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SUMMARY 

The high speed trains today most commonly use pantograph-catenary systems for power 

delivery. The dynamics of the pantograph-catenary system plays a crucial role in the current 

collection quality and, therefore, thorough computational modeling is required to correctly 

predict the dynamical behavior of this complex system. In this investigation, a multibody 

pantograph model is used along with the absolute nodal coordinate formulation (ANCF) based 

catenary model to simulate the pantograph-catenary system in the multibody dynamics 

environment. To this end, the ANCF cable elements are used to model the contact wire and the 

messenger wire. Furthermore, a new contact formulation based on the penalty force approach is 

presented to study the interaction between the pan-head and the contact wire. This new 

formulation is derived from the sliding joint model proposed in the literature. The contact model 

developed in this work can be employed with the fully parameterized as well as the gradient 

deficient ANCF based finite elements. The loss of contact between the pan-head and the 

overhead contact line can be modeled with this new contact formulation. On the other hand, the 

pantograph model is mounted on a detailed rail- vehicle model allowing to evaluate more 

realistic situations. The contact between the rail vehicle wheels and the track is modeled using 

the elastic contact approach. One of the other major factors affecting the contact force is the 

external aerodynamic forces acting on the pantograph components and the catenary system as 

well. Two scenarios are considered where crosswind loading is applied on just the pantograph 

components, and aerodynamic forces applied on the pantograph and also the flexible catenary. In 

this study, the time varying nonlinear aerodynamic forces are modeled, thereby capturing the 

influence of the aerodynamic forces on the dynamical behavior of the pantograph-catenary 

system.  



 

 viii 

SUMMARY (Continued) 

For the configuration considered in this work, the effect of the crosswind is that it assists the 

uplift force exerted on the pantograph mechanism increasing the mean contact force value. 

Numerical results are compared for the cases for with and without the wind forces. 
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CHAPTER 1 

INTRODUCTION 

Pantographs are mechanical systems mounted on the top of the rail vehicles for the purpose of 

collecting current from an overhead contact line carrying power. An uplifting mechanism keeps 

the pantograph current collectors or the pan-head in the contact with the contact wire. The 

pantograph-catenary systems are the most feasible way to power high speed trains which travel 

at the speed of more than 300 km/h (Bruni et al., 2012; Bruni and Facchinetti, 2012; Facchinetti 

et al., 2013).  

The dynamics of the pantograph-catenary system plays a crucial role in maintaining a 

consistent current collection quality in the high-speed trains. The vibrations in the car body or 

adverse weather conditions can affect the interaction between the pantograph pan-head and the 

overhead contact line, which may result into severe problems like arcing or damaged 

components. Unfavorable operating conditions or inefficient design can result into high wear 

rates and hence a shorter fatigue life of the pan-heads and the catenary system, increasing the 

maintenance costs significantly. The wear rates are governed by several parameters such as the 

sliding speed, current intensity, contact force and also the nature of the materials in contact 

(Bucca and Collina, 2009). Hence, analyzing the contact forces between the pantograph and the 

catenary is given a prime importance to ensure smooth power delivery and optimized wear of the 

components.  

The field of multi-body dynamics has matured over the last couple of decades to efficiently 

model the dynamics of the rigid and the flexible bodies as well. This framework has proved to be 

very useful in wide range of applications including the automotive and the aerospace industries, 

machinery industry, railroad vehicle applications and many more. A multi-body system consists 
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of rigid and flexible bodies connected with each other by means of joints or constraints. A large 

amount of research effort has been put into developing new formulations to accurately capture 

deformations of flexible bodies in the dynamic analysis. In the case of rigid multibody systems, 

the principal methods employed to analytically describe the motion of a mechanical system are 

the relative or recursive coordinate formulation, the reference point coordinate formulation and 

the natural coordinate formulation (Bae and Haug, 1987A; Bae and Haug, 1987B; Garcia de 

Jalon, 2007; Pappalardo, 2015). On the other hand, formulations like floating frame of reference 

are used to capture the small deformations of the bodies having large displacements. The 

coordinate formulations like the absolute nodal coordinate formulation (ANCF) have proved to 

be very effective in cases where large rotations and large deformations are employed (Shabana, 

1998; Shabana and Yakoub, 2000; Yakoub and Shabana, 1998). 

Multibody dynamics simulations can provide an effective environment to study the 

pantograph-catenary interaction and to estimate the contact forces (Gerstmayr and Shabana, 

2006; Pappalardo et al., 2015; Seo et al., 2005; Seo et al., 2006). The effect of aerodynamic 

forces can be taken into account simultaneously as well, which is important in determining the 

required uplift force for the pantograph mechanism and also in defining the control strategy for 

the contact force. This is needed as the drag and the lift component of the aerodynamic forces 

can impart instability into the system by means of fluid- structure interaction resulting into 

unexpected behavior of the system or it may even damage the system severely. Therefore, to 

have a more realistic model to predict correct behavior of the pantograph system it is necessary 

to account for the aerodynamic forces in the model (Pombo et al., 2009; Stickland and Scanlon, 

2001).  
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 In the previous studies of the pantograph-catenary interaction, several different methods 

have been applied to model the system and compute the contact forces. The first method uses 

partial differential equations to mathematically represent the catenary as a continuous string or 

beam (Arnold and Simeon, 2000). Although these models are easy to solve, they have limitations 

in capturing the wave propagation and high frequencies involved in the pantograph-catenary 

interaction. A higher number of discretization points and smaller time steps are required to solve 

catenary equations for accurate numerical results (Poetsch et al., 1997). The second method uses 

linear finite elements to model the catenary (Collina and Bruni, 2010; Massat et al., 2006; Pombo 

et al., 2009; Pombo et al., 2012). In these models, the moving contact force is applied as an 

external force on the catenary (Ambrosio et al., 2009; Poetsch et al., 1997). In this case, a co-

simulation technique is used between a finite element analysis code where the catenary is 

modeled and a multibody dynamics code where the pantograph is modeled. The third method 

uses ANCF finite elements to model the catenary to capture the geometric nonlinearities more 

accurately (Lee and Park, 2012; Pappalardo et al., 2015; Seo et al., 2005; Seo et al., 2007). The 

need for co-simulation is eliminated in this method as the ANCF catenary and the rigid 

pantograph are modeled in one single multi-body dynamics framework. A benchmark study of 

the pantograph-catenary system simulation presented by Bruni et al. (2015) involves multiple 

cases where the pantograph is modeled in a multibody dynamics environment and the catenary 

being modeled as Euler- Bernoulli linear beam elements. A catenary model created with ANCF 

beam elements is also benchmarked in the study.  

 Through a wide range of applications, ANCF has come up as an effective formulation to 

capture the large rotations and large deformations in the multibody dynamics framework. The 

ANCF uses nodal absolute positions and nodal position vector gradients as generalized 
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coordinates for defining the kinematics of a finite element. This particular choice for the 

generalized coordinates leads to the separation of variable property in the kinematical description 

of the element position field and, therefore, the ANCF finite elements have a constant mass 

matrix and zero Coriolis and centrifugal inertia forces. Different elements have been developed 

using this formulation from which the three- dimensional beam element and the cable element 

can be of particular interest to this investigation (Shabana, 2010). The ANCF beam element is 

consistent with the geometrically exact formulation of the general theory of continuum 

mechanics and can capture the deformation of the cross-section. The ANCF cable element, on 

the other hand, leads to a more efficient implementation because it is a gradient deficient element 

and, therefore, the computation of the element generalized elastic forces is computationally less 

intensive. The only limitation of the cable element being that it cannot describe rotation about its 

own axis. This limitation not being a big hurdle in the catenary system modeling, it can be 

effectively used with the right contact model for this particular investigation.   

There are mainly two methods used to model the contact force, the first being a constraint 

based approach and the second being the elastic contact approach (Pappalardo et al., 2015). The 

constraint based approach or the sliding joint formulations impose constraints at the contact point 

on the pantograph pan-head and the catenary. These constraints are formulated in terms of 

algebraic equations that are satisfied at the position, velocity and acceleration levels. The contact 

force is applied on both the bodies as a result of imposed constraints.  The constraint based 

approach can avoid high frequencies involved as the contact force is applied as a constraint 

force. However, these constraints do not allow to model loss of contact phenomenon. This 

phenomenon can occur due to large vibrations in the rail vehicle body or extreme weather 

conditions (Seo et al., 2005). The elastic contact or the penalty approach uses a virtual spring- 
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damper system producing a unilateral force that allows for the separation of the two-body 

contact. This force is applied as an external force on both, the pantograph and the flexible contact 

wire. Even though penalty contact formulation is easier to implement, determining suitable 

penalty coefficients for capturing the wanted dynamical behavior can be challenging depending 

on the physics of the problem. To this end, a Hertzian type of contact force model proposed by 

Lankarani and Nikravesh (1994) is used in the earlier investigations. 

The weather conditions have a major impact on the pantograph-catenary interaction 

(Bacciolone et al., 2006; Carnevale et al., 2015; Pombo et al., 2009). The main factors are the 

temperature and the wind. High temperature can modify the static position and the tension in the 

catenary. This condition does not have a significant impact on straight tracks. Cold weather 

conditions may result into formation of ice on the wires resulting into some deformation. Wind 

forces disturb the catenary system position and also influence the pantograph components 

directly. The drag and the lift forces can cause the mean contact force value to change. When 

pantographs with multiple collectors are considered, the aerodynamic forces can introduce an 

unbalance between the front and the rear collectors causing uneven wear. Very high wind forces 

can impact the catenary system significantly causing it to oscillate with large amplitudes. The 

worn out overhead contact line shape may generate asymmetric drag and lift forces resulting into 

the galloping motion of the catenary system (Stickland and Scanlon, 2001; Stickland et al., 

2003). Hence, assessing the effect of aerodynamic forces on the pantograph and the catenary 

becomes important while designing the current collection systems so as to maintain a continuous 

and consistent contact between the pan-head and the contact wire with an optimum uplift force 

so as to minimize the wear of the components. To avoid this contact force unbalance, usually 

spoilers are placed on the collectors or the pan-head geometry is optimized such that the effect of 
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aerodynamic pitching moment is minimized. There are two main approaches used for simulating 

the effect of the aerodynamic forces on the pantograph-catenary systems. In the first approach, 

computational fluid dynamics (CFD) is used to compute the aerodynamic forces on individual 

components of the pantograph and ultimately assess the contribution of the wind forces to the 

total uplift force on the pantograph (Bacciolone et al., 2007; Carnevale et al., 2015). In the 

second approach, the drag and the lift coefficients for the individual pantograph components are 

obtained from experimental studies and the aerodynamic forces are computed using the equation 

21
ˆ( )

2
relCA

 
  
 

F v v  (Pombo et al., 2009), where F  is the drag or the lift force, ρ is the density 

of the fluid, (CA) is the drag or the lift pressure coefficient and relv  is the relative velocity 

between the wind and the pantograph component, and v̂  is the unit vector in the direction of the 

drag or the lift force. 

 In the presented study, the absolute nodal coordinate formulation (ANCF) based thin 

Euler-Bernoulli beam or the cable elements are used to model the contact wire and the 

messenger wire (Bruni et al., 2014; Gerstmayr and Shabana, 2005; Pappalardo et al., 2015; Seo 

et al., 2005; Seo et al., 2007). The ANCF method is used because it can model the large 

deformations and geometric nonlinearities in the catenary effectively. The pantograph is built as 

a multibody mechanism which captures the nonlinear dynamics of the system properly. The 

pantograph mechanism is constructed on top of a detailed rail vehicle multibody model. A new 

contact formulation based on the elastic contact approach is presented in this study to model the 

pantograph-catenary interaction, which can be used with gradient deficient as well as the fully 

parameterized ANCF finite elements as only a single gradient vector is needed in the contact 

model. In the formulation of the contact forces between the pantograph pan-head and the contact 

wire, the arc length of the catenary is used as a non-generalized coordinate to exactly determine 
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the location of the contact point on the catenary. One of the contact formulation constraint 

equations is solved for the non-generalized arc length coordinate using Newton- Raphson 

iterative method. Once this parameter is determined, the other contact constraint equations are 

imposed using a penalty force approach which ultimately compute the contact force. The contact 

force is applied as an external force on the pan-head and the flexible overhead contact line at the 

point of contact. The presented contact method can model the loss of contact scenario as well, 

which cannot be modeled using the sliding joint formulations presented in earlier investigations 

which used ANCF to model the catenary. The effect of the aerodynamic forces on the individual 

pantograph components and the catenary is also considered in the model. The effect of the 

crosswind on the dynamics of the pantograph-catenary interaction is analyzed and compared 

with the case where the wind effect is not considered.      

The thesis is organized as follows. In Chapter 2, the rigid multibody models of the rail 

vehicle and the pantograph are described. Chapter 3 discusses the flexible catenary model. In 

Chapter 4, the new formulation for the contact force and the new method to compute 

aerodynamic forces is discussed in detail. The formulation used for the wheel- rail contact is also 

included. Chapter 5 is dedicated for the results and discussions. Conclusions from this 

investigation are conferred in Chapter 6.  
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CHAPTER 2 

RAIL VEHICLE AND PANTOGRAPH MECHANISM MODEL 

This chapter describes the rigid multi-body models of the rail vehicle and the Faiveley Transport 

CX pantograph used. These models can be used for general purpose rail-road dynamics studies 

as well. 

 

2.1 Rail Vehicle Multi-body System Model 

A detailed general purpose rigid-body rail vehicle model is used in this investigation, which is 

shown in the Fig. 1. The model has one car body with two bogies. The bogie consists of six 

bodies, two wheelsets, two equalizers, a bolster and a frame. The equalizers are connected to the 

frame, and the frame to the bolster using the bushing elements. Wheelsets are connected to the 

equalizers using the bearings. The bolsters are attached to the car body using revolute joints. In 

all, the model consists of 14 rigid bodies, 48 bushing elements, 8 bearings and 2 revolute joints. 

The rigid-body model parameters are defined in Table 1. A three-dimensional wheel rail contact 

has been defined which will be described in Chapter 3. 

 

Figure 1. Rail vehicle system schematic (Pappalardo et al., 2015) 
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Table 1. Rail vehicle model data 

 

 

 

 

 

 

 

Body Mass (kg) 

Inertia (kg∙m2) 

Initial Position (m) (xi
0, y

i
0, z

i
0) 

xxiI   yyiI  
zziI  

Wheelsets 2091 1098  191 1098 

0, 0, 0.4570488 

2.5908, 0, 0.4570488 

12.573, 0, 0.4570488 

15.1638, 0, 0.4570488 

Equalizers 469 6.46   255 252 

1.2954, 1.0287, 0.3049427 

1.2954, -1.0287, 0.3049427 

13.8684, 1.0287, 0.3049427 

13.8684, -1.0287, 0.3049427 

Frame 3214 1030 1054 2003 

1.2954, 0, 0.5081427 

13.8684, 0, 0.5081427 

Bolster 1107 498  20.4 458 

1.2954, 0, 0.7088 

13.8684, 0, 0.7088 

Car Body 24170 30000  687231 687231 1.8289, 0, 1.8289 
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2.2 Pantograph Multi-body System Model 

A multibody system model of a Faiveley Transport CX pantograph is analyzed in this 

investigation (Pappalardo et al., 2015; Pombo et al., 2009). The pantograph consists of six rigid-

body parts interconnected with each other using revolute and spherical joints. The kinematic 

constraint data is provided in Table 3. The inertia properties as well as the global initial position 

and the orientation parameters are specified in Table 2. The orientation parameters are given in 

terms of Euler angles. The local coordinate system for each component is located at the center of 

mass and is oriented such that the orientation of the axes is defined to be aligned with the 

principal inertia directions. Figure 2 shows a schematic of the pantograph-catenary system as a 

whole.    

 

Figure 2. Pantograph-catenary model schematic (Pappalardo et al., 2015) 
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Table 2. Pantograph model data 

Body Mass (kg) 

Initial 

Position (m) 

(xi
0, y

i
0, z

i
0) 

Initial 

Orientation  

( ,  ,  ) 

Inertia  

(kg∙m2)  

(Ixxi, Iyyi, Izzi) 

Lower arm 32.18 

11.26924156, 

0, 3.84511275 

𝜋/2 , 

0.5528807212, 

-𝜋/2 

0.31, 10.43, 10.65 

Upper arm 15.60 

11.45796454, 

0, 4.52440451 

-𝜋/2, 

0.2896816713, 

𝜋/2 

0.15, 7.76, 7.86 

Lower Link 3.10 

10.96436876, 

0, 3.81940451 

𝜋/2, 

0.6234559506, 

-𝜋/2 

0.05, 0.46, 0.46 

Upper link 1.15 

11.58587608, 

0, 4.49940451 

-𝜋/2, 

0.3028168645, 

𝜋/2 

0.05, 0.48, 0.48 

Plunger 1.51 12.5, 0, 4.835 0, 0, 0 0.07, 0.05, 0.07 

Pan-head 9.50 12.5, 0, 4.945 0, 0, 0 1.59, 0.21, 1.78 
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Table 3. Pantograph model joints data 

First Body  Second Body  Joint Constraint 

Car Body Lower Arm Revolute 

Lower Arm Upper Arm Revolute 

Upper Arm Plunger Revolute 

Car Body Lower Link Spherical 

Upper Arm Lower Link Spherical 

Plunger Upper Link Spherical 

Lower Arm Upper Link Spherical 
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CHAPTER 3 

FLEXIBLE MULTIBODY MODEL OF THE CATENARY WIRES 

The general catenary system consists of two wires- a contact wire and a messenger wire. The 

contact wire is in contact with the pantograph pan-head. The messenger wire holds the contact 

wire from sagging due to its self-weight. The contact wire is connected to messenger wire using 

droppers. Supporting poles are placed at certain distances so as to support the messenger wire 

and the contact wire. The contact wire is suspended with the help of a registration arm, which 

has low inertia. The general construction of the catenary system is shown in the Fig. 3.  

 

Figure 3. The Catenary System (Pappalardo et al., 2015) 

 

The contact wire has a cross-section area of about 65-150 mm2 and a span of about 50-65 m. The 

contact wire is usually made of high electrical conductivity materials such as steel alloys or 

copper alloys. The catenary system carries around 1000 V to 25,000 V of power depending on 

the type of trains it is used for. The droppers are tensile elements and virtually have zero stiffness 

in compression. At high speeds, the wave propagation speed in the contact wire becomes an 

important parameter of consideration so as to maintain a consistent contact between the 
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pantograph and the wire. The wave propagation speed is directly depends on the beam bending 

stiffness, length of the beam and the tension in the beam (Ambrosio et al., 2012). At high speeds, 

the tension is the key parameter that affects the wave propagation speed, the effect of bending 

stiffness becomes negligible. Hence, tensioning of the catenary system plays a crucial role in the 

current collection quality and the speed limit of the train. The tension values typically range 

between 14- 40 kN depending on the operating speed of the train. In this investigation, the 

contact wire and the messenger wire are modeled using the absolute nodal coordinate 

formulation. 

 

3.1 ANCF Finite Elements  

The catenary goes under deformation in the region where it is in contact with the pantograph. 

The structure of the catenary is geometrically nonlinear. As mentioned earlier, various methods 

have been used to model the catenary system so as to capture its behavior such as modeling the 

contact wire using PDEs, linear Euler- Bernoulli beam elements, the Fourier sine expansion 

method, and ANCF finite elements- fully parameterized beam elements as well as the cable 

elements. The ANCF beam and cable elements can capture the nonlinear geometry of the 

catenary and the wave propagation phenomenon in the contact wire. The contact formulations 

can be systematically implemented with the ANCF beam elements as shown in the previous 

studies (Pappalardo et al., 2015; Seo et al., 2005; Seo et al., 2007). The ANCF cable element is 

used in this study, which uses the global position and only a single position vector gradient to 

define the element displacement field (Gerstmayr and Shabana, 2005). The global position of an 

arbitrary point on a flexible body is defined as      ,t tr x S x e , where  
T

x y zx  is the 

vector of the element spatial coordinates,  S S x  is the matrix of space dependent element 
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shape functions, and ( )te e  is the vector of the time dependent element nodal positions and 

slopes. For an element j of the cable element, the vector of nodal coordinates ( )j j te e is 

defined as: 

     , 1,2
T

T T
jk jk jk

x k  
  

e r r     (1) 

where k  refers to the element node number,    1 2
T

T T
j j j 

  
e e e  is the vector of the element 

coordinates, ( , )k k tr r x  is the global position vector of the node k , and ( , )k k

x x tr r x  represents 

the element gradient at the respective node k . For the coordinates chosen for the cable element, 

the rotation of the beam about its own axis cannot be described and therefore is not suitable for 

pure torsional effects. In the application of the cable element to the catenary modelling, the 

torsional effects are negligible and hence cable element can be effectively used to capture the 

bending effects. The ANCF cable element has half of the degrees of freedom of the fully 

parameterized ANCF 3D beam element and no stiff terms related to shear deformation. The 

shape functions of the element are given by: 

 

 

3
2 3

1 2

3
2 3

3 4

1 3
 = + ,      s  = 1 ,

2 4 4 8

1 3
 = ,      s  = 1

2 4 4 8

L
s

L
s


   


   


    


     


   (2) 

where, L is the length of the element and the dimensionless abscissa is defined as 2 1
x

L
   .  

The constant mass matrix for the ANCF cable element is given by: 

0

L

TA dx M S S      (3) 
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where,   is the density of the cable element, A  is the cross section area of the beam and 

 1 2 3 4   s    s    s  sS I I I I  is the matrix of shape functions. One of the major advantages of using 

ANCF is having a constant mass matrix and zero Coriolis and centrifugal effects. ANCF also 

assures continuity of slopes and rotations at nodes.  

 

3.2 Catenary ANCF Finite Element Model 

The ANCF catenary model used in this investigation is shown in the Fig. 4. A simple 

construction is used which consists of a messenger wire, a contact wire, supporting poles and 

droppers. The droppers are modeled as spring- damper elements with the physical properties of 

an actual dropper. The staggering of the messenger wire and the contact wire is neglected here 

for simplicity. The contact wire and the messenger wires are modeled using three-dimensional 

ANCF cable elements. The contact cable is modeled with the material properties of copper. As it 

is shown in Fig. 4, the catenary system has total 20 spans, each being 56.25 m in length. As 

discussed before, tensioning of the messenger and the contact cables has a significant impact on 

the contact force. The tension in the contact wire and the messenger wire is 20 kN and 14 kN 

respectively. To incorporate this tension force, equivalent nodal displacements are applied 

instead of direct nodal forces. A preliminary static equilibrium simulation is performed to obtain 

stable, straight configuration of the catenary system. Having obtained this equilibrium 

configuration, the dynamic simulations were performed with the full rail vehicle and the 

pantograph-catenary contact model. 

 The state of every dropper is checked before every integration time-step so as to 

determine whether it is in tension or compression. The dropper stiffness in compression is 
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neglected. The nonlinear slackening effect of droppers is not being considered in this study. The 

general properties of the catenary computational model are shown in Table 3.    

 

 

Figure 4. Catenary computational model (Pappalardo et al., 2015) 

Table 4. Catenary Properties 

Contact/Messenger Wire Geometry 

Elements per Span 9 

Element Length (m) 6.25 

Element Cross Section Area (mm2) 144 

Total Number of Spans 20 

Catenary System Material Properties 

Contact Wire Density (kg/m3) 8960 

Contact Wire Modulus of Elasticity (Pa) 1.2E+11 

Messenger Wire Modulus of Elasticity (Pa) 1.2E+11 

Other General Catenary Properties 

Tension in Contact Wire (N) 20000 

Tension in Messenger Wire (N) 14000 

Dropper Stiffness kd (N/m) 200000 

Dropper Damping Cd (N/m) 10000 
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CHAPTER 4 

GENERALIZED FORCES APPLIED ON THE PANTOGRAPH-CATENARY SYSTEM 

AND EQAUTIONS OF MOTION 

This chapter discusses the different forces involved in the pantograph-catenary multibody model. 

These include the formulations for wheel/ rail contact, the new pantograph-catenary contact 

model, and the external aerodynamic forces. The equations of motion of the resulting rigid-

flexible multibody system formed by the rail vehicle model, the pantograph mechanism and the 

catenary wires are described in this section as well.  

4.1 Wheel/ Rail Contact Kinematics  

A full rail vehicle is modeled on which the pantograph is mounted. This detailed rail vehicle 

model has a three dimensional non-conformal wheel/rail contact implemented. The contact point 

locations on the wheels and the rail are obtained by solving a set of following nonlinear algebraic 

equations-          1 2 1, ,
T T T

r w r r w r w r   0 0 0t r r t r r t n , and  2

T
w r  0t n . The superscripts w  

and r  stand for the wheel and the rail respectively,  w
r  and r

r  are the global position vectors of 

the potential contact point on the wheel and rail respectively,  1

w
t  and 2

w
t  are the tangents to the 

wheel surface at the contact point, w
n  is the normal to the wheel surface at the contact point, 1

r
t  

and 2

r
t  are the two tangents to the rail, and r

n  is the normal to the rail. The wheel and rail 

surface parameters are obtained after solving these equations. The solution of these equations 

also ensures that the coordinates of the contact point on the wheel and the rail surface are the 

same along the tangents 1

r
t  and 2

r
t . The tangent planes are at the contact point are the same for 

the wheel and the rail surfaces. The contact equations can be written in a vector form as: 

 , , , , ,w r r w r w t C q q s s 0      (4)  
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where 
r

q  is the vector of generalized coordinates of the rail, 
w

q is the vector of generalized 

coordinates of the wheel, rs  is the vector of non-generalized coordinates or surface parameters of 

the rail, and ws  is the vector of non-generalized coordinates or surface parameters of the wheel. 

Given the vectors of the generalized coordinates of the wheel and rail 
w

q  and 
r

q , equation (4) 

can be solved for the surface parameters using an iterative Newton-Raphson method. The 

following equation is used for the Newton- Raphson iterations: 

   w,r w w w,r r r w,r        C s s C s s C     (5) 

where, ws  and rs  are the Newton differences. 

 

4.2 Pantograph/Catenary Elastic Contact Formulation 

Accurate evaluation of the contact force between the pantograph and the catenary is very crucial, 

and a new contact formulation is proposed in this investigation based on the sliding joint 

formulation presented in the previous investigations (Seo et al., 2005; Seo et al., 2007; 

Pappalardo et al., 2015).  

4.2.1 Contact Kinematics 

The pantograph can lose contact with the contact wire under adverse conditions, and this can 

result into severe problems like arcing and potentially can damage the system components 

critically. Hence modeling the loss of contact is one of the important features of the elastic 

contact or the penalty approach which cannot be done using the sliding joint formulation.  In the 

presented new contact formulation based on the elastic contact approach, the concept of non-

generalized coordinates is used.  
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 The constraint equations at the contact point P  for the sliding joint are written as: 

( , , , )s s p c

s p c

s t 


 



  0

C C q e

C r r
      (6) 

where, ( , )p p p tr r q  is the global position vector of the contact point P  on the pan-head, 

( , , )c c c s tr r e  is the global position vector of the contact point P  on the catenary, ( )p p tq q  is the 

vector of generalized coordinates of the pan-head,  c c te e  is the vector of the nodal coordinates 

of the flexible ANCF contact cable, and  s s t  is the non-generalized coordinate which is used 

to define the location of the contact point on the contact wire. The sliding joint constraints can be 

also written in a different form using three unit vectors of a tangent frame defined on the 

catenary cable as follows,  

   

   

   

T
c p c

t

T
s c p c

t

T
c P c

t

 
 
 

 
 
 
 



 



0

i r r

C j r r

k r r

     (7)   

where, ( , , )c c c

t t
s ti i e , ,( , )c c c

t t
s tj j e  and ( , , )c c c

t t
s tk k e  are the three unit vectors of a tangent 

frame defined on the catenary cable at the contact point (Sugiyama et al., 2003). The new sliding 

joint formulation proposed by Pappalardo et al. uses only one gradient vector to define the 

constraint equations which can be applied to the gradient deficient ANCF elements, like the 

cable element, as well as the fully parameterized ANCF elements. The sliding joint formulation 

proposed by Seo et al. can be used for only fully parameterized elements. In general there are 

two approaches with which the contact problem can be solved, namely the augmented 

formulation and the embedding technique. The augmented formulation uses the constraint 

equations and the Lagrange multipliers to solve the system treating the non-generalized 
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coordinates as degrees of freedom, whereas in embedding technique, the non-generalized 

coordinate, the arc length parameter, is systematically eliminated to solve for only two contact 

equations instead of three.  

 

4.2.2 The New Contact Formulation  

As shown in equation (7), three gradient vectors are needed to define the tangent frame, whereas 

in the formulation proposed by Pappalardo et al., only one gradient vector, 

     
1 2 3

T
c c c c

x x x x
 
 

r r r r , is needed. The three unit vectors in equation (7) are replaced by the 

following three orthogonal vectors (Gere and Weaver, 1965; Shabana, 2013). 

 

 

 

   

     
   

 

 

1 2
1 3

22

1 22 1 3

1
3 2 3

0

c c
c cx x
x x

c c c c c c

x x x x

c
c c c

x
x x x

, ,

                             

r rr r

r r n r r n

rr r r

   (8) 

This formulation of the vectors becomes singular if the vector 
c

xr  becomes parallel to the vector

 0 1 0
T

. In this case, the following three orthogonal vectors can be used, 

 

 
 

2

1 22

0 0

0 0

0 10

c

x

c c c c

x x , ,

    
    

      
         

r

r r n n     (9) 

 

With the help of these orthogonal vectors, the equation (7) of contact constraints can be rewritten 

as, 
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 

 

 

1

2

T
c p c

x

T
s c p c

T
c p c

 
 
 

 
 
 
 



 



r

n 0

n

r r

C r r

r r

     (10) 

These algebraic constraint equation are function of a single gradient vector, 
c

xr . For the ANCF 

finite elements, the spatial coordinate x  can always be expressed as a function of the arc length 

non-generalized parameter s , that is  x x s . Therefore 
c

sr  is a vector parallel to the vector 
c

xr , 

implying that any of these can be used to formulate the contact constraints. In the elastic contact 

formulation proposed, the first constraint equation is used to eliminate the arc length parameter, 

and the other two equations, referred as 
s

m C 0 , are imposed using a penalty formulation which 

produces a unilateral force. 

 The arc length parameter is eliminated by applying Newton- Raphson iterative method to 

the first constraint equation,   0
T

s c p c

e xC   r r r , as follows. The equation used in the Newton- 

Raphson algorithm is  s s

e es
C s C   , where  s s

e es
C C s   and s  is the Newton difference. It 

can be shown that      
T

s s c c cpT c

e e x xs
C C s s s        r r r r , where cp c p r r r . A 

necessary condition to eliminate the arc length s  is that the term  s

e s
C  has to be non-zero, and 

the simplicity of the catenary geometry will ensure satisfaction of this condition.  

 The other two constraints 
s

m C 0  are imposed using the penalty method, hence the 

Jacobian matrix for these constraints is needed.  The first constraint equation gives, 

    0s s

e e s
C C s  

q
q , where 

T
T pT   q e q is the vector of generalized coordinates for the 

pan head and the contact wire,  s s s s p

e e e eC C C C         q
q e q  is the Jacobian matrix 
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associated with the vector of generalized coordinates q , and  s s cpT c cT c

e e xs x ss
C C s    r r r r  is 

the Jacobian matrix associated with the arc length parameter s . The pan-head being a rigid body, 

   
Ts s s p cp cT cT p

e e e x x xC C C             q
e q r S r S r L    (11) 

where, p p p p p p p p p p               L r q r R r θ I A u G , I is a 3×3 identity matrix, 

T
p pT pT   q R θ is the is vector of generalized coordinates for the pan-head, p

R  being the 

global position vector and p
θ  being the orientation parameters used to define the pan-head 

orientation,  p
A  is the transformation matrix defining the orientation of the local coordinate 

system of the pan-head, p
u  is the skew symmetric matrix associated with the vector p

u  that 

defines the location of the contact point on the pan-head with respect to the local coordinate 

system, and p
G  is the matrix that relates the angular velocity vector p

ω  defined in the local 

coordinate system to the time derivatives of the pan-head orientation coordinates p
θ , that is 

p p pω G θ . It is evident that: 

 

 

 

 

s s

e e

s s

e es s

C C
s , s

C C
 

   
      
   
   

q q
q q       (12) 

For the last two constraint equations in the equation (10), a virtual change in the coordinates 

gives    s s s

m m m s
s    

q
C C q C 0 , and hence these constraints can be written at the velocity 

level as    s s s

m m m s
s  

q
C C q C 0 . Using equation (12), one can show that: 

 
 

   

 
 

   

1

1

s s s s

m m m es s
e s

s s s s

m m m es s
e s

C
C

C
C

 
 
   

  
  


  
    
    

q q

q q

C C C q 0

C C C q 0

    (13) 
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In order to eliminate the non-generalized arc length parameter s  from the Jacobian matrix of the 

constraint equations, they are modified as follows, 

     

     

1
1 1

2
2 2

c p

p

c c p
s s s cpT cT cTx
e e e x xc c p

c c p
cpT cT cT

p

s s s

m m m c c p
cpT cT cT

p

C C C
                            

        
      

        
          

      
      

q e q

q e q

r r r
r r r

e e q

n r r
r n n

e e q
C C C

n r r
r n n

e e q

 
   

   

1 1

2 2

T
c c cpT c

s

m Ts c c cpT c

s s

s s








 
 
 
 
 
         

        

r n r n
C

r n r n

   (14) 

The vectors
c r e ,

c s r  and 
c

x r e  can be written in terms of the catenary shape functions 

and their derivatives along with x s  . The partial derivatives of the vectors  1

c
n  and 2

c
n  with 

respect to e  and s  can be written as,  

 

 

 

 

1 1

1 1

2 2

2 2

c c c

x

c c c

x

c c c

x

c c c

x

s s

s s

    

     


     


     

n e H r e

n H r

n e H r e

n H r

     (15)                                             
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where, 

   

   

   

2 1

1 21 3

3 2

0
0 0 1

2 0 2 0 0 0

1 0 0
0

c c

x x

c c c c

x x

c c

x x

,

  
  

   
  
     

 

r r

H r r H

r r

   (16)           

Having evaluated the Jacobian matrices of the constraint equations and having eliminated the arc 

length parameter, the last two constraint equations 
s

m C 0  can be imposed using the penalty 

force,  PenaltyQ , formulation which is given as: 

       
T T

s s

Penalty m mk d  
q q

Q C C C C     (17) 

where, k  is the penalty stiffness coefficient, d  is the penalty damping coefficient, the Jacobian 

matrix of the constraints q
C is given by          s s s s

m m e es s
C C 

q q q
C C C  and the derivatives 

of the constraints 
s

mC  can be obtained as written in equation (13). This computed penalty force is 

applied as an external force on the contact wire and the pan-head at the point of contact.  

 

4.2.3 Contact Force Regulations 

The required quality standards for the contact force in the pantograph-catenary interaction in 

high- speed trains are specified in current regulations (EN50317, 2012; EN50367, 2006). In this 

investigation, the norm EN50367 is referred. It specifies following parameters for the pantograph 

acceptance: 

 Mean Contact Force: 20.00097 70NmF v 
 
, where v  represents the velocity of 

the train;  

 Standard Deviation: 0.3max mF  ; 



 

 26 

 Maximum Contact Force:  350NmaxF   

 Maximum Catenary Wire Uplift at Steady Arm: 120 mmupd    

 Maximum Pantograph Vertical Amplitude: 80mmz  

 Percentage of Real Arcing: 0.2%NQ   

All of the above parameters are considered here, except for percentage of real arcing parameter. 

4.3 Aerodynamic Forces 

The effect of aerodynamic forces has to be considered while designing the pantograph as they 

have a significant impact on the mean contact force value. The drag and the lift force 

components of the cross-wind tend to add to the uplift force exerted on the pantograph 

mechanism (Pombo et al., 2009). This effect is referred to as the aerodynamic uplift. For the 

pantographs having multiple pan-heads, an imbalance might be introduced due to the 

aerodynamic forces causing one of the collector strips to wear faster than the other (Bacciolone 

et al., 2006; Carnevale et al., 2015; Pombo et al., 2009). The turbulence created in the boundary 

layer close to the car body roof due to vortex shedding can excite the pantograph components 

affecting the current collection quality. The vortex shedding at the pan-head wake may generate 

high frequencies and the sparking level can increase significantly (Bacciolone et al., 2006; Ikeda 

et al., 2009). Therefore, it becomes essential to account for the aerodynamic forces while 

simulating the pantograph-catenary systems.  

A new approach is used in this investigation so as to apply the time varying nonlinear 

aerodynamic forces on individual components of the pantograph and the flexible ANCF catenary 

as well. The approximate drag and the lift coefficients for the individual pantograph components 

are obtained from the previous experimental and numerical studies regarding the influence of the 
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aerodynamic forces on the pantograph-catenary interaction (Carnevale et al., 2015; Pombo et al., 

2009). The aerodynamic pressure coefficients are basically the force exerted by the drag and the 

lift component per unit of the kinetic energy of the wind flow. The values used of these 

coefficients are shown in Table 5. The effect of aerodynamic pitching moment is not considered 

in this study. In order to compute the aerodynamic forces on each body, a set of material points 

distributed on different locations on each body is considered. This provision is made so that the 

aerodynamic forces would be properly distributed. In the computer implementation of the 

aerodynamic forces, the aerodynamic mesh created from these markers is read from a user-

written external data file. The data file contains thirteen parameters for each marker created, 

which includes three Cartesian position coordinates with respect to the body coordinate system, 

nine direction cosines defining the orientation of the marker with respect to the body coordinate 

system and the area corresponding to the marker. Since aerodynamic pressure coefficients are 

used in this study, the area can be simply considered as one for each marker. In the case of 

flexible catenary, the nodal locations are used to define the marker data. The user also defines the 

aerodynamic coefficients for drag and lift, the density of the fluid and the wind velocity. A 

streamlined wind flow is considered in this case. The relative velocity between the body on 

which aerodynamic forces are to be applied and the wind is computed at each integration time-

step. The lift and the drag forces on a body are then calculated using equation (18). The direction 

of these forces depends on the direction of the relative velocity as shown in Fig. 5.  
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In equation (18), DF  and LF  are the drag and the lift forces respectively,   is the density of the 

fluid,  DC A  and  LC A  are the drag and the lift pressure coefficients respectively, rv  is the 

relative velocity vector between the velocity of the body and the wind velocity and ˆ
rv  and ˆ

Lv  

being the unit vectors in the direction of the drag and the lift forces respectively.   

 

Table 5. Aerodynamics coefficients for the pantograph components 

 

Pantograph Component Drag Coefficient  DC A  Lift Coefficient  LC A  

Lower Arm 0.007 -0.0075 

Lower Link 0.008 -0.001 

Upper Arm 0.07 0.02 

Pan-head 0.05 0.02 

 

 

Figure 5. The direction of the drag and the lift forces 

 

 



 

 29 

4.4 Equations of Motion of a Multibody System 

The equations of motion for a general multibody system consisting of rigid bodies and very 

flexible bodies subjected to a set of kinematic constraints and external forces can be given by 

equation (19). The vector of generalized coordinates for the system can be given as, 

T
T T T

r
  p q e s   where 

r
q  defines the reference coordinates of the bodies, e  defines the vector 

of coordinates for the flexible bodies subjected to large deformations, and s  defines the vector of 

non-generalized coordinates or surface parameters used in the contact formulations. The 

equations of motion given in equation (19) are constructed using the augmented Lagrangian 

formulation.    
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0s0 0 0 C

QλC C C 0

     (19) 

In equation (19), λ  is the vector of Lagrange multipliers, rrM  is the mass matrix associated with 

the reference motion of the bodies, eeM  is the mass matrix of the ANCF finite elements,
rq

C  and 

eC  are the constraint Jacobian matrices associated with the coordinates rq  and e , respectively. 

The generalized forces associated with these coordinates are given by rQ  and eQ , respectively. 

cQ  is a quadratic velocity vector which results from the differentiation of the constraint 

equations twice with respect to time (Shabana, 2013). 
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CHAPTER 5 

NUMERICAL RESULTS AND DISCUSSION 

The numerical results obtained from the newly proposed contact model are presented in this 

section. The penalty force based contact formulation can be used with the fully parameterized 

ANCF finite elements and also with the gradient deficient elements. The gradient deficient cable 

element has been used in this investigation so as to achieve more efficient simulation times and 

also to avoid locking problems pertaining to the fully parameterized elements. The effect of the 

aerodynamic forces on the contact force is evaluated as well. Cross wind loading conditions are 

applied on both, the pantograph and the catenary system.  

5.1 Without Wind Loading 

In this subsection, the simulation results for the case where no wind loading is considered on the 

pantograph-catenary system are presented. A multibody model representing Faiveley CX 

pantograph is used in this investigation. The rail- vehicle is travelling at a velocity of 200 km/h 

on a straight track with no wind action on neither the pantograph nor the catenary system. A 

simulation span of 10 seconds is considered for the analysis. The uplift force exerted on the 

pantograph mechanism is modeled as a vertically upward force applied on the lower arm having 

a value of 1465 N.   

 The contact force evolution with time is presented in Fig. 6. Figure 7 shows the zoomed 

version of the results in Fig. 6 in the time window of 7 to 10 seconds. Boundary effects in the 

catenary model are evident in the initial simulation time. As observed in Fig. 6, in the timeframe 

from 1 to 2 seconds, the transverse waves are dominant in the catenary system and 

approximately after 2 seconds they attenuate. The contact force behavior this point onwards is 
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mostly periodic denoting a steady state of operation. Hence in the analysis of the contact force, 

the first two seconds of numerical data is not considered till the system achieves a steady state. 

Figure 7 shows large peaks of the contact when the pantograph passes under a support pole 

positions and the droppers. The peaks corresponding to the support poles are much higher than 

the droppers.  

A comparative plot is shown in Fig. 8 between the contact force results obtained from the 

sliding joint formulation proposed by Papplardo et al. and the new penalty formulation proposed 

in this investigation. The numerical results for the contact force in the case where no control 

action is employed with the contact force are considered from Pappalardo et al. (2015) for the 

comparison. Fig. 9 shows a good agreement between the contact force obtained using the 

constraint-based formulation and the penalty approach. The mean contact force for the penalty 

force formulation comes out to be -107.79 N against -110.427 N that of sliding joint formulation. 

The standard deviation of the contact force computed with the penalty force formulation is found 

to be 36.7257 N, where the sliding joint formulation contact force has a standard deviation of 

37.3033 N. The mean contact force and the standard deviation of the contact force are within the 

limits prescribed by the standard EN50367, which are discussed before.   
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Figure 6. Contact force without wind loading

 

Figure 7. Contact force without wind loading- zoomed window 
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Figure 8. Contact force comparison between the sliding joint formulation and the penalty 

formulation ( Penalty Force Formulation, Sliding Joint Formulation) 

 

 

 

Figure 9. Contact force comparison between the sliding joint formulation and the penalty 

formulation- zoomed window ( Penalty Formulation, Sliding Joint Formulation) 
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5.2 With Wind Loading 

The effect of the aerodynamic forces on the contact force is discussed in this section. The rail- 

vehicle velocity of 200 km/h and the uplift force on the pantograph mechanism of 1465 N are 

kept the same as that of the case where wind loading is not considered. There are two cases 

considered here; the first being a crosswind loading applied on the pantograph components only 

and the second being crosswind load being applied on the pantograph and the catenary system as 

well. In both, the case the wind having velocity of 20 m/s at a yaw angle of 15 degrees is 

considered. The wind flow is assumed to be streamlined, i.e. without any turbulence. 

Figure 10 shows the plot of the contact force when the crosswind is applied only on the 

pantograph components. The aerodynamic forces are applied mainly on the four components of 

the pantograph which contribute to the total aerodynamic uplift force significantly, these 

components are- upper arm, lower arm, lower link and pan-head. These components are shown 

in Figure 2. The aerodynamic forces are applied at the center of gravity for each component. The 

aerodynamic pressure coefficients of drag and lift used are mentioned in Table 4. These 

coefficients are not dependent on the Reynolds number, which is confirmed by the trial tests 

mentioned in the standard EN50317. The standard states that the aerodynamic uplift force 

depends on the square of train velocity (Pombo et al., 2009). The effect of the aerodynamic 

pitching moment is not considered in this investigation. The time evolution of the drag and the 

lift force on the pan-head is shown in the Fig. 11 and Fig. 12, respectively. The drag and the lift 

forces are nonlinear in nature and are dependent on the velocity of the train and the wind loading 

conditions. The positive lift force indicates that the pan-head is lifted upwards causing an 

increase in the mean contact force. This effect can be observed from Figure 13 and Figure 14, 

where comparison in the contact force results is made between the case where crosswind is 
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applied and the case where no wind loading is present. However, the effect of pan-head being 

lifted upwards depends on a lot of parameters like the collector geometry profile, usage of 

spoilers, turbulence in wind etc. The mean contact force in the case of crosswinds applied on the 

pantograph is found to be -120.22 N where it is -107.79 N when there is no wind, which is a 

11.53% increase. The standard deviations are found to be similar in both the cases. However, the 

turbulence in the wind can have some effect on the standard deviation of the contact force. 

 

   

 

Figure 10. Contact force with cross wind loading on the pantograph components of 20 m/s at a 

yaw angle of 15 degrees 
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Figure 11. Drag force on the pan-head

 

Figure 12. Lift force on the pan-head 
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 Figure 13. Contact force comparison with crosswind loading on the pantograph components of 

20 m/s at a yaw angle of 15 degrees and with no wind loading ( Without wind loading, 

With crosswind loading) 

 
Figure 14. Contact force comparison with crosswind loading on the pantograph components of 

20 m/s at a yaw angle of 15 degrees and with no wind loading- zoomed window ( Without 

wind loading, With crosswind loading) 
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Figure 15 shows the numerical results for the contact force for the case where the aerodynamic 

forces are applied on the pantograph components and also the catenary system. The aerodynamic 

forces are applied on both, the contact wire and the messenger wire as well. The mean contact 

force and the standard deviation of the contact force values are -120.21 N and 35.66 N 

respectively. Figure 16 and 17 compare the contact force numerical results obtained from 

applying the wind forces on the pantograph components and the catenary and the case where no 

aerodynamic forces are present. As reported in Table 5, there is an increase of 11.53% in the 

mean contact force value and a decrease of 2.91% in the standard deviation of the contact force. 

It can be observed that, these values are similar to those obtained by applying the aerodynamic 

forces only on the pantograph components. Hence the effect of aerodynamic forces applied on 

the catenary seems to be negligible for the considered wind conditions and the catenary 

configuration. Table 5 shows the values for the mean contact force and standard deviation for all 

the cases considered above. 
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Figure 15. Contact force with cross wind loading on the pantograph components and the 

catenary of 20 m/s at a yaw angle of 15 degrees 

 

Figure 16. Contact force comparison with crosswind loading on the pantograph components and 

the catenary of 20 m/s at a yaw angle of 15 degrees and with no wind loading ( Without 

wind loading, With crosswind loading) 
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Figure 17. Contact force comparison with crosswind loading on the pantograph components and 

the catenary of 20 m/s at a yaw angle of 15 degrees and with no wind loading- zoomed window  

( Without wind loading, With crosswind loading) 

 

 

 

 

 

Table 6: Numerical results for the contact force mean value and the standard deviation in the 

contact force 

Wind Loading 
Mean Force (N) Std. Dev (N) ∆ Mean Force ∆ Force Std. Dev 

No wind 
-107.79 36.73 / / 

Wind only on the 

pantograph 

-120.22 35.70 11.53% -2.80% 

Wind on the pantograph 

and the catenary 

-120.21 35.66 11.52% -2.91% 
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CHAPTER 6 

CONCLUSIONS 

This investigation presents a new penalty force based contact model developed from the sliding 

joint formulation proposed by Pappalardo et al. (2015) to model the pantograph-catenary 

interaction. Unlike the sliding joint formulation, the new formulation derived using the elastic 

contact approach allows for modeling the loss of contact scenario. The proposed contact 

formulation requires a single gradient vector and therefore it can be used with the gradient 

deficient as well as the fully parameterized ANCF elements (Hamper et al., 2015; Ren H., 2015; 

Shabana 2015). The ANCF cable element was used to model the overhead contact line and the 

messenger wire. The ANCF approach was found to be appropriate to model the geometric 

nonlinearities in the catenary system. The multibody model of the pantograph and the ANCF 

catenary model can be modeled in one single framework of multibody dynamics eliminating the 

need for co-simulation between the finite element and the multibody dynamics codes. The results 

obtained with this investigation satisfy the regulation mentioned in the standard EN50317 and 

match with the results obtained with the sliding joint formulation. Incorporation of the detailed 

rail- vehicle model helps replicating the reality more closely. 

 A new approach to model the time varying aerodynamic forces was also incorporated 

into the model. The drag and the lift forces on the individual pantograph components as well as 

on the contact wire and the messenger wire are computed at each time-step. The effect of the 

crosswind was that the aerodynamic uplift force assists the uplift force exerted on the pantograph 

mechanism increasing the mean contact force by about 11.53%, where the mean contact force 

value increase when the aerodynamic forces are applied on the pantograph components and the 

catenary is about 11.52%. The effect of application of aerodynamic forces on the contact wire 
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and the messenger wire seems to be negligible for the considered model. The instability in the 

motion of the catenary depends on several parameters like the worn out geometric profile of the 

contact wire, the angle of attack of the flow, wind speed etc. This behavior agrees with the 

behavior observed in the investigation by Pombo et al. (2009) where a similar pantograph model 

was used.  

 As future work, the control strategies could be applied to the new contact model to 

control the standard deviation and the mean contact force values. This could be helpful in 

determining the physical control parameters, considering the effect of aerodynamic forces 

simultaneously. The different wind loading situations can be studied beforehand provided the 

aerodynamic coefficients are known. The effect of wind on both, the pantograph and the 

catenary, can be studied for attaining optimal contact force for the high- speed train. Extreme 

operating conditions can be modeled as well to observe the loss of contact phenomenon. Hence 

this investigation can be useful to predict wear rates better, model realistic contact scenarios 

between the pan-head and the contact line which can result into better current collection system 

designs making the systems more damage-proof and saving significant amount of money in the 

maintenance. 
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APPENDIX 

Nomenclature 

C   vector of constraint equations 

rq
C

  constraint Jacobian matrix associated with rigid body coordinates 

eC
  constraint Jacobian matrix associated with ANCF coordinates 

d   penalty formulation damping coefficient 

e   vector of element nodal coordinates of ANCF body 

p
G   matrix relating the angular velocity vector to the pan-head orientation velocities 

k   penalty formulation stiffness coefficient 

p
L   Jacobian of position vector of contact point associated with pan-head coordinates 

M   mass matrix 

w
n   normal vector to the wheel surface at the contact point 

r
n   normal vector to the rail surface at the contact point 

p   vector of system generalized coordinates 

Q   vector of system generalized forces 

PenaltyQ             vector of penalty contact force 

q
  vector of generalized coordinates 

r   position vector of an arbitrary point 

pr   global position vector of contact point P on pan-head 

cr   global position vector of contact point P on catenary  

S   element shape function matrix 
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s   non-generalized coordinate related to catenary wire 

rs   non-generalized coordinates vector or surface parameters of rail 

ws   non-generalized coordinates vector or surface parameters of wheel  

t   time 

w
t

  tangent vector to the wheel surface at contact point 

r
t

  tangent vector to the rail surface at the contact point 

x y z  element spatial coordinates 

ω   angular velocity vector 

λ   vector of Lagrange multipliers 
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