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SUMMARY

We prove Dade’s ordinary conjecture (DOC) for the finite Special Unitary groups in the

defining characteristic. We base our approach on the following existing work. Olsson and Uno

proved DOC for the finite General Linear groups. Sukizaki then modified their approach in

order to show that DOC holds for the finite Special Linear groups. The key aspect of his

approach is to reformulate the alternating sum for SLn(q) in terms of an alternating sum for

GLn(q) via Clifford theory. Chao Ku modified Olsson and Uno’s work to show DOC for the

finite Unitary groups in his Caltech Ph.D. thesis. In this thesis, we take Sukizaki’s method

and apply it to Ku’s work. Some modifications are necessary as the structure of the finite

unitary groups is more complicated than that of the finite general linear groups. In particular

the cancellations, in the alternating sum in the statement of DOC, in the unitary case are very

different from the cancellations that occur in the general linear case.

The combinatorial details involved in counting characters of parabolic subgroups are fairly

involved. Hence we devote a chapter by way of example to the manageable case when n = 4.

This is the smallest case which is just large enough to be non trivial with respect to the

cancellation in the sum.
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CHAPTER 1

INTRODUCTION

Let G be a finite group. An ordinary representation of G is a group homomorphism

ρ : G −→ GL(V )

where V is a finite dimensional vector space over a field K of characteristic zero. Then V is

the G-module, or KG-module, afforded by ρ. If we fix a basis for V , then GL(V ) is isomorphic

to GLn(K). Then the degree of the representation ρ is n. We define the character χ of ρ by

χ(g) = Tr(ρ(g)). In general, though we may consider K to be the field of complex numbers, in

practice we may take K to be a sufficiently large extension of Q. A character χ is irreducible

if the associated vector space V afforded by ρ has no proper nonzero KG-submodules. We will

denote the ordinary irreducible characters of G by Irr(G). The set Irr(G) forms an orthonormal

basis for the K-space of class functions on G.

Throughout this thesis we assume that p is a fixed prime number. A modular representation

of G is defined similarly, the key difference being that the module afforded is a vector space

over a field of characteristic p. A modular representation of G is a group homomorphism

ρ : G −→ GL(W )

1
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where W is a vector space over a field k of characteristic p. Then W is the G-module, or

kG-module, afforded by ρ. Restricting our attention to the elements of G with order prime to

p, we may define a so called Brauer character, a complex valued class function on elements with

order prime to p.

The philosophy of modular representations goes back to Brauer and in part relates “global

information” to “p-local information”. By global we mean the group G, and by p-local we mean

subgroups related to p-subgroups of G, for example normalizers of p-subgroups. Information

can refer to a variety of things including numbers of characters or character values.

Modular representations of G give rise to a partition of Irr(G) into blocks. Dade’s Con-

jecture was first presented in a series of papers entitled Counting Characters in Blocks. The

interplay between global and local blocks is informative in both directions. The conjecture

involves an alternating sum involving characters of p-local subgroups. In order to state Dade’s

fairly elaborate conjecture we must first assemble some concepts.

1 Modular Representations

Let K be an algebraic number field, a splitting field for G and its subgroups. Let O be the

ring of algebraic integers in K. Let P be a prime ideal in O containing p. Let R be the ring

of P-integral elements of K, i.e. the localization of O at P. Let πR be the unique maximal

ideal in R with respect to a valuation associated with the prime ideal P. We define k to be

the residue field R/πR which is isomorphic to O/P. Then k has characteristic p. The triple
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(K,R, k) is called a p-modular system. We may look at the following group algebras: KG, RG,

and kG.

We use RG in order to pass from ordinary to p-modular representations of G. As an

R-module, the R-algebra RG is free and of finite rank. We have

KG = K ⊗R RG and

kG = k ⊗R RG = RG /πRG .

A finitely generated R-free RG-module is called an RG-lattice. If V is a KG-module then

there exists an RG-lattice M with

K ⊗RM ∼= V.

Note that this is not unique as it depends on our choice of basis for V . Set

M = k ⊗RM = M/πM as kG-module.

Then M is a modular representation, or module, of G. The composition factors of M are unique

up to isomorphism and do not depend on the choice of M .

The K-algebra KG is semi-simple and thus completely reducible. However kG is not semi-

simple if p | |G|. Rather it can only be written as a sum of indecomposable two sided ideals.
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These indecomposable subalgebras of kG are called the p-blocks of kG. A decomposition of kG

into blocks

kG = B1 ⊕B2 ⊕ · · · ⊕Bs

corresponds to a decomposition of the identity 1 = e1 +e2 + · · ·+es where the ei are orthogonal

primitive central idempotents in kG. This is given by Bi = eikG. The class sums of elements

in G form a basis for both Z(RG) and Z(kG). Hence reducing mod πR is a surjective map

Z(RG) −→ Z(kG). We may lift the ei to orthogonal primitive central idempotents fi in RG.

Then the decomposition 1 = f1 + f2 + · · · + fs in RG corresponds to a decomposition of RG

into two sided ideals also called the p-blocks of RG.

RG = B̂1 ⊕ B̂2 ⊕ · · · ⊕ B̂s

where B̂i = fiRG and Bi = k ⊗R B̂i.

If V is an irreducible KG-modules then fiV = V for a unique fi and fjV = 0 for all j 6= i.

We say that V belongs to the block B = fiKG. If V affords the character χ, we also say that

χ is in B. This gives rise to a partition of the set of ordinary characters of G into blocks. We

may informally think of a p-block B of G as simultaneously being all of the following related

objects:

• an indecomposable two-sided ideal kG-module eikG for primitive idempotent ei ∈ Z(kG)

• an indecomposable two-sided idealRG-modulefiRG for primitive idempotent fi ∈ Z(RG)

where fi is the lift of ei.
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• the set of irreducible KG-modules V for which fiV = V

• the set of ordinary characters of the KG-modules V as above

The two-sided ideal summands of kG (or RG) are the same as the direct summands of kG

(or RG) as a k(G × G) (or R(G × G)) -module where the action of k(G × G) (or R(G × G))

on kG (or RG) is given by (g1, g2) · g = g1gg
−1
2 .

Let B be a p-block of G. Then B has associated to it a p-group D called a defect group of

B and a non-negative integer called the defect of B. The subgroup D is a minimal subgroup

of G such that every B-module is a direct summand of an induced module from D ((19), p.

122). If D is such a defect group and |D| = pd then B has defect d. We define the defect of

a character χ to be the maximum power of p dividing
|G|
χ(1)

. Clearly, the defect of a character

is inversely related to the power of the p-part of its degree. If B has defect d, then B contains

a character of defect d and the defect of all other characters in B is less than or equal to d.

We have two extremes. Write |G| = pem where p - m. If B contains a linear character then

the defect of B is e. In this case we say B has full defect. For example the block containing

the trivial module K, equivalently containing the trivial character, is called the principal block

and has full defect. If B contains a character of degree divisible by pe, then B has zero defect.

It turns out that a block B of defect zero contains exactly one character ((7), Proposition 56.31).

Brauer’s First Main Theorem states that if D is a p-subgroup of G then there exists a

bijection between blocks B of G with defect group D and blocks b of NG(D) with defect group

D. Let H ≤ G satisfy DCG(D) ≤ H ≤ NG(D). Let B be a block of G and b be a block of
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H. We say b induces to B and write bG = B if b, as a k(H ×H)-module, is a summand in the

restriction BH×H of the k(G×G)-module B to H ×H and that B is the only block for which

this holds ((1), p.101). For H as above, bG is always defined.

2 Statement of Dade’s Ordinary Conjecture

Let G be a finite group and p a prime. Given a chain of p-subgroups C : U0 < U1 <

· · · < Ul in G we define the length of C, |C| = l. We say that C is radical if U0 = Op(G),

the maximal normal p-subgroup of G and Ui = Op(∩ij=0NG(Uj)) for 1 ≤ i ≤ l. Let NG(C)

denote ∩lj=0NG(Uj). Observe that if two chains C1 and C2 are conjugate to one another, then

NG(C1) ∼= NG(C2). If b is a p-block of NG(C), then bG = B is defined. Let

Irr(NG(C), B, d) =
{
ψ ∈ Irr(NG(C)) | ψ ∈ b where bG = B and ψ has defect d

}
.

We will set k(NG(C), B, d) = |Irr(NG(C), B, d)|.

Conjecture 1.2.1 Dade’s Ordinary Conjecture (DOC) ((8), Conjecture 6.3). Let G be a

finite group with Op(G) = 1 so that all radical chains in G begin with the trivial group U0 = 1.

Let B be a block of G of nonzero defect. Then the following holds:

′∑
(−1)|C|k(NG(C), B, d) = 0, ∀d ≥ 0

where |C| = l is the length of C and
∑′ indicates the sum over a set of representatives of

conjugacy classes of radical chains in G.
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3 Refinement of DOC for Certain Finite Reductive Groups

DOC reduces nicely for certain finite reductive groups in the defining characteristic. Let G

be a finite reductive group of characteristic p. Then G is the group of fixed points of a Frobenius

endomorphism of a connected reductive algebraic group. We consider the p-blocks of G. Let I

be an index set for the distinguished generators of the Weyl group W of G. Let B be a Borel

subgroup of G. In this thesis PJ will denote the parabolic subgroup BWI\JB. For example,

PI = B is the Borel subgroup of G (rather than P∅). It is also useful to think of parabolics

indexed in the following way: If {Pj | j ∈ I} is a complete set of maximal parabolic subgroups

in G, then

PJ =
⋂
j∈J

Pj .

Let C : U0 < U1 < · · · < Ul be a radical chain of p-subgroups in G. Then U0 = Op(G) = 1.

Moreover, U1 = Op(NG(U1)) and hence, by ((4), Corollary), U1 must be the unipotent radical

UJ of a parabolic subgroup PJ of G with NG(UJ) = PJ . We have the familiar Levi decom-

position PJ = LJUJ . It is obvious that U1 ⊆ B. Notice that PJ/UJ ∼= LJ is itself a finite

group of Lie type with Borel subgroup isomorphic to B ∩ LJ . The quotient U2/UJ is isomor-

phic to a p-group of B ∩ LJ and hence is isomorphic to a unipotent radical of a parabolic

subgroup of LJ . Since U2 = Op(PJ ∩NG(U2)) = Op(NPJ (U2)), we must have U2 = UJ ′ where

J ′ ⊃ J . Hence C is a chain of unipotent radicals and NG(C) is equal to NG(Ul) the normalizer of

the last term so that NG(C) = PJ for suitable J depending only on the last term of the chain C.
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It turns out that there is considerable cancellation amongst the G-conjugacy classes of chains

of unipotent radicals for G. The collection of all such chains C which terminate with a fixed

UJ and thus have NG(C) = PJ cancels almost entirely, due to the alternating parity of the

involved chains. One uncancelled chain remains of maximal length J . By a standard argument

((14), p.58), ∑
C

(−1)|C|k(NG(C), B, d) =
∑
J⊆I

(−1)|J |k(PJ , B, d)

where the sum on the left is taken over a set of representatives of G-conjugacy classes of chains

of unipotent radicals.

The possible defect of p-blocks is well known for finite groups of Lie type, otherwise known

as finite reductive groups, of characteristic p ((13)). The only possibilities are blocks of zero

defect and blocks of full defect. In Humphreys’ concluding remarks he notes that the number of

blocks of zero defect is equal to the index of the derived subgroup G′ in G and that the number

of block of full defect is equal to the order of the center of G.

Let us now restrict our attention to G = GLn(q), SLn(q), Un(q), or SUn(q), where q is a

power of p. In fact we have a bijection from the set of p-blocks of PJ to the set of p-blocks

of G of full defect. Indeed, the center of G is a torus and hence has order prime to p. Hence

Op′(Z(G)) = Z(G) and Op(Z(G)) = 1. Let Z(G) = Z. The group Z centralizes UJ so

UJZ ⊆ UJCG(UJ) certainly holds. It happens that UJCG(UJ) ⊆ UJZ holds for these four

families of groups. Thus by ((16), Lemma 2.1), ψ and ψ′ lie in the same block b of PJ if and
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only if their restrictions to Z have the same constituent. In other words, PJ has |Z| blocks and

a block b of PJ is determined by a unique character ρ ∈ Irr(Z). The induced block bG = B is

defined. B has full defect and is determined by the same ρ. The proof for Un(q) is analogous

to the proof for GLn(q) in ((16), Lemma 2.1). If ψ ∈ Irr(PJ) restricted to Z contains ρ we will

say that ψ lies over ρ.

Write |G| = pem. Each parabolic subgroup PJ contains UI the unipotent radical of the

Borel subgroup of G. This is a Sylow p-subgroup of G. Hence |PJ | is divisible by pe for every

J ⊆ I. As noted above the defect of a character is inversely related to the power of p dividing

its degree. If the p-part of ψ(1) is pa for ψ ∈ Irr(PJ), then the defect of ψ is e− a. Hence it is

equivalent to count characters by their so called p-height rather than their defect.

Definition 1.3.1 We define the p-height of ψ to be d if pd‖ψ(1). Similarly, we define the

q-height ψ to be d if qd‖ψ(1).

Remark: This definition is not entirely standard. In the literature p-height is generally

defined with reference to the defect of the block containing the character. For example Brauer’s

definition of height in his Height Conjecture is more standard. However if ψ is in a block of full

defect, then the p-height as it is usually defined is equal to the maximal power of p dividing

ψ(1) and hence our definition coincides with the standard.

Let ρ be an irreducible character of the center of G and define

kd(PJ , ρ) =
∣∣∣{ψ ∈ Irr(PJ) |ψ lies over ρ and pd‖ψ(1)

}∣∣∣ .
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Then DOC is equivalent to the following:

Conjecture 1.3.2 Let q = pa. Let G = GLn(q), SLn(q), Un(q), or SUn(q), with parabolic

subgroups PJ indexed by subsets J ⊆ I. Let Z be the center of G. Let |G| = pem where p - m.

Then ∀ρ ∈ Irr(Z) ∑
J⊆I

(−1)|J |kd(PJ , ρ) = 0 ∀d , 0 ≤ d < e.

If G is either of GLn(q) or Un(q), then the p part of the degree of characters in Irr(G) are

powers of q. Indeed, this is well known for GLn(q) and follows for Un(q) by replacing q in the

GLn(q)-character theory by −q in the Un(q)-theory, by Ennola’s conjecture, now proved. For

G = GLn(q), or Un(q), let S = SLn(q), or SUn(q) respectively. The group S is the kernel of the

determinant map on G. Moreover the quotient G/S is cyclic of order q−1 or q+1 respectively,

in either case prime to p. Take any ψ ∈ Irr(S), then there exists χ ∈ Irr(G) such that ψ is a

constituent of the restriction of χ to S. By Frobenius reciprocity, we may choose any irreducible

χ appearing in the induction of ψ from S to G. Then, by 2.4.1 and 2.4.4 in the next chapter,

χ|S = ψ1 + ψ2 + · · ·+ ψr where the ψi ∈ Irr(S) are G-conjugates of ψ

and r divides |G/S|. Thus

χ(1) = ψ1(1) + ψ2(1) + · · ·+ ψr(1).
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Since r is prime to p, it follows from Clifford theory that the p-height of ψ is equal to the

p-height of χ and hence is also a power of q. Suppose χ ∈ Irr(G), or Irr(S) has p-height d.

Then d is certainly divisible by a so χ has q-height d/a. It turns out that from Olsson and

Uno’s construction for GLn(q2) and Ku’s construction for Un(q) the characters of parabolic

subgroups of G also have degrees with p part equal to a power of q. As we will see in chapter 4,

parabolic subgroups of S are in fact the kernel of the determinant map restricted to parabolic

subgroups of G. Thus, by the same reasoning as above, they also have degrees with p part

equal to a power of q. Hence in statement 1.3.2 of DOC, for d not divisible by a the left hand

side of the sum is empty and so vacuously true. This allows us to simplify our notation by

counting characters via q-height rather than p-height. Henceforth and for the rest of this thesis

we redefine the subscript d so that it indicates q-height so for example Irrd(PJ , ρ) will denote

irreducible characters of PJ lying over ρ with q-height d.

4 Some Results for Dade’s Conjecture and Implications

We summarize the cases for which some version of Dade’s conjecture has been shown, in-

cluding the result of this thesis. References for this section are ((12), Section 5) and on the web

at ((17)).
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1. Classical Groups:

GLn(q) ord., p | q Olssen, Uno
Un(q) ord., p | q Ku
GLn(q), Un(q) invar., p - q An
Sp2n(q), SO±m(q) ord., p - q, p, q odd An
L2 final Dade
L3 final, p | q Dade
Ln ord., p | q Sukizaki
Sp4(2n) final, p = 2 An, Himstedt, Huang
SU4(22n)
Sp4(q) invar., p | q, p odd An, Himstedt, Huang, Yamada
SUn(q) ord., p | q Bird

2. Sporadic Simple Groups:

M11, M12, J1, J2 final Dade
M22 final Huang
M23, M24 final Schwartz, An, Conder
J3 final Kotlica
McL final Murray, Entz, Pahlings
Ru final Dade, An, O’Brien
He final An
HS final Hassan, Horváth
Co1 final An, O’Brien
Co2 final An, O’Brien
Co3 final An
Suz final Himstedt
O′N final An, O’Brien, Uno, Yoshiara
Th final Uno
Ly final Sawabe, Uno
HN final An, O’Brien
Fi23 final An, O’Brien
Fi22 invar. An, O’Brien
J4 An, O’Brien, Wilson
B p odd An, Wilson
Fi′24 An, Cannon, O’Brien, Unger
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3. Exceptional Groups:

2B2(22n+1) final Dade
2G2(32n+1) final p 6= 3 An, p = 3 Eaton
G2(q) final, 2, 3 | q, p - q q 6= 3, 4 An
G2(q) final, p | q(p ≥ 5), q = 3, 4 Huang
3D4(q) final, p - q An
3D4(q) final, p | q (p = 2 or odd) An, Himstedt, Huang
2F4(22n+1) ord., p 6= 2 An
2F4(22n+1) final, p = 2 Himstedt, Huang
2F4(2)′ final An

4. Other cases:

Sn ord., p 6= 2 Olssen, Uno
Sn ord., p = 2 An
An, abelian defect ord. Fong, Harris
Cyclic defect group final Dade
Tame block invar. Uno
Abelian defect unipotent blocks ord. Broué, Malle, Michel
Abelian defect principal blocks ord., p = 2 Fong, Harris
Abelian defect some cases ord. Piug, Usami
p-solvable proj. Robinson
Op(G) cyclic, Op(G)/G p-Sylow TI proj. Eaton
Nilpotent blocks

The sequence of most interest with respect to this thesis is the following: Olsson and Uno

proved DOC for GLn(q) in the defining characteristic (16). Sukizaki proved it for SLn(q) also

in the defining characteristic (22). Chao Ku verified DOC in his doctoral thesis for Un(q).

Assuming that Dade’s Ordinary Conjecture is true for all finite groups implies a number of

other conjectures. In this sense DOC encodes a variety of information. DOC implies Alperin’s

Weight Conjecture which counts Brauer characters. DOC implies the Alperin-McKay Conjec-

ture which is a refinement of the McKay Conjecture. DOC also implies one direction of Brauer’s

Height Conjecture which involves abelian defect groups.



CHAPTER 2

PRELIMINARIES

We begin these preliminaries with our definition of the finite unitary and special unitary

groups. Throughout this thesis q is a fixed power of the prime p. Let K = Fq, and G̃ = GLn(K).

Define the matrix

M =



0 . . . 0 1

0 . . . 1 0

... . .
. ...

...

1 . . . 0 0


.

Define the following Frobenius map F on G̃ by:

F (ai,j) = M(aqj,i)
−1M−1.

The group of fixed points G̃F is the finite unitary group Un(q), i.e.

Un(q) = {(ai,j) |M = (ai,j)M(aqj,i)}.

14
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Clearly Un(q) ≤ GLn(q2). The advantage of this definition is that F fixes the subgroup of upper

triangular matrices in GLn(q2). We can define the special unitary groups in two equivalent ways.

On the one hand, the group of fixed points of SLn(K) under F is SUn(q). On the other hand,

SUn(q) = {A ∈ Un(q) | det(A) = 1}.

The Weyl group W of Un(q) is of type Bm, where n = 2m, or 2m + 1, and is isomorphic to

the wreath product C2 o Sm. The symmetric group on m elements is generated by reflections

indexed by {1, 2, . . . ,m − 1} and the cyclic group of order 2 is generated by the reflection in-

dexed by {m}. With this identification, the distinguished generators of W may be indexed by

I = {1, 2, . . . ,m} denoted by [m].

1 Some Notation

Throughout this thesis we will make use of the following notation. Let q be a fixed power

of prime p. We consider the finite field Fq2 and its group of units F ∗q2 . For divisors h of q2 − 1,

let Ch denote the cyclic subgroup of order h in F ∗q2 . So in particular Cq+1 denotes the cyclic

subgroup of order q + 1 in Cq2−1.

2 On radical p-chains

In order to reformulate DOC for the finite special unitary groups we will need the following

proposition due to Sukizaki.
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Proposition 2.2.1 ((22), Proposition 2.1) Let G be a finite group and let H be a subgroup

of G. If H contains all p-subgroups of G and satisfies Op(G) = Op(H), then any radical p-chain

of H is a radical p-chain of G.

3 Certain functions on partitions

In this section we are following the development of Olsson and Uno ((16)), Sukizaki ((22)),

and Ku ((15)). To that end we discuss partitions. Further we define two important functions

α and β on pairs (µ, a) where µ is a partition and a is a field element. The function α was

defined in ((16), p.363). The function β was introduced as a unitary version of α and was

defined in ((15), p.16). These functions are involved in expressing the q-height of characters.

Further, it turns out that they are also involved in the splitting of characters upon restriction

to certain subgroups. We assert some combinatorial facts about the behavior of these functions.

Let µ = (al11 , a
l2
2 , . . . , a

lr
r ) ` n, where a1 > a2 · · · > ar > 0. We define |µ| =

∑r
i=1 liai = n.

Let the number of distinct parts of the partition be δ(µ) = r and the length of the partition

l(µ) =
∑r

i=1 li . We define γ(µ) = gcd(a1, a2, . . . , ar) and λ(µ) = gcd(l1, l2, . . . , lr).

Given µ1 ` n1 and µ2 ` n2 we can define 2µ1 ∪ µ2 ` n = 2n1 + n2. In order to define this

new partition write µi = (1mi1 , 2mi2 , . . . , n
mini
i ), so that for nonzero mit, the integer t appears

in µi with multiplicity mit. Then define 2µ1 ∪ µ2 = (12m11+m21 , 22m12+m22 , . . . , n2m1n+m2n).

Definition 2.3.1 Let a ∈ Cq2−1 and µ = (al11 , a
l2
2 , . . . , a

lr
r ) ` n. We define a function α by

α(µ, a) = |{(x1, x2, . . . , xr) ∈ (Cq2−1)r | (−1)nx1
a1xa22 . . . xarr = a}|.
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Lemma 2.3.2 With µ defined as above and a ∈ Cq2−1 we have

α(µ, a) = (q2 − 1)r−1α(γ, a)

where γ = γ(µ) and

α(γ, a) =


gcd(q2 − 1, γ), if a ∈ C(q2−1)/gcd(q2−1,γ);

0, otherwise.

See ((16), p.363) for the proof.

Definition 2.3.3 Let b ∈ Cq+1 and µ = (al11 , a
l2
2 , . . . , a

lr
r ) ` n. We define a function β

β(µ, b) = |{(x1, x2, . . . , xr) ∈ (Cq+1)r | (−1)nx1
a1xa22 . . . xarr = b}|.

Lemma 2.3.4 With µ defined as above and b ∈ Cq+1 we have

β(µ, b) = (q + 1)r−1β(γ, b)

where γ = γ(µ) and

β(γ, b) =


gcd(q + 1, γ), if b ∈ C(q+1)/gcd(q+1,γ);

0, otherwise.

The proof is similar to the proof of Lemma 2.3.2.
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In practice we will be restricting our attention to elements b in Cq+1 and hence have need

of the following modification of our α function which was defined in ((15), p.16).

Definition 2.3.5 For b ∈ Cq+1 and µ = (al11 , a
l2
2 , . . . , a

lr
r ) ` n we define

β(µ, b) =
∑

a∈Cq2−1

aq−1=b

α(µ, a).

Some important technical facts from ((15), (16), and (22)) regarding α, β, and β are

summarized in the following lemmas.

Lemma 2.3.6 If (k) ` k and µ = (al11 , a
l2
2 , . . . , a

lr
r ) ` n, then

∑
b1,b2∈Cq+1

b1b2=b

β((k), b1)β(µ, b2) = β(λ, b)

where λ = ((a1 + k)l1 , (a2 + k)l2 , . . . , (ar + k)lr , kx) ` (n+ (l(µ) + x)k).

Lemma 2.3.7 If µi ` ni, for i = 1, 2, and µ = 2µ1 ∪ µ2 ` n = 2n1 + n2, then

∑
b1,b2∈Cq+1

b1b2=b

β(µ1, b1)β(µ2, b2) = (q − 1)δ(µ1)(q + 1)c(µ1,µ2)β(µ, b)

where c(µ1, µ2) is the number of distinct entries that µ1 and µ2 have in common.
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Lemma 2.3.8 If µ ` n, then

∑
(µ1,µ2)

µ=2µ1∪µ2

q2(l(µ1)−δ(µ1))(q − 1)δ(µ1)(q + 1)c(µ1,µ2) = ql(µ)−δ(µ).

Notice that this sum is taken over all pairs of partitions (µ1, µ2) such that µ = 2µ1 ∪ µ2.

These results are proved in ((15)). We mention that the last 2.3.8 is proved by associating

to the pair (µ1, µ2) a matrix and its shadow which are defined as follows:

Definition 2.3.9 For two partitions µi = (tmit), i = 1, 2, with µ = (2µ1∪µ2) ` n we define

the 2 by n matrix

A(µ1, µ2) = A =

 m11 m12 · · · m1n

m21 m22 · · · m2n


Given such an A we define the shadow of A to be the 2 by n matrix (cij) where the ij-entry

cij =


1, if mij is nonzero;

0, otherwise.

Thus taking the sum over pairs (µ1, µ2) in Lemma 2.3.8 is equivalent to taking the sum over

possible matrices A(µ1, µ2). We also remark that with this definition of the shadow, the number

of entries that µ1 and µ2 have in common c(µ1, µ2) =
∑n

t=1 c1tc2t.

Suppose that we have a pair (µ1, µ2) with µ = 2µ1 ∪ µ2 a partition of n and all nonzero

multiplicities of µi, i = 1, 2, are divisible by a fixed integer j, i.e. j| gcd(λ(µ1), λ(µ2)). First of
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all it is clear that j|λ(µ). Write µ = (tmt) so that 2m1t+m2t = mt. Observe that tmt ≤ n must

hold. In particular (n/j)mn/j ≤ n implies that mn/j is the last possibly nonzero exponent in

µ. In other words the matrix A(µ1, µ2) must have zero entries to the right of the n/j-column.

Furthermore, A may be decomposed:

A =

 m11 m12 · · · m1n

m21 m22 · · · m2n

 =

 j 0

0 j


 k11 k12 · · · k1n

k21 k22 · · · k2n

 = jB.

If we remove the zero columns to the right of the n/j-column of B, we obtain A(κ1, κ2), the

2 by n/j matrix associated to κ1 = (tk1t) and κ2 = (tk2t) for 1 ≤ t ≤ n/j. If µ = (t2m1t+m2t),

then κ = (t2k1t+k2t) = 2κ1 ∪ κ2, a partition of n/j. We have the following equalities:

l(µ1)/j = l(κ1); δ(µ1) = δ(κ1);

c(µ1, µ2) = c(κ1, κ2); l(µ)/j = l(κ); δ(µ) = δ(κ).

Thus for a fixed partition µ ` n

∑
(µ1,µ2)

µ=2µ1∪µ2
j| gcd(λ(µ1),λ(µ2))

q2(l(µ1)/j−δ(µ1))(q − 1)δ(µ1)(q + 1)c(µ1,µ2)

=
∑

(κ1,κ2)
κ=2κ1∪κ2

q2(l(κ1)−δ(κ1))(q − 1)δ(κ1)(q + 1)c(κ1,κ2)

Hence we have the following important corollary to 2.3.8:
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Corollary 2.3.10 If µ ` n, then

∑
(µ1,µ2)

µ=2µ1∪µ2
j| gcd(λ(µ1),λ(µ2))

q2(l(µ1)/j−δ(µ1))(q − 1)δ(µ1)(q + 1)c(µ1,µ2) = ql(µ)/j−δ(µ).

4 Applications of the Clifford Theory

We will make abundant use of Clifford Theory. A reference for this section is ((7), Chapter

11). We summarize here the results that we need. In this section we assume that G is a finite

group with a normal subgroup H. For ψ ∈ Irr(H) and g ∈ G we define the character gψ by

gψ(h) = ψ(g−1hg) for all h ∈ H. Let TG(ψ) denote the stabilizer of ψ in G so that

TG(ψ) = {g ∈ G | gψ = ψ}.

We define a subset of characters in Irr(G)

Irr(G,ψ) = {χ ∈ Irr(G) | (χ|H , ψ)H 6= 0}.

If χ ∈ Irr(G,ψ) we will say that χ corresponds to ψ.

We define a subset of characters in Irr(H)

Irr(H,χ) = {ψ ∈ Irr(H) | (χ|H , ψ)H 6= 0}.
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This definition is equivalent to saying that the χ appear in the induced character of ψ to G.

Thus we will say that ψ corresponds to χ if ψ ∈ Irr(H,χ).

Theorem 2.4.1 ((7), Proposition 11.4) Let ψ ∈ Irr(H) and χ ∈ Irr(G,ψ). Then

χ|H = e

 ∑
x∈G/TG(ψ)

xψ



where e is a positive integer.

Theorem 2.4.2 ((7), Theorem 11.5) Let ψ ∈ Irr(H) and suppose that ψ = ψ̃|H for some

character ψ̃ of TG(ψ), that is, suppose that ψ can be extended to a character ψ̃ of TG(ψ). Write

T = TG(ψ) then

Irr(T, ψ) = { θψ̃ | θ ∈ Irr(T/H) }, and

Irr(G,ψ) = { (θψ̃)G | θ ∈ Irr(T/H) }.

Here we regard θ as a character of T .

We have the following corollary which is a simple consequence of the transitivity of character

induction.

Corollary 2.4.3 If ψ ∈ Irr(H) and P is any subgroup of G that contains TG(ψ) then

|Irr(P,ψ)| = |Irr(G,ψ)|.
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Moreover, there is a 1-1 correspondence between characters in each of these sets given by

φ = (θψ̃)P ↔ (θψ̃)G = χ.

If φ ∈ Irr(P,ψ) corresponds to χ ∈ Irr(G,ψ) and χ(1) has p-part equal to pd then the p-part of

φ(1) is pd−d
′

where |P\G| has p-part pd
′
.

Lemma 2.4.4 ((23), Lemma 2.5) If G/H is cyclic then the following hold:

1. Characters of G restricted to H are multiplicity free. In other words e = 1 in 2.4.1.

2. Two characters of G either restrict to the same character of H or have disjoint irreducible

components.

3. If ψ ∈ Irr(H) and χ ∈ Irr(G,ψ) then |Irr(H,χ)| = |G|/(|H||Irr(G,ψ)|).

We have another important consequence of Clifford Theory concerning when an extension

of a character exists when G is a semi-direct product.

Lemma 2.4.5 ((22), Theorem 2.5) Let G be a finite group with G = P nM .

1. If τ ∈ Irr(M) is linear, then τ extends to an irreducible character τ̃ of T = TG(τ).

Moreover

Irr(G, τ) = {(θτ̃)G | θ ∈ Irr(T/M)}.

2. Let H be a normal subgroup of G containing M and suppose that G/H is cyclic. If

θ ∈ Irr(T/M), then

|Irr(H, (θτ̃)G)| = |G : TH||Irr(TH(τ), θ)|.
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We will be interested in the existence of extensions of non-linear characters of certain nor-

mal subgroups. The following result of Dade’s on the extendibility of characters of normal

extraspecial p-subgroups is certainly relevant.

Lemma 2.4.6 ((9)) Let E be an extra special p-group and G = H nE with Z(E) ≤ Z(G).

Assume that for each normal p′-subgroup K of H, the commutator subgroup [K,E] = 1. If

ψ ∈ Irr(E) is non-linear, then ψ is extendible to G.

5 On a Product of Groups

We will be examining the splitting of characters of direct products upon restriction to certain

normal subgroups. We note that if G = G1 × G2, then an irreducible character of G is of the

form χ1χ2 where χi ∈ Irr(Gi). We will have need of the following result.

Lemma 2.5.1 ((22)) Let G = G1 ×G2 where the group homomorphism φi : Gi → F ∗q2 has

image Chi for i = 1, 2. Set

H = {(g1, g2) ∈ G | φ1(g1)φ2(g2) = 1}.

If χi has mi irreducible constituents upon restriction to kerφi, then χ = χ1χ2 restricted to H

has m irreducible constituents, where

m =
gcd

(
m1(q2 − 1)/h1,m2(q2 − 1)/h2

)
gcd ((q2 − 1)/h1, (q2 − 1)/h2)

.
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6 Restriction of Characters to the Kernel of the Determinant Map

In this section we present results for GLn(q2) and Un(q). Sukizaki’s result is proved using

G.I. Lehrer’s work which uses an earlier parametrization of the characters of GLn(q). We will

use the more modern approach of Deligne-Lusztig theory. However, our goal remains the same

in that we construct sequences of polynomials corresponding to characters and use them to

count the number of characters.

Definition 2.6.1 Let G = GLn(q2) or Un(q). Given a homomorphism φ : G→ (Fq2)∗ and

ρ ∈ Irr(Z(G)), we define the following:

1. Let Irrd(G, ρ, φ, j) be the set of irreducible ordinary characters χ of G with q-height d and

lying over ρ such that the restriction of χ to the kernel of the map φ has j irreducible

components.

2. Let kd(G, ρ, φ, j) denote the number of irreducible ordinary characters χ of G with q-

height d and lying over ρ such that the restriction of χ to the kernel of the map φ has j′

irreducible components, where j divides j′, i.e.

kd(G, ρ, φ, j) =
∑
j′

j|j′

|Irrd(G, ρ, φ, j′)|.

We will be considering the determinant map on Un(q) and certain subgroups. For a matrix

element A, det(A) denotes the usual matrix determinant. We will consider subgroups of Un(q)
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whose elements are block matrices. If A is a block matrix with block matrices A1, A2, . . . , As

down its diagonal then det(A) = det(A1) det(A2) · · · det(As). Moreover, if certain of the Ai are

repeated then det(A) may involve powers of det(Ai). Define deth(A) = (det(A))h. We apply

definition 2.6.1 below with φ = det.

We now fix an isomorphism between (F q)
∗ and Irr((F q)

∗) and consider it fixed for the

rest of this thesis. In practice, we are primarily interested in the subgroup F ∗q2 . The group

Z = Z(GLn(q2)) ∼= F ∗q2 = Cq2−1. Further, assume that the induced isomorphism of Cq2−1

with Irr(Cq2−1) is given by the following. Let ε generate Cq2−1. Define the isomorphism via

ε 7→ ρε where ρε(ε) = e(2πi)/(q2−1).

Under this isomorphism, ρ ∈ Irr(Cq2−1) corresponds to aρ ∈ Cq2−1. Equivalently a ∈ Cq2−1

corresponds to ρa ∈ Irr(Cq2−1). This induces an isomorphism of Irr(Z(Un(q))) with Cq+1.

The following integer valued function on partitions of n is involved in the q-height of char-

acters for GLn(q2) and Un(q).

Definition 2.6.2 We define n′(µ):

n′(µ) =

r∑
i=1

li

(
ai
2

)
.
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Our first proposition is a slight reformulation of Sukizaki’s result in (22). This is needed as

our ground field is Fq2 rather than Fq. For µ ` n, recall λ(µ), l(µ), and δ(µ) defined on page

16.

Proposition 2.6.3 ((22), Lemma 4.1) Let ρ ∈ Irr(Cq2−1). Then

k2d(GLn(q2), ρ,det, j) =
∑
µ`n

n′(µ)=d
j|gcd(q2−1,λ(µ))

q2(l(µ)/j−δ(µ))α(µ, aρ).

For ρ ∈ Irr(Cq+1) we define

k2d(GLn(q2), ρ,det1−q, j) =
∑

ρ′∈Irr(Cq2−1)

ρ′|Cq+1
=ρ

k2d(GLn(q2), ρ′, det1−q, j).

Then since (q2 − 1)/(q − 1) = q + 1, by Sukizaki’s equation following equation 3-5 in (22)

we have a disjoint union

Irr2d(GLn(q2), ρ′,det1−q, j) =
⊔
j′

j=gcd(q+1,j′)

Irr2d(GLn(q2), ρ′,det, j′).

This together with our definition of β from earlier in this chapter implies the following

corollary:
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Corollary 2.6.4 Let ρ ∈ Irr(Cq+1). Then

k2d(GLn(q2), ρ,det1−q, j) =
∑
µ`n

n′(µ)=d
j|gcd(q+1,λ(µ))

q2(l(µ)/j−δ(µ))β(µ, aρ).

We present the case for Un(q) now for completeness. We will prove this in the next chapter.

Proposition 2.6.5 Let ρ ∈ Irr(Cq+1). Then

kd(Un(q), ρ,det, j) =
∑
µ`n

n′(µ)=d
j|gcd(q+1,λ(µ))

ql(µ)/j−δ(µ)β(µ, aρ)

Remark: Let χ be an irreducible character of GLn(q2). If χ |ker det has j irreducible

constituents, then j divides gcd(q2− 1, n). ((20), Theorem 4.7). If χ |ker det1−q has j irreducible

constituents, then j divides gcd(q + 1, n). Now let χ be an irreducible character of Un(q). If

χ |ker det has j irreducible constituents, then j divides gcd(q + 1, n). An identical theorem for

the unitary case may be obtained making the following simple modifications to the proof of

((20), Theorem 4.7): Change Definition 4.6 by defining

M(d) = {A ∈ Un(q) | detA = ξdk , k = 1, . . . , (q + 1)/d}

where d = gcd(n, q+1) and ξ = ε1−q, a generator of the subgroup Cq+1 in F ∗q2 . Then in Lemma

4.6 and Theorem 4.7 replace GLn(q) with Un(q) and SLn(q) with SUn(q).



CHAPTER 3

CHARACTERS OF UN(Q) RESTRICTED TO SUN(Q)

In this chapter we prove Proposition 2.6.5. We start by parameterizing irreducible characters

χ of Un(q) via pairs (s, λ), and construct a unique sequence of polynomials (h1(x), h2(x), . . .)

corresponding to χ. The subgroup SUn(q) is normal in Un(q) with cyclic quotient isomorphic

to Cq+1 which acts naturally on Irr(SUn(q)) via Un(q)-conjugation. In the last chapter, we

fixed an isomorphism Cq2−1
∼= Irr(Cq2−1) and hence we have an isomorphism Cq+1 ' Irr(Cq+1).

The group Irr(Cq+1) acts on Irr(Un(q)). Indeed, if ρ ∈ Irr(Cq+1) then we have a corresponding

linear character of Un(q) also denoted by ρ. Then ρ ∈ Irr(Cq+1) acts on Irr(Un(q)) by

χ 7→ ρ⊗ χ abbreviated by ρχ.

Let χ ∈ Irr(Un(q)). By Clifford Theory, χ restricted to SUn(q) is multiplicity free. If

χ|SUn(q) = ψ1 + ψ2 + · · ·ψj where ψi ∈ Irr(SUn(q))

then the ψi are Un(q)-conjugates of one another.

29
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The following lemma uses the well-known fact on characters of finite groups that if G is a

finite group and H ≤ G, and ϑ, η are characters of H, G respectively, then

ηIndGH(ϑ) = IndGH(η|Hϑ).

Lemma 3.0.6 Let χ, χ′ ∈ Irr(Un(q)). Then χ, χ′ have the same restriction to SUn(q) if

and only if χ′ = ρχ for some ρ ∈ Irr(Cq+1).

Proof: Let χ′ = ρχ. Since SUn(q) is in the commutator subgroup of Un(q), ρ is trivial on

SUn(q) and hence χ, χ′ have the same restriction to SUn(q).

Suppose ψ is a common constituent of χ, χ′ restricted to SUn(q). Let T be the stabilizer of

ψ in SUn(q). Then ψ extends to ψ̃ ∈ Irr(T ), and we have

χ = Ind
Un(q)
T (ψ̃φ), χ′ = Ind

Un(q)
T (ψ̃φ′)

where φ, φ′ are lifts to T of characters of T/SUn(q), denoted φ1, φ′1. Then φ1, φ′1 can be

extended to characters ξ1, ξ′1 of Un(q)/SUn(q), which can be lifted to characters ξ, ξ′ of Un(q).

Then we have

χ = Ind
Un(q)
T (ψ̃)ξ, χ′ = Ind

Un(q)
T (ψ̃)ξ′.

Thus χ, χ′ differ by a linear character. Since every linear character of Un(q) is of the form ρz

for some z ∈ Cq+1 we have χ′ = ρχ.
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Let E = {ψ1, ψ2, . . . , ψj} and let F = {χ1, χ2, . . . , χr} where the χi are the constituents of

the induced character Ind
Un(q)
SUn(q)(ψ) for any ψ ∈ E . Then E is a Cq+1-stable subset of Irr(SUn(q))

and F is a Irr(Cq+1)-stable subset of Irr(Un(q)). Hence r = (q+1)/j and our original character

χ is stabilized by ρz ∈ Irr(Cq+1) where z ∈ Cq+1 is a primitive j-th root of unity, i.e.

χ = ρzχ.

This forces certain conditions on the coefficients in the polynomials in (h1(x), h2(x), . . .)

corresponding to χ and allows us to count how many χ of a fixed q-height are fixed by a j-th

root of unity.

1 Pairs (s, λ)

Let K = F q. Consider the algebraic group G̃ = GLn(K) with Frobenius endomorphism

defined in the last chapter, F : G̃→ G̃ by F ((aij)) = M(aqji)
−1M−1. Then let G = G̃F = Un(q).

A reference for the following is ((11), section 1). A subgroup L of G is Levi if L = L̃F

for some F -stable Levi subgroup L̃ of a parabolic subgroup P̃ of G̃. For a Levi subgroup

L of G, let RGL be the additive operator from X(L) to X(G) defined in the Deligne-Lusztig

theory, where X(L) and X(G) are the character rings of representations of L and G over Ql,

an algebraic closure of the l-adic field Ql (l 6= p). Recall, in the previous chapter we fixed an
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isomorphism between (F q)
∗ and Irr((F q)

∗). Providing a coherent choice of roots of unity (via

monomorphisms of multiplicative groups) has been made, this leads to an isomorphism

Z(L) ∼= Irr(Z(L)) = Hom(Z(L),Ql)

as in ((5), Section 8.2). Recall, ρs is the linear character of L corresponding to s ∈ Z(L).

We have a Jordan decomposition of characters of G. Namely the set of ordinary irreducible

characters of G is in one-to-one correspondence with the set of pairs (s, λ). In our case, this

means

χ↔ (s, λ)

where s is a representative of a semi-simple conjugacy class of G and λ is a unipotent character

of L = CG(s), i.e. λ appears as a constituent of RLT (1) for some maximal torus T of L.

Let εL = (−1)d where d is the dimension of a maximal Fq2 split torus of L. Then

χ = εGεLR
G
L (ρsλ) by ((11), p.116).

Proposition 3.1.1 For ρz ∈ Irr(Z(G)), and χ ∈ Irr(G)

χ↔ (s, λ)⇔ ρzχ↔ (zs, λ).

where (s, λ) is the Jordan decomposition of χ.
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Proof: Let L = CG(s) = CG(sz). Then

χ = εGεLR
G
L (ρsλ).

Moreover

ρzχ = εGεLR
G
L (ρz(ρsλ)), by ((5), Proposition 8.20)

= εGεLR
G
L ((ρzρs)λ),

which corresponds to the pair (zs, λ).

Remark: The above discussion also holds for the finite group GLn(q) = G̃F
′

where the

Frobenius map is given by F ′((ai,j)) = (aqi,j).

2 Sequences of polynomials

In order to count efficiently we make use of polynomial sequences. We construct certain

sequences which correspond to the irreducible characters of Un(q). This identification arises

naturally out of Deligne-Lusztig Theory. These polynomials encode information about both

s and λ. This procedure is known in the case of GLn(q) where if χ corresponds to the pair

(s, λ) then χ corresponds to a sequence (h1(x), h2(x), . . .). The hi(x) are products of powers of

irreducible polynomials over Fq which are elementary divisors of s; the powers of these divisors

come from λ. In precisely the same spirit, irreducible characters of Un(q) can be identified with

sequences (h1(x), h2(x), . . .) where the hi(x) are products of powers of polynomials over Fq2 ,
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appropriate for Un(q), which are elementary divisors of s. We proceed with this identification.

It is well known that the conjugacy class of an element in GLn(q2) may be described by

the elementary divisors of the rational canonical form. These divisors are powers of monic

irreducible polynomials in Fq2 [x] with non-zero roots. View Un(q) as a subgroup of GLn(q2).

Let g ∈ GLn(q2) have GLn(q2)-conjugacy class [g]. The intersection [g] ∩ Un(q) is either a

Un(q)-conjugacy class or is empty ((11), p.111). Let f be a monic irreducible polynomial in

Fq2 [x] of degree d with nonzero roots {ω}. We define f̃ to be the polynomial in Fq2 [x] with

roots {ω−q}. Let mf i(g) denote the multiplicity of f i as an elementary divisor of g. Then

[g]∩Un(q) is nonempty precisely when mf i(g) = mf̃ i(g) holds ∀f and ∀i. Hence the conjugacy

class of an element in Un(q) is given by the elementary divisors of its rational canonical form

and these divisors are powers of polynomials in a subset F of Fq2 [x].

Definition 3.2.1 Let F1 = {f |f 6= x is monic, irreducible and f = f̃} and let F2 =

{ff̃ |f 6= x is monic, irreducible and f 6= f̃}. Let F = F1 ∪ F2.

Notice that for every polynomial f ∈ F, f = f̃ . Members of F1 have odd degree and mem-

bers of F2 have even degree. The latter fact is obvious. The former can be observed by noting

that since f is irreducible the roots are the Galois conjugates of ω. Suppose that d = 2k.

If f = f̃ , then {ω, ω−q, . . . , ω(−q)d−1} = {ω−q, ωq2 , . . . , ω(−q)d}. Hence ω = ω(−q)n = ωq
d

so

ω ∈ Fqd . But Fqd is an extension of Fq2 of degree k, hence f is reducible, a contradiction.
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An element g ∈ Un(q) is semi-simple if and only if mf i(g) = 0 for all i > 0. Given a

semi-simple s ∈ Un(q), we want to describe its centralizer CUn(q)(s). Let s have primary

decomposition s =
∏
f∈F sf where sf is the primary component corresponding to elementary

divisor f . Let s have minimal polynomial min(x) =
∏
f∈F f and characteristic polynomial

ch(x) =
∏
f∈F f

mf (s). Then s has rational canonical form

s =
⊕
F

mf (s)c(f)

where c(f) denotes the df × df companion matrix of the polynomial f with degree df and

for nonzero multiplicity mf (s), mf (s)c(f) denotes the mf (s)df ×mf (s)df matrix with mf (s)

copies of c(f).

Proposition 3.2.2 ((11), Proposition 1A) Let s have primary decomposition s =
∏
f∈F sf

and rational canonical form

s =
⊕
f∈F

mf (s)c(f).

The structure of the centralizer of s is given by

CUn(q)(s) =
∏
f∈F

C(sf ), where

1. If f ∈ F1, then C(sf ) = Umf (sf )(Ff ), where |Ff : Fq2 | = deg(f).

2. If f ∈ F2, then C(sf ) = GLmf (sf )(Ff ), where |Ff : Fq2 | = 1
2deg(f).
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Hence the centralizer of an element is a product of general linear and unitary groups. A

unipotent character of such a product is a product of unipotent characters. Moreover, the

unipotent characters of both the general linear and unitary groups are indexed by partitions of

the dimension of the underlying vector space. In particular, the unipotent characters of Un(qm)

and GLn(qm) are given by partitions of n, for any exponent m.

Let χ ∈ Irr(Un(q)) correspond to the pair (s, λ). Since λ is a unipotent character of CUn(q)(s)

it is a product of unipotent characters of the C(sf ) which are general linear or unitary groups

each of which corresponds to a partition µf ` mf (s). Let P denote the set of all partitions

including the empty partition. We define the map

Λ : F −→ P

f 7→ µf .

Notice that
∑

f∈F dfmf (s) = n.

Our construction is summarized in the following often quoted proposition which originates

with Green’s important paper on general linear characters, and has been modified for Un(q) by

several authors. Here we use the notation of Ku ((15)). For a partition µ recall the definitions

of |µ| on page 16 and n′(µ) on page 26 in the previous chapter.
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Proposition 3.2.3 ((15), Proposition 4.2.2 and Lemma 4.2.3) Let P denote the set of all

partitions of all integers n > 0, together with the empty partition. The irreducible characters of

Un(q) are in one-to-one correspondence with maps Λ from F to P which satisfy the following:

∑
f∈F
|Λ(f)|df = n.

If χ ∈ Irr(Un(q)) corresponds to such a map Λ, then the following hold:

1. The q-height of χ is
∑

f∈F dfn
′(Λ(f)′) where Λ(f)′ is the conjugate partition of Λ(f).

2. The character χ lies over ρ ∈ Irr(Z(Un(q))) where aρ is the product of the roots of∏
f∈F f

|Λ(f)|.

Let χ ∈ Irr(G) be associated to the pair (s, λ) which is in turn associated to the map

Λ : F → P. For each f ∈ F, write the conjugate partition Λ(f)′ = (tmf,t). Using these

exponents, we may now define for χ a unique sequence of polynomials (h1(x), h2(x), . . .) by

letting

hi(x) =
∏
f∈F

fmf,i .

We will be concerned with examining classes of irreducible characters which share certain prop-

erties. We want to group characters by their q-height and also by their splitting upon restriction

to certain subgroups. To that end we make the following definition which will be of utmost

importance in this endeavor.
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Definition 3.2.4 If χ determines the sequence (h1(x), h2(x), . . .), we will say that χ is of

µ-type where µ = (tdeg(ht(x))) ` n.

3 Proof of Proposition 2.6.5

In this section we verify Proposition 2.6.5. Recall kd(Un(q), ρ,det, j) is the number of

χ ∈ Irr(Un(q)) of q-height d lying over ρ such that χ|SUn(q) has j′ irreducible constituents

where j|j′. Let ρ ∈ Irr(Cq+1) and µ = (al11 , a
l2
2 , . . . , a

lr
r ) ` n. Let Irr(Un(q), µ, ρ) denote the

irreducible characters of Un(q) of µ-type lying over ρ. Let χ ∈ Irr(Un(q), µ, ρ) correspond to

(s, λ) and (h1, h2, . . .). Suppose ρz is the linear character of Un(q) corresponding to z ∈ Cq+1,

a primitive j-th root of unity and that

χ = ρzχ.

By 3.1.1 ρzχ corresponds to (zs, λ). If hi in (h1, h2, . . .) has roots {ω} then (zs, λ) corresponds

to (g1, g2, . . .) where gi has roots {zω}. Then we have

(h1, h2, . . .) = (g1, g2, . . .).

Since χ is of µ-type, hai(x) is a polynomial of degree li and hence gai(x) also has degree li. Let

{ωi,k|1 ≤ k ≤ li} denote the roots of hai(x).
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Then

hai(x) =

li∏
k=1

(x− ωi,k)

= xli + · · ·+ bi,1x+ bi,0

gai(x) =

li∏
k=1

(x− zωi,k)

= xli + · · ·+ zli−1bi,1x+ zlibi,0.

Recall λ(µ) was defined on page 16 and is equal to gcd(l1, l2, . . . , lr). Our first observation

is that bi,0 is nonzero. Hence zli = 1 for each i = 1, 2, . . . , r thus j divides λ(µ). Secondly,

we must have bi,jx
k = zli−kbi,kx

k. If li − k is not divisible by j, i.e. j doesn’t divide k, the

coefficient bi,k = 0. This reduces the possible number of nonzero coefficients.

If χ lies over ρ then (−1)n
∏r
i=1(bi,0)ai = aρ by construction. The bi,k are symmetric

functions of the roots. Simplifying notation for a moment, since h(x) = xm + . . .+ b1x+ b0 is a

product of polynomials in F, the coefficients satisfy bm−i = b0b
q
i . If m is even b1−qm/2 = b0. Hence

we have (li/j − 1)/2 degrees of freedom in the nonconstant coefficients, i.e. q2(li/j−1)/2 choices

for the bi,k and thus

|Irr(Un(q), µ, ρ)| = ql(µ)/j−δ(µ)β(µ, aρ).

The left hand side of the sum in Proposition 2.6.5 can now be evaluated.

kd(Un(q), ρ,det, j) =
∑
j′

j|j′

|Irrd(Un(q), ρ,det, j′)|

=
∑
j′

j|j′

∑
µ`n

n′(µ)=d
j′| gcd(q+1,λ(µ))

|Irr(Un(q), µ, ρ)|

=
∑
µ`n

n′(µ)=d
j|gcd(q+1,λ(µ))

ql(µ)/j−δ(µ)β(µ, aρ).



CHAPTER 4

THE FINITE SPECIAL UNITARY GROUPS

1 A Reduction of DOC for the Finite Special Unitary Groups

In this chapter we make use of Clifford theory in the manner of Sukizaki ((22)) to reformulate

DOC for the Special Unitary group SUn(q) in terms of Un(q). In this section we will distinguish

between subgroups of Un(q) and SUn(q) with superscripts as indicated. Recall I = [m] is our

index set for the distinguished generators of the Weyl group for Un(q). We have n = 2m or

2m+1. In keeping with established notation, let K = F q. Let B̃ be the Borel subgroup of upper

triangular matrices of the linear algebraic group G̃ = GLn(K). A Frobenius endomorphism on

G̃ was defined by

F (aij) = M(aqji)
−1M−1,

and the unitary group Un(q) = G̃F . The special unitary group is defined

SUn(q) = {g ∈ Un(q) | det g = 1}.

Note that except for the cases n = 2 and q ≤ 3, the derived subgroup G̃′ = SLn(K) so

SUn(q) = G̃′F . The group of fixed points of B̃ under F is a Borel subgroup for Un(q). Let

BU be this subgroup. Notice that BU is upper triangular. We will fix a Borel subgroup

BSU = BU ∩ SUn(q) for SUn(q). Notice that BSU is the group of fixed points of the Frobenius

40
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restricted to SLn(K) and is also upper triangular. We have corresponding Levi decompositions

BU = TnU and BSU = SnU where S = T∩SUn(q). By standard parabolic subgroups we mean

subgroups containing BU or BSU. For J ⊆ I let PU
J or P SU

J be the standard parabolic group of

Un(q) or SUn(q) respectively corresponding to J . For fixed J ⊂ I, we have PU
J = NUn(q)(UJ)

and P SU
J = NSUn(q)(UJ), both containing the same upper triangular unipotent radical, i.e.

Op(P
U
J ) = Op(P

SU
J ) = UJ

The group SUn(q) contains every p-subgroup of Un(q) and Op(SUn(q)) = Op(Un(q)) = 1.

Thus any radical p-chain of SUn(q) is a radical p-chain of Un(q) by Proposition 2.2.1. Conversely,

let

C : U0 < U1 < · · · < Ul

be a radical p-chain of Un(q). The Ui are unipotent radicals of parabolic subgroups of Un(q).

Hence each Ui is conjugate to a standard unipotent radical UJi , i.e. for each i there exists

gi ∈ Un(q) such that

Ui = giUJigi
−1.
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For all x ∈ F ∗q2 , the matrix

x =



x 0 . . . 0

0 1
...

...
. . .

1 0

0 . . . 0 x−q


stabilizes all standard UJi .

In particular, this holds for xi such that x1−q
i = (det(gi))

−1. Moreover, ∀gi ∈ Un(q) there exists

such an xi ∈ F ∗q2 . Thus

Ui = gi(xiUJixi
−1)gi

−1 = (gixi)UJi(gixi)
−1

where gixi ∈ SUn(q). Thus C is SUn(q)-conjugate to a radical p-chain of SUn(q).

For an irreducible character ρ of ZSU, the center of SUn(q), recall kd(P
SU
J , ρ) = |Irrd(P SU

J , ρ)|

is the number of irreducible characters of P SU
J lying over ρ (i.e. in the p-block corresponding

to ρ) with q-height d. The p-part of |SUn(q)| is equal to q(
n
2). As we saw in the introduction

DOC can be written:

∑
J⊆I

(−1)|J |kd(P
SU
J , ρ) = 0, for all ρ in Irr(ZSU) and nonnegative integers d <

(
n
2

)
. (4.1)
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We now reformulate this statement using Clifford Theory. Let det be the determinant

map on Un(q). Then det(Un(q)) = Cq+1 and ker det = SUn(q). Moreover, restricting the

determinant map to parabolic subgroups PU
J we have det(PU

J ) = Cq+1 and ker det |PU
J

= P SU
J .

The group P SU
J is normal in PU

J and hence PU
J acts on the set Irr(P SU

J ) in the natural way. For

g ∈ PU
J and φ ∈ Irr(P SU

J ), g ·φ = gφ where gφ(x) = φ(gxg−1) as defined in Section 4 of Chapter

2. The quotient group is cyclic

PU
J /P

SU
J
∼= Cq+1.

.

Let Irrd(P
SU
J , ρ, j) denote the irreducible characters φ ∈ Irrd(P

SU
J ) such that φ lies over

ρ, has q-height d, and the PU
J orbit of φ contains j characters. Then the following implies

Equation 4.1:

For integers 0 ≤ d <
(
n
2

)
, 1 ≤ j and any ρ ∈ Irr(ZSU)

∑
J⊆I

(−1)|J ||Irrd(P SU
J , ρ, j)| = 0. (4.2)

Rather than counting characters of P SU
J we count characters of PU

J . Let χ ∈ Irr(PU
J ). By

Clifford Theory, χ restricted to P SU
J is multiplicity free. The restrictions of two irreducible

characters χ and χ′ of PU
J to P SU

J have the same irreducible constituents or are disjoint (Lemma

2.4.4). If φ ∈ Irrd(P
SU
J , ρ, j), then the PU

J -orbit of φ contains j characters. For ρ ∈ Irr(ZSU),

let Irrd(P
U
J , ρ,det, j) denote the subset of Irrd(P

U
J ) consisting of characters such that their

restrictions to ker det belong to Irrd(P
SU
J , ρ, j).
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A character φ ∈ Irrd(P
SU
J , ρ, j) extends to φ̃ ∈ Irr(TPU

J
(φ)). The induced character (φ̃θ)P

U
J

is irreducible where θ is the lift to TPU
J

(φ) of an irreducible character of TPU
J

(φ)/P SU
J . Then

∣∣∣TPU
J

(φ)/P SU
J

∣∣∣ =
q + 1

j
since

∣∣∣PU
J /TPU

J
(φ)
∣∣∣ = j.

Let kJ be the number of PU
J -orbit representatives in Irrd(P

SU
J , ρ, j). Then

∣∣Irrd(P SU
J , ρ, j)

∣∣ = j · kJ∣∣Irrd(PU
J , ρ,det, j)

∣∣ = q+1
j · kJ .

Then ∑
J⊆I

(−1)|J ||Irrd(P SU
J , ρ, j)| =

∑
J⊆I

(−1)|J |j · kJ = j ·
∑
J⊆I

(−1)|J |kJ = 0

holds if and only if
∑

J⊆I(−1)|J |kJ = 0 if and only if

0 = q+1
j ·

∑
J⊆I

(−1)|J |kJ =
∑
J⊆I

(−1)|J | q+1
j · kJ =

∑
J⊆I

(−1)|J ||Irrd(PU
J , ρ,det, j)|.

Hence the following equation is equivalent to Equation 4.2:

For integers 0 ≤ d <
(
n
2

)
, 1 ≤ j and any ρ ∈ Irr(ZSU):

∑
J⊆I

(−1)|J ||Irrd(PU
J , ρ,det, j)| = 0. (4.3)

We will need the case where d =
(
n
2

)
. Recall from Chapter 2, the isomorphism of (Fq2)∗

and Irr((Fq2)∗) so that aρ ∈ (Fq2)∗ corresponds to ρ ∈ Irr((Fq2)∗) under this isomorphism.
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This induces an isomorphism of the cyclic subgroups ZU and ZSU with Irr(ZU) and Irr(ZSU)

respectively. Also recall from Chapter 2 the definition (2.3.3) of β(µ, aρ).

For ρ′ ∈ Irr(ZU) let Irr(PU
J , ρ

′) be the set of characters χ ∈ Irr(PU
J ) such that χ lies over

ρ′. For J 6= ∅, Irr(PU
J , ρ

′) consists of a unique p-block corresponding to ρ′. However if J = ∅

then PU
J = Un(q) and Irr(Un(q), ρ′) consists of two p-blocks one of zero defect the other of full

defect. Observe |Irr(n2)(Un(q), ρ′)| is one, the number of irreducible characters of Un(q) of full

q-height lying over ρ′. For ρ ∈ Irr(ZSU), let Irr(PU
J , ρ) denote the set of irreducible characters of

PU
J that lie over ρ′ ∈ Irr(ZU) where ρ′ lies over ρ. Then for ρ ∈ Irr(ZSU) we have the following

disjoint union

Irr(PU
J , ρ) =

⊔
ρ′∈Irr(ZU)
ρ′|
ZSU=ρ

Irr(PU
J , ρ

′).

We focus now on irreducible characters in Irr(ZU) and so switch the roles of ρ and ρ′. The

following implies Equation 4.3:

For integers 0 ≤ d, 1 ≤ j and any ρ ∈ Irr(ZU),

∑
J⊆I

(−1)|J ||Irrd(PU
J , ρ,det, j)| =


β((n), aρ), if d =

(
n
2

)
and j=1;

0, otherwise.

(4.4)



46

Given ρ ∈ Irr(ZU), let kd(P
U
J , ρ,det, j) denote the number of irreducible characters χ ∈

Irr(PU
J ) such that χ lies over ρ, has q-height d and χ|ker det has j′ irreducible constituents where

j divides j′. Observe that

ker(det) = PU
J ∩ SUn(q) = P SU

J as mentioned.

Then

kd(P
U
J , ρ,det, j) =

∑
j|j′
|Irrd(PU

J , ρ,det, j′)|.

We may now drop the superscript notation and restrict our attention to irreducible charac-

ters of parabolic subgroups of Un(q).

Taking into account that Equation 4.4 implies Equation 4.3 which implies Equation 4.2

which implies Equation 4.1, we will have proved DOC for SUn(q) if we prove the following

theorem, which is the main result in this thesis.

Theorem 4.1.1 (Main) Let Z = Z(Un(q)) and {PJ |J ⊆ I} the set of standard parabolic

subgroups in Un(q). For any ρ ∈ Irr(Z), any positive integer j, and all nonnegative integers d

we have ∑
J⊆I

(−1)|J |kd(PJ , ρ,det, j) =


β((n), aρ), if d =

(
n
2

)
and j=1;

0, otherwise.
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In order to prove Theorem 4.1.1 we first break the left hand side into two sub-sums, the

second of which will reduce quite spectacularly. Let us differentiate between characters χ

counted by kd(PJ , ρ,det, j) for which kerχ contains UJ or not.

Definition 4.1.2 Let k0
d(PJ , UJ , ρ,det, j) be the number of characters counted by kd(PJ , ρ,det, j)

which contain UJ in their kernel and let k1
d(PJ , UJ , ρ,det, j) count those characters which do

not contain UJ in their kernel.

Then

∑
J⊆I

(−1)|J |kd(PJ , ρ,det, j) =
∑
J⊆I

(−1)|J |(k0
d(PJ , UJ , ρ,det, j) + k1

d(PJ , UJ , ρ,det, j))

=
∑
J⊆I

(−1)|J |k0
d(PJ , UJ , ρ,det, j) +

∑
J⊆I

(−1)|J |k1
d(PJ , UJ , ρ,det, j)

(4.5)

We will show the following:

Proposition 4.1.3 For any ρ ∈ Irr(Z), any positive integer j, and all nonnegative inte-

gers d ∑
J⊆I

(−1)|J |k0
d(PJ , UJ , ρ,det, j) =

∑
µ`n

n′(µ)=d
j|gcd(q+1,λ(µ))

β(µ, aρ) (4.6a)

∑
J⊆I

(−1)|J |k1
d(PJ , UJ , ρ,det, j) = −

∑
µ`n

n′(µ)=d
j|gcd(q+1,λ(µ))

β(µ, aρ). (4.6b)

Clearly Proposition 4.1.3 implies Theorem 4.1.1.



CHAPTER 5

AUXILIARIES FOR THE PROOF OF THE MAIN THEOREM

This chapter is dedicated to proving Equation 4.6a, the first half of Proposition 4.1.3. Our

first observation is that if χ is an irreducible character of PJ containing UJ in its kernel then we

may consider χ as an irreducible character of the Levi subgroup LJ of PJ . We must be careful

in applying the determinant map.

Let J = {j1, j2, . . . , js}. Then LJ can be written as the following direct product:

LJ = GLn1(q2)×GLn2(q2)× · · · ×GLns(q
2)×Un−2js(q)

where n1 = j1, ni = ji − ji−1 for 2 ≤ i ≤ s. Then since PJ = LJUJ for x ∈ PJ , x = lu where

l ∈ LJ and u ∈ UJ , so the determinant det(x) = det(lu) = det(l) det(u) = det(l) since u is

unipotent.

Recall our definition

Un(q) = {(ai,j) ∈ GLn(q2) | M = (ai,j)M(aqj,i)}

where M is the n× n matrix with ones down the reverse diagonal.

48
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With this definition the fixed Borel subgroup of Un(q) is upper triangular. Thus for x ∈ PJ

we may write x as a block matrix:

x =



A1 ∗ . . . . . . ∗ ∗

0 A2 . . . . . . ∗ ∗
...

...
. . .

...
...

As

B

Ãs

...
...

. . .
...

...

0 0 . . . . . . Ã2 ∗

0 0 . . . . . . 0 Ã1



where Ak ∈ GLnk(q2), B ∈ Uns+1(q), and if Ak = (ai,j), then Ãk = M(aqj,i)
−1M−1.

The determinant of x as an element in PJ which is embedded in Un(q) may be defined in

terms of the determinant map on the component factors of the Levi subgroup LJ in PJ . We

have det(x) = (det(A1) det(A2) . . . det(As))
1−q det(B) since det(Ãk) = det(Ak)

−q.

Thus k0
d(PJ , UJ , ρ,det, j) = kd(LJ , ρ,det |LJ , j) where the determinant map det |LJ is as

indicated. Hence we are proving the equivalent statement:

∑
J⊆I

(−1)|J |kd(LJ , ρ,det, j) =
∑
µ`n

n′(µ)=d
j|gcd(q+1,λ(µ))

β(µ, aρ). (5.1)
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We make the following observation. Suppose LJ = G1 × G2 where G1
∼= GLn1(q2) and G2

∼=

Un2(q) with 2n1 +n2 = n. As a subgroup embedded in Un(q) the determinant map on elements

in LJ is defined in terms of the determinant map on the factors G1 and G2. For x = g1g2

in LJ with gi ∈ Gi det(x) = det(g1)1−q det(g2). Recall det(g1)1−q is denoted det1−q(g1) Then

ker(det) = {(g1, g2) | det1−q(g1) det(g2) = 1}, det1−q(G1) = Cq+1, and det(G2) = Cq+1.

If χi lies over ρi ∈ Irr(Cq+1), then χ = χ1χ2 lies over ρ = ρ1ρ2 since for z ∈ Z(Un(q))

χ(z) = χ1(1)χ2(1)ρ1(z)ρ2(z). Hence 2.5.1 implies that

kd(LJ , ρ,det, j) =
∑

2d1+d2=d
ρ1ρ2=ρ

k2d1(G1, ρ1,det1−q, j)kd2(G2, ρ2,det, j). (5.2)

We proceed by induction on n or equivalently by induction on m, where n = 2m or 2m+ 1.

1 Small Case

Let n = 1 so that m = 0 and I is empty. Then we have but one levi subgroup, U1(q) itself

which is equal to its center. The determinant map is just the identity and hence ker det is

trivial so that the left hand side of Equation 5.1 is

kd(U1(q), ρ,det, j) =


1, if d = 0 and j = 1;

0, otherwise.

Certainly this is equal to the right hand side of Equation 5.1 since we have but one partition

of 1 and β((1), aρ) = 1
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Let m = 1 so that n = 2 or n = 3. In either case we have but two levi subgroups Un(q) and

the borel levi subgroup LI . First suppose that n = 2. Then LI = GL1(q2) and we may apply

2.6.5 and 2.6.4 directly. The left hand side of Equation 5.1 is

kd(U2(q), ρ,det, j)− kd(GL1(q2), ρ,det1−q, j) =



β((2), aρ)− 0, if d = 1 and j = 1;

β((12), aρ)− 0, if d = 0 and j = 2;

qβ(12, aρ)− β(1, aρ), if d = 0 and j = 1;

0, otherwise.

This is equal to the right hand side of Equation 5.1.

We continue to assume that m = 1. Now suppose that n = 3. Then LI = GL1(q2)×U1(q)

so that Equation 5.2 implies

kd(GL1(q2)×U1(q), ρ,det, j) =
∑

2d1+d2=d
ρ1ρ2=ρ

k2d1(GL1(q2), ρ1,det1−q, j)kd2(U1(q), ρ2,det, j)
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which is nonzero only for d = 0. Then the left hand side of Equation 5.1 is

kd(U3(q), ρ,det, j)−kd(GL1(q2)×U1(q), ρ,det, j)

=



β((3), aρ)− 0, if d = 3 and j = 1;

β((2, 1), aρ)− 0, if d = 1 and j = 1;

β(13, aρ)− 0, if d = 0 and j = 3;

q2β(13, aρ)− (q − 1)(q + 1), if d = 0 and j = 1;

0, otherwise.

This is equal to the right hand side of (Equation 5.1).

2 Inductive Case

We assume that Equation 5.1 holds for all dimensions strictly less than n. Our first ob-

servation is that for fixed J with minimal element j1 = k we may write LJ = GLk(q
2) × LJ ′

where LJ ′ is a levi subgroup in Un−2k(q) and J ′ = {ji − k | 2 ≤ i ≤ s}. Note |J ′| = |J | − 1.

We will use superscripts to indicate the dimension of the ambient group when necessary. So for

example LJ ′ will be written as Ln−2k
J ′ . For such a J we have

kd(GLk(q
2)× Ln−2k

J ′ , ρ,det, j) =
∑

2d1+d2=d
ρ1ρ2=ρ

k2d1(GLk(q
2), ρ1, det1−q, j)kd2(Ln−2k

J ′ , ρ2,det, j).

We remark that k2d1(GLk(q
2), ρ1, det1−q, j) = 0 for k not divisible by j. We could eliminate

from our sum all J whose smallest members are not all multiples of j. This isn’t necessary
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though since the contribution is just zero. In fact we may discard all Js not contained in

{j, 2j, 3j, . . .} ⊆ I but again this isn’t necessary for our induction.

Definition 5.2.1 Fix k ≥ 1 and let Jk be the collection of all J ⊆ I with minimal member

k.

We have

∑
J∈Jk

(−1)|J |kd(LJ , ρ,det, j) =
∑

J ′⊆Im−k
(−1)|J |kd(GLk(q

2)× Ln−2k
J ′ , ρ,det, j)

=
∑

J ′⊆Im−k

∑
2d1+d2=d
ρ1ρ2=ρ

(−1)|J
′|+1k2d1(GLk(q

2), ρ1,det1−q, j)kd2(Ln−2k
J ′ , ρ2, det, j)

= −
∑

2d1+d2=d
ρ1ρ2=ρ

k2d1(GLk(q
2), ρ1,

1−q
det, j)

∑
J⊆Im−k

(−1)|J |kd2(Ln−2k
J , ρ2,det, j)


= −

∑
2d1+d2=d
ρ1ρ2=ρ

( ∑
µ1`k

n′(µ1)=d1
j| gcd(q+1,λ(µ1))

q2(l(µ1)/j−δ(µ1))β(µ1, aρ1)×
∑

µ2`(n−2k)
n′(µ2)=d2

j| gcd(q+1,λ(µ2))

β(µ2, aρ2)

)

= −
∑

2d1+d2=d
ρ1ρ2=ρ

∑
(µ1,µ2)
µ1`k

µ2`(n−2k)
n′(µ1)=d1
n′(µ2)=d2

j| gcd(q+1,λ(µ1),λ(µ2))

q2(l(µ1)/j−δ(µ1))β(µ1, aρ1)β(µ2, aρ2)

(5.3)

by our inductive assumption, for indeed n− 2k is strictly less than n.
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Summing over all possible values for k and switching the order of summation we have

m∑
k=1

∑
J∈Jk

(−1)|J |kd(LJ , ρ,det, j)

= −
m∑
k=1

∑
2d1+d2=d
ρ1ρ2=ρ

∑
(µ1,µ2)
µ1`k

µ2`(n−2k)
n′(µ1)=d1
n′(µ2)=d2

j| gcd(q+1,λ(µ1),λ(µ2))

q2(l(µ1)/j−δ(µ1))β(µ1, aρ1)β(µ2, aρ2)

= −
∑
µ`n

n′(µ)=d

∑
(µ1,µ2)

µ=2µ1∪µ2
|µ1|6=0

j| gcd(q+1,λ(µ1),λ(µ2))

∑
ρ1,ρ2
ρ1ρ2=ρ

q2(l(µ1)/j−δ(µ1))β(µ1, aρ1)β(µ2, aρ2)

= −
∑
µ`n

n′(µ)=d

∑
(µ1,µ2)

µ=2µ1∪µ2
|µ1|6=0

j|gcd(q+1,λ(µ1),λ(µ2))

q2(l(µ1)/j−δ(µ1))(q − 1)δ(µ1)(q + 1)c(µ1,µ2)β(µ, aρ).

(5.4)

Now we remind the reader that from 2.3.10 we have the following for each µ ` n

∑
(µ1,µ2)

µ=2µ1∪µ2
j| gcd(λ(µ1),λ(µ2))

q2(l(µ1)/j−δ(µ1))(q − 1)δ(µ1)(q + 1)c(µ1,µ2) = ql(µ)/j−δ(µ). (5.5)

Notice that this sum includes the pair (µ1, µ2) = (∅, µ) and that for this particular pair

q2(l(µ1)/j−δ(µ1))(q − 1)δ(µ1)(q + 1)c(µ1,µ2) = 1.
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We are now ready to prove Equation 5.1:

∑
J⊆I

(−1)|J |kd(LJ , ρ,det, j) = kd(Un(q), ρ,det, j) +
∑
∅6=J⊆I

(−1)|J |kd(LJ , ρ,det, j)

= kd(Un(q), ρ,det, j) +
m∑
k=1

∑
J∈Jk

(−1)|J |kd(LJ , ρ,det, j)

=
∑
µ`n

n′(µ)=d
j| gcd(q+1,λ(µ))

ql(µ)/j−δ(µ)β(µ, aρ)

−

( ∑
µ`n

n′(µ)=d
j| gcd(q+1,λ(µ))

ql(µ)/j−δ(µ)β(µ, aρ)−
∑
µ`n

n′(µ)=d
j| gcd(q+1,λ(µ))

β(µ, aρ)

)

=
∑
µ`n

n′(µ)=d
j| gcd(q+1,λ(µ))

β(µ, aρ).

(5.6)

And we are done.



CHAPTER 6

MODULES FOR PARABOLIC SUBGROUPS

Recall the set up in Chapter 5. Let J ⊂ I = [m], an index set for the distinguished

generators of the Weyl group of type Bm. Let PJ be the standard parabolic subgroup of

Un(q) corresponding to J . Then PJ =
⋂
j∈J Pj where Pj is the maximal parabolic subgroup

corresponding to j. We have the usual Levi decomposition of PJ = LJUJ where LJ is a levi

subgroup and UJ is the unipotent radical of PJ . Thus far we have seen a reduction of DOC

in the finite special unitary case to Proposition 4.1.3 which involves two sub-sums of certain

characters of parabolic subgroups in Un(q). Having proved Equation 4.6a we now devote the

rest of this thesis to proving Equation 4.6b.

The first step in the process of finding a formula for k1
d(PJ , UJ , ρ,det, j) is to examine orbits

in submodules afforded by quotient groups in the normal series for UJ discussed below. We are

faced with the task of describing certain irreducible characters of parabolic subgroups PJ in

Un(q) which do not contain UJ in their kernels. In general this is not an easy task as Irr(PJ)

is not known. We avoid this difficulty by examining PJ orbits of irreducible UJ characters.

In order to distinguish between parabolic subgroups in general linear and in unitary groups

of varying dimensions, we make the following definition.

Definition 6.0.2 1. Let P+n
J denote a parabolic subgroup in GLn(q2), where J ⊆ [n−1].

2. Let PnJ denote a parabolic subgroup in Un(q), where n = 2m, or 2m+ 1 and J ⊆ [m].

56
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Write J = {j1, j2, . . . , js} in increasing order.

Definition 6.0.3 The following subsets of J are defined

1. J(≥ ji) = {ji, ji+1, . . . , js} and J(> ji) = {ji+1, . . . , js}

2. J(≤ ji) = {j1, j2, . . . , ji} and J(< ji) = {j1, j2, . . . , ji−1}.

The unipotent radical UJ has the following normal series:

UJ = UJ(≥j1) > UJ(≥j2) > · · · > UJ(≥js) = Ujs ≥ Z(Ujs) > 1 (6.1)

The quotient groups in this series are elementary abelian. The set of all irreducible char-

acters of PJ divides into subsets of characters in the following way. Let χ be an irreducible

character of PJ then there exits a group N in the above series such that the kernel of χ contains

N but does not contain the previous subgroups in the series. Since N �PJ and N ⊆ ker(χ) for

χ ∈ Irr(PJ), we may consider χ as an irreducible character of the quotient group PJ/N . If N ′

is the previous subgroup in the normal series, then N ′/N is elementary abelian and hence may

be regarded as a PJ/N -module over Fp. There are four types of characters originally found by

KU which we now briefly describe. What distinguishes these four types is the action induced

by conjugation by PJ on the abelian quotients in Equation 6.1.

1. Levi Characters: Suppose χ ∈ Irr(PJ) and UJ is contained in ker(χ). Then we may

consider χ a character of the quotient group PJ/UJ which is of course isomorphic to LJ .

Such a character χ is trivial on UJ and has already been accounted for in Equation 4.6a.
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2. General Linear Characters: Suppose χ ∈ Irr(PJ) and for fixed i satisfying 1 ≤ i < s

we have UJ(≥ji+1) ⊆ ker(χ) but UJ(≥ji) * ker(χ). We may consider χ as a character of

PJ/UJ(≥ji+1). Then

PJ/UJ(≥ji+1)
∼= P

+ji+1

J(≤ji) × LJ ′ ((15), 7.1.2.2)

where J ′ = {j − ji+1|j ∈ J(> ji+1)} and LJ ′ is a levi subgroup in Un−2ji+1(q). Let

V (ji, ji+1) denote the quotient group UJ(≥ji)/UJ(≥ji+1).

P
+ji+1

J(≤ji)
∼=
(
P+ji
J(<ji)

×GLji+1−ji(q)
)
n V (ji, ji+1).

We call V (ji, ji+1) a general linear module to indicate that a general linear group is acting

on the module. The character χ restricted to V (ji, ji+1) is nontrivial. Hence χ = χ1χ2

where χ1 corresponds to some irreducible character of V (ji, ji+1) and χ2 is an irreducible

character of the factor LJ ′ .

3. Unitary Linear Characters: Now we suppose that χ ∈ Irr(PJ) with Z(Ujs) ⊆ ker(χ) but

Ujs * ker(χ). We may consider χ as a character of

PJ/Z(Ujs)
∼=
(
P+js
J(<js)

×Un−2js(q)
)
n (Ujs/Z(Ujs)) ((15), 7.1.2.3).

Then χ corresponds to an irreducible character of the quotient Ujs/Z(Ujs), a unitary

linear module to indicate that a unitary group is acting on the module.
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4. Central Characters: Finally we make take χ ∈ Irr(PJ) with only the trivial subgroup

contained in ker(χ) so that Z(Ujs) * ker(χ). In this case χ corresponds to a non trivial

character of Z(Ujs).

As mentioned these four types are outlined by Ku in (15). The main difference in this thesis

is the introduction of two extra parameters in the manner of Sukizaki’s approach (22) to the

special linear case. Amazingly, it turns out that parabolic characters as parameterized by

Ku are very well behaved with regard to their splitting upon restriction to the kernel of the

determinant map. This is very convenient and not an obvious fact. One important result of

this fact is that Ku’s parametrization of the character q-heights is sufficient.

Conjugation by PJ on the abelian quotients in Equation 6.1 gives rise to the aforementioned

internal modules with non-trivial action by a group HJ in a quotient group PJ/N of PJ , where

N appears in the series Equation 6.1. Hence we need to examine what occurs at the level of HJ .

1 Parabolic Actions

In this section we study the modules which arise in the following situation. Fix positive

integers n1 and n2. Let V1 be the natural module for GLn1(q2) and V2 the dual of the natural

module for GLn2(q2). Fix a basis for V1, n1-dimensional column vectors {e1, e2, . . . , en1} where

ei has a 1 in the i-position and zeros elsewhere. Fix a basis for V2, n2-dimensional row vectors

{e1, e2, . . . , en2} where ej has a 1 in the j-position and zeros elsewhere. Set V = V1 ⊗ V2
∼=

Mn1,n2(q2). A basis for V is given by {Ei,j} where Ei,j = ei ⊗ ej the n1 × n2-matrix with

(i, j)-entry 1 and zeros elsewhere. Then GLn1(q2) × GLn2(q2) acts on V in the natural way
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via left multiplication by GLn1(q2) and right multiplication by inverses in GLn2(q2). Let Gi be

a subgroup of GLni(q
2). Then G = G1 × G2 acts on V and hence V is a module for G. In

subsequent sections we will be considering the following cases:

1. The group G1 = P+n1
J and G2 = GLn2(q2),

2. the group G1 = P+n1
J and G2 = Un2(q), and

3. the group G1 = P+n1
J and G2 is an isomorphic copy of G1. In this case, as we will see,

the module we consider is a subgroup of V isomorphic to Mn1,n2(q). We will discuss this

in the central module section.

The vector space V is an elementary abelian group. We have the following G-isomorphisms of

abelian groups ((15), 6.1.2):

Irr(V ) = Hom(V,C∗) ∼= Hom(V,Cp) ∼= HomFp(V, Fp)
∼= HomFq2

(V1⊗V2, Fq2) ∼= HomFq2
(V1, V

∗
2 )

where now V ∗2 is the restriction to G2 of the natural module for GLn2(q2).

The first isomorphism is clear since complex characters of V take values in Cp. The second

isomorphism is also clear since the multiplicative group Cp can be identified with the additive

group Fp. The last isomorphism is also clear by adjoint associativity of the tensor product. The

penultimate isomorphism is less clear. The field Fq2 is a finite extension of Fp. Let θ generate
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Fq2 so that {1, θ, θ2, . . .} is a basis for Fq2 as a vector space over Fp. Note that θ0 = 1. Define

the projection

π : Fq2 −→ Fp ,
∑
i

aiθ
i 7→ a0.

We fixed a basis {Ei,j} for V over Fq2 above. Let U be the Fp-span of {Ei,j}. Then

V = Fq2 ⊗Fp U

so that {θk ⊗ Ei,j} is an Fp-basis of V . The following is a well-defined isomorphism

HomFq2
(V, Fq2) −→ HomFp(V, Fp) , f 7→ π ◦ f.

Hence we have HomFp(V, Fp)
∼= HomFq2

(V1 ⊗ V2, Fq2).

The action ofG on V gives rise to a parallel action ofG on Irr(V ) and hence on HomFq2
(V1, V

∗
2 ).

Since we fixed a basis for V2, the dual V ∗2 has basis {(e1)∗, (e2)∗, . . . , (en2)∗} where (ej)∗ is the

n2-dimension row vector with 1 in the j-position and zeros elsewhere. Take τ ∈ Irr(V ). Then

τ corresponds to f ∈ HomFq2
(V1, V

∗
2 ) and

V1/ ker(f) ∼= f(V1) ∼= (V2/Ann(f))∗ .
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where

ker(f) = {v ∈ V1 | f(v)(w) = 0 ∀w ∈ V2} is the kernel of f , and

Ann(f) = {w ∈ V2 | f(v)(w) = 0 ∀v ∈ V1} is the annihilator of f(V1) in V2.

The codimension of both of these subspaces is the same. If r is the codimension of ker(f)

and Ann(f) we will say that f has rank r. In this way if τ ∈ Irr(V ) corresponds to f ∈

HomFq2
(V1, V

∗
2 ) then τ is said to have rank r. We remark that via the isomorphism between

Irr(V ) and V , if τ corresponds to the matrix v then the rank of τ is the row rank of v, which

is invariant under the action of G.

We are interested in describing representatives of G-orbits in Irr(V ) and their stabilizers in

G. Given τ ∈ Irr(V ), let ker(τ) and Ann(τ) denote ker(f) and Ann(f), respectively, where τ

corresponds to the element f ∈ HomFq2
(V1, V

∗
2 ). Write V 1 = V1/ ker(τ) and V 2 = V2/Ann(τ).

The dimension of both quotient spaces is r. Let

CGi(V i) = { g ∈ Gi | g · v = v ∀v ∈ V i }

where as noted above g · v indicates left or right multiplication depending on i equal to 1 or 2,

respectively. As stated by Ku ((15), p.67) we have

CG1(V 1)× CG2(V 2) ≤ TG(τ) ≤ TG1(ker(τ))× TG2(Ann(τ)).
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Before describing these orbits and stabilizers we pause to consider some cancellation which

occurs in the alternating sum of DOC.

2 Some Useful Cancellation

An alternating sum may reduce to a smaller alternating sum in an advantageous way. One

may approach this from a combinatorial perspective in which case, like terms that appear with

opposite parity cancel one another. We will make use of this approach later in the thesis. One

may also approach the reduction of an alternating sum from a topological perspective. We

discuss this now and apply the results in order to make a first reduction of Equation 4.6b.

Consider the Burnside ring b(G) of a finite group G the free abelian group on equivalence

classes [G/H], where [G/H] is equal to [G/K] if and only if H and K are conjugate subgroups

of G. A typical element of b(G) is of the form

a1[G/H1] + a2[G/H2] + · · ·+ aN [G/HN ]

where ai ∈ Z and the Hi are representatives of conjugacy classes of subgroups in G. Multipli-

cation in b(G) is given by

[G/H] · [G/K] = [G/(H ∩K)].
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Let G act on a finite poset P ordered by inclusion. The simplicial complex O(P ) consists of

chains,

c : x0 < x1 < · · · < xk xi ∈ P.

where we require strict inclusion. The chain c as above has length k + 1. The chains of length

k + 1 form the k-simplices of O(P ). By convention the −1-simplex is 1 the trivial G-set. Let

∆(P ) = {1 < x0 < x1 < · · · < xk | xi ∈ P}. Every chain in ∆(P ) in (including the trivial

chain) begins with the trivial G-set 1. For c : 1 < x0 < x1 < · · · < xk ∈ ∆(P ) define the

absolute value |c| = k + 1. The reduced Lefshetz element of P in G is an element of b(G) and

is defined

ΛG(P ) =
∑

c∈∆(P )/G

(−1)|c|[G/Gc]

where c runs over a set of G-orbit representatives in ∆(P ) and Gc is the stabilizer TG(c) of c in G.

We may assign topological concepts to posets in the following sense. When we say a poset

P has a certain property we mean that its associated simplicial complex has the property. See

((18)) for a discussion of this.

Let G act on posets P and Q. A poset map f : P −→ Q is a map that preserves ordering, i.e.

x1 ≤ x2 ⇒ f(x1) ≤ f(x2). The poset map f gives rise to a simplicial map fO : O(P ) −→ O(Q).

This map is G-equivariant if gfO(c) = fO(gc) for all c ∈ O(P ). Two simplicial maps fO,

gO : O(P ) −→ O(Q) are homotopic if there exists a continuous map H : O(P )× [0, 1] −→ O(Q)
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such that H(c, 0) = fO(c) and H(c, 1) = gO(c) for all c ∈ O(P ). If f , g : P −→ Q are poset

maps such that f(x) ≤ g(x), for all x ∈ P , then fO and gO are homotopic.

The spacesO(P ) andO(Q) are said to beG-homotopy equivalent if there existG-equivariant

maps fO : O(P )→ O(Q) and gO : O(Q)→ O(P ) such that fO ◦ gO, idO(P ) are G-equivariant

homotopic and gO ◦ fO, idO(Q) are G-equivariant homotopic ((25), p.352). We may say that

the posets P and Q are G-homotopy equivalent, by which we mean that O(P ) and O(Q) are

G-homotopy equivalent. Given our interest in the reduced Lefshetz element we may also say

that that ∆(P ) and ∆(Q) are G-homotopy equivalent by which we mean again that O(P ) and

O(Q) are G-homotopy equivalent.

It is well known that, if O(P ) and O(Q) are G-homotopy equivalent, then ΛG(P ) = ΛG(Q).

Let S(G) denote the set of subgroups of G. Let f : S(G) −→ Z be a G-stable map, i.e.

constant on conjugate subgroups of G. Set f([G/Gc]) = f(Gc) and extend linearly to b(G). We

may apply f to ΛG(P ),

f(ΛG(P )) =
∑

c∈∆(P )/G

(−1)|c|f(Gc).

This is an integer. Moreover if P andQ areG-homotopy equivalent then f(ΛG(P )) = f(ΛG(Q)),

i.e. ∑
c∈∆(P )/G

(−1)|c|f(Gc) =
∑

c∈∆(Q)/G

(−1)|c|f(Gc).

Given a G-poset P , we may make use of a contractible sub-poset in order to find a smaller

complex which is G-homotopy equivalent to O(P ). A poset Q is G-contractible if Q is itself
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G-homotopy equivalent to a point. Let Q contain a single element x. Then ∆(Q) consists of

two chains

c1 : 1 with |c1| = 0 and c2 : 1 < x with |c2| = 1,

which are both necessarily stabilized by G. Observe that ΛG(Q) = [G/G]− [G/G] = 0 and thus

for any G-stable map f , f(ΛG(Q)) = 0

A reference for more material on G-homotopy is ((21), Chapters 3 and 4).

An important example of homotopy equivalence: Let V be a vector space over a

finite field, and let P be the poset of non-trivial proper subspaces of V ordered by inclusion.

Let w be a non-trivial proper subspace of V . Let Q be the sub-poset of P whose elements are

subspaces which are not complements in V to w. Then ∆(P ) is the set of chains of subspaces

of V beginning with the zero subspace and ∆(Q) is the subset of chains which do not contain

a complement in V to w. Let G = TGL(V )(w). The group G certainly acts on P and Q. The

vector space w is in Q and is fixed by G. It turns out that Q is G-contractible ((24), Corollary

1.9). Thus ΛG(Q) = 0. Let ∆(P,w) denote the sub-set of ∆(P ) consisting of chains which

contain complements to w. Then ∆(P ) = ∆(Q)
⊔

∆(P,w) ((15), Lemma 5.2.13). Since Q is

G-contractible, ΛG(P ) = ΛG(P,w).

We are now ready to apply this discussion to our situation. For the rest of this section let

G = GLn1(q2) × G2 where G2 is a subgroup of GLn2(q2). For now, we will be considering G2
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to be either GLn2(q2) or Un2(q). Let H = G n V where V = V1 ⊗ V2 where V1 is the natural

module for GLn1(q2) and V2 is the dual of the natural module for GLn1(q2), as above. For each

J ⊆ [n1 − 1], we let GJ denote P+n1
J ×G2 and HJ denote GJ n V .

Definition 6.2.1 Let Irr(V, r) denote the subset of characters in Irr(V ) of rank r, where

we recall that the rank of τ is the codimension of ker(τ) in V1, viewing τ as a homomorphism

from V1 to V ∗2 .

Set X = Irr(V, r). Let Y = {y ≤ V1 | codim(y) = r} and for y ∈ Y let X(y) = {τ ∈

X | ker(τ) = y}. We extend the action of GLn1(q2) on V1 to H by declaring that G2 o V act

trivially on V1. In this way H acts on X and Y but also on the poset P = P (V1) of subspaces

of V1 ordered by inclusion. Then ∆(P ) is the set of flags in P together with the empty flag and

so H also acts on ∆(P )×X. A set of orbit representatives for the action of GL(V1) and hence

H on ∆(P ) is given by {cJ | J ⊆ [n1 − 1]}, where if J = {j1, j2, . . . , js} then cJ is the flag

0 < Vj1 < Vj2 < · · · < Vjs

where Vji is the subspace of V1 spanned by the vectors {e1, e2, . . . , eji}. We also note that P+n1
J

is the stabilizer of the flag cJ .

The proposition below is a modification of ((15), Proposition 6.2.1), where we obtain a first

reduction for equation Equation 4.6b. Ku’s proof makes use of some fairly elaborate abstrac-

tions involving alternating sums. We present a more direct proof with the necessary adjustments
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which include extra parameters in the definition of an H-stable function which lead to the de-

sired reduction. The significance of this result is that for fixed r we need only describe orbit

representatives for the subset X(w) = {τ | ker τ = w} in Irr(V, r), where w is a complement in

V1 of the r-dimensional subspace stabilized by P+n1
r . In fact, since THJ (τ) ≤ THJ (w) ≤ HJ and

THJ (w) = TGJ (w)nV by Corollary 2.4.3 it is sufficient to find representatives for TGJ (w)-orbits

in X(w). What is more we only need the stabilizers in HJ where J∪{n1} contains the element r.

We will be considering the group HJ = GJ n V as embedded in Un(q).

Definition 6.2.2 Define the map on GJ ,

D : P+n1
J ×G2 −→ F ∗q2 , (x, y) 7→ det(x)i(1−q) det(y)k,

for some positive integer i where the exponent of det(y) depends on G2 in the following way:

k =


1− q, if G2 = GLn2(q2);

1, if G2 = Un2(q).

ExtendD toHJ by lettingD(v) = 1 for all v ∈ V . Observe that ker(D) is normal inHJ , contains

V , and the quotient HJ/ ker(D) is cyclic. The map D is constructed to be the restriction to

HJ of the determinant map on Un(q). The value of the integer i depends on the embedding of

HJ in Un(q).
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Definition 6.2.3 For a subset X ⊆ Irr(V ), let kd(HJ , X, ρ,D, j) denote the number of

irreducible characters χ of HJ of q-height d, lying over ρ, and corresponding to τ ∈ X such that

χ restricted to the kernel of the map D is a sum of j′ irreducible characters where j divides j′.

Proposition 6.2.4 Let Z ≤ Z(G) and ρ ∈ Irr(Z). Fix 1 ≤ r ≤ min(n1, n2). Let X =

Irr(V, r) and Let Y = {y ≤ V1 | codim(y) = r}. Let w be a complement in V1 to the r-

dimensional subspace stabilized by P+n1
r , in its action on the natural module for GLn1(q2). Let

X(w) = {τ ∈ X | ker(τ) = w}. Let D be the map on HJ defined above. For d ≥ 0 the following

holds

1. If r = n1, then Y = {0} and X = X(0).

2. If r < n1, then

∑
J⊆[n1−1]

(−1)|J |kd(HJ , X, ρ,D, j) =
∑

J⊆[n1−1]
r∈J

(−1)|J |kd(HJ , X(w), ρ,D, j).

Proof: The first part is immediate since the trivial subspace is the only subspace of

V1 of codimension n1. The proof of the second part is based on the exposition on homotopy

equivalences which begins this section.

Let r < n1. We define a function

f : ∆(P )× Y −→ Z , (cJ , y) 7→ kd(HJ , X(y), ρ,D, j).
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This is a well defined H-stable function on ∆(P ) × Y , i.e. constant on the H-orbits. Indeed,

the action of H on ∆(P ) preserves chain type and thus a set of H-orbit representatives is given

by

{ cJ | ∈ J ⊆ [n1 − 1]}.

Moreover, kd(HJ , τ, ρ,D, j) = kd(HJ ,
hτ, ρ,D, j) for any h ∈ HJ . If y′ = gy for g ∈ P+n1

J , then

kd(HJ , X(y′), ρ,D, j) =
∑

ker τ=y′

kd(HJ , τ, ρ,D, j)

=
∑

ker τ=gy

kd(HJ , τ, ρ,D, j)

=
∑

g−1 ker τ=y

kd(HJ ,
g−1

τ, ρ,D, j)

=
∑

ker τ=y

kd(HJ , τ, ρ,D, j)

= kd(HJ , X(y), ρ,D, j).

The function f induces the following projection functions. For fixed cJ ∈ ∆(P )

fcJ : Y −→ Z , y 7→ kd(HJ , X(y), ρ,D, j)

is TH(cJ) = HJ -stable on Y ; for fixed y ∈ Y

fy : ∆(P ) −→ Z , cJ 7→ kd(HJ , X(y), ρ,D, j)

is TH(y)-stable on ∆(P ).



71

For fixed τ ∈ X(y), THJ (τ) ≤ THJ (y) ≤ HJ . Thus by Corollary 2.4.3

kd(HJ , X(y), ρ,D, j) =
∑

τ∈X(y)/HJ

kd(HJ , τ, ρ,D, j)

=
∑

τ∈X(y)/THJ (y)

kd−d′(THJ (y), τ, ρ,D, j′)

= kd−d′(THJ (y), X(y), ρ,D, j′)

where d′ is the exponent of q in |THJ (y)\HJ | and j′ is the least positive integer such that

j|j′ · |THJ (y) ker(D)\HJ |.

In all three cases which we will consider j′ = j will hold. Indeed, if G2 = GLn2(q2), or Un2(q)

then this is certainly true since n2 6= 0 so

THJ (y) =
(
T
P

+n1
J
×G2

)
n V,

hence D(THJ (y)) = D(HJ). We will be considering the central case where G2 is an isomorphic

copy of P+n1
J . In this instance, the fact that r < n1 is sufficient to imply that j′ = j.
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Let d0 be the exponent of q in |H|. Let w be a subspace of V1 as defined in the statement

of the proposition. Define the following function on subgroups of TH(w)

g : S(TH(w)) −→ Z

K 7→


kd−(d0−d(K))(K,X(w), ρ,D, j), if V ≤ K;

0, otherwise.

where d(K) is the exponent of q in |K|. This is a TH(w)-stable function. For cJ ∈ ∆(P ),

TH(cJ) = HJ . Since the q-height of H is equal to the q-height of HJ ,

d0 − d(K) = |THJ (w)\HJ |.

Hence g(HJ) = fw(cJ). Applying g to the reduced Lefshetz element we have

g(ΛTH(w)(P )) = g(ΛTH(w)(P,w)).
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We put the above together

∑
J⊆[n1−1]

(−1)|J |kd(HJ , X, ρ,D, j)

=
∑

cJ∈∆(P )/H

(−1)|J |
∑

y∈Y/HJ

kd(HJ , X(y), ρ,D, j)

=
∑

y∈Y/H

∑
cJ∈∆(P )/TH(y)

(−1)|J |kd(HJ , X(y), ρ,D, j)

=
∑

cJ∈∆(P )/TH(y)

(−1)|J |kd(HJ , X(w), ρ,D, j), since there is a unique H-orbit in Y

=
∑

cJ∈∆(P )/TH(w)

(−1)|J |kd−d′(THJ (w), X(w), ρ,D, j)

=
∑

cJ∈∆(P,w)/TH(w)

(−1)|J |kd−d′(THJ (w), X(w), ρ,D, j)

=
∑

cJ∈∆(P,w)/TH(w)

(−1)|J |kd(HJ , X(w), ρ,D, j)

=
∑

J⊆[n1−1]
r∈J

(−1)|J |kd(HJ , X(w), ρ,D, j),

and we are done.

3 General Linear Modules

In this section we first summarize Ku’s results and then examine a map which is related

to the usual determinant map. In this section G1 is P+n1
J , a parabolic subgroup of GLn1(q2)

for fixed J ⊂ [n1 − 1]. Let G2 be GLn2(q2). The module V1 is the restriction to P+n1
J of the

natural module for GLn1(q2) and V2 is the dual of the natural module for GLn2(q2). Recall,
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in this context GJ = P+n1
J × GLn2(q2). Fix r ∈ J or r = n1. If r < n1 then let w ≤ V1 be a

complement to the r-dimensional subspace stabilized by P+n1
r . If r = n1 then let w ≤ V1 be

the trivial subspace. Let τ ∈ X(w) so that τ has rank r and ker τ = w. We can use r to divide

the set J into two subsets:

{j ∈ J | j < r} and {j ∈ J | r < j}.

Let us set J2 = {j | j ∈ J and j < r} and J1 = {j − r | j ∈ J and r < j}. Notice that we

have the containment J2 ⊆ [r − 1] and J1 ⊆ [n1 − r].

Proposition 6.3.1 ((15), Lemma 6.2.2) The group TGJ (w) = P
+(n1−r)
J1

×P+r
J2
×GLn2(q2)

and is transitive on X(w). The stabilizer of τ in GJ is

TGJ (τ) =


P

+(n1−r)
J1

× P+n2
J2

, if r = n2;

P
+(n1−r)
J1

× P+n2

J2∪{r}, if r < n2.

(6.2)

3.1 The determinant map in the general linear module context

We would like to determine the determinant map on

GJ = P+n1
J ×GLn2(q2),
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as embedded in a larger unitary group. At this stage we consider the map

D : P+n1
J ×GLn2(q2) −→ F ∗q2

(x, y) 7→(det(x)i det(y))1−q,

for some positive integer i. As we will see D is constructed to be the restriction to GJ of the

usual determinant map on Un(q). The integer i depends on the embedding of GJ in Un(q). For

the rest of this subsection let K = ker(D)

Our first observation is that the image of GJ under this map is all of C(q+1) since n2 6= 0.

We need to examine the map D restricted to the subgroup TGJ (τ) and calculate |TGJ (τ)K\GJ |.

The cases depend on r, n1, and n2. In order to calculate |TGJ (τ)K\GJ | we need to find the

image of TGJ (τ) under D. If D(TGJ (τ)) = C(q+1)/h then D(TGJ (τ)K) = C(q+1)/h so that

|TGJ (τ)K\GJ | = |C(q+1)/h|\|C(q+1)| = h.

We examine the four cases:

1. If r = n1 = n2 then TGJ (τ) = P+r
J . If (x, y) ∈ GJ stabilizes τ then x = y = B and

D : P+r
J −→ F ∗q2

B 7→ (det(B)i+1)1−q.
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Also notice that D(P+r
J ) = C(q+1)/ gcd(q+1,i+1).

2. If r = n1 but r < n2 then TGJ (τ) = P+n2

J∪{r} =
(
P+r
J ×GLn2−r(q

2)
)
nMr,n2−r(q

2). If

(x, y) ∈ GJ stabilizes τ then

x = B and y =

 B ∗

0 C

 .

Since D is trivial on the normal factor Mr,n2−r(q
2) we have

D :
(
P+r
J ×GLn2−r(q

2)
)
−→ F ∗q2

(B,C) 7→ (det(B)i+1 det(C))1−q.

Observe that D(
(
P+r
J ×GLn2−r(q

2)
)
nMr,n2−r(q

2)) = C(q+1) since n2 − r 6= 0.

3. If r < n1 but r = n2, then TGJ (τ) = P
+(n1−r)
J1

× P+r
J2

. If (x, y) ∈ GJ stabilizes τ , then

x =

 B 0

0 A

 and y = B.

We have

D : P
+(n1−r)
J1

× P+r
J2

−→ F ∗q2

(A,B) 7→ (det(A)i(det(B)i+1)1−q.
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Take any element α of F ∗q2 . Then the diagonal matrix A = (α−1, 1, 1, · · · , 1) is in P
+(n1−r)
J1

and the diagonal matrix B = (α, 1, 1, · · · , 1) is in P+r
J2

. Then

D(A,B) = (α−iαi+1)1−q = α1−q

and thus D(P
+(n1−r)
J1

× P+r
J2

) is all of C(q+1).

4. Finally we suppose that r < n1 and r < n2. We have

TGJ (τ) = P
+(n1−r)
J1

× P+n2
J2

= P
+(n1−r)
J1

×
(
P+r
J2
×GLn2−r(q

2)
)
nMr,n2−r(q

2).

If (x, y) ∈ GJ stabilizes τ , then

x =

 B 0

0 A

 and y =

 B ∗

0 C

 .

As above, D is trivial on the normal factor Mr,n2−r(q
2) and

D : P
+(n1−r)
J1

× P+r
J ×GLn2−r(q

2) −→ F ∗q2

(A,B,C) 7→ (det(A)i det(B)i+1 det(C))1−q.

In this case we also have D(TGJ (τ)) equal to all of C(q+1) since n2 − r 6= 0.
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Summarizing these results, we get the following proposition which is a step in computing

the number of irreducible characters of PJ (in an appropriate p-block, of appropriate q-height)

which split as desired upon restriction to PJ ∩ SUn(q):

Proposition 6.3.2

|TGJ (τ)K\GJ | =


gcd(q + 1, i+ 1), if r = n1 = n2;

1, otherwise.

4 Unitary Modules

In this section we first summarize Ku’s results and then examine a map which is related

to the usual determinant map. We make use of the following notations which are due to Ku:

Su(V, J, r), Ssu(V, J, r), and Snu(V, J, r). In this section G1 is P+n1
J a parabolic subgroup of

GLn1(q2) for fixed J ⊂ [n1 − 1] as above. In the previous section we had G2 = GLn2(q2)

which is transitive on subspaces of the same dimension in the dual space V ∗2 . Now we consider

G2 = Un2(q). Recall, in this context GJ = P+n1
J ×Un2(q). The module V1 is still the restriction

to P+n1
J of the natural module for GLn1(Fq2). However, now V2 is the dual of the natural module

for Un2(q) and thus has a unitary structure. In this case, G2 is not transitive on subspaces of

the same dimension of V ∗2 .

Recall if U is a unitary vector space, a subspace W is totally isotropic if < v,w >= 0

for all vectors v, w in W , where <,> indicates the hermitian form on U . A totally isotropic

subspace W is degenerate since its radical rad(W ) = W ∩W⊥ = W . A chain of totally isotropic

subspaces will be called a singular chain. A chain of subspaces which are not all totally isotropic
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will be called a non-singular chain. A subspace W is non-degenerate if rad(W ) = 0 in which

case V = W ⊕W⊥.

Let W be a non-degenerate subspace of V ∗2 of dimension r. Then

TUn2 (q)(W ) = Un2−r(q)×Ur(q).

Now consider W a totally isotropic subspace. A basis for V ∗2 has already been fixed. To simplify

notation, denote (ej)∗ by ej so that the basis is {e1, e2, . . . , en2}. Further suppose that with

respect to the inner product on V ∗2 we have

< ei, ej >=


1, if i+ j = n2 + 1;

0, otherwise.

Let W be the totally isotropic subspace equal to < e1, e2, . . . , er >. Note that r must be less

than or equal to [n2/2]. Then the stabilizer is a maximal parabolic subgroup

TUn2 (q)(W ) = Pn2
r .

Just as in the previous section we fix r where either r ∈ J or r = n1. If r = n1 then

let w ≤ V1 be the trivial subspace. If r < n1 then let w ≤ V1 be a complement to the r-

dimensional subspace stabilized by P+n1
r . Let τ ∈ X(w) so that τ has rank r and ker τ = w.

Ku parameterizes the TGJ (w) orbits on X(w) with chains of subspaces in V ∗2 . These are so-
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called normal flags of fixed type depending on J and reflect the unitary structure in V ∗2 which

we define now.

Definition 6.4.1 A normal flag in V ∗2 is a chain of subspaces

c : 0 < V1 < V2 < · · · < Vs

satisfying the following. There exists 0 = i0 < i1 < · · · ik ≤ s, k ≥ 0, such that for all 0 ≤ j ≤ k

1. Vij is either a non-degenerate subspace in V ∗2 or the zero subspace and

2. for any ij < i < ij+1 we have Vi = Vij ⊕ rad(Vi), where we assume ik+1 = s + 1 and

Vs+1 = V ∗2 .

Take linear maps f , g : V1 → V ∗2 with kernel w. The stabilizer TGJ (w) = P+n1−r
J1

×

P+r
J(<r) × Un2(q). Under its action on X(w), f and g are in the same orbit if and only if

f(cJ) and g(cJ) are isomorphic as flags in V ∗2 . Observe that f(cJ) and g(cJ) are both flags of

type {J(< r) ∪ {r}}\{n2} because we can choose a basis so that w =< er+1, . . . , en1 > and

f(w) = g(w) = 0 the trivial subspace. Let P(V ∗2 ) be the poset of subspaces in V ∗2 ordered by

inclusion.

If r = n1 then X(w) = X and TGJ (w) = GJ . The GJ -orbits in X are in 1-1 correspondence

with the Un2(q)-orbits on chains of type {J ∪ {r}}\{n2} in P(V ∗2 ). If τ corresponds to chain c

of such type then

TGJ (τ) = TUn2 (q)(c).
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See ((15),Lemma 6.3.1).

If r < n1 then w is non-trivial and

TGJ (w) = P+n1−r
J1

× P+r
J(<r) ×Un2(q)

where J1 = {j − r | j ∈ J(> r)}. The group P+n1−r
J1

acts trivially on the quotient space

V 1 = V1/w and hence acts trivially on X(w) which is isomorphic to Irr(V 1 ⊗ V2, r). By the

above discussion for the case r = n1 the (P+r
J(<r) × Un2(q))-orbits in Irr(V 1 ⊗ V2, r) are in 1-1

correspondence with the Un2(q)-orbits on chains of type {J(< r) ∪ {r}}\{n2} in P(V ∗2 ).

Definition 6.4.2 Let Su(V, J, r) denote the set of TGJ (w)-orbits in X(w) labeled by normal

flags of type {J(< r) ∪ {r}}\{n2} in P(V ∗2 ).

The set Su(V, J, r) is defined for r ∈ J ∪ {r} and is in 1-1 correspondence with the Un2(q)-

orbits on normal chains of type {J(< r)∪{r}}\{n2}. Let us examine the possible flags of such

type in P(V ∗2 ). Let c be such a flag. Since V ∗2 has a unitary structure, subspaces fall into two

categories. They are either totally isotropic or not. The action of Un2(q) on V ∗2 preserves this

structure.

Definition 6.4.3 If c is a flag of totally isotropic subspaces we will say that c is singular.

If c contains a non-degenerate subspace we will say that c is a non-singular flag. Moreover we

define the non-singular rank of c to be the dimension of the minimal non-degenerate subspace.
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If τ ∈ X(w) has rank r and corresponds to a non-singular flag c with non-singular rank r′,

then τ itself is said to have non-singular rank r′. Moreover r′ ∈ J ∪{r} since r′ is the dimension

of a subspace in the flag c corresponding to τ .

Suppose c is a flag of type {J(< r)∪{r}}\{n2} of non-singular rank r′ with 1 ≤ r′ ≤ r. We

have r′, r ∈ J ∪ {r}. Let J̃ = {k1, k2, . . . , ks} be the type of c. The element r′ divides J̃ into

two subsets

J̃1 = { k | k ∈ J̃ , k < r′} and J̃2 = { k | k ∈ J̃ , r′ < k}.

Write

c : 0 < Vk1 < · · · < Vr′ < · · · < Vks .

We assign to c a pair (c1, c2) of shorter flags in the following way. The subspace Vr′ is the

minimal non-degenerate subspace. We define

c1 : 0 < Vk1 < · · · < V
max(J̃1)

c2 : 0 < V
min(J̃2)

∩ V ⊥r′ < · · · < Vks ∩ V ⊥r′

The flag c1 is a singular flag in the unitary space of dimension r′. The flag c2 is a flag in the

unitary space of dimension n2 − r′.

Definition 6.4.4 We define the following subsets of Su(V, J, r):

1. Let Ssu(V, J, r) be the subset of Su(V, J, r) labeled by singular flags.
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2. Let Snu(V, J, r) be the subset of Su(V, J, r) labeled by non-singular flags.

3. Finally, let Snur′ (V, J, r) be the subset of Snu(V, J, r) with non-singular rank r′.

Observe that the set Ssu(V, J, r) is non-empty if and only if r ≤ n2/2, in which case it

consists of a single member. Notice also that Snur′ (V, J, r) is nonempty if and only if r′ ∈ J(< r)

and J(< r′) ⊆ [n2/2]. We have the following structure of stabilizers of characters in these sets

given by Ku.

Proposition 6.4.5 ((15), Remark 6.3.12)

1. For τ ∈ Ssu(V, J, r) we have TGJ (τ) = P
+(n1−r)
J1

× Pn2

{J(<r)∪{r}}\{n2}

2. For τ ∈ Snur′ (V, J, r) we have TGJ (τ) = P
+(n1−r)
J1

× P r′J(<r′) × TUn2−r′
(q)(c2)

where J1 = {j − r | j ∈ J(> r)} and c2 is obtained as above from c which corresponds to τ .

4.1 The determinant map in the unitary linear module context

We would like to determine the determinant map on

GJ = P+n1
J ×Un2(q),

as embedded in a larger unitary group. At this stage we consider the map

D : P+n1
J ×Un2(q) −→ F ∗q2

(x, y) 7→ det(x)i(1−q) det(y).
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for some positive integer i. The map D is constructed to be the restriction to GJ of the usual

determinant map on Un(q). The integer i depends on the embedding of GJ in Un(q). For the

rest of this subsection let K = ker(D)

Observe the image of GJ under this map is all of C(q+1) since n2 6= 0. We need to examine

the map D restricted to the subgroup TGJ (τ) and calculate |TGJ (τ)K\GJ |.

Let τ ∈ Ssu(V, J, r) so that

TGJ (τ) = P
+(n1−r)
J1

× Pn2

J(<r)∪{r}\{n2}

= P
+(n1−r)
J1

×
((
P+r
J(<r) ×Un2−2r(q)

)
n Un2

r

)
where Un2

r is the unipotent radical in the maximal parabolic subgroup Pn2
r in Un2(q). If

(x, y) ∈ GJ stabilizes τ then

x =

 B 0

0 A

 and y =

 B ∗

0 C

 .

The map D restricted to TGJ (τ) is trivial on the normal factor Un2
r and

D : P
+(n1−r)
J1

× P+r
J(<r) ×Un2−2r(q) −→ F ∗q2

(A,B,C) 7→ (det(A)i det(B)i+1)1−q det(C)
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where it is understood that if any of these dimensions are zero, we assume det(A) = 1 for A in

any group of dimension zero. The image of D on TGJ (τ) depends on r, n1, and n2. There are

three cases:

1. If r = n1 = n2/2, then the image of TGJ (τ) under D is C(q+1)/ gcd(q+1,i+1).

2. If r < n2/2, then D(TGJ (τ)) = C(q+1).

3. If r < n1 but r = n2/2, then for any α ∈ F ∗q2 , the diagonal matrix A = (α−1, 1, . . . , 1) is

in P
+(n1−r)
J1

and the diagonal matrix B = (α, 1, . . . , 1) is in P+r
J(<r). We have D(AB) =

(α−iαi+1)1−q = α1−q and thus D(TGJ (τ)) is all of C(q+1).

Summarizing these results, we get the following proposition which is another step in com-

puting the number of irreducible characters of PJ (in an appropriate p-block, of appropriate

q-height) which split as desired upon restriction to PJ ∩ SUn(q):

Proposition 6.4.6 For τ ∈ Ssu(V, J, r)

|TGJ (τ)K\GJ | =


gcd(q + 1, i+ 1), if r = n1 = n2/2;

1, otherwise.

Now take τ ∈ Snu(V, J, r) with non-singular rank r′ 6= 0. We have

TGJ (τ) = P
+(n1−r)
J1

× P r′J(<r′) × TUn2−r′
(q)(c2)
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where τ corresponds to c which corresponds to the pair (c1, c2) as above so that c2 is a flag in

the unitary space of dimension n2 − r′. If (x, y) ∈ GJ stabilizes τ then

x =


B 0 0

0 C ′ 0

0 0 A

 and y =


B 0 0

0 C ′ ∗

0 0 C ′′

 .

Let

C =

 C ′ ∗

0 C ′′

 .

Then

D : P
+(n1−r)
J1

× P r′J (< r′)× TUn2−r′
(q)(c2) −→ F ∗q2

(A,B,C) 7→ det(A)i(1−q) det(B)2i+1D′(C).

where D′(C) is the determinant of C as an element embedded in Un(q). In other words D′(C)

depends on the embedding of C ′. We take note of the restriction of D to the factor P r
′

J(<r′) in the

stabilizer TGJ (τ). For B ∈ P r′J(<r′), D(B) = det(B)2i+1 since −q ≡ 1 mod (q + 1). Notice also

that TUn2−r′
(q)(c2) is a stabilizer in a unitary group of smaller dimension than n2 and as men-

tioned D′ depends on the embedding in Un(q). Later we will make use of an inductive argument.
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5 Central Modules

In this section we first summarize Ku’s results and then briefly examine a map which is

related to the usual determinant map. At the end of this section we also examine how the useful

cancellation applies to the central module case. We will be examining parabolic subgroups PJ

in Un′(q), where n′ ≤ n, as embedded in Un(q). Let l be the maximal member of J . Write

Zl = Z(Ul). Then the normal series for UJ terminates with Ul ≥ Zl > 1. Thus far the modules

we have considered arise when χ ∈ Irr(PJ) contains Z(Ul) in its kernel. We will consider now

the case when χ ∈ Irr(PJ) does not contain Z(Ul) in its kernel.

The parabolic group PJ has the following decomposition

PJ =
(
P+l
J(<l) ×Un′−2l(q)

)
n Ul

and acts on Ul by conjugation. This induces an action of the quotient group PJ/Ul on Zl which

is isomorphic as an abelian group to Ml,l(q) which we denote by V . Indeed, since PJ is upper

triangular we may write elements of V as matrices



a1,1 a1,2 d1

a2,1 d2

−aq1,2

dl −aq2,1 −aq1,1


in Ml,l(q

2) where dqi + di = 0.
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Let V l be the usual module for GLl(q
2) then V l ⊗ (V l)∗ ∼= Ml,l(q

2) is a module for P+l
J(<l).

Observe that V ≤ Ml,l(q
2). The quotient PJ/Ul acts on V as follows. For matrix A ∈ P+l

J(<l),

B ∈ Un′−2l(q), and v ∈ V , (A,B) · v = Av(Ã)−1 where Ã is as defined at the beginning of

Chapter 5, i.e. if A = (ai,j), then Ã = M((aqj,i))
−1M−1 where M is the matrix with ones on the

reverse diagonal. This induces an action on the subset Irr(V ) ≤ Irr(V l⊗ (V l)∗) ∼= Hom(V l, V l)

which is invariant on the rank of τ ∈ Irr(V ) which recall is the co-dimension of the kernel of τ

viewed as a homomorphism from V l to itself. Notice that the unitary factor acts trivially.

Case 1. We begin with the special case n′ = 2m and J = {m} so that PJ = GLm(q2)nUm

and Um = Zm ∼= Mm,m(q).

Let X = Irr(V, r) the subset of characters in Irr(V ) of rank r. Fix non-zero ε in the algebraic

closure of Fq satisfying εq + ε = 0 and define the m×m matrix

xr = (ai,j) where ai,j =


ε, j − i = m− r;

0, otherwise.

As a matrix xr has rank r.

Proposition 6.5.1 ((15), Chapter 7) The group GLm(q2) is transitive on X. The set

{0, xr | 1 ≤ r ≤ m} is a complete set of representatives for the GLm(q2)-orbits on Irr(V ), where

0 denotes the zero matrix. Moreover

TGLm(q2)(τr) = TGLm(q2)(xr) =
(
Ur(q)×GLm−r(q

2)
)
nMr,m−r(q

2)
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as in ((15), Lemma 7.3.1).

Case 2. Now consider the case where Ul 6= Zl. Let J = {l} so that

PJ = Pl ∼=
(
GLl(q

2)×Un′−2l(q)
)
n Ul

where Ul/Zl ∼= Ml,n′−2l(q
2) and Zl ∼= Ml,l(q). Let τr be identified with xr. Since Un′−2l(q)

acts trivially on Zl, by the first special case the set {1, τr | 1 ≤ r ≤ l} is a complete set of

representatives for the PJ -orbits on Irr(Zl), where 1 is the trivial character. Let

Irr(Ul, τr) = {φ ∈ Irr(Ul) | φ lies over τr}.

If χ ∈ Irr(Pl) does not contain Zl in its kernel then χ lies over φ ∈ Irr(Ul, τr) where φ restricted

to Zl is a multiple of τr, for some 1 ≤ r ≤ l. In this case, τr is not extendible to its stabilizer

in Pl. However, it turns out that φ is extendible to TPl(φ).

Given φ ∈ Irr(Ul, τr), ker(τr) ≤ ker(φ). We may consider φ as a character of the quotient

group Ul/ ker(τr). We may consider τr as a character of the quotient group Zl/ ker(τr). The

center Zl is elementary abelian so Irr(Zl) ∼= HomFp(Zl, Fp). Thus Zl/ ker(τr) is cyclic of order

p. The group Ul/ ker(φ) has an irreducible faithful representation and hence has cyclic center.

Moreover, Z(Ul/ ker(φ)) is a homomorphic image of Z(Ul/ ker(τr)) which is elementary abelian

((15), p.101). Thus Z(Ul/ ker(φ)) must have order p. We have

Z(Ul/ ker(φ)) ≥ Zl ker(φ)
/

ker(φ) ∼= Zl
/

(ker(φ) ∩ Zl) = Zl/ ker(τ).
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Hence

Z(Ul/ ker(φ)) ∼= Zl/ ker(τ).

Moreover

Ul/ ker(φ)
/
Z (Ul/ ker(φ)) is an elementary abelian p-group.

Hence Ul/ ker(φ) is an extraspecial p-group. The ordinary character theory of such groups

is well known. In summary, we have the following:

1. The order of Ul/ ker(φ) is p1+2a for some integer a.

2. There are exactly p2a linear characters, each corresponding to a character of the quotient

Ul/ ker(φ)
/
Z (Ul/ ker(φ)) .

3. There are exactly p − 1 non-linear characters each of dimension pa. There is one of

these characters χ for each non-trivial irreducible character θ of Z(Ul/ ker(φ)) with char-

acter values given by χ(x) = paθ(x) for x in Z(Ul/ ker(φ)) and χ(x) = 0 for x not in

Z(Ul/ ker(φ)).

Considered as a character of Ul/ ker(τr), φ is uniquely determined by its kernel. We sum-

marize the properties of φ.

Proposition 6.5.2 ((15), Lemma 7.2.4) Let 1 ≤ r ≤ l and φ ∈ Irr(Ul, τr).

1. φ is extendible to TPl(φ)
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2. φ(1) = qr(n−2l)

3. If r = l, then Irr(Ul, τl) contains a unique member and

TPl(φ) = TPl(τl)
∼=
(
Ul(q)×GLn′−2l(q

2)
)
n Ul.

4. If 1 ≤ r < l, then φ is uniquely determined by its kernel.

TPl(φ) = TLl(φ) n Ul = (TLl(τr) ∩ TLl(ker(φ))) n Ul.

For a non-negative integer k, let V k be the natural module for GLk(q
2). Let R ≤ V l be a

subspace of codimension r stabilized by TLl(τr). Then

V l−r ⊗ (V n′−2l)∗

is a module for GLl−r(q
2)×Un′−2l(q). Moreover, there is a 1− 1 correspondence

Irr(Ul, τr)←→ Irr(V l−r ⊗ (V n′−2l)∗).
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Case 3. In order to count characters of PJ that do not contain Zl in their kernel, we observe

that

k1
d(PJ , Zl, ρ,det, j) =

∑
τ∈Zl/PJ

kd(PJ , τ, ρ,det, j)

=
∑

τ∈Zl/PJ

∑
φ∈Irr(Ul,τ)

kd(PJ , φ, ρ, det, j)

=
∑

τ∈Zl/PJ

∑
φ∈Irr(Ul,τ)

kd−d′(TPJ (φ)/Ul, ρ,det, j′).

where d′ = r(n′ − 2l) − d′′ for d′′ equal to the exponent of q in |TPJ (φ)\PJ | and j′ is the least

positive integer such that

j divides j′· | TPJ (φ) ker(det)\PJ | .

We use Proposition 6.5.2 to describe PJ orbits on X = Irr(V, r) for the general case where

J is any subset in I with maximal element l.

Definition 6.5.3 For fixed r, let K = TGLl(q2)(τr).

Let w be zero if r = l, or if r < l a complement in V l to the r dimensional subspace stabilized

by P+l
r . We have the structure of K given above by Proposition 6.5.1.

Proposition 6.5.4 There is a 1-1 correspondence between the PJ -orbits on X and the K-

orbits on the set of chains of type J(< l) in P(V l). If τ corresponds to c then up to conjugation

TP+l
J(<l)

(τ) = TK(c).
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Let r = l so that K = TGLl(q2)(τl) = Ul(q).

Definition 6.5.5 Let Sz(V, J, l) denote the PJ -orbits in X labeled by a normal chain in

P(V l) of type J(< l).

Let r < l so that w is a complement in V l to the r dimensional subspace stabilized by P+l
r .

We can assume that K ≤ TGLl(q2)(w). Then K is transitive on complements of w. Moreover if

τ ∈ X corresponds to c of type J(< l) with

c : 0 < V1 < · · · < Vi < · · · < Vs

where Vi is a complement to w then we may assign to c a pair (c1, c2) of shorter chains much

as we did in the previous section. As (Vi)
⊥ = w we may define

c1 : 0 < V1 < · · · < Vi−1

c2 : 0 < (Vi+1 ∩ w) < · · · < (Vs ∩ w).

Notice that c1 is a chain of type J(< r) in P(V r) and c2 of of type {j − r|j ∈ J(> r)} in

P(V l−r). We have the stabilizer of c in K given by

TK(c) = TUr(q)(c1)× TGLl−r(q2)(c2).

With this identification of c with the pair (c1, c2), we make the following definition.
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Definition 6.5.6 Let Sz(V, J, r) denote the PJ -orbits in X labeled by a normal chain c1 of

type J(< r) in P(V r).

By construction Sz(V, J, r) is in 1-1 correspondence with the Ur(q)-orbits on the set of

chains of type J(< r) in P(V r).

Definition 6.5.7 We define the following subsets of Sz(V, J, r).

1. Let Szr (V, J, r) be the subset labeled by a singular normal chain c1 of type J(< r) in P(V r).

2. For r′ < r let Szr′(V, J, r) be the subset labeled by a normal chain c1 of type J(< r) in

P(V r) with non-singular rank r′.

We may now assign to c1 a pair of even shorter chains based on the dimension of the minimal

non-degenerate subspace in c1. In the manner of the previous section c1 corresponds to the pair

(c11, c12) where c11 is a totally isotropic chain in P(V r′) and c12 is a normal chain in P(V r−r′).

In summary for J with maximal member l, r ∈ J and τ ∈ X = Irr(V, r) corresponding to

(c1, c2) where c1 corresponds to (c11, c12) we have

TPJ (τ) =

(
TP+l

J(<l)
(τ)×Un′−2l(q)

)
n Ul(

TUr(q)(c1)× TGLl−r(q2)(c2)×Un′−2l(q)
)
n Ul(

TUr′ (q)
(c11)× TUr−r′ (q)

(c12)× TGLl−r(q2)(c2)×Un′−2l(q)
)
n Ul(

P r
′

J(<r′) × TUr−r′ (q)
(c12)× TGLl−r(q2)(c2)×Un′−2l(q)

)
n Ul.
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where if r = l then we take c2 = 0. Now let φ ∈ Irr(Ul, τr) correspond to ψ ∈ Irr(V l−r ⊗

(V n′−2l)∗) and let

D = TGLl−r(q2)(c2)×Un′−2l(q).

Then

TPJ (φ) = (TPJ (τ)× TD(ψ)) n Ul.

5.1 The determinant map in the central module context

We would like to determine the determinant map on quotients of the form PJ/Ul ≤ Un′(q),

as embedded in the larger unitary group Un(q). Here PJ is a parabolic subgroup of Un′(q). We

have

PJ/Ul ∼= P+l
J(<l) ×Un′−2l(q).

At this stage we consider the same map D from section 4.1 on unitary linear modules.

D : P+l
J(<l) ×Un′−2l(q) −→ F ∗q2

(x, y) 7→ det(x)i(1−q) det(y),

for some positive integer i. The map D is constructed to be the restriction to PJ/Ul of the

usual determinant map on Un(q). The integer i depends on the embedding of PJ/Ul in Un(q).

Observe the image of PJ/Ul under this map is all of C(q+1) if n′ − 2l 6= 0. On the other

hand if n′ = 2l then the image is C(q+1)/ gcd(q+1,i).
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We briefly remark on the restriction of the map D to the factor P r
′

J(<r′) in the stabilizer

TPJ (τ). For A ∈ P r′J(<r′), D(A) = det(A)2i since −q ≡ 1 mod (q + 1).

Remark: A version of the useful cancellation discussed in section 2 applies to the central

modules in the following way: Let G be the subgroup of GLl(q
2)×GLl(q

2) defined

G = {(A, Ã)|A ∈ GLl(q
2)}.

Let V l be the natural module for GLl(q
2). Set V = V l⊗(V l)∗. LetG act on V viaA·v = AvÃ−1.

In keeping with the notation used in section 1, l = n1 = n2 and G2 is an isomorphic copy of

G1. As an Fq2-vector space, recall a basis for V was given by {Ei,j}. View Fq2 as an extension

of Fq. Let ϑ be a root of the irreducible polynomial

x2 − (ϑ+ ϑq) + ϑq+1 in Fq[x]

so that Fq2 = Fq(ϑ). Let V be the Fq-subspace of V with basis given by

{Ei,j − El−j+1,l−i+1}
⋃
{ϑEi,j − ϑqEl−j+1,l−i+1}.
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The subspace V , and hence Irr(V ), is closed under the action of G. Let X = Irr(V, r). Then X

is a subset of Irr(V, r). For J ⊆ [l − 1], define the subgroup

GJ = {(A, Ã)|A ∈ P+l
J } ≤ G.

Let H = Gn V and HJ = GJ n V . In this case for (A, Ã) ∈ GJ ,

D(A, Ã) = det(A)i(1−q)

for some integer i.

Then Y = {y ≤ V l|codim(y) = r} is a transitive H-set. If J has maximal member l then

PJ/Ul ∼= GJ(<l) ×Un′−2l(q) and Zl ∼= V.

If r = l then X(0) = X and TGJ (0) = GJ . Now suppose that r < l. Set w to be

a complement to the r-dimensional subspace R of V l stabilized by P+l
r . The vector space

V l = R⊕w. Take τ ∈ X(w) so that viewed as a linear transformation of V l, τ has kernel equal

to w. Now even if r is not a member of J(< l) we have

TGJ (w) = Mr,l−r(q
2) o

(
P+r
J(<r) × P

+(l−r)
J1

)
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where J1 = {j − r|j ∈ J(> r)}. For y ∈ Y , y = Aw for some A ∈ GLl(q
2), hence TGJ (y) is

GLl(q
2)-conjugate to TGJ (w).

The main difference in applying the useful cancellation to the central module context is in

the definition of a G-stable function. We define

f : ∆(P )× Y −→ Z

(cJ , y) 7→ kd(PJ∪{l}, X(y), ρ,D, j).

Notice that PJ∪{l} is not HJ . Also notice that l − r 6= 0 in this case so that

|TPJ (y) ker(D)\PJ | = 1 holds.

With these changes in the proof of Proposition 6.2.4 the useful cancellation applies to the the

central module case.

Proposition 6.5.8 Let Z ≤ Z(G) and ρ ∈ Irr(Z). Fix 1 ≤ r ≤ l. Let V = Zl and let

X = Irr(V, r). Let w be a complement in V l to the r-dimensional subspace stabilized by P+l
r , in

its action on the natural module for GLl(q
2). Let X(w) = {τ ∈ X | ker(τ) = w}. Let D be the

map on PJ defined above. For d ≥ 0 the following holds

1. If r = l, then Y = 0 and X = X(0).
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2. If r < l, then

∑
J⊆[l−1]

(−1)|J |kd(PJ∪{l}, X, ρ,D, j) =
∑

J⊆[l−1]
r∈J

(−1)|J |kd(PJ∪{l}, X(w), ρ,D, j).

Representatives of TGJ (w)-orbits in X(w) are given by chains of type J(< l)∪{r} in P(V l)

where c corresponds to (c1, c2) as described earlier in this section.

Having examined the orbits, stabilizers, and maps D at the level of HJ in the linear cases

(both general and unitary) and Pn
′

J in the central case, we are ready to proceed up to the level

of PnJ . We will do so in the following chapter where we begin a systematic codification of the

alternating sum that occurs on the left hand side of Equation 4.6b.



CHAPTER 7

COUNTING CHARACTERS OF PARABOLIC SUBGROUPS NOT

TRIVIAL ON THE UNIPOTENT RADICAL

For fixed J ⊂ I write J = {j1, j2, . . . , js} in increasing order. Then UJ has the following

normal series:

UJ = UJ(≥j1) > UJ(≥j2) > · · · > UJ(≥js) = Ujs ≥ Z(Ujs) > 1 (7.1)

The quotient groups in this series are abelian. These are the modules described as general

linear, unitary linear, and central modules in the previous chapter where recall we examined

their HJ orbits. If χ ∈ Irr(PJ) does not contain UJ in its kernel then there exists a term in the

above series which is contained in the kernel of χ, but the previous term is not in the kernel of

χ.

Recall V (ji, ji+1) denotes the quotient group UJ(≥ji)/UJ(≥ji+1). We note that in the following

definition, 1. is a slight modification of definition 4.1.2 but that 2. has already been defined

and is only restated for clarity.

Definition 7.0.9 For ρ ∈ Irr(Z):

1. Let k1
d(PJ , V (ji, ji+1), ρ,det, j) be the number of χ ∈ Irr(PJ) which are trivial on UJ(≥ji+1)

but not trivial on UJ(≥ji), lie over ρ, and upon restriction to ker(det) have j′ irreducible

constituents where j | j′.

100
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2. Let k1
d(PJ , Ujs , ρ,det, j) be the number of χ ∈ Irr(PJ) which are not trivial on Ujs, lie over

ρ, and upon restriction to ker(det) have j′ irreducible constituents where j | j′.

Case 1. If χ ∈ Irr(PJ) is trivial on UJ(≥ji+1) but not trivial on UJ(≥ji), then we may

consider χ as a character of

PJ = PJ/UJ(≥ji+1)
∼= P

+ji+1

J(≤ji) × LJ ′

where J ′ = {j − ji+1|j ∈ J(> ji+1)} and LJ ′ is isomorphic to a Levi subgroup in Un−2ji+1(q).

Then

P
+ji+1

J(≤ji)
∼=
(
P+ji
J(<ji)

×GLji+1−ji(q)
)
n V (ji, ji+1), (7.2)

as in section 3 of chapter 6, on general linear modules, where P
+ji+1

J(≤ji) plays the role of HJ .

Hence χ is of the following form:

χ = χ′(τ̃ψ)
P

+ji+1
J(≤ji)

where τ ∈ Irr(V (ji, ji+1)) is linear and hence extendible to τ̃ ∈ Irr(T ) and ψ ∈ Irr(T/V (ji, ji+1))

where T is the stabilizer of τ in P
+ji+1

J(≤ji) and χ′ is an irreducible character of the factor LJ ′ . It

follows that χ corresponds to τ and that

k1
d(PJ , V (ji, ji+1), ρ,det, j) =

∑
τ

kd(PJ , τ, ρ,det, j)

where this sum is taken over representatives τ of PJ -orbits in Irr(V (ji, ji+1)).
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Case 2. Suppose that χ ∈ Irr(PJ) is not trivial on Ujs . There are two possibilities: χ is

trivial on Z(Ujs) = Zjs or not.

Case 2a. If χ is trivial on Zjs , then we may consider χ as a character of

PJ/Zjs
∼=
(
P+js
J(<js)

×Un−2js(q)
)
n (Ujs/Zjs), (7.3)

as in section 4 of chapter 6, on unitary linear modules, where PJ/Zjs plays the role of HJ .

Hence χ is of the following form:

χ = (τ̃ψ)PJ/Zjs

where τ ∈ Irr(Ujs/Zjs) linear and hence extendible to τ̃ ∈ Irr(T ) and ψ ∈ Irr(T/(Ujs/Zjs))

where T is the stabilizer of τ in PJ/Zjs . It follows that χ corresponds to an irreducible character

of the quotient Ujs/Zjs , and that

k1
d(PJ , Ujs/Zjs , ρ,det, j) =

∑
τ

kd(PJ , τ, ρ,det, j)

where this sum is taken over nontrivial representatives τ of PJ -orbits in Irr(Ujs/Zjs).

Case 2b. Suppose χ is not trivial on Zjs . As discussed in section 5 of chapter 6, χ

corresponds to φ ∈ Irr(Ujs) where φ lies over a non-trivial character τr ∈ Irr(Zjs). Set N =

ker(φ) then K = N ∩ Zjs is non-trivial. Then Ujs/N is an extra special p-group and hence the
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non-linear φ ∈ Irr(Ujs/N) is extendible to φ̃ ∈ Irr(T ) where T is the stabilizer of φ in PJ/N .

Thus χ is of the form:

χ = (φ̃ψ)PJ

where φ ∈ Irr(Ujs/N) is the unique character whose restriction to Zjs/K is a multiple of non-

trivial τ ∈ Irr(Zjs/K). The character ψ is the lift to T of an irreducible character of T/(Ujs/N).

The character φ lifts to an irreducible character in Irr(Ujs) and τ lifts to an irreducible character

in Irr(Zjs). It follows that χ corresponds to an irreducible character of Zjs and that

k1
d(PJ , Zjs , ρ,det, j) =

∑
τ

∑
φ

φ∈Irr(Ujs ,τ)

kd(PJ , φ, ρ, det, j)

where this sum is taken over nontrivial representatives τ of PJ orbits in Irr(Zjs).

We have the following decomposition:

k1
d(PJ , UJ , ρ,det, j) =

s−1∑
i=1

k1
d(PJ , V (ji, ji+1), ρ,det, j) + k1

d(PJ , Ujs , ρ,det, j). (7.4)

For fixed J containing adjacent elements l and l′, let V = V (l, l′) = UJ(≥l)/UJ(≥l′) ∼= V1⊗V2,

where we recall that V1 is the natural module for GLl(q
2) and V2 is the dual of the natural

module for GLl′−l(q
2). Then

P J = PJ/UJ(≥l′) contains a submodule isomorphic to V (see Equation 7.2).
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The useful cancellation from chapter 6 applies in this situation. We will sum over all J ⊆ I

of the form J = J ′ ∪ J ′′ where J ′ ⊆ [l − 1] varies and J ′′ ⊂ I is fixed with minimal member

l′. We will only be concerned with calculating THJ (τ) where τ has rank r ∈ J and ker(τ) is

a complement w in V1 to the r-dimensional subspace stabilized by P+l
r . Then, for r ∈ J and

τ ∈ Irr(V, r) with ker(τ) = w

kd(PJ , τ, ρ,det, j) = kd(P J/V, τ, ρ,det, j) = kd−d′(TPJ/V (τ), ρ,det, j′) (7.5)

where d′ is the power of q in the index of TPJ/V (τ) in P J/V and j′ is the smallest positive

integer such that

j | j′ ·
∣∣∣TPJ/V (τ) · ker(det)\(P J/V )

∣∣∣ .
It turns out that TPJ/V (τ) contains a subgroup which itself contains a submodule isomorphic

to a general linear module and hence we may further expand Equation 7.5.

Let J have maximal element l. Let V = Ul/Zl ∼= V1 ⊗ V2, where recall V1 is the natural

module for GLl(q
2) as above and V2 is the dual of the natural module for Un−2l(q). Then

P J = PJ/Zl contains a submodule isomorphic to V (see Equation 7.3).

As above, the useful cancellation from chapter 6 applies to this situation. We will when

sum over all J ⊆ I with maximal element l. We will only be concerned with calculating THJ (τ)
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where τ has rank r ∈ J and ker(τ) is a complement w in V1 to the r-dimensional subspace

stabilized by P+l
r . Then, for r ∈ J and τ ∈ Irr(V, r) with ker(τ) = w,

kd(PJ , τ, ρ,det, j) = kd(P J/V, τ, ρ,det, j) = kd−d′(TPJ/V (τ), ρ,det, j′) (7.6)

where d′ and j′ are as given above in Equation 7.5. It turns out that when τ corresponds to a

singular chain in the unitary vector space V ∗2 , TPJ/V (τ) contains a subgroup which itself con-

tains submodule isomorphic to a (unitary) quotient module and hence we may further expand

Equation 7.6.

The main goal in this chapter is to unravel Equation 7.4 via Equation 7.5 and Equation 7.6.

Ku has introduced two sets of triples E and F with related objects which codify this unraveling

for the unitary case but without regard to the determinant map or any splitting. For an

e ∈ E or an f ∈ F we will present Ku’s objects including a length, a parity, a group, and a

normal subgroup. For our purposes we will also define a map related to the determinant and

an integer related to splitting. We remark that while the definitions of these two new objects

are very natural extensions of Ku’s existing objects, the computations involved in producing

their definitions are far from trivial. The set E will codify parabolic characters corresponding

to internal general linear modules, i.e. those counted in the alternating sum

∑
J⊆I

(−1)|J |
s−1∑
i=1

k1
d(PJ , V (ji, ji+1), ρ,det, j),
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whereas the set F will codify the parabolic characters corresponding to internal unitary linear

or central modules, i.e. those characters counted in the alternating sum

∑
J⊆I

(−1)|J |k1
d(PJ , Ujs , ρ,det, j).

Before proceeding to the rather technical definitions, we present the idea. Fix nonempty J ⊆ I.

• For each pair of adjacent members l and l′ of J , we will define an initial triple e so that

its associated group

P (e) ∼= PJ/Ul′ ∼=
((
P+l
J(<l) ×GLl′−l(q

2)
)
n V (l, l′)

)
× LJ ′

where J ′ = {j − l′|j ∈ J(> l′)} and LJ ′ is a Levi subgroup in Un−2l′(q). Moreover, for

τ ∈ Irr(V (l, l′)) of rank r where r ∈ J and ker(τ) is a complement w to the r-dimensional

subspace stabilized by P+l
r , we will define a subsequent triple e′ related to e such that

TP (e)(τ) = P (e′) n V (l, l′).

If P (e′) itself contains a non trivial general linear module we will define a further triple

e′′ related to e′ in a similar way. In this way J , l, and l′ give rise to a sequence e, e′, e′′,. . .

of elements in E.
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• Now let l be the maximal member of J . We will define an initial triple f so that its

associated group

P (f) ∼= PJ ∼=
(
P+l
J(<l) ×Un−2l(q)

)
n Ul

Moreover, for τ ∈ Irr(Ul/Zl) of rank r where r ∈ J , ker(τ) is a complement w to the r-

dimensional subspace stabilized by P+l
r , and τ corresponds to a singular flag in a unitary

space of suitable dimention, we will define a subsequent triple f ′ related to f such that

TP (f)(τ) = P (f ′) n Ul.

If P (f ′) itself contains a non trivial unitary linear module with an irreducible singular

character (i.e. corresponds to a singular flag in a unitary space of suitable dimension) we

will define a further triple f ′′ related to f ′ in a similar way. In this way J and l give rise

to a sequence f , f ′, f ′′,. . . of elements in F .

In this fashion, we will use the elements of E and F to reformulate Equation 4.6b in a

systematic way by unraveling Equation 7.5 and Equation 7.6 which leads to a second reduction

of Equation 4.6b.

The notation used in the following sections is primarily due to Ku. In particular he defines

the following: E, P (e), V (e), l(e), |e|, and d(e) used in section 1; F , P (f), U(f), Z(f), V (f),

l(f), |f |, and d(f) used in section 2; Su(f), Ssu(f), Snu(f), Sz(f) used in section 3.
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1 The elements of E and their related objects

Let e be an ordered triple (J,C, (l, l′)), where either e = (∅, ∅, ∅) or J , C, and (l, l′) satisfy

the following conditions:

1. J = {j1, j2, . . . , jr} is a subset of I = [m]. We will assume that J is enumerated in

increasing order.

2. (l, l′) is a pair of consecutive members of J .

3. C = {l1, l2, . . . , ls} is a subset of I = [m] also enumerated in increasing order. The

sequence C must be convex. By this we mean that the related sequence ∂C = (l1, l2 −

l1, . . . , ls − ls−1) is non-increasing. We require that the members of this related sequence

appear in J . We further require that C and (l, l′) are related via l = l1 < l2 < . . . < ls ≤ l′.

Let E be the set of all such triples e. The length of e is l(e) = |C| = s and the parity of

e is |e| = |J |. Before we proceed to the rest of the objects related to e ∈ E, we make some

observations.

Definition 7.1.1 Given C = {l1, l2, . . . , ls}, we define ∂l1 = l1 and ∂li = li − li−1 for

2 ≤ i ≤ s so that ∂C is the partition (∂l1, ∂l2, . . . , ∂ls).

Observe that a convex sequence C corresponds to a unique partition ∂C = (∂l1, ∂l2, . . . , ∂ls) `

ls. Notice that the ∂li’s, where l = ∂l1 = l1, and l′ are contained in J . Moreover, l and l′ are
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consecutive members of J . Thus the sequence ∂ls ≤ ∂ls−1 ≤ · · · ≤ ∂l2 ≤ ∂l1 = l < l′ divides J

into a collection of s+ 1 disjoint subsets

{j ∈ J |j < ∂ls}, · · · , {j ∈ J |∂l2 < j < ∂l1}, {j ∈ J |l′ < j}.

Definition 7.1.2 We define

1. Js = {j | j ∈ J and j < ∂ls},

2. Ji = {j − ∂li+1 | j ∈ J and ∂li+1 < j < ∂li} for 1 ≤ i < s, and

3. J0 = {j − l′ | j ∈ J and l′ < j}.

Notice that we have the containment Js ⊂ [∂ls − 1], Ji ⊂ [∂li − ∂li+1 − 1], and J0 ⊂ [m − l′].

We are now ready to define the groups related to the triple e = (J,C, t).

Definition 7.1.3 For e ∈ E we define the following objects.

1. Let

P (e) = L
n0(e)
J0(e) × P

+n1(e)
J1(e) × · · · × P+ns−1(e)

Js−1(e) × P+ns(e)
Js(e)

where

(a) n0(e) = n− 2l′, J0(e) = J0

(b) ni(e) = ∂li − ∂li+1 and Ji(e) = Ji for 1 ≤ i < s

(c)

ns(e) = l′ − ls−1 and Js(e) =


Js, if ls = l′;

Js ∪ {∂ls}, if ls < l′.
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Notice that the first factor is a Levi subgroup of a unitary group whereas the remaining s

factors are parabolic subgroups of general linear groups.

2. We define an abelian normal subgroup of P (e) in the following way. If ls < l′ then the

group P
+ns(e)
Js(e)

is contained in the maximal parabolic P
+ns(e)
∂ls

which has unipotent radical

U
+ns(e)
∂ls

, a normal subgroup of P
+ns(e)
Js(e)

and hence of P (e). Set

V (e) =


U

+ns(e)
∂ls

, if ls < l′;

1, if ls = l′.

Observe that

P
+ns(e)
Js(e)

∼=
(
P+∂ls
Js

×GLl′−ls(q
2)
)
n V (e). (7.7)

Moreover V (e) is a general linear module for P+∂ls
Js

×GLl′−ls(q
2) as discussed in Chapter

6 Section 3.

3. We define

d(e) = 2

s−1∑
i=1

((
∂li
2

)
−
(
∂li − li+1

2

))
.

Notice that d(e) depends only on the sequence C.



111

4. Finally we define a map φe : P (e) → Fq2. For g ∈ P (e), write g = A0A1 · · ·As−1As

where A0 ∈ Ln0(e)
J0(e) and Ai ∈ P+ni(e)

Ji(e)
. We have a decomposition of As ∈ P+ns(e)

Js(e)
. Write

As ≡ As,1As,2mod(V (e)) where As,1 ∈ P+∂ls
Js

and As,2 ∈ GLl′−ls(q
2). Let

φe(g) = detA0

[(
s−1∏
i=1

(detAi)
i

)
(detAs,1)s detAs,2

]1−q

(7.8)

where det denotes the usual determinant map. Notice φe(P (e)) ≤ Cq+1.

In the context of general linear modules, the map D defined Chapter 6 Section 3 on P
+ns(e)
Js(e)

corresponds to i = s and is the restriction of φe to P
+ns(e)
Js(e)

.

An example of E: Fix J with adjacent members l and l′. Set the initial e = (J, {l}, (l, l′)).

Then ∂C = (l)

P (e) ∼= PJ/UJ(<l′)
∼= Ln−2l′

J0
× P+l′

J(≤l)

∼= Ln−2l′

J0
×
(
P+l
J(<l) ×GLl′−l(q

2)
)
n V (e)

and V (e) ∼= V (l, l′) ∼= Ml,l′−l(q
2). Under this isomorphism the map φe is the determinant map

on PJ/UJ(<l′).
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For τ ∈ Irr(V (l, l′)) of rank r where r ∈ J and ker(τ) = w, where w is a complement to the

r-dimensional subspace stabilized by P+l
r , there is a subsequent e′ = (J, {l, l + r}, (l, l′)) with

∂C ′ = (l, r). Then by definition

P (e′) ∼=Ln−2l′

J0
× P+(l−r)

J1(e′) × P
+(l′−l)
J(≤r)

∼=Ln−2l′

J0
× P+(l−r)

J1(e′) ×
(
P+r
J(<r) ×GLl′−(l+r)(q

2)
)
n V (e′)

We have

TP (e)(τ) ∼= P (e′) n V (e).

As a block subgroup embedded in P (e)/V (e), the P+r
J(<r) term in the last factor P

+(l′−l)
J(≤r) of

P (e′) occurs twice. Thus the map φe′ is the determinant on P (e′) as a subgroup in PJ .

If l+r < l′, then P
+(l′−l)
J(≤r) contains a nontrivial submodule isomorphic to V (e′) ∼= Mr,l′−(l+r)(q

2).

Suppose J(≤ r) is nonempty. Then there exists s ∈ J(≤ r) and τ ′ ∈ Irr(V (e′)) of rank s and

ker(τ ′) is a complement w′ to the s-dimensional subspace stabilized by P+r
s . There is a further

triple e′′ = (J, {l, l + r, l + r + s}, (l, l′)) with ∂C ′′ = (l, r, s). By definition

P (e′′) ∼=Ln−2l′

J0
× P+(l−r)

J1
× P+(r−s)

J2
× P+(l′−(l+r))

J(≤s)

∼=Ln−2l′

J0
× P+(l−r)

J1
× P+(r−s)

J2
×
(
P+s
J(<s) ×GLl′−(l+r+s)(q

2)
)
n V (e′′).

We have

TP (e′)(τ
′) ∼= P (e′′) n V (e′).
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As a block subgroup embedded in P (e)/V (e), the P+s
J(<s) term in the last factor P

+(l′−l)
J(≤r) of

P (e′′) occurs three times. Thus the map φe′′ is the determinant on P (e′′) as a subgroup in PJ .

Remark: The collection of all e ∈ E with fixed J and (l, l′) unravels the alternating sum

involving characters χ ∈ Irr(PJ) that correspond to characters in Irr(V (l, l′)). Informally, we

describe the method as taking stabilizers in stabilizers in stabilizers, etc. At each step we mod

out the involved interior (general linear) module until the only interior (general linear) module

is trivial. This occurs when the last element of C is l′. Of course this description misses all the

important details. The length of C keeps track of how many times we iterate this process. The

partition ∂C keeps track of the rank of the characters for which we calculate stabilizers.

2 The elements of F and their related objects

Let f be an ordered triple (J,C, l) where either f = (∅, ∅, 0) or J , C, and l satisfy the

following conditions:

1. The sequence J = {j1, j2, . . . , jr} is a subset of I = [m]. We will assume that J is

enumerated in increasing order.

2. The sequence C = {l1, l2, . . . , ls} is a subset of I = [m] also enumerated in increasing

order. The sequence C must satisfy the same conditions as listed in the previous section.

So C must be convex and the members of the related sequence ∂C appear in J .

3. The integer l = jr and l = l1, so that l is the maximal member of J and the minimal

member of C.
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Notice that J and C are defined as they were for the triples e ∈ E. Let F be the set of all

such f . The length of f is l(f) = |C| = s and the parity of f is |f | = |J | just as we did for e ∈ E.

Write ∂C = (∂l1, ∂l2, . . . , ∂ls) as in definition 7.1.1. Notice that the ∂li’s are contained in

J with l = ∂l1 = l1. Moreover l is the largest member of J . Thus the sequence ∂ls ≤ ∂ls−1 ≤

· · · ≤ ∂l2 ≤ ∂l1 = l divides J into a collection of s disjoint subsets

{j ∈ J |j < ∂ls}, · · · , {j ∈ J |∂l2 < j < ∂l1 = l}.

Definition 7.2.1 We define

1. Js = {j | j ∈ J and j < ∂ls}, and

2. Ji = {j − ∂li+1 | j ∈ J and ∂li+1 < j < ∂li} for 1 ≤ i < s.

Notice that we have the containment Js ⊂ [∂ls− 1] and Ji ⊂ [∂li− ∂li+1− 1] for 1 ≤ i < s. We

are now ready to define the groups related to the triple f = (J,C, l).

Definition 7.2.2 For f ∈ F we define the following objects.

1. Let

P (f) = P
+n1(f)
J1(f) × · · · × P+ns−1(f)

Js−1(f) × Pns(f)
Js(f)

where

(a) ni(f) = ∂li − ∂li+1 and Ji(f) = Ji for 1 ≤ i < s
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(b) ns(f) = n− 2ls−1 and Js(f) = Js ∪ {∂ls} = J(≤ ∂ls)

Notice that the last factor is a parabolic subgroup of a unitary group, whereas the first

s− 1 factors are parabolic subgroups of general linear groups.

2. We define a normal subgroup of P (f). The group P
ns(f)
Js(f) is contained in the maximal

parabolic P
ns(f)
∂ls

which has unipotent radical U
ns(f)
∂ls

, a normal subgroup of P
ns(f)
Js(f) and

hence of P (f). We set U(f) = U
ns(f)
∂ls

. Let Z(f) = Z(U(f)) and the quotient V (f) =

U(f)/Z(f). Observe that

P
ns(f)
Js(f)

∼=
(
P+∂ls
Js

×Un−2ls(q)
)
n U(f) (7.9)

Moreover V (f) is a unitary linear module for P+∂ls
Js

× Un−2ls(q) as discussed in Chapter

6 Section 4 and Z(f) is a central module for P+∂ls
Js

×Un−2ls(q) as discussed in Chapter 6

Section 5.

3. We define

d(f) = 2
s−1∑
i=1

((
∂li
2

)
−
(
∂li − li+1

2

))
.

Notice that d(f) depends only on the sequence C.
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4. Finally we define a map φf : P (f) → Fq2. For g ∈ P (f), write g = A1 · · ·As−1As where

Ai ∈ P
+ni(f)
Ji(f) for 1 ≤ i < s and As ∈ P

ns(f)
Js(f) . We have a decomposition of As. Write

As ≡ As,1As,2mod(U(f)) where As,1 ∈ P+∂ls
Js

and As,2 ∈ Un−2l(q). Let

φf (g) =

[(
s−1∏
i=1

(detAi)
i

)
(detAs,1)s

]1−q

detAs,2 (7.10)

where det denotes the usual determinant map. Notice φf (P (f)) ≤ Cq+1.

In the context of unitary modules (both linear and central) the map D defined in Chapter

6 Sections 4 and 5 on P
ns(f)
Js(f) corresponds to i = s and is the restriction of φf to P

ns(f)
Js(f) .

An example of F : Fix J with maximal member l. Set the initial f = (J, {l}, l). Then

∂C = (l) and

P (f) ∼= PJ ∼= (PJ/Ul) n Ul

∼=
(
P+l
J(<l) ×Un−2l(q)

)
n U(f)

where U(f) ∼= Ul, V (f) ∼= Ul/Zl, Z(f) ∼= Zl, and under this isomorphism φf is the determinant

map on PJ .

If n 6= 2l then Ul/Zl is not trivial. For τ ∈ Irr(Ul/Zl) ∼= Irr(V (f)) of rank r and ker(τ) = w,

where w is a complement to the r-dimensional space stabilized by P+l
r , corresponding to a
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singular chain of type J(< r) where r ∈ J , there is a subsequent f ′ = (J, {l, l + r}, l) with

∂C ′ = (l, r). Then by definition

P (f ′) ∼=P+(l−r)
J1(f ′) × P

n−2l
J(≤r)

∼=P+(l−r)
J1(f ′) ×

(
P+r
J(<r) ×Un−2(l+r)(q)

)
n U(f ′).

We have

TP (f)(τ) ∼= P (f ′) n U(f).

As a block subgroup embedded in P (f)/U(f), the P+r
J(<r) term in the last factor Pn−2l

J(≤r) of P (f ′)

occurs twice. Thus the map φf ′ is the determinant on P (f ′) as a subgroup in PJ .

If 2(l + r) < n, then Pn−2l
J(≤r) contains a submodule isomorphic to U(f ′). If V (f ′) is not

trivial and Irr(V (f ′)) contains a character τ ′ with ker(τ ′) = w′, where w′ is a complement to

the s-dimensional space stabilized by P+r
s , and τ ′ corresponds to a singular chain of rank s and

type J(< s) then if s ∈ J we have f ′′ = (J, {l, l+ r, l+ r + s}, l) with ∂C ′′ = (l, r, s). Checking

with the definition for f ′′ we have

P (f ′′) ∼=P+(l−r)
J1

× P+(r−s)
J2

× Pn−2(l+r)
J(≤s)

∼=P+(l−r)
J1

× P+(r−s)
J2

×
(
P+s
J(<s) ×Un−2(l+r+s)(q)

)
n U(f ′′)

We have

TP (f ′)(τ
′) ∼= P (f ′′) n U(f ′).
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As a block subgroup embedded in P (f)/V (f), the P+s
J(<s) term in the last factor P

n−2(l+r)
J(≤s) of

P (f ′′) occurs three times. Thus the map φf ′′ is the determinant on P (f ′′) as a subgroup in PJ .

Remark: The collection of all f ∈ F with fixed J with maximal element l unravels the

alternating sum involving characters χ ∈ Irr(PJ) that correspond to characters in Irr(Ul). In-

formally, we describe the method as taking stabilizers of singular flags in stabilizers of singular

flags in stabilizers of singular flags, etc. At each step we mod out the involved interior (unitary

linear) module until the remaining interior (unitary linear) module is trivial. This occurs when

the last element of C is n. Of course this description misses all the important details. The

length of C keeps track of how many times we iterate this process. The partition ∂C keeps track

of the rank of the characters corresponding to singular flags for which we calculate stabilizers.

3 Results concerning members of E and F

There are a number of results that we need regarding members of E and F . These results

lead to the unraveling of our alternating sum which in turn leads to some very nice cancella-

tion. These are primarily modifications of Ku’s results ((15), Chapter 8); however we have the

added parameters det and j. To that end in this section we will define integers je and jf which

codify the splitting of characters upon restriction to the kernel of the determinant map. Re-

garding convex chains C and C ′, if C = C ′\{maxC ′} we say that C ′ covers C and write C ≺ C ′.
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We begin with members of the set E. Let C be a sequence with |C| = s and ls < l′. Fix

e = (J,C, (l, l′)) and e′ = (J,C ∪ {ls + r}, (l, l′)) in E, where 1 ≤ r ≤ min{∂ls, l′ − ls}, r ∈ J ,

and ls + r ≤ l′. Then C ≺ C ∪ {ls + r}. Notice l(e) = s and l(e′) = s+ 1. Take τ ∈ Irr(V (e), r)

where ker(τ) is a complement w to the r-dimensional space stabilized by P+∂ls
r . Then

TP (e)(τ) = L
n0(e)
J0(e) × P

+n1(e)
J1(e) × · · · × P+ns−1(e)

Js−1(e) × T
P

+ns(e)
Js(e)

(τ)

and T
P

+ns(e)
Js(e)

(τ) ∼=
(
P

+ns(e′)
Js(e′)

× P+ns+1(e′)
Js+1(e′)

)
n V (e). Thus

TP (e)(τ) ∼= P (e′) n V (e)

and φe restricted to TP (e)(τ) is φe′ . Hence

kd−d(e)(P (e), τ, ρ, φe, j) = kd−d(e′)(P (e′), ρ, φe′ , j
′) (7.11)

where j′ the least positive integer such that j divides j′ · |TP (e)(τ) ker(φe)\P (e)|. Write T =

TP (e)(τ), K = ker(φe). Then K � P (e) so

TK /K ∼= T /T ∩K ∼= T/V (e)
/

(T ∩K)/V (e) ∼= P (e′)
/

ker(φe′)

Moreover P (e)/K ∼= φe(P (e)) and P (e′)/ ker(φe′) ∼= φe′(P (e′)) and hence

|TK\P (e)| =
∣∣∣P (e) /TK

∣∣∣ =
∣∣∣P (e)/K

/
TK/K

∣∣∣ =
∣∣∣φe(P (e))

/
φe′(P (e′))

∣∣∣
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Since ls < l′, i.e. l′ − ls 6= 0 the image of P (e) under φe is Cq+1. Thus we have

|TK\P (e)| = |φe(P (e))|
|φe′(P (e′))|

=
q + 1

|φe′(P (e′))|
.

Definition 7.3.1 Let je be the smallest positive integer such that j divides je ·
q + 1

|φe(P (e))|
.

Remark: Observe that for e of length 1, je = j certainly holds. In general, for fixed e ∈ E,

|φe(P (e))| is almost always equal to q + 1 and hence je = j. The image

φe(P (e)) =

s∏
i=0

(Chi)

where Chi is the image of the i-the factor and so depends on the ni(e). If any of n0(e), n1(e),

or l′ − ls are nonzero, then |φe(P (e))| = q + 1. If all three are zero then C cannot be covered

and

1. n = 2m, l′ = m, and ls = m

2. C = {l, 2l, . . . ,m} so that ∂C begins (l, l, . . .).

On the other hand if C can be covered, and e = (J,C, (l, l′)) and e′ = (J,C ∪ {ls + r}, (l, l′))

are members of E as in Equation 7.11, then

kd−d(e)(P (e), τ, ρ, φe, j) = kd−d(e)(P (e), τ, ρ, φe, je) = kd−d(e′)(P (e′), ρ, φe′ , je′).
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Finally, for fixed e with l(e) ≥ 2

kd−d(e)(P (e), ρ, φe, je) = k0
d−d(e)(P (e), V (e), ρ, φe, je) + k1

d−d(e)(P (e), V (e), ρ, φe, je)

where k1
d−d(e)(P (e), V (e), ρ, φe, je) = 0 if V (e) = 1 i.e. ls = l′.

By the first reduction in Proposition 6.2.4, when summing over all e of length 1 and J ⊆ I

of the form J = J ′ ∪ J ′′ where J ′ ⊆ [l − 1] varies and J ′′ ⊂ I is fixed with minimal member l′,

we need only sum over τ ∈ Irr(V (e), r) with r ∈ J ′ and ker(τ) = w, where w is a complement

to the space stabilized by P+l
r . By repeated application of this reasoning it follows that

Proposition 7.3.2

∑
e∈E
l(e)=1

(−1)|e|k1
d−d(e)(P (e), V (e), ρ, φe, j) =

∑
e∈E
l(e)≥2

(−1)|e|k0
d−d(e)(P (e), V (e), ρ, φe, je).

Now we turn to results concerning members of F . Let C be a sequence with |C| = s and

ls < m. Fix f = (J,C, l) and f ′ = (J,C ∪ {ls + r}, l) in F , where 1 ≤ r ≤ min{∂ls, n − 2ls},

r ∈ J , and ls + r ≤ m. Then C ≺ C ∪ {ls + r}. Notice l(f) = s and l(f ′) = s + 1. Take

τ ∈ Irr(V (f)) corresponding to a singular chain of rank r. Then

TP (f)(τ) = P
+n1(f)
J1(f) × · · · × P+ns−1(f)

Js−1(f) × T
P
ns(f)
Js(f)

(τ)
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and T
P
ns(f)
Js(f)

(τ) ∼=
(
P

+ns(f ′)
Js(f ′)

× Pns+1(f ′)
Js+1(f ′)

)
n U(f). Thus

TP (f)(τ) ∼= P (f ′) n U(f)

and φf restricted to TP (f)(τ) is φf ′ . Hence

kd−d(f)(P (f), τ, ρ, φf , j) = kd−d(f ′)(P (f ′), ρ, φf ′ , j
′) (7.12)

where j′ the least positive integer such that j divides j′ · |TP (f)(τ) ker(φf )\P (f)|. Write T =

TP (f)(τ), K = ker(φf ). Then K � P (f) so

TK /K ∼= T /T ∩K ∼= T/U(f)
/

(T ∩K)/U(f) ∼= P (f ′)
/

ker(φf ′)

Moreover P (f)/K ∼= φf (P (f)) and P (f ′)/ ker(φf ′) ∼= φf ′(P (f ′)) and hence

|TK\P (f)| =
∣∣∣P (f) /TK

∣∣∣ =
∣∣∣P (f)/K

/
TK/K

∣∣∣ =
∣∣∣φf (P (f))

/
φf ′(P (f ′))

∣∣∣
Since ls < m we have nonzero n− 2ls, thus the image of P (f) under φf is Cq+1 so we have

|TP (f)(τ) ker(φf )\P (f)| =
|φf (P (f))|
|φf ′(P (f ′))|

=
q + 1

|φf ′(P (f ′))|
.

Definition 7.3.3 Let jf be the smallest positive integer such that j divides jf · q+1
|φf (P (f))| .
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Remark: Observe that for f of length 1, je = j certainly holds. In general, for fixed f ∈ F ,

|φf (P (f))| is almost always equal to q + 1 and hence jf = j. The image

φf (P (f)) =

s∏
i=1

(Chi)

where Chi is the image of the i-the factor and so depends on ni(f). For 1 ≤ i < s, if ni(f) = 0

then hi = 1 whereas if ni(f) 6= 0, hi = q + 1/ gcd(q + 1, i). In the s-th factor, if n − 2ls = 0

then hs = q + 1/ gcd(q + 1, s) whereas if n− 2ls 6= 0 then hs = q + 1.

|φf (P (f))| = CL where L = lcm(hi)

If either of n1(f) or n − 2ls are nonzero, then |φf (P (f))| = q + 1. If both are zero then C

cannot be covered and

1. n = 2m and ls = m

2. C = {l, 2l, . . . ,m} so that ∂C begins (l, l, . . .).

On the other hand, if C can be covered and f = (J,C, l) and f ′ = (J,C ∪ {ls + r}, l) are in F

as in Equation 7.12 then

kd−d(f)(P (f), τ, ρ, φf , j) = kd−d(f)(P (f), τ, ρ, φf , jf ) = kd−d(f ′)(P (f ′), ρ, φf ′ , jf ′).
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We are interested in counting irreducible characters of P (f) that correspond to irreducible

characters of U(f). The following is analogous to definitions 6.4.2, 6.4.4, and 6.5.5 in the

discussion of unitary linear modules and central modules in the previous chapter.

Definition 7.3.4 1. Let Su(f) denote the subset of nonidentity characters in Irr(U(f))

which are trivial on Z(f).

2. Let Ssu(f) denote the subset of characters in Irr(U(f)) which are trivial on Z(f) and

correspond to singular flags in the unitary space V2.

3. Let Snu(f) denote the subset of characters in Irr(U(f)) which are trivial on Z(f) and

correspond to nonsingular flags in the unitary space V2.

4. Let Sz(f) denote the subset of characters in Irr(U(f)) which are not trivial on Z(f).

Clearly Irr(U(f)) = 1 ∪ Su(f) ∪ Sz(f) = 1 ∪ Ssu(f) ∪ Snu(f) ∪ Sz(f) holds.

For fixed f with l(f) ≥ 2

kd−d(f)(P (f), ρ, φf , jf ) = k0
d−d(f)(P (f), U(f), ρ, φf , jf ) + k1

d−d(f)(P (f), U(f), ρ, φf , jf )

and

k1
d−d(f)(P (f), U(f), ρ, φf , jf ) =kd−d(f)(P (f), Ssu(f), ρ, φf , jf )

+kd−d(f)(P (f), Snu(f), ρ, φf , jf )

+kd−d(f)(P (f), Sz(f), ρ, φf , jf ).
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Observe that if X is the subset of Ssu(f) containing only characters of rank r, where r ∈ J ,

and kernels equal to complements of spaces stabilized by P+∂ls
r , then

kd−d(f)(P (f), X, ρ, φf , jf ) =
∑

f ′=(J,C′,l)
C≺C′

kd−d(f ′)(P (f ′), ρ, φf ′ , jf ′).

By the first reduction in Proposition 6.2.4, when summing over all f of length 1 and J ⊆ I

has maximal element l, we need only sum over τ ∈ Ssu(f) with r ∈ J and ker(τ) = w, where

w is a complement to the space stabilized by P+l
r . By repeated application of this reasoning it

follows that

Proposition 7.3.5

∑
f∈F
l(f)=1

(−1)|e|k1
d−d(f)(P (f), U(f), ρ, φf , j) =

∑
f∈F
l(f)≥2

(−1)|f |k0
d−d(f)(P (f), U(f), ρ, φf , jf )+

∑
f∈F
l(f)≥1

(−1)|e|kd−d(e)(P (f), Snu(f), ρ, φf , jf )+

∑
f∈F
l(f)≥1

(−1)|e|kd−d(e)(P (f), Sz(f), ρ, φf , jf ). (7.13)

Our next result involves the members of E and F . This is a modification of Ku’s result.

We have the additional parameters φe, φf and je, jf . This remarkable cancellation leads to the

second reduction in Equation 4.6b .
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Proposition 7.3.6

∑
e∈E
l(e)≥2

(−1)|e|k0
d−d(e)(P (e), V (e), ρ, φe, je) +

∑
f∈F
l(f)≥2

(−1)|f |k0
d−d(f)(P (f), U(f), ρ, φf , jf ) = 0

Proof: We proceed by explicitly matching pairs in the sum with opposite parity. There are

four cases.

1. Match f = (J,C, l) to e = (J ∪ {ls}, C, (l, ls)). This is possible since s ≥ 2.

P (f) ∼= P
+n1(f)
J1(f) × · · · × P+ns−1(f)

Js−1(f) ×
(
P+∂ls
Js

×Un−2ls(q)
)
n U(f)

Then n0(e) = n − 2ls and J0(e) = ∅, ns(e) = ls − ls−1 = ∂ls so V (e) = 1. Moreover

ni(f) = ni(e) for 1 ≤ i < s and we have

P (e) ∼= Un−2ls(q)× P
+n1(f)
J1(f) × · · · × P+ns−1(f)

Js−1(f) ×
(
P+∂ls
Js

× 1
)
n 1.

Thus

P (f)/U(f) ∼= P (e)/V (e) and |φf (P (f))| = |φe(P (e))|

since φf and φe agree on isomorphic factors of the quotient groups.

2. Match e = (J,C, (l, l′)) to e′ = (J ∪ {ls}, C, (l, ls)), if ls < l′.

P (e) ∼=  Ln−2l′

J0
× P+n1(e)

J1(e) × · · · ×
(
P+∂ls
Js

×GLl′−ls(q
2)
)
n V (e).
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P (e′) ∼=  Ln−2ls
J0

× P+n1(e′)
J1(e′) × · · · ×

(
P+∂ls
Js

× 1
)
n 1.

Moreover since there are no elements in J ∪ {ls} between ls and l′

Ln−2ls
J0(e′)

∼= Ln−2l′

J0(e) ×GLl′−ls(q
2).

Thus

P (e)/V (e) ∼= P (e′)/V (e′) and |φe(P (e))| = |φe′(P (e′))| = q + 1.

3. Match e = (J,C, (l, l′)) to e′ = (J\{l′}, C, (l, l′′)), if ls = l′ < max J , where l, l′, l
′′

are

consecutive elements in J .

P (e) ∼=  Ln−2l′

J0(e) × P
+n1(e)
J1(e) × · · · ×

(
P+∂ls
Js

× 1
)
n 1.

P (e′) ∼=  Ln−2l
′′

J0(e′) × P
+n1(e)
J1(e) × · · · ×

(
P+∂ls
Js

×GLl′′−ls(q
2)
)
n V (e′).

Moreover since there are no elements in J\{l′} between ls = l′ and l
′′

Ln−2l′

J0(e)
∼= Ln−2l′′

J0(e′) ×GLl′′−ls(q
2).
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and n− 2l′ 6= 0. Thus

P (e)/V (e) ∼= P (e′)/V (e′) and |φe(P (e))| = |φe′(P (e′))| = q + 1.

4. Match e = (J,C, (l, l′)) to f = (J\{l′}, C, l), if ls = l′ = max J .

P (e) ∼=  Ln−2l′

J0(e) × P
+n1(e)
J1(e) × · · · ×

(
P+∂ls
Js

× 1
)
n 1

where J0(e) = ∅. Then ni(e) = ni(f) for 1 ≤ i < s

P (f) ∼= P
+n1(f)
J1(f) × · · · × P+ns−1(f)

Js−1(f) ×
(
P+∂ls
Js

×Un−2l′(q)
)
n U(f)

Thus

P (e)/V (e) ∼= P (f)/U(f) and |φe(P (e))| = |φf (P (f))|

since φe and φf agree on isomorphic factors of the quotient groups.

And we are done.



CHAPTER 8

COMPLETION OF THE VERIFICATION

Let ρ be an irreducible character of the center of Un(q). Recall k1
d(PJ , UJ , ρ,det, j) is the

number of irreducible characters χ ∈ Irr(PJ) such that the unipotent radical UJ is not contained

in kerχ, χ lies over ρ, and χ restricted to ker det is a sum of j′ irreducible characters where j

divides j′.

In this chapter we prove Equation 4.6b which we restate here

∑
J⊆I

(−1)|J |k1
d(PJ , UJ , ρ,det, j) = −

∑
µ`n

n′(µ)=d
j|gcd(q+1,λ(µ))

β(µ, aρ). (8.1)

This completes the proof of DOC for the finite special unitary groups.

We begin by reformulating the left hand side of Equation 8.1 via our parametrization using

E and F from the previous chapter. After this reformulation we will refine the statement.

Lastly we will need to make use of several layers of inductive arguments. To that end we in-

troduce several propositions which are modifications of Ku’s results. The extra parameters φf

and jf require even more involved combinatorial details.
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1 The Reformulation

Recall, from the example on page 111 we have

k1
d(PJ , V (ji, ji+1), ρ,det, j) = k1

d−d(e)(P (e), V (e), ρ, φe, je)

where e = (J, {ji}, (ji, ji+1)) and from the example on page 116 we have

k1
d(PJ , Ujs , ρ,det, j) = k1

d−d(f)(P (f), U(f), ρ, φf , jf )

where f = (J, {js}, js). Hence for fixed J we have the decomposition

k1
d(PJ , UJ , ρ,det, j) =

∑
e=(J,C,t)
l(e)=1

k1
d−d(e)(P (e), V (e), ρ, φe, j) + k1

d−d(f)(P (f), U(f), ρ, φf , j). (8.2)

Recall our definition of parity |e| and |f |. Also note that for e and f of length 1, d(e) = 0,

d(f) = 0, je = j, and jf = j. Thus the left hand side of Equation 8.1 can be written

∑
J⊆I

(−1)|J |k1
d(PJ , UJ , ρ,det, j) =

∑
e∈E
l(e)=1

(−1)|e|k1
d−d(e)(P (e), V (e), ρ, φe, j) +

∑
f∈F
l(f)=1

(−1)|f |k1
d−d(f)(P (f), U(f), ρ, φf , j) (8.3)
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We have the further reduction by Proposition 7.3.2

∑
e∈E
l(e)=1

(−1)|e|k1
d−d(e)(P (e), V (e), ρ, φe, j) =

∑
e∈E
l(e)≥2

(−1)|e|k0
d−d(e)(P (e), V (e), ρ, φe, je).

Moreover by Proposition 7.3.5,

∑
f∈F
l(f)=1

(−1)|e|k1
d−d(f)(P (f), U(f), ρ, φf , j) =

∑
f∈F
l(f)≥2

(−1)|f |k0
d−d(f)(P (f), U(f), ρ, φf , jf )+

∑
f∈F
l(f)≥1

(−1)|e|kd−d(e)(P (f), Snu(f), ρ, φf , jf )+

∑
f∈F
l(f)≥1

(−1)|e|kd−d(e)(P (f), Sz(f), ρ, φf , jf ). (8.4)

Recall the cancellation of Proposition 7.3.6, i.e.

∑
e∈E
l(e)≥2

(−1)|e|k0
d−d(e)(P (e), V (e), ρ, φe, je) +

∑
f∈F
l(f)≥2

(−1)|f |k0
d−d(f)(P (f), U(f), ρ, φf , jf ) = 0

Thus, we can now omit all the terms in our sum where the characters correspond either to

characters of so called general linear modules, or to the characters of so called unitary linear

modules which themselves correspond to singular flags, i.e. all the characters of the P (e)’s

together with the characters of the P (f)’s which correspond to characters of V (f) corresponding
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to singular flags in a unitary vector space. We are left with characters of the P (f)’s that

correspond to flags of nonsingular type for V (f) and characters of Z(f). The left hand side of

Equation 8.1 may thus be written

∑
J⊆I

(−1)|J |k1
d(PJ , UJ , ρ,det, j) =

∑
f∈F
l(f)≥1

(−1)|f |kd−d(f)(P (f), Snu(f), ρ, φf , jf )+

∑
f∈F
l(f)≥1

(−1)|f |kd−d(f)(P (f), Sz(f), ρ, φf , jf ).

(8.5)

2 The refinement

At this stage in order to proceed in our calculations we must separate the set of P (f)’s

according to the length of f . Recall that l(f) = |C| which keeps track of the number of times

we have iterated the process of taking stabilizers. In this sense C also keeps track of the

structure of P (f) as a product of block subgroups embedded in Un(q). Recalling definition

7.2.1 of P (f), C keeps track of the number of times each component of P (f) appears in Un(q).

By collecting all the f of the same length s, we are gathering all the P (f) which have the same

structure as products of block subgroups embedded in Un(q).

Proposition 8.2.1 For fixed n and s, 1 ≤ s ≤ m the following hold:

∑
f∈F
l(f)=s

(−1)|f |kd−d(f)(P (f), Snu(f), ρ, φf , jf ) = −
∑
µ`n

n′(µ)=d
l(µ)=2s+1

j| gcd(λ(µ),q+1)

β(µ, aρ) (8.6)
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∑
f∈F
l(f)=s

(−1)|f |kd−d(f)(P (f), Sz(f), ρ, φf , jf ) = −
∑
µ`n

n′(µ)=d
l(µ)=2s

j| gcd(λ(µ),q+1)

β(µ, aρ) (8.7)

Summing over all s, Proposition 8.2.1 certainly implies Equation 8.1. However, this is not

enough. In order to prove this proposition we must further decompose the sets Snu(f) and

Sz(f). As has been discussed, originally in chapter 6 and then in chapter 7, characters in

Snu(f) have non-singular rank by definition. Characters in Sz(f) have non-singular rank if

they do not correspond to singular flags. For clarity observe that in chapter 6 the roles of r

and r′ were reversed.

Recall ∂C kept track of the rank of singular unitary characters for which we took stabilizers.

At each iteration of the process the rank of the next singular character could not exceed the

rank of the previous character. In fact ∂C is precisely the list of these ranks in order reading

from left to right. We are done calculating stabilizers of singular unitary characters. However,

we are not done calculating stabilizers for τ ∈ Snu(f) or Sz(f). For fixed r, if the minimal

element of ∂C is greater than or equal to r, then the last factor of P (f) is

P
ns(f)
Js(f)

∼=
(
P+∂ls
Js

×Un−2ls(q)
)
n U(f)

where ∂ls ≥ r. Hence P (f) is big enough to contain τ ∈ Snu(f) or Sz(f) of non-singular rank r.
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Now this is the key fact: Given τ of non-singular rank r ∈ J , the stabilizer of τ in the

last factor of P (f) contains a subgroup isomorphic to P rJ(<r). By gathering together the f of

the same length with ∂C ≥ r we are grouping all the P (f) with the same block structure as

embedded in Un(q) which have stabilizers containing copies of P rJ(<r). Hence we will be able

to peel off this factor and make use of a layered inductive argument.

Recall from definition 7.3.4, Snu(f) is the set of irreducible characters of the unitary linear

module V (f) that correspond to nonsingular flags.

Definition 8.2.2 We define the following subsets.

1. Let Snur (f) denote the elements of Snu(f) with non-singular rank r.

2. Let Snur (f)(r′) denote the elements of Snur (f) with rank r′.

In keeping with the original notation of definition 6.4.4 from chapter 6, we have Snur (f)(r′) =

Snur (V (f), J(< ∂ls), r
′). Notice that

Snur (f) =

min(∂ls,n−2ls)⋃
r′=r

Snur (f)(r′).

Recall from definition 7.3.4, Sz(f) is the set of nontrivial irreducible characters of the central

module Z(f).

Definition 8.2.3 We define the following subsets.

1. let Szr (f) denote the elements of Sz(f) with non-singular rank r.
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2. Let Szr (f)(r′) denote the elements of Szr (f) with rank r′.

In keeping with the original notation of definition 6.5.7 from chapter 6, we have Szr (f)(r′) =

Szr (Z(f), J(< ∂ls), r
′). Also recall that from this definition Szr (f)(r) is the set of elements of

Sz(f) labeled by singular chains. Notice that

Szr (f) =

∂ls⋃
r′=r

Szr (f)(r′).

Summing over all r, the following proposition certainly implies Proposition 8.2.1.

Proposition 8.2.4 For fixed n, s, and r with 1 ≤ s, r ≤ m the following hold:

∑
f∈F
l(f)=s

min∂C≥r

(−1)|f |kd−d(f)(P (f), Snur (f), ρ, φf , jf ) = −
∑
µ`n

n′(µ)=d
l(µ)=2s+1
min(µ)=r

j| gcd(λ(µ),q+1)

β(µ, aρ) (8.8)

∑
f∈F
l(f)=s

min∂C≥r

(−1)|f |kd−d(f)(P (f), Szr (f), ρ, φf , jf ) = −
∑
µ`n

n′(µ)=d
l(µ)=2s

min(µ)=r
j| gcd(λ(µ),q+1)

β(µ, aρ) (8.9)

However, at this point the above proposition seems somewhat convoluted. In general induc-

tive arguments can be less than transparent. Thus, before continuing we briefly remark on why

odd partitions are involved in Equation 8.8 and even partitions are involved in Equation 8.9 in

the above proposition.
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Remark: Take τ ∈ Snur (f). Then TP (f)(τ) contains an isomorphic copy of P rJ(<r) and the

multiplicity of this factor as a block subgroup is 2s + 1. On the other hand, for τ ∈ Szr (f)

TP (f)(τ) contains an isomorphic copy of P rJ(<r) and the multiplicity of this factor as a block

subgroup is 2s. At bottom, when for example the set J(< r) is empty so that P rJ(<r) = Ur(q),

we know from the remark following definition 3.2.4 in chapter 3 that irreducible characters of

Ur(q) fall into classes of certain type given by partitions of r. These partitions encode the degree

of the characters and also the splitting upon restriction to SUr(q). Since 2s+ 1 or 2s copies of

Ur(q) (according to whether τ ∈ Snur (f) or τ ∈ Szr (f)) appear in Un(q) it is not unreasonable

to suppose that partitions of r will lead to partitions of n. For fixed C and l the left hand

sums in Equation 8.8 and Equation 8.9 involve all f with J = J ′ ∪ J ′′ where J ′ ⊆ [r− 1] varies

and J ′′ with minimal member r is fixed. We will eventually be able to apply induction to the

following sub-sums involved in Equation 8.8 and Equation 8.9

∑
J⊆[r−1]

(−1)|J |kd−d(f)−d′(P
r
J , ρ,det2s+1, j′) in Equation 8.8

∑
J⊆[r−1]

(−1)|J |kd−d(f)−d′(P
r
J , ρ,det2s, j′′) in Equation 8.9.

where j′ =
j

gcd(j, q + 1, 2s+ 1)
and j′′ =

j

gcd(j, q + 1, 2s)
.

3 The rest

Before proving Proposition 8.2.4, we state and then prove an important corollary necessary

for the inductive step. Moreover we present two intermediate propositions which allow us to
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rewrite the left hand sides of Equation 8.8 and Equation 8.9. We introduce two maps in order

to keep track of the members of the involved alternating sums. These are extensions of maps

defined by Ku ((15), Chapter 9). We use his notations: h, g.

In order to streamline the very involved notation we define certain subsets of Fn and then

introduce two Z-valued maps h, g on those subsets.

Definition 8.3.1 For fixed n and s,

1. Let Fn(s, r) denote the f in Fn with l(f) = |C| = s and min ∂C ≥ r.

2. Let Fn(≤ s) denote the f ∈ Fn of length l(f) ≤ s

We now define our first map h which is involved in expressing the left hand side of Equa-

tion 8.8

Definition 8.3.2 Fix n and 1 ≤ r ≤ m. Define hn,d,ρ,s,r,j : Fn−(2s+1)r(≤ s)→ Z by

hn,d,ρ,s,r,j(f) =


k0
d−d(f)(P

n−(2s+1)r(f), Un−(2s+1)r(f), ρ, φf , jf ), if 0 ≤ l(f) < s;

k0
d−d(f)(P

n−(2s+1)r(f), Zn−(2s+1)r(f), ρ, φf , jf ), if l(f) = s.

The following is a first crucial step which is involved in peeling off the factor P rJ(<r) in the

left hand side of Equation 8.8.
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Proposition 8.3.3 Fix n and 1 ≤ r ≤ m. Then the alternating sum

∑
f∈F
l(f)=s

min∂C≥r

(−1)|f |kd−d(f)(P (f), Snur (f), ρ, φf , jf ) =

−
∑
ρ1,ρ2

∑
d1,d2

 ∑
J⊆[r/2]

(−1)|J |kd1(PJ , ρ1,det2s+1, j1)
∑

f∈Fn−(2s+1)r(≤s)

(−1)|f |hn,d2,ρ2,s,r,j(f)


where j1 = j/ gcd(j, q + 1, 2s+ 1), d1 + d2 = d− d(f), and ρ1ρ2 = ρ.

Remark: If n− (2s+1)r = 0, then there is a unique f = (∅, ∅, 0) ∈ Fn−(2s+1)r(≤ s). More-

over, we must set jf = 1 regardless of the value of j in order that our sum may accommodate

this degenerate case. Thus

hn,d,ρ,s,r,j(f) = k0
d−d(f)(P

n−(2s+1)r(f), Un−(2s+1)r(f), ρ, φf , jf )

= k0
d(1, 1, ρ,det, 1)

= 1 if and only if ρ = 1 and d = 0.

Proof: Take f ∈ Fn(s, r). We consider three cases.

1. Let ∂C = {r}. Then C = (r, 2r, . . . , sr) and

P (f) =
(
P+r
J(<r) ×Un−2sr(g)

)
n U(f).
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Snur (f) is non-empty if and only if n − 2sr 6= 0 and J(< r) ⊂ {1, 2, . . . , [n−2sr
2 ]}. If

Snur (f) 6= ∅ then it has one orbit. Take τ ∈ Snur (f), then

T = TP (f)(τ) =
(
P rJ(<r) ×Un−2sr−r(q)

)
n U(f).

Thus kd−d(f)(P (f), Snur (f), ρ, φf , jf ) = kd−d(f)−d′(T/U(f), ρ, φf , j
′) where j = jf , j′ is

the least positive integer such that j divides j′ · q + 1

|φf (T )|
and d′ is q-height in the index

of T in P (f). We have Un−2sr−r(q) = Pn−(2s+1)r(f ′) for f ′ = (∅, ∅, 0) ∈ Fn−(2s+1)r(≤ s)

and

kd−d(f)(P (f), Snur (f), ρ, φf , jf )

=
∑
ρ1,ρ2

∑
d1,d2

kd1(P rJ(<r), ρ1, (det)2s+1, j1)kd2(Pn−(2s+1)r(f ′), ρ2, φf ′ , jf ′)

=
∑
ρ1,ρ2

∑
d1,d2

kd1(P rJ(<r), ρ1, (det)2s+1, j1)hn,d2,ρ2,s,r,j(f
′)

where j1 = j/ gcd(j, q + 1, 2s+ 1), d1 + d2 = d− d(f), and ρ1ρ2 = ρ.

2. Let ∂C ) {r}. Then ∂C = (l1, . . . , r) where l1 > r.

P (f) = P
+n1(f)
J1(f) × · · · × P+ns−1(f)

Js−1(f) × Pns(f)
Js(f)

where ni(f) is nonzero for some 1 ≤ i < s and the last factor decomposes

P
ns(f)
Js(f) =

(
P+r
J(<r) ×Un−2ls(g)

)
n U(f).
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Snur (f) is non-empty if and only if n − 2ls 6= 0 and J(< r) ⊂ {1, 2, . . . , [n−2ls
2 ]}. If

Snur (f) 6= ∅ then it has one orbit. Take τ ∈ Snur (f), then

T = TP (f)(τ) = P
+n1(f)
J1(f) × · · · × P+ns−1(f)

Js−1(f) ×
(
P rJ(<r) ×Un−2ls−r(q)

)
n U(f).

Thus kd−d(f)(P (f), Snur (f), ρ, φf , jf ) = kd−d(f)−d′(T/U(f), ρ, φf , j
′) where j = jf , j′ is

the least positive integer such that j divides j′ · q + 1

|φf (T )|
and d′ is q-height in the index

of T in P (f). Let J ′ = {j − r|j ∈ J(> r)} and C ′ = {li − ir|li ∈ C} {0}. For f ′ =

(J ′, C ′, l1 − r) ∈ Fn−(2s+1)r(≤ s) we have

Pn−(2s+1)r(f ′) = P
+n1(f)
J1(f) ×· · ·×P

+ns−2(f)
Js−2(f) ×

(
P

+ns−1(f)
Js−1(f) ×Un−2ls−r(q)

)
nUn−(2s+1)r(f ′).

Thus

kd−d(f)(P (f), Snur (f), ρ, φf , jf )

=
∑
ρ1,ρ2

∑
d1,d2

kd1(P rJ(<r), ρ1, (det)2s+1, j1)k0
d2(Pn−(2s+1)r(f ′), Un−(2s+1)r(f ′), ρ2, φf ′ , jf ′)

=
∑
ρ1,ρ2

∑
d1,d2

kd1(P rJ(<r), ρ1, (det)2s+1, j1)hn,d2,ρ2,s,r,j(f
′)

where j1 = j/ gcd(j, q + 1, 2s+ 1), d1 + d2 = d− d(f), and ρ1ρ2 = ρ.

3. Let min(∂C) > r. Then ∂ls > r. We have

P (f) = P
+n1(f)
J1(f) × · · · × P+ns−1(f)

Js−1(f) × Pns(f)
Js(f) .
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The last factor decomposes

P
ns(f)
Js(f) =

(
P+∂ls
J(<r) ×Un−2ls(g)

)
n U(f).

Assume Snur (f) is non-empty, so n − 2ls 6= 0 and J(< r) ⊂ {1, 2, . . . , [n−2ls
2 ]}. Take

τ ∈ Snur (f) of rank r′. Then τ corresponds to a pair of chains (c1, c2) where c1 is a

singular chain in a unitary space of dimension r and c2 is a flag in a unitary space of

dimension n− 2ls − r. Let τ ′ correspond to c2, then

T = TP (f)(τ) = P
+n1(f)
J1(f) × · · · × P+ns−1(f)

Js−1(f) × T
P
ns(f)
Js(f)

(τ)

where

T
P
ns(f)
Js(f)

(τ) =
(
P

+(∂ls−r′)
J1

× P rJ(<r) × TUn−2ls−r(q)
(τ ′)

)
n U(f).

Here J1 = {j − r′|j ∈ J1(f)(> r′)}.

And we are done.

We now define our second map g which is involved in expressing the left hand side of

Equation 8.9.
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Definition 8.3.4 Fix n and 1 ≤ r ≤ m. Define gn,d,ρ,s,r,j : Fn−2sr(≤ s)→ Z by

gn,d,ρ,s,r,j(f) =


k0
d−d(f)(P

n−2sr(f), Un−2sr(f), ρ, φf , jf ), if 0 ≤ l(f) < s;

kd−d(f)(P
n−2sr(f), ρ, φf , jf ), if l(f) = s.

We have a corresponding first crucial step which is involved in peeling off the factor P rJ(<r)

in the left hand side of Equation 8.9.

Proposition 8.3.5 For fixed n and 1 ≤ r ≤ m, the alternating sum

∑
f∈F
l(f)=s

min∂C≥r

(−1)|f |kd−d(f)(P (f), Szr (f), ρ, φf , jf ) =

−
∑
ρ1,ρ2

∑
d1,d2

 ∑
J⊆[r/2]

(−1)|J |kd1(PJ , ρ1,det2s, j1)
∑

f∈Fn−2sr(≤s)

(−1)|f |gn,d2,ρ2,s,r,j(f)


where j1 = j/ gcd(j, q + 1, 2s), d1 + d2 = d− d(f), and ρ1ρ2 = ρ.

Remark: If n − 2sr = 0, then there is a unique f = (∅, ∅, 0) ∈ Fn−2sr(≤ s). Moreover,

we must set jf = 1 regardless of the value of j in order that our sum may accommodate this

degenerate case. Thus

gn,d,ρ,s,r,j(f) = k0
d−d(f)(P

n−2sr(f), Un−2sr(f), ρ, φf , jf )

= k0
d(1, 1, ρ,det, 1)

= 1 if and only if ρ = 1 and d = 0.
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Proof: The proof is entirely analogous the proof of Proposition 8.3.3 and consists of con-

sidering the same three cases for f ∈ Fn(s, r):

1. ∂C = {r}.

2. ∂C ) {r}, and

3. min(∂C) > r.

We omit the proof, but remark on the following difference. For τ ∈ Irr(V (f)), τ is linear and

hence extendible to TP (f)(τ). However this does not hold for τ ∈ Irr(Z(f)). Rather non-linear

φ ∈ Irr(U(f)) is extendible to TP (f)(φ) as U(f)/(ker(φ)) is an extra special p-group.

We now state the important corollary to Proposition 8.2.4 which as mentioned will be needed

for the inductive case in the proof of Proposition 8.2.4.

Corollary 8.3.6 Assume that Proposition 8.2.4 holds. Let r = 0 in the definition of

hn,d,ρ,s,0,j and gn,d,ρ,s,0,j. For each 1 ≤ s ≤ m we have the following:

∑
f∈Fn(≤s)

(−1)|f |hn,d,ρ,s,0,j(f) =
∑
µ`n

n′(µ)=d
l(µ)≤2s

j| gcd(λ(µ),q+1)

β(µ, aρ) (8.10)
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∑
f∈Fn(≤s)

(−1)|f |gn,d,ρ,s,0,j(f) =
∑
µ`n

n′(µ)=d
l(µ)≤2s−1

j| gcd(λ(µ),q+1)

β(µ, aρ) (8.11)

Proof: The assumption that Proposition 8.2.4 holds implies a number of results. In order

of implication these are Proposition 8.2.1, Equation 8.1 (via Equation 8.5), and thus Theorem

4.1.1, the main theorem of this paper. We proceed by induction on s.

The small case: Let s = 1 so that f ∈ Fn(≤ 1) and f has length 0 or 1.

If l(f) = 0 then f = (∅, ∅, 0) so P (f) = Un(q), U(f) = 1, and d(f) = 0. The contribution to

the left hand side of Equation 8.11 is gn,d,ρ,s,0,j(f) = kd(Un(q), ρ,det, j). If l(f) = 1 then f =

(J, {l}, l) so P (f) = PJ , U(f) = Ul, and d(f) = 0. The contribution is (−1)|f |gn,d,ρ,s,0,j(f) =

(−1)|J |kd(PJ , ρ,det, j).

Hence the left hand side of Equation 8.11 is

kd(Un(q), ρ,det, j) +
∑
∅6=J⊂I

(−1)|J |kd(PJ , ρ,det, j)

=


β((n), aρ), if d =

(
n
2

)
and j = 1;

0, otherwise

(8.12)

by Equation 8.1.
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The only partition µ of n with l(µ) ≤ 1 is µ = (n). Moreover n′((n)) =
(
n
2

)
and the only j

dividing λ((n)) is j = 1. Hence the right hand side of Equation 8.11 is equal to the left. Thus

Equation 8.11 holds for s = 1.

As for Equation 8.10 if l(f) = 0 then f = (∅, ∅, 0) so P (f) = Un(q), U(f) = 1, and d(f) = 0.

The contribution to the left hand side of Equation 8.10 is hn,d,ρ,s,0,j(f) = kd(Un(q), ρ,det, j).

If l(f) = 1 then f = (J, {l}, l) so P (f) = PJ , U(f) = Ul, and d(f) = 0. The contribution is

(−1)|J |k0
d(PJ , Zl, ρ,det, j) = (−1)|J |

(
kd(PJ , ρ,det, j)− k1

d(PJ , Zl, ρ,det, j)
)
.

Hence the left hand side of Equation 8.10 is given by

kd(Un(q), ρ,det, j) +
∑
∅6=J⊂I

(−1)|J |kd(PJ , ρ,det, j)−
∑
l(f)=1

(−1)|f |k1
d(P (f), Z(f), ρ, φf , jf )

=
∑

f∈Fn(≤1)

(−1)|f |gn,d,ρ,s,0,j(f) +
∑
µ`n

n′(µ)=d
l(µ)=2

j| gcd(q+1,λ(µ))

β(µ, aρ)

=
∑
µ`n

n′(µ)=d
l(µ)≤2

j| gcd(q+1,λ(µ))

β(µ, aρ)

(8.13)
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by Equation 8.11 and Proposition 8.2.4. Hence Equation 8.11 holds for s = 1 and the small

case is proved.

The inductive case: Let us assume that Corollary 8.3.6 holds for all s′ < s. Our first

observation is that

gn,d,ρ,s,r,j(f) = gn−2sr,d,ρ,s,0,j(f) and hn,d,ρ,s,r,j(f) = hn−(2s+1)r,d,ρ,s,0,j(f).

Now fixing n and letting r = 0 we further observe that for f ∈ Fn with l(f) ≤ s− 2

gn,d,ρ,s,0,j(f) = hn,d,ρ,s−1,0,j(f) = k0
d(P

n(f), Un(f), ρ, φf , jf ).

For the rest of the proof we will drop the superscript n and let P (f) denote Pn(f), U(f)

denote Un(f), Z(f) denote Zn(f), and V (f) denote V n(f).

Writing P (f) = Q(f)×H(f) where Q(f) =
∏s−1
i=1 P

+ni(f)
Ji(f) and H(f) = P

ns(f)
Js(f) . Let L(f) be

a complement to U(f) in H(f). The quotient P (f)/Z(f) ∼= Q(f)× (L(f) n V (f)) and hence

k0
d−d(f)(P (f), Z(f), ρ, φf , jf ) = k0

d−d(f)(P (f), U(f), ρ, φf , jf ) + k1
d−d(f)(P (f), V (f), ρ, φf , jf ).

For brevity write gd,ρ,s = gn,d,ρ,s,0,j and hd,ρ,s−1 = hn,d,ρ,s−1,0,j . Then
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∑
f∈Fn(≤s)

(−1)|f |gd,ρ,s(f)

=
∑
f∈Fn
l(f)=s

(−1)|f |kd−d(f)(P (f), ρ, φf , jf ) +
∑
f∈Fn

l(f)=s−1

(−1)|f |k0
d−d(f)(P (f), U(f), ρ, φf , jf )

+
∑

f∈Fn(≤s−1)

(−1)|f |hd,ρ,s−1(f)−
∑
f∈Fn

l(f)=s−1

(−1)|f |k0
d−d(f)(P (f), Z(f), ρ, φf , jf )

=
∑
f∈Fn
l(f)=s

(−1)|f |kd−d(f)(P (f), ρ, φf , jf )−
∑
f∈Fn

l(f)=s−1

(−1)|f |k1
d−d(f)(P (f), V (f), ρ, φf , jf )

+
∑

f∈Fn(≤s−1)

(−1)|f |hd,ρ,s−1(f)

= −
∑
f∈Fn

l(f)=s−1

(−1)|f |kd−d(f)(P (f), Snu(f), ρ, φf , jf ) +
∑

f∈Fn(≤s−1)

(−1)|f |hd,ρ,s−1(f)

= +
∑
µ`n

n′(µ)=d
l(µ)=2s−1

j| gcd(q+1,λ(µ))

β(µ, aρ) +
∑
µ`n

n′(µ)=d
l(µ)≤2(s−1)=2s−2
j| gcd(q+1,λ(µ))

β(µ, aρ)

=
∑
µ`n

n′(µ)=d
l(µ)≤2s−1

j| gcd(q+1,λ(µ))

β(µ, aρ)

Hence Equation 8.11 holds at s.

As to Equation 8.10 notice for f ∈ Fn hd,ρ,s(f) = gd,ρ,s(f) if l(f) < s. Thus
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∑
f∈Fn(≤s)

(−1)|f |hd,ρ,s(f) =
∑

f∈Fn(≤s)

(−1)|f |gd,ρ,s(f)−
∑
f∈Fn
l(f)=s

(−1)|f |kd−d(f)(P (f), ρ, φf , jf )

+
∑
f∈Fn
l(f)=s

(−1)|f |k0
d−d(f)(P (f), Z(f), ρ, φf , jf )

=
∑

f∈Fn(≤s)

(−1)|f |gd,ρ,s(f)−
∑
f∈Fn
l(f)=s

(−1)|f |k1
d−d(f)(P (f), Z(f), ρ, φf , jf )

=
∑
µ`n

n′(µ)=d
l(µ)≤2s−1

j| gcd(q+1,λ(µ))

β(µ, aρ) +
∑
µ`n

n′(µ)=d
l(µ)=2s

j| gcd(q+1,λ(µ))

β(µ, aρ)

=
∑
µ`n

n′(µ)=d
l(µ)≤2s

j| gcd(q+1,λ(µ))

β(µ, aρ).

Hence Equation 8.10 holds at s and Corollary 8.3.6 is proved.

Proof of Proposition 8.2.4: We proceed by induction on m where n = 2m or n = 2m+1.

The small cases: Let m = 0 so that n = 1. Then both sums are empty and hence

Proposition 8.2.4 is vacuously true.

Now let m = 1 so that n = 2 or n = 3. In either case we have s = r = 1. For f with

l(f) = 1 we have f = (J, {l}, l) where maxJ = l. Thus f = ({1}, {1}, 1) is the only f ∈ Fn of
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nonzero length and P (f) = P{1} the Borel subgroup of Un(q) with U(f) the unipotent radical

of P{1}. Let L(f) be a complement in P (f) to U(f). Notice that d(f) = 0 by definition.

Assume n = 2 so that we are working in U2(q). Then P (f) ∼= GL1(q2) n Fq. Under this

isomorphism the map φf is defined φf (A) = (detA)1−q where A ∈ GL1(q2). The group L(f) ∼=

GL1(q2) and U(f) = Z(f) is elementary abelian of order q. We have V (f) = U(f)/Z(f) = 1

so that Snu(f) is empty. Thus the left hand side of Equation 8.8 is

−kd−d(f)(P (f), Snu1 (f), ρ, φf , jf ) = 0.

This is equal to the right hand side of Equation 8.8 since there are no partitions µ ` 2 of length

3.

As for Equation 8.9, note the set Sz1(f) is the collection of nontrivial irreducible characters

of Fq on which GL1(q2) n Fq acts transitively. Indeed let us recall g ∈ L(f) acts on τ ∈ Sz1(f)

via  a 0

0 a−q


 1 c

0 1


 a−1 0

0 aq

 =

 1 acaq

0 1

 .

Take any nontrivial τ ∈ Irr(Fq) then TGL1(q2)(τ) = Cq+1. Moreover the map φf restricted

to TGL1(q2)(τ) is defined φf (A) = (detA)2 for A ∈ Cq+1. We have

kd(GL1(q2) n Fq, τ, ρ, φf , j) = kd(TGL1(q2)(τ), ρ,det2, j′)
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where j′ is the least positive integer such that j divides j′ · gcd(2, q + 1). Hence assuming that

j is a divisor of 2

j′ = j/ gcd(j, q + 1, 2) =


1, if j = 2;

1, if j = 1.

Then for j = 1 or j = 2 the left hand side of Equation 8.9 is given by

−kd(P (f), Sz1(f), ρ, φf , j) = −kd(GL1(q2) n Fq, τ, ρ, φf , j)

= −kd(Cq+1, ρ,det2, 1)

=


−1, if d = 0;

0, otherwise.

This is certainly equal to the right hand side of Equation 8.9 since the only partition µ ` 2 with

l(µ) = 2 is µ = (12) with minimal element 1, n′((12)) = 0, and λ((12)) = 2 which is divisible

by j = 1 or j = 2.

Assume now n = 3 so that we are working in U3(q). The group

P (f) = P{1} ∼=
(
GL1(q2)×U1(q)

)
n U{1}.

Under this isomorphism the map φf is defined φf (A,B) = (detA)1−q detB where A ∈ GL1(q2)

and B ∈ U1(q). In this case U(f) = U{1} is no longer equal to its center. Let L(f) be a

complement to U(f) in P (f).
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The quotient V (f) ∼= M1,1(Fq2) and Snu1 (f) has one orbit under P{1}. Take τ ∈ Snu1 (f)

then TL(f)(τ) = U1(q) ∼= Cq+1. Moreover the map φf restricted to TL(f)(τ) is defined φf (B) =

(detB)3 for B ∈ U1(q)

Then for j = 1 or j = 3 the left hand side of Equation 8.8 is given by

−kd(P (f), Snu1 (f), ρ, φf , j) = −kd(P (f), τ, ρ, φf , j)

= −kd(TL(f)(τ), ρ, φf |, j/ gcd(j, 3, q + 1))

= −kd(Cq+1, ρ,det3, 1)

=


−1, if d = 0;

0, otherwise.

This is certainly equal to the right hand side of Equation 8.8 since the only partition µ ` 3 with

l(µ) = 2(1) + 1 = 3 is µ = (13) with minimal element 1, n′((13)) = 0, and λ((13)) = 3 which is

divisible by j = 1 or j = 3.

As for Equation 8.9, Sz1(f) is the set of non-trivial characters of Z(f) on which P (f) acts

transitively. Take τ ∈ Sz1(f). Then there exists a unique ψ ∈ Irr(U(f)) lying over τ with

ψ(1) = q. We have

TP (τ) = TP (ψ) =
(
U1(q)×U1(q)

)
n U{1}
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and q does not divide |P |/|TP (ψ)|. The map φf restricted to TP (ψ) is defined φf (A,B) =

(detA)2(detB) for A in the first factor U1(q) and B in the second factor U1(q). Also notice

that ∣∣P (f)/TP (ψ) ker(φf )
∣∣ = 1.

Hence the left hand side of Equation 8.8 is given by

−kd(P (f), Sz1(f), ρ, φf , j) = −kd(P (f), τ, ρ, φf , j)

= −kd(P (f), ψ, ρ, φf , j)

= −kd−1(TP (f)(ψ)/U{1}, ρ, φf |, j)

= −kd−1(Cq+1 × Cq+1, ρ,det2 · det, j)

= −
∑

ρ1ρ2=ρ

∑
d1+d2=d−1

kd1(Cq+1, ρ1,det2, j/ gcd(j, 2, q + 1))kd2(Cq+1, ρ2,det, j)

=


−(q + 1), if d = 1 and j = 1;

0, otherwise.

This is certainly equal to the right hand side of Equation 8.9 since the only partition µ ` 3

of length 2 is µ = (2, 1) with n′((2, 1)) = 1, min((2, 1)) = 1, and λ((2, 1)) = 1. Indeed

−β((2, 1), aρ) = −(q + 1).

The inductive case: We assume Proposition 8.2.4 holds for all m′ < m where m ≥ 2 and

n = 2m or n = 2m+ 1. Recall that this assumption implies that for all such m′, not only does

Corollary 8.3.6 hold at m′, but also Proposition 8.2.1, Equation 8.1, and hence Theorem 4.1.1,
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the main theorem of this paper, hold at m′.

Recall our observation in the proof of 8.3.6 that

hn,d,ρ,s,r,j(f) = hn−(2s+1)r,d,ρ,s,0,j(f).

Moreover since 1 ≤ r < n by induction assumption we have

∑
J⊆[r/2]

(−1)|J |kd1(PJ , ρ1,det2s+1, j1) =


β((r), aρ), if d1 =

(
r
2

)
and j1 = 1;

0, otherwise.
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Notice that if j1 = 1 we have j = gcd(j, 2s + 1, q + 1) in the statement of Proposition 8.3.3.

Then

∑
f∈F
l(f)=s

min∂C≥r

(−1)|f |kd−d(f)(P (f), Snur (f), ρ, φf , jf ) =

−
∑
ρ1,ρ2

∑
d1,d2

 ∑
J⊆[r/2]

(−1)|J |kd1(PJ , ρ1, det2s+1, j1)
∑

f∈Fn−(2s+1)r(≤s)

(−1)|f |hn,d2,ρ2,s,r,j(f)


−
∑
ρ1,ρ2

∑
d1,d2

 ∑
J⊆[r/2]

(−1)|J |kd1(PJ , ρ1,det2s+1, j1)
∑

f∈Fn−(2s+1)r(≤s)

(−1)|f |hn−(2s+1)r,d2,ρ2,s,0,j(f)


= −

∑
ρ1ρ2=ρ

(
β((r), aρ1)

∑
µ`(n−(2s+1)r)

n′(µ)=d2
l(µ)≤2s

j| gcd(2s+1,q+1,λ(µ))

β(µ, aρ2)

)

= −
∑
µ̃`(n)

n′(µ̃)=d2
min(µ̃)=r
l(µ̃)≤2s+1

j| gcd(q+1,λ(µ̃))

β(µ̃, aρ2)

where for fixed µ = (al11 , a
l2
2 , . . . , a

lδ(µ)
δ(µ) ) ` (n − (2s + 1)r) the corresponding partition of n is

given by

µ̃ = (r2s+1) + µ = ((a1 + r)l1 , (a2 + r)l2 , . . . , (aδ(µ) + r)lδ(µ) , re) ` n.

and
∑δ(µ)

i=1 li + e = 2s+ 1 so j divides e i.e. j divides λ(µ̃).
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Recall our observation in the proof of 8.3.6 that

gn,d,ρ,s,r,j(f) = gn−2sr,d,ρ,s,0,j(f).

Moreover since 1 ≤ r < n by induction assumption we have

∑
J⊆[r/2]

(−1)|J |kd1(PJ , ρ1, det2s, j1) =


β((r), aρ), if d1 =

(
r
2

)
and j1 = 1;

0, otherwise.

Notice that if j1 = 1 we have j = gcd(j, 2s, q + 1) in the statement of Proposition 8.3.5. Then

∑
f∈F
l(f)=s

min∂C≥r

(−1)|f |kd−d(f)(P (f), Szr (f), ρ, φf , jf ) =

−
∑
ρ1,ρ2

∑
d1,d2

 ∑
J⊆[r/2]

(−1)|J |kd1(PJ , ρ1, det2s, j1)
∑

f∈Fn−2sr(≤s)

(−1)|f |gn,d2,ρ2,s,r,j(f)


−
∑
ρ1,ρ2

∑
d1,d2

 ∑
J⊆[r/2]

(−1)|J |kd1(PJ , ρ1, det2s, j1)
∑

f∈Fn−2sr(≤s)

(−1)|f |gn−2sr,d2,ρ2,s,0,j(f)


= −

∑
ρ1ρ2=ρ

(
β((r), aρ1)

∑
µ`(n−2sr)
n′(µ)=d2
l(µ)≤2s−1

j| gcd(2s,q+1,λ(µ))

β(µ, aρ2)

)

= −
∑
µ̃`(n)

n′(µ̃)=d2
min(µ̃)=r
l(µ̃)≤2s

j| gcd(q+1,λ(µ̃))

β(µ̃, aρ2)
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where for fixed µ = (al11 , a
l2
2 , . . . , a

lδ(µ)
δ(µ) ) ` (n− 2sr) the corresponding partition of n is given by

µ̃ = (r2s) + µ = ((a1 + r)l1 , (a2 + r)l2 , . . . , (aδ(µ) + r)lδ(µ) , re) ` n.

and
∑δ(µ)

i=1 li + e = 2s so j divides e i.e. j divides λ(µ̃).

And we are done, Proposition 8.2.4 is proved. Thus Proposition 8.2.1 also holds, so too

does Equation 8.1 (via Equation 8.5), and thus the main result of this thesis Theorem 4.1.1 is

proved.



CHAPTER 9

AN EXAMPLE: DIMENSION 4

Let K = F q. Let G̃ = GL4(K). Under the Frobenius F (ai,j) = M(aqj,i)
−1M−1 we have

G̃F = U4(q) which we denote by G. The Weyl group, W̃ , of G̃ is of type A3, i.e. W̃ = S3,

the symmetric group on three elements. Let {1, 2, 3} be an index set for the distinguished

generators of W̃ . The Weyl group, W , of G is of type B2. The F -orbits on the reflections is

given by {{1, 3}, {2}}. Let I = {1, 2} index this set. Let B̃ be the Borel subgroup of upper

triangular matrices in G̃. Observe that B̃ is F -stable. Let B = B̃F . Then B is upper triangular.

In keeping with the notation of this thesis we have the following parabolic subgroups,

P∅ = G, P{1}, P{2}, P{1,2} = B
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Where each PJ has Levi decomposition LJUJ . Writing the Levi subgroups as block matrices,

we have the following LJ :

L∅ = G =

{


∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗


}
,

L{1} =

{


∗ 0 0 0

0 ∗ ∗ 0

0 ∗ ∗ 0

0 0 0 ∗


}
∼= GL1(q2)×U2(q),

L{2} =

{


∗ ∗ 0 0

∗ ∗ 0 0

0 0 ∗ ∗

0 0 ∗ ∗


}
∼= GL2(q2),

L{1,2} =

{


∗ 0 0 0

0 ∗ 0 0

0 0 ∗ 0

0 0 0 ∗


}
∼= GL1(q2)×GL1(q2).
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Writing the unipotent radicals of the PJ as block matrices, we have the following UJ together

with their respective normal series:

U∅ =

{


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


}

= 1,

U{1} =

{


1 ∗ ∗ ∗

0 1 0 ∗

0 0 1 ∗

0 0 0 1


}
>

{


1 0 0 ∗

0 1 0 0

0 0 1 0

0 0 0 1


}
> 1,

U{2} =

{


1 0 ∗ ∗

0 1 ∗ ∗

0 0 1 0

0 0 0 1


}

= Z{2} > 1,

U{1,2} =

{


1 ∗ ∗ ∗

0 1 ∗ ∗

0 0 1 ∗

0 0 0 1


}
>

{


1 0 ∗ ∗

0 1 ∗ ∗

0 0 1 0

0 0 0 1


}

= Z{2} > 1.

For nonempty J , we enumerate the quotient modules for the PJ and orbit representatives.
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J = {1}:

U{1}/Z{1} ∼=

{


1 a b 0

0 1 0 −aq

0 0 1 −bq

0 0 0 1


| a, b ∈ Fq2

}
∼= M1,2(q2)is a unitary module for L{1}.

Let τs correspond to a singular chain of rank 1 in unitary space of dimension 2.

Let τn correspond to a non-singular chain of rank 1 in unitary space of dimension 2.

Z{1} ∼=

{


1 0 0 c

0 1 0 0

0 0 1 0

0 0 0 1


| c+ cq = 0

}
∼= M1,1(q)is a central module for L{1}.

Let x1 = (ε) be the unique non-trivial orbit representative.

J = {2}:

Z{2} ∼=

{


1 0 a d1

0 1 d2 −aq

0 0 1 0

0 0 0 1


| a, di ∈ Fq2 and di + dqi = 0

}
∼= M2,2(q)
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is a central module for L{2}. Let x2 =

 ε 0

0 ε

 be an orbit representative for elements

of rank 2.

J = {1, 2}:

U{1,2}/U{2} ∼=

{


1 a 0 0

0 1 0 0

0 0 1 −aq

0 0 0 1


| a ∈ Fq2

}
∼= M1,1(q2) is a general linear module for L{1,2}.

Z{2} ∼=

{


1 0 a d1

0 1 d2 −aq

0 0 1 0

0 0 0 1


| a, di ∈ Fq2 and di + dqi = 0

}
∼= M2,2(q)

is a central module for

B/Z{2} ∼=

{


∗ ∗ 0 0

0 ∗ 0 0

0 0 ∗ ∗

0 0 0 ∗


}
∼= P+2

{1}.
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We enumerate the members of E and F :

E =
{

(∅, ∅, 0),

({1, 2}, {1}, (12))

({1, 2}, {1, 2}, (12))
}
, and

F =
{

(∅, ∅, 0),

({1}, {1}, 1), ({2}, {2}, 2), ({1, 2}, {2}, 2),

({1}, {1, 2}, 1)
}
.

First observation: Take e1 = ({1, 2}, {1}, (12)) so that P (e1) = P{1,2}/U{2} ∼= P+2
{1} with

V (e1) = V (1, 2) ∼= M1,1(q2). Take nontrivial τg ∈ Irr(V (1, 2)) Then

TP (e1)(τ) = GL1(q2) n V (e1) ∼= P (e2) n V (e1).

where e2 = ({1, 2}, {1, 2}, (12)) since P (e2) ∼= GL1(q2) by definition. Also note V (e2) = 1 by

definition. Let g ∈ TB(τg)/U{1,2}. As a block matrix g can be written:

g =



a 0 0 0

0 a 0 0

0 0 a−q 0

0 0 0 a−q
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Second observation: Take f1 = ({1, }, {1}, 1) so that P (f1) ∼= P{1} with U(f1) = U{1} Then

TP{1}(τs)/U{1}
∼= TL{1}(τs) = P 2

{1}
∼= GL1(q2) nM1,1(q) ∼= P (f2) n U(f2)

where f2 = ({1}, {1, 2}, 1). Let g ∈ TL{1}(τs). As a block matrix g can be written:

g =



a 0 0 0

0 a b 0

0 0 a−q 0

0 0 0 a−q


, where b+ bq = 0.

The elements e2 and f2 have opposite parity and hence lead to cancellation in the alternating

sum in the statement of DOC, i.e. for j′ = j/ gcd(j, q + 1, 2)

kd(B, τg, ρ,det, j) = kd−d′(TB(τg)/V (1, 2), ρ,det, j′) = k0
d−d(e2)(P (e2), V (e2), ρ, φe2 , je2)

kd(P{1}, τs, ρ,det, j) = kd−d′′(TP{1}(τs)/U{1}, ρ,det, j′)

= k0
d−d(f2)(P (f2), V (f2), ρ, φf2 , jf2) + k1

d−d(f2)(P (f2), U(f2), ρ, φf2 , jf2)

where d′ is the power of q in |TB(τg)\B| and d′′ is the power of q in |TP{1}(τs)\P{1}|, i.e.

d′ = d′′ = 0 Then

k0
d−d(e2)(P (e2), V (e2), ρ, φe2 , je2) + k0

d−d(f2)(P (f2), U(f2), ρ, φf2 , jf2) = 0.
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With regard to the splitting of characters upon restriction to the kernel of the determinant map

in general, observe that 4 is divisible by 1, 2, and 4. Moreover, assuming that q + 1 is divisible

by 4, we may consider j = 1, 2, or 4.

Let j = 4. Then kd(LJ , ρ,det, 4) = 0 for nonempty subsets J in {1, 2} so

∑
J⊆I

(−1)|J |k0
d(PJ , UJ , ρ,det, 4) = kd(U4(q), ρ,det, 4)

=


β((14), aρ) = 1, if d = 0;

0, otherwise.

We have k1
d(PJ , UJ , ρ,det, 4) = 0 except for J = {1}. Take τs, the orbit representative

discussed above, and consider

TP{1}(τs)/U{1}
∼= P 2

{1}
∼=

{


a 0 0 0

0 a b 0

0 0 a−q 0

0 0 0 a−q


| a, b ∈ Fq2 , b+ bq = 0

}
.

The determinant map restricted to P (f2) = P 2
{1} is φf2 = det2. Moreover, 4f2 is the least

positive integer such that 4 divides

4 divides 4f2 ·
q + 1

(q + 1)/ gcd(q + 1, 2)
.
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so 4f2 = 2. By definition d(f2) = 0 and indeed the exponent of q in |TP{1}(τs)\P{1}| is zero as

already mentioned.

Take non trivial x ∈ Irr(Z2
{1}). Then

TP 2
{1}

(x) = U1(q) n Z2
{1}
∼=

{


a 0 0 0

0 a b 0

0 0 a 0

0 0 0 a


| a, b ∈ Fq2 , a1+q = 1, and b+ bq = 0

}
.

The determinant map restricted to TP 2
{1}

(x) = det4. Let j′ be the least positive integer such

that

2 divides j′ ·

∣∣∣P 2
{1}

∣∣∣∣∣∣TP 2
{1}

(x) · ker(det4)
∣∣∣ ,

then j′ = 1. Hence

∑
J⊆I

(−1)|J |k1
d(PJ , UJ , ρ,det, 4) = −k1

d−d(f2)(P (f2), U(f2), ρ, φf2 , jf2)

= −k1
d(P

2
{1}, Z

2
{1}, ρ,det2, 2)

= −kd(U1(q), ρ,det4, 1)

= −


β((14), aρ) = 1, if d = 0;

0, otherwise.
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Let j = 2, then kd(LJ , ρ,det, 2) = 0 for subsets J = {1} and {1, 2}. The calculations are

repetitive so we will not present them for all for d = 0, 1, 2, and 3, but rather present some

of the more interesting calculations. Consider d = 0. Our first observation is that this case

includes the above, since 2 divides 4.

∑
J⊆I

(−1)|J |k0
d(PJ , UJ , ρ,det, 4) = k0(U4(q), ρ,det, 2)− k0(GL2(q2), ρ,det1−q, 2)

= qβ((14), aρ)− β((12), aρ)

= q − (q − 1)

= (q − 1) + 1− (q − 1)

= 1.

Notice that the remaining character splits into 4 irreducibles upon restriction to the kernel of

the determinant map. We have k1
0(PJ , UJ , ρ,det, 2) = 0 except for J = {1}, which is worked

out above.

Continue to assume that j = 2 and consider d = 1. Then k1(GL2(q2), ρ,det1−q, 2) = 0 since

0 and 2 are the only possible q-heights for χ ∈ Irr(GL2(q2)). Moreover k1(U4(q), ρ,det, 2) = 0

since 2 does not divide λ(µ) for µ = (2, 12). Hence,

∑
J⊆I

(−1)|J |k0
1(PJ , UJ , ρ,det, 4) = 0



167

which doesn’t seem like an interesting calculation. However, examining the other side of the

alternating sum is somewhat more interesting since we see cancellation. Take x2 ∈ Sz(f2) and

Sz(f3) as above, then

TP{2}(x2)/U{2} ∼= U2(q) and TP{1,2}(x2)/U{2} ∼= P 2
{1}.

The exponent of q in ∣∣U2(q)\GL2(q2)
∣∣ =

∣∣∣P 2
{1}\P

+2
{1}

∣∣∣ is 1.

If K is the kernel of the determinant map restricted to the stabilizers of x2, then

2 divides
∣∣∣TP{2}(x2)K\P{2}

∣∣∣ =
∣∣∣TP{1,2}(x2)K\P{1,2}

∣∣∣ .
Hence,

kd(P{2}, x2, ρ,det1−q, 2) = kd−1(U2(q), ρ,det2, 1) and

kd(P{1,2}, x2, ρ,det1−q, 2) = kd−1(P 2
{1}, ρ,det2, 1).

Thus

∑
J⊆I

(−1)|J |k1
1(PJ , UJ , ρ,det, 2) = −k0(U2(q), ρ,det2, 1) + k0(P 2

{1}, ρ,det2, 1)

= −0

since
(

2
2

)
= 1 > 0.
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Let j = 1. Since 1 divides every integer, this case is trivial. Indeed,

∑
J⊆I

(−1)|J |kd(PJ , UJ , ρ,det, 1) =
∑
J⊆I

(−1)|J |kd(PJ , UJ , ρ)

which has already been shown by Ku ((15)).
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