
Defect Tolerant Logic Implementation onto Nanocrossbar-based Architectures

BY

YEHUA SU
B.S. Capital Normal University, Beijing, China, 2004

M.S. Chinese Academy of Sciences, Beijing, China, 2007

THESIS

Submitted as partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Chicago, 2012

Chicago, Illinois

Defense Committee:

Wenjing Rao, Chair and Advisor
Shantanu Dutt
Kaijie Wu
Zhichun Zhu
John Lillis, Computer Science

ACKNOWLEDGMENTS

I have been blessed with numerous wise and caring people who have supported me through my

Ph.D. as well as earlier education. I would like to take this opportunity to especially thank my advisor

Professor Wenjing Rao for her unyielding support and guidance. Professor Rao is a great person, one of

those rare idealistic people that always believe in perfection. She has helped me to develop analytical

and problem-solving skills that have been of immense help in overcoming many of the difficulties. This

thesis could not be possible without her supervising.

I thank Professor Shantanu Dutt, Professor John Lillis, Professor Kaijie Wu and Professor Zhichun

Zhu for providing me very valuable guidance and also serving as committee members for this disserta-

tion. I thank my fellow graduate students for sharing with me their research experiences and also their

willingness to spend time with me on my research discussions. They are Yixin Shi, Hongzhong Zheng,

Liang Han, Jingye Xu, Yu Liu, Kun Fang, Kun Ma and Suyu Zhang. It would be a long list to mention

all the other friends I am indebted to. I gratefully thank all of them.

I wish to thank my entire family who taught me to believe that I have the ability to achieve anything

as long as I put my mind to it. Their love has always been the source of my strength and inspiration.

YS

ii

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1
1.1 Nanoelectronics background . 2
1.2 Challenges and opportunities in defect tolerance of nanocrossbar

systems . 3
1.3 Main contributions . 5
1.4 Organization . 7

2 RELATED WORK AND MOTIVATIONS . 8
2.1 Nanocrossbar architectures . 8
2.1.1 Crossbar array . 9
2.1.2 Nanofabric . 10
2.1.3 FET-based array architecture . 11
2.1.4 CMOL FPGA . 12
2.2 Related work on defect tolerance techniques 14
2.2.1 Defect-avoiding schemes . 14
2.2.2 Defect-using schemes . 15
2.3 Other defect- and fault- tolerance schemes for nanotechnology 16
2.4 Motivations . 17

3 DEFECT-TOLERANT LOGIC IMPLEMENTATION MODELING AND AL-
GORITHMIC FRAMEWORK . 20
3.1 Problem formulation . 20
3.1.1 Defect model for nanoscale crossbar based architectures 20
3.1.2 Logic function model . 22
3.1.3 Logic implementation formulation . 23
3.1.3.1 Solution space volume . 24
3.1.3.2 Correlations in solution space . 24
3.2 Backtracking-based algorithmic framework 26
3.3 Discussions . 28

4 PROBABILISTIC ANALYSIS ON YIELD AND RUNTIME 30
4.1 Observations from yield curves . 31
4.1.1 Phase transition in yield curves . 32
4.1.2 Substantial yield improvements over hardware redundancy 32
4.1.3 Problems with the “ideal” yield model for nanocrossbars 33
4.2 Mapping-aware yield . 34
4.2.1 Modeling: solution density . 34

iii

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

4.2.1.1 E(sd) based on defect probability d0 + d1: E(sd)d0+d1 35
4.2.1.2 E(sd) based on defect percentage p0 + p1: E(sd)p0+p1 36
4.2.1.3 Variations in solution density V (sd) 39
4.2.2 Modeling: Runtime Constraint (RTC) yield 40
4.2.2.1 The impact of runtime limit on RTC yield 41
4.2.2.2 Establishing RTC yield upper / lower bound from the insight of

crossbar size impact . 42
4.2.2.2.1 Exact upperbound for defect probability / percentage based models . 42
4.2.2.2.2 Exact lowerbound for defect probability based model and approxi-

mate lowerbound for defect percentage based model 44
4.3 Probabilistic analysis on runtime . 45
4.3.1 Solution density expectation E(sd) 46
4.3.2 Solution density standard deviation V (sd) 48
4.3.2.1 V (sd) varies with defect probability 49
4.3.2.2 V (sd) varies with logic function size 50
4.3.2.3 V (sd) decreases with crossbar size increasing 50
4.3.3 Solution density based runtime estimation 51
4.4 Summary . 53

5 EVALUATING QUALITY FOR NANOCROSSBAR LOGIC MAPPING THROUGH
MISMATCH NUMBER DISTRIBUTION . 55
5.1 Motivations . 55
5.2 Mismatch number distribution among crossbars with the same defect

probability: ∆ . 57
5.2.1 Probabilistic modeling of ∆ . 57
5.2.1.1 Binomial distribution . 57
5.2.1.2 Closed form approximation of ∆ using Normal and Poisson distri-

butions . 58
5.2.1.2.1 ∆ ∼ Normal distribution . 58
5.2.1.2.2 ∆ ∼ Poisson distribution . 61
5.2.2 Discussion and experimental results 62
5.3 Mismatch number distribution of a single crossbar with a solution

space: D . 63
5.3.1 Mismatch number distribution over crossbars with the same defect

number: D̃ . 64
5.3.2 Impact of defect pattern . 68
5.3.3 Increasing crossbar size: D → ∆ . 70
5.4 Summary . 71

6 DEFECT-TOLERANT LOGIC MORPHING 74
6.1 Motivations . 74
6.2 Logic morphing . 75

iv

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

6.2.1 Logic equivalence checking . 75
6.2.2 Efficient algorithm for logic equivalence checking 76
6.2.3 Mismatch-tolerating capability and analysis 80
6.3 Exploiting mapping and morphing simultaneously 80
6.4 Simulation results . 82
6.4.1 RTC yield . 83
6.4.2 Runtime cost analysis . 86
6.5 Summary . 87

7 DEFECT-TOLERANT LOGIC HARDENING AND INTEGRATION WITH
MAPPING AND MORPHING . 89
7.1 Motivations . 89
7.2 Hardening concept . 90
7.3 Optimal hardening . 92
7.3.1 Solution density without hardening . 93
7.3.2 Solution density with hardening . 93
7.3.3 Fine-grained optimal hardening . 95
7.4 Algorithmic framework exploiting mapping, morphing and hardening 96
7.5 Simulation results . 98
7.5.1 Solution density improvement with hardening 98
7.5.2 Yield improvement with logic hardening 102
7.5.3 Runtime cost analysis . 108
7.6 Summary . 109

8 SUMMARY AND DIRECTIONS OF FUTURE WORK 111
8.1 Summary and conclusions . 111
8.2 Directions for future work . 114
8.2.1 Identification of optimal logic form: static logic morphing 114
8.2.2 Mismatch-directed logic synthesis . 114
8.2.3 Defect pattern-aware logic hardening 115

CITED LITERATURE . 116

VITA . 123

v

LIST OF TABLES

TABLE PAGE

I SUMMARY OF INFLUENCE OF DEFECT PROBABILITY, LOGIC FUNC-
TION SIZE AND CROSSBAR SIZE ON E(SD), V (SD) AND RUN-
TIME EXPECTATION. 54

II PERCENTAGE OF SINGLE TOLERABLE MISMATCHES. 81

III OPTIMAL HARDENING FOR MISEX1 97

IV BENCHMARK SIZE AND LOGIC INCLUSION RATIO. 107

vi

LIST OF FIGURES

FIGURE PAGE

1 Design flow comparison . 5

2 Nano crossbar array . 9

3 Nanofabric organization . 10

4 FET array . 12

5 Interconnect between nano and CMOS in CMOL 13

6 (a) A nanocrossbar with defects and its crossbar matrix, (b) Logic function
matrix, (c) mapping trials . 21

7 Structure pattern of different shuffled logic matrices for the same logic function 25

8 Explosion in runtime . 31

9 Phase transition in “ideal yield” assuming unlimited runtime of mapping algo-
rithms . 33

10 Cell mappings leading to no mismatches between logic and crossbar matrix . . 36

11 Logic mapping onto crossbars based on defect percentage 38

12 E(sd)p0+p1 is lower than E(sd)d0+d1 . 39

13 Solution density variation decreases when based on from defect probability to
defect percentage ((a)→(c), (b)→(d)), and decreases as crossbar size increases
((a)→(b), (c)→(d)) . 40

14 Runtime-constrained yield increases with the number of explored mappings . . 42

15 Runtime-constrained yield increases with crossbar size, expressed as size ratio . 44

16 V (sd) for crossbars of different sizes, expressed as size ratio of crossbar to
benchmark. 49

vii

LIST OF FIGURES (Continued)

FIGURE PAGE

17 V (sd) of two benchmarks mapped onto crossbars of different sizes. 51

18 Runtime expectation for crossbars of different sizes. 53

19 Two mapping trial examples . 55

20 Mismatch number follows Binomial distribution model 58

21 Mismatch number distributions ∆ for different benchmarks 60

22 Distribution ∆ when varying closed defect ratio r 61

23 Distribution ∆ when varying logic inclusion ratio l 62

24 Comparison: Normal and Poisson in approximating ∆ 63

25 Two specific mismatch distributions vs. expected mismatch distribution 65

26 Mismatch number follows bivariate Hypergeometric distribution 66

27 D̃ distribution can be modeled as a Hypergeometric distribution 67

28 Three specific mismatch number distributions D vs. Hypergeometric distribu-
tion D̃ . 68

29 Mismatch distributions for crossbars with various defect patterns can be ap-
proximated by Hypergeometric distribution D̃ 69

30 Distribution D sits between D̃ and ∆ and finally fits well with ∆ 72

31 K-map showing the equivalent forms of a logic function 75

32 Logic equivalence checking with an example . 77

33 Yield comparison on (a) con1 and (b) sqrt8. 84

34 Yield comparison with different closed defect ratios 84

35 Yield improvement for various crossbar size . 85

36 Yield improvement with morphing . 86

viii

LIST OF FIGURES (Continued)

FIGURE PAGE

37 Runtime comparison for benchmark con1 . 87

38 Logic hardening tolerates open defects and adds an extra 0 → 1 mismatch . . . 91

39 Hardening degree affects solution density with different closed defect ratio r . . 101

40 Logic inclusion ratio affects solution density with different hardening degree . . 102

41 Closed defect ratio affects solution density with different hardening degree . . . 103

42 Solution density gap between hardening and nonhardening increases as logic
function size grows . 104

43 Yield improvements through logic hardening with different hardening degree
r = 10% . 105

44 Yield improvements through logic hardening with different hardening degree
and r = 10% . 106

45 Yield improvements with hardening at r = 20% 108

46 Runtime comparison for benchmark con1 . 110

ix

SUMMARY

Crossbar-based architectures are promising for the future nanoelectronic systems. Nanocrossbar

logic implementation emerges as a new fundamental issue, because massive defects, resulting from

self-assembly fabrication process, introduce irregular topological constraints on the otherwise regu-

lar nanocrossbars. Therefore, defect tolerance techniques become crucially important for the realiza-

tion of nanocrossbar potentials. As an emerging challenge, defect-tolerant logic implementation onto

nanocrossbars turns out to be a hard problem. It is therefore important to model the defect-tolerant

logic implementation problem, analyze the cost and tradeoffs, and explore efficient defect tolerance

methodologies.

In this dissertation, we first study the defect tolerant logic implementation problem by modeling it

in a probabilistic way, so as to analyze the computational complexity and exploring the design qual-

ity. Both logic functions and nanocrossbars can be mathematically modeled by matrix model. The

mapping based approach is then formulated with a matrix mapping problem, with the goal of finding

a mismatch-free mapping (by permutating rows and columns of the matrices) between the logic func-

tion and the crossbar matrices. This way, the implementation process is translated into a constraint

satisfiability problem with the complexity of NP-completeness. In order to quantitatively understand

the defect-tolerant logic implementation and identity the design tradeoffs, beside a probabilistic view

from the solution density point of view over the collection of mapping space, design quality is examined

furthermore in a more precise way using mismatch number distribution over all the implementation pos-

sibilities. The mismatch number distribution reveals the probability that a valid logic implementation

x

SUMMARY (Continued)

exists and identifies the cost for finding a valid implementation. The number of mismatches turns out

to be possible to be well modeled in probabilistic approaches, and the mismatch number distribution

follows Normal/Poisson and Hypergeometric distributions, respectively.

With the knowledge of design quality indicated by mismatch number distribution, yield is analyzed

and modeled when a large number of crossbars, each having a different defect pattern, are considered.

Yield of nanocrossbars, different from traditional manufacturing yield in CMOS, depends on logic im-

plementation algorithms as well as allowed runtime. Due to the high defect rate in nanocrossbars, the

implementation process could take prohibitive runtime. Therefore we propose a practical concept of

runtime-constrained yield, and identify the tradeoffs between yield and the impacting factors: runtime,

defect rate and hardware cost.

In parallel to the analytical work on the modeling of defect tolerance quality, we propose low-

cost aggressive approaches to further improve defect tolerance capability, namely logic morphing and

fine-grained logic hardening. These novel approaches could be applied on top of the logic mapping

technique. Logic morphing exploits the various equivalent forms of a logic function to tolerate de-

fects, while logic hardening adds calculated redundancies to a logic function to make the hardened logic

function inherently defect tolerable. Each approach explores an additional dimension of freedom in

achieving defect tolerance, and both are orthogonal to and compatible with the existing mapping-based

approach. In summary, all three approaches (logic mapping, morphing and hardening) are orthogonal

to each other, and can be exploited simultaneously without offsetting each other’s performance. We

propose an integrated algorithmic framework, which employs mapping, logic morphing and logic hard-

ening simultaneously, and efficiently searches for a successful logic implementation in the combined

xi

SUMMARY (Continued)

solution space. Simulation results show that the proposed schemes boost defect tolerance capability sig-

nificantly with many-fold yield improvement, while having no extra runtime over the existing approach

of performing mapping alone.

xii

CHAPTER 1

INTRODUCTION

This dissertation presents defect tolerance techniques that implement logic functions onto nanocrossbar-

based systems and methodologies that model and analyze the defect-tolerant logic implementation pro-

cess.

The current CMOS technology has scaled according to Moore’s Law, allowing circuit designers to

continue making advances. Researchers are devoted to continuing feature size scaling and also inventing

new nanoscale electronic devices that can potentially replace the conventional photolithographic based

CMOS designs. Scaling the device feature size provides faster, denser, and consequently more powerful

systems that can run at higher speeds. Unfortunately, now that CMOS has entered the deep submicron

range, scaling is becoming more difficult and will eventually cease because of fundamental physical

properties of CMOS technology (1). The ITRS Roadmap has challenged the feasibility of CMOS scaling

projections beyond MOSFET channel length of 9 nm and has indicated the need of non-CMOS nano-

scale technologies.

Recently, a number of novel nanotechnologies have emerged to show the potential in improving the

current CMOS platform or replacing the CMOS as an alternative, and also demonstrate promise to de-

velop fundamentally new methodologies to computing systems. These nanotechnologies are proposed

in the development of novel memory, configurable logic devices and even hybrid platforms. Nanoscale

devices can have high device density, high switching speed and low power consumption. Yet, these

improvements in area, performance, and power consumption also come with their own technical chal-

1

2

lenges. One of the main challenges, which is the subject of study in this dissertation, is reliability. It is

expected that devices become less reliable in smaller feature sizes, and experience both more permanent

defects due to the imperfect manufacturing process and more transient faults due to the effect of noise.

Reliability issue is becoming constantly more challenging due to increase in both the device failure rate

and system complexity. The conventional techniques will not be efficient enough or even capable of

tolerating these errors for the future-generation computing systems.

1.1 Nanoelectronics background

Nanoelectronic devices are proposed as an alternative in the next generation electronic systems. Na-

noelectronics encompasses an emerging set of technologies that offer the potential of device densities far

greater than that of CMOS. These nanoelectronic candidates include silicon nanowires (NW) (2)(3)(4),

single electron transistors (SET) (5)(6), quantum-dot cellular automata (QCA) (7)(8)(9), spintronics

(SPIN) (10)(11)(12), resonant-tunnel diodes (RTD) (13)(14)(15), carbon nanotubes (CNT) (16)(17)(18).

Each of these devices has its own unique characteristics. For example, RTDs offer the potential for

multi-valued logic, while QCAs rely on the quantum interaction between electrons and use extremely

low levels of power. However, despite the uniqueness of each of these devices, a set of characteristics

span across them that help define nanoelectronics. These characteristics include a self-assembly bottom-

up fabrication process(19)(20)(21), extremely high levels of defects(22), and inherent reconfigurability.

One common challenge is the fabrication methods that will lead to viable cost-effective nanomanu-

facturing processes. It is expected that the bottom-up self-assembly approach, which avoids the sophisti-

cated and expensive lithographic process, is the basic way to construct nanoscale devices (3)(23)(24)(25).

Self-assembly processes lower manufacturing costs at the expense of reduced control over the assembly

3

of materials and the placement of devices. Without fine-grained control, the resulting nanoscale devices

will exhibit significantly higher defect rates than that in current CMOS technology. The defect rates in

these emerging nanodevices are projected to be in the order of 10−3 to 10−1, in comparison to that of

10−9 to 10−7 in CMOS technology (26). Consequently, defect and fault tolerance mechanisms need to

be an integral part of nanoscale system designs (22)(27).

Nanoelectronics offer much denser circuitry, and logic implementations onto nanoelectronics gener-

ally are based on post-manufacturing configuration, due to the existence of potentially defective devices.

Hybrid CMOS/nanodevice circuits (28)(29)(30)(31) were put forward recently for future nanoelectron-

ics systems. Basically, CMOS is built up on top of nanodevices, and the configuration of nanodevices

is achieved through reliable CMOS. Generally, the combinational logic is implemented in the underly-

ing nanodevices, and sequential logic and routing are achieved through reliable CMOS. In such hybrid

systems, the underlying reconfiguration-based nanodevices are the fundamental building blocks for the

whole system.

1.2 Challenges and opportunities in defect tolerance of nanocrossbar systems

While bottom-up manufacturing approach is useful and promising for nanotechnology fabrication,

it loses the fine-grained control of each device during the manufacturing process. Since variability and

imprecision are inherent in such self-assembly processes, nanowires that are grown using bottom-up

techniques may be broken or misaligned. Hence, these nanowires will become unusable. Additionally,

for crossbar based architectures, crosspoint switches may contain defects and lose the configurability.

The defect rate for Nanotechnology is expected to be much higher than current CMOS technology. This

4

reliability challenge, caused by massive defects, will fundamentally pose significant challenges on the

design phase.

Due to the extreme high defect rate in the nanotechnology, the existing methodologies targeting the

defect and fault tolerance in CMOS systems will not work for nanotechnology. Such a high defect rate

may require fundamental changes in design paradigms and analytical models. Logic implementation

onto nanocrossbar-based architectures is tremendously different from logic implementation on CMOS

PLAs. In CMOS PLAs, the configuration phase is trivial, because all the devices at the crosspoints are

configurable. However, with massive defects intrinsically residing in nanocrossbars, defect tolerance

schemes need to be integrated into the design process. In addition, the defect pattern of each crossbar

might be unique, which can be obtained, based on well established testing methodologies for PLA

architectures (32; 33), hence the defect-tolerant implementation process has to be performed on every

single chip. As a result, the defect-tolerant logic implementation phase becomes the critical bottleneck

during the design and manufacturing of crossbar-based nano circuits. Figure 1 provides a comparison

for the flows between traditional CMOS based PLAs and nanocrossbars.

With respect to defect tolerance in nanocrossbar-based systems, nanocrossbar architectures have

two salient characteristics, which can help achieve the goal of defect tolerance. First, nanocrossbar-

based architectures have their reconfigurability. We can use reconfigurability to change the nanocrossbar

connectivity so that the logic function can be implemented, even though defects are contained in the

nanocrossbars. There are two categories for defect tolerance with employing reconfigurability:

• Defect-avoiding means the logic is only implemented on the defect-free sub-circuits by avoiding

the defective parts through reconfiguration.

5

Behavior

description

Logic

functions

Logic

synthesis

Configuration

phase

PLA testing

PLA

Manufacture

Reject

defective

PLAs

Nanocrossbar

testing

Nanocrossbar

Fabrication

Traditional PLA design flow Nanocrossbar design flow

Defect-tolerant

implementation

Obtain

defect

maps

Figure 1. Design flow comparison

• Defect-using means the defects are utilized in the implementation as long as the defects do not

affect the functionality of the original logic.

The second feature of nanocrossbar-based architectures lies in its regular structure. The regularity

of nanocrossbars, in combination of reconfiguration, also significantly contributes to tolerating defects.

Due to the regular structure, the implementation of a logic can be flexible, which provides an orthogonal

opportunity for tolerating defects. Basically, all rows / columns can be viewed as equal in terms of

implementing a logic function, and thus those rows / columns whose defects can be either avoided or

utilized are chosen first for implementation.

1.3 Main contributions

In this dissertation, we have proposed and developed new approaches that can tremendously improve

the defect tolerance capabilities over the state-of-the-art approaches. Besides the proposed techniques,

we also developed multiple methodologies that model, analyze and evaluate the complex defect-tolerant

6

logic implementation process, and provide the guidelines for developing nanocrossbar-based systems.

Some of the specific contributions are as follows:

• A new yield model (runtime-constrained yield), which practically takes into consideration the

inevitably long runtime of configuring crossbar according to defects, is proposed. According to

the proposed probabilistic model, the upperbound and lowerbound can be mathematically derived,

which can reveal the design tradeoffs without having to perform the time-consuming simulations.

• A probabilistic approach is proposed to model and estimate the tradeoff space of runtime for

finding a valid implementation. The proposed model reveals how runtime is affected by the

impacting factors: defect rate, logic function size, crossbar size and so on.

• A highly effective model based on the number of mismatches in any mapping trial is proposed to

quantitatively evaluate the defect-tolerate logic mapping quality.

• A new defect tolerance technique from the perspective of logic equivalence, logic morphing, is

proposed, and the algorithmic framework is also developed to efficiently find a valid implemen-

tation with logic morphing.

• A new defect tolerance technique from the perspective of crossbar redundant implementation,

logic hardening, is proposed, and an optimal fine-grained hardening for logic functions is devel-

oped mathematically.

• An integrated algorithmic framework is proposed to simultaneously employ all the proposed de-

fect tolerance approaches, including logic mapping with heuristics, logic morphing and logic

hardening.

7

1.4 Organization

The remaining chapters of the dissertation are organized as following. Chapter 2 describes the ex-

isting related research work and the state of arts on defect tolerance for nanocrossbar architectures,

and continues to motivations for our work in this dissertation. Chapter 3 presents the modelings for

the defect-tolerant logic implementation process, and the backtracking based logic mapping framework

with our proposed heuristics. Chapter 4 dives into analyzing yield of nanocrossbars and evaluating run-

time for finding a valid implementation. Chapter 5 is dedicated to developing the methodologies for

evaluating the logic mapping quality. In Chapter 6, the proposed defect tolerance technique, logic mor-

phing, is presented, including the efficient heuristics proposed specially for Logic Equivalence Check-

ing targeting nanocrossbar logic mapping and the algorithm development integrating logic mapping and

morphing. In chapter 7, the proposed defect tolerance technique, logic hardening, is introduced, and

the methodology for achieving the optimal hardening for a specific logic function is developed. Fol-

lowing that, the integrated algorithmic framework exploring all proposed defect tolerance approaches is

presented. Finally, Chapter 8 summarizes our work and discusses possible directions for future research.

CHAPTER 2

RELATED WORK AND MOTIVATIONS

In this chapter, we first introduce the related work in nanocrossbar architectures, and then discuss

the recent publications on defect tolerance techniques targeting nanocrossbar-based systems. After re-

viewing these related work, the motivations for the new proposed techniques in the dissertation are

described.

2.1 Nanocrossbar architectures

Among the proposed nanodevices, nanocrossbar-based architectures have been shown to have sig-

nificant potential for nanotechnology systems. A large portion of nanoelectronics research has been

focused on these nanocrossbar technologies, because they offer the possibility of creating circuits that

have characteristics similar to CMOS circuits. This similarity offers two interrelated advantages. First,

because we have a large body of knowledge on how to build CMOS-based circuits, devices that offer

similar characteristics are better poised to take advantage of existing techniques. Second, as nanoelec-

tronic devices begin to mature, one obvious possibility will be to integrate them into CMOS system

to build hybrid circuits. Hybrid systems could leverage the strengths of both CMOS (e.g. reliability

and precise fabrication) and nanoelectronics (e.g. cheap, abundant resources). Integrating CMOS with

nanoelectronic devices that have familiar characteristics is a less daunting task than integrating devices

with radical characteristics such as QCAs.

8

9

Figure 2. Nano crossbar array

2.1.1 Crossbar array

Because of the use of self-assembly for fabrication, nanoelectronic circuits will likely exhibit a reg-

ular structure. One of the most promising structures that has gained popularity is the crossbar array, as

is shown in Figure 2. The crossbar array consists of two sets of perpendicular nanowires. At the cross-

point of any two nanowires is a bistable, reconfigurable device. When the configurable is in the“off”

state, the wires are disconnected from one another. In the “on” state, the wires are connected to form

either a diode or a transistor, depending on the type of nanowires used. Toggling between the two states

can happen at any time by providing a large voltage difference between the two wires. This toggling is

essentially what provides these devices configurability. It is important to note that these nanowires have

a limited maximum length which determines the maximum size of the crossbar array.

10

Figure 3. Nanofabric organization
(34)

2.1.2 Nanofabric

In this subsection, we review nanofabric which builds a crossbar-based nanoelectronics fabric.

NanoFabrics is introduced in (34), and the organization of the NanoFabric, shown in Figure 3, is similar

to that of an FPGA. A large number of reconfigurable blocks provide computation and can be connected

together via reconfigurable interconnect. Unlike most FPGAs whose LUTs can implement any function,

the capabilities of the nanoBlocks are severely limited. At the heart of each reconfigurable block is a

molecular logic array which consists of a crossbar array with diodes at the crosspoints.

The reconfigurable blocks and switch blocks are arranged into a cluster in a checkerboard pattern.

The switch blocks are simple crossbar arrays that could be configured to provide two non-overlapping

routes between reconfigurable blocks. The placement and limited size of these switch blocks mean

11

that the connectivity between reconfigurable blocks is localized and limited. The organization of the

NanoFabric mean that at least 50% of the devices available are used solely for interconnect. Because

each reconfigurable block relies on diodes for operation, signal inversion and gain are not available. In

order to provide these critical functions, negative differential resistors (NDRs) can be added to the output

of each nanowire. Along with providing gain and inversion, these NDRs also allow for latching of data.

Clearly, the shortcomings of diodes make them unattractive for use in a computational fabric. All of the

logic operation of NanoFabrics lies in the nanoelectronic devices. A CMOS interface is provided within

nanoBlocks to allow for clocking and to power the NDRs.

2.1.3 FET-based array architecture

A PLA-like approach to building a computational fabric has been proposed in (35). This FET-based

architecture utilizes recent advances which allow two-terminal configurable diodes to be created at the

intersection of nanowires. NOR gates are universal, and any boolean function can be computed using

only NOR gates. Unlike the traditional PLA layout of an AND array followed by an OR array, the

author uses either a NOR array followed by an OR array or two consecutive NOR arrays. The output

wires of the NOR array can be placed orthogonal to the input wires of the proceeding NOR (OR) array.

Figure 4 shows the general organization of the FET-based array with NOR-OR planes.

While the NOR and OR arrays are implemented with nanowires, the microscale wires are also used

to address these wires as well as to read the result of their computation. Using the microscale wires

to directly drive the nanowires is severely limited, because this will limit the density of the nanowires

to that of the microscale wires. The proposed solution is to create a specialized decoder between the

microscale wires and the nanoscale wires. The nature of the microscale to nanoscale interface leads to a

12

Figure 4. FET array
(35)

design tradeoff when it comes to designing a FET-based array architecture. In order to take advantage of

the device density offered by nanoelectronics, large NOR/OR arrays are desired. However, as the size of

the NOR/OR arrays increases, the utilization of the devices in the array decreases. This paradox makes

achieving good overall device density in the FET-based array approach very difficult if not impossible.

2.1.4 CMOL FPGA

Achieving good device density in array-based approaches is a difficult task, due to the problem of

providing microscale wires for addressing and long range interconnect. In the work on CMOL (29), the

authors take a fundamentally different approach to interfacing between the nanoscale and microscale.

The CMOL approach follows the concept of nano-on-CMOS hybrid systems. The idea of nano-on-

CMOS is that rather than integrating micro and nano on the same level, the nanoelectronic part of the

circuit is on a layer on top of the microscale.

13

Figure 5. Interconnect between nano and CMOS in CMOL
(29)

The key feature of CMOL lies in how the nano and CMOS layer are interconnected. Figure 5 shows

the nature of the nano/CMOS interconnect. In CMOL, there are two different types of vertical pins that

connect between the nano and CMOS layers. As the crossbar array has two perpendicular sets of wires,

one type of pin will always connect to a set of wires in one orientation while the other type of pin will

connect to the perpendicular set of wires. The goal is to have each nanowire connect to exactly one pin.

In CMOL FPGA, the nano layer acts as a large OR array that can use diodes for operation rather

than transistors. A NOR gate can be created by implementing an OR gate in the crossbar and having

the input go into the CMOS layer for inversion. We can create a sea of these NOR gates and map

functionality into them since the NOR gates are universal.

14

2.2 Related work on defect tolerance techniques

It has been shown that self-assembly techniques can overcome the limitations posed by lithography

for the smallest feature size, and crossbars can be easily built due to fabrication regularity imposed by

the self assembly process. One of the salient characteristics of nanoelectronic devices is their high levels

of defects. Hewlett-Packard has recently fabricated 8× 8 crossbar switches using molecular switches at

the crosspoints (36). They observed that only 85% of the switches were programmable while the other

15% were defective. With such a high defect rate, defect tolerance methods have to be devised for the

emerging nanotechnology devices. Various research groups are working on problems related to defect

tolerance in nanocrossbar-based systems. As we stated in the previous chapter, broadly speaking there

are two categories for defect tolerance targeting nanocrossbars: defect-avoiding and defect-using.

2.2.1 Defect-avoiding schemes

In defect-avoiding schemes, a (hopefully maximum area of) defect-free subset of the system is

searched for and used. In (37), an appropriate system architecture consists of a compiler to arrange for

desired circuit behaviors by only using correctly functioning components of a given crossbar circuit, as

determined from a testing phase after manufacture. This approach of avoiding known defects gives a

defect-tolerant system architecture. In (35), the author proposes the FET-based reconfigurable architec-

tures, and circuits are built by avoiding the faulty wires and switches. In (38)(39)(40), an application

independent scheme is proposed to search for a defect-free crossbar subset. Unfortunately, the chance of

finding a large defect-free crossbar subset is low, given the high rate of defects. Furthermore, the com-

plexity of finding a given sized perfect subcrossbar is NP-complete, and finding the maximum-sized one

is NP-hard. This implies an inevitably high runtime cost. In (41)(42), the author proposes a Build-in

15

Self Mapping (BISM) algorithm, which tests the crossbar and map the logic in an interleaving way

by avoiding the defects detected through BIST. The most salient feature of such a defect-avoiding de-

sign is the application-independent design flow. Overall, the defect-avoiding schemes become severely

unviable due to the extremely high defect rate in nanotechnology.

2.2.2 Defect-using schemes

The other category is “defect-using”, which basically utilizes the defects in the logic implementation

as long as the defects do not affect the functionality of the circuit. In order to utilize the defects,

these defects first have to be modeled and then can be considered in the logic implementation process.

The crossbar defect model also has experienced a process going from simple to complex. Works in

(43)(44)(45) solely consider the stuck-open defects, and propose the defect-tolerant algorithms to utilize

the defects. Researchers in (46)(47)(48)(49) model both stuck-at-open and stuck-at-closed defects, and

develop the approaches to improve yield. Besides crosspoint defects, works in (40)(50) also explore

open and bridging line defects. In (50), the idea of using smaller possible crossbars in a larger crossbar

is presented for defect tolerance.

Heuristics for expediting the logic implementation are proposed in (43)(51) to reduce the search

runtime, where a nanocrossbar is modeled as a bipartite graph. Similarly, authors in (52)(53) also

identify the stuck defects in the QCA based PLAs, and propose heuristic algorithms to tolerate these

defect in realizing QCA-based circuits. In (54), the authors recommend using Built-In-Self-Test (BIST)

to tolerate defects. During the mapping process, nano blocks in a system can be searched as long as any

of them can be used for mapping a logic function.

16

In (55)(56), defect-tolerant logic implementation is translated into a SAT formulation. Work in (44)

presents a yield model for logic mapping and identifies the threshold behavior in yield curves. Work in

(47)(49) reveals the cost of finding a valid mapping as well as runtime cost involved in the mapping pro-

cess. In (57)(58)(59)(60), logic mapping is performed under the constraints where defective switches

are modeled with a delay cost. Work in (61) transforms the problem into a Bipartite SubGraph Iso-

morphism (BSGI) problem and also develops the mapping heuristic based on two dimensional sorting.

Research work in (62) proposes to further tolerate defects by exploiting logical equivalences. In (63),

the authors propose diversity mapping scheme by adding random operators into the greedy algorithm so

as to improve the mapping success rate.

2.3 Other defect- and fault- tolerance schemes for nanotechnology

Unlike CMOS devices, nanotechnology is more susceptible to transient faults as well as perma-

nent faults introduced by manufacturing, and has orders of magnitude higher defect rates (64)(44)(65).

Hence, it is a significant design challenge to tolerate the high defect rates as well as fault rates, en-

hance on-line detection capability and to utilize the defective or faulty nanowire crossbar arrays for

logic functions.

Various fault tolerance techniques have been proposed to compensate for the high defect rates of

nanowire circuits. Fault masking methods can be applied to nanowire crossbars. A dynamically adaptive

N modular redundancy (NMR) approach is proposed with reconfiguration algorithms in (65). This

approach is shown to mitigate both permanent defects as well as online faults using flexible NMR and

reconfiguration. Work in (66) proposes a fault tolerance technique using boolean logic tautology that

focuses on the class of faults caused by missing devices at nanocrossbar crosspoints. Multi-level logic

17

approaches can also be applied to enhance their reliability, however, unlike in (65), the majority voter

is not required. This approach can achieve a certain level of fault tolerance while significantly reducing

hardware redundancy. Selective hardening of NanoPLAs is introduced in (67). In this method, high-

probability faults are identified using an analytical approach as well as simulations. Following that, a

selective hardening process is carried, with the goal of both improving the robustness of NanoPLA and

reducing the cost for extra hardware added for fault tolerance.

For reliable operation of nanocrossbar architectures, a concurrent multiple error detection scheme

using multistage nanocrossbar architectures is presented in (64)(68). The proposed dual-rail logic im-

plementation can detect all single (transient and permanent) faults as well as most multiple (transient

and permanent) faults. The effectiveness of hardware duplication, triple modular redundancy (TMR)

and parity checking methods are also investigated as part of this work. Authors in (69) investigate the

technique of von Neumann’s NAND multiplexing, based on a massive duplication of imperfect devices

and randomized imperfect interconnect, and reconfigurable architectures for highly unreliable nano-

scale devices. It shows that the integration of reconfigurable architectures and NAND multiplexing

can tolerate a fault rate of up to 10−2. The authors in (70)(71) provide the probabilistic-based design

methodologies for nanoscale logic circuits from the perspective of Markov Random theory.

2.4 Motivations

Whether a logic function can be successfully implemented onto a defective crossbar essentially de-

pends on three factors: 1) logic function structure; 2) crossbar defect map, which basically depicts the

structure of defect locations; and 3) logic mapping between the logic function and the defect crossbar,

which specifies the correspondence between columns / rows in a crossbar and variables / products in a

18

logic function. All the existing research dedicated to defect tolerance for nanocrossbar-based systems

has been mainly focused on logic mapping. What eventually logic mapping does is to tune the corre-

spondence between columns / rows and variables / products so that the structure of the logic and the

structure of the crossbar can “match”. When the defect rate is high in nanoelectronics, such a structure

match becomes very rare, resulting in increasingly long runtime in finding a valid logic implementation.

Logic mapping works by exploiting mapping flexibilities so as to not let any of the defects on the

crossbar affect the logic functionality. In fact, there are other potential areas of achieving defect toler-

ance beside mapping flexibility, observing that a valid implementation exists as long as the structures

from the two sides (logic function and defective crossbar) match. This essentially opens up two more

opportunities to further improve the defect tolerance capabilities:

• Changing logic function structure: when a logic function exists in a certain form that is hard for

defect-tolerant implementation, the logic structure can be adjusted so that it is better fit for defect

tolerance purposes.

• Hardening the logic implementation: when the structure of defect locations in a crossbar is detri-

mental for implementing a logic function, duplicated columns / rows may be used to implement

a single variable / product, so that the negative impact from crossbar defect structure can be miti-

gated.

In this dissertation, we propose two new defect tolerance approaches based on the above observa-

tions: logic morphing and logic hardening. Logic morphing examines the logic function structure, and

changes the logic form to achieve better defect tolerance over the course of logic implementation. Obvi-

ously, the existing logic mapping framework can be used to support the implementation of any particular

19

logic form. This essentially means an amplified success rate in logic mapping when a logic function

can exist in a large number of different forms, and this translates into great flexibility in defect-tolerant

implementation process.

Logic morphing changes the logic structure in order that the structure of the logic can better fit into

the crossbar. Similarly, we also want to find a way to “tune” the defect structure of the crossbar so that

it becomes better fit for the logic function and tolerate more defects. Obviously, once the nanocrossbar

is manufactured with certain defects distributed in it, there is no way to change the defects physically

again. Yet, multiple rows / columns in the crossbar can be used jointly as a single row / column for

implementation. The combined rows / columns, acting as a sing one, will exhibit different structure and

connectivity, because defects of the same type may compensate for each other and defects of different

type may cancel each other. Therefore, the structure of the crossbar can be reorganized by grouping

different number of rows / columns or selecting different combinations of rows / columns.

Thus, multiple rows / columns are used for implementing a single variable / product, so that the

structure of crossbar connectivity is changed, and the defects can be tolerated. Essentially, this is a

hardening approach that uses redundant resources to make the implementation more robust. Since

nanotechnology generally provides very high device density, such a hardening scheme is promising.

From the perspective of a logic function, the logic variable / product is duplicated with multiple copies,

each of which will be implemented using one column / row. Therefore, logic hardening provides another

layer of defect tolerance capability, which is orthogonal to the existing defect tolerance approaches.

CHAPTER 3

DEFECT-TOLERANT LOGIC IMPLEMENTATION MODELING AND

ALGORITHMIC FRAMEWORK

3.1 Problem formulation

We focus on implementing two-level logic functions in the form of SOP (sum of products) onto de-

fective crossbars. Crossbar-based architectures have configurability as well as regular structure, which

provides implementation flexibility through mapping different permutations of variables or products

onto crossbar wires. In a defect-free crossbar, a logic function can be implemented arbitrarily because

the crossbar is fully configurable. In a crossbar with every switch losing configurability and arbitrarily

stuck to open and close, the only way to implement a logic function is through permutation of inputs

and outputs. Then the logic implementation essentially becomes a Matching problem. In a partially

defective crossbar, both configurability and mapping flexibility can be exploited to tolerate defects.

Implementing a logic function onto a defective nanocrossbar entails formulating the logic function (re-

lationship between variables and product terms) and the crossbar structure (relationship between two

sets of perpendicular wires). We use a matrix model to formulate such relationship presented in the

logic function as well as a defective crossbar.

3.1.1 Defect model for nanoscale crossbar based architectures

Even though it is widely acknowledged that defect level will be exceedingly high for nanoelec-

tronic systems, precise defect models will rely on the further maturing in the technology. However,

20

21

1

010

1

0

a b c

ab

bc

cd

0

1

d

0

1

0 1

1: Inclusion

0: Exclusion

(a) Nanorossbar and its matrix model (b) Logic matrix model

Logic function : f=ab+bc+cd

X

X0X

1

X 0

X

X

1

1 X

1

010

1

0 0

1

0

1

0 1

(i) Mapping trial with 2 mismatches (ii) Mapping trial with no mismatches

X

X0X

1

X 0

X

X

1

1 X

1

100

1

0 0

1

0

1

1 0

a
A

d
D

c
C

b
B

a
A

d
D

c
C

b
B

ab

bc

cd

α

β

γ

ab

cd

bc

β

γ

α

0 X X X 0 X X Xδ δ

(c) two mapping trials

α

β

γ

Open switch defect

Closed switch defect

Configurable switch

A B C D

δ

X

X0X

1

X

X: Configurable

1: Closed

0: Open

A B C

α

β

γ

0

X

D

0

1

1 X

Broken line defect

Figure 6. (a) A nanocrossbar with defects and its crossbar matrix, (b) Logic function matrix, (c)
mapping trials

from a functional perspective, a particular set of defects are of importance for the crossbar systems:

device(switch) defects and line defects. Despite the variety of physical defects that go beyond these

cases, a two-fold basic strategy can be applied: 1) catastrophic defects, such as bridging lines, need to

be avoided by leaving out the entire wire in the mapping process; 2) non-catastrophic defects, including

defective and misplaced switches, can be exploited (thus is cost-efficient) in the mapping process.

Figure 6(a) shows an example, where a part of a broken line can still be used, while one of the

two bridging lines has to be discarded as a catastrophic defect. In general, defective switches are not

catastrophic, and can be dealt with in a cost-efficient way, such as switches being missing, losing con-

figurability or shorting the two wires. Defects can be modeled functionally and integrated into the

implementation process as constraints.

In this dissertation, we focus on the set of the non-catastrophic defects for the mapping approaches.

After eliminating the catastrophic defects, a crossbar with such usable defects can be represented by a

matrix of cells, each representing one of the 3 connection types:

22

• Configurable(X): defect free, therefore the connection between the two perpendicular wires can

be fully configured.

• Closed(1): the perpendicular wires are permanently stuck closed.

• Open(0): the perpendicular wires are permanently disconnected.

Figure 6(a) shows an example of the crossbar matrix with the corresponding cells: configurable

(X), closed (1) and open (0).

A manufactured nanocrossbar has its defects distributed among the crossbar plane, forming a cer-

tain defect pattern. Even though logic implementation is defect pattern dependent, we use two defect

formulations to capture the defect level: 1) defect probability, and 2) defect percentage.

Defect probability assumes that every device in the crossbar has an independent probability of being

defective. The advantage of using defect probability lies in its simplicity in modeling, because all

the switch devices in crossbars are treated equally. Alternatively, defect percentage is defined as the

number of defects divided by the total number of switches to capture the overall defect level of a given

crossbar. Defect percentage formulation characterizes defect level more accurately since it takes into

consideration the exact umber of defects in crossbars. In this dissertation, defect rate is also used

interchangeably with defect probability to describe the defect level, when we do not need to differentiate

between defect probability and defect percentage in certain studies.

3.1.2 Logic function model

Any two-level logic function in the form of SOP (sum of products) can be modeled by a matrix

based on the relationship between the variable set and product set. Connectivity falls into two types:

23

• Inclusion: a variable presenting in a product term, such as a ∈ ab.

• Exclusion: a variable not in a product term, such as c /∈ ab.

Figure 6(b) shows its logic matrix for f = ab + bc + cd, where “1” indicates inclusion connectivity

and “0” represents exclusion connectivity.

3.1.3 Logic implementation formulation

The problem of implementing a logic function onto a defective nanocrossbar translates into a matrix

mapping problem: correspond the rows / columns of a logic matrix with that of a crossbar matrix, under

the constraints imposed by the defects:

• Configurable(X) cells in a crossbar matrix are compatible with both inclusion(1) and exclusion(0)

cells in a logic matrix.

• Inclusion(1)/exclusion(0) cells cannot be mapped onto open(0)/closed(1) cells. We denote these

two cases as 1 → 0 and 0 → 1 mismatches.

• Closed(1)/open(0) cells, though defective, can be used to implement inclusion(1)/exclusion(0)

cells in a logic matrix, representing the defect using case.

A valid mapping is one that contains no mismatches. Figure 6(c) shows an example of two matrix

mapping trials. The first mapping fails with 2 mismatches, while the second one leads to a successful

implementation with no mismatches at all. The objective of logic implementation is to search for a valid

mapping (a solution) in the solution space. For a given logic function and a specific crossbar, all the

mapping trial possibilities compose the entire solution space.

24

3.1.3.1 Solution space volume

When exploiting mapping flexibility, there are many different ways to map a logic matrix into a

crossbar matrix since variables or products can be implemented by different wires. The volume of the

solution space is huge, since (i) when the a crossbar matrix is large, the logic matrix can be mapped onto

a subset of the crossbar matrix, and the number of such subsets are large, (2) rows / columns in a logic

matrix can be mapped onto the same subset of the crossbar matrix with different permutations. Without

loss of generality, mapping process can be viewed as permuting each set of rows / columns and then

directly mapping the permuted logic matrix onto (a subset of) a crossbar matrix. When a logic matrix

is of size n ×m and a crossbar is of size N ×M , the volume of the solution space, i.e. the number of

possible mappings, is N !
(N−n)!

M !
(M−m)! . The volume of the solution space therefore grows exponentially

to the number of rows / columns in both matrices.

To find one possible solution, the entire solution space might need to be explored. Due to the

volume of the solution space, the searching process inevitably takes a long time when there are very

few solutions. Heuristics to prune solution-less subspace were proposed in (43) to reduce runtime.

However, a matrix mapping problem is NP-complete. There are no efficient algorithms to direct the

searching process. Thus, finding a solution for a given logic and a specific defective crossbar is doomed

with the challenge of prohibitive runtime and results in low yield.

3.1.3.2 Correlations in solution space

Different mapping trials imply different ways of implementing a logic function onto a crossbar. In

fact, in a defect-free crossbar, all the implementations are valid. The presence of massive defects im-

poses severe constraints and results in the invalidation of most implementations. Essentially, correlation

25

1

010

1

0

d c b

cd

bc

ab

0

1

a

0

1

0 1

1

010

1

0

a b c

ab

bc

cd

0

1

d

0

1

0 1

1

001

1

0

b a c

ab

bc

cd

0

1

d

0

1

0 1

a
b
ab

d
c
cd

ba

Shuffled logic matrix 1 Shuffled logic matrix 2Original logic matrix

Sharing the same structure pattern Correlated part between two matrices

Figure 7. Structure pattern of different shuffled logic matrices for the same logic function

exists among mappings since we have to shuffle rows or columns, not individual cells. For instance,

repetitive mapping trials occur when different rows / columns shuffles in the logic matrix have identical

structure patterns. Figure 7 shows an example that shuffled logic matrix 1 and the original logic matrix

have the same structure pattern which will lead to repetitive mapping trials. More generally, correlated

mapping trials exist widely: rows and columns in an logic matrix are mapped onto the same rows and

columns in a crossbar matrix. For example, shuffled logic matrix 2 and the original logic matrix in Fig-

ure 7 are correlated since columns c and d remain the same. Among correlated mapping trials, failure

of one mapping trial likely denotes the failure of the other ones likewise.

Ideally, to search for a solution, only one instance among repetitive mapping trials needs to be

explored. Furthermore, an invalid mapping trial likely indicates the failure of other correlated mappings.

Correlation exists widely in the entire solution space. Highly correlated mappings are biased to being

all valid or invalid. Within a practical runtime to explore only a limited number of mapping trials in the

huge solution space, one would certainly wish to jump out of a set of highly correlated yet invalid ones.

In other words, correlation influences the searching process in a significant yet complex way.

26

3.2 Backtracking-based algorithmic framework

The defect-tolerant logic implementation problem is essentially a constraint satisfiability problem,

where the goal is to find a perfect mapping without any mismatches. Backtracking algorithms are

typically used in such cases, and the efficiency depends on the use of good heuristics.

We provide the backtracking algorithm framework in Algorithm 1, which will serve as the main

backbone for the new proposed mapping, morphing and hardening approaches in the following chapters.

Essentially, the backtracking algorithm explores all the possible mappings (correspondence of rows /

columns between the logic and crossbar matrices) recursively. Whenever one row (or column) x from

a crossbar matrix is mapped to the row (or column) l from a logic matrix, the validity is checked (by

Mismatch Check) to see whether any mismatches are introduced. When a perfect mapping is found,

the backtracking mapping algorithm returns success. When no such mapping exists, the algorithm

eventually returns failure.

In general, three types of heuristics can be used, as are noted in the backtracking framework.

• Type 1 heuristics concern the order of processing rows and columns in the matrices. We found

that it typically works the best to map rows and columns in an interleaving way. Such an approach

makes it easier to screen out impossible mappings at an early stage.

• Type 2 heuristics concern the priority in the row(or column) selection in the crossbar matrix. One

way that contributes greatly to reducing search time is to “delay the use of configurable cells

(X’s)”. Basically, when selecting which row (or column) to use in the crossbar matrix, the highest

priority should be given to the ones that contain the most defects, yet are still mappable. This way

essentially preserves the configurable cells to gain more flexibilities at the later stage.

27

Algorithm 1 Backtracking Framework for Mapping
Global variables: Logic Matrix, Xbar Matrix
BT Mapping(mapped set)

1. if all rows and columns of Logic Matrix are in mapped set

return success

2. pick a row (or column), l, from Logic Matrix, such that l is not in mapped set yet
//type 1 heuristics applicable here

3. For every unmapped row (or column), x, of Xbar Matrix
//type 2 and 3 heuristics applicable here

if Mismatch Check(l → x, mapped set) == ∅
//map l to x, when current constraints are satisfied

(a) add l → x to mapped set
(b) if BT Mapping(mapped set) == success

//recursive call for the rest of the mapping
return success

else remove l → x from mapped set
//l → x does not yield any solution, try a different x in Xbar Matrix

4. return failure
//failed to map l to any possible x, backtrack

Mismatch Check(new mapping, mapped set)
//This subroutine checks whether adding new mapping to mapping set introduces mismatches, and re-
turns mismatches.

28

• Type 3 heuristics concern various pruning techniques (43), which are used to screen out invalid

mappings at the early stages to help reducing search time.

3.3 Discussions

The crossbar defect modeling has become an open issue in the recent published papers. In the man-

ufacturing process, the defects can happen to any part of a crossbar plane, including nanowires and

configurable devices sitting between two perpendicular sets of nanowires. For nanowire defects, there

are two types: 1) broken line defects, and 2) bridging line defects. When it comes to configurable de-

vice defects, it may fall into one of those categories: stuck-at-open, stuck-at-closed, missing devices,

misplaced device and etc. Researchers treat the defects in nanocrossbar differently. Some researchers

assume that the stuck-at-open defects are way more frequent than stuck-at-closed defects (46). In a simi-

lar way, some other researchers presume that line defects are less likely than configurable device defects

(45)(40)(50)(55)(44). Based on their proposed defect modeling, they propose various methodologies to

deal with different categories of defects.

In fact, precise defect modeling will rely on the further maturing in the manufacturing technology.

In this dissertation, we consider all types of defects, including line defects and various device defects.

Yet, for those catastrophic defects, they can not be used at all for the implementation. For the research

purposes, we model them from a perspective of its impact on the functionality of logic, and parameterize

the relationship among various defect types by, for instance, the defect ratio between closed-to-open

defects in the following chapters. In such a way, the methodologies in the dissertation can be used to

analyze or predict the results for the emerging nanotechnologies in general.

29

We focus on two-level logic functions in the research for two reasons. First, it lies in its simplicity.

Crossbar architectures are inherently suitable for the implementation of two-level logic functions. A

two-level logic function is itself complete, since multi-level logic function can be converted into a two-

level form. Second, in the case that crossbars are used to implement multi-level logic, the analysis on

two-level logic implementation provides a fundamental basis that can be extended to nanocrossbar-based

system designs without loss of generality.

CHAPTER 4

PROBABILISTIC ANALYSIS ON YIELD AND RUNTIME

The logic matrix to crossbar matrix mapping problem by its nature is equivalent to a subgraph

isomorphism problem, which is known as a NP-complete problem. The difference between them lies in

that the validity of such a mapping problem is determined by the mapping rule, as a configurable cell

(representing a defect-free switch) is a “wildcard” to map both types of cells in a logic matrix. Since the

complexity of validity checking stays the same, the logic matrix to crossbar matrix mapping problem,

as an variation of the subgraph isomorphism problem, has the same computational complexity. For such

a NP-complete problem, probabilistic information, such as yield and runtime, is of crucial importance,

since it reveals the likelihood and the expected computational cost of finding a solution. Undoubtedly,

runtime for the logic mapping problem depends on the specific algorithms. Therefore, in order to

analyze runtime, an algorithm which can generally identify the computational cost should be adopted.

As discussed before, the defect-tolerant logic implementation is NP-complete, and there exist no

efficient algorithms. On the other hand, this problem has two characteristics: (i) with an extremely

large solution space, it is impossible to explore the entire solution space. In reality, only a very small

portion of the solution space can be explored; (ii) mappings in the solution space are highly correlated.

Within a practically acceptable runtime to explore only a limited number of mapping trials in the huge

solution space, one would certainly wish to jump out of a set of highly correlated yet invalid ones and

reach a solution quickly. Based on the above intrinsic difficulty of the problem, we adopt randomized

algorithms to explore the solution space, according to which every part of the whole solution space has

30

31

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

500

1000

1500

2000

2500

3000

defect probability

ru
nt

im
e

(m
ill

is
en

co
nd

s)

Runtim for mapping Benchmark rd53 of size 32x32

crossbar size 32x10
crossbar size 40x15

Figure 8. Explosion in runtime

equal opportunity to be sampled, and mappings chosen randomly tend to be less correlated. For these

reasons, a randomized algorithm enables us to identify the computational cost in general, and can be

used as a reference point for any future heuristic algorithms.

In the following sections, we first analyze the yield when defect-tolerant schemes are adopted. In

addition, we examine yield from a practical perspective when runtime is limited. Finally, we investigate

the runtime involved in finding a solution.

4.1 Observations from yield curves

Conceptually, yield is the percentage of “good chips”, i.e. the percentage of crossbars which can be

utilized to implement a given logic. With post manufacturing defect-tolerant reconfiguration, a “good

crossbar” is one with valid mappings to implement the given logic function. This apparently has a great

influence on yield, because theoretically speaking, as long as there is one mapping trial that is valid, the

32

crossbar should be considered as a “good” one. Unfortunately, such an ideal yield is both hard to model

and in reality meaningless to apply, particularly when the level of defects is high, and finding a valid

mapping might take prohibitively long time. Figure 8 shows that runtime cost grows dramatically when

defect level increases beyond a certain value.

4.1.1 Phase transition in yield curves

It has been demonstrated that the yield curves of crossbar-based systems have a threshold behavior

(44; 47). Yields curves based on both defect probability and defect percentage are shown Figure 9(a),

with same-sized logic function and crossbars. A phase transition phenomenon can be observed in both

defect probability based and defect percentage based curves. Essentially, the logic mapping problem

falls into the category of Constraint Satisfaction Problems (CSP) (55), which have been widely ac-

knowledged of the phase transition phenomenon in computational complexity (72). In this case, there

apparently exists a threshold in defect probability/percentage, over which it becomes extremely hard to

find a valid mapping.

4.1.2 Substantial yield improvements over hardware redundancy

Yield in crossbar-based systems essentially depends on the existence of valid mappings. Therefore,

yield can be improved by increasing crossbar size, such that more wires are available for mapping, and

the chance for existing a valid mapping is increased. Figure 9(b) shows how yield can be improved with

the increase of hardware redundancy, where the logic function benchmarks (73) are mapped onto larger

crossbars with the same defect probability of 15%. Sizes of enlarged crossbars are expressed as size

ratio (crossbar size to logic function size).

33

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) defect probability/percentage

Id
ea

l y
ie

ld
logic function size 10x10 mapping onto crossbars of size 10x10

yield on defect probability
yield on defect percentage

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) ratio of crossbar size to logic function size

Id
ea

l y
ie

ld

Yield for crossbars with 15% probability

con1 of size 9x14
rd53 of size 32x10
Misex of size 32x16

Figure 9. Phase transition in “ideal yield” assuming unlimited runtime of mapping algorithms

In fact, yield can be improved dramatically by keeping increasing crossbar size for all three cases,

and a phase transition phenomenon can be observed int the curves as well. This indicates there is a

certain “sweet spot” in adding hardware to boost yield significantly.

4.1.3 Problems with the “ideal” yield model for nanocrossbars

So far, the concept of yield takes into consideration the defect-tolerant approach of logic mapping,

but is ignorant of mapping runtime. In fact, the logic mapping process is of NP-complete complexity,

and each crossbar needs to be treated according to its unique defect pattern, therefore the lengthy logic

mapping process has to be exercised on every single crossbar. As a result, the concept of yield will be

of very little practical value in nanocrossbar-based systems, unless the cost of mapping runtime is also

considered in the yield model. A crossbar with some rare valid mappings which in reality take forever

to find, does not contribute to the “yield” part in any practical sense, and thus should not be counted in

a mapping-aware yield model.

34

4.2 Mapping-aware yield

Mapping-aware yield model is a more coherent model for the nanocrossbar-based systems, where

the cost of the logic mapping process is taken into consideration. Such a new yield model needs to

satisfy two criteria: 1) efficiency: its calculation should be easy to carry out, preferably with some

closed forms; and 2) precision: it needs to model the complexity and runtime cost with high fidelity.

We propose such a new mapping-aware yield model - named RunTime-Constrained yield (denoted as

RTC yield thereafter). Basically, the idea of RTC yield is still the percentage of “good” crossbars, yet

a crossbar is counted as “good” only when a valid mapping can be found within some pre-set bound of

runtime limit (i.e. a given number of mapping trials).

Assume all the possible mapping trials between a logic function and a crossbar constitute an entire

mapping space. Then a “naive” yield model without mapping consideration essentially checks for the

existence of any valid mappings in the entire mapping space, to count a crossbar as “good”. RTC

yield, instead of checking for the existence of valid mapping in the mapping space, is concerned with

the “density” of valid solutions in the mapping space, and only needs to check a certain number of

mappings. In other words, RTC yield is not concerned with the existence of a valid mapping in the

entire mapping space, but rather, the percentage of mappings that are valid.

4.2.1 Modeling: solution density

We define solution density as the percentage of valid mappings in the mapping space. Typically,

finding a valid mapping depends on both solution density and the runtime limit. However, for a given

crossbar, its solution density is determined by its particular defect pattern and the target logic function,

and is hard to compute. For a large number of crossbars (either with same defect probability or defect

35

percentage), the solution density of the batch is a distribution depending on defect probability/percent-

age and target logic function, and becomes possible to model. To study the characteristics of such a

solution density distribution, we examine its expectation E(sd) and variance and variation V (sd), and

how they jointly affect RTC yield.

4.2.1.1 E(sd) based on defect probability d0 + d1: E(sd)d0+d1

Assume each switch has probability d0 of being defectively open and d1 of being defectively closed.

A valid mapping has no 1 → 0 or 0 → 1 mismatches. This means that any inclusion (1) cell of the logic

function must not be mapped to an open defective switch. The probability of any single inclusion cell

from logic matrix being mapped without mismatches is thus 1 − d0, and any simple exclusion (0) cell

from logic matrix being mapped without mismatches is 1−d1. For a logic function with logic inclusion

ratio l1 (defined as the percentage of inclusion cells in the logic matrix), and size n × m (n variables

and m products), each mapping trial then has a probability of Pv to be a valid solution:

Pv = (1− d0))nml1(1− d1)nm(1−l1) (4.1)

where nml1 is the number of “1” cells and nm(1− l1) is the number of “0” cells in the logic matrix.

Under the defect probability model, since each mapping has the same probability Pv of being valid,

the expectation of solution density E(sd)d0+d1 equals Pv, i.e.

E(sd)d0+d1 = Pv (4.2)

36

1

110

1

0 1

1

0

0

0 0

1

XXX

1

X 0

X

X

0

X 1

Crossbar matrix Logic matrix

One possible valid mapping

v1 v2 v3 v4c1 c2 c3 c4

p1

p2

p3

r1

r2

r3

c1 -v1 c2 -v2 c3 -v4 c4 -v3

r1 - p1 r2 - p3 r3 - p2

Figure 10. Cell mappings leading to no mismatches between logic and crossbar matrix

These two equations formulate the expected solution density among a large number of crossbars with

the same device defect probability. Based on this model, the following observations can be made:

• E(sd)d0+d1 drops sharply when defect probability increases.

• As logic function size increases, E(sd)d0+d1 decreases exponentially.

• E(sd)d0+d1 depends on defect probability and logic function, and is independent of crossbar size.

4.2.1.2 E(sd) based on defect percentage p0 + p1: E(sd)p0+p1

We introduce the defect percentage p0 for open defects, and p1 for closed defects. Different from

E(sd)d0+d1 , E(sd)p0+p1 varies according to crossbar size. We first consider the case with crossbars

having equal size to the logic function. With crossbar size being nm, there are nmp1 closed defects and

nmp0 open defects in a crossbar. Since the crossbar and the logic function have the same size, every

cell in the crossbar matrix has to be mapped, and a valid mapping implies that every “1”(“0”) cell in the

crossbar matrix has to be mapped without mismatches in the logic matrix. This means, for all the “1”

37

cells in a logic matrix, the same number of cells need to be chosen from a crossbar matrix, which can

only come from two groups: “1” and “X”. Eventually, all the “1” cells in the crossbar matrix have to

be chosen to map the inclusion cells in logic matrix, because otherwise some would have to be mapped

onto “0” cells in logic matrix. In the same manner, all the “0” cells in the crossbar matrix will have to

go with “0” cells in a logic matrix for the mapping to be valid.

For the given logic matrix and crossbar matrix shown in Figure 10, there are altogether
(
12
6

)
ways

to select from the 12 cells in the crossbar matrix to map to all the inclusion cells in the logic matrix,

and thus the entire mapping space has
(
12
6

)
possibilities. Among these possibilities, a valid mapping

cannot have any 1 → 0 (or 0 → 1) mismatches, therefore all the “1” cells in the crossbar matrix have to

be mapped to the inclusion cells (“1”) in the logic function matrix. The rest of the freedom ultimately

depends on the number of choices to use “X” cells in the crossbar matrix for the remaining “1” cells

in the logic function matrix. There exists only
(
7
3

)
ways to choose among the 7 “X” cells in the logic

matrix for the rest of three “1” cells in the logic matrix to be mapped. After that, the rest of “X” cells

are deemed to be used for the “0” cells in the logic function matrix, and it is also implied that all “0”

cells in the crossbar matrix are mapped to “0” cells in the logic matrix. This results in a solution density

of
(
7
3

)
/
(
12
6

)
= 0.038.

Figure 26 illustrates the mapping between logic matrix cells and crossbar matrix cells in general.

Since there are altogether
(

nm
nml1

)
ways to select nml1 cells from a crossbar matrix to map all the “1” cells

in a logic matrix, the entire mapping space is of the size
(

nm
nml1

)
. The number of valid mappings, however,

ultimately depends on the number of choices to get the rest of “1” cells from the “X” group. There exist

only
(
nmp1

nmp1

)(nm−nm(p0+p1)
nml1−nmp1

)
possible ways, where

(nm−nm(p0+p1)
nml1−nmp1

)
means to choose nml1−nmp1 “X”

38

1 1 1 …..

0 0 0 …..

0 0 0 …..X …..

1 1 1 …..
cells in logic

matrix

cells in

crossbar matrix

nml1

nm

XX …..

nmp1 nml1-nmp1

nm-nm(p0+p1)

Figure 11. Logic mapping onto crossbars based on defect percentage

cells from nm−nm(p0 +p1) cells to map the rest of “1” cells in a logic matrix. Therefore, the solution

density expectation based on defect percentage can be formulated as:

E(sd)p0+p1 =

(
nmp1

nmp1

)(nm−nm(p0+p1)
nml1−nmp1

)(
nm

nml1

) =

(nm(1−p0−p1)
nml1−nmp1

)(
nm

nml1

) (4.3)

Figure 12 shows a comparison between E(sd)d0+d1 and E(sd)p0+p1 with benchmark xor5 of size

16 × 10 and defect probability / percentage [0 ∼ 0.1]. In general, E(sd)p0+p1 is always lower than

E(sd)d0+d1 , for the reason that will be explained in the following part of the paper.

When a crossbar that is larger than the logic function being considered, different parts of a crossbar

may have various local defect percentage. If the crossbar size becomes large enough, defect percentage

based model becomes similar to that based on defect probability. Therefore, as long as crossbar size

is larger than the logic function size, the actual expectation of solution density of the crossbar sits

between E(sd)p0+p1 and E(sd)d0+d1 . The fact that E(sd)p0+p1 < E(sd)d0+d1 essentially explains

why increasing crossbar size can always improve solution density expectation.

39

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Defect probability/percentage)

S
ol

ut
io

n
de

ns
ity

 e
xp

ec
ta

tio
n

Solution density expectation for benchmark xor5 of size 16x10

based on defect probability d
0
+d

1

based on defect percentage p
0
+p

1

0.06 0.07 0.08 0.09 0.1
0

0.002

0.004

0.006

0.008

0.01

Figure 12. E(sd)p0+p1 is lower than E(sd)d0+d1 .

4.2.1.3 Variations in solution density V (sd)

RTC yield not only depends on solution density expectation, but also on the variation V (sd). Fig-

ure 13 shows the solution density distribution of crossbars based on defect probability, defect percent-

age, and crossbar size as well. A few interesting observations can be made from Figure 13. First, the

distribution of solution densities based on defect percentage is more concentrated, as is shown in Fig-

ure 13(c) and (d), while the distribution based on defect probability is more widely scattered, as shown

in Figure 13(a) and (b). Apparently, crossbars of the same defect probability may end up containing

different numbers of defects, thus the variation of solution density among this group is larger. Second,

when crossbar size increases ((a)→(b), (c)→(d)), V (sd) decreases. The reason for this is twofold: i) as

the size of a crossbar increases, the defect number variation across crossbars decreases; ii) since a logic

function can be mapped to different parts of a larger crossbar (with various defect patterns), then an

40

0 0.005 0.01 0.015 0.02
0

2%

4%

6%

8%

(a)
0 0.005 0.01 0.015 0.02

0

2%

4%

6%

8%

(b)

0 0.005 0.01 0.015 0.02
0

5%

10%

(c)
0 0.005 0.01 0.015 0.02

0

5%

10%

(d)

defect probability 6%,
crossbar size16x10

defect percentage: 6%,
crossbar size
160x100

defect percentage: 6%,
crossbar size16x10

defect probability 6%,
crossbar size160x100

Figure 13. Solution density variation decreases when based on from defect probability to defect
percentage ((a)→(c), (b)→(d)), and decreases as crossbar size increases ((a)→(b), (c)→(d))

enlarged crossbars, containing more varieties of local defect patterns, can mitigate the impact imposed

by a specific defect pattern constraints more consistently.

4.2.2 Modeling: Runtime Constraint (RTC) yield

RTC yield is defined as the percentage of crossbars, with a valid mapping found within a limited

number of trials. Using the concept of RTC yield, only a limited number of mappings in the entire map-

ping space need to be explored, therefore avoiding the difficulty faced by the traditional yield concept

discussed in Section 3.

41

4.2.2.1 The impact of runtime limit on RTC yield

Figure 14 shows how the limit of mapping trials impacts RTC yield. It is clear that RTC yield

is improved as the number of trials increases. With a fixed solution density expectation, RTC can be

improved through investing more search runtime. Also, for any given number of mapping trials, RTC

yield decreases as defect probability increases. This implies that as defect probability increases, the

solution density decreases to the point where a valid mapping cannot be found within the given number

of mapping trials.

It is also noticeable that the curves based on defect percentage model are steeper than that of defect

probability model. The reason is that crossbars sharing the same number of defects have less variations

in solution densities than crossbars with the same overall defect probability. In other words, the crossbars

with the same number of defects tend to have similar mapping profile: either a valid mapping can be

found or no valid mappings at all can be found within a given runtime. This indicates defect percentage

based profile is a good index in predicting the yield of crossbars. Conceptually, RTC yield curves based

on defect percentage switch from high to low dramatically as more defects are added into the crossbars.

Finally, there is always an overlap between RTC yield curves based on defect probability and curves

based on defect percentage. For a large number of crossbars having defect probability, the average

defect percentage is equal to defect probability, i.e. E(p0) = d0 and E(p1) = d1. So, the RTC yield

curve based on defect probability d0 + d1 always overlaps RTC yield curve based on defect percentage

p0 + p1.

42

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Defect probability/percentage

R
T

C
 Y

ie
d

Benchmark xor5 of size 16x10

102 mappings, defect probability

103 mappings, defect probability

104 mappings, defect probability

102 mappings, defect percentage

103 mappings, defect percentage

104 mappings, defect percentage

Figure 14. Runtime-constrained yield increases with the number of explored mappings

4.2.2.2 Establishing RTC yield upper / lower bound from the insight of crossbar size impact

Increasing hardware redundancy can significantly improve the conventional yield, since the mapping

space grows exponentially and the entire mapping space is explored. For RTC yield, a fixed number of

mapping trials are always explored regardless of the enlarged mapping space. Intuitively, more hardware

redundancy does not necessarily improve RTC yield. Such a hypothesis is first examined and then

followed by theoretical reasoning and analysis.

4.2.2.2.1 Exact upperbound for defect probability / percentage based models

Figure 15 shows RTC yields improving as crossbar size increases, despite the fact that the same

number of mappings are explored. Moreover, as crossbar size increases, the difference between RTC

yields based on defect probability and defect percentage gradually decreases. Apparently, RTC yields

43

do not increase unlimitedly with increasing crossbar size, and instead approach a certain “saturation”

point even when crossbar size is boosted up to as large as 100 times.

With a fixed number of mapping trials, RTC yield essentially depends on the solution densities of

each single mapping space. As shown in previous sections, the actual solution density expectation sits

between E(sd)p0+p1 and E(sd)d0+d1 , and variations do exist. The most improvement for RTC yield

is achieved when solution density expectation is maximized to E(sd)d0+d1 and V (sd) reduced to zero.

In such a case, all the mapping spaces are essentially as the same, with RTC yield equivalent to the

probability of finding a valid mapping (with the given number of mapping trials). As a result, this gives

an upperbound to RTC yield, which can be expressed as

RTC Yupperbound = 1− (1− E(sd)d0+d1)
t (4.4)

where t is the number of mapping trials to be explored.

As is shown in Eq.Equation 4.1, E(sd)d0+d1 is independent of crossbar size. Therefore, in the

probabilistic model, RTC yield improves as larger crossbar size reduces the V (sd) among mapping

spaces, as is shown in Figure 13. With E(sd) remaining the same and V (sd) diminishing, RTC yield

improves. When it comes to the curve based on defect percentage, E(sd)p0+p1 increases up to the

level of E(sd)d0+d1 with crossbar size increasing, therefore it is improved mainly because E(sd)p0+p1

increases. In addition, V (sd) also decreases as crossbar size increases. So, the increase of RTC yield

based on defect percentage results from the combination of: 1) solution density expectation increasing,

and 2) variation decreasing.

44

0.05 0.1 0.15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Defect probability d
0
+d

1

R
un

tim
e−

co
ns

tr
ai

ne
d

Y
ie

ld

0.05 0.1 0.15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Defect percentage p
0
+p

1

Benchmark xor5 of size 16x10 with exploring 104 mappings

size ratio 1
size ratio 4
size ratio 100
upperbound
near−lowerbound

size ratio 1
size ratio 4
size ratio 100
upperbound
near−lowerbound

Figure 15. Runtime-constrained yield increases with crossbar size, expressed as size ratio

Lastly, this upperbound in Eq.Equation 4.4 holds for both RTC yield based on defect probability

and defect percentage. The theoretical upperbound of RTC yield conforms with the saturation curve

observed in Figure 15(a) and (b). With such a theoretical upperbound, RTC yield can be quantitatively

estimated with a close mathematical form (Eq.Equation 4.4).

4.2.2.2.2 Exact lowerbound for defect probability based model and approximate lowerbound for

defect percentage based model

While the RTC yield Upperbound shows the maximum benefits of yield improvement achievable

through increasing crossbar hardware cost, we are also interested in the minimum yield achievement

when no hardware redundancy is invested.

As is shown before, E(sd)d0+d1 is always larger than E(sd)p0+p1 , regardless of crossbar size. In

addition, solution density expectation based on defect percentage E(sd)p0+p1 increases with crossbar

45

size, and ultimately reaches E(sd)d0+d1 . As a result, solution density expectation based on defect

percentage E(sd)p0+p1 with a minimum sized crossbar (equal to logic function size) can serve as the

lowerbound for solution density expectation. Since V (sd) based on defect percentage is negligible

(as is shown in Figure 13), RTC yield based on defect percentage with minimum crossbar size can be

approximated by:

RTC Yp0+p1 = 1− (1− E(sd)p0+p1)
t (4.5)

.

With the fixed number of mapping trials, RTC yield based on defect probability overlaps RTC yield

based on defect percentage (as is shown in Figure 15). As a result, Eq.Equation 4.5 servers as an

approximate-lowerbound for RTC yields, based on both defect probability and defect percentage. As is

shown in Figure 15, the lowerbound in Eq.Equation 4.5 nicely captures the minimum RTC yield when

defect level formulation is based on defect percentage, and also intersects with the minimum RTC yield

curve when defect level formulation is based on defect probability.

4.3 Probabilistic analysis on runtime

Essentially, the challenge of logic mapping comes from two sources: (i) the massive defects make

the searching process impractically long, if there ever exists one solution, (ii) the defect pattern is dis-

tinctive for every nano fabric; thus such a mapping process has to be performed on a per-chip basis.

Consequently, one cannot afford to run any mapping algorithm that is time consuming. With the search-

ing problem shown to be NP-complete in nature (43)(44), it is important to know how likely it is to find

a solution, captured by the yield analysis. Yield identifies the probability of finding a solution given the

crossbar size and defect probability.

46

Nonetheless, the searching process could take extremely long runtime to find a solution even if yield

is high. Analysis on runtime is necessitated, since it is crucially important to estimate how long it takes

approximately to find one solution. Generally, achieving lower defect probability for a nanoelectronic

system requires more fine-controlled and costly manufacturing. On the other hand, increasing the allow-

able defect probability will lead to more constraints on the mapping process and longer runtime. Having

the knowledge of runtime before engaging in searching process and the impacting factors on runtime

are highly important to nanoelectronic system designs.

As the solution space grows exponentially with increased crossbar size to improve yield, consequen-

tially, runtime could boost up to an unacceptable level in reality. Thus, there is a limitation in trading

off crossbar size to improve yield. In general, high solution density leads to reduced runtime regardless

of the algorithms used in the searching process. Overall, runtime analysis based on solution density

indicates how hard it is to find a solution.

A probabilistic approach, based on defective crossbars of a given defect probability and size, is

adopted to evaluate solution density. Each switch is modeled as a random variable taking three possible

states: configurable, open and close. Solution density sd for a defective crossbar becomes a random

variable depending on the defect probability and size of crossbars. Solution density expectation and

standard deviation are used and examined in detail to analyze the tradeoffs among runtime, hardware

redundancy and defect probability.

4.3.1 Solution density expectation E(sd)

The solution space volume depends on (i) logic function size (determined by the number of variables

and product terms) and (ii) crossbar size. When both are given, the solution space volume is fixed.

47

Defects in the crossbar pose constraints in the mapping process and result in a drastic decrease in the

number of valid mappings in the solution space. Naturally, more defects in a crossbar lead to lower

solution density. When a larger crossbar is used, there could be more solutions existing in the enlarged

solution space as a result of a higher level of redundant resources being used. With solution space as

well as the number of solutions increased resulting from large crossbar size, we examine the joint effect

on the solution density expectation E(sd).

When the solution space grows due to the increase of logic function size, it is easy to see that the

number of solutions does not increase but decreases. First, there are no more redundant resources to

be exploited. Furthermore, more rows / columns need to be considered at a time and thus more defects

takes effect, making each mapping prone to be invalid. Therefore, when the logic function size gets

larger, we expect E(sd) to drop despite of the increased solution space.

As analyzed in the previous section, the solution density expectation can be expressed in Equa-

tion 4.1 by assuming that each device has a certain defect probability. We can draw the following

observations:

1. E(sd) is a polynomial function of defect probability. E(sd) drops sharply with defect probability

increasing when logic function size becomes large.

2. As logic function increases in size, E(sd) decreases exponentially.

3. For a given defect probability and the desired logic function, E(sd) is always the same regardless

of crossbar size. This implies that the solution space volume and the number of solutions grow at

the same speed.

48

4.3.2 Solution density standard deviation V (sd)

Besides E(sd), which identifies the expectation of solution density, the standard deviation V (sd)

reveals the variability. In this particular problem, when V (sd) is high, it indicates a dropping of accuracy

when using E(sd) for runtime prediction. As E(sd) can be easily calculated by Equation 4.1, we focus

on V (sd) analysis so as to complete the discussion on runtime analysis. This entails investigation of

how defect probability, logic function size and crossbar size determine V (sd).

First, V (sd) varies with defect probabilitys. When defect probability is low, all mapping trials

tend to be valid regardless of the defect patterns, because the constraints imposed by the defects are

very few. Consequently, the solution density of any mapping trials becomes stably high. On the other

hand, when the defect probility is high, whether a mapping trial is valid depends highly on the defect

pattern. Therefore, over all kinds of defect patterns under a certain (high) defect probability, V (sd) is

considerably large from the expected value E(sd).

Besides defect probility, the aforementioned correlation in the solution space adds another layer of

complexity and influences V (sd) in an interesting way. Particularly, when a solution space is highly

correlated, all mapping trials tend to be either valid or invalid, making high variation in solution density.

Mathematically, V (sd) can be obtained as

σsd =

√∑N
i=1(sdi − µsd)2

N
(4.6)

where sdi is the solution density of an individual mapping and E(sd) can be calculated. However, enu-

merating each sdi for a specific crossbar is impractical due to an huge number of different mappings in

49

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Defect probability

S
ol

ut
io

n
D

en
si

ty
 S

ta
nd

ar
d

D
ev

ia
tio

n

Benchmark xor5 of size 16x10

0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

0.3

size ratio 1

size ratio 4

size ratio 16

size ratio 100

Figure 16. V (sd) for crossbars of different sizes, expressed as size ratio of crossbar to benchmark.

the solution space. Consequently, V (sd) is examined through simulations. A large number of defective

crossbars generated under the same probabilistic model are used to obtain a sample space of solution

densities. Logic synthesis benchmarks from the LGSynth93 benchmark set (73) are chosen to experi-

ment with. To acquire solution density for each crossbar, 104 mappings are sampled randomly in the

solution space. Extensive discussion on various factors impacting V (sd) is provided in the following

subsections, and we will show how crossbar size influences V (sd) through correlation.

4.3.2.1 V (sd) varies with defect probability

When the defect probability is low, V (sd) is low. This is because solution densities are only slightly

impacted when only a few defects exist. As is shown in Figure 16, V (sd) increases as defect probability

increases and reaches its peak roughly at defect rate 0.7%, beyond which V (sd) begins to decrease. With

increased defect probability, the impact of defect patterns on solution densities becomes significant.

However, if crossbars contain a very high level of defects such that all the mappings tend to be invalid,

50

V (sd) decreases since all solution densities are universally low. In Figure 16, V (sd) becomes most

significant at defect probability between [0.2%, 2%], whose corresponding E(sd) is within the range

[0.2, 0.8] according to Equation 4.1. Therefore, V (sd) is maximized when the number of valid mappings

is comparable to that of invalid mappings.

4.3.2.2 V (sd) varies with logic function size

We examine how V (sd) scales with logic function size. It turns out that at the same defect proba-

bility, different sized benchmarks have different V (sd). The underlying reason is that under the same

defect probability, various logic function size leads to different E(sd). Since E(sd) also depends on

defect probability, we examine the combined impact of logic function size and defect probability on

V (sd). Figure 17 shows how V (sd) varies as E(sd) increases. As E(sd) increases, V (sd) increases

and culminates at the point where E(sd) is 0.5. When E(sd) exceeds 0.5, V (sd) begins to decrease.

Though it seems that both logic function and defect probability influence V (sd) individually, it turns

out that V (sd) is uniquely dependent on E(sd). At the same E(sd), V (sd) is the same regardless of

the difference on in logic function size.

4.3.2.3 V (sd) decreases with crossbar size increasing

Figure 16 shows V (sd) simulation results, where crossbar size is expressed in size ratio. Large

crossbars lead to low V (sd) uniformly at all defect probability, and V (sd) reduction speed becomes

slower as crossbar size further increases. For instance, V (sd) decreases significantly when size ratio

varies from 1 to 4, while the reduction is very limited for size ratio growing from 16 to 100. As crossbar

size increases to infinity, V (sd) approaches 0.

51

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

Solution Density Expectation

S
ol

ut
io

n
D

en
si

ty
 S

ta
nd

ar
d

D
ev

ia
tio

n

xor5 with size ratio 1
xor5 with size ratio 4
rd53 with size ratio 1
rd53 with size ratio 4

Figure 17. V (sd) of two benchmarks mapped onto crossbars of different sizes.

The reason is large crossbars have less correlation in the solution space. When a logic function is

mapped onto a small sized crossbar, the correlation in the solution space is very high, because of the

limited number of rows / columns in a crossbar to be chosen from. With crossbar size increasing, the

solution space grows and the correlation in the enlarged solution space is reduced. As a result of the

impact from the correlation, larger crossbar size reduces V (sd).

4.3.3 Solution density based runtime estimation

We use the number of mapping trials as the metric for runtime. When the solution space is explored

with randomized algorithms, the expected number of mapping trials to hit one solution is inversely

proportional to solution density. Runtime expectation is the expectation of variable 1/sd based on

knowledge of random variable sd. Mathematically, expectation of 1/sd depends on both E(sd) and

V (sd). We perform simulations to examine runtime expectation and compare the results with the curve

of 1/µsd, which can be obtained from Equation 4.1, yet leaving out the impact from V (sd).

52

Figure 18 shows runtime expectation results on benchmark xor5. The following observations are

made:

• As E(sd) increases, runtime expectation always decreases for any crossbar size. Obviously,

higher solution density indicates it is easier to hit a solution in the solution space. We can conclude

that lower defect probability leads to high E(sd) and reduced runtime expectation. For the same

reason, small sized logic functions reduce runtime expectation because of the high E(sd).

• Large crossbar size leads to reduced runtime expectation at any E(sd). The reason for this is

large sized crossbars have small V (sd) which, in turn, reduces runtime expectation. Ideally, if

V (sd) reduces to 0, then runtime expectation becomes 1/µsd. Since correlation always exists in

the solution space and thus V (sd) can not be 0, 1/µsd is the lower bound for the actual runtime,

as is shown in Figure 18.

• Runtime estimation based on 1/µsd can predict runtime expectation accurately when crossbar

size is above two times larger than the logic function size. This indicates that correlation in the

mapping trials becomes very low as crossbar size increases to two times larger.

Overall, 1/µsd is the lower bound for runtime expectation as runtime expectation depends on both

E(sd) and V (sd). Thus solution density based runtime estimation entails taking into consideration not

only expectation but also variance of solution density. With the same E(sd), increased crossbar size

leads to reduced runtime expectation.

53

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2

4

6

8

10

12

14

16

18

20

22

Solution Density Expectation

R
un

tim
e

E
xp

ec
ta

tio
n

Benchmark xor5 of size 16x10

0.5 0.6 0.7 0.8 0.9 1
1

1.5

2

2.5

3

3.5

4

size ratio 1
size ratio 2
size ratio 4
size ratio 16
1/u

sd

Figure 18. Runtime expectation for crossbars of different sizes.

4.4 Summary

We investigate the logic mapping problem in crossbar-based nanoelectronic systems. The main chal-

lenge is that finding a valid mapping takes prohibitive runtime when massive defects exist in a crossbar.

Based on the mathematical model developed, probabilistic analysis is proposed to evaluate yield as well

as runtime. The roots of the complexity of the problem lie in the existence of high correlations in the

solution space.

Taking into consideration the correlations, we examine the interplay among crossbar size, defect

probability, yield and runtime. We make the following conclusions:

• Yield can be improved by enlarging crossbar size. However, when runtime limit is applied, in-

creasing crossbar size improves yield through decreasing correlations among the explored map-

ping trials, and a theoretical upperbound can be identified for runtime-constrained yield.

54

TABLE I

SUMMARY OF INFLUENCE OF DEFECT PROBABILITY, LOGIC FUNCTION SIZE AND
CROSSBAR SIZE ON E(SD), V (SD) AND RUNTIME EXPECTATION.

Influence Defect Probability ↗ Logic Function Size ↗ Crossbar Size ↗
E(sd) ↘ ↘ constant
V (sd) maximized when E(sd)=0.5 ↘

Runtime ↗ ↗ ↘

• Runtime-constrained yield can also be improved by increasing the runtime limit. The improve-

ment also has an upperbound. For large-sized logic functions, increasing runtime limit can sig-

nificantly improve yield.

• Both the upperbound and lowerbound for runtime-constrained yield can be mathematically achieved.

Deterministically finding a correct mapping takes prohibitive runtime when massive defects exist

in a crossbar. Influences of defect probability, logic function size and crossbar size on solution den-

sity expectation as well as variance and runtime are summarized in Table I. Particularly, the trade-off

between runtime and crossbar size is shown. Large sized crossbars lower runtime by decreasing correla-

tion between the explored mappings. This dissertation identifies the challenges with logic mapping onto

defective nanoscale crossbars, and establishes a comprehensive model for the runtime of the problem.

Capabilities of the defect tolerance on crossbar-based architectures are examined from the perspective

of hardware cost and algorithm runtime, which provide the baseline and metric on evaluating future

heuristic algorithms.

CHAPTER 5

EVALUATING QUALITY FOR NANOCROSSBAR LOGIC MAPPING THROUGH

MISMATCH NUMBER DISTRIBUTION

5.1 Motivations

The complexity of defect-tolerant logic implementation problem is NP-complete(43; 44). As the

success of logic implementation is under the severe constraint of a massive number of defects, the logic

implementation process has unpredictable runtime when the defect rate is high. As a result, runtime esti-

mation is exceedingly hard(48). Moreover, since each crossbar has its unique defect pattern, the lengthy

logic implementation process has to be performed on every single crossbar. Consequently, yield analy-

sis, which concerns the percentage of crossbars with valid mappings, is hard to model mathematically,

and also expensive to derive through simulations(47).

Essentially, both runtime and yield analysis depends on the percentage of mismatch-free mappings,

when defect-tolerant implementations are solely based on mapping schemes. However, such a percent-

age (defined as “solution density”) is hard to achieve precisely with mathematical models (47; 48), due

X

X0X

1

X 0

X

X

1

1 X

1

010

1

0 0

1

0

1

0 1

(1) Mapping trial with 2 mismatches (2) Mapping trial with no mismatch

X

X0X

1

X 0

X

X

1

1 X

1

100

1

0 0

1

0

1

1 0

a
A

d
D

c
C

b
B

a
A

d
D

c
C

b
B

ab

bc

cd

α

β

γ

ab

cd

bc
β

γ

α

Figure 19. Two mapping trial examples

55

56

to the highly correlated mapping trials in a solution space. In fact, we need to move beyond focusing

only on the percentage of the mismatch-free mappings. When both the mismatch-free and the mis-

matched mappings are considered together in an integrated picture, it is actually possible to establish

mathematical models and derive meaningful evaluation methods for runtime and yield. For each map-

ping trial, no matter mismatched or not, its mapping quality can be represented largely by a “score”,

namely the number of mismatches in the mapping trial. A mismatched mapping has its specific num-

ber of mismatching cells, which essentially indicates how “bad” such a mapping trial is. It turns out

that, when all the mapping trials are considered, such mismatch numbers follow certain mathematical

distributions and can be well modeled. Since the percentage of valid mapping can be directly derived

(by looking at the percentage with zero mismatch) once the distribution is available, the knowledge of

mismatch number distribution serves as a basis for yield and runtime estimation.

In general, a mapping is valid (therefore useful) only when its mismatch number is zero. How-

ever, a limited number of mismatches do not necessarily lead to a bad logic implementation, as work

in (62) shows that these mismatches can be ”utilized” through logic morphing. In addition, when hard-

ware redundancy is added, a logic function can be hardened and able to tolerate up to a certain level of

mismatches (67). Therefore, mappings with certain mismatches can still result in a defect-tolerant im-

plementation when they are treated specially. Research on mismatch number distribution thus provides

insights in the tradeoffs among hardware cost, defect tolerant capability, and yield.

In this dissertation, we first examine mismatch number distribution ∆ over a large number of solu-

tion spaces, when crossbars have the same defect probability. Second, we focus on mismatch number

57

distribution D in the solution space of one crossbar with a given defect pattern. Lastly, we show how D

approaches ∆ with the increase of hardware redundancy.

5.2 Mismatch number distribution among crossbars with the same defect probability: ∆

We begin with a given defect probability d for a set of crossbars. Considering the two types of defects

(closed and open), we introduce closed defect ratio r, defined as the percentage of closed defects in both

types of defects. Thus, each switch has probability:

• p0 = d(1− r) of being open.

• p1 = dr of being closed.

• pX = 1− d of being defect-free (configurable).

Similarly, we define logic inclusion ratio l as the percentage of inclusion cells among all cells in a

logic matrix.

5.2.1 Probabilistic modeling of ∆

5.2.1.1 Binomial distribution

With a logic function of size n×m and logic inclusion ratio l, there are nml “1” cells and nm(1− l)

“0” cells in the logic matrix. In an arbitrary mapping, each “0” cell in the logic matrix has a probability

p1 = dr of having mismatch 0 → 1, because a cell in the crossbar matrix has p1 of being “1”. Similarly,

each “1” cell in the logic matrix has a probability of p0 = d(1− r) having mismatch 1 → 0.

Mapping all “0” cells in a logic matrix onto a probabilistic crossbar matrix is essentially a series

of Bernoulli events, and hence the distribution ∆0 of mismatch 0 → 1 follows Binomial distribution.

58

0 …..

0 0 0 …..1 1 1 …..
Logic
matrix

Crossbar
matrix

nml

Δ1 ~B(nml,p0)

1
X

0 1
X

0 1
X

…..0 1
X

0 1
X

0 1
X

nm(1-l)

Δ0 ~B(nm(1-l),p1)

0 1
X has probability p0, p1 and pX being 0, 1 and X. Each

Figure 20. Mismatch number follows Binomial distribution model

Similarly, mapping all “1” cells in a logic function is another independent series of Bernoulli events,

and the distribution ∆1 of mismatch 1 → 0 also follows Binomial distribution. Therefore:

∆0 ∼ B(nm(1− l), dr),∆1 ∼ B(nml, d(1− r)) (5.1)

Here, B(nB, pB) denotes Binomial distribution with parameters nB and pB . A mapping trial can

be viewed as two sets of independent bernoulli events ∆0 and ∆1, as is shown in Figure 20.

The distribution ∆ of overall mismatches, including both 0 → 1 and 1 → 0, is the joint distribution

of ∆0 and ∆1. Such a process of computing joint distribution can be time-consuming, yet it is possible

to approach the distribution ∆ with closed forms.

5.2.1.2 Closed form approximation of ∆ using Normal and Poisson distributions

5.2.1.2.1 ∆ ∼ Normal distribution

59

According to de Moivre-Laplace theorem which is a special case of Central Limit Theorem, Bino-

mial distribution can be accurately approximated by Normal distribution when the number of trials nB

is large. Therefore, ∆0 and ∆1 can be approximated as following:

∆0 ∼ N(µ0, σ
2
0),∆1 ∼ N(µ1, σ

2
1) (5.2)

where

µ0 = nm(1− l)dr, µ1 = nmld(1− r) (5.3)

σ2
0 = nm(1− l)dr(1− dr) (5.4)

σ2
1 = nmld(1− r)(1− d(1− r)) (5.5)

Due to the the linear attribute of Normal distribution, the distribution ∆ can be approximated as:

∆ ∼ N(µ, σ2) = N(µ0 + µ1, σ
2
0 + σ2

1) (5.6)

where

µ = nmd(l + r − 2lr) (5.7)

σ2 = nm[dr − d2r2 − l(d− r2)(2d− 1)] (5.8)

Based on the above closed forms, we can observe that:

60

10 15 20 25 30 35 40 45
0

0.02

0.04

0.06

0.08

0.1

0.12

Crossbars with defect rate r=0.2 and d
1
=0.5

Mismatch number

P
ro

ba
bi

lit
y

of
 Δ

Δ for Benchmark xor5 of size 10x16
Δ for Benchmark rd53 of size 10x32
Normal distributions

Figure 21. Mismatch number distributions ∆ for different benchmarks

• the expectation of mismatch number increases with both defect probability d and logic function

size nm.

• the expectation of mismatch number is affected by both closed defect ratio r and the logic inclu-

sion ratio l. When both r and l approaches 1(or 0), the expectation is minimized. This is because

more 1(0) cells in a logic matrix necessarily requires more 1 or X(0 or X) cells in a crossbar

matrix.

• if l(or r) is 0.5, the expectation of mismatch number becomes nmd/2, determined only by logic

function size and defect probability. This implies that when both types of defects occur with equal

probability in the fabrication process, half of the defects are always tolerated regardless of logic

function attributes. In other words, the expectation of mismatch number becomes nmd/2, which

is only determined by logic function size and defect probability.

61

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Δ for Benchmark con1 of size 14x9 and l
1
=0.1825

Mismatch number

P
ro

ba
bi

lit
y

of
 Δ

Crossbar r=0.2, d
1
=0.2

Crossbar r=0.2, d
1
=0.5

Crossbar r=0.2, d
1
=0.8

Normal distributions

Figure 22. Distribution ∆ when varying closed defect ratio r

5.2.1.2.2 ∆ ∼ Poisson distribution

The Poisson distribution with parameter λ = nBpB can be used as an approximation for B(n, p),

when nB becomes large while the product nBpB remains fixed. Therefore,

∆0 ∼ Pois(µ0),∆1 ∼ Pois(µ1) (5.9)

where µ0, µ1 are expressed in Equation 5.3. Since Poisson distribution also has linearity property, ∆

can be approximated as:

∆ ∼ Pois(µ) = Pois(µ0 + µ1) (5.10)

62

5 10 15 20 25 30 35
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Crossbar of size 10x16 with r=0.2 and d
1
=0.8

Mismatch number

P
ro

ba
bi

lit
y

of
 Δ

Δ for logic with l
1
=0.8

Δ for logic with l
1
=0.5

Δ for logic with l
1
=0.2

Normal distributions

Figure 23. Distribution ∆ when varying logic inclusion ratio l

5.2.2 Discussion and experimental results

To see how ∆ changes upon various factors, we perform experiments with the LGSynth93 bench-

mark set (73). First, we show how ∆ is affected by the logic function size. Simulation results for two

logic function benchmarks are shown in Figure 21. Even though the crossbars have the same defect

probability, the mismatch number distributions ∆ of the two benchmarks are significantly different.

Clearly, the large-sized benchmark (rd53) has more mismatches than the smaller one (xor5).

Second, we show how l and r affect mismatch number distribution ∆. Figure 22 shows how closed

defect ratio r impacts the distribution ∆. Basically, ∆ shifts to the right and becomes flatter as closed

defect ratio r increases. This is because the benchmark con1 has logic inclusion ratio l = 0.1825 and

thus can tolerate more open defects. When r is fixed, we generate logic functions of various inclusion

ratio l to see how the distribution ∆ is affected. Figure 23 shows that, with crossbar closed defect

63

0 5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Δ for Benchmark con1 with l
1
=0.1825

Mismatch number

P
ro

ba
bi

lit
y

of
 Δ

Crossbar r=0.1, d
1
=0.2

Crossbar r=0.3, d
1
=0.2

Poisson distributions
Normal distributions

Figure 24. Comparison: Normal and Poisson in approximating ∆

ratio r = 0.8, distribution ∆ for logic functions with larger l shifts to the left side, indicating reduced

mismatches in solution spaces.

Lastly, we compare approximation accuracy of Normal distribution and Poisson distribution for

∆, and show how they fit into different region of defect probability r. Figure 24 shows two distinct

mismatch number distributions with the expectation nBpB being 3.9 and 11.7, respectively. It is clear

to see that Poisson distribution approximates better when the expectation of mismatch number is small,

while Normal distribution has better accuracy in the other case.

5.3 Mismatch number distribution of a single crossbar with a solution space: D

We have shown that the expected probability distribution across a large number of crossbars with

same defect probability, ∆, is a combination of two independent binomial distributions, and can be

accurately approximated by Normal/Poisson distributions. For a single crossbar with a given defect

64

pattern, the mismatch distribution (denoted as D) is much harder to model, since all the mappings

within a solution space are not independent anymore. Figure 25 shows the mismatch distributions D

of two specific crossbars, the size of which is the same as that of the benchmark logic function. First,

the two distributions, even though both representing mapping trials of the same logic function onto

same-sized crossbars, differs significantly. Second, Normal distribution fails to capture either of them.

Particularly, the two distributions seem to have similar shape, but differ in overall mismatch number

expectation. The discrepancies are then possibly caused by the variance of defect number and defect

pattern.

Intuitively, large defect number increases the number of mismatches in mapping solution space,

making D shift towards the right side. When it comes to different defect pattern, by which we mean

defects with different locations on a crossbar, some defect patterns could help utilize more defects

while other kind of defect patterns may make mappings more suffering the defects. Therefore, an

understanding of mismatch distribution with one crossbar requires the insides on the roles played by: 1)

defect number and 2) defect pattern.

5.3.1 Mismatch number distribution over crossbars with the same defect number: D̃

To focus on a set of crossbars that are similar, we examine the distribution D̃, when the number of

defects is fixed for the crossbar set. To illustrate the sole impact from defect number, we assume a logic

function and a crossbar have the same size.

When the defect numbers are known for crossbars, it is still hard to derive the mismatch number

distribution theoretically, for the reason that the mismatch number of a mapping is determined by the

complicated two-dimension matrix mapping. It is almost impossible to enumerate all the possible map-

65

10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

Benchmark con1 mapping to same−size crossbars with d=0.2

Mismatch number

P
ro

ba
bi

lit
y

of
 D

D for crossabar with less defects
D for crossabar with more defects
Normal distribution

Figure 25. Two specific mismatch distributions vs. expected mismatch distribution

pings and obtain the mismatch numbers, and then derive the mismatch distribution. Yet, in this section,

we consider the “average” distribution for a number of crossbars sharing the same number of defects,

which basically mean that defects can happen at every location in the crossbar. This essentially tremen-

dously reduces the impact from defect pattern. As such, we use a relaxed mapping model to approximate

the complicated two-dimension logic mapping in analyzing the mismatch distribution.

Once the number of “0”, “1”’ and “X” are fixed, the distribution of mismatch number D̃ with re-

laxing the defect pattern restrictions falls into the category of Hypergeometric distribution. Due to three

types of switches existing in a crossbar, D̃ turns out to be under bivariate Hypergeometric distribution

model: one variable v0 represents the number of 0 → 1 mismatches, and the other v1 indicates the num-

ber of 1 → 0 mismatches. The probability mass function of the overall mismatch number distribution

D̃ can be solved by adding the corresponding joint probabilities of the two variable v0 and v1.

66

0 0 0 …..

0 0 0 …..

1 1 1 …..X X X …..

1 1 1 …..Logic
matrix

Crossbar
matrix

L1=nml

v0C1-v0L1-v1-(C1-v0)v1

L1 : the number of “1” cells in logic C1 : the number of “1” cells in crossbar

Figure 26. Mismatch number follows bivariate Hypergeometric distribution

Figure 26 illustrates how a bivariate Hypergeometric distribution model is developed. Since the

sizes of the two matrices (logic function and crossbar) are the same, any mapping trial is essentially a

one-to-one cell mapping between the logic and crossbar matrix. Cells of the same type in each matrix

are put together for illustration purpose. First, we focus on all the “1” cells in a logic matrix, and choose

the same number of cells from a crossbar matrix to match with the “1” cells. The chosen cells could

come from three groups: “0”,“X” and “1”. To ensure a mapping trial with v1 mismatches of 1 → 0,

there must be v1 “0” cells from the crossbar matrix to match “1” cells in the logic matrix. In other

words, the rest of “0” cells in the crossbar matrix have to go with “0” cells in a logic matrix. Similarly

for v0 mismatches of 0 → 1, v0 “1” cells in the crossbar matrix have to map with “0” cells in the logic

matrix, with the rest “1” cells mapping with “1” cells.

Thus, according to bivariate Hypergeometric distribution, the joint probability mass function can be

expressed as:

D̃(v0, v1) =

(
C0

v1

)(
C1

C1−v0

)(
CX

L1−v1−C1+v0

)(
C0+C1+CX

L1

) (5.11)

67

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

Benchmark con1 of size 14x9 mapped onto same size crossbars

Mismatch number

P
ro

ba
bi

lit
y

Crossbar with 8 close and 5 open defects
Crossbar with 15 close and 10 open defects
Hyergeometric distribution

Figure 27. D̃ distribution can be modeled as a Hypergeometric distribution

where L1 is the number of “1” cells in the logic matrix and C1, C0, CX are the number of “1”, “0”,

“X” cells in the crossbar matrix. There are up to min(L0, C1) mismatches of 0 → 1 and min(L1, C0)

mismatches of 1 → 0 in a mapping trial. Thus, the two-dimensional table for joint probabilities of

variable v0 and v1 is of size min(L0, C1)×min(L1, C0).

We experiment with crossbars based on defect number to verify the above analysis. Figure 27

shows the experimental results of crossbars with different defect numbers, and the D̃ in both cases

matches the curves of Hypergeometric distribution. Since the Hypergeometric distribution model is a

relaxed modeling for mismatch distribution, we will examine how good it is when using it to predict the

mismatch distribution for a crossbar with a specific defect pattern in the next section.

68

8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

D for Benchmark con1, crossbars with 25 defects

Mismatch number

P
ro

ba
bi

lit
y

of
 D

Crossbar 1
Crossbar 2
Crossbar 3
Hypergeometric
distribution

Figure 28. Three specific mismatch number distributions D vs. Hypergeometric distribution D̃

5.3.2 Impact of defect pattern

We now move to discuss the mismatch number distribution D when a single crossbar is considered.

Three specific crossbars (having the same size as the logic function) are used and the distributions of

experiment results are shown in Figure 28, where two observations can be made. First, all the distri-

butions can be approximated by the Hypergeometric distribution of D̃ tightly. Second, the difference

is negligible among crossbars of the same defect number but distinct defect pattern. In order to further

confirm that Hypergeometric mismatch distribution model can be used to accurately approximate the

mismatch distribution for any crossbar with a specific defect pattern, we experiment with a number of

crossbars and see how they fit Hypergeometric distribution. With 100 randomly generated crossbars of

the same number of defects and yet various defect patterns, we examine their mismatch distributions.

Figure 29 shows the mismatch distribution variation among these crossbars and how they fit the Hyper-

69

1 2 3 4 5 6 7 8 9 10 11 12
0

0.05

0.1

0.15

0.2

0.25

0.3

P
ro

ba
bi

lit
y

Mismatch number

Benchmark con1 of size 14x9 mapped onto same−size crossbars

Figure 29. Mismatch distributions for crossbars with various defect patterns can be approximated by
Hypergeometric distribution D̃

geometric distribution model. It is clearly shown that variations among these crossbars are negligible,

and basically the Hypergeometric distribution can be used to model the mismatch distribution for any

one of these crossbars.

The above two sets of experiments imply that defect pattern has very little impact on mismatch num-

ber distribution. When considering a specific crossbar, mismatch number distribution D can be quite

accurately approximated by Hypergeometric distribution of D̃, i.e. mismatch distribution on crossbars

with the same number of defects.

So far, we have examined the mismatch number distributions: ∆ (over crossbars with the same

defect probability), D̃ (over crossbars with the same defect number) and D (on a specific crossbar).

When only defect probability over a large number of crossbars is available, the distribution ∆ follows

70

Normal/Poisson distribution. The information at this level can be used to estimate the quality of mapping

a logic function onto a bunch of crossbars with the same defect probability. We can more precisely model

the mismatch number distribution D̃ as Hypergeometric distribution when the specific defect number is

obtained through the chip-testing process.

In addition, discrepancy exists between the Hypergeometric distribution and Normal distribution.

The Hypergeometric distribution is more centralized, indicating a small variation, and thus the number

of mismatches in different mapping trials does not vary as much as that in Normal distribution. This

means that if we obtain more deterministic defect information about crossbars, such as the total defect

number instead of overall defect probability, the mismatch number of a mapping can be estimated more

accurately. Mismatch number distribution essentially indicates the overall mapping quality, since it

reveals the percentage of mismatch-free mappings, as well as the percentage of useful mappings with

any number of mismatches.

5.3.3 Increasing crossbar size: D → ∆

We have examined D based on the assumption of the crossbar size being equal to the logic function

size. Now let us consider the scenario that hardware redundancy is added, and only a part of the crossbar

needs to be selected for logic mapping. Even though the entire crossbar has a fixed defect number, a

part of the crossbar may contain more defects which make the local defect number larger than some

other areas. Figure 30 shows the mismatch number distributions D when mapping a logic function onto

crossbars of large size. We can see that, when crossbar size increases, D begins to deflect from the

Hypergeometric distribution of D̃ and finally conforms to Normal distribution of ∆.

71

On large crossbars, the fact that D converges to ∆ indicts that it becomes equivalent to mapping

onto a large number of crossbars based on the same defect probability. In other words, all the parts of a

large crossbar used in the mapping process can be viewed as a collection of small-sized crossbars with

the same defect rate. Distribution D sits between the Hypergeometric and Normal distributions when

the crossbar size is not significantly large. Therefore, when crossbar size is larger than logic function

size, D is always bounded by these two distributions D̃ and ∆. Both these two bounds can be computed,

thus providing an estimation for D when crossbar size is larger than the size of the logic function.

When the crossbar size grows, the mismatch number distribution becomes much wider. As a result,

the probability of zero mismatch increases, and this is essentially how hardware redundancy contributes

to yield directly when only mismatch-free mappings are considered. In addition, the probability of

mappings containing small mismatch number also increases, and these lightly mismatched mappings

can generally be used for defect-tolerant purposes through either logic morphing or hardening. Lastly,

as we can see clearly that the improvement introduced by more hardware redundancy is ultimately

bounded by ∆. Theoretically, this upperbound confirms to a crossbar of infinite size.

5.4 Summary

Defect-tolerant logic mapping onto nanocrossbars becomes a new fundamental challenge in the

post-fabrication design phase, and is in nature a hard problem. Evaluation methodologies for such a

challenging problem are necessitated so as to produce workable tools and platforms for nanocrossbar-

based computing systems. Evaluation metric for the logic mapping process from the perspective of

mismatch number distribution is presented in this chapter. Based on the presented methodologies and

72

5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

Mismatch number

P
ro

ba
bi

lit
y

of
 D

cros sbar: s ize 20x12, defect number 20x12x0.2

cros sbar: s ize 140x90, defect number: 140x90x0.2

˜D: Hypergeometric dis tribution

Δ: Normal dis tribution

Figure 30. Distribution D sits between D̃ and ∆ and finally fits well with ∆

techniques, the mismatch number indicating the mapping quality can be well modeled, and the main

outcomes are the following:

• Mismatch distribution across a large number of crossbars having the same defect rate ∆ can

be modeled precisely by independent Bernoulli events, and accurately follow Normal/Poisson

distributions.

• Mismatch distribution for D̃ for crossbars having the same size as the logic function and a fixed

number of defects can be modeled by a bivariate Hypergeometric distribution.

• Mismatch distribution within a mapping solution space of one single crossbar D can be approx-

imated accurately by mismatch distribution D̃, and the impact of defect pattern on mismatch

distribution is negligible.

73

• With hardware redundancy added in a crossbar, the mismatch distribution moves from Hyper-

geometric distribution to Normal/Poisson distribution, and is bounded by these two well-defined

distributions. So, the benefits with increasing hardware redundancy can be quantified.

Overall, examining the mapping quality from mismatch number distribution serves as a starting

point in analyzing logic mapping on nanocrossbars, as it reveals insights on understanding the vari-

ous new factors involved in the logic mapping process (including defect probability, defect number,

hardware redundancy and mismatch number), and the tradeoffs for achieving defect-tolerant logic im-

plementations.

CHAPTER 6

DEFECT-TOLERANT LOGIC MORPHING

6.1 Motivations

Logic mapping schemes exploit the choice of selecting which column / row of a crossbar matrix to

be used for a variable / product of a logic matrix, under the constraints of no mismatches. As the com-

plexity of such a problem is NP-complete (43)(44), the runtime curve goes through a phase transition as

defect level increases, because valid solutions become too rare. In such cases, exploiting an orthogonal

dimension of freedom can help boost the number of valid solutions, by recognizing the various equiv-

alent forms of any given logic function. This advantage comes from the fact that logic functions are

inherently polymorphic, in the sense that a logic function can take various equivalent forms.

In other words, not all mismatches are created equal: some are actually “tolerable” - as long as the

resulting logic form is equivalent to the original function. For instance, f = a′c′+c′d+a′b is equivalent

to f∗ = a′c′d′ + c′d + a′b, therefore the mismatch resulting in an additional d′ to product term a′c′ is

tolerable. Allowing tolerable mismatches in a logic form essentially means morphing the logic form,

because mismatches change the original structure of the logic. In other words, mismatches caused by

mapping the original logic form to a crossbar can be “removed” through morphing the logic form, so

that the mapping between the morphed logic form and the crossbar is mismatch-free.

The mismatch tolerance capability can exist in various forms and can be difficult to predict. As is

shown in Figure 31, function f = a′c′ + c′d + a′b can tolerate the mismatch resulting in a′c′ → a′c′d′

74

75

0 01 1

1 11 1

0 00 1

0 00 1

0 01 1

1 11 1

0 00 1

0 00 1

0 01 1

1 11 1

0 00 1

0 00 1

0 01 1

1 11 1

0 00 1

0 00 1

f=a’c’+c’d+a’b

cd
00 01 11 10 00 01 11 10 00 01 11 10 00 01 11 10

00

01

11

10

f*
1=a’c’d’+c’d+a’b f*

2=a’c’+a c’d+a’b f*
3=a’c’+a c’d+a’bc

ab

Figure 31. K-map showing the equivalent forms of a logic function

in f∗1 , or the mismatch c′d → ac′d in f∗2 , but not both. In another case, f can tolerate two mismatches

at the same time (illustrated in f∗3). When the function is not fully optimized, there are also cases where

the opposite is true, i.e., the combination of multiple mismatches can be tolerated, but not some subset

of it.

6.2 Logic morphing

By realizing that a logic function can be represented by various equivalent forms, the flexibility of

exploring these equivalent forms can be utilized for defect tolerance purposes. Then, basically a logic

form will be restructured in the implementation process. Thus, two questions need to be answered: 1)

how to make sure that the restructured form is equivalent to the original one, and 2) how to efficiently

perform the logic morphing.

6.2.1 Logic equivalence checking

The first issue boils down to determining whether the restructured logic function due to mismatches

is equivalent to the original one. Yet, one cannot derive which mismatches are tolerable by trivial cal-

culation, and logic equivalence checking needs to be performed to determine tolerable mismatches. In

76

general, equivalence checking of any two logic functions is hard. However, when the two functions

to be compared are similar, equivalence checking can be accomplished very efficiently. This observa-

tion opens up the possibility of exploring the morphing space during the mapping process. Basically,

mismatches typically result in “morphed” logic forms that are very similar to the original form, as a

mismatch only changes the function by adding or dropping a variable or product term.

6.2.2 Efficient algorithm for logic equivalence checking

Because one cannot derive which mismatches are tolerable by trivial calculation, logic equivalence

checking needs to be performed to determine tolerable mismatches. In general, equivalence checking

of any two logic functions is hard. However, when the two functions to be compared are similar,

equivalence checking can be accomplished very efficiently. This observation opens up the possibility

of exploring the morphing space during the mapping process. Basically, mismatches typically result

in “morphed” logic forms that are very similar to the original form, as a mismatch only changes the

function by adding or dropping a variable or product term.

We adopt a divide and conquer approach, which decomposes the original logic function into two

subfunctions, according to Shannon Expansion (74). In every step, one splitting variable xi is chosen

to decompose the function:

f(x1, x2, · · · , xn) = x′ifxi=0 + xifxi=1 (6.1)

After decomposition, equivalence checking is performed on the subfunctions. f∗ is equal to f if

and only if the two pairs of subfunctions are equivalent: f∗xi=0 = fxi=0 and f∗xi=1 = fxi=1. When

77

 f=···+c’d’+a’c’d+acd+ab’c

 f*=···+c’d’+a’c’e +acd+ab’cd’

 f=···+c’d’+acd+ a’c’d+ab’c

a’c’ e+ab’cd’ f*=···+c’d’+acd+

Align

Split on d

 fd=0=···+c’+ ab’c

 fd=1=···+ac+ a’c’+ab’c

 f*d=0=···+c’+ a’c’e+ab’c

 f*d=1=···+ac+ a’c’e

f f*

 fd=0=···+c’+ ab’c

 fd=1=···+ac+ a’c’

 f*d=0=···+c’+ ab’c

 f*d=1=···+ac+ a’c’e

f f*

Eliminate covered products

fd=0=f*d=0

continue expansion with e to check fd=1 = f*d=1

Figure 32. Logic equivalence checking with an example

the equivalence cannot be determined immediately, they are further decomposed, possibly until the leaf

level.

When f∗ is a mismatched form of f , the difference between f and f∗ is caused by the mismatches.

This means that f and f∗ have a large number of common product terms, plus only a small part of the

unique products that need to be compared. Figure 32 shows an example of the proposed equivalence

checking between two functions f and f∗, with multiple mismatches: a′c′d → a′c′e and ab′c → ab′cd′.

After the identification of the unique products of f∗ and f , Shannon expansion is applied by choosing a

78

mismatched variable d to split on. Then, the products unique to f∗d and fd are compared, and the process

continues to the next splitting variable, e.

A number of heuristics are adopted to help accelerate the equivalence checking process:

• An elimination process is performed to remove the covered1 products in the unique part from the

common products. For instance, product a′c′e is covered by c′ in f∗d=0 in Figure 32.

• When the unique parts of two subfunctions have the same number of products after elimination,

we check to see if they are of the same form. This leads to a quick decision if fd and f∗d are

equivalent, such as the case of f∗d=0 = fd=0 in Figure 32. Otherwise, further expansion needs to

be performed.

• If the unique parts have a different number of products after the elimination process, then whether

fd = f∗d is unknown, and further expansion needs to be performed.

The logic equivalence checking algorithm is summarized in Algorithm 2, which recursively checks

the equivalence of the subfunctions. By categorizing the product terms into 3 parts: common (pt common),

unique to f (pt f), and unique to f∗ (pt f∗), only the unique parts (pt f and pt f∗) need to be focused

on. In choosing the splitting variables, the mismatched variables have the highest priority. This makes it

possible for the subfunctions f∗ and f to be similar, so that they might be trivially compared to shorten

the recursive algorithm. After the function splits over on the mismatched variables, the most frequently

appearing variables are chosen next to further decompose until the equivalence checking is solved.

1Product p1 is said to be covered by p2 when p2 is certain to evaluate to 1 as long as p1 evaluates to 1.

79

Algorithm 2 Logic Equivalence Checking
Logic Eq Check (f, f∗)

1. pt common = the common product terms of f and f∗

2. pt f∗ = products unique to f∗ (because of mismatches)

3. pt f = products unique to f

4. Select a variable v, according to the mismatch position

5. if Split and Compare(pt common, pt f, pt f∗, v)==true
return success

else return false

Split and Compare(pt common, pt f, pt f∗, v)

1. pt c0 = pt common with v = 0; pt f0 = pt f with v = 0
pt f∗0 = pt f∗ with v = 0

2. pt c1 = pt common with v = 1; pt f1 = pt f with v = 1
pt f∗1 = pt f∗ with v = 1

3. branch0=Trivial Compare(pt c0, pt f0, pt f∗0)
branch1=Trivial Compare(pt c1, pt f1, pt f∗0)

4. if(branch0 == false OR branch1 == false)

return false //any subfunction not equal

5. if(branch0 == true AND branch1 == true)

return true //both subfunctions equal

6. pick the next split variable u //cannot be decided immediately
7. if(branch0 == unknown), then branch0 = Split and Compare(pt c0, pt f0, pt f∗0, u)

if(branch1 == unknown), then branch1 = Split and Compare(pt c1, pt f1, pt f∗1, u)
8. return (branch0 AND branch1)

Trivial Compare(pt common, pt f, pt f∗)

1. remove products in pt f, pt f∗ covered by pt common

2. if pt f and pt f∗ contain different numbers of products

return false //fast check without comparing products
3. else perform direct product comparison

a) if pt f == pt f∗, return true
b) if pt f 6= pt f∗

if all variables are split //at leaf level
return false

else return unknown

80

6.2.3 Mismatch-tolerating capability and analysis

Generally every logic function has a certain “resilient” structure, which is tolerable of mismatches

and still leads to an equivalent form. In this section, we study how resilient the structure of a logic

function is, so as to reveal the mismatch-tolerating capability.

We examine a number of logic function benchmarks (73) in order to learn the rough percentages of

single mismatches that are inherently tolerable. As is shown in Table II, 2− 10% of the mismatches can

be tolerated in single occurrence. Furthermore, it turns out that a function typically tolerates only one

of the two mismatch types: either 0 → 1 or 1 → 0, but not both. Most functions tolerate the 0 → 1

mismatch type (resulting in appearing variables such as ab → abc′), indicating that highly optimized

functions have products containing only the minimum number of variables, thus tolerating mostly the

0 → 1 mismatches, but not otherwise.

6.3 Exploiting mapping and morphing simultaneously

By exploring the equivalent logic forms, morphing opens up a large space of logic implementations.

In particular, the benefit is prominent when defect rate is high, and mismatch-free mappings become

hard to find. However, the delivery of such potential advantages hinges on an integrated algorithm that

explores the combined solution space of mapping and morphing efficiently.

In this section, we introduce an integrated algorithm to exploit mapping and morphing simulta-

neously. Logic morphing is performed throughout the mapping framework (in Algorithm 1). The

difference lies in the way of dealing with the mismatches. In the mapping-only scheme, mismatches

simply lead to invalid solutions. With morphing, mismatches might lead to valid solutions, and should

be treated with logic equivalence checking. In the midst of the mapping process, if the equivalence

81

Benchmark Size Number of tol-
erable 0→1 mis-
match

Number of single
tolerable 1→0
mismatch

Percentage of all
single tolerable
mismatch

con1 9×14 6 0 4.76%
rd53 32×16 9 0 2.81%
sqrt8 40×16 86 0 13.43%
5xp1 75×14 98 1 9.42%

misez1 32×16 14 0 2.73%
bw 87×10 5 90 10.92%

9sym 87×18 25 0 1.59%
sao2 58×20 62 0 5.34%

TABLE II

PERCENTAGE OF SINGLE TOLERABLE MISMATCHES.

checking of a mismatch returns true, the backtracking process migrates to a different (but equivalent)

logic form, thus performing “morphing”. A new subroutine Mismatch Tolerance 1 (shown in Al-

gorithm 3) is used wherever Mismatch Check is called in Algorithm 1. With the new logic form as

the target implementation form, the backtracking process continues for the unmapped part of the logic

function. Overall, logic morphing is performed whenever mismatches are found to be tolerable during

the mapping process.

When exploiting both mapping and morphing simultaneously, the proposed algorithm framework

traverses through only the logic forms triggered by the mismatches in the mapping process. Such a

“morphing only when necessary” scheme avoids the overhead of checking for all the equivalent forms.

Since runtime is crucial in the defect tolerant logic implementation process, we use a hash table

to cache the results of the logic equivalence checking. In step 3 of Algorithm 3, when mismatches

82

are encountered in the mapping process, the hash table is checked first, before going through the logic

equivalence checking procedure. The results of this checking are added to the hash table. This means

the runtime overhead is amortized throughout the entire process.

Algorithm 3 Mismatch Tolerance in Mapping + Morphing
Global variables: HashTable, Logic Matrix
Mismatch Tolerance 1(l → x, mapped set)
//This subroutine replaces Mismatch Check in Algorithm 1 whenever it is invoked

mm set = Mismatch Check(l → x, mapped set) //obtain mismatches of mapping l → x

1. if (mm set == ∅)

return true //no mismatch

2. else if (HashTable(mm set) has entry) //hashtable hit

return HashTable(mm set)

3. else, let f = Logic Matrix, construct f∗ according to f and mm set

mm tolerable = Logic Eq Check(f , f∗)
if (mm tolerable == true)

update Logic Matrix with f∗ //logic morphing
add mm tolerable into HashTable
//update hashtable whether equivalent or not

return mm tolerable

6.4 Simulation results

In this section, we examine the performance and cost of the proposed scheme:

83

• The performance is represented by yield, defined as the percentage of successful logic implemen-

tations over 104 defective crossbars, where defects are randomly distributed. In particular, we use

the metric of RunTime-Constrained (RTC) yield, by setting a runtime upperbound for the process

of finding a logic implementation.

• The cost is evaluated by the average runtime needed for obtaining a valid implementation.

The algorithms are implemented in Java on an Intel Core Duo 2.4GHz workstation with 2GB memory,

and all the experiments are performed with the benchmarks in Table II.

6.4.1 RTC yield

In general, yield depends on many factors, including logic function size, defect rate, closed defect

ratio, crossbar size, and runtime limit (47). We set the runtime limit to be 10 seconds for RTC yield

comparison.

We first consider the case where crossbars are of the same size as the logic function. Figure 33

shows the yield over multiple defect rates on two benchmarks. The proposed scheme gains significantly

higher yield over the mapping-alone scheme. Moreover, the improvement on yield is most significant

when defect rate is high. This indicates the capability of finding more successful implementations in the

“difficult region”, due to the effect of morphing.

Closed defect ratio r also has significant impact on yield. Figure 34 shows the yield with two distinct

closed defect ratios. When crossbars have mostly open defects (low r), yield is high. This means logic

function implementation onto nanocrossbars can generally utilize more open defects than closed defects,

for the reason that exclusion cells are always no less than inclusion cells in a logic function matrix.

84

0%

20%

40%

60%

80%

100%

0.03 0.06 0.09 0.12 0.15 0.18

mapping mapping+morphing

R
TC

 y
ie

ld

defect rate (a). con1 (9x14)

0%

20%

40%

60%

80%

100%

0.01 0.02 0.03 0.04 0.05 0.06

defect rate

R
TC

 y
ie

ld

 (b). sqrt8 (40x16)

Figure 33. Yield comparison on (a) con1 and (b) sqrt8.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

defect rate

R
T

C
 y

ie
ld

mapping, r=0.8
mapping+morphing, r=0.8
mapping, r=0.1
mapping+morphing, r=0.1

Figure 34. Yield comparison with different closed defect ratios

85

0 0.05 0.1 0.15 0.2
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

defect rate

R
T

C
 y

ie
ld

mapping, r
s
=1x1

mapping+morphing, r
s
=1x1

mapping, r
s
=1.5x1.5

mapping+morphing, r
s
=1.5x1.5

Figure 35. Yield improvement for various crossbar size

It has been shown that yield can be significantly improved when larger sized crossbars are used in a

mapping based scheme. This is because adding hardware redundancy significantly increases the number

of choices. Figure 35 shows yield of the same benchmark on two different-sized crossbars. We use size

ratio rs ((row ratio)×(column ratio)) to indicate crossbar size in the simulation setup. Obviously, with

larger crossbars of rs = 1.5 × 1.5, yield is higher for both schemes. This improvement mostly comes

from the mapping dimension, when more available choices make it easier to find the most promising

mappings. Nonetheless, the proposed scheme consistently outperforms the scheme of mapping alone,

indicating the universal performance boost offered by exploring the morphing dimension.

The overall yield comparison over a set of benchmarks are shown in Figure 45. These data points

are obtained at various defect rates with equal percentage of closed and open defects. In all the cases, the

proposed scheme of mapping plus morphing outperforms the scheme of mapping only. Yield improve-

86

0%

10%

20%

30%

40%

50%

60%

con1 rd53 sqrt8 5xp1 misex1 bw 9sym sao2

mapping mapping+morphing

Benchmarks

R
TC

 y
ie

ld

100%

Figure 36. Yield improvement with morphing

ment varies across different benchmarks, some of which benefit significantly from morphing, because

their logic forms can inherently tolerate more mismatches. For instance, the yield for benchmark bw

achieves 100%, compared to the mapping-only solution of about 5% yield. In this benchmark, the per-

centage of tolerable single mismatch is as high as 10.92%, as is shown in Table II. In addition, these

single mismatches turn out to be highly accumulative. Such characteristics make this benchmark benefit

significantly from the morphing approach.

6.4.2 Runtime cost analysis

In this section, the runtime overhead of the proposed scheme is examined. We present the average

runtime for the successful search, not counting the cases where the search gives up by hitting the pre-

set runtime upperbound. Figure 37 shows the runtime for obtaining a valid implementation for both

schemes, the yields of which are shown in Figure 33(a). It turns out that the average runtime for

finding a successful logic implementation is basically the same for both approaches, and in many cases,

the proposed scheme of mapping plus morphing actually takes less runtime. Therefore, the proposed

87

0 0.05 0.1 0.15 0.2
0

500

1000

1500

2000

2500

3000

defect rate

ru
nt

im
e

(m
ill

is
ec

on
d)

runtime for mapping only
runtime for mapping+morphing
runtime for equivalence checking

Figure 37. Runtime comparison for benchmark con1

scheme, incorporating both morphing and mapping, not only finds more solutions (as is indicated by the

higher yield), but also finds them as quickly as (if not quicker than) the mapping-only scheme.

Figure 37 also shows the runtime overhead for logic equivalence checking, which is the curve that

lies flat on the horizontal axis. Apparently, logic equivalence checking takes almost negligible time

compared to the overall runtime cost. This is achieved through 1) exploiting the similarity in the logic

forms, and 2) the efficient caching scheme of a hash table.

6.5 Summary

In this dissertation, we propose a new defect tolerance approach, namely logic morphing, by ex-

ploiting the various equivalent forms of a logic function. This approach explores a new dimension of

freedom in achieving defect tolerance, and is compatible with the existing mapping-based approaches.

We propose an integrated algorithmic framework, which employs both mapping and morphing simulta-

neously, and efficiently searches for a successful logic implementation in the combined solution space.

88

Simulation results show that the proposed scheme boosts defect tolerance capability significantly with

many-fold yield improvement, while having no extra runtime over the existing approach of performing

mapping alone.

CHAPTER 7

DEFECT-TOLERANT LOGIC HARDENING AND INTEGRATION WITH

MAPPING AND MORPHING

7.1 Motivations

Nanotechnology can undoubtedly provide very high device density, and massive devices are avail-

able for a particular design. This allows redundancy-based designs for defect or fault tolerance purposes.

One classic approach is based on N-Module Redundancy (NMR), which is too costly, and can compro-

mise the benefits of high device density significantly. In fact, a fine-grained level of redundancy at a

minimum cost can be achieved for defect tolerance purposes for nanocrossbar-base systems.

In nanocrossbar fabrication, it is generally acknowledged that defects which “short” horizontal and

vertical nanowires are much less likely than defects caused by missing and misplaced switches (46).

Therefore, it is expected that open defects are far more common than closed defects in the crossbar

plane. As a result, open defects should be more necessarily targeted in defect tolerant schemes to

achieve high yield and reduced runtime as well.

The aforementioned mapping and logic morphing techniques treat both open and closed defects

indistinguishably in defect tolerance. Mapping techniques can utilize both types of defects as long as

they do not lead to mismatches. In the same way, a morphing scheme changes the logic form to tolerate

a defect of any type, when the defect leads to an equivalent function. Yet, it is revealed in the previous

chapter that logic morphing tolerates mostly closed defects (0 → 1 mismatches), for the reason that

89

90

logic functions are generally in a highly optimized form. Therefore, a technique to tolerate open defects

becomes highly necessary to further boost the potential of nanocrossbars.

7.2 Hardening concept

When implementing a two level logic function onto a crossbar, open defects can cause 1 → 0

mismatches to the logic function. For instance, f=ab+bc+ad+cd may become a mismatched form

f ’=ab+bc+ad+cd because of an open defect. Yet, the logic function can be hardened for defect toler-

ance purposes. The logic function f = ab+bc+ad+cd can be hardened as F = abb1 +bb1c+ad+cd,

where b1 is a redundant copy of the original variable b. Function F is more robust than f and can tol-

erate up to two (1 → 0) mismatches introduced to variable b. A hardened form containing mismatches

F’=abb1+bb1c+ad+cd=ab1+bc+ad+cd is essentially equivalent as the original logic form f .

When more variables have a 1 → 0 mismatch, duplication can be applied to these mismatched

variables to ensure an equivalent implementation. For instance, when two mismatched variables are

present in f ’= ab+bc+ad+cd, then the hardened version can be F’= abb1+bb1c+add1+cdd1. When

one extra copy still cannot satisfy the mismatch constraints, more copies can be added to a particular

variable for defect tolerance purposes. For instance, f ’=abb1+bb1c+add1+cdd1,which can be hardened

as F’=abb1b2+bb1b2c+add1+cdd1.

In the process of mapping the logic function to a crossbar, a variable is implemented through a

crossbar vertical wire, which intersects with every horizontal wire in the crossbar. So, if a variable is

hardened for a particular product term, basically redundant vertical wires are used to implement the

variable. Such a hardened implementation in the crossbar means that duplicated copies of the variable

may show in all the product terms due to the intersection of every vertical wire and every horizontal

91

0 11 0

1 10 0

0 10 1

1 00 1

01 0

00 X

10 0

00 X

logic matrix f=ad+cd+bd+bc+ab

a b c d c1 c2 c3

ad

cd

bd

bc

0 01 1ab 00 1

1

1

1

0

d1

0

1

1

1

0

d2

0

…..

crossbar matrix

mapping

1
1

1
0

1
0

1
0

1
X

1
0

1
0

1
0

1
1

0
0

0
X

0
0

0
0

0
1

0
0

√

0

0

1

0

0

√

√

×
√

 1
0

=

open defect tolerated

Figure 38. Logic hardening tolerates open defects and adds an extra 0 → 1 mismatch

wire. There are two scenarios, depending on whether the product term contains the hardened variable

or not. First, it is obvious that duplicated copies do not have any negative effects for product terms

containing the hardened variable. Second, for those product terms which do not contain the variable

to be duplicated, extra copies may lead to extra 0 → 1 mismatches. For instance, in Figure 38, logic

hardening through duplicating variable d tolerates a number of 1 → 0, and yet at the same time adds an

extra (0 → 1) mismatch to the product term which does not contain variable d.

Thus, considering hardening technique, hardening equality checking needs to be performed through-

out the whole mapping process to ensure that the hardened implementation of a logic function satisfies

the following criteria.

• In the case that an inclusion cell (represented by 1) in a column is duplicated, as long as there is

one out of these copies being mapped without a mismatch, then it is considered to be correctly

mapped. In other words, hardening can allow many 1 → 0 mismatches to tolerate open defects

• In the case that an exclusion cell (represented by 0) in a column is duplicated, all copies have to

be mapped without a mismatch. In other words, hardening cannot tolerate any closed defects, and

add more constraints for mapping product excluding the hardened variable.

92

When crossbars contain mostly open defects, only inclusion cells in logic matrix can lead to mis-

matches 1 → 0. Hardening through variable duplication is helpful for tolerating 1 → 0 mismatches,

and thus the most frequently appearing variables (with more inclusion cells in a column) tend to benefit

most from the hardening. Therefore, as hardening heuristics, frequently appearing variables are chosen

to be hardening with high priority to better tolerate defects.

7.3 Optimal hardening

Logic hardening through duplicating a variable is effective in tolerating open defects when mapping

product terms containing the variable. Yet, hardening also adversely affects the mapping of product

terms excluding the duplicated variable. Undoubtedly, it is hard to capture the benefits of hardening

precisely, since the overall benefits are determined by the heuristic-based complicated mapping process,

logic function structure, and crossbar size as well. In this section, we need to answer the fundamental

question: how to harden a logic function in order to achieve the maximum defect tolerance capability.

We need to develop an assessment method to measure quantitatively the benefits brought by harden-

ing, regardless of the specific mapping algorithms, the characteristics of the logic function and crossbar

size. Such a benefit evaluation should provide the guidance for hardening a logic function effectively, in

terms of which variables should be hardened and to what hardening degree they should be duplicated.

When a logic function is hardened with a resulting larger size, the searching path in the backtracking

becomes longer and the corresponding solution space (containing all the possible mapping trials) grows

also significantly. Yet, due to hardening, more mapping trials are turned into valid mappings - solutions.

Thus, hardening has the disadvantage of increasing the solution space and the advantage of increasing

solutions. In fact, what really matters essentially is solution density, which is the percentage of valid

93

mappings in the entire solution space. Regardless of the mapping algorithms, it is generally easy to find

a valid mapping with a high solution density. Therefore, the key to evaluate the benefits of hardening,

which in turn guides the hardening process, lies in identifying the solution density.

7.3.1 Solution density without hardening

Solution density can be analyzed in a probabilistic way, as shown in previous chapters. In crossbars,

defects are assumed to be randomly distributed and each switch has a certain rate being defective. Given

defect rate d, closed defect rate r, and a logic function with logic inclusion ratio l (the percentage of

inclusion cells in a logic matrix) and size n (the total number of matrix cells), each mapping trial is valid

with probability:

p = (1− d(1− r))nl(1− dr)n(1−l) (7.1)

where nl is the number of “1” cells and n(1− l) is the number of “0” cells in the logic matrix. A cell

in a crossbar matrix can be used to map an inclusion cell with probability 1− d(1− r), where d(1− r)

is the probability for a cell to be an open defect. In the same way, a cell in a crossbar matrix can be used

to map an exclusion cell with probability 1 − dr, where dr is the probability for a cell to be a closed

defect.

7.3.2 Solution density with hardening

Hardening degree k is defined as the number of columns in a logic matrix that are used to represent a

single variable. The case of k = 1 basically mens no hardening. With a hardening degree k, k duplicated

cells from the original cell in a logic matrix are mapped to k cells in a crossbar matrix.

94

• When an inclusion cell is duplicated with k copies, as long as there is one out of k copies being

mapped without a mismatch, then it is considered to be correctly mapped. Thus, the probability

that duplicating an inclusion cell with k copies can be successfully mapped is 1− (d(1− r))k.

• When an exclusion cell is duplicated with k copies, all k copies have to be mapped without a

mismatch, and then it is considered to be correctly mapped. Thus, the probability that duplicating

an exclusion cell with k copies can be successfully mapped is (1− dr)k.

Having these two probabilities, the solution density associated with a hardened logic function of

hardening degree k is:

pk = (1− (d(1− r))k)nl((1− dr)k)n(1−l) (7.2)

When k = 1, pk = p, which means no hardening is applied to the logic function. As long as

hardening degree k goes beyond 1, 1 − (d(1 − r))k is always greater than 1 − d(1 − r), indicating

that hardening helps mapping inclusion cells. Yet, as k goes beyond 1, (1− dr)k becomes smaller than

1− dr, which essentially means that hardening makes it even worse to map exclusion cells. Comparing

1 − d(1 − r) with 1 − (d(1 − r))k, the difference between them is decreasing with closed defect ratio

r. In other words, hardening is more effective in tolerating open defects.

As hardening degree k grows, solution density pk consists of two parts: the increasing part 1 −

(d(1− r))k and the decreasing part (1− dr)k. Obviously, when the exponent nl for the increasing part

becomes larger or the exponent n(1− l) for the decreasing part becomes smaller, pk becomes increased.

95

In other words, when a logic function has a high logic ratio, leading to large nl and small n(1 − l),

solution density pk is more effectively improved.

7.3.3 Fine-grained optimal hardening

Solution density essentially is the probability indicating how likely to find a valid mapping. Solution

density pk with hardening technique has been shown previously when the whole logic function is con-

sidered. In fact, we can also calculate the probability for a column to be successfully mapped. Suppose

the probabilities for all the columns in a logic matrix are pk1, pk2,...,pkc. Then the solution density for

the whole function is pk = pk1 ∗ pk2 ∗ ... ∗ pkc. In fact, the probability for each column being correctly

mapped can be calculated in the same way as in Equation 7.2, if we know the number of cells in the

column nc, and the logic ratio of the column lc. So, the Equation 7.2 for pk also applies to calculating

the success rate pkc for mapping a column, when n and l are replaced with nc and lc, respectively.

Obviously, the objection of optimal hardening is to make the solution density pk maximum so as

to increase the chances to find a valid mapping. This indicates that we need to maximize the success

probability for each column, pk1, pk2,...,pkc. So, for a particular column in a logic matrix, we can

precisely calculate the hardening degree, given the column length, column logic ratio and crossbar defect

rate and closed defect ratio. It is possible that the heavy columns, representing frequently appearing

variables, should be duplicated to a large hardening degree, and there is no hardening required for

sparse columns, representing non-frequent variables.

We analyze the specific benchmark misex1 from benchmark set (73) as a case study. The bench-

mark has 16 columns, and the length of each column is 32. Table III shows the logic inclusion ratio

for all the columns. Suppose those columns are mapped onto a crossbar with closed defect ratio of

96

10% and defect rate of 20%, then the optimal hardening degrees for these columns can be developed,

as shown in the Table III. It is obvious that when columns have logic ratio less than 10%, they must not

be hardened (with degree of 1) since hardening only makes it worse. It is also found that the column

with large logic ratio 62.5% can be hardened to the degree of 3 to produce the best performance. The

figure in Table III shows the three specific logic inclusion ratios, which represent the optimal hardening

degree being 1, 2 and 3, respectively. It is also shown that as logic inclusion ratio increases, the solution

density improvement (pk/p) becomes more significant.

7.4 Algorithmic framework exploiting mapping, morphing and hardening

Logic morphing and logic hardening are prominent when defect rate is high, and mismatch-free

mappings become hard to find. However, the delivery of such potential advantages hinges on an in-

tegrated algorithm that efficiently explores the combined solution space of mapping, morphing and

hardening efficiently.

In this section, we introduce an integrated algorithm to exploit mapping, morphing and hardening

simultaneously. Backtracking-based logic mapping framework shown in Algorithm.1 serves as the basis

to achieve a valid implementation. Morphing and hardening tolerate defects in different ways: one

changes the logic function structure while the other adds redundancies. Both of them have different

impacts on the mapping process.

Logic hardening technique is orthogonal to the two previous defect tolerant schemes, and in fact all

of three techniques can be integrated together to achieve maximum benefits.

In the backtracking framework combining mapping and morphing, logic morphing is considered by

performing LEC in every step, as long as a mismatch is encountered. To incorporate logic hardening, the

97

column logic inclusion ratio optimal hardening degree k pk/p

col0 0% 1 1
col1∼3 3.13% 1 1
col4∼6 6.25% 1 1
col7 9.38% 1 1
col8 28.13% 2 2.78
col9 31.25% 2 3.36
col10 34.38% 2 4.04
col11 40.63% 2 5.86
col12 43.75% 2 7.05
col13 50.00% 2 10.23
col14 53.13% 2 12.34
col15 62.50% 3 14.42

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1
solution density for three logic inclusion ratios l

hardening degree

no
rm

al
iz

ed
 s

ol
ut

io
n

de
ns

ity

l= 3.13%

l=31.25%

l=62.50%

TABLE III

OPTIMAL HARDENING FOR MISEX1

difficult part lies in the integration of logic hardening and logic morphing, which essentially checks the

logic equivalence between the original function without hardening and the hardened logic function con-

taining mismatches. Such equivalence checking is hard, since the two logic functions contain different

numbers of variable inputs.

98

We propose the following mechanisms to combine morphing and hardening in the backtracking

mapping process 1. First, in the backtracking process, the logic morphing step should be performed

only after all the redundant copies representing the same variable are mapped. This is because, if

mismatches happen and are checked through LEC before all the redundant copies, the advantage of

tolerating mismatches brought by hardening is not fully explored (since the mismatches can be tolerated

through hardening). There are two implications: 1) all the copies representing the same variable need

to be mapped in succession as one single mapping step; 2) there is no need to perform LEC in the midst

of mapping redundant copies. When all the copies representing the same variable are already mapped,

hardening equality check is performed first, and then followed by LEC when the mismatches cannot be

tolerated through hardening.

Whenever one row (or duplicated columns) x from a crossbar matrix is mapped to the row (or multi-

ple columns) l from a logic matrix, the validity of mismatches is checked (by Mismatch Tolerance 2

in Algorithm.4) to see whether the mismatches can be tolerated. When a mismatch-free or equiv-

alent mapping is found, the backtracking mapping algorithm returns success. When no such map-

ping exists, the algorithm eventually returns failure. In the process of mismatch checking, harden-

ing equality checking (by Harden Eq Check) is performed first, and then LEC is performed (inside

Mismatch Tolerance 1) if mismatches cannot be tolerated through logic hardening.

7.5 Simulation results

7.5.1 Solution density improvement with hardening

Considering logic hardening, solution density pk is affected by four factors: defect rate d, closed

defect ratio r, hardening degree k, the logic function size n, and logic inclusion ratio l. The relationship

99

Algorithm 4 Mismatch Tolerance in Mapping + Morphing + Hardening
Global variables: HashTable, Logic Matrix
Mismatch Tolerance 2(l → x, mapped set)

mm set = Mismatch Check(l → x, mapped set) //obtain mismatches of mapping l → x

1. if (mm set == ∅)

return tolerable

2. else if (Harden Eq Check(mm set, x) == equivalent)

return tolerable

3. else

return Mismatch Tolerance 1(l → x, mapped set)

Harden Eq Check(mm set, x)

for every mm in mm set {

if(mm ∈ mismatch(1 → 0))

if(x contains no 1 or X) //mm cannot be tolerated
return inequivalent

else //mm is a 0 → 1 mismatch

return inequivalent

}
return equivalent

100

between pk and defect rate d is clear, and pk is a decreasing function of d. It is obvious that increasing

defect rate will always make mapping process harder. So, for the following experiments on solution

density, we fix the defect rate at 30%.

The first interesting part about logic hardening is to see what hardening degree should be adopted

to effectively improve the success rate of finding a valid mapping. We will first explore the relationship

between pk and hardening degree k. In the paper, we experiment with logic function benchmarks to see

the effectiveness of logic hardening. To see the solution density improvement in general, we set logic

function size n to be 300, which is an average size, logic inclusion ratio to be 30%, which is also close

to the average.

Four cases with different closed defect ratio r are examined, and the results are shown in Figure 39.

We can see that when closed defect ratio is as low as 0%, increased hardening degree helps improve the

solution density significantly. This essentially indicates that logic hardening can tolerate open defects

effectively. Yet, even in this scenario, the hardening degree does not need to go beyond a certain value,

since it finally saturates with diminishing returns. When closed defect ratio increases, the solution

density can even become less when hardening degree increases beyond a certain value, as shown in

cases of closed defect ratio being 10% and 20%. Thus, there is no need to invest a large hardening

degree. Finally, as closed defect ratio increases, the hardening degree which leads to the maximum

solution density becomes smaller. This essentially indicates that logic hardening is very effective to

tolerate open defects.

Secondly, we examine the relationship between pk and logic inclusion ratio r. The following settings

are assumed as a general case: n = 300, d = 20%, and r = 20%. From the results shown in Figure 40,

101

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

hardening degree

no
rm

al
iz

ed
 s

ol
ut

io
n

de
ns

ity

r = 0%
r = 10%
r = 20%

Figure 39. Hardening degree affects solution density with different closed defect ratio r

we can see that when the logic ratio is very low, the solution density for k being 2 or 3 is worse than that

of no hardening (k = 1). But when the logic ratio is increasing beyond 0.2, the solution density in the

case of hardening is greatly improved and far larger than that of no hardening.

Thirdly, we study how solution density is affected by closed defect ratio with logic hardening. The

following settings are still assumed: n = 300, d = 20%, and l = 30%. We can see from results in

Figure 41 that when the closed defect ratio is low, hardening brings about more benefits on solution

density larger than without hardening. Yet, when closed defect ratio is larger than a certain value, which

is roughly 0.25 in the setting, hardening just makes the solution density even worse. As a side-note, as

closed defect ratio increases, both solution densities decrease significantly.

Fourthly, it is interesting also to see how solution density is improved with different logic function

size. The following settings are still assumed: d = 20%, r = 20% and l = 30%. We can see from

102

0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

5

6

7
x 10

−7

logic inclusion ratio

so
lu

tio
n

de
ns

ity

closed defect ratio r= 20%

hardening degree k=1
hardening degree k=2
hardening degree k=3

Figure 40. Logic inclusion ratio affects solution density with different hardening degree

results in Figure 41 that as logic function size increases, solution densities with hardening and without

hardening decrease because large logic functions cause more constraints in the mapping process. Yet, as

logic function size grows, the gap between hardening (k = 2) and non-hardening (k = 1) is significantly

increased (note that solution density is in the logarithmic scale). This indicates that logic hardening

technique can greatly improve the defect tolerance capability when large logic functions are mapped.

7.5.2 Yield improvement with logic hardening

In this section, we examine the performance of the proposed logic hardening scheme. The per-

formance is represented by yield, defined as the percentage of successful logic implementations over

104 defective crossbars, where defects are randomly distributed. In particular, we use the metric of

RunTime-Constrained (RTC) yield, by setting a runtime upperbound for the process of finding a logic

implementation. In general, yield depends on many factors, including logic function size, defect rate,

103

0.1 0.2 0.3 0.4 0.5 0.6

10
−35

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

closed defect ratio

so
lu

tio
n

de
ns

ity

logic inclusion ratio l = 30%

hardening degree k=1
hardening degree k=2

Figure 41. Closed defect ratio affects solution density with different hardening degree

close defect ratio, crossbar size, and runtime limit. The runtime limit is set to be 1 second for RTC yield

comparison. Regarding crossbar size, we use size ratio (expressed as (row ratio)×(column ratio)) to

indicate crossbar hardware cost. The algorithms are implemented in Java on an Intel Core Duo 2.4GHz

workstation with 2GB memory, and all the experiments are performed with the benchmarks.

We first illustrate how RTC yield can be improved by various hardening degrees. We expect that

logic hardening can significantly improve yield when crossbars have mostly open defects with low

closed defect ratio. Considering the logic hardening, crossbars of larger size are used for mapping.

For a fair comparison, crossbars of the same size are used for both hardening and non-hardening cases.

Figure 43(a) shows that RTC yield can be greatly improved as hardening degree increases, where closed

defect ratio is 10%, and size ratio of crossbar versus logic function is 2× 4. The following observations

can be made based on the results.

104

0 200 400 600 800 1000 1200 1400 1600
10

−60

10
−50

10
−40

10
−30

10
−20

10
−10

10
0

logic function size

so
lu

tio
n

de
ns

ity

hardening degree k=1
hardening degree k=2

Figure 42. Solution density gap between hardening and nonhardening increases as logic function size
grows

• As the hardening degree increases (below a certain value), the RTC yield is improved.

• Even though the yield is improved, the benefits get diminished as the hardening degree increases.

For instance, yield improvement is more significant when the duplication level increases from one

(no hardening) to two.

• When the level of duplications increases beyond a certain value, the RTC yield becomes even

worse.

Figure 43(b) shows the corresponding solution density trend as the hardening degree increases.

We can see that solution density is maximized when hardening degree is 3, which explains why yield

becomes worse when hardening degree is increased to 4.

105

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0%

10%

20%

30%

40%

50%

(a) defect rate

R
T

C
 Y

ie
d

Benchmark rd53 of size n=32x10 and r=10%

no hardening
hardening degree k=2
hardening degree k=3
hardening degree k=4

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

x 10
−5

(b) hardening degree

so
lu

tio
n

de
ns

ity

Figure 43. Yield improvements through logic hardening with different hardening degree r = 10%

Second, we examine how a logic function can be effectively hardened tolerate defects by closely

studying two benchmarks. We use the hardening heuristics, which chooses to harden frequently appear-

ing variables, to see the effect of hardening on yield. The yield results of benchmark misex1 are shown

in Figure 44, where the size ratio is 2× 3, where frequently appearing variables are first chosen until all

the variables are gradually selected.

As the first 4 or 8 frequent variables are hardened, the yield is greatly improved. When more other

less frequent variables are hardened, the yield begins to become ever worse. We can see that hardening

most frequent variables improves yield while hardening the non-frequent variables can even reduce the

yield. As we can see from the case study in the previous section (Table III), only 8 variables need to be

hardening so as to improve the yield at closed defect ratio of 10%. Besides, we can observe that yield

106

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Defect rate

R
T

C
 Y

ie
d

Benchmark misex1 of size 32x16

 no vars with duplication
 4 vars with 2 duplication
 8 vars with 2 duplication
12 vars with 2 duplication
16 vars with 2 duplication
optimal hardening

Figure 44. Yield improvements through logic hardening with different hardening degree and r = 10%

curves with all kinds of hardening are bounded by the yield curve with optimal hardening of the average

hardening degree 1.56 (the hardening degrees for all variables are: 3 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1).

So far, we have examined the logic hardening technique, and its significant impact on RTC yield

on some benchmarks especially when defects in crossbars are open defects. Finally we examine the

overall yield improvement using logic hardening over a set of benchmarks in Table IV at a relatively

high closed defect ratio of 20% and with size ratio 2 × 3 of crossbar versus logic function. These

data points shown in Figure 45 are obtained at various defect rates, and the last column in Table IV

shows the average hardening degree with optimal hardening technique. In all the cases, the proposed

scheme with hardening outperforms the schemes without hardening. Yet, different benchmarks have

different yield improvements. From the perspective of a logic function, two factors come into play:

logic function size and logic inclusion ratio. Benchmark 5xp1 and sao2 have significant improvements

107

benchmark size logic inclusion ratio optimal hardening degree
con1 126 18.3% 1.28
rd53 320 45.0% 2.20
sqrt8 640 20.9% 1.56
5xp1 1050 12.5% 1.71

misex1 512 26.7% 1.56
bw 870 16.6% 2.00

9sym 1566 8.6% 2.00
sao2 1160 11.3% 1.62

TABLE IV

BENCHMARK SIZE AND LOGIC INCLUSION RATIO.

on yield, mainly because these two benchmarks have very large size, compared to other benchmarks.

Even though benchmark 9sym has a relatively large size, the yield improvement is still low due to

very low logic inclusion ratio. Furthermore, benchmark rd53, having middle size, also has relatively

significant yield improvement, mainly because of its high logic inclusion ratio.

Overall, RTC yield can be improved by many times with logic hardening at an average hardening

degree of less 2. Even though more than one crossbar column are used for implementing a variable, the

same amount of crossbar area is used for both the hardening scheme and the non-hardening scheme. It

should be noted that RTC yield with non-hardening scheme is already much improved with hardware

redundancy at size ratio of 2× 3, compared to the case of no hardware redundancy at size ratio of 1× 1.

Thus, the actual hardware cost for both schemes is equal. So, logic hardening can greatly improve RTC

yield when low-level redundancy can be provided at a minimum cost.

108

0%

20%

40%

60%

80%

100%

con1 rd53 sqrt8 5xp1 misex1 bw 9sym sao2

mapping only mapping+morphing mapping+morphing+hardening

Benchmarks

R
TC

 y
ie

ld

Figure 45. Yield improvements with hardening at r = 20%

Overall, RTC yield can be improved by many times with logic hardening at an average hardening

degree of less 2. Even though more than one crossbar columns are used for implementing a variable,

the same amount of crossbar area (the same size ratio in Figure 45) is used for both the hardening

scheme and the non-hardening schemes: 1) mapping only and 2) mapping and morphing combined.

It is worth noticing that RTC yield with the mapping-only scheme is already much improved with

hardware redundancy at size ratio of 2 × 3, compared to the case of no hardware redundancy at size

ratio of 1× 1. In other words, if crossbars of the same size as the logic function are used, the yield will

be much lower than in Figure 45 for the mapping-only scheme. When the crossbar area is increased, the

mapping-only scheme cannot take full advantage of the extra rows / columns. Yet, with logic hardening,

these “previously-wasted” rows / columns in the mapping-only scheme can now be exploited.

7.5.3 Runtime cost analysis

In this section, the runtime overhead of the proposed schemes is examined. We present the average

runtime for the successful search, not counting the cases where the search gives up by hitting the pre-set

109

runtime upperbound. Figure 46 shows the runtime for obtaining a valid implementation for three scenar-

ios: 1) mapping only; 2) mapping with exploiting morphing; and 3) mapping with exploiting morphing

and hardening. It turns out that the average runtime for finding a successful logic implementation is

basically the same for scenario 1 and 2, and in many cases, the proposed scenario 2 actually takes less

runtime. Therefore, the proposed morphing scheme not only finds more solutions (as is indicated by the

higher yield), but also finds them as quickly as (if not quicker than) the mapping-only scheme. Figure 46

also shows the runtime overhead for logic equivalence checking, which is the curve that lies flat on the

horizontal axis. Apparently, logic equivalence checking takes almost negligible time compared to the

overall runtime cost. This is achieved through 1) exploiting the similarity in the logic forms, and 2) the

efficient caching scheme of a hash table.

When logic hardening is exploited in the mapping process, runtime for finding a valid implementa-

tion is significantly reduced, as is shown in Figure 46. Logic hardening can quickly achieve a success-

ful implementation, because it can tolerate many new mismatches, which cannot be tolerated through

mapping and morphing. Besides, logic hardening does not incur any runtime overhead, since a logic

function can be optimally hardened off-line, regardless of each individual crossbar defect pattern. Be-

cause of these two reasons, logic hardening can greatly reduce the runtime in achieving a successful

implementation.

7.6 Summary

In this dissertation, we propose a new defect tolerant approach, namely fine-grained logic harden-

ing, by adding calculated redundancy to a logic function to enhance the defect tolerance capabilities.

An analytical framework is proposed to evaluate and fine-tune the amount of redundancy to be added to

110

0.05 0.1 0.15 0.2 0.25 0.3
0

20

40

60

80

100

120

140

defect rate

ru
nt

im
e

(m
ill

is
ec

on
d)

runtime for mapping only
runtime for mapping+morphing
runtime for mapping+morphing+hardening
runtime for equivalence checking

Figure 46. Runtime comparison for benchmark con1

a given logic function, and a method to optimally harden the logic function to maximize the mapping/-

morphing yield. A holistic algorithmic framework is also developed to employ the three techniques

and efficiently search for a valid solution in the combined solution space. Simulation results show that

the proposed scheme boosts defect tolerance capability significantly with many-fold yield improvement

without extra hardware cost, and also reduces the runtime.

CHAPTER 8

SUMMARY AND DIRECTIONS OF FUTURE WORK

The defect rate in self-assembly enabled nanotechnology is significantly higher than that of the

lithography-based CMOS technology. Defect-tolerant logic implementation onto nanocrossbars be-

comes a new fundamental challenge in the post-fabrication design phase, and is in nature a hard prob-

lem. As a result, building reliable nanocrossbar-based systems press for new effective defect tolerance

techniques and also new methodologies to model and evaluate the defect-tolerant logic implementation

process.

8.1 Summary and conclusions

The conventional defect tolerance approaches for nanocrossbar architectures are solely based on the

logic mapping technique, which rigidly tries to find a valid mapping between the logic function and

the defective crossbar. However, even with various heuristic algorithms proposed, the runtime to find

a valid mapping is still long and the yield for utilizing the nanocrossbars is low when the defect rate

is high. In this dissertation, we have investigated the defect tolerant logic implementation problem in

crossbar-based nanoelectronic systems from different perspectives. Essentially, the defect-tolerant logic

implementation is to match the two parties, namely the logic function and the defective nanocrossbar,

and the original functionality of the logic function can be represented in the defective crossbar through

the implementation techniques.

111

112

In addition to the conventional perspective of strictly mapping the logic function and the crossbar

without allowing any mismatches, two fundamentally different defect tolerance schemes can be explored

when the defect-tolerant logic implementation problem in new perspectives. In this work, we have

proposed and developed novel defect tolerance approaches, which are motivated from the perspectives

of the logic function and the defective crossbar. Specially, these two categories of defect tolerance

approaches are:

• Logic morphing: This technique has been proposed exploring the characteristics of a logic func-

tion to further improve the defect tolerance capabilities. In fact, the logic function can be rep-

resented by various equivalent forms, and all these forms can potentially be used for the final

implementation. For defect tolerance purposes, one logic form can be chosen and it can tolerant

most defects. Logic morphing is essentially the proposed technique to explore the right logic

form to best tolerant the defects. Furthermore, in the work we have developed multiple heuristics

especially tailored for expediting the logic morphing process targeting nanocrossbar logic imple-

mentation. Finally, the algorithmic work to integrate the logic morphing and mapping has also

been developed to simultaneously exploit the two techniques.

• Logic hardening: From the perspective of redundancy in a crossbar, a logic function can be im-

plemented via duplication, so that the redundant implementation can become more robust. Logic

hardening has been motivated by redundant implementation, but it brings significant improve-

ments to the traditional blind-duplication based hardening technique. In this technique, a logic

function is analyzed quantitatively based on its structure and connectivity, and then hardening

level for each variable or product is determined based on the criterion that such a hardening de-

113

gree has the highest probability for a successful implementation. Accordingly, the optimal logic

hardening has been developed for a logic function, and such an optimally hardened logic function

has a significant higher implementation success rate and results in great yield improvement.

The two above approaches are orthogonal to each other and can be exploited simultaneously. More

importantly, they are also orthogonal to the existing logic mapping techniques. Compared to the incre-

mental improvement to the logic mapping techniques by other research works, our work has proposed

two fundamentally new approaches, which can significantly enhance the defect tolerance capabilities.

Since the proposed techniques can be explored in combination with the existing techniques, we also

developed a holistic algorithmic framework to exploit logic mapping with heuristics, logic morphing

and logic hardening simultaneously.

Besides the proposed defect tolerance techniques, yield modeling has also been studies and a new

yield modeling, which takes into consideration the runtime cost of logic implementation, has been pro-

posed and analyzed. Both upperbound and lowerbound can be mathematically derived. Furthermore, we

developed the methodologies to evaluate the logic design quality by modeling mismatch number distri-

bution over all the implementation possibilities, in order to quantitatively understand the defect-tolerant

logic implementation and identity the design tradeoffs. The mismatch number distribution reveals the

probability that a valid logic implementation exits and identifies the cost for finding a valid implementa-

tion. It has been shown that the number of mismatches can be well modeled in probabilistic approaches,

and the mismatch number distribution follows Normal/Poisson and Hypergeometric distribution, re-

spectively.

114

8.2 Directions for future work

There are several possible directions to extend our work on the defect tolerance techniques of logic

morphing and logic hardening.

8.2.1 Identification of optimal logic form: static logic morphing

We proposed logic morphing technique to change the logic form dynamically to tolerate the mis-

matches encountered over the course of logic mapping. At the end of the implementation process, the

logic function is implemented in a different form. In this sense, the original logic form is not well posi-

tioned for defect tolerance purposes. In this dissertation, the proposed logic morphing technique began

with any given form, and changed it dynamically as necessary as possible. One possible way to improve

the logic morphing technique is to perform an offline study on the logic function, and change the logic

function form so that it is optimally set for defect tolerance purposes. So, such a static logic morphing

is aware of the defect tolerance capability. Some heuristics can include changing the logic inclusion

ratio of a logic function according to the crossbar defect ratio, avoiding densely connected products or

variables when the connectivity in the whole crossbar planes is sparse, and so on. With the identification

of such a defect tolerance-aware logic form, the logic implementation process can begin with such an

optimal form, which will inevitably reduce the steps of dynamic logic morphing, and result in reduced

runtime.

8.2.2 Mismatch-directed logic synthesis

The proposed dynamic scheme always tries to satisfy the current defect constraints immediately by

changing the logic form to counteract mismatches, without looking ahead at the further-unmapped part.

In other words, the dynamic logic morphing technique treats all the mismatches indifferently, and it

115

is possible that one possible step of morphing to tolerate the immediate mismatch can result in a big

sacrifice on the future logic implementation. The reason for this is not all the mismatches are equal

in terms of their impact on finding a valid implementation. So, it is necessary to perform the logic

morphing based on the evaluation of mismatches in terms of their benefits and costs. Some possible

directions may include evaluating the impact of a mismatch on logic function structure, and also the

impact of a mismatch on logic inclusion ratio. When a mismatch happens to a short product (containing

less variables), it has large impact on logic function structure. Mismatches which can alter the logic

inclusion ratio for matching the crossbar defect ratio are always chosen first. With such an evaluation,

logic form is always changed in the better direction to obtaining the valid solution.

8.2.3 Defect pattern-aware logic hardening

The proposed logic morphing is statically to study the logic function and harden it to maximize the

chance that the variables and products can be successfully mapped. This static process hardens the logic

function optimally for a large number of crossbars sharing the same defect rate. Yet, such a hardening

technique can possibly be further improved when each individual defect pattern of crossbars is taken

into consideration. Basically, a logic function is hardened differentially for different crossbars, so that

for each crossbar the logic function is hardened to the point where the defect tolerance capability is

maximized. Over the course of hardening, Whether a particular variable or product will be hardened

is determined by necessity, which requires to evaluate benefits and cost of each hardening step. One

possible direction is to use the criteria developed by the static logic hardening to evaluate the benefits.

CITED LITERATURE

1. ITRS: International Technology Roadmap for Semiconductors, Emerging Research Devices.
http://www.itrs.net, 2011.

2. Kamins, T., Williams, R., Chen, Y., Chang, Y. L., and Chang, Y.: Chemical Vapor Deposition of
Si Nanowires Nucleated by TiSi2 Islands on Si. In Applied Physics Letters, 76:562–564,
2000.

3. Huang, Y., Duan, X., Cui, Y., Jauhon, L. J., Kim, K., and Lieber, C. M.: Logic Gates and Compu-
tation from Assembled Nanowire Building Blocks. Science, 294:1313–1317, Nov. 2001.

4. Islam, M. S., Sharma, S., Kamins, T. I., and Williams, R. S.: Ultrahigh-density Silicon Nanobridges
Formed Between Two Vertical Silicon Surfaces. Nanotechonology, 15:L5–L8, 2004.

5. Kastner, M. A.: The Single-Electron Transistor. Review of Modern Physics, 64:849–858, 1992.

6. Likharev, K. K.: Single-Electron Devices and Their Applications. Proceedings of the IEEE,
87(4):606–632, 1999.

7. Lent, C. S., Tougaw, P. D., Porod, W., and Bernstein, G. H.: Quantum Cellular Automata.
Nanotechnology, 4:49–57, 1993.

8. Snider, G. L., Orlov, A. O., Joshi, V., Joyce, R. A., Qi, H., Yadavalli, K. K., Bernstein, G. H.,
Fehlner, T. P., and Lent, C. S.: Electronic quantum-dot cellular automata. 2008 9th
International Conference on SolidState and IntegratedCircuit Technology, page 549552,
2008.

9. Lent, C. S., Isaksen, B., and Lieberman, M.: Molecular Quantum-dot Cellular Automata. Journal
of the American Chemical Society, 125(4):1056–1063, 2003.

10. Wolf, S. A., Awschalom, D. D., Buhrman, R. A., Daughton, J. M., von Molnar, S., Roukes, M. L.,
Chtchelkanova, A. Y., and Treger, D. M.: Spintronics: A Spin-based Electronics Eision for
the Future. Science, 294:1488–1495, 2001.

11. Schmidt, G.: Spintronics in semiconductor nanostructures. Physica E: Low-dimensional Systems
and Nanostructures, 25(2-3):150–159, 2004.

116

117

CITED LITERATURE (Continued)

12. Dietl, T., Ohno, H., and Matsukura, F.: Ferromagnetic Semiconductor Heterostructures for Spin-
tronics. IEEE Transactions on Electron Devices, 54(5):945–954, 2007.

13. Mazumder, P., Kulkarni, S., Bhattacharya, M., Sun, J. P., and Haddad, G. I.: Digital Circuit Ap-
plications of Resonant Tunneling devices. Proceedings of the IEEE, 86(4):664–686, Apr.
1998.

14. Prost, W., Auer, U., Tegude, F. J., Pacha, C., Goser, K. F., Janssen, G., and Van Der Roer, T.:
Manufacturability and Robust Design of Nanoelectronic Logic Circuits Based on Resonant
Tunnelling Diodes. International Journal of Circuit Theory and Applications, 28(6):537–
552, 2000.

15. Bergman, J. I., Chang, J., Joo, Y., Matinpour, B., Laskar, J., Jokerst, N. M., Brooke, M. A., Brar, B.,
and Beam, E.: RTD/CMOS Nanoelectronic Circuits: Thin-film InP-based Resonant Tun-
neling Diodes Integrated with CMOS Circuits. IEEE Electron Device Letters, 20(3):119–
122, 1999.

16. Avouris, P., Appenzeller, J., Martel, R., and S.Wind: Carbon Nanotube Electronics. Proceedings
of the IEEE, 91(11):1772–1784, 2003.

17. Avouris, P., Appenzeller, J., Martel, R., and Wind, S. J.: Carbon Nanotube Electronics. Proceedings
of the IEEE, 91(11):1772–1784, 2003.

18. Avouris, P.: Carbon Nanotube Electronics and Photonics. Physics Today, 62(1):34, 2009.

19. Zhang, Z., Fu, Y., Li, B., Feng, G., Li, C., Fan, C., and He, L.: Self-Assembly-Based Structural
DNA Nanotechnology. Current Organic Chemistry, 15(4):534–547, 2011.

20. Lee, Y. S.: Self-Assembly and Nanotechnology. John Wiley and Sons, Inc, 2008.

21. Ariga, K., Lee, M. V., Mori, T., Yu, X.-y., and Hill, J. P.: Two-dimensional nanoarchitectonics based
on self-assembly. Advances in Colloid and Interface Science, 154(1-2):20–29, 2010.

22. Kamins, T. I. and Williams, R. S.: Trends in Nanotechnology: Self-Assembly and Defect Tolerance.
MST News, pages 34–36, 2001.

23. Bachtold, A., Hadley, P., Nakanishi, T., and Dekker, C.: Logic Circuits with Carbon Nanotube
Transistors. Science, 294:1317–1320, 2001.

118

CITED LITERATURE (Continued)

24. Butts, M., DeHon, A., and Goldstein, S. C.: Molecular Eletronics: Devices, Systems and Tools for
Gigagate, Gigabit Chips. Int’l Conf. on Computer-Aided Design, pages 443–440, 2002.

25. Cui, Y. and Lieber, C. M.: Functional Nanoscale Electronics Devices Assembled Using Silicon
Nanowire Building Blocks. Science, 291:851–853, 2001.

26. Beckett, P. and Jennings, A.: Towards Nanocomputer Architecture. Asia-Pacific Computer System
Architecture Conference, pages 141–150, 2001.

27. Al-Yamani, A. A., Ramsundar, S., and Pradhan, D. K.: A Defect Tolerance Scheme for Nanotech-
nology Circuits. Fundamental Theory and Applications IEEE Transactions on Circuits and
Systems, 54(11):2402–2409, 2007.

28. Ma, X., Strukov, D., Lee, J., and Likharev, K.: Afterlife for Silicon: CMOL Circuit Architectures.
Proc. IEEE Conf. on Nanotechnology, pages 175–178, 2005.

29. Strukov, D. B. and Likharev, K. K.: CMOL FPGA: A Reconfigurable Architecture for Hybrid Dig-
ital Circuits with Two Terminal Nanodevices. Nanotechnology, 16:888–900, Apr. 2005.

30. Simsir, M. O., Cadambi, S., Ivanvcic, F., Roetteler, M., and Jha, N. K.: A Hybrid Nano-CMOS
Architecture for Defect and Fault Tolerance. ACM Journal on Emerging Technologies in
Computing Systems, 5(3):1–26, 2009.

31. Lee, B. H., Hwang, H. J., Cho, C. H., Lim, S. K., Lee, S. Y., and Hwang, H.: Nano-
electromechanical Switch-CMOS Hybrid Technology and its Applications. Journal of
Nanoscience and Nanotechnology, 11(1):256–261, 2011.

32. Bose, P. and Abraham, J.: Test Generation for Programmable Logic Arrays. 19th Design
Automation Conference, pages 574 –580, June 1982.

33. Bushnell, M. L. and Agrawal, V. D.: Essentials of Electronic Testing for Digital, Memory, and
Mixed-signal VLSI Circuits. 2000.

34. Goldstein, S. C. and Budiu, M.: NanoFabrics: Spatial Computing Using Molecular Elec-
tronics. Proceedings 28th Annual International Symposium on Computer Architecture,
00(June):178–189, 2001.

35. DeHon, A.: Array-Based Architecture for FET-Based, Nanoscale Electronics. IEEE Transactions
on Nanotechnology, 2(1):109–162, 2003.

119

CITED LITERATURE (Continued)

36. Chen, Y., Jung, G.-Y., Ohlberg, D. A. A., Li, X., Stewart, D. R., Jeppesen, J. O., Nielsen, K. A.,
Stoddart, J. F., and Williams, R. S.: Nanoscale Molecular-Switch Crossbar Circuits.
Nanotechnology, 14(4):462–468, 2003.

37. Heath, J. R.: A Defect-Tolerant Computer Architecture: Opportunities for Nanotechnology.
Science, 280(5370):1716–1721, 1998.

38. Tahoori, M. B.: Defect Tolerance in Crossbar Array Nano-Architectures. Emerging
Nanotechnologies: Test, Defect Tolerance, and Reliability, Springer, pages 121–151, 2007.

39. Tahoori, M. B.: Application-Independent Defect Toleranceof Reconfigurable Nanoarchitectures.
ACM Journal on Emerging Technologies in Computing Systems, pages 197–218, 2006.

40. Tahoori, M. B.: Low-overhead Defect Tolerance in Crossbar Nanoarchitectures. ACM Journal on
Emerging Technologies in Computing Systems, 5(2):1–24, 2009.

41. Tahoori, M. B.: BISM : Built-in Self Map for Hybrid Crossbar. Proceedings of the 19th ACM
Great Lakes symposium, pages 153–156, 2009.

42. Tahoori, M. B.: BISM : Built-in Self Map for Crossbar Nano-Architectures. Workshop on
Dependable and Secure Nanocomputing (DSN), 2008.

43. Rao, W., Orailoglu, A., and Karri, R.: Topology Aware Mapping of Logic Functions
onto Nanowire-base Crossbar Architectures. IEEE/ACM Design Automation Conference,
pages 723–726, July 2006.

44. Hogg, T. and Snider, G.: Defect-tolerant Logic with Nanoscale Crossbar Circuits. Journal of
Electronic Testing, 23:117–129, Jun. 2007.

45. Hogg, T. and Snider, G. S.: Defect-tolerant Adder Circuits with Nanoscale Crossbars. IEEE
Transactions on Nanotechnology, 5(2):97–100, 2006.

46. Naeimi, H. and DeHon, A.: A Greedy Algorithm for Tolerating Defective Crosspoints in NanoPLA
Design. In Proceedings of Internal Conference on Field-Programmable Technology, pages
49–56, 2004.

47. Su, Y. and Rao, W.: Defect-tolerant Logic Mapping on Nanoscale Crossbar Architectures and
Yield Analysis. IEEE International Symposium on Defect and Fault Tolerance (DFT) in
VLSI Systems, pages 322–330, Oct. 2009.

120

CITED LITERATURE (Continued)

48. Su, Y. and Rao, W.: Runtime Analysis for Defect-tolerant Logic Mapping on Nanoscale
Crossbar Architectures. IEEE/ACM International Symposium on Nanoscale Architectures
(NANOARCH), Jul. 2009.

49. Su, Y. and Rao, W.: On Mismatch Number Distribution of Nanocrossbar Logic Mapping. 2010
IEEE International Conference on Computer Design (ICCD), pages 132–137, Oct. 2010.

50. Huang, J., Tahoori, M., and Lombardi, F.: On the Defect Tolerance of Nano-scale Two-Dimensional
Crossbars. In 19th IEEE International Symposiumon Defect and Fault Tolerance (DFT) in
VLSI Systems, pages 96–104, 2004.

51. Rao, W., Orailoglu, A., and Karri, R.: Logic mapping in crossbar-based nanoarchitectures. IEEE
Design Test of Computers, 26(1):68–77, 2009.

52. Crocker, M., Hu, S., and Niemier, M.: Defect Tolerance in QCA-Based PLAs. IEEE International
Symposium on Nanoscale Architectures, pages 46–53, 2008.

53. Crocker, M., Hu, X. S., and Niemier, M.: Defects and faults in qca-based plas. ACM Journal on
Emerging Technologies in Computing Systems, 5(2):1–27, 2009.

54. Rad, R. and Tehranipoor, M.: A Reconfiguration-based Defect Tolerance Method for
Nanoscale Devices. 21st IEEE International Symposium on Defect and Fault Tolerance in
VLSI Systems, 2006., pages 107 –118, 2006.

55. Zheng, Y. and Huang, C.: Defect-aware Logic Mapping for Nanowire-based Programmable Logic
Arrays via Satisfiability. Design, Automation and Test in Europe (DATE), pages 1279–
1283, Apr. 2009.

56. Zheng, Y. and Huang, C.: Fault-Tolerant Design for Nanowire-Based Programmable Logic Arrays.
Lecture Notes in Electrical Engineering, 58:51–68, 2010.

57. Tunc, C. and Tahoori, M.: On-the-fly Variation Tolerant Mapping in Crossbar Nano-Architectures.
VLSI Test Symposium (VTS), 2010 28th, pages 105 –110, 2010.

58. Tunc, C. and Tahoori, M.: Variation Tolerant Logic Mapping for Crossbar Array Nano Archi-
tectures. Design Automation Conference (ASP-DAC), 2010 15th Asia and South Pacific,
pages 855 –860, 2010.

59. Tunc, C.: Variation and Defect Tolerance for Nano Crossbars. Computer Engineering, 2010.

121

CITED LITERATURE (Continued)

60. Zamani, M. and Tahoori, M.: Variation-aware Logic Mapping for Crossbar Nano-
architectures. Design Automation Conference (ASP-DAC), 2011 16th Asia and South
Pacific, pages 317–322, 2011.

61. Go andren, S., Ugurdag, H., and Palaz, O.: Defect-aware nanocrossbar logic mapping using bi-
partite subgraph isomorphism and canonization. Test Symposium (ETS), 2010 15th IEEE
European, page 246, may 2010.

62. Su, Y. and Rao, W.: Defect-Tolerant Logic Implementation onto Nanocrossbars by Exploiting Map-
ping and Morphing Simultaneously. International Conference on Computer Aided Design
(ICCAD) 2011, pages 456–462, 2011.

63. Yuan, B. and Li, B.: Diversity Mapping Scheme for Defect and Fault Tolerance in Na-
noelectronic Crossbar. Information Science and Technology (ICIST), 2011 International
Conference on, pages 149 –154, march 2011.

64. Farazmand, N. and Tahoori, M.: Online Multiple Error Detection in Crossbar Nano-Architectures.
IEEE International Conference on Computer Design 2009, pages 335 –342, 2009.

65. Rao, W., Orailoglu, A., and Karri, R.: Nanofabric Topologies and Reconfiguration Algorithms to
Support Dynamically Adaptive Fault Tolerance. IEEE VLSI Test Symposium VTS, pages
214–221, 2006.

66. Rao, W., Orailoglu, A., and Karri, R.: Logic Level Fault Tolerance Approaches Targeting Nano-
electronics PLAs. Design Automation and Test in Europe DATE, pages 1–5, 2007.

67. Polian, I. and Rao, W.: Selective Hardening of NanoPLA Circuits. IEEE International Symposium
on Defect and Fault Tolerance in VLSI Systems (DFT), pages 263–271, Oct. 2008.

68. Farazmand, N. and Tahoori, M. B.: Multiple Fault Diagnosis in Crossbar Nano-architectures. 2010
15th IEEE European Test Symposium ETS10, pages 94–99, 2010.

69. Han, J. and Jonker, P.: A Defect- and Fault-tolerant Architecture for Nanocomputers.
Nanotechnology, 14(2):224–230, 2003.

70. Bahar, R., Mundy, J., and Chen, J.: A Probabilistic-based Design Methodology for Nanoscale Com-
putation. International Conference on Computer Aided Design 2003, pages 480 – 486,
2003.

122

CITED LITERATURE (Continued)

71. Nepal, K., Bahar, R. I., Mundy, J. L., Patterson, W. R., and Zaslavsky, A.: Designing nanoscale
logic circuits based on markov random fields. J. Electronic Testing, pages 255–266, 2007.

72. Prosser, P.: An Empirical Study of Phase Transitions in Binary Constraint Satisfaction Problems.
Artificial Intelligence, 81(1-2):81–109, 1996.

73. North Carolina State University, D. o. C. S.: Collaborative Benchmarking Laboratory. 1993
LGSynth Benchmarks, 1993.

74. Shannon, C. E.: The Synthesis of Two-Terminal Switching Circuits. Bell System Technical
Journal, 28:59–98, 1949.

VITA

NAME Yehua Su

EDUCATION Ph.D., Electrical and Computer Engineering, University of Illinois at Chicago,
Chicago, Illinois, December, 2012

M.S., Electrical Engineering, Chinese Academy of Sciences, Beijing, China,
July, 2007

B.S., Electrical Engineering, Capital Normal University, Beijing, China, Jan-
uary, 2004

EXPERIENCE Intern Researcher, Nvidia Corp. Santa Clara, CA, 05/2012 - 08/2012

Intern Researcher, Motorola Corp. Arlington Heights, IL, 05/2011 - 08/2011

Research Assistant, Dept. of ECE, University of Illinois at Chicago, 08/2007 -
05/2011

Teaching Assistant, Dept. of ECE, University of Illinois at Chicago, 08/2007 -
05/2011

PUBLICATIONS Y. Su and W. Rao: Defect-Tolerant Logic Implementation onto Nanocrossbars
by Exploiting Mapping and Morphing Simultaneously. IEEE International
Conference on Computer Aided Design (ICCAD), pages. 456-462, Nov. 2011.

Y. Su and W. Rao: On Mismatch Number Distribution of Nanocrossbar Logic
Mapping. IEEE International Conference on Computer Design (ICCD), pages.
132-137, Oct. 2010.

Y. Su and W. Rao: Yield Modeling and Assessment for Nanocrossbar Systems.
Invited paper. IEEE International Midwest Symposium on Circuits and Systems,
pages 8-11, Aug. 2010.

123

124

VITA (Continued)

Y. Su and W. Rao: Runtime-constrained Yield Model in Nanocrossbar Sys-
tems. University Government Industry Micro/nano (UGIM) Symposium, Vol.
1, Jun. 2010.

Y. Su and W. Rao: Runtime Analysis for Defect-tolerant Logic Mapping on
Nanoscale Crossbar Architectures. IEEE/ACM International Symposium on
Nanoscale Architectures (NANOARCH), pages 75-78, Jul. 2009.

Y. Su and W. Rao: Defect Tolerant Logic Mapping on Nanoscale Crossbar Ar-
chitectures and Yield Analysis. IEEE International Symposium on Defect and
Fault Tolerance in VLSI Systems (DFTS), pages 322-330, Oct. 2009.

