.1 Query planning

Query planning involves picking join combinations over triples patterns for vertically parti-

tioned systems or node exploration for graph retrieval systems that result in choosing a path

that has the minimum number of computations. Picking the ”right” triples or nodes in a path

depends on some statistical determination over frequency of connections or using the inherent

data correlations that can be determined. Stocker et al (56) holds subject, predicate and object

terms as independent entities. The selectivity (connections) of each term is gathered and the

triple selectivity is determined by the product of the triple term selectivities. In (17) a graph

exploration is done to find the cost of each SPO or OPS group of triples at each node. The

formula is the following:

|R(q)| = |B(src)| × Cp/Cp(src) |B(tgt)| = |B(tgt)|Cq(tgt)/Cq(src)

The variables , Cq(subject), and Cq(object) denote the binding size over the connecting

nodes. The Cp denotes the binding size for that particular graph node on the supercomputer.

B(tgt) is the binding size of the target nodes, R(q) is the estimated size of the results. Query

cost then can be determined as a linear combination between Rq and Bsrc.The shortest cost

path can then be determined by dynamic programming.

C ′ = minC ′, C + costq

35

The C’ represents the current cost and the q represents the cost for connecting to a target

node, this node can be isolation or a part of another tree.

In Husain, Mohammad, et al (57), map-reduce jobs are used to develop a greedy based

query plan. A query graph is produced in which the source node represents the list of variables

in the connected join produce of triples. The target node denotes the resultant list of variables

produced after a map reduce job. The cost is the following.

n−1∑
i=1

Jobi + MIn + MOn + RIn

Jobi = MIi + MOi + RIi + ROi

In which MIi = the map input stage for Job i, MOi = the Map output phase for Job i.

RIi = Reduce input stage for Job i. ROi Reduce output phase for Job i. Cost is based on the

number of triples used in each phase.

RDF-3X uses map-reduce as a partitioning strategy. Each iteration places overlapping RDF

graph nodes to a partition. Each iteration adds an extra hop to the partition.

2.6 Summary

The different amount of query solutions ultimately stem from the type of dataset and the

type of queries that are presented. For small datasets and datasets that were predispositioned

for SQL based queries, a scan-based solution approach is useful. The more powerful scan based

RDF systems would take advantage of utilizing large-scale database systems such as BigTable

and Amazon’s simple storage service as a tool for scanning the data for triples. However scan

36

based solutions do not provide a method for joining the groups of triples received. Large datasets

that could produce many link queries would require some type of join procedure and processor

coordination to reduce the join computation time. Map-reduce systems provided a data-scalable

solution for these tree conjunctive queries and can have different joins processing on different

processors based on a the join hash key. Graph partitioning systems provided solutions for

transforming and partitioning the dataset into a collection of sub graphs of connected triples.

However, this could not give a consistent solution for graph queries that could touch many

different sub-graphs. A Path indexing representation provided a uniform way to uniquely

specify a conjunctive query result, the problem was this could not be feasible done base on

the exponential amount of linked graph data that could be produced from datasets as low as

500,0000 triples.

CHAPTER 3

SUPERCOMPUTER ENVIRONMENT

3.1 Introduction

Mantona was developed under the resources of the Argonne Leadership Computing Facility,

which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.

The Supercomputers used for this research are named Mira and Cooley. This chapter provides

a brief overview for the supercomputer architecture for Cetus/Mira and list of resources for

Cooley. This chapter also reviews the communication features of the MPI library that is used

in Mantona, and provides an overview of the job-queue. A summary is provided at the end of

the chapter.

3.2 Mira

The Mira supercomputer operates on the Blue Gene Supercomputer architecture BG/Q.

The BG/Q system contains 48 racks, each rack contains two mid-planes containing 16 node

cards a piece and an I/O drawer containing 8 I/O node cards, Figure 7. Each I/O node card is

responsible managing the transport of data to and from the storage systems. Every two-node

cards has access to one I/O node card through at 2GB/s optical link. Node card to node

card communication also uses an optical link. Each node card contains a 2x2x2x2x2 electrical

interconnect to connect to each of the 32 compute cards (node) and uses a a 5D torus topology

37

38

over the node-node network. A node contains 16 cores using a PowerPC A2 16000MHz processor

and contains 16 GB of DDR3 ram.

Mira allows users access to a General Parallel File System (GPFS) with 24 PB of capacity

and 240 GB/second bandwidth. Mira has connection to the Energy Science Network or ESnet.

This network provides high performance connections using 100 gigabit per second links (58).

3.3 Cetus

Cetus links to the same computing resources and Mira, but is only allowed to use up to

4,096 nodes having the limit of 16 cores per node. Cetus also can only schedule jobs that are

limited to one hour.

3.4 Cooley

The Cooley supercomputer has a much higher memory capacity per node than Mira, but

has few computing nodes. Cooley has a total of 126 nodes, with each node having 12 cores and

one NVIDIA Tesla K80 dual-GPU card. Each node contains 384 GB of memory and 24 GB of

GPU RAM. Access to Cooley is provided by two login nodes, which provide compilation and

job submission capabilities (59).

3.5 Communication Library

The Message Passage Library (MPI) is provided on the supercomputer systems. The MPI

library is available for C/C++ and Fortran. The library provide blocking and non-blocking

functions for sending (uniform and non-uniform) size data and accessing (uniform and non-

uniform) size data across ranks through various communication topologies; one-one, one-many,

39

Rack

48 Racks Node-Card Compute
 Card

 16 GB
 DDR RAM

 Midplane
16 Node-cards

I/O drawer
 (8)

Compute-Card
 (32)

 16
Processors

Node-Card

Figure 7: The BG/Q Architecture

many-one, many-many (AllGather) and many-many (AlltoAll) shown in Figure 8, Figure 9.

See (60) for more on MPI documentation.

3.5.1 MPI communication modes

Figure 3.2 and 3.3 below shows the various communication modes within MPI. Each shape

represents a rank, the smaller encapsulated shape icons represent the unit of data that the rank

is sending or receiving data.

3.6 Job Submissions

All executables must be submitted to a job queue. Job scheduling is provided by the

Cobalt job scheduler. There are parameters provided for the job-queue script that allow the

user to submit job-time, number of nodes, number of process per node, and alloted time for

execution. There are also script provisions to batch jobs together, sequentially after each job

completes. Two scripts are used to execute the Mantona job: submit-mantona.py and the start-

40

Send-Receive

Sending

Receiving

(a)

Gather

Sending

Sending

Sending

Receiving

(b)

Figure 8: (a) Send-receive: one rank sends the data and one rank receives the data. (b) Gather:
one rank is collecting the send data from every rank.

mantona.sh. The submit-mantona.py script is a python script that contains a list of varying

Mantona parameters for different jobs, and contains the programming to specify what jobs

should be batched together, sequentially being added to the job queue. The start-mantona.sh

script is a bash shell script that sets the individual job executable on the queue. An example

below of what can be executed from the submit-mantona.py and start-mantona.sh script.

Cetus/Mira/Cooley submit-Mantona.py

qsub -A myproject -t 00:20:00 -n 128 -mode mantonaScript

Cetus/Mira start-mantona.sh:

runjob -np 16 -p 8 –block COLBALT NAME: mantona datasetFile 1

Cooley start-mantona.sh:

mpirun -n 128 -f COBALT NODEFILE mantona datasetFile 1

41

ONE TO MANY

(a)

All to All
Sending

Receiving

Sending

Receiving

Sending

Receiving

(b)

ALL GATHER
Sending

Sending

Sending
Receiving

Receiving

Receiving

(c)

Figure 9: (a) One-to-many also termed as a broadcast call. The sending rank duplicates its
data by the number of ranks and sends it to the other ranks. (b) All-to-all: The sending rank
duplicates its data by the number of ranks and sends it to the other ranks. All the ranks receive
data from each rank. (c) All-gather: each rank receives (n ∗ d)2 amount of data back in which
n is the number of ranks and d is the data size that is to be sent for each rank.

42

In this example, the job uses 16 nodes with 8 processors per node for a job time of 20

minutes. The executable is mantonaScript that loads an rdf dataset datasetfile, with a cache

depth set to 1. Cetus and Mira executes the program through the runjob command and Cooley

uses mpirun.

3.7 Summary

The research for this thesis was done on a supercomputer in order utilize a large coordinated

set of processors to pre-process and process linked RDF queries. To create a high job-throughput

supercomputing environment the processing, communication and storage hardware must be

efficiently and particularly engineered for high data transfer between the storage unit and

processors and among processors. The Argonne supercomputer Mira (and Cetus) is tailored for

jobs that require many processors for faster processing of large data at the expense of individual

memory while Cooley focuses on a larger memory size per processor at the expense of processor

size. Mantona utilizes both types of systems, the former to expedite the pre-processing of the

raw RDF data, and the later to to have a larger memory store to fetch the pre-processed data.

Mantona utilizes the communication modes of alltoall, onetoall and gather on Mira and Cooley

in order to distributively and efficiently pre-process and query the RDF data. Both types of

supercomputing environments from Mira and Cooley regarding Mantona pre-processing and

query are evaluated and shown in the results chapter.

CHAPTER 4

TERM PROCESSING AND NEIGHBOR NODE GENERATION

Term processing is the transformation of string terms and triples into unique ids (termList

and tripleList) in order to expedite query retrieval processing. Mantona breaks this term

processing into two steps. The first step, reduce terms, each processor reads its chunk of string

terms in the dataset and reduces the terms into a unique list. The next step, reduce triples, each

processors reads its section of triples in the dataset, replaces the string terms in the triple with

ids, then reduces the triples into a unique list. Section 4.1 and 4.2 explains how Mantona uses

the collaborative communication modes in MPI to create the termList and the tripleList. Figure

10 shows the connection between the tripleList and termList. Another way a query process can

be expedited is if each triple can reference its list of connecting triples, neighborList and their

connecting types. Section 4.3 explains how Mantona uses collaborative communication modes

to create the neighborList. Section 4.4 explains how terms are collaboratively counted to find

the most frequently used terms. The summary is provided in Section 4.5.

4.1 Reduce terms

Each processor reads in a section of terms within the dataset. A dataset, as used in this

research, is represented as one file that collects several datasets from the 2016 wiki-DBpedia

RDF dataset downloads at http://wiki.dbpedia.org. The MPI-collective read function is used

for each core to read a partition of the dataset. Each processor parses through its partition

43

44

Triple Id 0

0

2

4

1

2

3

Triple Set

Triple Id 1

0

4

3

2

1

Term Set

Achiles

Subject

Social theories

Illiad

Anarchism

Triple Id 0 : Achiles - Subject - Illiad

Triple Id 1 : Anarchism - Subject - Social theories

Figure 10: The representation of a triple set (tripleList) and a term set (termList).

and collects triple terms for each line. For the process of reduce terms, terms are collected

individually. Each term is hashed to an index between 0 and n representing the number of

ranks. The hash index represents the rank id. The term goes to the processor representing

that rank. This reduce process involves and alltoall call and an alltoallv call. An alltoall

communication call is used to provide each processor with the number of terms obtained by

each processor. The alltoallv command sends the terms to the processor according to the term’s

hashed id. Each processor removes the duplicate terms. Another alltoall call is used to send

each processor’s reduced term count to every processor. The final alltoallv communication

call provides each processor with the set of reduce terms defined as termList. If memory

conservation is an issue, then the last alltoallv would not be issued and each processor would

have its sectional set of reduce terms. The implementation of the graph-cache algorithm and

45

neighbor generation algorithm would take longer because some triples would have to be fetched

from other processors.

4.2 Reduce triples

Each processor reads in a section of triples within the database. The three string terms

within a triple are replaced with the term ids taken from the termList. Each of the three term

ids associated with a triple id are added up and hashed to an index between 0 and n. Those

three term ids are directed to the processor that represents that hashed id. An alltoall call is

first invoked to send the triple sizes (the summation of all the terms for each triple) from each

processor to every other processor. An alltoallv is then invoked for each processor to send its

triples to all processors. Duplicate triples are then removed. An alltoall call is then invoked to

send each processor’s triple sizes to every processor and the final alltoallv is called to send the

triples to every other processor, resulting in the tripleList.

4.3 Neighbor generation

Each processor would iterate over each of its root triple. Each root triple would generate

the list of triples that have a connection to the root triple. The root triple and its recently

generated neighbor list, containing a list of neighbor triples and their connection type would be

appended onto an integer array with the value -1 as a delimiter. An alltoall call would retrieve

the sizes of the integer array for each processor and an alltoallv would have each processor

receive the integer list from every processor.

46

4.4 Term counts

It is helpful to know what terms are used most often in order to construct queries with large

binding sizes and to get a sense of the dominate subjects and objects of a dataset. Mantona

processes the three maximum count subject terms and the three maximum count object terms.

In the reduce triple process after the first alltoall and alltoallv reduce calls, each processor has

a unique segment of triples with their corresponding terms. All subject to subject and object

to object term counts are created, mapping an individual object and subject term to its term

count. The subject and object maps are projected into two individual arrays. The next alltoall

and alltoallv commands will result in each processor receiving the entire subject and object

term count arrays. A sort over the term count is then conducted over the subject and object

term count arrays. The three highest subject and object term counts are picked and the three

lowest subject and object terms counts are picked. These literals are used then to generate

patterns containing maximum term subject/object constraints.

4.5 Summary

Term processing is an unavoidable one-time process of transforming an RDF dataset into

a unique list of triples, and terms based on integer ids. This type of processing receives little

to no evaluation from other related systems researched. The chapter shows how to leverage

this process using a large processor based distributed system, in our case, a supercomputer

to expedite term processing and the generation of a neighbor list for each triple. The result

chapter will show the decrease in term processing and neighbor generation time as the number

of processors increase. This chapter also shows how to use processors to effectively generate

47

maximum and minimum term counts for the subject and object terms. This makes it possible

to know the s-s and o-o connections for the maximum and minimum term counts. A cache-

file can be a very large file (tens to hundreds of gigabytes) depending on the path length

specification to store and number of connection types. Choosing a connection type that has

a low count, can dramatically reduce the cache-file size. Finally, the entire term id and triple

id list within Mantona are stored on each processor instead of having it evenly distributed

over processors. This will limit the capacity of the pre-processing stages, but will expedite

the cache-file processing due to not having to request triple ids or triple terms from different

processors.

CHAPTER 5

PATH-CACHE

(PREVIOUSLY PUBLISHED AS LEWIS, MICHAEL J., ET AL. ”A

DISTRIBUTED GRAPH APPROACH FOR

PRE-PROCESSING LINKED RDF DATA USING SUPERCOMPUTERS.”

PROCEEDINGS OF THE INTERNATIONAL

WORKSHOP ON SEMANTIC BIG DATA.

ACM, 2017 DOI 10.1145/3066911.3066913.)

A path-cache is a tree of linked triples linked triple set, s-s, p-p, o-o, s-o, o-s up to a specific

depth that covers the entire combination of linked triples forming a graph. Each linked triple in

the set is represented as a path and uses a signature to annotate each triple-to-triple connection

and connectionType to specify how each triple is connected. The linked triple set is created

from the triple-roots that are partitioned over the entire set of processors. Each processor saves

its portion of the linked triple set into a file, cache-file. This chapter explains how the linked

triple set is created.

The Mantona preprocessing module is responsible for reading the dataset, transforming an

RDF dataset into an RDF graph, identifying neighbor links to each RDF graph node (used

for the traversal algorithm, Chapter 6), and for creating a graph in which the nodes represent

preprocessed joins. In this chapter, two different techniques are shown for creating a RDF

48

49

query system that requires storing all the triples within a processor and one that requires a

communication process to access triples throughout the processors.

5.1 Dataset-partitioning

A dataset is represented as one file that collects several datasets from the 2016 wiki-DBpedia

RDF dataset downloads at http://wiki.dbpedia.org. The MPI-collective read function is used

for each core to read a partition of the dataset. Each processor parses through its partition and

collects triple information over each line and collects a list of all the terms.

5.2 Mantona - cache file creation

Mantona name comes from the Sotho word meaning chiefs, where a chief can be viewed as

the implemented code within a processor. Each chief governs their realm (graph) of linked RDF

data. Mantona pre-processes RDF data in the form of paths within the RDF-graph. Mantona

first processes an RDF-graph based on s-s,o-s,and s-o links and partitions node assignments to

each processor. Each processor generates its own set of sub-graphs term root-graphs for each

of its assigned root-ids. A root-graph is composed of nodes termed path-nodes. Each path-node

contains a list of connected triples termed triple-product that are generated from the resulting

join operations stemming from from the path of intermediate path nodes up to the ending

path-node starting from the root node. Figure 11 shows a root-graph from root pattern id

:john teaches :English.

5.3 Path-signature

Each list of triple-products coming from a path node is labeled based on its connection

signature. A connection signature is composed of a series of ids that specifies the triples that

50

root node 3
:John teaches :English

path-node 2-1

:John teaches :English
:John works-at :UIC

signature: 3 2 0

path-node 4-1

:John teaches :English
:John can-speak :German

signature: 3 4 0

path-node 5-1

:John teaches :English
:John can-speak :Spanish

signature: 3 5 0

path-node 1-2

:John teaches :English
:John works-at :UIC
:UIC type :University
signature: 3 2 0 2 1 1

path-node 5-2

connection
type

triple Id tree level

parent Id child Id

Triple Ids

0

1

2

3

4

5

:UIC in-State :Illinois

:UIC type :University

:John works-at :UIC

:John teaches :English

:John can-speak :German

:John can-speak :Spanish

Parent-Child
Connection-Types

0

1

2

Subject - Subject

Object - Subject

Subject - Object

:John teaches :English
:John works-at :UIC

:John can-speak :Spanish
signature: 3 2 0 2 5 0

:John teaches :English
:John can-speak :German
:John can-speak :Spanish

signature: 3 4 0 4 5 0

Figure 11: Root-graph from root-id 3, using the RDF-graph from Figure 1.

are being connected and its type of link connection: <connected triple id> <in-coming triple

id> <connectionType>. A connection type: 0 specifies an s-s connection, 1, o-s connection

and 2, s-o connection. The triple-product under path-node 1-2 in Figure 11, has the connection

signature 3 2 0 2 1 1. Root id 3 :john teaches :english connects with triple id 2:john works at

:UIC based on a subject-subject type specification 0. The next connection has id 1 UIC type

University connecting with id 2 :john works at :UIC based on an object-subject specification

1. Path nodes are labeled by the ending connecting triple id and the graph depth. Path-node

1-2 contains all the triple-products of depth 2 that end with id 1 - :UIC type :University.

5.4 Mantona Graph-Cache Generation Algorithm

The section shows the root-graph generation algorithm and explains the variables and basic

functions within the algorithm. Each processor has a set of root-graphs (rootGraphList). For

each depth of the growing root-graph the total list (tripleList) of triple ids (to be potentially

connected to the graph) are checked at the leaf nodes fringe-nodes. The isIn function determines

if there are any term-term connections (s-s, o-s, s-o) between the incoming id and the ids

within each of the triple products residing within the fringe-node. If there is a connection, a

join (applyJoin) is made at that connecting triple within the triple-product to create the new

linked triple product. The new linked tripled product is added (insertInPathNode) to a new

path-node. This path-node will become the newest addition to the root-graph and it contains

all the the linked triple products of the common ending id. All new path-nodes are put on

temporary fringe list addToList. When all the fringe nodes have been visited, the new path-

52

nodes become the fringe nodes swapFringeNodes and the same procedure continues at the next

depth (Algorithm 1).

procedure Graph-Cache Generator ;
for depth← 1 to maxDepth do
foreach rootGraph in rootGraphList do

foreach fringe-node in rootGraph do
foreach id in tripleList do

tId = IsIn(id, fringeNode) ;
if tId > 0 then

tp = applyJoin(tId, id) ;
insertInPathNode(tp);
addToGraph(pathNode);
addToList(pathNode);

end

end

end
swapFringeNodes(pathNode,fringeNode) ;

end

end
end procedure

Algorithm 1: Graph-Cache Generation Algorithm

53

5.5 cache-file

The cache-file is composed of all the pre-processed elements within the dataset. This in-

cludes triple strings, term ids, triple ids, triple-roots with their connectivity information (list

of neighbor triple ids), and the path-cache data, Figure 12. When reading the cache-file into

memory, each processor reads in the termList, tripleList and neighbor list and the tree sizes.

Each processor will take a partition of the tree sizes in order to load the corresponding tree size

data.

5.6 Summary

The cache-file concept was to create a file which contains pre-processing data: term id,

adjacency list of connection information for each triple and path connectivity information or

called graph-cache. The file will specify offset information for each type of pre-processing

information thus any type of distributing environment that uses MPI can process the cache-

file. This chapter presents the path-cache algorithm specifying how connected triple paths can

be stored and accessed through a signature.

54

[Term size] [neighbor data size] [path-cache size]

Header

term1, term2 … term N

termList

subject term predicate term object term …..

tripleList

triple-root1 id1 … idn … - triple-rootN id1 .. idn

neighborList

triple-root1 - [tree of path-nodes] …. triple-rootN -
[tree of path-nodes]

path-cache

Te
rm

 S
ize

Ne
igh

bo
r

Si
ze

Pa
th

-c
ac

he
siz

e

tree-size1 tree-size2 … tree-sizeN

Path-cache tree sizes

Figure 12: Cache file, containing term,triple, neighbor data and path-cache data.

CHAPTER 6

QUERY INPUT AND RETRIEVAL

(PREVIOUSLY PUBLISHED AS LEWIS, MICHAEL J., ET AL. ”A

DISTRIBUTED GRAPH APPROACH FOR

PRE-PROCESSING LINKED RDF DATA USING SUPERCOMPUTERS.”

PROCEEDINGS OF THE INTERNATIONAL

WORKSHOP ON SEMANTIC BIG DATA.

ACM, 2017 DOI 10.1145/3066911.3066913.)

6.1 Introduction

This chapter explains how a Mantona starts to process queries through two types of input

(random-path and term-based). This chapter explains how input is generated, the steps in

retrieving a query using the path-cache and the graph-exploration algorithm and how the query

retrieval algorithms are computationally evaluated.

6.2 Query input generator

Mantona uses two types of input generators to evaluate queries. The random-path input

generator creates a query string e.g Figure 14, that returns at least one connected query result.

The second type of query input generator called term-based generator uses the most and least

frequently used terms from a dataset. This type of input generator is used to get high or low

triple counts per pattern. A high triple count per pattern does not guarantee a high triple result

55

but it increases the computation in any join that the pattern takes a part in. For both query

types used in this work require a binding variable for each pattern, and a binding variable that

must only connect to any one of the previously generated patterns.

6.3 Random Path Input Generator

In the Random Path Input Generator algorithm, in function generateAllowedList, rank 0

randomly picks n (breadth size) processors to be allowed to generate a query. Rank 0 then

broadcast out the list to all the ranks so each rank can set the isAllowed variable accordingly.

Each allowed processor randomly picks a triple from its assigned rootList to start its query

generation. A loop is iterated up to a depth query length. Within the loop a function con-

nectTriple looks at the last triple added to the query list and finds a triple that can bind of

type bindingType (s-s,o-s,s-o,p-p) to the last triple and adds the new triple inTriple to the list.

The query list is an ordered list of triple ids. The list size or depth is equal to the current

iteration count of the algorithm. The order of the list matches the query pattern order. Once

the queryList is of size depth +1, the query string is created from the query list from the

function generateString. The parameter patternType represents an index value for all Mantona

supported patterns. For example a query list: 0 - 1 with pattern type 0 (all subject-binding,

Input Query: a? teaches :English a? works At ?b b? in state :Illinois

Pattern 1 Pattern 2 Pattern 3

Result :john teaches :English: - john works at :UIC - :UIC type :University

s-s o-s

Figure 13: A sample input string of depth 3.

57

procedure Random input generator(rank,patternType) ;
allowedList = generateAllowedList(breadth) ;
if (isAllowed == true) then
startTriple = rand() % partitionList ;
queryList.add(startTriple) ;
for index = 1; index <= depth; index = index + 1 do

inTriple = connectTriple(queryList.last,bindingType) ;
if (inTriple == −1) then

foundConnection = false ;
break ;

end
queryList.add(inTriple)

end
if queryList == depth + 1 then

queryString = generateString(queryList,patternType) ;
end

end
alltoall(queryString.size()) ;
alltoallv(queryString) ;

end procedure
Algorithm 2: Random Input Generation Algorithm

no blank terms), the query string becomes a? in-state :illinois * a? type :University * a?.

All processors that have generated a queryString will send the string out to every processor:

alltoall,alltoallv. Each processor will then process the string of connected query patterns using

the graph cache algorithm and the traversal algorithm.

6.4 Term Based Input Generator

With the term-based input generator, Mantona is able to translate conjunctive SPARQL

queries into series of integer based term signatures that can be processed into the graph-cache

and graph-exploration retrieval algorithm. Each query pattern is associated with nine integers

58

grouped in three per term within a pattern. Within a group of three, the first integer represents

the pattern index that this term is connected to, the second integer represents the binding type

between the terms of the source and target patterns 0: s-s, 1: o-s, 2: s-o, 3: o-o, and the last

integer of the group represents the term id of the source pattern. Figure 14 shows a sample

SPARQL query with its corresponding term and string mappings. Figure 15 shows the query

broken into a 6 pattern input signature.

Select *

Where {

?a dbpedia:spouse ?b.

?a dbpedia:wikilink dbpediares:actor.

?b dbpedia:wikilink ?c.

?c owl:sameas ?c2.

?c2 pos:lat [].

?c1 pos:long [].

}

Term Id string

0 Eiffel Tower

1 geo:ontology#inCountry

2 geo:countries#FR

3 pos:lat

4 pos:long

5 dbpedia:spouse

6 dbpedia:wikilink

7 dbpediares:actor

8 dbpediares:placeOfBirth

9 owl:sameAs

Figure 14: Term id table and sample SPARQL input query.

6.4.1 Node-Traversal Algorithm

Mantona has a node traversal algorithm that traverses through all the paths that are repre-

sented in a linked query and returns the results only from the matched paths. This is a recursive

algorithm, starting at the root-id from MatchedGraphList, in which the root-id matches the first

pattern within the query pattern. The root-id is inserted in a list of triple products tpList and

sent to traversePath(depth,tpList). At each call, the depth is checked to see if it is at maxDepth.

If so the resultant output (triple matches) is printed out, otherwise the traversal algorithm con-

tinues to expand the set of triple products (like newly grown branches of a tree) newTpList

that match with the query pattern at the current depth. The list of neighbors are retrieved

from the last id of triple product which represents the previous depth. The generatetps function

generates a set of triple products resulting from the join of the neighbor id to any of the ids

within the triple product (Algorithm 3).

Query processing starts with each processor taking a query string(s) from the random query

generator. Mantona parses this string to produce the list of query patterns at each depth and

determines the bounded and unbounded terms in each of the patterns. Each process finds if

their root-ids match the first query pattern. MatchedRootGraphs represents all rootGraphs that

have the matching rootId. A rootGraph represents all triple paths that stem from the rootId.

The getNodes function retrieves all qualifying path-nodes at the queryDepth level. So if the

the input string consists of 5 linked patterns , Mantona will check all the path-nodes at tree level

4 , and will only accept the path-nodes where its ending connected triple id matches the 5th

pattern. Mantona iterates over all the triple-products tp within the path-node(s) and compares

60

procedure Node Traversal Algorithm ;
foreach rootId in matchedGraphList do
tp = generate(rootId) ;
insert(tp, tpList) ;
traversePath(1, tpList)

end
end procedure
procedure traversePath(depth, tpList) ;

if depth == queryDepth then
printResult(pathNodes) ;
return ;

end
instantiate(newtpList) ;
foreach tp in tpList do
foreach neighbor from tp[depth− 1] do

generatetps(neighbor, tp, newtpList) ;
end

end
deletetpList ;
traversePath(depth+1,newtpList) ;

end procedure
Algorithm 3: Mantona Node Traversal (Graph Exploration) Algorithm

61

?a dbpedia:spouse ?b
Pattern 0 -1 -1 -1 -1 -1 5 -1 -1 -1

?a (s-s) dbpedia:wikilink dbpediares:actor
Pattern 1 0 0 -1 -1 -1 6 -1 -1 7

?b (o-s) dbpedia:wikilink dbpediares:actor
Pattern 2 0 1 -1 -1 -1 6 -1 -1 7

?b (o-s) dbpedia:wikilink ?c
Pattern 3 0 0 -1 -1 -1 6 -1 -1 -1

?c (o-s) owl:sameas ?c2
Pattern 4 3 1 -1 -1 -1 9 -1 -1 -1

?c2 (o-s) pos:lat []
Pattern 5 4 1 -1 -1 -1 3 -1 -1 -1

?c2 (o-s) pos:long []
Pattern 6 4 1 -1 -1 -1 4 -1 -1 -1

Figure 15: Term input signature.

each connecting triple id and link type to the correlating pattern. If the triple product matches

all the patterns in the query in the right order, then its results are printed out (Algorithm 4).

6.5 Graph-Cache Analysis

This section uses the following variables to represent the triple matching formulas for the

graph cache and traversal algorithm.

D Depth of the graph.

N Number of triples

62

procedure Graph Retrieval ;
foreach rootGraph in MatchedRootGraphs do
pathNodeList = getNodes(queryDepth) ;
foreach pathNode in pathNodeList do

foreach tripleProduct in pathNode do
matchingProduct = true;
foreach triple,index in tripleProduct do

if Tripleidnot in pattern[index] then
matchingProduct = false ;

end
if Tripletype not in pattern[index] then

matchingProduct = false ;
end

end
if matchingProduct == true then

printOutput(tp);
end

end

end

end
end procedure

Algorithm 4: Mantona Graph-Cache Retrieval Algorithm

63

Ti,j The total number of triple products for the ith path-node at depth j. T0,0 = 1, which is

the root triple. This total number is every triple-product of length i, that has the same

ending triple connection and starts with the same triple-root.

Pi The number of path-nodes at depth i. PD are the leaf path-nodes.

Mi-1 The total number of triple products that match the pattern at level i-1 where 1 <= i <=

D.

Pnode The number of leaf graph nodes that match the ending query pattern. A graph node is

a collection of triple products in which every triple-product has the same ending triple

connection.

C The number of triple-triple connections types. Mantona uses s-s, s-o and o-s connections.

6.5.1 Mantona Graph-Cache formula

The number of triple products within an individual graph.

T i =

Pi∑
j=1

Ti,j × C ×N − 1× i

.

For each depth there will at most N-1 candidates to access Pi path-nodes because there

can not be any duplicate triples within a path-node and every path-node has the same ending

triple. With each candidate that can access a path-node, there are C × i ways of connecting

to an individual triple-product of length i. With C representing the number of connections,

Figure 17.

64

The set of all triple products
starting with the same triple
root of length i.

Graph-cache at Depth i

Path nodes
Contains the set of all triple products
starting with a triple-root and having
the same ending triple.

Each path-node can have N-1 x C
triple connections. N being the
number of triples, and C being the
number of type of triple bindings.

Figure 16: A domain view of Path nodes from the Graph-cache at depth i.

Mantona contains a map of Ti,j thus can instantly access path-nodes at any depth. The best

search scenario would be to find no match, in which the query pattern string iterates through

every path-node at the query depth level. The query string compares the ending triple id for

each path node to each triple within the string. If there is not match for any path-node then

a not-found match is return. This scenario requires at most N-1 × query-length comparisons.

In (19) the computational complexity is of O(log2(n + 1)) in which n is the total number of

paths within the graph. In this case the worst scenario would be not to find a match because

the whole binary tree would be searched to then find that there was not match.

65

If there is a match found with the Mantona query search at a processor, each triple-product

within the all the matched path nodes is checked. The number of comparisons would be the

following in which k is the number of path-nodes that found a match.

k × Ti,j × i× queryLength

6.5.2 Traverse Node-Matching formula

The number of triple-pattern checks for the traverse node algorithm is the following.

MD =
D∑
i=1

(N)× C ×M i-1

At M0 represents the root node where this triple must match the first pattern within the

query. At each level there is a check for each of the N triples to see if the triple matches the

pattern and the connectivity type. Faster query results stem from small match sizes resulting

from selective queries. Query planning as used in Trinity can provide join configurations using

dynamic program where the over all match size can reach a minimum value.

6.6 Summary

This chapter covers the approach of this research in query graph creation, how query retrieval

is implemented from the query input and to evaluate the computation complexity of the query

processing algorithm. This chapter covered two algorithmic ways to generate a query input. The

randomize query input algorithm randomly generates connecting patterns to the growing query

input until the algorithm reaches its final connecting pattern. This algorithm was created to

66

insure that there is at least one result stemming from the query. The other algorithm extracts

the most frequent subjects and objects to use as literals for its query. This technique was

used, even though it does not guarantee a triple output, the query will contain maximum size

patterns. The path-based query can also be used to directly translate the conjunctive section

of a SPARQL query into an integer based input that can be read into Mantona. From previous

RDF experiments as well as from Mantona experiments, result size is a factor in increasing

query timings, thus the aim is to create as much of a result size as possible. The alternative

approach with query input is to use the exact queries that were used from related systems. This

approach will make it easier to query results across systems and the queries have previously

been prepared to fit the user model of queries that produce query results. This chapter also

covered the processing of queries through the graph-exploration algorithm and the graph-cache

algorithm. The graph-cache is basically a memory based storage structure of categorized paths,

in which connected triples can be accessed by keying in the path level that correlates with the

query pattern level. This chapter shows how the cache depth, number of triples, the number

of connection types, and binding sizes along an accessed path can influence query retrieval

times. The graph-exploration algorithm is also shown in recursive programming steps, with

each recursive call, the query depth size increases and the tree of paths are created to match

the query input at each pattern level. The base condition is reaching the end of the query path

or not matching the current pattern. If the former is reached the bindings from the path result

is provided. This chapter also shows from a mathematical model how query retrieval timings

are directly related to the amount of path-nodes within a level, the number of triple products

67

within a path-node, the number of connections, and the number of triples. Improvements

in the path-cache algorithm would be to traverse the through N triples to see if the visiting

triple matches the pattern and if so, then iterate over the all the path-nodes to see if that

triple matches the path-node. If the triple matches the path-node, retrieve the paths from the

path-node and extract all the paths that match all the patterns up to the current level. The

current algorithm iterates over each path-node and checks N triples for a matching current

pattern and path-node. The improved algorithm will not have a multiplicative factor of N in

its computational time but rather as an additive O(N) to the query retrieval time.

CHAPTER 7

RESULTS

7.1 Introduction

This chapter shows and summarizes the results from the query pre-processing and query

timing experiments implemented on Mantona. This chapter also displays and summarizes

the query timings experiments extracted from the related query systems: BitMat (4), RDF-

3X (3), MonetDB (36), PostgreSQL (61) and Trinty.RDF (17). The query configurations are

displayed in the form of a query graph to help the reader map the query binding characteristics

to an experimental result. The query graphs show the pattern count, the pattern to pattern

connections and the selectivity through the amount, or non presence of blank terms within each

pattern. Each line in the query graph represents a pattern. Blank terms represented as ’[]’ are

the non constraint terms. The blank terms that are positioned in the middle of the line are

predicate non-constraint terms and the ones at the end of the line segment represent the non-

constraining subject/object terms. Each variable shown in the graph represents a join point

between two or more patterns. Graph variables are not the same as the variables represented in

queries. These graph variables are used to show only the join points in order to better illustrate

all of the join connections within the graph. With higher join points, there is a higher chance

of increased query timings due to the cross product computations that come from joins.

68

69

This chapter contains four sections. Section 7.2 explains the experimental setup for the

query trials conducted through RDF-3X, MonetDB, PostgreSQL, BitMat, Trinity.RDF and

Map-Reduce and show the results of the experiments. The query graphs are mapped to the bar

graphs that show the query retrieval times covering datasets of 9.96 Billion triples, 1.36 billion

triples 845 million triples, 21 million triples and 44,114,899 triples. Section 7.3 and 7.4 cover the

Mantona experiments. Section 7.3 shows the pre-processing timing results in terms of the time

to create and save a cache-file for increasing node sizes. This section also compares the time

to generate a connectivity list for each triple against building a path-cache. The pre-processing

graphs also show the overall time which includes, loading the dataset from file, creating the

connectivity list for each triple, creating the path-cache and saving the cache-file on file storage.

Section 7.4 evaluates query retrieval timings from a term-based input (Q1 - Q6, Figure 23) and

a random-path input (Q1 - Q3, Figure 25). The term based input trials evaluated the query

timing results based on the exploration algorithm and the path-cache algorithm over increasing

computational nodes using Cooley. The random-path query input was used to evaluate query

timings from the 500,000, 1,000,000 and 2,000,000 triple dataset on Mira (Figure 26). The

random-path query input was used to evaluate 100 simultaneous query timings on Cooley from

a 250,000 and 500,000 triple dataset (Figure 27). Lastly section 7.5 provides a final summary

of the results.

The Mantona jobs were run on Argonne’s Cetus, Mira and Cooley systems. Cetus has

a 4096 node capacity with a maximum of 16 cores per node and a maximum 1GB per node

memory capacity. Cetus has a maximum node capacity of 4096 nodes. Cetus was used to test

70

the pre-processing experiments with node sizes ranging from 2 nodes, 8 cores to 512 nodes,

2048 cores (4 processors per node). Mira has a 49,152 node capacity with 16 cores per node

and a maximum 1GB node memory capacity. Mira was only used to evaluate dataset cache-file

using 2048, 4096 and 8192 nodes. Cooley has a 126 node capacity with a maximum of 12 cores

per node and maximum of 384 GB RAM per node. Cooley was used to test the pre-processing

and query retrieval experiments with core sizes ranging from 2 node 8 processors to 64 node,

256 processors (4 processors per node).

7.2 Results - Related systems

The results shown here are from three sets of experiments using three datasets - LUBM

(54) dataset, the Yago (62) dataset and the Uniprot (63) dataset. The query systems involved

include MonetDB (36), PostgreSQL (61), RDF-3X (3), and Trinity.RDF (17). These query

systems were chosen because they had the fastest query retrieving results available relative

to its dataset size and its unique query retrieval techniques. The first three RDF frameworks

cover a scan-based, vertical partitioned method to help with query retrieval. The last framework

Trinity.RDF uses the graph exploration method to retrieve query results. This section shows

the query timings relative to its query graph characteristics.

7.2.0.1 Datasets and Execution Environment

The Yago dataset (62) contains 40,114,899 unique triples and 33,951,636 distinct terms

consuming 3.1 GB. Yago consists of data taken from the infoboxes and category system of

Wikipedia. The 8 Yago query graphs and query timings for RDF-3X, MonetDB and PostgreSQL

are shown in Figure 17. The Yago table data is presented in Table 3. The experiments were

71

conducted on a Dell D620 PC with a 2Ghz Core 2 Duo Processor with 2 GBytes of memory

(3). The cold cache for the Yago experiments were based on dropping the cache from the file

systems and starting the queries. The warm cache results were based on running each query

five times without dropping the cache and taking the best result.

The Uniprot dataset contains protein data information. It consists of 845,074,885 triples

with 147,524,984 subjects, 95 predicates and 128,321,926 objects. The experiments using

Uniprot were taken from the BitMat (4) paper, incorporating MonetDB (36), PostgreSQL

(61) and RDF-3X (3). BitMat (4) used a Dell 3.0 GhZ, dual processor, 4 GB of memory with

7GB of swap space having 1 TB storage capacity. Results are shown in Figure 18 and Table 4.

The synthetically created Leigh University Benchmark LUBM (54) dataset consists of 9.96

billion triples. This dataset was run on a cluster in which each machine has a 96 Gigbyte DDR3

RAM, two 2.67 Ghz processors, and 6 cores per machine. The experiments were taken from the

Trinity.RDF (17) paper. This experiment compared the results from RDF-3X, Map-Reduce-

RDF-3X and BitMat. The Map-Reduce-RDF-3X implements the Map-Reduce algorithm using

the RDF-3X compression technique. Results are shown in Figure 19 and Figure 20 and Table

5. This paper did not specify how many computational nodes were executing for these trials.

72

Figure 17: Query timings for 44,114,899 triple dataset covering 8 different query types.

73

Figure 18: Query timings for the 845 Million triple dataset covering 13 different query types.

74

 Pattern

Literal

L2

z x

y

L1

x

L5

xx

LUBM Query Types

?

<letter> Query Variable

<?> Blank node

z x

y

L3

a b c

L4

x y

L6

z x

y

L7

Figure 19: LUBM 9.96 Billion triples.

75

Figure 20: LUBM Top: 1.36 Billion triples as dataset input. Below 21 million triples.

76

Yago Dataset (Sec) A1 A2 A3 B1
Cold Cache

RDF − 3X 0.29 0.28 1.20 0.28
MonetDB 43.55 44.13 54.49 62.94

PostgreSQL 1.62 6.31 5.46 3.04
Warm Cache

RDF − 3X 0.02 0.02 0.02 0.01
MonetDB 36.92 32.96 34.72 49.95

PostgreSQL 0.08 0.43 0.20 0.11

Yago Dataset (Sec) B2 B3 C1 C2
Cold Cache

RDF − 3X 0.99 0.33 2.23 4.23
MonetDB 182.39 72.22 101.66 157.11

PostgreSQL 117.51 4.71 29.84 59.64
Warm Cache

RDF − 3X 0.05 0.01 0.61 1.44
MonetDB 64.84 52.22 84.41 131.35

PostgresSQL 7.33 0.12 0.31 50.37

TABLE III: Query run times in seconds for the Yago dataset.

Uniprot 845M Q1 Q2 Q3 Q4 Q5 Q6
Cold Cache

BitMat 451.365 269.526 173.324 9.396 78.350 1.340
MonetDB 548.210 303.213 124.356 9.630 97.280 11.280
RDF3X Aborted 525.105 244.580 1.380 4.636 0.902

Warm Cache
BitMat 440.868 263.071 168.673 8.305 77.442 0.448

MonetDB 495.640 267.532 113.818 0.584 96.020 0.822
RDF3X Aborted 487.181 226.050 0.077 1.008 0.006

Uniprot 845M Q7 Q8 Q9 Q10 Q11 Q12 Q13
Cold Cache

BitMat 9.330 13.060 11.430 10.490 15.560 26.980 17.370
MonetDB 9.910 15.930 21.370 21.390 12.330 2.468 12.884
RDF3X 0.892 1.353 1.718 1.549 3.268 2.804 1.765

Warm Cache
BitMat 8.360 10.870 9.780 8.690 14.130 25.190 15.770

MonetDB 0.861 0.362 0.611 0.563 0.710 0.744 1.020
RDF3X 0.003 0.029 0.047 0.046 0.547 0.295 0.046

TABLE IV: Query run-time in milliseconds on the Uniprot dataset (845 Million triples). Table
data taken from Matrix ”Bit” loaded paper.

77

LUBM 21M L1 L2 L3 L4 L5 L6 L7
TrinityRDF 281 132 110 5 4 9 630

RDF3X(InMemory) 34179 88 485 7 5 18 1310
BitMat(InMemory) 1224 4176 49 6381 6 51 2168
RDF3X(ColdCache) 35739 653 1196 735 367 340 2089
BitMat(ColdCache) 1584 4526 286 6924 57 194 2334

LUBM 1.36B L1 L2 L3 L4 L5 L6 L7
TrinityRDF 12648 6018 8735 5 4 9 31214

RDF3X(InMemory) 36m47s 14194 27245 8 8 65 69560
MapReduceRDF3X 17188 3164 16932 14 10 720 8868
BitMat(InMemory) 33097 209146 2538 aborted 407 1057 aborted
RDF3X(ColdCache) 39m2s 18158 34241 1177 1017 993 98846
MapReduceRDF3X 32511 7371 19328 675 770 1834 19968
BitMat(ColdCache) 39716 225640 9114 aborted 494 2151 aborted

LUBM 9.96B L1 L2 L3 L4 L5 L6 L7
TrinityRDF 176 21 119 0.005 0.006 0.010 126.00

RDF3X(InMemory) aborted 96 363 0.011 0.006 0.021 548.00
MapReduceRDF3X 102 19 113 0.022 0.016 0.226 51.98
RDF3X(ColdCache) aborted 186 1005 874.000 578.000 981.000 700.00
MapReduceRDF3X 171 32 151 1.113 0.749 1.428 89.00

TABLE V: Top: Query run-time in milliseconds on the LUBM-160 dataset (21 Million triples).
Middle : query run-time in milliseconds on the LUBM-10240 dataset (1.36 billion triples).
Bottom : query run-time in seconds on the LUBM-100000 dataset (9.96 billion triples) Table
data taken from Trinity.RDF. List of queries shown in appendix B

78

7.3 Dataset creation Results

These experiments evaluate the time to create the cache-file for a 125,000 and 400,000 triple

dataset on Cetus and Cooley (Figure 21, Figure 22 (a) and 22 (b). The graphs shown below

show three different timings recorded in the dataset construction. The build time represents

the time it took to create the cache-file. The neighbor time represents the time to find all

the neighbor triples including connection type information for each of the nodes. The total

time includes the the entire time to pre-process the dataset. This includes loading the dataset,

creating the termList and tripleList, generating the neighbor adjacency list, creating the path-

cache and saving all the pre-processed data into a file. The last graph uses Mira to create the

cache-file containing 1 million triples, and using 2048, 4096 and 8192 cores (Figure 22 (c)). All

of these graphs are recorded in seconds.

79

Core sizes
32 64 128 256 512

Cetus 125,000 triple Dataset (time: seconds)
Cache− buildT ime 318.770 159.527 80.176 40.416 20.193

Neighbor − buildT ime 19.638 10.745 6.320 4.099 3.020
Total − buildT ime 364.890 198.720 117.190 75.880 109.459

Cetus 400,000 triple Dataset (time: seconds)
Cache− buildT ime 3378.580 1533.650 767.212 384.496 192.165

Neighbor − buildT ime 182.543 98.090 53.701 31.421 20.140
Total − buildT ime 3735.040 1760.12 932.580 516.440 384.623

2 4 8 16 32 64

Cooley 125,000 triple Dataset (time: seconds)
Cache− buildT ime 837.707 398.490 196.170 98.366 49.134 24.436

Neighbor − buildT ime 23.230 13.410 7.639 4.811 3.965 5.140
Total − buildT ime 967.052 445.700 229.600 129.677 89.308 89.351

Cooley 400,000 triple Dataset (time: seconds)
Cache− buildT ime 8601.460 4442.23 2176.09 1140.120 502.470 252.921

Neighbor − buildT ime 236.513 119.20 65.46 38.454 21.559 15.024
Total − buildT ime 10004.600 4888.43 2496.21 1140.120 623.749 371.256

Triple sizes
2048 4096 8192

Mira 1,000,000 triple Dataset (time: seconds)
Cache− buildT ime 2321 1185 599

Neighbor − buildT ime 22 14 11

TABLE VI: Top: Cetus load times using 125,000 and 400,000 triple dataset. Middle chart:
Cooley load times using 125,000 and 400,000 triple dataset. Final chart: Mira load times with
2048, 4096 and 8192 core sizes.

80

(a) (b)

Figure 21: (a) Cache file processing times on a 125,000 triple dataset using Cooley. (b) Cache
file processing times on a 125,000 triple dataset using Cetus.

7.4 Query results

The systems Cetus, Cooley and Mira were used to evaluate the query timings for various

processor sizes using the path-cache and graph-exploration algorithm. These experiments were

set up to examine the effects of query order, results size, and processor size on query timing

results.

7.4.1 Cetus and Cooley

Cooley experiments used datasets of triple sizes: 125,000, 400,000 with scaling node sizes

of 2,4,8,16,32 and 64, and with 4 processors per node. Cetus used the 50,000 dataset with

scaling nodes sizes of 32, 64, 128, 256 and 512 and with 8 processors per node (Figure 24).

The 50,000 triple dataset only checked for o-o connections of depth 1 for the path-cache and

the queries covered Q2-Q6. The term-based input was used for these experiments. Six different

81

(a) (b)

(c)

Figure 22: Query results. (a) Cache file processing times on a 400,000 triple dataset using
Cooley. (b) Cache file processing times on a 400,000 triple dataset using Cetus. (c) Cache-file
processing times on a 1,000,000 triple dataset using Mira.

82

query configurations (Q1-Q6) were used for the Cooley and Cetus experiments (Figure 24).

The literals for these queries are based on the previous processed highest frequencies for the

subject and object terms. The description of the queries are : Q1, a two pattern, s-s connection,

with one join point and two predicate blank nodes. Q2, a two pattern o-o query with one join

point and two predicate blank nodes. Q3, a two pattern o-o connection with one join point

and two blank predicate nodes. Q4, Q5 a two pattern o-o query with one join point and two

blank nodes on the predicate and subject terms. The difference between queries Q4, Q5 is the

pattern processing order. Query Q4 processes the most frequent literal pattern first and query

Q5 processes the most frequent literal pattern first. Query Q6, a three pattern o-o query with

1 join points and one blank node. The table data representing the Cetus and Cooley query

experiments are shown in Table 7 and Table 8.

83

Figure 23: Query graphs Q1 - Q6. Query used for the results shown in Figure 25.

84

(a) (b)

(c) (d)

(e) (f)

Figure 24: Query timings in milliseconds. (a) Cetus exploration 50,0000 triples. (b) Cetus
path-cache 50,000 triples. (c) Cooley exploration 125,000 triples. (d) Cooley path-cache 125,000
triples. (e) Cooley exploration 400,000 triples. (f) Cooley path-cache 400,000 triples.

85

Core Sizes
2 4 8 16 32 64

50,000 Cooley triple cache algorithm (milliseconds)
Q2 0.120 0.395 0.169 0.118 0.067 0.054
Q3 1.460 0.329 0.159 0.089 0.053 0.035
Q4 323.000 79.200 37.800 26.700 9.510 6.600
Q5 1.900 0.518 0.247 0.115 0.082 0.050
Q6 161.000 84.500 40.500 21.800 9.760 5.460

50,000 Cooley triple, exploration algorithm (milliseconds)
Q2 0.530 0.397 0.113 0.080 0.086 0.053
Q3 0.390 0.182 0.0841 0.044 0.032 0.026
Q4 23.100 15.000 6.120 4.080 3.290 1.170
Q5 1.360 0.668 0.294 0.166 0.144 1.170
Q6 0.391 0.181 0.853 0.045 0.032 0.026

32 64 128 256 512
50,000 Cetus triple cache algorithm (milliseconds)

Q2 0.043 0.041 0.033 0.026 0.024
Q3 0.042 0.041 0.034 0.028 0.025
Q4 0.168 0.169 0.093 0.046 0.036
Q5 0.045 0.043 0.033 0.028 0.028
Q6 0.044 0.042 0.035 0.030 0.028

50,000 Cetus triple, exploration algorithm (milliseconds)
Q2 0.050 0.047 0.036 0.023 0.013
Q3 0.029 0.027 0.018 0.014 0.012
Q4 1.430 1.400 0.700 0.341 0.183
Q5 0.030 0.029 0.019 0.014 0.014
Q6 0.030 0.030 0.020 0.015 0.013

TABLE VII: Query timings, graph-cache and exploration method 50,000 triples.

86

Core Sizes
2 4 8 16 32 64

125,000 triple cache algorithm
Q1 32.300 8.970 4.300 3.900 0.387 0.379
Q2 0.120 0.395 0.169 0.118 0.067 0.054
Q3 1.460 0.329 0.159 0.089 0.053 0.035
Q4 323.000 79.200 37.800 26.700 9.510 6.600
Q5 1.900 0.518 0.247 0.115 0.082 0.050
Q6 161.000 84.500 40.500 21.800 9.760 5.460

125,000 triple, exploration algorithm
Q1 1.730 2.930 0.404 0.495 0.444 0.146
Q2 0.530 0.397 0.113 0.080 0.086 0.053
Q3 0.390 0.182 0.084 0.044 0.0326 0.026
Q4 23.100 15.000 6.120 4.080 3.290 1.170
Q5 1.360 0.668 0.294 0.166 0.144 1.170
Q6 0.391 0.181 0.853 0.0452 0.032 0.026

2 4 8 16 32 64

400,000 triple cache algorithm
Q1 32.300 8.970 4.430 3.390 0.387 161.000
Q2 12.000 0.395 0.169 0.118 0.067 84.500
Q3 1.460 0.329 0.159 0.0898 0.053 40.500
Q4 323.000 79.200 37.800 26.700 9.510 21.800
Q5 1.900 0.518 0.247 0.115 0.082 9.670
Q6 161.000 84.500 40.500 21.800 9.760 5.460

400,000 triple, exploration algorithm
Q1 38.70 6.400 3.810 60.300 2.090 2.660
Q2 13.00 0.929 3.810 0.218 0.129 0.0836
Q3 1.94 0.340 0.162 0.092 0.055 0.037
Q4 202.00 74.000 39.200 21.500 9.740 8.380
Q5 2.21 1.160 0.492 269.000 0.148 8.270
Q6 139.00 69.600 35.200 18.000 8.43 0.392

TABLE VIII: Query timings, graph-cache and exploration method Cooley, and Cetus, 125,000
and 50,000 triples.

87

7.4.2 Mira

The Mira experiments used a 500,000, 1,000,000 and 2,000,000 triple dataset over 2048,

4096 and 8192 cores using a random path input generator producing query graphs Q0 - Q3,

Figure 25. Figure 26 shows the Mira query results using 500,000, 1,000,000 and 2,000,000

triples. These queries were pre-processed to include connected patterns that returned triple

results. The description of the queries are: Q0: a s-s connection with one join point, two

predicate blank nodes and two literals. Q1: a s-s connection with one join point and two

literals. Q2: a s-s connection with one join point and two blank predicate nodes. Q3: a s-s

connection with on merge point, and three literal end points. Table 9 shows the results of the

Mira experiments explained above. Table 10 shows the result sizes from the Mira experiments.

The final experiments, Figure 27 and Table 11 evaluate 100 multiple queries (Q0 and Q1) with

250,000 and 500,000 triples.

Figure 25: Query graphs Q1 - Q3.

88

(a) 500000 Triples (b) 1000000 Triples

Figure 26: Query results (a) .5M triple dataset. (b) 1M triple dataset. (c) 2M triple dataset.

89

Core Sizes
2048 4096 8192

500,000 triples
Q0−GraphCache 24.79 25.03 25.03

Q0−GraphTraversal 35.04 36.00 36.95
Q1−GraphCache 25.03 25.98 25.98

Q1−GraphTraversal 34.80 36.95 36.00
Q2−GraphCache 25.03 25.03 25.98

Q2−GraphTraversal 34.80 36.95 36.00
1,000,000 triples

Q0−GraphCache 25.03 25.03 25.03
Q0−GraphTraversal 35.04 36.0 36.0

Q1−GraphCache 26.22 25.98 26.94
Q1−GraphTraversal 35.04 36.00 36.00

Q2−GraphCache 25.03 25.03 25.03
Q2−GraphTraversal 36.0 36.0 36.95

2,000,000 triples
Q0−GraphCache 25.03 25.03 24.08

Q0−GraphTraversal 35.04 36.0 24.08
Q1−GraphCache 26.22 25.98 25.98

Q1−GraphTraversal 35.04 36.00 36.00
Q2−GraphCache 25.03 25.03 25.98

Q2−GraphTraversal 36.0 36.0 36.95
Q3−GraphCache 25.03 25.03 25.98

Q3−GraphTraversal 36.00 36.00 36.95

TABLE IX: Query timings on Mira for 500,000, 1,000,000 and 2,000,000 triples over 2048, 4096
and 8192 cores. Time units are in micro-seconds 1× 10−6.

Result sizes
500, 000 1, 000, 000 2, 000, 000

Q0 6 10 10
Q1 3 3 9
Q2 3 3 9
Q3 − − 9

TABLE X: Result sizes (number of triples) retrieved from the 500,000, 1,000,000 and 2,000,000
triples. Query Q3 was only done on the 2,000,000 triples dataset.

90

Figure 27: Query timings over 100 simultaneous queries in milliseconds.

triple size
250, 000 500, 000

Q0−GraphCache− 1536 24.80 36.38
Q0−GraphTraversal − 1536 70.35 98.45

Q1−GraphCache− 0 10.20 25.98
Q1−GraphTraversal − 0 2.56 4.68

TABLE XI: Time results in milliseconds for one hundred simultaneous queries over 250K and
500K datasets. The number at the end of the query type label is the result size.

91

7.5 Summary

This chapter evaluates the results from related systems: RDF-3X, MonetDB, PostgreSQL,

Trinity.RDF and evaluates the results from Mantona containing the Graph-Exploration algo-

rithm and the graph-cache algorithm.

7.5.1 Related systems

Trinity.RDF (17) has overall the best query retrieval results for larger datasets. Trinity.RDF

(17) uses the graph-exploration method for its query retrieval techniques. The Map-Reduce-

RDF-3X produces the next best results and like Trinity.RDF it does not have any aborted

experiments in its results. With the other systems there is at least one aborted trial over the

different datasets and over the different query types. Graph-based algorithms usually are able

to scale because the terms or triples and the connectivity information is partitioned over all

the compute nodes within the distributed system so one particular compute node can not get

overloaded. Also the processor to processor communication infrastructure and the distributed

programming library e.g MPI is optimized for fast memory to memory data transfers across

processors.

The simulated LUBM query graph L1 matches the query graph L3 but the result sizes are

different for the queries which influences timing results. L1 has query results for the 21M and

the 1.36B LUBM datasets,but there is no result for L3 query. The bush query (query statements

connecting to a single point) L4 has low results for Trinity, RDF-3X, however there is a spike

in the query timings for the Map-Reduce - 21 million triples, and the Map-Reduce timings are

higher over the other two. Map-reduce can become inefficient when for each iteration there are

92

just a few more joins happening. This is due to the triple similarities of a bush configuration

in which many of the triples are going into the same bucket. RDF-3X however handles bush

queries very efficiently.

For scan based algorithms : RDF-3X, MonetDB and PostgreSQL, even using a clustered

system the bottleneck comes from variable binding sizes. A particular large pattern size can take

more time scanning and selecting the triples from the different tables of vertically partitioned

triples scattered over the system. With graph exploration algorithms and map-reduce the

collection is dispersed over the processors.

7.5.2 Mantona

The Mantona experiments were set up to evaluate the query pre-processing and query timing

processing stages. Due to memory constraints on Cetus/Mira with the entire tripleList and

termList stored on a processor, the experiments were limited to smaller datasets with 2,000,000

computational nodes being the highest that this software can obtain to with its current version.

Thus there could be no direct query timing comparisons between the Mantona experiments and

the findings from the related systems. Future Mantona revisions will partition the tripleList

and termList over the processors. This will slow down the path-cache generation a little but

allow Mantona to experiment with much higher datasets.

These Mantona experiments did not match the queries or query graphs to the related sys-

tems. Matching a SPARQL query in entirety would be very important in getting accurate

comparisons from many SPARQL compliant systems and make this tool a practical tool for

users since SPARQL is the main query language used in the RDF community. Mantona ex-

93

periments using the SPARQL query from the LUBM experiment are evaluated in Chapter 8.

From using the term-base input, Mantona is able to implement the exact SPARQL queries pre-

sented in other query systems with regards to connected queries. Excluding from query graphs,

not all queries are the same. For example the SPARQL selection statement distinct creates

more computation in that all the results must be unique. A map-reduce implementation based

on how the termList is processed would be necessary to implement this reduction of result

terms to its unique set if Mantona was to add the distinct feature. Another candidate for the

map-reduce process for unimplemented SPARQL features include using the intersection (AND)

statement. The SPARQL select feature functions as column/term filtering tool that can be also

added to Mantona in future versions in which each processor can filter out the results without

required map-reduce functionality. However it is very important for this work to review and

evaluate the RDF query results from related systems in order to have a better understanding

of the common characteristics of RDF queries and to see what systems and algorithm types

show the top query retrieval times. It is also important to show the common rules that other

systems operate on which produced the query results and show that Mantona is playing in

the same game. Mantona focused on evaluating experiments over the entire life cycle and the

relation between a RDF query and an RDF dataset. Mantona separated the entire query pro-

cess in two stages the pre-process stage and the query process stage. In the pre-process stage,

term and triple ids are processed, triple connectivity is processed and graph-cache is generated.

In the query retrieval stage the cache-file is retrieved, queries are executed on the system and

94

the query is processed using some query retrieval algorithm in order to get query timing results.

7.5.3 Query Loading

Query systems do not typically report the pre-processing results, but the pre-processing

stage can be time critical as well, even though this is a one time operation. A query user

may not have the luxury to wait hours or days to set up the query system with a particular

billion plus triple dataset. The results shown in Figure 22 and Figure 23 show that by doubling

the number of processors there is a significant reduction (almost by two in some cases) in

the pre-processing time. If a system just needs connectivity information the pre-processing

time is much smaller (neighbor connectivity information shown in green) than if the system

processes the path-cache information up to a particular depth (path-cache shown in blue). For

a larger node sizes, the results show a smaller reduction rate. More processors makes for a lessor

amount of query graph processing per processor. The adding of a large amount of processors

does substantially reduce the the pre-processing query timing, but the rate of reduction is much

smaller. This may be due to contention with similar data requests from different processors.

The total time is the time it takes to process the neighbor connectivity information, the graph-

cache processing the term,triple processing. The graph shows that term processing scales as

well, when increasing processor size. Also that the term processing is small in comparison to

the graph-cache generation time.

95

7.5.4 Graph-cache vs Graph-exploration

Figure 24 shows query timing results over the graph-cache process (right column) and the

graph exploration process (left column). For the small dataset sizes 400,000 and 125,000, the

graph cache algorithm does not perform much better than the graph exploration method. This

can be due to a small result size or pattern size from the graph query. With a small pattern

size the overhead of graph-cache data structures that is being used to retrieve the triples can

slow up query processing for smaller datasets.

7.5.5 Query Order

Mantona’s query Q4 and Q5 are identical queries but the patterns are processed in different

order. Q4 is the graph in red, and Q5 is the graph in green. The query for Q4 and Q5 is

to obtain all pairs of triples containing the same object all bounded by the highest frequency

subject term. For graph Q4 all of the triples are roots that can then find the o-o pattern that

is constrained by the highest frequency term. Query Q4 has all the processors participate in

the finding the query since all the triple roots are involved. Query Q5 uses only selected triples

roots that have the constraining subject literal, from these roots Mantona looks for any triple

that has the o-o connection with the root triple. The data from the graphs show Q4 with

the higher retrieval times. This is the case where having more nodes compute the results may

be a detriment. Since there are more triples than processors, then there will be a number of

triple-roots assigned to each processor. For Q4 the query algorithm will have to be implemented

serially for each triple-root, whereas for Q5 there will be a less chance that for a processor to

have more than one triple-root that match the constrained subject literal pattern. The next

96

version of Mantona will need to process query order in way where the most constrained pattern

in the query graph should be first used as the root.

CHAPTER 8

LUBM-EXPERIMENT

8.1 Description of Experiment

This experiment used 18,464 triples from the 2.9 GB LUBM-160 dataset. This experiment

used Cooley with core sizes 2, 4, 8, 16, 32 and 64. The original dataset was in an XML based

RDF format. A program was created to translate the XML based LUBM formated dataset to

the n-triple format (64), in which each line contains a triple. This is the format used by Man-

tona to parse triple datasets. The graph-cache file was created on Cooley using 16 processors

taking 81.9 seconds. The neighborList (the triple connectivity cache), was processed in 25.2

seconds. Query timings were conducted using the graph-cache algorithm, the graph-exploration

algorithm and the no-cache exploration algorithm. The no-cache algorithm does not use the

neighborList cache for query retrieval. For the no-cache experiment, connectivity had to be

calculated on a triple by triple basis. The entire triple list is scanned in order to determine

what triples can link up to the source triple.

Here are the following queries used in the LUBM-Experiment.

Q1 SELECT ?x ?y ?z

WHERE {

?z ub:subOrganizationOf ?y .

?y rdf:type ub:University .

97

98

?z rdf:type ub:Department .

?x ub:memberOf ?z .

?x rdf:type ub:GraduateStudent .

?x ub:undergraduateDegreeFrom ?y .

}

Q2 SELECT ?x

WHERE {

?x rdf:type ub:Course.

?x ub:name ?y .

}

Q3 SELECT ?x ?y ?z

WHERE {

?x rdf:type ub:UndergraduateStudent.

?y rdf:type ub:University.

?z rdf:type ub:Department.

?x ub:memberOf ?z.

?z ub:subOrganizationOf ?y.

?x ub:undergraduateDegreeFrom ?y.

}

Q4 SELECT ?x

WHERE {

?x ub:worksFor http://www.Department0.University0.edu.

?x rdf:type ub:FullProfessor.

?x ub:name ?y1.

?x ub:emailAddress ?y2.

99

?x ub:telephone ?y3.

}

Q5 SELECT ?x ?y

WHERE {

?y ub:subOrganizationOf http://www.University0.edu.

?y rdf:type ub:Department.

?x ub:worksFor ?y.

?x rdf:type ub:FullProfessor.

}

In order to execute each query in Mantona, each term had to be searched for in the term

table to obtain its numerical id. Connection type ids had to be applied over each variable, and

there was the requirement to specify what triple products will merge with other triple products

while remaining compliant with the query. The query transformation into an integer sequence

is shown in Figure 16.

8.2 Results

Figure 28 shows the query retrieval times based on Q1-Q5 from the LUBM, 18,464 triple

data set. Table 13 shows the results in milliseconds.

100

(a) (b)

(c)

Figure 28: LUBM dataset 18,464 triples. (a) Retrieval times using cache algorithm. (b)
Retrieval time using the Cooley exploration algorithm. (c) Retrieval time using the exploration
algorithm without using the neighborList cache.

101

Core Sizes
2 4 8 16 32 64

18,464 Cooley triple cache algorithm (milliseconds)
Q1 0.038 0.021 0.021 0.010 0.006 0.004
Q2 243.300 141.140 51.310 30.110 12.330 7.150
Q3 198.300 97.075 48.717 24.143 10.619 5.058
Q4 0.030 0.014 0.011 0.005 0.004 0.003
Q5 246.700 96.600 49.100 26.300 10.200 4.860

18,464 Cooley triple, exploration algorithm (milliseconds)
Q1 0.403 0.499 0.092 0.104 0.044 0.087
Q2 710.900 365.685 184.950 94.210 46.730 23.180
Q3 734.600 369.900 185.700 94.050 47.530 22.902
Q4 0.106 0.064 0.034 0.022 0.013 0.007
Q5 692.600 350.700 174.920 88.980 44.700 21.500

18,464 Cooley triple no cache (milliseconds)
Q1 0.046 0.017 0.015 0.007 0.007 0.002
Q2 710.940 702.920 358.880 186.630 92.920 46.600
Q3 734.600 770.872 387.918 198.977 100.663 49.723
Q4 0.027 0.012 0.006 0.004 0.004 0.002
Q5 1, 480.000 749.800 379.000 194.800 98.100 48.300

TABLE XII: Mantona query timings using the LUBM dataset, 18,464 triples.

LUBM 21M Q1 Q2 Q3 Q4 Q5
TrinityRDF 281 132 110 5 4

RDF3X(InMemory) 34179 88 485 7 5
BitMat(InMemory) 1224 4176 49 6381 6
RDF3X(ColdCache) 35739 653 1196 735 367
BitMat(ColdCache) 1584 4526 286 6924 57

TABLE XIII: LUBM Query timing in milliseconds, 21M triples. Table data taken from Trin-
ity.RDF paper.

102

8.3 Evaluation of Results

For all 5 different query types the graph cache algorithm performed noticeably better than

the exploration algorithm. The differences in query timings were due to binding size and the

final triple result size. Q1 and Q4 from its query order had a lower binding size, while Q2, Q3

and Q5 had a higher binding size. As far as scalability in terms of increasing processor size ,

the experiments show from Table 13 that the query timings decrease as processor size increase.

There is no specific ratio of decrease maybe with more experimentation there might be more

of a pattern of the rate of decrease, but there is a noticeable difference in general. For example

query Q1 went from .038 to .021, 021, .010, 006 and .004 milliseconds as the processor time

went from 2, 4, 8, 16, 32, 64. This decrease should continue with processor sizes of 1000, 2000,

5,000 ,10,000 or more for one billion plus triple datasets.

The problem is that there is not enough memory to hold the data in the current form of

Mantona, which prevents Mantona from scaling up to the large data sizes. For a billion triples

there needs to be at least 120 Gigabytes of memory per processor (for storing the tripleList and

termList) to process datasets of this size. One option is to not store in memory the connectivity

list. Figure 29(c) shows query exploration timings that do not use the connectivity cache.

These timings are not that different from the exploration algorithm timings. Improvements to

Mantona will require the partitioning of the tripleList and termList and the option to store

triple connectivity data. Other improvements would include selective path-cache construction

in conjunction with query ordering in order to reduce the memory size per processor.

103

8.3.1 Bottleneck locations

The LUBM dataset is a very connected dataset. This result highly exposed the bottleneck

in Mantona during the pre-processing stage. Within the process of making the cache-file, the

neighborlist was constructed for each triple root hashed over all the processors. Once the

neighborList was constructed for each triple-root an MPI alltoallv was executed in order for

each processor to receive the local neighborlist from every other processor. The neighborList

consisted of the triple id that was connected to the triple root and the connection id that

specified what type of connection this neighbor triple was making, e.g s-s - 0, o-s -1 , s-o -

2, p-p -3 and o-o - 4. Also a neighbor triple can have multiple connection to the same root.

For example there can be a subject to subject and predicate to predicate connection binding

to the same triple root. This experiment with just 18,464 triples produced 1GB of storage

reserved for the neighborlist. The other bottleneck came in generating the termList and the

tripleList. The assumption was before the experimentation that query times would always be

consistently faster if each processor has the entire list of triples and each containing the entire

list of neighbors in memory for lookup, but for small datasets like the current one tested of

18,464 triples, the speed increase was negligible as shown comparing Figure 28 (a) to Figure 28

(c).

8.3.2 How to improve the Mantona bottlenecks

The memory requirement in Mantona is directly connected to the connectivity among triples

in the dataset. With the Mantona experiments using the DBpedia datasets, there was not as

much triple connectivity and as a result Mantona was able to evaluate datasets ranging up

to 1 million triples. However, those are still small datasets compared to the 1 billion triples

evaluated from the other systems shown in this thesis. Eliminating the neighborlist processing

would free up the connectivity memory bottleneck. The query cost would be based on scanning

the entire tripleList instead of the smaller neighborList when requested. This query timing cost

might show more in large billion triple datasets as opposed to smaller datasets.

8.3.2.1 Partition the termList and idList

Each processor holds the entire idList and termList. This means that memory size is a

direct factor of the number of terms in integer and string representation. So if the average

string size of a term is 16 bytes and an integer for a term id is represented as 16 bytes, a

billion term dataset with also a billion triples would need to carry 32 GB for the idList plus (16

(integer representation) + 48 (number of terms in triple) * 1 billion) = 64 GB for the termList

representation for a total of 96 GB per processor to minimally handle a billion triple dataset. A

way to reduce this excessive memory expense is to partition the termList and tripleList over all

the processors. So , continuing with the example, for 10,000 processors each processor will only

have to hold a 960 MB portion of the tripleList and termList. This means that for the graph

exploration algorithm and the graph-cache algorithm every time there is a request for the entire

triple list, each processor must iteratively request chunks of the tripleList and termList from

the other processors in order to evaluate connectivity and query matching issues. This can be

done through the MPI alltoallv call. The adapted graph-cache algorithm and graph-exploration

algorithm is shown below.

procedure traversePath(depth, tpList) ;
if depth == queryDepth then
printResult(pathNodes) ;
return ;

end
instantiate(newtpList) ;
foreach tripleProduct in tpList do
foreach triple int tripleProduct do

red matchList = findMatch(triple) ;
foreach newTriple in matchList do

generatetps(neighbor, tp, newtpList) ;
end

end

end
deletetpList ;
traversePath(depth+1,newtpList) ;

end procedure
Algorithm 5: Mantona Node Traversal (Graph Exploration) Algorithm for scattered triples

The findMatch algorithm is a collective algorithm where it would seek triples on other

processors that would match the current query pattern and be able to link to the currently

selected triple within the query product. These triples that were sought would be sent to

the processor that requested it, to be used as a new tripleProduct. The adapted graph-cache

algorithm is shown below.

The findMatch call would be a collective call within the graph-cache algorithm. It finds

the processor that contains the triple and matches the query pattern at pattern[index]. The

boolean variable matchingProduct will return true if there is a processor that has the triple and

it matches the query pattern, otherwise matchingProduct will return false. A match is based

106

procedure Graph Retrieval ;
foreach rootGraph in MatchedRootGraphs do
pathNodeList = getNodes(queryDepth) ;
foreach pathNode in pathNodeList do

foreach tripleProduct in pathNode do
matchingProduct = true;
foreach triple,index in tripleProduct do

red matchingProduct = findMatch(triple); ;
end
if matchingProduct == true then

printOutput(tp);
end

end

end

end
end procedure
Algorithm 6: Mantona Graph-Cache Retrieval Algorithm For Scattered Triples

on if the triple is contained within the current query pattern and if the link connection to the

triple product mirror the same link connection of the current query pattern to a previous query

pattern.

CHAPTER 9

CONCLUSION

Each area of research in RDF data organization and query retrieval specified in this thesis

plays an important complimentary contribution to this field. Data-compression techniques

reduce the data-size, thus increasing data loading time and query retrieval time. Applying

a map-reduce algorithm to query retrievals enables all active processors to participate in the

query retrieval processes when joins are involved. Tree storage data structures, within scan-join

systems are beneficial when the retrieved data does not fit entirely in memory. This is typically

the case with standalone systems and systems where the amount of data from the dataset

overwhelms the number of processing units. Graph based systems utilize graph partitioning

algorithms and data communication libraries across processors to reduce query retrieval times.

Graph-based systems are able to process queries with scaling dataset sizes that reach billions

of triple dataset counts. What this work adds to this field of RDF query processing is the

build and utilization of pre-processed connective data within a large distributed environment.

Mantona is able to use processor count as a resource for reducing pre-processing and query

retrieval timings. The other systems as shown in this thesis do not specify how to use processor

size in small and large amounts to affect pre-process and query retrieval timings. Scaling up the

cores size in processing a raw RDF dataset has a direct affect in decreasing build times as shown

in the experiments. Time can play a factor in dictating if a user would want to use the pre-

processing data. Building a graph-cache using a large distributed system or a supercomputer

107

108

on a particular RDF dataset can provide more useful options to a user. If a system has the

processing resources to quickly within seconds build connectivity or even generate path-cache

data with a limited depth and connectivity, then the process of deleting the old graph-cache,

modifying, adding or deleting a triple and rebuilding and saving the graph-cache would just

take seconds as well, since the core of the processing is the connectivity processing and the

path-cache processing. Another factor for/against using a graph-cache file is based on the

size of the file. Even a 400,000 triple file can produce a gigabyte cache-file. Improvements to

this work that are critical of storage file limitations can include limiting the connection types

allowed for path-cache data. Limited connection types have to be paired with a query order that

includes only that connection type. For example if a path cache was created only based on o-o

connection types with a depth of one, then any o-o connection between two query patterns must

be processed first in order to use the path-cache. The rest of the query processing would then

be diverted to the query exploration algorithm. From the current experiments, the path-cache

algorithm is marginally better than the exploration algorithm. More test should be done with

larger datasets and larger result sizes to understand how dataset sizes, and binding sizes and

path-cache depths can affect path-cache timings. The current path-cache depths were set to one.

Further test can be conducted comparing a patch-cache with less connection types and higher

depths to path-cache with more connection types but a lower depth. For example, evaluate

query timings with an o-o only path-cache with depth 2 to a o-o, s-o, o-s, and s-s path-cache with

a depth of 1. A user or system can generate multiple queries to have a better understanding

of a subject or to help the user make a decision using the given dataset(s). For example if a

109

user wanted to know if New York or Philadelphia has the best acting schools, the user could

first query for all the Oscar winning actors and actresses and link this to names of prominent

students that graduated in New York acting schools, and names of prominent students that

graduated in Philadelphia acting schools. The user can make a judgment lets say, that New

York school is a more conducive place to learn acting because from the multiple queries more

Oscar winning actors and actresses went to New York acting schools than Philadelphia schools.

This work has shown that a supercomputer can handle multiple queries in a collaborative way

and can use processors resource in order to reduce batch query timings.

In final summary, Mantona provides the user with a new resource tool (processor size, and

using processors in large amounts if the memory is there) in order to reduce query timings

whether through individual queries or through batch queries. Mantona also puts the processor

size in the equation in order to reduce pre-processing timings by generating a unique tripleList

and a unique termList. Other systems such as BitMat (4), RDF3X (24) and Trinity (17) while

able to handle large datasets, does not articulate, or show by experiments the relationship of

large processor size (scaling from hundreds to thousands) to the reduction of query timings,

batch queries and the time reduction through the pre-processing of triple datasets.

APPENDICES

110

111

Appendix A

PERMISSIONS FOR REUSE

112

Appendix A (Continued)

Figure 29: The permission of reuse for authors published under ACM is specified at :
https://authors.acm.org/main.html.

113

Appendix B

LIST OF QUERIES

Query1

This query bears large input and high selectivity.

It queries about just one class and one property.

Does not assume any hierarchy information or inference.

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX ub: <http :// www.lehigh.edu/~zhp2 /2004/0401/ univ -bench.owl#>

SELECT ?X

WHERE

{

?X rdf:type ub:GraduateStudent .

?X ub:takesCourse .

http :// www.Department0.University0.edu/GraduateCourse0 .

}

Query2

This query increases in complexity.

3 classes and 3 properties are involved.

Also , there is a triangular pattern of relationships

between the objects involved.

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

114

Appendix B (Continued)

PREFIX ub: <http :// www.lehigh.edu/~zhp2 /2004/0401/ univ -bench.owl#>

SELECT ?X, ?Y, ?Z

WHERE

{

?X rdf:type ub:GraduateStudent .

?Y rdf:type ub:University .

?Z rdf:type ub:Department .

?X ub:memberOf ?Z .

?Z ub:subOrganizationOf ?Y .

?X ub:undergraduateDegreeFrom ?Y .

}

Query3

This query is similar to Query 1 but class

Publication has a wide hierarchy.

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX ub: <http :// www.lehigh.edu/~zhp2 /2004/0401/ univ -bench.owl#>

SELECT ?X

WHERE

{

?X rdf:type ub:Publication .

?X ub:publicationAuthor

http :// www.Department0.University0.edu/AssistantProfessor0 .

115

Appendix B (Continued)

}

Query4

This query has small input and high selectivity.

It assumes subClassOf relationship between Professor

and its subclasses.

Class Professor has a wide hierarchy. Another feature is that

it queries about multiple properties of a single class.

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX ub: <http :// www.lehigh.edu/~zhp2 /2004/0401/ univ -bench.owl#>

SELECT ?X, ?Y1, ?Y2, ?Y3

WHERE {

?X rdf:type ub:Professor .

?X ub:worksFor <http ://www.Department0.University0.edu > .

?X ub:name ?Y1 .

?X ub:emailAddress ?Y2 .

?X ub:telephone ?Y3 .

}

Query5

This query assumes subClassOf relationship between

Person and its subclasses and

116

Appendix B (Continued)

subPropertyOf relationship between memberOf and its subproperties.

Moreover , class Person features a deep and wide hierarchy.

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX ub: <http :// www.lehigh.edu/~zhp2 /2004/0401/ univ -bench.owl#>

SELECT ?X

WHERE {

?X rdf:type ub:Person .

?X ub:memberOf <http ://www.Department0.University0.edu > .

}

Query6

This query queries about only one class. But it assumes

both the explicit subClassOf relationship between

UndergraduateStudent and Student and the implicit one between

GraduateStudent and Student. In addition , it has large

input and low selectivity.

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX ub: <http :// www.lehigh.edu/~zhp2 /2004/0401/ univ -bench.owl#>

SELECT ?X

WHERE {

?X rdf:type ub:Student

}

117

Appendix B (Continued)

Query7

This query is similar to Query 6 in terms of class

Student but it increases in the

number of classes and properties and its selectivity is high.

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX ub: <http :// www.lehigh.edu/~zhp2 /2004/0401/ univ -bench.owl#>

SELECT ?X, ?Y

WHERE {

?X rdf:type ub:Student .

?Y rdf:type ub:Course .

?X ub:takesCourse ?Y .

<http :// www.Department0.University0.edu/AssociateProfessor0 > \

ub:teacherOf , ?Y .

}

Query8

This query is further more complex than Query 7 by

including one more property.

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX ub: <http :// www.lehigh.edu/~zhp2 /2004/0401/ univ -bench.owl#>

SELECT ?X, ?Y, ?Z

WHERE {

?X rdf:type ub:Student .

118

Appendix B (Continued)

?Y rdf:type ub:Department .

?X ub:memberOf ?Y .

?Y ub:subOrganizationOf <http ://www.University0.edu > .

?X ub:emailAddress ?Z .

}

Query9

Besides the aforementioned features of class Student and the

wide hierarchy of class Faculty , like Query 2.

This query is characterized by the most classes and properties in

the query set and there is a triangular pattern of relationships.

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX ub: <http :// www.lehigh.edu/~zhp2 /2004/0401/ univ -bench.owl#>

SELECT ?X, ?Y, ?Z

WHERE {

?X rdf:type ub:Student .

?Y rdf:type ub:Faculty .

?Z rdf:type ub:Course .

?X ub:advisor ?Y .

?Y ub:teacherOf ?Z .

?X ub:takesCourse ?Z

}

119

Appendix B (Continued)

Query10

This query differs from Query 6, 7, 8 and 9 in that it only requires

the (implicit) subClassOf relationship between GraduateStudent

and Student , i.e., subClassOf rela -tionship between

UndergraduateStudent and Student does not add to the results.

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX ub: <http :// www.lehigh.edu/~zhp2 /2004/0401/ univ -bench.owl#>

SELECT ?X

WHERE {

?X rdf:type ub:Student .

?X ub:takesCourse

<http :// www.Department0.University0.edu/GraduateCourse0 >

}

Query11

Query 11, 12 and 13 are intended to verify the presence of certain

OWL reasoning capabilities in the system. In this query ,

property subOrganizationOf is defined as transitive. Since in the

benchmark data , instances of ResearchGroup are stated as a

sub -organization of a Department individual and the later

suborganization of a University individual , inference about the

subOrgnizationOf relationship between instances of ResearchGroup

and University is required to answer this query.

120

Appendix B (Continued)

Additionally , its input is small.

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX ub: <http :// www.lehigh.edu/~zhp2 /2004/0401/ univ -bench.owl#>

SELECT ?X

WHERE {

?X rdf:type ub:ResearchGroup .

?X ub:subOrganizationOf <http ://www.University0.edu >

}

Query12

The benchmark data do not produce any instances of class Chair.

Instead , each Department individual is linked to the chair professor

of that department by property headOf. Hence this query requires

realization , i.e., inference that that professor is an instance

of class Chair because he or she is the head of a department.

Input of this query is small as well.

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX ub: <http :// www.lehigh.edu/~zhp2 /2004/0401/ univ -bench.owl#>

SELECT ?X, ?Y

WHERE {

?X rdf:type ub:Chair .

?Y rdf:type ub:Department .

?X ub:worksFor ?Y .

121

Appendix B (Continued)

?Y ub:subOrganizationOf <http ://www.University0.edu >

}

Query13

Property hasAlumnus is defined in the benchmark ontology as the

inverse of property degreeFrom , which has three subproperties:

undergraduateDegreeFrom , mastersDegreeFrom , and doctoralDegreeFrom.

The benchmark data state a person as an alumnus of a university

using one of these three subproperties instead of hasAlumnus.

Therefore , this query assumes subPropertyOf relationships between

degreeFrom and its subproperties ,

and also requires inference about inverseOf.

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX ub: <http :// www.lehigh.edu/~zhp2 /2004/0401/ univ -bench.owl#>

SELECT ?X

WHERE {

?X rdf:type ub:Person .

<http :// www.University0.edu > ub:hasAlumnus ?X

}

Query14

This query is the simplest in the test set.

This query represents those with large input and low selectivity

122

Appendix B (Continued)

and does not assume any hierarchy information or inference.

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX ub: <http :// www.lehigh.edu/~zhp2 /2004/0401/ univ -bench.owl#>

SELECT ?X

WHERE {

?X rdf:type ub:UndergraduateStudent

}

123

Appendix C

TEST QUERIES

The test queries are listed below. Each query is an input string composed of conjunctive

patterns. A pattern is three terms with each term encapsulated in ”< >”. The variable terms

are a string that includes a ”?” such as <a?>. Blank terms are only the ”?” character. Result

are listed below the query.

File: article-500000

Q0:

<a?> <?> <http://dbpedia.org/resource/Category:Harrisburg metropolitan area>

<a?><?> <http://dbpedia.org/resource/Category:Populated places established in 1755>

Results

<http://dbpedia.org/resource/Toboyne Township, Perry County, Pennsylvania>

<http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:Harrisburg metropolitan area>

<http://dbpedia.org/resource/Spring Township, Perry County, Pennsylvania>

<http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:Populated places established in 1755>

<http://dbpedia.org/resource/Jackson Township, Perry County, Pennsylvania>

<http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:Harrisburg metropolitan area>

124

Appendix C (Continued)

<http://dbpedia.org/resource/Middletown, Dauphin County, Pennsylvania>

<http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:Populated places established in 1755>

<http://dbpedia.org/resource/Southwest Madison

Township, Perry County, Pennsylvania>

<http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:Populated places established in 1755>

<http://dbpedia.org/resource/Carroll Township, Perry County, Pennsylvania>

<http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:Populated places established in 1755>

<http://dbpedia.org/resource/NorthEast Madison

Township, Perry County, Pennsylvania>

<http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:Populated places established in 1755>

<http://dbpedia.org/resource/Marysville, Pennsylvania>

<http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:Populated places established in 1755>

<http://dbpedia.org/resource/Saville Township, Perry County, Pennsylvania>

<http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:Populated places established in 1755>

<http://dbpedia.org/resource/Tyrone Township, Perry County, Pennsylvania>

125

Appendix C (Continued)

<http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:Populated places established in 1755>

Q1:

<a?><http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:Pasadena City Lancers baseball players>

<a?><http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:Burials at Cypress Hills Cemetery

(New York City)>

Results:

<http://dbpedia.org/resource/Jackie Robinson> <http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:Pasadena City Lancers baseball players>

<http://dbpedia.org/resource/Jackie Robinson> <http://purl.org/dc/terms/subject>

http://dbpedia.org/resource/Category:Burials at Cypress Hills Cemetery

(New York City)>

Q2:

<a?><http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:1598 deaths>

<a?><http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:Businesspeople from Paris>

Results:

<http://dbpedia.org/resource/Henri Estienne> <http://purl.org/dc/terms/subject>

126

Appendix C (Continued)

<http://dbpedia.org/resource/Category:1598 deaths>

<http://dbpedia.org/resource/Henri Estienne> <http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:Businesspeople from Paris>

File: article-1000000

Q0:

<a?><http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:Municipalities of Rogaland>

<a?><http://purl.org/dc/terms/subject> <http://dbpedia.org/resource/Category:Kvitsy>

Result

<http://dbpedia.org/resource/Category:Kvitsy> <http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:Municipalities of Rogaland>

<http://dbpedia.org/resource/Category:Kvitsy> <http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:Kvitsy>

Q1:

<a?><?><http://dbpedia.org/resource/Category:Fermentation in food processing> <a?>

<?> <http://dbpedia.org/resource/Category:Edible fungi>

Results:

<http://dbpedia.org/resource/Baker’s yeast> <http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:Fermentation in food processing>

<http://dbpedia.org/resource/Baker’s yeast> <http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:Edible fungi>

127

Appendix C (Continued)

Q2

<a?><http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:Lake Nasser>

<a?><http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:Nefertari>

<a?><http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:World Heritage Sites in Egypt>

Result

http://dbpedia.org/resource/Abu Simbel temples http://purl.org/dc/terms/subject

http://dbpedia.org/resource/Category:Lake Nasser

http://dbpedia.org/resource/Abu Simbel temples http://purl.org/dc/terms/subject

http://dbpedia.org/resource/Category:Nefertari

http://dbpedia.org/resource/Abu Simbel temples http://purl.org/dc/terms/subject

http://dbpedia.org/resource/Category:World Heritage Sites in Egypt

Q3

<a?><http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:American pro-life activists>

<a?><http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:War Resisters League activists>

<a?> <?> <http://dbpedia.org/resource/Category:Jazz writers>

Result

128

Appendix C (Continued)

<http://dbpedia.org/resource/Nat Hentoff> <http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:American pro-life activists>

<http://dbpedia.org/resource/Nat Hentoff> <http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:American pro-life activists>

<http://dbpedia.org/resource/Nat Hentoff> <http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:American pro-life activists>

File: article-2000000

Q0

<a?><?> <http://dbpedia.org/resource/Category:York>

<a?><?>

<http://dbpedia.org/resource/Category:River navigations in the United Kingdom> Result

<http://dbpedia.org/resource/River Foss> <http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:York>

<http://dbpedia.org/resource/River Foss><http://purl.org/dc/terms/subject>

http://dbpedia.org/resource/Category:River navigations in the United Kingdom>

Q1

<a?><http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:Petroleum politics>

<a?><http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:1973 in international relations>

129

Appendix C (Continued)

<a?><http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:Cold War history of Japan>

Result

<http://dbpedia.org/resource/1973 oil crisis> <http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:Petroleum politics>

<http://dbpedia.org/resource/1973 oil crisis> <http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:1973 in international relations>

<http://dbpedia.org/resource/1973 oil crisis> <http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:Cold War history of Japan>

Q2

<a?><http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:Populated places established in 1589 >

<a?><http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:Hero Cities of the Soviet Union >

<a?><?><http://dbpedia.org/resource/Category:Populated places on the Volga > Result

<http://dbpedia.org/resource/Volgograd><http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:Populated places established in 1589>

<http://dbpedia.org/resource/Volgograd><http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:Hero Cities of the Soviet Union>

<http://dbpedia.org/resource/Volgograd><http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:Populated places on the Volga>

130

Appendix C (Continued)

Q3

<a?><http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:County seats in Indiana>

<a?><http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:Populated places established in 1836>

Result

<http://dbpedia.org/resource/Decatur, Indiana><http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:County seats in Indiana>

<http://dbpedia.org/resource/Decatur, Indiana> <http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:Populated places established in 1836>

131

CITED LITERATURE

1. Berners-Lee, T., Hendler, J., and Lassila, O.: The semantic web. Scientific american,
284(5):34–43, 2001.

2. Fensel, D.: Spinning the Semantic Web: bringing the World Wide Web to its full
potential. Mit Press, 2005.

3. Neumann, T. and Weikum, G.: The rdf-3x engine for scalable management of rdf data. The
VLDB JournalThe International Journal on Very Large Data Bases, 19(1):91–113,
2010.

4. Atre, M., Chaoji, V., Zaki, M. J., and Hendler, J. A.: Matrix bit loaded: a
scalable lightweight join query processor for rdf data. In Proceedings of the 19th
international conference on World wide web, pages 41–50. ACM, 2010.

5. Kolas, D., Emmons, I., and Dean, M.: Efficient linked-list rdf indexing in parliament.
SSWS, 9:17–32, 2009.

6. Weiss, C., Karras, P., and Bernstein, A.: Hexastore: sextuple indexing for semantic web
data management. Proceedings of the VLDB Endowment, 1(1):1008–1019, 2008.

7. Ladwig, G. and Harth, A.: Cumulusrdf: linked data management on nested key-value
stores. In The 7th International Workshop on Scalable Semantic Web Knowledge
Base Systems (SSWS 2011), volume 30, 2011.

8. Aranda-Andújar, A., Bugiotti, F., Camacho-Rodŕıguez, J., Colazzo, D., Goasdoué, F.,
Kaoudi, Z., and Manolescu, I.: Amada: web data repositories in the amazon
cloud. In Proceedings of the 21st ACM international conference on Information
and knowledge management, pages 2749–2751. ACM, 2012.

9. Punnoose, R., Crainiceanu, A., and Rapp, D.: Rya: a scalable rdf triple store for the
clouds. In Proceedings of the 1st International Workshop on Cloud Intelligence,
page 4. ACM, 2012.

10. Huang, J., Abadi, D. J., and Ren, K.: Scalable sparql querying of large rdf graphs.
Proceedings of the VLDB Endowment, 4(11):1123–1134, 2011.

132

11. Zhang, X., Chen, L., Tong, Y., and Wang, M.: Eagre: Towards scalable i/o efficient
sparql query evaluation on the cloud. In 2013 IEEE 29th International Conference
on Data Engineering (ICDE), pages 565–576. IEEE, 2013.

12. Huang, J., Abadi, D. J., and Ren, K.: Scalable sparql querying of large rdf graphs.
Proceedings of the VLDB Endowment, 4(11):1123–1134, 2011.

13. Galárraga, L., Hose, K., and Schenkel, R.: Partout: a distributed engine for efficient rdf
processing. In Proceedings of the 23rd International Conference on World Wide
Web, pages 267–268. ACM, 2014.

14. Hose, K. and Schenkel, R.: Warp: Workload-aware replication and partitioning
for rdf. In Data Engineering Workshops (ICDEW), 2013 IEEE 29th International
Conference on, pages 1–6. IEEE, 2013.

15. Miller, J. J.: Graph database applications and concepts with neo4j. In Proceedings of
the Southern Association for Information Systems Conference, Atlanta, GA, USA,
volume 2324, page 36, 2013.

16. Cray graph engine: Graph database and graph analytics.

17. Zeng, K., Yang, J., Wang, H., Shao, B., and Wang, Z.: A distributed graph engine for web
scale rdf data. In Proceedings of the VLDB Endowment, volume 6, pages 265–276.
VLDB Endowment, 2013.

18. Groppe, S., Groppe, J., and Linnemann, V.: Using an index of precomputed joins in order
to speed up sparql processing. In ICEIS (1), pages 13–20, 2007.

19. Matono, A., Amagasa, T., Yoshikawa, M., and Uemura, S.: An indexing scheme for rdf
and rdf schema based on suffix arrays. In SWDB, pages 151–168, 2003.

20. Manola, F.: Rdf primer w3c recommendation 10 february 2004. http://www. w3.
org/TR/2004/REC-rdf-primer-20040210/, 2007.

21. Owl web ontology language overview, 2004.

22. Date, C. J.: An introduction to database systems. Pearson Education India, 2006.

23. Prud, E., Seaborne, A., et al.: Sparql query language for rdf. 2006.

133

24. Neumann, T. and Weikum, G.: The rdf-3x engine for scalable management of rdf data. The
VLDB JournalThe International Journal on Very Large Data Bases, 19(1):91–113,
2010.

25. Sen, R., Farris, A., and Guerra, P.: Benchmarking apache accumulo bigdata distributed
table store using its continuous test suite. In Big Data (BigData Congress), 2013
IEEE International Congress on, pages 334–341. IEEE, 2013.

26. Stonebraker, M., Abadi, D. J., Batkin, A., Chen, X., Cherniack, M., Ferreira, M., Lau,
E., Lin, A., Madden, S., O’Neil, E., et al.: C-store: a column-oriented dbms.
In Proceedings of the 31st international conference on Very large data bases, pages
553–564. VLDB Endowment, 2005.

27. Lamb, A., Fuller, M., Varadarajan, R., Tran, N., Vandiver, B., Doshi, L., and Bear, C.:
The vertica analytic database: C-store 7 years later. Proceedings of the VLDB
Endowment, 5(12):1790–1801, 2012.

28. Du, J.-H., Wang, H.-F., Ni, Y., and Yu, Y.: Hadooprdf: A scalable semantic data
analytical engine. In International Conference on Intelligent Computing, pages
633–641. Springer, 2012.

29. Papailiou, N., Tsoumakos, D., Konstantinou, I., Karras, P., and Koziris, N.: H 2 rdf+:
an efficient data management system for big rdf graphs. In Proceedings of the 2014
ACM SIGMOD international conference on Management of data, pages 909–912.

ACM, 2014.

30. Kim, H., Ravindra, P., and Anyanwu, K.: From sparql to mapreduce: The journey using
a nested triplegroup algebra. Proc. VLDB Endow, 4(12):1426–1429, 2011.

31. Ravindra, P., Kim, H., and Anyanwu, K.: An intermediate algebra for optimizing rdf
graph pattern matching on mapreduce. In Extended Semantic Web Conference,
pages 46–61. Springer, 2011.

32. Yamamoto, Y.: On indices for xml documents with namespaces. In Conference Proc.
Markup Technologies’ 99, GCA, Philadelphia, USA, 1999, 1999.

33. Udrea, O., Pugliese, A., and Subrahmanian, V.: Grin: A graph based rdf index. In AAAI,
volume 1, pages 1465–1470, 2007.

34. Wilkinson, K. and Wilkinson, K.: Jena property table implementation, 2006.

134

35. Broekstra, J., Kampman, A., and Van Harmelen, F.: Sesame: A generic architecture for
storing and querying rdf and rdf schema. In International semantic web conference,
pages 54–68. Springer, 2002.

36. Boncz, P., Grust, T., Van Keulen, M., Manegold, S., Rittinger, J., and Teubner,
J.: Monetdb/xquery: a fast xquery processor powered by a relational
engine. In Proceedings of the 2006 ACM SIGMOD international conference on
Management of data, pages 479–490. ACM, 2006.

37. Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., Chandra,
T., Fikes, A., and Gruber, R. E.: Bigtable: A distributed storage system for
structured data. ACM Transactions on Computer Systems (TOCS), 26(2):4, 2008.

38. Guide, D.: Amazon simple storage service. 2008.

39. Lakshman, A. and Malik, P.: Cassandra: a decentralized structured storage system. ACM
SIGOPS Operating Systems Review, 44(2):35–40, 2010.

40. Karypis, G. and Kumar, V.: Metis–unstructured graph partitioning and sparse matrix
ordering system, version 2.0. 1995.

41. Afrati, F. N. and Ullman, J. D.: Optimizing multiway joins in a map-reduce environment.
IEEE Transactions on Knowledge and Data Engineering, 23(9):1282–1298, 2011.

42. Afrati, F. N. and Ullman, J. D.: Optimizing joins in a map-reduce
environment. In Proceedings of the 13th International Conference on Extending
Database Technology, pages 99–110. ACM, 2010.

43. Blanas, S., Patel, J. M., Ercegovac, V., Rao, J., Shekita, E. J., and Tian, Y.: A comparison
of join algorithms for log processing in mapreduce. In Proceedings of the 2010
ACM SIGMOD International Conference on Management of data, pages 975–986.
ACM, 2010.

44. Doulkeridis, C. and NØrv̊ag, K.: A survey of large-scale analytical query processing
in mapreduce. The VLDB JournalThe International Journal on Very Large Data
Bases, 23(3):355–380, 2014.

45.

135

46. Schätzle, A., Przyjaciel-Zablocki, M., and Lausen, G.: Pigsparql: Mapping sparql to pig
latin. In Proceedings of the International Workshop on Semantic Web Information
Management, page 4. ACM, 2011.

47. Kim, H., Ravindra, P., and Anyanwu, K.: From sparql to mapreduce: The journey using
a nested triplegroup algebra. Proc. VLDB Endow, 4(12):1426–1429, 2011.

48. Schätzle, A., Przyjaciel-Zablocki, M., Dorner, C., Hornung, T. D., and Lausen, G.:
Cascading map-side joins over HBase for scalable join processing. RWTH, 2012.

49. Vavilapalli, V. K., Murthy, A. C., Douglas, C., Agarwal, S., Konar, M., Evans, R.,
Graves, T., Lowe, J., Shah, H., Seth, S., et al.: Apache hadoop yarn: Yet
another resource negotiator. In Proceedings of the 4th annual Symposium on
Cloud Computing, page 5. ACM, 2013.

50. marathon: A container orchestration platform for mesos and dc/os”, 2018.

51. Maschhoff, K., Vesse, R., and Maltby, J.: Porting the urika-gd graph analytic database
to the xc30/40 platform. In Cray User Group Conference (CUG15), Chicago, IL,
2015.

52. Xin, R. S., Gonzalez, J. E., Franklin, M. J., and Stoica, I.: Graphx: A resilient
distributed graph system on spark. In First International Workshop on Graph Data
Management Experiences and Systems, page 2. ACM, 2013.

53. Zaharia, M., Xin, R. S., Wendell, P., Das, T., Armbrust, M., Dave, A., Meng, X., Rosen,
J., Venkataraman, S., Franklin, M. J., et al.: Apache spark: a unified engine for
big data processing. Communications of the ACM, 59(11):56–65, 2016.

54. Guo, Y., Pan, Z., and Heflin, J.: Lubm: A benchmark for owl knowledge base systems. Web
Semantics: Science, Services and Agents on the World Wide Web, 3(2-3):158–182,

2005.

55. Morsey, M., Lehmann, J., Auer, S., and Ngomo, A.-C. N.: Dbpedia sparql benchmark–
performance assessment with real queries on real data. In International Semantic
Web Conference, pages 454–469. Springer, 2011.

56. Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., and Reynolds, D.: Sparql basic
graph pattern optimization using selectivity estimation. In Proceedings of the 17th
international conference on World Wide Web, pages 595–604. ACM, 2008.

136

57. Husain, M. F.: Data intensive query processing for Semantic Web data using Hadoop and
MapReduce. The University of Texas at Dallas, 2011.

58. mira — argonne leadership computing facility”.

59. cooley — argonne leadership computing facility”.

60. Gropp, W., Lusk, E., Doss, N., and Skjellum, A.: A high-performance, portable
implementation of the mpi message passing interface standard. Parallel computing,
22(6):789–828, 1996.

61. Momjian, B.: PostgreSQL: introduction and concepts, volume 192. Addison-Wesley New
York, 2001.

62. Suchanek, F. M., Kasneci, G., and Weikum, G.: Yago: a core of semantic knowledge. In
Proceedings of the 16th international conference on World Wide Web, pages 697–
706. ACM, 2007.

63. Apweiler, R., Bairoch, A., Wu, C. H., Barker, W. C., Boeckmann, B., Ferro, S., Gasteiger,
E., Huang, H., Lopez, R., Magrane, M., et al.: Uniprot: the universal protein
knowledgebase. Nucleic acids research, 32(suppl 1):D115–D119, 2004.

64. Beckett, D.: Rdf 1.1 n-triples. W3C recommendation, 2014.

65. Wilkinson, K., Sayers, C., Kuno, H., and Reynolds, D.: Efficient rdf storage and retrieval in
jena2. In Proceedings of the First International Conference on Semantic Web and
Databases, pages 120–139. Citeseer, 2003.

66. Neumann, T. and Weikum, G.: Scalable join processing on very large rdf
graphs. In Proceedings of the 2009 ACM SIGMOD International Conference on
Management of data, pages 627–640. ACM, 2009.

137

VITA

138

Page 1 of 4

M I C H AE L LE W IS
mlewis8@lewisu.edu		

	

EDUCATION

DOCTORATE OF PHILOSOPHY IN COMPUTER SCIENCE 	 December	2018	

University	of	Illinois	at	Chicago	(UIC),	Computer	Science	Department	and	Electronic	Visualization	
Laboratory	(EVL)	 Chicago,	IL	 	

My	 thesis	 is	 titled	 	 “A	 Distributed	 Graph	 Approach	 for	 Retrieving	 Linked	 RDF	 Data	 Using	
Supercomputing	Systems”	.	This	work	uses	MPI	and	C++	on	a	1000-node+	cluster	supercomputer	
at	Argonne	National	Laboratory	to	create	a	unique	distributed	framework	that	can	transform	a	large	
dataset	of	subject,	predicate,	and	referent	statements	into	a	traversable	directed	graph	composed	
of	connected	nodes	that	store	partial	queries.	The	framework	implements,	join	constructions	and	
query	retrievals	on	a	graph	structure	in	order	to	retrieve	user-specified	queries.	From	my	thesis	
proposal,	 I	 received	 a	 Microsoft	 Azure	 Research	 Award	 (July	 2014	 –	 July	 2015).	 Through	 my	
research,	 I	 have	been	able	 to	utilize	one	of	 the	most	powerful	 super-computers	 in	 the	world	at	
Argonne	National	Laboratory	(June	2015	to	present).	My	research	journey	has	also	allowed	me	to	
travel	the	globe	as	an	Open	Science	Data	Cloud	Fellow	(2013-2014)	to	collaborate	on	big	data	with	
researchers	 in	 Europe	 and	 Brazil	 –See	 EXPERIENCE	 below.	 I	 received	 a	 Diversifying	 Higher	
Education	Faculty	in	Illinois	(DFI)	fellowship	from	August	2011	–	August	2015,	which	is	a	highly	
competitive	 award	given	by	 the	 State	of	 Illinois	 geared	 for	underrepresented	 students.	The	DFI	
award	aims	to	foster	and	prepare	award	recipients	to	work	in	government-supported	educational	
and	research	institutions	in	the	State	of	Illinois.	I	will	complete	my	PhD	at	the	end	of	the	summer	
2017.	

MASTER OF SCIENCE IN COMPUTER SCIENCE July	2002	

UIC,	Computer	Science	Department	and	EVL																																																																																				Chicago,	IL	

Thesis	developed	a	C++	library	to	support	collaborative	menu	interfaces	within	the	CAVETM	virtual	
reality	environment,	which	was	developed	and	commercialized	by	EVL. 	

BACHELOR OF SCIENCE IN ENGINEERING 	 December	1993	

Department	of	Interdisciplinary	Engineering,	Purdue	University	 West	Lafayette,	IN	

PUBLICATIONS

Lewis,	Michael	 J.,	 et	al.	 "A	distributed	graph	approach	 for	pre-processing	 linked	RDF	data	using	
supercomputers."	Proceedings	of	The	International	Workshop	on	Semantic	Big	Data.	ACM,	2017.	
	

PROFESSIONAL EXPERIENCE

LEWIS UNIVERSITY, ASSISTANT PROFESSOR May	2017	-	Present
I	became	an	assistant	professor	at	Lewis	University,	August	21.	Since	teaching	at	Lewis,	I	have	taught	
the	 courses:	 Machine	 Learning,	 Applied	 Programming	 Languages,	 Data	 Visualization,	 Capstone	
Software	Systems,	Data	Analysis	and	Data	Mining.		The	Capstone	Software	Systems	class	deals	with	
working	with	community	organizations	in	tandem	with	students	divided	into	teams	on	a	semester	
project.				 	

	 	

139

Page 2 of 4

LOYOLA UNIVERSITY CHICAGO, TEACHING INSTRUCTOR Jan	2016	-	May	2017

Open	Source	Computing:	This	course,	I	taught	in	the	fall	semester	2016	and	the	spring	semester	
2017.	The	class	composed	of	teams	would	endeavor	in	a	semester	project	where	each	team	in	the	
class	would	create	or	improve	on	previous	software	used	from	an	open	source	repository.		Newly	
created	software	would	have	to	be	defensibly	useable	and/or	expandable	within	the	open-source	
community.	 The	 class	 also	 added	 discussions	 and	 writing	 assignments	 over	 cyber-space	 issues	
relating	to	privacy,	regulation,	security	and	the	interpretation	of	freedom.		
	
Introduction	to	Computing:	This	course	was	taught	in	the	Spring	semester	of	2016.	This	course	was	
the	general	course	open	to	all	students	at	Loyola	University	Chicago	for	the	spring	semester	2016.	I	
instructed	 my	 students	 in	 Python	 programming,	 providing	 them	 with	 lectures,	 homework	
assignments	and	programming	projects.		

RESEARCH AID (INTERNSHIP), ARGONNE NATIONAL LABORATORY June	2015	-	August	2016

Argonne	National	Laboratory	is	a	multidisciplinary	science	and	engineering	research	center,		
employing	hundreds	of	Post-Doctoral	Scholars,	graduate	and	undergraduate	students.	It	is	host	to	
one	of	the	fastest	super-computers	in	the	world.		As	an	intern	(June	2015-	August	2015)	I	developed	
python	scripts,	and	wrote	and	expanded	Fortran	and	C	scientific	simulation,	MPI	code	to	evaluate	
the	 I/O	 	 performance	 of	 the	 Mira	 supercomputer	 containing	 65,536	 cores.	 My	 research	 work	
provided	Argonne	performance	scientist	a	better	understanding	of	how	to	use	application		
dependent	algorithms	and	utilize	MPI	group	IO	functions	to	improve	the	read	times	of	large	scale	
job	simulations.	As	a	research	assistant	(August	2015	-	August	2016),	I	worked	with	Argonne	staff	
and	a	Loyola	tenured	professor	in	coordinating	my	thesis	work	with	aspects	of	file	I/O	and	node	to	
node	communication	within	a	supercomputing	environment.	

ASSISTANTSHIPS AND RESEARCH WORK, UIC July	2009-	May	2015	

Graduate	Assistant,	Graduate	College	–	Office	of	Recruitment	and	Diversity					Aug	2012-	May	2015	

UIC	 is	 recognized	 as	 having	 one	 of	 the	 top	 Graduate	 programs	 in	 the	 country.	 As	 a	 Graduate	
Assistant,	 I	 assist	 in	 recruiting	underrepresented,	 qualified	UIC	 graduate	 school	prospects	 from	
around	the	country.	I	help	facilitate	and	organize	tours,	perform	demos	in	the	CAVE2™,	a	virtual-
reality	environment	recently	developed	and	commercialized	by	EVL.	I	also	developed	recruitment	
software	 that	 is	 actively	 used	 in	 recruitment	 outings;	 “E-Recruiter”	 is	 tablet-based	 software	
developed	 with	 Eclipse,	 Android	 Developer	 Tools.	 The	 software	 collects	 prospective	 student	
information,	packages	 it	 in	a	spreadsheet	data	 format,	and	provides	a	user	 interface	 to	view	the	
prospective	 student’s	 info	 and	 to	 email	 follow-up	 letters	 on	 those	 selected	 students	within	 the	
spreadsheet	viewing	interface.		

Open	Science	Data	Cloud	(OSDC)	Summer	Fellowship																																																	June	–	August	2014				

	<http://pire.opensciencedatacloud.org/research/fellows2014/#michael-lewis>.	As	a	part	of	my	
summer	fellowship,	I	attended	a	Big	Data	training	workshop	in	Amsterdam,	Netherlands	and	then	
worked	at	 the	Laboratory	of	Computer	Networks	 and	Architecture	 (LARC)	 at	University	 of	 Sao	
Paulo	in	Brazil	for	6	weeks	on	collaborative	research.	My	research	used	network	technologies	to	
optimize	 big	 data	 transfers.	 I	 also	 gave	 a	 presentation	 to	 Brazilian	 computer	 science	 students	
regarding	my	PhD	research.	
	
	
	

Figure 30: Resume

140

Page 3 of 4

Open	Science	Data	Cloud	(OSDC)	Summer	Fellowship																																																		June	–	August	2013				

<http://pire.opensciencedatacloud.org/osdc-pire-year-2-researchers-2013>.	 I	 attended	 a	 Big	
Data	 training	 in	 Scotland,	 Edinburgh	 (July	 7-14)	 to	 learn	 to	 configure,	 allocate	 and	 program	
computing	nodes	within	a	Cloud	environment	for	the	purpose	of	exploring	very	large	datasets.	I	
used	the	Open	Stack	cloud	engine	and	Hadoop	and	R	as	tools	to	explore	datasets.	I	then	worked	with	
researchers	at	the	University	of	Sao	Paulo	in	Brazil	to	use	the	Open	Science	Data	Cloud	Clusters	on	
a	Cloud	framework	to	accumulate	and	analyze	data	from	various	weather	stations	in	California	and	
Brazil.	
	

Future	Grid	Project	with	Indiana	University																																																									April	2011	–	August	2011	

Future	 Grid	 is	 a	 cloud	 computing	 test-bed	 developed	 by	 a	 consortium	 of	 Universities	 including	
Indiana	University,	Purdue	University,	and	University	of	Chicago.	I	was	responsible	for	having	the	
University	of	Illinois	at	Chicago	(UIC)	be	a	contributor	to	Future	Grid,	specifically	by	developing	a	
REST	API	to	connect	to	and	query	a	Cloud-based	image	deployed	on	Future	Grid.	My	(UIC)	team	was	
composed	of	myself	and	one	other	student.	The	software	 tools	 that	were	used	 to	create	a	REST	
image	were:	Python,	CherryPy,	OpenSSl,	twill	(for	unit	testing)	and	MongoDb	for	the	database.

Teaching	Assistant		(Computer	Graphics)																																																	August	2010	–	December	2010	

Responsible	 for	 creating	 and	 lecturing	 on	 computer-graphics-based	 projects	 for	 students	 and	
grading	laboratory	work.	Projects	assigned	included	the	following	topics:	perspective	projection,	
polygon	filling,	ray	tracing,	and	Phong	shading.	

Research	Assistant	(Lead	Developer,	Education	Game	Project)									May	2009	–	September	2010	

Recruited	to	develop	a	professional	grade	education	software	game	to	teach	students	on	how	to	
survive	disasters.	This	game,	developed	with	the	Unity	Game	engine,	features	a	camera-follow/first-
person	boy	character.	This	character	navigates	around	a	Virtual	house	while	receiving	direction	via	
menus	on	what	to	find	and	do	in	case	of	an	earthquake.	The	language	used	in	the	project	was	Unity	
Script,	 similar	 to	 Java	 script.	 The	 features	 and	 modules	 that	 I	 created	 included	 developing	 an	
algorithm	to	simulate	the	earthquake	movements	for	all	the	elements	in	the	house,	implementing	
the	camera	following	movements	and	the	occlusion	module,	and	creating	the	menu		
interfaces.	This	game	was	funded	by	and	distributed	by	the	Illinois	Emergency	Management	Agency	
and	tested	in	a	select	number	of	Illinois	schools.		
http://public.iema.state.il.us/webdocs/earthquakegame/Welcome.html

SCIENTIFIC VISUALIZATION SPECIALIST April	2005	–	April	2007	

NetASPX	Inc.	Army	High	Performance	Computing	Research	Center																														Minneapolis,	MN	

NetASPX	 is	 a	 database	 company,	 maintaining	 data	 and	 large-scale	 inventory	 for	 top	 tier	
corporations.	The	Army	High	Performance	Computing	Research	Center	(AHPCRC)	was	a	division	of	
NetASPX	contracted	by	the	Department	of	Defense	for	army	research	of	vehicles	and	armor.	I	used	
C	 and	 C++	 and	 MPI	 on	 supercomputers	 (CRAY	 and	 Linux	 clusters)	 to	 code	 a	 visualization	
application	 that	 retrieved	 Computational	 Fluid	 Dynamics	 (CFD)	 datasets	 pertaining	 to	 bullet	
penetrations	on	armored	vehicles	and	vests.	While	working	 there	 I	also	received	secret	clearing	
status.	

VIRTUAL REALITY SOFTWARE DEVELOPER August	2001	–	February	2005	

Figure 31: Resume

141

Page 4 of 4

Fuel	Tech	Inc.	Virtual	Vantage	Software	Division																																							Batavia	(now	Warrenville),	IL	

Fuel	Tech	is	a	company	that	provides	a	broad	array	of	technologically	advanced	solutions	to	meet	
the	 pollution	 control	 and	 efficiency	 improvements	 for	 boiler,	 coal-burning	 companies.	 Acuitiv	
(Virtual	Vantage),	the	former	software	division	of	Fuel	Tech,	used	VR	(Virtual	Reality),	networking	
and	 interactive	computer	graphics	 to	develop	a	highly	 interactive	and	immersive	Computational	
Fluid	Dynamics	(CFD)	application	designed	to	help	companies	understand	problematic	flows.	As	a	
VR	software	developer,	I	used	C++	to	develop	the	client	server	visualization	software	(Acuitiv).	
This	software	would	read	in	CFD	datasets	to	be	navigated	and	viewed	on	a	desktop	or	in	a	virtual	
environment.	I	coded	modules	to	read	different	structured	datasets,	and	to	construct	iso-surfaces,	
streamlines	and	 contour	planes	 from	 the	 extracted	data.	 The	CFD	application	developed	by	our	
software	 team	 received	 the	 2004	 product	 of	 the	 year	 award	 by	 Desktop	 Engineering.		
http://www.deskeng.com/articles/aaaats.htm	
	

Software Inventions

E-RECRUITER Developed:		October	2013	–	present	

Office	of	Technology	Management	(OTM),	UIC,	Technology	No.		DH156																																	Chicago,	IL	

University	of	Illinois	at	Chicago,	is	licensing	the	technology	“E-Recruiter”.	This	technology	is	based	
on	Android-based	tablet	software,	also	named	E-Recruiter,	that	I	solely	developed.	The	application	
allows	prospective	students	to	enter	their	academic	information.	The	software	allows	the	recruiter	
to	list	and	query	student	information	and	provides	an	interface	to	automatically	generate	follow-up	
emails	to	a	selected	student	prospect.	
	

Hobbies

On	my	downtime,	I	enjoy	playing	the	piano,	cooking	vegan	foods	and	going	to	sessions	of	hot	yoga!	

Figure 32: Resume

