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SUMMARY

Radio Frequency Tomography is an underground imaging technology that aims to re-

construct extended, deeply buried objects such as tunnels or Underground Facilities (UGF).

A network of sensors collects scattered electromagnetic field samples, which are processed

to obtain 2D or 3D images of the complex dielectric permittivity profile of the volume

under investigation. Unlike systems such as Synthetic Aperture Radar (SAR) or Ground

Penetrating Radar (GPR) which normally employ wide-band pulses, RF Tomography uses

Continuous Wave (CW) signals to illuminate the scene. The information about the tar-

get is not retrieved by relying on bandwidth but by exploiting spatial, frequency and/or

polarization diversity.

Interestingly, RF Tomography can be readily adapted to obtain images of targets in

free space. In this context, in the Andrew Electromagnetics Laboratory of the University

of Illinois at Chicago, a measurement system aimed to validate experimentally the perfor-

mance of RF Tomography has been designed and built. Experimental data have been used

to validate its forward model, different inversion algorithms, its performance in terms of

resolution and the ability of the system to distinguish between metallic and non-metallic

targets.

In the specific case of imaging of metallic targets, this thesis proposes to extend the

capabilities of RF Tomography by introducing a dyadic permittivity contrast. Electromag-

netic scattering from a thin, wire-like object placed in free space with its main axis at
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SUMMARY (Continued)

an angle with respect to the incident electric field is studied. It is possible to show that

for this configuration a fundamental difference exists between a metallic and a dielectric

object. This phenomenon can be modeled into MaxwellâĂŹs equations by using a dyadic

permittivity contrast, as it is commonly done when studying crystals. As a result a new

formulation of the RF Tomography forward model is obtained, based on a dyadic contrast

function. Reconstruction of this dyad allows to estimate not only the location and shape,

but also the spatial orientation of the target.

In addition, this dissertation proposes an alternative modification of the forward model

which removes some limitations caused by the Born approximation. Traditionally, the

Born approximation is used to linearize the inherently non-linear forward model. This

approximation is valid if the scatterer is small and does not interact strongly with other

objects. A quadratic forward model represents a more correct formulation of the scatter-

ing phenomenon, and it allows to attempt quantitative reconstruction. Numerical results

are presented to highlight the advantages that such a formulation provides over the Born

approximation.
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CHAPTER 1

INTRODUCTION

The exploration of the underground and, more in general, the ability to see what cannot

be seen by optical means has attracted the attention of researchers for decades. The fields

that can benefit from such techniques are very numerous and include geology, archeology,

medicine, defense and security, exploration sciences, and others. Different disciplines have

often developed different methods to achieve similar goals. Great advances in mathematics

and physics have allowed to find common denominators in a once very fragmented and

empirical field. The Radon transform, for example, was introduced in 1917 (1) and provided

the basis for imaging applications that will appear later on – around the late 1960s.

Now the term imaging is used in these different disciplines to indicate a very well defined

process: the visual reconstruction of a physical quantity considered of interest (2; 3; 4; 5).

The methods used to make images of inaccessible objects are many. Depending on the

application one could employ radio frequency waves, infrared emission, direct or alternating

electrical current, ultrasounds, vibrations, etc (6; 7; 8). The choice of the technique to

employ follows a series of practical considerations. One of the most important ones is the

availability of a medium to carry the signals: electromagnetic (EM) waves do not need a

medium to propagate, but sound waves as well as DC currents do. Restricting the attention

to cases when a medium able to carry both acoustic and electromagnetic information is

present, the choices are still many. The wavelength of ultrasound systems are much shorter

1
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than the wavelengths of many EM systems thus having implications on the resolution. To

increase the resolution of operation of an EM system one can increase the frequency, but this

can have harmful effects on the human body; the energy of an EM wave is proportional to

its frequency, as described by Planck’s relation (9) and if the frequency is very high the EM

wave becomes an ionizing radiation, i.e. it is able to disrupt molecular structure at an atomic

level, causing nuclear damage and possibly cancer. Safety of operation must be a priority

over the resolution in medical imaging. On the other hand, in very deep underground

exploration, where no life is present and the risk of contamination of the environment is

extremely low, the use of high-energy waves or nuclear radiation is permissible. After all

these decisions have been carefully considered, the problem of practical implementation

arises. In EM systems it is unrealistic to assume to be able to measure the phase of a

wave with the same precision regardless of the frequency of operation. In addition, the

frequency of operation and the type of signals employed (narrow-band versus wide-band,

for example) have important consequences on how far waves can travel before being greatly

attenuated. Furthermore, the properties of the medium where the waves travel greatly

affect the direction of propagation of such waves, as well as the distance they can travel.

This explains why acoustic imaging is adopted in applications that apparently have nothing

in common, such as prenatal imaging in the medical field and the imaging of lake and ocean

floors: in both cases the presence of liquids poses great challenges to the use of EM waves,

so acoustic methods are preferred.
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In conclusion, any imaging process is affected by dozens of variables, which combine in a

great number of possibilities. Imaging system differ greatly because they must be designed

by carefully keeping into account all these factors. However, regardless of the physical

process or discipline, an imaging process usually follows three common steps.

First, the quantity of interest is defined and analyzed. In this step one answers the

questions What do we want to see? and What is a physical quantity that can help us

see that? For example, a doctor could be interested in seeing a tumor, and could take

the density of the tissue as a measurable physical quantity of interest. Alternatively, a

geophysicist might be interested in knowing the thickness of a layer of rock, and could

choose the electrical resistivity of such formation as a measurable quantity that can assist

her in doing so.

Second, with the help of physics, a forward model is created. The forward model links

the quantity being reconstructed (density of tissue, electrical resistivity) with a measurable

quantity. If the doctor chooses to use X-rays to probe the tissue, he will measure the at-

tenuation of an electromagnetic radiation as it goes through the body. The geophysicist,

instead, could measure the voltage observed at two electrodes that are injecting a constant

current into the rock. Both scientists need an equation that converts the desired quantity

into the measured quantity: that equation is the forward model. It is important to point

out that the model is just a simplified description of reality, which is obtained making as-

sumptions and approximations during its derivation. For example, even though the physics

of EM propagation is fully described by Maxwell’s equations, in all environment and at any
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frequency, important practical differences exist between propagation in a perfectly homoge-

neous medium and a highly anisotropic body showing large differences in conductivity and

permittivity. While deriving the forward model these consideration can be translated into

different mathematical approximations that can better deal with the practical problems at

hand.

Third, the measured data go through a process called inversion. This step corresponds

to converting the measured quantity into the desired quantity and obtaining an image.

Apparently this step is very simple: the geophysicist, for example, can recover the rock

resistance R from her forward model V = RI without great difficulty. However, in most

cases this step is not trivial. The forward model used by the doctor can be such that

tiny variations in the measured quantity can lead to huge variations in the reconstructed

quantity, thus making his diagnosis problematic; a forward model such as the doctor’s is

called mathematically ill-conditioned. In addition, it could happen that for practical reasons

one cannot collect as many data points as would be needed for a good reconstruction, leading

to an image which is only an approximation of the real object; this is an under-determined

problem. A more exotic case is the one where the forward model is not linear: what if the

current injected by the geophysicist into the rock formation is not constant as he thinks,

but depends on the resistivity itself of the rock being measured? Only a non-linear model

can represent correctly this situation and it is not nearly as easy to invert as the simple

V = RI. In conclusion, the inversion procedure presents many obstacles that must be

carefully considered in order to obtain a meaningful image.
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This dissertation is involved with all the basic steps just described, and focuses on Ra-

dio Frequency Tomography (10; 11; 12), a novel technique aimed to reconstruct extended,

deeply buried objects, such as tunnels. The goal of this work is to introduce two separate

modifications to the RF Tomography forward model, which allow to extract information

about the imaging object which was previously unavailable and to obtain a better image

quality under controlled conditions. Before delving into this, a full description of RF To-

mography is provided, and some of the first measurement results obtained under controlled

conditions are presented and discussed. In addition, iterative inversion algorithms have

been developed to overcome some of the limitations given by regularized direct inversion

methods.

This thesis is structured as follows.

In Chapter 2 RF Tomography is introduced, by describing its principles of operation,

its forward model and a few inversion techniques. This description will make clear some of

the limitations and challenges that this thesis will address.

In Chapter 3 a prototype experimental system designed at the Andrew Electromagnetics

Laboratory of the University of Illinois at Chicago is described. The system allows to realize

an experimental validation of RF Tomography in free space, scaled for operations in the

microwave region.

In Chapter 4 two inversion algorithms are described, designed to overcome the limita-

tions of the methods currently used. One of the methods is based on the Conjugate Gradient

algorithm, and the other on the Algebraic Reconstruction Technique.
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Chapter 5 is then dedicated to explain the idea of a dyadic contrast function. The

simple case of scattering from metallic and non-metallic thin cylinders is analyzed both

analytically and numerically, and provides motivation for the introduction of the dyadic

contrast function. The forward model is then modified and images are obtained from

simulated data. Results are presented to show the advantages that this technique can

provide to the final user.

Chapter 6 instead describes an alternative modification of the forward model, which

consists in introducing a quadratic formulation which replaces the classical linear one. This

modification allows for better quantitative reconstruction of the contrast function under

controlled conditions and is tested with both simulated and measured data.

In the end Chapter 7 summarizes the goals of this work, how they have been accom-

plished and presents ideas for further research.



CHAPTER 2

RADIO FREQUENCY TOMOGRAPHY

The goal of this chapter is to introduce RF Tomography forward model and all the fun-

damental concepts that form the base for this thesis. Although none of the topics discussed

here are intended to be original, it is necessary to introduce them so as to better understand

what follows, and to establish the notation used thereafter. The discussion of mathematical

concepts is left to a bare minimum and the reader is referred to appropriate references when

necessary. An original, complete and detailed description of RF Tomography is found in

(10; 13; 11; 12; 14; 15) and (16; 17; 18; 19; 20; 21; 22; 23; 24; 25; 26; 27; 28; 29; 30; 31; 32;

33; 34; 35; 36; 37; 38; 39; 40; 41; 42; 43; 44; 45; 46).

Radio Frequency Tomography is an underground imaging technique that is based on

the use of simple, spatially distributed sensors operating at a fixed frequency, that are

used to illuminate a target with an electromagnetic wave, measure its scattered electric (or

magnetic) field, and process it to obtain an image of the target itself, as shown in Figure 1.

In order to be able to make images of deeply buried targets, RF Tomography uses signals

in the High Frequency band (3–30 MHz) or lower. In addition, it does not use pulses, i.e

wide-band signals, because their broad frequency spectrum would be affected greatly by

dispersion. The information about the target is not carried by a pulse, but by the amplitude

and phase of a monochromatic scattered wave and by sampling the target in the spatial,

rather than frequency, domain. Key to successful imaging is the spatial distribution of the

7
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Figure 1. Schematic representation of RF Tomography, from (10).

sensor, which are deployed in a large area surrounding the target. In short, RF Tomography

obtains images of targets by trading bandwidth for spatial sampling. This is opposed to

other techniques such as the Synthetic Aperture Radar (SAR) or Ground Penetrating Radar

(GPR), which use a localized transmitter and receiver and probe the target using wide-band

signals. The choice of using monochromatic signals has the advantage that the antennas

used in RFT are very simple, normally just short electric or magnetic dipoles. Also, the

measurement equipment attached to the antenna is greatly simplified because it does not

require to deal with wide-band signals.

RF Tomography proves to be very flexible. Its forward model can be readily adapted

to operate under different conditions: free space, below-ground, thru-wall, and others. The

main difference between these scenarios is given not by the model itself, but by the fact that
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there arise constraints that limit the locations where sensors can be placed. Changing the

location of the antennas or the medium where they are located does not change the forward

model, but changes the quality of the images that can be obtained because it modifies the

information retrieved by spatial sampling.

The advantages of RF Tomography over other other EM techniques are that it can

achieve deeper soil penetration and reconstruct very large targets or allow surveillance of

extended areas; it does not necessarily require operators on site; it can be operated remotely;

it is an overall cheaper technology because it greatly simplifies the hardware requirements.

2.1 Forward model

RF Tomography is based on a Volume Integral Equation (VIE). The transmitting and

receiving antennas (TX and RX, respectively) are placed around the area under investi-

gation. If imaging is performed for underground targets this means placing the antennas

either just below or just above the air-earth interface. Instead, in free-space, the antennas

are placed around the target, or around the container where the target is hidden. Either

way, the position of each antenna is identified with a vector, rt for the TX and rr for the

RX. Since antennas are modeled as short dipoles, their orientation in space is described

with a unit vector, at for the TX and ar for the RX.

The next quantity involved in the forward model is the contrast function, i.e. the

quantity being reconstructed. This is a complex scalar that represents the difference of the

permittivity values between the target and the medium where the target is embedded. It is
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represented with v(r′), with the auxiliary vector r′ indicating the particular position where

the contrast function is being reconstructed. Formally, v(r′) is given by

v(r′) =
[
ε(r′)− εb

]
− j

[
σ(r′)− σb

2πfε0

]
. (2.1)

In Equation 2.1, ε(r′) and σ(r′) indicate the dielectric permittivity and the conductivity

of the object, while εb and σb indicate the dielectric permittivity and the conductivity of

the background medium.

Then, the propagation of the monochromatic RF signal is described using a Green’s

function. The choice of the Green’s function depends on the medium and on the location

of the antennas. For example, for below-ground imaging, a different Green’s function is

used depending on whether the antennas are located above or below the air-earth interface.

In free space a classical spherical wave formulation is normally used. Since the forward

model is vectorial, it involves dyadic Green’s functions, i.e. they keep into account different

orientations of TXs and RXs thanks to a tensor formulation. One dyad is used to describe

the propagation of the RF signal from TX to target, and another for the propagation from

target to RX. Therefore the two dyads are normally indicated as G(rt, r′) and G(r′, rr).

Lastly, the total field received by the RXs is identified with Et, which is the superposition

of the incident field Ei transmitted into the space and the field scattered by the target, Es.

Only the Es component carries information about the target. To better describe the fact
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that the scattered field is measured at the location of a specific receiving antenna, for the

field transmitted by a specific transmitter, it is written as Es(rt, rr).

In conclusion, the forward model as derived in (10) (see also (47)) is

Et(rt, rr) = Ei(rt, rr) + Es(rt, rr)

= Ei(rt, rr) +Qk2
0

∫∫∫
D

ar ·G(rr, r′)v(r′)G(r′, rt) · atdr′, (2.2)

where the constant Q is used to keep into account additional factors which depend on the

antennas used (short dipole vs. small loop, for example), and the symbol D is used to

identify the domain of investigation.

In Equation 2.2, two assumptions have been made. First, the unknown is a scalar

quantity, i.e. each voxel is associated with one complex number. In chapter 5 a new

formulation is described which uses a dyad to represent the contrast function, allowing to

retrieve additional information about the target. Second, to obtain Equation 2.2 the Born

approximation has been adopted, by replacing the total field inside the integral with the

incident field only. More details about this and an another formulation which does not

make this assumption are presented in Chapter 6.

The forward model is then discretized. For each measurement, i.e. each pair of TX and

RX, the space is partitioned into voxels, and the integral turns into a summation

Es(rt, rr) = Q
∑

r′∈D
ar ·G(rr, r′)v(r′)G(r′, rt) · atdr′. (2.3)
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The summation can be represented as a linear algebra vector multiplication, by collecting

in a vector all the known terms (everything except v(r′) and in another vector the unknown

v(r′). Each element of the vectors represents a different voxel r′ being reconstructed. Then,

all the vectors corresponding to different measurements can be stacked into a matrix that

collects all the known terms. In the end the matrix formulation of the forward model is

obtained

Es = L · v. (2.4)

If the number of transmitters is M , the number of receivers is N and the domain of

investigation has been partitioned into P voxels, the vector Es has size MN ×1, the matrix

L has size MN × P , and the unknown vector v has size P × 1.

A few comments can be made about this formulation. First, the matrix problem is

largely under-determined. While it is reasonable to have tens of transmitters and receivers,

the number of voxels can easily be in the order of tens of thousands, depending on the size

of the area being reconstructed and on the size of the voxels. Therefore, since the matrix

L is rectangular, it is not possible to invert it directly.

Second, the problem is normally ill-conditioned. This is a classic issue arising in inverse

problems. When trying to recover v, a small error in the measurement vector Es is greatly

amplified by the condition number of the matrix. This is largely due to the fact that

it is difficult to collect a truly independent set of measurements. For square matrices,
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ill-conditioning is associated with eigenvalues very close to zero, similarly to how rank

deficiency is associated with eigenvalues equal to zero. Since the matrix L is rectangular,

the eigenvalues are not defined, but its singular values s represent the generalization of

the eigenvalues. Therefore, singular values of small absolute value are symptom of an ill-

conditioned rectangular matrix, suggesting that some rows of the matrix L are close to

being linearly dependent.

These considerations have particular importance when designing inversion algorithms,

able to successfully reconstruct the vector v and therefore leading to meaningful images.

2.2 Inversion algorithms

If the matrix L were not ill-conditioned, the inversion could be performed using a pseudo-

inverse matrix. For matrices with more columns than rows this is normally computed as

(48)

L† = LH
(
LLH

)−1
, (2.5)

where the notation H indicates the Hermitian transpose. Unfortunately the inversion per-

formed in this way is poor, because of ill-conditioning. Since the condition number can be

written as

κ(L) = ||L†|| · ||L||, (2.6)
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a high condition number means that the pseudo-inverse is really just a numerically bad

approximation of a matrix that should verify the relationship L† · L = I, I being the

identity matrix. The result is that small noise in the data lead to extremely large errors in

the reconstruction of v if Equation 2.5 is used.

The solution to the ill-conditioning problem is to use regularization techniques. These

methods attempt to mitigate the effects of small singular values by attenuating them or

completely eliminating them from the computation of the pseudo-inverse.

One of the most popular methods is called the Truncated Singular Value Decomposition

(TSVD) (49), which is closely related to other methods such as the Tikhonov regularization

(50). These and other methods based on similar principles are called direct because as

a result of the computation they return directly the final solution. This is opposed to

the approach taken by iterative methods, which start from a rough approximation of the

solution and then refine it in an iterative matter (48).

Truncated Singular Value Decomposition

TSVD works as follows. First, the Singular Value Decomposition is performed, which

decomposes the matrix L as

L = USVH . (2.7)
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The diagonal matrix S contains the singular values of the matrix L usually sorted in de-

scending order of magnitude. The pseudo-inverse can be easily written in terms of its

singular value decomposition terms as

L† = VS−1UH . (2.8)

Since S is diagonal, its inverse is obtained simply by replacing every nonzero diagonal entry

by its reciprocal and transposing the resulting matrix.

Since the small singular values are the ones that create reconstruction problems, they

are simply cut off, and so are the corresponding generalized eigenvectors contained in the

matrices U and V. The regularized truncated pseudo-inverse, therefore, is found as

L̃† = VkS−1
k UH

k , (2.9)

where k indicates the number of singular values that have been retained. The dimension

of the final matrix is unchanged, because the truncation of V is done only on its columns,

and the truncation of UH is done only on its rows. However, the small singular values

responsible for the ill-conditioning are not part of the regularized truncated pseudo-inverse.

The final solution is found by a simple matrix multiplication

v = L̃† ·Es. (2.10)
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The TSVD is an extremely popular method to obtain regularized solutions of ill condi-

tioned problems. Another solution, possibly even more popular, is the Tikhonov regulariza-

tion, which is similar both in terms of results and theoretical approach. Instead of simply

cutting the small singular values, the Tikhonov regularization reduces their effect by scaling

them with an appropriate regularizing parameter λ.

Both methods have drawbacks. TSVD is based on a very computationally heavy op-

eration, the singular value decomposition. In addition, it is not clear how to choose the

regularization parameter k. One way is simply to manually guess a posteriori, judging sub-

jectively the quality of the reconstructed image; a more rigorous method is to analyze the

L-curve (51; 52), which is described briefly in the following.

When finding a regularized solution of an under-determined, ill-conditioned problem, it

is possible to plot two quantities as function of the regularization parameter. The first is

the norm of the solution itself, ||v||2, the other is the norm of the residual r = ||Es−L ·v||.

Plotting the first versus the second, a curve that looks like a capital L is often obtained (see

Figure 2).

Each point on the L-curve corresponds to a different solution. Oftentimes, the best

solution to the problem is the one corresponding to the k (or λ for Tikhonov regularization)

at the knee of the curve. For example, in Figure 2 a λ = 0.01 will return a good solution.

This choice is somewhat subjective, because after all it relies on the quality of the image

as it is perceived by the final user; for some problems it might not be the best. In other

cases, the knee might not be easy to identify, or the method itself might fail in the case of
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Figure 2. Example of an L-curve for an ill-conditioned problem. The points on the curve
identified with different values of λ correspond to different values of the regularization
parameter in a Tikhonov regularization. A similar behavior is obtained for TSVD for

different values of k. Image obtained from (52).

solutions which are dominated by the first few SVD components (52). In these cases the

choice of k is not simple.

In addition, the solutions returned by any regularized method are often blurry and

poorly resolved. This is because the regularization has the property of obtaining a faster
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convergence for low frequency components1 (53). The regularization acts as a low-pass filter.

This behavior is often desirable, because it reduces high frequency noise, but it also limits

the performance of the inversion, which is unable to return images with sharp transitions

and which tends to overestimate the effect of small, localized artifacts. The L-curve can be

seen as a graph which separates blurry images from noisy images: the solution often lies in

the middle but it is just the choice between the lesser of two evils.

The drawbacks displayed by regularized direct methods motivated research into alterna-

tive approaches. In particular, iterative methods have been investigated and are described

in Chapter 4.

1Frequency here is intended as spatial frequency, in the context of the spatial Fourier transform
of the solution image.



CHAPTER 3

AN RFT PROTOTYPE MEASURING SYSTEM

The performance evaluation of RF Tomography has been until now performed by means

of computer simulations (11; 12; 14; 54; 55), the main reason being the practical difficulty

in executing field measurements. The operating frequency, the availability of antennas, the

location of a measurement site and the availability of known buried targets make the full-

scale implementation of RF Tomography a rather challenging task. Some preliminary tests

have been attempted (56), but have highlighted some of these practical problem.

Nonetheless, the possibility to verify in practice the theory developed about RF Tomog-

raphy is very important. Laboratory experiments can provide a lot of information as well

as guidelines on how to tackle the more difficult task of full-scale field measurements. The

possibility of conducting scaled experiments at the Andrew Electromagnetics Laboratory at

the University of Illinois at Chicago has therefore been investigated (57; 58; 59; 60; 61; 62).

Three fundamental requirements dictated the choice of these laboratory experiments.

First, the goal of reconstruction: in RF Tomography the goal is to identify the location of a

target, which does not require the accurate reconstruction of its electrical properties. The

target is assumed to be an isolated anomaly, with sharp contrast with respect to the host

medium, and with simple shape. Second, the measurement conditions: RF Tomography

has been originally developed for reasons of detection and surveillance in defense systems,

thus dealing in possible hostile environments. Successful imaging needs to be achieved

19
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with a limited number of sensors and must be robust against missing or broken antennas.

Third, the time required to process data to obtain images: short times are critical in RF

Tomography because the goal is to obtain real time information about the target position

and, possibly, to perform tracking. It is also imperative to retrieve and process information

quickly because when sensors are deployed in a hostile environment, they may no longer be

available at some point.1

All these requirements depend upon the availability of a physical system to collect

measurements. A complete prototype system has therefore been designed, which allowed to

recreate in a scaled version the fundamental building blocks of RF Tomography and, most

importantly, to collect and process real world data for validation purposes.

The measurement system has been designed as a compromise between two opposing

constraints. On one hand is the desire to reproduce as closely as possible an actual RFT

system, to obtain a meaningful experimental validation; on the other hand are practical

limitations that impose to limit the cost and the sources of error as well as guarantee the

repeatability of the measurements. Therefore, choices were made which affected the type

and number of antennas used, the operating frequency, the positioning system, the targets

that could be used for imaging, and the type of tests that could be made on the system.

1Excerpt from (15)
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3.1 Mechanics

The most important choice made involved the architecture of the measurement system.

The chosen system is bi-static, i.e. it uses two antennas at a time. A positioning system

would move these antennas in space, synthesizing multiple bi-static measurements, and

therefore effectively realizing a fully multi-static (multiple illumination and multiple view)

system.

This choice simplified the system both mechanically and electrically. Mechanically,

because only two antennas need to be precisely placed, thus reducing the cost and the sources

of errors. Electrically, because the absence of multiple co-located antennas in the same area

– often within each other’s near field (63) – reduces the electromagnetic interference and

their mutual coupling.

In addition, the antennas move along circular paths, rather than performing linear scans.

This choice has been made because most simulations presented in the literature are made

according to this criteria, and also because antennas surrounding the target provide a great

spatial diversity, with the target that can be observed from all angles.

As a result, an automated antenna positioning system has been designed, built, and

programmed, and it is shown in Figure 3. The apparatus moves the antennas, samples the

electric field, and stores the measurement data for later analysis. (For a detailed description

of the system refer to Appendix A.)

The antennas are moved using two stepper motors, controlled by a PC via a controller

board. Precise positioning of the antennas is paramount to achieve good quality images.
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(a) (b)

Figure 3. The measuring system. Figure (a) shows a 3D CAD model prototype. Figure
(b) shows a photo of the actual system at work: the TX is on the left, the RX is on the

right, and a target is visible in the top-center, hanging from the ceiling.

Angular positioning with an error significantly smaller than 1◦ is achieved by using stepper

motors in micro-stepping mode, and by using a pulley-belt system with a gear ratio of 4:1.

The system is controlled by a LabVIEW TMapplication, which coordinates the movement

of the antennas with the RF measurements.1

1Excerpt from (15)
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In terms of limitations, the movement of the antennas is restricted to a 2D plane, with

the possibility of choosing different planes for transmitting and receiving antennas. This

is consistent with the RFT formulation, where antennas are scattered on the ground and

are therefore approximately on the same plane. Also, each of the two antennas is mounted

on its own positioning arm: this implies that the antennas cannot rotate around the same

circumference, but instead rotate around concentric circles. Finally, one of the motor’s

support stands has been placed along the trajectory of rotation of one of the arms: while this

simplifies the construction, it also limits the movement of the lower arm to approximately

285◦.

3.2 RF design

The first and probably most important choice for the RF design is the choice of the

operating frequency. The frequency must be sufficiently high so as to provide a good

scaling factor, but not too high so as to compromise accuracy in the measurement of the

phase, due to positioning errors. Given the precision achievable by the antenna positioner,

data is usually collected around 3 GHz.

Simple half-wavelength dipoles are used in the experiments instead of the electrically

short dipoles of the forward model. This choice was made because half-wavelength dipoles

are more readily available, provide a much higher radiation resistance, and have a lower

reflection coefficient to allow for a more efficient use of the input power. In the examples

showed in this chapter the antennas were operated at 3.16 GHz (λ ≈ 9.5 cm), with a

transmit power of 20 dBmW. The choice of the operating frequency has been refined after
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measuring the reflection coefficient S11 of the antennas. Plots of the reflection coefficient

for both antennas are available in Figure 4.

(a) (b)

Figure 4. Reflection coefficient S11 for the two dipole antennas used in the measurements.
Although the antennas are nominally operating at 3 GHz, the actual lowest reflection

point for both antennas is located close to 3.2 GHz.

A Vector Network Analyzer (HP 8753ES) measured the scattering parameter S21. For

each measurement 16 samples were taken and averaged to reduce additive white Gaussian

noise effects. The measurements were taken in an anechoic room to further reduce unde-
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sired reflections and to mitigate external RF sources in the same frequency range. TM

polarization (i.e., vertical, perpendicular to the floor plane) was used.1

3.3 Background subtraction and calibration

The forward model described in Equation 2.2 is based under the assumption that it is

possible to separate the incident field Ei from the total field Et, so as to obtain the scattered

field only. In the laboratory this can be done by taking two measurements: in the first step

the target is placed in the scene and a first measurement is taken, thus obtaining Et. In the

second step the target is removed and the environment only is measured, thus obtaining

Ei. The two quantities are subtracted and the scattered field Es is obtained.

This procedure is usually called background subtraction and is easy to perform in a lab-

oratory, although it requires to double the number of measurements taken, see for example

(62). In a real application, however, background subtraction is not applicable because the

target cannot be removed from the scene. An important area of research is therefore the

development of procedures that allow to extract the scattered part of the field from the

total field. These are commonly referred to as Direct Path Removal techniques, and might

involve software, hardware, or a combination of the two. Since our laboratory experiments

did not require the use of these techniques a simple background subtraction is performed,

but it is important to know that it represents an important assumption.

1Excerpt from (15)
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Background subtraction might not be sufficient to achieve good imaging results. Al-

though the theory describes a forward model that links a permittivity contrast function to

the scattered electric field, in the laboratory it is more convenient to measure a different

quantity. In fact, a Vector Network Analyzer measures the scattering parameters, which are

dimensionless quantities which indicates ratios of power waves. Even though the scattering

parameters provide an indication of the magnitude and phase of the measured electric field,

they are not the same thing.

In order to overcome this issue, a calibration operation should be performed. There are

different ways to do this, but all methods share a common trait: comparing the measure-

ment of a known quantity against well-established numerical results or analytical formulas.

Therefore some calibration methods (63; 64; 65; 66) use standard targets, i.e. objects whose

scattering properties are very well established. These target are normally spheres, spheroidal

objects, corner or tetrahedral reflectors and wedges. The field scattered from one or more

of these objects is measured in the laboratory under veru well controlled conditions and is

then compared to the field predicted by exact mathematical results. Other methods do not

use any standard target but simply normalize the measurement to the field expected in free

space (67), which can also be very well described by analytical formulas.

In both cases corrections coefficients are then applied to the measured data in order

to obtain the best match between measurement and theory. In order for these procedures

to work it is extremely important that the coefficients calculated are applied without any
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change to all measurements, otherwise the calibration operation turns into a scientifically

unsound data manipulation.

The operation adopted for the system described in this chapter consists in using the

measured scattering parameter S21 in the absence of the target (i.e., the incident field Ei)

and compare it to the expected value of the electric field that would be predicted by standard

EM formulas. In summary, the developed procedure works as follows: Ei and S21 are linked

as

Ei(rt, rr) = C(rt, rr)S21(rt, rr), (3.1)

that is, for each combination of antenna positions (rt, rr), Ei obtained from formulas is

compared to the measured S21, and the complex coefficients C (one per position) are com-

puted. These coefficients are then re-used to convert the measured S21 in the presence of

the target into the total field Et.

This method has the advantage of not requiring standard targets, and is very easily

implemented. It must also be pointed out that the measurement system has been designed

for qualitative and not quantitative reconstruction. Therefore there is no need to calibrate

the actual numerical value of the reconstructed dielectric permittivity contrast function

against the material properties of a known scatterer.



CHAPTER 4

ITERATIVE INVERSION ALGORITHMS

This chapter is dedicated to describing two main inversion algorithms developed to

invert RF Tomography data.

Section 2.2 introduced some direct methods used to solve under-determined, ill-conditioned,

dense and large linear systems of equations. Those methods are all direct methods, i.e. they

attempt to find a solution to the problem Es = L · v in one step, by using some regular-

ization procedure. In particular, the most common method used in RF Tomography is the

Truncated Singular Values Decomposition (TSVD) (10; 11; 68).

In this chapter an imaging scenario is chosen, which highlights both strengths and

weaknesses of TSVD. Then, the new developed methods that allow for the introduction of

physical constraints are presented and discussed.

4.1 Reference scenario

In the reference scenario a simple target is imaged. It consists of a short section of a PVC

pipe: its outer diameter is 4.8 cm, its height is 5 cm, its thickness is 4 mm; the dielectric

constant of PVC is estimated to be εr = 2.5 with negligible conductivity (tan(δ) = 0.004 at

3 GHz). The object is illuminated from 11 positions along a circumference of radius 38.4

cm, uniformly spaced between 0◦ and 280◦. The electric field is sampled at 20 locations

along a circumference of radius 15.4 cm, uniformly spaced between 0◦ and 360◦. All images

28
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shown here are obtained from real-world measurements collected at UIC with the system

described in Chapter 3

A 3D model of the target, along with the location of the antennas, is shown in Figure 5.
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Figure 5. Figure (a) shows a 3D model of the PVC pipe used in the measurement. The
red arrow in the right part of the image represents one of the positions of the receiving

antenna. Figure (b) shows all the positions used in the measurement.

All images are obtained considering a square domain of investigation of side equal to

20 cm, centered around the center of rotation of the antennas, and divided into 75 pixels

per side. Each pixel is therefore 2.67 mm (or approximately λ/37). This leads to a problem

with 75× 75 = 5625 unknowns which must be reconstructed from 220 measurements. The

conditioning number κ(L) turns out to be approximately equal to 1.3× 105.
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4.2 Example of TSVD reconstruction

Reconstruction using TSVD is satisfactory, and is shown in Figure 6. The object is

reconstructed in the correct location and its shape is preserved, although the thickness of

the pipe is exaggerated. The image is affected by noise and presents a few artifacts, which

are however weak when compared to the main target.
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Figure 6. Figure (a) shows the reconstruction obtained with TSVD in terms of magnitude
of the complex dielectric permittivity contrast function, |v|. The image is obtained by

retaining k = 78 out of 220 singular values: the number has been automatically
determined by identifying the corner of the L-curve (b).

The imaging result depends greatly on the number of singular values that are retained

in the inversion, as shown in Figure 7. In addition, the TSVD reconstruction provides a

solution that does not make physical sense (see Figure 8): both real and the imaginary
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parts of v are negative, while it is clear that the real part (dielectric permittivity) must be

positive.
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(b) k = 50
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(c) k = 100
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(d) k = 125

Figure 7. Reconstruction quality as function of the number of singular values retained.
The solution rapidly goes from over smoothed (a), to meaningful (b), to useless (c-d)
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Figure 8. Real (a) and imaginary (b) parts of the solution retrieved by TSVD, for k = 78.
The real part is negative although this does not make sense physically.

On a recent desktop computer (quad-core CPU operating at 3.7 GHz, 8 GB of memory)

the time required to generate each image is approximately 4 seconds. The result is not

bad, because the code was not pre-compiled or optimized. However, on a less recent laptop

computer (single core CPU operating at 1.9 GHz, 1.5 GB of memory) reconstruction is

impossible: the algorithm crashes because the singular value decomposition exhausts the

memory of the computer.
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4.3 Conjugate Gradient

The Conjugate Gradient algorithm (69; 70) is a very popular method for solving linear

systems of equations. It is based on the steepest descent method and it improves on it by

choosing in a smarter way the direction where to look for the solution at every iteration.

The difference between the two methods can be efficiently explained with a simple example.

Suppose the minimum of a convex cost function needs to be found. The method of

steepest descent starts from an initial guess, computes the gradient of the function and

moves along that direction (search line) until a minimum in the gradient is reached. From

that point, it computes a new gradient and it follows it again, repeating this process until a

minimum in the function is reached. Thus, the method follows at every iteration a steepest

descent path. It turns out that while moving along the search line, the function is minimized

when the gradient is perpendicular to it. Therefore in the steepest descent method each

step will always be taken in a direction perpendicular to the direction taken at the previous

step. The phenomenon is depicted in Figure 9.

When dealing with particularly “oval” functions, unless the starting point is a particu-

larly good one, the steepest descent method will need an extremely long time to find the

solution because it will keep moving left and right along perpendicular search lines.

The Conjugate Gradient (CG) method addresses this problem by noticing that it would

be better to move not along the direction of steepest descent, but along a direction that

would minimize the number of steps necessary to find the minimum of the target function.

This thesis is not concerned with the details of the CG algorithm, but there are many
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(a) (b)

Figure 9. The steepest descent method at work. The function is minimized along a certain
search line when the gradient is perpendicular to it (a). The path taken is therefore made

of orthogonal segments (b). c©1994 by Jonathan Richard Shewchuk (71)

excellent references that discuss them exhaustively, (48) and (71) particularly. In a nutshell,

by properly exploiting some properties of the search directions and of the residuals at every

step, the CG method is guaranteed to find the solution of an n-dimensional problem in n

steps. In the example used before, the CG method finds the minimum solution in 2 steps,

as shown in Figure 10.

The beauty of CG is that it is very efficient, it works naturally with complex numbers,

it does not require computationally heavy operations such as the Singular Value Decompo-

sition, and it can be more or less easily customized so as to enforce some constraints on the

solution. For example, the starting point can be chosen as the origin (the null vector) and
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Figure 10. The CG method at work. Compare this convergence path, that takes 2 steps,
with the one followed by steepest descent, in Figure 9b. c©1994 by Jonathan Richard

Shewchuk (71)

then it can be enforced that the path of convergence only includes positive numbers. This

can be done to apply some physical constraints on the final solution returned. Even though

from a mathematical point of view it might make sense to move in a certain direction be-

cause the cost function is minimized, from a physics point of view the solution thus found

might not make sense.

In addition, it is usually convenient to stop the iterative process before the minimum

of the target function is actually found. Considering the details of RF Tomography, the
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minimum norm solution to is usually affected by a lot of noise, because of the ill-conditioning

of the problem. Therefore it can be a good idea to stop before this point is reached, and

observe the quality of the reconstruction as the CG algorithm proceeds along its path.

These considerations provide motivation for applying the Conjugate Gradient method

to RF Tomography, by applying some modifications to the basic algorithm.

4.3.1 Physical bounds, re-orthogonalization and termination

In RF Tomography the contrast function is the difference between the permittivity of

the target and the permittivity of the background. Both quantities are in general complex,

with the imaginary part depending on the conductivity σ. Therefore:

v(r′) =
[
ε(r′)− εb

]
− j

[
σ(r′)− σb

2πfε0

]
, (4.1)

for each pixel, where r′ identifies each pixel. In free space it is assumed that:

ε(r′) ≥ εb (4.2)

σ(r′) ≥ σb, (4.3)

i.e. the target is denser and more conductive than free space. Therefore v will have positive

real part and negative imaginary part. Unless enforced explicitly, nothing guarantees that
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this simple physical rule will be respected by the CG inversion. Therefore the CG algorithm

has been modified by imposing hard constraints on the solution returned. At every iteration:

if Re(v) < 0 ⇒ Re(v) = |Re(v| (4.4)

if Im(v) > 0 ⇒ Im(v) = −| Im(v)|, (4.5)

which imposes the physical bound without changing the norm of the solution (as it would

setting the pixel equal to zero). Still, this hard constraint has an important effect on the

algorithm. Even though the norm of the solution remains unchanged, the solution is indeed

changed, and so is its corresponding residual. In practice a jump is introduced in the solution

space. This is undesired because it disrupts the natural convergence path that CG would

take. In particular, CG is based on the property that at each iteration the residual vector

is perpendicular to every residual found in the previous iterations. Since the residuals are

used at every iteration to determine the next search direction, this operation disrupts CG.

The solution to this problem comes by operating a re-orthogonalization procedure (72;

73), using the Gram-Schmidt procedure (74; 75). Given a set of vectors, the Gram-Schmidt

process generates a set of orthogonal vectors, in an iterative fashion. The first vector is

taken as is, the second vector is made perpendicular to the first one, and so on, until all

the vectors in the set have been made perpendicular to each other. In the CG inversion

developed here, the quantity made orthogonal is the set of residuals r = ||Es − L · v||.
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Therefore, at each iteration, after the new solution has been found and the physical bounds

have been applied, the Gram-Schmidt procedure is applied to re-orthogonalize the residuals.

The last step in the algorithm is its termination. The algorithm must be stopped before

it completes all the iterations, otherwise there would be no regularization effect on the

solution. In order to establish the point when to stop, the evolution of the residual at every

iteration is analyzed. The residual at the i-th iteration is defined as:

r(i) = ||Es − L · v(i)||2. (4.6)

This residual is analyzed in more details in the next section. Generally, r(i) changes rapidly

with the first few iterations and then tends to stabilize toward an asymptote. Therefore a

stopping condition can be applied on the derivative (finite-difference) of the residual. At

every iteration the difference between r(i) and r(i−1) is computed. The algorithm continues

until the difference at a step i is smaller than 5% of the maximum difference observed during

the process. This procedure results in a stopping point reached very quickly, normally within

10 iterations.

4.3.2 Comparison of CG and TSVD

Conjugate Gradient and the Truncated Singular Value Decomposition have been com-

pared using data coming from both real measurements and noise-free simulations. The

conditions used in the experiments are replicated in the commercial software FEKO, which
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produces as a result a vector containing the scattered field Es. This field is in turn used to

generate images.

The choice of a Method of Moments simulation provides certain advantages over other

types of simulations. First, since it is a method based on the surface equivalence theorem, it

allows to obtain the scattered field directly, with one simulation. A method like Finite Dif-

ference Time Domain (FDTD) would require two simulations, one with the object and one

without, to obtain the scattered field by subtraction. Second, the method requires to mesh

only the object that causes scattering, again thanks to the surface equivalence theorem.

This represents another computational advantage against FDTD and the Finite Elements

Method (FEM), because both would require to mesh the whole space where the measure-

ment occur. Since the targets are small compared to the area where the measurement is

performed, the computational advantage given by meshing only the target is very large.

Generating images using the simulated scattered electric field allows drawing conclusions

on the quality of the inversion algorithm itself, without the interference of noise, positioning

errors, measurement errors, etc. Nonetheless, showing the imaging results from actual

measured data remains the main goal of this chapter.

First, the performance of CG in its basic formulation, without any modification is ana-

lyzed. The test conditions are the same as in Section 4.1.

Figure 11 shows the result. TSVD and CG return almost identical images. Therefore,

CG has regularizing properties identical to TSVD, which come at a much lower computa-

tional cost. On a desktop PC equipped with a quad-core CPU operating at 3.7 GHz, 8 GB
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Figure 11. Reconstruction of an empty PVC pipe from simulated data using TSVD (a)
and CG (b). For TSVD, 116 singular values have been retained. For CG, the result is

obtained after 30 iterations.

of memory, running a MATLAB code (hence, not compiled) TSVD required 4.1 seconds to

find the solution, CG required less than 0.2 seconds.

For this test, CG has been forced to run for 30 iterations, overriding the automatic

termination rule. This has been done to show the behavior of the residual and of the

solution norm, which are displayed in Figure 12. The residual quickly decreases then it

stabilizes, while the solution norm quickly increases then it stabilizes. This behavior can

be observed in basically all cases, and it is what motivated the choice of the introduction

of the stopping rule for the CG algorithm.

Similar results are obtained for measured data, in Figure 13. The result for TSVD is

a replica of the one shown in Figure 6, while the one for CG is obtained by introducing

the stopping condition. Again, the two images are extremely similar in terms of quality,
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Figure 12. Plots of residual (a) and solution norm (b) for CG, for simulated data. The
plots show that convergence is obtained very quickly: after 10 iterations the change on

both quantities is small.

with TSVD taking 4.1 seconds to find the solution and CG requiring only 0.04 seconds. CG

found the solution after only 5 iterations.

4.3.3 Effect of the physical bound

The introduction of the physical bounds has beneficial effects on the quality of the

solution returned by CG. Apart from the obvious advantage of avoiding solutions that do

not make physical sense, restricting the space where a valid solution can be searched for

has the consequence of reducing the noise present in the image. To verify this, data coming

from measurements only is studied, since they are more affected by noise. The effect of the

introduction of the physical bound is shown in Figure 14.
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Figure 13. Reconstruction of an empty PVC pipe from measured data using TSVD (a)
and CG (b). For TSVD, 78 singular values have been retained. For CG, the result is

obtained after only 5 iterations.

The enforcement of the physical bounds has two effects. On one hand, the image quality

gets worse: the shape is not reconstructed correctly and it is hard to infer the shape of the

target. On the other hand, the noise which affected Figure 13 is greatly reduced.

As explained previously, the enforcement of the hard physical bounds has the undesirable

effect of interfering with the progression of the algorithm, because it breaks the property of

orthogonality of the residual. Evidence of this is shown in the residual and solution norm

plots, which become irregular, as shown in Figure 15. While the norm of the solution remains

fairly stable, the norm of the residuals shows a staggering pattern. As a consequence, while

the solution could be found in 5 iterations the termination condition is now met only after

21 iterations.
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Figure 14. Comparison between the regular CG algorithm (a) and the same algorithm
with the enforcement of physical bounds (b). The image loses quality, but it is also much

less noisy. Reorthogonalization can be used to improve the reconstruction.

These issues are solved with the application of the Gram-Schmidt re-orthogonalization

procedure.

4.3.4 Effect of re-orthogonalization

Since the simple introduction of the physical bound has been shown to make the image

quality worse (although it reduces the noise), a re-orthogonalization technique is used.

Before computing the next solution, the residuals are re-orthogonalized, following the Gram-

Schmidt process. As a result, the CG algorithm will return a solution which is computed

on the basis of a set of orthogonal residual vectors. The benefit of this operation is easy to

appreciate.

Figure 16 shows that the image returned is less affected by artifacts than the one of

Figure 13b, and the reconstruction of the shape is slightly more accurate. The residuals
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Figure 15. Residual (a) and solution norm (b) as functions of the iteration step. As
expected, the residuals are very irregular, because of the introduction of the physical

bound.

are stable again. In fact, if the iterations continued past this point, the solution would

not change at all. The enforcement of the physical bound with the addition of the re-

orthogonalization step effectively restricts the space where the solution can be searched for.

When the CG algorithm hits the bounds, no better solution can be found and the algorithm

stops. This happens after only 0.04 seconds.

As a conclusion, this algorithm is proposed as an alternative to TSVD: it shows similar

regularizing properties, it can achieve similar or better quality of the reconstructed image,

it limits the noise, and it greatly reduces the computational resources needed to find a

solution. Results obtained using this methods were presented in (36; 39; 42).
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Figure 16. Solution obtained using CG, enforcing the physical bounds and
reorthogonalizing the residuals (a). Convergence is achieved in 5 iterations. Figure (b)
shows the corresponding residual at every iteration. c©2013 IEEE, figure (a) from (42)
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4.4 Algebraic Reconstruction Technique

The result obtained with CG is an improvement with respect to TSVD mostly in terms

of computational resources needed and of noise reduction. However, the overall quality

of the image is still affected by poor resolution. Two main factors cause this: first the

Born approximation, which was used to derive the forward model in the first place (76),

then CG, which is used to invert the data, operate like a low-pass spatial filter (77). Rapid

transitions, such as the ones presented by the edges of the PVC object analyzed here, cannot

be reconstructed exactly. The limitations given by the Born approximation are described

in details in Chapter 6 where a partial solution is also proposed. In this chapter, instead,

attention is given to what can be done from the inversion point of view, remaining under

the umbrella of the Born approximation. An additional inversion algorithm, alternative to

CG, is therefore proposed.

The Algebraic Reconstruction Technique (ART) has been developed in 1937. The orig-

inal algorithm was devised by Polish mathematician Stefan Kaczmarz (78) to solve linear

systems of equations1. Like most numerical methods developed before the 60s, it found

little application simply because of the lack of powerful computers. In the 70s the method

has been re-discovered and used in the field of x-ray tomography (79).

The reason why the ART method has been looked into is because it is employed in

biomedical imaging, where it has been shown to be superior in some cases to the filtered

1an English translation of the original German paper is available at: http://jasonstockmann.
com/Jason_Stockmann/Welcome_files/kaczmarz_english_translation_1937.pdf
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backprojection method (80). In biomedical imaging the variability of the properties of

tissue is larger than what is expected in RF Tomography, therefore it is expected that the

algorithm can produce good results. In addition, the ART method does not rely on any

strong mathematical assumption, but can be applied in principle to any linear system of

equations. Considerations about its performance in terms of speed of convergence or other

possible computational advantages are not of immediate concern. However, it is important

that the algorithm is iterative, which allows to easily introduce physical bounds on the

solution returned and to also easily introduce a regularization parameter.

The ART method is based in principle on the pseudo-inverse (see section 2.2). The

fundamental difference is that the principle of pseudo-inverse is applied in a double-iterative

fashion. In the first, inner iteration, the rows of the matrix L are scanned one by one to

produce an image, starting from a guess solution. In the second, outer iteration, the image

is used as the starting point to repeat the inner iteration. The inner iteration is run as

many times as the number of rows, the outer iteration is stopped after a certain criterion

is met, so as to achieve a regularizing effect, controlled by the number of iterations.

The advantage of ART over pseudo-inverse is twofold. First and foremost, the possibility

to obtain a regularized solution. Second, and not less important, is the fact that the inner

iteration requires a computational effort that is much smaller than the one needed by the

pseudo-inverse, although in practice it realizes the same function.
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In detail, ART works as follows. The original pseudo-inverse formulation (see Equa-

tion 2.5) is changed so as to operate on one row of the matrix at a time:

L†,ART
i = LHi

(
LiLHi

)−1
(4.7)

= LHi
(
||Li||22

)−1
(4.8)

= LHi
||Li||22

, (4.9)

where i identifies the i-th row being scanned. Notice that the inverse operation in Equa-

tion 4.7 is not a matrix operation, hence it does not involve anymore a very large, complex-

valued matrix, but it is simply the reciprocal of a real positive scalar, resulting in a com-

putational advantage.

The row-wise inverse obtained in Equation 4.9 is then used in the outer iteration to

compute the solution to the inverse problem. Starting from a guess solution vold (usually

an empty vector), the algorithm computes:

vnew = vold + LHi
||Li||22

(Ei − Li · vold) (4.10)

To terminate the algorithm, the same procedure used for CG is adopted. At every

iteration, the residual r = ||ES−L ·v|| is computed. The evolution of the residual over time

is observed, and when the variation of the residual is less than 5% of the maximum variation

observed, the solution is considered sufficiently stable, and the algorithm is terminated.
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The result of this simple algorithm is not very good, as shown in Figure 17. In its

original formulation, which is so similar to the pseudo-inverse, ART does not tackle the ill-

conditioning. The reconstruction result is very similar to what is obtained in TSVD when

too many singular values are retained (compare Figure 17 with Figure 7). In addition,

convergence is very slow. After 30 iterations the residual still does not fall below the 5%

threshold, so the algorithm is manually stopped.

Two techniques can be used to solve this problem.
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Figure 17. Solution obtained using the basic ART method (a), and corresponding plots of
residual (b) and solution norm (c).
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4.4.1 Physical bounds and convergence

ART can be modified like CG to include physical bounds in the solution. The procedure

applied is the same, i.e. the solution computed at each iteration is forced to have positive

real and negative imaginary parts. However, unlike Conjugate Gradient, ART is not based

on the orthogonality of the residuals. In CG the next iteration is computed based on the

assumption that the next residual must be orthogonal to all the previous residuals. ART is

a simpler method: even though it uses the residual to compute the next solution, there is

no explicit assumption on the nature of these residuals.

The sole application of the physical bound has incredibly positive effects on the quality

of the solution. Figure 18 shows the result.
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Figure 18. Solution obtained using ART (a), and solution obtained using ART and
enforcing the physical bounds (b). c©2012 IEEE, figure (b) from (37)
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The reconstructed image is sharper, more detailed, noise-free, overall more actionable,

and is obtained in a shorter time. While the original ART algorithm after 30 iterations still

does not converge, after applying the physical bounds the solution is found in 7 steps.

Overall, this method required 0.36 seconds to converge (compared to 4.1 for TSVD and

0.04 for CG), making it still a very fast method. From a computational point of view ART

is limited by the fact that it nests two iterations: the inner iteration scans all the rows of

L as in Equation 4.9, while the outer iteration updates the solution based on the previous

solution (Equation 4.10). The inner iteration always runs for as many steps as the number

of rows in the matrix, i.e. the number of TX multiplied by the number of RX, in this case

220. The outer iteration is the one that is controlled and stopped upon request (convergence

or maximum number of iterations reached). Therefore ART is inherently slower than CG.

However, the reconstruction result is by far superior.

The second technique used to improve ART is not needed in all situations. In some

cases, often when imaging metallic targets, the solution returned is greatly disturbed by

noise.

Equation 4.10 consists of the summation of two terms: the first one is the solution

found at the previous iteration, and the second one is an update term which depends on

the residual and on the pseudo-inverse term. Instead of summing the two terms directly,
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the update term is pre-multiplied by a constant µ. As a result, Equation 4.10 is changed

as:

vnew = vold + µ
LHi
||Li||22

(Ei − Li · vold) (4.11)

The effect of µ is to operate as a regularizing parameter. Small values of µ return

smoother solutions (like small values of k do with TSVD), while larger values of µ provide

sharper images, but they also introduce noise (as large values of k do with TSVD). Also,

small values of µ could make the algorithm converge more slowly, since the solution would

be updated by very small amounts at each step. The effect of µ on the usual empty PVC

pipe image is shown in Figure 19.

When µ is too large, the solution becomes noisy. However, the solution is also sharper.

Therefore, µ should be chosen to be as large as possible before convergence is disrupted (as

is the case in Figure 19d).
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Figure 19. Reconstruction using ART and enforcing the physical bounds, with µ = 0.1
(a), µ = 0.5 (b), µ = 1.5 (c), and µ = 2 (d). Images are obtained after 8, 7, 7 and 4

iterations, respectively.
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4.5 Imaging results: detection of metallic and dielectric targets

A particular feature offered by RF Tomography is the ability to distinguish between

metallic and dielectric targets. This possibility is interesting because it can provide addi-

tional information, not limited to the shape and location of the target. In many settings, the

possibility to tell apart metals and non-metals could make the difference between succeeding

or failing in identifying buried targets of interest.

Since the contrast vector v is complex-valued, separating its real and imaginary com-

ponents allows to obtain independent images of conducting and insulating objects. This is

also enforced by the physical bounds applied to the solution in the iterative methods.

The test used as example has been carried out using 11 transmitters rotating around a

circle of radius equal to 38.4 cm and 20 receivers whose radius of rotation was 15.4 cm. Two

targets are present in the area under investigation. The first target is a copper cylinder, of

diameter 1.8 cm and 2.8 cm tall. The cylinder is hollow and its thickness is equal to 1 mm.

The second target is a plastic cylinder (PVC, εr ≈ 2.5 at 3 GHz), with diameter 7 cm and

height 4.3 cm. This cylinder is also hollow, with its side having a thickness of 5 mm. The

copper cylinder is located inside the PVC pipe, in a non-concentric position. The geometry

is shown in Figure 20.

The first attempt of reconstruction is made with TSVD and the result is presented in

Figure 21. The absolute part of the image is due for the most part to the copper cylinder,

which represents a stronger scatterer with respect to the PVC pipe. By separating real and

imaginary parts this becomes evident. The images are fairly noisy, and, since no physical
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Figure 20. Geometry for the test case.

bounds have been enforced, parts of Re(v) are negative, while parts of Im(v) are positive.

The image has been partitioned into 101×101 pixels, so that reconstruction is performed in

14.9 seconds. Inversion is performed only once, the real and imaginary parts are extracted

from the complex vector resulting from the inversion. The number of singular values to be

retained in the inversion is automatically determined by the location of the corner in the

L-curve.

The second reconstruction attempt is made with CG without the introduction of any

physical bound, and is shown in Figure 22. The quality of the reconstruction is very similar

to the one of TSVD, as expected. The advantage is in terms of computational burden, since

the inversion requires only 5 iterations to converge, taking 0.08 seconds (about 190 times

faster than TSVD).
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Figure 21. Reconstruction of a metallic and plastic objects using TSVD. Images are
obtained using 74 singular values. Figure (a) shows the absolute value of the contrast

vector and is normalized, (b) and (c) show the real and imaginary parts, respectively, and
have not been normalized.

The result of Figure 22 can be improved by applying physical bounds to the CG in-

version. The result is shown in Figure 23. The reconstruction improves visibly. The sole

application of the physical bounds improves the reconstruction of the real part in particular.

The shape of the PVC pipe appears now more round and defined, and the images are overall

more sharp, due to a reduction of the noise level. The time required to obtain these images

is 0.09 seconds, still corresponding to 5 iterations. The application of the physical bound

provides no computational burden, and the re-orthogonalization using the Gram-Schmidt

technique proves to be extremely quick.

Next, the performance of ART is analyzed. Figure 24 shows the reconstruction produced

by the Algebraic Reconstruction Technique without any modification. Quality is comparable

to the ones of Figure 21 and Figure 22. The image is obtained in 0.53 seconds, or 8

iterations. The image has been obtained with µ = 0.5, chosen empirically. The problems



58

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

Position [cm]

P
os

iti
on

 [c
m

]

CG, 5 iterations

 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

Position [cm]

P
os

iti
on

 [c
m

]

CG, 5 iterations

 

 

−8

−6

−4

−2

0

2

4

6

8

10

(b)

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

Position [cm]

P
os

iti
on

 [c
m

]

CG, 5 iterations

 

 

−25

−20

−15

−10

−5

0

5

(c)

Figure 22. Reconstruction of a metallic and plastic objects using Conjugate Gradient
without enforcing any physical bound.

in the reconstruction are the same as CG and TSVD: the images are noisy, both real and

imaginary parts show positive and negative values, and in general it is difficult to distinguish

the PVC pipe.

The best result is obtained when the physical bound is applied to ART, as shown in

Figure 25. The absolute value is still dominated by the copper cylinder, which represents a

strong scatterer. However, both real and imaginary parts of the contrast vector show very

little noise, and the real part depicts more clearly the PVC pipe. The images in Figure 25

have been obtained again with µ = 0.5; the application of the physical bounds makes the

algorithm converge after 8 iterations instead of 7, taking a total of 0.55 seconds.

Comparing Figure 25 against Figure 23 and Figure 21 it is obvious the big advantage of

ART over CG and TSVD. Even though ART is slower than CG, due to the nested iterations,

it is still almost 30 times faster than TSVD.
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Figure 23. Reconstruction of a metallic and plastic objects using Conjugate Gradient
modified with the introduction of the physical bounds and the reorthogonalization

algorithm. Figure (a) shows the absolute value of the contrast vector and is normalized,
(b) and (c) show the real and imaginary parts, respectively, and have not been normalized.

Overall, ART, with the addition of the physical bounds and the use of the regularizing

parameter µ proves to be a very good inversion algorithm that allows to overcome some of

the resolution limitations given by CG; it is therefore proposed as an alternative inversion

method.
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Figure 24. Reconstruction of a metallic and plastic objects using ART. Figure (a) shows
the absolute value of the contrast vector and is normalized, (b) and (c) show the real and

imaginary parts, respectively, and have not been normalized.
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Figure 25. Reconstruction of a metallic and plastic objects using ART modified with the
introduction of the physical bounds. Figure (a) shows the absolute value of the contrast
vector and is normalized, (b) and (c) show the real and imaginary parts, respectively, and

have not been normalized.



CHAPTER 5

A DYADIC CONTRAST FUNCTION FOR RF TOMOGRAPHY

This chapter introduces a dyadic contrast function in the RF Tomography forward

model by applying it to the scattering from thin elongated objects, and describes how there

exists a fundamental difference between the scattering originated by metallic versus non-

metallic targets. The dyadic contrast function thus introduced allows extracting information

previously unavailable without changing the way data are collected. Because of this, it can

theoretically be applied to data already available.

As explained in the introduction, RF Tomography generates images of the contrast

function, i.e. the difference between the dielectric permittivity constant of the background

medium and the one of the target. The space is partitioned in voxels (or pixels) and each

one is assigned a (complex) scalar numerical value. An image is obtained by mapping

these values to a color scale. The information returned is therefore scalar and the shape

of the target is then inferred by simple visual inspection of the resulting image. It would

be interesting to have the possibility of reconstructing the shape of an object in terms of

actual 3D vectors, pointing in space in a direction corresponding to the orientation of the

edges of the target. This would allow to obtain a “wire frame” model of the target, more

informative than a simple color plot. Another added benefit would be that this supplemental

information could augment the colored image particularly in the presence of clutter, or when

limits in the system resolution do not allow to get a good idea of the shape of the target.

61



62

This chapter discusses scattering from thin, elongated objects, and describes how there

exists a fundamental difference between the scattering originated by metallic versus non-

metallic targets. An analytic explanation of this phenomenon can be given using a modal

analysis. This finding motivates a change in the RF Tomography forward model so as to

include a dyadic (second-order tensor) contrast function. This new contrast function would

be able to represent preferred scattering directions and therefore orientation of objects.

Interestingly, a parallel can be drawn between this approach and Diffusion Tensor Imag-

ing (DTI), an imaging technique based on Magnetic Resonance, used to obtain 3D maps of

the structure of the brain of a subject (81; 82; 83).

5.1 De-polarization of the scattered field

Consider a canonical scattering problem, depicted in Figure 26.

A plane wave is impinging upon a cylinder of negligible radius (r � λ) and infinite

length. The cylinder is aligned with the z axis. The incident plane wave propagates along

the x axis and is linearly polarized in the zy plane, with an angle θ with respect to the

z axis. The problem can be decomposed as the linear superposition of two orthogonal

components: one corresponds to the part of the incident field parallel to the cylinder, the

other corresponds to its perpendicular counterpart. In practice the problem is decomposed

into a TMz and a TEz mode, which can be studied separately. In addition, the analysis

is further divided into the cases of Perfect Electric Conductor (PEC) and dielectric (non-

conductive) cylinder. Although this derivation is a classical EM procedure, it serves to
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Figure 26. Coordinate system and scattering problem representation.

provide a rigorous analytical explanation for the more extensive simulation results described

later on.

5.1.1 Modal analysis: thin PEC cylinder

When the cylinder is made of Perfect Electric Conductor, the analysis is based on a

classical Mode Matching technique which is reported here almost in its entirety, to better

understand its consequences (84; 85; 86).
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TM mode

The TM mode occurs when the incident field is oriented along the z axis, traveling in

the positive x direction with wave number k = 2π/λ. The incident field therefore is:

Ei = E0e
−jkxẑ. (5.1)

This can be expanded in cylindrical coordinates in order to facilitate the imposition of the

boundary conditions:

Ei = ẑE0

+∞∑
n=−∞

j−nJn(kρ)ejnφ, (5.2)

where Jn represents a Bessel function of the first kind of order n. This wave impinges upon

the cylinder and generates a scattered wave. The scattered wave is assumed of the same

polarization of the incident field and it travels outwards. Therefore1

Es = ẑE0

+∞∑
n=−∞

cnH
(2)
n (kρ). (5.3)

1The notation is important. Here the H with the superscript (2) indicates the Bessel function of
the second kind, H(2)

i (x) = Ji(x) + jYi(x) and should not be confused with the magnetic field H.
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The application of the boundary conditions on the surface of the cylinder allows to

determine the value of the coefficients cn. Since the object is made of PEC, the total

tangential electric field on its surface (of radius a) must be identically zero:

Et = Ei + Es = 0|ρ=a

⇒ ẑE0

+∞∑
n=−∞

[
j−nJn(ka)ejnφ + cnH

(2)
n (ka)

]
= 0, ∀φ, z. (5.4)

It immediately follows that:

cn = −j−nJn(ka)ejnφ

H
(2)
n (ka)

. (5.5)

In conclusion:

Es = ẑE0

+∞∑
n=−∞

−j−nJn(ka)ejnφ

H
(2)
n (ka)

H(2)
n (kρ). (5.6)

The current impressed on the surface of the cylinder by this wave can be computed by

finding the total magnetic field on the surface of the cylinder first:

Ht = − 1
jωµ0

∇×Es. (5.7)
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Since the total electric field only has components in the z direction, the total magnetic

field will have components in the ρ and φ directions only. However, only the tangential φ

component will contribute to the creation of the induced current density, since:

JTM = n̂×Ht (5.8)

= ρ̂× (ρ̂Ht
ρ + φ̂Ht

φ) (5.9)

= ρ̂× φ̂Ht
φ, ρ = a (5.10)

= ẑHt
φ, ρ = a. (5.11)

The resulting impressed current is parallel to both incident and scattered electric fields.

After some algebra:

JTM = ẑ 2E0
aπωµ0

+∞∑
n=−∞

j−n
ejnφ

H
(2)
n (ka)

. (5.12)

For a given frequency and radius of the cylinder, the magnitude of the current depends

solely on the specific position around the cylinder, i.e. φ. In addition, if the cylinder

is very small the dominant term of the summation is n equal to zero. The small radius

approximation leads to:

JTM ≈ ẑ 2E0

aπωµ0H
(2)
0 (ka)

. (5.13)

As a result Equation 5.13 has a constant value for a given radius and frequency.
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TE mode

The TE mode corresponds to the part of the incident field that is oriented along the y

direction, traveling in the positive x direction with wave number k = 2π/λ. The derivation

is very similar to the TM case, but with converse electric and magnetic fields. Briefly, the

incident magnetic field is:

Hi = H0e
−jkxẑ (5.14)

= ẑH0

+∞∑
n=−∞

j−nJn(kρ)ejnφ, (5.15)

which causes a scattered magnetic field:

Hs = ẑH0

+∞∑
n=−∞

cnH
(2)
n (kρ). (5.16)

Application of the boundary conditions to the tangential electric field (thus only Esφ com-

ponent, with Es = 1
jωε∇×Hs) leads to:

cn = −j−n J ′n(ka)
H
′(2)
n (ka)

ejnφ, (5.17)

with

J ′n(ka) = ∂Jn(kρ)
∂kρ

, ρ = a (5.18)

H ′(2)
n (ka) = ∂H

(2)
n (kρ)
∂kρ

, ρ = a. (5.19)
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Therefore the total magnetic field on the surface of the cylinder will be:

Ht|ρ=a = Hi + Hs (5.20)

= −ẑj 2H0
πka

+∞∑
n=−∞

j−n
1

H
(2)
n (ka)

ejnφ. (5.21)

Finally, the impressed current on the surface of the cylinder is:

JTE = n̂×Ht (5.22)

= ρ̂× ẑHt
z (5.23)

= −φ̂Ht
z, ρ = a (5.24)

= φ̂
2H0
πka

+∞∑
n=−∞

j−n
1

H
(2)
n (ka)

ejnφ. (5.25)

Unlike the TM case, Equation 5.25 has non-negligible terms when n = −1, 0,+1. As a

result, even in the case of small radius, the impressed current will depend on the position

around the cylinder, i.e. φ. In any case, Equation 5.25 can be rewritten as

JTE ≈ φ̂
2H0
πka

+1∑
n=−1

j−n
1

H
(2)
n (ka)

ejnφ , (5.26)

which does not involve an infinite summation and is easier to compute.

Comparison

A direct comparison of Equation 5.13 and Equation 5.26 allows understanding that there

is a significant difference between the two. From Figure 27 it is clear that the magnitude
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Figure 27. Comparison of the magnitude of the impressed currents for the TM and TE
cases.

of the impressed current in the TM case is larger than the magnitude of the impressed

current in the TE case. Therefore the TM case is dominant. In turn, this means that when

the plane wave impinges on the thin cylinder at an angle with respect to the z axis, the

impressed current will be mostly aligned with the thin cylinder itself. As a consequence, the

scattered field will also be mostly aligned with the thin cylinder and create a depolarization

effect.
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5.1.2 Modal analysis: thin dielectric cylinder

The same procedure used for a PEC cylinder can be applied to a dielectric cylinder.

Also this case is a classical EM problem, which has been studied in the past (87). The

derivation follows the same principles of the previous case, but the result is much simpler.

For the TM mode the total electric field inside the cylinder is oriented in the z direction

and is equal to1

Et = ẑE0

+∞∑
n=−∞

anj
−nJn(kdρ)ejnφ, ρ ≤ a, (5.27)

where the coefficients an are equal to:

an = j−n
Jn(k0a)H ′(2)

n (k0a)− J ′n(k0a)H(2)
n (k0a)

Jn(kda)H ′(2)
n (k0a)−

√
εr/µrJ ′n(kda)H(2)

n (k0a)
. (5.28)

For the TE mode the total magnetic field is equal to

Ht = ẑH0

+∞∑
n=−∞

bnj
−nJn(kdρ)ejnφ, ρ ≤ a, (5.29)

where the coefficients bn are equal to:

bn = j−n
Jn(k0a)H ′(2)

n (k0a)− J ′n(k0a)H(2)
n (k0a)

Jn(kda)H ′(2)
n (k0a)−

√
µr/εrJ ′n(kda)H(2)

n (k0a)
. (5.30)

1Everywhere the subscript 0 indicates free space and the subscript d indicates the dielectric inside
the cylinder
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Comparing Equation 5.27 with Equation 5.29 and Equation 5.28 with Equation 5.30

it can be seen that they are remarkably similar. For a weak scatterer εr is small, so the

coefficients an and bn will be almost identical. Also, only the coefficients with n = −1, 0, 1

will have a significant magnitude for cylinders of small radius. A plot of the coefficients an

and bn is shown in Figure 28
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Figure 28. Magnitude of coefficients an and bn of Equation 5.28 and Equation 5.30 as a
function of the mode index n.
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As a result, the impressed currents for the TM and TE cases will be very similar in

magnitude, unlike what happened for a PEC cylinder. In the case of oblique incidence,

the overall impressed current will be a combination of the TE and TM case, but since

their magnitude is similar, the impressed current will have almost the same direction of the

incident field. The weaker the scatterer, the more correct is this conclusion.

Therefore, it exists a fundamental difference between scattering from PEC and dielectric

objects, which affects greatly the scattered field, both in magnitude and, this is the main

point, in its orientation in space. These simple analytical results can be generalized to

encompass a much wider variety of cases, using numerical simulations.

5.1.3 Method of Moments simulation

A Method of Moments simulation allows to analyze cases that are not as simple as the

ones for which an analytic description could be derived.

First, consider a ẑ-polarized plane wave impinging upon a thin cylinder. The cylinder

is located in the zy-plane and forms a 45 degrees angle with the ẑ axis. The radius of

the cylinder is equal to λ/50 and its length is equal to λ. The distribution of the currents

impressed on the surface of the cylinder, for both dielectric and PEC case, is computed

with a Method of Moments simulation.

Figure 29 shows the distribution of the currents on a PEC cylinder, while Figure 30

shows the distribution of the impressed currents on a dielectric cylinder with εr = 5. For

the PEC case the currents are always mostly aligned with the thin cylinder, while for the

dielectric case the currents are always mostly aligned with the incident field.
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(a) (b) (c) (d) (e)

Figure 29. Impressed currents (black arrows) on a PEC cylinder of radius λ/50 and length
λ/2. The incident field is impinging at a 45◦ angle with respect to the z axis. The figure
shows the instantaneous distribution at phase ωt equal to (a) 0◦, (b) 45◦, (c) 90◦, (d) 135◦

and (e) 180◦.

(a) (b) (c) (d) (e)

Figure 30. Impressed currents (black arrows) on a dielectric cylinder (εr = 5) of radius
λ/50 and length λ/2. The incident field is impinging at a 45◦ angle with respect to the z
axis. The figure shows the instantaneous distribution at phase ωt equal to (a) 0◦, (b) 45◦,

(c) 90◦, (d) 135◦ and (e) 180◦.
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A similar effect can be observed when plotting the far field radiation pattern of the

scattered-only part of the electric field. This is shown in Figure 31. For a metallic cylinder

the scattering pattern is tilted toward the main axis of the cylinder; instead, for the dielectric

object the pattern is tilted toward the direction of the incident field.

(a) (b)

Figure 31. Far field radiation pattern of the scattered only part of the electric field, for a
metallic (a) and dielectric (b) cylinders placed at a 45◦ angle with respect to the

polarization of an incident plane wave.

The same effect can be observed in the near field distribution of the scattered only part

of the field, as shown in Figure 32.

Finally, it can be observed that the de-polarization effect occurs also for a generic shape

composed of thin cylinders. Figure 34a shows the instantaneous currents impressed on the
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(a) (b)

Figure 32. Near field radiation pattern of scattered only part of the electric field, for a
metallic (a) and dielectric (b) cylinders placed at a 45◦ angle with respect to the

polarization of an incident plane wave, at a distance equal to one wavelength from the
center of the cylinder.

structure made of PEC at time instants ωt = 0◦, while Figure 34b shows the currents at

ωt = 90◦. A similar result is obtained at all other time instants. The currents are aligned

with the cylinders, regardless of their orientation with respect to the incident field.

Furthermore, simulation results seem to suggest that the thin elements composing a

complex structure do not interfere very much with each other, even when in close proximity.

The current distributions on each thin cylinder is basically independent from the distribution

on its neighbor. In the structure, the elements on top are in contact, thus currents are free
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to flow: this seems to have an effect on the current distribution only in a region extremely

close to the point of contact itself.

Instead, Figure 35a shows the instantaneous currents impressed on the structure made of

a dielectric material (εr = 5) at time instants ωt = 45◦, while Figure 35b shows the currents

at ωt = 135◦. In this case the currents are aligned with the incident field, regardless of the

orientation of the pieces of the structure with respect to the incident field.

In conclusion, it is observed that there is a fundamental difference in the scattering gen-

erated by complex structures, depending on the material of which they are made of. This

difference could be properly exploited in order to gain additional information on the geo-

metrical structure of metallic objects. The information retrieved would then be integrated

with the classic images returned by RF Tomography, and result in an increased situational

awareness.
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Figure 33. Geometrical shape composed of thin cylinders. The incident field is indicated
by the red arrow and is impinging upon the structure at an angle of 45◦ with respect to

the vertical z axis.
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(a) (b)

Figure 34. Instantaneous impressed currents on a geometrical structure made of PEC, at
ωt = 0◦ (a) and ωt = 90◦ (b).
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(a) (b)

Figure 35. Instantaneous impressed currents on a geometrical structure made of dielectric
material (εr = 5), at ωt = 45◦ (a) and ωt = 135◦ (b).
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5.2 Forward model

5.2.1 Derivation of a vectorial forward model with a dyadic contrast function

Consider the basic vectorial RF Tomography formulation, in a 3D homogeneous space:

Es
(
rt, rr

)
= k2

0

∫∫∫
D

ar ·G
(
rr, r′

)
v
(
r′
)
G
(
r′, rt

)
· atdr′, (5.31)

where:

• rt and rrn indicate the location of the transmitting and receiving antenna;

• at and ar indicate the spatial orientation of the transmitting and receiving antennas,

which are assumed to be small dipoles1;

• G is the dyadic Green’s function for the homogeneous space;

• v (r′) is the scalar contrast function being reconstructed;

• r′ is the variable of integration which spans the domain of investigation D.

The objective is to replace the scalar contrast function v (r′) with a vector quantity so

as to be able to represent the de-polarization observed in thin, elongated metallic objects.

1In order to simplify the notation, the transpose operator has been omitted. It is implied that
at is a column-vector and that ar is a row vector instead.
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In order to be able to perform matrix-vector multiplications correctly, the contrast function

must be dyadic as well. Equation 5.31 therefore becomes:

Es
(
rt, rr

)
= k2

0

∫∫∫
D

ar ·G
(
rr, r′

)
·V

(
r′
)
·G

(
r′, rt

)
· atdr′, (5.32)

where

V(r′) =


Vxx Vxy Vxz

Vyx Vyy Vyz

Vzx Vzy Vzz


. (5.33)

The elements of Equation 5.32 can be further analyzed individually to understand their

physical meaning. This is best done proceeding right to left. The term G
(
r′, rt

)
· at has

the meaning of electric field incident in the domain D:

Ei = G · at =


Ei
x

Ei
y

Ei
z


=


Gxxa

t
x +Gxya

t
y +Gxza

t
z

Gyxa
t
x +Gyya

t
y +Gyza

t
z

Gzxa
t
x +Gzya

t
y +Gzza

t
z


. (5.34)
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The incident field multiplies the dyadic contrast function, and an equivalent impressed

surface current term is obtained.

J = V ·Ei =


Jx

Jy

Jz


=


VxxE

i
x + VxyE

i
y + VxzE

i
z

VyxE
i
x + VyyE

i
y + VyzE

i
z

VzxE
i
x + VzyE

i
y + VzzE

i
z


. (5.35)

It is evident that while a scalar contrast function will produce an induced current J which

is always parallel to Ei, a dyadic contrast function can correctly represent de-polarization

effects, thanks to its off-diagonal terms. This equivalent current produces a scattered field

through the Green’s function, which is projected onto the receiving antenna orientation.

To simplify the notation the auxiliary row vector p can be introduced, which groups the

terms related to the receiver side:

p = ar ·G =
[
px, py, pz

]
=


arxGxx + aryGyx + arzGzx

arxGxy + aryGyy + arzGzy

arxGxz + aryGyz + arzGzz



T

. (5.36)
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The scattered field due to the contribution of the infinitesimal scatterer at location r′ can

be called Es(r′), it is a scalar quantity which depends on both illumination and observation,

and can be written as:

Es(r′) = p · J = pxJx + pyJy + pzJz

= px
(
VxxE

i
x + VxyE

i
y + VxzE

i
z

)
+ py

(
VyxE

i
x + VyyE

i
y + VyzE

i
z

)
+ pz

(
VzxE

i
x + VzyE

i
y + VzzE

i
z

)
. (5.37)

All the known terms in Equation 5.37, which correspond to a given configuration of

transmitting and receiving antennas, can now be grouped into a linear operator l, namely:

l
(
rt,at, rr,ar

)
=
[
lxx, lxy, lxz, lyx, lyy, lyz, lzx, lzy, lzz

]

=
[
pxE

i
x, pxE

i
y, pxE

i
z, pyE

i
x, pyE

i
y, pyE

i
z, pzE

i
x, pzE

i
y, pzE

i
z

]
.

(5.38)

Notice that in Equation 5.38 the order in which the terms are arranged into a row is irrel-

evant, as long as it matches the order used to represent the contrast function, as described

in the next section.

Since normally more that one antenna and/or polarization is used, multiple row vectors

like the one described in Equation 5.38 can be stacked to form the full matrix L. The number
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of transmitting and receiving antennas is arbitrary, indicated by M and N respectively.

Theoretically, also the number of polarizations is arbitrary. However, in practice it often

makes sense to consider only three orthogonal polarizations for each antenna, for a total

number of measurements equal to M ×N × 9.

L =


l
(
rt1,at1, rr1,ar1

)
...

l
(
rtM ,at3, rrN ,ar3

)


. (5.39)

5.2.2 Building the dyadic contrast function

Now, it arises the need to fill out the elements of the matrix V (Equation 5.33). This

matrix can be written as the sum of two terms. The need to use two terms originates from

the physics of the problem. If there are no de-polarization effects, V should show elements

different from zero only on its main diagonal. Instead, when de-polarization occurs also

off-diagonal elements become different from zero. Ideally, if de-polarization were perfect

V could be represented as a linear dyad, i.e. the product of two vectors forming a 3-by-3

matrix of rank 1. However, in reality de-polarization is not perfect and a complete dyad

(i.e. full-rank matrix) is expected from the inversion.
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As a result, it is expedient to represent V as the sum of two terms. The first term is a

diagonal matrix representing the effects of the target when de-polarization effects are not

strong. The second term is obtained as a dyadic product. In conclusion:

V(r′) =


Vxx Vxy Vxz

Vyx Vyy Vyz

Vzx Vzy Vzz


= εδI +


vx

vy

vz


[
vx vy vz

]
. (5.40)

The terms of the dyad V need to be rearranged to match the same order used in

Equation 5.38. To avoid confusion, the rearranged version of V can be called t.

t(r′) =
[
vxx, vxy, vxz, vyx, vyy, vyz, vzx, vzy, vzz

]T

. (5.41)

The domain of investigation D is then discretized into pixels and one vector t is created

for each pixel. All these vectors are then stacked into a larger column vector T. If the

number of pixels is equal to P the vector T will have size 9P × 1 and will be given by:

T =


t (r′1)

...

t (r′P )


. (5.42)
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It is then finally possible to write the forward model equation as a matrix-vector mul-

tiplication.

Es = L ·T. (5.43)

Equation 5.43 is substantially the same as Equation 2.4, with the only difference that

the number of unknown pixels is multiplied by 9.

5.3 Inversion

The forward model obtained in Equation 5.43 must be inverted to obtain the dyadic

contrast function. The simplest way to do so is to apply any regularized inversion rou-

tine, either direct (e.g. Truncated Singular Value Decomposition) or iterative (Conjugate

Gradient, Algebraic Reconstruction Technique) to Equation 5.43.

After retrieving the vector T, its elements need to be rearranged so as to create 9

reconstructed images versions, each one corresponding to a different orientation, i.e. xx, xy

and so forth. The result can be visualized as a 3-by-3 collection of images.

The following examples show this method at work. In all examples images are ob-

tained using the Conjugate Gradient method described in Chapter 4, without enforcing any

physical bound.

5.3.1 Example 1

In the first example a thin, elongated cylinder is placed at a 45-degree angle in the xz

plane, as shown in Figure 36. The object crosses the xy plane at x = 5 cm and y = 5 cm.
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Figure 36. Geometry for Example 1. The imaging target is a thin PEC cylinder which
intersects the xy plane at a 45◦ angle.

Antennas are placed in the xy plane at z = 0. In this example 21 transmitters and 40

receivers are employed, all of which transmit and receive in all 3 polarizations (x̂, ŷ and ẑ).

The antennas are placed along a radius of 44.5 cm for the transmitters and 23.1 cm for the

receivers. The frequency of operation is 3.16 GHz (λ ≈ 9.5 cm). Overall, 21×40×9 = 7560

measurements are collected.

The area under investigation is a square centered in the origin, of side equal to 20 cm,

partitioned into pixels of size λ/10. This corresponds to a total of 21 × 21 × 9 = 3969

unknowns. The problem is therefore over-determined.

Two cases are simulated. In the first one the object is made of Perfect Electric Conduc-

tor, in the second it is made of a dielectric material with εr = 3.
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PEC object

The result of the inversion for the PEC object is shown in Figure 37. The image

shows that only xx, xz, zx and zz components of the image produce pixels significantly

different from zero (the actual value of the pixel is of no importance because of the Born

approximation). This means that the object is placed in the xz plane.

Figure 37. Result of the inversion for a PEC object. The figure shows shows the 9 versions
of the image, one per spatial component.
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The image also shows that the zz response is stronger than the others. This is because

of the pattern of the antennas. Since the small dipole are placed in the xy plane, only when

transmitter and receiver are oriented in the ẑ direction there are no nulls pointing towards

the object. The other polarizations will be affected by nulls and therefore will produce a

weaker response.

Dielectric object

The imaging result for the dielectric object is shown in Figure 38. The image shows a

clear response only in the zz component, with weaker responses in the xx and yy compo-

nents. This is because, as expected, the dielectric object does not cause a strong depolariza-

tion of the incident field. Only the diagonal terms should be different than zero. However,

because of the way the samples are taken, the zz case is predominant and tends to mask

the result of the other cases.
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Figure 38. Result of the inversion for a dielectric object. The figure shows shows the 9
versions of the image, one per spatial component.
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5.3.2 Example 2

In the second example a thin, elongated cylinder is placed parallel to the x̂ axis, lying in

the xy plane, as shown in Figure 39. The object stretches in the left semi-plane, at y = 5cm.

Figure 39. Geometry for Example 2.

This case is more difficult to reconstruct than the previous, due to the orientation of

the object, which lies in the plane that gave a weak response in the previous example, due

to the pattern of the antennas.

Two cases are simulated. In the first one the object is made of Perfect Electric Conduc-

tor, in the second it is made of a dielectric material with εr = 3. The simulation conditions

are the same as before and so is the domain under investigation.
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PEC object

The result of the inversion for the PEC object is shown in Figure 40. The image shows

that, as expected, only the top-left terms produce an observable response. The xx response

is the strongest, although affected by visible artifacts. The artifacts are due to the small size

of the object, which is placed in the same plane of measurement, thus offering an incomplete

view from the antennas. In addition, the pattern effect is expected to be stronger in this

case, because the zz response is almost null.

Dielectric object

The imaging result for the dielectric object is shown in Fig. Figure 41. The dielectric

object shows a clear response only in the zz component, with weaker responses in the xx and

yy components. The analysis in this case is the same as before. As expected, the dielectric

object does not cause a strong depolarization of the incident field. Only the diagonal terms

should be different than zero. However, because of the way the samples are taken, the zz

case is predominant and tends to mask the result of the other cases.

These results show how a change in the way the contrast function is defined can bring

additional information regarding the spatial orientation of the target. However, there is

still an interpretation step that must be performed by a user in order to fully understand

the results. In the next section it is shown how the images obtained in these examples can

be further processed to gain a more direct visualization of the orientation of the objects.
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Figure 40. Result of the inversion for a PEC object.
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Figure 41. Result of the inversion for a dielectric object.
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5.4 Eigenvalues-eigenvectors analysis

The goal of this analysis is to provide a different representation of the results, to comple-

ment the set of 9 images generated in the previous examples. This can be done by making

a change in the data representation.

Instead of building a set of 3-by-3 images, each one made of P pixels and representing a

given orientation in space, P matrices are constructed, each one made up of 3-by-3 elements.

The first matrix collects the xx, xy, xz, yx, yy, yz, zx, zy and zz elements of the first pixel in

the domain under investigation. The second matrix collects again the xx, xy, etc. elements

of the second pixel in the domain under investigation, and so forth until P matrices are

obtained.

The eigenvalues and eigenvectors associated with each of the P matrices are found by

solving the problem:

V · u = λu, (5.44)

where u is an auxiliary vector. The vectors u satisfying Equation 5.44 are called eigenvectors

and their corresponding values of λ are called eigenvalues. For a 3-by-3 matrix there will

be at most 3 eigenvalues and 3 eigenvectors.

If de-polarization is strong, because of the way the matrix V was built, there will be one

large eigenvalue (λ1) and two smaller eigenvalues (λ2 and λ3). Therefore, the eigenvector u1

associated with λ1 will give v, i.e. the orientation of the pixel in space (see Equation 5.40);
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λ1 will give a measure of the magnitude of the contrast. The other eigenvalues do not

provide useful information so they are discarded.

The eigenvalue decomposition can be used to build a quiver plot of the contrast function.

For each pixel the eigen-decomposition is performed. Then, only the eigenvalue with largest

magnitude is kept, along with its corresponding eigenvector. The auxiliary vector d is built:

d = λ1u1. (5.45)

The collection of vectors d (one per pixel), can be plot as arrows pointing in a 3D

space. To make the visualization easier, the quiver plot can be superimposed to the image

representing the sum of all 9 components, as used in the previous section. This allows to

generate images which are extremely easy to interpret, as can be shown by looking at the

result for the same examples showed before.

5.4.1 Single target: example 1

PEC object

The same result obtained in Figure 37 can be processed with the eigen-decomposition

just described. The result of this analysis is shown in Figure 42.

The quiver plot provides a very insightful description of the object. The location of the

object is indicated by the magnitude of the arrows, which indicate by their direction how

the target is oriented in the 3D space.
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Dielectric object

For the dielectric object the result of the eigen-decomposition is shown in Figure 43.

In this case the quiver plot indicates that the location of the object is the same, but that

the orientation is mostly towards the ẑ direction. This is again an effect of the different

direction of the currents impressed on the target.
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Figure 42. Quiver plot obtained with eigendecomposition for the PEC target. The gray
image is the absolute value of the sum of all components of the image. Two views are

provided.
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Figure 43. Quiver plot obtained with eigendecomposition for the dielectric target. The
gray image is the absolute value of the sum of all components of the image. Two views are

provided.
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5.4.2 Single target: example 2

PEC object

The results for the second example, in the case of PEC, is shown in Figure 44.

For the PEC target the quiver plot indicates that the object is oriented along the x̂

direction. Artifacts are present, and their orientation is nonetheless pointing in the same

direction. Because of the artifacts it is difficult to estimate the actual position of the target.

This problem cannot be solved unless the spatial sampling is changed.

Dielectric object

The dielectric target provides a more difficult interpretation, as shown in Figure 45.

Due to the absence of the depolarization effects, the pixels significantly different from zero

provide different clues to the orientation of the object. The strongest pixels are oriented

along x̂, but the ringing artifacts point to all directions in the xy plane.
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Figure 44. Quiver plot obtained with eigendecomposition for the PEC target. The gray
image is the absolute value of the sum of all components of the image.
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Figure 45. Quiver plot obtained with eigendecomposition for the dielectric target. The
gray image is the absolute value of the sum of all components of the image. Two views are

provided.
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5.4.3 Multiple targets

This last example shows reconstruction results when multiple objects are present in the

domain of investigation. The geometry under consideration is depicted in Figure 46.

Figure 46. Geometry for testing of the dyadic contrast function. Three metallic thin
cylinders are present in the scene, with three different spatial orientations.

Three objects are present in the scene. All cylinders are made of PEC and have radius

equal to 0.1 cm and length equal to 10 cm. The first cylinder intersects the z = 0 plane

at coordinates x = y = 5 cm and is oriented at an angle toward the positive y axis, i.e. in

a standard spherical coordinates system it is oriented toward θ = 45◦ and φ = 90◦. The

second cylinder intersects the z = 0 plane at coordinates x = y = 0 cm and is oriented
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toward the positive z axis, i.e. in a standard spherical coordinates system it is oriented

toward θ = 0◦ and φ = 0◦. The third cylinder intersects the z = 0 plane at coordinates

x = y = −5 cm and is oriented at an angle toward the negative y axis, i.e. in a standard

spherical coordinates system it is oriented toward θ = 45◦ and φ = −90◦.

Figure 47. Absolute value of components of dyadic contrast function.
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The result of the inversion using the dyadic contrast function is shown in the following

figures. Figure 47 shows the absolute value of the 9 components of the dyadic contrast.

The strongest response is given by the zz component, for the same reasons explained for

the other examples. In the zz image, the object in the center clearly stands out, while ti

does not in any other image.

The other significant responses are given by yz, zy and yy, with the latter being weaker

again because of the advantage that the antennas orientation give to the z components.

From the reconstruction of the absolute value image it is evident that the objects in the

corner positions are oriented in the yz or zy direction, but it is impossible to say which one

of the two. The phase plot shown in Figure 48 only partially helps clearing the doubt.

Figure 48 is of difficult interpretation because the phase is shown for all pixels, including

the ones whose magnitude is small, so non-interesting. To make the plot easier to read it is

possible to plot the phase scaled by the magnitude, i.e.

Ω = |V| · V (5.46)

The plot of Ω is shown in Figure 49.

Looking at the yz and zy components it can be observed that the phase flips sign for

the two objects. In the yz image it is positive for the bottom-left object and negative for

the top-right object. For the zy image the situation is the same. Without some sort of prior

knowledge, it is hard to understand how the two objects are oriented into space.
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Figure 48. Phase of components of dyadic contrast function.

The quiver plot obtained with the eigen-decomposition clears the dilemma. As shown

in Figure 50 the eigenvectors multiplied by their corresponding eigenvalues, correctly point

in the direction toward which the object is oriented.

In conclusion, the formulation described in this chapter allows to correctly reconstruct

thin metallic objects oriented in different directions in space. A dyadic contrast function is
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Figure 49. Phase of components of dyadic contrast function scaled by the relative
magnitude at each pixel. The plot highlights the phase information only where the

magnitude is sufficiently big to represent an actual object instead of noise.

developed and introduced into the classical RF Tomography forward model. Usual inversion

routines can be employed to reconstruct the dyadic contrast, thanks to a data organiza-

tion which makes the problem larger but does not change its structure (linear system of

equations). The result of the inversion in the form of 2D color plots is augmented with a
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Figure 50. Quiver plots, highlighting the different orientation of the objects being
reconstructed.

3D visualization based on an eigen-decomposition, which allows to give a straightforward

representation of the orientation of the objects in space, providing overall more actionable

results.



CHAPTER 6

QUADRATIC FORWARD MODEL

A quadratic forward model is developed to remove some of the limitations associated

with the Born approximation, which was initially introduced to linearize and solve the

volume integral equation for the scattered field.

Although this approximation is used extensively in the remote sensing literature and,

under certain conditions, it is indeed a valid approximation, there are cases where the Born

approximation does not work well. When more than one target is present in the volume

under investigation, multiple scattering phenomenon can indeed generate artifacts. Also,

when the target is not a weak scatterer, quantitative reconstruction is impossible. This

is also why in the study of iterative algorithms as inversion methods alternative to TSVD

presented in 4, the physical bounds have been introduced only on the sign of the real

and imaginary parts of the contrast vector, and images are always normalized: the Born

approximation does not make it possible to achieve good quantitative reconstruction.

In addition, it can be shown that the linear operator L, developed under the Born ap-

proximation, acts as a filter on the spatial harmonics of the reconstructed contrast function.

As a result, sharp edges cannot be normally imaged correctly. In fact, the Born approxi-

mation is one of the biggest obstacles in increasing the resolution of an RFT system.

In the literature, a number of methods have been developed to overcome these lim-

itations. These algorithms are employed particularly in applications where quantitative

109
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reconstruction is necessary in order to consider imaging successful, such as medical imag-

ing. The two most popular methods are the Born Iterative and Distorted Born methods

(88; 89).

The Born Iterative method consists in a numerical algorithm which involves the solution

of multiple inverse and forward problems. First, the Born approximation is used to obtain

an estimation of the contrast function, solving an inverse problem; this estimation is then

used to calculate the scattered electric field that such a contrast function would cause1,

by solving a forward problem, which, incidentally, is usually much more computationally

demanding than the inverse one. The field estimated in this method is compared to the

one actually measured: if the difference between the two is too large (according to some

user-imposed rule) it is used to estimate a new contrast function, and so on.

Although numerically heavy, the Born Iterative method has gained wide popularity, due

to its straightforward structure and to the good quantitative results that can be obtained

using it (88).

The Distorted Born (or Distorted Born Iterative) method is a further advance on the

Born Iterative method (89). In addition to the iterative procedure, at every step the Green’s

function is updated. This allows for faster convergence, which is beneficial because it

reduces, as a side effect, the number of times the forward problem has to be solved, hence,

it reduces the computational load.

1Since these are ill-posed problems, the solution to the inverse problem is never the one that would
explain exactly the starting data from which it was obtained, but it is always an approximation.
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Like every iterative algorithm, Born and Distorted Born Iterative methods could fail

to converge to the right solution, depending on their starting point. Therefore, a different

approach can be considered.

This chapter deals with the development of a forward model which overcomes some lim-

itations imposed by the Born approximation. A few papers (90; 91; 92) provide motivation

for this work. All of them are based on the development of an analytical solution, based

on a quadratic forward model, which promises to overcome the limitations given by the

Born approximation, while at the same time avoiding the computational burden given by

the Born and Distorted Born Iterative methods.

In order to better understand the origin of this idea, in this chapter the RF Tomography

forward model is derived again, to highlight where and how the Born approximation comes

into play, and how it can be replaced with a quadratic formulation.

In addition, in order to limit the size of the problem and make the inversion more

treatable from a computational point of view, the inversion is recast into an optimization

problem involving contrast functions which can be represented with a limited number of

spatial harmonics. A detailed description of this method is provided.

In the end, simulation results are present to show advantages and limitations of the

quadratic model with respect to the Born approximation.

6.1 Forward model derivation

To understand how to develop a quadratic model, it is convenient to start from the

basic Volume Integral Equation around which RF Tomography is based (47). This equation
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expresses the scattered field as an integral equation involving the total electric field, the

contrast function, and the Green’s function appropriate to the environment where sensing

is being performed. In order to simplify this derivation as well as the following ones, the

model is derived in 2D space, where the objects are assumed to extend to infinity in the z

direction. Also, the TX antennas are assumed to be infinite current lines. As a result:

Es(rr) = k2
0

∫∫∫
D

χ(r′)Et(r′)ge(r′, rr)dr′, (6.1)

where the contrast function is indicated with the variable χ, in order to highlight the

difference between the scalar contrast function in a 3D space (standard RF Tomography

formulation) and the dyadic contrast developed in Chapter 5. Also, the scalar Green’s

function is indicated with ge, where the symbol e indicates external. The need for this will

be explained in the following.

Equation 6.1 is exact, unlike Equation 2.2 which is an approximation obtained applying

the Born approximation. The reason for the introduction of the Born approximation is

that the total field inside Equation 6.1 includes also the scattered field, making the problem

non-linear.

In Equation 6.1 the term Et(r′) can be expanded using another Volume Integral Equa-

tion inside the same domain of investigation, as

Et(r′) = Ei(r′) + k2
0

∫∫∫
D

χ(r′′)Et(r′′)gi(r′, r′′)dr′′, (6.2)
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where this time the symbol gi indicates internal Green’s function and the auxiliary variable

r′′ is introduced.

The difference between external and internal Green’s functions can be now explained

with the help of Figure 51.

Figure 51. Pictorial representation of the scattering phenomenon.

The transmitter generates the incident field, which travels to the domainD and impinges

upon the target(s). The total field is the sum of the incident one plus all the contributions

due to interactions inside the domain of investigation. All these interactions (which are non-

linear) originate the impressed currents, which in turn will give rise to the scattered field.

Therefore, the scattering phenomenon can be divided in two stages. First, the incident field

generates the total field inside the domain D; this is represented with the internal Green’s
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function gi. Then, the domain can be seen as a “black box”: assuming that the total field

inside D was somehow generated, the scattered field at the location of the receiving antenna

is its consequence, and it is explained with the external Green’s function ge.

If the domain under investigation is partitioned into many pixels, gi explains the pixel-

to-pixel interactions, while ge explains the pixel-to-RX interactions.

The Born approximation consists in assuming that the second term of Equation 6.2 is

so small compared to the incident field that it can be neglected. Therefore, in Equation 6.1

the total field is replaced with the incident field and a linear equation is obtained.

A formulation equivalent and alternative to the one of Equation 6.1 and Equation 6.2

is the one using an operator notation to replace the integrals.

In Equation 6.1 the term χ(r′)Et(r′) represents an equivalent impressed current, there-

fore the volume integral equation is an operator that receives as input an equivalent current,

and returns an electric field, by applying the appropriate Green’s function. This can be

written as:

Es(rr) = Ae
[
χ(r′)Et(r′)

]
. (6.3)

Similarly, Equation 6.2 can be rewritten using an operator notation as:

Et(r′) = Ei(r′) + Ai
[
χ(r′′)Et(r′′)

]
. (6.4)
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The domain of investigation is spanned by the vectors r′ and r′′. Since the domain does

not change, r′ and r′′ are pointing in substance to the same pixels. When organizing the

data on a computer, it is therefore convenient to organize the pixels pointed by r′ and r′′ in

the same order, so that in the end Et(r′) = Et(r′′). In short, assuming that the pixels are

organized in the same way, the position vectors r′ and r′′ can be dropped and it is possible

to write simply

Es = Ae(χEt) (6.5)

and

Et = Ei + Ai(χEt). (6.6)

Now Equation 6.5 and Equation 6.6 can be combined into a single non-linear equation.

Performing the usual division of the domainD into a finite number of pixels, and introducing

a matrix-vector notation as in (8), it is possible to write:

Et = Ei + Ai(χEt)

Et −Ai(χEt) = Ei

(I −Aiχ)Et = Ei

Et = (I −Aiχ)−1Ei, (6.7)
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Then, substituting Equation 6.7 into Equation 6.5:

Es(rr) = Ae
[
χ(I −Aiχ)−1Ei

]
, (6.8)

which is non-linear in χ.

The important term in Equation 6.8 is the one involving the inverse operation. It

is possible to rewrite this term as the result of the summation of a geometrical series of

argument Aiχ. Introducing the auxiliary variable p, the sum of a geometrical series is

written as:

(1− p)−1 = 1
1− p = 1 + p+ p2 + . . . , ‖p‖ < 1. (6.9)

Similarly:

(1−Aiχ)−1 = 1 + Aiχ+ (Aiχ)2 + . . . , ‖Aiχ‖ < 1. (6.10)

Therefore an alternative way to explain the Born approximation is obtained. In Equa-

tion 6.10 the Born approximation is obtained by keeping only the first term in the summa-

tion.
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The next logical step is to keep an additional term, thus obtaining a better approxima-

tion of the scattered field. Hence:

(1−Aiχ)−1 ≈ 1 + Aiχ, ‖Aiχ‖ < 1 (6.11)

which leads to:

Es(rr) ≈ AeχE
i + Ae

(
χAiχE

i
)
, (6.12)

Equation 6.12 establishes a quadratic relationship between the contrast χ and the scat-

tered field Es(rr).

6.1.1 Numerical calculation of the operators

The calculation of the external operator on a computer is substantially equivalent to

the calculation of the operator L in Equation 2.4. The only difference is that L already

includes the incident field, therefore it depends on both transmitters and receivers; on the

other hand, Ae only includes the Green’s function between pixels and receivers, therefore

it does not depend on the transmitters.

Singular points are normally not a concern, as long as no receivers are located inside the

domain of investigation. This is usually easily avoided by choosing an appropriate domain
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D. As a result the operator Ae is simply the collection of the values of the external Green’s

function in a 2D space:

ge = H
(2)
0 (r′, rr), (6.13)

where H(2)
0 is the Hankel function of the second kind of order 0.

The derivation of the internal operator Ai, instead, is slightly more complicated. The

internal operator describes the pixel-to-pixel iterations, therefore it will surely include singu-

lar points, because it is computed for each pixel with respect to every other pixel, including

the starting pixel itself.

The numerical calculation of the integral of the Green’s function in a 2D geometry in

the presence of singularities has been derived in (87). An explicit solution for square pixels

is not available, but it can be reasonably approximated with the solution for round pixels

of diameter dx equal to the length of the side of the square pixels.

As a result:

Ai(r′1, r′2) =


−jπk0dx

4 H
(2)
0 (k0(r′1 − r′2))J1(k0dx/2), r′1 6= r′2

−jπk0dx

4 H
(2)
1 (k0dx/2)− 2j, r′1 = r′2

(6.14)
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6.2 Harmonic contrast function

The calculation of the contrast function using the quadratic model can be computation-

ally intensive. The numerical load can be made lighter by changing the way the contrast

function is defined.

Normally, in RF Tomography, the domain under investigation is partitioned into pixels,

which are then organized into a large vector and thus reconstructed. This normally leads

to a large under-determined problem, because it is easy to have much fewer measurements

than unknowns. Using the linear model (Born approximation) this is not a serious issue,

because very efficient algorithms such as Conjugate Gradient can be employed. These can

not only return a solution with a reasonable use of time and memory, but can also tackle

the ill-conditioning described in Chapter 2.

Using the quadratic forward model the inversion is not so simple. Apart from the larger

computational requirements, due to the term involving Ai, the problem is more complicated

by the possible presence of local minima. In a linear model this is not a concern, because

Ψlin is convex. Instead, Ψquad is quartic in χ, thus may have local minima in addition to

an absolute minimum.

In order to make the problem easier to solve, one step is to make it over-determined

instead of under-determined. One way of doing this is to express the contrast as a finite

summation of spatial harmonics, then reconstruct the harmonics rather than the contrast

itself.
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The contrast χ can be written as a Discrete Fourier Transform:

χ(x, y) =
∑

m,n∈Z
cm,ne

j2πmx/Lxej2πny/Ly , (6.15)

where:

cm,n = 1
LxLy

∫∫
χ(x, y)e−j2πmx/Lxe−j2πmx/Lxdx dy. (6.16)

The problem now is to reconstruct cm,n and then obtain χ in a second step. This can

be done in two ways: the first way requires re-writing the whole forward model under the

assumption of an harmonic contrast function, changing the definition of the operators and

so forth. Alternatively, the second, easier way simply requires to change the optimization

problem. In practice one will solve:

minimize
cm,n

Ψquad = ‖Es(rr)−Ae
[
χAiχE

i
]
‖2

with χ(x, y) =
∑

m,n∈Z
cm,ne

j2πmx/Lxej2πny/Ly . (6.17)

which in a modern computational tool such as MATLAB is done very simply by adding the

definition of χ in terms of cm,n to the definition of the functional.

Equation 6.17 is solved using a Levenberg-Marquardt minimization algorithm (93; 94;

70). The algorithm has been chosen because it can work with complex numbers and can deal

with both under- and over-determined problems. In addition, the algorithm can compute
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the gradients necessary to minimize the functional itself, by approximation with the finite-

difference method, and does not require user-supplied derivatives in explicit form, which

would require cumbersome calculations. The algorithm chosen is implemented in MATLAB

as lsqnonlin.

The Levenberg-Marquardt minimization algorithm will be given as input an initial guess

of the coefficients cm,n (usually the null vector) and will return as output the calculated

cm,n which will be translated from Fourier-domain to space-domain using Equation 6.15 for

plotting.

Using the harmonic contrast function thus defined, the number of unknown is greatly

reduced. In fact, as few as a dozen harmonics can represent sufficiently well real-world

objects such as cylinders.

6.2.1 Reconstruction of harmonics by linear and quadratic models

The harmonic representation of the contrast also aids in understanding why the quadratic

model can outperform the linear one. The reason lies in the harmonics representation of

the linear model itself (76).

The linear model consists in building the operator Ae, which essentially represents a

(linear) map from the target space to the scattered electric field space. This mapping

operation can be analyzed by looking at the singular value decomposition of L.

In the Truncated Singular Value Decomposition method (described in Section 2.2) gen-

eralized eigenvalues with small magnitude have been associated with ill-conditioning, which

in turn translates into poor reconstruction quality. To overcome this issue, only k gener-
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alized eigenvalues which are larger than a certain user-selected threshold are used, along

with the corresponding k columns of the matrices containing left- and right-singular vec-

tors. Therefore, only the k singular vectors which are maintained take part in the image

formation. Remembering the definition

L = USVH (6.18)

it is observed that the matrix V has as many rows and columns as the number of pixels

into which the domain of investigation has been partitioned. This is the matrix of interest,

because it spans the target space.

Each column of V contains as many elements as the number of pixels. Each of these

columns can therefore be represented in Fourier space by performing the Discrete Time

Fourier Transform, as done when representing the target into Fourier domain.

Since only k columns participate in the process of image formation, an overall Fourier

representation of the space spanned by Vk can be written as

SV(m,n) =
∑
k

|e−jkxX0e−jkyY0FFT(Vk)(m,n)|, (6.19)
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where kx and ky should not be confused with k and represent the horizontal and vertical

spatial frequencies, found as

kx = 2π
dxM

m (6.20)

ky = 2π
dyN

n. (6.21)

The Fourier representation obtained with Equation 6.19 can be plotted against kx and

ky. The plot depends on all the variables which affect the linear operator L, i.e. the choice

of domain of investigation (through X0, Y0, dx and dy), the location of transmitters and

receivers, and the frequency of operation (which all affects L and therefore V itself).

Increasing the frequency of operation enlarges the domain encompassed by SV and the

position and number of antennas affect how uniformly and densely the k-space is filled.

When imaging a certain target using the linear model, only those harmonics which fall

inside the space spanned by SV can be correctly reconstructed.

Figure 52 shows two examples of this plot which highlight how SV changes when the

number and position of antennas is changed. In Figure 52a, 11 transmitters spanning 280◦

and 20 receivers spanning 360◦, operating at 3 GHz are used. In Figure 52b, instead, 15

transmitters spanning 360◦ and 40 receivers spanning 360◦, operating at 6 GHz are used.

The image shows that while in the first case spatial frequencies up to |kx| = |ky| = 200 can

be reconstructed, in the second case spatial with |kx| = |ky| > 300 can be correctly imaged.

In addition, the k-space in Figure 52b is a lot fuller than the one in Figure 52a. These



124

two configurations will be later used in numerical examples which will highlight further this

difference.

These plots also explain why the TSVD also has a filtering effect on the reconstructed

image: harmonics that are outside the space spanned by SV are effectively filtered out,

leaving only lower harmonics.

The quadratic model expands the number of harmonics that can be correctly recon-

structed. This can be seen from the approximated scattered field equation in the quadratic

case. Recalling

Es ≈ AeχE
i + Ae

(
χAiχE

i
)
, (6.22)

it is clear that χ contributes to the scattered field not only through Ae like in the linear

model (first term of the equation), but also through the internal operator Ai (second term

of the equation). In practice Ai operates a transformation to the spatial components of χ

before the multiplication by Ae occurs, i.e. before the spatial components of χ are truncated

by SV.

In the same way as SV has been obtained, it is possible to plot a similar k-space, spanned

this time by Ai, for the same two scenarios described in Figure 52.

Notice that the internal operator Ai is only affected by the frequency of operation and

not by the position of the antennas. Figure 53 makes it obvious that the k-space spanned
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by Ai is a lot larger than the one spanned by the linear operator, therefore it affects many

more spatial frequencies of χ.

In any case it will be the external operator Ae that determines how many spatial fre-

quencies end up actually affecting the scattered electric field. As a result, the fact that

Ai operates on a larger set of spatial frequencies could have no effect whatsoever, because

those would be filtered by Ae, leading to no advantage. This, however, is not what happens

thanks to the specifics of the multiplication of Ai and χ.

It can be shown (91; 92) that the effect of the internal operator is to “beat” high-

harmonics of the contrast function into lower harmonics, much like a modulation

effect. This is crucial, because it implies that spatial components that previously were

inaccessible now can be reconstructed because they are beat into lower harmonics and

therefore are not affected by the filtering effect of the linear operator.

This is the fundamental advantage of the quadratic forward model over the linear model,

which has been tested by means of numerical examples.

6.2.2 Method of Moment algorithm to compute the scattered field

Expressing the contrast as a summation of a finite number of harmonics presents a new

challenge: the retrieval of the scattered field needed for the inversion. The field can come

from two sources: a laboratory measurement or a computer simulation. If the second way

is adopted, it is necessary to find a simulator that allows to define smooth, continuous

variations of εr, pixel by pixel. This is not the case in most commercial software. Some

educational Finite Difference Time Domain implementation allow complete control over



126

the domain of investigation, letting the user set the properties of every pixel individually.

These routines, however, lack in performance, requiring exceedingly long times to obtain

the solution.

Interestingly, a clever solution to this problem lies into the problem itself. The cal-

culation of the scattered electric field from the knowledge of the contrast function is the

definition of the forward model. In particular, this very chapter described the exact solution

to the forward problem while deriving the formulation of the quadratic model.

Equation 6.5 and Equation 6.6 represent the forward problem in its entirety. The prob-

lem is nonlinear when χ must be recovered from the knowledge of Es. However, the problem

is much simpler for the computation of Es if χ is known.

The solution is found using the exact same minimization algorithm employed for the

retrieval of the contrast function. First, a functional is defined using Equation 6.6:

ΨEt = ‖Et − Ei −AiχE
t‖2. (6.23)

Then, Equation 6.23 is minimized with Et as an unknown. The functional defined by ΨEt

is convex in Et, therefore the minimum solution will be found without worrying about local

minima.

After Et has been found, the scattered field is given by Equation 6.5.

This method is basically a Method of Moments algorithm. It is therefore accurate when

the meshing of the scattering object – in this case, the discretization of the domain under
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investigation – is sufficiently small. In virtually all cases, a discretization of λ/15 or finer

proves to be sufficient to obtain the scattered field correctly.

The algorithm just described has been employed to calculate the scattered electric field

in all the cases simulated in this chapter.
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Figure 52. k-space representation of the linear operator L for two different antennas
configurations. (a) 11 TX (0− 280◦), 20 RX (0− 360◦) at 3 GHz lead to the k-space shown
in (c); (b) 15 TX (0− 360◦), 20 RX (0− 360◦) at 6 GHz lead to the k-space shown in (d).
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Figure 53. k-space representation of the internal operator Ai for two different frequencies:
(a) 3 GHz and (b) 6 GHz.
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6.3 Inversion

Due to the quadratic nature of the forward model, the inversion has to be thought from

scratch. All the methods described in the previous chapters assume to work with a linear

system of equations that is expressed as a matrix-vector multiplication. This is not the case

anymore.

The most straightforward way to tackle the inversion is to recast it as an optimization

problem. Doing that, a variety of tools for solving both linear and non-linear optimization

problems becomes available.

First, the problem is expressed as a functional. In this case the functional is immediately

written starting from Equation 6.12 as:

Ψquad = ‖Es(rr)−Ae
[
χAiχE

i
]
‖2. (6.24)

Equation 6.24 is solved using the same Levenberg-Marquardt minimization algorithm

employed earlier to calculate the scattered field.

In order to compare the results obtained with the quadratic forward model to the ones

obtained with the linear forward model, it is important that the inversion algorithm be the

same for both cases. Therefore another functional is defined for the linear problem, and it is
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then inverted using the same algorithm and the same parameters adopted for the quadratic

model. Namely:

Ψlin = ‖Es(rr)−AeχE
i‖2. (6.25)

When expressed in matrix form Ai is much larger than Ae. While Ae, just like L,

has as many rows as the number of measurements and as many columns as the number of

unknowns, Ai is square and has as many rows and columns as the number of unknowns

(i.e. pixels); it is therefore expected that the minimization of Ψquad be heavier than the

minimization of Ψlin.

6.4 Numerical results

The procedure detailed in this chapter has been applied to numerical data. In the fol-

lowing, a few examples are used to demonstrate the differences between linear and quadratic

forward model in solving the same inversion problem.

6.4.1 Imaging of a dielectric cylinder

In the first test imaging of a dielectric cylinder is attempted. The simulation setup is

visualized in Figure 54.

The target is illuminated by 11 transmitters, placed along a circumference of radius

rt = 43.2 cm; the transmitters span 280◦. The resulting scattered field is sampled by

a set of receivers, placed along a circle of radius rr = 32.8 cm; the receivers span all

360◦. The target is sampled with a sinusoidal signal of frequency equal to 3 GHz. The
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Figure 54. Simulation setup.

number and positions of the antennas simulates a scenario which can be reproduced with

the measurement system described in Chapter 3 and Appendix A.

The Domain of Investigation (DoI) is a square of side equal to 8 cm, divided into square

pixels of side equal to 4.2 mm, or approximately λ/24. The total number of pixels is

therefore 400.

The target is a cylinder of radius equal to 1.27 cm (1/2 in), and its contrast value is

initially set to 0.5 (Figure 55a). The cylinder is located at the origin of the coordinate

system. The target is represented using a finite set of harmonics, with M = N = 9

(Figure 55b). The finite number of harmonics chosen represents the target with substantially

no distortion (Figure 55c). Notice that by choosing a representation with a finite number
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Figure 55. Target representation: (a) pixel-based, (b) Fourier coefficients, |cm,n| and (c)
corresponding pixel representation with only the finite number of coefficients shown in (b).

of coefficients the total number of unknowns of the problem decreases significantly: from

400 pixels to (2M + 1)× (2N + 1) in the harmonic representation, where M and N usually

are smaller than 7.

From the knowledge of the domain of investigation both external and internal operators

can be computed. In addition, the incident field is calculated analytically since the source

is the well-known infinite current line in a 2D geometry. Lastly, after creating the target

and the domain of investigation, the scattered electric field is computed using the algorithm

described in Section 6.2.2.

The scattered field thus calculated is used for the inversion. The main variable when

performing the inversion is the number of unknowns (i.e. harmonics) that want to be

reconstructed. Due to ill-conditioning and to the approximations given by both the linear

and the quadratic models, it is unrealistic to reconstruct all the 10 components which fully

represent the target. Therefore, the desired number of harmonics to reconstruct is given as
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input to the inversion. The larger the number of Fourier coefficients required, the larger is

the size of the problem, and the more both models are put to the test.

As a first test, only M = N = 2 harmonics are reconstructed. The result is shown in

Figure 56. Since only three harmonics are reconstructed, both the linear and the quadratic

model provide good reconstruction results. Due to the very small differences in the recon-

struction of the Fourier coefficients, the pixel representation obtained from them is almost

identical in the two cases.
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Figure 56. Reconstruction result for M = N = 2. (a) True Fourier coefficients |cm,n|, (d)
True contrast function, (b) and (e) Linear model reconstruction, (c) and (f) Quadratic

model reconstruction. The resolution of (d)–(f) has been increased through linear
interpolation.
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In order to give a quantitative measurement of the differences between the reconstruction

obtained using the linear and the quadratic models, the Mean Squared Error (MSE) is

computed as:

MSE =
√∑

|χrec − χtrue|2∑
|χrec|2

, (6.26)

where χrec and χtrue represent the pixel representation of the reconstructed and true con-

trasts, respectively.

In this first test, the linear model produces an MSE= 0.51838 and the quadratic model

an MSE= 0.50058, which represents an improvement of 3.4%.

Additional insight on the quality of the reconstruction can be gained by taking section

cut plots of the target, as shown in Figure 57.

The section cuts shows that the absolute value of the contrast is more closely recon-

structed by the quadratic model; the linear model tends to over-estimate the peak value.

Linear and quadratic models show almost identical side-lobe artifacts.

Increasing the number of Fourier coefficients to reconstruct is possible to stress the

differences between linear and quadratic models. In order to give a detailed description

of the inversion, the results corresponding to values of M and N ranging from 3 to 7 are

shown in Figure 58 through Figure 65

When M = N = 3 the performance gap between linear and quadratic models widens,

although both models performs overall better than the previous case. The linear models
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Figure 57. Section cuts of the true and reconstructed targets at y = 0 for M = N = 2.

produces an MSE= 0.48637, while the quadratic model returns an MSE= 0.43695 (10.2%

improvement). Figure 58 summarizes the results. Looking at the plot of the absolute values

of the coefficients cm,n for both models there is not a significant difference from the true

values. The same applies to the pixel representation.

Figure 59 shows the section cuts. In this case both quadratic and linear models visibly

over-estimate the peak value of the contrast function, with the linear model producing the

least accurate reconstruction.

WhenM = N = 4 the linear model performs better than the quadratic model. Figure 60

shows that the quadratic model produces high-frequency artifacts that interfere with the

true components. In this case MSE= 0.49485 for the linear model. The quadratic model
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Figure 58. Reconstruction result for M = N = 3. (a) True Fourier coefficients |cm,n|, (d)
True contrast function, (b) and (e) Linear model reconstruction, (c) and (f) Quadratic

model reconstruction. The resolution of (d)–(f) has been increased through linear
interpolation.

performs worse, with MSE= 0.6793, 37% worse) because the reconstruction is affected by

high-frequency components. Looking at the Fourier coefficients plot (Figure 60) it is clear

that strong high-frequency artifacts alter the reconstruction, but that the true information

contained in the lower spatial frequencies is still preserved.

The section cuts plot (Figure 61) highlights the side-lobe artifacts which affect the

quadratic model.
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Figure 59. Section cuts of the true and reconstructed targets at y = 0 for M = N = 3.
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Figure 60. Reconstruction result for M = N = 4. (a) True Fourier coefficients |cm,n|, (d)
True contrast function, (b) and (e) Linear model reconstruction, (c) and (f) Quadratic

model reconstruction. The resolution of (d)–(f) has been increased through linear
interpolation.
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Figure 61. Section cuts of the true and reconstructed targets at y = 0 for M = N = 4.



141

The reconstruction with M = N = 5 is shown in Figure 62.
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Figure 62. Reconstruction result for M = N = 5. (a) True Fourier coefficients |cm,n|, (d)
True contrast function, (b) and (e) Linear model reconstruction, (c) and (f) Quadratic

model reconstruction. The resolution of (d)–(f) has been increased through linear
interpolation.

The linear reconstruction is completely disrupted by noise, with the high spatial fre-

quency artifacts completely ruining the reconstruction. The value of MSE= 1.0006 is not

very informative, since it is obtained as an overall sum, therefore cannot correctly repre-

sent the type of noise observed in the image. The quadratic case, instead, performs better
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than the previous case. The high frequency noise is spread over a larger number of pixels,

making the reconstruction of the meaningful components more accurate. The MSE for the

quadratic case is equal to 0.47866, i.e. improved with respect to the case with M = N = 4,

but still not as low as when M = N = 3. Also in this case, though, the MSE indicator can

be misleading, because it hides the fact that the edge of the cylinder is reconstructed with

much greater accuracy in this case than in the case with M = N = 3.

The section cuts plot (Figure 63a) is not very informative, since the linear model pro-

duces artifacts so large that a change of scale would be needed in order to compare linear

and quadratic reconstructions. When the scale is adjusted (Figure 63b) it is possible to

appreciate the good quality of reconstruction offered by the quadratic model. The com-

parison of Figure 63b and Figure 59 makes it clear that in this case the cylinder edge is

reconstructed with superior accuracy.
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Figure 63. Section cuts of the true and reconstructed targets at y = 0 for M = N = 5.
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Further increasing the number of reconstructed harmonics confirms this trend. The

linear model performs extremely poorly for both M = N = 6 and M = N = 7, while the

quadratic model, although more noisy, still produces very good images. The accuracy of

reconstruction is evident in the coefficient plots of both Figure 64 and Figure 65, which

translate in noisy but substantially accurate pixel representations in both cases. For the

quadratic models the MSE is equal to 0.55254 when M = N = 6 and 0.55642 when M =

N = 7.

Importantly, for the quadratic model in all cases the absolute value of the reconstructed

contrast is never higher than 0.7 (compared to 0.5 for the representation of the true contrast

using 9 harmonics, which has been used to compute the scattered electric field), providing

an estimation of the relative dielectric permittivity of the cylinder with sufficiently good

approximation.

In the next section the effect of changing the value of the contrast is shown.
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Figure 64. Reconstruction result for M = N = 6. (a) True Fourier coefficients |cm,n|, (d)
True contrast function, (b) and (e) Linear model reconstruction, (c) and (f) Quadratic

model reconstruction. The resolution of (d)–(f) has been increased through linear
interpolation.
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Figure 65. Reconstruction result for M = N = 7. (a) True Fourier coefficients |cm,n|, (d)
True contrast function, (b) and (e) Linear model reconstruction, (c) and (f) Quadratic

model reconstruction. The resolution of (d)–(f) has been increased through linear
interpolation.
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6.4.2 Effect of increasing the contrast value

When the value of the contrast is increased, it is more difficult for the forward model

to correctly represent the physics of the problem. In fact, it has been described how both

the linear and the quadratic model derive from the assumption that ‖Aiχ‖ < 1. While in

practice even when this condition is not met, it is often possible to obtain images, there is

no guarantee of performance.

Increasing the contrast is important because in real-world conditions a value of dielec-

tric permittivity equal to 1.5, as simulated in the previous section, is not common. Most

materials have εr significantly larger.

In a laboratory environment, under controlled conditions, it is important to operate

with well-known materials as targets. This excludes for example wood, whose dielectric

permittivity is a function of a large number of variables: tree of origin, water content, age,

humidity of the laboratory, local anisotropy due to the grain all play important roles in

determining the actual value of permittivity, and are not easily estimated. Most plastics,

instead, due to their regular molecular structures, show values of εr which is well contained

between certain known ranges. In addition, most plastics do not show large variations with

the frequency of operation, or with local conditions such as humidity. Many plastics found

for retail have values of εr smaller than 3 (95; 96). The values of εr for some easily acquirable

plastics are shown in Table I.
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Molecule Common Name εr at 1 GHz
Fluorinated ethylene-propylene Teflon FEP 2.05
Polytetrafluoroethylene Teflon PFA 2.1
Polycaprolactam Nylon-6 3.0 @ 1 MHz
Polyethyleneterephthalate PET, Mylar 2.8
Low-Density Polyethylene LDPE 2.2
High-Density Polyethylene HDPE 2.3
Polypropylene PP 2.2
Polyvinylchloride PVC 2.8

TABLE I

DIELECTRIC PROPERTIES OF SOME PLASTICS.

The actual values for material acquired through retail distributors can show differences,

but these are usually not large, due to the very regular nature of these molecules and their

well-standardized manufacturing techniques.

After these considerations, it is likely that in most cases a value of εr no larger than 2.5,

corresponding to a contrast of 1.5 in free-space, can be expected. Therefore, the imaging

case used in the previous section has been replicated, with the only difference of changing

the value of contrast, this time equal to 1.5.

For this case, only the results for some representative values of M and N are chosen, in

order to shorten the description.

The imaging result with M = N = 3 is represented in Figure 66 and shows that

increasing the contrast from 0.5 to 1.5 did not severely affects the reconstruction quality.

The linear model performs worse than the quadratic model; both images are not affected
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by noise, but they lack resolution due to the low number of harmonics reconstructed. The

linear model returns MSE= 0.87711, while the quadratic produces an MSE= 0.61539, which

is almost 30% lower (hence better).
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Figure 66. Reconstruction result for M = N = 3. (a) True Fourier coefficients |cm,n|, (d)
True contrast function, (b) and (e) Linear model reconstruction, (c) and (f) Quadratic

model reconstruction. The resolution of (d)–(f) has been increased through linear
interpolation.

The section cut plot shown in Figure 67 confirms that the quadratic reconstruction,

although closer to the peak value of the contrast shows larger side-lobes artifacts.
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Figure 67. Section cuts of the true and reconstructed targets at y = 0 for M = N = 3.

Increasing the number of harmonics to M = N = 5 makes the linear model fail com-

pletely as shown in Figure 68. The quadratic model instead returns a fair image, significantly

better than the one produced with the linear model. For the quadratic model MSE= 0.6354

or about 5% worse than the previous case.

The section cut plot is provided in Figure 69. In the figure the linear reconstruction is

not visible because it is off-scale by a large amount. The quadratic reconstruction is noisy

but correctly follows the outline of the true contrast.

Figure 70 shows the result of the inversion when M = N = 7. The linear model still

completely fails. The quadratic reconstruction instead does not significantly change. The

MSE for the quadratic case is worse, equal to 0.7539. Looking at the reconstruction of the
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Figure 68. Reconstruction result for M = N = 5. (a) True Fourier coefficients |cm,n|, (d)
True contrast function, (b) and (e) Linear model reconstruction, (c) and (f) Quadratic

model reconstruction. The resolution of (d)–(f) has been increased through linear
interpolation.

Fourier coefficients (Figure 70c) is is evident that there is some high-frequency noise, but

that the main components in the Fourier space are reconstructed correctly.

The section cut shown in Figure 71 has been adjusted by rescaling the vertical axis.

The linear reconstruction is not visible because it is much larger than the plot scale. The

quadratic reconstruction is very noisy but fairly close to the actual numerical value of the

contrast.
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Figure 69. Section cuts of the true and reconstructed targets at y = 0 for M = N = 5.

In conclusion, increasing the value of the contrast has detrimental effects on the re-

construction. However, even under these difficult conditions, without changing at all the

experiment conditions the quadratic model is able to return a solution that is close to the

true contrast in terms of absolute of χ, and with fair reconstruction of the Fourier coef-

ficients, which are affected by noise, but not to the point of rendering the reconstruction

useless. The linear model instead fails as soon as more than 3 harmonics are requested.

This reconstruction example can be complicated by adding more objects in the domain

of investigation, changing significantly the Fourier coefficients that need to be reconstructed.
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Figure 70. Reconstruction result for M = N = 7. (a) True Fourier coefficients |cm,n|, (d)
True contrast function, (b) and (e) Linear model reconstruction, (c) and (f) Quadratic

model reconstruction. The resolution of (d)–(f) has been increased through linear
interpolation.
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Figure 71. Section cuts of the true and reconstructed targets at y = 0 for M = N = 7.
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6.4.3 Imaging of two dielectric cylinders

In this section imaging of two dielectric cylinders is studied. Two cylinders of radius

0.95 cm (diameter 3/4 in) are placed at a distance of 3.4 cm from each other along the x axis.

The distance is measured with respect to the centers of the two cylinders and corresponds

to a separation of 1.5 cm measured from edge to edge of the cylinders. The targets are

represents with M = N = 24 and their dielectric constant is set to 2.5 (i.e. χ = 1.5) as in

the latest example. The targets are shown in Figure 72.
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Figure 72. Target representation: (a) pixel-based, (b) Fourier coefficients, |cm,n| and (c)
corresponding pixel representation with only the finite number of coefficients shown in (b).

This setup is more difficult to image than the previous one. The smaller targets mean

that more harmonics are significantly different from zero and the presence of two targets
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close to each other causes mutual interaction phenomena. For this reason, the antenna

setup has been changed.

The antenna setup is shown in Figure 73. 15 TX and 40 RX are employed, operating

at 4.5 GHz (λ ≈ 6.7 cm). The domain of investigation is a square of side 10 cm. The

pixel size has been decreased to 2 mm (≈ λ/33). The reason for a smaller pixel size has

been dictated by simple visual reasons: the targets employed in this case are small, so that

large pixels would have made cylinders appear as squares. From an electromagnetic point

of view, however, there is no need to choose such a small pixel size; the electric field can be

computed with reasonable accuracy using pixels of side equal to 6 mm as before.
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Figure 73. Simulation setup.
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The result of the reconstruction setting M = N = 3 is shown in Figure 74. The result

shows that the quadratic model is superior to the linear one. The image is less noisy and

shows no artifact between the two cylinders. For the linear model the MSE is equal to

1.1735, while for the quadratic model MSE= 0.87538, a 24% improvement.
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Figure 74. Reconstruction result for M = N = 3. (a) True Fourier coefficients |cm,n|, (d)
True contrast function, (b) and (e) Linear model reconstruction, (c) and (f) Quadratic

model reconstruction. The resolution of (d)–(f) has been increased through linear
interpolation.
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The section cut shown in Figure 75 highlights this difference. Although the linear model

approximates more closely the peak value of the contrast, the quadratic model produces

reduced side-lobes artifacts as well as no artifact between the two targets.
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Figure 75. Section cuts of the true and reconstructed targets at y = 0 for M = N = 3 at
4.5 GHz.

The fact that imaging is more difficult is highlighted by the fact that both methods fail

when reconstruction of just one more harmonic (M = N = 4) is attempted. Figure 76

shows that both methods introduce very large noise in high-frequency components that

completely disrupt the final reconstruction.
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Figure 76. Reconstruction result for M = N = 4. (a) True Fourier coefficients |cm,n|, (d)
True contrast function, (b) and (e) Linear model reconstruction, (c) and (f) Quadratic

model reconstruction. The resolution of (d)–(f) has been increased through linear
interpolation.
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In order to overcome this difficulty the frequency of operation is increased. This means

that for both linear and quadratic models the set of spatial frequencies that fall into the

reconstructible domain is enlarged. However, the quadratic model is still expected to out-

perform the linear model, because of its superior ability to reconstruct higher spatial har-

monics.

The simulation is performed again, with the only change of increasing the frequency

from 4.5 GHz to 6 GHz. The result of the inversion is shown in Figure 77.
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Figure 77. Reconstruction result for M = N = 4 at 6 GHz. (a) True Fourier coefficients
|cm,n|, (d) True contrast function, (b) and (e) Linear model reconstruction, (c) and (f)
Quadratic model reconstruction. The resolution of (d)–(f) has been increased through

linear interpolation.
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In this case, although both models are noisy, the quadratic model clearly outperforms

the linear one. For the linear model periodic artifacts are created between the two objects

and the shape of the targets is not correctly reconstructed. In this case MSE= 1.3636 and

the peak value of the contrast is estimated to be around 1, instead of the expected 1.5.

For the quadratic model, instead, MSE= 0.91725, i.e. almost 33% better. Periodic

noise still affects the reconstruction, but the shape and size of the targets can be more

correctly inferred. In addition, the peak value of the contrast is estimated to be around 1.4,

a significantly better estimation than the linear case. These considerations are all made

very clear in the section cuts depicted in Figure 78.
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Figure 78. Section cuts of the true and reconstructed targets at y = 0 for M = N = 4 at
6 GHz.



CHAPTER 7

CONCLUSION

This dissertation presented numerous results related to Radio Frequency Tomography.

Chapter 1 introduced the imaging problem and then focused on electromagnetic meth-

ods to provide the foundation for the following chapters.

Chapter 2 described in more detail RF Tomography: it presented its forward model and

current inversion algorithms commonly used, as well as discussed some of their limitations.

In particular, it was discussed how RF Tomography is based on a linear forward model,

which is used to reconstruct a scalar contrast function by using regularized direct inversion

methods.

InChapter 3 a system used for the experimental validation of RF Tomography has been

presented. The system has been entirely designed and built at the University of Illinois at

Chicago, in the Andrew Electromagnetics Laboratory. The system has been used to collect

all the data presented in the dissertation. The mechanical and electrical characteristics of

the systems were described, along with data collection and processing methods.

Chapter 4 proposes two iterative algorithms to perform the inversion, as an alterna-

tive to the direct regularization methods typically used and described in Chapter 2. The

first method is an implementation of the Conjugate Gradient algorithm, modified so as to

introduce physical bounds on the solution and with a customized stopping rule. The devel-

oped algorithm performs as well as the Truncated Singular Value Decomposition (TSVD) in

161
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terms of quality of reconstruction, but drastically reduces the memory and computational

requirements for the inversion. When used to reconstruct dielectric and metallic targets it

performs better than TSVD.

The second algorithm described is based on the Algebraic Reconstruction Technique.

This iterative method also provides the ability to introduce physical bounds as well as

using a customized stopping rule. In addition to this, the introduction of a regularization

parameter for better controlling the algorithm output has been discussed. The algorithm is

particularly efficient in reducing noise and in differentiating between metallic and dielectric

targets. Its computational cost has been found to be much lower than TSVD but higher

than the Conjugate Gradient-based method.

Chapter 5 introduced a modification to the forward model, by replacing the scalar

contrast function with a dyadic one. The goal of this modification is to retrieve additional

information from the data collected by simulation or measurement pertaining to thin and

elongated scatterers. The approach is backed up by a rigorous analytical explanation. The

additional information retrieved by using the dyadic contrast function is used to reconstruct

the orientation of the thin cylindrical scatterers in a three-dimensional space. The modi-

fication of the forward model increases the size of the inversion problem by a factor of 9,

which translates into higher memory usage. However, using the Conjugate Gradient-based

algorithm developed in Chapter 4, the inversion remains extremely quick.

The data obtained from the inversion can be displayed in two ways. In the first method

a set of 3-by-3 plots of the magnitude and phase of the dyadic contrast function is adopted.
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The method is successful in presenting the result and in understanding the spatial orienta-

tion of the targets, but it is prone to ambiguity in certain particular situations. To solve

the ambiguity a second method, based on the eigen-decomposition of the dyadic contrast

function is developed. This method allows to display the contrast as a three-dimensional

quiver plot, removing any ambiguity in the data interpretation.

Lastly,Chapter 6 is concerned with a different modification of the forward model, which

involves again a scalar contrast function. Retracing the steps that led to the derivation of the

formulation of RF Tomography, the approximation which resulted in a linear formulation

of the forward model is analyzed. Under favorable conditions, this approximation can

be improved, by addition of a quadratic term. The new forward model thus obtained is

significantly more complex than its linear counterpart but can provide advantages in terms

of quality of reconstruction.

It is shown that the linear model works as a low-pass filter on the data, limiting the

number of spatial frequencies of the contrast function which can be reconstructed. The

quadratic formulation is showed to perform better than the linear one because it allows

reconstruction of additional spatial harmonics. In addition, the scalar contrast function has

been changed from a pixel-based to a Fourier-based representation. This allowed on the

one hand to reduce the unknowns of the inversion problem and on the other hand to more

closely control the number of spatial harmonics being reconstructed. In order to produce

scattered electric field data from harmonic contrasts a custom Method of Moment method

has been employed.
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A Levenberg-Marquardt optimization algorithm has been employed to invert the quadratic

model and reconstruct the contrast function. To provide unbiased comparison of the results,

the same algorithm has been applied on the linear model as well. The quadratic model is

shown to outperform the linear model in a set of test cases involving different targets and

measurement conditions.
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Appendix A

DETAILS OF ANTENNA POSITIONING SYSTEM

This postioner was designed to mount 2 dipole antennas and allows for automated

movement of the antennas to speed up network analyzer measurements of objects used in

Radio Frequency Tomography. It was decided for ease of construction to have the antennas

placed on swing arms which would move about a central point that will hold an object to

be measured. In addition, the antennas were mounted far enough above the swing arms to

minimize reflections and far enough from one another to prevent mutual coupling. The last

major design consideration was material. Plexiglas was chosen for its strength, durability,

easy of construction, and low dielectric constant (εr ≈ 2.6). Ideally, a dielectric constant

equal to the one of air is preferable.

Figure 79 illustrates the initial design of the positioner; the motors, timing belts, and

antennas are not shown. The unit is mounted on a wooden platform with adjustable feet

to level the unit. The swing arms allow for adjustable distance from the center of the unit.

As well, the antennas (not shown) have the ability to change height. Located around the

central shaft and below each swing arm is a timing pulley operated by a DC stepper motor

controlled via computer and a LabVIEW program. Once all details of the initial design

were finalized, construction began.

Plexiglas with a thickness of 0.354 inches was chosen as a strong enough and inexpensive

material. Cutting, milling or machining of the material is somewhat difficult and was done



167

Appendix A (Continued)

Figure 79. 3D model of antennas positioner

by the University of Illinois at Chicago skilled machinists. Once all parts and materials

were available and present, the next step was construction. Unlike metal or wood, Plexiglas

can be glued together and form a bond that is equal in strength to the material itself. This

further cuts down on connection hardware like screws, nuts, and bolts. The one drawback is

time as the glue takes 2 days to reach full strength in bonding. As well, when gluing pieces
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Appendix A (Continued)

together time was taken to ensure proper alignment of crucial pieces. The construction went

nicely, without any major set backs, but a lot of minor problems to overcome. Figure 80 is

a picture of the finished project.

Figure 80. Photo of finished antenna positioner
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Appendix A (Continued)

Some problems were noted during construction. The swing arms were initially designed

to be longer to allow for counter balancing. This was believed to be an issue when the

strength of the Plexiglas and design were in question. Once everything was assembled and

weight testing of the swing arms conducted, the design proved to be strong enough to

eliminate the need for a counter balance. This allows for a greater range of movement as

the lower swing arms movement is limited by the upper swing arm’s motor and placement.

The movement range was increased by using a longer timing belt. In the end the lower

swing arm has a range of 285 degrees and the upper swing arm of 360 degrees. Figure 81

shows the system installed in the anechoic chamber.

After installation of the system, care was taken to connect the antennas and the network

analyzer cabling. Because the positioner moves, so does the cabling. The cables were ran

in such a way as to allow for maximum movement while not binding up in the mechanics or

due to the motion of the system. This is an issue which needs to be noted and remembered

before moving the system. It is recommended that the user checks for any material (cable

or otherwise) which may obstruct the systems motion prior to and/or after making any

large number of movements. This is not a grave or system failure issue. If the positioner is

obstructed while attempting a computer controlled movement, the timing belts may become

damaged. As well, all data will be unusable as the exact angular position will not be known.

To eliminate this issue, an encoder may be installed (in the future) on each swing arm pulley

to provide some haptic feedback to the user.
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(a) (b)

Figure 81. Photos of finished antenna positioner in the anechoic chamber
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(a) (b)

(c) (d)

Figure 82. Details of the positioner showing (a) the motors, pulleys and belt system, (b)
motor mounts, (c) dipole antenna in its holder adjustable in height, and (d) overview of

the final system in action, with a target in the scene.
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CONCISE DERIVATION OF THE RF TOMOGRAPHY FORWARD

MODEL

The derivation follows the procedure described in (10).

Consider the vector wave equation in a source-free medium:

∇×∇×Ei(r′) = ∇∇ ·Ei(r′)−∇2Ei(r′) = k2
0.Ei(r′) (B.1)

Since in a source-free medium ∇ ·Ei = 0, the Helmholtz equation is obtained:

(
∇2 + k2

0

)
Ei(r′) = 0. (B.2)

If the incident field Ei encounters an obstacle v, a scattered field is generated. The

total field in the space will be given by the summation of incident and scattered fields. The

scattered components can be ideally thought of as if it were generated by an equivalent

current source J on the surface of the scatterer, found as:

J = Etv, (B.3)
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with

v = [ε− εb]− j
[
σ − σb
2πfε0

]
. (B.4)

where the symbols with the subscript b identify the properties of the background medium,

and the symbols without subscript the ones of the scatterer.

To know the scattered field the Green’s function can be introduced. In a 3D geometry,

the dyadic Green’s function for the system is defined by placing a Dirac’s delta current

distribution at location r′′:

∇×∇×G(r′, r′′)− k2
0G(r′, r′′) = Iδ(r′ − r′′). (B.5)

If the Green’s function is known, the scattered field at r′ can be written as a spatial

convolution of the equivalent scattering source and of the Green’s function:

Es(r′) = k2
0

∫∫∫
D

G(r′, r′′) ·
[
Et(r′′)v(r′′)

]
dr′′, (B.6)

where the dyadic Green’s function for an unbounded homogeneous space is

G(r′, r′′) =
(

I + 1
k2

0
∇∇·

)(
ejk0|r′−r′′|

4π|r′ − r′′|

)
. (B.7)

Next, the Born approximation is introduced, which consists in replacing the total field

on the right-hand side of Equation B.7 with the incident field only, thus assuming that the
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scattered field is weak with respect to the incident field or, in other words, that the scatterer

is weak (small and/or with low contrast with respect to the background):

Es(r′) ≈ k2
0

∫∫∫
D

G(r′, r′′) ·
[
Ei(r′′)v(r′′)

]
dr′′. (B.8)

The now linear volume integral equation can be discretized into pixels at whose locations

the Green’s function and the incident field is evaluated and stored, obtaining the linear-

algebra formulation:

Es = Lv. (B.9)



175

Appendix C

PERMISSION TO REPRODUCE CONTENT

Parts of this dissertation have been previously published in both conference and journal

articles. In most cases the content of the dissertation represents a more in-depth description

and analysis of the results summarized in journal or conference articles, which may include

unpublished figures and/or text. In these cases the citations to the corresponding articles

have been provided where appropriate even though it was not possible to refer to precise

figures and/or parts of text.

However, a few paragraphs as well as some figures appear unchanged in conference and

journal articles. In these cases proper references to the article and the copyright holders

have been clearly indicated in the text. The permission to reproduce content has been

granted by both publishers, the Institute of Electrical and Electronics Engineers (IEEE)

and Hindawi Publishing Corporation.

IEEE holds the copyright to text and figures published in conference articles. Permission

for reusing the material is granted from the policy which can be found at the following URL:

http://www.ieee.org/publications_standards/publications/rights/

permissions_faq.pdf. The policy states the following:

“The IEEE does not require individuals working on a thesis to obtain a formal

reuse license, however, you must follow the requirements listed below:
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Textual Material

Using short quotes or referring to the work within these papers) users must give

full credit to the original source (author, paper, publication) followed by the

IEEE copyright line c©2011 IEEE.

In the case of illustrations or tabular material, we require that the copyright line

c©[Year of original publication] IEEE appear prominently with each reprinted

figure and/or table.

If a substantial portion of the original paper is to be used, and if you are not

the senior author, also obtain the senior author’s approval.”

On the other hand, the material published in the International Journal of Antennas

and Propagation, published by Hindawi Publishing Corporation is available as an Open

Access article. The reuse policy is available at http://www.hindawi.com/journals/ijap/

guidelines/ and states the following:

“Open Access authors retain the copyrights of their papers, and all open access

articles are distributed under the terms of the Creative Commons Attribution

License, which permits unrestricted use, distribution and reproduction in any

medium, provided that the original work is properly cited.”
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