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SUMMARY

In the past years the number of people affected by stroke has grown dramatically, leading

survivors to long–term disabilities in the 50% of the cases. To these people rehabilitation is the

only possibility to achieve a total or, at least, partial recovery from their motor impairment.

In this context robotic rehabilitation has been developing greatly, contributing to the restora-

tion of the functional capacity of high number of patients. Despite being a useful tool for

recovery, mechanisms are bulky, uncomfortable for the patients and expensive, so that they

are still not widely used in many cases during therapies. Furthermore, in a great variety of

situations, the robot is utilized to move the arm of the patient in a passive way, wasting the

great potential of these devices.

This work aims at developing a new inexpensive tool for rehabilitation, completely passive,

composed only by elastic elements, such as springs, highly and simply customizable by a ther-

apist and able to exert torque to the upper limbs of a patient; moreover, it will be able to

achieve different kinds of therapies, based, for example, on the concept of error augmentation

or gravity compensation.

In particular, this research concentrates on the development of an optimization algorithm able

to find the set of optimal parameters needed for the customization of the system, performed

according to a patient’s specific motor deficits.

xi



CHAPTER 1

INTRODUCTION

1.1 Motivation

1.1.1 Stroke survivors: a growing population

Stroke is the leading cause worldwide for what concerns long–term disability; in fact, one

in 6 people in the world will experience stroke and ≈ 750000 people in the US are affected each

year [1], with survival rate of the 82% [2]. Moreover, more than the 50% of the survivors will

experience lasting disabilities [3] such as sensation loss, spasticity, imbalance strength, jerki-

ness, muscle coupling, poor planing and motion inaccuracies, leading to the inability to perform

the so–called Activities of Daily Living (ADLs), a set of functional movements such as routine

tasks of personal care, feeding or communicating [4]. Because of the aging of the population,

the number of cases is destined to rise dramatically in the next years; recent statistics, in fact

point out that only 10% of stroke patient are between the age of 18 and 50 [5]. Stroke generates

an estimated expense of 33 billion dollars connected to not only the health care and lost days

at work [1]; moreover, it results in a decreased quality of life not only for the patients and their

families, but also for the caregivers [6][7][8][9].

For this growing population, rehabilitation is the process that aims to restore the maximum

functional capacity possible and it is the only way for a patient, who presents residual disability,

to improve his condition. Therapy should start at an early stage or, otherwise, the chances to

1
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obtain an acceptable recovery are reduced [10]. However, researchers have indicated that, even

more than 6 months after the stroke (in the phase that is called chronic stage), there is the

possibility to further motor recovery [11] [12], but, since insurances providers do not usually

cover chronic patients’ therapies and for the therapists working with them, the needed help to

recover should be found somewhere else.

1.1.2 Robotic rehabilitation

In this context, machine–assisted therapy has been proven to be reasonable for enhancing

physical outcomes for patients who suffered from neurological disabilities. In general, past

research has been focusing on active robotic devices, in which the patient is physically guided

by the robot itself in order to accomplish a specific movement and the therapist acts as a simple

bystander. Some of these previous devices are the Mirror–Image Motion Enabler (MIME), a 6

Degrees of Freedom (DoF) end effector which applies forces in a certain direction so as to achieve

the desired movement [13], and the InMotion2 (MIT MANUS), a 2 DoF robot that shows three

different modalities for the user, among which the totally assisted movement procedure, in

which the arm is moved passively [14].

Although devices such as the InMotion2 were shown to motivate patients to practice and to

have a positive therapeutic advantage, subjects do not improve if the technology dominates

movements [15] [16]; the main reason, as many researchers pointed out, is that, being guided

completely by a robot, a patient can become lazy [17][18]. Moreover, robotic guidance machines

are still expensive (for example, InMotion2 costs ≈ 100000$). Finally, since stroke varies widely
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in effects and severity, it is problematic to treat patients in the same way.

From these problems the need to advance devices arises. They should be lightweight, low–cost,

easy to operate and customizable. Moreover, in recent years simple exoskeletons for assistance,

therapy and motor control have been developed: they involved passive elements, such as springs,

which are able to generate desired torques [19][20].

1.2 Prior Studies

One attempt to find a solution to the aforementioned issues was done in our group with the

Moment arm Adjustment for Remote Induction Of Net Effective Torque (MARIONET) [21]

[22], a cable–driven device, which is able to deliver torque to a joint. This kind of design aims

at controlling the generated torque through changes in the moment arm (Figure 1), whereas in

most of the previous mechanisms, such as the String–Man[23], the moment exerted is a function

of the cable tension.

1.2.1 MARIONET: first model

The first prototype of the MARIONET was part of the family of the so–called Series Elastic

Actuators (SEA) mechanisms, which are formed by an elastic element in series with an actua-

tor. The advantage of this kind of approach is that torque ripple, undesired errors and backlash

are dampened, though some position accuracy and bandwidth are sacrificed as a result; the

fundamental compliance of the SEAs is highly suitable for human–robot interactions [24]. The

mechanism consisted of a rotator, actively controlled by a motor, and a passive link; a second

motor worked as a tensioner. Despite not presenting springy components, the MARIONET
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Figure 1: Torque controlled through changes in the moment arm: being equal the stiffness, a
longer arm results in a higher torque (as pictured by the thicker red arrow); the blue one shows
that a smaller arm produces a lower moment [22].

behaved exactly as a SEA, creating conservative force field generated via the tensioner. Al-

though the system presented mechanical issues, connected mainly to friction, it managed to

deliver torque to the desired joint with the convenience of remote actuation and independent

control on equilibrium and compliance [21]. However, this version of the device was still a

non–wearable, ”heavy duty” robot.

1.2.2 MARIONET: at–home rehabilitation device

Whereas the first model was thought as a one–joint device, in the second generation the

concept of the MARIONET was expanded so as to achieve an inexpensive two–joint machine

for at–home rehabilitation [22]. Since it was developed as a tool for private use, the first issue

to address was the user’s safety, resulting in a device that presented low inertia and a low
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impedance with the interface, thanks to the use of SEAs; moreover, the actuator, being the

heaviest part of the overall machine, was moved to the base of the device.

The design of this second prototype was divided into four different parts:

1. Design for Function: the two–joints system had to be a Manipulandum for upper extrem-

ities, highly customizable, so as to fit several users, and safe; furthermore, it had to be

lightweight, inexpensive and mobile.

2. Design with Cables: the use of cables has some drawbacks, like the fact that they can

wear out; therefore, the arrangement of the MARIONET aimed at avoiding process such

as rope twisting, sharp augment in load, wrapping, etc.

3. Design for Safety: safety of the patient was the main concern; many possible failures

modes where taken into account when designing the system, such as cable failure, electrical

faults, etc., addressing each of them (cable guards, mechanical stops).

4. Design for Control: the MARIONET was controlled by four inputs: the position of the

rotators (for every joint) and the motors acting as tensioners.

The most interesting aspect is that the device no longer needed rigid links, but, instead, the

patient’s arm itself was sufficient as a stiff element; moreover, since the MARIONET did not use

elastic elements, cushioning came from the natural damping of the human arm, which showed

to be more than enough to avoid instability [22]. Finally, it is important to point out that the

system was suitable to to accomplish gravity compensation (section 1.2.3) and to exert both
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assistive and error enhancing forces, the latter being a new rehabilitation technique that will

be addressed in section 1.2.4.

1.2.3 Gravity compensation

In order to improve rehabilitation techniques involving robots, many scientist focused on

gravity compensation for the upper limbs. The aim is to compensate for the weight of the

patient’s arm, so as to augment their active range of motion[27]; in fact, as several studies

showed, the working area of patients increased immediately during reaching tasks performed

while providing gravity compensation with respect to unsupported movements [28]. In order to

implement this method, the torque generated by the arm weight at each joint is calculated and

compensated through the robot. One attempt to achieve gravity compensation was made by

Sanchez et al. with the Therapy Wilmington Robotic Exoskeleton (T–WREX) [29] a passive,

backdriveable, five DoF mechanism that counterbalanced the arm weight using elastic bands.

This device was thought for at–home rehabilitation, thus presenting important safety constraints

such as not generating power and the incapability to move on its own. Researchers demonstrated

the ability to allow a larger range of motion, helping patients in performing ADLs. However, on

the other hand, the system resulted in a more expensive device with respect to other devices on

the market, and, moreover, it is only able to implement fixed levels of gravity support dependent

on the number of elastic bands that are used.

1.2.4 Error augmentation

In recent years many scientists have speculated that a patient can learn more by dealing

with large errors, since coordination in impaired subjects seems to benefit from the manipula-



7

tion of this kind of inaccuracies [25]. This is linked to the neuroplasticity of the nervous system

and to its adaptive nature.

This technique consists of isolation and selective augmentation of the error perceived by the

patient in order to enhance learning. This can be achieved, for example, by applying a distur-

bance force to the subject or by giving a feedback smaller than the real one.

In this context, robots are able to exaggerate movements in real time during training by ap-

plying negative damping, viscosity or by setting an offset, for example, so as to increase the

dynamic behaviour of the arm; the goal is to rise awareness of any deviation from the expected

performance. The success of this technique might be due to different causes, such as patient’s

motivation or the fact that the damaged nervous system is not sensitive to small errors. How-

ever, there is not yet a complete understanding of the processes underlying this approach [26].

Therefore, there is the need for new rehabilitation tools that have to be customizable,

lightweight and cheap. Moreover, these new systems should be able to exert torque without

being actuated so as to avoid having a power source or electrical parts in order to be safe.

1.3 Objectives

Accordingly, this work aims at developing a new version of the MARIONET, a completely

passive one, simplifying the actuators in order to use only elastic elements (such as diagonal

springs), lightweight, versatile and cheap. Furthermore, this device should be highly customiz-

able to match the characteristics and specific motor deficit of the patient (length of the arm,

torque profile needed, etc.) and should be quickly assembled by a therapist.
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Next, at a later time, we’ll explore the possibility to stack a certain number of MARIONETs

so as to achieve a more complex torque profile. EachMARIONET behaves as a basis function,

like a truncated Fourier analysis or a radial basis function approximation, taking advantage of

its intrinsic sinusoidal nature. The device could be used to fill in the gap of motor ability, to

achieve error augmentation, or gravity compensation.

The main part of the work concentrates on computationally finding a set of optimal parameters

for the stacked device, customizing it for the user through an optimization problem in Matlab.

Moreover, a two–joint MARIONET is studied, and the gravity compensation problem is ad-

dressed and solved to counterbalance the weight of the arm in the overall workspace. In Chapter

2 the methods will be addressed, while in Chapter 3 results will be shown and discussed; finally,

in Chapter 4 conclusions on the work will be drawn.



CHAPTER 2

METHODS

2.1 MARIONET revisited: basic concepts

As stated in section 1.3, the new concept of the MARIONET involves a completely passive

tool, formed by a pegboard to which a springy element is attached; there is no rigid link, since

this part is substituted by the arm itself (Figure 2).

Figure 2: Basic concept of the MARIONET applied to the fore arm: R is the distance between
the CoR and the point where the spring is attached, θ the angle between the horizontal and R,
L is the arm length and φ is the angle between the horizontal and the arm.

9
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2.1.1 Geometry

The geometry underlying the device is quite simple and is shown in Figure 3. Being R (in

yellow) the distance between the Center of Rotation (CoR) (green) and the point where the

spring is attached, θ the angle between R and the horizontal (dashed line), L (black) the length

of the arm link and φ the one between L and the horizontal, the length of the spring Ls (blue)

is:

Figure 3: Diagram of the MARIONET.

Ls(φ) =

√
R2 + L2 − 2RL cos(θ − φ). (2.1)
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In order to calculate the torque (τ) exerted by the device, the moment arm (ρ, red in Figure 3),

which is a function of φ, since it varies as the angle changes:

ρ(φ) =
RL sin(θ − φ)

Ls
. (2.2)

Therefore is possible to calculate the torque as:

τ(φ) = Fs × ρ, (2.3)

where Fs is the force calculated through Hook’s Law, being k the stiffness of the spring and ∆x

the displacement of the elastic element, as:

Fs = −k∆x. (2.4)

2.1.2 Single component torque profile

Figure 4 shows the torque generated by a single MARIONET, with θ = π
3 , R = 0.1m, the

rest length of the spring LR = 0.1m, the length of the fore arm L = 0.26m and the stiffness

k = 250Nm ; its sinusoidal nature makes it suitable to act as a basis function and, so, a series of

stacked elements can be used to achieve more complex torque shapes.

By varying only two parameters (R, θ), is it possible to achieve very different characteristics of

these sinusoids, as displayed in Figure 5: the blue shape having the same parameters as before,

the red one has θ = 2π
3 and same R, while the green one has R = 0.05m and same θ.
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Figure 4: Torque generated by a single MARIONET in the range [0, 2π]. This males a nearly
sinusoidal basis function that can be shaped and combined with others.



13

Figure 5: Torque generated by different single MARIONETs in the range [0, 2π]; varying pa-
rameters allows to have different sinusoids: for the blue profile θ = π

3 and R = 0.1m, for the
red one θ = 2π

3 and R = 0.1m and for the green one θ = 2π
3 and R = 0.05m.
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2.2 Stacking MARIONETs

As previously noted, stacking more and more elements can lead to the generation of compli-

cated torque fields. In Figure 6, one possible solution for a multi–stacked elements configuration

is shown.

Figure 6: Concept of a 3–stacked elements configuration.

The total torque generated by the overall device is given by the sum of the moments generated

by each one of the n single elements:

τtot = τ1 + τ2 + ...+ τi + ...+ τn (2.5)

Figure 7 shows the torque generated by three different MARIONETs (in black); as previously

stated, a unique torque profile can be obtained, so as to achieve a specific task.
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Figure 7: Overall torque generated by the sum of MARIONETs.

2.3 Two–joints MARIONET

An additional version of the MARIONET can be conceived linking directly the shoulder

and the wrist through a spring, therefore obtaining a two–joints device. The scheme of the

mechanism is reported in Figure 8.
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Figure 8: Diagram of the two–joints MARIONET.

First of all, the length of the spring Ls is calculated as:

Ls =

√(
Lfore sin(φ2)

sin(β)

)2

+R2 −
(
Lfore sin(φ2)

sin(β)

)
R cos (γ), (2.6)

where γ = θ − β − φ1 and β represents the angle between Lupper and the diagonal of the

quadrilateral composed by Lupper, Lfore, Ls and R (black dotted line) and is calculated using

the atan2 Matlab function.

Then, the moment arm at the shoulder joint ρs is calculated:

ρs =

(
Lfore sin(φ2)

sin(β)

)
R sin(γ)

Ls
. (2.7)
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On the other hand, the moment arm at the elbow ρe is computed as:

ρe = Lfore sin(η), (2.8)

where η = δ + σ, which are defined as:

δ = arcsin

(
Lupper sin(β)

Lfore

)
, (2.9)

σ = arcsin

(
R sin(γ)

Ls

)
, (2.10)

Knowing ρs and ρe, the torques can be calculated using Equation 2.3.
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2.4 Empirical optimization

Now that the geometrical basis are set, we aim at replicating every torque needed by a certain

patient for rehabilitation purposes. Therefore, each MARIONET has to be tuned according

to certain parameters that we are determined to find through the solution of an optimization

problem; the algorithm, which will be explained in the next paragraphs, can be set to find two

or three optimal parameters for each element. Of course, the higher the number of stacked

MARIONETs and, as a consequence, the higher the number of parameters to be found, the

higher the computational cost and the time spent processing.

2.4.1 Parameters

The two main parameters that the algorithm aims to find are R and θ (as represented in

Figure 2); the former is the distance between the CoR and the point on the pegboard where the

spring is attached, while the latter is the angle between the horizontal line and R. Moreover, as

pointed out before, a third parameter can be addressed: the stiffness of the elastic element k.

The first two parameters have an impact on the length of the moment arm (as expressed by

Equation 2.2), while the third one acts on the force exerted by the spring.

2.4.2 Code description

Figure 9 shows the flow chart of the Matlab code that was developed in order to find the

optimal parameters.
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Figure 9: Flow chart of the developed Matlab code: here are all the step implemented in order
to find the optimal solution.

2.4.2.1 Inputs

There are three main inputs to the function (red ovals):

• Number of stacked MARIONETs (N): the number of different elements that we want to

combine in order to obtain the desired torque.

• Set of initials parameters: Being M the number of parameters for each element, a M×N

vector is created; this vector is thus filled in with random numbers thanks to the rand

function.

• Desired torque: The torque profile the patient needs for rehabilitation.
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The initial overall torque (τtot) is calculated by using Equation 2.3 with the starting random

parameters for each MARIONET and by summing all the obtained moments as in Equation 2.5.

2.4.2.2 Cost calculation

The chosen cost function for the optimization algorithm is the Least Squared Error, as

defined by:

Cost =

n∑
1

(τtot −Desired Torque)2, (2.11)

being n the length of the Desired Torque vector. Furthermore, since the device should be

built for the patient to be comfortable, some restriction to the parameters are set. These were

employed as regularization terms, or soft constraints. Of course, the R can not be negative

and, in addition, its length its expected to be no longer than 0.1m, since we want the patient

to feel comfortable while wearing the device and a big mechanism would not accomplish such a

requirement. For any R < 0m and R > 0.1m a penalty function was added, increasing the overall

total cost. Moreover, some constraints are also applied to the stiffness of the elastic elements,

when considered as a parameter in the optimization process; therefore, the cost increases when

k < 0 or k > 1000. For both R and k, the cost was augmented by summing a penalty parameter

multiplied by a certain factor measuring the violation of the constraints:

PenaltyFunction = |Param− Param0|3 × 1015, (2.12)
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where Param is the parameter under review and Param0 is the inferior or superior limit for

the parameter itself.

On the other hand, no penalty is needed for θ, since this angle is used in a periodic function.

2.4.2.3 fminsearch.m

This function, that is part of the Optimization Toolbox on Matlab, is able to solve nonlinear

problems using a derivative–free method; it aims to minimize a given function, that, in this

case, is the total cost as defined in section 2.4.2.2. Therefore, it is able to find the optimal

parameters that correspond to a local minimum [30]. The options where changed so as to

have the highest number of iteration and evaluation of the function possible. Eventually, the

output of this function is a new set of parameters, with which the new MARIONET torque is

calculated.

2.4.2.4 ”While” loop

One iteration of the code is not enough to obtain satisfying outcomes, so an outer while

loop is added. This is to assure that a more global optima is found. The while loop presents

two main condition and a third optional one:

• |meanErrori−meanErrori−1| > toll: if at the ith step, the difference between the average

error at ith and i − 1th is bigger than a certain tolerance (toll, to be decided), then loop

is repeated; the average error is calculated as the mean of the difference between the

MARIONET torque and the desired one.

• meanErrori > meanErrori−1 if the mean error calculated at the ith step is bigger than

the error at the previous one, then the loop continues.
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In order to leave the while loop, these two conditions must be false at the same time (logical

OR); moreover, a third one can be added:

• number of iterations > MaxIter: this condition is added to avoid the code to get stuck;

so, when the number of iterations i is bigger than a certain predetermined threshold

(MaxIter), the while loop is left (being this condition linked with a logical AND to the

previous two).

2.4.2.5 Optimal Parameters

When the while loop terminates, this means that the global optimal parameters have been

found. These can be used to tune the different MARIONETs that are included in the device

so as to achieve the torque needed by the patient.

2.5 Gravity compensation

In order to achieve gravity compensation, as defined in section 1.2.3, the first step is to find

the torques needed to balance the moment generated by the arm weight; to do so, the free–body

diagram of the human arm is studied. These torques are calculated under the condition of static

equilibrium; moreover, the problem was simplified applying the weights of each part composing

the arm at the middle point of each link, while the weight of the hand was applied at the wrist

joint. Figure 10 shows the free–body diagram taken as a reference: φ1 is the angle between

the horizontal line and the SE segment, φ2 the one between SE and EW links, τs and τe the

torques to be found at shoulder and elbow joint respectively; in addition, the aforementioned

weights are shown.
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Figure 10: Free–body diagram used to calculate the torque needed for gravity compensation.

First of all, the mass of different parts of the arm is calculated as related to the Total

Body Mass (TBM), as suggested by De Leva [31], and multiplied by the gravity acceleration

(g = 9.81m
s2

):

• Upper arm weight:

Wupper = 2.71%× TBM× g. (2.13)

• Fore arm weight:

Wfore = 1.62%× TBM× g. (2.14)

• Hand weight:

Whand = 0.61%× TBM× g. (2.15)
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Solving the static problem as depicted in Figure 10, the torques needed to compensate for

the moment due to arm weight are:


τe = (

Wfore

2 +Whand)Lfore cos(φ1 + φ2)

τs = (
Wupper

2 +Wfore +Whand)Luppercos(φ1) + τe

(2.16)

Moreover, knowing the torques, it is possible to represent them as force thanks to the Jacobian

matrix (J ), defined as:

J =

−Lupper sin(φ1)− Lfore sin(φ1 + φ2) −Lfore sin(φ1 + φ2)

Lupper cos(φ1) + Lfore cos(φ1 + φ2) Lfore cos(φ1 + φ2)

 (2.17)

Now, the x and y components of F can be evaluated as:

Fx
Fy

 = (JT )−1 ×

τs
τe

 (2.18)

Figure 11 shows the new representation of the torques needed to counterbalance the gravity;

the corresponding force F (green) is given by the computed x and y components and is applied

at the wrist. F is the force needed to compensate the moment generated by the arm weight,

therefore it produces the equivalent effect as τs and τe together.

Now, thanks to the previous description it is possible to display all Forces needed to compen-

sate the arm weight in a vector field (Figure 12); the aim is to find the parameters that can

optimally match the torques needed in the overall space.
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Figure 11: Free–body diagram that represents the torques as a force (F ), as calculated through
Equation 2.18.

In order to achieve accurate gravity compensation we show progressively more complex MARIONET

combinations:

• The first one is developed using two different device, one applied from shoulder joint to

the elbow, while the other from elbow to wrist.

• The second is expected to require only one device, connecting the shoulder joint directly

to wrist.

Both this solutions are based on the previously described algorithms (the two–parameter form),

even if the calculation of the Cost Function changes with respect to the original form.
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Figure 12: Vector field: each red arrow is the force at a certain shoulder–elbow angle couple
able to compensate weight.

2.5.0.1 One-joint solution

The first method final objective is to find two different sets of parameters, one for each

device, that, when given to the developed model, would be able to approximate the desired

torques across the workspace; in order to do so, the calculation of the cost function had to

undergo some changes. In fact, there was not just one profile to be estimated, but a series of

different torques to be evaluated across the workspace, each of them corresponding to a point

in the φ1–φ2 space (shoulder and elbow angles). Therefore, the cost could not be calculated as
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the mere least squared errors between the device torque and one target torque, but it must be

computed as the sum of the least squared errors throughout the space, for both the shoulder

and elbow:

TotalCostelbow =

Nangles∑
i=1

n∑
1

(τtot −DesiredTorquei)2, (2.19)

TotalCostshoulder =

Nangles∑
i=1

n∑
1

(τtot −DesiredTorquei)2, (2.20)

Where Nangles is the number of elements in which the φ1 and φ2 ranges are divided.

In this way it is possible to find the two optimal sets of parameters so as to have the best match

in all the comprehensive gravity field. The target torques for the elbow joint are calculated

by fixing one shoulder angle (φ1) at a time, while varying the elbow one (φ2) as presented in

Figure 13a; on the other hand, the desired shoulder torques are obtained by fixing the elbow

angle and altering the shoulder one (Figure 13b).

Eventually, the torques at the shoulder and at the elbow will be converted in forces using

Equation 2.18 and will be scaled depending on the maximum force in the space (taking into

account desired and optimal forces at the same time) according to Equation 2.21:

ScaledForce =
Force

MaxForce
× 0.15. (2.21)

Since for certain φ1−φ2 combinations the JacobianMatrix happens to be singular, theMaxForce

can become infinite, hence making it impossible to have a good representation of the vector
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(a) Elbow torque profile obtained with a fixed
shoulder angle φ1 = −0.7933rad

(b) Shoulder torque profile obtained with a fixed
elbow angle φ2 = 1.0807rad

Figure 13: Elbow and Shoulder torque needed in order to compensate for gravity for fixed φ1
and φ2 respectively.

field; therefore, the points in which the matrix becomes singular are not taken into account.

2.5.0.2 Two-joint solution

The second solution, as previously explained, aims at approximating the torques able to

compensate for the gravity using only one device connecting the shoulder with the wrist; the

targets are the same ones shown in Figure 13 for the elbow joint, while the one for the shoulder,

in this case, is computed fixing the shoulder angle and varying the elbow one, as Figure 14

shows.

In order to compute the set of optimal parameters, the cost function is calculated in the same

way as before but for the fact that both the least squared errors evaluated on τs and τe are
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Figure 14: Target torque at the shoulder for the two–joints version.

taken into account at the same time, therefore summing them in a unique total cost. So, the

optimization algorithm has to minimize at the same time the costs from the shoulder and elbow

joints:

TotalCostelbow =

Nangles∑
i=1

n∑
1

(τtot −DesiredTorquei)2, (2.22)

TotalCostshoulder =

Nangles∑
i=1

n∑
1

(τtot −DesiredTorquei)2, (2.23)

TotalCostoverall = TotalCostshoulder + TotalCostelbow. (2.24)



CHAPTER 3

RESULTS AND DISCUSSION

First, the results of the optimization algorithm are shown, both with two and three param-

eters for each stacked element. Then, the conclusions on the gravity compensation process are

illustrated.

3.1 Optimization results

In this section, the results of the two and three parameters problems are presented, focusing

in addition on some complications connected to the way in which the algorithm is conceived;

eventually a discussion on the optimal number of stacked elements is delineated.

3.1.1 Two Parameters

The first case is meant to demonstrate the process in the simplest manner; an elbow device

is taken into account and the chosen parameters are R and θ; other quantities that is important

to point out, set manually by the user, are the stiffness k = 500Nm , the length of the fore arm

Lfore = 0.26m, the length of the spring in resting conditions L0 = 0.1m and the number of

stacked elements N = 5 (resulting in a total of M = 10 parameters to be found). The desired

torque was created to obtain an arbitrary sinusoidal shape.

By stacking 5 different MARIONETs (Figure 15, in blue) it is possible to approximate the

target (red). The error, defined as the difference between the target and the exerted torque, is

pictured.

30
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Figure 15: Top: in blue the torque generated by 5 MARIONETs, in red the target one. Bottom:
the error (in green), calculated as the difference between the red and blue profiles, and the
average error (black line); moreover, some information about the error are shown.

The blue shape is obtained with the parameters listed in Table I (which are different from the

starting guess), in Figure 16 the arrangement of the MARIONETs is pictured and in Figure 17

each single component is shown.
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TABLE I: OPTIMAL PARAMETERS FOR EACH SINGLE COMPONENT.

R[m] θ[rad]

MARIONET1 0.1000 0.9407

MARIONET2 0.1000 3.2715

MARIONET3 0.1000 -1.5443

MARIONET4 0.1000 -0.3755

MARIONET5 0.0878 2.2786

An average error of 0.4657Nm was obtained in this case, with a variance σ2 = 0.17831.

Furthermore, it presents an average percentage error of ≈ 54%, which may seem high, but it is

probably due to the fact that the target profile had sharp changes, which is difficult to replicate

with sinusoidal functions. In order to prove this thesis, a smoother target torque profile was

used,; in this case, the algorithm was able to achieve an average error of 0.0717Nm with a

variance σ2 = 0.0028 and the average percentage error is only 1.3087%. In fact, from Figure 18

it is possible to see that the two torques were almost completely overlapped, while the error

was nearly null everywhere.
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Figure 16: How the MARIONETs are arranged in the space: in blue is the parameter R and
in green is the spring.

Figure 17: Top: in blue the overall torque generated by 5 MARIONETs is represented , while
in cyan each single component is pictured.
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Figure 18: Results obtained with a smoother target torque. Top: the two torque fields were
almost completely overlapped. Bottom: A smoother target resulted in smaller errors.
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3.1.2 Three Parameters

Considerations made in sections 3.1.1 and 3.1.3 were still valid when adding a third param-

eter for each stacked MARIONET, which is(section 2.4.1), the stiffness k of the each spring.

Having more variables to work on, this adaptation of the algorithm was better.

Average error was slightly lower than the one in Figure 15 (Figure 19 shows the results), with

a value of 0.42417 (corresponding to a 43.6986% percentage error). In Table II, the obtained

parameters are reported.

TABLE II: OPTIMAL PARAMETERS FOR EACH SINGLE COMPONENT.

R[m] θ[rad] k[Nm ]

MARIONET1 0.10 -5.3266 533

MARIONET2 0.10 -0.5275 1000

MARIONET3 0.10 2.9027 50

MARIONET4 0.07 3.8921 1000

MARIONET5 0.09 3.7753 1000

The drawback of this version of the algorithm, obviously, is that the computational weight

and time to process increased. Considering that the error calculated through this method

did not decrease so dramatically and that the achieved results are almost the same, it seems

unproductive to spend more resources using this version of the algorithm instead of the original.



36

Figure 19: Top: in blue the torque generated by 5 MARIONETs, each tuned according to three
parameters R, θ and k, in red the target one. Bottom: the error (in green), calculated as the
difference between the red and blue profiles, and the average error (black line); moreover, some
information about the error is shown.

3.1.3 How many stacked MARIONETs?

As more and more MARIONETs were stacked, the smaller the error got. We tested it

(Figure 20); average error decreased less as the number of stacked elements increased. The

error passed from 1.7721Nm with only one MARIONET to 0.3169Nm with ten. After five or

six stacked elements the results approached a plateau and the decrease in error became small.

These results were obtained solving the optimization problem with two parameters for each
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stacked element, with the same data and target profile reported in section 3.1.1.

In Table III all the errors are reported.

Figure 20: Trend of the average error with respect to the the number of stacked elements.

Since patients need to feel comfortable wearing the device, the number of MARIONETs

composing the mechanism can not be too high. Moreover, a high number of components would

result in an increased computational cost and time. This trade–off between error and complexity
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TABLE III: AVERAGE ERROR [Nm] WITH RESPECT TO THE NUMBER OF STACKED
ELEMENTS.

Stacked MARIONETs Average Error [Nm] Stacked MARIONETs Average Error [Nm]

1 1.7721 6 0.3951

2 1.4225 7 0.3958

3 0.6304 8 0.3855

4 0.5263 9 0.3528

5 0.4653 10 0.3169

seems to be the point where the plateau starts, so choosing a five element solution appears to

be optimal.
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3.1.4 Problems connected to random initialization

Since the optimization algorithm starts with a random guess for the initial parameters, some

concerns are to be addressed. In fact, the results of the process highly depend on the starting

point.

A way to overcome this problem was developed: Figure 21 shows the method adopted. The

optimization algorithm previously developed was inserted into a ”for” loop whose number of

iteration Niter has to be decided by the user; at each iteration i, a set of optimal parameters

is found, the average error is calculated and compared to the minimum mean error previously

found. Eventually, when i > Niter, the set of parameters corresponding to the minimum average

error is taken.
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Figure 21: Flow chart of the developed algorithm.

To prove the fact that the results highly depend on the set of initial parameters, the average

error for each ith iteration is calculated and plotted, with Niter = 200. Therefore, the trend of

the error is shown and the maximum (blue circle) and the minimum(green circle) are highlighted;

as the image points out, the error varies dramatically between different iterations with a variance

σ2 = 0.0197.

Figure 23 pictures what we previously noted: 23a displays the torque and error obtained

with a set of parameters which is clearly non–optimal (blue circle of Figure 22), while 23b shows

a successful run of the algorithm with a optimal set of parameters (green circle of Figure 22).
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Figure 22: Average error for each iteration.

These results demonstrate the need for multiple iterations of the optimization algorithm

and, moreover, it suggests that one can successfully find a globally optimal solution to the

problem.
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(a) Torque and error obtained with non–optimal
parameters

(b) Torque and error obtained with optimal pa-
rameters

Figure 23: Comparison of the result of two different output of the algorithm.

3.2 Gravity compensation results

Here the results of the gravity compensation are presented, both in the form of the two

one–joint and two–joints devices.

3.2.1 One–joint solution

The algorithm was run with the same specifications presented in section 3.1.1 for the elbow

device, while the length of upper arm Lupper = 0.35m was used for the shoulder device; in

addition, a TBM = 70Kg was chosen, so as to find the weight of the different parts of the

arm using Equation 2.13–2.12. Moreover, in order to represent the vector field, the range of φ1

(
[
−π

2 ; 0
]
) and the one of φ1 (

[
0; 2π

3

]
) were divided in 7 points, so as to have a total of 49 points

in which the torques could be evaluated.

Running the algorithm, the two set of parameters were found. Moreover the absolute aver-
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age error both in [Nm] and [%] and the coefficient fo determination R2 are calculated; R2 is

computed as:

R2 = 1− SSres
SStot

(3.1)

being SStot is the sum of squared total and SSres is the sum of squared residuals. This coefficient

expresses the amount of variance explained by the model and it will be used in the next

paragraphs as the discriminating factor to find the best and the worst approximations.

3.2.1.1 Elbow Device

In Table IV the average error, both in Nm and percentage, and the coefficient of determina-

tion are shown for the elbow joint, with the first column representing the fixed shoulder angles

at which each torque profile is calculated. Some percentage errors are not reported because to

be calculated they had to be divided by zero (Equation 3.2); in fact, being the target torque

zero in some point and being

Err(%) = |TargetTorque−OptimalTorque
TargetTorque

| × 100, (3.2)

the resulting error would be ≈ ∞, making it useless for any possible evaluation.

Moreover, in Table V the optimal parameters for the elbow device are reported.

As it can be noted, the error varies greatly throughout the overall space, from a minimum

of 0.2493Nm(≈ 13%) to a maximum of 1.0543Nm(≈ 139%); this happens, probably, because

the algorithm tries to approximate one of the profiles more than another leading to a great
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TABLE IV: AVERAGE ERROR [Nm], AVERAGE ERROR [%] AND R2 FOR EACH PRO-
FILE FOR ELBOW TORQUE.

Shoulder Angle [rad] Avg Abs. Error [Nm] Avg Abs Error [%] Coeff. of Determination

-1.5708 0.9819 — -0.6198

-1.3090 0.6947 47.8814 -0.6330

-1.0472 0.4136 23.4124 0.0447

-0.7854 0.2493 13.1673 0.8178

-0.5236 0.3793 — 0.7629

-0.2618 0.6941 115.2472 0.5224

0 1.0543 139.5801 0.2127

TABLE V: OPTIMAL PARAMETERS FOR GRAVITY COMPENSATION AT THE ELBOW
JOINT.

R[m] θ[rad]

MARIONET1 0.0707 -0.2002

MARIONET2 0.0713 -2.1304

MARIONET3 0.0517 -4.2258

MARIONET4 0.0598 0.8025

MARIONET5 0.05 -1.3452

diversity in the performances. This can be simply perceived thanks to Figure 24 where the best

and worst match are shown. In fact, in Figure 24a it can be seen that the two profiles are very

similar both in the trend and in the magnitude (showing a R2 = 0.8178), whereas in Figure

24b the two differs greatly in every aspect (R2 = −0.6198); in fact, the calculated coefficient is

negative, meaning that the resulting model behaves worst than how the mean would.
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(a) Elbow torque corresponding to the best ap-
proximation.

(b) Elbow torque corresponding to the worst ap-
proximation.

Figure 24: Elbow torques that are approximated in the best and worst way, respectively.
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3.2.1.2 Shoulder Device

The process was repeated for the shoulder device; in Table VI the average errors are detailed

for the shoulder joint. All the considerations previously made for the elbow device are still

valid now for the shoulder equipment; the error, anyway, seems to be smaller with respect

to the previous situation, with a minimum error of 0.4231Nm(≈ 9%) and a maximum of

1.2167Nm(19, 424%) (unfortunately not presenting a percentage error for the aforementioned

problem).

TABLE VI: AVERAGE ERROR [Nm] AND AVERAGE ERROR [%] FOR EACH PROFILE
FOR SHOULDER TORQUE.

Elbow Angle [rad] Avg Abs. Error [Nm] Avg Abs Error [%] Coeff. of Determination

0 0.9774 — 0.9188

0.3491 0.7186 20.5659 0.9450

0.6981 0.5683 6.8169 0.9580

1.0472 0.4826 8.7986 0.9691

1.3963 0.4231 9.1378 0.9599

1.7453 0.7246 12.5672 0.8388

2.0944 1.2167 19.424 0.4413

Furthermore, as in the elbow device case, the parameters for the shoulder device are shown in

Table VII.
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TABLE VII: OPTIMAL PARAMETERS FOR GRAVITY COMPENSATION AT THE
SHOULDER JOINT.

R[m] θ[rad]

MARIONET1 0.05 -0.4645

MARIONET2 0.0843 4.2597

MARIONET3 0.0957 2.7545

MARIONET4 0.0723 4.9682

MARIONET5 0.5 -0.0478

The same consideration that were done in the case of the elbow device are still valid for the

shoulder system; in Figure 25 the best (R2 = 0.9691) and the worst(R2 = 0.4413) approximation

respectively are shown. What can be noted is that the obtained results seems to be quite

satisfying for both the best and the worst case.
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(a) Shoulder torque corresponding to the best ap-
proximation.

(b) Shoulder torque corresponding to the worst
approximation.

Figure 25: Shoulder torques that are approximated in the best and worst way, respectively.
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3.2.1.3 A specialized graphical display of results

Once the shoulder and elbow torque were obtained, they were converted into force using

Equation 2.18, so as to picture a vector field as explained in section 2.5 and shown in Figure 26.

The picture shows the vector field needed to compensate for gravity (in red) and the one

obtained through the optimization algorithm (in black); it can be noted that the optimization

seems to work better and better as the shoulder angle increases. Furthermore, the obtained

torques do not results in a satisfying approximation especially for the most extreme points (for

example, those where the arm is completely stretched).
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Figure 26: Vector field that we want to achieve (in red) and optimal field obtained with the
algorithm (in black).
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3.2.2 A MARIONET crossing two joints

The solution implementing the two–joints method is, finally, applied to the gravity compen-

sation problem; the specification are the same as in section 3.1.1 except for the resting length of

the spring that was set to be L0 = 0.4m, longer than the previous case, since it has to link two

points that are more distant than before. Figure 27 shows the arrangement of the two–joint

device compared to the one–joint version.

(a) One–joint MARIONET. (b) Two–joint MARIONET.

Figure 27: Arrangement of a one–joint and two–joint MARIONETs.

Since only one optimal set of parameters had to be found taking into account both shoulder

and elbow torque in the overall space, the results of a two–joint MARIONET by itself were
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expected to be highly non–satisfying.

As predicted, the obtained set of parameters was unable to suitably approximate the desired

field needed to compensate for the weight of the arm. This was particularly true in the case

of the torque at the elbow, as Figure 28 shows; in fact it can be seen that even where the

error was at its minimum (22.4681Nm) the MARIONET was not able to approximate nor the

magnitude of the desired torque nor its trend (Figure 28a), as pointed out by the R2 which is

highly negative in this case. In Figure 28b the worst situation is pictured, showing a average

error of 32.0597Nm.

Furthermore, the approximation of the shoulder torque (depicted in ??)is still unsatisfying; in

the best case, in fact, the average error is 6.0210Nm (Figure 28c), while in the worst one it

reaches 20.0612Nm(Figure 28d), with an R2 = −11.3297 in the best case, which means that

the model is completely not suited to approximate the desired torque field.
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(a) Elbow torque corresponding to the best ap-
proximation for the two–joint case.

(b) Elbow torque corresponding to the worst ap-
proximation for the two–joint case

(c) Shoulder torque corresponding to the best ap-
proximation for the two–joint case.

(d) Shoulder torque corresponding to the worst
approximation for the two–joint case

Figure 28: Attempts to cancel gravity: the large amount of error suggests that a two–joint
MARIONET by itself cannot provide adequate gravity cancellation (color convention match
previous figures).
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Finally, Figure 29 shows the desired vector field (red) and the one obtained thorough the

algorithm implementing the two–joints solution; as previously noted, the overall resolution is

clearly non–optimal and the picture strengthen the certainty.

Figure 29: Vector field that we want to achieve (in red) and optimal field (in black) as obtained
through the two–joints version of the algorithm; adequate gravity cancellation appears to be
difficult with this mechanism by itself.



CHAPTER 4

CONCLUSIONS AND FUTURE DEVELOPMENT

More and more people in need for rehabilitation, a necessary tool for restoration of the

functional capacity. In order to meet this compelling need, robotic devices not only to facilitate

and accelerate rehabilitation, but also achieve better results where previous therapies failed.

The MARIONET is a simple mechanism able to exert customized torque profiles to the pa-

tient’s limbs by adjusting the moment arm in order to obtain torque. Here, the MARIONET

is expanded so as to obtain a portable system, completely passive and customizable to the

needs and disabilities of the patient patient. Not only this device is thought to fit into a large

variety of anthropometric dimensions, but also to achieve different tasks, such as assistance,

error augmentation and gravity compensation.

Since a MARIONET is able to exert a sinusoidal torque field, the possibility of ”stacking” a

certain number of devices is taken into account so as to obtain more complex torques; this

concept is similar to a truncated Fourier Transform, with each mechanism acting as a basis

function.

The ability to achieve complicated torque profiles and the possibility to tune each single ele-

ment according to certain specifications led to development of an optimization algorithm able

to compute a set of optimal parameters which, in turn, could be used to customize the device

on the patient’s need.

This algorithm was proven to be able to obtain interesting outcomes resulting in the approxi-
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mation of the different target profiles with which it was fed. The method was not only tested

on ”hand–made” torque profiles, but also on the moments generated by a person’s muscles and

whose aim is to compensate the weight of the human arm.

Different versions of the algorithm, corresponding to as many adaptations of the device, were

developed and were able to evaluate one–joint or two–joints mechanism or to compute two or

three parameters for each stacked elements. The one–joint version with two parameters resulted

the best solution to approximate torque fields, presenting the lower computational work and

the smaller time to process, despite a slightly worst error with respect ot the three parameters

version. Furthermore, for what concerns the number of stacked MARIONETs the trade–off

between the error and the comfort of the user resulted in five or six elements composing the

total device. Finally, the two–joints version alone resulted to be not suited to achieve gravity

compensation, while with the two single joint devices the approximation seems more satisfying.

The works that remains to do will be focused on the actual design and physical realization

of the MARIONET device (Figure 30) and a clinical trial able to assess the real possibilities

of the described mechanism. More work will be done on the optimization algorithm to make it

more efficient , leading to the opportunity of using the more complex versions. For the gravity

compensation problem, more work should be done so as to integrate two–joints and one–joint

mechanism in the same device, so as to obtain more satisfying results. Furthermore, since the

resting length and stiffness of the springs seems to have a strong impact on the final approxima-

tions, a version of the algorithm should be designed so as to implement those specifications as
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parameters. Finally, since in order to use MATLAB a highly expensive license is needed, the

idea of writing the code in open languages such as Python will be taken into account enabling

a larger usage of the algorithm.

Figure 30: A possible design of the MARIONET.
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