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SUMMARY 

 

In this thesis, a numerical simulation of the linear behavior of a turbine blade subjected 

to a rotation with large displacements has been carried out by the use of a specialized code. 

A finite element formulation of the problem has been considered in order to to develop a 

realist model and examine the vibration of the blade undergoing a rigid body rotation. In or-

der to achieve this goal, the dynamics of the multibody rotor blade system has been studied 

by the use of the Floating Frame of Reference Formulation [1] applied to the case of a de-

formable body, the blade, connected to a rigid body, which represents a rotor rotating at a 

constant angular velocity.  

The second part of the thesis focuses on the non-linear dynamics  of a system consisting 

of two blades with a underplatform damper between them. Turbine blades frequently reach 

the resonance conditions due to the high speed of rotation in working environment with the 

consequence of an increased amplitude of vibration which can cause fatigue failure of the 

structure. The presence of an underplatform damper can help to dissipate a part of the en-

ergy at resonance through frictional contact between the blades platform and the damper, 

increasing the fatigue life of the blades.



1 
 

 

1. INTRODUCTION 

 

1.1. The finite element method  

 

Nowadays most engineering problems have become so complex to require very 

powerful tools in order to solve them, and in many cases the simulation of the physics has 

become essential. One of the most important theory that can be applied in order to simu-

late the behavior of a real system without losing in accuracy, is the finite element meth-

od, which had been developed in the second half of the 1900’. 

A finite element method is a particular kind of method that can be applied to study 

the behavior of a complex physical system discretizing it into a set of less complex com-

ponents, called finite elements. The physical behavior of each element is well known and 

can be expressed by the use of  certain shape functions, i.e. functions which enable us to 

define how the element deforms.  Once the dynamics of the single simple component is 

defined, the overall behavior of the physical system can be obtained by connecting or as-

sembling the collection of all the elements. Many different types of elements are availa-

ble in literature, with dependence on the accuracy and the complexity of the system 

which we are dealing with. The subdivision of the physical domain into a set of smaller 

components has several advantages, including simplification of the problem formulation 

and an accurate model representation. Once the model is developed, the resulting set  of 

algebraic and differential equations can be solved numerically. 

In this thesis, the finite element method is used to investigate the linear and non-

linear dynamics of two turbine blade system. Turbine blades are mechanical components 
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frequently subjected to fatigue failure due to application of cyclic loads during their 

functional operation. Due to the frequent shutting down and starting up,  turbine blades 

frequently reach resonance with the consequence of a growth in the amplitude of vibra-

tion and in a reduction of their fatigue life. 

This is the reason why a complete dynamic analysis of a simple model of turbine 

blades has been investigated looking into the linear and non-linear behavior of the sys-

tem. The first part of the thesis analyses the blade’s deformation due to the application of 

a rotation with large displacement by the use of a multibody code. The blade has been 

fixed on a rigid rotor and brought in rotation at a constant angular velocity in order to 

simulate what happens on the turbine disk. The model has been studied by the applica-

tion of the Floating Frame of Reference Formulation according to which the blade is con-

sidered as deformable body, discretized into a set of finite elements. The discretization of 

the model is carried out using different elements in order to show how different finite el-

ements approximations can lead to the same results.  

Since the motion of the blade is essentially a rotation about a fixed axis, the first two 

tests are carried out considering a planar motion of the body by the use of two planar fi-

nite elements, a 2D plate and a 2D triangle, implemented in the general purpose multi-

body system code SAMS/2000. Finally the same simulation is carried out using a 3D mod-

el, using solid elements to discretize the system components. This analysis is performed in 

order to establish a general multibody system procedure that can be used in the future in 

the analysis of more complex rotor blades systems. 

After examining the linear behavior of the blade, the second part of the thesis takes 

into account the dynamics of the blade in presence of an underplatform damper with fric-

tion contact. Many articles about the coupling between turbine blades and friction 

dampers can be found in literature: turbine blades are usually characterized by a very low 
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structural damping which is not sufficient to prevent fatigue failure of the blades due 

to the high amplitude of vibration reached at resonance. This is the main reason why an 

underplatform damper is often used between the blades in order to dissipate a certain 

amount of energy through friction. The presence of the damper does not allow only a re-

duction of the amplitude of vibration but also a slight increase in the resonance frequen-

cy. Resonant fatigue is an important failure mechanism that usually arises in turbine 

blades due to the application of an external force acting at a frequency equal to the natu-

ral frequency of the blade. An inadequate damping can lead to an increase of the blade’s 

amplitude of vibration with the consequence high cycle fatigue failure. In this thesis, an 

asymmetric damper with a cylindrical and a flat contact surfaces will be studied coupled 

with a set of two dummy blades connected to a fixture. 

It is important to point out that a simplified model has been used in this investiga-

tion, in order to have an efficient solution and at the same time show a possible applica-

tions of the same procedure to more realistic problems. 
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1.2. Overview of the physical model and statement of the problem 

 

As already mentioned before, this investigation is focused on the development of a 

simplified model of two turbine blades, fastened on a fixture and detached by an under-

platform damper between them. Each blade is characterized by an airfoil, a central body 

and a root which enables to attach the blade to its fixture. The central part of the blade is 

rounded in order to allow the space for the damper. The shape of the fixture depends on 

the measuring tools used to study the whole system and it is designed in order to keep 

two blades. Finally the underplatform damper is fixed between the two blades in order to 

influence the dynamics of both, taking into account also the friction contact. Figure 1.1 

shows the structure of the physical system previously described. 

 

 

Figure 1.1 Blades model. 
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In the first part of the thesis, the linear behavior of the blade subjected to a rotation 

with a large displacement examined by considering the blade as a flexible body connected 

to a rectangular rotor which rotates about a fixed axis. The rotor is modeled as a rigid 

body, rotating at a constant angular velocity. The blade is centered on the rotor and con-

nected to it using a rigid joint.  Turbine blades usually work in hostile environment, at 

high temperature and at a very high angular velocity, this is the reason why a numerical 

simulation of the blade’s dynamics can be useful to define how the blade vibrates during 

rotation subjected to the centrifugal force. The discretization of the model obtained 

through the finite element Analysis enables to consider the displacement of each node of 

the body. 

The second part of the work, mainly deals with the non-linear dynamics of two-blade 

system due to the presence of the contact forces induced by the underplatform damper 

between them. During the blade rotation, the centrifugal force presses the damper 

against the blades, introducing the non-linearity caused by the friction contact. The pres-

ence of the damper not only affects the natural frequencies of the system but also its 

modal shapes, allowing a reduction of the amplitude of vibration of the blades at reso-

nance. This results of the analysis of the forced response of the blades will be obtained in 

the frequency and time domain focusing on the advantages of the two approaches. The 

finite element model and the preliminary calculations will be performed in Ansys, while 

the numerical simulation of the non-linear dynamics will be evaluated using a special 

purpose developed Matlab code developed by the author of this thesis. 
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Figure 1.2 FEM model of the physical system. 
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2. LINEAR DYNAMICS OF THE BLADE  

 

In this first part of the thesis, the numerical simulation of the linear dynamics of the 

single blade is  performed using a general purpose multibody system code called SAMS, a 

computer simulation program which enables to study complex multibody systems con-

sisting of rigid and deformable bodies.  

A discretization of the blade as a deformable body is made in order to evaluate its 

motion by the application of the Floating Frame of Reference Formulation [1]. Two differ-

ent  2-dimensional elements have been purposely developed and validated to simulate 

the rotation of the blade using the SAMS code. For sake of simplicity, since the blade ro-

tates about a fixed axis, its motion can be first approximated as planar motion which justi-

fies the use of the planar finite elements. In addition, another three dimensional simula-

tion with solid elements implemented in the program is performed to obtain a model 

close to the real system. 

 

 

 

 

 

 

 

 

 



 8 

2.1. Multibody systems 

 

A considerable amount of mechanical and physical systems are characterized by the 

presence of interconnected components which undergo large translational and rotational 

displacements. A multibody system is defined as a set of bodies whose motion is con-

strained by the presence of different types of joints. A multibody system can be repre-

sented by either rigid and/or by deformable bodies. A body is said to be rigid if the rela-

tive distance between two arbitrary points on the body remains the same after the appli-

cation of a translation or a rotation, while it is said to be deformable if the application of a 

large rotation or translation produces a change in the position of the points inside the 

body. The rigid body motion can be described by the use of six generalized coordinates, 

three rotations and three translations, producing a highly non-linear mathematical mod-

el. 
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2.1.1. Reference frames 

 

To describe the dynamics of a multibody system, it is necessary to introduce a set of 

reference frames in order to evaluate the position of the body and define its kinematics. 

A frame of reference is a reference system defined by three orthogonal axes intersecting 

in the origin of the frame.  

Generally two different types of reference system are considered in a multibody sys-

tem, a global reference system which is fixed in space and unique for all the bodies and a 

local reference system which is associated with a  body in the multibody system. It is pos-

sible to define with   ,   and   respectively the three axes of the global reference sys-

tem and with   
 ,  

  and   
  the three axes of the local one, where   indicates the body we 

are dealing with. Finally   ,    and    and   
 ,   

  and   
  represent respectively the unit vec-

tors of the global and the local reference systems. It follows that the position of a generic 

point in the multibody system, can be easily expressed in terms of both the global and the 

local coordinates; if   is the vector indicating the position of a generic point in the global 

reference system, it follows that: 

 

    ̅ 
   

   ̅ 
   

   ̅ 
   

  2.1 

     
      

      
    2.2  

 

Where    is the generic vector which indicates the position of a point in the global 

reference system and   
  and  ̅ 

  represents the component of the vector defined in the 

global and in the local reference systems, respectively.
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The orientation of the local reference system with respect to the global one can be 

expressed through the use of a transformation matrix, which has a definition that de-

pends on the 2D or 3D case. 

 

      ̅  2.3 

 

   is the transformation matrix that defines the orientation of the coordinate system 

of body  . 

 

 

Figure 2.1 Global and local reference frames. Reprinted from Shabana, Ahmed A., Dynamics of Multi-

body Systems. Chicago: Cambridge University Press 2005, 2005: 17. 
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2.1.2. Rigid body mechanics 

 

The configuration of a rigid body in space can be defined using six independent co-

ordinates, three translations which define the position of the body reference point and 

three rotations required to show the body orientation. In the simpler case of a 2D prob-

lem, only three coordinates are necessary to define the configuration of the body, two 

translations and one rotation. The generic position of a point in the space,   , can be ex-

pressed as the sum of a vector,   , which defines the location of the origin of the body 

reference system with respect to the global system and a second vector which defines the 

position of the point in the local reference system. 

  

         ̅  2.4 

 

Differentiating equation 2.4 with respect to time, it is possible to obtain the kine-

matic equations of the rigid body. The angular velocity vector   is obtained from the               

differentiation of the transformation matrix and in the simpler case of planar motion it is 

possible to show that the angular velocity vector is always equal to the product of the an-

gular velocity,  ̇, and the unit vector along the axis of rotation, and the angular velocity 

vector is the same in the global and local reference systems. 

 

 ̇   ̇      ̅   ̅    ̇     ̃̅  ̅  2.5 
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or defined in the global reference system: 

 

 ̇   ̇           ̇   ̃    2.6 

 

Where   and  ̅ are respectively the angular velocity vectors defined in the global 

and in the local reference systems.  ̃ and  ̃̅ are two skew symmetric matrices associated 

with the angular velocity vector and they can be used to replace the cross product. In the 

planar analysis, the angular velocity vector can be defined in the global and local systems 

as follows:  

 

     ̇    2.7 

 

 ̅    ̇   
  2.8 

 

Differentiating again the velocity equation, one obtains the acceleration equation of 

the arbitrary point. It is evident that the acceleration is characterized by the presence of a 

normal component orthogonal to the cross product between the angular velocity vector 

and the position vector, and a tangential component orthogonal to the position vector   . 

   is the angular acceleration vector defined in the global reference system, while the 

vector with the bar represents the angular velocity defined in the local reference system. 
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 ̈   ̈      ̅   ̅       ̅    ̅   ̅    2.9 

 

 ̈   ̈  (     )              2.10 

 

The rigid body dynamics represents a useful approximation to define the behavior of 

a body subjected to translations and rotations with large displacements, and in this work 

it is used to describe the rotor on which the turbine blade is mounted during the rotation. 

The blade model is more complex since it is assumed as a deformable body. 
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2.1.3. Deformable body mechanics 

 

The assumptions used ti formulate the dynamic equations of a rigid body are not val-

id in the case of a deformable body, which changes its shape when the body is ubjected 

to external forces. The definition of the reference frames remains the same for both the 

local and the global references; the only change is due to the fact that the vector which 

defines the location of the arbitrary point in the deformable body with respect to the 

origin of the body coordinate system no longer has a constant length. 

The vector  ̅  is now obtained by the sum of a constant component,  ̅ 
  which de-

fines the position of a generic point    inside the deformable body in the undeformed 

configuration, and a second component  ̅ 
  which defines the deformation vector, and 

varies with dependence on the motion of the body.  

 

 ̅    ̅ 
  +  ̅ 

  2.11 

 

The velocity equations in the case of the deformable body can be directly obtained 

by differentiating the position equation 2.4 as: 

 

 ̇   ̇      ̅   ̅      ̇̅ 
  2.12 
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In a similar manner,  the acceleration equation can be obtained as 

 

 ̈   ̈      ̅   ̅       ̅    ̅   ̅      ( ̅   ̇̅ 
 )     ̈̅ 

  2.13 

 

The same equations can be written in terms of the global reference system as previ-

ously discussed in the case of the rigid body. The two additional terms in the acceleration 

equation are related respectively to the Coriolis component of the acceleration and the 

local component of the acceleration which takes into account the contribution of the de-

formation. The turbine blades studied in this thesis will be considered as deformable bod-

ies, while the block representing the rotor was assumed to be a rigid body. 
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2.1.3.1. Floating frame of reference formulation 

 

In the previous subsections, the main equations governing the kinematics of a multi-

body system are represented, it is now necessary to introduce how to formulate the 

equations of motion of deformable bodies subjected to translations and rotations with 

large displacements using the Floating Frame of Reference formulation [1] in terms of the 

inertia shape integrals in addition to the vector of the generalized forces and the stiffness 

and mass matrices. The inertia shape integrals can be defined using the assumed dis-

placement field, represent the coupling between the elastic body deformation and the 

reference motion. Two different kinds of generalized coordinates, elastic and reference, 

will be used to define the configuration of the deformable body in space. The first de-

scribes the deformation of the body with respect to its reference, while the second de-

fines the orientation and the location of the body reference with respect to the global 

system. 

In the case of a deformable body, it was shown that the position of an arbitrary 

point can be defined by the vector  ̅ , equation 2.11, which has a constant component  ̅ 
  

and a variable component  ̅ 
 . The variable component  ̅ 

  is obtained by the product of a 

matrix of shape functions,   , i.e. functions which describe the shape assumed by the 

body during deformation, and a vector of elastic coordinates    
 .  

 

 

 ̅ 
      

  2.14 
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The number of elastic coordinates can be chosen depending on the system and forc-

es to be examined. This is the case of the turbine blade considered in this thesis which 

has been discretized in a set of finite elements, each of which has a certain number of 

nodal degrees of freedom that define the number of elastic coordinates. 
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2.1.3.2. Mass matrix 

 

In order to develop the equations of motion of a deformable body, it is necessary to 

develop a formulation of its mass matrix which takes into account the inertia properties 

of the body. In the case of a continuous body, the kinetic energy can be written as fol-

lows: 

 

   
 

 
    ̇   ̇     2.15 

 

Where  ̇  is the velocity equation for a deformable body already introduced in sub-

section 2.1.3, taking into account the effect of the elastic coordinates and obviously the 

shape functions.    is the density of the continuous body, and   its volume. It follows 

that equation 2.12 can be rewritten as: 

 

 ̇   ̇     ̃̅  ̅  ̇       ̇ 
  2.16 

 

Or in a matrix form as: 

 

 ̇  [     ̃̅  ̅     ] [

 ̇ 

 ̇ 

 ̇ 
 
]      ̇  2.17 
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  represents a 3x3 identity matrix since we are dealing with a 3D case,  ̅ is a matrix 

which depends on the particular set of orientation parameters used to define the orienta-

tion of a body in space, Euler angles, Rodriguez Parameters, or Euler Parameters, and re-

lates the angular velocity vector to the time derivatives of the orientation coordinates of 

the body according to the following relation: 

 

 ̅    ̅  ̇  2.18 

 

Finally  ̇ is the vector which contains all the generalized coordinates used to de-

scribe the motion of the body. The dimensions of this vector depends on the number of 

elastic coordinates used to define the behavior of the deformable body since the coordi-

nates related to the body translation,  ̇ , and orientation,  ̇ are respectively three for the 

position and three or four for the orientation depending on the set of orientation param-

eters used. Substituting equation 2.17 in equation 2.15, one can define the mass matrix 

for a deformable body as 

 

   
 

 
 ̇  [     

 
     ]  ̇  2.19 

 

   
 

 
 ̇     ̇  2.20 
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with    the symmetric mass matrix of the deformable body defined as 

 

        
 
      2.21 

 

      [

 

  ̅   ̃̅     

      
] [     ̃̅  ̅     ]     2.22 

 

This mass matrix can be written in a partitioned form as: 

 

    [

   
    

    
 

   
    

    
 

   
    

    
 

] 2.23 

 

Where the matrices along the main diagonal represent respectively the mass matrix 

associated with the pure translation of the body,    
 , the mass matrix associated with 

the pure rotation,    
 , and finally the mass matrix associated with the deformation, 

   
 . The other matrices represent the inertia coupling between the rigid body translation 

and rigid body rotation,    
  or    

 , and the coupling between the elastic and the refer-

ence motion,    
  and    

 . In the case of the rigid body, the formulation of the mass 

matrix  is much more straightforward since the contribution of the deformation and it’s 

coupling with the reference motion are not present. In addition to this, for a rigid body if 
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the coupling between the rotational and translation coordinates can be eliminated 

by the choice of a centroidal body reference system for the body, i.e. a body reference 

with origin fixed at the body center of mass. This is not possible, in general, in the case of 

the deformable body since the body deformation will move its reference from that point. 

For convenience, the formulation of the mass matrix of the deformable body is now 

summarized. 
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2.1.3.3. Stiffness matrix 

 

In order to complete the study of the deformable body, it is necessary to take into 

account of the effects that arise from the deformation of the body and particularly from 

the elastic forces. According to the principle of the virtual work, the virtual work of the 

elastic forces can be expressed in the following form [1]: 

 

   
               2.24 

 

Where     represents the virtual change of the elastic strain, while     the stress 

vector. The strain can be expressed as the product of the differential operator     and the 

deformation vector   ̅ 
 : 

 

        ̅ 
          

    2.25 

 

                      
    2.26 

 

    is the symmetric matrix of the elastic coefficients. Substituting equations 2.25 

and 2.26 into equation 2.24, one can define the stiffness matrix of the deformable body. 
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  (     )
 
           

     2.27 

 

   
     

     
    

  2.28 

 

   
    (     )

 
            2.29 

 

   
  represents the stiffness matrix of the deformable body associated with its elastic 

coordinates. 
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2.1.3.4. Equations of motion 

 

Many formulations can be used to solve the dynamics of a system of bodies, and one 

of them is the Lagrangian formulation of the equations of motion in which the constraint 

forces are obtained from the constraint Jacobian matrix and the vector of Lagrange mul-

tipliers,   . As previously explained, a rigid body is characterized by 6 independent coordi-

nates defining its position and orientation in space. If we would like to consider a multi-

body system, in order to connect the bodies, a certain number of its degrees of freedom 

will be eliminated as the result of the constraints, each of which has its own algebraic 

equation. The constraint forces that arise from the motion constraints are evaluated us-

ing Lagrange multipliers in the Lagrangian formulation. 

.  

 

   ̈         
  
     

     
  2.30 

 

Equation 2.30 represents the general formulation of the equations of motion for a 

3D case.    is the vector of the generalized coordinates employed to study the deforma-

ble body,   is the vector of the Lagrange multipliers,  
  
  is the transpose of the constraint 

Jacobian matrix of the multibody system,   
  is the vector of the external forces and final-

ly   
 is the vector of the centrifugal forces, a quadratic velocity vector that contains the 

gyroscopic and Coriolis force components. Using the generalized coordinate partitioning, 

the equations can be written in a more explicit form as: 
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[

   
    

    
 

   
    

    
 

   
    

    
 

] [

 ̈ 

 ̈ 

 ̈ 
 
]    [

   
   
     

 
] [

  

  

  
 
]  
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]
 
 
 

  [

   
 

   
 

   
 

]  [

   
 

   
 

   
 

]  

 2.31 
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2.1.4. Turbine blade model 

 

The brief introduction to the concept of multibody systems and the development of 

the Floating Frame of Reference Formulation were necessary to understand the analysis 

of the simplified model of turbine blade studied in this thesis. The main equations of mo-

tion of a deformable body will now be applied to this practical case in which the complex 

shape of the turbine blade will be discretized in a set of finite elements, each of which has 

its own formulation in terms of stiffness and mass. The simulation of this multibody sys-

tem model was performed using a general purpose code, called SAMS/2000. Note that 

the turbine blade motion is essentially a rotation with large displacement about a fixed 

axis, which means that since the motion can be represented inside a plane orthogonal to 

the axis of rotation, the rotation of the blade can be studied using a planar model as a 

first approximation. This simplification has been allowed by the fact that the case of study 

is a simplified model with constant thickness.  Figure 2.2 shows the blade geometry and 

dimensions. 
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Figure 2.2 Turbine Blade Geometry 

 

In order to obtain a more complete analysis of the case study, the blade is also ex-

amined using a solid element model based on the equations of motion introduced in the 

subsection 2.1.3.4. Obviously the 2D analysis is simpler since the approximation of a pla-

nar motion of a 2D model requires a smaller number of degrees of freedom and allows a 

faster computation. It is very important to mention that the development of the planar 

analysis has been made possible by the formulation of certain 2D finite elements: a 2D 

rectangular element and a 2D triangular element. Since these two finite elements have 

not been present in the program SAMS/2000 yet, the formulation has been performed 

purposely for this application first in Matlab environment and then implemented in 

Fortran code in order to update the libraries and the interface of SAMS/2000. The imple-

mentation of the two finite elements has been examined comparing the results of a test 
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case with Ansys. The solid model used in the second part of the simulation uses solid 

elements already implemented in the code, and for this reason no validation was re-

quired. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Blade model built in SAMS/2000 environment (reproduction 

in SolidWorks). 
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2.1.4.1. Planar analysis 

 

In the special case of planar motion, the equation of motion of deformable body can 

be simplified by reducing the number of degrees of freedom of the model. The position of 

a body in a plane can be expressed specifying the position of its local reference system, 

two translations, and its orientation with respect to the global system. It follows that the 

number of generalized coordinates is lower. For rectangular and triangular elements, 

there are two approaches that can be used to formulate the elastic forces. These ap-

proaches are [2]: 

 Plane stress problem: a problem in which a structure with a small constant 

thickness is subjected to an in-plane loading. 

 Plane strain problem: the problem in which a long structure is loaded along 

its length. 

Since in the turbine blade model considered in this thesis the thickness of the struc-

ture is constant and it is smaller than the length, it is possible to assume valid the 2D ap-

proximation of plane stress. In the case of plane stress, the only stress components pre-

sent are all contained inside a plane, in our case the xy plane, and the stresses are related 

to the deformation through the constitutive equation of the plane stress problem using 

the following matrix of elastic coefficients: 

 

   
 

    [

   
   

  
   

 

] 2.32 
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The plane stress problem has been studied taking into account two different kinds of 

elements used to discretize the turbine blade model. The first element to be developed is 

a four nodes rectangular element, and the second one is a three node triangular element. 

For both the cases, an analytical expression of the mass and the stiffness matrices can be 

obtained with no need of a numerical integration. 
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2.1.4.1.1. Four nodes rectangular element 

 

In the case of a 2D rectangular element, the analytical formulation of the mass and 

the stiffness matrices can be developed using the assumed displacement field which is 

expressed in terms of element shape functions. Using the theory of elasticity, the strain 

can be related to the displacement field as expressed in equation 2.25, where   is the dif-

ferential operator and    is the matrix of the elastic coefficients, in this case ofplane 

stress, one has: 

 

  

[
 
 
 
 
 

  
 

 
 

  

 

  

 

  ]
 
 
 
 

 2.33 

 

A 2D rectangular element has four nodes, each of which is characterized by 2 de-

grees of freedom, a translation along the x-axis,  , and a translation along the y-axis,  . It 

follows that the mass and the stiffness matrices will be 8x8 square matrices, while the 

matrix containing the shape functions will be 2x8. The shape functions are expressd in 

terms of the natural coordinates, which are dimensionless coordinates over the 

main [    ]. 
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Figure 2.4 Rectangular element domain. Reprinted from Moharos István, Oldal István, Szekrényes 

András. Finite element methode. Budapest: Typotex Publishing House, 2012. 

 

The shape functions used to define the assumed displacement field are four, one per 

each node and defined as follow: 

 

{
 
 

 
         

 

 
          

        
 

 
          

        
 

 
          

        
 

 
          

 2.34 

 

With  

{
   

 

 

   
 

 

 2.35 

 

And can be arranged in the matrix   in the following way: 
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  [
            
            

] 2.36 

 

Combining the differential operator with the shape functions, it is possible to get to 

the formulation of the stiffness matrix of the 2D rectangular element according to the 

definition of subsection 2.1.3.3. 
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 2.37 

 

The matrix B contains the first derivatives of the interpolating functions expressed in 

terms of x and y, it means that the stiffness matrix for the case of plane stress can be 

evaluated through equation 2.38, where t represents the constant thickness of the ele-

ment. 

 

                 2.38 
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In addition to the stiffness matrix, the calculation of the mass matrix is very straight-

forward, since it depends on the matrix of the shape functions expressed again in terms 

of the spatial coordinates, x and y. Since the thickness and the density of the element are 

assumed constant, they can be taken outside the integral. 

 

                  2.39 

 

One of the main advantages of this kind of element, is the very simple definition of 

its property, as a matter of fact the integration of the derivatives of the shape functions 

and the integration of the shape functions themselves can be obtained in a close form 

and do not require numerical integration. A specialized code was developed in Matlab 

Environment in order to obtain the mass and stiffness matrices of the element in a closed 

form, so that only the nodal coordinates, the thickness and the density of the plate are 

necessary in order to evaluate its mass and stiffness. The rectangular element is also im-

plemented in SAMS/2000 in order to mesh the blade and perform the simulation.  
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2.1.4.1.1.1. 2D Plate element validation 

 

Before running the simulation, it is necessary to verify that the analytical solution 

obtained through the Matlab code is correct. In order to achieve this goal, a numerical 

validation of the rectangular element has been performed using simple case of a con-

strained beam with a constant force applied to its free end. The validation model has 

been built in Ansys Environment using an equivalent element to the four nodes rectangu-

lar element, following also the same mesh, i.e. the discretization of the model in finite el-

ements. A 10 m bar with 1 m height and 0.01 m constant thickness is considered and dis-

cretized with ten rectangular elements. The left end of the beam is constrained, imposing 

zero displacements to all its nodes, while a constant force of 100000 N is applied along 

the –y direction. All the data related to the beam are contained in the following table. 

 

 

Figure 2.5 Constrained beam, validation model for 2D plate in Ansys. 

x 

y 
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TABLE I  BEAM CHARACTERISTICS 

BEAM CHARACTERISTICS 

Length  10 m 

Height 1 m 

Thickness 0,01 m 

Density 8000 kg/m3 

Young Modulus 2 ·1011 Pa 

Poisson's Ratio 0,25   

Force 100000 N 
 

 

The deformed beam can now be plotted through Ansys using an automatic scale, i.e. 

a scale which is proportional to the real one. Obviously the greatest displacement is 

reached on the free end of the beam. The validation is concluded creating the same mod-

el in terms of physical characteristics and finite elements discretization in the SAMS/2000 

code, performing a static analysis and comparing the results obtained by Ansys in terms 

of nodal displacements. 
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Figure 2.6 Nodal solution with Ansys. 

 

TABLE II  NODAL SOLUTION: COMPARISON BETWEEN ANSYS AND SAMS NODAL DISPLACEMENTS. 

2D RECTANGULAR ELEMENT VALIDATION 

Nodal Deformation with Sams Nodal Deformation with Ansys  Difference 

NODE UX (m) UY (m) NODE UX (m) UY (m) εx (m) εy (m) 

1 0,000000000 0,000000000 1 0,0000000000 0,0000000000 0,000000000 0,000000000 

2 -0,000940735 -0,001098852 2 -0,0009392700 -0,0010987000 0,000001465 0,000000152 

3 -0,001684642 -0,003829595 3 -0,0016834000 -0,0038299000 0,000001242 0,000000305 

4 -0,002209444 -0,007846664 4 -0,0022133000 -0,0078465000 0,000003856 0,000000164 

5 -0,002529120 -0,012707076 5 -0,0025285000 -0,0127110000 0,000000620 0,000003924 

6 -0,002641019 -0,017994350 6 -0,0026269000 -0,0179670000 0,000014119 0,000027350 

7 0,000003384 -0,017989894 7 -0,0000006211 -0,0179820000 0,000004005 0,000007894 

8 0,000001246 -0,012694963 8 -0,0000036423 -0,0126960000 0,000004888 0,000001037 

9 -0,000001319 -0,007819225 9 0,0000012094 -0,0078188000 0,000002528 0,000000425 

10 -0,000000434 -0,003793785 10 -0,0000002606 -0,0037943000 0,000000173 0,000000515 

11 0,000001052 -0,001029980 11 0,0000000331 -0,0010298000 0,000001019 0,000000180 

12 0,000000000 0,000000000 12 0,0000000000 0,0000000000 0,000000000 0,000000000 

13 0,000000000 0,000000000 13 0,0000000000 0,0000000000 0,000000000 0,000000000 

14 0,000942720 -0,001098869 14 0,0009391800 -0,0010986000 0,000003540 0,000000269 

15 0,001683794 -0,003828982 15 0,0016838000 -0,0038298000 0,000000006 0,000000818 

16 0,002207066 -0,007846923 16 0,0022118000 -0,0078487000 0,000004734 0,000001777 

17 0,002531658 -0,012707915 17 0,0025299000 -0,0126960000 0,000001758 0,000011915 

18 0,002647690 -0,017994944 18 0,0026531000 -0,0180450000 0,000005410 0,000050056 
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Looking at TABLE II it is possible to see that the difference between the two sets of 

results is very small and it is probably due to the differences in the numerical methods 

used to compute the results. 
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2.1.4.1.2. Three nodes triangular element 

 

The meshing of a body with some corners or complex shape can be difficult using 

the rectangular element. This is the reason why a new kind of 2D finite element is also 

considered in this analysis; a 2D three nodes triangular element is implemented in 

SAMS/2000 program. The formulation of this kind of element is very similar to the one 

used for the 2D plate, with the only difference that the triangular element has lower 

number of nodes, three, and obviously different interpolating functions. As in the case of 

rectangular element, each node has two degrees of freedom, translations along the x-axis 

and y-axis. 

 

 

Figure 2.7 Linear Triangular element. Reprinted from Moharos István, Oldal István, Szekrényes 

András. Finite element methode. Budapest: Typotex Publishing House, 2012. 
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Also in this 2D case the thickness and the density of the element are taken constant. 

The interpolating functions used to describe the position of a generic point inside the el-

ement are considered linear and dependent. If we consider a point moving inside the tri-

angle, its displacement will be a function of the three nodal points as shown in Figure 2.8. 

The three areas created by the point will be related in the following way: 

 

 

Figure 2.8 Triangular element interpolating functions. 
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According to this shape functions, the displacement of a generic point inside the el-

ement can be evaluated in this way: 

2 

3 
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{
                

                
 2.42 

 

{

    
    

        
 2.43 

 

With   and  , natural coordinates, i.e. dimensionless coordinates ranging between 0 

and 1. Once of the shape functions are defined, it is necessary to compose the matrix of 

the shape functions can be developed and used to evaluate the stiffness and mass matri-

ces. The differential operator used in this case is the same adopted for the 2D plate. Be-

low is a summary of the equations used. 

 

  [
         
         

] 2.44 

 

 

     

[
 
 
 
 
 

  
 

 
 

  

 

  

 

  ]
 
 
 
 

[
         
         

] 2.45 

 

The equations for   and   are expressed in terms of   and  . Chain rule of differenti-

ation can be used to evaluate the derivatives with respect to the natural coordinates as 
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Or written in a matrix form: 
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] 2.47 

 

Substituting equation 2.43 into equation 2.42 it is possible to evaluate the partial de-

rivatives with respect to the natural coordinates. Note that: 
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 2.48 

 

according to which: 
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The 2x2 matrix of equation 2.47 is also known as  the Jacobian matrix whose deter-

minant is twice the area of the triangle according to equation 2.50. Substituting equation 

2.49 and 2.50 into equation 2.47, one can show: 

 

         
 

 
|       |   2.50 

 

[

  

  
  

  

]  [
      

      
]
  

[

  

  

  

  

]   2.51 

 

[

  

  
  

  

]  
 

       
[
       

       
]
  

[

  

  

  

  

]   2.52 

 

After some mathematical derivations, and differentiating the matrix of the shape 

function  , the matrix   of equation 2.53 can be written as: 
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Finally the stiffness matrix of the triangle will be obtained without integration since 

the matrices depends only on the coordinates of the triangle. As already explained, the 

thickness   of the element is assumed constant. 

              
       

 
         2.54 

 

Once the stiffness matrix of the element has been defined, it is necessary to com-

pute its mass matrix. The formulation of the mass matrix is similar to the one of the 2D 

plate with the only difference due to the fact that the matrix is obtained by integrating 

with respect to the natural coordinates. 

 

                        
 

 

 

 
  2.55 
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2.1.4.1.2.1. Triangular element validation 

 

Following the same procedure adopted for the 2D plate element, also the triangular 

element requires a numerical validation in order to check the implementation in the pro-

gram SAMS/2000. The simple model of a constrained beam is built first in Ansys environ-

ment applying to its free end a vertical force along –y, and then in SAMS/2000. The same 

discretization is adopted in the two models in order to directly compare the nodal dis-

placements. 

 

 

Figure 2.9 Beam discretization with triangular elements 

 

The 5 m beam is discretized in 10 elements and constrained at its left end putting to 

zero all the displacements of the nodes. Finally a constant force of 10000 N is applied at 

x 

y 



 46 

its free end. The same model is built in SAMS/2000 following the same discretization 

used in Ansys in order to allow a fast comparison of the nodal displacements. All the 

beam data are presented in TABLE III while the representation of the nodal displacement 

along y in Ansys environment is shown in Figure 2.10. 

 

TABLE III  BEAM CHARACTERISTICS. 

BEAM CHARACTERISTICS 

Lenght  5 m 

Height 1 m 

Thickness 0,1 m 

Density 7730 kg/m3 

Young Modulus 2,2 ·1011 Pa 

Poisson's Ratio 0,3   

Force 10000 N 

 

 

 

Figure 2.10 Nodal displacement of the beam along the y-axis. 
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Finally the validation is completed once the results obtained in SAMS/2000 are in 

good agreement with the results obtained from Ansys. The following table shows the re-

sults obtained from both programs. 

 

TABLE IV  COMPARISON BETWEEN ANSYS AND SAMS/2000 RESULTS 

TRIANGULAR ELEMENT VALIDATION 

Nodal Deformation with Sams Nodal Deformation with Ansys  Difference 

NODE UX (m) UY (m) NODE UX (m) UY (m) εx εy 

1 0,000000000 0,000000000 1 0,0000000000 0,0000000000 0,000000000 0,000000000 

2 -0,000002744 -0,000003995 2 -0,0000027768 -0,0000038845 0,000000033 0,000000110 

3 -0,000004816 -0,000012784 3 -0,0000048587 -0,0000128260 0,000000043 0,000000042 

4 -0,000006366 -0,000025330 4 -0,0000063251 -0,0000254500 -0,000000041 0,000000120 

5 -0,000007200 -0,000040710 5 -0,0000071798 -0,0000405220 -0,000000020 0,000000188 

6 -0,000007351 -0,000056700 6 -0,0000074537 -0,0000567220 0,000000102 0,000000022 

7 0,000007921 -0,000056805 7 0,0000081765 -0,0000573670 -0,000000255 0,000000562 

8 0,000007653 -0,000040982 8 0,0000076394 -0,0000407550 0,000000014 0,000000227 

9 0,000006680 -0,000025576 9 0,0000066491 -0,0000256690 0,000000031 0,000000093 

10 0,000005038 -0,000012964 10 0,0000050513 -0,0000130450 -0,000000013 0,000000081 

11 0,000002852 -0,000004207 11 0,0000028403 -0,0000040962 0,000000011 0,000000111 

12 0,000000000 0,000000000 12 0,0000000000 0,0000000000 0,000000000 0,000000000 

 

 

As we can see from TABLE IV, the results of nodal displacement of the two different 

solutions are in good agreement; the small differences between the two solutions can be 

attributed to the differences between the numerical procedures used in the two comput-

er programs.  
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2.1.4.1.3. Discretization with 2D plates element 

 

The first analysis of the turbine blade model is performed through a discretization 

consisting only of 2D rectangular elements, with the only exception that the two corners 

at the blade base, are with two triangular elements. 

The main aim of the planar analysis is to simulate the rotation of the blade fixed on a 

rotor modeled as a rigid body and rotating at a constant angular velocity. In all the analy-

sis performed in SAMS/2000 the angular velocity is assumed to be constant and equal to 

300 rad/s simulating 10 s of rotation.   

 

 

Figure 2.11 Planar model 

 

The first step of the analysis consists of the model discretization into rectangular el-

ements using the Ansys environment. The mesh is built manually in order to maintain a 

certain size of each element. The element chosen in Ansys to represent the 2D plate or 

the 2D triangular element is the plane182 with 4 nodes and 2 degrees of freedom per 

node. 

 

x 

ω 

y 
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Figure 2.12 Plane182 Ansys Element. Reprinted from Ansys 14.0 Help (2011), Plane182 element. 

 

The first weakness of this kind of model is that the rectangular element, does not al-

low the discretization of very complex models because of its geometry. An additional 

proof of this weakness was shown by the program itself which was not able to directly 

mesh the model in a mapped way. As already expected, the two corners at the blade base 

require the use of two triangular elements to represent their shapes. Once the mesh has 

been built in Ansys, the lists of node coordinates and the elements connectivity are intro-

duced in SAMS/2000 to rebuild the flexible body model.  

SAMS/2000 allows for using finite elements that have different properties, i.e. it is 

necessary to specify the density  , the Young’s Modulus  , the tangential elastic Modulus 

  and finally the nodal masses   . The nodal mass consists of the mass of the single 

node, taking into account the portion of the mass of each element which contains that 

node. The nodal mass of the single element is evaluated as the element volume multi-

plied by its density and divided by the number of nodes. Since a node of the deformable 

body ca be shared by different elements, the nodal mass will be the sum of the contribu-

tion of the elements sharing this node. The thickness of the elements is considered con-

stant and equal to the blade’s thickness. The effect of gravity is taken into account using 

the values of  the nodal masses. Figure 2.13 shows the blade discretization with 2D plates. 
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Figure 2.13 Blade discretization with 2D plates 

 

As we can see from the figure, the model consists of 168 elements, 166 plates and 2 

triangles used to approximate the corners. The blade is constrained at its base to the rigid 

rotor putting to 0 all the degrees of freedom of the selected nodes. Since each element 

has 4 nodes, the system has 233 nodes.  

After the discretization of the model in Ansys, the lists of nodes and connectivity be-

tween elements are exported to SAMS/2000 to define the mesh of the deformable body. 

The turbine blade has been considered as one of the three bodies forming the multibody 

system: the ground which is fully constrained, the rotor, which is assumed to be a rigid 

block with a certain mass and moments of inertia, and finally the blade which is the de-

formable body, which is the only one to have elastic coordinates. After constraining the 

base of the blade to the rotor, a constant angular velocity is applied to the rotor and the 

numerical simulation of a 10 s rotation is performed; each simulation requires the specifi-

cation of a certain error, a time step, and convergence criteria.  

 

x 

y 
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Once the simulation is completed, all the information related to the nodal displace-

ment of each node along x and y direction at a certain time step obained. The main aim of 

the simulation is to identify how the blade deforms when it rotates at a certain angular 

velocity; it is clear that the displacement of the nodes on the top of the airfoil is bigger 

than the one of the nodes at the root of the blade. Consider 2 nodes of the blade: 

 One node on the top of the airfoil, node 10. 

 One node on the middle of the airfoil, node 165. 

Different sets of nodes can be chosen depending on the region of interest. Figure 

2.14 shows the locations of the selected nodes on the blade model. 

 

 

Figure 2.14 Nodes location, Ansys. 

 

Once the nodes have been selected, a Matlab script can be developed to read the 

data from the nodal displacement file produced by SAMS/2000 in order to plot the dis-

placement of the node of interest. The script will be shown in the appendix.  Starting from 
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the first set of nodes located on the airfoil, it is possible to see how the displacement 

increases from the bottom to the top of the airfoil. The nodal displacement has been 

plotted with respect to the x-axis and y-axis respectively. 

 

 

 

 

Figure 2.15 Nodal displacement node 165, middle of the airfoil, Matlab. 
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Figure 2.16 Nodal displacement node 10, top of the airfoil, Matlab. 

 

It is now possible to plot the y-axis displacements of the same nodes; in this particu-

lar case of study, the x-axis displacement is more interesting since it represents the mo-

tion of the blade one next to the other. 

 

 

Figure 2.17 Nodal displacement node 165, top of the airfoil, Matlab. 
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Figure 2.18 Nodal displacement node 10, top of the airfoil, Matlab. 

 

As it is possible to see from the plots, it is evident that magnitude of  the nodal dis-

placement reduces moving from the top of the blade to the bottom, since the structure 

becomes stiffer. The base of the airfoil and the root are characterized by very small dis-

placements and this is the reason why they are not considered in this analysis. The 

movement of the lower part of the blade is associated with only the higher frequency of 

the structure, and consequently the higher modes. 
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2.1.4.1.4. Discretization with  triangular elements 

 

While the mesh developed using rectangular elements only allows for simple dis-

cretization of the model, it can lead to some problems since the rectangular shape of the 

elements cannot describe easily more complex geometry.  

This is the main reason for developing a triangular element which will be very useful 

in many cases where the shape of the model is characterized by a very large amount of 

geometric discontinuities. The procedure followed in this analysis is essentially the same 

as the one adopted for the 2D case with plate element. The first step consists in a model 

discretization made in Ansys environment using Plane182 element shown in Figure 2.12, 

exporting the list of nodes, and the element connectivity. In this case since it not possible 

to identify a base and a height for each triangle, the SAMS/2000 input has been compiled 

in order to evaluate the triangle area from its nodal positions. Again, the thickness (con-

stant) has been specified for each element as well as Young’s Modulus  , density    and 

Modulus of rigidity  . An example of Presams file used to build the deformable body 

model for the turbine blade is shown in Figure 2.19, Figure 2.20 and Figure 2.21. 

 

 

Figure 2.19 Example of Presams file: deformable body model, node list. 
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Figure 2.20 Example of Presams file: deformable body model, element connectivity. 

 

 

Figure 2.21 Example of Presams file: deformable body model, element properties. 

 

 

The turbine blade is discretized with triangular elements as shown in Figure 2.22, it 

is clear how the mesh generation has less geometric restrictions as compared to the rec-

tangular element. In addition to this, higher accuracy can be obtained reducing the size of 

each triangle at the expense of a higher number of elements and heavier calculations. 
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Figure 2.22 Blade discretization with 2D triangular elements. 

 

 

As in the case of the 2D plate, it is possible to plot the nodal displacement of a se-

lected set of nodes. For the sake of simplicity, the new set of nodes will be taken as simi-

lar as possible to the one of the preceding example. Despite its simplicity, the 2D triangu-

lar element results are less accurate than the results of the preceding element and the 

structure appears to be stiffer, this is the reason also why Ansys suggests replacing this 

element with a more accurate 6 nodes triangular element or equivalently reducing as 

much as possible the element dimension. The discretization shown in Figure 2.22 employs  

by 112 elements. 

 

x 

y 
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Figure 2.23 Node location, Ansys. 

 

Since the behavior of the nodal displacement is the same as the previous case, for  

the sake of simplicity and in order to demonstrate the weakness of the 3 nodes triangular 

element discretization, the results will be shown by plotting the nodal displacement of 

each node compared with the equivalent case of the 2D plate discretization. In order to 

run the simulation the blade is constrained at its base as shown in Figure 2.13. The black 

curve refers to the 2D plate case, while the red one refers to the triangular element case 

for the x-axis displacements, blue and green will be used for the y-axis displacement. 

Starting from the x-axis displacement of the top of the airfoil, it is possible to get the fol-

lowing results: 
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Figure 2.24 Comparison nodal displacement with 2D plate and 2D triangle discretization, top of the 
airfoil. 

 

 

Figure 2.25 Comparison nodal displacement with 2D plate and 2D triangle discretization, middle air-
foil. 
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The same nodal displacements can be plotted for the y-axis. 

 

 

Figure 2.26 Comparison nodal displacement with 2D plate and 2D triangle discretization, top of the 
airfoil. 
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Figure 2.27 Comparison nodal displacement with 2D plate and 2D triangle discretization, middle of 
the airfoil. 

 

Despite of the simplicity of programming and the high adaptability to most of the 

geometries, the preceding figures show that the triangular element is less accurate than 

the rectangular element due to its lower number of nodes. The higher stiffness of the el-

ement requires a finer mesh in order to capture the nodal displacements in a more accu-

rate way. This is the main reason why this kind of element is usually replaced by a more 

complex 6 nodes triangular element. The differences in the results can also be caused by 

the different discretization adopted in the models.  
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2.1.4.2. 3D Analysis 

 

For the sake of simplicity, the turbine blade model was assumed to have a planar ro-

tation since the blade thickness is constant and the blade rotates in the xy plane at a 

specified angular velocity. But in realty, the blade represents a solid and deformable body 

and this is the reason why a solid element model of the turbine blade is considered in the 

analysis presented in this thesis. As previously mentioned, the formulation of the 3D solid 

element was already implemented in SAMS/2000.  The element considered is a simple 8 

nodes hexahedron. The definition of the solid element model is very similar to the one 

used for the simpler planar case with the only difference of an higher number of nodes 

and consequently degrees of freedom. A brief introduction to the eight nodes hexahedral 

element will be given in this chapter because the element was already present in the pro-

gram and it requires neither a formulation nor an experimental validation. 
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Figure 2.28 8 nodes Hexahedral element. 

 

An analytical formulation of the solid elements in natural coordinate is possible, 

however SAMS 2000 employs real coordinates, that means that the shape of the element 

cannot be distorted. This is the reason why this 3D analysis becomes very similar to the 

first case of discretization of the turbine blade with 2D plates; since the element shape is 

rectangular it is not possible to approximate the two corners where the blade comes in 

contact with the damper. For this reasons, the two corners are avoided in order to allow 

the model discretization with these solid elements. The 8 nodes hexahedral element has 

three degrees of freedom per node, a translation along the x-axis, a translation along the 

y-axis and finally a translation along the z-axis. Eight different shape functions will be con-

sidered in order to approximate the shape of the element after its deformation and the 

shape function matrix will be 3x24. The procedure for formulating the stiffness and mass 

matrix is the same as the one used for the 2D plate element with the only difference of 

the higher number of nodes and one more degree of freedom per node. The basic equa-

tions are provided below: 



 64 

 

  [
    
    
    

    
    
    
    

   

 
 
 
   

    
    
    

]               2.56 

 

 

            2.57 

 

           2.58 

 

 

 

 

 

 

 

 

 

 

 



 65 

2.1.4.2.1. Discretization with  8 nodes hexahedral 

 

The main procedure used to discretize the turbine model with 8 nodes hexahedral 

solid elements is essentially the same as the one used with 2D plates elements. The mod-

el discretization has been performed in Ansys environment with an equivalent solid ele-

ment with 8 nodes and 3 degrees of freedom per node. As already anticipated before, the 

similarities with the 2D plate element are many since that hexahedron can be considered 

as a plate element with a certain thickness. However the use of a solid model is closer to 

the real case, the weakness of this kind of element arises during the mesh generation. 

Since the shape of the element cannot be changed, a mapped mesh of the model is man-

datory. The element used in Ansys is the Solid45 as shown in Figure 2.29. 

 

 

Figure 2.29 Solid45 Ansys Element. Reprinted from Ansys 14.0 Help (2011), Solid45 element. 
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As already discussed, the two corners in the real geometry must be avoided. Once 

the mesh is generated, the list of nodes and element connectivity is exported from Ansys 

to SAMS/2000 in order to generate the deformable body model. Since SAMS/2000 allows 

a maximum number of elements the mapped mesh is created by dividing the blade into 4 

elements along the thickness, for a total of 196 elements. 

 

 

Figure 2.30 3D Solid Model: mesh generation in Ansys. 

 

The nodal coordinates and the element connectivity have been used to recreate the 

3D blade model in SAMS/2000 in order to simulate the rotation of the blade about a fixed 

axis at a given angular velocity of 300 rad/s for 10 s as in the planar case. The rotor is con-

sidered as a rigid body. All the information necessary to build the blade solid model are 

contained in the Presams file, which is very similar to the one introduced for the planar 

analysis.
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Figure 2.31 Example of Presams file: deformable 3D body model, node list. 

 

 

Figure 2.32 Example of Presams file: deformable 3D body model, element connectivity. 

 

 

Figure 2.33 Example of Presams file: deformable 3D body model, element properties. 

 

The same nodes used in the previous analysis will be taken into account during the 

simulations. It is expected that the 3D model , despite its higher complexity enables to get 

more accurate results since it is not represent a simplification of the model. In addition it 

is necessary to specify that no damping has been introduced in the model definition with 

the consequence of a noisy signal plotting the nodal displacement of the middle airfoil. 

However the solid model represents a more accurate way to investigate the dynamic be
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havior of the blade,  the weakness of this model consists in the higher cost in terms 

of computation that forced to reduce as much as possible the number of elements with 

the consequence of a very coarse mesh. A refinement of the analysis could be performed 

by the application of a finer discretization in order to catch in a more precise way the dis-

placement of the selected nodes. 

 

 

Figure 2.34 Nodes position 3D model. 
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Figure 2.35 Nodal displacement x-axis node 10. 

 

Figure 2.36 Nodal deformation x-axis, node 362. 
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3. DYNAMICS OF THE BLADE IN NON-LINEAR CONDITIONS 

 

The second part of the thesis focuses the attention on the non-linear dynamics of 

the system of two blades, an underplatform damper and a fixture, simulating the real be-

havior of this set of 4 bodies during experimental measurements. The couple of blades is 

attached to the fixture by the presence of two wedges, used to maintain the contact be-

tween the base of the blades and the fixture. The stiffness of the whole system depends 

on the interference applied translating the wedges along the vertical direction. Finally the 

damper is interjected between the two blades, and kept in touch with them with a fric-

tion contact. The presence of the damper is necessary in order to dissipate a certain 

amount of energy during the blade rotation reducing the amplitude of vibration of the 

blades when the resonance condition occurs. The influence of the damper depends on its 

geometry and mass, influencing the value of the centrifugal force that arises during the 

blades’ vibration. It follows that the fatigue failure of the blade, i.e. the failure of the 

component due to the application of a cyclic load, can be reduced by an optimized tuning 

of this solution.  

The system has been analyzed in a series of steps, starting from the ideal case of the 

blades glued with the fixture in order to simulate the behavior of a single body without 

the presence of the damper. 
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3.1.  Modal analysis of the whole system 

 

The first step of the analysis consists in the evaluation of the dynamic behavior of 

the system of two blades, the fixture and the wedges without the presence of the damper 

in order to study the natural frequencies of the system and to understand how the pres-

ence of an underplatform damper can influence the dynamics of the system in terms of 

natural frequencies and modal shapes. 

The dynamic analysis of the system can be expressed through its equilibrium equa-

tion, where [ ], [ ] and [ ] respectively represent the mass matrix, the stiffness matrix 

and the damping matrix of the system, while { ̈}, { ̇} and { } represent the vectors of 

accelerations, velocities and displacements for each degrees of freedom of the system.  

All these matrices have been obtained from Ansys Environment with dependence to the 

physical properties of the body and the number of degrees of freedom adopted in the 

analysis. 

 

 

{  }  [ ]{ ̈}  [ ]{ }  [ ]{ ̇}  3.1 

 

The modal analysis of the system essentially consists in the study of the linear dy-

namics of the system of two blades in order to evaluate the dynamics response of the 

structure under the application of an excitation force. The first step in the analysis con-

sists in the extraction of the natural frequencies as the eigenvalues and the mode shapes 

as the eigenvectors of the equation of motion of the not damped system. 
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  [ ]{ ̈}  [ ]{ }  3.2 

 

For sake of simplicity all the bodies in contact have been considered glued together 

in order to speed up the calculation, representing an ideal case. Once the solid model has 

been imported in Ansys and all the physical properties have been defined, such as mate-

rial density, Young’s Modulus and Poisson’s ratio, the volumes have been meshed with 

solid95 elements, 20 node solid hexahedra with 3 degrees of freedom per node. Figure 

3.1 shows the element geometry while TABLE V contains the material properties of the 

blade in analysis. 

 

Figure 3.1 Solid95 element. Reprinted from Ansys 14.0 Help (2011), Solid95 element. 

 

TABLE V  MATERIAL PROPERTIES OF THE BLADE. 

MATERIAL PROPERTIES OF THE BLADE 

Young Modulus 2,2 ·1011 Pa 

Poisson's Ratio 0,33 
 

Density 7730 kg/m3 
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Before starting the calculations, the fixture has been constrained on its base and on 

its lateral surfaces, applying a displacement equal to 0. After all the volumes have been 

meshed, it has been necessary to merge the nodes on the surfaces in contact between 

the volumes and to make them coincident. In this way the dynamic analysis has been per-

formed as if the whole system can be considered as a single solid body. 

 

 

Figure 3.2 Solid model discretization in Ansys Environment. 

 

The modal analysis carried out in this part of the thesis focuses on the first set of 

twenty frequencies contained in the range between   and         and the modal 

shapes assumed by the blade during deformation. As it is possible to see from the analy-

sis the modal shapes are all flexural or torsional and all in couples of an in-phase and out-

of-phase motion. The first modal shapes usually interests the top of the airfoil and only 

the higher ones the body of the blade. The importance of this first kind of analysis is re
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lated to the necessity to understand the dynamics of the couple of blades jointed to 

the fixture and consequently the natural frequencies of the system before connecting an 

underplatform asymmetric damper between them and appreciate its effects. 

Dampers with different kinds of geometries can be interconnected between the two 

blades in order to optimize the dynamics of the system; in this analysis an asymmetric 

damper will be chosen, which means that it will be characterized by a plane contact sur-

face on one side and of a convex contact surface on the other one, creating respectively a 

planar contact surface and a line contact. It is expected that the presence of an under-

platform damper can increase the natural frequencies of the system and change the or-

der of the modal shapes. 

 

TABLE VI  NATURAL FREQUENCIES OF THE GLUED SYSTEM WITHOUT DAMPER. 

FREQUENCIES (Hz) 

N Without damper 

1 174.85 

2 175.01 

3 931.51 

4 933.80 

5 1071.1 

6 1079.0 

7 1123.7 

8 1123.7 

9 1844.5 

10 1849.6 

11 3236.6 

12 3236.8 

13 3608.8 

14 3611.3 

15 4058.8 

16 4059.4 

17 4281.0 

18 4349.7 
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The first ten modal shapes can be represented in order to understand the shape as-

sumed by the system once it reaches of its natural frequencies. Since the analysis has 

been performed in Ansys environment all the figures are taken from Ansys and the scale 

of the deformation is set enlarged automatically by the program and does not represent 

the real one. 

 

 

Figure 3.3 First and second modal shapes of the system from Ansys. 
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Figure 3.4 Third and Fourth modal shapes of the system from Ansys. 

 

 

Figure 3.5 Fifth and sixth modal shapes of the system from Ansys. 
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Figure 3.6 Seventh and eighth modal shapes of the system from Ansys. 

 

 

Figure 3.7 Ninth and tenth modal shapes of the system from Ansys. 
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3.2. Influence of the contact parameters 

 

The first analysis on the natural frequencies of the blade has been conducted ne-

glecting the presence of the contact between the two blades, the fixture and the wedges. 

In the real experimental measurement, the blades will be constrained to the fixture by 

the application of certain interference, i.e. the wedges will be move up of a defined dis-

placement in order to press the blades against the arms of the fixture. The interference 

between the elements will be generated as well as stresses in the contact region. Due to 

the fact that all the bodies are in contact through plane surfaces, plane to plane contact 

will be created. 

This contact condition can be easily simulated in Ansys environment by the creation 

of a “Contact Pair”, i.e. a particular surfaces in which the contact of two bodies is studied 

by the use of certain kinds of mesh elements [4]. Since the compenetration between the 

two bodies is not possible a deformation of the surfaces and consequently stresses will be 

generated. 

The first step to ensure in order to create a contact pair in Ansys is the definition of a 

contact and a target surface; the choice of the two surfaces is suggested by the Ansys 

Help and tells that in the case of two flat surfaces, as the case of study, the target surface 

will be the larger of the two and the contact surface will be the smaller. The choice of the 

contact elements is performed automatically by the program with dependence on the 

type of body, planar or solid, and the type of surface. The case of study presents 4 con-

tacts, two between the two blades and the fixture and two between wedges and blades. 

In the first two contacts, the fixture surface is chosen as the target one while in the con-

tact between blades and wedges, the base of the blade is chosen as the target surface.  



 79 

Since all the four contacts are very similar one to the other, the same mesh elements 

will be taken to study the problem. In this case the default elements set by Ansys are re-

spectively Conta174 and Target170 because the structure has been already meshed with 

Solid95 elements. The contact pair creation always follows the discretization of the mod-

el. The two contact elements used in Ansys environment are shown in the following fig-

ures. 

 

 

 

Figure 3.8 Conta174 element. Reprinted from Ansys 14.0 Help (2011), Conta174 element. 
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Figure 3.9 Targe170 element. Reprinted from Ansys 14.0 Help (2011), Targe170 element. 

 

 

The definition of the contact model is usually quite complex since different kind of 

solution methods and contact properties can be used [5]; in this case the default Aug-

mented Lagrange Method has been used. The model has been studied by focusing the at-

tention on only two contact parameters: the interference applied to the system and the 

Normal Penalty stiffness. The interference of the system can be changed by translating 

the wedges along the vertical direction of a certain kind of displacement while the Nor-

mal Penalty stiffness FKN represents the stiffness of the contact along the normal direc-

tion expressed through a coefficient which ranges between 0 and 1. Different tests have 

been performed changing the FKN parameters for different values of interference. It is 

expected that a larger interference will produce a higher stress field on the contact region 

and consequently a little increment on the frequencies of the system.  
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Figure 3.10 Contact Pairs creation in Ansys. 

 

 

Figure 3.11 Contact due to stresses with 10
-4 

(m) interference, Ansys. 
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Five different values of interference have been taken as well as 5 different normal 

penalty stiffness coefficients FKN. The results can be plotted showing the change in the 

values of the natural frequencies of the system for different interferences and FKN coeffi-

cients. It is possible to see that the value of the frequency is more influenced by the inter-

ference than by the stiffness. In addition to this it is important to plot the value of each of 

the eight frequencies with respect to the FKN parameter chosen. In all the following 

graphs the values of the interferences are all expressed in m. At the right corner of each 

graph a little figure shows the mode shapes related to the frequency. 

 

 

 

 

 

Figure 3.12 First Frequency: effects of the stiffness and interference 
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Figure 3.13 Second Frequency: effects of the stiffness and interference. 

 

 

 

 

Figure 3.14 Third Frequency: effects of the stiffness and interference. 
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Figure 3.15 Fourth Frequency: effects of the stiffness and interference. 

 

 

 

Figure 3.16 Fifth Frequency: effects of the stiffness and interference. 
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Figure 3.17 Sixth Frequency: effects of the stiffness and interference. 

 

 

 

Figure 3.18 Seventh Frequency: effects of the stiffness and interference. 
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Figure 3.19 Eight Frequency: effects of the stiffness and interference. 

 

According to the preceding figures, it is possible to notice that the effect of the inter-

ference on the natural frequencies of the system are higher at the higher frequencies 

while they can be considered negligible at the first ones. However an higher FKN coeffi-

cient should increase the stiffness of the system, at higher values of interference, the 

change in the normal penalty stiffness stops to affect the natural frequencies of the 

blades. Higher effects are obtained at the higher modes which interest more the lower 

part of the blade, and particularly its root where the contact has been established. Ac-

cording to the figures, the lower modes of the blades involve more the airfoil and the 

higher part of the base. 
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3.3. Forced response in frequency domain 

 

In most of the engineering practices, it is usually interesting to predict the response 

of a structure or a mechanical system under the application of an external forcing; in the 

case of study, for example, it would be very important to understand how the system of 

two blades jointed to the fixture and separated by the presence of un underplatform 

asymmetric damper will react to the application of an excitation force. 

Mathematical tools can be used in mechanical vibration analysis to model and pre-

dict vibration problems that sometimes are not obvious in engineering designs. In this 

part of the thesis, the forced response of the system of two blades will be studied under 

the application of an external force which is applied on the right side of the right blade in 

order to simulate the experimental measurements taking into account the frequency do-

main. Due to the complexity of the system, the forced response will be studied first in lin-

ear condition, evaluating how the system reacts to the application of the force without 

the presence of the damper and secondly in non-linear conditions. It is obvious that the 

presence of an underplatform damper with friction contact between the two blades will 

influence the dynamics behavior of the system introducing the forces due to contact. The 

equation of motion will be affected in the as shown in equation 3.3 with {  } represent-

ing the vector of the contact forces. 

 

 

{  }   {  }  [ ]{ ̈}  [ ]{ }  [ ]{ ̇}  3.3 
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Two steps has been followed to perform the forced response of the blades:  

 Linear Response of the systems of the two blades, the fixture and the wedg-

es without damper carried out in Ansys environment and in a purposely de-

veloped Matlab code. 

 Non-linear response of the system with the presence of the asymmetric 

damper with a purposely developed Matlab code. 

In this part of the thesis, the forced response has been evaluate through the use of a 

commercial software, Ansys ®, and through the use of a code developed in the Politecnico 

of Turin.  The results obtained by the two will be compared with the one obtained 

through a different analysis, the numerical simulation in time domain, which, despite  a 

much longer time to perform the calculations, enables to show the non linearities caused 

by the introduction of the contact forces. 
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3.3.1. Linear forced response  

 

The linear forced response of the system consists in the analysis of the system re-

sponse in the frequency domain under the application of an external excitation force. The 

same analysis has been performed in two different kinds of environments, a finite ele-

ment code, Ansys, and a purposely developed Matlab code which makes use of con-

densed matrices and obviously simplified methods. The comparison between the results 

has been made possible by the use of the same physical parameters in both the methods. 

In this thesis both the methods will be explained focusing the attention on the main ad-

vantages and disadvantages of the two. 
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3.3.1.1. Linear forced response in ansys 

 

The first step in the analysis consists in the evaluation of the forced response of the 

system of two blades, a fixture and two wedges using a finite element code, Ansys. The 

main idea of the simulation is to recreate the conditions that will be realized during ex-

perimental measurements. The analyzed system is exactly equal to the one introduced 

with the modal analysis. The only difference is represented by a finer discretization of the 

model that has been realized for the development of the Matlab code, explained in the 

following paragraph. Since the main goal of the analysis is to allow the comparison of the 

results get from the two methods, it is obvious that the same conditions must be consid-

ered in both the calculations. 

The model has been discretized by solid elements analogously to the one already 

explained in the first part of the thesis using Ansys solid 95 elements.  The only difference 

is the use of a mesh refinement of the two blades. Since the linear forced response of the 

system is used to define how the system react to the application of an external excitation 

force, it is necessary to define a node at which the force is applied and two nodes on the 

tips of the two blades in order to evaluate how the blade vibrate after the application of 

the external force. In this case, the two nodes have been taken at the center of the tips of 

the right and left airfoil respectively and the force node has been taken on the right sde 

of the right blade in order to respect what happens in the experimental measurement. 

Figure 3.20 shows the selected nodes, T1 and T2, respectively on the left and right blade 

and the force node F. 
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A coarser mesh has been used for the other parts of the system. Finally a contact has 

been created between the components of the system in the same way it had been al-

ready done in the subsection 0. In this case the interference between the blades and the 

fixture has been defined equal to      m, equal to the maximum value adopted in the 

preceding analysis. The contact properties have been set automatically by the program. 

The main parameters which have been set before running the analysis where: 

 

 

Figure 3.20 Blades discretization with solid95 
elements in Ansys, linear forced response. 
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 Frequency range: the analysis has been performed in order to evaluate the 

blade response at its first frequency. 

 Frequency step: a value of frequency step must be input to the code to de-

fine the accuracy of the analysis. 

 External force vector. 

 Modal damping: defining the analysis, it is necessary to express the value of 

the damping coefficient related to each mode of the structure. 

All these data can be summarized in TABLE VII. 

 

TABLE VII  LINEAR FORCED RESPONSE INPUT PARAMETERS. 

LINEAR FORCED RESPONSE 

Young Modulus 2,2 ·1011 Pa 

Poisson's Ratio 0,33   

Density 7730 kg/m3 

Frequency range 170-190 Hz 

Frequency step 0,01 Hz 

External force vector 5 N 

Modal damping 0,01   

 

 

 

Figure 3.21 shows the whole model discretized in Ansys environment and the node 

at which the force has been applied. 
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Figure 3.21 System discretization for the linear forced response, Ansys. 

 

Once the analysis has been solved by the processor, it is possible to choose certain 

nodes and  plot the amplitude of the response in terms of the frequency domain. The lin-

ear response has been carried out for two nodes, 6742 and 47756, respectively nodes T1 

and T2 represented in Figure 3.20. Since the excitation force has been applied along the x 

direction at the middle of the blade thickness it is more convenient to consider the only 

the movement of the node along the x directions. As it is possible to see from the figure, 

the highest amplitude is reached at the first frequency of the system, and the amplitude 

of the displacement of the node on the excited blade is obviously higher with respect to 

the other one. 
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Figure 3.22 Linear forced response in Ansys, Fe =5 N. 
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3.3.1.2. Linear forced response in matlab 

 

Once the linear forced response of the system has been evaluated in the finite ele-

ment code, Ansys, it is very interesting to take into account the same analysis using a 

purposely developed code in Matlab environment which starts from the same input pa-

rameters in terms of physical model and physical properties but using a condensed mod-

el.   

Sometimes the size of a finite element model used to define the dynamic behavior 

of a system of two turbine blades with fixture and eventually an underplatform damper 

between them is too large to be efficiently solved by a numerical solver, especially in the 

case of non-linear dynamics analysis. This is the reason why one of the two principal 

techniques of reduction is used to reduce the dimension of the system: the Component 

Mode Synthesis (CMS) using the Craig-Bampton method. 
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3.3.1.2.1. Component mode synthesis: the Craig Bampton 

method 

 

The Craig-Bampton method is one of the most important kind of model reduction 

used to re-characterize large finite element models into a set of reduced mass and stiff-

ness matrices containing the mode shapes information, capturing the low frequency re-

sponse modes of the system [6]. This kind of analysis is introduced here in the linear 

forced response but will be used extensively in the non-linear analysis of the blades. The 

dimensions of the reduced system will depend on the number of nodes of interest and on 

the number of modes of the structures. It follows that the higher the number of modes 

the more accurate the analysis. These resulting matrices will be used as the reduced input 

parameters of the purposely developed Matlab code. 

The method approach is quite straightforward: the vector of the degrees of freedom 

of the system is divided into a set of master degrees of freedom and slave degrees of 

freedom which will be approximated with a truncated series of mode shapes. 
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Where the three matrices represent respectively the mass, the damping and the 

stiffness matrix of the system,  ̈,  ̇ and   the acceleration, velocity and displacement of 

each degrees of freedom ,    the force vector and finally the subscripts M and S are re-

lated to the concepts of master and slaves degrees of freedom.  

Since the main goal of this program is to reduce as much as possible the cost of the 

computations in terms of time and iterations, only very few nodes will be taken into ac-

count. As already explained before, the same condensed model will be used in the non-

linear analysis of the system of blades and damper and this is the reason why also the 

nodes representing the contact points with the damper surfaces are kept in the reduced 

model. The Craig-Bampton method has been applied in Ansys environment. For sake of 

simplicity, 6 nodes are retained in the model reduction: 

 Two tips nodes: the same introduced in Ansys to estimate the movement 

of the top of the blades airfoils. 

 One force node: the same used in Ansys to apply the external force vector. 

 Three contact nodes that will be useful for the future non-linear analysis. 

 Ten modes. 

Each node has three degrees of freedom that means that the resulting reduced ma-

trices have a dimension of 28x28 considering 6 nodes and 10 modes. Figure 3.23 shows 

the Master dof used in the system reduction. 
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Figure 3.23 Master degrees of freedoms used in the Craig-Bamptom Method, Ansys. 

 

The model synthesis has been performed with a purposely developed Ansys script 

which will pe presented in the appendix. Many steps must be executed before condens-

ing the system: 

 Model discretization: as it will be explained later in the non-linear forced re-

sponse Analysis, the system discretization must be done taking into account 

certain features in order to allow the use of the Matlab code. 

 Creation of the Contact Pairs on the contact surfaces of the model as it had 

been done in subsection 0 with the solution of the non-linear analysis relat-

ed to the contact problem. 

 Modal Analysis on the first twenty nodes. 

 Matrix reduction specifying the nodes and the modes interested in the con-

densation. 



 99 

Since the Craig-Bampton Method is directly performed by Ansys, the order of the 

master degrees of freedom is chosen by the program itself, which usually uses an ascend-

ing order in the nodes number. It follows that the vector of the master degrees of free-

dom and consequently the mass and stiffness matrices will be ordered as reported in 

equation 3.5. 

 

{    }  

{
 
 
 

 
 
 

{      } 

{         } 

{         } 

{         } 

{      } 

{         } 

{                     } }
 
 
 

 
 
 

   3.5 

 

 

Where the subscripts represent respectively,   the right contact,    the first left 

contact,    the second left contact,    the right tip,    the left tip,   the force node and 

finally              the ten modes of the system considered in the Craig-Bampton re-

duction. 
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3.3.1.2.2. Matlab results 

 

 

Once the matrices have been obtained from Ansys, they are loaded in the Matlab 

code to evaluate the linear response of the system. Also in this case some input parame-

ters must be provided to the program before running the simulation: 

 Frequency range: it is chosen equal to the one adopted in Ansys in order to 

make the results comparable.  

 Frequency step: it is equal to Ansys input, a lower step allows higher accura-

cy in the result. 

 External force vector. 

 Modal damping of the system. 

 Nodes of which it is necessary to evaluate the response: since the linear re-

sponse has been evaluated using the previous discretization the number of 

the nodes is not changed. 
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TABLE VIII  INPUT PARAMETERS, MATLAB CODE FOR LINEAR FORCED RESPONSE. 

LINEAR FORCED RESPONSE 

Young Modulus 2,2 ·1011 Pa 

Poisson's Ratio 0,33   

Density 7730 kg/m3 

Frequency range 170-190 Hz 

Frequency step 0,01 Hz 

External force vector 5 N 

Modal damping 0,01   

 

The result of the application of an external force vector of 5 N can be shown in the 

following graph. The same consideration made for the Ansys results can be used in this 

case. Since the response of the system is linear, the output result will be linearly propor-

tional to the applied force. 

 

 

Figure 3.24 Linear forced response with Matlab code. 
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It is possible to plot the same response for    varying from       to    . 

 

 

Figure 3.25 Linear forced response for Fe ranging from 5 to 300 N, Matlab. 
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3.3.1.3. Linear forced response comparison 

 

The linear forced response of the system of two turbine blades, a fixture and two 

wedges has been evaluated through two different kind of procedure: 

 Forced response with a finite element code, Ansys, which solves the analysis 

using all the degrees of freedom of the system, which in this case are in a 

very high number. 

 Forced response with a purposely developed code in Matlab environment 

which makes use of the reduced mass and stiffness matrices of the system 

starting from the same initial discretization of the model. The condensed 

matrices have been obtained through the Craig-Bampton method operated 

in Ansys which allows reducing the number of degrees of freedom of the 

system to 28 taking into account 10 modes of the model. 

It follows that the results obtained with Matlab can be validated comparing with the 

Ansys ones, since the same physical parameters are used in both the analysis. For sake of 

simplicity, only the displacements along x direction of the right tip will be compared, also 

because it is the most meaningful since the external force is applied to the right blade. 

Figure 3.26 shows that the two responses are very similar. 
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Figure 3.26 Ansys and Matlab results comparioson, right tip TL2 x-axis displacement. 

 

 

However the model reduction carried out with the Craig Bampton method only in-

volves the first ten modes of the model, it would be interesting to show how the Matlab 

code can be used to evaluate the other natural frequencies of the system in a range be-

tween   and         comparing the results with the natural frequencies obtained in the 

modal analysis performed in Ansys in paragraph 3.1. Before comparing the results it is 

necessary to bear in mind two important considerations: 

 The accuracy of the results is affected by the use of a reduced model of the 

system, i.e. the lower the number of dof and modes considered in the matrix 

reduction, the lower the accuracy of the results. 
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 Some of the modes are torsional and since the matrix reduction considers 

only few nodes in the middle of the blade thickness, i.e. coinciding with the 

axis of torsion, they cannot be kept by the program because the related dis-

placement is negligible. 

The complete linear response of the system is presented in Figure 3.27 and Figure 

3.28 . For higher clarity, the x-axis and z-axis displacements are plotted in two different 

graphs due to the different magnitude of the displacement. 

 

 

 

 

Figure 3.27 Linear response along x-axis, Matlab. 
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Figure 3.28 Linear response along z-axis, Matlab. 

 

 

All the peaks of the preceding figures can be stored in a table to compare them with 

the results obtained in the modal analysis performed in Ansys. For completeness the rela-

tive error is evaluate for each frequency. 
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TABLE IX  FREQUENCY COMPARISON: LINEAR RESPONSE IN MATLAB VS MODAL ANALYSIS IN ANSYS. 

FREQUENCIES (Hz) 

SET Ansys Matlab Error (%) 

1 174,85 174,5 0,200171576 

2 175,01 - - 

3 931,51 933,4 0,202896373 

4 933,8 933,5 0,032126794 

5 1071,1 1118 4,378676127 

6 1079 - - 

7 1123,7 1190 5,900151286 

8 1123,7 - - 

9 1844,5 1937 5,014909189 

10 1849,6 - - 

11 3236,6 3292 1,711672743 

12 3236,8 - - 

13 3608,8 3924 8,734205276 

 

 

As already anticipated, since all the nodes used in the matrix reduction are in the 

middle of the blade thickness, the displacement caused by torsional modes becomes zero 

due to the fact that the node lies on the axis of rotation. A more accurate analysis can be 

performed by including one node on the corner of the blade in order to keep all the pos-

sible nodes during vibration and including more modes in the matrix reduction performed 

with the Craig-Bampton Method. 

  



 108 

3.3.2. Non-linear forced response  

 

However the linear response of the blade during the application of an external load 

is very helpful in order to understand how the system reacts to an excitation, howeve it 

would be of great interest to focus the attention on what happens in non-linear condi-

tions, i.e. when the dynamics of the couple of blades is influenced by the presence of an 

asymmetric underplatform damper. Turbine blades are usually subjected to high speed of 

rotation with the consequence of frequently reaching the resonance condition which may 

lead the blades to large amplitude vibration increasing the risk of fatigue failure of the 

structure. This is the main reason why a friction damper is usually used in the system in 

order to increase the damping of the system and control the blade response level. 

 

 

Figure 3.29 Rotor disc for gas turbine engine. Reprinted  Phipps, Anthony B. (Derby, GB), Rotor disc 

for gas turbine engine, 2005. 

 

 Most of the mechanical systems are passively controlled in terms of vibrations by 

friction damping, and in the case of turbine blades, friction dampers are commonly in
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cluded in the blade disk design. Among all the possible solutions, the underplatform 

damper is one of the most used: it can be considered as a metal device placed under the 

blades and pressed against them by the centrifugal force generated by the disk rotation.  

The amount of energy dissipated by the damper depends on the centrifugal force, the 

damper material and its geometry. 
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3.3.2.1. State of the art 

 

Nowadays many different articles and researches have been made in the field of the 

non-linear dynamic behavior of a system of turbine blades coupled with underplatform 

dampers with friction contact in order to reduce the risk of fatigue failure of the structure 

due to the high amplitude of vibration reached by the blades in resonance conditions. 

When the blade detuning is not possible the only form of control of the system is repre-

sented by the introduction of a damper to reduce the response level of the blades, reduc-

ing the amplitude of the blade vibration dissipating energy through friction contact. Many 

different kind of solution can be adopted in the definition of the contact status between 

the damper and the blades platforms. In [7] a complete overview of all the possible con-

tact elements used to couple the damper to the blade are shown, [8] gives a brief intro-

duction to the contact model, while in [9] the stick-slip separation analysis is evaluated. 

All the following articles show different solution approaching the problem of vibration of 

turbine blades during the disk rotation. 
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3.3.2.1.1. Variability in the dynamics of semi-cylindrical friction dampers  

 

The pioneering work of  Zucca, Botto and Gola [10] shows the range of variability in 

the dynamics of semi-cylindrical underplatfrom damper coupled with turbine blades. The 

motion of the damper is characterized by three degrees of freedom, two in-plane transla-

tions and an in-plane rotation.  The contact model on the curved surface is modeled with 

only one contact point while on the flat surface two contact points are present. 

 

 

Figure 3.30 Damper model. Reprinted from [10]. 

 

A test case is performed in order to show the capabilities of the damper to influence 

the response level of the blades. The first step consists in the calculation of the static 

forces on the contact points starting from the centrifugal force acting on the damper. The 

model is defined as 2D contact where    and    respectively represent the contact stiff-

ness along the normal and the tangential direction. 
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Figure 3.31 Contact model. Reprinted from [10]. 

 

The dynamic behavior of the system is simulated by the means of a set of normal 

modes without the damper, and the system response is evaluated around the resonance 

of the first bending mode. 

 

 

Figure 3.32 Case of study. Reprinted from [10]. 

 

The simulation has been performed in order to analyze the effects of the damper 

mass, the normal preload, excitation force, friction coefficient and finally damper rota-

tion. It was shown that the damper mass affects the response of the system for the 

   and     vibration of the system. Increasing the damper mass, the resonance ampli
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tude of vibration decreases up to a minimum value, called the optimum value, and 

then it increases again till a condition in which the damper becomes fully stuck against 

the blade platforms preventing any slip.  

 

Figure 3.33 Effect of the damper mass on the IP peaks (left) and OOP peaks (right). Reprinted from 

[10]. 

 

The change of the normal preload acting on the damper, i.e. the variation of the cen-

trifugal force during rotation of the system causes a relevant effect. Two limit cases had 

been taken into account: the first in which the tangential preloads were taken null (red 

curve) and a second one in which the preloads were taken equal to the limit value im-

posed by the Coulomb friction law (blue). According to this hypothesis it was shown that 

assuming a negligible tangential preloads, the maximum vibration amplitude can be 80% 

larger than the one evaluated through Coulomb law. 
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Figure 3.34 Effect of the preloads. Reprinted from [10]. 

 

Finally the effect of the friction coefficients and the external force were considered. 

With regards to the friction coefficients, it affects the response of the system in a similar 

way to the damper mass, reaching the condition of free response when it reaches a null 

value. Increasing the value of  , the system response decreases up to a minimum value 

and finally it starts to increase again when the contact approaches the fully stuck condi-

tions. 

 

Figure 3.35 Effects of the friction coefficient. Reprinted from [10]. 
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Finally one the most important roles in the characterization of the non-linear dy-

namics of the system is played by the external force. The results had been evaluated tak-

ing into account the two conditions of normal preloads.  For small value of external force, 

the relative displacements between the blades platforms and the damper are not large 

enough to make slip occur. As the external force increases, the contact approaches the 

slip condition until it tends to the linear system without the damper. 

 

 

Figure 3.36 Effects of the excitation force. Reprinted from [10]. 

 

In this paper the effects of a semi-cylindrical underplatform damper coupled with a 

system of turbine blades have been described. Different values of the normal preloads 

acting on the damper lead to a great variability in the dynamic behavior of the blade 

which has been investigated against some of the main system parameters such as friction 

coefficients, damper mass and external force. A perfect set of these values could lead to 

an optimized tuning of the blades in dynamic condition reducing the risk of fatigue failure 

due to the presence of the resonance conditions. 

 



 116 

3.3.2.1.2. A refined approach for modeling friction dampers 

for turbine blades 

 

In their work, Zucca, Firrone and Gola [11] propose a coupled approach: the static 

and dynamic displacements of blades and damper are coupled together during the forced 

response calculation, defining the contact between the two through a refined version of 

the state of-the-art contact model. The accuracy of the model is maintained avoiding an 

increase of the size of the problem by modeling the blade and damper dynamics using a 

superposition of a truncated series of normal modes.  

This methodology has been applied to a test case of dummy blade disk with 48 iden-

tical sectors, calculating the forced response on the first mode of the system. 

 

 

Figure 3.37 Blade model. Reprinted from  [11]. 
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The contact model has been refined involving its static component of the normal 

and tangential forces. Taking into account the static relative displacements between the 

surfaces in contact,      ,  the bodies are in contact with         otherwise they sepa-

rate. Consequently the static normal force during contact can be evaluated as follow: 

 

                      3.6 

 

In the case of the tangential static force, if the vibration amplitude is not large 

enough to enter the lift-off state or the slip state, it cannot be computed uniquely. The 

value of      will be included in the range     
   

          
   

 corresponding to the two 

Coulomb limits     and    . This is the reason why a refinement is proposed introduc-

ing a predictor corrector approach. The tangential force is defined in the full-stick case as: 

 

         
          (        )          

   
     

        
   

    3.7 

 

Otherwise if during the period     
    overtakes one of the Coulomb limits, the val-

ue of the equation is corrected in the following way. 

 

         
        

   
            

   
         (        )   3.8 

         
        

   
            

   
         (        )   3.9 
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This methodology is included in a numerical solver to calculate the forced response 

of the system for different values of the damper mass. The frequency of the response 

peak is shifted to values higher than the resonance frequency in the free response in-

creasing the mass of the damper. Finally the response of the system has been evaluated 

for different values of external forces: starting from a low excitation where the damper is 

in fully stuck with the blades platform, as the external force increases the response of the 

curve tends to the linear one without damper. 

 

 

Figure 3.38 Figure a: effect of the damper mass on the frequency response, the number is the multi-

plier of the damper mass; Figure b: effect of the excitation force. Reprinted from  [11]. 

 

 

The consistency of the method is checked from the map of the contact status at res-

onance for different values of damper mass, the white color represents the full-stick con-

dition, the grey the alternating stick-slip and finally the black represents the alternating 

stick-slip-lift-off. 
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Figure 3.39 Map of the contact status. Reprinted from  [11]. 

 

The results are consistent with the physical problem since the contact is in stick con-

dition for the largest value of the damper mass and then as the mass decreases the por-

tion of the area where slip occurs becomes larger. In conclusion, it is shown that the pro-

posed method represents a more accurate tool for the simulation of the forced response 

of the bladed disks with underplatform dampers. 

  



 120 

3.3.2.1.3. Identification of the damping coefficient 

 

Doosan Skoda Power is continuously developing new solution for its steam turbines, 

modeling a new kind of shrouds with friction contact  [12]. In this paper the blade damp-

ing ratio has been identified under rotation taking into account three test cases: free 

blades, blades with dampers and finally a new kind of blade with a new shroud. The 

measurement is conducted by the excitation of the set of blades rotating on the blade 

disk and excited by the presence of some electromagnets placed above and below the 

blades. In the first test the damping ratio dependence on the blade vibration was shown 

for 4 natural frequencies. Some of the damping values have been evaluated through re-

gression line showing that the damping ratio slightly increases with the amplitude of the 

blade vibration. The damping values previously obtained are compared with the one of 

beam made of the same material. 

 

Figure 3.40 Damping ratio comparison between turbine blades and beam cut out of the same blade 

material. Reprinted from  [12]. 
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In the next measurements, the damping ratio is obtained for blades coupled with 

friction dampers; the non-linear behavior obtained is a function of the damper size in 

terms of centrifugal force and contact area, vibration level and nodal diameter. It is evi-

dent that the presence of a friction damper increases the damping ratio of the system. 

For higher accuracy, the influence of the nodal diameter on the damping ratio is shown, 

when phase shift of two adjacent blades increases for higher nodal diameters it causes a 

growth of the relative displacements and friction. 

 

 

Figure 3.41 Comparison between free blades and blades modeled with friction elements. Reprinted 

from  [12]. 
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Figure 3.42 Damping ratio dependence on blade vibration amplitude and nodal diameters, TC=blades 

with friction damper, v=free blades. Reprinted from  [12]. 

 

 

Finally in the third test case, a new V-shroud profile has been tested obtaining simi-

lar results to the previous one.  In conclusion it was shown that the damping ratio de-

pends on both the amplitude of the blade vibration and on the nodal diameter. 

 

 

Figure 3.43 V-shroud profile and experimental results. Reprinted from  [12]. 
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3.3.2.1.4. Coupling between turbine blades and friction 

dampers 

 

This paper [13] presents an investigation relative to the influence of alternate 

mistuning with a bladed disk assembly coupled through frictional contacts, applying sim-

plification like cyclic symmetry and Harmonic Balance Method and by the use of a pur-

posely developed code called DATAR [13]. This code has been used to perform vibration 

measurement of a Siemens gas turbine. A couple of two blades was modeled through a 

finite element code, to generate the model used to evaluate the forced response of the 

system considering the damper element coupling. 

 

 

Figure 3.44 System of Blades with excitation force vector with A-B mistuning. Reprinted from  [13]. 
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The non-linear contribution of the contact force depends on the relative displace-

ment between the contact interfaces; the contact zone has been modeled through the 

use of 3D point contact model. The FRF were performed with a simple blade disk, taking 

into account the first bending mode of the blade. In the first test, the centrifugal force 

acting on the underplatform damper is used as the variation parameter. After that the 

mistuning between the blades is obtained by the introduction of a point mass (5g) on the 

first blade of the disk. The consequence of the application of the mistuning between the 

blades is represented by an increase of the amplitude of the blade A and a decrease of 

the blade B. 

 

 

Figure 3.45 Application of the mistuning on blade A. Reprinted from  [13]. 
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Figure 3.46 FRF of blades A and B, effect of the centrifugal force and the application of the mistuning. 

Reprinted from  [13]. 

 

 

 

In the second part of the paper, a system of two real blades has been studied taking 

into account the effects of an underplatform damper with friction contact on the blades 

non-linear response. 

 

Figure 3.47 System of two blades plus underplatform damper analyzed by DATAR code. Reprinted 

from  [13]. 
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The forced response calculation has been performed through DATAR code taking in-

to account different EO = N/4, i.e. engine order with N number of blades, for the first two 

modes in order to compare the frequencies with the measured data. Performance curves 

are plotted for the first mode, showing the influence of the external excitation on the fre-

quencies of the blades. The measurement has been performed for two values of EO:  

 

 

Figure 3.48 Performance for mode 1 for different value of EO. Reprinted from  [13]. 

 

 

The forced response for modes 1 and 2 are shown for the relevant stimulus    

where the coupling between blades A and B is very marked for mode two by the presence 

of the double peak. The resulting Campbell diagram shows the comparison between the 

predicted and the measured blades frequencies. Frequencies are normalized with respect 

to the predicted static test frequency of mode 1, while rotational speed and power are 

normalized respectively to the nominal speed and the base load power. It is shown that 

the prediction matches well the test results for mode 1 and 2, and the difference increas-

es for higher EO.  
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Figure 3.49 Frequency response of the system of two blades and Campbell diagrams. Figure a com-

parison between mode 1-3, Figure b comparison between mode 1 and 2. The red curve represents the 

blade A, the blue curve blade B. Reprinted from  [13]. 

 

The paper shows that the forced response calculation using the mistuned double 

blade model matches the measured values in a good manner especially for mode 1. The 

effects of the excitation stimulus are shown by the performance curves for both the blade 

types whereas the amplitude of blade A becomes lower than blade B for higher external 

stimulus.  
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3.3.2.2. Underplatform damper 

 

Nowadays different kinds of configurations for underplatform damper have been 

studied in order to develop models to be included in numerical solver to characterize the 

damper behavior during the blade vibration.  

During vibration, energy is dissipated by friction at the contacts which can be either 

a line or a surface, and the normal load acting on the contact becomes a function of the 

centrifugal force and consequently of the damper mass. The slipping condition with con-

sequent energy dissipation may be prevented by a too large mass of the damper or in the 

opposite case, a too small mass can cause the damper lift off from the blades. The damp-

er model used in this analysis is essentially an asymmetric underplatform damper charac-

terized by a flat surface and a cylindrical one. It follows that the damper will be in contact 

with the blades with a line contact on the right side and a flat contact on the left one. As 

already specified in the description of the model all the blades are designed with particu-

lar corners to maintain the damper in the correct position. 
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Figure 3.50 System of two blades and an underplatform damper, Solidworks. 

 

 

Figure 3.51 Zoom, underplatform damper in contact with the blades. 
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Figure 3.52 Underplatform damper, finite element model in Ansys. 
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3.3.2.3. Finite element model 

 

The initial step to be performed to study the non-linear forced response of the sys-

tem of two blades is the development of a finite element model of the structure very sim-

ilar to the one already introduced in chapter 3.3.1. The only difference is related to the 

presence of the damper which will not be connected to the structure with traditional con-

tact elements since the contact will be directly introduced in a purposely developed 

Matlab code. The FEM model has been created in Ansys environment as shown in Figure 

3.53. 

 

 

Figure 3.53 FEM of the structure for non linear analysis, Ansys. 
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As always in this thesis the finite element model is built in Ansys environment and 

the exported to another program to perform the calculation. In this case, the non-linear 

analysis is performed with a purposely developed Matlab code which works simultane-

ously with the one used to compute the linear response of the system introduced in par-

agraph 1.1.1.1. 

 

 

Figure 3.54 Underplatform damper, FEM model in Ansys. 

 

 

Figure 3.54 shows the model of underplatform damper used to develop the calcula-

tion. Instead of using a symmetric solution with two flat surfaces in contact with the 
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blades, it had been decided to take an asymmetric underplatform damper with a flat 

surface in contact with the left blade and a cylindrical one in contact with the right blade. 

It follows that the contact on the right side will be a line. 
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3.3.2.4. Balance equations and harmonic balance method 

 

Let’s now consider the system of the blades in contact with the underplatform 

damper, the balance equation for the blades can be written in the following way: 

 

   ̈       ̇                         3.10 

 

Where  ,   and   represent the mass, the damping and the stiffness matrix of the 

blades,   is the vector of the system degrees of freedom,       is the harmonic excitation 

force and    is the non linear force which arises from the contact between the blades 

and the damper, caused by the relative displacements between the two bodies. In order 

to reduce the amount of calculations, the HBM, harmonic balance method, can be used 

to compute the response of the system. Based on the assumption of the presence of an 

external excitation, the periodical displacements and the contact forces can be approxi-

mated with a first order Fourier series, reducing the second order differential equation of 

motion in non-linear algebraic equations.  

 

           (        ) 3.11 

        
     (  

       ) 3.12 

 

It follows that: 
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    3.13 

               3.14 

              
    3.15 

 

     represents the dynamic stiffness matrix, while equation 3.9 represents the 

static balance of the blade and equation 3.11 the first term of the dynamic balance. The 

same considerations can be done in the case of the damper paying attention on the fact 

that in order to have a consistent model, all the contact nodes lying on the contact sur-

faces on the blades’ platforms must be coincident with the ones lying on the damper con-

tact surfaces. This constrain makes mandatory the presence of specific discretization in 

which the same finite elements are used to discretize the structure in order to impose the 

coincidence of the nodes. The damper equations of motion can be written in a similar 

way to the blades one with   ,    and    mass, damping and stiffness matrices of the 

damper,    vector of the damper degrees of freedom,       the contact forces exerted 

by the blade against the damper and finally    the centrifugal force which presses the 

damper against the blades. 

 

    ̈         ̇                         3.16 

 

By the application of the HBM method the second order differential equation is re-

duced to a system of non-linear algebraic equations. 
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     (  

       ) 3.17 

        
     (  

       ) 3.18 

   
   

       
    3.19 

                   3.20 

       
       

    3.21 

 

with    dynamic stiffness matrix of the damper. In order to solve the non-linear bal-

ance equations, a contact model must be computed. Equations 3.11 and 3.17 can be re-

written in terms of the receptance matrices of the blades and the damper,   and   . 

 

              3.22 

          3.23 

 

Dividing the degrees of freedom of the system in contact  , and non-contact    dof, 

the following system of equations can be written: 

 

       
             

          3.24 

        
              

           3.25 

         
          3.26 
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           3.27 

 

With   
      receptance of the blade contact points due to the external force, 

  
      receptance of the blade contact points due to the contact forces,   

      re-

ceptance of the damper contact nodes due to contact forces,   
        and   

       re-

ceptances of the blades non-contact points due to the external forces and contact forces 

and finally   
       the receptance of the damper non contact points due to the contact 

forces.  
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3.3.2.5. Contact model 

 

In literature, four different kinds of contact models [7] are present to evaluate the 

forced response of a mechanical system with friction contact: 

 1D contact with constant normal load and tangential relative displacement. 

 1D contact with variable normal load with tangential relative displacement. 

 2D contact with constant normal load and tangential relative displacement. 

 2D contact with variable normal load with tangential relative displacement. 

In the evaluation of the non-linear dynamics of the turbine blade model it is neces-

sary to take into account the partial separation of the damper from the blades platforms 

and the possible variation of the normal load. This is the reason why the first and the 

third contact model have been excluded from the choice. In addition to this, however the 

fourth model seems to be the more complete, its huge computational cost keeps it out 

from the possible solution. It follows that a 1D contact model with variable normal load 

and tangential relative displacement will be used for the calculation. In order to take into 

account the motion of the damper, two 1D model will be combined together to create a 

2D model suitable for the application. In this way the two perpendicular slip directions 

are uncoupled to each other. Finally this kind of contact model will be used to connect 

each node of the damper with the corresponding blade node. 
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Figure 3.55 2D contact model for non linear dynamic analysis. Reprinted from Stefano Zucca, Chris-

tian M. Firrone, Muzio Gola. Modeling underplatform dampers for turbine blades: a refined approach in the 

frequency domain. Journal of Vibration and Control, 2012: 1-16. 

 

According to this model shown in Figure 3.55, the tangential and contact stiffness 

are modeled as springs of stiffness    and    with a friction coefficient   between the 

surfaces.       and      represent respectively the relative motion in the tangential and 

normal direction,   the amount of slip and finally   and   the tangential and the normal 

contact forces. During a cycle three states are possible as shown in TABLE VI. 

 

TABLE X  CONTACT CONDITIONS. 

CONTACT CONDITIONS 

1 Stick T <  μN 

2 Slip T > = μN 

3 Lift-off T,N = 0 
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In stick conditions, the contact point is fixed since the tangential force is lower than 

the Coulomb limit force, in slip the tangential force reaches and eventually overcomes the 

limit while in lif-off condition, there is separation of the parts. The normal contact load 

can be defined as: 

 

         [      ̃     ] 3.28 

 

Where    is the static normal load due to the presence of the centrifugal force act-

ing on the damper and pressing it against the blades without vibration, and  ̃    the har-

monic relative displacement. The contact state determines the tangential contact force: 

 

     {

  (         )           

   ( ̇   )               

                                

 3.29 

 

A preliminary static solution is usually performed in order to evaluate the static 

normal load preload acting on the contact. According to the HBM method the absolute 

displacement of the contact points is related to the harmonic term, and can be replaced 

in the definition of the contact forces. Considering a linear superposition of the 0st and 1st 

harmonic terms the relative displacements can be written as follow: 

 

           (        ) 3.30 
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           (        ) 3.31 

 

with the terms with the superscript “0” indicating the static relative normal and tan-

gential displacements between the bodies in contact. If        the contact is reached 

otherwise the two bodies are separated.  

 

 

Figure 3.56 Contact  between adjacent nodes. 

 

However the problem deals with solid bodies the relative displacement along the di-

rection parallel to the damper axis is neglected. 

  



 142 

3.3.2.6. Model reduction and numerical solution 

 

The non-linear behavior of the system can be obtained through the solution of the 

system of non-linear algebraic equations after the introduction of a 2D contact model. 

Since the size of the problem is very big according to the size of the finite element model, 

a reduction technique must be applied in order to minimize the calculation time. The 

same Craigh-Bampton method introduced in paragraph 3.3.1.2.1 has been used to drasti-

cally reduce the number of degrees of freedom. 

The only difference with the preceding case is represented by the fact that in addi-

tion to the first reduction operated to the blades and the fixture, a second matrix reduc-

tion has been performed on the damper itself, taking into account its nodes in contact 

with the blade platforms. As already specified in the contact model, the contact nodes 

between the blades and the damper must be coincident. The blade and fixture matrix re-

duction involves 6 nodes of the structure and the first ten modes: one force node on the 

right blade, two nodes on the left platform, one on the right, and finally two nodes on the 

blades tips, one on the right and one on the left blade. 
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Figure 3.57 Matrix reduction in non linear analysis. 

 

 

The same operation can be performed with the damper; in this case it is only inter-

esting to take into account the contact nodes corresponding to the point       and  . It 

is evident from the problem reduction that the problem of contact has been highly simpli-

fied introducing only two contact points on the left platform and one on the right one. 

This simplification is allowed by the fact that the relative displacement along the direction 

parallel to the damper axis has been considered negligible. 
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Figure 3.58 Damper discretization, left contac. 

 

 

Figure 3.59 Damper discretization, right contact. 

 

Once the reduction procedure has been concluded, all the set of equations must be 

solved numerically. The non-linearity has been introduced by the presence of the contact 

forces between the contact elements. 

The numerical code computes the normalize modeshapes   and the natural fre-

quencies of the model   at the beginning of the solution loop in order to avoid the inver
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sion of the dynamic stiffness matrices to get the receptance matrices and the coeffi-

cients of the receptance matrices are computed at each loop in the following way: 

 

      
                   3.32 

 

with    diagonal matrix of the natural frequencies and   modal damping. At this 

point an iterative solver is employed to solve the system.  The equations of motion can be 

partitioned in real and imaginary parts as follow: 

 

{
     
     

}   [
                   

                  
] {

     
     

}  [
                   

                  
] {

     
     

}
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Which can be condensed in the form to be solved in a frequency range [     ]. 

 

               3.34 

 

The resulting equation can be solved numerically by the use of the Newton Rapson 

Method rewriting the equation in the form       . The solution starts with an initial 

frequency guess and the calculation proceeds until the specified converge is reached. 

Then the frequency is increased of a certain step and the computation starts again. For 

the generic iteration   the equation becomes: 
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        3.35 

 

The time required by the numerical solver depends on the length of the frequency 

domain in which it is necessary to compute the forced response of the system. Obviously, 

an higher accuracy can be reached by reducing the frequency step in the application of 

the Newton Raphson Method increasing the number of computations and the time to 

reach the result. 
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3.3.2.7. Non-linear response of the system 

 

The numerical simulation the non-linear response of the system of two blades con-

nected through an underplatform damper is evaluated by the application of an external 

force used to excite the right blade, reproducing what would have been done in a real ex-

perimental measurement. As already anticipated in the brief introduction about the ef-

fect of the underplatform damper, the damper effects depend on both the damper mate-

rial an damper geometry since the damper is pressed against the blades by the centrifugal 

force which arises during the disk rotation. The amount of force which affects the contact 

between the damper and the blades platforms determines the contact status and the 

amount of energy dissipated by friction. It is necessary to keep in mind that the main goal 

of the damper is to dissipate energy through friction in order to avoid the blades to reach 

the dangerous resonance conditions during the rotation of the disk.  

The system response has been evaluated through a purposely developed Matlab 

code in which it is supposed to excite the right blade by the application of an external 

force which ranges from 5 to 300 N. For sake of simplicity, the centrifugal force acting on 

the damper is maintained constant and equal to 300 N. Since the numerical calculation 

requires a long time and it is more interesting to focus especially on the first and the sec-

ond mode shapes, the frequency range in which the simulation has been performed is 

chosen between 170 and 190 Hz.  

From paragraph 3.1 was shown that the mode shapes of the blades are always cou-

pled in “in-phase”,   , and “out-of-phase”,    , motions, i.e. in the    condition the dif-

ference between the two phases of the blades oscillation is zero while in the     condi-

tion the difference between the two phases is equal to   radiants. In this simulation it will 
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be shown how the motion    and     will be differently affected by the non linear 

behavior of the system and by the variation of the excitation force. It is also expected that 

for a very high value of the external force    the damper reaches the stick condition and 

the response of the blades becomes equal to the one reached in the linear response as if 

the damper is not presence between the blades. On the other and the value of the cen-

trifugal force must be sufficient to prevent the separation of the damper.  

 

 

Figure 3.60 Non-linear analysis, application of the external force vector. 
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As already done in the linear response of the blade, it would be interesting to focus 

the attention on the blades tips, and particularly on the x-axis displacement of the  right 

tip TL2, since the right blade is the one subjected to the excitation force and the most im-

portant motion is the one in the xy plane . The decision to plot only one node is enforced 

by the attempt to make the graphical representation as clear as possible. 

 

 

Figure 3.61 Non-linear response of the right tip TL2, IP and OOP. 

 

Figure 3.61 shows the effect of an increasing external force vector applied to the 

right blade: for higher value of   , the system response is very similar to the one ob-

tained in the linear response since the stick condition is reached. As soon as Fe decreases 

the amplitude of the peak decreases and the frequency of resonance increases moving 

the peak on the right. It is also possible to focus on the different behavior of the    and 

    peaks: the    s seem to be more influenced by the external force and the contact 

condition that the   s.  

173 174 175 176 177 178 179 180 181 182
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Frequency (Hz)

D
is

p
la

c
e
m

e
n
t 
(m

)

Non linear response: IP and OOP

 

 

IP

OOP

Fe=300 N

Fe=260 N

Fe=220 N

Fe=200 N

Fe=150 N

Fe=120 N

Fe=110 N

Fe=100 N

Fe=80 N

Fe=60 N

Fe=30 N

Fe=20 N

Fe=15 N

Fe=12 N

Fe=6 N

Fe=5 N

Fe



  150 

For higher clarity it would be of great interest to plot the same graph normalizing 

the frequency response with respect to the external force vector focusing the attention to 

the peaks behavior. 

 

 

Figure 3.62 FRF right tip TL2, IP and OOP peaks. 

 

Introducing the free response of the blade, it will appear very similar to the non-

linear response of the blade for          where the damper reaches the stick condi-

tion. 
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Figure 3.63 FRF with free response, right tip TL2. 

 

Figure 3.63 shows the comparison between the system behavior with and without 

the damper. It is possible to see that as the external excitation force increases the contact 

reaches the slip condition and the system response becomes non-linear. For higher values 

of   , the system behavior tends to the linear one. TABLE XI contains all the information 

relatively the     and     peaks of the system which can be plotted tracing the perfor-

mance of the damper. 
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TABLE XI  IP AND OOP PEAKS IN THE NON LINEAR FORCED RESPONSE, RIGHT TIP TL2. 

IP AND OOP IN NON LINEAR FORCED RESPONSE 

Fe (N) Fc/Fe IP (Hz) Amplitude (m) Amp/F (m/N) OOP (Hz) Amplitude (m) Amp/F (m/N) 

300 1 175,7 0,00660500 0,00002202 174,5 0,01689000 0,00005630 

260 1,1538 175,7 0,00550200 0,00002116 174,5 0,01318000 0,00005069 

220 1,3636 175,8 0,00445800 0,00002026 174,5 0,00925900 0,00004209 

200 1,5 175,8 0,00393900 0,00001970 174,6 0,00723100 0,00003616 

150 2 175,9 0,00266400 0,00001776 174,8 0,00256300 0,00001709 

110 2,7273 175,3 0,00062820 0,00000571 176,1 0,00174000 0,00001582 

100 3 175,4 0,00053800 0,00000538 176,1 0,00152600 0,00001526 

80 3,75 175,5 0,00039970 0,00000500 176,3 0,00104700 0,00001309 

60 5 176,1 0,00048060 0,00000801 178,6 0,00066500 0,00001108 

30 10 176,3 0,00025710 0,00000857 179,4 0,00053140 0,00001771 

20 15 176,4 0,00021410 0,00001071 179,4 0,00046800 0,00002340 

15 20 176,5 0,00018770 0,00001251 179,4 0,00043420 0,00002895 

12 25 176,6 0,00016100 0,00001342 179,4 0,00040520 0,00003377 

6 50 176,6 0,00008047 0,00001341 179,2 0,00034580 0,00005763 

5 60 176,6 0,00006707 0,00001341 179,1 0,00032970 0,00006594 

 

 

In order to show how the    and     peaks are differently influenced by the pres-

ence of the damper, it could be of great interest tracing the performances of  the peaks in 

terms of resonance frequency and resonance amplitude with respect to the value of the 

external force used to excite the system. The same scale has been used in the graph to 

focus on the differences between the two cases.  
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Figure 3.64 IP performance, resonance frequencies vs excitation force. 

 

 

Figure 3.65 OOP performance, resonance frequencies vs excitation force. 

 

The first couple of graphs shows what happens to the resonance frequencies of the  

   and     peaks in terms of the excitation force. It is important to pay attention on the 
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fact that the abscissa reports the ratio between the centrifugal force, constant, and 

the external force, variable. The amount of change in the frequencies is very small with 

the   s while it becomes more significant with the    s influenced by the non linearities 

introduced with the contact. 

 

 

Figure 3.66 IP performance, resonance amplitude vs excitation force. 
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Figure 3.67 OOP performance, resonance amplitude vs excitation force. 

 

Figure 3.66 and Figure 3.67 show the resonance amplitude normalized with respect 

to the external force vector plotted versus the ratio between centrifugal and external 

force for both the    and     peaks. Also in this case, the    s’ behavior is more inter-

esting since the effect of the non-linearity and the change of the external force become 

more important on the resonance magnitude. 
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3.4. Forced response in time domain 

 

The analysis of the forced response of the system of two blades and the damper in 

the frequency domain has been performed to give a brief introduction about the problem 

of the non-linearitiy due to the presence of a frictional contact between blades and 

damper paving the way to numerical analysis of the same system defined in time domain. 

Starting from the same physical parameters already introduced in the frequency domain, 

the system of two blades and the damper has been studied by the application of a nu-

merical scheme, Newmark, used to apply direct time integration [16]. For sake of simplici-

ty the damper introduced in the model is considered as a rigid body able to rotate and 

translate. 

Direct time integration usually requires a very long computation time due to the di-

mension of the physical problem and to the need of satisfying a certain tolerance in order 

to make the iteration proceeding. In this chapter a numerical simulation of the linear and 

non-linear behavior of the system will be shown by the application of the iterative New-

mark method, used to integrate the equation of motion of the system. Due to the com-

plexity of the physical problem the same reduced element matrices already obtained in 

Ansys will be used in the computations. 
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3.4.1. Linear forced response  

 

The linear forced response of the system is used to evaluate how the system reacts 

under the application of an external harmonic force. Since the linear response of the sys-

tem has already been evaluated in two different ways in the frequency domain, it could 

be of great interest to reproduce the same physical environment in order to compare the 

results of the time integration method with the preceding one.  

It follows that the same reduced model of the system of two blades is used in order 

to integrate the second order differential equation of motion of the system. Since the re-

duced model had considered 6 nodes and 10 modes, the reduced matrix have a size of 

28x28.  

 

  ̈      ̇                3.36 

 

Where    and   respectively represent the mass, the damping and the stiffness 

matrix of the system. The mass and the stiffness matrices have been obtained by the ap-

plication the Craigh-Bampton method already explained in subsection 3.3.1.2.1, while the 

damping matrix of the system has been evaluated by the use of the definition of propor-

tional damping [16], i.e. the damping matrix is calculated as a linear combination of the 

mass and the stiffness matrices with two premultiplying coefficients which depend on the 

modal damping the and the natural frequencies on which it is necessary to apply the 

damping.  
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             3.37 

   
     

     
  3.38 

   
 

     
  3.39 

 

With       the first and the second natural frequencies and         the modal 

damping already applied in the frequency domain. The application of the time integration 

becomes possible choosing a wright value of the time vector and the timestep. In order to 

consider the response of the system as a multiple of the period of its harmonic response, 

the total time of integration has been chosen as a multiple of the period of the external 

harmonic force, and the timestep as a certain percentage of it. In this way, with no de-

pendence on the excitation frequency, the number of steps during which the integration 

is performed, remains constant. 

 

      3.40 

       
 

 
 3.41 

     
 

 
 3.42 

 

Where   represents the excitation frequency of the harmonic external force, n the 

number of cycles used to perform the simulation and    the length of the timestep, de-

fined as a percentage of the period. As already anticipated in the introduction, Newmark 
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method is the numerical scheme used to perform the simulation; since the case of 

study is perfectly linear, the coefficient to solve the calculation are chosen to have the 

method unconditionally stable, i.e. the convergence of the method is not influenced by 

the length of the timestep. The only problem that arises in the numerical analysis is the 

presence of a transient state that takes a certain number of cycles before completing with 

the consequence of a longer time to perform the simulation in order to be sure to get to 

the steady state. The scheme used to perform the simulation is equal to the one already 

introduced in paragraph 3.3.1, with an external force of 5 N acting on the right blade. 

 

 

Figure 3.68 Linear forced response in time domain, FEM model. 
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Plotting the displacement along the x-axis of the right tip it is possible to see that the 

displacement is harmonic as the external excitation force, defined as a sinusoid.  

 

 

Figure 3.69 X-axis displacement, right tip 

 

The only problem related with the time domain direct integration is related to the 

evaluation of the FRF, frequency response function used to compare the results with the 

one obtained through the commercial codes. Starting from a signal defined in time do-

main, i.e. the displacement of the tip, it is firstly necessary to evaluate its FFT, Fast Fourier 

transform, in order to know the amplitude of the response of the blade’s tip, at a certain 

excitation frequency. It follows that, in order to build a complete FRF which ranges 

around the first resonance frequency of the blade, it is necessary to perform a very large 

number of simulation, varying the excitation frequency from the initial value of the inter-

val of the FRF to the final one, i.e. from 170 to 190 Hz.  
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Choosing a frequency step of 0.1 Hz the simulation has been performed in exciting 

the blade with an external force of amplitude 5 N, as a harmonic wave with a frequency 

of 170 Hz. The displacement vector as well as the time vector has been saved, and a new 

time integration is performed increasing the frequency of the external force of the fre-

quency step. Once the 100 time integrations have been completed, the FRF of the system 

is evaluated with the numerical procedure obtained in Matlab. 

 

Figure 3.70 Linear forced response from time integration. 

 

The results is verified comparing it with the solution obtained in Ansys and in the 

other Matlab code; the resonance frequency is exactly 174.5 Hz, equal to the one evalu-

ated in the modal analysis.  
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Figure 3.71 Linear forced response comparison. 

 

Looking at Figure 3.71, the comparison shows that the forced response obtained 

through direct time integration is equivalent to the one calculated in the frequency do-

main; the amplitude of vibration of the blade shows a little difference in its value with re-

spect to the ones previously calculated, but it can considered negligible. It is important to 

notice that the number of cycles chosen to run the simulation is the one immediately af-

ter the transient state, in order to speed up the calculations.  

However the direct time integration method allows us to plot the behavior of the 

single point on the tip of the right blade in time domain and graphically represent the 

forced response of the system in time and in frequency, it is not immediately possible to 

get a sense of the main disadvantage of this way of proceeding, i.e. the very long time re-

quired for the computation. While in the case of the frequency domain, the solution of 

the linear problem requires only few minutes with dependence to the refinement of the 

discretization, in direct time integration, the solution of the linear problem takes more 
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than 4 hours. This deficiency is caused by the necessity of performing the integration 

for a certain set of frequency of excitation, in this case 100 sampling frequencies. 
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3.4.2. Non linear forced response  

 

Once the implementation of the Newmark method has been completed in the case 

of the linear response, a very similar numerical scheme is introduced in order to solve the 

non-linear response of the system of two blades under the application of an external 

harmonic force. The aforementioned code is modified in order to introduce the non-

linearity due to the presence of the contact forces; since the direct time integration works 

with the reduced order model obtained from Ansys, the degrees of freedom and conse-

quently contact nodes used in the simulation remain unchanged. The equation of motion 

of the system has been modified in the following way: 

 

  ̈      ̇                     3.43 

 

Where   represents the transformation matrix which allows rotating and translating 

the contact forces from the contact points to the damper center of mass. In this case all 

the matrices have a size of 31x31 due to the presence of the damper, modeled as a rigid 

body. Two contact points will be considered on the left contact and one the right one.  
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Figure 3.72 System model 

In this simplified case, the damper is considered as a rigid body, with three degrees 

of freedom, two translations and one rotation about its center of mass. This assumption 

is a simplification of the previous problem in which the damper was considered deforma-

ble. In addition to this the axial displacement of the damper is considered negligible. As 

already mentioned in the state of the art, the damping effect generated by the presence 

of the damper is related to the damper mass and going deeply on the centrifugal 

force   , which acts on the damper center of mass, due to the rotation of the system. 

The two triangles represent the blades’ platforms on which the damper moves during the 

simulation. 
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Figure 3.73 System representation. 
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3.4.2.1. Contact model 

 

The contact model used to describe the system can be simplified to the case of a 

slider connected with a normal and a tangential spring. The contact is defined by a nor-

mal and a tangential stiffness,   and   , and by the relative displacements between the 

connected surfaces.  

 

Looking at two consecutive timestep, 0 and 1, respectively, the contact status can be 

described by the use of a predictor corrector method as shown in TABLE XII according to 

the following assumption: 

 

        3.44 

 

With   displacement of the slider connected to body 1,    tangential displacement of 

body 2 at the contact point. 
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TABLE XII  CONTACT STATUS 

CONTACT STATUS 

Stick 

Slider displacement: s Tangential force on body 2 Normal force on body 2 

             
   

   
   

)           
   

     )           
   

   
   

  

Positive slip 

Slider displacement: s Tangential force on body 2 Normal force on body 2 

       
   

 
     

  
                       

      
     

Negative slip 

Slider displacement: s Tangential force on body 2 Normal force on body 2 

       
   

 
     

  
                        

   
   

   
  

Separation 

Slider displacement: s Tangential force on body 2 Normal force on body 2 

       
   

 0 0 

 

 

In the table,   represents the tangetial displacement of a body at the contact point, 

  the normal displacement at the contact and   is the displacement of the slider connect-

ed to body 1.   and   are respectively the tangential and normal contact forces. For sake 

of simplicity, it is possible to consider a stick state, the normal and the tangential contact 

forces can be computed in the following way: 
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            (  
   

   
   

)     3.45 

       (  
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 3.47 

 

   {
        

         

      {
        

   
   

    
     

  
               

        
   

   
    

     

  
               

  3.48 

 

Otherwise if       ,         due to separation.  
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3.4.2.2. Numerical solution 

 

The coefficients chosen in the Newmark scheme should ensure unconditional stabil-

ity, however this condition is not satisfied due to the presence of friction. It is necessary 

to consider a time step as low as possible to improve the convergence. Finally, in order to 

perform the simulation, an initial condition should be provided to the numerical solver: a 

static analysis in performed to get the initial displacement. 

 

                 3.49 

 

As already mentioned in the preceding paragraph, the main deficiency of the direct 

time integration is related to the time requested to complete the computation. In the 

case of the non-linear response, the computation time is much more longer with respect 

to the one required in the linear solution due to the problems of convergence of the 

Newmark scheme after the introduction of the contact forces. More than 2 days are nec-

essary in order to obtain a FRF of the first natural frequency. In addition to this, the long 

time spent for calculation is also caused by the long transient state that the system has 

before reaching the steady state.  The non-linearity that characterize the dynamics of the 

model can be directly shown by the response of the right tip under the application of the 

external force. The following figure shows only a portion of the transient state. This pos-

sibility represents a great advantage with respect to the preceding solutions which do not 

allow to plot the displacement of one node in time domain. 
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Figure 3.74 Non linear response, right tip in time domain. 

 

 

Figure 3.75 zoom. 
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Another important advantage of this kind of solution is the possibility to monitor the 

behavior of the contact forces and relative displacements of the contact point, enabling 

to plot the hysteresis cycles of the contact points.  

The first test has been performed applying to the system of blades a harmonic force 

with amplitude of 5 N as in the case of the linear response. However the damper is pre-

sent between the blades, it is supposed to be in stick with them, i.e. the whole model be-

haves as it is a unique solid body subjected to an external harmonic force with the conse-

quence of a very low damping effect on the system in terms of natural frequency and vi-

bration amplitude. 

 This situation becomes evident plotting the hysteresis cycles for the three contact 

points of the system. The right and the lower left contact points becomes in stick, i.e. the 

hysteresis cycle becomes a line with a slope equal to the tangential contact stiffness, 

while the upper left contact point separates from the blade’s platform, i.e. zero tangential 

force. The hysteresis cycle has been plotted with the relative displacement between 

blade’s platform and damper on the abscissa and the tangential contact force as ordi-

nates. In this contact condition it is expected a growth in the resonance frequency of the 

system since the stick contact can be considered as an additional constraint applied to 

the model.  
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Figure 3.76 Hysteresis cycle right contact. 

 

 

 

Figure 3.77 Hysteresis cycle left contact 1. 
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Figure 3.78 Hysteresis cycle left contact 2. 

 

As shown in Figure 3.78 the damper separates from the blade’s platform, eliminating 

the contact force on the upper left contact. For sake of simplicity, since in the stick condi-

tion, the damper behaves as if it is fixed against the blades’ platforms on the right and the 

lower left contact, the same configuration can be reproduced avoiding the contact rou-

tine in the program and considering the vector of the contact forces obtained as the 

product of a stiffness matrix due to contact and the displacement vector. In this way, the 

numerical solution by Newmark method is improved in speed of calculation since the sub-

routine used to evaluate the contact force is avoided. 
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 In addition to this there are no problems about convergence since the contribution 

of the normal stiffness of the contact points is directly included in the stiffness matrix of 

the system. All the contribution to the normal and tangential stiffness in the local refer-

ences system can be rotated and translated in the global reference centered on the 

damper center of mass and added to the reduced stiffness matrix of the system. In this 

way the numerical calculation can be performed as in the linear case. As in the previous 

case, a larger enough number of cycles must be chosen in order to overtake the transient 

state and reach the steady one. Figure 3.79 Transient and steady state in stick conditions. 

Figure 3.79 shows that the transient state takes a quite long time before completing. 

 

 

 

Figure 3.79 Transient and steady state in stick conditions. 
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obtained through the commercial code. It is important to notice that the FRF of the 

system presents two peaks, the first one which in    motion and the second one which is 

   . The distinction between in-phase and out-of-phase motion can be done looking at 

the direction of the displacements of the blades’ tips. 

 

 

Figure 3.80 Non linear forced response comparison in stick conditions for the right tip, Fe=5N. 

 

Figure 3.80 shows the behavior of the non-linear forced response obtained through 

direct time integration, since the results are carried out by an iterative numerical proce-

dure, a certain error can be found with respect to the results obtained through the re-

sponse evaluated in frequency domain. In addition to this, it is necessary to take into ac-

count that direct time integration usually takes a quite long time to get the solution and 

in order to speed up the calculations a low number of cycles is usually chosen. The pres-

ence of the end of the transient state can affect the results. 
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Once the non-linear forced response in stick condition has been performed, it could 

be of great interest focusing the attention on what happens in the slip state.  Slip state 

occurs in presence of a higher excitation force applied to the model, forcing the damper 

to slide on the blades’ platforms, dissipating energy through frictional contact.  However 

the aim to plot the FRF of the system in slip condition, it is very import to highlight the 

capabilities of the code and of direct time integration to show what happens in terms of 

force and displacements on the contact points, displaying the non-linearity which arises 

due to the presence of the contact forces.  

This is the reason why a plot of the hysteresis cycles of the contact points in slip 

conditions is shown in the following figures, illustrating what happens to the contact 

forces once the transient state has been surpassed. 

 

 

Figure 3.81 Displacement of the right tip: transient and steady state. 
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Figure 3.82 Hysteresis cycle for right contact in slip condition. 

 

 

Figure 3.83 Hysteresis cycle left contact 1, slip condition. 
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Figure 3.84 Hysteresis cycle left contact 2, lift off. 

 

The three hysteresis cycles show the behavior of the tangential contact forces with 

respect to the relative displacement between damper and platforms. As in the stick case, 

it seems that the upper left contact point seems to lift off.  Going deeply looking for the 

contact forces, a non-linear behavior can be found especially for the right contact and the 

lower left one. 
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Figure 3.85 Tangential contact force on the right contact vs time, for 4 cycles. 

 

 

 

Figure 3.86 Tangential contact force on the left 1  contact vs time, for 4 cycles. 
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Figure 3.87 Tangential contact force on the left 2  contact vs time, for 4 cycles. 

  

 

In the case of asymmetric underplatform damper, the lift off of the upper right con-
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4. CONCLUSIONS 

 

In this thesis a complete dynamic analysis of a couple of turbine blades has been 

performed focusing the attention on the linear dynamics of the single blade, modeled 

through a multibody code called SAMS/2000 and on the non-linear dynamics of the sys-

tem of two blades interconnected through an underplatform damper which dissipates 

energy through friction contact.  

Fatigue failure frequently occurs in the case of turbine blades, due to the application 

of cyclic loads during working conditions; turbine blade are usually subjected to the pres-

ence of the centrifugal force which arises as a consequence of the disk rotation, and in-

crease proportionally with the speed of rotation: alternating starting up and shutting 

down lead to very high bending loads on the blades increasing the possibility of initiation 

and propagation of a crack with consequential failure of the whole blade. Such failure 

would result in the destruction of the turbine having catastrophic consequences and a 

very large waste of money for the company owner. This situation becomes more critical 

when the blades reach their resonance condition during the rotation, with the conse-

quence of an increase of the amplitude of vibration and of the possibility of failure. 

This is the reason why a numerical simulation of the single blade has been carried 

out in the first part of the thesis thanks to the use of a multibody code called SAMS/2000 

which allows to simulate the blade’s rotation about a fixed axis and to monitor the dis-

placement of a defined node on the blade. This test gives the possibility of understanding 

the blade deformation due to the rotation in working condition. However the numerical 

solution has been performed by the use of a simplified model of dummy blade, the way 

of proceeding adopted in this thesis opens the door to further application of the same 

methodology to more complex cases which can concern with simulation of the behavior 

of real systems of turbine blades eventually connected through different kind of joints 
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such a spring damper elements used to attenuate the vibration of the blades during 

rotation. The similarity of the problem with the dynamics of helicopter’s blades can be 

the reason of the application of this solution to this kind of problem. 

Going deeply with the problem of resonance of turbine blades in working conditions, 

the thesis shows an investigation on the effects of the presence of an underplatform 

damper connected with the blades’ platforms through friction contacts. A numerical sim-

ulation on the effects of the damper on the aforementioned system has been investigat-

ed: the damper is used to dissipate energy through friction between its surfaces and the 

blades’ platforms.  Among all the possible solution presented in literature, the work anal-

yses the case of an asymmetric underplatform damper with a flat and a semi-cylindrical 

contact surfaces. The damper behavior has been studied taking into account a constant 

value of the centrifugal force generated by the system rotation and exciting the model 

with an external force.  The damper effects can be shown in a decrease of the amplitude 

of vibration of the blades, enhancing the fatigue life of the blades and slightly increasing 

the resonance frequency of the system. All these tests have been considered taking into 

account only the first flexural mode of the blades. The same general guideline has been 

used to develop the same numerical simulation using two different environments:  

 Firstly all the calculations have been performed through a purposely devel-

oped code made specifically for a Company, working only in the frequency 

domain. 

 Secondly, a very similar procedure has been developed using direct time in-

tegration to solve the non-linear problem caused by the presence of contact. 

The main advantages and disadvantages of the two procedures immediately arise 

from the direct comparison between the two methods. The time required to solve the 
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numerical simulation is the essential difference which sticks out from the results: the 

numerical solution of the problem in frequency domain results much more efficient in 

terms of time, in less of one hour is possible to get the performance of the blade under 

the application of a set of external force, while in time domain more than two days are 

necessary to complete one FRF. The long time required to the direct time integration de-

pends on the long transient state of the system and on the necessity of convergence of 

the numerical scheme adopted to solve the equation of motion. On the other hand, the 

direct time integration allows a better characterization of the damper behavior, such as 

the possibility of plotting the hysteresis cycles and the displacements of the blade tip dur-

ing the excitation. As already mentioned in the preceding paragraphs, the comparison has 

been made possible by the use of the same physical model, through the use of the same 

reduced matrices of the system. The comparison of the results has been made taking into 

account both the linear forced response and the non-linear one, i.e. the case in presence 

of the damper.  

The linear forced response has been performed in three different environments: An-

sys mechanical, a commercial software developed in Matlab and through direct time in-

tegration. These set of test has been performed in order to make sure that the use of a 

condensed model enables to get the same results saving a large amount of time during 

computations. The greatest weakness of direct time integration appears studying the 

non-linear behavior of the system: the time required for computation; direct time inte-

gration takes about one hour to compute the integration for one excitation frequency. 

Due to the fact that more than 100 integrations must be performed in order to define the 

FRF around the first resonance frequency, it follows that the time of computation be-

comes overdone. This situation becomes worse in the case of the non-linear dynamics 

where, the non-linearity in the equation of motion introduced by the contact forces af
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fects the convergence of the Newmark scheme which requires lower timestep in or-

der to keep certain accuracy. It follows that obtaining a complete performance curve of 

the blade varying some physical parameters such as external force or centrifugal force 

becomes unattainable. 

In conclusion it is possible to summarize that a frequency domain analysis of a sys-

tem of blades and underplatform damper still represents the fastest and the most accu-

rate way to investigate the effect of the damper on the system in improving the fatigue 

life of the blades, but the direct time integration can be kept as a reasonable alternative 

when it is interesting to focus only on what happens on the contact points in terms of 

displacements and contact forces. With regards to the damper, many different solutions 

can be adopted to enhance the dynamic behavior of turbine blades, with dependence on 

the damper mass and geometry, but what matters is how the damper behaves in dynamic 

conditions and going deeply how good it performs the task of reducing the amplitude of 

vibration without sticking. 
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 APPENDIX A: 2D RECTANGULAR ELEMENT MATLAB SCRIPT 

 

This appendix contains the Matlab script used to evaluate analytically the closed so-

lution for the stiffness and mass matrices of the 2D rectangular element which have been 

exported as subroutines for SAMS/2000. 

 

%This subroutine is used to evaluate the 4-node 8DOFS plate element 
clc 
clear 
syms x y a b c Rou 
syms N1 N2 N3 N4  
syms EEM EGM F V; 

  
%% Natural coordinates 
kesi = x/a; 
yita = y/b; 
N1 = 1/4*(1-kesi)*(1-yita); 
N2 = 1/4*(1+kesi)*(1-yita); 
N3 = 1/4*(1+kesi)*(1+yita); 
N4 = 1/4*(1-kesi)*(1+yita); 

  
Sx = [N1 0 N2 0 N3 0 N4 0]; 
Sy = [0 N1 0 N2 0 N3 0 N4]; 

  

  
S = [Sx;Sy]; 

  
%%Obtain the element Mass Matrix 
S_T = transpose(S); 
G = S_T*S; 
for i= 1:8 
    for j = 1:8 
        M(i,j) = Rou*c*int(int(G(i,j),x,-a,a),y,-b,b); 
    end 
end 
Mass = M/Rou/a/b/c; 
PrinteleMass2D(Mass); % Mass need to premultiply Rou*a*b*c to get the 

final results 

  

  
%%Obtain the element Stiffness Matrix 
DS(1,1:8) = diff(Sx,x); 
DS(2,1:8) = diff(Sy,y); 
DS(3,1:8) = diff(Sx,y)+diff(Sy,x); 
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APPENDIX A (CONTINUED) 

 

 

% V = EEM/2/EGM-1; 
% F = EEM/(1-V^2) 
E = F*[1 V 0;V 1 0;0 0 (1-V)/2]; 

  
Dk = transpose(DS)*E*DS; 

  
for i= 1:8 
    for j = 1:8 
        K(i,j) = c*int(int(Dk(i,j),x,-a,a),y,-b,b); 
    end 
end 

 
Stiff = K/F;  %Stiffness need to premultiply F to get the final re-

sults 
Printstiffness2D(Stiff); 
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APPENDIX B: 2D TRIANGULAR ELEMENT MATLAB SCRIPT 

 

This appendix contains the Matlab script used to evaluate analytically the closed so-

lution for the stiffness and mass matrices of the 2D triangular element which have been 

exported as subroutines for SAMS/2000. 

 

%This subroutine is used to evaluate the 3-node 6DOFS triangular ele-

ment 
clc 
clear 
syms x y x1 y1 x2 y2 x3 y3 a b c Rou 
syms EEM EGM F V; 
syms kesi yita 

  
%%Shape functions 
N1=kesi; 
N2=yita; 
N3=1-kesi-yita; 

  

  
Sx = [N1 0 N2 0 N3 0]; 
Sy = [0 N1 0 N2 0 N3]; 
S = [Sx;Sy]; 

  

  
x=transpose([x1 x2 x3]); 
y=transpose([y1 y2 y3]); 
detJe=det([1 x1 y1;1 x2 y2;1 x3 y3]); 
x13=x(1)-x(3); 
x21=x(2)-x(1); 
x32=x(3)-x(2); 
y23=y(2)-y(3); 
y31=y(3)-y(1); 
y12=y(1)-y(2); 

  
B1=[y23 0 y31 0 y12 0]; 
B2=[0 x32 0 x13 0 x21]; 
B3=[x32 y23 x13 y31 x21 y12]; 
B=(1/detJe)*[B1;B2;B3]; 

  

  
%% Stiffness matrix 
% V = EEM/2/EGM-1; 
% F = EEM/(1-V^2); 
E = F*[1 V 0;V 1 0;0 0 (1-V)/2]; 
Dk = transpose(B)*E*B; 
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APPENDIX B (CONTINUED) 
 

 

Stiff=detJe/2*Dk; 
Printstiffness2D(Stiff); 
  

 

%%Mass Matrix 
%Obtain the element Mass Matrix 
S_T = transpose(S); 
G = S_T*S*detJe; 
for i= 1:6 
    for j = 1:6 
        M(i,j) = Rou*c*int(int(G(i,j),kesi,0,1-yita),yita,0,1); 
    end 
end 

 
% Mass = M/Rou/a/b/c; 
Mass=M; 
PrinteleMass2D(Mass); 
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