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SUMMARY

This dissertation is devoted to expanding the classical theory of the forced Navier-Stokes

equations. First, we study the regularity of solutions to the two dimensional Navier-Stokes

equations with a singular or “fractal” forcing term. The classical theory tells us that the two

dimensional Navier-Stokes equations gain two derivatives on a sufficiently smooth force. Follow-

ing these classical methods we extend this result to spaces with negative fractional derivatives.

However, these methods break down at a critical value. In this case, we show that one can still

gain two derivatives locally in time.

Next, we investigate the long-term behavior of both the two dimensional and three dimen-

sional Navier-Stokes equations with a time-dependent force. When the force is independent of

time, it is known that the long-term behavior of the Navier-Stokes equations is encapsulated

within a set called the global attractor. The global attractor has a nice characterization, even

in the three dimensional case, where we still do not know if there exists unique solutions. We

present a framework for studying the existence of an analogous object, the pullback attractor,

when the force depends on time. We study the existence and structure of these pullback at-

tractors as well as the relationship between the pullback attractor and other existing notions

of attractors.

Finally, we apply our framework to the two dimensional and three dimensional Navier-

Stokes equations with an appropriate time-dependent force. We also study the effect that the

size of the force has on the size of the pullback attractor. Finally, we show that if the force

vii



SUMMARY (Continued)

is sufficiently small and periodic, there must exist a unique, smooth, periodic solution to the

three dimensional Navier-Stokes equations.
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CHAPTER 1

INTRODUCTION

1.1 Basic Definitions, Notation, and Classical Theory

The Navier-Stokes equations model the evolution of the velocity of a viscous, incompressible

fluid. They are given by 
ut + (u · ∇)u− ν∆u+∇p = f

∇ · u = 0.

(1.1)

where u is the fluid velocity, ν is the kinematic viscocity, p is the kinematic (internal) pressure,

and f is the (external) force acting on the fluid. The first equation is derived from Newton’s

second law F = ma. It enforces conservation of momentum for the fluid. For this reason, we

will call this equation the momentum equation. The second equation is the conservation of

mass for the fluid. It is also known within the literature as the incompressibility condition or

the divergence-free condition. We will consider these equations on the n-dimensional torus, Tn

where n = 2, 3. We will also assume that for some s ∈ R and any t ∈ R that

∫
Tn
u(x, s)dx =

∫
Tn
f(x, t)dx = 0.

That way,
∫
Tn u(x, t)dx = 0 for all t ≥ s as a formal calculation shows.

These equations have been the source of intensive study in recent years, particularly in the

three dimensionsal case. The first major breakthrough began with the seminal work of Jean

1
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Leray (1) who used functional analysis techniques to build solutions to these equations in a

weak or distributional sense. His first observation is that the pressure term is related to the

nonlinear term through the incompressibility condition. Indeed, taking the divergence of the

momentum equation, a formal calculation gives us that

−∆p = ∇ · (u · ∇)u−∇ · f.

Thus, if one knows the velocity, then the pressure can be recovered by solving Laplace’s equation.

In this way, it becomes convenient to remove the pressure term from the equations by projecting

onto divergence-free vector fields. This is an extension of the Helmholtz decomposition which

says that for any vector field F ∈ C2,

F = −∇φ+∇×G.

That is, F can be decomposed into the curl of some vector field G (which is divergence-free)

and a gradient of some scalar function φ.

Applying the Leray projection Pσ onto divergence-free vector fields to Equation 1.1 gives

us the projected equation

ut +B(u, u) + νAu = f. (1.2)
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For notational simplicity, we will assume that Pσf = f . Here,

B(u, u) := Pσ(u · ∇)u

Au := Pσ(−∆)u.

This equation determines the evolution of the vector field u within a space of functions, an

infinite-dimensional space.

The Stokes operator A is an unbounded, self-adjoint, positive definite operator with discrete

eigenvalues 0 < µ1 ≤ µ2 ≤ · · · (we avoid the classical use of λp as that notation has a special

designation which will be introduced in the next section). With corresponding eigenfunctions

wj , it is known that for u =
∑

j ajwj ,

Au =
∑
j

µjajwj .

Thus, we may define the fractional Stokes operator as

Aαu :=
∑
j

µαj ajwj

Recall that the Sobolev space Hα(T2) for α ∈ R is a Hilbert space with the norm

‖u‖Hα(T2) :=

∑
n∈Z2

|n|2α|û(n)|2
1/2
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where û(n) is the nth Fourier coefficient of u. Using the operator A, an equivalent defintion of

the Hα(T2) norm is given by

‖u‖Hα(T2) = ‖Aα/2u‖L2(T2).

Remark 1.1.1. The constant µ1 is known as the Poincaré constant. It is well-known that if∫
Tn udx = 0 (the 0th Fourier coeffiecent is 0), then

‖u‖2Hα(Tn) ≤ µ1‖u‖2Hα+1(Tn),

known as the Poincaré inequality.

In this setting, the following theorem was proven:

Theorem 1.1.2 (Leray, Hopf). For each u0 ∈ L2(Tn) with ∇ · u0 = 0 in a distributional

sense and for any f ∈ L2
loc(R, H−1(Tn)), there exists a weak solution u ∈ L∞loc([s,∞), L2(Tn))∩

L2
loc([s,∞), H1(Tn)) of Equation 1.2 on [s,∞) so that u(s) = u0. Moreover, for each t ≥ t0, t0

a.e. in [s,∞) we have the following energy inequality:

‖u(t)‖2L2(Tn) + 2ν

∫ t

t0

‖u(r)‖2H1(Tn)dr ≤ ‖u(t0)‖2L2(Tn) + 2

∫ t

t0

〈f(r), u(r)〉H−1(Tn)dr. (1.3)

We call (weak) solutions satisfying Equation 1.3 Leray-Hopf (weak) solutions.

Definition 1.1.3. A weak solution to Equation 1.1 satisfying Equation 1.3 will be called a

Leray-Hopf (weak) solution.
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In fact, the method of building these weak solutions allows one to prove the existence of

solutions which are continuous at the starting time s. For instance, one could use the method

of Galerkin approximations to prove their existence. We call these solutions Leray solutions.

Definition 1.1.4. A Leray-Hopf weak solution u ∈ L∞loc([s,∞), L2(Tn))∩L2
loc([s,∞), H1(Tn))

to Equation 1.2 on [s,∞) satisfying the energy inequality

‖u(t)‖2L2(Tn) + 2ν

∫ t

s
‖u(r)‖2H1(Tn)dr ≤ ‖u(s)‖2L2(Tn) + 2

∫ t

s
〈f(r), u(r)〉H−1(Tn)dr

for each t ≥ s is called a Leray solution.

In two dimensions, we can say more.

Theorem 1.1.5. For each u0 ∈ L2(T2) satisfying ∇ · u0 = 0 in a distributional sense and for

f ∈ L2
loc(R, H−1(T2)), there exists a unique solution u ∈ Cloc([s,∞), L2(T2)) of Equation 1.2

on [s,∞) so that u(s) = u0. Moreover, for each t ≥ t0, in [s,∞) we have the following energy

equality:

‖u(t)‖2L2(Tn) + 2ν

∫ t

t0

‖u(r)‖2H1(Tn)dr = ‖u(t0)‖2L2(Tn) + 2

∫ t

t0

〈f(r), u(r)〉H−1(Tn)dr.

On the other hand, the analogue in three dimensions has eluded mathematicians. In fact,

no matter how smooth your initial conditions and your forcing term are, we still do not know

that there exist unique solutions to the Navier-Stokes equations (2).
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For more information on the classical theory of Navier-Stokes, see the books (3), (4), or (5),

among others.

Remark 1.1.6. For the remainder of this paper, we will unambiguously omit Tn from our norms

as it is implied. The dimension n will be clear from context. Moreover, we will use the standard

convention

‖u‖p := ‖u‖Lp

Remark 1.1.7. For a Hilbert space H, we donote by 〈·, ·〉H the associated inner product for H.

We will use this same notation for the functional action between a Banach space X and its

dual X∗. That is 〈·, ·〉X : X∗ ×X → F , where F = R or C. In addition we denote by Xw the

associated topological space endowed with the weak topology.

Remark 1.1.8. It is customary to project the spaces Hα when using the projected equations. We

will not make this distinction to more easily track the underlying space in which we are working.

The fact that the evolution occurs in a projected space is coincidentally implied. Moreover, we

will always assume that our initial conditions u0 satisfy ∇ · u0 = 0 in a distributional sense.

Remark 1.1.9. The above theorems have analogous statements without the use of the projected

equations.

1.2 Dynamics of the Navier-Stokes Equations

A dynamical system is a rule which determines the evolution of points in an underlying

space, called the phase space. In the study of dynamical systems, a common question is “what

is the asymptotic or long-term behavior of the system?” Equation 1.2 defines a dynamical
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system on an infinite-dimensional space of functions. Typically, we use the phase space L2 (or

the associated projected space of divergence-free vector fields as mentioned in Remark 1.1.8). If

the force f does not depend on time, we call this dynamical system autonomous. In this case,

the evolution only depends on the starting point, not the starting time. If the force f(t) does

depend on time, we call this dynamical system nonautonomous. For a nonautonomous system,

the evolution depends on both the starting position and the starting time.

Due to Theorem 1.1.5, we may define a solution operator in the two-dimensional case which

carries points in the phase space to other points in the phase space in a well-defined manner.

In the autonomous case, we have a solution semigroup

S(t)u0 := u(t) where u(0) = u0;

in the nonautonomous case, we have a solution process

P (t, s)u0 := u(t) where u(s) := u0.

Remark 1.2.1. Another common framework for studying nonautonomous dynamical is using

cocycles. Cocycles give a clear advantage when studying the evolution in a more complicated

scenarios, such as the study of the Navier-Stokes equations on manifolds or the study of random

dynamical systems. However, for purpose of presenting an introduction to the theory, we

summarize the theory using processes.
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Studying the asymptotic behavior of these solutions amounts to studying the limit

lim
t→∞

S(t)u0

in the autonomous case. This gives rise to the theory of global attractors. In the nonautonomous

case, we have two options. We may study either of the following “natural” limits:

lim
t→∞

P (t, s)u0

lim
s→−∞

P (t, s)u0.

The former limit gives rise to the theory of forward attractors, whereas the latter limit gives

rise to the theory of pullback attractors.

In three dimensions, where uniqueness of solutions remains unsolved, no such well-defined

solution operators on the phase space are known to exist. Even so, the study of the asymptotic

nature of these equations can still be explored, as we will make rigorous later.

1.2.1 Autonomous Dynamical Systems

Let (X, d), a complete metric space, be our phase space. A global attractor A is the

minimal closed subset of X which uniformly attracts all bounded subsets of X. That is, A is

the minimal closed set so that for any bounded set B ⊂ X,

lim
t→∞

d(S(t)B,A ) = 0
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where d is the Hausdorff semi-distance between the two sets. This means that the global

attractor A contains all of the asymptotic information of the dynamical system.

Remark 1.2.2. In the classical theory of global attractors, the global attractor is the unique,

compact, invariant set (S(t)A = A ) which uniformly attracts all bounded subsets of the phase

space. The two definitions are equivalent under some minimal assumptions. However, the

general setting in which we are interested requires weakening the compactness criterion.

There are several ways to prove the existence of a global attractor for your dynamical

system. In the classical theory, you will first prove that your dynamical system has a compact

absorbing set K. Then, the omega-limit set of K is the global attractor.

Definition 1.2.3. A point x is in the omega limit set of the set K provided there exists a

sequence tn →∞ and xn ∈ S(tn)K with xn → x.

A more general method is to first prove that your dynamical system is asymptotically

compact (which is implied by the former method).

Definition 1.2.4. A dynamical system S(t) on X is asymptotically compact provided every

sequence tn →∞ and xn ∈ S(tn)X has a convergent subsequence.

The existence of a global attractor for the 2D Navier-Stokes equations was first proven by

Foias and Prodi (6) and later by Ladyzhenskaya (7) using the language of dynamical systems.

For more information on this theory, see the books (5) and (8).

As was previously pointed out, the existence of a semigroup of solution operators is not

known for the 3D Navier-Stokes equations. Even so, Foias and Temam proved the existence of
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a weak global attractor for Leray-Hopf weak solutions for the 3D Navier-Stokes equations (9).

Specifically, they showed that

{u(0) : u is a complete, bounded, weak solution to Equation 1.2} (1.4)

uniformly attracts all bounded subsets of L2. Yet, they did so without a dynamical framework.

Even so, several frameworks now exist for studying the asymptotic dynamics of a system without

uniqueness of solution. For a comparison between two canonical frameworks, see Caraballo et

al (10). In their paper, they compare the framework of multivalued semiflows used by Melnik

and Valero (11) to the framework of generalized semiflows developed by Ball (12).

A semiflow, or set-valued semigroup is a set-valued function with some inclusion properties

that account for the lack of uniqueness. That is,

S(t)B := {u(t) : u(0) ∈ B}.

This set-valued function tracks the evolution of one set into another, defining a dynamical

system on the power set of X. One can then define and prove the existence of a global attractor

in this setting.

The approach used by Ball involves defining trajectories in the phase space. In a dynamical

system, a trajectory is the set of points “swept out” by the evolution of a point. That is,

{S(t)b : t ≥ 0}
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for any b ∈ X. Ball’s construction allowed for more than one trajectory starting from a single

starting value.

For multivalued semiflows or multivalued semigroups, one often loses individual trajecto-

ries. Therefore, recovering results such as Equation 1.4 become problematic. On the other

hand, Ball’s construction requires certain assumptions about trajectories including the ability

to concatenate them which are still not known for the Leray-Hopf weak solutions to the 3D

Navier-Stokes equations.

In their paper (13), Cheskidov and Foias introduced the concept of an evolutionary system

allowing them to construct a framework based on known results for the Leray-Hopf weak solu-

tions to the autonomous 3D NSEs. Moreover, they proved the existence of the global attractor

in this setting. Cheskidov later added the idea of a trajectory attractor for an evolutionary

system (14) an idea which grew from the nonautonomous theory. We will discuss uniform

attractors further in the next section.

1.2.2 Nonautonomous Dynamical Systems

As stated earlier, evolution in a nonautonomous dynamical system not only depends on the

starting position in the phase space, it also depends on the starting time. Thus, always assuming

the starting time of 0 loses generality. Most techniques for studying these systems have to do

with reducing the nonautonomous system to an autonomous system. Then, the classical theory

will allow one to prove the existence of an attractor for the resultant autonomous system. The

first such example is that of Chepyzhov and Vishik’s use of time symbols (15).



12

Chepyzhov and Vishik introduced the idea of a time symbol encapsulating the time-dependent

portion of the nonautonomous system. For example, if the Navier-Stokes equations have a time-

dependent forcing term f(t), this time-dependent force is the “time symbol” for the equation.

They then observed that switching from one trajectory to another involved shifting the time

symbol. That is, they introduced a one-parameter family of of processes Pσ with σ ∈ Σ. They

then assumed that

Pσ(t+ s, τ + s) = PT (s)σ(t, τ)

for T (s) a translation operator acting on the complete metric space Σ in a one-to-one fashion

(t ≥ τ ∈ R and s ≥ 0). For example, consider

Pσ(t, s)u0 := u(t)

where u(s) := u0 is a solution to the Navier-Stokes equation

ut + νAu+B(u, u) = f(·+ σ)

with σ ∈ R.

This allowed them to define an action on the product space X × Σ which reduces the

nonautonomous system to an autonomous system. Moreover, if they are able to assume that

Σ is compact, or able to be compactified in a reasonable way, then a compact absorbing set in
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the phase space would automatically mean the existence of a global attractor for the resulting

autonomous dynamical system. This attractor is called the uniform attractor.

In their paper, Cheskidov and Lu introduced the concept of a nonautonomous evolutionary

system, adding the concept of symbols. They then applied their framework to the 3D NSEs

and certain reaction-diffusion equations in (16) and (17), respectively, proving the existence of

uniform attractors in both occasions.

Another common framework is that of trajectory attractors. This framework stems from

the observation that if u(·) is a solution to

ut(·) + νAu(·) +B(u(·), u(·)) = f(·),

then u(·+ h) for any h ≥ 0 is a solution to

ut(·) + νAu(·) +B(u(·), u(·)) = f(·+ h),

With the very same time symbols as before, we can define an autonomous dynamical system

on the space of trajectories

{u(·) : u is a solution to Equation 1.2 with force f(·+ h)}

Again, we take the closure of the symbol space to compactify the space. Then, we can investigate

the existence of an attractor in the space of trajectories. This attractor, however, exists in the
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space of trajectories, not in the physical space. Thus, it is natural to project our attractor

into the physical space by evaluating at some fixed time. This gives a deep connection between

the theory of uniform attractors and trajectory attractors. For more information on trajectory

attractors for a wide range of equations, including the 2D and 3D Navier-Stokes equations, see

the book (15).

The uniform attractor, under sufficient conditions is fibered over the symbol space into

“kernel sections,” consisting of complete, bounded solutions evaluated at some fixed time. These

kernel sections, however, do not have classical attraction properties. The attraction is in a

pullback sense, letting the initial time go to minus infinity (18). This leads us to our next

technique for dealing with nonautonomous systems, pullback attractors.

Studying the asymptotic pullback dynamics of a nonautonomous system amounts to study-

ing the following limit

lim
s→−∞

P (t, s)u0,

where t is fixed. Studying the existence of attractors for this system necessitates the use of

a one-parameter family of sets A (t) where t is determined by the “stop time.” The pullback

attractor A (t) is the minimal family of closed sets which uniformly attracts all bounded subsets

of the phase space in a pullback sets. That is, for any bounded set B ⊂ X,

lim
s→−∞

d(P (t, s)B,A (t))→ 0
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The concept of a pullback attractor originated in the work of Crauel, Flandoli, Kloeden, and

Schmalfuss (19), (20) who were studying random dynamical systems. For more information on

pullback attractors, see the books (21), (22), and (23).

Remark 1.2.5. As in the autonomous case, the classical definition of a the pullback attractor

A (t) is the unique invariant family (P (t, s)A (s) = A (t)) of compact sets which uniformly

attracts all bounded subsets of the phase space. As before, under some minimal assumptions,

these two definitions are equivalent. But, in a more general setting, the requirement that the

pullback attractor be compact is too restrictive.

It is worthwhile to note that in the autonomous case, P (t, s) := S(t − s). Thus, sending

s → −∞ is equivalent to sending t − s → ∞ starting from t − s = 0. Thus, the concept of a

pullback attractor accurately extends the autonomous theory. In fact, several concepts extend

from the autonomous theory to this setting. In particular, to prove the existence of a pullback

attractor, you can prove the existence of a compact pullback absorbing set K(t). Then, the

pullback attractor is given by

A (t) =
⋃
B⊂X

B bounded

ω(B, t)

where ω(B, t) is the pullback omega-limit set of B.

Definition 1.2.6. The point x is in the pullback omega-limit set of B, ω(B, t) if and only if

there exists sequences sn → −∞, sn ≤ t and xn ∈ P (t, sn)B so that xn → x.

The second, more general way to prove the existence of a pullback attractor is to prove that

your nonautonomous dynamical system is pullback asymptotically compact.
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Definition 1.2.7. A nonautonomous dynamical system P (t, s) on X is pullback asymptotically

compact if for each sn → −∞, sn ≤ t and xn ∈ P (t, sn)X contains a convergent subsequence.

Remark 1.2.8. As in the case of autonomous dynamical systems without uniqueness, much work

is being done to study the theory of set-valued processes (24), (25). As in the autonomous case,

we define

P (t, s)B := {u(t) : u(s) ∈ B}.

This shares the inability to track the location of individual trajectories with generalized semi-

flows as previously discussed.

1.3 Dissertation Organization

1.3.1 Chapter 2

In Chapter 2, we study the autonomous two-dimensional Navier-Stokes equations with a

singular forcing term f ∈ Hα for α ∈ [−1, 0). The α = 0 case has been thoroughly studied in

the classical literature (3), (5), (4). In this setting, when f ∈ L2, then (Equation 1.1) admits

unique solutions u ∈ C([0, T ], H1) ∩ L∞([0, T ], H2) for all times T ≥ 0. On the other hand,

for many linear parabolic equations, like the heat equation, we find that u ∈ C([0, T ], Hα+2)

as long as u(0) ∈ Hα+2 and f ∈ Hα. In colloquial terms, the heat equation always gains two

derivatives on the force, even with a singular force, such as f ∈ H−1.

This gap between the Navier-Stokes equations, and linear parabolic equations such as the

heat equation was studied by Constantin and Seregin for the Navier-Stokes equations (26)

and later for the Fokker-Plank equations (27). Their analysis involves using the modulus of
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continuity in physical space. They find that with a forcing term f ∈ W−1,q with q > 4, the

solution u remains Hölder continuous with exponent 1 − 4/q. That is, in an L∞ sense, the

function gains 2 − ε derivatives, for any ε ≥ 0 (with “smoother forces” required to reach a

two derivative gain). To further bridge this gap, our analysis uses the technique of Littlewood-

Paley decompositions in Fourier space to show that u remains in H1 locally in time, a gain of

two derivatives on the force f ∈ H−1 = W−1,2. Specifically, we prove the following theorem,

Theorem 2.3.1:

Theorem 1.3.1. Let u be the unique solution to Equation 1.1 with u(0) := u0 ∈ H1. Then,

there exists T := T (u0, f) so that u ∈ L∞([0, t0], H1) for all 0 < t0 < T .

Intervals where u ∈ H1 are known as intervals of regularity for the Navier-Stokes equations.

Using Theorem 2.3.1, one can prove a Leray characterization for the 2D Navier-Stokes equations

with force f ∈ H−1. That is, [0,∞) = ∪j [aj , bj) with u(t) ∈ H1 for all t ∈ [aj , bj). This result

is well-known for the 3D Navier-Stokes equations with a force f ∈ L2.

To complete our study of singular forces, we explore the use of classical techniques in the

intermediate spaces where f ∈ Hα with α ∈ (−1, 0). We show that classical techniques work to

give a global gain of two derivatives. That is, we prove the following theorem, Theorem 2.2.3:

Theorem 1.3.2. Let f ∈ Hα and u(0) := u0 ∈ Hα+2 for some α ∈ (−1, 0). Then, there exists

a solution u(t) to Equation 1.1 so that u ∈ L∞([0,∞), Hα+2).

Both arguments require the use of Littlewood-Paley theory. Thus, we include a short

introduction to this theory at the beginning of Chapter 2.
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1.3.2 Chapter 3

Chapter 3 begins our study of pullback attractors. To begin, we present a framework for

studying nonautonomous dynamical systems without uniqueness called a generalized evolution-

ary system. This framework requires the use of two metrics on your phase space known as the

weak metric and the strong metric. This construction mirrors the two metrics on a bounded

subset of a separable Banach space induced by the norm topology and weak topology, respec-

tively. By construction, we can now examine attraction in either a weak sense, using the weak

metric, or in a strong sense, using the strong metric. This framework differs from that of (13)

and (14) by removing the ability to “shift trajectories.”

After presenting the basic definitions, we prove the following theorem, Theorem 3.1.11:

Theorem 1.3.3. Every generalized evolutionary system possesses a weak pullback attractor

Aw(t). Moreover, if the strong pullback attractor As(t) exists, then As(t)
w

= Aw(t).

We then provide several examples to build the reader’s intuition.

To finish this chapter, we add the assumption of pullback asypmtotic compactness. With

this added assumption, we prove the following theorem, Theorem 3.3.3:

Theorem 1.3.4. If a generalized evolutionary system is pullback asymptotically compact, then

Aw(t) is a strongly compact strong pullback attractor.

That is, the weak pullback attractor already proven to exist must also be the strong pullback

attractor.
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1.3.3 Chapter 4

We begin Chapter 4 by adding additional assumptions to our generalized evolutionary sys-

tem. These are denoted A1, A2, and A3. We also introduce several notions of invariance.

We will show that if the generalized evolutionary system satisfies A1, then Corollary 4.1.4,

Theorem 4.1.6, and Theorem 4.1.8 give us the following result:

Theorem 1.3.5. Let E be a generalized evolutionary system satisfying A1. Then, the weak

pullback attractor is the maximal pullback quasi-invariant and maximal pullback invariant subset

of X. In particular,

Aw(t) = {u(t) : u is a complete, bounded trajectory}

Second, E satisfies the weak tracking property. In addition, if the strong pullback attractor

exists, As(t) = Aw(t).

If we include the assumption that our generalized evolutionary system is pullback asymptot-

ically compact, this theorem is strengthened to the following via Theorem 3.3.3, Theorem 4.1.7,

and Corollary 4.1.9:

Theorem 1.3.6. Let E be a pullback asymptotically compact generalized evolutionary system

satisfying A1. Then, the strong pullback attractor is the maximal pullback quasi-invariant and

maximal pullback invariant subset of X. In particular,

As(t) = {u(t) : u is a complete, bounded trajectory}
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Second, E satisfies the strong tracking property. In addition, we know that As(t) = Aw(t), the

weak pullback attractor.

Pullback asymptotic compactness has proven to be quite powerful. Thus, in the next section,

we study some minimal conditions in which one may prove that their generalized evolutionary

system is pullback asymptotically compact. To this end, we add the assumptions A2 and A3

to our existing assumption A1. We then prove the following theorem, Theorem 4.2.2:

Theorem 1.3.7. Let E be a generalized evolutionary system satisfying A1, A2, and A3. As-

sume, also, that complete, bounded trajectories are strongly continuous. Then, E is pullback

asymptotically compact.

The assumption that complete, bounded trajectories are strongly continuous for the 3D

Navier-Stokes equations remains an open question. As these trajectories hold all of the asymp-

totic information for the Navier-Stokes equations, this is related to the Prodi Conjecture which

asserts that solutions to the 3D Navier-Stokes equations are asymptotically regular.

The rest of Chapter 4 is devoted to studying the relationship between the theory of pullback

attractors, the theory of global attractors (13), (14), and the theory of uniform attractors

(16), (17). In both the autonomous case and nonautonomous case, we begin by reviewing

the previous definitions and major theorems. In the autonomous case, we find the following

theorem, Theorem 4.3.10:
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Theorem 1.3.8. Let E be an evolutionary system. Then, the weak global attractor Aw and the

weak pullback attractor Aw(t) exist, and Aw = Aw(t) for each t ∈ R. Moreover, the strong global

attractor As exists if and only if the strong pullback attractor As(t) exists, and As = As(t).

This theorem shows that the theory of pullback attractors for nonautonomous dynamical

systems without uniqueness accurately extends the classical theory of autonomous dynamical

systems without uniqueness.

The nonautonomous case proves to be much more interesting. For a fixed symbol σ, we find

that the nonautonomous evolutionary system Eσ induces a generalized evolutionary system.

We then find the following inclusion in Corollary 4.3.20

Theorem 1.3.9. Let Eσ be a nonautonomous evolutionary system. Then, the weak uniform

attractor A Σ
w exists. Similarly, for each σ ∈ Σ, the induced generalized evolutionary system,

there exists a weak pullback attractor A σ
w (t). Moreover,

⋃
σ∈Σ

A σ
w (t0)

w

⊆ A Σ
w

for any fixed t0 ∈ R.

The reverse inclusion is untrue. We construct a counterexample using a modified heat

equation with time-dependent viscocity. It is unknown at this time what minimal assumptions

are required for the uniform attractor to be the closed union of pullback attractors. On the

other hand, this is evidence that the uniform attractor may be “too big” when studying the

asymptotic nature of nonautonomous dynamical systems.
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1.3.4 Chapter 5

In Chapter 5, we apply our framework to the Navier-Stokes equations. We work with the

projected equations, Equation 1.2 and a translationally-bounded force. We begin by deriving

the phase space in either dimension by showing that there exists an absorbing ball X for Leray

solutions to either the 2D or 3D Navier-Stokes equations. We then define the generalized

evolutionary system E as

E ([s,∞)) :={u : u is a Leray-Hopf solution of Equation 1.2 on [s,∞)

and u(t) ∈ X for t ∈ [T,∞)},

E ((−∞,∞)) :={u : u is a Leray-Hopf solution of Equation 1.2 on (−∞,∞)

and u(t) ∈ X for t ∈ (−∞,∞)}.

With a little more work, we show that the Navier-Stokes equations satisfy the extra as-

sumptions A1, A2, and A3. This gives us the following theorem, Theorem 5.2.3:

Theorem 1.3.10. The weak pullback attractor for the generalized evolutionary system E of the

2D or 3D Navier-Stokes equations, Aw(t), is the maximal pullback quasi-invariant and maximal

pullback invariant subset of X. Also,

Aw(t) = {u(t) :u is a complete, bounded, Leray-Hopf solution

to the Navier-Stokes equations}.
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This result generalizes the autonomous result first proven by Foias and Temam (Equa-

tion 1.4).

In two dimensions, we can say more as found in Theorem 5.2.4:

Theorem 1.3.11. The generalized evolutionary system E for the 2D Navier-Stokes equations

is pullback asymptotically compact. Thus, E has a strongly compact, strong pullback attractor

As(t) given by

As(t) = {u(t) :u is a complete, bounded, Leray-Hopf solution

to the 2D Navier-Stokes equations}.

In three dimensions, we have a similar result in Theorem 5.2.5.

Theorem 1.3.12. Assume that the generalized evolutionary system E for the 3D Navier-Stokes

equations satisfies the property that complete, bounded, Leray-Hopf solutions are strongly con-

tinuous. Then, E is pullback asymptotically compact. In this case, E has a strongly compact,

strong pullback attractor As(t) given by

As(t) = {u(t) :u is a complete, bounded, Leray-Hopf solution

to the 3D Navier-Stokes equations}.

The extra assumption is necessary because it is not known that complete, bounded, Leray-

Hopf solutions to the 3D Navier-Stokes equations are strongly continuous.
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1.3.5 Chapter 6

A natural question in the study of attractors for dissipative partial differential equations is

what conditions on the force necessitate a trivial attractor. That is, under what conditions on

the force do we find that the attractor A = {z}, a single point. This is closely related to the

question of dimensionality of the attractor. For the Navier-Stokes equations, it has long been

known that they possess a compact global attractor in two dimensions (6). The dimension of

this global attractor is controlled by the Grashof number G =
‖f‖22
ν2λ1

(28), (29). In particular,

when the Grashof number is small enough, the attractor is trivial. For a proof of this fact, see

the book (15), although the argument used goes back to (30). That is, A = {z} where z is the

unique stationary solution to the Stokes system. An analogous result was proven by Chepyzhov

and Vishik using trajectory attractors in three dimensions where the Grashof number is given

by G =
‖f‖22
ν2λ

3/4
1

(15). This result can easily be extended to the theory of weak attractors as

developed in (9), (13), (14).

Now, in the book by Carvalho, Langa, and Robinson (21), they produce a theorem giving

sufficient conditions under which the pullback attractor A (t) for the 2D Navier-Stokes equations

is a single point. They find that if some form of the Grashof number is small enough, then the

pullback attractor is degenerate. That is, if

G(t) :=
1

ν2λ1

(
lim sup
s→−∞

1

t− s

∫ t

s
‖f(r)‖22dr

)1/2
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is small enough, then the pullback attractor A (t) is trivial. We present an analogous result for

the 3D Navier-Stokes equations assuming a translationally bounded force in L2
loc(R, L2). We

show that if a form of the Grashof number is small enough, then the weak pullback attractor

Aw(t) = {v(t)} for a complete, bounded solution v.

To begin, we expand the definition of translationally-boundedness in Chapter 6. The earlier

definition of translationally-boundedness depends on the size of the interval you integrate over.

When the size of the interval is exactly (νµ1)−1, we can express our results in terms of a form

of the Grashof number. We first show that if the force is small enough, then complete, bounded

Leray-Hopf solutions u(t) to the 3D Navier-Stokes equations are strong. By this, we mean that

u ∈ L∞loc(R, H1). Next, we prove that if the force is assumed to be small enough, then the

pullback attractor is, in fact, trivial. That is, we prove the following theorem, Theorem 6.2.6:

Theorem 1.3.13. Let f be translationally bounded in L2
loc(R, L2). Assume that the translationally-

bounded norm of f is sufficiently small, then the weak pullback attractor for Equation 1.2 is a

single point,

Aw(t) = {v(t)}

for some complete, bounded, strong solution to Equation 1.2.

The argument is a modification of Serrin’s argument (31) for the uniqueness of Leray-Hopf

weak solutions on an interval of regularity.
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Finally, we apply this result to the case where the force is small and periodic. In this

scenario, when the force is sufficiently small, we show that there exists a unique, periodic,

strong solution to the 3D Navier-Stokes equations in Theorem 6.2.3.



CHAPTER 2

REGULARITY FOR THE 2D NAVIER-STOKES EQUATIONS WITH A

SINGULAR FORCE

2.1 Littlewood-Paley Decomposition

In this section, we briefly describe the Littlewood-Paley decomposition and the Littlewood-

Paley theorem which are integral to the following arguments. This describes how to relate

Sobolev norms in physical space via a particular breakdown in Fourier space. For more infor-

mation on this theory, see, for example, the book by Chemin (32), among others.

Choose a nonnegative radial function χ ∈ C∞0 (R2) so that

χ(ξ) =


1, |ξ| ≤ 1

2

0, |ξ| > 1.

Let φ(ξ) := χ(λ−1
1 ξ)− χ(ξ). For each q ≥ 0, we let φq(ξ) := φ(λ−1

q ξ). For technical reasons, let

φ−1(ξ) := χ(ξ).

Given a tempered distribution vector field u on T2 and q ≥ 1, an integer, the qth Littlewood-

Paley projection of u is given by

uq(x) := ∆qu(x) :=
∑
k∈Z2

û(k)φq(k)eik·x

27
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where û(k) is the kth Fourier coefficient of u. Note that, by the Littlewood-Paley theorem,

‖u‖Hs ∼

 ∞∑
q=−1

λ2s
q ‖uq‖22

1/2

for each u ∈ Hs and s ∈ R.

2.2 The Hα Case for α ∈ (−1, 0)

In this section, we study the regularity of solutions for the 2D Navier-Stokes equations with

force f ∈ Hα for α ∈ (−1, 0). In this scenario, we can use classical methods including including

energy methods and analyticity methods to prove that the solution u gains two derivatives on

the force, globally.

2.2.1 Estimating the Nonlinear Term

Lemma 2.2.1. Let u ∈ H1 ∩H1−β for β ∈ (0, 1). Then,

‖B(u, u)‖H−β ≤ C‖u‖H1−β‖u‖H1 .

Note that when β = 1, the estimate becomes

‖B(u, u)‖H−1 ≤ C‖u‖2‖u‖H1 .
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This is the classical estimate which is obtained using Hölder’s inequality and the Ladyzhenskaya

inequality. On the other hand, when β = 0, we may use interpolation to say that

‖B(u, u)‖2 ≤ C‖u‖H1‖u‖H1 ≤ C‖u‖1/22 ‖u‖
1/2
H2 ‖u‖H1 .

This is the classical estimate which is obtained using Hölder’s inequality followed by Agmon’s

inequality. Thus, our estimate accurately generalizes the classical estimates.

Proof. Let v ∈ Hβ. We must estimate the integral

∫
T2

u · ∇u · vdx.

To do so, we will use Bony’s paraproduct. Separating each term into it’s Littlewood-Paley

pieces, we apply the necessary cancellations to find that

∣∣∣∣∫
T2

u · ∇u · vdx
∣∣∣∣ ≤ ∑

|p−q|≤2
r<q+1

∫
T2

|up · ∇uq · vr| dx

+
∑
|p−r|≤2
q<r+1

∫
T2

|up · ∇uq · vr| dx

+
∑
|q−r|≤2
p<r+1

∫
T2

|up · ∇uq · vr| dx

=: I + II + III.
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To estimate I, we use Hölder’s inequality followed by Bernstein’s inequality to find that

I ≤
∑
|p−q|≤2
r<p+1

‖up‖2‖∇uq‖2‖vr‖∞ ≤ C‖u‖H1

∑
r<p+1

‖up‖2λr‖vr‖2.

Splitting the derivative λr and applying Cauchy-Schwarz inequality gives us that

I ≤ C‖u‖H1

 ∑
r<p+1

λ2−2β−2ε
r λ2ε

p ‖up‖22

1/2

︸ ︷︷ ︸
=:IA

 ∑
r<p+1

λ2β+2ε
r λ−2ε

p ‖vr‖22

1/2

︸ ︷︷ ︸
=:IB

where ε� 1 is chosen so that β + ε < 1.

For the first sum, I2
A, we see that

I2
A =

∞∑
p=−1

p∑
r=−1

λ2−2β−2ε
r λ2ε

p ‖up‖22

≤ C
∞∑

p=−1

λ2−2β
p ‖up‖22

≤ C‖u‖2H1−β .
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For the second sum, I2
B, we must switch the order of summation as show below:

I2
B =

∞∑
p=−1

p∑
r=−1

λ2β+2ε
r λ−2ε

p ‖vr‖22

=
∞∑

r=−1

∞∑
p=r

λ2β+2ε
r λ−2ε

p ‖vr‖22

≤ C
∞∑

r=−1

λ2β
r ‖vr‖22

≤ C‖v‖2Hβ .

To estimate II, we proceed as with I using Hölder’s inequality followed by Bernstein’s

inequality to give us that

II ≤
∑
|p−r|≤2
q<r+1

‖up‖2‖∇uq‖∞‖vr‖2 ≤ C‖u‖H1

∑
q<r+1

λq‖uq‖2‖vr‖2.

Similarly with I, we split the derivative λq and apply Cauchy-Schwarz to get

II ≤ C‖u‖H1

 ∑
q<r+1

λ2−2β+2ε
q λ−2ε

r ‖uq‖22

1/2

︸ ︷︷ ︸
=:IIA

 ∑
q<r+1

λ2β−2ε
q λ2ε

p ‖vr‖22

1/2

︸ ︷︷ ︸
=:IIB

Switching the order of summation in IIA and proceeding as in I, we find that

II2
A ≤ C‖u‖2H1−β

II2
B ≤ C‖v‖2Hβ .
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Finally, to estimate III, we again use Hölder’s inequality followed by Bernstein’s inequality

to get

III ≤
∑
|q−r|≤2
p<r+1

‖up‖∞‖∇uq‖2‖vr‖2 ≤ C‖u‖H1

∑
p<r+1

λp‖up‖2‖vr‖2.

The rest of the estimates for III proceed exactly as in the case for II.

2.2.2 Gaining One Derivative

In this section, as well as the following section, we make a priori estimates. The calculations

are done on the level of Galerkin approximations. One can then pass to the limit to obtain the

stated bounds for the actual solutions.

Theorem 2.2.2. Let f ∈ Hα and u(0) := u0 ∈ Hα+1 for some α ∈ (−1, 0). Then, there exists

a solution u(t) to Equation 1.2 so that u ∈ L∞([0,∞), Hα+1).

Proof. Taking the inner product of Equation 1.2 with Aα+1u and integrating in space, we find

that

1

2

d

dt
‖u‖2Hα+1 + ν‖u‖2Hα+2 ≤

∫
T2

∣∣B(u, u) ·Aα+1u
∣∣ dx+

∫
T2

∣∣f ·Aα+1u
∣∣ dx

≤ ‖B(u, u)‖Hα‖u‖Hα+2 + ‖f‖Hα‖u‖Hα+2 .

Using Lemma 2.2.1 and Young’s inequality, we find that

1

2

d

dt
‖u‖2Hα+1 + ν‖u‖2Hα+2 ≤ C‖u‖H1‖u‖Hα+1‖u‖Hα+2 + ‖f‖α‖u‖Hα+2 (2.1)

d

dt
‖u‖2Hα+1 + ν‖u‖2Hα+2 ≤

C

ν
‖u‖2H1‖u‖2Hα+1 +

2

ν
‖f‖2α. (2.2)
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Dropping the Hα+2 term, and using Gronwall, we have that for t ≥ t0 ≥ 0,

‖u(t)‖2Hα+1 ≤
(
‖u(t0)‖2Hα+1 +

2

ν
‖f‖2Hα(t− t0)

)
exp

(
C

ν

∫ t

t0

‖u(s)‖2H1ds

)
.

After using the embedding H1 ⊂ Hα+1, this becomes

‖u(t)‖2Hα+1 ≤
(
‖u(t0)‖2H1 +

2

ν
‖f‖2Hα(t− t0)

)
exp

(
C

ν

∫ t

t0

‖u(s)‖2H1ds

)
.

By the energy inequality Equation 1.3, we know that

ν

∫ t

t0

‖u(s)‖2H1ds ≤ ‖u0‖22 +
1

ν
‖f‖H−1(t− t0).

Therefore, for 0 < ε ≤ t, we have that

|{t0 ∈ [t− ε, t] : ‖u(t0)‖H1 ≥M}| ≤
1

M2

(
1

ν
‖u0‖22 +

ε

ν2
‖f‖2H−1

)

Letting

M :=

√
2

ε

(
1

ν
‖u0‖22 +

ε

ν2
‖f‖2

H−1

)
,

we find that

|{t0 ∈ [t− ε, t] : ‖u(t0)‖H1 ≥M}| ≤
ε

2
.
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Therefore, there exists t0 ∈ [t− ε, t] so that

‖u(t0)‖2H1 ≤
2

ε

(
1

ν
‖u0‖22 +

ε

ν2
‖f‖2H−1

)
.

So, the above argument shows us that for t ≥ ε,

‖u(t)‖2Hα+1 ≤
(

2

εν
‖u0‖22 +

2

ν2
‖f‖2H−1 +

2ε

ν
‖f‖2Hα

)
eC0

≤
(

2

εν
‖u0‖2Hα+1 +

2

ν2
‖f‖2Hα +

2ε

ν
‖f‖2Hα

)
eC0

for

C0 := C‖u0‖2Hα+1 +
Cε

ν
‖f‖2Hα .

This gives boundedness of u in Hα+1 for all t ≥ ε for any fixed ε > 0. To show the

boundedness of u in Hα+1 for small t, we go back to equation Equation 2.1. Using interpolation,

we have that

‖u‖H1 ≤ C‖u‖
1

α+2

2 ‖u‖
α+1
α+2

Hα+2 .

Thus, after using interpolation and Young’s inequality on Equation 2.1, we have that

1

2

d

dt
‖u‖2Hα+1 + ν‖u‖2Hα+2 ≤

C

ν2α+3
‖u‖22‖u‖2α+4

Hα+1 +
1

ν
‖f‖2α

Dropping the Hα+2 term, we may use nonlinear Gronwall to say that the Hα+1 norm remains

bounded for small time.
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Combining this short-term bound with the previous long-term bound gives us that u ∈

L∞([0,∞), Hα+1), as required.

2.2.3 Gaining Two Derivatives

We combine the result of the previous section with an analyticity argument to show the

uniform gain of two derivatives. That is, we prove the following theorem:

Theorem 2.2.3. Let f ∈ Hα and u(0) := u0 ∈ Hα+2 for some α ∈ (−1, 0). Then, there exists

a solution u(t) to Equation 1.2 so that u ∈ L∞([0,∞), Hα+2).

To use analyticity arguments, we first need to complexify the spaces Hα as well as the

Navier-Stokes equations themselves. First, the complexified space Hα
C is given by

Hα
C := {u = u1 + iu2 : u1, u2 ∈ Hα}

with the inner product defined via linearity as

〈u1 + iu2, v1 + iv2〉Hα
C

:= 〈u1, v1〉Hα + 〈u2, v2〉Hα + i(〈u2, v1〉Hα − 〈u1, v2〉Hα).

We will let the time t := seiθ. It is known, in this setting, that there exist unique, ana-

lytic solutions to the Galerkin system for complex time t in some neighborhood of the origin.

Moreover, the restriction of these solutions to the real line agree with the usual Galerkin ap-

proximations.
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Proof. To begin, we multiply the complexified Navier-Stokes equations by eiθ, take the inner

product with Aα+1u, and take the real part. This gives us

1

2

d

ds
‖u(seiθ)‖2Hα+1 + ν cos(θ)‖u(seiθ)‖2Hα+2

= Real
[
eiθ(〈B(u, u), Aα+1u〉H−1

C
+ 〈f,Aα+1u〉H−1

C
)
]
.

Estimating the right-hand side, we first see, as in the real case, that

∣∣∣〈f,Aα+1u〉H−1
C

∣∣∣ ≤ ‖f‖Hα‖u‖Hα+2 ≤
1

ν cos(θ)
‖f‖2Hα +

ν cos(θ)

4
‖u‖2Hα+2

Next, we use Lemma 2.2.1 to see that

∣∣∣〈B(u, u), Aα+1u〉H−1
C

∣∣∣ ≤ ‖B(u, u)‖Hα‖u‖Hα+2

≤ C‖u‖2Hα+1‖u‖
2α+3
α+2

Hα+2

≤ C

(ν cos(θ))2α+3
‖u‖2α+6

Hα+1 +
ν cos(θ)

4
‖u‖2Hα+2 .

Thus, we obtain the Riccati-type inequality

d

dt
‖u‖2Hα+1 + ν cos(θ)‖u‖2Hα+2 ≤

2

ν cos(θ)
‖f‖2Hα +

C

(ν cos(θ))2α+3
‖u‖2α+6

Hα+1 .
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This inequality shows us that for some time ‖u(t)‖Hα+1 ≤ M for some fixed M > 0 and

t ≤ T := T (‖u0‖Hα+1 , ν, f, θ). Therefore, the solutions to the complexified Navier-Stokes

equations extend to analytic solutions in a neighborhood D of the origin given by

D := {t = seiθ : 0 < s < T, |θ| < π/2}.

Note that D is symmetric across the real axis, by construction. Also, note that within D,

‖u(t)‖Hα+1 < M .

Fix a compact set K ⊂ D. By Cauchy’s formula with γ a circle in K of radius r < d(K, ∂D),

we have that

du

dt
(t) =

1

2πi

∫
γ

u(z)

(z − t)2
dz

for all t ∈ K. Taking the Hα+1 norm of this equation, we get that

‖ut(t)‖Hα+1 ≤
M

r
.

Within K, we find that

ν‖Au‖Hα ≤ ‖ut‖Hα + ‖B(u, u)‖Hα + ‖f‖Hα (2.3)

≤ µ1‖ut‖Hα+1 + C‖u‖H1‖u‖Hα+1 + ‖f‖Hα

≤ µ1‖ut‖Hα+1 + C‖u‖
1

α+2

2 ‖u‖Hα+1‖u‖
α+1
α+2

Hα+2 + ‖f‖Hα

≤ µ1‖ut‖Hα+1 +
C

να+1
‖u‖2‖u‖α+2

Hα+1 +
ν

2
‖u‖Hα+2 + ‖f‖Hα
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where we used the Poincaré inequality along with Lemma 2.2.1 in the second line; we used

interpolation in the second line; and we used Young’s inequality in the final line.

Moving the Hα+2 terms to the same side of the equation and noting that ‖ut‖Hα+1 is

bounded by analyticity, ‖u‖2 is bounded by the energy inequality (Equation 1.3), and ‖u‖Hα+1

is bounded by Theorem 2.2.2, we now know that ‖u‖Hα+2 is bounded in the compact set K.

Using the uniform boundedness of ‖u‖Hα+1 obtained in Theorem 2.2.2, we can rerun this

argument with the same bounds at each starting point t0 ∈ [0,∞). Thus, ‖u‖Hα+2 is uniformly

bounded in a complex neighborhood of the real axis. In particular, ‖u(t)‖Hα+2 < C < ∞ for

each t ∈ [0,∞).

2.3 The H−1 Case

This section is devoted to proving the following theorem:

Theorem 2.3.1. Let u be the unique solution to Equation 1.1 with u(0) := u0 ∈ H1. Then,

there exists T := T (u0, f) so that u ∈ L∞([0, t0], H1) for all 0 < t0 < T .

The reason analyticity methods from the previous section fails are as follows: Note that

when α = −1, the inequality in Equation 2.3 becomes

ν‖Au‖H−1 ≤ ‖ut‖H−1 + C‖u‖H1‖u‖H2 + ‖f‖H−1

since interpolating between the H1 norm between L2 and Hα+2 fails. We are now unable to

use Young’s inequality to split the H1 and H2 norms to move the ‖u‖H2 terms to the left-hand

side. Thus, we must use another tactic.
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Again, note that in this section, we use the unprojected Navier-Stokes equations so that the

use of harmonic analysis techniques are more easily followed.

Proof. Multiply the first equation in Equation 1.1 with (uq)q := ∆q (∆qu) and integrate in

space. This becomes

1

2

d

dt
‖uq(t)‖22 + νλ2

q‖uq(t)‖22 =

∫
T2

(u · ∇u) · (uq)qdx+

∫
T2

fq · uqdx.

Apply Cauchy-Swartz and Young’s inequality to the second term on the right-hand side. This

gives

1

2

d

dt
‖uq(t)‖22 + νλ2

q‖uq(t)‖22 ≤
∫
T2

u · ∇u · (uq)qdx+
νλ2

q

4
‖uq(t)‖22 +

1

νλ2
q

‖fq‖22.

For the first term on the right-hand side, use Hölder’s inequality.

∫
T2

u · ∇u · (uq)q ≤ C‖u‖r‖u‖H1‖uq‖ρ where
1

r
+

1

ρ
=

1

2
.

Assume that 2 < r <∞. Then, Applying the Sobolev and Bernstein inequalities give us that

1

2

d

dt
‖uq(t)‖22 +

3

4
νλ2

q‖uq(t)‖22 ≤C‖u(t)‖r‖u(t)‖H1‖uq(t)‖ρ +
1

νλ2
q

‖fq‖2

≤C‖u(t)‖2H1λ
(ρ−2)/2ρ
q ‖uq(t)‖2 +

1

νλ2
q

‖fq‖22
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For simplicity of notation, let p ∈ (0, 1) be given by p := (ρ − 2)/2ρ. Then, using Young’s

inequality, we find that

d

dt
‖uq(t)‖22 + νλ2

q‖uq(t)‖22 ≤
C

νλ2−2p
q

‖u(t)‖4H1 +
2

νλ2
q

‖fq‖22.

Next, we apply Duhamel’s principle. This gives

‖uq(t)‖22 ≤ e−νλ
2
qt‖uq(0)‖22 +

2

ν2
λ−4
q ‖fq‖22

[
1− e−νλ2qt

]
(2.4)

+
C

ν

∫ t

0
eνλ

2
q(s−t)λ2p−2

q ‖u(s)‖4H1ds

Multiply this through by λ2
q and sum in q. We find that

‖u(t)‖2H1 ≤ ‖u0‖2H1 +
2

ν2
‖f‖2H−1 +

C

ν

∫ t

0

∑
q

eνλ
2
q(s−t)λ2p

q ‖u(s)‖4H1ds. (2.5)

Remark 2.3.2. It is worthwhile to note that Equation 2.4, obtained via integrating the force

term, can also be obtained using a nonautonomous force. To obtain this, we need f ∈

L∞loc([0,∞), H−1) with a “dominating function in Fourier space.” We mean that there exists

a g ∈ H−1 with

‖fq(t)‖2 ≤ ‖gq‖2

for all t ≥ 0 and q ≥ Q for some finite integer Q ≥ −1.
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Taking a closer look at the final integral, consider the sum

∑
q

eνλ
2
q(s−t)λ2p

q . (2.6)

Fix a constant γ > 0 to be determined later. Then, let Q0 > 1 be chosen so that lnλq ≤ (λq)
γ

for all q ≥ Q0. Then, define

Q(s) := min
{
q ≥ Q0 : eνλ

2
q(s−t) ≤ λ−2p−1

q

}
Λ(s) := λQ(s).

We estimate the integral as follows

∫ t

0

∑
q

eνλ
2
q(s−t)λ2p

q ‖u(s)‖4H1 ≤
∫

[0,t]∩1Q(s)≤Q0︸ ︷︷ ︸
:=I

+

∫
[0,t]∩1Q(s)>Q0︸ ︷︷ ︸

:=II

where 1E is the characteristic function of the set E.

For I, we have that

I ≤
∫ t

0
‖u(s)‖4H1

∑
q≤Q0

eνλ
2
q(s−t)λ2p

q +
∑
q>Q0

λ−2
q

 ds

≤
∫ t

0
‖u(s)‖4H1(Q0λ

2p
Q0

+ 1)ds

≤ C
∫ t

0
‖u(s)‖4H1ds.
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For II, we see that for a fixed s, Equation 2.6 can be estimated by

∑
q≤Q(s)

eνλ
2
q(s−t)λ2p

q +
∑

q>Q(s)

λ−1
q ≤ Q(s)Λ(s)2p + 1.

By the definition of Λ, 2−1Λ satisfies

22p+1Λ−2p−1 ≤ eν2−2Λ2(s−t) ⇐⇒ Λ2 ≤ 8(p+ 1/2)

ν(t− s)
ln Λ.

But, ln Λ ≤ Λγ by definition. Thus,

Λ2−γ ≤ 8(p+ 1/2)

ν(t− s)
.

for γ < 2.

Proceding in much the same way as we did with I, we see that

II ≤
∫ t

0
‖u(s)‖4H1

 ∑
q≤Q(s)

Λ(s)2p +
∑

q>Q(s)

λ−2
q

 ds

≤ C
∫ t

0
‖u(s)‖4H1(Q(s)Λ(s)2p + 1)ds

≤ C
∫ t

0
‖u(s)‖4H1(ln Λ(s)Λ(s)2p + 1)ds

≤ C
∫ t

0

(
1

(ν(t− s))(2p+γ)/(2−γ)
+ 1

)
‖u(s)‖4H1ds.
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Putting these estimates together with Equation 2.5, we have that

‖u(t)‖2Hα ≤ ‖u0‖2Hα+
2

ν2
‖f‖2Hα−2

+
C

ν

∫ t

0

(
1

(ν(t− s))(2p+γ)/(2−γ)
+ 1

)
‖u(s)‖4H1ds.

Next, let p := 1/4 and γ := 1/2. Then, (2p+ γ)/(2− γ) = 2/3. Note that this choice of γ

means that Q0 = 2. This gives us that

‖u(t)‖2H1 ≤ ‖u0‖2H1+
2

ν2
‖f‖2H−1

+
C

ν

∫ t

0

(
(ν(t− s))−2/3 + 1

)
‖u(s)‖4H1ds.

An application of nonlinear Gronwall leads to the desired result.



CHAPTER 3

PULLBACK ATTRACTORS

3.1 Generalized Evolutionary System

3.1.1 Preliminaries

We start with the setup as it first appeared in (13). So, let (X,ds(·, ·)) be a metric space

with a metric ds known as the strong metric on X. Let dw be another metric on X satisfying

the following conditions:

1. X is dw compact.

2. If ds(un, vn)→ 0 as n→∞ for some un, vn ∈ X then dw(un, vn)→ 0 as n→∞.

As justified by property (2), we will call dw the weak metric on X. Denote by A
•

the closure

of the set A ⊆ X in the topology generated by d•. Note that any strongly compact set (ds-

compact) is also weakly compact (dw-compact), and any weakly closed set (dw-closed) is also

strongly closed (ds-closed).

Let C([a, b];X•), where • = s or w, be the space of d•-continuous X-valued functions on

[a, b] endowed with the metric

dC([a,b],X•)(u, v) := sup
t∈[a,b]

d•(u(t), v(t)).

44



45

Let also C([a,∞), X•) be the space of all d•-continuous X-valued functions on [a,∞) endowed

with the metric

dC([a,∞),X•)(u, v) :=
∑
n∈N

1

2n
sup{d•(u(t), v(t)) : a ≤ t ≤ a+ n}

1 + sup{d•(u(t), v(t)) : a ≤ t ≤ a+ n}
.

Let

T := {I ⊂ R : I = [T,∞) for some T ∈ R} ∪ {(−∞,∞)},

and for each I ∈ T , let F (I) denote the set of all X-valued functions on I.

Definition 3.1.1. A map E that associates to each I ∈ T a subset E (I) ⊂ F (I) will be called

a generalized evolutionary system if the following conditions are satisfied:

1. E ([τ,∞)) 6= ∅ for each τ ∈ R.

2. {u(·)|I2 : u(·) ∈ E (I1)} ⊆ E (I2) for each I1, I2 ∈ T with I2 ⊆ I1.

3. E ((−∞,∞)) = {u(·) : u(·)|[T,∞) ∈ E ([T,∞)) ∀T ∈ R}.

We will refer to E (I) as the set of all trajectories on the time interval I. Trajectories in

E ((−∞,∞)) are called complete. Next, for each t ≥ s ∈ R and A ⊆ X, we define the map

P (t, s) : P(X)→P(X),

P (t, s)A := {u(t) : u(s) ∈ A, u ∈ E ([s,∞))}.
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We get, for each t ≥ s ≥ r ∈ R and A ⊆ X

P (t, r)A ⊂ P (t, s)P (s, r)A.

We will also study generalized evolutionary systems endowed with the following properties:

A1 : E ([s,∞)) is compact in C([s,∞), Xw) for each s ∈ R.

A2 : (Energy Inequality) Let X be a set in some Banach space H satisfying the Radon-Riesz

Property (see below) with norm ‖ · ‖H so that ds(x, y) = ‖x− y‖H for each x, y ∈ X, and

assume that dw induces the weak topology on X. Assume that for each ε > 0 and each

s ∈ R there is a δ := δ(ε, s) so that for every u ∈ E ([s,∞)) and t > s ∈ R

‖u(t)‖H ≤ ‖u(t0)‖H + ε

for t0 a.e. in (t− δ, t).

A3 : (Strong Convergence a.e.) Let u, un ∈ E ([s,∞)) be so that un → u in C([s, t], Xw) for

some s ≤ t ∈ R. Then, un(t0)
ds−→ un(t0) for a.e. t0 ∈ [s, t].

Remark 3.1.2. A Banach space H with norm ‖·‖H satisfies the Radon-Riesz property if xn → x

in norm if and only if xn → x weakly and

lim
n→∞

‖xn‖H = ‖x‖H .
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Often, X will be a closed, bounded subset of a separable, reflexive Banach space. By the

Troyanski Renorming Theorem (33), we can assume that our norm makes H a locally uniformly

convex space, at which point the Radon-Riesz property is satisfied.

To see how this relates back to the classical setting, let H be a separable, reflexive Banach

space, which we call the phase space. Let S(·, ·) be a process on H. That is, for each t ≥ s, we

have that S(t, s) : H → H with the following properties:

S(t, s) = S(t, r)S(r, s)

S(t, t) = IdH

for any t ≥ r ≥ s. A trajectory on H is a mapping u : [s,∞) → H so that u(t) = S(t, s)u(s)

for each t ≥ s. A set X ⊆ H will be called absorbing if, for each s ∈ R and B ⊆ H bounded,

there is t0 := t0(B, s) so that for t ≥ t0,

S(t, s)B ⊆ X.

If there exists a closed absorbing ball X, then we call the process S dissipative.

If S is dissipative, and we can ensure that it is dissipative arbitrarily far in the past (that

is, for each s ∈ R, there is a trajectory u : [s,∞)→ X), then studying the asymptotic pullback

dynamics of S on H amounts to studying the asymptotic pullback dynamics of S on X. That

is, using the definition of the pullback attractor Definition 3.1.4, one can show that if X has a

pullback attractor A (t) (by restricting S to X), then A (t) is a pullback attractor for H. Note
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that since H is a separable reflexive Banach space, both the strong and weak topologies on X

are metrizable. We define a generalized evolutionary system on X by

E ([s,∞)) := {u(·) : u(t) = S(t, s)u(s), u(t) ∈ X ∀t ≥ s}.

In particular, this also gives us the following characterization for each t� s ∈ R and A ⊆ X

P (t, s)A = S(t, s)A.

As we will see later, by Theorem 3.1.10 and Theorem 3.1.11 that the weak pullback attractor

exists for E and

Aw(t) = Ωw(X, t) =
⋂
s≤t

⋃
r≤s

S(t, r)X
w

.

Moreover, if we know that A1 holds (that E ([s,∞)) is compact in C([s,∞), Xw) for each s ∈ R),

then we get, using Theorem 4.1.8 that

Aw(t) = {u(t) : u ∈ E ((−∞,∞))}.

Finally, if we also have that A2 and A3 also hold and complete trajectories are strongly contin-

uous E ((−∞,∞)) ⊆ C((−∞,∞), X), then by Corollary 4.2.3, E possesses a strongly compact,

strong pullback attractor As(t). In fact, by Corollary 4.1.3,

As(t) = Aw(t) = {u(t) : u ∈ E ((−∞,∞))}.
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3.1.2 Pullback Attracting Sets, Ω-limits, and Pullback Attractors

Let E be a fixed generalized evolutionary system on a metric space X. For A ⊆ X and

r > 0, denote B•(A, r) := {x ∈ X : d•(x,A) < r}, where

d•(x,A) := inf
a∈A

d•(x, a), • = s,w.

A family of sets A(t) ⊆ X, t ∈ R (uniformly) pullback attracts a set B ⊆ X in the d•-metric

(• =s, w) if for any ε > 0, there exists an s0 := s0(B, ε, t) < t ∈ R so that for s ≤ s0,

P (t, s)B ⊆ B•(A(t), ε).

Definition 3.1.3. A family of sets A(t) ⊆ X for t ∈ R are d•-pullback attracting (• =s, w) if

they pullback attract X in the d•-metric.

Definition 3.1.4. A family of sets A•(t) ⊆ X is the d•-pullback attractor of X if for each t,

A•(t) is d•-closed, d•-pullback attracting and A•(t) is minimal with respect to these properties.

Next, we define the concept of the pullback Ω•-limit.

Definition 3.1.5. For each A ⊆ X and t ∈ R, we define the pullback Ω-limit (• =s, w) of A as

Ω•(A, t) :=
⋂
s≤t

⋃
r≤s

P (t, r)A
•
.

Equivalently, we have that x ∈ Ω•(A, t) if there exist sequences sn → −∞, sn ≤ t, xn ∈

P (t, sn)A so that xn → x in the d•-metric. We now present some basic properties of Ω•.



50

Lemma 3.1.6. Let A ⊆ X and t ∈ R. Then,

1. Ω•(A, t) is d•-closed (• =s, w).

2. Ωs(A, t) ⊆ Ωw(A, t).

3. If Ωw(A, t) is strongly compact and uniformly, strongly, pullback attracts A, then Ωs(A, t) =

Ωw(A, t).

Proof. Part 1 is obvious from the definition. For part 2, let x ∈ Ωs(A, t). Then, there exists

sequences sn ≤ t, sn → −∞ and xn ∈ P (t, sn)A with xn
ds−→ x. But then, xn

dw−−→ x and

x ∈ Ωw(A, t).

Now, suppose that Ωw(A, t) is strongly compact and ds-pullback attracts A. Let x ∈

Ωw(A, t). Then, by definition, there are sequences sn ≤ t, sn → −∞ and xn ∈ P (t, sn)A with

xn
dw−−→ x. Since Ωw(A, t) ds-pullback attracts A, there exists a sequence yn ∈ Ωw(A, t) with

ds(xn, yn)→ 0 as n→∞. Because ds(xn, yn)→ 0, dw(xn, yn)→ 0. Since Ωw(A, t) is compact,

there is some subsequence ynk
ds−→ y for some y ∈ Ωw(A, t). But then, xnk

ds−→ y which means

that xnk
dw−−→ y. Thus, y = x which means that xnk

ds−→ x. That is, x ∈ Ωs(A, t).

Lemma 3.1.7. Let A(t) be a family of d•-closed, d•-pullback attracting sets (• =s, w). Then

Ω•(X, t) ⊆ A(t).

Proof. Let x ∈ Ω•(X, t). Then, there exist sequences sn ≤ t, sn → −∞, and xn ∈ P (t, sn)X

with xn
d•−→ x. Since A(t) is d•-pullback attracting, there exists an ∈ A(t) with d•(xn, an)→ 0

as n→∞. But, xn
d•−→ x which gives us that an

d•−→ x. Since A(t) is d•-closed, x ∈ A(t).

Now, we are ready to show that if the d•-pullback attractor exists, then it is unique.
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Theorem 3.1.8. If the pullback attractor A•(t) exists (• =s, w), then

A•(t) = Ω•(X, t).

Proof. By the above lemmas, Ω•(X, t) ⊆ A•(t). Now, let x ∈ A•(t)\Ω•(X, t). Then, there

exists ε > 0 and s0 ≤ t so that for s ≤ s0,

P (t, s)X ∩B•(x, ε) = ∅. (3.1)

Otherwise, for each n and t− n ≤ 0 there exists sn ≤ t− n with

xn ∈ P (t, sn)X ∩B•(x, 1/n) 6= ∅.

But, then xn
d•−→ x, and x ∈ Ω•(X, t). This is a contradiction. Thus, Equation 3.1 holds. In

this case, A•(t)\B•(x, ε) is a strict subset of A•(t) which is d•-closed d•-pullback attracting.

This contradicts the definition of A•(t).

An immediate consequence of Theorem 3.1.8 and Lemma 3.1.7 is the following:

Corollary 3.1.9. The pullback attractor A•(t) exists if and only if Ω•(X, t) is a d•-pullback

attracting set.

Next, we study the structure of Ωw(A, t) for some A ⊆ X and t ∈ R.
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Theorem 3.1.10. Let A ⊆ X be such that for each t ∈ R and r ≤ t, there is some u ∈ E ([r,∞))

with u(t) ∈ A. Then, Ωw(A, t) is a nonempty, weakly compact set. Moreover, Ωw(A, t) weakly

pullback attracts A.

Proof. Due to the assumptions on A, we have that P (t, r)A 6= ∅. Also, due to the fact that X

is weakly compact, we have that

W (s) :=
⋃
r≤s

P (t, r)A
w

is nonempty and weakly compact for each s ≤ t. Moreover, for s0 ≤ s1 ≤ t, W (s0) ⊂ W (s1).

Thus, by Cantor’s intersection theorem,

Ωw(A, t) =
⋂
s≤t

W (s)

is a nonempty weakly compact set.

To see that Ωw(A, t) weakly pullback attracts A, suppose for contradiction that it doesn’t.

Then, there exists some ε > 0 and a sequence sn → −∞, sn ≤ t with

P (t, sn)A ∩Bw(Ωw(A, t), ε)c 6= ∅.

Therefore,

Kn :=
⋃
r≤sn

P (t, r)A
w

∩Bw(Ωw(A, t), ε)c 6= ∅.
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Passing to a subsequence if necessary and reindexing, we can assume that the sn’s are mono-

tonically decreasing. Thus, we get a decreasing sequence of nonempty weakly compact sets.

Again, by Cantor’s intersection theorem, we have that x ∈ ∩nKn 6= ∅. That is,

x ∈
⋂
sn≤t

⋃
r≤sn

P (t, r)A
w

= Ωw(A, t)

This contradicts the definition of the Kn’s.

Using the above results, we have the following:

Theorem 3.1.11. Every generalized evolutionary system possesses a weak pullback attractor

Aw(t). Moreover, if the strong pullback attractor As(t) exists, then As(t)
w

= Aw(t).

Proof. Due to Theorem 3.1.10, Ωw(X, t) is a non-empty weakly closed, weakly pullback at-

tracting set. Therefore, by Theorems 3.1.9 and 3.1.8, Aw(t) = Ωw(X, t) is the weak pullback

attractor.

Now, suppose the strong pullback attractor As(t) exists. Then, by Theorem 3.1.8, As(t) =

Ωs(X, t). Then, since As(t) strongly pullback attracts X, we have that As(t) must weakly

pullback attract X. If not, there is some ε > 0 and a sequence sn → −∞ with

xn ∈ P (t, sn)X ∩Bw(As(t), ε)
c 6= ∅.

Since As(t) is strongly pullback attracting, there is a sequence an ∈ As(t) with ds(xn, an)→ 0.

But, then dw(xn, an) → 0. Then, for n sufficiently large, xn ∈ Bw(As(t), ε) which contradicts
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the choice of xn. In addition, As(t)
w

is weakly closed and weakly pullback attracting. thus, by

Lemma 3.1.7, Aw(t) = Ωw(X, t) ⊆ As(t)
w

. Finally, by Lemma 3.1.6,

As(t)
w

= Ωs(X, t)
w ⊆ Ωw(X, t) = Aw(t).

3.2 Examples

3.2.1 A Single Trajectory

For our first example, let our generalized evolutionary system on an arbitrary phase space X

consist of a single trajectory u ∈ E ((−∞,∞)) and all of its restrictions, E ([s,∞)) = {u|[s,∞)}.

Then, we have that

P (t, s)X = {u(t)}

is a single point. Therefore, we have that the strong and weak pullback attractors both exist.

Moreover,

As(t) = Aw(t) = {u(t)}.

3.2.2 An Abstract Example on `2(Z)

For our second example, let X be the unit ball in `2(Z). Let the strong metric on `2(Z) be

the metric induced by the norm on `2(Z). That is, given by

ds(x, y) = ‖x− y‖`2(Z) =

√∑
n∈Z

(xn − yn)2.
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In a similar fashion, X with the weak topology is metrizable using the weak metric

dw(x, y) =
∑
k∈Z

1

2|k|
|xk − yk|

1 + |xk − yk|
.

Now, consider the following complete trajectory on X: Let n ∈ Z. Then, let

u(t) :=
(1 + n− t)en + (t− n)en+1

‖(1 + n− t)en + (t− n)en+1‖`2(Z)

for t ∈ [n, n+ 1] and {en} the standard basis vectors in `2(∞). That is, we interpolate between

the basis vectors and normalize onto the boundary of the unit ball. Next, let E ((−∞,∞)) :=

{u(· + r) : r ∈ R}. That is, the above complete trajectory and all of its shifts. As in the

previous example, we complete our definition of a generalized evolutionary system by letting

E ([s,∞)) := {u|[s,∞) : u ∈ E ((−∞,∞))}. As we will see in Section 4.3, this turns E into an

autonomous evolutionary system. Therefore, we find that

P (t, s)X = {u(r) : r ∈ R}.

This is strongly closed but not weakly closed. Thus, we find that

As(t) = {u(r) : r ∈ R} and Aw(t) = As(t)
w

= {u(r) : r ∈ R} ∪ {0}

for each t ∈ R. In particular, the weak and strong pullback attractors are not equal.
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3.2.3 The Heat Equation

For our next example, let X be the unit ball in L2(R). The strong metric on X is the metric

induced by the norm on L2(R). That is, for any f, g ∈ L2(R),

ds(f, g) := ‖f − g‖L2(R) =

(∫
R
|f(x)− g(x)|2dx

)1/2

.

For the weak metric, we first choose any countable dense subset φn for L2(R) for n ∈ N. For

example, one could use wavelets as an orthonormal basis, as is explained in (34). Then, the

weak metric on X is given by

dw(f, g) :=
∑
k∈N

1

2k

|〈f, φk〉L2(R) − 〈g, φk〉L2(R)|
1 + |〈f, φk〉L2(R) − 〈g, φk〉L2(R)|

.

Now, consider the heat equation on X. That is, for some starting time s ∈ R,


ut = uxx

u(s) = f(x)

(3.2)

for some f ∈ X. Then, using the Fourier transform,

f̂(ξ) :=

∫
R
f(x)eix·ξdx,
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we find that a solution to Equation 3.2 is given by

û(ξ, t) = eξ
2(s−t)f̂(ξ). (3.3)

Note that by Plancherel’s theorem, we may work exclusively in Fourier space. Define a gener-

alized evolutionary system on X via

E ([s,∞)) := {u : u is a solution to Equation 3.2}.

We will see that the weak pullback attractor Aw(t) is given by the single point {0} for each t.

On the other hand, the strong pullback attractor As(t) does not exist.

To see this, we first note that for fixed t ∈ R, ‖u(t)‖L2(R) → 0 as s → −∞. This gives us

the candidate weak and strong pullback attractor {0}. In the weak metric, this is the pullback

attractor. On the other hand, by Theorem 3.1.11, if the strong pullback attractor exists, it

must be the case that Aw(t) = As(t)
w

= {0}. So, the only possibility for the strong pullback

attractor is As(t) = {0}. However, we fail to have uniform convergence in the strong metric.

By definition, if {0} was the strong pullback attractor, then, for any ε > 0, there is an s0 ≤ t

with

P (t, s)X ⊆ Bs({0}, ε)
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for each s ≤ s0. So, let ε := 1/2 and let s0 ≤ t be given. Then, consider f ∈ L2(R) with

‖f‖L2(R) = 1 and supp(f̂) ⊆ {ξ : 2j−1 ≤ |ξ| ≤ 2j+1} for some j ∈ Z to be determined later.

Then, we see that

‖u(ξ, t)‖2L2(R) =

∫
R
e2ξ2(s0−t)f̂(ξ)2dξ

=

∫
2j−1≤|ξ|≤2j+1

exp(2ξ2(s0 − t))f̂(ξ)2dξ

≥ exp(2 · 22j−2(s0 − t))
∫

2j−1≤|ξ|≤2j+1

f̂(ξ)2dξ

= exp(22j−1(s0 − t))‖f‖2L2(R)

= exp(22j−1(s0 − t)).

Therefore, we find that

‖u(ξ, t)‖L2(R) ≥ exp(22j−2(s0 − t)).

This is greater than or equal to ε := 1/2 provided that

j ≤ 1

2

(
log2

(
ln(2)

t− s0

)
+ 2

)
.

Therefore, the convergence to 0 is not uniform, and no strong pullback attractor exists.
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3.2.4 A Phase Space that is not Weakly Compact

Finally, a simple example showing the importance of the compactness of X in the weak

topology. Let X := R with the weak and strong metrics both given by ds(x, y) := dw(x, y) :=

|x− y| for any x, y ∈ R. For each s ∈ R, define

E ([s,∞)) := {u(t) := t− s}.

Then, we have that for some t ∈ R and some s ≤ t

P (t, s)X = {u(t) : u(s) ∈ X,u ∈ E ([s,∞))} = {t− s}.

But, as s → −∞, the limit does not exist. Thus, the weak and strong pullback attractors do

not exist.

3.3 Existence of a Strong Pullback Attractor

Definition 3.3.1. A generalized evolutionary system is pullback asymptotically compact if for

any t ∈ R, sn → −∞ with sn ≤ t, and any xn ∈ P (t, sn)X, the sequence {xn} is relatively

strongly compact.

Theorem 3.3.2. Let E be pullback asymptotically compact. Let A ⊆ X be so that for each

t ∈ R and r ≤ t, there is some u ∈ E ([r,∞)) with u(t) ∈ A. Then, Ωs(A, t) is a nonempty

strongly compact set which strongly pullback attracts A. Moreover, Ωs(A, t) = Ωw(A, t).
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Proof. By Theorem 3.1.8, our assumptions on A imply that Ωw(A, t) 6= ∅. We will see that

Ωw(A, t) strongly pullback attracts A. Suppose it does not. Then, there is some ε > 0 and a

sequence sn → −∞ with

xn ∈ P (t, sn)A ∩Bs(Ωw(A, t), ε)c 6= ∅.

Since X is pullback asymptotically compact, this sequence has a convergent subsequence. After

passing to a subsequence and dropping a subindex, we have that xn
ds−→ x. But then, xn

dw−−→ x.

Therefore, by the equivalent definition of Ωw(A, t), x ∈ Ωw(A, t). However, for large enough n,

we must then have xn ∈ Bs(Ωw(A, t), ε)c which contradicts our choice of xn.

By Lemma 3.1.6, Ωs(A, t) ⊆ Ωw(A, t). For the other inclusion, let x ∈ Ωw(A, t). By the

equivalent definition of Ωw(A, t), there are sequences sn → −∞ with sn ≤ t and xn ∈ P (t, sn)A

so that xn
dw−−→ x. By pullback asymptotic compactness, there is a subsequence {xnk} with

xnk
ds−→ y for some y ∈ X. But then, xnk

dw−−→ y which gives us that x = y and thus, xn
ds−→ x.

That is, x ∈ Ωs(A, t) and Ωs(A, t) = Ωw(A, t).

Finally, we establish the strong compactness of Ωs(A, t). So, let {xn} be any sequence in

Ωs(A, t). By the equivalent definition of Ωs(A, t), there is a corresponding sequence {snk} for

each xn with snk → −∞, snk ≤ t, and xnk ∈ P (t, snk)A so that xnk
ds−→ xn. Letting yn, xn be the

diagonals of these families, we have that

ds(yn, xn)→ 0 as n→∞.
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By pullback asymptotic compactness, {yn} is relatively strongly compact. Hence, {xn} is also

relatively strongly compact. Since Ωs(A, t) is closed, the limit of this subsequence lies in Ωs(A, t)

giving us that Ωs(A, t) is compact.

Using this result, we have the following existence result for strong pullback attractors.

Theorem 3.3.3. If a generalized evolutionary system E is pullback asymptotically compact,

then Aw(t) is a strongly compact strong pullback attractor.

Proof. By Theorem 3.3.2, Ωs(X, t) is strongly compact strong pullback attracting set with

Ωs(X, t) = Ωw(X, t) = Aw(t), the weak pullback attractor. Therefore, by Theorem 3.1.8 and

Corollary 3.1.9, the strong pullback attractor As(t) exists and As(t) = Ωs(X, t) = Aw(t).



CHAPTER 4

THE STRUCTURE OF PULLBACK ATTRACTORS

4.1 Invariance and Tracking Properties

Now, we assume that E satisfies A1. That is,

A1: E ([s,∞)) is compact in C([s,∞), Xw) for each s ∈ R.

Moreover, we introduce the following variation of the mapping P : for A ⊆ X and s ≤ t ∈ R

P̃ (t, s)A := {u(t) : u(s) ∈ A, u ∈ E ((−∞,∞))}.

Definition 4.1.1. We say that a family of sets B(t) ⊆ X is pullback semi-invariant if for each

s ≤ t ∈ R,

P̃ (t, s)B(s) ⊆ B(t).

We say that B(t) is pullback invariant if for s ≤ t ∈ R,

P̃ (t, s)B(s) = B(t).

We say that B(t) is pullback quasi-invariant if for each b ∈ B(t), there is some complete

trajectory u ∈ E ((−∞,∞)) with u(t) = b and u(s) ∈ B(s) for each s ≤ t.

62
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Note that if B(t) is pullback quasi-invariant, then for each s ≤ t,

B(t) ⊆ P̃ (t, s)B(s) ⊆ P (t, s)B(s). (4.1)

Therefore, if B(t) is pullback quasi-invariant and pullback semi-invariant, then B(t) is pullback

invariant.

Theorem 4.1.2. Let E be a generalized evolutionary system satisfying A1. Then, Ωw(A, t) is

pullback quasi-invariant for each A ⊆ X.

Proof. Let x ∈ Ωw(A, t). Then, there are sequences sn → −∞ with sn ≤ t and xn ∈ P (t, sn)A

so that xn
dw−−→ x. Note that by passing to a subsequence, we can assume without loss of

generality that sn is a monotonically decreasing sequence. Since xn ∈ P (t, sn)A, there is

some un ∈ E ([sn,∞)) with xn = un(t), un(sn) ∈ A. Using A1, E ([sn,∞)) is compact in

C([sn,∞), Xw). Moreover, by the definition of E ,

{u|[s1,∞) : u ∈ E ([sn,∞))} ⊆ E ([s1,∞)).

Thus, using compactness on {un|[s1,∞)}, we can pass to a subsequence and drop a subindex

obtaining u1 ∈ E ([sn,∞)) so that

un|[s1,∞) → u1 in C([s1,∞), Xw).
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Repeating the argument above with our subsequence, we can find another subsequence which,

after dropping another subindex, gives us some u2 ∈ E ([s2,∞)) with

un|[s2,∞) → u2 in C([s2,∞), Xw).

Note that, by construction, u2|[s1,∞) = u1. Continuing, inductively, we get uk ∈ E ([sk,∞))

with

un|[sk,∞) → uk in C([sk,∞), Xw).

and uk|[sk−1,∞) = uk−1. A standard diagonalization process gives us some subsequence of un

and u ∈ E ((−∞,∞)) so that u|[−T,∞) ∈ E ([−T,∞)) and un → u in C([−T,∞), Xw) for any

T > 0. That is, u ∈ E ((−∞,∞)), by definition.

Note that u(t) = x, by construction. Now, let s ≤ t. Then, un(s)
dw−−→ u(s). By definition,

since un(sn) ∈ A, we then get that un(s) ∈ P (s, sn)A for sn ≤ s (n sufficiently large). Hence,

u(s) ∈ Ωw(A, s) and Ωw(A, t) is pullback quasi-invariant.

This characterization of Ωw(A, t) gives us the following important consequences.

Corollary 4.1.3. Let E be a generalized evolutionary system satisfying A1. Let A ⊆ X be such

that Ωw(A, t) ⊆ A for each t ∈ R. Then, Ωw(A, t) = Ωs(A, t).

Proof. By Theorem 4.1.2, we have that Ωw(A, t) is pullback quasi-invariant. Thus, by Equa-

tion 4.1, we have that Ωw(A, t) ⊆ P (t, s)Ωw(A, s) for each s ≤ t. By assumption, Ωw(A, s) ⊆ A,
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thus Ωw(A, t) ⊆ P (t, s)A for each s ≤ t. Therefore, Ωw(A, t) ⊆ Ωs(A, t). On the other hand,

by Lemma 3.1.6, Ωs(A, t) ⊆ Ωw(A, t). That is, Ωw(A, t) = Ωs(A, t).

The following result is a direct result of Corollary 4.1.3 and Theorem 3.1.8.

Corollary 4.1.4. Let E be a generalized evolutionary system satisfying A1. Then, if the strong

pullback attractor As(t) exists, As(t) = Aw(t), the weak pullback attractor.

In fact, we get a new characterization of pullback invariance for a weakly closed set A.

Theorem 4.1.5. Let E be a generalized evolutionary system satisfying A1. Then, for a family

of weakly closed subsets B(t) ⊆ X, B(t) is pullback invariant if and only if B(t) is pullback

semi-invariant and pullback quasi-invariant.

Proof. If B(t) is pullback semi-invariant and pullback quasi-invariant, then by the definition of

pullback semi-invariant and Equation 4.1, B(t) is pullback invariant.

For the other direction, assume B(t) is pullback invariant. Then, we have that B(t) is

clearly pullback semi-invariant. To see pullback quasi-invariance, let b ∈ B(t). Then, by

pullback invariance, we can construct a monotonically decreasing sequence sn → −∞ and find

un ∈ E ([sn,∞)) with un(sn) ∈ B(sn) and un(t) = b. As in Theorem 4.1.2, we can find a

subsequence which, after dropping a subindex, is so that un → u for some u ∈ E ((−∞,∞)) in

the sense of C([−T,∞), Xw) for each T > 0. Moreover, u(t) = b and u(s) ∈ B(s) for each s ≤ t

since each B(s) is weakly closed. Therefore, B(t) is pullback quasi-invariant.
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Let I (t) be a family of subsets of X given by

I (t) := {u(t) : u ∈ E ((−∞,∞))}.

Then, I (t) is both pullback semi-invariant and pullback quasi-invariant. Moreover, I (t) con-

tains every pullback quasi-invariant and every pullback invariant set. Thus, by Theorem 4.1.2,

Ωw(A, t) ⊆ I (t)

for each t ∈ R and each A ⊆ X.

Now, we will show that Ωw(A, t) contains all the asymptotic behavior (as the initial time

goes to −∞) of every trajectory starting in A, provided A1 holds.

Theorem 4.1.6 (Weak pullback tracking property). Let E be a generalized evolutionary system

satisfying A1, and let A ⊆ X. Then, for each ε > 0 and each t ∈ R, there is some s0 := s0(ε, t) ≤

t so that for s′ < s0 and u ∈ E ([s′,∞)) with u(s′) ∈ A satisfies

dC([s′,∞),Xw)(u, v) < ε

for some v ∈ E ((−∞,∞)) with v(s) ∈ Ωw(A, s) for each s ≤ t.
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Proof. For contradiction, suppose not. Then, there exists ε > 0 and sequences sn ≤ t with

sn → −∞, un ∈ E ([sn,∞)) with the property that un(sn) ∈ A and

dC([sn,∞),Xw)(un, v) ≥ ε (4.2)

for each n and each v ∈ E ((−∞,∞)) with v(s) ∈ Ωw(A, s) for s ≤ t. As in the proof of

Theorem 4.1.2, we find a u ∈ E ((−∞,∞)) and a subsequence which after dropping the subindex

can be written as un with un → u in C([−T,∞), Xw) for each T > 0. In particular, u(s) ∈

Ωw(A, s) for each s ≤ t. In particular, for large enough n, dC([sn,∞),Xw)(un, u) < ε which

contradicts Equation 4.2.

Theorem 4.1.7 (Strong pullback tracking property). Let E be a pullback asymptotically com-

pact generalized evolutionary system satisfying A1 and let A ⊆ X. Then, for each ε > 0, t ∈ R,

and T > 0, there is some s0 := s0(ε, t, T ) ≤ t so that for s′ < s0 and each u ∈ E ([s′,∞)) with

u(s′) ∈ A, we have

ds(u(ŝ), v(ŝ)) < ε

for each ŝ ∈ [s′, s′ + T ] and some v ∈ E ((−∞,∞)) so that v(s) ∈ Ωs(A, s) for each s ≤ t.

Proof. Again, suppose not. Then, there is some ε > 0, T > 0, and sequences sn ≤ t with

sn → −∞, un ∈ E ([sn,∞)) so that un(sn) ∈ A and

sup
ŝ∈[sn,sn+T ]

ds(un(ŝ), v(ŝ)) ≥ ε (4.3)
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for each n and each v ∈ E ((−∞,∞)) with v(s) ∈ Ωs(A, s) for each s ≤ t.

By Theorem 4.1.6, there exists a sequence vn ∈ E ((−∞,∞)) with vn(s) ∈ Ωw(A, s) for s ≤ t

so that

lim
n→∞

sup
ŝ∈[sn,sn+T ]

dw(un(ŝ), vn(ŝ)) = 0. (4.4)

Using the pullback asymptotic compactness of E we get that Ωs(A, t
′) = Ωw(A, t′) for all t′ ∈ R.

Then, by Equation 4.3, there is a sequence ŝn ∈ [sn, sn + T ] so that

ds(un(ŝn), vn(ŝn)) ≥ ε/2. (4.5)

Again, using the pullback asymptotic compactness of E , the sequences {un(ŝn)} and {vn(ŝn)}

have convergent subsequences. So, passing to a subsequence and dropping a subindex, we have

that un(ŝn)
ds−→ x, vn(ŝn)

ds−→ y for some x, y ∈ X. By Equation 4.4, x = y contradicting

Equation 4.5.

Next, we use the above tracking properties to show that the weak pullback attractor Aw(t) =

I (t) if the generalized evolutionary system E satisfies A1.

Theorem 4.1.8. Let E be a generalized evolutionary system satisfying A1. Then, the weak

pullback attractor Aw(t) = I (t), and Aw(t) is the maximal pullback quasi-invariant and max-

imal pullback invariant subset of X. Moreover, for each ε > 0 and t ∈ R there is some

s0 := s0(ε, t) ≤ t so that for s′ < s0 and every trajectory u ∈ E ([s′,∞)) has

dC([s′,∞),Xw)(u, v) < ε



69

for some complete trajectory v ∈ E ((−∞,∞)).

Proof. Since Aw(t) = Ωw(X, t) and Ωw(X, t) is pullback quasi-invariant by Theorem 4.1.2, we

have by Equation 4.1 that Aw(t) ⊆ I (t). For the other inclusion, let u(t) ∈ I (t). Suppose

u(t) 6∈ Aw(t). Then, since Aw(t) is weakly closed, there is some ε > 0 and Bw(u(t), ε) so that

Aw(t)∩Bw(u(t), ε) = ∅. By the weak pullback tracking property on Aw(t) = Ωw(X, t), there is

some s′ so that for any û ∈ E ([s′,∞)),

dC([s′,∞),Xw)(û, v) < ε

for some v ∈ E ((−∞,∞)) with v(s) ∈ Ωw(X, s) for each s ≤ t. In particular, u ∈ E ([s′,∞))

for each s′ < t. Thus, there is some v ∈ E ((−∞,∞)) so that v(t) ∈ Ωw(X, t) and

dw(u(t), v(t)) ≤ dC([s′,∞),Xw)(u, v) < ε.

This contradicts that Aw(t) ∩ Bw(u(t), ε) = ∅. The rest of the theorem follows from Theo-

rem 4.1.6.

Putting together this result as well as Theorem 3.3.3 and Theorem 4.1.7, we have the

following corollary.

Corollary 4.1.9. Let E be a pullback asymptotically compact generalized evolutionary system

satisfying A1. Then, the strong pullback attractor As(t) = I (t) and As(t) is the maximal

pullback invariant and maximal pullback quasi-invariant set. Moreover, for each ε > 0, t ∈ R,



70

and T > 0, there is some s0 := s0(ε, t, T ) ≤ t so that for s′ < s0, every trajectory u ∈ E ([s′,∞))

satisfies

ds(u(s), v(s)) < ε

for each s ∈ [s′, s′ + T ] and some complete trajectory v ∈ E ((−∞,∞)).

4.2 Energy Inequality

In this section, we assume that our generalized evolutionary system satisfies properties A2

and A3. That is, for A2, we let X be a set in some Banach space H satisfying the Radon-Riesz

Property with norm ‖ · ‖H so that ds(x, y) = ‖x − y‖H for each x, y ∈ X, and assume that

dw induces the weak topology on X. Assume that for each ε > 0 and each s ∈ R there is a

δ := δ(ε, s) so that for every u ∈ E ([s,∞)) and t > s ∈ R that

‖u(t)‖H ≤ ‖u(t0)‖H + ε

for t0 a.e. in (t− δ, t). For A3 we assume that if u, un ∈ E ([s,∞)) with un → u in C([s, t], Xw)

for some s ≤ t ∈ R, then, un(t0)
ds−→ un(t0) for a.e. t0 ∈ [s, t].

Theorem 4.2.1. Let E be a generalized evolutionary system satisfying A2 and A3. Let un ∈

E ([s,∞)) be so that un → u in C([s, t], Xw) for some u ∈ E ([s,∞)). If u(t) is strongly

continuous at some t∗ ∈ (s, t), then un(t∗)
ds−→ u(t∗).
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Proof. By A3, there is a set E ⊂ [s, t] of measure zero so that un(t0)
ds−→ u(t0) on [s, t]\E. Let

ε > 0. By the energy inequality A2 and the strong continuity of u(t), there is some t0 ∈ [s, t∗)\E

so that

‖un(t∗)‖H ≤ ‖un(t0)‖H + ε/2, ‖u(t0)‖H ≤ ‖u(t∗)‖H + ε/2,

for each n. Taking the upper limit, we then have that

lim sup
n→∞

‖un(t∗)‖H ≤ lim sup
n→∞

‖un(t0)‖H + ε/2 = ‖u(t0)‖H + ε/2 ≤ ‖u(t∗)‖H + ε.

Letting ε→ 0, we have that

lim sup
n→∞

‖un(t∗)‖H ≤ ‖u(t∗)‖H .

Since un(t∗)
dw−−→ u(t∗), by assumption, we know that lim infn→∞ ‖un(t∗)‖H ≥ ‖u(t∗)‖H . Thus,

limn→∞ ‖un(t∗)‖H = ‖u(t∗)‖H , and, using the Radon-Riesz property, we have that un(t∗)
ds−→

u(t∗).

Theorem 4.2.2. Let E be a generalized evolutionary system satisfying A1, A2, and A3. If

E ((−∞,∞)) ⊆ C((−∞,∞), Xs), then E is pullback asymptotically compact.

Proof. Let sn → −∞, sn ≤ t for some t ∈ R and xn ∈ P (t, sn)X. Since X is weakly compact,

we can pass to a subsequence and drop a subindex to assume that xn
dw−−→ x for some x ∈ X.

Next, since xn ∈ P (t, sn)X, there is some un ∈ E ([sn,∞)) with un(t) = xn for each n. Using

A1 and the usual diagonalization process, we can pass to a subsequence and drop a subindex
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to find that un → u in C((−∞,∞), Xw) for some u ∈ E ((−∞,∞)) ⊆ C((−∞,∞), Xs). Since

u is strongly continuous at t, Theorem 4.2.1 implies that un(t) = xn
ds−→ x = u(t). Therefore,

E is pullback asymptotically compact.

Together with Theorem 3.3.3, we have the following:

Corollary 4.2.3. let E be a generalized evolutionary system satisfying A1, A2, and A3. If

every complete trajectory is strongly continuous, then E possesses a strongly compact, strong

pullback attractor As(t).

In fact, following the proofs of Theorem 3.3.2 and Theorem 4.2.2, we have the following

generalization.

Theorem 4.2.4. Let E be a generalized evolutionary system satisfying A1, A2, and A3. Let

A ⊆ X be such that for each s ∈ R there exists some u ∈ E ([s,∞)) with u(t) ∈ A. Assume

that u is strongly continuous at t for each u ∈ E ((−∞,∞)) with u(t) ∈ Ωw(A, t). Then,

Ωw(A, t) is a nonempty, strongly compact set that strongly pullback attracts A. Moreover,

Ωs(A, t) = Ωw(A, t).

4.3 Pullback Attractors for Evolutionary Systems

4.3.1 Autonomous Case

We will begin with the definitions and major results for autonomous evolutionary systems

as given in (14), (13). Note that X has the same structure as it had in Section 3.1. That is, X

is endowed with two metrics ds known as the strong metric and dw known as the weak metric

so that X is dw-compact and every ds-convergent sequence is also dw-convergent.
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Definition 4.3.1. (14) A map E that associates to each I ∈ T a subset E (I) ⊆ F (I) will be

called an evolutionary system if the following conditions are satisfied:

1. E ([0,∞)) 6= ∅.

2. E (I + s) = {u(·) : u(·+ s) ∈ E (I)} for all s ∈ R.

3. {u(·)|I2 : u(·) ∈ E (I1)} ⊆ E (I2) for all pairs I1, I2 ∈ T , so that I2 ⊆ I1.

4. E ((−∞,∞)) = {u(·) : u(·)|[T,∞) ∈ E ([T,∞))∀T ∈ R}.

As with a generalized evolutionary system, E (I) is referred to as the set of all trajectories

on the time interval I. Trajectories in E ((−∞,∞)) are known as complete. Let P(X) be the

set of all subsets of X. For each t ≥ 0, the map

R(t) : P(X)→P(X)

is defined by

R(t)A := {u(t) : u(0) ∈ A, u ∈ E ([0,∞))} for A ⊆ X.

By the definitions of E and R(t), R has the following property for each A ⊆ X, t, s ≥ 0,

R(t+ s)A ⊆ R(t)R(s)A.

Definition 4.3.2. (14) A set A• ⊆ X is a d•-global attractor (• = s or w) if A• is a minimal

set which is
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1. d•-closed.

2. d•-attracting: for any B ⊆ X and any ε > 0, there is a t0 := t0(B, ε) so that

R(t)B ⊆ B•(A•, ε) := {u : inf
x∈A•

d•(u, x) < ε} for all t ≥ t0.

Definition 4.3.3. (14) The ω•-limit (• = s or w) of a set A ⊆ X is

ω•(A) :=
⋂
T≥0

⋃
t≥T

R(t)A
•
.

Equivalently, x ∈ ω•(A) if there exist sequences tn →∞ as n→∞ and xn ∈ R(tn)A, such

that xn
d•−→ x as n→∞.

To extend the notion of invariance from a semiflow to an evolutionary system, the following

mapping is used for A ⊆ X and t ∈ R:

R̃(t)A := {u(t) : u(0) ∈ A, u ∈ E ((−∞,∞))}.

Definition 4.3.4. (14) A set A ⊆ X is positively invariant if for each t ≥ 0,

R̃(t)A ⊆ A.

We say that A is invariant if for each t ≥ 0,

R̃(t)A = A.
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A is quasi-invariant if for every a ∈ A, there exists a complete trajectory u ∈ E ((−∞,∞)) with

u(0) = a and u(t) ∈ A for all t ∈ R.

Definition 4.3.5. (14) The evolutionary system E is asymptotically compact if for any tk →∞

and any xk ∈ R(tk)X, the sequence {xk} is relatively strongly compact.

Here are other assumptions that are imposed on E .

B1 : E ([0,∞)) is a compact set in C([0,∞), Xw).

B2 : Assume that X is a set in some Banach space H satisfying the Radon-Riesz property

with the norm denoted by ‖ · ‖H , so that ds(x, y) = ‖x− y‖H for x, y ∈ X and dw induces

the weak topology on X. Assume also that for any ε > 0, there exists δ := δ(ε), such that

for every u ∈ E ([0,∞)) and t > 0,

‖u(t)‖H ≤ ‖u(t0)‖H + ε,

for t0 a.e. in (t− δ, t).

B3 : Let u, un ∈ E (([0,∞)), be so that un → u in C([0, T ], Xw) for some T > 0. Then,

un(t)→ u(t) strongly a.e. in [0, T ].

Theorem 4.3.6. (14) Let E be an evolutionary system. Then,

1. If the d•-global attractor A• exists, then A• = ω•(X).

2. The weak global attractor Aw exists.

Furthermore, if E satisfies B1, then
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3. Aw = ωw(X) = ωs(X) = {u0 : u0 = u(0) for some u ∈ E ((−∞,∞))}.

4. Aw is the maximal invariant and maximal quasi-invariant set.

5. (Weak uniform tracking property) For any ε > 0, there exists a t0 := t0(ε), so that for any

t > t0, every trajectory u ∈ E ([0,∞)) satisfies dC([t,∞),Xw)(u, v) < ε, for some complete

trajectory v ∈ E ((−∞,∞)).

Theorem 4.3.7. (14) Let E be an asymptotically compact evolutionary system. Then,

1. The strong global attractor As exists, it is strongly compact, and As = Aw.

Furthermore, if E satisfies B1, then

2. (Strong uniform tracking property) for any ε > 0 and T > 0, there exists t0 := t0(E , T ),

so that for any t∗ > t0, every trajectory u ∈ E ([0,∞)) satisfies ds(u(t), v(t)) < ε, for all

t ∈ [t∗, t∗ + T ], for some complete trajectory v ∈ E ((−∞,∞)).

Theorem 4.3.8. (14) Let E be an evolutionary system satisfying B1, B2, and B3 and so that

every complete trajectory is strongly continuous. Then, E is asymptotically compact.

Now, we consider the existence of the pullback attractor in the context of an evolutionary

system. Note that every evolutionary system is also a generalized evolutionary system. In this

case, we have the following relationship for the set functions P and R: Let s ≤ t ∈ R, and let

A ⊆ X, then

P (t, s)A = P (t− s, 0)A = R(t− s)A.

The following results can also be easily verified:
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1. A set A is d•-attracting if and only if the family of sets A(t) := A for all t ∈ R is

d•-pullback attracting.

2. E is asymptotically compact if and only if E is pullback asymptotically compact.

3. E satisfies B1 if and only if E satisfies A1.

4. E satisfies B2 if and only if E satisfies A2.

5. E satisfies B3 if and only if E satisfies A3.

Moreover, for B ⊆ X and B(t) := B for all t ∈ R, we have that the following invariance

relations:

6. B is positively invariant if and only if B(t) is pullback semi-invariant.

7. B is invariant if and only if B(t) is pullback invariant.

8. If B is quasi-invariant, then B(t) is pullback quasi-invariant.

This gives us the following characterization of the ω•-limit and Ω•-limit sets.

Theorem 4.3.9. Let E be an evolutionary system. Let t ∈ R and A ⊆ X then,

Ω•(A, t) = ω•(A) (• = s,w).

Proof. Let x ∈ Ω•(A, t). Then, there exist sequences sn → −∞, sn ≤ t, and xn ∈ P (t, sn)A so

that xn
d•−→ x. Then, (t − sn) → ∞ for (t − sn) ≥ 0, and xn ∈ P (t, sn)A = P (t − sn, 0)A =

R(t− sn)A. That is, x ∈ ω•(A).
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Now, let x ∈ ω•(A). Then, there exist sequences tn →∞, tn ≥ 0, and xn ∈ R(tn)A so that

xn
d•−→ x. But, tn = t− (t− tn). Therefore,

xn ∈ R(tn)A = R(t− (t− tn))A = P (t− (t− tn), 0)A = P (t, t− tn)A

for t− tn ≤ t and t− tn → −∞. That is, x ∈ Ω•(A, t).

Using this result as well as Theorem 4.3.6, Theorem 3.1.8, and Theorem 3.1.11, we have the

following corollary.

Theorem 4.3.10. Let E be an evolutionary system. Then, the weak global attractor Aw and

the weak pullback attractor Aw(t) exist, and Aw = Aw(t) for each t ∈ R. Moreover, the strong

global attractor As exists if and only if the strong pullback attractor As(t) exists, and As = As(t).

Proof. Using Theorem 4.3.6, we know that the weak global attractor Aw exists, and Aw =

ωw(X). By Theorem 3.1.8 and Theorem 3.1.11, the weak pullback attractor Aw(t) exists and

Aw(t) = Ωw(X, t). By Theorem 4.3.9, we have that

Aw = ωw(X) = Ωw(X, t) = Aw(t).

Now, suppose the strong global attractor As exists. Then, as in the above section, we have

that

As = ωs(X) = Ωs(X, t).
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But, then Ωw(X, t) is ds-attracting which means that it is ds-pullback attracting. Therefore,

the strong pullback attractor As(t) exists, and As(t) = As. An analogous argument shows that

if the strong pullback attractor As(t) exists, then the strong global attractor As exists and

As = As(t).

Furthermore, if E is asymptotically compact, then E is pullback asymptotically compact,

and the strong global attractor As and strong pullback attractor As(t) both exist, and As(t) =

As.

4.3.2 Nonautonomous Case

The modern theory of uniform attractors (using a symbol space across which attraction is

uniform) was first introduced by Chepyzhov and Vishik. They applied this framework to the

2D Navier-Stokes equations with an appropriate forcing term. For more information on this

theory, see (15). They also proved the existence of uniform attractors for the 3D Navier-Stokes

equations using the framework of trajectory attraction (35). A similar result appeared earlier in

a paper by Sell using the restriction of semiflows to an invariant set (36). Using the framework

of evolutionary systems, Cheskidov and Lu added a structure theorem and tracking properties

of the uniform attractor (17). We follow the closely-related framework in (17) to compare the

structure of the weak uniform attractor to the weak pullback attractor.

Following the theory of (15) the concept of symbols is introduced. So, let Σ be a parameter

set and {T (s)}s≥0 be a family of operators acting on Σ satisfying T (s)Σ = Σ, for each s ≥ 0.

Any element σ ∈ Σ will be called a (time) symbol and Σ will be called the (time) symbol space.

For instance, in many applications {T (s)} is the translation semigroup and Σ is the translation
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family of time dependent items of the system being considered or its closure in some appropriate

topological space.

Definition 4.3.11. (17) A family of maps Eσ, σ ∈ Σ which for each σ ∈ Σ associates to

each I ∈ T a subset Eσ(I) ⊆ F (I) will be called a nonautonomous evolutionary system if the

following conditions are satisfied:

1. Eσ([τ,∞)) 6= ∅ for each τ ∈ R.

2. Eσ(I + s) = {u(·) : u(·+ s) ∈ ET (s)σ(I)} for each s ≥ 0.

3. {u(·)|I2 : u(·) ∈ Eσ(I1)} ⊆ Eσ(I2) for each I1, I2 ∈ T , I2 ⊆ I1.

4. Eσ((−∞,∞)) = {u(·) : u(·)|[τ,∞) ∈ Eσ([τ,∞))∀τ ∈ R}.

Analogous to our previous definitions, Eσ(I) is called the set of all trajectories with respect

to the symbol σ on the time interval I. Trajectories in Eσ((−∞,∞)) are called complete with

respect to σ. Note that if we fix any symbol σ ∈ Σ in a nonautonomous evolutionary system

Eσ, then we obtain a generalized evolutionary system. On the other hand, if we let Σ := R with

T (s)t := t+ s, the translation semigroup, as well as

Et([T,∞)) := {u(·) : u(· − t) ∈ E ([T + t,∞))},

we obtain a nonautonomous evolutionary system from a given generalized evolutionary system.

For every t ≥ τ , τ ∈ R, σ ∈ Σ, the map

Rσ(t, τ) : P(X)→P(X)
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is defined by

Rσ(t, τ)A := {u(t) : u(τ) ∈ A, u ∈ Eσ([τ,∞))} for A ⊆ X. (4.6)

By the assumptions on Eσ for each σ ∈ Σ, it is found that

Rσ(t, τ)A ⊆ Rσ(t, s)Rσ(s, τ)A

for each A ⊆ X, t ≥ s ≥ τ ∈ R. Using the following Lemma, one can reduce a nonautonomous

evolutionary system to an evolutionary system.

Lemma 4.3.12. (17) Let τ0 ∈ R be fixed. Then, for any τ ∈ R and σ ∈ Σ, there exists at least

one σ′ ∈ Σ so that

Eσ([τ,∞)) = {u(·) : u(·+ τ − τ0) ∈ Eσ′([τ,∞))}.

Thus, it is found that for A ⊆ X, τ ∈ R and t ≥ 0,

⋃
σ∈Σ

Rσ(t, 0)A =
⋃
σ∈Σ

Rσ(t+ τ, τ)A.

Moreover, defining

EΣ(I) :=
⋃
σ∈Σ

Eσ(I)
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for I ∈ T , then EΣ defines an autonomous evolutionary system. Also, for A ⊆ X, t ≥ 0, the

map RΣ(t) : P(X)→P(X) is given by

RΣ(t)A :=
⋃
σ∈Σ

Rσ(t, 0)A.

Let ωΣ
• (A) be the corresponding omega-limit set for EΣ. That is,

ωΣ
• (A) :=

⋂
T≥0

⋃
t≥T

RΣ(t)
•

=
⋂
T≥0

⋃
t≥T

⋃
σ∈Σ

Rσ(t, 0)
•
.

Definition 4.3.13. (17) For the autonomous evolutionary system EΣ, we denote its d•-global

attractor (if it exists) by A Σ
• . We call A Σ

• the d•-uniform attractor for EΣ.

The following results for EΣ are then attained using Theorem 4.3.6.

Theorem 4.3.14. (17) Let EΣ be a nonautonomous evolutionary system. Then, if the d•-

uniform attractor exists, then A Σ
• = ωΣ

• (X). Also, the weak uniform attractor A Σ
w exists.

Here are additional assumptions imposed on EΣ.

C1 : EΣ([0,∞)) is precompact in C([0,∞), Xw).

C2 : Assume that X is a set in some Banach space H satisfying the Radon-Riesz property

with the norm denoted by ‖ · ‖H , such that ds(x, y) := ‖x− y‖H for all x, y ∈ X and dw



83

induces the weak topology on X. Assume also that for any ε > 0, there exists δ := δ(ε),

so that for each u ∈ EΣ([0,∞)) and t > 0,

‖u(t)‖H ≤ ‖u(t0)‖H + ε,

for t0 a.e. in (t− δ, t).

C3 : Let uk ∈ EΣ([0,∞)) be so that uk is dC([0,T ],Xw)-Cauchy sequence in C([0, T ], Xw) for

some T > 0. Then, uk(t) is ds-Cauchy for a.e. t ∈ [0, T ].

Next, the closure of the evolutionary system EΣ is introduced. This is given by Ē defined as

follows:

Ē ([τ,∞)) := EΣ([τ,∞))
C([τ,∞),Xw)

for each τ ∈ R. This is an evolutionary system. Let ω̄•(A) and Ā• be the corresponding

omega-limit set and global attractor for Ē , respectively. Then, Ē has the following properties:

Lemma 4.3.15. (17) If EΣ satisfies C1, then Ē satisfies B1. Moreover, if EΣ satisfies C2 and

C3, then Ē satisfies B2 and B3.

Theorem 4.3.16. (17) Assume that EΣ satisfies C1. Then, the weak uniform attractor exists

by Theorem 4.3.14). Also,

1. A Σ
w = ωΣ

w(X) = ω̄w(X) = ω̄s(X) = Āw = {u0 ∈ X : u0 = u(0) for some u ∈

Ē ((−∞,∞))}.

2. A Σ
w is the maximal invariant and maximal quasi-invariant set with respect to Ē .
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3. (Weak uniform tracking property) For any ε > 0, there exists a t0 := t0(ε, T ) so that

for any t∗ > t0, every trajectory u ∈ EΣ([0,∞)) satisfies dC([t∗,∞),Xw)(u, v) < ε for some

complete trajectory v ∈ Ē ((−∞,∞)).

If EΣ is an asymptotically compact evolutionary system (not necessarily satisfying C1), then

4. The strong uniform attractor A Σ
s exists, is strongly compact, and A Σ

s = A Σ
w .

Furthermore, if EΣ is asymptotically compact and satisfies C1, then

5. (Strong uniform tracking property) For any ε > 0 and T > 0, there exists t0 := t0(ε, T )

so that for t∗ > t0, every trajectory u ∈ EΣ([0,∞)) satisfies ds(u(t), v(t)) < ε for each

t ∈ [t∗, t∗ + T ], for some complete trajectory v ∈ Ē ((−∞,∞)).

Theorem 4.3.17. (17) Let EΣ be an evolutionary system satisfying C1, C2, and C3, and

assume that Ē ((−∞,∞)) ⊆ C((−∞,∞), Xs). Then, EΣ is asymptotically compact.

Let E be a nonautonomous evolutionary system with symbol space Σ and shift operators

T (s) : Σ → Σ for each s ≥ 0. Then, we have that Pσ(t, s) = Rσ(t, s) for all t ≥ s. We can

use property (2) in Definition 4.3.11, to obtain the following identity for any σ ∈ Σ, t ≥ r ∈ R,

s > 0 and A ⊆ X,

Rσ(t+ s, r + s)A = RT (s)σ(t, r)A. (4.7)

Using this fact, we have can say that

Ωσ
• (A, t+ s) = Ω

T (s)σ
• (A, t)
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for any σ ∈ Σ, t ∈ R, and A ⊆ X. Thus, we get that

⋃
σ∈Σ

⋃
t∈R

Ωσ
• (A, t) =

⋃
σ∈Σ

Ωσ
• (A, t0).

for any fixed t0 ∈ R. Now, we have can draw the following relationship between ∪σΩσ
• (A, t0)

and the uniform attractor A Σ
• (if it exists).

Theorem 4.3.18. Let Eσ be a nonautonomous evolutionary system. Then, if the d•-uniform

attractor A Σ
• exists, we have that

⋃
σ∈Σ

Ωσ
• (X, t0)

•
⊆ A Σ

•

for any fixed t0 ∈ R.

Remark 4.3.19. Note that x ∈ ωΣ
• (A) if and only if there exist sequences σn ∈ Σ, tn ≥ 0 with

tn → ∞, and xn ∈ Rσn(tn, 0)A with xn
d•−→ x. Similarly, if x ∈ ∪σΩσ

• (A, t0)
•

then there exist

sequences σn ∈ Σ, sn ∈ R, sn ≤ t0 with sn → −∞, and xn ∈ Rσn(t0, sn)A so that xn
d•−→ x.

Proof. Let x ∈ ∪σΩσ
• (X, t0). Then, there exist sequences σn ∈ Σ, sn → −∞ with sn ≤ t0 and

xn ∈ Rσn(t0, sn)X with xn
d•−→ x. Without loss of generality, we can pass to a subsequence and

assume that sn ≤ 0 for each n. Using the fact that Rσn(t0, sn)X = Rσ′n(t− sn, 0)X for any σ′n

so that T (−sn)σ′n = σn, we see that x ∈ ωΣ
• (X) by Remark 4.3.19. Thus,

⋃
σ∈Σ

Ωσ
• (X, t0)

•
⊆ ωΣ

• (X) = A Σ
•
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by Theorem 4.3.14.

Using this result, Theorem 4.3.16, Theorem 3.1.9, and Theorem 3.1.11, we get the following

corollary.

Corollary 4.3.20. Let Eσ be a nonautonomous evolutionary system. Then, the weak uniform

attractor A Σ
w exists. Similarly, for each σ ∈ Σ, the induced generalized evolutionary system,

there exists a weak pullback attractor A σ
w (t). Moreover,

⋃
σ∈Σ

A σ
w (t0)

w

⊆ A Σ
w

for any fixed t0 ∈ R.

Combining Theorem 4.3.18 with Theorem 4.3.17, the second half of Theorem 4.3.16, Theo-

rem 3.3.3, and the following Lemma 4.3.21, we get get a similar embedding of the union of the

strong pullback attractors within the strong uniform attractor. But first, we need to know that

the asymptotic compactness of EΣ guarantees the pullback asymptotic compactness of each Eσ.

This is given in the following lemma.

Lemma 4.3.21. Let EΣ, the induced autonomous evolutionary system from the nonautonomous

evolutionary system Eσ be asymptotically compact. Then, for each fixed σ ∈ Σ, the induced

generalized evolutionary system Eσ is pullback asymptotically compact.
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Proof. Let σ ∈ Σ be fixed. Let sn ≤ t be so that sn → −∞. Also, let xn ∈ Rσ(t, sn)X. Then,

using (Equation 4.7), we get that

xn ∈
⋃
σ∈Σ

Rσ(t, sn)X =
⋃
σ∈Σ

Rσ(t− sn, 0)X = RΣ(t− sn)X

for t − sn → ∞. Thus, xn has a convergent subsequence by the asymptotic compactness of

EΣ

Theorem 4.3.22. Let EΣ, the induced autonomous evolutionary system from the nonautonomous

evolutionary system Eσ, be asymptotically compact or let EΣ satisfy C1, C2, and C3 with com-

plete trajectories strongly continuous. Then, the weak uniform attractor A Σ
w is the strongly

compact strong uniform attractor A Σ
s . Also, for each fixed σ ∈ Σ, the weak pullback attractor

A σ
w (t) is a strongly compact strong pullback attractor A σ

s (t). Moreover,

⋃
σ∈Σ

A σ
s (t0)

s

⊆
⋃
σ∈Σ

A σ
s (t0)

w

=
⋃
σ∈Σ

A σ
w (t0)

w

⊆ A Σ
w = A Σ

s

for any fixed t0 ∈ R.

The reverse inclusion in Corollary 4.3.20 is untrue as the following example shows. So,

consider the following nonautonomous heat equation acting on L2(Rn):


ut = e−t∆u

u(s) = us.
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This system is solved in Fourier space (see Example 3.2.3) as

û(t) = exp
[
|ξ|2(e−t − e−s)

]
ûs.

This forms a nonautonomous evolutionary system on X, the closed unit ball in L2(Rn), using

Eσ([s,∞)) :=
{
û(t) = exp

[
|ξ|2e−σ(e−t − e−s)

]
ûs : ûs ∈ L2

}
.

with time symbol σ(t) := e−t and with T (h)e−t := e−(t+h) the associated family of operators.

Then, for any fixed symbol σ, we find that

A σ
w (0) := {0}.

On the other hand, we find that for any s ∈ R,

Ē ([s,∞)) := EΣ([s,∞))
C([s,∞),Xw)

contains all constant functions û(t) ≡ ûs. Therefore, the uniform attractor is the entire closed

unit ball in L2(Rn). That is,

A Σ
w = X.

Thus, ⋃
σ∈Σ

A σ
w (0)

w

= {0} 6= X = A Σ
w .



CHAPTER 5

PULLBACK ATTRACTORS FOR THE NAVIER-STOKES EQUATIONS

In this chapter, we will be studying the 2D and 3D Navier-Stokes equations simultaneously.

Many of the below arguments are valid in either dimension. Thus, if the dimension is not noted,

assume that the arguments valid in either dimension.

5.1 Deriving the Phase Space X

Assume f is translationally bounded in L2
loc(R, H−1). That is,

‖f‖2L2
b

:= sup
t∈R

∫ t+1

t
‖f(s)‖2H−1ds <∞.

We will show that there exists a bounded set X ⊂ L2 which captures all of the asymptotic

dynamics of Leray solutions with a translationally bounded force f . We will be more precise

with what this means in a moment. But first, we need a preliminary definition and a lemma.

The lemma’s proof can be found in (15).

Definition 5.1.1. A function g(s) is almost everywhere equal to a monotonic non-increasing

function on [a, b] if g(t) ≤ g(τ) for any t, τ ∈ [a, b]\Q with τ ≤ t and the measure of Q is zero.
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Lemma 5.1.2. Let g(s) ∈ L1([a, b]). Then, the function g(s) is almost everywhere equal to a

monotone non-increasing function on [a, b] if and only if, for any φ ∈ C∞0 ((a, b)) with φ(s) ≥ 0,

one has ∫ b

a
g(s)φ′(r)dr ≥ 0.

So, let u be a Leray solution to Equation 1.2 with f translationally bounded and starting

time s. That is, a point where the energy inequality Equation 1.3 is satisfied. Then, applying

Young’s inequality followed by the Poincaré inequality, we find that

‖u(t)‖22 + νµ1

∫ t

s
‖u(r)‖22dr ≤ ‖u(s)‖22 +

1

ν

∫ t

s
‖f(r)‖2H−1dr. (5.1)

Let φ ∈ C∞0 ((s, τ)) for τ ≥ t. Then, the above inequality is equivalent to the following distri-

butional inequality

−
∫ τ

s
‖u(r)‖22φ′(r)dr + νµ1

∫ τ

s
‖u(r)‖22φ(r)dr ≤ 1

ν

∫ τ

s
‖f(r)‖2H−1φ(r)dr. (5.2)

Replacing φ with eνµ1rφ(r) ∈ C∞0 ((s, τ)), we have that

−
∫ τ

s
‖u(r)‖22eνµ1rφ′(r)dr ≤ 1

ν

∫ τ

s
‖f(r)‖2H−1e

νµ1rφ(r)dr

=
1

ν

∫ τ

s

d

dr

(∫ r

0
‖f(ρ)‖2H−1e

νµ1ρdρ

)
φ(r)dr

= −1

ν

∫ τ

s

(∫ r

0
‖f(ρ)‖2H−1e

νµ1ρdρ

)
φ′(r)dr.
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Rearranging, and using Lemma 5.1.2, we get that

‖u(t)‖22eνµ1t − ‖u(s)‖22eνµ1s ≤
1

ν

∫ t

s
‖f(r)‖2H−1e

νµ1rdr. (5.3)

It remains to estimate the right-hand side of Equation 5.3. As in (37), we have that

∫ t

s
‖f(r)‖2H−1e

νµ1rdr ≤
∫ t

t−1
‖f(r)‖2H−1e

νµ1rdr +

∫ t−1

t−2
‖f(r)‖2H−1e

νµ1rdr + · · ·

≤ eνµ1t
(
1 + e−νµ1 + e−2νµ1

)
sup
t∈R

∫ t+1

t
‖f(r)‖2H−1dr

≤ eνµ1t

1− e−νµ1
‖f‖2L2

b
.

Thus, we arrive at the following inequality

‖u(t)‖22 ≤ ‖u(s)‖22eνµ1(s−t) +
1

ν

‖f‖2
L2
b

1− e−νµ1
.

Let

R2 :=
2‖f‖2

L2
b

ν(1− e−νµ1)
.

Then, X given by

X := {u ∈ L2 : ‖u‖2 ≤ R}
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is a closed absorbing ball in L2 for Leray solutions. Moreover, X is weakly compact and contains

all of the asymptotic dynamics of Leray solutions by the above argument. Define the strong

and weak distances on X, respectively, by

ds(u, v) := ‖u− v‖2 and dw(u, v) :=
∑
k∈Z3

1

2|k|
|ûk − v̂k|

1 + |ûk − v̂k|

for u, v ∈ L2 where ûk and v̂k are the Fourier coefficients of u and v, respectively. Note that

the above weak metric dw induces the weak topology L2
w on X. Next, we define our generalized

evolution system on X by

E ([s,∞)) :={u : u is a Leray-Hopf solution of Equation 1.2 on [s,∞)

and u(t) ∈ X for t ∈ [T,∞)},

E ((−∞,∞)) :={u : u is a Leray-Hopf solution of Equation 1.2 on (−∞,∞)

and u(t) ∈ X for t ∈ (−∞,∞)}.

Then, E satisfies the necessary properties in Definition 3.1.1 and forms a generalized evolution-

ary system on X. We must use Leray-Hopf solutions as our generalized evolutionary system

since the restriction of a Leray solution may not be a Leray solution, but it is always a Leray-

Hopf solution.

In three dimensions, note that an absorbing ball does not exist for the Leray-Hopf weak

solutions. An absorbing ball is a bounded set X ⊂ L2 so that for any B ⊂ L2 bounded and
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Figure 1. Possible Leray-Hopf weak solutions for the Navier-Stokes equations with zero
forcing.

any s0 ∈ R, there is some σ := σ(B) ≥ s0 so that if u(s0) ∈ B, then u(s) ∈ X for s ≥ σ. This

requires uniformity in B. However, in three dimensions, Leray-Hopf solutions may have “jumps”

at the starting point which can be as large as you like. Thus, even if you were to consider the

bounded set B := {0} for the Leray-Hopf solutions with s0 := 0 in the autonomous case, you

may not have such a structure as Figure 1 illustrates.

5.2 The Structure of Pullback Attractors for the Navier-Stokes Equations

By Theorem 3.1.8, E has a weak pullback attractor. Next, we will show that E satisfies A1,

A2, and A3. We start with a preliminary lemma.
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Lemma 5.2.1. Let un be a sequence of Leray-Hopf weak solutions of Equation 1.1 on [s,∞),

so that un(t) ∈ X for all t ≥ s for some s ∈ R. Then, there exists a subsequence nj so that unj

converges to some u in C([t1, t2], L2
w). That is,

〈unj , v〉L2 → 〈u, v〉L2

uniformly on [t1, t2] as nj →∞ for all v ∈ L2.

Proof. The major arguments in this lemma are classical. For more information, see (3), (4),

and (5), among others. Note that several of the arguments hinge on the dimension. We will

take special care to point out when differences arise.

First, using Equation 1.3 as well as the definition of E , we have that un is uniformly

bounded in L∞([t1, t2], L2) and in L2([t1, t2], H1). Thus, we use Alaoglu compactness theorem

to find subsequences (which we will keep reindexing as un) which converge to some u weak-*

in L∞([t1, t2], L2) and weakly in L2([t1, t2], H1).

Next, using the fact that A : H1 → H−1 is continuous using the assignment

〈Av, φ〉H−1 := 〈A1/2v,A1/2φ〉L1 = 〈v, φ〉H1 ,

we get that Aun is uniformly bounded in L2([t1, t2], H−1). Thus, we can extract a subsequence

and relable as un so that Aun converges to Au weakly in L2([t1, t2], H−1).
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A classical estimate (or Lemma 2.2.1) gives us that

‖B(u, u)‖H−1 ≤ C‖u‖2‖u‖H1 in two dimensions

‖B(u, u)‖H−1 ≤ C‖u‖1/22 ‖u‖
3/2
H1 in three dimensions.

for any u ∈ H1. Thus, using the fact that un is uniformly bounded in both L∞([t1, t2], L2) and

L2([t1, t2], H1), we see that B(un, un) is uniformly bounded in L2([t1, t2], H−1) in two dimen-

sions. In three dimensions, we see that B(un, un) is uniformly bounded in L4/3([t1, t2], H−1).

First, in two dimensions,

‖B(un, un)‖2L2([t1,t2],H−1) ≤ C
∫ t2

t1

‖un(r)‖22‖un(r)‖2H1dr

≤ C‖un‖2L∞([t1,t2],L2)‖un‖
2
L2([t1,t2],H1).

On the other hand, in three dimensions,

‖B(un, un)‖4/3
L4/3([t1,t2],H−1)

≤ C
∫ t2

t1

‖un(r)‖2/32 ‖un(r)‖2H1dr

≤ C‖un‖2/3L∞([t1,t2],L2)
‖un‖2L2([t1,t2],H1).

Since Aun, B(un, un), and f are uniformly bounded sequences in L2([t1, t2], H−1) in two di-

mensions, we use Equation 1.2 to say that so is d
dtun. In three dimensions, we find that d

dtun

is uniformly bounded in L4/3([t1, t2], H−1).
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So, we have that d
dtun, B(un, un) converges weakly in L2([t1, t2], H−1) in two dimensions.

In three dimensions, d
dtun, B(un, un) converges weakly in L4/3([t1, t2], H−1). Moreover, a stan-

dard compactness argument gives us that then un converges strongly to u in L2([t1, t2], L2)

in either dimension. Using the strong convergence of un as well as the uniform bound of un

in L∞([t1, t2], L2), a well known result shows that B(un, un) converges weakly to B(u, u) in

L2([t1, t2], H−1) in two dimensions. In three dimensions, B(un, un) converges weakly to B(u, u)

in L4/3([t1, t2], H−1).

Passing to the limit gives us that

d

dt
u+ νAu+B(u, u) = f

in H−1. Now, take the inner product with v ∈ H1 and integrate from t to t + h where

t1 ≤ t < t+ h ≤ t2. In either dimension, we get that

〈u(t+h)−u(t), v〉L2 = −ν
∫ t+h

t
〈u(r), v〉H1dr−

∫ t+h

t
〈B(u(r), u(r)), v〉H−1dr+

∫ t+h

t
〈f(r), v〉H−1dr.
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Taking the absolute value and using Cauchy-Swartz followed by Hölder’s inequality, we find

that

|〈u(t+ h)− u(t), v〉L2 | ≤ ν

(∫ t+h

t
‖u(r)‖2H1dr

)1/2(∫ t+h

t
‖v‖2H1dr

)1/2

+

(∫ t+h

t
‖B(u(r), u(r))‖2H−1dr

)1/2(∫ t+h

t
‖v‖2H1dr

)1/2

+

(∫ t+h

t
‖f(r)‖2H−1dr

)1/2(∫ t+h

t
‖v‖2H1dr

)1/2

in two dimensions. A similar process in three dimensions gives us that

|〈u(t+ h)− u(t), v〉L2 | ≤ ν

(∫ t+h

t
‖u(r)‖2H1dr

)1/2(∫ t+h

t
‖v‖2H1dr

)1/2

+

(∫ t+h

t
‖B(u(r), u(r))‖4/3

H−1dr

)3/4(∫ t+h

t
‖v‖4H1dr

)1/4

+

(∫ t+h

t
‖f(r)‖2H−1dr

)1/2(∫ t+h

t
‖v‖2H1dr

)1/2

.

Using the above uniform bounds then gives us that

lim
h→0
〈u(t+ h)− u(t), v〉L2 = 0

in either dimension. Since H1 is dense in L2, u ∈ C([t2, t1], L2
w), and we are done.

Theorem 5.2.2. The generalized evolutionary system for the 2D or 3D Navier-Stokes equations

E satisfies A1, A2, and A3.
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Proof. Let un be a sequence in E ([s,∞)) for some s ∈ R. Then, repeatedly using Lemma 5.2.1,

there is a subsequence which we reindex as un that converges to some u1 ∈ C([s, s + 1], L2
w).

A further subsequence converges to some u2 ∈ C([s, s+ 2], L2
w) with u1(t) = u2(t) on [s, s+ 1].

Continuing this diagonalization process, we get that there is some subsequence unj converging

to u ∈ C([s,∞), L2
w). Note that the convergence in Lemma 5.2.1 gives us that the energy

inequality

‖un(t)‖22 + 2ν

∫ t

t0

‖un(r)‖2H1dr ≤ ‖un(t0)‖22 + 2

∫ t

t0

〈f(r), un(r)〉H−1dr

converges as well to

‖u(t)‖22 + 2ν

∫ t

t0

‖u(r)‖2H1dr ≤ ‖u(t0)‖22 + 2

∫ t

t0

〈f(r), u(r)〉H−1dr

for t ≥ t0 and t0 a.e. in [s,∞). That is, u ∈ E ([s,∞)), and A1 is proven.

Next, for A2, let u ∈ E ([s,∞)) for some s ∈ R. Let ε > 0. Then, using the Leray-Hopf

energy inequality Equation 1.3, we get that

‖u(t)‖22 ≤ ‖u(t0)‖22 +
1

ν

∫ t

t0

‖f(r)‖2H−1dr
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from Equation 5.1 for all s ≤ t0 ≤ t, t0 a.e. in [s,∞). Since f ∈ L2
loc(R, H−1), there is a

δ := δ(ε, s) > 0 so that for t0 a.e. in (t− δ, t), we have that

‖u(t)‖22 ≤ ‖u(t0)‖22 + ε,

and A2 follows.

For A3, we again see a slight difference depending on the dimension. To begin, let un ∈

E [s,∞) for some s ∈ R and let un → u ∈ E ([s,∞)) in C([s, t], L2
w). Then, as we saw in

Lemma 5.2.1, un is uniformly bounded in L2([s, t], H1) for any T ≥ s. In two dimensions,

d
dtun is uniformly bounded in L2([s, t], H−1). In three dimensions, d

dtun is uniformly bounded

in L4/3([s, t], H−1). In either scenario, we find that un → u strongly in L2([s, t], L2). In

particular, we have ∫ t

s
‖un(r)− u(r)‖22dr→ 0

as n→∞. Thus, ‖un(t0)‖2 → ‖u(t0)‖2 a.e. on [s, t].

Therefore, using A1 we have the following results for E .

Theorem 5.2.3. The weak pullback attractor for the generalized evolutionary system E of the

2D or 3D Navier-Stokes equations, Aw(t), is the maximal pullback quasi-invariant and maximal

pullback invariant subset of X. Also,

Aw(t) = I (t) = {u(t) : u ∈ E ((−∞,∞))}.
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Moreover, E satisfies the weak pullback tracking property and if the strong pullback attractor

As(t) exists, Aw(t) = As(t).

Using this, we now have that E is pullback asymptotically compact, assuming that complete

trajectories are strongly continuous. This is known to be the case in two dimensions as was

stated in Theorem 1.1.5. In three dimensions, it is not currently known. This gives us the

following two theorems which are a direct consequence of Corollary 4.1.9, Theorem 4.1.7, and

Theorem 4.2.2:

Theorem 5.2.4. The generalized evolutionary system E for the 2D Navier-Stokes equations is

pullback asymptotically compact. Therefore, E has strongly compact, strong pullback attractor

As(t). Also, the strong and weak pullback attractors coincide giving us that

As(t) = Aw(t) = I (t) = {u(t) : u ∈ E ((−∞,∞))}.

That is, As(t) is the maximal pullback invariant and maximal pullback quasi-invariant set.

Finally, E has the strong pullback attracting property.

Theorem 5.2.5. Suppose the generalized evolutionary system E for the 3D Navier-Stokes equa-

tions has the property that E ((−∞,∞)) ⊆ C((−∞,∞), Xs). Then, E has strongly compact,

strong pullback attractor As(t). Also, the strong and weak pullback attractors coincide giving us

that

As(t) = Aw(t) = I (t) = {u(t) : u ∈ E ((−∞,∞))}.
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That is, As(t) is the maximal pullback invariant and maximal pullback quasi-invariant set.

Finally, E has the strong pullback attracting property.



CHAPTER 6

TRIVIAL PULLBACK ATTRACTORS

In this section, we deal exclusively with the 3D Navier-Stokes equations.

6.1 Trivial Pullback Attractors for the 3D Navier-Stokes Equations

To begin, we will expand our definition of translationally boundedness from Chapter 5. To

that end, Fix τ > 0. Assume f is translationally bounded in L2
loc(R, H−1). That is,

‖f‖2L2
b(τ) := sup

t∈R

1

τ

∫ t+τ

t
‖f(r)‖2H−1dr <∞.

In the original definition of translationally boundedness, we had chosen τ := 1.

First, note that ‖f‖H−1 and ‖f‖L2
b(τ) have the same dimensions. Next, note that the choice

of τ is not particularly important. In fact, for any τ, ρ > 0, we have that the norms ‖ · ‖L2
b(τ)

and ‖ · ‖L2
b(ρ) are equivalent.

Lemma 6.1.1. Let τ, ρ > 0 be given. Assume, without loss of generality that τ ≤ ρ. Then, for

any translationally bounded f ∈ L2
loc(R, H−1),

τ

ρ
‖f‖2L2

b(τ) ≤ ‖f‖
2
L2
b(ρ) ≤

Nτ

ρ
‖f‖2L2

b(τ),

where N is any integer so that Nτ ≥ ρ.

102
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The proof is elementary and is thus omitted. Therefore, we may use whatever τ > 0 we like

in our calculations. Later, we will choose τ := (νµ1)−1.

Using a similar calculation to Chapter 5, there exists an absorbing ball for Leray solutions

of the projected Navier-Stokes equations, Equation 1.2. That is, from the energy inequality

and the fact that g is translationally bounded, one can derive the following inequality:

‖u(t)‖22 ≤ ‖u(s)‖22eνµ1(s−t) +
τ‖f‖2

L2
b(τ)

ν(1− e−νµ1τ )
.

Letting

R2 :=
2τ‖f‖2

L2
b(τ)

ν(1− e−νµ1τ )
, (6.1)

we define

X := {u ∈ L2 : ‖u‖2 ≤ R}

as a closed absorbing ball in L2. We may then define a generalized evolutionary system on X

exactly as it appears in Chapter 5.

By Theorem 5.2.3, the weak pullback attractor Aw(t), is nonempty, and is given by

Aw(t) = {u(t) : u ∈ E ((−∞,∞))}.

In particular, there exists a complete bounded (in the sense of L2) weak solution to the 3D

Navier-Stokes equations. In the next section, we will present an argument demonstrating that
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when the force is small enough, the weak pullback attractor consists of only one such solution.

In this case, we have that Aw(t) = {u(t)}, is trivial.

6.2 Degenerate Pullback Attractors

6.2.1 A Criterion for Strong Solutions

In our goal of proving the existence of that the pullback attractor consists of a single point,

we will begin by showing that if the force is small enough, then a complete bounded solution

guaranteed by Theorem 5.2.3 is, in fact, a strong solution.

Definition 6.2.1. A weak solution u to Equation 1.2 will be called strong if u ∈ L∞loc(R, H1).

Let v be a complete bounded solution to Equation 1.2 as discussed in the previous section.

In particular, v satisfies the inequality Equation 1.3. Using the Cauchy-Schwarz inequality

followed by Young’s ineqaulity, we find that

‖v(t)‖22 + ν

∫ t

s
‖v(r)‖2H1dr ≤ ‖v(s)‖22 +

1

ν

∫ t

s
‖f(r)‖2H−1dr. (6.2)

Using the radius of the absorbing ball given in Equation 6.1 and dropping the first term on the

left-hand side, we find that

ν

∫ t

s
‖v(r)‖2H1dr ≤

2τ‖f‖2
L2
b(τ)

ν(1− e−νµ1τ )
+

1

ν

∫ t

s
‖f(r)‖2H−1dr.
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Thus, we find that for any s ∈ R

∫ s+τ

s
‖v(r)‖2H1dr ≤

τ‖f‖2
L2
b(τ)

(3− e−νµ1τ )

ν2(1− e−νµ1τ )
. (6.3)

Hence, we find that for any M ≥ 0,

|{x ∈ [s, s+ τ ] : ‖v(x)‖H1 ≥M}| ≤
1

M2

τ‖f‖2
L2
b(τ)

(3− e−νµ1τ )

ν2(1− e−νµ1τ )
.

Letting M :=

(
2‖f‖2

L2
b
(τ)

(3−e−νµ1τ )

ν2(1−e−νµ1τ )

)−1/2

, we have that

|{x ∈ [s, s+ τ ] : ‖v(x)‖H1 ≥M}| ≤
τ

2
.

We encapsulate the above remarks into the following lemma.

Lemma 6.2.2. Let v be any complete, bounded solution to Equation 1.2 with f translationally

bounded in L2
loc(R, H−1) whose existence is guaranteed by Theorem 5.2.3. Then, for any t ∈ R,

there exists a point s ∈ [t, t+ τ ] so that

‖v(s)‖2H1 ≤
2‖f‖2

L2
b(τ)

(3− e−νµ1τ )

ν2(1− e−νµ1τ )
<∞.
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Now, we add the assumption that f is translationally bounded in L2
loc(R, L2) which will be

assumed for the remainder of the paper. That is, we assume that

‖f‖2L2
0(τ) := sup

t∈R

1

τ

∫ t+τ

t
‖f(r)‖22dr <∞.

Note that using the Poincaré inequality, we have that

‖f‖2L2
b(τ) ≤ µ

−1
1 ‖f‖

2
L2
0(τ).

We will show that if ‖f‖L2
0(τ) is sufficiently small, then v ∈ L∞(R, H1).

To do this, let t0 ∈ R be arbitrary. Then, consider the interval [t0− τ, t0]. By Lemma 6.2.2,

there exists a point s ∈ [t0 − τ, t0] so that

‖v(s)‖2H1 ≤
2‖f‖2

L2
b(τ)

(3− e−νµ1τ )

ν2(1− e−νµ1τ )
<∞.

Thus, by Leray’s characterization (1), there is an ε > 0 so that v is a strong solution on [s, s+ε).

We investigate the length of this interval.

Starting with Equation 1.2, we take the inner product with Av giving us that

1

2

d

dt
‖v‖2H1 + ν‖v‖2H2 ≤ |〈B(v, v), Av〉H−1 |+ |〈f,Av〉L2 |. (6.4)
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Classical esimates give us that

|〈B(v, v), Av〉H−1 | ≤ c0‖v‖3/2H1 ‖v‖
3/2
H2 (6.5)

|〈f,Av〉L2 | ≤ ‖f‖2‖v‖H2 . (6.6)

Next, we apply Young’s inequality on each of these terms to get that

|〈B(v, v), Av〉H−1 | ≤
ν

4
‖v‖2H2 +

c0

ν3
‖v‖6H1

|〈f,Av〉L2 | ≤
1

ν
‖f‖22 +

ν

4
‖v‖2H2 .

Using these estimates as well as the Poincaré inequality, Equation 6.4 reduces to

d

dt
‖v‖2H1 + νµ1‖v‖2H1 ≤

2

ν
‖f‖22 +

c0

ν3
‖v‖6H1 . (6.7)

Now, assume that

‖f‖2L2
0(τ) ≤

c
−1/2
0 ν4µ

3/2
1

2c1 + 4νµ1τ

where c1 := 2(3−e−νµ1τ )
1−e−νµ1τ . Then, we will show that ‖v(t0)‖2H1 ≤ c

−1/2
0 ν2µ

1/2
1 . The following is a

modification of the argument given in (3). For completeness, we present the argument in its

entirety.
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First, note that the criterion on ‖f‖L2
0(τ) guarantees that

‖v(s)‖22 +
2

ν

∫ s+τ

s
‖f(r)‖22dr ≤ c1

ν2
‖f‖2L2

b(τ) +
2τ

ν
‖f‖2L2

0(τ)

≤ c1

ν2µ1
‖f‖2L2

0(τ) +
2τ

ν
‖f‖2L2

0(τ)

≤ c
−1/2
0 ν2µ

1/2
1

2
.

Then, certainly ‖v(s)‖2H1 < c
−1/2
0 ν2µ

1/2
1 . Let

T := sup{t ∈ [s, s+ τ ] : ‖v(t)‖2H1 < c
−1/2
0 ν2µ

1/2
1 }.

Since v is a strong solution at s we get that T > s. Assume that T < s+ τ . Using ‖v(T0)‖2H1 <

c
−1/2
0 ν2µ

1/2
1 for each T0 ≤ T , we find that

νµ1‖v(T0)‖2H1 −
c0

ν3
‖v(T0)‖6H1 = νµ1‖v(T0)‖2H1

(
1− c0

ν4µ1
‖v(T0)‖4H1

)
≥ 0.

Thus, we integrate Equation 6.7 from s to T and get that

‖v(T )‖2H1 ≤ ‖v(s)‖2H1 +
2

ν

∫ T

s
‖f(r)‖22dr

≤ ‖v(s)‖2H1 +
2

ν

∫ s+τ

s
‖f(r)‖22dr

≤ c
−1/2
0 ν2µ

1/2
1

2
.
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Thus, we must have that T = s + τ . In particular, this is true of t0 ∈ [s, s + τ ]. Since t0 ∈ R

was arbitrary, we have that

‖v(s)‖2H1 < c
−1/2
0 ν2µ

1/2
1 (6.8)

for all s ∈ R. This completes the proof of the following theorem.

Theorem 6.2.3. Suppose f is translationally bounded in L2
loc(R, L2) so that

‖f‖2L2
0(τ) ≤

c
−1/2
0 ν4µ

3/2
1

2c1 + 4νµ1τ

for c1 := 2(3−e−νµ1τ )
1−e−νµ1τ and c0 the constant given in Equation 6.5. Then, there exists a complete,

bounded, strong solution to Equation 1.2 so that v ∈ L∞(R, H1). In particular, ‖v(s)‖2H1 <

c
−1/2
0 ν2µ

1/2
1 for all s ∈ R.

Now, let τ := (νµ1)−1. For simplicity, we let

‖f‖L2
b

:= ‖f‖L2
b((νµ1)−1)

‖f‖L2
0

=: ‖f‖L2
0((νµ1)−1).

Then, we can express Theorem 6.2.3 in terms of the non-dimensional 3D Grashof number

G :=
‖f‖L2

0

ν2µ
3/4
1

.
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Corollary 6.2.4. Suppose f is translationally bounded in L2
loc(R, L2) so that

G2 =
‖f‖2

L2
0

ν4µ
3/2
1

≤ c
−1/2
0

2c1 + 4

for c1 := 2(3−e−1)
1−e−1 and c0 the constant given in Equation 6.5. Then, there exists a complete,

bounded, strong solution to Equation 1.2 so that v ∈ L∞(R, H1). In particular, ‖v(s)‖2H1 <

c
−1/2
0 ν2µ

1/2
1 for all s ∈ R.

Remark 6.2.5. It is also worthwile to note that the above argument proves the strongness of

all complete trajectories in our generalized evolutionary system E . In fact, it proves that if

u ∈ E ([s,∞)), then for t > s+ τ , u is strong.

6.2.2 A Serrin-type Argument

In (31), Serrin presents an argument for the uniqueness of weak solutions in an interval

of regularity (where a strong solution exists). Using a modification of the argument as it is

presented in (4), we obtain the required argument for the existence of degenerate pullback

attractors.

Let v be a complete, bounded strong solution to Equation 1.2 on (−∞,∞) guaranteed by

Theorem 6.2.3. Let u be another Leray-Hopf weak solution to Equation 1.2 on [T,∞) and let

w := u− v. Then, u and v satisfy

‖u(t)‖22 + 2ν

∫ t

s
‖u(r)‖2H1dr ≤ ‖u0‖22 + 2

∫ t

s
〈f(r), u(r)〉L2dr, (6.9)

‖v(t)‖22 + 2ν

∫ t

s
‖v(r)‖2H1dr = ‖v0‖22 + 2

∫ t

s
〈f(r), v(r)〉L2dr, (6.10)
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respectively for each t ≥ s ≥ T since v is a strong solution. Also, as seen in Temam’s book (4)

〈u(t), v(t)〉L2 + 2ν

∫ t

s
〈u(r), v(r)〉H1dr =〈u(s), v(s)〉L2 (6.11)

+

∫ t

s
〈f(r), u(r) + v(r)〉L2dr

−
∫ t

s
〈B(w(r), w(r)), v(r)〉H−1dr.

Adding Equation 6.9 to Equation 6.10 and then subtracting twice Equation 6.11, we get

that

‖w(t)‖22 + 2ν

∫ t

s
‖w(r)‖2H1dr ≤ ‖w(s)‖22 + 2

∫ t

s
〈B(w(r), w(r)), v(r)〉H−1dr. (6.12)

We estimate the nonlinear term using classical estimates. That is, we find that

|〈B(w,w), v〉|H−1 ≤ C‖w‖1/42 ‖w‖
7/4
H1 ‖v‖

1/4
2 ‖v‖

3/4
H1

≤ ν

2
‖w‖2H1 +

C

ν7
‖v‖22‖v‖6H1‖w‖22

after applying the Young’s inequality. Since v ∈ L∞(R, H1) ∩ L∞(R, L2), we use Equation 6.1

and Equation 6.8 to estimate Equation 6.12 by

‖w(t)‖22 − ‖w(s)‖22 ≤ νµ1

∫ t

s

(
C
τ‖f‖2

L2
0(τ)

ν3µ
1/2
1

− 1

)
‖w(r)‖22dr. (6.13)
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Assuming that ‖f‖2
L2
0(τ)

is sufficiently small, we can ensure that Cτ‖f‖2
L2
0(τ)

< ν3µ
1/2
1 giving

us that

‖w(t)‖22 − ‖w(s)‖22 ≤ −M
∫ t

s
‖w(r)‖22dr (6.14)

for M := νµ1

(
1− C

τ‖f‖2
L2
0(τ)

ν3µ
1/2
1

)
> 0. Thus, after applying Gronwall’s inequality, we have that

‖w(t)‖22 ≤ ‖w(s)‖22eM(s−t).

In particular, for t fixed and s→ −∞, ‖w(t)‖2 → 0. This completes the proof of the following

theorem.

Theorem 6.2.6. Let f be translationally bounded in L2
loc(R, L2). Assume that ‖f‖L2

0(τ) is

sufficiently small, then the weak pullback attractor for Equation 1.2 is a single point,

Aw(t) = {v(t)}

for some complete, bounded, strong solution to Equation 1.2.

Again, if we let τ := (νµ1)−1, then Equation 6.13 simplifies to

‖w(t)‖22 − ‖w(s)‖22 ≤ νµ1

∫ t

s
(CG2 − 1)‖w(r)‖22dr. (6.15)

So, we can restate 6.2.6 once again in terms of the 3D Grashof constant.



113

Corollary 6.2.7. Let f be translationally bounded in L2
loc(R, L2). Assume that the Grashof

number G given by

G =
‖f‖L2

b

ν2µ
3/4
1

is sufficiently small, then the weak pullback attractor for Equation 1.2 is a single point,

Aw(t) = {v(t)}

for some complete, bounded, strong solution to Equation 1.2.

6.2.3 Periodic Force

The existence of a unique periodic solution to the 3D Navier-Stokes equations is a remarkable

consequence of this Theorem. To begin, let the force f in Equation 1.2 be periodic in L2
loc(R, L2)

with period ρ. A straightforward argument shows that f is translationally bounded. Thus, by

Theorem 6.2.6, if f is sufficiently small, there exists a unique, strong solution w to Equation 1.2.

We will show that w is, in fact, periodic.

Theorem 6.2.8. Let f be periodic in L2
loc(R, L2) with period ρ. Assume that f is sufficiently

small. Then, there exists a unique, periodic, strong solution w to Equation 1.2. In particular,

w has period ρ.
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Proof. Due to Theorem 6.2.6, we only must show that w has period ρ. To this end, note that

w satisfies the equation

d

dt
w(t) + νAw(t) +B(w(t), w(t)) = f(t). (6.16)

Then, of course, w satisfies

d

dt
w(t+ ρ) + νAw(t+ ρ) +B(w(t+ ρ), w(t+ ρ)) = f(t+ ρ).

But, f(t+ρ) = f(t). So, w(·+ρ) also satisfies Equation 6.16. By uniqueness, w(t+ρ) = w(t).
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