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SUMMARY

In real world machine learning applications, it is often not very realistic to assume that

the training data distribution aligns with the testing data distribution. In order to obtain a

reliable predictor for new unseen test data, which could be drawn from a different distribution, a

simplification is to assume the distribution shift only occurs on the input variables (covariates),

while the conditional output distribution given the input variables (covariates) remains the

same. This is called the covariate shift setting. Besides various examples of covariate shift in

supervised learning tasks, one of the typical covariate shift scenarios is the sampling bias problem

in pool-based active learning, in which the learner selects the labeled set, thus introducing a

different input distribution from the unlabeled pool in each step of learning and prediction.

In this thesis, we propose a general framework for robust prediction under covariate shift.

Rather than focusing on minimizing a reweighted empirical loss on training data, we manage to

more directly optimize the expected test loss with a minimax approach. The resulting predictor

provides more randomized predictions on test data when it lacks training data distribution

support and therefore avoids possible loss induced by over-optimistic extrapolation of other

predictors. This framework allows for facilitating different loss function minimization and

incorporating different feature functions and feature generalization assumptions. We discuss

how the framework reduces to specific forms and the corresponding approaches to estimate the

parameters. Theoretical properties of the robust prediction methods about generalizability and

consistency are also included in the study. Moreover, we investigate active learning using robust

xii



SUMMARY (Continued)

prediction when the active learning step is constructed as a special case of robust covariate shift

problem.

For the evaluation of the proposed methods, we cover both supervised learning and active

learning cases. We provide two-dimensional toy examples for intuitive motivation of the method

and its effect on low dimensional and small amounts of data. We conduct experiments on

synthetic biased benchmark datasets and natural covariate shift datasets to show performance

of the robust prediction on real data. Additionally, we evaluate pool-based active learning using

robust prediction on benchmark real data sets. We demonstrate a number of benefits over

existing methods.
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CHAPTER 1

INTRODUCTION

1.1 Covariate Shift

The independent and identically distributed (IID) assumption employed widely across machine

learning methods requires the testing data distribution to be the same as the training data

distribution. This is quite restrictive in the sense that shift can occur between the training

distribution and testing distribution in many settings. For example, survey response rates

may vary by individuals’ characteristics, medical results may only be available from a non-

representative demographic sample, representative data in certain domains may just be very

hard and costly to obtain, or dataset labels may have been solicited using active learning. Recent

research in bias in machine learning also reminds us of the possible social bias that could exist

in the way we collect our data (Crawford et al., 2016). These scenarios make models built on

the IID assumption inappropriate and impose huge challenges for building reliable predictors

that could work in the wild.

Though nothing can be learned when the shift between training and testing data is arbitrary,

certain assumptions about how training and testing distributions differ allow reasonable adaptive

learning methods to be derived (Blitzer et al., 2008). One of the common assumptions is that

the bias only comes from the input variables. In this setting, also known as covariate shift,

the distribution of inputs, Ptrain(x) and Ptest(x), differ, while the conditional label distribution,

1
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P(y|x), is the same under both the training and the testing distributions. This assumption is

much weaker than the IID assumption and covers a broad range of real application scenarios.

1.2 Motivating Example: Active Learning

Active learning (Settles, 2012; Tong and Koller, 2001; Sebastiani, 2002) aims to alleviate the

burden of labeling an entire training dataset by allowing the predictor to determine what source

data it has available to use for learning. In theory, this enables the active learner to solicit labels

from the most informative datapoints. This has the potential to significantly improve data-

efficiency beyond what is possible with randomly provided labels (Angluin, 1988). However, data

produced from a pool-based active learner violates the independent and identically distributed

(IID) data property broadly assumed by supervised machine learning techniques (Sugiyama and

Kawanabe, 2012). Specifically, the labeled set input distribution would change gradually as the

active learner picks unlabeled datapoints and adds them to the labeled set, converging only in

the limit to the input distribution of the vast unlabeled set. In the process, the conditional label

distribution is the same between them. These non-IID samples pose serious pitfalls for active

learning methods both in theory and in practice that have not yet been resolved.

Existing active learning methods are optimistic about their own uncertainty. They generally

employ an underlying supervised machine learning model and assume that all unlabeled dat-

apoints’ labels are distributed according to the model’s (often strong) inductive biases. This

approach has theoretical justification in IID settings where the inductive biases are shaped by

increasing amounts of representative data. However, the potential of improved data-efficiency

benefits from active learning versus passive supervised learning is only realized by biasing
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label solicitation towards non-representative data that is more informative than random sam-

ples (Settles, 2012). Unfortunately, the combination of optimistic extrapolation based on IID

assumptions and intentionally non-IID data collection often leads not only to inefficient learning,

but to extreme inaccuracies. Even advocates of existing active learning methods suggest that

“random sampling ... may be more advisable than taking one’s chances on active learning with

an inappropriate learning model” (Settles, 2012).

1.3 Debiasing via Importance Weighting

Under covariate shift, despite the training data distribution, P(y|x)Ptrain(x), and the testing

data distribution, P(y|x)Ptest(x), sharing a common conditional label probability distribution,

P(y|x), all probabilistic classifiers, P̂(y|x), are vulnerable to covariate shift when the test data

and the inductive bias of the trained classifier do not match (Fan et al., 2005). Therefore, under

the classical statistics perspective, a parametric model for the conditional label distribution,

P(y|x), (e.g., logistic regression) is first chosen and then model parameters are estimated in a

manner that accounts for the covariate shift.

A preferred approach is to minimize the prediction loss under the test distribution, which

is estimated by reweighting the training samples according to the test-train density ratio,

Ptest(x)/Ptrain(x) (Shimodaira, 2000; Zadrozny, 2004). Machine learning research has primarily

investigated covariate shift from this perspective, with various techniques for estimating the

density ratio including kernel density estimation (Shimodaira, 2000), discriminative estima-

tion (Bickel et al., 2009), Kullback-Leibler importance estimation (Sugiyama et al., 2008),

kernel mean matching (Huang et al., 2006; Yu and Szepesvári, 2012), maximum entropy meth-
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ods (Dud́ık et al., 2005), and minimax optimization (Wen et al., 2014). Unfortunately, despite

asymptotic guarantees of minimizing Bayesian risk (Shimodaira, 2000), sample reweighting is

often extremely inaccurate for finite datasets when covariate shift is large (Cortes et al., 2008).

In other words, this approach tends to work well when the training and the testing distributions

are fairly similar and large amounts of training samples are available. However, when these

conditions are violated, i.e., there is only a limited amount of training data and/or significant

differences between the training and testing distributions, some of the density ratios for training

examples can be extremely large. This leads to high-variance estimates that extrapolate heavily

from scant amounts of training data and a lack of generalization guarantees for the resulting

predictor (Cortes et al., 2010; Cortes et al., 2008).

1.4 Robust Prediction Framework for Covariate Shift

In this thesis, we develop robust estimation approaches under covariate shift as an alterna-

tive to importance weighting. Instead of the classical machine learning perspective, where a

parametric model for the conditional label distribution, P(y|x), is first chosen and then model

parameters are estimated like in importance weighting methods, we propose to robustly optimize

the desired loss function directly, i.e., using the exact expected test loss, without a pre-chosen

parametric form of the predictor. We enable this using a minimax estimation formulation.

In our general framework, we robustly minimize the expected test loss subject to known

properties of data from the training data distribution. The resulting predictor needs to match

statistical properties measured from the training distribution, but is otherwise the most uncertain

on the test distribution. These statistics can be estimated without the inaccuracies introduced
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by importance weighting from the training to the test distribution. Our formulation requires

any assumptions of statistical properties generalizing beyond the training distribution to be

explicitly incorporated into the classifier’s construction. In other words, we can choose a broader

distribution that training features generalize to explicitly to obtain adaptation. For example,

certain regional demographic statistics may also apply to the national population. Therefore,

our framework actually produces a family of predictors and even the importance weighting

logarithmic loss minimization is a special case of our framework for a particularly strong

assumption: that training statistics fully generalize to the test distribution. Additionally, the

general framework accounts for different loss function minimization, among which logarithmic

loss is the most convenient one since it results in an analytic parametric form and the optimization

is convex. We show that the framework can also serve non-smooth losses like the zero-one loss

and Hamming loss. We kernelize the general framework to obtain consistency guarantees for

the predictor. We also develop an approach for incorporating partial feature generalization on

multi-view data. We apply several predictors resulting from our robust prediction framework on

synthetic and UCI binary classification datasets to compare its performance against importance

weighting approaches for learning under covariate shift.

By explicitly considering a pool-based active learning setting as a special case of covariate

shift supervised learning, we develop a pessimistic approach to active learning that avoids

inefficiencies created by the combination of optimism and non-representative label solicitation.

The active learning method leverages one of the most classical predictors from our framework for

learning under covariate shift, which minimizes logarithmic loss and obtains the most conservative
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predictions by assuming labeled set features do not generalize to the unlabeled set (Liu and

Ziebart, 2014). We then use its resulting predictor to guide effective label solicitation strategies.

Under this approach, we show that model uncertainty is closely calibrated to generalization loss.

Thus, common label solicitation strategies guided by model uncertainty tend to directly improve

the model’s predictive performance. In addition to the theoretical properties, we evaluate and

compare the effectiveness of our approach on a range of classification tasks.

1.5 Outline of the Thesis

In this thesis, we answer the question: How can we make robust predictions under covariate

shift in supervised learning and active learning? By discussing the methodology, analysis and

application of the proposed robust prediction methods for covariate shift and active learning, we

provide a robust, flexible and accurate approach to solving the problem. Following is an outline

of the thesis. We cover related work in Chapter 2 and start introducing the main contribution

of the thesis after that. Chapter 3 is the methodology, which covers the major definition and

theorems for deriving the general framework and its different forms when certain loss functions

and feature generalization assumptions are incorporated. We focus on logarithmic loss and

zero-one loss, as well as kernelizing features and multiview features. Chapter 3 also covers

pool-based active learning approaches with robust predictions and analysis of the framework,

which includes generalization bounds and consistency properties when equipped with kernels.

Chapter 4 is the application section, consisting of toy examples and evaluations of several

proposed methods on various datasets. We conclude the thesis in Chapter 5 and also discuss

future research opportunities and challenges.



CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Transfer Learning and Domain Adaptation

Covariate shift is regarded as a special case of sample selection bias (Zadrozny, 2004), which

is the systematic error brought by non-random samples of a population. It causes some portion

of the population to be more likely to be sampled than others. We assume that a data point can

be represented as a feature vector and a label, (xi, yi) and si is a variable that shows whether

the data point is selected. If si = 1, the data point i is selected. Then there are four cases

according to whether si is independent from feature vector xi and data label yi:

• a) si is independent from both xi and yi;

• b) si is only independent from yi given xi but not independent from xi;

• c) si is only independent from xi given yi but not independent from yi;

• d) si is dependent on both xi and yi.

The first case matches the I.I.D. condition, in which case the sample is a random sample of

the population. The remaining three cases each carry different types of sample selection bias.

The third case means there is a change in the prior probabilities of the labels. This type of

bias often leads to imbalanced classification, and has been studied using different methods like

cost-sensitive learning in the machine learning literature (Elkan, 2001; Tang et al., 2009; Li et al.,

2011; López et al., 2012; Huang et al., 2016). The fourth case means there is no independence

7
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assumption that holds for xi, yi and si, and we then cannot expect to learn a mapping from

features to labels using the selected sample if just given the feature vectors. Finally, the second

case where P(s|x, y) = P(s|x) is called covariate shift, which means the selected sample is biased

but the bias only depends on the feature vector x.

As a special case of sample selection bias (Heckman, 1977), covariate shift has ties to more

general domain adaptation (Jiang, 2008) and transfer learning settings (Pan and Yang, 2010),

where the assumption on how training and testing data distributions differ is not fully specified.

For example, even though the importance weighting method is developed based on the covariate

shift assumption, it is also applied to and studied for more general domain adaptation settings

with more sophisticated methods of estimating weights for training data (Cortes and Mohri,

2014; Mansour et al., 2009a). Additionally, a wide range of approaches for learning under

covariate shift and transfer learning leverage additional assumptions or knowledge to improve

predictions (Pan and Yang, 2010). For example, a simple, but effective approach to domain

adaptation (Daumé III, 2007) leverages some labeled test data to learn some relationships that

generalize across source and target datasets. Another recent method assumes that training and

testing data are generated from mixtures of “domains” and uses a learned mixture model to

make predictions of test data based on more similar training data (Gong et al., 2013).

In this thesis, we focus on the covariate shift setting and investigate those related works

that explicitly assume the covariate shift assumption is valid and omit many of the domain

adaptation works that focus on more general distribution shift assumptions. The specific setting

we focus on is then with only labeled training data and unlabeled testing data.
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2.2 Empirical Risk Minimization, Surrogate Loss and Consistency

Empirical Risk Minimization (ERM) is an important principle that is assumed by many

machine learning algorithms (Mohri et al., 2012). Supervised learning is a general setting that

we have two spaces of objects X and Y and would like to learn a function h which maps from X

to Y. Assuming L is the loss function that measures how we penalize the predictive difference

between the prediction h(x) of a hypothesis and the true outcome y. The risk of h(x) is then

defined as the expectation of the loss function:

R(h) = EP(x,y)[L(h(x), y)], (2.1)

where P(x, y) is the joint probability distribution over X and Y. Our goal of the learning tasks is

to find a h∗ among a class of functions H for which the expected risk R(h) is minimal. However,

P(x, y) is not available to learning algorithms. We then use an approximation evaluated on

a finite number of training samples that are drawn independently and identically from the

distribution P(x, y). The approximated risk on empirical training data is called the empirical

risk:

R̂(h) = EP̃(x,y)[L(h(x), y)] =
1

m

∑
i

L(h(xi), yi), (2.2)

where m is the number of training samples. ERM then defines algorithms that find h to minimize

the empirical risk.
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The optimal predictor that minimizes the desired loss function l is the Bayes optimal predictor.

However, for the loss functions we care about in many tasks, finding the optimal predictor is not

a convenient problem to optimize. For example, the 0-1 loss is the desired loss function for many

predictive tasks that care about high accuracy. Unfortunately, it is discontinuous and therefore

challenging to optimize directly. It is usual to use a proxy, which is the so-called surrogate loss

function Φ. A convex function Φ is commonly chosen for computational reasons. For example,

support vector machines use the hinge loss and logistic regression uses the logarithmic loss —

each forms convex upper bound on the 0-1 loss. Thus, using convex surrogate loss provides a

much more tractable optimization problem.

A natural question to ask is how much is lost in terms of prediction quality by this change of

loss function. Whether minimizing Φ-risk leads to a function that minimize l-risk is referred to

as the consistency or calibration property (Bartlett et al., 2006; Tewari and Bartlett, 2007). It

depends on both the surrogate loss and the true desired loss. In binary classification, the most

commonly used loss functions like hinge, exponential and logarithmic loss are all consistent with

0-1 loss. But in more sophisticated tasks, including multi-class classification and structured

prediction, many surrogates are not consistent. There are also methods that work generally

well in practice but are actually not consistent. One example is the famous Crammer-Singer

multi-class hinge loss used by SVM methods (Crammer and Singer, 2001).

2.3 Minimax Robust Estimation

Minimax robust estimation (Topsøe, 1979; Grünwald and Dawid, 2004) is a powerful technique

for constructing classifiers that assumes the worst case about unknown properties of probability
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distributions. This formulation departs from the traditional statistical perspective by prescribing

a parametric predictor (not necessarily with closed-form) that, apart from matching known

distribution statistics, is the worst-case distribution possible for a given loss function. This

provides a strong rationale for maximum entropy estimation methods (Jaynes, 1957) from which

many familiar exponential family distributions (e.g., Gaussian, exponential, Laplacian, logistic

regression, conditional random fields (Lafferty et al., 2001)) result by robustly minimizing logloss

subject to constraints incorporating various known statistics.

In the robust estimation framework, the slack in the moment-matching constraints in the

primal is closely related to the regularization weights in the dual formulation (Dud́ık and

Schapire, 2006). In other words, the amount of regularization in logistic regression, for example,

corresponds with how much relaxation we allow for the adversary player to have when matching

the constraints.

2.4 Recent Advances in Adversarial Risk Minimization

Recent research about minimax robust estimation focuses on robustly minimizing non-smooth

loss functions (Asif et al., 2015; Fathony et al., 2016; Farnia and Tse, 2016; Fathony et al., 2017),

the relation of the resulting predictor with empirical risk minimization, and effectively applying

this method to optimizing multivariate performance measures (Wang et al., 2015), structured

prediction tasks based on sequences (Li et al., 2016), computer vision tasks (Behpour et al., 2017),

and Inverse Optimal Control (Chen et al., 2016b). It has been shown that minimization of certain

loss functions in the minimax robust estimation is equivalent with empirically minimizing convex

surrogate loss functions. In those cases, there are more efficient ways or even analytical solution



12

forms for solving the minimax game. Also, it has been proved that this series of adversarial

approaches is consistent with minimizing the desired loss when equipped with expressive feature

constraints (Fathony et al., 2016; Li et al., 2016). In order to solve the potentially large minimax

games, especially in the structured prediction case, it is necessary to apply a double oracle

constraint generation method (McMahan et al., 2003). It provides an exact solution, which

leads to good empirical predictive performance. But it could be slow in convergence sometimes.

In this thesis, we follow the same thread of work in minimax robust estimation and use it to

deal with covariate shift problems, in which the loss functions evaluation distribution is different

from the available data input distribution that forms the constraints for the adversary player.

However, since the conditional label distribution is shared between training and testing under

covariate shift, training features can still form the constraints set for the adversary effectively.

This enables us to optimize using (sub-)gradient descent that only requires training data for

evaluation.

2.5 Importance Weighting Methods

The most prevalent approach for addressing covariate shift attempts to remove the bias

between the training and testing distributions (Shimodaira, 2000; Huang et al., 2006; Sugiyama

et al., 2008) by making the training samples more representative of the test distribution. Under

this perspective, minimizing the importance-weighted loss of (n) training examples,

lim
n→∞ min

f̂
E
(X,Y)∼P̃

(n)
train

[
Ptest(X)

Ptrain(X)
loss(f̂(X), Y)

]
= min

f̂
E(X,Y)∼Ptest

[
loss(f̂(X), Y)

]
, (2.3)
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where f̂ is estimated predictor and p̃ is the empirical distribution of data, asymptotically

minimizes the testing distribution loss, so long as Ptest(x) > 0 =⇒ Ptrain(x) > 0.

Despite this asymptotic guarantee, predictive performance can be poor when training from

finite amounts of samples in both theory and practice. Conceptually, the density ratios of a

small number of training examples can become disproportionately large, making the resulting

predictor overly sensitive to a small number of training data points—or even one single datapoint.

This will lead to predictive results with high variance. Related to this general difficulty of

estimating test distribution loss, finite generalization bounds for importance-weighted methods

require finite second moments:

EPtrain(x)[(Ptest(X)/Ptrain(X))2] <∞ (2.4)

(Cortes et al., 2010), which is often not satisfied in practice.

In Figure 1, there are two examples showing two Gaussian distributions overlapped in

different ways. The data points with larger weights are annotated. There are only a few of them

but they dominate the resulting importance weighting predictor due to this large importance

weights, Ptest(x)
Ptrain(x)

.

In order to overcome these difficulties, there is a significant literature studying how to

reasonably estimate the weights Ptest(x)
Ptrain(x)

from training and testing sample data (Gretton et al.,

2009). For example, methods based on minimizing certain types of divergences or loss functions

on density (ratios) (Sugiyama et al., 2008; Kanamori et al., 2009) have been investigated. Other
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Dataset #1 Dataset #2

Figure 1: Datapoints (with ‘+’ and ‘o’ labels) from two source distributions (Gaussians with

solid 95% confidence ovals) and the largest data point importance weights, Ptest(x)
Ptrain(x)

, under the

target distributions (Gaussian with dashed 95% confidence ovals).

methods (Cortes and Mohri, 2014) make implicit assumptions on the feature space that there

exist weights w(x) that makes the “distance” between training and testing features small enough

so that reweighted training features can be used to learn classifiers on testing distribution. Other

work focuses on utilizing two stages of regularization to reduce the variance of the resulting

predictions (Reddi et al., 2014).

2.6 Other Minimax Approaches to Covariate Shift

Though developed using similar tools, previous minimax formulations of learning under

covariate shift differ substantially from our approach. They consider the test distribution as being

unknown and provide robustness to its worst-case assignment. The class of test distributions

considered are those obtained by deleting a subset of measured statistics (Globerson et al.,

2009) or all possible reweightings of the sample training data (Bagnell, 2005; Wen et al., 2014).
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A recent study of the so-called Distributionally Robust Supervised Learning (DRSL) covers

several types of minimax games between model parameters and either adversarial weights or

adversarial samples. DRSL with Wasserstein distance (Ben-Tal et al., 2013; Esfahani and Kuhn,

; Blanchet et al., 2016; Sinha et al., 2017) tries to be robust to adversarial examples. DRSL

with f-divergences (Duchi et al., 2016; Namkoong and Duchi, 2016; Hu et al., 2016) obtains

robustness against adversarial weights of data points. Our approach, in contrast, obtains an

estimate for each given test distribution that is robust to all the conditional label distributions

matching training statistics.

2.7 Bayesian Methods for Robust Learning

Bayesian methods like Gaussian processes do not address the covariate shift directly. Instead,

these methods are often regarded as means for controlling the predictive certainty easily when

needed, which makes it popular in active learning settings (Kapoor et al., 2007; Krause and

Guestrin, 2007; Hoang et al., 2014). If just viewed from the I.I.D. case, i.e., ignoring the

covariate shift, Bayesian methods provide an alternative to maximum likelihood for estimating

the parameters of a parametric predictive model using a probability distribution. However,

in the covariate shift setting, given known differences between Ptrain(x) and Ptest(x) and no

labels from test data distribution, the likelihood function needed for evaluation is not available

and it is not clear whether a Bayesian perspective is possible under our framework. Moreover,

Bayesian Linear Regression is briefly mentioned in a previous work (Chen et al., 2016a) with

key differences from the regression model derived from our robust framework (Chen et al.,

2016a) because it is minimizing the empirical squared loss evaluated on training data. When
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the concept for robust learning is not limited to covariate shift, more general robust Bayesian

probabilistic models are proposed (Wang et al., 2017), which focus on Bayesian data reweighting

and estimate the weights and model parameter simultaneously.

2.8 Methods for Covariate Shift in Active Learning

A pool-based active learner (Lewis and Gale, 1994) sequentially chooses datapoint labels

to solicit from a set (pool) of unlabeled datapoints, (xi) ∈ U . The learner often constructs

an estimate of the conditional label distribution, P̂(y|x), from its labeled dataset (xj, yj) ∈ L.

It uses this estimate to select the next datapoint label to solicit. We denote the entire set of

labeled and unlabeled datapoints as D = U ∪ L. Numerous metrics have been developed to

assess the expected utility of a datapoint. The most common, uncertainty sampling (Lewis and

Gale, 1994; Settles, 2012), solicits datapoint labels for which the active learner is least certain.

The value-conditioned entropy,

H(Y|X = xi) , EP̂(y|x)[− log P̂(Y|X)|xi] = −
∑
y∈Y

P̂(y|xi) log P̂(y|xi), (2.5)

is often used to measure this uncertainty. Other metrics assess how a datapoint label: (a) is

expected to change the prediction model (Settles and Craven, 2008); (b) reduces an upper bound

on the generalization error in expectation (Mackay, 1992); or (c) represents the input patterns

of remaining unlabeled data (Settles, 2012). We show the general label solicitation process of

pool-based active learning in Algorithm 1.
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Algorithm 1 Label solicitation for pool-based active learner

Input: unlabeled pool dataset U , labeled dataset L

Output: example xi ∈ U to solicit label

Estimate P̂(y|x) from dataset L

Compute valuei ← metric(xi) for each xi ∈ U

return xargmaxi valuei (example label to solicit)

Even when the entire pool of data can be fit to a particular model reasonably well, active

learning from a small number of samples may fail badly. For example, a logistic regression

model fits the synthetic dataset of Figure 2 in its entirety with fairly small average prediction

loss. However, the optimistic active learner solicits a sequence of labels that does not uncover

this appropriately fit model, as shown in Figure 2. This is primarily because it solicits labels

for examples that would be the most useful if its current inductive biases were correct. After

obtaining an initial ‘+’-class label and a noisy second ‘*’-class label from the bottom-left-most

datapoint, the active learner forms an incorrect inductive bias—that a decision boundary for

the dataset as a whole exists between those two datapoints—and exhaustively solicits labels to

better define the belief contours of this incorrect decision boundary until eventually soliciting a

more representative sample of labeled datapoints.

Inherent sample selection bias exists in pool-based active learning because examples for label

solicitation are not chosen completely at random (Sugiyama and Kawanabe, 2012). Since the
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Figure 2: The predictions of active learning using an optimistic logistic regression active learner.
Solicited labels (‘+’ and ‘*’ classes, denoted as red and blue prediction beliefs, respectively), are
selected using uncertainty sampling, and indicated with circles.

active learner can only select examples based on the input values, xi, independently from the

unknown label, yi, this corresponds to covariate shift (Shimodaira, 2000).

As illustrated in Figure 2, the basic pool-based active learning algorithm often performs

poorly in practice (Attenberg and Provost, 2011). Ad-hoc modifications to the algorithm dealing

with this covariate shift that limit the power of the active learner—undermining the purported

benefits of active learning—are often required for existing active learners to be competitive with

random sampling. These modifications decrease the potential for bias in the labeled dataset by

making the label solicitation strategy more similar to random sampling. One modification is to

“seed” the learner with a set of randomly drawn datapoint labels (Schein and Ungar, 2007; Dligach

and Palmer, 2011). In other words, the active learner is restricted to sampling uniformly for
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its first n datapoints. A second modification solicits labels from a very small random subset

of the unlabeled dataset (e.g., a pool of 10 examples (Schein and Ungar, 2007)) rather than

the entire unlabeled dataset, U . These modifications treat the symptoms resulting from IID

modeling and non-IID label solicitation rather than its fundamental cause. Unfortunately, there

is no universally working strategy for overcoming the covariate shift. That is why in many

cases, people use mixed strategies or heuristics to solicit both representative and informative

data (Huang et al., 2010).

Active learning using importance weighting has been investigated in a handful of learning

tasks (Kanamori and Shimodaira, 2003; Sugiyama, 2005; Bach, 2007). Common label solicitation

strategies often produce labeled training data that is highly non-representative, as shown in

Figure 2. For infinite pools of data, these strategies violate bounded second moments in

(Equation 2.4) asymptotically and produce high-variance predictions from small amounts of

data.

In stream-based active learning, unlabeled data points come in a stream, and the active

learner decides whether the data point is “valuable” to be labeled, or just skips it (Micchelli et

al., 2006; Loy et al., 2012). Importance Weighted Active Learning (IWAL) (Beygelzimer et al.,

2009; Karampatziakis and Langford, 2010) is a streaming-based active learning method that

generates its weights from the resulting loss from previous steps. The importance weights in

their context refer to weighting examples according to the predictive errors, which is similar

with algorithms in the boosting family (Schapire and Singer, 1999). Moreover, stream-based

active learning has a worse convergence property in terms of the required number of samples
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needed to learn a predictor in theory (Sabato and Hess, 2016), even though it is much cheaper

to solicit labels.

2.9 Analysis for Covariate Shift

There is a series of research about learning bounds for domain adaptation, among which

Ben-David et al. focus on the theoretical analysis of statistical learning bounds for covariate

shift (Ben-David et al., 2007; Ben-David et al., 2010). That thread of work gives a bound on

target generalization error given the presence of mismatched distributions. Advanced analysis

follows up (Blitzer et al., 2008; Mansour et al., 2009a; Germain et al., 2013) and also extends

the analysis to domain adaptation between multiple sources or a combination of source and

target domains (Mansour et al., 2009b; Mansour et al., 2009c). These analyses follow the same

philosophy as Ben-David et al. where the test error of the model is upper bounded by addition

of three terms: the model error on the training distribution, the distance measurement between

the training and testing marginal distributions, and a term related to the adaptive property,

which is usually hard to estimate. Therefore, it motivates a set of algorithms that minimize a

measure of divergence between the distributions to deal with domain adaptation. The focus

of the analysis also varies later from classification to regression (Cortes and Mohri, 2014) and

includes a new perspective that focuses on learning weighted majority votes (Germain et al.,

2016).

Despite the breadth of this line of research, all of the analysis starts with the empirical

performance on training data and uses divergence measurements to relate it to testing perfor-

mance. The measure of divergence often takes the form of an upper bound of the difference of
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certain functions evaluated on training and testing. Our formulation directly deals with the

test expected loss on a pre-specified prediction function, which is different by design from those

methods using empirical risk minimization. Thus, we develop new perspectives of theoretical

analysis for the robust prediction framework in this thesis.

2.10 AI Safety

AI safety research has been brought to public attention recently. Even though the break-

through to artificial general intelligence is still far, many problems have been identified as primary

subjects to study in order to build safer artificial intelligence systems in the future (Amodei et

al., 2016). Some of the goals (Hadfield-Menell et al., 2017) are related with our subject in this

thesis, including:

• Robustness: “How can we make predictions robust to novel or adversarial examples? How

can we handle corrupted training data?”

• Awareness: “How do we make a system aware of its environment and of its own limitations,

so that it can recognize and signal when it is no longer able to make reliable predictions or

decisions? Can it successfully identify strange inputs or situations and take appropriately

conservative actions?”

• Adaptation: “How can machine learning systems detect and adapt to changes in their en-

vironment, especially large changes (e.g. low overlap between train and test distributions)?

How should an autonomous agent act when confronting radically new contexts?”

Our robust prediction method provides a possible solution to predicting in new contexts, which

is more narrowly defined as covariate shift in this thesis. The resulting predictor is robust to
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large shifts and produces its most uncertain predictions when it detects the lack of training

information by estimating the density. It predicts more conservatively or even gives totally

uncertain predictions in the extreme case. Thus, it is able to admit when it does not know an

answer. The adaption is then controlled by the feature generalization in our framework. When

equipped with a generalization distribution for training features, we are able to set it explicitly

and obtain adaptation.



CHAPTER 3

METHODOLOGY: ROBUST PREDICTION FRAMEWORK FOR

COVARIATE SHIFT

3.1 General Form of the Robust Framework for Covariate Shift

Our goal is to construct a predictor that is robust to the worst case testing distribution

implied by available training data. We now provide a general form of the robust prediction

methods based on the minimax estimation for covariate shift that incorporates a set of loss

functions and generalization assumptions between training and testing distributions. We then

introduce variants and special cases that are applicable for different scenarios.

To allow flexibility in what the training data can imply, we assume there exists a generalization

distribution, Pgen(x), where features of training data are assumed to generalize. We then apply

the robust method for covariate shift to the generalization distribution instead of the original

training distribution Ptrain(x), as shown in the following definition:

Definition 1. The generalized robust covariate shift classifier results from the adversarial

loss optimization game:

min
P̂

max
P̌

EX∼Ptest

[
Loss(P̌X, P̂X)

]
such that: (3.1)

EX∼P̃gen,Y̌|X∼P̌

[
φ(X, Y̌)

]
= E(X,Y)∼P̃train

[
Pgen(X)

Ptrain(X)
φ(X, Y)

]
, (3.2)

23
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with a loss function that we want to minimize and a distribution, Pgen(X), to which training

data feature statistics are assumed to generalize.

Note that the statistics in the constraints are reweighted training sample statistics. This

provides us with flexibility to impose different assumptions—in terms of Pgen(x) densities—for

how training data should generalize.

Strong Lagrangian duality holds when Loss(·, ·) is a concave-convex function of P̌ and P̂.

This enables us to re-write the game in terms of Lagrangian multipliers θ:

min
θ

min
P̂

max
P̌

EX∼Ptest

[
Loss(P̌X, P̂X) +

Pgen(X)

Ptest(X)
θ · φ(X, Y̌)

]
− θ · φ̃+ ε||θ||2, (3.3)

where φ̃ , E(X,Y)∼P̃train

[
Pgen(X)
Ptrain(X)φ(X, Y)

]
is the feature function evaluated on empirical training

data, and we allow ε slack for matching the primal constraints, leading to regularization in the

dual. The optimization of this objective function is then composed of two steps: first, solve the

inner minimax game with respect to P̂ and P̌; second, optimize for θ in the outer minimization

to satisfy imposed constraints. We focus our attention on 0-1 loss and logarithmic loss, but

many other loss functions can also be incorporated.
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3.2 Logarithmic Loss Case

3.2.1 With No Feature Generalization: RBA predictor

When the loss function is logarithmic loss, probabilistic classification performance is measured

by the conditional logloss (the negative conditional likelihood) of the estimator, P̂(Y|X),

loglossPtest(X)

(
P(Y|X), P̂(Y|X)

)
, −
∑
x

Ptest(x)
∑
y

P(y|x) log P̂(y|x), (3.4)

under an evaluation distribution (i.e., the testing distribution, Ptest(X)P(Y|X), for the covariate

shift setting).

We assume that a set of empirically-measured statistics, c̃ = 1
N

∑
(xi,yi)∼Ptrain(x)P(y|x)

φ(xi, yi),

characterize the training distribution, Ptrain(x, y). Additionally, we assume Pgen(x) = Ptrain(x),

which means the features do not generalize to the testing distribution at all. Using the loss

function (Equation 3.4) and these statistics as constraints, Definition 2 forms a robust minimax

estimate (Topsøe, 1979; Grünwald and Dawid, 2004) of the conditional label distribution, P̂(Y|X).

Definition 2. The bias-adaptive robust probabilistic classifier is the fixed-point solution of:

min
P̂(Y|X)∈∆

max
P(Y|X)∈∆ ∩ Ξ

loglossPtest(X)

(
P(Y|X), P̂(Y|X)

)
, (3.5)

where ∆ is the conditional probability simplex: ∀x ∈ X , y ∈ Y, P(y|x) ≥ 0; ∀x ∈ X ,
∑
y P(y|x) =

1 and Ξ represents the set of distributions matching measured training statistics: EPtrain(x)P(y|x)[φ(X, Y)] =

c̃.
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This formulation can be interpreted as a two-player game (Grünwald and Dawid, 2004) in

which the estimator player first chooses P̂(Y|X) to minimize the conditional logloss and then

the evaluation player chooses distribution P(Y|X) from the set of statistic-matching conditional

label distributions to maximize conditional logloss. This minimax game reduces to a maximum

conditional entropy (Jaynes, 1957) problem:

Theorem 1. The solution of the minimax logloss game (Equation 3.5) maximizes the testing

distribution conditional entropy subject to matching statistics on the training distribution:

max
P̂(Y|X)∈∆

HPtest(x),P̂(y|x)(Y|X) , −
∑
x∈X

Ptest(x)

HP̂(Y|X=x)︷ ︸︸ ︷∑
y∈Y

P̂(y|x) log P̂(y|x) (3.6)

such that: EPtrain(x)P̂(y|x)[φ(X, Y)] = c̃,

in which the conditional entropy can be viewed as an affine function of value-dependent conditional

entropies, H(Y|X = x).

Conceptually, the solution to this optimization has low certainty (i.e., large value-conditioned

entropy, H(Y|X = x)) where the testing density is high by matching the training distribution

statistics (and often incurring small value-conditioned entropy) primarily where the testing

density is low.
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Proof. Our proof (and theorem) follows the classic maximum entropy paper (Grünwald and

Dawid, 2004). The two-player game in Definition 1 can be written as:

min
P̂(Y|X)∈∆

max
P̌(Y|X)∈∆ ∩ Ξ

EPtest(x)P̌(y|x)[− log P̂(Y|X)].

Assuming the constraint set Ξ is convex and a solution exists on the relative interior of the set,

strong duality holds and switching the order of the two players yields a solution with equivalent

value:

max
P̌(Y|X)∈∆ ∩ Ξ

min
P̂(Y|X)∈∆

EPtest(x)P̌(y|x)[− log P̂(Y|X)].

Solving the inner minimization problem assuming that we know P̌(Y|X), we get the result that

P̂(Y|X) = P̌(Y|X). Plugging it into the maximizing problem, the whole problem reduces to:

max
P̂(Y|X)∈∆

HPtest(x),P̂(y|x)(Y|X) , EPtest(x)P̂(y|x)[− log P̂(Y|X)]

such that: EPtrain(x)P̂(y|x)[φ(X, Y)] = c.

From Definition 2 and Theorem 1, our robust bias-aware classifier is built on the minimax

estimation method where there is a discrepancy between the distribution defining the constraints

for the adversarial player and the distribution evaluating the loss. It yields a test maximum
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entropy maximization problem subject to a set of training constraints. We will see how to find

the solution to this constrained convex optimization problem in the following sections.

3.2.1.1 Parametric form

The solution to the constrained optimization problem (Equation 3.6) that results from

our formulation has a parametric form (Theorem 2) with Lagrange multiplier parameters, θ,

weighing the feature functions, φ(x, y), that constrain the conditional label distribution estimate

(Equation 3.6). The density ratio, Ptrain(x)/Ptest(x), moderates the distribution’s prediction

certainty to increase when the ratio is large and decrease when it is small.

Theorem 2. The robust bias-aware (RBA) classifier for test distribution Ptest(x) estimated

from statistics of training distribution Ptrain(x) has a form:

P̂θ(y|x) =
e
Ptrain(x)

Ptest(x)
θ·φ(x,y)∑

y ′∈Y e
Ptrain(x)

Ptest(x)
θ·φ(x,y ′)

, (3.7)

which is parameterized by Lagrange multipliers θ. The Lagrangian dual optimization problem se-

lects these parameters to maximize the test distribution log likelihood: maxθ EPtest(x)P(y|x)[log P̂θ(Y|X)].
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Proof. The constrained optimization problem can be written as:

max
P̂(Y|X)

EPtest(x)P̂(y|x)[− log P̂(Y|X)]

such that: EPtrain(x)P̂(y|x)[φk(X, Y)] = ck, ∀k ∈ {1, ..., K}

∀x ∈ X : EP̂(y|x)[1|X] = 1

∀x ∈ X , y ∈ Y: P̂(y|x) ≥ 0.

Note that the final constraint is superfluous since the domain of the objective function is the

positive real numbers. The Lagrangian associated with this problem is:

L(P̂(y|x), θ, λ) =EPtest(x)P̂(y|x)[− log P̂(Y|X)] + θ ·
(
EPtrain(x)P̂(y|x)[φ(X, Y)] − c

)
+
∑
x∈X

λ(x)
[
EP̂(y|x)[1|X] − 1

]
,

where θ and λ(x) are the Lagrangian multipliers1. According to strong Lagrangian duality

(assuming a solution on the relative interior of the constraint set),

max
P̂(y|x)∈∆

min
θ,λ(x)

L(P̂(y|x), θ, λ(x)) = min
θ,λ(x)

max
P̂(y|x)∈∆

L(P̂(y|x), θ, λ(x)).

1For continuous input spaces X , the sum over x ∈ X is replaced by an integral over x ∈ X , but the
resulting distribution form is unchanged.
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So, assuming a fixed θ and λ(x), the internal maximization problem can be solved first. Taking

the partial derivative with respect to the conditional probability of a specific y and x, P̂(y|x),

∂

∂P̂(y|x)
L(P̂(y|x), θ, λ) = −Ptest(x) log P̂(y|x) − Ptest(x) + Ptrain(x)θ · φ(x, y) + λ(x),

setting it equal to zero, ∂
∂P̂(y|x)

L(P̂(y|x), θ, λ(x)) = 0, and solving, we obtain:

log P̂(y|x) = −1+
Ptrain(x)

Ptest(x)
θ · φ(x, y) + λ(x)

Ptest(x)
.

Therefore, we conclude:

P̂(y|x) = e
Ptrain(x)

Ptest(x)
θ·φ(x,y)−1+ λ(x)

Ptest(x) .

We analytically solve the normalization Lagrange multiplier terms,

λ(x) = Ptest(x)

− log
∑
y ′∈Y

e
Ptrain(x)

Ptest(x)
θ·φ(x,y ′)

+ 1

 ,

yielding the conditional probability distribution of labels (with Zθ(x) ,
∑
y ′∈Y e

Ptrain(x)

Ptest(x)
θ·φ(x,y ′)

):

P̂(y|x) =
e
Ptrain(x)

Ptest(x)
θ·φ(x,y)

Zθ(x)
=

e
Ptrain(x)

Ptest(x)
θ·φ(x,y)∑

y ′∈Y e
Ptrain(x)

Ptest(x)
θ·φ(x,y ′)

.

We have now derived a closed-form expression for P̂(y|x). We will show that the parameter

estimation for θ is equivalent with maximum log likelihood of P̂(y|x) on test distribution. Even
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though maximum log likelihood on the test distribution is impossible since we assume we do not

have test data with labels, this equivalence gives a nice justification for our method because we

will get the same set of parameters when we maximize the expected log likelihood on the test

distribution, if possible.

Plugging the expression back into the Lagrangian and solving the outer minimization problem,

we obtain

L(θ) =EPtest(x)P̂(y|x)

[
logZθ(X) −

Ptrain(X)

Ptest(X)
θ · φ(X, Y)

]
+ θ ·

(
EPtrain(x)P̂(y|x)[φ(X, Y)] − c

)
=EPtest(x)[logZθ(X)] − θ · c.

Thus, the optimal Lagrangian parameters from the dual optimization problem are:

θ = argmin
θ

EPtest(x)[logZθ(X)] − θ · c. (3.8)
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Given ck = EPtrain(x)P(y|x)[φk(X, Y)], the parameter estimation can be regarded as maximizing

the expectation of the log-likelihood over test distribution under P̂θ(y|x) =
e

Ptrain(x)
Ptest(x)

θ·φ(x,y)

Zθ(x)
:

min
θ
L(θ) = min

θ

(
EPtest(x)[logZθ(X)] − θ · c

)
= min

θ

(
EPtest(x)[logZθ(X)] − θ · EPtrain(x)P(y|x)[φ(X, Y)]

)
= min

θ

(
EPtest(x)[logZθ(X)] − θ · EPtest(x)P(y|x)

[
Ptrain(X)

Ptest(X)
φ(X, Y)

])

= max
θ

EPtest(x)P(y|x)

log

ePtrain(X)

Ptest(X)
θ·φ(X,Y)

Zθ(X)


= max

θ
EPtest(x)P(y|x)[log P̂θ(Y|X)].

We show in Figure 3 a synthetic example comparing our method to logistic regression and

importance weighting methods to demonstrate the key difference in the resulting conditional

probability distribution of the three methods.

Logistic regression and importance weighted loss minimization (Equation 2.3) extrapolate in

the face of uncertainty to make strong predictions without sufficient supporting evidence, while

the RBA approach is robust to uncertainty that is inherent when learning from finite shifted

data samples. In this example, prediction uncertainty is large at all tail fringes of the training

distribution for the robust approach. In contrast, there is a high degree of certainty for both the

logistic regression and importance weighting approaches in portions of those regions (e.g., the

bottom left and top right). This is due to the strong inductive biases of those approaches being
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Logistic regression Reweighted Robust bias-aware

Figure 3: Probabilistic predictions from logistic regression, importance weighting logloss mini-
mization, and robust bias-aware models given labeled data (‘+’ and ‘o’ classes) sampled from
the training distribution (solid oval indicating Gaussian covariance) and a testing distribution
(dashed oval Gaussian covariance) for first-order moment statistics (i.e., φ(x, y) = [y yx1 yx2]

T ).

applied to portions of the input space where there is sparse evidence to support them. The

conceptual argument against this strong inductive generalization is that the labels of datapoints

in these tail fringe regions could take either value and negligibly affect the training distribution

statistics. Given this ambiguity, the robust approach suggests much more agnostic predictions.

Moreover, unlike the importance weighting approach, our approach does not require that test

distribution support implies training distribution support (i.e., Ptest(x) > 0 =⇒ Ptrain(x) > 0

is not required). Where testing support vanishes (i.e., Ptest(x)→ 0), the classifier’s prediction

is extremely certain, and where training support vanishes (i.e., Ptrain(x) = 0), the classifier’s

prediction is a uniform distribution.
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3.2.1.2 Regularization and Parameter Estimation

In practice, the characteristics of the training distribution, Ξ, are not precisely known.

Instead, empirical estimates for moment-matching constraints, c̃ , EP̃train(x)P̃(y|x)[φ(X, Y)], are

available, but are prone to sampling error. When the constraints of Equation 3.6 are relaxed

using various convex norms, ||c̃ − EP̃train(x)P̂(y|x)[φ(X, Y)]|| ≤ ε, the RBA classifier is obtained

by `1- or `2-regularized maximum conditional likelihood estimation (Theorem 2) of the dual

optimization problem (Dud́ık and Schapire, 2006; Altun and Smola, 2006),

θ = argmax
θ

EPtest(x)P(y|x)
[
log P̂θ(Y|X)

]
− ε ||θ|| . (3.9)

The regularization parameters in this approach can be chosen using straight-forward bounds

on finite sampling error (Altun and Smola, 2006). In contrast, the importance weighting

approach to learning under sample selection bias (Shimodaira, 2000; Zadrozny, 2004) also makes

use of regularization (Sugiyama et al., 2008), but appropriate regularization parameters for it

must be haphazardly chosen based on how well the training samples represent the testing data.

Maximizing this regularized test conditional likelihood (Equation 3.9) appears difficult

because test data from Ptrg(x)P(y|x) is unavailable. We avoid the importance weighting

approach (Equation 2.3) (Shimodaira, 2000; Zadrozny, 2004), due to its inaccuracies when facing

distributions with large differences in bias given finite samples. Instead, we use the gradient
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of the regularized test conditional likelihood and only rely on training samples adequately

approximating the training distribution statistics:

c̃ − EP̃train(x)P̂(y|x)[φ(X, Y)]. (3.10)

The derivation of the gradient is as below. Taking the derivative with respect to θ, we obtain

∂

∂θk
EPtest(x)P(y|x)[log P̂θ(Y|X)] =

∂

∂θk

(
θ · c − EPtest(x)[logZθ(X)]

)
= ck − EPtest(x)

∑
y∈Y

e
Ptrain(X)

Ptest(X)
θ·φ(X,y)

Zθ(X)

Ptrain(X)

Ptest(X)
φk(X, y)


= ck − EPtest(x)P̂(y|x)

[
Ptrain(X)

Ptest(X)
φk(X, Y)

]
= ck − EPtrain(x)P̂(y|x) [φk(X, Y)] .

If we use empirical estimates for both terms, we get the gradient in Equation 3.33.

Algorithm 2 is a batch gradient algorithm for parameter estimation under our model. It

does not require objective function calculations and converges to a global optimum due to

convexity (Boyd and Vandenberghe, 2004).

It is obvious that the better our features can characterize the training distribution, the better

our estimation of the parameter will be. Figure 4 shows the comparison on two overlapping

Gaussian distribution. Meanwhile, we can observe a difference when using first order features

and second order features. When using second order features, the certainty in the overlapping
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Algorithm 2 Batch gradient for robust bias-aware classifier learning.

Input: Dataset {(xi, yi)}, training density Ptrain(x), testing density Ptest(x), feature function φ(x, y),

measured statistics c̃, (decaying) learning rate {γt}, regularizer ε, convergence threshold τ

Output: Model parameters θ

θ← 0

repeat

ψ(xi, y)← Ptrain(x)
Ptest(x)

θ · φ(xi, y) for all: dataset examples i, labels y

P̂(Yi = y|xi)← eψ(xi,y)∑
y ′ eψ(xi,y

′) for all: dataset examples i, labels y

∇L← c̃ − 1
N

∑N
i=1

∑
y∈Y P̂(Yi = y|xi) φ(xi, y)

θ← θ+ γt(∇L+ ε∇θ||θ||)

until ||ε∇θ||θ||+∇L|| ≤ τ

return θ

area, where data have relatively high density in both training and testing distribution, is much

higher. This reflects that the conditional probability is better estimated when better features

that constrain the adversarial player are provided by training data.

3.2.2 With Some Feature Generalization

In many settings, expert knowledge may be available to construct the constraint set Ξ instead

of, or in addition to, statistics c̃ , EP̃train(x)P̃(y|x)[φ(X, Y)] estimated from training data. Expert-

provided training distributions, feature functions, and constraint statistic values, respectfully
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Figure 4: The prediction setting of partially overlapping training and testing densities
for first-order (top) and second-order (bottom) mixed-moments statistics (i.e., φ(x, y) =
[y yx1 yx2 yx

2
1 yx1x2 yx

2
2]
T ). Logistic regression and the importance weighting approach

make high-certainty predictions in portions of the input space that have high testing density.
These predictions are made despite the sparseness of sampled training data in those regions (e.g.,
the upper-right portion of the testing distribution). In contrast, the robust approach “pushes”
its more certain predictions to areas where the testing density is less.

denoted P ′train(x), φ
′(x, y), and c ′, can be specified to express a range of assumptions about

the conditional label distribution and how it generalizes.

Weaker expert knowledge can also be incorporated. Figure 5 shows various assumptions

of how widely sample reweighted statistics are representative across the input space. As the
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generalization assumptions are made to align more closely with the testing distribution (Figure 5),

the regions of uncertainty shrink substantially.

Figure 5: The robust estimation setting of Figure 4 (bottom, right) with assumed Gaussian
feature distribution generalization (dashed-dotted oval) incorporated into the density ratio. Three
increasingly broad generalization distributions lead to reduced testing prediction uncertainty.

This property reflects the flexibility of our method. Even though we assume the worst case

for the unknown label distribution that is to be estimated, we can still control the extent to

which we think our features should generalize in the testing distribution by applying a different

Ptrain(x). More aggressively, if we are equipped with side information that shows how training

features generalize, more accurate Pgen(x) could be incorporated into our formulation.

Feature generalization makes it possible to utilize information shared by both training and

testing distributions and is essential to improve performance in predicting testing data. In order

to illustrate the effect of the generalization distribution, in Figure 6 we consider a synthetic
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example with data sampled from two Gaussian distributions in 2-dimensional input space, with

the training distribution totally contained in the testing distribution (two magenta ellipses). We

compare the performance of logloss-based classifier on them. 100 data points are sampled and

only the training datapoints are shown in Figure 6, with 5% of noise in both training and testing

data. We assume there exists a generalization distribution that training features generalize

to (white ellipse). After training with larger and larger generalization distribution, predictive

performance is evaluated on testing data and logloss is shown under the figures.

We can see from the figures that the generalization from training features gets broader and

broader with larger and larger generalization distributions. In the first case, Pgen(x) equals

Ptrain(x), the method is equivalent with robust covariate shift method and the prediction is

limited only to the space around where there is enough training support. In the second and third

cases, the certain portion in the whole space increases with logloss on testing data getting better.

Finally, in the last case, Pgen(x) equals to Ptest(x), the method is equivalent to importance

weighting. We can see the prediction is quite certain across the whole space in this setting. The

logloss, however, gets worse in this case due to the noise in the data. So the takeaway from this

example is that it is important to get a balance between feature generalization and robustness.

3.2.2.1 Effect of Density (Ratio) Estimation

In practice, the feature generalization is partially determined by the densities like Ptrain(x),

which need to be estimated beforehand. Especially, if we want to apply robust predictor

with some generalization, it is crucial to choose a suitable distribution Pgen(x) other than

Ptrain(x) and estimate the density accurately. The difficulties in the nature of density (ratio)
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logloss = 0.56 logoss = 0.48 logloss = 0.46 logloss = 0.75

Figure 6: Comparison of incorporating different generalization distribution (white ellipses) in
robust covariate shift classifier. Logloss evaluated on testing data points (not shown) is shown
below each figure. Colormap represents the predicted probability of P(‘+ ’|x).

estimation could lead to inaccurate predictive result from our robust predictor. Similar with the

important weighting method, we may benefit from different techniques that improve the quality

of density (ratio) estimation. This includes methods based on trimmed Maximum Likelihood

Estimation (Hadi and Luceño, 1997; Liu et al., 2017), thresholded density ratio (Smola et al.,

2009) and a biased version of density ratio (Yamada et al., 2011). Moreover, the robust method

is also less sensitive to the datapoints that has dominating weights in importance weighting

method. Because the inverse of the ratio would be small and the resulting predictive certainty

from our robust predictor is then smaller.

3.2.3 With Full Feature Generalization: Reduction to IW

Theorem 3 establishes that for empirically-based constraints provided by the expert,

EPtest(x)P̂(y|x)[φ(X, Y)] = c̃ ′ , EP̃train(x)P̃(y|x)[(Ptest(X)/Ptrain(X))φ(X, Y)].
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corresponding to strong train-to-test feature generalization assumptions, P ′train(x) , Ptest(x),

reweighted logloss minimization is a special case of our robust bias-aware approach.

Theorem 3. When direct feature generalization of reweighting training samples to the target

distribution is assumed, the constraints become

EPtest(x)P̂(y|x)[φ(X, Y)] = c̃ ′ , EP̃train(x)P̃(y|x)

[
Ptest(X)

Ptrain(X)
φ(X, Y)

]
(3.11)

and the robust classifier minimizes importance weighting logloss (Equation 2.3).

This equivalence suggests that if there is expert knowledge that reweighted training statistics

are representative of the target distribution, then these strong generalization assumptions

should be included as constraints in the RBA predictor and results in the importance weighting

approach1.

Proof. Assuming P ′train(x) = Ptest(x) for feature expectations in the constraints of Equation 3.6,

and following the same approach as the proof of Theorem 2, we obtain the form of the

RBA classifier in this case, which is the same as logistic regression, P̂(y|x) = eθ·φ(x,y)

Z ′(x) , with

Z ′θ(x) =
∑
y ′∈Y e

θ·φ(x,y ′).

1Relaxed constraints ||c̃ ′ −EP̃train(x)P̂(y|x)
[φ(X, Y)]|| ≤ ε, are employed in practice and parameters are

obtained by maximizing the regularized conditional likelihood.
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Plugging this parametric form into the Lagrangian and solving the minimization problem,

applying that c̃ ′k = EP̃train(x)P̃(y|x)
[
Ptest(X)
Ptrain(X)φk(X, Y)

]
, the problem becomes minimizing the

following:

L(θ) =EPtest(x)P̂(y|x)
[
Z ′θ(X) − θ · φ(X, Y)

]
+ θ ·

(
EPtest(x)P̂(y|x)[φ(X, Y)] − EP̃train(x)P̃(y|x)

[
Ptest(X)

Ptrain(X)
φ(X, Y)

])
=EPtest(x)[logZ ′θ(X)] − θ · c̃ ′. (3.12)

The gradient of Equation 3.12 is EPtest(x)P̂(y|x)[φ(X, Y)] − c̃ ′ = EPtrain(x)P̂(y|x)
[
Ptest(X)
Ptrain(X)φ(X, Y)

]
−

c̃ ′ ≈ EP̃train(x)P̂(y|x)
[
Ptest(X)
Ptrain(X)φ(X, Y)

]
− c̃ ′. Constraint slack and dual regularization can be

applied to allow for the noise from finite sample approximation, as described in §3.2.1.2. We

omit these in the interest of clarity and brevity. The importance weighting logloss minimization

problem assumes P̂θ(y|x) =
eθ·φ(x,y)∑

y ′∈Y e
θ·φ(x,y ′) and minimizes the following:

ll(θ) = EPtest(x)P(y|x)[− log P̂θ(Y|X)]

≈ EP̃train(x)P̃(y|x)

[
−
Ptest(X)

Ptrain(X)
log P̂θ(Y|X)

]
= EP̃train(x)

[
Ptest(X)

Ptrain(X)
logZ ′θ(X)

]
− EP̃train(x)P̃(y|x)

[
Ptest(X)

Ptrain(X)
θ · φ(X, Y)

]
= EP̃train(x)

[
Ptest(X)

Ptrain(X)
logZ ′θ(X)

]
− θ · c̃ ′. (3.13)

The approximation in the second step is based on the importance weighting assumption

(Equation 2.3). The gradient of Equation 3.13 is EP̃train(x)P̂(y|x)
[
Ptest(X)
Ptrain(X)φ(X, Y)

]
− c̃ ′, which is
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the same with the gradient of Equation 3.12. Therefore, the two approaches are equivalent in

this special case.

So in summary, there are two extremes in the logarithmic loss case.

• Reduction to Robust Bias-Aware Prediction: When Pgen(x) = Ptrain(x), this gives us a

model that is representationally equivalent to the robust bias aware prediction method (Liu

and Ziebart, 2014). The solution has a parametric form with the density ratio appearing

as: P(y|x) ∝ e
Ptrain(x)

Ptest(x)
θ·φ(x,y)

and moderates the uncertainty of the predictor to be larger for

inputs that are relatively less likely in the training data. Thus, the density ratio Ptrain(x)
Ptest(x)

in this parametric form controls the uncertainty of predictions. This method is the most

conservative model this framework generates, which limits the adversarial player to match

training sample statistics strictly.

• Reduction to Importance Weighting: If all the features are assumed to generalize fully

to the testing distribution, i.e., Pgen(x) = Ptest(x), the generalized robust covariate shift

classifier is equivalent to the importance weighting method (Equation 2.3). It produces

the most aggressive model when the P̌ could match reweighted features using Ptest(x)
Ptrain(x)

.

Note that this has been proposed and proven before (Liu and Ziebart, 2014). The good

generalization distribution should help avoid errors brought by over optimistic estimates

but also achieve better performance than no generalization.
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3.3 Zero-One Loss Case

Letting Loss(P̌X, P̂X) = P̂TCP̌—a bilinear and therefore concave-convex function of P̌ and

P̂—allows many classification losses to be represented in the cost matrix C. We can reformulate

the inner minimax game as minP̂ maxP̌ EX[P̂TC ′P̌], where C ′ = C+
Pgen(X)
Ptest(X)θφ(X, Y̌). The inner

minimax game, which is a two player zero sum game, can be solved by linear programming.

Another way to find the equilibrium of the inner minimax game for the special case of 0-1 loss

is by seeking an analytical form of the game value (Fathony et al., 2016), which brings more

computational efficiency. For the outer minimization, we take the subgradient with respect to θ,

which we approximate by reweighting training samples to the generalization distribution,

EX∼Pgen,Y̌|X∼P̌

[
φ(X, Y̌)

]
− φ̃+ 2εθ, (3.14)

and perform subgradient descent. Even though the objective function is defined under test

distribution, we are able to approximate the subgradient using training data by reweighting

training samples to the generalization distribution:

EPgen(X)

[
φ(X, Y̌)

]
−
∑

φ̃+ 2εθ (3.15)

We show two illustrative examples in Figure 7, where training distribution (solid line) and testing

distribution(dashed line) is overlapping in different ways. The prediction color map shows a

similar uncertain prediction with logloss-based classifier where there is not enough training data

support, like the top right corner in the first figure. Moreover, the 0-1 loss provides more certain
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prediction in the overlapped region while logloss-based classifier’s prediction changes gradually

in certainty from the most supported region to the least.

Figure 7: Prediction colormap with robust classifier using 0-1 loss when Pgen(x) = Ptrain(x).
The colormap shows the P(‘+ ’|x). Training data with 5% noise is also shown.

3.4 Applying Kernel Methods

Applying kernel methods is not straightforward in our robust prediction framework because

we directly minimize the expected test loss, while the standard representer theorem starts from

a regularized empirical loss. Here we use the RBA predictor as an example to show the way to

apply kernel methods and its benefit.

Our framework is based on a minimax robust estimation formulation (Grünwald and Dawid,

2004) that assumes the worst case conditional label distribution and requires only training

feature expectation matching as constraints. The approach provides conservative test predictions
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when the testing distribution does not have sufficient statistical support from the training data.

This statistical support is defined by the choice of training statistics or features. The classifier

tries to make the prediction certainty under the testing distribution as small as possible, but

feature matching constraints prevent it from doing so fully. As a result, less restrictive feature

constraints produce less certain predictions on testing data from the resulting classifier. As

shown in Figure 8(a), with limited features, the classifier may allocate most of the certainty

under portions of the training distribution (solid line) where the testing distribution (dashed

line) density is small to satisfy the training feature expectation matching constraints, leaving

too much uncertainty in portions of the testing distribution. On the other hand, when there are

more restrictive features constraining the conditional label distribution, the classifier produces

a better model of the data and gives more informative predictions with less test entropy and

logloss, as in Figure 8(b). This relation inspires our contribution: leveraging kernel methods to

provide higher dimensional features to the RBA classifier without introducing a proportionate

computational burden.

According to the representer theorem (Kimeldorf and Wahba, 1971), the minimizer of

regularized empirical loss in reproducing kernel Hilbert space can be represented by a linear

combination of kernel products evaluated on training data. Model parameters are then obtained

by estimating the coefficients of this linear combination. However, in the robust bias-aware

classification framework, the objective function of the dual problem is the regularized expected

logarithmic loss under the testing data distribution. It cannot be computed explicitly using

data because labeled test samples are unavailable. Meanwhile, the distribution discrepancy
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(a) First moment features (b) Third moment features

logloss: 0.74 logloss: 0.53
entropy: 0.93 entropy: 0.73

Figure 8: Performance comparison with the robust bias aware classifier using first-order features
(a) and using first-order through third-order features (b). Labeled training data samples (‘o’
and ‘+’ classes), training (solid line) and testing (dashed line) distribution that data are drawn
from are shown. Colormap represents the predicted probability P(y =‘+’|x). The intersection
of training distribution and testing distribution is better predicted with third-order features and
is much more uncertain when only using first moment features. The corresponding test logloss
and entropy are shown under the figures.

when evaluating the risk function and sampling training data prevents us from applying the

representer theorem directly.

A quantitative form of the representer theorem has been proposed that holds for the

continuous case (De Vito et al., 2004) in which a minimizer over a distribution—rather than

discrete samples—is sought. The minimizer of regularized expected risk is represented as the

expectation under the same probability distribution instead of a linear combination of the

training data. We utilize this result to extend the representer theorem for RBA prediction in

the covariate shift setting. We show that the minimizer of the regularized expected test risk can
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be represented as a reweighted kernel expectation under the training distribution. This enables

us to apply kernel methods to the robust bias aware classifier.

3.4.1 Kernel Methods in Other Framework under Covariate Shift

Kernel methods have been mainly employed for estimating the density ratio in importance

weighting methods in the covariate shift setting, for example, as kernel mean matching (Huang

et al., 2006; Yu and Szepesvári, 2012). The core idea is that the kernel mean in a reproducing

kernel Hilbert space (RKHS) of the training data should be close to that of the reweighted test

data and the optimal density ratio is obtained by minimizing this difference. Kernel methods

have also served as a bridge between the training and the testing domains in broader transfer

learning or domain adaptation problems. In these approaches, kernel methods are used to

project training data and testing data into a latent space where the distance between the two

distributions is small or can be minimized (Pan and Yang, 2010).

These existing applications of kernel methods for covariate shift are orthogonal to our

approach because they are based on empirical risk minimization formulations with the assumption

that training data could somehow be transformed to match testing distributions. This differs

substantially from our robust approach.

3.4.2 Extended Representer Theorem for RBA

We know that minimizing the test logarithmic loss,

θ = argmin
θ

EPtest(x)P(y|x)[− log Pθ(Y|X)] + λ||θ||22, (3.16)
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provides parameter vector estimates θ. This can be accomplished by approximating the gradient

using training samples rather than approximating the objective function (Equation 3.16). Kernel

methods are motivated for the RBA approach to provide a more sufficiently restrictive set of

constraints that forces generalization from training data samples to testing data. However,

the inability to directly apply empirical risk minimization in the RBA approach complicates

their incorporation since kernel method applications often use empirical risk minimization as a

starting point.

We extend the representer theorem in the RBA approach by first investigating the minimizer

of the regularized expected test loss. Theorem 4 shows that the minimizer of a regularized

expected test loss can instead be represented by a reweighted expectation under the training

distribution.

Theorem 4. Let X be the input space and Y be the output space, K is a positive definite real

valued kernel on X × X with corresponding reproducing kernel Hilbert space Hk, if the training

samples (xs1, y
s
1), . . . , (x

s
n, y

s
n) ∈ X × Y are drawn from a training distribution Ptrain(x)P(y|x)

and the testing samples (xt1, y
t
1), . . . , (x

t
m, y

t
m) ∈ X × Y are drawn from a testing distribu-

tion Ptest(x)P(y|x), any minimizer f∗ of Equation 3.16 in Hk, defining the conditional label

distribution,

P̂(y|x) = ef
∗(x,y)

/∑
y ′

ef
∗(x,y ′), (3.17)
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admits a representation with a form such that each f∗(xti , y
t
i) =

Ptrain(x
t
i)

Ptest(xti)
EPtrain(x)P(y|x)

[
α(X, Y)K((xti , y

t
i), (X, Y))

]
, (3.18)

where α(xi, yi) ∈ R, for 1 ≤ i ≤ m, with

θ = EPtrain(x)P(y|x) [α(X, Y)Φ(X, Y)] . (3.19)

This theorem indicates that it is possible to represent the minimizer of the expected test

objective function using reweighted training samples. Note that it is essentially different from

the kernel version of importance weighting method where the objective is first approximated

with training samples and then the kernel method is applied.

Proof. Defining Φ ′(x, y) , Ptrain(x)
Ptest(x)

Φ(x, y), the robust bias-aware label distribution can be

rewritten as P̂(y|x) = eθ·Φ
′(x,y)/Z(x), with Z(x) =

∑
y ′∈Y e

θ·Φ ′(x,y ′). The objective function is

then:

EPtest(x)P(y|x)[− log Pθ(Y|X)] + λ||θ||22 (3.20)

= EPtest(x)P(y|x)[−f(X, Y) + logZ(X)] + λ||θ||22,

where f(x, y) = 〈Φ ′(x, y), θ〉 is the function that we aim to find that minimizes this regularized

expected loss. Let K ′ be a positive definite real valued kernel on H ′k, according to the generalized
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representer theorem (De Vito et al., 2004) in this expected risk case, the minimizer f∗ takes the

form:

f∗(xti , y
t
i) = EPtest(x)P(y|x)[α(X, Y)K

′((xti , y
t
i), (X, Y))],

where K ′((xti , y
t
i), (x, y)) = 〈Φ ′(xti , yti), Φ ′(x, y)〉. Since the test label is not available in training,

the minimizer cannot be represented directly by testing data. Instead it can be represented by

training data, which, for each 1 ≤ i ≤ m, is:

f∗(xti , y
t
i) = EPtest(x)P(y|x)

[
Ptrain(x

t
i)

Ptest(xti)

Ptrain(X)

Ptest(X)
α(X, Y)K((xti , y

t
i), (X, Y))

]
=
Ptrain(x

t
i)

Ptest(xti)
EPtrain(x)P(y|x)

[
α(X, Y)K((xti , y

t
i), (X, Y))

]
.

Given f(x, y) = 〈Φ ′(x, y), θ〉 = Ptrain(x)
Ptest(y)

θ ·Φ(x, y), we obtain θ = EPtrain(x)P(y|x) [α(X, Y)Φ(X, Y)].

3.4.3 Kernel RBA Parameter Estimation

As in the non-kernelized RBA model, the objective function (Equation 3.16) is defined in

terms of the labeled testing distribution data, which is unavailable. However, the parametric

model’s form (Equation 3.17) enables this difficulty to be bypassed when employing the kernelized

minimizer (Equation 3.18). In order to estimate the parameters {α(x, y)}, we derive the gradient

of the kernel RBA predictor.
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Corollary 1 (of Theorem 4). The gradient (with respect to kernelized parameters α) of the

regularized expected loss is obtained by approximating kernel evaluations under the training

distribution with training sample kernel evaluations.

Corollary 1 indicates that the computation of the gradient only requires training samples.

This requires an approximation of the training distribution’s expected kernel evaluations with

the empirical evaluations of the sample mean, whose error can be controlled using standard

finite sample bounds, similar to kernel logistic regression.

Proof. Plugging Equation 3.19 into Equation 3.16, we obtain the form of objective function

represented by kernels and take derivatives with respect to α(x ′, y ′):

∂

∂α(x ′, y ′)

(
EPtest(x)P(y|x)[− log Pθ(Y|X)] + λ||θ||22

)
= −EPtrain(x)P(y|x)[K((x

′, y ′), (X, Y))] + EPtrain(x)P̂(y|x)[K((x
′, y ′), (X, Y))]

+ λEPtrain(x ′′)P(y ′′|x ′′)[α(X
′′, Y ′′)K((x ′, y ′), (X ′′, Y ′′))]

≈ −EP̃train(x)P̃(y|x)
[
K((x ′, y ′), (X, Y))

]
+ EP̃train(x)P̂(y|x)

[
K((x ′, y ′), (X, Y))

]
+ λEP̃train(x ′′)P̃(y ′′|x ′′)[α(X

′′, Y ′′)K(x ′, y ′), (X ′′, Y ′′)].
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(a) Linear (b) Gaussian (c) Polynomial-2 (d) Polynomial-3

logloss: 0.74 logloss: 0.65 logloss: 0.48 logloss: 0.41
entropy: 0.93 entropy: 0.86 entropy: 0.67 entropy: 0.45

Figure 9: Performance comparison with robust bias aware classifier using linear features (a),
using Gaussian kernels with bandwidth 0.5 (b), using polynomial kernels with order 2 (c) and
using polynomial kernels with order 3 (d). Ellipses show the same training and testing data
distribution as in Figure 8. The intersection of training distribution and testing distribution is
better predicted with kernel methods applied. The corresponding logloss and entropy evaluated
on the testing distribution shows that more certain and informative predictions are produced by
kernel RBA.

3.4.4 Understanding Kernel RBA

In order to illustrate the effectiveness of kernel RBA, we consider the same datasets from

Figure 8 and compare linear RBA and kernel RBA with different kernel types and parameters in

Figure 9. Even though kernel methods are usually regarded as a way to introduce non-linearity,

its main effect in kernel RBA is the expansion of the constraint space for the adversarial player

P̌(Y|X) in the two player game. As shown in Figure 9, kernel RBA achieves better (smaller

test logarithmic loss) and more informative (smaller test prediction entropy) predictions in the

intersection of training and testing distribution, while the true decision boundary is a linear one.
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Moreover, the difference between test entropy and logarithmic loss gradually gets smaller in

the last three figures. This corresponds with the property of RBA that test logarithmic loss

is always upper bounded by the test entropy (with high probability), as proven for a general

case in previous literature (Liu et al., 2015). Therefore, when a larger number of constraints are

imposed, i.e., kernel methods are applied, it forms a more restrictive constraint set for P̌(Y|X)

so that test entropy will bound test loss more and more tightly.

Note that the choice of kernel method and kernel parameters depends on the specific learning

problem because we also need to account for overfitting issues in practice. The amount of bias

also plays a role in how more training constraints brought by kernel methods help improve over

RBA method. Specifically, the larger the bias is, the more RBA will suffer from insufficient

constraints from training sample data, which results in larger entropy in test predictions.

3.4.5 Consistency of Kernel RBA

We now analyze some theoretical properties of the kernel RBA method. As stated before,

kernel RBA directly minimizes the regularized expected test loss. We start with defining

this expected test loss explicitly, parameterized by learned θ, at a specific data point (x, y) as:

LRBA(x, y) = γ(θ,x, y)−logZ, where γ(θ,x, y) = Ptrain(x)
Ptest(x)

θΦ(x, y) and logZ is the normalization

term. It is easy to check that it follows the basic form of logistic loss except γ(θ,x, y) consists of

one more component: the density ratio. Therefore, LRBA is a Lipschitz loss. Given Theorem 4,

the minimizer of expected test LRBA can be represented using training samples, we can conclude

that kernel RBA is consistent w.r.t EPtest(x,y) [LRBA(θ,x, y)] when equipped with a universal
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kernel (Micchelli et al., 2006) in training data, assuming Ptrain(x)
Ptest(x)

is accurate, according to

consistency properties for Lipschitz loss (Steinwart, 2005).

Theorem 5. Let k be an bounded universal kernel, and regularization λ tending to zero slower

than 1/m for the kernel RBA method, with θ̂ as the parameter in the resulting predictor, then

EPtest(x,y) [LRBA(θ̂,x, y)] − EPtest(x,y)[LRBA(θ∗,x, y)]
a.s.
−−→ 0.

Next, we explore whether the optimal expected LRBA, EPtest(x,y)[LRBA(θ∗,x, y)], indicates the

optimal 0-1 loss on the testing distribution1. This is similar to the universal Bayes consistency

argument w.r.t 0-1 loss (Bartlett et al., 2006), except that we are making the statement in a

specific pair of training and testing distributions.

Corollary 2 (of Theorem 5). For any pair of distributions that Ptrain(x) > 0, Ptest(x) > 0

and Ptrain(y|x) = Ptest(y|x), if η̂(x) is the kernel RBA predictor satisfying all the conditions in

Theorem 5, then EPtest(x,y)[L0−1(η̂(x), y)] − EPtest(x,y)[L0−1(η∗(x), y)]
a.s.
−−→ 0.

Note that employing a universal kernel is a sufficient condition for the consistency to

hold. Therefore, kernel methods not only provide larger number of features without increasing

computational burdens, but also facilitate the theoretical property to hold for kernel RBA. Even

though the consistency property is hard to verify empirically, this analysis provide reassurance

for producing Bayes optimal predictor when employed with infinite amounts of data. We now

prove this Corollary.

1We assume the density ratio Ptrain(x)/Ptest(x) is accurately estimated in this case and leave the
analysis for the case when it is approximate to future work.
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Proof. LRBA is a strongly proper composite loss in both the binary (Reid and Williamson, 2010)

and multi-class cases (Vernet et al., 2011), which means it satisfies LRBA(η, η̂) − LRBA(η, η) ≥

C
2 (η̂ − η)2 for any η, η̂ ∈ [0, 1], where η is the Bayes conditional label probability, η̂ is the

estimated label probability function η(θ̂, x) from RBA and C > 0 is a constant (Agarwal,

2013; Agarwal, 2014). We then have test expected 0-1 regret be bounded by the expected LRBA

regret:

EPtest(x,y)[L0−1(ĥ(x), y)] − EPtest(x,y)[L0−1(h
∗(x), y)]

≤ 2
√

EPtest(x,y)[η̂(x) − η∗(x)]2

≤ 2
√
2

C
EPtest(x,y)[LRBA(η̂(x)) − LRBA(η∗(x))],

where h is a predictor function that map conditional label probability η(x) to label. Here the

first inequality is due to property of plug-in classifiers and Jensen’s inequality and the second

inequality directly comes from the definition of strongly proper losses (Agarwal, 2013; Agarwal,

2014). Therefore, according to Theorem 5, kernel RBA is consistent w.r.t LRBA, and we then

conclude that EPtest(x,y)[L0−1(η̂(x), y)] − EPtest(x,y)[L0−1(η∗(x), y)]
a.s.
−−→ 0.

3.4.6 Comparison of the Convergence Behavior between IW and RBA

We demonstrate how the true decision boundary in the testing distribution is recovered

with an increasing number of samples when training and testing distribution are fairly close in

Figure 10. As shown in the first figure, the decision boundary in the linear case is tilted due to

the noise. Equipped with more samples and a universal kernel (Gaussian kernel), the decision
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(a) Linear-100 (b) Gaussian-200 (c) Gaussian-300 (d) Gaussian-400

accuracy: 0.760 accuracy: 0.774 accuracy: 0.789 accuracy: 0.815

Figure 10: Convergence of decision boundary in RBA classifier using linear features on 100
samples (a), using Gaussian kernels on 200 samples (b), on 300 samples (c) and on 400 samples
(d), with 20% noise in each example. Ellipses show training and testing data distribution that
closely overlap. The tiled line shows the true decision boundary. With an increasing number of
samples and universal kernels, the true decision boundary is recovered with accuracy gradually
converging to optimal.

boundary shifts to align with the true one. At the same time, the accuracy on testing data gets

better and better, roughly converging to the optimal. This property of kernel RBA corresponds

to Corollary 5 that the 0-1 loss of kernel RBA should converge to the optimal 0-1 loss in the

limit.

Note that we need kernel features to obtain consistent 0-1 loss minimization in RBA, while

importance weighting method does not, which only requires the pre-defined predictor to be

consistent on the training data distribution given accurate weights Ptest(x)/Ptrain(x). However,

that only means the importance weighting method is asymptotically unbiased in the limit. The

convergence behavior could have very high variance in practice. We next show an example to
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demonstrate that kernel RBA has better convergence tendency than kernel IW with a finite

number of data.

(a) Logloss (b) Accuracy

Figure 11: Logloss and accuracy plots as sample size increases from 100 to 300 in kernel IW and
kernel Robust methods, with Gaussian kernel, for datasets similar in Figure 10. The error bar
shows the 95% confidence interval of the sampling distribution after 20 repeated experiments.
IW methods suffer from large variance as robust methods gradually reduce variance and improves
on logloss and accuracy more consistently.

As a comparison, we show the plots of logloss and accuracy of Kernel IW (solid line) and

Kernel Robust (dashed line) methods after 20 repeated experiments using increasing number of

samples in Figure 11. The dataset is similar with the example in Figure 10 with 10% noise and

training and testing distribution closely overlapped. The kernel used here is Gaussian kernel.

As shown in the error bars, even though the importance weighted loss converges to the test loss

in the limit in theory, it suffers from larger variance and sensitivity to noise in reality when
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there is only limited number of samples. The reason is that it can be dominated by data with

large Ptest(x)/Ptrain(x) weights, like points with ‘+’ labels in the right-upper corner in Figure 10.

Those noise points will push the decision boundary to the left-bottom direction in order to suffer

less logloss. On the other hand, Kernel Robust is more robust to noise and keeps reducing the

variance and improving the mean logloss and accuracy. This is not only due to the inherently

more modest predictions that robust methods produce on biased testing distribution, but also

due to the consistency property it enjoys as stated in Theorem 5 and its Corollary. Even though

the number of samples is still small and limited here, the training and testing distribution is

close enough to reflect the convergence tendency with the increasing of training samples.

3.5 Robust Multi-view Reformulation

3.5.1 View-based Feature Generalization

The choice of the generalization distribution contributes heavily to the resulting prediction

on testing data. We now propose a possible set of assumptions for the generalized formulation

in the case when there are multiple views of features. We then explicitly apply assumptions

about how each individual view of feature will generalize to the testing distribution. We denote

the variables outside of view v as x−v. If we assume that certain view-based features partially

generalize from the training distribution to the testing distribution by assuming only the input
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variables outside of view v generalize to testing distribution, this corresponds with the following

relationships between inputs:

Pgenv(x−v|xv) = Ptest(x−v|xv) (3.21)

Pgenv(xv) = Ptrain(xv). (3.22)

Applying the above assumptions in the generalized formulation, the right hand side of the

constraints for those generalized views take the form of an importance weighting of view v’s

feature vector based on the non-view input variables, x−v:

E(X,Y)∼P̃train

[
Ptest(X−v|Xv)

Ptrain(X−v|Xv)
φv(Xv, Y)

]
. (3.23)

We use these partially reweighted features for those generalize features to formulate a new

predictor for classification under covariate shift. This view-based robust classifier leverages

partial generalization of features, which is possible in many applications when there exists noise

or covariate shift in only certain feature views. This provides a solution that is robust to shift

in a subset of feature views but also utilizes the information from the ones that are not shifted.

Leveraging the view-based feature generalizations of Equation 3.23, we re-formulate the

adversarial game in Definition 3 with set Vg of generalized views and set Vo of non-generalized

views of features.
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Definition 3. The robust multi-view covariate shift classifier is the solution to the

adversarial loss optimization game:

min
P̂

max
P̌

EX∼Ptest

[
Loss(P̂X, P̌X)

]
. (3.24)

such that: ∀v ∈ Vg,

EX∼P̃train,Y̌|X∼P̌

[
Ptest(X−v|Xv)

Ptrain(X−v|Xv)
φv(Xv, Y̌)

]
= E(X,Y)∼P̃train

[
Ptest(X−v|Xv)

Ptrain(X−v|Xv)
φv(Xv, Y)

]
,

and for: ∀v ′ ∈ Vo,

EX∼P̃train,Y̌|X∼P̌

[
φv ′(Xv ′ , Y̌)

]
= E(X,Y)∼P̃train

[φv ′(Xv ′ , Y)] .

This definition implies that there are two different sets of constraints: one set for features that

we believe could be generalized, and another set for features that we believe could not. Solving

this constrained game formulation based on minimax duality and the method of Lagrangian

multipliers for solving convex optimization problems, we have the parametric form of Theorem

6 for conditional label probability distribution when Loss(P̌X, P̂X) = EY̌|X∼P̌[− log P̂(Y̌|X)].

Theorem 6. The robust multi-view covariate shift classifier when minimizing expected logloss

has the following parametric form:

P̂θ(y|x) ∝ e
∑
v

Ptrain(xv)

Ptest(xv)
θv·φv(xv,y)+

Ptrain(x)

Ptest(x)

∑
v ′ θv ′ ·φv ′(xv ′ ,y), (3.25)

where view-specific density ratios, Ptrain(xv)/Ptest(xv) are applied on the generalized views Vg

and joint density ratios Ptrain(x)/Ptest(x) are applied on non-generalized views Vo.
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We show in the next theorem that in the logloss case, the parameter estimation for θ is

equivalent with maximizing the conditional likelihood of testing data with P̂(Y|X) defined as

Equation 3.25. Therefore, the parameter can be estimated by using a gradient descent algorithm

outlined in Theorem 7 by using reweighted training samples.

Proof. Solving the constrained minimax game (3), the minimax game reduces to a constrained

maximum entropy problem:

min
P̂

max
P̂

EX∼Ptest,Ŷ|X∼P̂

[
− log P̂(Ŷ|X)

]
. (3.26)

such that: ∀v ∈ Vg,EX∼P̃train,Ŷ|X∼P̂

[
Ptest(X−v|Xv)

Ptrain(X−v|Xv)
φv(Xv, Ŷ)

]
= E(X,Y)∼P̃train

[
Ptest(X−v|Xv)

Ptrain(X−v|Xv)
φv(Xv, Y)

]
,

and for: ∀v ′ ∈ Vo,EX∼P̃train,Ŷ|X∼P̂

[
φv ′(Xv ′ , Ŷ)

]
= E(X,Y)∼P̃train

[φv ′(Xv ′ , Y)]

∀x ∈ XEŶ|X∼P̂[1|X] = 1 ∀x ∈ X , y ∈ Y : P̂(y|x) ≥ 0. (3.27)

Solving this constrained optimization problem using Lagrangian multiplier method, the La-

grangian is:

L(P̂(y|x), θ, λ(x)) = EX∼Ptest,Ŷ|X∼P̂

[
− log P̂(Ŷ|X)

]
+ θv · (EX∼P̃train,Ŷ|X∼P̂

[
Ptest(Xv|X−v)

Ptrain(Xv|X−v)
φv(Xv, Ŷ)

]
− E(X,Y)∼P̃train

[
Ptest(Xv|X−v)

Ptrain(Xv|X−v)
φv(Xv, Y)

]
) + θv ′ · (EX∼P̃train,Ŷ|X∼P̂

[
φv ′(Xv ′ , Ŷ)

]
− E(X,Y)∼P̃train

[φv ′(Xv ′ , Y)]) +
∑
x∈X

λ(x)[EŶ|X∼P̂[1|X] − 1]. (3.28)
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Taking the partial derivative with respect to the conditional probability of a specific y and x,

P̂(y|x),

∂

∂P̂(y|x)
L(P̂(y|x), θ, λ(x)) = −Ptest(x) log P̂(y|x) − Ptest(x) +

∑
v

Ptrain(xv)Ptest(x−v|xv)θv · φv(xv, y)

+
∑
v ′

Ptrain(x)θv ′ · φv ′(xv ′ , y) + λ(x), (3.29)

setting it equal to zero, and solving it, we obtain:

log P̂(y|x) = −1+
∑
v

Ptrain(xv)

Ptest(xv)
θv · φv(xv, y) +

∑
v ′

Ptrain(x)

Ptest(x)
θv ′ · φv ′(xv ′ , y) +

λ(x)

Ptest(x)
.

(3.30)

Therefore,

P̂(y|x) = e
−1+

∑
v
Ptrain(xv)

Ptest(xv)
θv·φv(xv,y)+

∑
v ′
Ptrain(x)

Ptest(x)
θv ′ ·φv ′ (xv ′ ,y)+

λ(x)
Ptest(x) . (3.31)

We analytically solve the normalization terms, yielding the conditional probability distribution:

P̂(y|x) =
e
∑
v
Ptrain(xv)

Ptest(xv)
θv·φv(xv,y)+

∑
v ′
Ptrain(x)

Ptest(x)
θv ′ ·φv ′ (xv ′ ,y)

Zθ(x)
, (3.32)

where Zθ(x) =
∑
y ′∈Y e

∑
v
Ptrain(xv)

Ptest(xv)
θv·φv(xv,y ′)+

∑
v ′
Ptrain(x)

Ptest(x)
θv ′ ·φv ′ (xv ′ ,y ′).
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Theorem 7. The parameters of the robust multi-view covariate shift classifier are obtained

through implicitly maximizing the conditional likelihood of testing data by taking gradient steps

as:

EX∼P̃train,Y̌|X∼P̌

[∑
v

Ptest(X−v|Xv)

Ptrain(X−v|Xv)
φv(Xv, Y̌) +

∑
v ′

φv ′(Xv ′ , Y̌)

]

−
∑
v

E(X,Y)∼P̃train

[
Ptest(X−v|Xv)

Ptrain(X−v|Xv)
φv(Xv, Y) +

∑
v ′

φv ′(Xv ′ , Y̌)

]
. (3.33)

Note that even though we discuss the logloss case here in more detail, the same generalization

assumption could also be applied to other loss functions. For those losses, there may not exist

analytic forms for P̂, but the sub-gradient should follow the same form as in (Equation 3.33).

Therefore, as long as we are able to find an equilibrium of the inner minimax game, we can solve

the optimization by sub-gradient descent.
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Proof. Plugging in the parametric form of P̂(y|x) into the Lagrangian objective function, we

have:

θ∗ = argmax
θ

E(X,Y)∼Ptrain [
∑
v

Ptest(X−v|Xv)

Ptrain(X−v|Xv)
θv · φv(Xv, Y) (3.34)

+
∑
v ′

θv ′ · φv ′(Xv ′ , Y)]

− EX∼Ptest

[
log
∑
y ′∈Y

e
∑
v
Ptrain(Xv)

Ptest(Xv)
θv·φv(Xv,y ′)+

∑
v ′
Ptrain(X)

Ptest(X)
θv ′ ·φv ′ (Xv ′ ,y ′)

]
(3.35)

= argmax
θ

E(X,Y)∼Ptest

[∑
v

Ptrain(Xv)

Ptest(Xv)
θv · φv(Xv, Y)

+
∑
v ′

Ptrain(X)

Ptest(X)
θv ′φv ′(Xv ′ , Y)

− log
∑
y ′∈Y

e
∑
v
Ptrain(Xv)

Ptest(Xv)
θv·φv(Xv,y ′)+

∑
v ′
Ptrain(X)

Ptest(X)
θv ′ ·φv ′ (Xv ′ ,y ′)

]

= argmax
θ

E(X,Y)∼Ptest

[
log P̂θ(Y|X)

]
(3.36)

3.5.2 Understanding the Multi-view Classifier

We consider an illustrative synthetic example with data sampled from two overlapping

Gaussian distributions (X) and identical true decision boundary (Y) in Figure 12. In 50 training

and 100 testing data points, 10% of the example are chosen uniformly at random to be noise

(label flipped). We train four methods, all of which are logloss-based, using training data points

(shown in the figures, roughly within the smaller ellipses) and evaluate them on testing data

(not shown in the figures, roughly within larger ellipse). The colormap represents the testing
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conditional label distribution in the whole space. Logloss evaluated on the testing data is listed

below each figure.

(a) LR (b) IW (c) Robust (d) Robust - View

logloss = 1.18 logoss = 0.916 logloss = 0.859 logloss = 0.729

Figure 12: Comparison of Logistic Regression (a), Importanct Weighting Logistic Regression (b),
Robust Bias-Aware Prediction (c) and View-based Robust Bias-Aware Prediction (d). Logloss
evaluated on testing data points (not shown) is shown below each figure. Colormap represents
the predicted probability of P(‘+’ |x).

We see from the figures that the true decision boundary (the tilted line) could not be

recovered by any of the methods using the limited data points. In fact, this is why covariate

shift problems are so challenging, even though the assumption Ptrain(y|x) = Ptest(y|x) holds. LR

makes very certain predictions based on the training data, but produces an incorrect decision

boundary and a worse logloss. IW, with reweighted training data, provides a less abrupt decision

boundary but remains very certain towards the corners of the input space. The robust method,

on the other hand, restricts the certain prediction regions only to areas with enough training
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data to support the prediction. The rest of the testing distribution space is covered with uniform

predictions. It achieves better testing logloss by being more conservative. However, the question

remains: could we leverage more information from the training data? We obtain our answer

from the last model: our robust view-based model, which leverages the fact that the view-based

training and testing feature distribution is much closer in the vertical dimension (x2) than in the

horizontal dimension (x1). Thus, the assumption that the training vertical feature dimension

can generalize to the testing distribution in our generalized robust covariate shift classifier.

This corresponds with a parametric form of P̂θ(y|x) ∝ e
Ptrain(x)

Ptest(x)
θ1·φv(x1,y)+

Ptrain(x2)

Ptest(x2)
θ2·φv(x2,y). The

partial generalization robust method makes it possible to produce a solution that leverages the

benefits of both the conservative robust method and the IW method. It maintains uncertainty

in areas that have too little data to make predictions with any certainty (the top and bottom

area in the input space), but gives more meaningful predictions in areas where the method

expects the data could provide reasonable extrapolations.

3.6 Bounding Expected Worst Case Test Loss

One significant difference between the robust covariate shift methods and empirical risk

minimization based methods is that we directly minimize the worst case expected loss under the

testing distribution. The reason why this works is that the (sub-)gradient in our formulation

only depends on the training distribution, so we are able to use training data to approximate it.

On the contrary, the ERM based methods directly approximate the expected loss function using

limited data as in Equation 2.3. Despite this difference, we can easily control the error in our

(sub-)gradients and therefore bound the error in the optimized worst case expected test loss.
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We first define the notation WCLoss(θ) as the (regularized) worst case loss under the testing

distribution, which is equivalent with the Lagrangian form of the optimization game of robust

covariate shift classifier. Note that WCLoss(θ) differs in meaning from the Loss(P̂, P̌) we used

to optimize in the original framework in (Equation 3.1). For example, in logloss case, the worst

case testing loss is obtained from the solved parametric form of P̂ and P̌, which is the worst case

predictor Pθ(Ŷ|X), to the Loss(P̂, P̌): EPtest(X,Ŷ) [− log Pθ(Ŷ|X)].

Theorem 8. Assuming we have m training samples and n dimensional features, the Lagrangian

form of the robust covariate shift classifier (Equation 3.3) is strongly convex in terms of θ with

strong convexity constant M, all density estimation is accurate, and the inner minimax game in

(Equation 3.3) is solved exactly, the expected loss on testing distribution of the robust covariate

shift classifier is bounded, with probability 1− δ:

EPtest(X)[WCLoss(θ̂)] ≤ EPtest(X)[WCLoss(θ∗)] +
n log 2n

δ

4Mm
.

Proof. We first investigate the empirical approximation of (sub-)gradient G̃ and see how far it

could deviate from the true (sub-)gradient G.

|||G||2 − ||G̃||2| = |||E(X,Y)∼Ptrain [φ(X, Y)] − φ̃||
2 − ||E(X,Y)∼P̃train

[φ(X, Y)] − φ̃||2|,

≤ ||E(X,Y)∼Ptrain [φ(X, Y)] − E(X,Y)∼P̃train
[φ(X, Y)]||2

=

n∑
i=1

|E(X,Y)∼Ptrain [φi(X, Y)] − E(X,Y)∼P̃train
[φi(X, Y)]|

2, (3.37)
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where n is the total dimension of features in φ(x, y). According to Hoeffding bound:

P(|E(X,Y)∼Ptrain [φi(x, y)] − E(X,Y)∼P̃train
[φi(X, Y)]| > ε) < 2e

−2nε2 (3.38)

Then we have the following, with probability 1− δ,

|||G||2 − ||G̃||2| ≤
nlog2nδ
2m

. (3.39)

The reason we are interested in the error in norm-2 of (sub-)gradient is we want to utilize the

property that for a strongly convex objective function the following is true:

f(t) −mins∈Sf(s) ≤
1

2M
||Of(t)||2, (3.40)

where M is the constant for strong convexity, i.e. f(s) ≥ f(t)+Of(t)T (s− t)+ M
2 ||s− t||

2. This is

also true when the objective function is not smooth, when Of(t) can be replaced by subgradient

g ∈ ∂f(x). Therefore, if we assume mins∈Sf(s), which in our case is the true worse case expected

test loss, is reached at ||G||2 = 0, then the objective function is bounded by

E(X,Y)∼Ptest [Loss(θ̂)] ≤ E(X,Y)∼Ptest [Loss(θ∗)] +
nlog 2nδ
4Mm

, (3.41)

with probability 1 − δ, where Loss(θ) is the worst case loss function in the general game

formulation.
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This bound indicates the distance between the expected test loss induced by our learned

model from m training data and the optimal test loss is decreasing with speed O( 1m). Note that

the strong convexity condition is easy to satisfy even with non-smooth loss functions with L2

regularization.

3.7 Shift-Pessimistic Active Learning

3.7.1 Algorithm

We develop shift-pessimistic active learning method using RBA predictor. The active learner

estimates P̂(y|x) using our RBA predictor. Here the labeled set is our training data and the

pool of unlabeled data is our test. Since we add one data point to the labeled set at every

iteration, the training and testing distribution changes over time, which we need to estimate

before training using the robust model. We denote the training and testing distribution using

PL(x) and PD(x) and give the basic formulation in the active learning setting. We show the

label solicitation for pool-based active learner with covariate shift correction in Algorithm 3

3.7.2 Toy Examples

We first give a comparison for a previous toy example dataset. The key difference from

previous methods—RBA’s limited, more pessimistic extrapolation from available labeled data—is

shown in Figure 13b.

3.7.3 Uncertainty Sampling Strategy

There are many possible label solicitation strategies for active learning. We look at the most

commonly used one: uncertain sampling. And we found that the uncertainty of our robust

bias-aware distribution closely matches to its generalization error (Theorem 9). Note that there
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Algorithm 3 Label solicitation for pool-based active learner with covariate shift correction

Input: unlabeled pool dataset U , labeled dataset L

Output: example xi ∈ U to solicit label

Estimate labeled distribution density PL(x)

Estimate full data distribution density PD(x) (D = U ∪ L)

Estimate P̂(y|x) from dataset L, PL(x), and PD(x).

Compute valuei ← metric(P̂,xi,D,U) for each xi ∈ U

return xargmaxi valuei (example label to solicit)

are also disadvantages of the uncertainty sampling strategy under certain circumstances. Our

active learner could also benefit from other sampling strategies or mixed sampling strategies.

Theorem 9. Assuming that the actual label distribution P(y|x) is within the set Ξ̃, the full data

entropy of our robust predictor upper bounds its generalization loss:

HD(Y|X) , EPtest(x)P̂(y|x)
[
− log P̂(Y|X)

]
(3.42)

≥ EPtest(x)P(y|x)[− log P̂(Y|X)].



72

(a) Optimistic active learner (b) Pessimistic active learner

Figure 13: Probabilistic predictions ranging from dark red (+ class) to dark blue (* class) are
shown after 10 examples solicited (white circles) from active learning using: (a) a standard
optimistic approach—uncertainty sampling (Lewis and Gale, 1994) with logistic regression; and
(b) uncertainty sampling using our more pessimistic robust bias-aware active learner.

Proof. The proof follows from two classic papers (Grünwald and Dawid, 2004; Topsøe, 1979)

using: (a) strong duality; (b) the equivalence of the logloss minimizer to its evaluation distribution

when given; and (c) the assumption that P(y|x) is in set Ξ̃:

min
P̂(y|x)

max
P̌(y|x)∈Ξ̃

EPtest(x)P̌(y|x)[− log P̂(Y|X)]

(a)
= max
P̌(y|x)∈Ξ̃

min
P̂(y|x)

EPtest(x)P̌(y|x)[− log P̂(Y|X)]

(b)
= max
P̂(y|x)∈Ξ̃

HD(Y|X)
(c)

≥ EPtest(x)P(y|x)[− log P̂(Y|X)].
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Constructing a constraint set Ξ̃ from finite sample data to satisfy the premise of Theorem 9 is

overly restrictive. Instead, we can relax the guarantee to be probabilistic based on finite sample

error bounds in Corollary 3.

Corollary 3. When δ defining the `1-norm or `2-norm constraint set,

∣∣∣∣∣∣EP̃train(x)P̂(y|x)[φ(X, Y)] − EP̃train(x)P̃(y|x)[φ(X, Y)]
∣∣∣∣∣∣ ≤ δ,

is chosen using sample error bounds between the labeled data distribution’s sample statistics and

expected statistics,

P
(∣∣∣∣∣∣EP̃train(x)P̂(y|x)[φ(X, Y)] − EP̃train(x)P̃(y|x)[φ(X, Y)]

∣∣∣∣∣∣ ≥ δ) ≤ α,

then the bound (Equation 3.42) of Theorem 9 holds with probability at least (1− α).

The constraint set slack δ corresponds to `1 or `2 regularization weight λ in the dual optimization

problem (Dud́ık and Schapire, 2006).

3.7.4 Optimizing Different Loss Functions

There is a natural difference in the beliefs we obtain by minimizing different loss functions.

We give a synthetic example in Figure 14 to compare the robust logloss minimizer (RBA) and

the robust 0-1 loss minimizer. The similarity between these two figures is that we can see clearly

how the density ratio affects the prediction. High certainty is mainly located around the region

where data points are labeled, which means the data has high density in our training distribution.

However, because of the 0-1 loss minimizer’s tendency to give a margin-like classifier, the density
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(a) Log-loss learner (b) Zero-one loss learner

Figure 14: Differences in beliefs of the adversarial log-loss active learner and the adversarial
zero-one loss active learner on a synthetic dataset.

ratio will dramatically skew the “decision boundary” according to different densities, while

within the region that is far from the “decision boundary,” we observe high certainty.



CHAPTER 4

APPLICATIONS

4.1 Robust Bias-Aware Predictor (RBA)

(This section is partially published in the Proceedings of the Neural Information Processing

Systems Conference as Robust Classification Under Sample Selection Bias (Liu and Ziebart,

2014).)

We demonstrate the benefit of the robust bias-aware predictor (RBA) using UCI benchmark

datasets (Bache and Lichman, 2013).

4.1.1 Comparative Approaches and Implementation Details

We compare three approaches for learning classifiers from biased sample training data:

• Logistic regression maximizes conditional likelihood on the training data,

max
θ

EP̃train(x)P̃(y|x)[log Pθ(Y|X) − ε||θ||]; (4.1)

• Importance weighting logistic regression minimizes the conditional likelihood of

training data reweighted to the testing distribution (Equation 2.3),

max
θ

EP̃train(x)P̃(y|x)[(Ptest(x)/Ptrain(x)) log Pθ(Y|X) − ε||θ||]; (4.2)

75
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• Robust bias-aware classification robustly minimizes testing distribution logloss (Equation 3.7)

trained using direct gradient calculations (Equation 3.33).

As statistics/features for these approaches, we consider nth order uni-input moments, e.g.,

yx1, yx
2
2, yx

n
3 , . . ., and mixed moments, e.g., yx1, yx1x2, yx

2
3x5x6, . . .. We employ the CVX

package (Grant and Boyd, 2014) to estimate parameters of the first two approaches and batch

gradient ascent (Algorithm 2) for our robust approach.

4.1.2 Empirical Performance Evaluations and Comparisons

We empirically compare the predictive performance of the three approaches. We consider

four classification datasets, selected from the UCI repository (Bache and Lichman, 2013) based

on the criteria that each contains roughly 1,000 or more examples, has discretely-valued inputs,

and has minimal missing values. We reduce multi-class prediction tasks into binary prediction

tasks by combining labels into two groups, as described in Table I.

TABLE I: DATASETS FOR RBA EVALUATION

Dataset Features Examples Negative labels Positive labels
Mushroom 22 8,124 Edible Poisonous

Car 6 1,728 Not acceptable all others
Tic-tac-toe 9 958 ‘X’ does not win ‘X’ wins

Nursery 8 12,960 Not recommended all others
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We generate randomized subsets of these classification datasets to use as our training and

testing samples. We accomplish this by sampling a random likelihood function for each from

a Dirichlet distribution and then sample training and testing data without replacement in

proportion to each datapoint’s likelihood. We stress the inherent difficulties of the corresponding

prediction task; by design, the training and testing samples are often very different with less

overlap that our synthetic experiments. Label imbalance in the samples is also common, despite

sampling independently from the example label (given input values) due to samples being drawn

from focused portions of the input space. We combine the likelihood function and statistics

from the sample to form näıve training and testing distribution estimates.

We sub-sample each original dataset to create biased training and testing datasets using the

following procedure:

1. Randomly split half of the dataset into a training set and half into a testing set.

2. For each input dimension, independently sample Ptrain(xk) and Ptest(xk) uniformly from

the (|Xk|− 1)-simplex (i.e., a Dirichlet(1, . . . , 1) distribution).

3. Compute Ptrain(xi) or Ptest(xi) for each example in the training and testing datasets.

4. Sub-sample N examples from the training and testing distributions in proportion to

Ptrain(xi) or Ptest(xi) to form P̃src(x) and P̃trg(x).

5. Set Ptrain(xk)← αPtrain(xk)+(1−α)P̃src(xk) and set Ptest(xk)← αPtest(xk)+(1−α)P̃trg(xk)

for each input dimension k.
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We incorporate the fifth step to address datasets with very low likelihood around the sampled

training and testing probability distributions. In these datasets, the empirical distribution

would deviate substantially from the initial training and testing distributions otherwise. We use

N = 100 and α = 0.5 in our experiments.

Our training and testing distributions make a strong independence assumption, P(x) =∏K
k=1 P(xk). We limit the negative influence of this näıve independence assumption by bounding

the training-testing probability ratio to [0.0001, 1]. Without these bounds, we encounter a large

number of testing samples that should occur less than “one in a billion” times in our samples of

100 examples.

For the Mushroom dataset, we omitted the stalk-root feature in our experiments due to it

having missing values for some instances.

We considered a range of regularization weights and report the best one for each dataset.

Table II lists the best regularization weights employed for each dataset and approach.

TABLE II: REGULARIZATION WEIGHT FOR DIFFERENT DATASETS

Dataset Logistic Regression Reweighted Robust
Mushroom 5 10 0.02

Car 0.5 0.2 0
Nursery 0.2 0.1 0.02

Tic-tac-toe 0.5 0.5 0
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Using the best regularization weights is generous to the logistic regression and importance

weighting approaches, as their regularization weights are based on how well their inductive

biases hold in the testing distribution. This is unknown in the sample selection bias setting.

In contrast, approximation error rates for the training distribution statistics guide appropriate

regularization parameters for the robust approach. As noted in Section 4.1.2, extremely large

regularization can be employed to reduce (or increase) the logloss to 1, but then nothing is

learned.

We evaluate the logistic regression model, the importance weighted maximum likelihood

model, and our bias-adaptive robust approach. For each, we use first-order and second-order

non-mixed statistics: x21y, x
2
2y, . . . , x

2
Ky, x1y, x2y, . . . , xKy. For each dataset, we evaluate testing

distribution logloss, EP̃test(x)P̃(y|x)[− log P̂(Y|X)], averaged over 50 random training and testing

samples. We employ log2 for our loss, which conveniently provides a baseline logloss of 1 for a

uniform distribution. We note that with exceedingly large regularization, all parameters will be

driven to zero, enabling each approach to achieve this baseline level of logloss. Unfortunately, since

testing labels are assumed not to be available in this problem, obtaining optimal regularization

via cross-validation is not possible. After trying a range of `2-regularization weights, we find that

heavy `2-regularization for the logistic regression model and the importance weighting model is

needed in our experiments. Without this heavy regularization, the logloss is often extremely

high. In contrast, heavy regularization for the robust approach is not necessary; we employ only

a mild amount of `2-regularization corresponding to training statistic estimation error.
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Figure 15: Left: Log-loss comparison for 50 training and testing distribution samples between
the robust and reweighted approaches for the Car classification task. Right: Average logloss with
95% confidence intervals for logistic regression, reweighted logistic regression, and bias-adaptive
robust testing classifier on four UCI classification tasks.

We show a comparison of individual predictions from the importance weighting approach

and the robust approach for the Car dataset on the left of Figure 15. The pairs of logloss

measures for each of the 50 sampled training and testing datasets are shown in the scatter plot.

For some of the samples, the inductive biases of the importance weighting approach provide

better predictions (left of the dotted line). However, for many of the samples, the inductive

biases do not fit the testing distribution well and this leads to much higher logloss.

The average logloss for each approach and dataset is shown on the right of Figure 15. The

robust approach provides better performance than the baseline uniform distribution (logloss of 1)

with statistical significance for all datasets. For the first three datasets, the other two approaches

are significantly worse than this baseline. The confidence intervals for logistic regression and the

importance weighting model tend to be significantly larger than the robust approach because of
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the variability in how well their inductive biases generalize to the testing distribution for each

sample. However, the robust approach is not a panacea for all covariate shift problems; the

No Free Lunch theorem (Wolpert, 1996) still applies. We see this with the Nursery dataset, in

which the inductive biases of the logistic regression and importance weighting approaches do

tend to hold across training and testing distributions, providing better predictions.

4.2 Robust Zero-One Loss Minimization

We conduct experiments on real datasets and investigate the performance of the robust 0-1loss

minimization from the general framework. In the method, we just consider all features as one

view and assumes Pgen(x) = Ptrain(x). We chose four datasets from the UCI repository (Bache

and Lichman, 2013) for this set of experiments. We show the detailed information about each

dataset in Table III. In order to create covariate shift, we synthetically generate 30 separate

experiments in each dataset by drawing 100 training samples and 100 testing data samples from

it, following similar sampling procedure in previous literature (Huang et al., 2006). We show

the details below.

1. Separate the data into training and testing portions according to a feature;

2. Perform Principal Component Analysis (PCA) on both portions of data respectively;

3. Generate a random value a and b from different intervals;

4. Randomly choose a principal component i, calculate the weight vector as normpdf(mi, µi, σi),

where µi = min(mi) + (max(mi) −min(mi))/a, σi = std(mi)/b;
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5. Sample examples for the testing data samples from the testing portion of data in proportion

to the weight vector values;

6. Follow the same procedure to sample examples for the training data.

Note that we normalize the data to [0, 1] beforehand. For each method, the regularization

parameter λ is chosen using 5-fold cross validation, or importance weighted cross validation

(IWCV) on a parameter range λ ∈ [2−16, 2−12, 2−8, 2−4, 1]. Here the traditional cross validation

is applied on LR, while IWCV is applied on all the other methods. Note that the traditional

cross validation process is not correct anymore in the covariate shift setting where the training

marginal data distribution of P(x) is different from the testing distribution (Sugiyama et al.,

2007). Therefore, standard cross validation only matches the logistic regression method which

ignores the bias. Though IWCV was originally designed for the importance weighting methods,

it is proven to be unbiased for any loss function. We apply it to perform model tuning for our

robust methods, even though the error estimate variance could be large.

TABLE III: DATASETS FOR ROBUST 0-1 EVALUATION

Dataset Features Examples Classes
Seed 7 210 3

Vertebral 6 310 3
Vehicle 18 946 4
Spam 57 4601 2
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4.2.1 Logistic Regression as Density Estimator

We use a discriminative density estimation method that leverages the logistic regression

classifier for estimating the density ratios. According to Bayes rule:

Ptrain(x)

Ptest(x)
=
P(x|train)

P(x|test)
=
P(train|x)P(x)/P(train)

P(train|x)P(x)/P(test)
=
P(train|x)

P(test|x)

P(test)

P(train)
,

where the second ratio P(test)/P(train) is computed as the ratio of the number of test and train

examples, and the first one is obtained by training a classifier with training data labeled as one

class and test data as another class. Similar ideas also appears in recent literature (Lopez-Paz

and Oquab, 2016). The resulting density ratio of this method is also closely controlled by

the amount of regularization. We also choose the regularization weight by cross validation on

λ ∈ [2−16, 2−12, 2−8, 2−4, 1].

4.2.2 Comparative Approaches

We evaluate three methods:

• Robust bias aware 0-1 classifier (Robust 0-1) utilizes the general robust covariate

shift classification framework (Equation 3.1) with Loss(P̌X, P̂X) = P̂TCP̌ with C as the 0-1

loss matrix and Pgenv(x) = Ptrain(x).

• Adversarial 0-1 classifier (Adv 0-1) minimizes expected 0-1 loss on the training

distribution and has an optimization objective of: minθ minP̂ maxP̌ EX∼Ptrain [P̂
TCP̌ +∑

v θvφv(Xv, Y̌)] −
∑
v θvφ̃v + ε||θ||2, where φ̃ = E(X,Y)∼P̃train

[φv(Xv, Y)] here.
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• Multiclass SVM (SVM) follows the popular Crammer-Singer method for multiclass (Cram-

mer and Singer, 2001) by minimizing hinge loss on training data.

4.2.3 Empirical Performance Evaluations and Comparisons

We show the comparison of accuracy in Table IV and highlight methods that are either

the best under paired t-test or not statistically distinguishable with significance level 0.1 in

bold. We can see that Robust 0-1 performs better than other methods except in Seed, where

it is statistically no worse than others. And Robust 0-1 can improve from Adv 0-1 at most

times. That means minimizing worst case test loss using the adversarial game formulation

(Equation 3.1) under covariate shfit is better than minimizing training loss and ignoring the

bias using the same formulation.

TABLE IV: AVERAGE ACCURACY COMPARISON FOR ROBUST 0-1 EVALUATION

Datasets Robust 0-1 Adv 0-1 SVM
Seed 0.834 0.820 0.820

Vertebral 0.823 0.805 0.748
Vehicle 0.547 0.535 0.497
Spam 0.757 0.711 0.724

4.3 Kernel RBA

We demonstrate the advantages of our kernel RBA approach on datasets that are either

synthetically biased via sampling or naturally biased by a differing characteristic or noise. We
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chose three datasets from the UCI repository (Bache and Lichman, 2013) for synthetically

biased experiments, based on the criteria that each contains approximately 1,000 or more

examples and has minimal missing values. They are Vehicle, Segment and Sat. For each

dataset, we synthetically generate 20 separate experiments by taking 200 training samples

and 200 testing data samples from it, generally following the sampling procedure described in

previous literature (Huang et al., 2006), which we summarize as:

1. Separate the data into training and testing portion according to mean of a variable;

2. Randomly sample the testing portion as the testing dataset;

3. In the training portion, calculate the sample mean µ and sample covariance σ, then

sample in proportion to weights generated from a multivariate Gaussian with µ ′ = µ/5

and σ ′ = σ/5 as the training dataset. If the dimension is too large to sample any points,

perform PCA first and use the first several principle components to obtain the weights.

We follow the same procedure for density estimation and model selection as in the robust 0-1

loss minimization experiments. Therefore, we omit some duplicated details here.

We also investigate three naturally biased covariate shift datasets. One of them is Abalone,

in which we use the sex variable (male, female, and infant) to create bias. Specifically, we use

infant as training samples and the rest as test samples. Note that we use the simplified 3-category

classification problem of the Abalone dataset (Clark et al., 1996) and also sample 200 data points

respectively for the training and testing datasets. We chose this data because the sex variable

makes train-test separation easier and reasonable, and allows the covariate shift assumption

to generally hold. In addition, we evaluate our methods on the MNIST dataset (LeCun et al.,
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1998), which we reduce to binary predictive tasks of differentiating ‘3’ versus ‘8’ and ‘7’ versus

‘9’. We add a biased Gaussian noise with mean 0.2 and standard deviation 0.5 to the testing

data to form the covariate shift, i.e. noise z ∼ N(0.2, 0.5). We randomly sample 2000 training

and testing samples and repeat the experiments 20 times. Shown in Figure 16 is the comparison

between one batch of training samples and testing samples.

(a) Training Samples (b) Testing Samples

Figure 16: Binarized MNIST data with noise added to the testing set to form covariate shift.

We show more detailed information of the datasets we used in Table V We expect the

method to also work for higher dimensional dataset when equipped with accurate density ratio

estimation. Since the development and analysis of this paper focus more on the Kernel RBA

method itself and not on density estimation, we believe smaller datasets are more suitable for

the evaluation.
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TABLE V: BIASED DATASETS FOR KERNEL RBA EVALUATION

Dataset Features Examples Classes

Vehicle 18 846 4

Segment 19 2310 7

Sat 36 6435 7

Abalone 7 4177 3

MNIST-3v8 784 5885 2

MNIST-7v9 784 5959 2

4.3.1 Methods

We evaluate our approach and five other methods:

• Kernel robust bias aware classifier (Kernel Robust) adversarially minimizes the

test distribution logloss using kernel methods, trained using direct gradient calculations as

in Corollary 1.

• Kernel logistic regression (Kernel LR) ignores the covariate shift and maximizes

the training data conditional likelihood, maxθ EPtrain(x)P(y|x) [log Pθ(Y|X)] − λ‖θ‖22, where

P̂θ(y|x) =
exp(θ·Φ(x,y))∑

y ′∈Y exp(θ·Φ(x,y ′)) and λ is the regularization constant.

• Kernel importance weighting method (Kernel IW) maximizes the conditional test

data likelihood as estimated using importance weighting with the density ratio,

max
θ

EPtrain(x)P(y|x)
[
Ptest(x)

Ptrain(x)
(log Pθ(Y|X))

]
− λ‖θ‖22 (4.3)
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• Linear robust bias aware prediction (Robust) adversarially minimizes the test

distribution logloss without utilizing kernelization , i.e. only first order features are used,

trained using direct gradient calculations (Equation 3.33).

• Linear logistic regression (LR) utilizes only first order features in the training condi-

tional log likelihood maximization.

• Linear importance weighting method (IW) uses first order features only to maximize

importance weighted training likelihood.

4.3.2 Performance Evaluation

We compare average logloss, EP̃trg(x)P̃(y|x)[− log2 P̂(Y|X)], for each method in Table VI. We

perform a paired t-test among each pair of methods. We indicate the methods that have the

best performance in bold, along with methods that are statistically indistinguishable from the

best (paired t-test with 0.05 significance level). As shown from the table, the average logloss

of the Kernel Robust method is significantly better or not significantly worse than all of the

alternatives in all of the datasets. Moreover, we make three main observations.

First, logloss of Kernel Robust and Robust is bounded by the uniform distribution baselines,

while LR and IW methods can be arbitrary worse when the bias is large, like in Vehicle. This

aligns with the properties of robust methods because when the bias is large, the density ratio

becomes small and results in uniform predictions. This indicates that robust methods should be

preferred if robustness or safety is a concern when the amount of covariate shift is large.

Secondly, Kernel Robust consistently improves the performance from Robust while kerneliza-

tion may harm LR and IW methods, like in Sat. The reason is when the implicit assumption
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TABLE VI: AVERAGE LOGLOSS COMPARISON FOR KERNEL RBA EVALUATION

Dataset Kernel
Robust

Kernel LR Kernel
IW

Robust LR IW

Vehicle 1.92 16.41 87.69 1.94 8.15 4.94
Segment 2.53 9.62 83.75 2.55 4.37 4.01
Sat 2.44 205.27 111.57 2.57 13.27 8.95

Abalone 1.58 8.52 6.91 1.59 8.73 2.09
MNIST-7v9 0.42 0.44 0.49 0.55 0.80 0.59
MNIST-3v8 0.39 0.46 0.41 0.48 0.84 0.60

that (reweighted) training features can be generalize to test distribution in LR and IW does not

hold anymore, incorporating larger dimensions of features could make predictions worse. For

Kernel Robust and Robust, even though overfitting could still be a concern, the density ratio

could adjust the certainty of the prediction and function like a regularizer based on the data’s

density in training and testing distribution, so that they suffer less from overfitting.

Finally, we find that Kernel Robust improvement over Robust is related to how far the

training input distributions is from the test input distribution. The natural bias in Abalone

comes from one feature variable and could be smaller than the bias in synthetic data. This

could be why the improvement of logloss in Abalone is smaller than other datasets.

4.3.3 Accuracy Analysis

We investigate the accuracy (the complement of the misclassification error) of the predictions

provided by each of the six approaches on both synthetically biased datasets and naturally

biased datasets (in Table VII), where the significant best performance in paired t-test are
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TABLE VII: AVERAGE ACCURACY COMPARISON FOR KERNEL RBA EVALUATION

Dataset Kernel
Robust

Kernel LR Kernel IW Robust LR IW

Vehicle 38% 37% 33% 36% 36% 28%
Segment 71% 70% 37% 67% 68% 36%
Sat 33% 30% 28% 10% 10% 16%

Abalone 46% 43% 42% 48% 47% 39%
MNIST-3v8 88% 86% 86% 87% 75% 85%
MNIST-7v9 87% 85% 86% 86% 71% 83%

demonstrated in bold numbers. The significance level here is 0.05. Despite the discrepancy

between the logarithmic loss and the misclassification error, the Kernel Robust approach provides

statistically better performance than other alternative methods, except on the Abalone dataset.

The logarithmic loss is an upper bound of the 0-1 loss. However, the bound can be somewhat

loose, so a lower log loss does not necessarily indicate a smaller classification error rate. This is

a natural outcome of using logarithmic loss for convenience of optimization. Since logloss is the

natural loss measure for probabilistic prediction and is being optimized by all methods (and

not accuracy), we validate our method by comparing to other methods using it. Accuracy and

logloss do not correlated perfectly, so it is unsurprising that this small difference exists on a

measure not being directly optimized.

4.4 Robust Multi-view Predictor

In our evaluation of the robust multi-view predictor, we regard each feature dimension as

a specific view to simplify our experimental setup for UCI datasets. We use the same UCI

datasets as in experiments of robust 0-1 minimization. We use KL-divergence as the criterion
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to determine the features that are generalizable or not. Besides the UCI datasets, we also

evaluate our method on the multi-view dataset Language (Amini et al., 2009), which consist of

text features of documents in five different languages (English-EN, French-FR, Germany-GR,

Italian-IT, and Spanish-SP). This dataset is generated by translating documents originally in one

language to the other four languages using machine translation. We regard different language

features as different views for this task. In our experiment, we use the document originally in

English. We use two languages in training and testing, with one view the same and the other

view different between training and testing.

There are six categories as labels, more than ten thousand features for each language and

around twenty thousand samples for English documents. To better estimate the densities we use

PCA to reduce the dimension of features to 100 for each view and randomly sample 500 data

points as training and 500 data points as testing. Therefore, we construct different settings for

this dataset. For example, we can train using English and French views and test on Germany

and French views (EN FR - GR FR). We evaluate the multi-view robust covariate shift approach

and three other methods:

• Multi-view robust bias aware classifier (Robust-View) utilize the general robust

covariate shift classification framework applying multi-view feature generalization assump-

tions as in Definition 3.

• Robust bias aware classifier (Robust) adversarially minimizes the testing distribution

logloss Equation 3.9, using the parametric form as P(y|x) ∝ e
Ptrain(x)

Ptest(x)

∑
v θv·φv(xv,y).
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• Logistic regression (LR) maximizes the conditional log likelihood on training data,

max
θ

EPtrain(x)P(y|x) [log Pθ(Y|X)] − λ‖θ‖2,

where P̂θ(y|x) =
exp(θ·Φ(x,y))∑

y ′∈Y exp(θ·Φ(x,y ′)) and λ is the regularization constant. This approach

ignores the covariate shift of the problem setting entirely.

• Importance weighting method (IW) maximizes the conditional testing data likelihood

as estimated using importance weighting with the density ratio,

max
θ

EPtrain(x)P(y|x)
[
Ptest(x)

Ptrain(x)
(log Pθ(Y|X))

]
− λ‖θ‖2.

We follow the same procedure for bias sampling, density estimation and model selection as in

the robust 0-1 loss minimization experiments. Therefore, we omit some duplicated details here.
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4.4.1 Logistic Regression as Density Estimator

We use a discriminative density estimation method that leverages the logistic regression

classifier for estimating the density ratios. For Ptrain(X)
Ptest(X) and Ptrain(Xv)

Ptest(Xv)
, we can follow the principle

as in Section 4.2.1. For the view-related densities, we follow the principle below:

Ptest(X−v|Xv)

Ptrain(X−v|Xv)
=
Ptest(X)

Ptrain(X)
· Ptrain(Xv)

Ptest(Xv)

=
P(X|test)

P(X|train)
· P(Xv|train)

P(Xv|test)

=
P(test|X)P(X)/P(test)

P(train|X)P(X)/P(train)
· P(train|Xv)P(Xv)/P(train)

P(test|Xv)P(Xv)/P(test)

=
P(test|X)

P(train|X)
· P(train|Xv)

P(test|Xv)
. (4.4)

The resulting density ratio of this method is also closely controlled by the amount of

regularization. We also choose the regularization weight by cross validation.

4.4.2 Generalization Criterion

For UCI datasets, we regard each feature dimension as a view. We evaluate the KL-

divergence of the training distribution Ptrain(xv) and the testing distribution Ptest(xv) after

density estimation to determine whether we should assume the generalization of each view,

i.e., v ∈ Vo or v ∈ Vg. We use the threshold of 0.1, that if K < 0.1, we consider Ptrain(xv) to
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be similar enough with Ptest(xv) and v ∈ Vg, otherwise, v ∈ Vo. We include both training and

testing inputs in the computation of KL-divergence.

K(Ptrain(xv), Ptest(xv))

=
∑

xv∈xtrain

Ptrain(xv)log(Ptrain(xv)/Ptest(xv))

+
∑

xv∈xtest

Ptest(xv)log(Ptest(xv)/Ptrain(xv))

For Language datasets, we assume we do not have prior knowledge for which view of features

should be generalized. We conduct density estimation on both views and detect the one which

is similar between training and testing. In practice, we could rely on both data observation and

expert knowledge to choose the generalization criterion.

TABLE VIII: ROBUST MULTI-VIEW EVALUATION: AVERAGE LOGLOSS COMPARISON
FOR UCI DATASETS

Dataset Robust-View Robust LR IW
Seed 1.039 1.105 1.385 1.299

Vertebral 0.577 0.830 0.811 0.810
Vehicle 1.68 1.82 2.82 2.59
Spam 0.853 1.804 1.981 0.969
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We compare logloss of each method in Table VIII. We denote the significantly best result

under paired t-test with significance level 0.05 in bold numbers for UCI datasets. We can see

from the Table VIII that Robust-View outperforms all other methods in most datasets for UCI

experiments by having the lowest logloss. Moreover, it always improve from Robust, except

being comparable with Robust in Seed for logloss and in Vehicle for accuracy. On the other

hand, the performance of the other methods are mixed, with Robust achieves slightly better

logloss and comparable accuracy with LR and IW. In practice, LR and IW are actually even

worse than the Random baseline in terms of logloss due to the possibly large shift between

different languages. Robust -View and Robust are usually better than the baseline due to their

robustness property. Robust -View can improve from Robust in both logloss by utilizing the

generalization property of certain features, especially when Robust is even worse than IR in

accuracy because it is overly uncertain with logloss close to random.

TABLE IX: ROBUST MULTI-VIEW EVALUATION: AVERAGE LOGLOSS COMPARISON
FOR LANGUAGE DATASETS

Dataset Robust-View Robust LR IW
EN FR - GR FR 1.88 2.44 11.04 10.39
EN GR - FR GR 1.69 2.38 6.53 6.15
IT GR - FR GR 1.96 2.48 8.40 7.59
EN IT - GR IT 1.94 2.54 12.72 8.31
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For Language datasets, whose performance comparison is in Table IX, LR and IW are

actually even worse than the Random baseline in terms of logloss due to the possibly large shift

between different languages. In contrast, Robust -View and Robust are usually better than

the baseline due to their robustness property. And Robust -View can improve from Robust in

both logloss by utilizing the generalization property of certain features, especially when Robust

is even worse than IR in accuracy because it is overly uncertain with logloss close to random.

The reason why Robust is so close to uniform is that it regards all features as a whole and

differentiate training and testing data. It disregards the fact that there are useful information

that could be used to improve the predictive performance, which is exactly what motivates this

work.

4.5 Shift-Pessimistic Active Learning

(This section is partially published in the Association for the Advancement of Artificial Intelli-

gence Conference as Shift-Pessimistic Active Learning Using Robust Bias-Aware Prediction (Liu

et al., 2015).)

We have covered the evaluation of several robust predictors in supervised learning tasks with

covariate shift. Next, we investigate the performance of different active learning approaches,

including our shift-pessimistic active learning using four datasets from the UCI repository (Bache

and Lichman, 2013). We consider datasets with real-valued features to simplify density estimation

for methods that address covariate shift. We reduce multi-class datasets to binary classification

tasks by merging classes (typically plurality class versus other) as detailed in Table X.
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TABLE X: DATASETS FOR SHIFT-PESSIMISTIC ACTIVE LEARNING EVALUATION

Dataset Features Examples Positive labels Negative labels
Iris 4 150 Setosa all others

Seed 7 210 Type “1” all others
Banknote 4 1372 Class “0” Class“1”

E. coli 8 336 Cytoplasm all others

In each of our experiments, we divide the dataset into a training set (80% of data) and a testing

set (the remaining 20%).

4.5.1 Learning Methods

We apply three different models for estimating the conditional label distribution:

• Standard logistic regression (abbreviated as standard in this section) uses the Boltz-

mann distribution P(y|x) = eθ·φ(x,y)/(
∑
y ′∈Y e

θ·φ(x,y)) and minimizes the logloss of the

labeled distribution samples, minθ EP̃train(x)P̃(y|x)[− log P̂θ(Y|X)] + λ||θ||;

• importance weighting logistic regression (abbreviated as reweighted) uses the same

logistic regression model, but with parameters estimated to minimize the importance

weighted estimate of the target loss, which is minθ EP̃train(x)P̃(y|x)
[
− Ptest(X)
Ptrain(X) log P̂θ(Y|X)

]
+

λ||θ|| ;

• Robust bias-aware prediction (abbreviated as robust) uses the conditional label

distribution of Equation 3.7 trained by maximizing target likelihood (Equation 3.9) (ap-

proximating the gradient with labeled datapoints).

We employ two label solicitation strategies for each model:
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• Uncertainty sampling (abbreviated as active) selects the example with the largest

value-conditioned entropy from the unlabeled dataset. The first datapoint label solicited

is selected uniformly at random (the same first datapoint as passive learners); and

• Random sampling (abbreviated as passive) selects each datapoint uniformly at random

from the unlabeled dataset.

In addition, we apply a density-ratio-based strategy with our robust approach:

• Density-ratio sampling (abbreviated as active density) selects the example with the

highest PD(x)/PL(x) under the estimated distribution.

We conduct 30 experiments with each learner on randomized training/testing splits of each

dataset and report the mean and the 95% confidence interval of the predictive performance

after every data point solicited in the first 20 steps, corresponding to 0.05 significance level

in student t-test. We focus on the first 20 examples because real applications require good

predictive performance with limited labeled data.

4.5.2 KDE as Density Estimation

The degree that features from labeled data generalizes to other portions of the input space

in the robust approach is controlled by the density estimates. If the labeled data distribution

estimate provides minimal support beyond the labeled data samples, density predictions outside

of the labeled samples will tend to be overly conservative and maximally uncertain. If the

labeled data distribution estimate provides too broad of support for the full data distribution,

the guarantees of Corollary 3 will be improbable (i.e., a large α will be required). If the full data



99

distribution is misestimated, the prediction guarantees (Corollary 3) will not apply to actual

full data distribution samples.

When the dimension of the data is not too high, we apply Gaussian kernel density estimation

(KDE) on the labeled examples to estimate the labeled data density,

PL(x) =
1

|L|
∑
xi∈L

KH(x − xi)

with a bandwidth that minimizes the logloss on the whole dataset, H=argminEPD(x)[− log P̂(X)],

from a restricted set of bandwidths proportionate to a covariance estimate of the entire data,

H = αΣ̂(D). For higher dimensional data (Seed and E. coli), we first apply principal component

analysis to reduce the dimensionality to a space that covers at least 95% of the input variance,

before applying Gaussian KDE. We use the uniform distribution over training and testing

datapoints for the full data distribution density.

As for the pool, which is the our target in active learning, we leverage specific properties of

the active learning setting to help alleviate some of the potentially negative consequences of

inaccurate density estimation. We narrow our focus to minimizing the loss on a specific set of
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full dataset distribution samples (i.e. all labeled and unlabeled datapoints). Thus, we employ

the uniform distribution of datapoints,

PD(x) =


1
|D| if x ∈ D

0 otherwise,

to represent the full data distribution density. This would be ill-advised for general covariate

shift prediction, because it would make the density ratio PL(x)/PD(x) infinite (i.e, no “penalty”

for overly certain predictions) at many labeled sample datapoints in L. However, for the active

learning setting, all labeled data samples will have support in the full distribution, since L ⊆ D,

so this situation does not occur.

4.5.3 Features and Regularization

For all methods, we use first-order and second-order statistics of the inputs as features: x21y,

x22y, . . ., x
2
Ky, x1x2y, x1x3y, . . ., xK−1xKy, x1y, x2y, . . . , xKy, y. Since the regularization weight λ

corresponds to slack in the constraints (Corollary 3) and feature scales differ, we use a different

regularization weight for each feature corresponding with the 95% confidence interval of the

feature’s mean, 2σ(φ(x, y))/
√
|L|. However when the scale of the density ratio is overwhelmingly

large (E.coli) or small (Banknote), we reweight each feature’s mean using the learning model’s

density ratio before taking the standard deviation in the reweighted and robust algorithms.

4.5.4 Optimistic Active Learning versus IID Learning

We first investigate how the optimistic active learning methods (active standard and active

reweighted) compare to IID logistic regression (passive standard). In Figure 17a and Figure 17b,
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(a) Iris (b) Seed

(c) Ecoli (d) Banknote

Figure 17: Logloss of optimistic active learning versus passive (IID) learning for the first 20
datapoints of learning averaged over 30 randomized withheld evaluation dataset splits with 95%
confidence intervals.

the logloss of active standard and active reweighted are worse than passive learners for the entire

20 steps of learning with statistical significance. This is similarly the case for the active standard

and active reweighted algorithms in the first 10 steps of learning in Banknote (Figure 17d).

This frequent poor performance results from the active learners getting “stuck” soliciting labels

suggested by its optimistic biases to be useful rather than labels that would correct its incorrect
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beliefs. Further prediction improvements often require first exhausting from the pool of examples

that conform to the learner’s incorrect beliefs. Only when the inductive biases of labeled data

match those of the unlabeled data, as in active methods for the E. coli dataset, will the optimistic

active learner not provide high logloss in the initial steps of active learning.

(a) Iris (b) Seed

(c) Ecoli (d) Banknote

Figure 18: Logloss of shift-pessimistic active learning versus passive (IID) learning for the first
20 datapoints of learning averaged over 30 randomized withheld evaluation dataset splits with
95% confidence intervals.
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4.5.5 Pessimistic Active Learning versus IID Learning

We next compare the performance of our shift-pessimistic active learning method (active

robust and active density robust) to several passive learning methods. As shown in Figure 18,

active robust and active density robust perform better from the very beginning than agnostic

baseline, which would provide a logloss of 1, and are better than, or at least comparable to

any other methods for all amounts of available data. Small error bars reflect high stability

compared to other methods. In contrast, IID learning methods are quite unstable especially at

the beginning due to the bias of a small, randomly chosen sample. Active density robust cannot

significantly compete with passive robust because it only considers densities when soliciting

labels. Passive robust outperforms passive standard and reweighted, which shows that robust

bias-aware prediction effectively controls the extent to which the prediction should generalize.

However, since the inductive biases from labeled data tend to generalize accurately using the

passive standard and reweighted methods on the E.coli dataset, they exceed the passive robust

method given 20 labeled examples.

4.5.6 Comparing Classification Accuracy

Though all the algorithms do not minimize classification error directly, the log loss upper

bounds the non-convex classification error (0-1 loss). Thus, one might expect that efficiently

reducing logarithmic loss in the active learning setting will lead to low classification error. We

investigate this in Figure 19, comparing the classification error rate of all seven methods on

each dataset. The active robust approach provides the highest prediction accuracy for almost
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(a) Iris (b) Seed

(c) Ecoli (d) Banknote

Figure 19: Classification error rate of all learning methods for the first 20 datapoints of learning
averaged over 30 randomized withheld evaluation dataset splits. The legend is shared for all
datasets. Active standard and active reweighted overlap in (a).

all amounts of available labeled data. In contrast, the high logarithmic loss predictions of active

standard and active reweighted in Iris and Seed translate to poor classification error rates.



CHAPTER 5

CONCLUSION AND DISCUSSION

5.1 Conclusion

In conclusion, we propose a general framework for robust prediction for covariate shift and

active learning. The framework takes advantage of robust minimax estimation and is flexible

for different loss function minimization. The resulting predictor is the most uncertain under

constraints from (generalized) training data. We can compute the (sub)-gradient using only

labeled training data for parameter estimation. We show several models generated by our

framework work better than state-of-art importance weighting methods for covariate shift. We

also develop a pool-based active learning methods based on robust logarithmic loss minimizing

and robust Hamming loss minimizing with structured features.

It is a difficult learning task when the covariates shift between training and testing and we

lack test labels. We want to be robust to the potentially large shift, so our robust predictor

not only produce labels with less certainty when needed, it could also abstain and produce a

completely uncertain probability. This reflects a very important rule that is ignored in many

machine learning areas, which is we should not make overly optimistic estimates or predictions

when we are not sure, especially in areas that is safety critical like self-driving cars and health

care. Otherwise, we could make wrong decisions and suffer huge loss. In many sequential

predictive tasks like active learning, the mistakes made in early stages harm the learning process

105
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later severely, which is also an area that more conservative predictions may contribute to

improve.

5.2 Things Learned from the Study

The study of covariate shift dates back years ago, as well as the study of transfer learning

and domain adaptation. Literature in these areas mostly emphasize approaches to leverage

information from one domain or distribution to help learning in another domain or distribution.

The general assumption that is always implicitly valid there is as long as there are certain

similarities or connections between those two or multiple domains, it is going to help. However,

it is not true in many experimental results we demonstrated when the importance weights are

ill-estimated or models are misspecified. Importance weighting can be regarded as possibly

the simplest adaptation approach. This infers that it is actually very important to either tune

parameters or engineer features in other adaptation methods, in order to obtain the right degree

of generalization. Therefore, it is necessary to face the challenge and investigate the robust way

to transfer or adapt that is developed under more constrained assumptions like covariate shift

and generates bounded worst-case predictor.

However, it is still tricky to balance the robustness and model informativeness of our approach.

Adaptation is all we want when equipped with adequate information. How to detect whether

we should adapt or not? We managed to develop the multiview perspective and manipulate the

density estimation for different feature views. We also need prior information or some empirical

test from the training and testing input variables to set the feature generalization explicitly. In

other words, our predictor has the feature generalization distribution explicitly in the model and
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there are pros and cons. The pros are obvious that it is clear how the adaptation is accomplished

while the cons could be the difficulties in constructing feature generalization distributions.

The logarithmic loss and the zero-one loss is our main focus of loss function in this thesis.

One thing comes to our attention is how they penalize probabilistic prediction performance

differently, and how this affects the effectiveness of our methods compared with others. In the

logarithmic loss case, it penalizes predictions that are confident but wrong severely and provides

the guarantee of RBA that it is always bounded by the random baseline which provides benefits

useful in practice. Our advantage is not as significant in the zero-one loss cases since it penalizes

wrong predictions, either certain or uncertain, by the same. The fact that we would produce

more randomized probability could still be very useful in certain areas. However, it does not

stand out as much in plain supervised learning settings.

5.3 Challenges in the Future

There are several possible directions for future research opportunities following the thesis.

Firstly, we have not explored much in the area of structured prediction. In the future it is

promising to explore covariate shift in structured prediction, where we need a better density

estimator for high-dimensional data. Secondly, we could benefit from an approach that learns

the densities and model parameters at the same time, since they work together to determine the

model generalization. Deep networks could also be an interesting structure to explore in this

direction.

Theoretical analysis about covariate shift so far is still limited, especially in that the analysis

does not often guide the development of better algorithms. We have some analysis in our thesis
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that is specially investigated about our own methods, which is a very special case. In the future,

the more general covariate shift method analysis that could lead to better algorithms and better

condition to check before applying methods in applications is an interesting area.

Last but not least, as mentioned in the thesis, the more conservative predictions could benefit

some interactive machine learning methods besides pool-based active learning. For example, in

many cases, we need to balance exploiting by prediction given the current, possibly incomplete

knowledge of the model parameters and exploring sample space to gain more information about

the model. Whether there is potential to utilize our robust prediction framework there could be

the good question to answer to widen the range of our possible applications.
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Reddi, S. J., Póczos, B., and Smola, A.: Doubly robust covariate shift correction. 2014.

Reid, M. D. and Williamson, R. C.: Composite binary losses. Journal of Machine Learning
Research, 11(Sep):2387–2422, 2010.

Sabato, S. and Hess, T.: Interactive algorithms: from pool to stream. In Conference on Learning
Theory, pages 1419–1439, 2016.

Schapire, R. E. and Singer, Y.: Improved boosting algorithms using confidence-rated predictions.
Machine learning, 37(3):297–336, 1999.

Schein, A. I. and Ungar, L. H.: Active learning for logistic regression: an evaluation. Machine
Learning, 68(3):235–265, 2007.

Sebastiani, F.: Machine learning in automated text categorization. ACM computing surveys
(CSUR), 34(1):1–47, 2002.

Settles, B.: Active learning. Synthesis Lectures on Artificial Intelligence and Machine Learning,
6(1):1–114, 2012.

Settles, B. and Craven, M.: An analysis of active learning strategies for sequence label-
ing tasks. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing, pages 1070–1079. Association for Computational Linguistics, 2008.



117

Shimodaira, H.: Improving predictive inference under covariate shift by weighting the log-
likelihood function. Journal of Statistical Planning and Inference, 90(2):227–244, 2000.

Sinha, A., Namkoong, H., and Duchi, J.: Certifiable distributional robustness with principled
adversarial training. arXiv preprint arXiv:1710.10571, 2017.

Smola, A., Song, L., and Teo, C. H.: Relative novelty detection. In Artificial Intelligence and
Statistics, pages 536–543, 2009.

Steinwart, I.: Consistency of support vector machines and other regularized kernel classifiers.
IEEE Transactions on Information Theory, 51(1):128–142, 2005.

Sugiyama, M.: Active learning for misspecified models. In Advances in Neural Information
Processing Systems, pages 1305–1312, 2005.

Sugiyama, M. and Kawanabe, M.: Machine Learning in Non-stationary Environments:
Introduction to Covariate Shift Adaptation. MIT Press, 2012.

Sugiyama, M., Krauledat, M., and Müller, K.-R.: Covariate shift adaptation by importance
weighted cross validation. The Journal of Machine Learning Research, 8:985–1005, 2007.

Sugiyama, M., Nakajima, S., Kashima, H., Buenau, P. V., and Kawanabe, M.: Direct importance
estimation with model selection and its application to covariate shift adaptation. In Advances
in Neural Information Processing Systems, pages 1433–1440, 2008.

Tang, Y., Zhang, Y.-Q., Chawla, N. V., and Krasser, S.: Svms modeling for highly im-
balanced classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), 39(1):281–288, 2009.

Tewari, A. and Bartlett, P. L.: On the consistency of multiclass classification methods. Journal
of Machine Learning Research, 8(May):1007–1025, 2007.

Tong, S. and Koller, D.: Support vector machine active learning with applications to text
classification. Journal of machine learning research, 2(Nov):45–66, 2001.

Topsøe, F.: Information theoretical optimization techniques. Kybernetika, 15(1):8–27, 1979.

Vernet, E., Reid, M. D., and Williamson, R. C.: Composite multiclass losses. In Advances in
Neural Information Processing Systems, pages 1224–1232, 2011.



118

Wang, H., Xing, W., Asif, K., and Ziebart, B.: Adversarial prediction games for multivariate
losses. In Advances in Neural Information Processing Systems, pages 2728–2736, 2015.

Wang, Y., Kucukelbir, A., and Blei, D. M.: Robust probabilistic modeling with bayesian data
reweighting. In International Conference on Machine Learning, pages 3646–3655, 2017.

Wen, J., Yu, C.-N., and Greiner, R.: Robust learning under uncertain test distributions:
Relating covariate shift to model misspecification. In Proc. of the International Conference
on Machine Learning, pages 631–639, 2014.

Wolpert, D. H.: The lack of a priori distinctions between learning algorithms. Neural Comput.,
8(7):1341–1390, 1996.

Yamada, M., Suzuki, T., Kanamori, T., Hachiya, H., and Sugiyama, M.: Relative density-
ratio estimation for robust distribution comparison. In Advances in neural information
processing systems, pages 594–602, 2011.
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