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Summary

This work expands regularity results for equations related to fluid motion. First,

we improve previously known lower bounds for Sobolev norms of potential blow-

up solutions to the three-dimensional Navier-Stokes equations in the homogeneous

Sobolev space Ḣ3/2. Next, we study the inviscid dyadic model of the Euler equations

and prove some regularizing properties of the nonlinear term that occur due to forward

energy cascade. We show every solution must have 3
5
L2-based (or 1

10
L3-based)

regularity for all positive time. We conjecture this holds up to Onsager’s scaling,

where the L2-based exponent is 5
6

and the L3-based exponent is 1
3
. Finally, we prove

that a solution u to the three-dimensional Boussinesq equations does not blow-up at

time T if ‖u≤Q‖B1
∞,∞ is integrable on (0, T ), where u≤Q represents the low modes of

Littlewood-Paley projection of the velocity u.
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CHAPTER 1

Introduction

1. Incompressible Fluid Equations

The three-dimensional Euler equations describe the motion of an ideal inviscid

fluid with velocity vector u(x, t), density ρ(x, t), and pressure p(x, t), where x is the

spatial variable in domain Ω = R3 or Ω = T3 and t is the time variable, t ≥ 0. The

Euler equations may be derived from Newton’s second law of motion relating force F

to mass m and acceleration a:

F = ma.(1.1)

We apply (1.1) to V , an infinitesimal cube of fluid with volume |V |. The mass of the

cube is given by

m = ρ(x, t)|V |.(1.2)

Let X = X(t) denote the position of the center of the fluid cube at time t.

Then the velocity is given by

u(X(t), t) =
d

dt
X(t).(1.3)

1
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We use the velocity to find the acceleration a, which appears in the righthand-side of

(1.1),

a(t) =
d

dt
u(X(t), t)

=
∂

∂t
u(X(t), t) +∇u(X(t), t) · d

dt
X(t)

=
∂u

∂t
+∇u · u

=
∂u

∂t
+ (u · ∇)u.

(1.4)

Under the ideal fluid assumption, the force on the fluid cube comes from the

normal force to the boundary of V and is due to the pressure:

F = −p(x, t)n|A|,(1.5)

where n is the outward normal vector to the boundary of the cube and |A| is area of

one side of the cube V . By the divergence theorem,

−
∫∫

∂V

p(x, t)n dS = −
∫∫∫

V

∇p dV(1.6)

Thus, pointwise, we have

F = −∇p.(1.7)

One may derive the continuity equation

∂ρ

∂t
+∇ · (ρu) = 0(1.8)

by conservation of mass. However, we will only consider fluids with constant density.

Such fluids are referred to as incompressible. Without loss of generality by rescaling,

assume

ρ ≡ 1,(1.9)
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which reduces (1.8) to

∇ · u = 0.(1.10)

See [29] for a detailed derivation of the continuity equation for non-constant density

ρ(x, t). We insert (1.2), (1.4), and (1.7) into (1.1), divide by |V |, and couple the

resulting equation with (1.10) to arrive at the three-dimensional incompressible Euler

equations:

∂u

∂t
+ (u · ∇)u = −∇p,

∇ · u = 0.

(1.11)

The first equation is referred to as the momentum equation and the second may be

referred to as the incompressibility condition or the divergence-free condition.

For viscous flows, we must also consider the tangential component of the force,

Ft, due to friction. We use Stokes theorem on a cube of fluid to model the total force

due to friction and the divergence theorem to find

Ft =

∫∫
∂V

(∇u) · n dS =

∫∫∫
V

∇ · (∇u) dV =

∫∫∫
V

∆u dV .(1.12)

Thus, pointwise, the force due to friction is given by

Ft = ∆u.(1.13)

We add (1.13) to the righthand-side of the momentum equation in (1.11) to arrive at

the three-dimensional incompressible Navier-Stokes equations:

∂u

∂t
+ (u · ∇)u = −∇p+ ν∆u,

∇ · u = 0,

(1.14)

where ν > 0 denotes the kinematic viscosity of the fluid.
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The three-dimensional incompressible Boussinesq equations account for the con-

vective force of temperature on fluid flow with another term added to the righthand-

side of the Navier-Stokes momentum equation and an additional evolution equation

for the temperature θ(x, t):

∂u

∂t
+ (u · ∇)u = −∇p+ ν∆u+ θe3,

∂tθ + (u · ∇)θ = k∆θ,

∇ · u = 0,

(1.15)

where k is the thermal diffusivity coefficient and e3 = (0, 0, 1)T .

Other notable fluid equations are the magneto-hydrodynamics equations. The

magneto-hydrodynamics equations incorporate the effects of magnetic fields on fluid

flow to describe the motion of electrically charged fluids, such as liquid metals and

plasmas. The magneto-hydrodynamics equations are given by:

∂u

∂t
+ (u · ∇)u− (b · ∇)b = −∇p+ ν∆u,

∂b

∂t
+ (u · ∇)b− (b · ∇)u = µ∆b,

∇ · u = 0, ∇ · b = 0,

(1.16)

where b = b(x, t) is the magnetic field and µ is the reciprocal of the magnetic Reynolds

number.

2. Loss of Regularity and the Navier-Stokes Equations

The Navier-Stokes equations, known since the nineteenth century, are used for

many applications in science and engineering, such as modeling weather and designing

aircrafts. However, fundamental mathematical questions about solutions to the equa-

tions remain unanswered. One of the Clay Mathematics Institute Millennium Prize

problems is on the existence and smoothness of the three-dimensional incompressible

Navier-Stokes problem. The task is to determine given any smooth, divergence-free
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initial data u(x, 0) = u0(t), if there exist smooth p(x, t) and u(x, t) that satisfy (1.14)

for all time on the spatial domain Ω is R3 or T3 (or to negate this statement). This

problem has proved to be exceedingly difficult to answer and remains completely open.

One result of the challenge presented by this problem is the development of simplified

toy models to explore the regularity and other properties of fluid equations. Shell

models mimic energy cascade in turbulent flows. The dyadic model is an example

of a shell model that has enjoyed progress and provided insight and intuition about

the Navier-Stokes equations and the Euler equations. The inviscid dyadic model for

the Euler equations is discussed in the next section and is the primary subject of the

results in Chapter 3.

In Chapter 2, we focus on exploring properties of solutions to the Navier-Stokes

equations that are presumed to lose regularity. A natural question to ask is: If we

assume a smooth solution u loses regularity at time T ∗, what is the rate of blow-up?

In 1934, Leray [40] published his seminal work on the the fluid equations. He proved

the existence of global weak solutions to (1.14) and proved that smooth solutions are

unique in the class of Leray-Hopf solutions. He also showed that if ‖u(t)‖Ḣ1(R3) is

continuous on [0, T ∗) and blows up at time T ∗, then

‖u(t)‖Ḣ1(R3) ≥
c

(T ∗ − t) 1
4

.(1.17)

After Leray proved (1.17), similar lower bounds were pursued and proven in

Lp(R3) for 3 < p <∞ [32], which extended the results to the Sobolev spaces Hs(R3)

for 1
2
< s < 3

2
through Sobolev embedding. More recent work pushed progress on

Sobolev norms for s ≥ 3
2

(a more detailed history and description is presented in

Chapter 2). The main result of Chapter 2 is

THEOREM 1.1. Let u be a smooth solution to (1.14) with finite energy initial data

such that u loses regularity at time T ∗. Then

‖u‖Ḣ3/2(Ω) ≥
c√

T ∗ − t
,(1.18)
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for 0 ≤ t < T ∗ and Ω = T3 or Ω = R3.

Such a bound was also presented in [41] and [42], which appeared shortly

after Theorem 1.1 appeared in [23]. The method in Chapter 2 did not depend on

rescaling arguments and thus works simultaneously for R3 or T3 via Littlewood-Paley

decomposition. We stress the importance of the H3/2 norm, which scales like the L∞.

No conclusion can be reached directly from Theorem 1.1 about the blow-up rate of

the L∞ norm, which is one of the most fundamental problems on regularity for the

three-dimensional Navier-Stokes equations, but the connection between them is deep.

3. Regularity and the Inviscid Dyadic Model

The role of the nonlinear term is pivotal in the study of turbulent flows, which

is another highly pursued, but still poorly understood topic in fluid dynamics. The

basic principle proposed by Kolmogorov [39] behind turbulence is forward energy

cascade. The theory asserts that energy moves from large to small scale structures

called eddies, which can be roughly described as pockets of fluid with some uniting

velocity structure. Energy moves without loss through the inertial range, which

corresponds to low frequencies, until it reaches the dissipation range, which resides

at high frequencies. Recent numerical and experimental data suggest deviation from

Kolmogorov’s original theory can be attributed to intermittency, which is when eddies

do not occupy the whole space.

The study of turbulent flows remains quite difficult, but a great deal of in-

sight can be found by studying shell models of the fluid equations. Shell models are

designed to capture energy cascade in turbulent fluid flows. The sabra shell model

(see [25] and [26]) and the dyadic model elicited a great deal of activity and insight

recently. The dyadic model is a specific example where the nonlinearity is simplified

to reflect just the local interactions between neighboring scales. It was initially intro-

duced in 1974 by Desnianskii and Novikov [28] in the context of oceanography. The
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inviscid dyadic model shares two signature characteristics with the three-dimensional

Euler equations: the formal conservation of energy and the scaling properties of the

nonlinear term.

Kolmogorov predicted that energy cascade produces dissipation anomaly, which

is characterized by the persistence of non-vanishing energy dissipation in the limit of

vanishing viscosity. This phenomenon is possibly related to anomalous dissipation,

which is failure of the energy to be conserved despite the absence of viscosity. Onsager

conjectured that sufficiently rough solutions to Euler’s equation can exhibit anomalous

dissipation, but if the solution is smooth enough, then the energy should be conserved

[43]. Anomalous dissipation and loss of regularity a priori seem unconnected, but

a more discernible relationship exists in the context of the inviscid dyadic model

and Onsager scaling. While results about the dyadic model can rarely be extended

to answer questions about regularity of the actual fluid equations, turbulence, or

Onsager’s conjecture, they do give insight as to what mechanisms may be helping

or impeding progress. The dyadic model functions as an illuminating testbed for

methods and conjectures that may be more difficult to apply to the actual equations.

The total energy in the jth shell is denoted by a2
j(t). Assuming only local

interactions and extreme intermittency, one may model the flux through the jth shell

of radius λj as

Πj = λ
5/2
j a2

jaj+1,(1.19)

leading to the inviscid system

a′j(t) = λ
5/2
j−1a

2
j−1(t)− λ5/2

j aj(t)aj+1(t), j = 1, 2, ...(1.20)

with initial conditions aj(0) = a0
j for j = 0, 1, .... In Chapter 3, we prove
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THEOREM 1.2. For any positive solution to (1.20) with initial condition a(0) in

l2,

sup
j
λθjaj(t) <∞,(1.21)

for t > 0 and θ = 3/5.

The approach used for Theorem 1.2 [24] was more dynamical, which made

it possible to improve the previously known regularity results. The ultimate goal

would be to show regularity for values of θ up to 5/6, which corresponds to Onsager’s

scaling.

4. Regularity Criteria and the Boussinesq Equations

The Boussinesq equations are important in the study of atmospheric sciences

and they yield a wealth of interesting and difficult problems from a mathematical

perspective. The regularity of (1.15) has been studied thoroughly on its own as well

as in relation to the regularity of other systems of equations, such as the Navier-

Stokes equations, Euler equations, and magneto-hydrodynamics equations. In three-

dimensions, regularity criteria for (1.15) have been developed in many cases using

many different methods. A more detailed survey of previous regularity results is

contained in Chapter 4. The main result of Chapter 4 is the following regularity

criterion for the three-dimensional Boussinesq equations:

THEOREM 1.3. Let
(
u, θ
)

be a weak solution to (1.15) on [0, T ], assume
(
u, θ
)

is

regular on (0, T ), and

‖u≤Q‖B1
∞,∞ ∈ L

1(0, T ).(1.22)

Then
(
u(t), θ(t)

)
is regular on (0, T ].
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The key tool in the development of this regularity criterion is linked to the dissi-

pation wave number Λ(t), a natural tool to study dissipative equations, corresponding

to the work of Kolmogorov [39]. Recent work utilizing Littlewood-Paley decomposi-

tion, the dissipation wave number, and determining modes have already provided key

improvements to previously known regularity results for the surface quasi-geostrophic

equations, the magneto-hydrodynamics equations, and the Navier-Stokes equations

(see [14], [15], [16], and [21]) that used classical techniques.

5. Littlewood-Paley Decomposition

Fourier analysis methods, in particular Littlewood-Paley decomposition, ap-

plied to the Navier-Stokes and related equations have been a natural and produc-

tive fit. Joseph Fourier was reportedly very influential on Claude-Louis Navier, who

in turn promoted the mathematical techniques developed his friend and teacher.

Tremendous progress was achieved in the last decade by studying the above fluid

equations with harmonic analysis tools. The methods used in the subsequent chap-

ters center on Littlewood-Paley decomposition, which was introduced by Littlewood

and Paley in the 1930s. We refer the reader to [8] for more on the history between

Fourier and Navier and more information on the stages of the development of Fourier

analysis and Littlewood-Paley applications to fluid equations.

Denote the wave numbers as λq = 2q (in some wave units). For ψ ∈ C∞(R3),

define

ψ(ξ) =

 1 : |ξ| ≤ 3
4

0 : |ξ| ≥ 1.

Next define φ(ξ) = ψ(ξ/ λ1) − ψ(ξ) and φq(ξ) = φ(ξ/ λq) for all q, and φ−1 = ψ(ξ).

The φq’s form a partition of unity. Then

u =
∞∑

q=−∞

uq,(1.23)
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in the sense of distributions, where the uq is the qth Littlewood-Paley piece of u. On

R3, the Littlewood-Paley pieces are defined as

uq(x) =

∫
R3

u(x− y)F−1(φq)(y) dy,(1.24)

where F−1 is the inverse Fourier transform. On T3, the Littlewood-Paley pieces are

given by

uq(x) =
∑
k∈Z3

û(k)φq(k) eik·x,(1.25)

where (1.23) holds provided u has zero-mean. Moreover, uq = 0 in the periodic case

when q < 0.

We will use the notation

u≤Q =
∑
q≤Q

uq,(1.26)

u≥Q =
∑
q≥Q

uq,(1.27)

and

ũq = uq−1 + uq + uq+1.(1.28)

Homogeneous Sobolev spaces are denoted by Ḣs, for which the norm will be

defined via Littlewood-Paley decomposition.

DEFINITION 1.4. The homogeneous Sobolev norm of a function u is given by

‖u‖Ḣs =
( ∞∑
q=−∞

λ2s
q ‖uq‖2

L2

) 1
2
.(1.29)

Note that it corresponds to the nonhomogeneous Sobolev norm Hs in the periodic

case. We also use Littlewood-Paley decomposition to define the homogeneous Besov

norm:
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DEFINITION 1.5. The homogeneous Besov norm of a function u is given by

‖u‖Ḃsp,r =
∥∥(λsq ‖uq‖Lp)q∈Z∥∥lr ,(1.30)

for s ∈ R and 1 ≤ p, r ≤ ∞.

A function u belongs in one of those spaces if the associated norm in that space is

finite.

6. Notation

The symbol . (or &) denotes that an inequality holds up to a constant:

A . B ⇔ A ≤ cB,(1.31)

where c is an absolute constant. Further, we will suppress notation for Lp norms as

‖ · ‖p := ‖ · ‖Lp(Ω),(1.32)

where Ω is the spatial domain specified per section.



CHAPTER 2

Lower Bounds of Potential Blow-Up Solutions of the

Three-dimensional Navier-Stokes Equations in Sobolev

Spaces

1. Background

In this chapter we focus on the three-dimensional incompressible Navier-Stokes

equations and bound the blow-up rates of Sobolev norms of solutions that are assumed

to lose regularity in finite time. The contents of this chapter were previously published

as A. Cheskidov and K. Zaya, Lower bounds of potential blow-up solutions of the

three-dimensional Navier-Stokes equations in Ḣ3/2, J. Math. Phys., 57(2), 7, 2016

(see [23]). First, recall the Navier-Stokes equations from Chapter 1:

∂u

∂t
+ (u · ∇)u = −∇p+ ν∆u,

∇ · u = 0,

u(x, 0) = u0(x),

(2.1)

where the velocity u(x, t) and the pressure p(x, t) are unknowns, ν > 0 is the kinematic

viscosity coefficient, the initial data u0(·) ∈ L2(Ω), and the spatial domain Ω = T3 or

Ω = R3.

In 1934, Leray [40] showed that if ‖u(t)‖H1 is continuous on [0, T ∗) and blows

up at time T ∗, then

‖u(t)‖Ḣ1(R3) ≥
c

(T ∗ − t) 1
4

.(2.2)

12
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Moreover, the bound for Lp norms for 3 < p <∞,

‖u(t)‖Lp(R3) ≥
cp

(T ∗ − t)
p−3
2p

,(2.3)

have been known for a long time (see [40] and [32]). The Sobolev embedding

Ḣs(R3) ⊂ L
6

3−2s (R3)(2.4)

and (2.3) yield that

‖u(t)‖Ḣs(Ω) ≥
c

(T ∗ − t) 2s−1
4

,(2.5)

for 1
2
< s < 3

2
and Ω = R3. Robinson, Sadowski, and Silva extended (2.5) in [48] for

3
2
< s < 5

2
for the whole space and in the presence of periodic boundary conditions.

This bound is considered optimal for those values of s.

When s > 5
2
, Benameur [6] showed

‖u(t)‖Ḣs(R3) ≥
c(s)‖u(t)‖

3−2s
3

L2(R3)

(T ∗ − t) s3
,(2.6)

which was improved upon by Robinson, Sadowski, and Silva in [48] to

‖u(t)‖Ḣs(Ω) ≥
c(s)‖u0‖

5−2s
5

L2(Ω)

(T ∗ − t) 2s
5

,(2.7)

when Ω = T3 or Ω = R3.

The border cases s = 3
2

and s = 5
2

required separate treatment. For s = 3
2
,

Robinson, Sadowski, and Silva had an epsilon correction to the lower bound. In [27],

Cortissoz, Montero, and Pinilla improved the bound for s = 3
2

on T3, but they had a

logarithmic correction:

‖u(t)‖
Ḣ

3
2 (T3)

≥ c√
(T ∗ − t)| log(T ∗ − t)|

.(2.8)
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For s = 5
2
, Cortissoz, Montero, and Pinilla [27] also found

‖u(t)‖
Ḣ

5
2 (Ω)
≥ c

(T ∗ − t)| log(T ∗ − t)|
,(2.9)

when Ω = T3 or Ω = R3. In [41], the authors proved

lim sup
t→T ∗−

(T ∗ − t)‖u(t)‖Ḣ5/2(Ω) ≥ c.(2.10)

The result of this chapter improves the bound for the Ḣ
3
2 (Ω)-norm to the

optimal bound (2.5) when Ω = R3 or Ω = T3. The method is not contingent on

rescaling arguments and thus works simultaneously for R3 and T3 and differs from

previous works because Littlewood-Paley decomposition is employed. The importance

of the H3/2 norm must be stressed because it scales to the L∞ norm and corresponds

to the uncovered limit of (2.5). The H5/2 norm is also significant because H5/2 is

a critical space for the Euler equations and scales like B1
∞,∞, the Beale-Kato-Majda

space. Furthermore, the persistence of the logarithmic correction in estimate (2.9) is

consistent with the recent result of Bourgain and Li [7] on the ill-posedness of the

Euler equations in H5/2.

REMARK 2.1. The lower bound for the Ḣ
3
2 -norm of blow-up solutions was also pre-

sented in papers by Montero [42] and McCormick, Olson, Robinson, Rodrigo, Vidal-

Lopez, and Zhou [41], which both appeared shortly after the results presented here.

2. Bounding Blow-Up

We begin by testing the weak formulation of the Navier-Stokes equation with

λ2s
q (uq)q to obtain

d

dt

(
λ2s
q ‖uq‖2

2

)
= −ν λ2s+2

q ‖uq‖2
2 + 2λ2s

q

∫
Tr[(u⊗ u)q · ∇uq] dx .(2.11)
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In the typical fashion, we write

(u⊗ u)q = uq ⊗ u+ u⊗ uq + rq(u, u),(2.12)

for q > −1, where the remainder function is given by

rq(u, u)(x) =

∫
F -1(φq)(y)(u(x− y)− u(x))⊗ (u(x− y)− u(x)) dy .(2.13)

Thus, we rewrite the nonlinear term as∫
Tr[(u⊗ u)q · ∇uq] dx =

∫
rq(u, u) · ∇uq dx−

∫
uq · ∇u≤q+1 · uq dx .(2.14)

LEMMA 2.2. The integral (2.14) corresponding to the nonlinear term in (2.11) is

bounded above by∫
Tr[(u⊗ u)q · ∇uq] dx .λ−1

q ‖uq‖2

q∑
p=−∞

λ2
p ‖up‖2

4

+ λq ‖uq‖2

∞∑
p=q+1

‖up‖2
4

+ ‖uq‖2
2

q+1∑
p=−∞

λ
5
2
p ‖up‖2.

(2.15)

Proof. We examine the two integrals on the right-hand side of (2.14) separately.

By Hölder’s inequality,∫
rq(u, u) · ∇uq dx . ‖rq(u, u)‖2 λq ‖uq‖2.(2.16)
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We use Littlewood-Paley decomposition and split the sum into low versus high modes

to find

‖rq(u, u)‖2 .
∫
R3

| F -1(φq)(y)| ‖u(x− y)− u(x)‖2
4 dy

.
∫
R3

| F -1(φq)(y)|
q∑

p=−∞

‖(u(x− y)− u(x))p‖2
4 dy

+

∫
R3

| F -1(φq)(y)|
∞∑

p=q+1

‖(u(x− y)− u(x))p‖2
4 dy .

(2.17)

We apply the Mean-Value Theorem on the low modes and the triangle inequality on

the high modes to arrive at

‖rq(u, u)‖2 .
∫
R3

| F -1(φq)(y)| |y|2
q∑

p=−∞

‖∇up‖2
4 dy

+

∫
R3

| F -1(φq)(y)|
∞∑

p=q+1

‖up‖4 dy

.λ−2
q

q∑
p=−∞

λ2
p ‖up‖2

4 +
∞∑

p=q+1

‖up‖4

(2.18)

Thus, ∫
rq(u, u) · ∇uq dx .λ−1

q ‖uq‖2

q∑
p=−∞

λ2
p ‖up‖2

4

+ λq ‖uq‖2

∞∑
p=q+1

‖up‖2
4.

(2.19)

For the second term of (2.14), we use a similar process as above in addition to

Bernstein’s inequality in three dimensions, which says, for 1 ≤ p ≤ q,

‖uj‖q . λ
3( 1
p
− 1
q

)

j ‖uj‖p,(2.20)
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to find ∫
uq · ∇u≤q+1 · uq dx . ‖uq‖2

2

q+1∑
p=−∞

λp ‖up‖∞(2.21)

. ‖uq‖2
2

q+1∑
p=−∞

λ5/2
p ‖up‖2.

Combining (2.19) and (2.21) yields the desired bound (2.15). �

Similar estimates were executed in [13] and [22]. We apply the bound obtained

in Lemma 2.2 to write

d

dt

∞∑
q=−∞

(
λ2s
q ‖uq‖2

2

)
. −

∞∑
q=−∞

(
ν λ2s+2

q ‖uq‖2
2

)
+ 2
(
A+B + C

)
,(2.22)

where

A =
∞∑

q=−∞

q∑
p=−∞

λ2s−1
q ‖uq‖2 λ

2
p ‖up‖2

4,(2.23)

B =
∞∑

q=−∞

∞∑
p=q+1

λ2s+1
q ‖uq‖2‖up‖2

4,(2.24)

C =
∞∑

q=−∞

q+1∑
p=−∞

λ2s
q ‖uq‖2

2 λ
5/2
p ‖up‖2.(2.25)

THEOREM 2.3. Let u be a solution to (2.1) with finite energy initial data. Then

for s = 3
2
, the solution u satisfies the Riccati-type differential inequality

d

dt

∞∑
q=−∞

(
λ3
q ‖uq‖2

2

)
.

∞∑
q=−∞

(
λ3
q ‖uq‖2

2

)2

(2.26)
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Proof. We bound the nonlinear terms. First, we estimate (2.23) for s = 3
2
. We

apply Bernstein’s inequality in three-dimensions and we rewrite the sum

A =
∞∑

q=−∞

q∑
p=−∞

λ2
q ‖uq‖2 λ

2
p ‖up‖2

4

.
∞∑

q=−∞

q∑
p=−∞

λ2
q ‖uq‖2 λ

7/2
p ‖up‖2

2

=
∞∑

q=−∞

q∑
p=−∞

λ
−1/2
q−p

(
λ5/2
q ‖uq‖2

)(
λ3
p ‖up‖2

2

)
.

(2.27)

We apply the Cauchy-Schwartz inequality to yield

A .
∞∑

q=−∞

q∑
p=−∞

λ
−1/2
q−p

(ν
3
λ5
q ‖uq‖2

2

)
+ λ

−1/2
q−p

(
ν−1 λ3

p ‖up‖2
2

)2

.(2.28)

Next we sum in p for the first term and exchange the order of summation and sum

in q for the second term of (2.28):

A .
∞∑

q=−∞

(
ν−1 λ3

q ‖uq‖2
2

)2

+
ν

3

∞∑
q=−∞

(
λ5
q ‖uq‖2

2

)
.(2.29)

To estimate (2.24) when s = 3
2
, first we apply Bernstein’s inequality for three-

dimensions to find

B =
∞∑

q=−∞

∞∑
p=q+1

λ4
q ‖uq‖2‖up‖2

4

.
∞∑

q=−∞

∞∑
p=q+1

λ4
q ‖uq‖2 λ

3/2
p ‖up‖2

2.

(2.30)

We rewrite the sum to look like

B .
∞∑

q=−∞

∞∑
p=q+1

λ
−5/2
p−q

(
λ3/2
q ‖uq‖2

)(
λ3/2
p ‖up‖2

)(
λ5/2
p ‖up‖2

)
.(2.31)
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We apply Young’s inequality with the exponents θ1 = θ2 = 4 and θ3 = 2 to yield

B .
∞∑

q=−∞

∞∑
p=q+1

λ
−5/2
p−q

(
ν−1 λ3

q ‖uq‖2
2

)2

+
∞∑

q=−∞

∞∑
p=q+1

λ
−5/2
p−q

(
ν−1 λ3

p ‖up‖2
2

)2

+
∞∑

q=−∞

∞∑
p=q+1

λ
−5/2
p−q

(ν
3
λ5
p ‖up‖2

2

)
.

(2.32)

Next we sum in p for the first term and exchange the order of summation and sum

in q for the second and third terms of (2.32). Note the summation in q converges:

B .
∞∑

q=−∞

(
ν−1 λ3

q ‖uq‖2
2

)2

+
∞∑

p=−∞

[(
ν−1 λ3

p ‖up‖2
2

)2

+
(ν

3
λ5
p ‖up‖2

2

)]
.(2.33)

Thus we arrive at the bound

B .
∞∑

q=−∞

(
ν−1 λ3

q ‖uq‖2
2

)2

+
ν

3

∞∑
q=−∞

(
λ5
q ‖uq‖2

2

)
.(2.34)

Finally, we estimate (2.25) for s = 3
2
. We rewrite the sum

C =
∞∑

q=−∞

q+1∑
p=−∞

λ3
q ‖uq‖2

2 λ
5/2
p ‖up‖2

2

=
∞∑

q=−∞

q+1∑
p=−∞

λ−δq−p
(
λ3/2
q ‖uq‖2

)2−δ(
λ5/2
q ‖uq‖2

2

)δ(
λ3/2
p ‖up‖2

)δ(
λ5/2
p ‖up‖2

)1−δ
,

(2.35)

where δ is a small positive number we can choose. We apply Young’s inequality with

θ1 =
4

2− δ
, θ2 =

2

δ
, θ3 =

4

δ
, θ4 =

2

1− δ
,(2.36)



2. BOUNDING BLOW-UP 20

where we require δ < 1 to ensure the exponents are all positive and indeed 1
θ1

+ 1
θ2

+

1
θ3

+ 1
θ4

= 1. Then we have

C .
∞∑

q=−∞

q+1∑
p=−∞

[
λ−δq−p

(
ν−1 λ3

q ‖uq‖2
2

)2

+ λ−δq−p

(ν
6
λ5
q ‖uq‖2

2

)]

+
∞∑

q=−∞

q+1∑
p=−∞

[
λ−δq−p

(
ν−1 λ3

p ‖up‖2
2

)2

+ λ−δq−p

(ν
6
λ5
p ‖up‖2

2

)]
,

(2.37)

For the first two terms of (2.37), we sum in p. For the third and fourth terms, we

exchange the order of summation and sum in q to arrive at

C .
∞∑

q=−∞

[(
ν−1 λ3

q ‖uq‖2
2

)2

+
(ν

6
λ5
q ‖uq‖2

2

)]

+
∞∑

p=−∞

[(
ν−1 λ3

p ‖up‖2
2

)2

+
(ν

6
λ5
p ‖up‖2

2

)]
.

(2.38)

Note δ positive ensures the summation in q converges. Rewriting the above inequality

yields

C .
∞∑

q=−∞

(
ν−1 λ3

q ‖uq‖2
2

)2

+
ν

3

∞∑
q=−∞

(
λ5
q ‖uq‖2

2

)
.(2.39)

We use the estimates (2.29), (2.34), and (2.39) in (2.22) with s = 3
2

to get the Ricatti-

type differential inequality

d

dt

∞∑
q=−∞

(
λ3
q ‖uq‖2

2

)
.

∞∑
q=−∞

(
ν−1 λ3

q ‖uq‖2
2

)2

.(2.40)

�

REMARK 2.4. The method used to prove Theorem 2.3 works for 1
2
< s < 5

2
. Instead

of (2.26), one must show

d

dt

∞∑
q=−∞

(
λ2s
q ‖uq‖2

2

)
.

∞∑
q=−∞

(
λ2s
q ‖uq‖2

2

) 2s+1
2s−1

.(2.41)
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In the proof for (2.41), one must treat the three cases 1
2
< s < 3

2
, s = 3

2
, and 3

2
< s < 5

2

separately, but in analogous manners.

THEOREM 2.5. Let u be a smooth solution to (2.1) with finite energy initial data

such that u loses regularity at time T ∗. Then

‖u(t)‖Ḣ3/2(Ω) ≥
c√

T ∗ − t
,(2.42)

for 0 ≤ t < T ∗ and Ω = T3 or Ω = R3.

Proof. Let y(t) = ‖u(t)‖2
Ḣ3/2 . By Theorem 2.3, y satisfies the differential in-

equality

d

dt
y(t) . y(t)2.(2.43)

Rearranging the inequality and integrating from time t to blow-up time T ∗ yields∫ ∞
y(t)

dw

w2
.
∫ T ∗

t

dτ ,(2.44)

which becomes

1

y(t)
. T ∗ − t.(2.45)

Then, as desired

‖u(t)‖Ḣ3/2(Ω) ≥
c√

T ∗ − t
,(2.46)

for 0 ≤ t < T ∗ and Ω = T3 or Ω = R3. �

REMARK 2.6. The procedure in Theorem 2.5 can be applied to (2.41) for y(t) =

‖u(t)‖2
Ḣs(Ω)

to yield

‖u(t)‖Ḣs(Ω) ≥
c

(T ∗ − t) 2s−1
4

,(2.47)

for 1
2
< s < 5

2
, 0 ≤ t < T ∗, and Ω = R3 or Ω = T3.



CHAPTER 3

Regularizing Effect of the Forward Energy Cascade in the

Inviscid Dyadic Model

1. Introduction to Shell Models

In this chapter, we study the regularizing effect of the forward energy cascade

in the inviscid dyadic model of the Euler equations, which we recall from Chapter 1:

∂u

∂t
+ (u · ∇)u = −∇p,

∇ · u = 0,

(3.1)

where the velocity vector field, u(x, t), and the pressure scalar, p(x, t), are unknowns.

Regularity of the three-dimensional Euler equations is a compelling question as well.

The inviscid dyadic model shares important characteristics with the three-dimensional

Euler equations, namely formal conservation of energy and the scaling properties of

the nonlinear term. The contents of this chapter were published as A. Cheskidov

and K. Zaya, Regularizing effect of the forward energy cascade in the inviscid dyadic

model, Proc. Amer. Math. Soc., 144(1):7385, 2016 (see [24]).

Kolmogorov’s [39] theory about turbulence centered around forward energy

cascade, which asserts that energy moves from large to small scales. Small scales

correspond to the the dissipation range, where the viscous forces dominate. For the

Navier-Stokes equations the dissipation range is the only tool used to prove regularity

of solutions, but the forward energy cascade might also be a mechanism to regularize

solutions. For quasilinear scalar equations, the regularizing property of the nonlinear

term has been studied by Tadmor and Tao in [49], but such results remain out of

reach for the Euler or Navier-Stokes equations. Recently, Tao [51] proved blow-up for

22
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averaged Navier-Stokes equations by reducing the equations to a more complicated

dyadic model where he introduced a delay in energy cascade. This delay seems to

destroy the regularizing effect of the nonlinear term studied here and produces a

strong blow-up.

Shell models are designed to capture energy cascade in turbulent fluid flows.

The dyadic model is a specific example where the nonlinearity is simplified to reflect

just the local interactions between neighboring scales. Although initially introduced

in 1974 by Desnianskii and Novikov [28], other derivations have been since developed.

We refer the reader to Chapter 1, Section 5 and [17] for explanation via Littlewood-

Paley decomposition. Recent mathematical analysis has more recently led to several

other results in the last decade, see for example [2], [4], [12], [31], [37], and [38].

The inviscid dyadic model is an infinite system of nonlinearly coupled ordinary

differential equations constructed to mimic the behavior of the energy of solutions to

the Euler equations in dyadic shells. In [13], Cheskidov, Constantin, Friedlander, and

Shvydkoy examined the energy flux Πj due to the nonlinearity in the Euler equations

through the shell of radius λj = 2j and obtained the bound

|Πj| .
∞∑

i=−1

λ
− 2

3

|j−i| λi ‖ui‖
3
3,(3.2)

where ui is a ith Littlewood-Paley piece of u. Recall Bernstein’s inequality in three

dimensions, which says

‖uj‖q . λ
3( 1
p
− 1
q

)

j ‖uj‖p,(3.3)

for 1 ≤ p ≤ q. We assume ‖uj‖3 ∼ λβj ‖uj‖2 where β ∈ [0, 1
2
] is the intermittency

parameter. Kolmogorov’s regime corresponds to β = 0, whereas β = 1
2

gives extreme

intermittency. Denote the total energy in the jth shell by a2
j(t). As in [17], assuming

only local interactions and extreme intermittency, we model the flux through the jth
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shell of radius λj as Πj = λ
5
2
j a

2
jaj+1. This leads to the following inviscid system

d

dt
aj(t) = λ

5
2
j−1 a

2
j−1(t)− λ

5
2
j aj(t)aj+1(t), j = 1, 2, ...

a0(t) = 0,

(3.4)

with initial conditions aj(0) = a0
j for j = 0, 1, ....

As discussed in Chapter 1, Kolmogorov predicted that energy cascade pro-

duces dissipation anomaly, which is possibly related to (but not to be confused with)

anomalous dissipation. Dissipation anomaly is the persistence of non-vanishing en-

ergy dissipation in the limit of vanishing viscosity, whereas anomalous dissipation is

when energy is not conserved despite the absence of viscosity. Onsager [43] conjec-

tured that if a solution to Euler’s equations is smooth enough, then the energy should

be conserved, however, rough solutions to Euler’s equation may exhibit anomalous

dissipation. A relationship between anomalous dissipation and loss of regularity is

more evident in the context of the inviscid dyadic model. The regularity of solutions

is related to the natural scaling of the equations and for the dyadic model we suspect

that the natural space for regularity is the Onsager space. Despite the absence of

viscosity, in the inviscid dyadic model, a solution with rough initial data immedi-

ately gains regularity. This is due to the forward energy cascade and the smoothing

properties of the nonlinear term.

In [18] and [19], Cheskidov, Friedlander, and Pavlović showed that all the

solutions of the forced inviscid dyadic model must have Onsager’s regularity almost

everywhere in time and confirmed anomalous dissipation and dissipation anomaly.

They also showed that all solutions blow up in finite time in H
5
6 . On the other

hand, all solutions are in Hθ for almost all time for θ < 5
6
. In [3], Barbato and

Morandin studied the unforced inviscid model and showed Onsager regularity almost

everywhere, as well. In addition, they demonstrated that solutions remain in H
1
2
− for

all time. We improve their result by showing that regularity even closer to Onsager’s

is retained:
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THEOREM 3.1. For any positive solution to (3.4) with initial condition a(0) in l2,

sup
j
λθj aj(t) <∞(3.5)

for t > 0 and θ = 3
5
.

Barbato and Morandin proved the theorem for θ = 1
2

by finding an invariant

region for solutions. The method presented below is different as we use a more

dynamical approach which allows us to improve regularity for values of θ up to 3
5
. It

is natural to conjecture that every solution must have exactly Onsager’s regularity

for all positive time and the ultimate goal would be to show regularity for values of

θ up to 5
6

(Onsager’s scaling).

REMARK 3.2. As a comparison to L3-based regularity, our result (3.5) can be

expressed as

sup
j
λq+βj aj(t) <∞(3.6)

for q = 1
10

. The ultimate Onsager scaling is q = 1
3
.

2. Energy Conservation and Onsager’s Conjecture

In this chapter, we will denote the energy norm simply by | · | := ‖ · ‖l2 . A

solution a(t) is called positive if aj(t) ≥ 0 for all j ∈ N and all time t. In [19] and

[3], the authors proved solutions with positive initial data aj(0) remain positive for

all time t > 0. Moreover in [3], Barbato and Morandin proved uniqueness for positive

initial data. Thus we have

THEOREM 3.3. Let a(t) be a solution to (3.4) such that aj(0) ≥ 0 for all j ∈ N.

Then aj(t) ≥ 0 for all j ∈ N and all t > 0.

Below, we illustrate why θ = 5
6

corresponds to Onsager’s scaling by proving the

following theorem (cf. [13], [20]):
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THEOREM 3.4. Let a(t) be a positive solution to (3.4) such that

lim
j→∞

∫ T

0

(
λ

5
6
j aj(t)

)3

dt = 0(3.7)

then a(t) conserves energy on [0, T ].

Proof. We examine the total energy flux through the first J shells. We multiply

equations (3.4) by aj(t), take the finite sum from j = 0 to j = J , and integrate over

time for 0 ≤ t ≤ T to obtain∫ t

0

J∑
j=0

aja
′
j dτ =

∫ t

0

J∑
j=0

(
λ

5
2
j−1 a

2
j−1aj − λ

5
2
j a

2
jaj+1

)
dτ .(3.8)

The right-hand sum telescopes and we rewrite the left side∫ t

0

J∑
j=0

1

2

d

dτ
(a2
j) dτ = −

∫ t

0

λ
5
2
J a

2
JaJ+1 dτ ,(3.9)

which yields

1

2

J∑
j=0

a2
j(t)−

1

2

J∑
j=0

a2
j(0) = −

∫ t

0

λ
5
2
J a

2
J(τ)aJ+1(τ) dτ .(3.10)

We apply Young’s inequality to the integral on the righthand side of (3.10) to find

0 ≤
∫ t

0

λ
5
2
J a

2
JaJ+1 dτ ≤

∫ t

0

λ
5
2
J

(
(a2
J)

3
2

3/2
+

(aJ+1)3

3

)
dτ

≤
∫ t

0

λ
5
2
J a

3
J dτ +

∫ t

0

λ
5
2
J+1 a

3
J+1 dτ .

(3.11)

Hence by our assumption,

lim
J→∞

∫ t

0

λ
5
2
J a

2
JaJ+1 dτ = 0.(3.12)

We take the limit of (3.10) as J goes to infinity to conclude that energy is conserved

since |a(t)|2 = |a(0)|2. �
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3. The Modified Galerkin Approximation with Flux

The strong and weak distances, denoted respectively by dS and dW, are quan-

tities given by

dS(a, b) := |a− b|,(3.13)

and

dW(a, b) :=
∞∑
j=0

1

λ(j)2

|aj − bj|
1 + |aj − bj|

.(3.14)

DEFINITION 3.5. The modified Galerkin approximation with flux, denoted by

an(t) = (an0 (t), an1 (t), ..., ann(t), 0, ...),(3.15)

is a solution to the following finite system of ordinary differential equations:

d

dt
anj − λ

5
2
j−1(anj−1)2 + λ

5
2
j a

n
j a

n
j+1 = 0, j = 1, 2, ..., n− 1,

d

dt
ann − λ

5
2
n−1(ann−1)2 + λ

5
2
−2θ λ

5
2
−θ

n ann = 0,

(3.16)

with anj (0) = a0
j for j = 1, 2, ..., n, where θ is any positive number.

By a similar argument to Theorem 3.2 from [19], we obtain the following

theorem:

THEOREM 3.6. The sequence of the modified Galerkin approximation with flux

converges to a solution of the dyadic model (3.4).

Proof. Denote a(0) = a0, such that a0 ∈ l2 and let T > 0 be arbitrary. We

will show that the modified Galerkin approximation with flux converges to a solution

of (3.16) on [0, T ]. We know there exists a unique solution an(t) to (3.16) from

the theory of ordinary differential equations. We will show the system of Galerkin

approximations {an} is weakly equicontinuous. There exists M > 1 such that anj (t) ≤



3. THE MODIFIED GALERKIN APPROXIMATION WITH FLUX 28

M for any t ∈ [0, T ] and for all j and n. Then

∣∣anj (t)− anj (s)
∣∣ ≤ ∣∣∣∣∫ t

s

(
λ

5
2
j−1(anj−1)2(τ)− λ

5
2
j a

n
j (τ)anj+1(τ)

)
dτ

∣∣∣∣
≤
(
λ

5
2
j−1M

2 + λ
5
2
j M

2
)
|t− s| .

(3.17)

Thus

dW (an(t), an(s)) =
∞∑
j=0

1

λ(j)2

∣∣anj (t)− anj (s)
∣∣

1 +
∣∣anj (t)− anj (s)

∣∣ ≤ c |t− s| ,(3.18)

for some constant c independent of n. Then {an} is an equicontinuous sequence in

C([0, T ]; l2W ) with bounded initial data. The Arzelà-Ascoli theorem then implies that

{an} is relatively compact in C([0, T ]; l2W ). Passage to a subsequence yields a weakly

continuous l2-valued function a(t) such that

anm → a as nm →∞ in C([0, T ]; l2W ).(3.19)

In particular, anmj → aj(t) as nm →∞ for all j and for all t ∈ [0, T ]. Thus a(0) = a0.

Furthermore

anmj (t) = anmj (0) +

∫ t

0

(
λ

5
2
j−1(anmj−1)2(τ)− λ

5
2
j a

nm
j (τ)anmj+1(τ)

)
dτ ,(3.20)

for j ≤ nm − 1. Now let nm →∞. Then

aj(t) = aj(0) +

∫ t

0

(
λ

5
2
j−1 a

2
j−1(τ)− λ

5
2
j aj(τ)aj+1(τ)

)
dτ .(3.21)

Since aj(t) is continuous, then aj ∈ C1([0, T ]) and it satisfies our inviscid dyadic

system.

�

LEMMA 3.7. If a(t) solves (3.4) with initial condition a(t0) = a0, then ã(t) = ηa(ηt)

is a solution to (3.4) with initial condition ã(t0) = ηa(ηt0) = ã0.
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Proof. For j = 0, the result is trivial. For j = 1, 2, 3, ..., we have

d

dt
aj(t) = λ

5
2
j−1 a

2
j−1(t)− λ

5
2
j aj(t)aj+1(t).(3.22)

So

d

dt
ãj(t) = η2 d

dt
aj(ηt)

= η2
(
λ

5
2
j−1 a

2
j−1(ηt)− λ

5
2
j aj(ηt)aj+1(ηt)

)
= λ

5
2
j−1 (ηaj−1(ηt))2 − λ

5
2
j (ηaj(ηt)) (ηaj+1(ηt))

= λ
5
2
j−1 ã

2
j−1(t)− λ

5
2
j ãj(t)ãj+1(t).

(3.23)

Thus ã(t) satisfies (3.4) with initial condition ã(t0) = ηa(ηt0) = ã0. �

4. Regularity of the Inviscid Dyadic Model

In this section, we study the regularity of positive solutions to the inviscid

dyadic model. We apply the change of variables cj(t) = λ2θ− 5
2 λθj aj(t) to rewrite the

equations as

d

dt
cj(t) = λ

5
2
−θ

j

(
cj−1(t)2 − γ cj(t)cj+1(t)

)
, j = 1, 2, ...,

c0(t) = 0,

(3.24)

where γ = λ
5
2
−3θ. We choose

θ =
3

5
.(3.25)

THEOREM 3.8. Let a(t) be a positive solution to (3.4). There exists δ > 0 such

that if cj(0) ≤ δ < 1 for any j ∈ N, then cj(t) < 1 for any j ∈ N and for all t > 0.

Proof. By the uniqueness proved in [3] and by Theorem 3.6, we have

aj(t) = lim
m→∞

amj (t),(3.26)
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where amj (t) is the mth order Galerkin approximation of aj(t). So it suffices to prove

the theorem for the Galerkin approximation am(t). We will suppress the notation by

omitting the index m.

Fix m and consider the mth Galerkin approximation

c(t) = (c0(t), c1(t), ..., cm(t), 0, ...).(3.27)

Suppose for contradiction there exists j0 ∈ N such that there is a time T0 > 0 for

which cj0(T0) = 1 but cj0(t) < 1 for 0 < t < T0. Define the set of indices

I := {j ∈ N : j ≤ m}.(3.28)

If cj(t) < 1 for all j ∈ I for any time 0 < t < T0, then let n = j0. Otherwise, if there

is a j ∈ I such that cj(t) = 1 for some time 0 < t ≤ T0, then define tj > 0 to be the

time such that cj(tj) = 1 but cj(t) < 1 for 0 < t < tj ≤ T0. If cj(t) < 1 on (0, T0],

then let tj =∞. Define

t∗ := min
j∈I

tj.(3.29)

Define

n := min{j ∈ I : cj(t
∗) = 1},(3.30)

and note that n 6= 1 since

d

dt
c1(t) = −λ

5
2
−θ γ c1(t)c2(t) < 0,

c1(0) ≤ δ < 1,

(3.31)

as c1(t), c2(t) ≥ 0 for all t > 0. Then c1(t) is a non-increasing function with initial

value strictly below 1. Thus c1(t) cannot cross 1 and hence t1 =∞.

Thus, there is a fixed n ∈ I such that cn(t) < 1 for 0 < t < t∗, cn(t∗) = 1, and

cj(t) < 1 for all other j ∈ I \{n} and 0 < t < t∗. We rescale time as bj(t) = cj(λ
θ− 5

2
n t),
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which satisfies the equation

d

dt
bj(t) = λ

θ− 5
2

n−j (bj−1(t)2 − γ bj(t)bj+1(t)),(3.32)

where bj(0) < δ and bj(t) < 1 for all j and 0 < t < T ∗, where T ∗ = λ
5
2
−θ

n t∗.

For a very rough estimate for bn(t) for t < t0, we first fix k = 0.96. Note

δ < k < 1. There exists time t0 > 0 such that k < bn(t) < 1 for t0 < t < T ∗ and

bn(t0) = k. Recall our assumption on the initial data: bn(0) ≤ δ. So

d

dt
bn(t) = bn−1(t)2 − γbn(t)bn+1(t) < 1,(3.33)

since bn−1(t) < 1 and bn(t), bn+1(t) > 0 for 0 < t < T ∗. Thus we have a lower bound

on t0: t0 ≥ k − δ. Apply Gronwall’s inequality backward in time for bn(t) to arrive

at the following lower bound:

bn(t) ≥ k − t0 + t for t ∈ [t0 − k + δ, t0] ⊆ [max{0, t0 − k}, t0].(3.34)

Next, we estimate bn+1(t0). For t ∈ [t0 − k + δ, t0], we have

d

dt
bn+1(t) = λ

5
2
−θ (bn(t)2 − γ bn+1(t)bn+2(t)

)
≥ λ

5
2
−θ ((k − t0 + t)2 − γ bn+1(t)

)
= λ

5
2
−θ(k − t0 + t)2 − λ

5
2
−θ γ bn+1(t).

(3.35)

This yields the initial value problem:

d

dt
bn+1(t) + λ

5
2
−θ γ bn+1(t) ≥ λ

5
2
−θ(k − t0 + t)2,

bn+1(t0 − k + δ) ≥ 0.

(3.36)
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Apply Gronwall’s inequality to find

bn+1(t) ≥ bn+1(t0 − k + δ) e
−
∫ t
t0−k+δ

λ
5
2−θ γ dτ

+

∫ t

t0−k+δ

e−
∫ t
s λ

5
2−θ γ dτ λ

5
2
−θ(k − t0 + s)2 ds

≥
∫ t

t0−k+δ

e−λ
5
2−θ γ(t−s) λ

5
2
−θ(k − t0 + s)2 ds .

(3.37)

An application of integration by parts yields

bn+1(t) ≥ λ
5
2
−θ e−λ

5
2−θ γ t

[
(k − t0 + s)2

λ
5
2
−θ γ

eλ
5
2−θ γ s

∣∣∣∣∣
t

t0−k+δ

−
∫ t

t0−k+δ

2(k − t0 + s)

λ
5
2
−θ γ

eλ
5
2−θ γ s ds

]
.

(3.38)

We integrate by parts again to get

bn+1(t) ≥ 1

γ
e−λ

5
2−θ γ t

[(
(k − t0 + s)2 eλ

5
2−θ γ s−2(k − t0 + s)

λ
5
2
−θ γ

eλ
5
2−θ γ s

)∣∣∣∣∣
t

t0−k+δ

+

∫ t

t0−k+δ

2

λ
5
2
−θ γ

eλ
5
2−θ γ s ds

]

=
1

γ
e−λ

5
2−θ γ t

[
(k − t0 + s)2 eλ

5
2−θ γ s−2(k − t0 + s)

λ
5
2
−θ γ

eλ
5
2−θ γ s

+
2

λ5−2θ γ2
eλ

5
2−θ γ s

]∣∣∣∣t
t0−k+δ

=
(k − t0 + t)2

γ
− 2(k − t0 + t)

λ
5
2
−θ γ2

+
2

λ5−2θ γ3

− e−λ
5
2−θ γ(t−t0+k−δ)

[
δ2

γ
− 2δ

λ
5
2
−θ γ2

+
2

λ5−2θ γ3

]
.

(3.39)
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Thus we have

bn+1(t0) ≥

[
k2

γ
− 2k

λ
5
2
−θ γ2

+
2

λ5−2θ γ3

]

− e−λ
5
2−θ γ(k−δ)

[
δ2

γ
− 2δ

λ
5
2
−θ γ2

+
2

λ5−2θ γ3

]
=: B(δ).

(3.40)

As δ tends to 0,

B(δ)→

[
k2

γ
− 2k

λ
5
2
−θ γ2

+
2

λ5−2θ γ3

]
− 2 e−λ

5
2−θ γ k

λ5−2θ γ3
> 0.447.(3.41)

So there exists δ small enough that B(δ) ≥ 0.447 := B, which we will use as the

bound on initial condition bn+1(t0).

We also seek and estimate for bn±1(t) for t0 < t ≤ T ∗. By our assumptions when

t > t0, in particular that bn−2(t) ≤ 1 and bn(t) ≥ k, we get the following inequality

from equation (3.32):

d

dt
bn−1(t) ≤ λθ−

5
2 (1− k γ bn−1(t)) ,

bn−1(t0) ≤ 1.

(3.42)

Then by Gronwall’s inequality,

bn−1(t) ≤ bn−1(t0) e
−
∫ t
t0
λθ−

5
2 k γ dτ

+

∫ t

t0

λθ−
5
2 e−

∫ t
s λ

θ− 5
2 k γ dτ ds

≤ e−λ
θ− 5

2 k γ(t−t0) +

∫ t

t0

λθ−
5
2 e−λ

θ− 5
2 k γ(t−s) ds

= e−λ
θ− 5

2 k γ(t−t0)

(
1− 1

k γ

)
+

1

k γ
=: b̂n−1(t).

(3.43)

By our assumptions when t0 < t ≤ T ∗, in particular that bn+2(t) ≤ 1 and bn(t) ≥ k,

we get the following inequality from equation (3.32):

d

dt
bn+1(t) ≥ λ

5
2
−θ (k2 − γ bn+1(t)

)
,

bn+1(t0) ≥ B.

(3.44)
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Again, by Gronwall’s inequality,

bn+1(t) ≥ bn+1(t0) e
−
∫ t
t0
λ

5
2−θ γ dτ

+

∫ t

t0

e−
∫ t
s λ

5
2−θ γ dτ λ

5
2
−θ k2 ds

≥ B e−λ
5
2−θ γ(t−t0) +

∫ t

t0

e−λ
5
2−θ γ(t−s) λ

5
2
−θ k2 ds

= B e−λ
5
2−θ γ(t−t0) +

k2

γ
e−λ

5
2−θ γ t eλ

5
2−θ γ s

∣∣∣∣t
t0

= e−λ
5
2−θ γ(t−t0)

(
B − k2

γ

)
+
k2

γ
=: b̃n+1(t).

(3.45)

We finally estimate bn(t) for t0 < t ≤ T ∗. We use the bounds on bn±1(t) from

above to find an upperbound on bn(t):

d

dt
bn(t) = b2

n−1(t)− γ bn(t)bn+1(t) ≤ b̂2
n−1(t)− γ bn(t)b̃n+1(t),

bn(t0) ≤ k.

(3.46)

Another application of Gronwall’s inequality yields

bn(t) ≤k e
−
∫ t
t0
γ b̃n+1 dτ

+

∫ t

t0

e−
∫ t
s γ b̂n+1 dτ b̂2

n−1 ds

=k e
−
∫ t
t0
γ e−λ

5
2−θ γ(τ−t0)

(
B− k

2

γ

)
+k2 dτ

+

∫ t

t0

e
−
∫ t
s γ e−λ

5
2−θ γ(τ−t0)

(
B− k

2

γ

)
+k2 dτ

(
e−λ

θ− 5
2 k γ(s−t0)

(
1− 1

k γ

)
+

1

k γ

)2

ds

=k e
λθ−

5
2

(
B− k

2

γ

)(
e−λ

5
2−θ γ(t−t0)−1

)
−k2(t−t0)

+

∫ t

t0

e
λθ−

5
2

(
B− k

2

γ

)(
e−λ

5
2−θ γ(t−t0)− e−λ

5
2−θ γ(s−t0)

)
−k2(t−s)

·
(

e−λ
θ− 5

2 k γ(s−t0)

(
1− 1

k γ

)
+

1

k γ

)2

ds

=: β(t).

(3.47)
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Then

d

dt
β(t) =k e

λθ−
5
2

(
B− k

2

γ

)(
e−λ

5
2−θ γ(t−t0)−1

)
−k2(t−t0)

((
k2 −B γ

)
e−λ

5
2−θ γ(t−t0)−k2

)
+

(
e−λ

θ− 5
2 k γ(t−t0)

(
1− 1

k γ

)
+

1

k γ

)2

+
((
k2 −B γ

)
e−λ

5
2−θ γ(t−t0)−k2

)
·
∫ t

t0

e
λθ−

5
2

(
B− k

2

γ

)(
e−λ

5
2−θ γ(t−t0)− e−λ

5
2−θ γ(s−t0)

)
−k2(t−s)

·
(

e−λ
θ− 5

2 k γ(s−t0)

(
1− 1

k γ

)
+

1

k γ

)2

ds .

(3.48)

The exponent

λθ−
5
2

(
B − k2

γ

)(
e−λ

5
2−θ γ(t−t0)− e−λ

5
2−θ γ(s−t0)

)
(3.49)

is nonnegative, thus

d

dt
β(t) ≤

(
e−λ

θ− 5
2 k γ(t−t0)

(
1− 1

k γ

)
+

1

k γ

)2

+
((
k2 −B γ

)
e−λ

5
2−θ γ(t−t0)−k2

)∫ t

t0

1

(k γ)2
e−k

2(t−s) ds

=

(
e−λ

θ− 5
2 k γ(t−t0)

(
1− 1

k γ

)
+

1

k γ

)2

+

((
1− B γ

k2

)
e−λ

5
2−θ γ(t−t0)−1

)
1

(k γ)2

(
1− e−k

2(t−t0)
)

= e−2λθ−
5
2 k γ(t−t0)

(
1− 1

k γ

)2

+
2

k γ

(
1− 1

k γ

)
e−λ

θ− 5
2 k γ(t−t0) +

1

(k γ)2
e−k

2(t−t0)

+
1

(k γ)2

(
1− B γ

k2

)
e−λ

5
2−θ γ(t−t0)− 1

(k γ)2

(
1− B γ

k2

)
e−(λ

5
2−θ γ+k2)(t−t0) .

(3.50)

We have shown exponential decay for the derivative β′(t) and thus it suffices

to show β(t) < 1 on a finite interval, which can be accomplished easily numerically

since β(t) is given explicitly. Hence bn(t) < 1 for all t > 0, which contradicts our
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assumption that bn(t) is the first bj that crosses 1. Thus bj(t) < 1 for any j ∈ N and

for all t > 0. The conclusion extends to cj(t).

�

This leads to our main result:

THEOREM 3.9. Let a(t) be a positive solution to (3.4) such that

sup
j
λθj aj(0) = M(3.51)

for some M <∞, then

sup
j
λθj aj(t) <

M

δ
(3.52)

for all t > 0.

Proof. By Lemma 3.7, we have that if aj(t) solves (3.4) with aj(0) = a0
j , then

ãj(t) = ηaj(ηt) is a solution to (3.4) with initial condition ãj(0) = ηaj(0) = ηa0
j . In

particular, this is true for η = δ
M

. Since supj λ
θ
j aj(0) = M , we have

sup
j
λθj ãj(0) = ηM =

δ

M
M = δ.(3.53)

Define

bj(t) := λθj ãj(t).(3.54)

Then we have

sup
j
bj(0) < δ.(3.55)

Given such an upper bound on the initial condition of bj(t), then recall that the

theorem above yields

bj(t) < 1(3.56)
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for all t > 0. Then

sup
j
bj(t) = λθj ãj(t) = λθj ηaj(t) < 1.(3.57)

Therefore

sup
j
λθj aj(t) <

1

η
=
M

δ
(3.58)

for all t > 0. �

Similar to Theorem 10 in [3], we obtain the following

COROLLARY 3.10. There exists a constant k(θ) > 0 such that

sup
j
λθj aj(t) < k(θ)|a(0)|

2
3 t−

1
3 , for all t > 0(3.59)

for every positive solution a(t) of (3.4) with a(0) in l2.

Proof. By Theorem 3.9,

sup
j
λθj aj(t) <

1

δ
sup
j
λθj aj(s)(3.60)

for all s ∈ [0, t]. By [3], there exists a constant f(θ) > 0 such that

L {t > 0 : aj(t) > lj for some j} ≤ f(θ)|a(0)|2
∞∑
j=1

1

λ
5
2
j l

3
j

,(3.61)

where L denotes the Lebesgue measure and (lj)j≥1 is any positive, non-increasing

sequence. Let

lj =
f(θ)

1
3M

1
3 |a(0)| 23

λθj t
1
3

,(3.62)

where M is such that

∞∑
j=1

λ
3θ− 5

2
j < M.(3.63)
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This series converges since 3θ − 5
2
< 0 by (3.25). Then we get

L {s > 0 : aj(s) > lj for some j} ≤ f(θ)|a(0)|2
∞∑
j=1

1

λ
5
2
j

λ3θ
j t

f(θ)|a(0)|2M

=
1

M

∞∑
j=1

λ
3θ− 5

2
j t

< t.

(3.64)

Thus for some s ∈ [0, t], we have aj(s) ≤ lj for all j. Thus

λθj aj(s) ≤ f(θ)
1
3M

1
3 |a(0)|

2
3 t−

1
3(3.65)

for all j. Then

sup
j
λθj aj(s) ≤ f(θ)

1
3M

1
3 |a(0)|

2
3 t−

1
3

= k(θ)|a(0)|
2
3 t−

1
3 ,

(3.66)

where k is a constant that depends on θ. This yields the result

sup
j
λθj aj(t) ≤

1

δ
k(θ)|a(0)|

2
3 t−

1
3(3.67)

for all t > 0, as desired. �



CHAPTER 4

Regularity Criterion for the Three-dimensional Boussinesq

Equations

1. The Three-Dimensional Boussinesq Equations

We consider the three-dimensional incompressible Boussinesq equations, which

we recall are given by

∂u

∂t
+ (u · ∇)u = −∇p+ ν∆u+ θe3,(4.1)

∂θ

∂t
+ (u · ∇)θ = k∆θ,(4.2)

∇ · u = 0,(4.3)

with initial data

u(x, 0) = u0(x),(4.4)

θ(x, 0) = θ0(x),(4.5)

where x ∈ R3, t ≥ 0, u = u(x, t) is the velocity vector, p = p(x, t) is the pressure

scalar, θ = θ(x, t) is the temperature scalar, and the initial velocity is divergence

free. The fluid kinematic viscosity is ν ≥ 0, the thermal diffusivity is k ≥ 0, and

e3 = (0, 0, 1)T . When θ vanishes, the system reduces to the incompressible Navier-

Stokes equations, which can be further reduced to the incompressible Euler equations

when ν = 0. The work in this chapter has been submitted for publication and is

published as an eprint as K. Zaya, Regularity criterion for the three-dimensional

Boussinesq equations, arXiv:1509.07434, 2015 (see [57]).

39
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2. Overview of Regularity Results

In three-dimensions, regularity criteria for (4.1) - (4.3) have been developed

in many cases. In [46] and [47], Qiu, Du, and Yao developed Serrin-type regu-

larity criteria for the Boussinesq equations, where in [46] they showed a smooth

solution to (4.1) - (4.3) on time interval [0, T ) will remain smooth at time T if

u ∈ Lq
(
0, T ;Bs

p,∞(R3)
)

for 2
q

+ 3
p

= 1 + s, 3
s+1

< p ≤ ∞, −1 < s ≤ 1, and

(p, s) 6= (∞, 1). Ishimura and Morimoto [36] proved the Beale-Kato-Majda-like

regularity criterion ∇u ∈ L1
(
0, T ;L∞(R3)

)
. Later Fan and Zhou [30] studied the

Boussinesq equations with partial viscosity and proved Beale-Kato-Majda-like regu-

larity criteria in terms of the vorticity: ∇×u ∈ L1
(
0, T ; Ḃ0

∞,∞(R3)
)
. More regularity

criteria in the three-dimensional case can be found in [45], [52], [53], [55], [56], and

[58]. Regularity criteria in the two-dimensional case has also been studied at length

[1], [9], [10], [11], [33], [34], [35], [50], and [54], to name just a few.

In [5], Beale, Kato, and Majda proved if∫ T

0

‖∇ × u‖L∞ dt <∞,(4.6)

then a smooth solution to the Navier-Stokes equations on (0, T ) does not blow up

at time T . This condition was weakened for the Euler equations by Planchon [44]

and was improved for the three-dimensional Navier-Stokes equations by Cheskidov

and Shvydkoy [21]. In [15], Cheskidov and Dai developed Beale-Kato-Majda-like,

but weaker, regularity criterion for the three-dimensional magneto-hydrodynamics

equations. In this chapter, we prove the following Beale-Kato-Majda-like regularity

criterion for the three-dimensional Boussinesq equations:

THEOREM 4.1. Let
(
u, θ
)

be a weak solution to (4.1)-(4.3) on [0, T ], assume
(
u, θ
)

is regular on (0, T ), and

‖u≤Q‖B1
∞,∞ ∈ L

1(0, T ).(4.7)
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Then
(
u(t), θ(t)

)
is regular on (0, T ].

REMARK 4.2. We note that the above regularity criterion also recovers the previous

known Prodi-Serrin-type regularity, in particular we improve upon the results in [46],

by recovering the whole range, including the endpoint (p, s) = (∞, 1). The result also

covers u ∈ C
(
(0, T ];B−1

∞,∞
)
. Further, the criterion in Theorem 4.1 improves previous

Beale-Kato-Majda-like criterion since it only imposes a condition on the low modes

of the projection of the velocity u.

3. Definitions

We work in the class of weak solutions:

DEFINITION 4.3. A weak solution of (4.1)-(4.3) on [0, T ] is a pair of functions

(u, θ), u divergence free, in the class

u, θ ∈ Cw
(
[0, T ];L2(R3)

)
∩ L2

(
0, T ;H1(R3)

)
(4.8)

such that

(4.9)
(
u(t), φ(t)

)
−
(
u0, φ(0)

)
=

∫ t

0

(
u(s), ∂sφ(s)

)
+ ν
(
u(s),∆φ(s)

)
+
(
u(s) · ∇φ(s), u(s)

)
+
(
θ(s)e3, φ(s)

)
ds

and

(4.10)
(
θ(t), φ(t)

)
−
(
θ0, φ(0)

)
=

∫ t

0

(
θ(s), ∂sφ(s)

)
+ k
(
θ(s),∆φ(s)

)
+
(
u(s) · ∇φ(s), θ(s)

)
ds,

for all divergence free test functions φ ∈ C∞0
(
[0, T ]× R3

)
.

DEFINITION 4.4. A Leray-Hopf weak solution of (4.1)-(4.5) is regular on time

interval I if the Sobolev norm ‖u‖Hs is continuous for s > 1
2

on I.
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REMARK 4.5. One can apply a standard bootstrap argument to show if a solution

is regular, then u and θ are smooth.

The development of our regularity criterion is linked to the dissipation wave

number. Similarly to [15] and [21], we define

DEFINITION 4.6. The dissipation wave number Λ(t) is

Λ(t) = min{λq : λ−1
p ‖up‖∞ < cmin{ν, k},∀p > q, q ≥ 0}(4.11)

for absolute constant c.

Then Q(t) ∈ N is the index such that λQ(t) = Λ(t). The time-dependent function

Λ(t) separates the low frequency inertial range, where the nonlinear term dominates

the dynamics, from the high frequency dissipative range, where viscous forces take

over. Work with the dissipation wave number and determining modes have pro-

vided key improvements to previous known regularity results for the surface quasi-

geostrophic equations, the magneto-hydrodynamics equations, and the Navier-Stokes

equations (see [14], [15], [16], and [21]).

REMARK 4.7. Although the definition of Λ(t) above is different than in [15], one

may nonetheless use similar estimates. For the Boussinesq equations, there is no

restriction on the parameter r of the dissipation wave number Λr(t) defined for the

magneto-hydrodynamics equations in [15]. Instead, for the Boussinesq equations, one

may let r =∞, where as for magneto-hydrodynamics, one requires 2 < r < 6.

4. Proof of Theorem 4.1

Proof. We test (4.1) with (uq)q and (4.2) with (θq)q. This yields

1

2

d

dt
‖uq‖2

2 ≤ −ν‖∇uq‖2
2 +

∫
R3

(
u · ∇u

)
q
· uq dx−

∫
R3

(
θe3

)
q
· uq dx,(4.12)

1

2

d

dt
‖θq‖2

2 ≤ −k‖∇θq‖2
2 +

∫
R3

(
u · ∇θ

)
q
· θq dx .(4.13)
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We multiply (4.12) by λ2s
q and (4.13) by λ2σ

q , add them together, and sum over q to

arrive at

(4.14)
1

2

d

dt

∞∑
q=−1

(
λ2s
q ‖uq‖2

2 + λ2σ
q ‖θq‖2

2

)
≤ −

∞∑
q=−1

(
λ2s
q ν‖∇uq‖2

2 + λ2σ
q k‖∇θq‖2

2

)
+ I1 + I2 + I3,

where

I1 =
∞∑

q=−1

λ2s
q

∫
R3

(
u · ∇u

)
q
· uq dx,(4.15)

I2 = −
∞∑

q=−1

λ2s
q

∫
R3

(
θe3

)
q
· uq dx,(4.16)

I3 =
∞∑

q=−1

λ2σ
q

∫
R3

(
u · ∇θ

)
q
· θq dx .(4.17)

For (4.15), we refer the reader to the computations carried out in [21] on the

Navier-Stokes equations, where they show

|I1| . cν
∑
q≥−1

λ2s+2
q ‖uq‖2

2 + f(t)
∑
q≥−1

λ2s
q ‖uq‖2

2,(4.18)

where

f(t) = ‖u≤Q(t)(t)‖B1
∞,∞ = sup

q≤Q(t)

λq ‖uq(t)‖∞.(4.19)

We use Young’s inequality to estimate (4.16) as

|I2| =
∣∣∣ ∑
q≥−1

λ2s
q

∫
R3

(
θe3

)
q
· uq dx

∣∣∣ . ∑
q≥−1

λ2s
q

(
‖uq‖2

2 + ‖θq‖2
2

)
.(4.20)
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For (4.17), we use a similar method as in [15]. First we decompose (4.17) into

three parts:

I3 =
∑
q≥−1

∑
|q−p|≤2

λ2σ
q

∫
R3

(u≤p−2 · ∇θp)qθq dx

+
∑
q≥−1

∑
|q−p|≤2

λ2σ
q

∫
R3

(up · ∇θ≤p−2)qθq dx(4.21)

+
∑
q≥−1

∑
p≥q−2

λ2σ
q

∫
R3

(up · ∇θ̃p)qθq dx

=I3,1 + I3,2 + I3,3.

One may denote the Littlewood-Paley operator as ∆q, so the Littlewood-Paley pieces

of a function u can also be denoted as ∆qu = uq. By Bony’s paraproduct and

commutator notation, which says

[∆q, u≤p−2 · ∇]θp = ∆q(u≤p−2 · ∇θp)− u≤p−2 · ∇∆qθp,

one may further decompose I3,1 as

I3,1 =
∑
q≥−1

∑
|q−p|≤2

λ2σ
q

∫
R3

[∆q, u≤p−2 · ∇]θpθq dx

+
∑
q≥−1

λ2σ
q

∫
R3

u≤q−2 · ∇θqθq dx(4.22)

+
∑
q≥−1

∑
|q−p|≤2

λ2σ
q

∫
R3

(u≤p−2 − u≤q−2) · ∇∆qθpθq dx

=I3,1,1 + I3,1,2 + I3,1,3.

In [15], they note that their term equivalent to our I3,1,1 can be estimated as

|I3,1,1| . ck
∑
q≥Q+2

λ2σ+2
q ‖θq‖2

2 + f(t)
∑
q≥−1

λ2σ
q ‖θq‖2

2.(4.23)
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The second term, I3,1,2 = 0 because of the divergence-free condition on u. We also

refer the reader to [15], where one can find

|I3,1,3|+ |I3,3| . ck
∑
q≥−1

λ2σ+2
q ‖θq‖2

2 + f(t)
∑

−1≤q≤Q+2

λ2σ
q ‖θq‖2

2.(4.24)

For I3,2, we use Hölder’s inequality to find

|I3,2| .
∑
q>−1

λ2σ
q ‖uq‖∞

∑
|q−p|≤2

‖θp‖2

∑
p′≤p−2

λp′ ‖θp′‖2.(4.25)

Then we split the sum into high and low modes. For the high modes we use the

definition of Λ(t) and for the low modes we use f(t) to find

|I3,2| .ck
∑
q>Q

λ2σ+1
q

∑
|q−p|≤2

‖θp‖2

∑
p′≤p−2

λp′ ‖θp′‖2

+ f(t)
∑

−1≤q≤Q

λ2σ−1
q

∑
|q−p|≤2

‖θp‖2

∑
p′≤p−2

λp′ ‖θp′‖2

.ck
∑
q>Q−2

λ2σ+1
q ‖θq‖2

∑
p′≤q

λp′ ‖θp′‖2

+ f(t)
∑

−1≤q≤Q+2

λ2σ−1
q ‖θq‖2

∑
p′≤q

λp′ ‖θp′‖2.

(4.26)

We rearrange and apply Jensen’s inequality to arrive at

|I3,2| .ck
∑
q>Q−2

λσ+1
q ‖θq‖2

∑
p′≤q

λσq−p′ λ
σ+1
p′ ‖θp′‖2

+ f(t)
∑

−1≤q≤Q+2

λσq ‖θq‖2

∑
p′≤q

λσ−1
q−p′ λ

σ
p′ ‖θp′‖2

.ck
∑
q≥−1

λ2σ+2
q ‖θq‖2

2 + f(t)
∑

−1≤q≤Q+2

λ2σ
q ‖θq‖2

2,

(4.27)

for σ < 0.

The above estimates on the pieces of (4.17) yield

|I3| . ck
∑
q≥−1

λ2σ+2
q ‖θq‖2

2 + f(t)
∑
q≥−1

λ2σ
q ‖θq‖2

2.(4.28)
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Inserting the estimate in (4.18), (4.20), and (4.28) into (4.14) yields

1

2

d

dt

∑
q≥−1

(
λ2s
q ‖uq‖2

2 + λ2σ
q ‖θq‖2

2

)
.− ν

∑
q≥−1

λ2s+2
q ‖uq‖2

2 − k
∑
q≥−1

λ2σ+2
q ‖θq‖2

2

+ cν
∑
q≥−1

λ2s+2
q ‖uq‖2

2

+
(
f(t) + 1

) ∑
q≥−1

λ2s
q ‖uq‖2

2(4.29)

+ ck
∑
q≥−1

λ2σ+2
q ‖θ‖2

2 +
∑
q≥−1

λ2s
q ‖θq‖2

2

+ f(t)
∑
q≥−1

λ2σ
q ‖θq‖2

2.

For 2s ≤ 2σ + 2,

1

2

d

dt

∑
q≥−1

(
λ2s
q ‖uq‖2

2 + λ2σ
q ‖θq‖2

2

)
≤− ν

∑
q≥−1

λ2s+2
q ‖uq‖2

2 − k
∑
q≥−1

λ2σ+2
q ‖θq‖2

2

+ C1cν
∑
q≥−1

λ2s+2
q ‖uq‖2

2

+ C2(ck + 1)
∑
q≥−1

λ2σ+2
q ‖θ‖2

2(4.30)

+ C3

(
f(t) + 1

) ∑
q≥−1

λ2s
q ‖uq‖2

2 + λ2σ
q ‖θq‖2

2,

where C1, C2, and C3 are absolute constants. The choice c = min{ 1
C1
, 1
C2
− 1

k
} yields

d

dt

(
‖u‖2

Ḣs + ‖θ‖2
Ḣσ

)
≤ C(ν, k, s, σ)

(
f(t) + 1

)(
‖u‖2

Ḣs + ‖θ‖2
Ḣσ

)
.(4.31)

By Grönwall’s inequality, we can show ‖u‖2
Ḣs + ‖θ‖2

Ḣσ remains bounded on

(0, T ) for 1
2
≤ s < 1 and s− 1 < σ < 0 if

‖u≤Q‖B1
∞,∞ ∈ L

1(0, T ),(4.32)

as desired. �
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3
2 . J. Math. Phys., 57(2):023101, 7, 2016.

[24] A. Cheskidov and K. Zaya. Regularizing effect of the forward energy cascade in the inviscid

dyadic model. Proc. Amer. Math. Soc., 144(1):73–85, 2016.

[25] P. Constantin, B. Levant, and E. S. Titi. Analytic study of shell models of turbulence. Phys.

D, 219(2):120–141, 2006.

[26] P. Constantin, B. Levant, and E. S. Titi. Regularity of inviscid shell models of turbulence. Phys.

Rev. E (3), 75(1):016304, 10, 2007.

[27] J. C. Cortissoz, J. A. Montero, and C. E. Pinilla. On lower bounds for possible blow-up solutions

to the periodic Navier-Stokes equation. Journal of Mathematical Physics, 55, 2014.

[28] V. Desnianskii and E. Novikov. Simulation of cascade processes in turbulent flows: {PMM} vol.

38, n 3, 1974, pp. 507–513. Journal of Applied Mathematics and Mechanics, 38(3):468 – 475,

1974.



CITED LITERATURE 53

[29] C. R. Doering and J. Gibbon. Applied Analysis of the Navier-Stokes Equations. Cambridge

Texts in Applied Mathematics. Cambridge University Press, 1995.

[30] J. Fan and Y. Zhou. A note on regularity criterion for the 3D Boussinesq system with partial

viscosity. Appl. Math. Lett., 22(5):802–805, 2009.
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[37] N. H. Katz and N. Pavlović. Finite time blow-up for a dyadic model of the Euler equations.

Trans. Amer. Math. Soc., 357(2):695–708 (electronic), 2005.
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matical Physics, 57(2), 2016.

(3) K. Zaya: Regularity criterion for the three-dimensional Boussinesq equations,
arXiv:1503.01784, 2016.

Honors and Awards

(1) National Science Foundation support from grant DMS-1517583, PI Alexey
Cheskidov, 2015.

(2) National Science Foundation support from grant DMS-1210896, PI Roman
Shvydkoy, 2013-2015.

(3) OWLG Grant, Oberwolfach Leibniz Graduate Student, Mathematisches Forschungsin-
stitut Oberwolfach, 2015.

(4) Provosts Award for Graduate Research, University of Illinois at Chicago
Graduate College, 2014.

(5) Victor Twersky Memorial Award, University of Illinois at Chicago Depart-
ment of Mathematics, Statistics, and Computer Science, 2014.

(6) Teaching Award, University of Illinois at Chicago Department of Mathemat-
ics, Statistics, and Computer Science, 2011.

(7) Undergraduate Scholarship, University of Illinois at Chicago Department of
Germanic Studies, 2008.

(8) Induction into the Delta Phi Alpha National German Honorary Society, Uni-
versity of Illinois at Chicago Department of Germanic Studies 2008.

(9) Association Award, University of Illinois at Chicago, 2007.

55



VITA 56

(10) Bernard Kurtin Fellowship, University of Illinois at Chicago Department of
Mathematics, Statistics, and Computer Science, 2007.

(11) Educational Benefits Scholarship, Teamsters Union, 2005-2009.

Invited Presentations

(1) Speaker, Joint Mathematics Meetings: AMS Session on Partial Differential
Equations, I, “Lower bounds of potential blow-up solutions of the three-
dimensional Navier-Stokes equations in Ḣ3/2,” Seattle, WA., January 2016.
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