
Building Deductive Proofs of LTL Properties for Iteratively Refined Systems

BY

ANNA BERNASCONI
B.S., Politecnico di Milano, Milan, Italy, September 2012

M.S., Politecnico di Milano, Milan, Italy, July 2015

THESIS

Submitted as partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Chicago, 2016

Chicago, Illinois

Defense Committee:

Lenore D. Zuck, Chair and Advisor

Aravinda Prasad Sistla

Pier Luca Lanzi, Politecnico di Milano

To my models,

your claims,

and our intersections.

ii

ACKNOWLEDGEMENTS

This thesis was born by chance: several people have contributed to its idea. Making it

something real is my biggest satisfaction.

A sincere thank you to Professor Carlo Ghezzi for his kindness and to Professor Lenore D.

Zuck for her inspiration and ideas. For the neverending patience and guidance during all the

work I thank Professor Paola Spoletini. Thank you also to Dr. Claudio Menghi for infinite

motivation he passed on to me.

To my family, my models, I dedicate everything. From the first efforts till the end. To my

parents that always back me up, and to my sister, my example and reference. Thank you to my

friends. Thank you to Madrid that gave me freedom, and to Chicago that gave me perspective.

Without even realizing it, this thesis tells a story about building things step by step, in

such a way that they fulfill all our expectations, and none of the things we refuse. This story

is about running after our most positive ways of being, never ending up in a blind alley.

AB

iii

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1
1.1 Motivation . 6
1.2 Original contributions and structure of the thesis 8

2 BACKGROUND AND USED FORMALISMS 11
2.1 Modeling the system . 11
2.1.1 Complete models . 12
2.1.2 Incomplete models . 14
2.1.3 Refining incomplete models . 16
2.2 Formalizing the specification . 20
2.2.1 Syntax and semantics of LTL . 21
2.2.2 LTL to automata . 22
2.2.3 Labeled Generalized Büchi Automata 23
2.3 LTL model checking . 29
2.3.1 Checking complete models . 30
2.3.2 Checking incomplete models . 33
2.3.3 Constraints and refinement checking 36
2.4 Proof of M-validity of property φ 39

3 CONTRIBUTION . 48
3.1 High level outline . 49
3.2 Computing the master proof . 53
3.2.1 Extending the intersection . 59
3.2.2 Identification of strongly connected components 68
3.2.3 Rules writing . 70
3.2.4 Rules conjunction . 83
3.2.5 Dependency graph . 86
3.2.6 Output of the proof . 87
3.3 Computing the sub-proofs . 89
3.3.1 Intersection for the sub-proof . 90
3.3.2 Rules application . 98
3.4 Plugging the sub-proofs into the master proof 100

4 TOOL SUPPORT: CHIPS . 106
4.1 The CHIA tool . 107
4.2 A Checker Initializing Proof Systems: ChIPS 107
4.2.1 Modeling . 108

iv

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

4.2.2 Input and output . 109
4.2.3 Building the proof . 115
4.2.4 Initial framework . 120
4.3 Interaction with the tool . 122

5 CASE STUDY . 124
5.1 Master proof building . 127
5.2 Computing the sub-proofs . 135
5.3 Plugging the sub-proofs into the master proof 146

6 STATE OF THE ART . 149
6.1 Modeling incomplete systems . 149
6.2 Model checking and incompleteness 152
6.3 Combining model checking and deductive verification 154

7 CONCLUSIONS . 159
7.1 Contributions and limits . 160
7.2 Perspectives for future work . 163

CITED LITERATURE . 165

VITA . 170

v

LIST OF TABLES

TABLE PAGE

I EXPANSION RULES OF LTL TABLEAU 25
II RESOLUTION OF DEPENDENCIES. STEPS 1-3 103
III RESOLUTION OF DEPENDENCIES. STEPS 4-5 104
IV RESOLUTION OF DEPENDENCIES. STEPS 6-8 105
V RESOLUTION OF DEPENDENCIES - STEP 1 147
VI RESOLUTION OF DEPENDENCIES - STEP 2 148
VII RESOLUTION OF DEPENDENCIES - STEP 3 148

vi

LIST OF FIGURES

FIGURE PAGE

1 LTL tableau for ♦�¬p . 28
2 An example intersection automaton . 45
3 Proof computation in an incomplete model checking framework . . . 50
4 Model of railway crossing system . 57
5 Negation of the property for the railway crossing system 58
6 LTL tableau for ¬lowR¬out . 58
7 Example of nodes collapsing . 61
8 Failed nodes generation: possible cases 64
9 Semantics of intersection automaton 66
10 Intersection automaton for the railway crossing example 67
11 Schematization of one-node-SCC cases 75
12 Schematization of one-mixed-node-SCC cases 76
13 Artificial initial node choice . 83
14 Replacements for the railway crossing example 94
15 Sub-properties for the railway crossing example 95
16 Intersection automaton for Rq2 and its sub-property 96
17 Intersection automaton for Rq4 and its sub-property 97
18 Tree of dependencies between proofs 102
19 The class diagram of the modeling classes 108
20 The class diagram of the chips.io.in package 110
21 The class diagram of the chips.io.out package 114
22 The class diagram of the chips.prover package 116
23 The class diagram of the chips.rule package 118
24 The class diagram of the chips.row package 119
25 The class diagram of the chips.framework package 121
26 Model of the system in charge of sending a message 124
27 Automaton representing the negated claim 125
28 LTL tableau for ¬2(send → ♦success) 126
29 Intersection automaton for the sending message example 128
30 Graph analyzed for the rule generation 130
31 Sub-properties for the sending message example 136
32 Replacement for state send1 . 137
33 First extention step for automaton Rsend1 ∩ S̄send1 138
34 Second extention step for automaton Rsend1 ∩ S̄send1 139
35 Replacement for state send2 . 142

vii

LIST OF FIGURES (Continued)

FIGURE PAGE

36 Extention of intersection automaton Rsend2 ∩ S̄send2 143

viii

LIST OF ABBREVIATIONS

AP Atomic Propositions. viii, 12, 21, 22, 65, 66

BA Büchi Automaton. viii, 13–15, 22, 23, 30, 33, 34, 36, 49, 52, 56, 59, 107, 108, 110–112, 125,

127

CHIA CHecker for Incomplete Automata. viii, 10, 106–109, 112, 114, 115, 123

ChIPS Checker Initializing Proof Systems. viii, 10, 106–109, 112, 120, 122

CTL Computational Tree Logic. viii, 21, 152, 153, 156

DFS Depth First Search. viii, 32, 33

FSA Finite State Automaton. viii, 12, 13, 15

FSM Finite State Machine. viii, 153

GBA Generalized Büchi Automaton. viii, 23, 24

HSM Hierarchical State Machine. viii, 150, 152, 153

IBA Incomplete Büchi Automaton. viii, 15, 17–19, 30, 33, 35, 36, 49, 59, 107, 108, 113, 125

ILTS Incomplete Labelled Transition System. viii, 151, 154

KMTS Kripke Modal Transition System. viii, 150, 151

LGBA Labeled Generalized Bchi Automaton. viii, 23, 24, 28, 29, 40, 56

LTL Linear Time Temporal Logic. viii, 21–24, 26, 29, 30, 35, 40, 44, 45, 49, 57–59, 77, 87,

109–113, 119, 123, 125, 126, 152, 153, 156

ix

LIST OF ABBREVIATIONS (Continued)

LTS Labelled Transition System. viii, 150, 151, 153

MTS Modal Transition System. viii, 150, 153

SCC Strongly Connected Component. viii, 32, 42, 43, 46, 55, 56, 68–70, 73, 75, 79, 81, 86, 87,

98, 115, 117, 130–133, 140, 141, 144, 146

x

SUMMARY

Modern software development processes are evolving from sequential to increasingly agile

and incremental paradigms. Verification, unavoidable step of a correct software production,

cannot get left behind by this new quickly changing practice. Advances in verification techniques

have been considerable in the past years, and feasibility has been achieved on always greater

systems. Nevertheless, we believe that verification and modern development processes are still

not going at the same pace in terms of incrementality.

Classical verification algorithms are applied when a complete specification of the model to

verify is available, and several development costs and efforts have been already spent. Today

more than ever, the description of a system changes continuously during the phase of analysis,

asking for periodical adjustments in its specifications. Various parts are often only sketched

awaiting further enrichment, which is sometimes delegated to third parties. The classical sce-

nario is, therefore, not applicable anymore: it becomes essential to come up with light iterative

methods of formal verification that can be applied also to incomplete models at each stage of

the design and development phases, contributing more incisively to developers choices.

With particular focus on two main verification techniques, model checking and deductive

verification, we study a way integrating them into this incremental context. The idea is to

supply each step of the design phase with a way to prove behaviors of incomplete systems or

only single components. Step-wise model checking can be augmented by a simple incremental

deductive system generator that justifies why the system actually meets some requested tempo-

xi

SUMMARY (Continued)

ral specification (if this is the case). This kind of infrastructure can bring a useful contribution

in cases and refinements where matters of safety, starvation or liveness are critical, and, in

general, guide the choices of the developer that faces different designs.

The main idea is to combine two approaches presented in literature: on one hand we would

like to exploit a procedure of model checking that supports systems that are not completely

specified, on the other hand we study a mechanism to build deductive proofs using information

gathered during model checking. This thesis deals with the construction of these incremental

deductive proofs of linear temporal logic properties in incomplete systems that are completed

progressively when the system gets refined.

xii

CHAPTER 1

INTRODUCTION

Software systems are usually produced through a sequence of development steps. These

transform the initial, high level model of the system into the final artifact. Producing a cor-

rect software is becoming a cumbersome activity. Regardless of the development technique

used, software is rarely correct at the first attempt: the final version is obtained by evaluating

different design decisions and comparing the behaviors of components that can be used. Fur-

thermore, software systems are rapidly growing in their functionality and scale, increasing this

way the likelihood of errors, and the considerable damage they entail. Consequently, verification

becomes essential to the software creation process.

Literature offers a wide range of approaches to supervise software behaviors, aimed at en-

hancing the quality and reliability of systems. Most of these approaches go under the name of

formal methods. They are formal in the sense that they use a number of mathematical theories

such as logic, automata and graph theory, to name a few. They provide methodologies, tech-

niques, and tools that support modeling and analysis of software systems under development.

Modeling allows the developer to describe the system with respect to the properties he/she is

interested in verifying. Analysis helps software engineers in checking the correctness, reliability,

and robustness of their planned designs.

Formal methods can be used at different stages of the software development cycle: at the

beginning, when an high level design of the system is considered, or at the end, when the final

1

2

implementation of the system is available. Since their effectiveness tends to diminish with the

size of the analyzed object, it is preferable to perform formal methods at early stages of the

process, when the formalization of the system and the checked modules are still small, and

errors cheaper to fix.

A wide area of formal methods is covered by verification methods. With verification we

mean the process of applying a manual or automated technique that is supposed to establish

whether software possesses properties of interest. Among others, model checking and theorem

proving are two well-established techniques of verification. If effectively integrated at an early

stage, they guide the design process towards a reliable system and allow to save considerable

expenses before products are realized.

Model Checking was pioneered by Clarke and Emerson [1] and by Quielle and Sifakis [2]

independently in the 1980s. It is an automatic technique that verifies the model of a finite

state system against its specification, expressed as a logic formula. The model describes which

behaviors the system may exhibit, whereas the property dictates their peculiarities. The model

checker exhaustively explores all possible behaviors of the model in a systematic manner, to

verify if they match the property of interest. If a behavior that violates the property is found,

it is returned as a counterexample. The system model can be automatically generated from

the implementation of the system or outlined by hand. The property is often expressed as a

temporal logic formula.

Theorem Proving, or Deductive Verification, is an alternative approach to model checking.

It requires expressing both system and requested property as mathematical logic statements.

3

The starting point is a formal system, where a set of axioms and inference rules are defined. The

goal is to derive that the property is a theorem of the checked model, i.e., given the statements

of the model, it is demonstrated that the property holds, by performing the steps of the proof.

The main benefit of deductive verification is the possibility to explain how the system meets

its specification. Theoretically, this method can be applied to any model and specification:

the only limit is the mathematical skills of the user. In practice, proving a program requires

checking the validity of a great number of statements. This technique has therefore flourished

thanks to automated theorem provers.

From falsification to verification

Model checking and deductive verification are usually considered as very different methods,

with different application contexts: the first one works to exclude some behavior we do not want

a system to take on; the second works to justify why a system follows some positive behavior.

On one side we are proceeding by “falsification”, on the other by “verification” [3].

In the traditional version of model checking, a positive output appears to have a slightly

“weaker” justification than a negative one. When the answer is negative, it is supported by a

counterexample that shows how the system violates the requirement, but there is no additional

explanation of a positive answer. What is missing is a way to show how the search for a

counterexample has failed.

Model checking is usually used to find counterexamples and, therefore, to identify faults

in the design. A dual approach consists of generating a deductive proof of the fact that there

are no counterexamples, i.e., the system does in fact satisfy the specification. In PZ01 and [3],

4

Peled et al. proposed a technique to do this: while performing model checking, by exhaustively

searching the state space of the model, they collect the source material to feed an automated

theorem rules generator, to prove the specification in that model.

From complete to partial specifications

Software development processes are constantly evolving towards more flexible procedures,

due to the need of accommodating changing user requirements and of reducing the time of

the product release. There still seems to be a substantial mismatch between verification and

development processes, that highly focus on agile and incremental, iterative methods to create

software. Formal verification techniques still assume that the formalizations of systems is

available before they are applied. This, unfortunately, is rarely the case. Recent development in

software engineering calls for agile methods of verification that are able to support development

at each step. While sequential, waterfall models only allow for checks performed at the end of

the development, new development cycles call for techniques that can also deal with incomplete

specifications. More precisely, it would be advisable to make verification techniques follow

this mainstream and be more flexible, modular and incremental, following the other steps of

the software life-cycle. The benefit of such techniques is that the unavailable modules can be

developed and verified independently from the system.

The several contributions to software verification have dealt with incompleteness in its

various forms. We consider in particular [4], that introduces an incremental model checking

procedure, integrated with a way to initially specify models that supports incompleteness, a

useful concept to deal with cases where some functionalities might be developed later or by

5

third parties. They allow encapsulation of software sub-parts into unspecified components. At

the time of replacing these with known descriptions, they only need to be checked with the

constraints previously computed.

Thesis statement

Verification techniques require a solid basis of logic and mathematical reasoning. In spite

of the proven usefulness of formal methods, they are met with criticism by practitioners for

being hard to use and unscalable to “real-world software”. Logic proceedings are not fully

appreciated yet; the trend nowadays is in another direction. More promising signals come from

the communication and the hardware industries, that, where reliability is critical, are starting

to use formal methods, or even develop their own. We believe that, in a field that is not strictly

scientific but conditions almost every action of our everyday lives, some precise and formal

methods will eventually be appreciated. Our work brings some insight on techniques and uses

of logic verification that should start to ease off the practitioners hesitancy.

Considering the pros and cons of model checking and deductive verification, this thesis

proposes an approach to integrate the two mentioned verification techniques in the context of

incompletely specified systems, that are nowadays needed to allow an agile development process

of software.

In Section 1.1 we deal with observations that inspired our research and in Section 1.2 we

analyze in detail the original contributions of this thesis within the context of combined and

modular verification techniques for software systems.

6

1.1 Motivation

Our research is mainly justified by the following statements:

• Verification is based on a given model. Models usually describe systems up to some level

of abstraction. The model checking result “is only as good as the model of the system” [5].

It is effective in exposing at the developer attention potential design errors, but the failure

to find counterexamples does not necessary imply the correctness of the real system, that

could have been incorrectly described, or oversimplified.

Idea. Model checking techniques provide an answer based on the search for a counterexam-

ple; whenever a property is satisfied model checking tools do not provide any justification. On

the contrary, deductive verification explains why a given model satisfies a property by providing

a proof that the property of interest is a theorem for that model.

• The model checker can contain software faults. Despite its use, we need not to forget, it

is a software itself.

Idea. Since the modeling process is itself subject to errors, it can easily happen that

the model checking procedure is inaccurate. This asks for some method that supports model

checking by detailing and describing which behaviors the procedure is taking into account and

which not. The need for a proof is motivated by the fact that “intuition often fails to grasp the

full intricacy of the algorithm” [6].

• By-hand proofs can be ambiguous and subjective.

7

Idea. Algorithmic methods are generally preferred over ones that require considerable

human skills. Manually building proofs is time consuming and also error prone. Furthermore,

at each refinement, or after any change, manually building the proof from scratch can be

discouraging. On the other hand, the automated generation of the proof is convenient and fast.

It also needs human supervision but offers a good starting point. We look for a method to

collect information during the model checking procedure to feed the automated theorem rules

generator. This way, not only the resolution of the proof will be automated, but also its setup.

• Model checking does not support generalization and parametrization of systems. In its

classical definition, it does not treat the possibility to analyze incomplete models.

Idea. Model checking in its classical definition might return answers not as general as the

user might hope. This speaks in favor of an incremental refinements approach supported by a

modular model checking technique. This would allow more flexibility to the initial design and

guarantee a checking procedure that follows the changes in the model step by step. We would

like our method to “support evolutionary system development, by allowing partial specification

and analysis of selected aspects of a system[7]”.

• Once-in-a-lifetime verification is not agile. It is often difficult, even impossible, to apply

formal methods to a complete system.

Idea. The study of a compositional technique to perform deductive verification inspired our

work. We attempt to verify different parts of the system separately, and then make conclusions

on the whole program. A modular way of doing verification could bring back the importance it

8

deserves. Modularity can, on one side, be something less painful to those that were never able

to appreciate it, and on the other, assist in a better way the ones that were always indulgent

and purposeful with it, in spite of its slow and unfriendly functioning.

• There does not exist a single formal method which is suitable for analyzing every aspect

of a complex system.

Idea. Combining two different approaches can be a practical solution to this issue, ideally

benefiting from the advantages of both. On one side we appreciate the conciseness and effec-

tiveness of the negative answer given by model checking, on the other we gain the advantage of

proofs to be more explanatory.

To conclude, the union of these motivations makes us see the utility of supplying a tool to

fill that empty space left by the too concise answers of model checking with a complete and

convincing argument of the validity of a property in a system that gets refined over time.

1.2 Original contributions and structure of the thesis

This work was conceived from the union of two research ideas. The first is [4], where

Menghi et al. investigate different ways to making software verification techniques more agile,

specifically through a modular procedure of model checking. The second is [3, 8] that describes

a methodology enhancing the linear temporal logic model checking process with additional

features, by exploiting its information to justify model specification properties.

We believe that joining the purposes of the mentioned approaches in a common direction

could lead to interesting and original content.

More precisely, the contributions of this work include:

9

• A deductive proof verification approach which supports incomplete models. In this frame-

work the proof must justify why a model satisfies or possibly-satisfies (depending on later

refinements) a specific property;

• A technique that is able to manage these proofs in an incremental way. Whenever an

incomplete model is refined, the new proof is not built all over again but is obtained by

computing a set of sub-proofs which are plugged into the initial master proof;

• A case study which exemplifies the applicability of the approach and a prototype tool

that validates the contribution of this thesis.

The final goal is to support agile programming techniques with, not only incremental model

checking, but also a simple deductive system generator that proves a property in a given sys-

tem. One may consider this infrastructure to be only necessary in cases and refinements in

which it is advisable to formally explain why the system satisfies a requested property (usually

safety/starvation-critical) but we believe any developer would benefit from it.

Taking into consideration the limits of both model checking and deductive verification, an

hybrid approach, intersecting the advantages of both, can also help using none as a black box

giving out a result, and both as guides to understand the mechanisms of the modeled system,

giving insight on the real one.

The thesis is organized as follows:

• Chapter 2 contains the concepts necessary to understand the basic ideas of our approach,

outlined in the following chapter. It presents preliminary notions on the selected for-

malisms used to model systems and their required properties. In particular, we introduce

10

automata and linear temporal logic syntax and semantics. Then, we provide a background

on the two verification techniques we focus on: model checking and deductive verification,

exploiting the deductive capability of logic of inferring new facts from given facts;

• Chapter 3 describes our proposed approach to incremental proofs of incomplete systems

with particular attention to the steps of the procedure described in [4] that we extended to

create the proofs, and to the steps of [8], that we modified to support incomplete systems.

We show how to combine the strength of the two different approaches considered;

• Chapter 4 briefly describes ChIPS, a Java module implemented to validate our proposal

of algorithm. ChIPS extends the tool CHIA developed by Menghi et al.[4]1;

• Chapter 5 presents a well known case study from literature [9], used to analyze and better

explain our approach. It represents a sending message system on which we prove a liveness

property of interest for sequential systems;

• Chapter 6 contains an overview of the state of the art of the topics related to this work.

It includes a general section on the problem of automatizing verification, a section on

model checking and one on deductive verification. Then, it presents the literature that

integrates these two approaches in various ways. Finally it shows how modularity and

incompleteness have been dealt with in both model checking and theorem proving;

• Chapter 7 reports the conclusion of our work discussing the presented method and suggests

new directions of research.

1The CHIA tool is available at http://home.deib.polimi.it/menghi/Tools/IncModChk.html

CHAPTER 2

BACKGROUND AND USED FORMALISMS

This chapter provides the reader with the background notions necessary to understand

this thesis. First, Section 2.1 describes formalisms that allow to model the system under

development, and explains how these models can be iteratively refined. Section 2.2 specifies how

it is possible to express the requirements of the system under development, with a particular

focus on functional properties. Section 2.3 explains how it is possible to check whether the

system possesses the properties of interest. We consider the automata-based model checking

procedure, with particular attention to the intersection automaton that is built. A distinction

is made between two semantics for complete and incomplete systems. Moreover, the section

describes a procedure of modular replacement checking that can be used after an incomplete

model is refined. Finally, Section 2.4 introduces specific deductive rules that can be used to

derive information from the model checking procedure and build a deductive proof.

2.1 Modeling the system

Model checking techniques are applied to different modeling formalisms depending on the

system the developer is considering and on the properties of interest. In this work we consider

sequential systems, that are developed using a top-down hierarchical development strategy. For

this reason we choose to useincomplete Büchi automata [4] which are an extension of the well

known Büchi automata [10].

11

12

Section 2.1.1 presents an overview of the two formalisms upon which incomplete Büchi

automata are based: Finite State Automata and Büchi Automata. Section 2.1.2, instead,

specifies the modeling formalisms used to support incomplete systems, i.e., incomplete Büchi

automata. Finally, Section 2.1.3 describes the formalisms used for their refinements.

2.1.1 Complete models

The formalism chosen to represent a system usually depends on the characteristics of this.

Here follows the description of two widely used kind of automata, each of which runs on finite

and infinite words, respectively.

Finite State Automata

A finite-state automaton (FSA [11]) or finite-state machine is a mathematical model of

computation that represents an abstract machine as a set of states. Informally, states repre-

sent the possible system configurations; some of these can be defined as accepting, and when

reached, mark the validation of the input. Transitions are the functions that determine the

next configuration of the system. In the most common version of FSAs, they are labeled with a

set of Atomic Propositions (AP) that show what condition is needed for the state of the system

to change. Given a set of mathematical AP, an FSA is mathematically defined as follows:

Definition 2.1 (Finite State Automaton [11]). A non-deterministic finite state automaton over

finite words M is a tuple
〈
Σ,Q,∆,Q0, F

〉
, where Σ = 2AP is the finite alphabet, Q is the finite

set of states, ∆ ⊆ Q × Σ × Q is the transition relation, Q0 ⊆ Q is the set of initial states, and

F ⊆ Q is the set of final states.

13

If we consider a sequence or a string of characters v belonging to the alphabet Σ, with length

|v |, we can define:

Definition 2.2 (FSA run [12]). A run ρ of M is a mapping ρ : {0, 1, . . . , |v |} 7→ Q such that:

1. The first state is an initial state, that is, ρ(0) ∈ Q0;

2. Moving from the ith state ρ(i) to the i+1st state ρ(i+1) upon reading the ith input letter

v(i) is consistent with the transition relation. That is, for 0 ≤ i < |v |, (ρ(i), v(i), ρ(i+1)) ∈

∆.

An accepting run of a FSA corresponds to a run in the automaton starting from an initial

state ρ(0) until a state ρ(v) ∈ F.

Büchi Automata

Since software systems are often designed to run on infinite inputs, we model executions as

infinite sequences of states. The simplest automaton over infinite words is a Büchi Automaton

(BA), which basically has the same structure of a FSA, but is used to recognize infinite words,

formed by a finite prefix, which is followed by a suffix repeated infinitely many times. FSAs

are easily translatable to BAs using a stuttering rule, as explained in [13, 14].

Definition 2.3 (Büchi Automaton [10]). A non-deterministic Büchi automaton M is a FSA〈
Σ,Q,∆,Q0, F

〉
where the set of final states F of the FSA is used to define the acceptance

condition for infinite words (also called ω-words). Hence, for Büchi automata, F is usually

called the set of accepting states.

14

A run of a Büchi automaton M over an infinite word v ∈ Σω (where the superscript ω

indicates an infinite number of repetitions) is defined in almost the same way as a run of a

finite automaton over a finite word, except that now |v | = ω. Thus, the domain of a run is the

set of all natural numbers.

Definition 2.4 (BA accepting run [12]). Let in f (ρ) be the set of states that appear infinitely

often in the run ρ. A run over an infinite word is accepting if and only if in f (ρ) ∩ F , ∅, that

is, when some accepting state appears in ρ infinitely often.

The language Lω (M) ⊆ Σωconsists of all the ω − words accepted by M.

2.1.2 Incomplete models

Software development techniques are nowadays incremental and iterative. Modeling incom-

plete systems has, therefore, become necessary in this context. To support the description of

systems that are not completely specified, incomplete finite state automata consider the possi-

bility to represent transparent states (opposed to regular ones), that are replaced in a second

development phase with other automata.

Definition 2.5 (Incomplete Finite State Automaton [4]). A non-deterministic incomplete finite

state automaton (IFSA) M is a tuple
〈
Σ, R,T,Q,∆,Q0, F

〉
, where Σ is the finite alphabet, R is

the finite set of regular states, T is the finite set of transparent states, Q is the finite set of

states such that Q = T ∪ R and T ∩ R = ∅, ∆ ⊆ Q × Σ ×Q is the transition relation which allows

the definition of transitions that connect states of Q irrespective of their type, Q0 ⊆ Q is the

set of initial states and F ⊆ Q is the set of final states.

15

As specified in Definition 2.3, software systems are usually designed not to halt during

their executions, therefore we need Incomplete Büchi Automaton (IBA), that extend IFSAs by

supporting infinite words. They are an extended version of BAs, designed to support incomplete

specifications and their refinements. IBAs can be formalized as follows:

Definition 2.6 (Incomplete Büchi Automaton[4]). A non-deterministic incomplete Büchi au-

tomaton (IBA) is an FSA
〈
Σ,Q,∆,Q0, F

〉
, where the set of final states F is used to define the

acceptance condition for infinite words (ω-words). As in the case of BAs F identifies the set of

accepting states.

Given an ω-word v = v0v1v2..., a run represents an execution of an IBA.

Definition 2.7 (IBA run [4]). A run ρ : {0, 1, 2, ...} 7→ Q over v ∈ Σω is defined for an IBA as

follows:

1. ρ(0) ∈ Q0,

2. ∀ i ≥ 0, (ρ(i), vi, ρ(i + 1)) ∈ ∆ ∨ ((ρ(i) ∈ T) ∧ (ρ(i) = ρ(i + 1))).

As it is explained in [4], we can distinguish between three possible types of run:

• A run is accepting when some accepting state appears in ρ infinitely often and all states

of the run are regular;

• A run is possibly-accepting when some accepting state appears in ρ infinitely often and

there is at least one state in the run that is transparent;

• A run is not accepting in all other cases.

16

A Büchi automatonM accepts a word v if and only if there exists an accepting run ofM on v.

The language Lω (M) ⊆ Σω consists of all the words accepted by M.

M does not accept v if and only if it does not contain any accepting or possibly accepting

run for v.

Finally, M possibly accepts a word v if and only if it does not accept v and there exists at

least a possibly accepting run of M on v. Lωp (M) ⊆ Σω is the language of all words possibly-

accepted by M. The language of accepted words can be obtained if we build an automata

Mc from M by removing all its transparent states and their relative incoming and outgoing

transitions.

2.1.3 Refining incomplete models

As previously mentioned, an incomplete model contains a set of transparent states that

represent components whose behavior will be described later. The design of a system usually

progresses through a set of development steps that concern the refinement of transparent states

[4]. Each substitution of a transparent state of the initial incomplete model M with a sub-

automaton, that specifies the behavior of the system inside that state, is a refinement round.

The specific sub-automaton that is substituted is called replacement.

From a formal point of view, the concept of refinement relation v, that allows an iterative

improvement of the model of the system, is defined as follows:

17

Definition 2.8 (Refinement [4]). Let PM be the set of all possible IBAs. An (I)BA N is a

refinement of an IBAM, i.e.,M v N 1 if and only if ΣM ⊆ ΣN and there exists some refinement

relation R ∈ QM ×QN , such that:

1. ∀q0
M
∈ Q0

M
there exists a q0

N
∈ Q0

N
such that (q0

M
, q0
N

) ∈ R. If q0
M
∈ RM , q0

N
must also

be unique;

2. ∀q0
M
∈ Q0

N
there exists exactly one q0

M
∈ Q0

M
such that (q0

M
, q0
N

) ∈ R;

3. ∀(q0
M
, q0
N

) ∈ R, if qN ∈ TN then qM ∈ TM ;

4. ∀(q0
M
, q0
N

) ∈ R, if qN ∈ FN then qM ∈ FM ;

5. if qM ∈ FM ∩ RM then qN ∈ FN ;

6. ∀(q0
M
, q0
N

) ∈ R and ∀a ∈ ΣN , the following holds:

(a) (qM, a, q′M) ∈ ∆M → (∃q′
N
|((qN , a, q′N) ∈ ∆N ∧ (q′

M
, q′
N

) ∈ R) ∨ ((qM ∈ TM) ∧

∃q′′
N
|(qM, q′′N) ∈ R ∧ (q′′

N
, a, q′

N
)));

(b) (qN , a, q′N) ∈ ∆N → ((∃q′
M
|(qM, a, q′M) ∈ ∆M ∧ (q′

M
, q′
N

) ∈ R) ∨ (qM ∈ TM));

7. ∀(qM, qN), (q′
M
, q′
N

) ∈ R such that (qM, a, q′M) ∈ ∆M and (qN , a, q′N) ∈ ∆N , if qM ∈

FM ∩ TM then qN ∈ FN .

A refinement relation preserves every behavior of the original modelM in the refined model

N and states that, to every behavior of N , corresponds a behavior of M. In addition, the

1In the original work [4], the symbol � identifies the refinement relation.

18

refinement relation preserves the language containment relation. This means that if a word was

satisfied (not satisfied) in M, it remains satisfied (not satisfied) in N . On the contrary, if the

word was possibly satisfied inM, can now be satisfied, possibly satisfied or not satisfied, in the

refinement N .

We refer to the new version of the model as refinement and to the sub-automaton that

substitutes a transparent state s ∈ TM as replacement. This is formally defined as follows:

Definition 2.9 (Replacement [4]). Given an IBA M =
〈
ΣM, RM,TM,QM,∆M,Q0

M
, FM

〉
, the

replacement Rt of the transparent state t ∈ TM is defined as a triple
〈
Mt,∆

inR
t ,∆outR

t

〉
. Mt =〈

Σt, Rt,Tt,Qt,∆t,Q0
t , Ft

〉
is the (I)BA that encodes the automaton to be substituted to the state

t, and ∆inR
t ⊆ {(s′, a, q) |(s′, a, t) ∈ ∆M and q ∈ Qt }, ∆

outR
t ⊆ {(q, a, s′) |(t, a, s′) ∈ ∆M and q ∈ Qt }

are its incoming and outgoing transitions, respectively, which specify how the replacement is

connected to the states of M. Rt must satisfy the following conditions:

1. t < Q0
M
→ Q0

t = ∅;

2. t < FM → Ft = ∅;

3. ∀(s′, a, t) ∈ ∆M , ∃(s′, a, q) ∈ ∆inR
t ;

4. ∀(t, a, s′) ∈ ∆M , ∃(q, a, s′) ∈ ∆outR
t .

Depending on the morphology of the replacement considered, four different types of run can

be executed. A finite internal run starts from an internal state of the replacement and reaches

an outgoing transition of the replacement. An infinite internal run starts from an internal

state of the replacement and reaches an accepting state internal to the replacement without

19

ever exiting it. A finite external run starts from an incoming transition of the replacement and

reaches an outgoing transition of the replacement. Finally, an infinite external run, starts from

an incoming transition of the replacement and reaches an accepting state inside the replacement

without leaving the replacement.

Given these four kinds of runs defined over IBAs, it is also possible to distinguish between

the three types described in Section 2.1.2: accepting, possibly accepting and not accepting.

Given a replacement Rt and a word v ∈ Σ∗, we say that:

• Rt internally accepts (possibly accepts) the finite word v ⇔ ∃ an internal finite accepting

(possibly accepting) run of Rt on v;

• Rt externally accepts (possibly accepts) the finite word v ⇔ ∃ an external finite accepting

(possibly accepting) run of Rt on v;

• Rt internally accepts (possibly accepts) the infinite word v ⇔ ∃ an internal infinite ac-

cepting (possibly accepting) run of Rt on v;

• Rt externally accepts (possibly accepts) the infinite word v ⇔ ∃ an external infinite ac-

cepting (possibly accepting) run of Rt on v.

A replacement Rt of a transparent state t of M can be plugged into the model M obtaining

a refinement N =M ./ Rt of M. The alphabet of the refined model N is the union of the

alphabet of the incomplete model with the alphabet of the replaced sub-automaton. The set

of regular states of the refined model is the union of the regular states of Rt and M. The new

set of transparent states corresponds to the one of M except for the transparent state that

20

has just been replaced. The transitions of the refined model include all the transitions of the

original model (with the exception of the transitions that reach and leave the transparent state

replaced) and all the transitions of the replacement with its incoming and outgoing transitions

(that link it to the rest of M). The set of initial states of the refined model include all initial

states ofM (except for the transparent state that is substituted, if it was initial), and the ones

of its replacement Rt . The set of accepting states of M ./ Rt includes all the accepting states

of M (except for the transparent state that is substituted, if it was final), and the ones of its

replacement Rt .

2.2 Formalizing the specification

Once the developer has proposed a (preliminary) design, he/she may want to check if it

possesses certain properties, such as liveness or safety conditions. Safety properties are usually

described as “nothing bad ever happens” and liveness properties as “something desirable will

eventually happen”. Numerous combinations deriving from these two classes exist (see [15] for

reference).

In verification, we check the model against a formal representation of the property of interest.

Notice that the specification formalism used to describe a property is strictly connected to the

way the system is modeled and the granularity used to model it, as observed in [16]. There are

plenty of ways to specify requirements for a system; the formalization techniques are divided

into informal, semi-formal and formal techniques. Focusing on the latter, different types of

formalisms are available. These mainly differ for complexity and expressiveness.

21

Linear Time Temporal Logic (LTL) is one of the most widely used specification languages for

reactive systems [17]. The reasons of our interest in LTL are, first, the need of consistency with

the two works that that inspired ours [4, 8], second, its strong relation with Büchi automata

which allows to use a model checking algorithm based on automata.

Temporal logic allows specifying behaviors in systems that evolve over time. These for-

malisms have played a crucial role in applications oriented to verification of programs, protocols

and, more generally, abstracted automatic systems. The language of temporal logic defines its

predicates over infinite sequences of states. In general, each formula is satisfied by a set of for-

mulas and falsified by another set. When interpreted over an execution of a system, a formula

expresses a property of that computation.

The most powerful kind of temporal logic is CTL* from which others are derived. Among

these, Computational Tree Logic (CTL) describes properties of a computation tree, and LTL

provides a description of events along a computation tree path.

In the following subsections we introduce syntax and semantics of LTL, and we present the

procedure necessary to decorate the states of the claim automaton with the sub-formulae valid

in it, according to the method used in [8].

2.2.1 Syntax and semantics of LTL

LTL formulae can be obtained by combining AP with the boolean connectors ¬, ∧, ∨ and→.

It includes three temporal unary operators: X (“next”, or #), F (“future”, “eventually”, or 3),

G (“globally”, “always”, or 2) and two temporal binary operators: U (“until”), R (“release”

or V).

22

The minimal set X , U, ∧, ¬ can be used to derive all other operators.

Semantically, considering a ω-words v = v0v1v2 . . . in Σω defined over the alphabet Σ = 2AP

and being vi = vivi+1 . . . a suffix of v, the satisfaction relation |= is defined by:

v |= true

v |= a ⇔ a ∈ A0

v |= φ1 ∧ φ2 ⇔ v |= φ1 and v |= φ2

v |= ¬φ ⇔ v 6 |= φ

v |= Xφ ⇔ v1 |= φ

v |= φ1Uφ2 ⇔ ∃ j ≥ 0 | v j |= φ2 and ∀0 ≤ i < j, vi |= φ1

2.2.2 LTL to automata

The BA needed by the model checking procedure to describe the specification is obtained

with the classical translation algorithm from an LTL formula to an equivalent Büchi automaton

[18]. Note that this procedure also provides the LTL sub-formulae related to each state. The

method is based on the fact that we can build an automaton which accepts all and only the

infinite traces represented by an LTL formula.

The pattern used to provide the translation is made by the following steps: 1) Formula

rewriting, 2) Core translation, 3) Degeneralization, 4) Optimization.

The first step concerns the translation of the LTL formula into its Negation Normal Form,

which means that the negation operator ¬ is applied only to variables and that, together with

it, the only allowed Boolean operators are conjunction ∧ and disjunction ∨. Every formula can

23

be turned into this form by substituting implications and equivalences with their definitions.

De Morgan’s laws are necessary to push negation inwards; double negations must be eliminated.

The second step concerns the translation of the LTL formula into the corresponding Gen-

eralized Büchi Automaton (GBA), defined as follows:

Definition 2.10 (GBA [12]). A Generalized Büchi Automaton is a tuple
〈
Σ,Q,∆,Q0, F

〉
where

Σ represents the finite alphabet, Q the finite set of states, ∆ ⊆ Q×Σ×Q is the transition relation,

Q0 ⊆ Q is the set of initial states and F ⊆ 2Q the acceptance component.

In a GBA, a run ρ is accepting if for each set Pi ∈ F, in f (ρ) ∩ Pi , ∅.

Note that the only thing that changes with respect to the formalism introduced in Definition 2.3

is the acceptance component. In some situations, it can be more convenient to work with au-

tomata that have several accepting sets (this is the meaning of F being a subset of the power-set

of Q). More intuitively, an infinite word is accepted by a GBA if the execution passes an infinite

number of times through at least one state in each element of F.

The third step of the translation refers to the degeneralization algorithm to switch from

a GBA to its equivalent BA, expanding the size of the automaton by a factor of n + 1 [12].

However, in general, the constructed automaton is small.

Finally, the fourth step employs various techniques to reduce the size of the obtained au-

tomaton.

2.2.3 Labeled Generalized Büchi Automata

Labeled Generalized Bchi Automatons (LGBAs) are a variant of GBAs that is worth men-

tioning because it allows moving labels from transitions to states, keeping the same semantic

24

meaning [18]. This convention results particularly useful to express exactly what temporal

property holds in each state of the system.

Definition 2.11 (LGBA [8]). A Labeled Generalized Büchi Automaton is a tuple B =〈
Σ,Q,∆,Q0, F , L

〉
where Σ, Q and Q0 are defined as in its equivalent GBA, whilst this time

∆ ⊆ Q ×Q , F ⊆ 2Q×Q is the set of acceptance sets and L : Q → Σ is a labeling function of the

states.

A run of the automaton B is an infinite sequence of Q-states α = q0, q1, ... such that q0 ∈ Q0 ,

and for every i ≥ 0, (qi, qi+1) ∈ ∆. A run is accepting if for every F ∈ F , (qi, qi+1) ∈ F for

infinitely many i ’s. The language accepted by an automaton B, denoted by L(B), is the set of

(labeled) sequences that are accepted by the automaton.

When an LTL formula is converted into a LGBA, a tableau construction is used to assign a

sub-formula to each state. The LGBA Φ̄ associates to each state p a formula η(p). The formula

η(p) is obtained through a tableau-like construction. This construction iteratively splits the

formula η(p) to be considered into two sub-formulae
(∧mp

i=1 v
p
i

)
and

(∧np

j=1 #ψp
j

)
, the first of

which must hold in the current state, and the other, prefixed by the # operator, must hold in

the next state [8].

2A↔ A ∧#2A

3A↔ A ∨#3A

AUB ↔ B ∨ (A ∧#(AUB))

ARB ↔ (A ∧ B) ∨ (B ∧#(ARB))

(2.1)

25

Essentially, the rules presented in Equation 2.1 are iteratively applied until a fixed point is

reached. When this happens, we know everything that must be valid in the examined state. It

is therefore possible to proceed by generating a new state, that will be labeled with the formulae

that appeared prefixed with # in the parent node. At the end of the expansion, the formula

contains only literals and formulae prefixed by the # operator.

The initial tableau, for a set S of formulae, corresponds to a unique node, labeled by S itself.

The expansion of the tableau is triggered by applying a rule to one of the leaves nodes (a node

without children).

TABLE I: EXPANSION RULES OF LTL TABLEAU

Classical rules

A∧B,S
A,B,S (∧) A∨B,S

A,S B,S (∨)

Temporal rules

2A,S
A,#2A,S

(2) 3A,S
A,S #3A,S

(3)

AUB,S
B,S A,#(AUB),S (U) ARB,S

A,B,S B,#(ARB),S (R)

Λ,#A1, ...,#An

A1, ...,An
(#), where Λ is a set of literals

26

To reduce the number of expansion rules, we will assume the initial set S to be formed by

formulae in negation normal form. The application of whichever formula, will preserve this

property. The expansion rules of LTL tableau are listed in Table I, where symbols S and Λ

indicate sets of formulae, A and B are formulae, and comma “,” represents the set theory union

operation. The classical rules just serve as a re-writing in terms of nodes labeled with formulae

sets. The temporal rules are written for the operators 2, 3, U, and R, and are based on the

relative fixed-point equation for the same operator listed in Equation 2.1. Finally, the rule for

allows to terminate the analysis of a state (it is applied when all literals in Λ are true, and

cannot be further analyzed). The child of the expanded node represents the new state. Here

all formulae Ai , such that #Ai holds in the previous state, are valid. We can say that, whilst

the classical rules and the ones for 2, 3, U and R are static, the rule for # is dynamic, since it

concerns a state and all its consecutive ones.

Like in propositional logic, when a node contains both an atom and its negation, it must

not be expanded, being contradictory.

Termination

Branches terminate when they contain two complementary literals (in this case we say

the node is closed). Other branches can however keep expanding in an infinite cycle. Differ-

ently from classical propositional tableaux, that always evolve towards simpler formulae, LTL

tableaux can keep getting the same formulae infinitely. To avoid cycles of this kind, a loop

checking procedure allows to stop expanding the formulae when an already existing label is

generated.

27

The procedure to extend a formula can be explained as follows:

Definition 2.12 (Node expansion [19]). Let n be a non-contradictory node of a tableau T

labeled with the set of formulae S. Let
S
S0

(R) be a unary expansion rule and
S

S0 S1
(R) a

binary expansion rule, where R corresponds to a an arbitrary logic operator. Then, the tableau

T ′ resulting from T by expanding node n through rule (R) can be obtained from T by adding,

for i = 0 (in case of unary rule) and i = 0, 1 (in case of binary rule):

1. a new node ni as a child of T , if no node labeled with Si appears in T ;

2. an edge from n to mi , if mi is a node of T labeled by Si .

In other words, if the child of some node n should be assigned the label Si , but there already

exists some other node mi with label Si , then, the new node is not created, but we add an edge

from n to mi . This way the construction of any tableau is guaranteed to terminate.

Being η(p) the formula associated to the state p of the automaton Φ̄, that is obtained

through the tableau-like procedure just described, we introduce two other results specified

in [8]:

Proposition 2.1 ([8]). For every state p of Φ̄, we define µ(p) = ¬η(p), i.e., µ(p) =
(∨ mp

i=1¬v
p
i

)
∧(∨np

j=1 #¬ψp
j

)
.

Roughly speaking, this means that every state p of the negated claim automaton can be

decorated with a formula η(p). The negation of each of this formula, µ(p), represents the actual

temporal sub-formula that holds in the non-negated claim.

The following lemma follows immediately from the construction of the automaton Φ̄:

28

Lemma 2.13 ([8]). If a node p in the constructed LGBA has n immediate successors, p1, . . . , pn,

then η(p) →
(∨n

i=1 #η(pi)
)
. Equivalently,

∧n
i=1 #µ(pi) → µ(p).

This basically means that, each formula applied to a state p of the negated claim automaton

as a decoration, implies the disjunction of all formulae valid on the successors of p. Because of

Proposition 2.1, this is equivalent to say that the conjuntion of the positive formulas associated

to the successors of p, imply the formula in p.

Example 2.2.1. To exemplify the content of this section we here show how to obtain η(pi)

and µ(pi) for every state i of a given claim, following the procedure described in Section 2.2.3.

We consider the requested claim φ = �♦p: “always eventually p”. According to the procedure

of model checking that will be described in Section 2.3.1, we need to build the automaton

equivalent to the negation of the needed property, therefore, ¬φ = ♦�¬p.

Figure 1 represents the tableau decomposition of the formula.

♦�¬p ≡ φ(1)

�¬p(2)

¬p,#�¬p(3)

�¬p = (2)

#♦�¬p(4)

♦�¬p = (1)

Figure 1: LTL tableau for ♦�¬p

29

Node (1) represents the initial formula to be decomposed. We apply the rule of expansion

(♦) from Table I and obtain nodes (2) and (4). By applying the rule of expansion (�) to (2) we

obtain (3), that is composed by a literal and a #-formula, so we can apply the dynamic rule of

Table I, concluding �¬p. We observe that such formula already exists in the expansion tree at

node (2), therefore we stop expanding and return the formula contained in the last numbered

node of the branch: (3) = ¬p,#�¬p. On the right branch we apply the dynamic rule to node

(4) obtaining the same formula as the one in node (1). This means we can return the formula

contained in the last numbered node of the branch: (4) = #♦�¬p

The descripted procedure can be used to define a LGBA accepting the infinite words satis-

fying the formula. The set Q contains the nodes returned by the algorithm. The obtained LTL

formulae are assigned to the negated claim nodes as described in [18]. Here it is even simpler:

we observe that the node (1) corresponds to the root and has no incoming nodes. Therefore,

the formula (4) = #♦�¬p derived from it corresponds to the initial condition of the automaton,

therefore cannot but be on the initial node p1. As a consequence (3) = ¬p ∧#�¬p is assigned

to the second node p2.

According to Proposition 2.1 we can calculate µ(p1) as ¬η(p1) = p ∨ #♦p and µ(p2) as

¬η(p2) = #�♦p. All µ(pi) are the sub-formulae used in the proof computation.

2.3 LTL model checking

Model checking can be framed in an automata-based approach [20]. In this approach, the

temporal formula φ is transformed into an equivalent automaton Φ whose language corresponds

to the one of φ. Verifying if some modelM satisfies the specification φ becomes then a question

30

of verifying if the language recognized byM is included in the language recognized by Φ, which

corresponds to L(M) ⊆ L(Φ). By exploiting the properties of BAs that are closed under

intersection and complementation, it is derived that the mentioned condition is equivalent to

L(M)∩L(Φ) = ∅, i.e., the intersection betweenM and the automaton representing the negation

of the property Φ̄ is empty. Note that Φ̄ is usually directly obtained from the negation of the

LTL formula φ, rather than from the complement of the automaton Φ.

In Section 2.3.1, we present the algorithm as it was introduced in [20, 21], to check sys-

tems formalized as BAs, therefore completely specified. In Section 2.3.2, instead, we describe

the algorithm modified by [4] to support systems represented as IBAs, therefore incompletely

specified.

2.3.1 Checking complete models

The classic algorithm can be summarized in three steps:

1) Creating the automaton of the negated property : the user might decide to design the

model manually directly as a Büchi automaton, or to have it translated from a linear temporal

formula with a time complexity that is exponential in the size of the formula, namely O(2 |¬φ |),

being |¬φ| the size of the negated translated formula.

2) Building the intersection automaton: Once the automata representing the model and the

negated claim are available, the intersection automaton can be built.

Definition 2.14 (Intersection between two BAs [12]). The intersection automaton I be-

tween a BA M =
〈
ΣM,QM,∆M,Q0

M
, FM

〉
and a BA Φ̄ =

〈
ΣΦ̄,QΦ̄,∆Φ̄, Q0

Φ̄
, FΦ̄

〉
is another BA〈

ΣI,QI,∆I,Q0
I
, FI

〉
defined as follows:

31

• ΣI is the union of the two alphabets of the intersected automata;

• QI = QM × QΦ̄ × {0, 1, 2}. The third component of states is affected by the accepting

conditions of the two automata. Its role is to guarantee that accepting states of both M

and Φ̄ occur infinitely often in an execution;

• ∆I is the set of transitions
(〈

qi, q′j, x
〉
, a,

〈
qm, q′n, y

〉)
where

(
qi, a, qm

)
∈ M and

(
q′j, a, q

′
n

)
∈

Φ̄, i.e., the local components agree with the transitions of the two automata. The third

component depends on the accepting conditions of both:

– if x = 0 and qm ∈ FM , then y = 1;

– if x = 1 and q′n ∈ FΦ̄, then y = 2;

– if x = 2, then y = 1;

– otherwise, y = x;

• Q0
I
= Q0

M
×Q0

Φ̄
× {0};

• FI = QM ×QΦ̄ × {2}.

Notice that I accepts the intersection language L(M) ∩ L(Φ). The set of final states does

not correspond to the Cartesian product of the F sets of the two automata to be intersected

because, while accepting states from both can appear individually infinitely often, they may

appear together only finitely many times. The constructed automaton accepts its runs exactly

when states from FM and from FΦ̄ happen infinitely many times.

Building the intersection automaton costs like 3 · |QM | · |QΦ̄ |, where |QM | is the number of states

32

of the model and |QΦ̄ | is the number of states of the automaton that translates the negated

property φ.

3) Checking the emptiness of the intersection automaton: the model checking result depends

on the emptiness of the intersection automaton. If the intersection is empty, the property is

satisfied. If it is not, φ is violated. Checking the emptiness of a Büchi automaton consists in

searching its entire state space for accepting runs, as stated in Definition 2.4. In particular,

verifying the non-emptiness of our intersection automaton (i.e., showing that there exists a

behavior of the model that does not satisfy the property) is equivalent to finding a Strongly

Connected Component (SCC) (i.e., a maximal set of nodes where each node is reachable from

all the others) that contains at least an accepting state and that is reachable from any initial

state of the model. This corresponds to an accepting run for the automaton. If L(I) is not

empty, then there is a counterexample that can be expressed as a run starting from the initial

state of the intersection automaton, and reaching, through a finite prefix, a periodic sequence

of states.

The algorithm originally used to find SCCs is Tarjan’s depth first search [22], with linear

complexity in the number of states and transitions O(|QI |+ |∆I |). A double Depth First Search

(DFS) was explained in [21] using a more efficient algorithm to solve this problem. The two

searches are nested: the first one calls the second one; this one can either terminate the entire

algorithm or resume the first search from where it had been interrupted. The basic principle on

which this double search is founded is that the first search looks for accepting states. As soon

as one is found, the second search starts, looking for a cycle through this state. If the second

33

search fails, the algorithm resumes the first search, that backtracks from the accepting state

found. If a cycle is found, the algorithm terminates with true, i.e., a counter-example exists.

The first DFS stack will contain a run from the initial state to an accepting state. The accepted

word is an example of a fair execution of the system that does not satisfy the property ϕ.

2.3.2 Checking incomplete models

The traditional approach just described has been modified in [4] to deal with systems mod-

eled through incomplete BAs, to support the modern development process that has become

more agile. In this section we describe the modifications needed to the original model checking

algorithm. We remind that the possibility to check incomplete systems offers various benefits.

For example, it allows to check a planned design at early stages of the development cycle of

software, it lets the developer encapsulate complex parts into abstract modules to examine the

design at different abstraction levels, and it gives the opportunity to distinguish between spec-

ifications that are already satisfied by the system and others that depend on how the abstract

modules will be developed.

Supporting incompletely specified systems implies the use of a more complicated procedure

than the one described in Section 2.3.1. Incomplete Model Checking can return three values:

yes, no (like classical model checking) or possibly-yes [4].

First, we introduce a three-value BA semantics for the satisfaction of the formula φ in

the model M. Let us consider the semantic function ‖MΦ‖ that returns values true, false or

unknown depending on whether the model described by the IBAM satisfies, does not satisfy or

possibly satisfies the claim represented by the BA Φ. In the first case, all the behaviors of the

34

system satisfy the claim. In the second case, there exists at least a behavior of the system that

does not depend on the incomplete parts and that violates the claim. In the third case, finally,

whether M satisfies φ or not, depends entirely on the incomplete parts yet to be completed.

Considering this distinction from the point of view of language containment, we refer to

Lω (M) ∈ Σω as the language formed by the words accepted byM, and to Lωp (M) ∈ Σω as the

language formed by the words possibly-accepted byM. The following definition links the three

possible outputs of model checking to the conditions related to the languages accepted by the

model automaton.

Definition 2.15 (Three-value BA semantics [4]). Given an incomplete BA M and a BA Φ̄

which specifies the accepted behaviors of M,

‖MΦ‖ = T ⇔ Lω (M) ∪ Lωp (M) ⊆ Lω (Φ) (2.2)

‖MΦ‖ = F ⇔ Lω (M) * L(Φ) (2.3)

‖MΦ‖ = ⊥ ⇔ Lω (M) ⊆ L(Φ) and Lωp (M) * Lω (Φ) (2.4)

The first equation means that the model satisfies the claim if and only if all its behaviors

(also the ones crossing transparent states) are included in the set of behaviors allowed by the

claim. The second means that there exists a behavior of the system that is not included in

the ones allowed by the claim. The third one describes the situation where all behaviors of

the model are included in the set of behaviors allowed by the claim, but there exist a possible

35

behavior (a run that crosses at least a transparent state) that is not included in the language

accepted by the claim.

Given an IBAM and an LTL formula φ, the model checking problem concerns the problem

of checking whether the model satisfies, does not satisfy or possibly satisfies the property φ,

i.e., ‖MΦ‖ is equal to true (T), false (F) or maybe (⊥).

In [4] the model checking procedure of Section 2.3.1 is revisited to take into account models

that are incomplete Büchi automata. The procedure works in five subsequent steps:

1. Creation of the automaton Φ̄ (this phase is unmodified);

2. Extraction of the automaton Mc , that contains all the accepting behaviors of the system,

and construction of the intersection automaton Ic =Mc ∩ Φ̄ that contains the behaviors

of Mc that violate the property;

3. Emptiness check of Ic . If Ic is not empty, the condition L(M) ∩ L(Φ̄) , ∅ equivalent to

Equation 2.3 is matched, which means that the property is not satisfied and every infinite

word in the intersection automaton is a counterexample;

4. Computation of the intersection I =M∩Φ̄ of the incomplete modelM and the automaton

Φ̄ associated with the property φ;

5. Emptiness check of I. Since condition L(M) ⊆ L(Φ̄) has already been checked, two

cases now arise: if Lp (M) ⊆ L(Φ̄), then the property is satisfied (regardless of the model

refinement proposed); if Lp (M) * L(Φ̄), there exist some refinement of M that violates

the property and we are in the case of possible satisfiability.

36

The definition used to compute the automaton in phase 4, is modified as follows:

Definition 2.16 (Intersection between BA and IBA [4]). The intersection automaton I be-

tween an IBA M and a BA Φ̄ is a BA
〈
ΣI,QI,∆I,Q0

I
, FI

〉
where:

• QI = ((RM × RΦ̄)∪ (TM × RΦ̄))× {0, 1, 2} is the set of states. As in the classical intersection

algorithm for BAs [12], the labels 0, 1 and 2 indicate that no accepting state is entered,

at least one accepting state of M is entered, and at least one accepting state of M and

one accepting state of Φ̄ are entered, respectively. MI = TM × RΦ̄ × {0, 1, 2} represents the

set of mixed states.

• ∆I = ∆
c
I
∪∆

p

I
. ∆c
I

is the set of transitions (
〈
qi, q′j, x

〉
, a,

〈
qm, q′n, y

〉
) where (qi, a, qm) ∈ ∆M

and (q′j, a, q
′
n) ∈ ∆Φ̄. ∆

p

I
corresponds to the set of transitions whereM is in a transparent

state while Φ̄ moves from a state to another.

ΣI , Q0
I

and FI are obtained as in Definition 2.14.

When a property is possibly satisfied, we use a procedure to compute sub-properties that

represent the weakest condition on the replacements of the transparent states. This is described

in [4].

2.3.3 Constraints and refinement checking

An incomplete automaton can be iteratively refined by replacing transparent states with

automata designed by the developer [4].

When planning a new replacement, the developer is assisted and guided through its cre-

ation by a constraint which contains a set of sub-models for the unspecified components. The

37

computation of the constraint is triggered when the model checking result is unknown. The

constraint is computed to expresses an upper-bound on those characteristics that the model

refinement must satisfy, in order for the final model to satisfy the claim.

Definition 2.17 (Constraint and sub-properties [4]). A constraint C contains a set of sub-

properties for the replacements of the transparent states t1, t2, . . . , tn ∈ TM , to guarantee that

φ is satisfied. A sub-property is mainly made by a tuple
〈
P̄t,∆

inP
t ,∆outP

t

〉
, where P̄t is the

automaton that encodes the weakest condition on the replacement of the state t that violates

φ, and ∆inP
t amd ∆outP

t , called in-transitions and out-transitions respectively, specify how the

model automaton P̄t is related to the original model.

In [4] a color label is associated to each incoming trin ∈ ∆inP
t and outgoing transition trout ∈

∆outP
t . This specifies how the sub-automaton of the sub-property is connected to other states

of the model. Green indicates an incoming transition that is reachable from an initial state of

the intersection without passing through mixed states; red marks the outgoing transitions from

which an accepting state of the intersection automaton is reachable without passing through

mixed states; yellow indicates both incoming transitions reached by an initial state passing

through mixed states, and outgoing transitions from which it is possible to reach an accepting

state through mixed states. When an outgoing transition of a sub-property S̄t is labeled with

yellow, the acceptance of a run passing through S̄t does not depend on t itself, but on other

transparent states replacements.

The goal of the refinement process (see Section 2.1.3) is to find a set of automata, one for

each transparent state, such that each of them satisfies the sub-property related to it, and the

38

whole set, therefore, satisfies the entire constraint. This allows the developer to prove only the

single sub-properties against the proposed replacements and not the initial property φ against

the entire refined model. A procedure to check if the replacement of the transparent state

satisfies, possibly-satisfies or does not satisfy the corresponding sub-property is proposed in [4].

Definition 2.18 (Refinement Checking [4]). Given a particular refinement round, where the

developer refines the transparent state t of M through the replacement Rt , the refinement

checking problem is to compute whether the refined automaton N . obtained by plugging the

replacement Rt of the transparent state t into the modelM, satisfies, does not satisfy or possibly

satisfies the property φ.

The refinement checking process includes the need to compute an intersection automaton

between each replacement Rt and the sub-property S̄t related to the same transparent state t.

The intersection structure is defined as follows:

Definition 2.19 (Extended intersection between replacement and sub-property [4]). The inter-

section It between a replacement Rt =
〈
Mt,∆

inR
t ,∆outR

t

〉
and the corresponding sub-property

S̄t =
〈
P̄t,∆

inP
t ,∆outP

t

〉
is an automatonMt ∩P̄t obtained by the intersection of the automata as-

sociated with Rt and S̄t , along with a set of incoming and outgoing transitions that corresponds

to the parallel execution of the transitions of Rt and S̄t .

Given the constraint C computed for the systemM, for each transparent state t, we distin-

guish three cases:

39

• the replacement Rt does not satisfy the constraint if its extended intersection with the

sub-property S̄t allows to reach a red outgoing transition (or an internal accepting state

of S̄t) from a green incoming transition (or from an internal state of S̄t);

• the replacement Rt satisfies the constraint C if the extended intersection automaton does

not allow to reach any internal accepting state of S̄t (or any of its yellow or red outgoing

transitions).

• the replacement Rt possibly-satisfies the constraint if the extended intersection automaton

connects an in-transition with an out-transition and contains a mixed state.

In [4] it is demonstrated that checking a replacement Rt versus its constraint C corresponds to

checking the refined automaton N against its property φ.

2.4 Proof of M-validity of property φ

In this section, we briefly introduce the concept of deductive system and the utility of its

rules to build proofs. Then, we describe the approach of Peled and Zuck [8] that uses ad

hoc rules to infer knowledge from an intersection automaton built during the model checking

procedure. A final example is illustrated to explain the rules and results presented in [8].

A proof has the purpose of rigorously explain the reason why a statement holds. A way of

proving the validity of a property over a model is, for example, by using a deductive system.

Deductive systems use inference rules to generate new knowledge starting from known axioms.

As specified in [23], “a deductive system consists of the following elements:

• a set of axioms. This is a set of valid formulas that are taken as basic properties of the

operators in the language;

40

• a set of rules. Rules provide patterns by which new valid formulas can be derived from

other formulas whose validity has been previously established. A rule has the general

form p1, ...,pk

q . It consists of a list of formulas p1, . . . , pk , called premises, and a formula q,

called conclusion of the rule. Such a rule states that if we have already established the

validity of p1, . . . , pk , then we may infer the validity of q.”

In [8] the authors consider an intersection automaton that represents the combined state spaces

of the automaton M (representing the model of a system) and the automaton Φ̄ (representing

the negation of a requirement for that system). According to their procedure, this automaton

can be used to produce a temporal proof of the fact that I =M ∩ Φ̄ is empty, i.e., it does not

contain any accepting path.

Notice that the automata used in this section are LGBAs (see Definition 2.11), as in [8].

The rules here described are modified in the Contribution chapter of this thesis (Chapter 3) to

be used with automata for incompletely specified systems.

The intersection automaton used in the procedure corresponds to the classical intersection

computed between automata, enriched by failed nodes.

Definition 2.20 (Failed state [8]). A failed node (or failed state), is a node (q, p), where

L(q) < L(p), i.e., the label on the model state q does not satisfy the propositional assignment

on the claim state p, which is the LTL formula η(p) (see Proposition 2.1).

More intuitively, “failed” is referred to the fact that the state represents a system configu-

ration where the negated property is not satisfied. From a practical point of view, failed nodes

are the ones without successors, the leaves of the intersection automaton. On the contrary, a

41

successful node is a node where the negated property could be satisfied, i.e., a node (q, p) where

the propositional assignment of q satisfies the one in p.

The idea introduced by [8] is to analyze the intersection automaton by visiting the automaton

from the failed nodes to the initial nodes, searching for a counterexample that, in case the model

M does not satisfy the property φ, is never found.

To build a sound and complete proof system, [8] suggests to consider four kinds of correctness

assertions that we outline here. q represents the state coming from the model automaton M

and p represents the state coming from the Φ̄ automaton.

Failure axiom

FAIL.[8] Let (q, p) be a failed node. Then, we can conclude that

q |= µ(p) (2.5)

The axiom expresses the fact that the node has failed because the label of the incoming

transition state q is checked against the propositional claim in p. This one does not hold, which

means that q |= ¬prop(p). Since ¬prop(p) → µ(p), then q |= µ(p).

42

Successors rule

SUCC.[8] Let (q, p) be a successful node, the model state q has m successors q1, . . . , qm and

the claim state p has n successors p1, . . . , pn. Then, we have

q → {q0, . . . , qm }

For each 1 ≤ i ≤ m, qi |=
∧

j=1,n µ(pj)

q |= µ(p)

(2.6)

This proof rule is valid for the correctness of its construction, as Lemma 2.13 shows. The

interested reader may find additional information in [24]. Note that the FAIL axiom is a trivial

case of the SUCC rule, without premises.

This rule is necessary to propagate formulas valid on already failed portions of the automaton

to states that directly lead to these, with only one transition. It is a emphone-step induction.

Induction rule

IND.[8] Let C be a strongly connected component in the considered automaton. Let Exit(C)

be the set of nodes not in C, with an incoming transition from a node in C. We consider the

case where the SCC C does not satisfy at least one acceptance condition (let us remind that

in a Labeled Generalized Büchi Automaton, an accepting run is a run that passes an infinite

number of times in at least one state of each element of F, the accepting set).

For each (q, p) ∈ Exit(C), q |= µ(p)

For each (q, p) ∈ C, q → successor (q)

For each (q, p) ∈ C, q |= µ(p)

(2.7)

43

Notice that defining a set that contains the nodes reached by states inside the SCC but

not beloging to it, is similar to identifying the successors of a trivial SCC. The IND rule is a

generalization of the SUCC rule, that allows to consider the SCC as a single macro-node of the

graph.

Conjunction rule

CONJ.[8] This rule allows conjoining any pair of conclusions made on a given state along

with making temporal logic interferences.

qinit |= µ(p1), . . . , qinit |= µ(pn), (µ(p1) ∧ . . . ∧ µ(pn)) → φ

qinit |= φ
(2.8)

The last premise, (µ(p1) ∧ . . . ∧ µ(pn)) → φ, stating that the conjunction of µ(pi) implies

the required property, assumes a given sound and complete propositional temporal logic.

Now, let us assume we are given a deductive system H consisting of the FAIL axiom and

the SUCC, IND, CONJ rules just described. The goal is to build a derivation, called proof, that

establishes the validity of a formula stating that a model M satisfies the property φ, using the

axiom and the rules.

The axiom and the rules are only schemas. They therefore need to be instantiated, i.e.,

their symbols are substituted with the real states and formulae belonging to the automaton to

which they are applied. For example, the axiom q |= µ(p) only acquires a meaning when we

consider the real model state q2 as instantiation of the variable q and the real claim state p1

as instantiation of the variable p.

44

A proof in the system H represents a sequence of rows, each of which contains a formula p

(a temporal formula, in our procedure). The row states the validity of p, supported either from

an axiom or the application of another rule.

Given a proof consisting of the lines ϕ1, . . . , ϕn, we say that “this is a proof of ϕn, the last

formula of the proof. We say that ϕn is a theorem of the logic. From now on, we may use ϕn,

or an instantiated version of it, in subsequent proofs as though it were an axiom.”[23]

In particular, the desired output of the proof built in [8] is a final statement that represents

the satisfaction of the property φ by the model of the analyzed system M.

Proposition 2.2 ([8]). If a property φ is true in all executions of our system, then we say φ

is a valid property of a model M, i.e., M |= φ, where the symbol |= denotes the satisfaction

relation for linear temporal properties.

Given an empty intersection automaton, [8] shows the equivalence between saying the prop-

erty is satisfied by the whole model and demonstrating that the property φ is satisfied by every

execution of the automaton starting from its initial states (q0, p0). Moreover, according to

Proposition 2.1, the claim φ can be seen as a conjunction of LTL formulae.

Theorem 2.21 ([8]). Assume L(M∩Φ̄) = ∅. Then, for every initial state (q0, p0) of I =M∩Φ̄,

(M, q0) |= φ. Thus, M |=
∧

(q0,p0)∈QI0
µ(p0).

To better explain the applicability of each rule, a basic example follows.

Example 2.4.1. We consider the intersection automaton graph in Figure 2. The depicted

graph represents an intersection automaton deriving from a simple switch system model M

45

with the automaton Φ̄ associated with the claim φ = �♦p. M presents two states q1 (initial,

labeled with p) and q2 (labeled with t), and two transitions q1 → q2 and q2 → q1.

(q1, p1)

#32¬p

(q2, p1)

#32¬p

(q2, p2)

#2¬p ∧ ¬p

(q1, p2)

#2¬p ∧ ¬p

Figure 2: An example intersection automaton

The intersection automaton I presents four nodes, three of which are regular nodes (con-

tinuous border) and one is failed (dashed border). The nodes are labeled with their model

associated state (q1 or q2) and their claim-associated-state (p1 or p2). In addition, the label

contains a LTL formula that decorates the state, representing η(p1) or η(p2) according to the

claim-associated-state of the considered node.

Rule Fail is applicable to node (q1, p2) in the intersection of Figure 2. This node is indeed

failed because the propositional assignment of the model state L(q1) = p does not comply with

46

the propositional assignment of the negated property state L(p2) = #2¬p ∧ ¬p, being p and

¬p an obvious contradiction. We can, therefore, state:

−

q1 |= µ(p2) = p ∨#3p

Rule Succ is applicable to node (q2, p2) that is a single node without a self loop but with

successors (trivial SCC). Considering that the model state q2 has only one successor q1 and

that the claim state p2 only has itself as a successor, the rule works as follows:

q2 → {q1} successors

q1 |= µ(p2) = p ∨#3p

q2 |= µ(p2) = p ∨#3p

Rule Ind is applicable to the strongly connected component C = {(q1, p1), (q2, p1)}. Ac-

cording to the rule, we need to identify the set Exit(C) = {(q2, p2), (q1, p2)} corresponding to

those nodes that are directly reached from one node of C but are not part of C itself. Applying

the rule, we obtain:

q1 |= µ(p2) = p ∨#3p

q2 |= µ(p2) = p ∨#3p

q1 → {q2} successors

q2 → {q1} successors

q1 |= µ(p1) = #23p

q2 |= µ(p1) = #23p

This rule allows to propagate knowledge we possess on previously discarded nodes to more

complex components on the graph that are located “above” them (meaning further from failed

nodes and closer to initial ones).

47

Rule Conj is the rule that allows us to conclude the proof and draw together all partial

conclusions made until now.

q1 |= µ(p2) = p ∨#3p

q1 |= µ(p1) = #23p

(#23p ∧ (p ∨#3p)) → 23p conjunction of conclusions

q1 |= φ = 23p

Referring to the example just described, we would like the reader to note that, if the rules

are written in this order, the conclusions of each rule are used as premises to the following rules.

The chain is easily solved:

q1 |= µ(p2) from FAIL is applied to SUCC that outputs q2 |= µ(p2). Both conclusions of

FAIL and SUCC are used in IND, that derives that q1 |= µ(p1) and q2 |= µ(p1). Finally, the

validities gathered on the initial state q1 can feed the last rule, stating q1 |= φ, which corresponds

to saying that the whole model satisfies the property, thus the property is a theorem of the

model.

q1 |= φ → M |= φ

CHAPTER 3

CONTRIBUTION

In this chapter we present the technique proposed to build a proof starting from a model

checking procedure that supports incomplete systems. Our procedure is activated in case the

model checking algorithm verifies that the analyzed system satisfies (or simply “might satisfy”)

the submitted requirement. These are the cases where the model checker outputs “yes” or

“possibly-yes”, since the search for a counterexample has failed.

The techniques and the formalisms on which our approach is based, have been extensively

explained in Chapter 2. Section 3.1 outlines the procedure proposed in this thesis to compute

incremental proofs; Section 3.2 describes the construction of an initial proof that justifies why

the initially provided incomplete description of the system satisfies the requested property. This

first step is final in case the model is already completely defined, or if the user is satisfied with

a partial explanation of its checking process. Differently, whenever the initial description of

the system was incomplete, with modules left unspecified, the developer might later request to

replace these parts with lower level descriptions. Our procedure uses the constraint computation

method of [4] to guide the developer through the design of new components. If the proposed

refined model does not fail the given condition, it is possible to compute single sub-proofs

dedicated to the only replaced states and carry on with the completion of the master proof.

Section 3.3 shows the construction of sub-proofs that justify in which way the replacement of a

single module satisfies or possibly-satisfies the constraint. Finally, Section 3.4 explains how to

48

49

link the initial incomplete proof with the related sub-proofs of the newly specified components

and understand the dependency relation among these.

3.1 High level outline

The final goal is to build incremental deductive proofs of LTL properties for incomplete

systems, that are completed progressively when the system gets refined. A deductive system

is assembled by analyzing the intersection automaton between the model of the system and

the negation of the required property, through the study of its strongly connected components,

that supplies rules and validities for the formal system. Whenever the system gets partially or

completely refined by replacing a transparent state with a more complex specification, an ad

hoc sub-proof is computed for the replacement and then is plugged into the initial proof. The

final and complete framework that we obtain works as described in Figure 3.

We start from the classic procedure of LTL automata-based model checking to deal with

incomplete model specifications. As described by Menghi et al.[4], our input is the model of

the system (represented as an IBA, a possibly incomplete Büchi automaton) M and the for-

malization of the negation of the property that we would like to check, ¬φ (expressed as a BA).

For consistency with [4, 12], we label the transitions of the model with subsets of propositions

belonging to the alphabet of the automaton. Note that, when the claim (property of interest)

is considered, the transitions are labeled with boolean expressions, therefore including negative

propositions. This is because, being the model a description of something we observe or are

willing to create, we must know what holds and where. If a proposition is not mentioned on

a transition, this means that it is not true. Instead, the fact that the claim includes proposi-

50

Incomplete Model Checking

model M

negated
claim ¬φ

NoYes Possibly-yes

Complete
master
proof

End of
procedure

Computation of
sub-properties

Incomplete
master
proof

Replacement
checking

replacement

YesNo Possibly-yes

End of
procedure

Complete
sub-proof

Incomplete
sub-proof

Plug into
master
proof

no more states

to refine

∃ states yet

to refine

chose
other

Figure 3: Proof computation in an incomplete model checking framework

51

tional formulae allows the representation of a set of transition, i.e., all those that satisfy that

propositional formula. The two conventions are equivalent from an expressivity point of view.

Within the procedure of Incomplete Model Checking presented in Figure 3, the automata-

based model checking framework builds the intersection automaton I =M ∩ ¬φ, as described

in Definition 2.14. Three possible cases arise: the intersection is not empty and the existing

accepting run only depends on regular states (No, the property is not satisfied by the model),

the intersection is empty (Yes, the property is satisfied by the model), or the emptiness of the

intersection depends on further refinements of incomplete states, i.e., there exists a possible

accepting run (Possibly-yes, the property is possibly satisfied by the model). In this last case,

there is no accepting run crossing only regular states, but there is at least one path through

mixed states that is possibly accepting.

In the first case, no proof is built. In the second one, a complete deductive master proof

is built and closed at the first step. Incomplete models where the satisfiability of the property

does not depend on the refinement of the transparent states also fall into this case. Finally,

in case of possible satisfiability, we proceed with an incremental construction of the deductive

proof. A first master proof is set up, as a starting grid for later sub-proofs to be plugged

in. In parallel with the computation of this incomplete proof, according to [4], a constraint is

computed, corresponding to a set of sub-properties (one for each transparent state) that guides

further developments of states yet to be specified.

Once the constraint is available, the developer is encouraged to come up with a refinement

of the model initially provided. In particular, he/she can decide to substitute the transparent

52

states predisposed during the initial, more high level phase of the system description, with more

detailed sub-automata. Our framework allows to check these new components (called replace-

ments, expressed as (I)BAs) individually against the corresponding sub-property (expressed as

a BA plus incoming and outgoing transitions) and compute a sub-proof only for this part, using

the intersection automaton calculated with the sub-property and the replacement referred to

the same transparent state. The incremental step, Replacement Checking, allows to proceed

without checking and proving the whole system from scratch. The three cases just described

are obtained again: if at least one non-empty intersection (No) case occurs, the property is

not satisfied and the proof is nullified: the developer is encouraged to try another replacement.

If only empty intersection (Yes) cases occur, the sub-proof can be completed and closed: its

conclusion can now be used to solve the possible dependencies created in the master proof

related to that transparent state. Finally, any possibly empty intersection (Possibly-yes) case

leads to a partial completion of the deductive proof and the need to further refine the system.

In this case no dependency can be resolved, but other replacements are expected.

Our proposed approach is considered in the context of a bigger framework: we are adding

deductive proofs to the modular model checking approach of Menghi et al.[4]; at the same time

we are including the chance to proceed in an incremental way in Peled and Zuck approach[8].

The next sections of the chapter describe the base step, the master proof construction

(Section 3.2), the inductive step corresponding to the construction of sub-proofs for every

transparent state of the model (Section 3.3), and finally a procedure to join the obtained

results (Section 3.4).

53

3.2 Computing the master proof

This section provides the description of the first step of the contribution of this thesis:

the construction of the master proof. Both when the model checker returns true and when it

outputs possibly-true, it is possible to build a deductive proof of the fact that the input model

satisfies or possibly satisfies the required property. We refer to the initial proof as master proof

because it is in bijective correspondence with the first provided version of model (master) and

it is also the grid referenced by further results.

Algorithm 1 shows the step where we insert our contribution inside the model checking

framework. If the model checker returns 0 (no), it means that a counterexample has been

found and the procedure ends directly (Lines 3-4). Line 6 is executed if the model checking

procedure returns values 1 (yes) or -1 (possibly-yes).

Algorithm 1 Model checking with deductive proof

1: procedure CheckingWithProof(M, Φ̄)

2: I ←M ∩ Φ;

3: if ModelChecking(I) = 0 then

4: return false;

5: else

6: return BuildProof(I(M ∩ Φ̄));

54

The procedure BuildProof is called and returns a complete proof, in case the model

checker verifies that the property is satisfied by the model, or an incomplete proof, in case of

possible-satisfaction of the claim.

The complete procedure to compute the master proof is presented in Algorithm 2 (Build-

Proof). The algorithm includes six different steps, listed below.

Algorithm 2 Deductive proof construction

1: procedure BuildProof(I)

2: Iext ←ExtendIntersection(I); . Algorithm 3

3: Proo f .depGraph ← (QIext , {});

4: Proo f .SCC ←Tarjan(Iext);

5: Proo f .SCC ←Sort(Proo f .SCC); . Algorithm 4

6: Proo f .re jects ← {};

7: Proo f .rules ← {};

8: for scc ∈ SCC do

9: Proo f .rules ← Proo f .rules ∪BuildRule(scc); . Algorithm 5

10: Proo f .rules ← Proo f .rules ∪RuleConj(Φ̄,Iext); . Algorithm 9

11: return Proof;

• Extend the intersection automaton (Line 2): the intersection automaton described in [4]

is enriched by considering also failed states (Definition 2.20), configurations of the model

that fail to satisfy the negated property. These are needed as a base case for the deductive

proof. This function is extensively explained in Section 3.2.1.

55

• Creation and update of a dependency-graph (initialized at Line 3): we create a data

structure that maps each validity statement (key) derived from the intersection to a set

of other validities it depends on (values). These validities need first to be resolved, i.e., a

complete proof that states that they are valid must exist in order for the key validity to

be completely proven too. Section 3.2.5 describes how the dependency graph is used and

updated at each new rule creation.

• Strongly connected components (SCCs) identification and sorting (Lines 4-5): we use a

classical Tarjan’s algorithm [22] that takes a directed graph (the extended version of the

intersection automaton) as input and produces a partition of its nodes into SCCs. This

unsorted set is later sorted through a partial order that guarantees that, whenever a

component is used to generate a rule of the proof, all the other components reachable

from it, have already been analyzed. This procedure is described in Section 3.2.2.

• Dangerous strongly connected components rejection (structure initialized at Line 6): we

build a data structure that contains information about the graph components that need to

be discarded. These parts contain accepting cycles, and, therefore, would never appear in

the intersection automaton if the model was complete and the model checker had returned

“yes”. These components are indeed still reachable because the used model is incomplete.

Once the model is completely refined, they will never be accessible again. This explains

why we need to exclude them from the proof (and also delete all dependencies of other

components on them). This process is clarified in Section 3.2.3.

56

• Rules building (Lines 7-9): according to each SCC characteristics, a different rule among

RuleFail, RuleSucc, and RuleInd is chosen, as thoroughly described in Section 3.2.3.

• Conjunction of rules (Line 10): a conjunction rule is necessary to connect all conclusions

drawn on the SCCs of the graph. Section 3.2.4 describes this last phase.

The construction of the extended intersection automaton, the SCCs sorting, the rules build-

ing and conjunction are phases already introduced in [8] that have been modified to cope with

incompleteness and a different formalism (BAs instead of LGBAs). The dependency graph and

rejects structures are, instead, a novelty of our approach, introduced to supply the proof entity

with more flexibility. The first one provides the ability to keep trace of which statements are

final and which ones are only guaranteed under certain assumptions. The second one provides

the ability to exclude from the reasoning the components that would not appear in a closed

proof (because leading to a counterexample).

Example 3.2.1. We introduce an example that we are going to use through this chapter to

support the description of the steps of the proposed procedure. The system under analysis is

a railway crossing system. It may assume a number of different configurations, some of which

fully defined (modeled by the states q1, q3, q5, and q6), others transparent (modeled by the

states q2 and q4), to be later substituted with more detailed automata.

The presented model concentrates on the critical region of the described crossing. We

establish that a train is considered to be out of the critical region (intersection of the rails with

the street) when it has left the crossing. We model this situation with the propositional atom

out. Its opposite, ¬out, describes the situation in which at least one train car is still passing

57

q1 q2 q3 q4 q5 q6
low low low out

out

low ∧ out

Figure 4: Model of railway crossing system

through the crossing. As far as the state of the bar is concerned, we express through low the

situation where the bar blocks the passage of vehicles on the street, clearing the way of the

train. ¬low means that the bar has been raised.

We remind that, according to the convention used for transitions labeling of the model,

whenever a propositional statement does not appear on a transition, it means that its negation

holds. Between the first four states, the fundamental requirement to step from a configuration to

the other is that the security bar is in its lowered state. Therefore, on the first three transitions

low ∧ ¬out holds. The condition to exit state q4 is out . The cycle between states q5 and q6

corresponds to a situation where the bar is lowered again, even if the train is not in the critical

area.

We request a basic safety property “The bar is lowered at least until the train gets out of

the critical area”, formalized as lowU out. The model of this simple example is presented in

Figure 4 and the automaton corresponding to the negation of the LTL claim ¬φ = ¬(lowU out) =

(¬low R¬out) has been translated to its equivalent Büchi automaton according to the procedure

by Gastin and Oddoux[25] and is represented in Figure 5.

58

p1 p2
!low∧!out

!out Σ

Figure 5: Negation of the property for the railway crossing system

As described in Section 2.2.2, we can derive the linear temporal logic formulae valid on the

property automaton states following an LTL tableaux procedure of decomposition of the initial

LTL formula corresponding to the negated claim ¬φ. This information is used to decorate the

information of the proof.

Specifically for this example, we build the tableau in Figure 6 similarly to how done in the

example of Section 2.2.2.

¬lowR¬out(1)

¬low,¬out(2)

T(3)

T = (3)

¬out,#(¬lowR¬out) (4)

¬lowR¬out = (1)

Figure 6: LTL tableau for ¬lowR¬out

59

From the two nodes squared with dotted lines, we deduce(4) = η(p1) = #(!lowR!out)∧!out

and (2) = η(p2) =!low∧!out. Later, we derive the positive formulae (according to Proposition 2.1:

µ(p) = ¬η(p)), and we obtain µ(p1) = #(lowUout)∨out and µ(p2) = low∨out. For now, though,

the proof is written using µ(p1) and µ(p2) to denote the sub-formulae valid on states p1 and

p2. For clarity purposes, the LTL formulae will be mapped onto the proof only at the end.

3.2.1 Extending the intersection

The intersection automaton needs to undergo two modifications. First, we unify into one

node all the states that correspond to the same tuple < q, p > where q is a state of the model and

p is a state of the claim and have a different number ∈ {0, 1, 2} as third component (see Definition

2.14). Second, we decorate the intersection by adding failed states, that will be crucial later, in

order to let the initial rules of the proof fire. The complete procedure is outlined in Algorithm 3.

The algorithm is applied to the intersection automaton I =
〈
ΣI,QI,∆I,Q0

I
, FI

〉
built from

the IBA representing the model M =
〈
ΣM,QM,∆M,Q0

M
, FM

〉
and the BA representing the

claim Φ̄ =
〈
ΣΦ̄,QΦ̄,∆Φ̄,Q0

Φ̄
, FΦ̄

〉
. We remind that Q represents the set of states of the referred

automaton, Q0 is the set of initial states of the automaton, and ∆ represents the set of transitions

between two states of the automaton.

Nodes collapsing (Line 2)

Node is used in this section with the the same meaning of state. As noted in [12], a simpler

intersection where {0, 1, 2} are not necessary can be obtained in cases where either the model

or the claim only contains accepting states. In those cases, the procedure of nodes collapsing

is even simpler, only requiring to ignore the third label with values {0, 1, 2} and not having

60

Algorithm 3 Extension of intersection automaton

1: procedure ExtendIntersection(I(M ∩ Φ̄))

2: Iext ← CollapseNodes(I);

3: QCP ←CartesianProduct(QM ,QΦ̄);

4: for (q′, p′) ∈ QCP do

5: reachable ← f alse;

6: if (q′, p′) < QI ∧ q′ < Q0
M

then

7: for (q, p) ∈ Predecessors(q′, p′) do

8: if (q, p) ∈ QI then

9: ∆Iext ← ∆Iext ∪ {(q, p), a, (q′, p′)};

10: reachable ← true;

11: if reachable then

12: QIext ← QIext ∪ (q′, p′);

13: return Iext ;

to collapse any nodes since, given a model state qi and a claim state pj , there only exist at

most two nodes with label (qi, pj): one accepting and one non-accepting. Nevertheless, also in

situations where both automata contain non-accepting states, we should consider a simplified

version of intersection.

The simplification collapses all states that show the same first two components of the label

(q and p) keeping the node that has the higher number as a third component. Given three

nodes (in the most complicated case) (qi, pm, 0), (qi, pm, 1) and (qi, pm, 2), we obtain a new

node (qi, pm) having as incoming transitions the union1 of the incoming transitions of the three

1 Union must be considered with its meaning in set theory.

61

unified nodes and, similarly, as outgoing transitions, the union of the outgoing transitions of all

unified nodes. Whenever a cycle is found among {0, 1, 2} components with the same first two

labels, it is translated into a loop on the new node, that is marked as accepting.

Figure 7 shows an example of what the output of this step should look like. In this case

we collapse {(q2, p2, 0), (q2, p2, 1), (q2, p2, 2)} into (q2, p2) and {(q1, p1, 0), (q1, p1, 1)} into (q1, p1).

Notice that, since the set of nodes deriving from q2 ∈ QM and p2 ∈ QΦ̄ contains an accepting

node, we can collapse the whole set into a unique accepting node.

q1, p1, 0 q1, p1, 1 q2, p1, 1

q2, p2, 2

q2, p2, 1 q2, p2, 0

q1, p1 q2, p1

q2, p2

(a) Before collapsing (b) After collapsing

t

t

t

p

¬pt

¬p

¬p

¬p

t

p

t ¬p

¬p

Figure 7: Example of nodes collapsing

62

This procedure assures that no information is lost for the purpose of the proof. As a matter

of fact, the counter labels {0, 1, 2} are, in principle, used to guarantee that accepting states from

both the automata (together, not individually) appear infinitely often. Since the intersection

has been calculated in its classical version, if any cycle between states exists, it has already been

spotted during this procedure. If the cycle appears among three states with same q and p, we

keep track of it by adding a loop on the node into which the nodes are collapsed. If the cycle

appeared among nodes with different q and p components, it is preserved by the procedure.

The rules of the presented approach are based on the semantic content of the nodes of the

model and the claim, combined. Their combination, irrespective of the third component of the

node, has the same meaning. For the purposes of the proof, then, it is absolutely legitimate to

disregard labels {0, 1, 2}. This choice indeed simplifies our algorithms of proof construction but

does not change anything in the semantic of the automaton.

Failed

A failed node is a node obtained by combining two transitions whose labels are conflicting,

i.e., the propositional assignment on the model transition does not satisfy the propositional

formula on the claim transition. A failed transition is an outgoing transition from a regular

node, entering a failed node. Failed nodes do not have successors.

Definition 3.1 (Failed state and transition). Let qi, q′i ∈ QM and pm, p′m ∈ QΦ̄. If there exists

a transition (qi, a, q′i) ∈ ∆M and a transition (pm, b, p′m) ∈ ∆Φ̄ with a , b, then (q′i, p′m) ∈ QI is

a failed node (failed state) and, being {} an empty label,
(
〈qi, pm〉 , {},

〈
q′i, p′m

〉)
∈ ∆I is a failed

transition.

63

Notice that the failed node (q′i, p′m) could already belong to the intersection automaton. This

happens if q′i and p′m are the destination nodes of two transitions (the first in the model and the

second in the automaton of the negated property) that are labeled with the same symbol. We

only add a failed node if it did not previously exist in the original non-extended intersection.

Figure 8 shows the cases that can arise when extending the intersection automaton computed

in [4] with the addition of failed nodes. Figure 8a represents the situation where all the labels

going from qi to q′i and from pm to p′m do not match, therefore a failed node (q′i, p′m) is created

and its incoming transition from (qi, pm) holds no propositional letters. Figure 8b represents

the situation where a new node (q′i, p′m) could be created both as a destination of a transition

labeled “c” coming from (qi, pm), and as a destination of a failed intersection (deriving from

the non-matching transitions (qi, a, q′i) and (pm, b, p′m)). Notice that the intersection has been

computed according to the procedure of [4] before starting the process of adding failed nodes;

therefore transition
(
〈qi, pm〉 , c,

〈
q′i, p′m

〉)
already exists and node (q′i, p′m) does too. No failed

transition is added. A last possible case is described in Figure 8c: node (q′i, p′m) existed in the

original intersection, because q′i and p′m are destination of two transitions with the same label,

“c”. No failed transition is added from (qi, pm).

Lines 4-12 of Algorithm 3 refer to the procedure used to add failed nodes to the intersection

automaton built as in [4]. To prevent from computing the intersection automaton all from

scratch, failed nodes can be found considering all combinations of the Cartesian product between

model states and claim states that do not belong to the already computed intersection. We

only extract the combinations that did not previously appear, excluding nodes generated by the

64

qi q′i

pm p′m

qi, pm q′i, p′m

M states

Φ̄ states

I states

(a) Creation of new failed node

qi q′i

pm p′m

qi, pm q′i, p′m

M states

Φ̄ states

I states

(b) Creation of new non-failed node

qi q′i

pm p′m

qx

py
qi, pm q′i, p′m

qx, py

M states

Φ̄ states

I states

(c) New failed node not created

a

b

{}

a
c

b
c

c

a

b

c

c

c

Figure 8: Failed nodes generation: possible cases

65

combination with an initial model state (because they would not conclude any existing path).

For each possible new failed node, we consider all possible nodes of the original intersection

that could lead to it and, then, add the corresponding failed transitions (Lines 7 - 10). Finally,

we add the failed node (Line 12).

Another way to obtain the same result is to directly modify the intersection rule used in [4],

by adding the possibility to build failed transitions whenever model and claim transitions do

not match. In case these new transitions lead to not previously existing nodes, their destination

nodes are added too, as failed nodes.

Failed nodes are needed to create a starting point for the proof, in fact its axioms. They

correspond to the end of a run that does not cycle on accepting states, and, therefore, does not

allow the model to satisfy the negated property. Keeping in mind the purpose of a failed node,

in the remainder of the section we treat as “failed” also the nodes belonging to the original

intersection that have no successors. Exactly as the failed nodes just added, they are, in fact,

representative of non accepting runs that end.

Semantics of the intersection automaton

For the purpose of our proof, we should consider the intersection automaton with a particular

semantics that derives from the correspondence between Büchi automata and Kripke structures.

A translation procedure between the two formalisms is introduced by Clarke et al.[12].

Definition 3.2 (From Kripke structures to Büchi automata [12]). A Kripke structure
〈
Q, R,Q0, L

〉
where L : S → 2AP, can be transformed into a Büchi automaton A = 〈Σ,Q ∪ {ι},∆, {ι},Q ∪ {ι}〉,

66

where Σ = 2AP, such that (q, a, q′) ∈ ∆ for q, q′ ∈ Q if and only if (q, q′) ∈ R and a = L(q′). In

addition, (ι, a, q) ∈ ∆ if and only if q ∈ Q0 and a = L(s).

Figure 9 exemplifies this concept. (q1, p1) is an initial node of the structure which does not

hold any valid proposition because it is not entered by any transition. The propositional atoms

that are true in state (q2, p1) are all the ones derived from the state’s incoming transitions:

a and !b. To obtain the propositions true in state (q2, p2), we conjoin the proposition on its

incoming labels: !a∧!b ∧ Σ =!a∧!b.

q1, p1 q2, p1 {} {a∧!b}

q2, p2 {!a∧!b}

(a) Intersection automaton (b) Semantics on states

a

!b

!a∧!b

Σ

Figure 9: Semantics of intersection automaton

This justifies the fact that, for our proof, we do not always consider the real initial states

of the intersection automaton, but those directly reached by these, when the first ones are

semantically empty.

67

Definition 3.3 (Semantically empty node). Let q be a node of the automatonM. q is seman-

tically empty if it has no incoming transitions, i.e., when the system is in state q, no proposition

prop ∈ Σ is true.

To conclude the description of the intersection extension step, in Figure 10, we show the

intersection automaton of the previously presented railway crossing example of Figure 4. Ac-

cording to the definition of intersection automaton for incomplete automata (Definition 2.16)

and to our extension, we can observe four mixed states (q2, p1), (q4, p1), (q2, p2), and (q4, p2)

(double dotted line) with their corresponding constrained transitions (also dotted), a failed

node (q5, p1) (dashed line) with its corresponding failed transition (also dashed).

q1, p1 q2, p1 q3, p1 q4, p1 q5, p1

q2, p2 q3, p2 q4, p2 q5, p2 q6, p2

a a

!b

!a∧!b

a

!a∧!b

!b

a

Σ

a b

Σ

b

a ∧ b

Figure 10: Intersection automaton for the railway crossing example

States (q5, p2) and (q6, p2) are marked with a red area because they form a component that

has to be rejected. This basically means that, if the system gets refined in a way that satisfies

68

the constraints computed for it, that area can never be reached, and, therefore, does not take

part in the proof. This concept is explained in Section 3.2.3.

3.2.2 Identification of strongly connected components

The purpose of this section is to understand how to treat the components of the intersection

automaton and how to organize them for the construction of the rules. There is a bijective cor-

respondence between a SCC and a rule of our proof. We remind the SCCs definition specifically

for our intersection atomaton.

Definition 3.4 (SCCs of an automaton [22]). Given an automaton I = 〈ΣI,QI,∆I, Q0
I
, FI

〉
,

a strongly connected component of I is a maximal set of states C ⊆ QI , such that for all

{(q, p), (q′, p′)} ⊆ C, both (〈q, p〉 , a, 〈q′, p′〉) ∈ ∆I and (〈q′, p′〉 , b, 〈q, p〉) ∈ ∆I , for arbitrary a and

b, i.e., both (q, p) and (q′, p′) are reachable from each other.

In other words, two vertices of a directed graph are in the same component if and only if

they are reachable from each other. The considered component is strongly connected if each

state of the automaton appears in exactly one SCC. Any state, that is not on a directed cycle,

forms a SCC all by itself: for example, a vertex whose in-degree or out-degree is 0, or any vertex

of an acyclic graph.

One of the most famous algorithms to find SCCs is the Tarjan’s algorithm [22], which

allows to find SCCs in linear time. We use this algorithm to identify the components of our

intersection automaton. The procedure described is based on a depth-first search that begins

from an arbitrary starting node and performs subsequent depth-first searches conducted on any

node that has not been found yet.

69

After this basic step, we sort the set of SCCs to make sure that it satisfies the naturally

induced partial order ≺, formally defined as follows:

Definition 3.5 (Naturally induced partial order ≺ [8]). Let C and C ′ be two SCCs belonging

to the same automaton. Then C ≺ C ′ if there is a transition from some state in C to some state

in C ′.

Algorithm 4 Sorting of SCCs

1: procedure Sort(origSCCs)

2: sortedSCCs ← {};

3: mapToSucc ← {};

4: for scc ∈ origSCCs do

5: mapToSucc.set(scc, Successors(scc));

6: while sortedSCCs.size < origSCCs.size do

7: key = random(mapToSucc.keys);

8: if key.getList = ∅ then

9: for x ∈ mapToSucc.keys such that x.getList .contains(key) do

10: x.getList .remove(key);

11: sortedSCCs.add(key);

12: return ordSCC;

Algorithm 4 describes how to establish this order. In our proof, like in [8], “we need to

complete the proof related to all the components C ′ such that C ≺ C ′, before we start dealing

with C.” origSCCs represents a support list that contains all SCCs, while sortedSCC represents

70

the new sorted list to be filled. Lines 3 - 5 create a map that contains the SCCs, as key values,

and for each one of these contains the list of all SCCs reachable from the key (key itself excluded).

In lines 6 - 11, we pick a random SCC: if it does not have any successor, it is inserted in the

sorted list. Already processed SCCs are eliminated from the map and so are the pointers to

them. The sorted list sortedSCCs is returned by the procedure.

In our railway crossing example, we first obtain the following map:



〈q1p1 → {q2p1}〉

〈q2p1 → {q2p2, q3p1}〉

〈q3p1 → {q4p1}〉

〈q4p1 → {q4p2, q5p1}〉

〈q5p1 → {}〉

〈q2p2 → {q3p2}〉

〈q3p2 → {q4p2}〉

〈q4p2 → {q5p2q6p2}〉

〈q5p2q6p2 → {}〉



This may lead, for example, to the following partially ordered sequence: q5p1, q5p2q6p2, q4p2,

q4p1, q3p2, q3p1, q2p2, q2p1, q1p1.

3.2.3 Rules writing

We propose an extension of the rules presented in Section 2.4, that coincides with the

formulation of [8]. They are here modified and enriched for two main reasons: first, we would like

them to support Büchi automata, whilst labeled generalized Büchi automata were previously

71

considered; second, the original rules only supported completely specified systems. Now, they

can be used on incomplete systems.

Each rule instance is composed of its premise and conclusion parts. Each procedure de-

scribing the construction of a rule initializes these two fields, fills them appropriately, and

returns the entire data structure. Conclusions are valid only if all their premises are valid. In

our rules, two kinds of premises are used: validities with the structure stateM |= µ(stateΦ̄)

or stateM |=P µ(stateΦ̄) (Definition 3.6 and 3.7) and state-successors-definitions of the form

stateM → successors(stateM) (Definition 3.8). Conclusions, instead, can only be validities.

Validities can be sure-validities (derived from executions of the model that satisfy the claim

without depending on the replacement of transparent states) or possible-validities (depending

on further refinements). Two different situations can determine that a validity is possible:

1. Validities referring to a model state that is still transparent are possible because no final

conclusion can be derived in this case. Depending on the replacement that will substitute

it, the validity can later become sure, or remain possible (if the replacement contains

transparent states itself).

2. All validities inside the conclusion of a rule that contains possible validities in its premise

are tagged as “possible”, inductively.

Only when all the uncertainties in the premise have been solved and the conclusion is not

referred to a transparent state itself, we can consider the conclusion as sure.

72

Definition 3.6 (Sure-validity). Given a state q ∈ RM (being R the set of regular states of

automaton M) and a linear temporal logic formula µ(p) corresponding to state p ∈ QΦ̄ , we

say that q |= µ(p) if the configuration of the system M in state q satisfies the logic formula

expressed by µ(p). The statement q |= µ(p) is called sure-validity and we say that q models

µ(p).

Note that with “configuration ofM in q” we mean the conjunction of all propositions of q’s

incoming transitions (see Paragraph “Semantics of the intersection automaton” of Section 3.2.1

for detail).

In incomplete systems, it can happen that the state q that models some formula µ(p) is not

specified yet, but only contains a condition of entrance and of exit. To support this kind of

situation, we introduce the concept of possible-validity.

Definition 3.7 (Possible-validity). Given a state q ∈ QM and a linear temporal logic formula

µ(p) corresponding to state p ∈ QΦ̄ , we say |=P defines the relation of possible-satisfiability

between a model state q and the sub-formula of state p of the claim when either q ∈ TM or the

fact that q satisfies µ(p) depends on the replacement of other transparent states of the model.

The statement q |=P µ(p) is called possible-validity and we say that q possibly models µ(p).

The second type of premises, state-successors-definition, describes, formally, the relation of

successivity among model states in the intersection automaton.

Definition 3.8 (State successors definition). We say that q → {q1, q2, . . . , qm }, i.e.,

q1, q2, . . . , qm ∈ QM are successors of q ∈ QM , iff there exist transitions (〈q, p〉 , a, 〈q1, p′〉),

73

(〈q, p〉 , a, 〈q2, p′〉), ..., (〈q, p〉 , a, 〈qm, p′〉 that belong to ∆I , where a can be any label and p and

p′ any state of the claim automaton.

According to the characteristics of each SCC, a different rule is chosen and built. Algorithm 5

shows how the rule assignment works. For each SCC, three sets of states are created to help

discriminating among situations. C represents the set of all states belonging to the same SCC.

Exit(C) contains all states that are directly reached by a node inside the SCC, but do not

belong to C. Enter (C) contains all predecessors of C that are outside of C.

The if-condition at Line 5 excludes from the proof the formal initial states (semantically

empty as explained in Paragraph “Semantics of the intersection automaton” of Section 3.2.1)

and possible unreachable states.

The second macro-distinction is made between SCCs with more than one node (Lines 6-11)

and SCCs with only one node (Lines 13-33). These include both trivial SCCs1, and also the

single states with a self-loop.

For SCCs of more states two cases are possible. If there is at least one accepting node,

this corresponds, indeed, to a dangerous component (a behavior of the system violating the

property) that will never be reached if the model is correctly refined; the component is added

to a rejects red-list (Lines 8-9). If there are no accepting states RuleInd is applied (Line 11).

1A SCC is trivial if it is made of a single vertex c and there does not exist an edge (c, c). A SCC is
non-trivial otherwise.

74

Algorithm 5 Choice of rule for each SCC

1: procedure BuildRule(scc)

2: C ← states ∈ scc;

3: Exit(C) ←((successors of scc states)< scc) < Proo f .re jects;

4: Enter (C) ←((predecessors of scc states)< scc) < Proo f .re jects;

5: if !(C.size = 1 ∧ Enter (C) = ∅) then

6: if C.size > 1 then

7: if ∃x ∈ C t.c. x ∈ FIext then

8: Proo f .re jects ← Proo f .re jects ∪ {scc};
9: Proo f .SCC ← Proo f .SCC \ {scc};
10: else

11: return RuleInd(scc);

12: else

13: c ← C.onlyNode;

14: if c ∈ FIext then

15: if (∃ self-loop on c ∈ ∆Iext∧!c.isMixed) then

16: Proo f .re jects ← Proo f .re jects ∪ {scc};
17: Proo f .SCC ← Proo f .SCC \ {scc}; . 11a-b

18: else

19: if Exit(C) = ∅ then

20: return RuleFail(c); . 11c, 12a-c

21: else

22: if (∃ self-loop on c ∈ ∆Iext ∧ c.isMixed) then

23: return RuleInd(C); . 12b

24: else

25: return RuleSucc(c); . 11d, 12d

26: else

27: if Exit(C) = ∅ then

28: return RuleFail(c); . 11e-g, 12e-g

29: else

30: if ∃ self-loop on c ∈ ∆Iext then

31: return RuleInd(C); . 11f, 12f

32: else

33: return RuleSucc(c); . 11h, 12h

75

For one-node-SCCs, the choice is more articulated, since we also need to differentiate be-

tween regular and mixed states. As far as regular states are concerned, according to various

nested conditions, we cover the following cases:

• A single accepting node with a self-loop corresponds to an accepting run and it is therefore

rejected (Lines 16-17);

• We apply RuleFail both to an accepting node with no successors (Line 20), and to a

non-accepting node with no successors (except possibly for itself) (Line 28);

• We apply RuleSucc to a trivial SCC (no loops) with successors (Lines 25 and 33).

• We apply RuleInd to a non accepting node with a self-loop and other successors (this

counts as a non-trivial SCC, Lines 23 and 31);

(a) REJ (b) REJ (c) FAIL (d) SUCC

(e) FAIL (f) IND (g) FAIL (h) SUCC

Figure 11: Schematization of one-node-SCC cases

76

As far as mixed states are concerned, we remind that they are states whose content is still

unknown. Their content will be clear once they get replaced with other sub-automata.

Mixed accepting states with a self-loop do not need to be rejected, because they are not

final yet, needing a replacement that can change their internal behavior. With mixed states no

difference is made between accepting and non-accepting states. The kind of rule is decided in

the same way as with regular states. We make sure, though, that the conclusion is marked as

possible, meaning that, whatever validitiy it holds, it needs to be further verified.

Figure 11 shows the different scenarios we might encounter when analyzing components of

the graph with only one regular node. Figure 12 is its equivalent for mixed stats. Notice that,

along Algorithm 5 we have taken note of which line refers to the cases represented in the two

figures.

(a) FAIL (b) IND (c) FAIL (d) SUCC

(e) FAIL (f) IND (g) FAIL (h) SUCC

Figure 12: Schematization of one-mixed-node-SCC cases

77

Components to reject

We maintain a list of components of the intersection automaton that are not supposed to

belong to a safe intersection automaton. In fact, they represent behaviors that possibly violate

the property. Conversely, in our approach, we want to prove that the property is possibly

satisfied.

In the railway crossing example, we exclude the component {(q5, p2), (q6, p2)} (notice that

it is marked with a red area in Figure 10). Note that, if the transparent state q4 is properly

replaced, there will be no transitions going from the mixed state (q4, p2) to the component that

we are excluding, which means that the property is possibly satisfied.

RuleFail (Algorithm 6)

The failure axiom is applied to all failed states of the intersection automaton (added through

the procedure described in Section 3.2.1) and to already existing states of the original intersec-

tion automaton that have no successors (and have not already been rejected).

Axiom (Failure axiom (RuleFail)). Let (q, p) be a failed node. In this case, we conclude that

q |= µ(p).

The existence of this axiom expresses that the node has failed because we have checked

the propositional labels of state q’s incoming transitions against the temporal formula on p,

and the LTL formula has failed to hold. Thus, q |= ¬η(p). But, note that ¬η(p) = µ(p) (see

Proposition 2.1). Therefore, q |= µ(p), which means that the formula µ(p) holds in the state q.

Notice that states without successors are obviously not leading to any dangerous cycle,

e.g., a counterexample. They represent the end of a branch of the graph in which the search

78

for counterexamples has failed. If the used model state is transparent, the validity output is

possible, otherwise sure.

Algorithm 6 Apply RuleFail to SCC

1: procedure RuleFail(q, p)

2: rule.prem ← {};

3: if q ∈ TM then

4: rule.concl ← BuildValidity(q, p, possibly);

5: else

6: rule.concl ← BuildValidity(q, p, satis f y);

7: return rule;

In our example (Figure 10), we apply the failure axiom to node (q5, p1), that is accepting

and has no successors. Since q5 is a regular node, the conclusion is sure.

−

q5 |= µ(p1)

Another example of RuleFail application is given in another rule, that is derived from

node (q4, p2), that is mixed and failed (considering the component {(q5, p2), (q6, p2)} as already

rejected), thus corresponding to the case of Figure 12a. Since q4 is a transparent node, the

conclusion is possible.

−

q4 |=P µ(p2)

79

RuleSucc (Algorithm 7)

The successors rule is applied to trivial SCCs, i.e., single states without any self-loop. We

modified the “Successor rule” [8] (see Section 2.4).

Proposition 3.1 (Successors Rule (RuleSucc)). Let (q, p) be a successful node, such that

p has n successors p1, . . . , pn, and q has m successors q1, . . . , qm. Then, knowing that s →

{s1, . . . , sm }, and that for each 1 ≤ i ≤ m, qi |=
∧

j=1,n µ(pj) holds, we derive the conclusion

q |= µ(p).

This means that, given information on what holds in (q, p) successors and being (q, p) a node

that does not exhibit any criticality, we can propagate its “safeness” upwards. The validity of

this proof rule stems from the correctness of the construction. Indeed, note that the failure

axiom is a special case of the successors rule when the addressed node has no successors.

The behavior of the Successors Rule is described in Algorithm 7. Notice that, at Line 6,

we consider the fact that a transparent node is a successor of itself (i.e., it is represented with

a self-loop because inside that state the run can progress).

In our railway crossing example (Figure 10), we find an application of this rule to node

(q3, p1) of the intersection automaton, that corresponds to the case of Figure 11d, an accepting

node with successors and no loops. The possible-validity of the conclusion is determined by the

presence of a possible-validity in the premises of the rule.

q3 → {q4}

q4 |=P µ(p1)

q3 |=P µ(p1)

80

Algorithm 7 Apply RuleSucc to SCC

1: procedure RuleSucc(q, p)

2: qSucc ← {}; pSucc ← {}; rule.concl ← {};

3: for q′ s.t. ∃(〈q, y〉, a, 〈q′, y′〉) ∈ ∆Iext do

4: rule.prem ← rule.prem ∪ [q → {q′}];

5: if q.isTrasp then

6: rule.prem ← rule.prem ∪ [q → {q}];

7: for q′ s.t. ∃(〈q, y〉, a, 〈q′, y′〉) ∈ ∆Iext do

8: qSucc ← qSucc ∪ {q′};

9: for p′ s.t. ∃(〈x, p〉, a, 〈x ′, p′〉) ∈ ∆Iext do

10: pSucc ← pSucc ∪ {p′};

11: for (q′, p′) ∈ qSucc × pSucc do

12: if (q′ ∈ TM ∨ depGraph(q′, p′) , ∅) then

13: rule.prem ← rule.prem ∪BuildValidity(q′, p′, possibly);

14: depGraph(q, p) ← depGraph(q, p) ∪ (q′, p′);

15: else

16: rule.prem ← rule.prem ∪BuildValidity(q′, p′, satis f y);

17: if (q ∈ TM ∨ depGraph(q, p) , ∅) then

18: rule.concl ← rule.concl ∪BuildValidity(q, p, possibly);

19: else

20: rule.concl ← rule.concl ∪BuildValidity(q, p, satis f y);

21: return rule;

81

RuleInd (Algorithm 8)

The induction rule is applied to any non-trivial component that has no accepting state

(otherwise it would have been rejected).

Proposition 3.2 (Induction Rule (RuleInd)). Let C be a SCC of I. Let Exit(C) be the set

of states not belonging to C, that have an incoming arrow from a node in C. Then, from the

facts that for each (q, p) ∈ Exit(C), q |= µ(p) and that for each (q, p) ∈ C, q → succ(q), we can

finally derive that for each (q, p) ∈ C, q |= µ(p).

Notice that, at Line 15 of Algorithm 8, we consider the fact that a trasparent node is a

successor of itself (i.e., it is represented with a self-loop because, inside that state, the run can

progress).

In the railway crossing example, we can apply the induction rule to node (q4, p1), that is

mixed, with successors and a loop, corresponding to the case of Figure 12b. The conclusion is

only possible both because it is referred to the transparent state q4, and because one premise

for the rule (q4 |=P µ(p2)) is possible.

q4 → {q4, q5}

q5 |= µ(p1)

q4 |=P µ(p2)

q4 |=P µ(p1)

A more elaborate example of application of RuleInd is presented in the case study of

Chapter 5, where a SCC with more than one state is analyzed.

82

Algorithm 8 Apply RuleInd to SCC

1: procedure RuleInd(scc)

2: C ← states ∈ scc;

3: Exit(C) ←successors of states ∈ scc;

4: rule.prem ← {};

5: rule.concl ← {};

6: for (q′, p′) ∈ Exit(C) do

7: if (q′ ∈ TM ∨ depGraph(q′, p′) , ∅) then

8: rule.prem ← rule.prem ∪BuildValidity(q′, p′, possibly);

9: depGraph(q, p) ← depGraph(q, p) ∪ (q′, p′);

10: else

11: rule.prem ← rule.prem ∪BuildValidity(q′, p′, satis f y);

12: for q ∈ C ∧ q′ s.t. ∃(〈q, y〉, a, 〈q′, y′〉) ∈ ∆Iext do

13: rule.prem ← rule.prem ∪ [q → {q′}];

14: if q.isTrasp then

15: rule.prem ← rule.prem ∪ [q → {q}];

16: for (q, p) ∈ C do

17: if (q ∈ TM ∨ depGraph(q, p) , ∅) then

18: rule.concl ← rule.concl ∪BuildValidity(q, p, possibly);

19: else

20: rule.concl ← rule.concl ∪BuildValidity(q, p, satis f y);

21: return rule;

83

3.2.4 Rules conjunction

The final goal of this step is to establish a proof that σ |= φ for every execution σ of the

automaton intersection M. This is expressed by M |= φ (see Theorem 2.21).

RuleConj is useful to unify all conclusions that have been found in the previous rules.

In general, it allows to build conclusions on the initial states, that here represent the whole

model. Due to our choice of using Büchi automata and the semantics described in Paragraph

“Semantics of the intersection automaton” of Section 3.2.1, in some cases we require a particular

choice of initial states. Roughly speaking, the “initial states” do not always correspond to the

initial states (q0, p0) ∈ Q0
I

of the intersection automaton. To explain this concept, we refer to

Figure 13. Intuitively, the choice is based on the requirement that an initial node needs to be

semantically non-empty (Definition 3.3).

{}

{a} {b}

... ...

{b ∧ c}

{a} {d}

Proof initial Proof initial Proof initial

(a) First scenario (b) Second scenario

a b

... ...

a b
c

d

Figure 13: Artificial initial node choice

84

In Figure 13a we can observe that the real initial node is semantically empty because it

does not have any incoming transition. Therefore, we use its immediate successors as artificial

initial states for RuleConj. On the contrary, in Figure 13b, we observe that the initial node is

not empty because it is reached by the incoming transitions labeled with “b” and “c”. We can,

therefore, use it as requested in rule RuleConj. Notice that, when analyzing an intersection

automaton, we could have a mixed situation, e.g., if we had two initial states, one of which is

semantically empty and the other is not, we should use one convention (using the successors)

in the first case, and the other convention (use the real initial node) in the second case.

Recalling the definition of semantically empty node, i.e., a state that does not contain

propositions (see Definition 3.3), we can define the initial node used for the proof.

Definition 3.9 (Artificial Initial Node). Let q0 be a semantically non-empty state of Q0
M

, or an

immediate successor of an initial state of M that is semantically empty. Then q is an artificial

initial node (state) for the automaton M.

To these artificial states, we can apply the conclusive rule of the proof.

Proposition 3.3 (Conjunction Rule (RuleConj)).

1. Let q0 be an artificial initial node belonging to QM . Let p1, . . . , pn be all the states of

Φ̄ such that (q0, pi) is a node in the intersection. Then, apply RuleConj, which takes

q0 |= µ(p1), . . . , q0 |= µ(pn) and
∧

i=1,n µ(pi) → φ as premises, and concludes q0 |= φ.

2. Apply RuleConj to all artificial initial states of M.

85

Algorithm 9 Apply RuleConj to conclude the proof

1: procedure RuleConj(φ,I)

2: rule.prem ← {};

3: init ← Arti f icial InitStates(M);

4: for i ∈ init do

5: for p such that (i, p) ∈ QIe xt do

6: if i ∈ TM ∨ depGraph(i, p) , ∅ then

7: rule.prem ← rule.prem ∪BuildValidity(i, p, possibly);

8: depGraph(q0, φ) ← depGraph(q0, φ) ∪ (i, p);

9: else

10: rule.prem ← rule.prem ∪BuildValidity(i, p, satis f y);

11: rule.prem ← rule.prem∪ [Conjunction(claimStates)→ φ];

12: if depGraph(q0, φ) , ∅ then

13: for i ∈ init do

14: rule.concl ← BuildValidity(i, φ, possibly);

15: else

16: for i ∈ init do

17: rule.concl ← BuildValidity(i, φ, satis f y);

18: return rule;

86

Algorithm 9 outlines the steps of this final rule. Line 3 represents the choice of the artificial

initial states to be performed at the beginning of the rule construction. Notice that, by deriving

that all artificial initial states of the model satisfy the property, we intend to say that the whole

model (i.e., all the paths that it can generate) satisfies the property (Theorem 2.21).

The conjunction in our railway crossing example (Figure 10) is built in the following rule:

the conclusion is only possible both because the model contains transparent states, and because

the validities contained in the rule’s premise are still possible.

q2 |=P µ(p1)

q2 |=P µ(p2)

µ(p1) ∧ µ(p2) → φ

q2 |=P φ

3.2.5 Dependency graph

The dependency graph is a structure that supports the computation of the replacements

sub-proofs. It is needed to keep trace of the dependencies between rules in the proof. The

validities in the conclusion of a rule can be “possible” only if they refer to a model state which

is still transparent, or if any of their premises are “possible” too. As an example, let us consider

a rule of this form:

q2 → {q2, q3}

q3 |=P µ(p1)

q2 |=P µ(p2)

q2 |=P µ(p1)

The dependency graph structure (depGraph) is a map that links each key-entry (a SCC)

with a list of other SCCs (depList) on which its validity depends. If we consider the rule above,

87

for example, the key (q2, p1) is mapped to the depList {(q3, p1), (q2, p2)} indicating that, for

q2 |=P µ(p1) to become a sure-validity (q2 |= µ(p1)) we first need to solve the possible-validities

q3 |=P µ(p1) and q2 |=P µ(p2). Solving a dependency is a process that requires to go through

a refinement of the model. Suppose, only for this explanation, that q3 is transparent in the

initial model, and that the developer replaces this state with a complete Büchi automaton that

satisfies the constraint computed as described in [4]. This means that a sub-proof stating that

q3 |= µ(p1) is built and this sure-validity can ultimately be used at higher levels. The element

(q3, p1), that corresponds to the first one in the depList of the entry (q2, p1) of the depGraph

can now be eliminated. The possible-validity q2 |=P µ(p1) now only depends on (q2, p2), that

refers to the same model state q2 and will be, therefore, solved by a preceding rule, rather than

from a refinement yet to come.

3.2.6 Output of the proof

For clarity and completeness of the proof output, we now map subformulas indicated and

memorized as µ(claimState) with the real LTL subformulas. These can be calculated as de-

scribed at the beginning of this section with the tableau in Figure 6 and explained theoretically

in Section 2.2.2 in the packground chapter.

The railway crossing example appears, after this last step, as in the Section 3.2.6. First

the failed nodes are identified and the dangerous SCC rejected, then rules SUCC and IND are

applied to the remaining components. Finally CONJ is used to draw the proof conclusion.

88

• Node (q5, p1). RuleFail . q5 |= µ(p1) = #(lowUout) ∨ out

• SCC = {(q5, p2), (q6, p2)}. Rejected .

• Node (q4, p2). RuleFail . q4 |=P µ(p2) = low ∨ out

• SCC = (q4, p1), Exit(SCC) = {(q5, p1), (q4, p2)}. RuleInd .

q4 → {q4, q5}

q4 |=P µ(p2) = low ∨ out

q5 |= µ(p1) = #(lowUout) ∨ out

q4 |=P µ(p1) = #(lowUout) ∨ out

• SCC = (q3, p2), Exit(SCC) = (q4, p2). RuleSucc .

q3 → {q4}

q4 |=P µ(p2) = low ∨ out

q3 |=P µ(p2) = low ∨ out

• SCC = (q3, p1), Exit(SCC) = (q4, p1). RuleSucc .

q3 → {q4}

q4 |=P µ(p1) = #(lowUout) ∨ out

q3 |=P µ(p1) = #(lowUout) ∨ out

• SCC = (q2, p2), Exit(SCC) = (q3, p2). RuleInd .

q2 → {q2, q3}

q3 |=P µ(p2) = low ∨ out

q2 |=P µ(p2) = low ∨ out

• SCC = (q2, p1), Exit(SCC) = {(q3, p1), (q2, p2)}. RuleInd .

q2 → {q2, q3}

q3 |=P µ(p1) = #(lowUout) ∨ out

q2 |=P µ(p2) = low ∨ out

q2 |=P µ(p1) = #(lowUout) ∨ out

89

• RuleConj.

q2 |=P µ(p1) = #(lowUout) ∨ out

q2 |=P µ(p2) = low ∨ out

µ(p1) ∧ µ(p1) → φ = lowUout

q2 |=P φ = lowUout

Listing 3.1: Deductive proof of M |= φ for the railway crossing system

3.3 Computing the sub-proofs

This section integrates the procedure described in Section 3.2 with a method to compute

sub-proofs by exploiting the Replacement Checking procedure described in Section 2.3.3 [4].

Considering a transparent state t ∈ QM , our sub-proof shows why a chosen replacement Rt

(Definition 2.9), i.e., a sub-automaton that substitutes state t, satisfies (or possibly-satisfies)

the sub-property S̄t computed for state t (Definition 2.17).

This procedure supports the incremental development modus operandi of designers with the

opportunity to compute an ad hoc proof circumscribed to only the replaced state. Indeed,

proving a single module at a time, without having to consider the entire refined system, saves

the user a considerable effort at each refinement round.

After this module is proven, the information derived can be plugged into the master proof,

allowing to solve its rules whose conclusions are still only possible. We are speaking of the rules

whose premise contains possible-validities connected to the mentioned state t.

While in Section 3.2 we used the intersection between an automaton representing the model

M and an automaton representing the negated claim Φ̄ to derive the master proof, in the this

90

section we use the intersection between the replacement Rt and the sub-property S̄t to build

the sub-proof related to state t.

The procedure to compute a sub-proof that specifies why a replacement satisfies the related

condition (Rt |= St) is very similar to the one to compute a proof that the model satisfies

the requested claim (M |= φ). The only difference is represented by the steps to extend the

intersection automaton. Since Rt and S̄t are not simple automata, the intersection between

them is defined in a slightly different way than the one between M and Φ̄, as explained in

Definition 2.19. The structure we need to analyze, in this case, is a Büchi automaton with

in-transition and out-transitions in addition.

In the next two sections we describe how the intersection structure needs to be modified and

how the rules can be applied by analyzing it.

3.3.1 Intersection for the sub-proof

Algorithm 10 shows the modifications needed to the extended automaton It calculated as the

intersection between the sub-automaton Mt of the replacement Rt of state t, and the sub-

automaton P̄t of the sub-property S̄t calculated for state t.

The algorithm includes a first phase (Line 2) that performs the same transformations of the

procedure ExtendIntersection that we used for the master proof (Algorithm 3). In this

function, the phase of nodes collapsing remains unchanged and so does the rule to add failed

states to the intersection computed as in [4] (specified in Definition 2.19).

91

Algorithm 10 Extension of intersection automaton for the sub-proof

1: procedure ExtendIntersectionSubproof(It)

2: Itext ←ExtendIntersection(It,Rt, S̄t);

3: transitionsToPorts();

4: inportsToInitialStates();

5: f indArti f icial InitialStates();

6: addBlueOutports();

7: return Itext ;

We keep the same semantics described in Paragraph “Semantics of the intersection automaton”

of Section 3.2.1. This means that inside each state of the intersection automaton, all and only

the propositions that label its incoming transitions are valid.

The additional aspect we need to consider is the presence of incoming and outgoing transitions.

First of all, we would like to complete the in-transitions by adding also their source state, and

the out-transitions by adding their destination state (Line 3). For this reason we introduce the

concept of “port”.

Definition 3.10 (In-ports and out-ports). Let It be the intersection computed between the

replacement Rt and its sub-property S̄t . And let ∆inI
t and ∆out I

t be its in-transitions and out-

transitions. Then, for each trin ∈ ∆inI
t , the source state of trin is called in-port and for each

trout ∈ ∆out I
t , the destination state of trout is called out-port.

According to the color that marks trin (trout), its source (destination) state inherits the same

color label (Red, Yellow, or Green, as specified in Section 2.3.3).

92

The intersection computed in [4] represents incoming transitions sources and outgoing transi-

tions destinations by only showing the model state that composes the intersection state. Our

procedure requests expanding this port (that is currently labeled with a model state q) by

adding the information from the claim for each existing node of the intersection that is related

to node q. Basically, considering n ports labeled with the model state q, if the intersection

automaton I = M ∩ Φ̄ contains the states (q, p1), ..., (q, pn), these states are added to the

intersection automaton It = Rt ∩ S̄t in substitution of the n ports labeled with q.

Line 4 of 10 indicates the step to transform the sub-property in-ports to the initial states of the

analyzed automaton. The produced states are semantically empty (since we are not considering

any edge that enters them), therefore other artificial initial states (Definition 3.9) need to be

chosen. Line 5 corresponds to this choice. They are the immediate successors of the in-ports

of the intersection automaton and the proof is started from here.

Compared to in-ports, the role of out-ports is more interesting. We need to add a new type of

out-port that we mark with blue color label (Line 6). We now distinguish three possible colors

for out-ports.

Red ports are never reached if the provided replacement satisfies or possibly-satisfies the

sub-property (i.e., when the construction of the sub-proof is triggered). As a matter of fact,

we remind that the situation that a developer must avoid at every cost when he/she designs

a replacement Rt for state t is to design a component that allows S̄t to reach an outgoing

transition marked as red from an incoming transition marked as green. For this reason, red

ports never appear in the analyzed intersection and we should not worry about them.

93

Yellow ports appear in intersections and have the meaning of postponing the problem to the

next reached mixed state. They should be therefore considered as failed states because, in some

way, once the run has reached this state, it is out of the danger indicated by the sub-property.

Blue ports: sub-properties, and consequently the intersection automaton It , do not include

the outgoing transitions that do not lead to a possibly-violating or violating run. Constraints,

indeed, show only yellow and red out-transitions. Differently from [4], we are also interested

in making “non existing” out-transitions explicit, to specify any possible link of the sub-

intersection automaton with the exterior. We add these transitions and the corresponding

destination states to the intersection and call them blue transitions and blue ports.

Definition 3.11 (Blue port). Given a transparent state t of an incomplete model M, its

replacement Rt , and its sub-property S̄t , a blue port is a node of the intersection automaton

(M ∩ Φ̄) that can be reached from states of the intersection sub-automaton Mt ∩ Pt , but does

not already correspond to a yellow or a red port.

Blue ports are important for our purpose because we need to add all possible intersection

states that can be reached by a run when leaving a sub-property. Indeed, as we observed in

Paragraph “Failed” of Section 3.2.1, failed states indicate the end of a non-accepting path of

the intersection automaton. We could, therefore, think of out-ports as the end of a sub-run

(i.e., a run that crossed the sub-property) that has not been trapped inside of it (not accepting,

at least inside the sub-property). Blue and yellow ports acquire this role.

At the end of the ExtendIntersectionSubproof algorithm, the states of the new intersec-

tion present a label of the form (qt j , (qt, pi, x), y), being composed by three elements:

94

• a first label qt j where t represents the transparent state t ∈ TM of the master model M

and j represents the label of the state of the replacement M t ;

• a second label (qt, pi, x) coming from the sub-property related to t;

• a third label computed according to the intersection rule described in Definition 2.14.

Because of the procedure of nodes collapsing (clarified in Section 3.2.1), we can always ignore

the third component after we have marked as accepting all states that have the third component

equal to 2.

Example 3.3.1. We now continue the railway crossing example presenting the computed con-

straint, two possible replacements for its transparent states, and the construction of their in-

tersections.

q1

q21

q22

q23

q3

q3

q3

q41 q42

q5

low
low

low

low

low

low out out

(a) Replacement for q2 (b) Replacement for q4

Figure 14: Replacements for the railway crossing example

95

Let us consider the model in Figure 4: we would like to replace state q2 with the replacement in

Figure 14a, and state q4 with the replacement in Figure 14b. The replacement for q2 contains

a transparent state itself, q22 .

In Figure 15, we consider the constraint C computed for the refinement of the system. The

incoming and outgoing transitions are marked with arrows that reach squared boxes that rep-

resent the entrance and exit points of the sub-property.

q1

q2, p1, 2 q2, p2, 2

q3q3

low

low low

¬out

¬low ∧ ¬out

Σ

q3

q4, p1, 2 q4, p2, 2

q3

q5

low low

out

¬out

¬low ∧ ¬out

Σ

(a) Sub-property for q2 (b) Sub-property for q4

Figure 15: Sub-properties for the railway crossing example

The sub-property S̄q2 in Figure 15a contains an automaton P̄q2 , that has two states with

self-loops and a transition connecting them. State (q2, p1, 2) can be entered through the green

in-port q1 and exited through the yellow out-port q3. State (q2, p2, 2) can be also exited through

96

port q3. The sub-property S̄q4 , in Figure 15b, contains two runs that may yield to a violation of

φ: in the first case, the sub-property is entered though the yellow q3 port on the left, (q4, p1, 2)

is crossed, then (q4, p2, 2), and the sub-property is exited through the red port q5; in the second

case, the sub-property is entered directly from the yellow port q3 on the right, (q4, p1, 2) is

crossed and finally the red out-port is reached.

The intersections between the replacements of states q2 and q4 and their corresponding sub-

properties are represented respectively in Figure 16 and Figure 17. They are obtained using

the procedure described by Menghi et al. [4] and follow the Definition 2.19. We assume that a

node collapsing step has already been performed on the intersections in the figures.

q1

q21, (q2, p1, 2)

q23, (q2, p1, 2) q22, (q2, p1, 2)

q3, p1 q3, p2 q22, (q2, p2, 2)

q23, (q2, p2, 2)low

lowlow
¬out

¬low ∧ ¬out

Σ

low

low
low

Figure 16: Intersection automaton for Rq2 and its sub-property

97

In the first shown intersection, we observe some of the features just described. We have added

the failed transition and node (q23, (q2, p2, 2)) marked with a dashed line. Then we have trans-

formed the out-going yellow transitions to q3 into two yellow out-ports (q3, p1) and (q3, p2).

These are the states of intersection that are associated to the label q3 that indicated the out-

transitions. The green in-port has become the nominal initial node and the one directly reached

from it, (q21, (q1, p2, 2)), has acquired the role of artificial initial node.

Finally, no blue port needs to be added because q3 is the only possible exit from the sub-

property computed for q2. We also observe the mixed states (q22, (q2, p1, 2)) and (q22, (q2, p2, 2))

deriving from the presence of the transparent state q22 in the replacement.

q3

q41, (q4, p1, 2)

q42, (q4, p1, 2) q42, (q4, p2, 2)

q5, p1 q5, p2

low

Figure 17: Intersection automaton for Rq4 and its sub-property

98

The intersection automaton for q4 shows two failed states (q42, (q4, p1, 2)) and (q42, (q4, p2, 2)),

and an artificial initial node (q41, (q4, p1, 2)). Moreover, we observe that the red out-port to

(q5, p2) is never reached. The blue out-port (q5, p1) is not reachable, therefore is eliminated

before computing the proof.

3.3.2 Rules application

Once the intersection automaton is prepared in the described way, we can proceed with the same

steps of Algorithm 2 (BuildProof). The SCCs are identified and sorted; then Algorithm 5

(BuildRule) is applied to each of them. Each rule contributes to the update of the dependency-

graph as described in Section 3.2.5. Finally, the sub-proof is closed by using the conjunction

rule (Section 3.2.4).

Note that, when analyzing a state of the intersection (qt j , (qt, pi, x), y), related to the state

qt j of the replacement and to state (qt, pi, x) of the sub-property, we can write validities like

qt j |= µ(pi) in place of qt j |= µ(qt, pi, x) just as we did with the claim, i.e., we can consider only

the state of the original claim that concurred to build the sub-property state. This is based on

the following assumption.

Assumption 1. A sub-property is a tuple S̄t =
〈
P̄t,∆

inP
t ,∆outP

t

〉
and the replacement it is

checked against is a tuple Rt =
〈
Mt,∆

inR
t ,∆outR

t

〉
(see Section 2.3.3). Our proof corresponds

to justifying why the replacement automaton Mt satisfies the formula corresponding to the

sub-automaton P̄t . After using the collapsing nodes algorithm, our sub-property automaton

P̄t always has the same shape (or a sub-part of it) and semantics content of the negated claim

automaton. The additional information that a sub-property S̄t holds, aside the sub-automaton,

99

are its incoming and outgoing transitions. The information carried by the in/out-transitions is

already dealt with by the refinement checking procedure of Definition 2.18 and is correct.

Let us clarify this statement with the following observations:

• When a run enters the intersection automaton built between the replacement Rt for state

t and the sub-property S̄t , the dangerous situations that can arise (and that we would

like to avoid) are:

1. The run enters the intersection and remains trapped inside of it, cycling infinitely

on its states. We should not worry about this situation: our construction of the

sub-proof is indeed only triggered if a previous refinement checking procedure has

output yes or possibly-yes. We do not run into situations where an accepting cycle

is possible, because this case is already excluded by the model checking procedure;

2. The run starts from a green port and exits the intersection through a red port.

Through a redefined concept of intersection between sub-property and replacement

(excluding red out-transitions, transforming yellow out-transitions into ports, adding

blue ports), we deal with this situation. All dangerous situations are excluded and

only failed runs are considered (where failed is referred to the negated claim).

• Our procedure is correct given the correctness of the approach of Menghi et al.[4] to check

that the sub-property is satisfied by the analyzed replacement.

We formalize these observations as follows:

100

Theorem 3.12 (Transparent state conclusion). For every transparent state t ∈ TM, it holds:

t |=
n∧
j=1

µ(pj) ⇐⇒




t |=P
∧n

j=1 µ(pj) ∧

Mt |=
∧n

j=1 µ(pj) ∧

∀ t ∈ ∆out I
t ∈ {Y ellow, Blue}

(3.1)

On the left side, we have a proposition that states that a transparent state semantically entails

the conjunction of all formulas valid on the states of the claim. This is equivalent to the con-

junction of the three conditions on the right side of the equation. The first conjoined condition

represents the information that we derive from the master proof. During the construction of

the master proof, we collected a series of validities of this form: t i |=P
∧n

j=1 µ(pj), one for

each combination of ti ∈ TM and claim state pj ∈ QΦ̄. Unfortunately, we were only able to

compose a possibly-validity referred to state t, waiting for its replacement. Indeed, only now

we can reach sure-validities. The second conjoined condition basically represents the fact that

a run that enters the replacement does not cycle infinitely inside of Mt . Proceeding with the

analysis of the replacement of t and its behavior against the computed sub-property, we have

now information on what is surely-valid in it. The third condition expresses the fact that a run

that enters S̄t , does not exit from a red out-transition.

3.4 Plugging the sub-proofs into the master proof

At this stage, we know how to build a master proof and also sub-proofs for the initially incom-

plete states. We now try to put together all the results.

101

Basically, we would like to show that, while [8] has already described how to prove that a

property is satisfied by a fully specified model, we can also prove that the same property can

still be satisfied by a model that has not been refined yet. Our proof is incomplete and is finished

only when acceptable refinements for the initial model are provided. In Section 3.2, we showed

how to build the proof for the initial incomplete model M expressed as an incomplete Büchi

automaton. In Section 3.3, we showed how the general procedure of Section 3.2 can be applied,

with some modifications, also to sub-automata representing replacements for transparent states

of M. In this section, we would like to propose a methodology to keep track of which parts

of the initial proof depend on further refinements of the model (and, iteratively, which parts

of a replacement depend on other replacements themselves). Thanks to an appropriate data

structure, we can solve dependencies at higher levels (when the model is still not completely

refined) with the output obtained at lower levels (completely specified replacements).

We organize the dependency system as a tree structure, whose nodes correspond to the master

proof (root) and other sub-proofs. Each node has its own depGraph (see Section 3.2.5), that is

a map where the keys are the single intersection automaton states, each of which has a depList

connected, a list of all those states that need to be “solved” before concluding a sure validity

about the key.

Let us consider the railway crossing model in Figure 4: we would like to replace state q2 with the

replacement in Figure 14a, and state q4 with the replacement in Figure 14b. The replacement

for q2 contains a transparent state itself, q22 . We therefore have a master proof for the whole

model, two sub-proofs respectively for states q2 and q4, and an additional sub-sub-proof for

102

Master proof

Sub-proof q2 Sub-proof q4

Sub-proof q22

Figure 18: Tree of dependencies between proofs

state q22 . Figure 18 represents the hierarchy to follow when solving the dependencies. Each

node has its own depGraph structure.

We describe the steps of dependency resolution performed by the procedure of proof plugging

once that all replacements are available and the refined model N of M is finally complete.

Table II, Table III, and Table IV help us to describe the succession of steps using numbered

arrows.

First of all, we solve the dependencies of those sub-proofs whose automata do not contain

any transparent states anymore. This corresponds to having all dependency lists empty in the

depGraph related to the considered sub-proof. When all depList ’s fields of a node of the tree are

empty, the sub-proof can be considered closed. According with its conclusion, all its ancestors

nodes can be updated. This is the case of the sub-proof related to q4 and the one related to

q22 (we assume a replacement for q22 that satisfies the constraint computed like dictated in [4])

[Arrows (1)]. This step allows to conclude that q22 |= µ(p1) ∧ µ(p2), which means q22 |= φ

103

TABLE II: RESOLUTION OF DEPENDENCIES. STEPS 1-3

and that q4 |= µ(p1) ∧ µ(p2), from which q4 |= φ. Notice that the conclusion on state q2 is

still possible at this stage (q2 |=P φ); instead the sub-proof related to q4 and the sub-sub-proof

related to q22 provide sure-conclusions. This means that we can proceed with substituting all

possible-validities present in the sub-proof referring to q2 with sure-validities [Arrows (2)].

Notice that the dependencies where the key and the content of depList is the same are artificial

because they are the ones related to a transparent state. It is the case of q22 p1 → q22 p1(T).

Nevertheless, we mark them as dependent anyways to keep track of replaced states. At this

point, all depLists in the graph of q2 are empty, therefore, we conclude q2 |= φ [Arrow (3)].

We can now use both final conclusions about q4 [Arrows (4)] and q2 [Arrow (5)], to update

the master proof graph, by turning possible-validities into sure-validities. Note that this can be

done by updating the entries of the depGraph of the master proof by removing any dependency

104

TABLE III: RESOLUTION OF DEPENDENCIES. STEPS 4-5

on validities related to q4 in their depLists. [Arrows (4)] allow to unlock several dependencies:

the keys (q4p2), (q4p1), (q3p2) and (q3p1) have now empty depLists. [Arrow (5)] cancels the

dependency of (q2p1) on (q2p2), while (q2p1) still depends on q3p1.

[Arrow (6)] shows how to use the fact that (q3p2) is now free from dependencies, to delete the

element (q3p2) from the depList of (q2, p2). Finally [Arrow (7)] unlocks the last key: also the

dependency list of (q2p1) is now empty. We can, therefore, conclude thatM |= φ [Arrow (8)].

105

TABLE IV: RESOLUTION OF DEPENDENCIES. STEPS 6-8

CHAPTER 4

TOOL SUPPORT: CHIPS

ChIPS, Checker Initializing Proof Systems, is a Java module that complements CHIA1, an existing

tool that supports automata-based verification. ChIPS is a prototype stand-alone application

realized in Java 7. It is a deductive proof generator initialized by the results of the model

checking procedure.

ChIPS has been realized as a proof of concept, with the purpose of showing how software de-

velopment can benefit from the deductive proof generation method proposed in this thesis. For

this reason, we implemented the procedure in charge of computing the master proof described

in the first part of our contribution (Section 3.2) and leave the incremental part of sub-proofs

(Section 3.3) to future developments. We describe the architecture of the application, that

allows to build a proof associated with the intersection automaton created during the model

checking procedure between a model and a property that the user would like to check, both

described through XML files.

Section 4.1 introduces CHIA, the existing model checking tool on which ChIPS is designed. In

Section 4.2, we describe how ChIPS extends CHIA to produce deductive proofs and, in Section 4.3,

we describe an example of user interaction with the ChIPS console.

1CHIA: CHecker for Incomplete Automata.

106

107

4.1 The CHIA tool

CHIA has been developed by Menghi et al.[4] as a proof of concept to validate their research

on model checking for incompletely specified systems. It has been developed as a Maven multi-

module project. The interaction with the user is managed through a command-line shell which

allows to load the model and the claim from XML files, check whether the model satisfies the

claim, and save the results of verification on XML output files.

CHIA is composed of different sub-modules. The CHIAAutomata module contains the classes

used to manage BAs and IBAs. The CHIAAutomataIO module provides the classes to load

and save a BA, IBA and IntersectionBA from and to the appropriate XML files. Finally the

CHIAChecker module contains classes that allow to check if a model satisfies, possibly-satisfies,

or does not satisfy the properties of interest.

The proof building procedure is triggered after the model checking procedure has been per-

formed and has returned a yes or possibly-yes output. ChIPS exploits the CHIA architecture

to load and save automata from XML files, its intersection procedure, and its model checking

result.

4.2 A Checker Initializing Proof Systems: ChIPS

ChIPS uses the infrastructure of CHIA by including the modules from the corresponding repos-

itory1.

1The CHIA tool is available at http://home.deib.polimi.it/menghi/Tools/IncModChk.html

108

ChIPS is launched by executing its Main class, that enables the ChIPS console, a command-line

shell to interact with the tool, that is implemented with the support of the Cliche library [26].

The ChIPS console extends the one of CHIA, and benefits from all its functions. We can load a

model that we would like to analyze, the claim to to be considered, perform the model checking

procedure, and save the constraints.

The description of the ChIPS module is organized in four sections: Figure 4.2.1 introduces the

classes that describe BAs and IBAs, by explicitly modeling their state space. Section 4.2.2

describes the module used to load and save BAs and IBAs, Section 4.2.3 describes the classes

which allow to compute the proof, and Section 4.2.4 describes the user interface.

4.2.1 Modeling

Figure 19: The class diagram of the modeling classes

109

The BA and IBA classes are used to represent claims and models. They are contained in the

CHIAAutomata module of the tool CHIA. The BA class describes Büchi automata as graphs, with

regular states, initial states, accepting states, and transitions decorated with propositions. In

particular, the automaton graph is represented through the DirectedPseudograph class of the

JGraphT library [27], that allows to create a directed graph with both loops and multiple edges

between two states.

The BA class is extended by IBA, that contains also transparent states, and IntersectionBA,

that provides mixed states and constrained transitions.

The BADecorated class of ChIPS (Figure 19) enriches the information held by the automaton

states. In particular, in addition to the name and the id of each state, we associated a string

representing the LTL formula valid on that state, according to the procedure described in

Section 2.2.2. The automaton has an additional attribute, ltlMap, that associates an LTL

formula to each state of the claim. The method addDecoration() allows to write this additional

information into the automaton.

4.2.2 Input and output

To load and save automata, we exploit the CHIAAutomataIO module. This module provides the

classes to manage the input and output of the automata from and to XML files (whose structure

is validated against their schema definitions).

The chips.io package contains the BADecoratedReader and

ElementToBADecoratedTransformer classes, and the corresponding state transformer

ElementToBADecoraedStateTransformer. These classes manage the input of our extended

110

Figure 20: The class diagram of the chips.io.in package

version of BAs for the representation of the claim. The corresponding class diagram is

presented in Figure 20.

• BADecoratedReader is used to load a BADecorated from an XML file. It extends the corre-

sponding BAReader class (that extends the XMLReader itself) by adding the possibility to

read the string attribute that contains the LTL formula for each state of the automaton;

111

• ElementToBADecoratedTransformer transforms an XML element, which represents a

BADecorated, into the corresponding JAVA object. It inherits from the corresponding

ElementToBATransformer for regular BAs. This class overrides the method transform()

to load states decorated with an LTL formula;

• ElementToBADecoratedStateTransformer transforms an XML element, which represents

a BADecorated state, into the corresponding State object. The class extends the

ElementToBAStateTransformer.

Listing 4.1 describes the XML input file of the claim represented in Figure 5, while Listing 4.2

presents an example of the XML file that corresponds to the railway crossing system model

introduced in Figure 4.

Each file is composed by three different parts: the tag < propositions > defines the list of all

possible < proposition > of the automaton alphabet. Their value is specified in a < value >

attribute. < states > delimits the list of states of the automaton. Each state, denoted by

a < state > tag, contains the mandatory attributes id (unique numeric identifier), name and

optional boolean attributes like accepting, initial and transparent that are set to true in

case these characteristics are associated to the given state. The < transitions > tag delimits

a list of transitions of the automaton. Each transition, specified by using the < transition >

tag, has the id, the source, the destination, and the propositions to describe the source

state, the destination state and the propositions that trigger the passage from one state to the

other. The id fields need to be unique.

112

1 <ba>

2 <propo s i t i on s>

3 <p r o p o s i t i o n value=”SIGMA”/>

4 <p r o p o s i t i o n value=” l ”/>

5 <p r o p o s i t i o n value=”t”/>

6 </propo s i t i on s>

7 <s t a t e s>

8 <s t a t e id =”1” name=”p1” i n i t i a l =”true ” accept ing=”true ” l t l =”X((! l)R(! t))”/>

9 <s t a t e id =”2” name=”p2” accept ing=”true ” l t l =”(! l) ˆ (! t)”/>

10 </s ta t e s>

11 <t r a n s i t i o n s >

12 <t r a n s i t i o n id =”1” source =”1” d e s t i n a t i o n =”1” p r o p o s i t i o n s =”! t”/>

13 <t r a n s i t i o n id =”2” source =”1” d e s t i n a t i o n =”2” p r o p o s i t i o n s =”! l ˆ ! t”/>

14 <t r a n s i t i o n id =”3” source =”2” d e s t i n a t i o n =”2” p r o p o s i t i o n s=”SIGMA”/>

15 </t r a n s i t i o n s >

16 </ba>

Listing 4.1: XML file corresponding to the claim BA presented in Figure 5

Since ChIPS uses the LTL formula that labels each state in the generation of the proof, we

added an attribute to the XML tag referring to the state. These attributes decorate the state

with information about the LTL formula valid on it. In the CHIA input file, the tags < state >

contain an id (unique numeric identifier), a name, optional boolean attributes like accepting,

initial and transparent that are set to true in case these characteristics corresponds to the

considered state, and ltl attribute that contains a string representing the formula valid on the

considered state. In Listing 4.1, this tag is highlighted in red.

113

The LTL formula is expressed through the following operators:

Temporal operators: X (“next”), F (“eventually”), G (“always”), U (“until”), R (“release”).

Logic operators: ˆ (“and”), | | (“or”), ! (“negation”), − > and < − > (“simple, double

implication”).

1 <iba>

2 <propo s i t i on s>

3 <p r o p o s i t i o n value=” l ”/>

4 <p r o p o s i t i o n value=”t”/>

5 </propo s i t i on s>

6 <s t a t e s>

7 <s t a t e id =”1” name=”q1” i n i t i a l =”true ” accept ing=”true”/>

8 <s t a t e id =”2” name=”q2” accept ing=”true ” t ransparent=”true”/>

9 <s t a t e id =”3” name=”q3” accept ing=”true”/>

10 <s t a t e id =”4” name=”q4” accept ing=”true ” t ransparent=”true”/>

11 <s t a t e id =”5” name=”q5” accept ing=”true”/>

12 <s t a t e id =”6” name=”q6” accept ing=”true”/>

13 </s ta t e s>

14 <t r a n s i t i o n s >

15 <t r a n s i t i o n id =”1” source =”1” d e s t i n a t i o n =”2” p r o p o s i t i o n s=” l ”/>

16 <t r a n s i t i o n id =”2” source =”2” d e s t i n a t i o n =”3” p r o p o s i t i o n s=” l ”/>

17 <t r a n s i t i o n id =”3” source =”3” d e s t i n a t i o n =”4” p r o p o s i t i o n s=” l ”/>

18 <t r a n s i t i o n id =”4” source =”4” d e s t i n a t i o n =”5” p r o p o s i t i o n s=”t”/>

19 <t r a n s i t i o n id =”5” source =”5” d e s t i n a t i o n =”6” p r o p o s i t i o n s=”t”/>

20 <t r a n s i t i o n id =”6” source =”6” d e s t i n a t i o n =”5” p r o p o s i t i o n s=” l ˆ t”/>

21 </t r a n s i t i o n s >

22 </iba>

Listing 4.2: XML file for the model IBA presented in Figure 4

114

Figure 21: The class diagram of the chips.io.out package

The XML file containing the IBA has the same structure as the one used in CHIA. It contains the

< state > tag and all the attributes of a BA input file- As an exception, here a state can have an

attribute transparent. Furthermore, the transitions tagscannot contain negated propositions.

We use classes from CHIAAutomataIO that manage the output of the intersection automaton

written on a suitable XML file.

In addition to these, we designed two classes to print our output in text files.

115

• ProofWriter is used to print the proof associated with a model and a claim previously

loaded into a file in the specified path;

• DepGraphWriter is used to print the graph that contains the dependencies between the

validities of the proof, into a file in the specified path.

Figure 21 contains a UML class diagram that describes the structure and relations of the

described classes with the CHIA tool. All three writers are called during the procedure

that performs model checking and then builds a deductive proof (triggered by the method

checkAndBuildProof in ChIPSAutomataConsole).

4.2.3 Building the proof

The main package of our module is chips.prover, that contains all the elements to gather

the necessary information to build the rules of the proof. The rules are created and managed

through the classes of package chips.rule. The specific lines of the proofs, the rows, are dealt

with by package chips.row.

Figure 22 presents the UML class diagram of the chips.prover package, that contains the

classes involved in the generation of the proof.

• ProofBuilder contains the entry point used to run the proof construction. It requires

an IntersectionBA as input. It has an instance of IntersectionBuilderProver that

provides all the methods useful to deal with the intersection automaton, an instance of

SCCDealer that analyzes SCCs and sorts them, a set of rejected SCCs (rejects), a list

of rules (rulesList), and map that records validities dependencies (depGraph). This

116

Figure 22: The class diagram of the chips.prover package

class orchestrates the creation of the proof through the method startMaster(), that

implements Algorithm 2 (BuildProof);

• IntersectionBuilderProver extends the IntersectionBuilder of the CHIAChecker

module (that computes the intersection between a model IBA and a claim, BA), by pro-

117

viding several methods that allow to manipulate the graph and extend it as needed (see

Section 3.2.1);

• SCCdealer manages the identification of SCCs and their sorting with the method

startSorter() that uses the private methods fillSuccessors() and sortScc();

• Mag is a class functional to the procedure of nodes collapsing described in Section 3.2.1. A

Mag is a macro state representing all the intersection automaton states deriving from the

same model and claim states. This kind of object is used in the method collapseNodes

of the IntersectionBuilderProver.

In Figure 22, we also represented the ProofRule class from package chips.rule to show that,

after the ProofBuilder has predisposed everything to start computing the proof, it calls the

constructor of the rule, ruleBuilder().

Figure 23 presents the UML class diagram associated with the chips.rule package.

• ProofRule is an abstract class that describes a rule. It contains the attributes premises,

conclusions and an instance of depGraph. It is extended by four different deductive

rules. ruleBuilder() is a static factory method that implements the logic of Algorithm

5, by choosing to build a different rule based on the characteristics of the analyzed SCC;

• RuleFAIL implements the logic described in Algorithm 6;

• RuleSUCC implements the logic described in Algorithm 7;

• RuleIND implements the logic described in Algorithm 8;

• RuleCONJ implements the logic described in Algorithm 9.

118

Figure 23: The class diagram of the chips.rule package

Figure 24 presents a UML class diagram of the classes contained in the chips.row package. It

is a package that only worries about correctly formatting the gathered information into each

proof row. For organization purposes we choose to use a unique parent class with a toString()

method that each kind of inheriting instance overrides for its purpose.

119

Figure 24: The class diagram of the chips.row package

• ProofRow is the parent class: all possible rows composing the proof derive from it;

• Validity allows to build a sure-validity (Definition 3.6) or a possible-validity (Definition

3.7), depending on the value of the possiblyFlag ;

• SuccDefinition allows to express the definition of a state’s successors (as specified in

Definition 3.8);

• Conjunction is a particular row that only appears in the premise of the Conjunction rule.

It basically allows to state that the conjunction of all the LTL formulae that decorate the

states of the claim automaton implies the initial requested property.

120

4.2.4 Initial framework

The chips.framework package contains the classes used to run ChIPS. The main method in

Main launches the command-line shell ChHIPSConsole, that extends the CHIAConsole. Two

working modes are available: by typing “aut” we access the ChIPSAutomataConsole, that

allows to start the procedure to build the master proof (Section 3.2), whilst with “rep” we

access the ChIPSReplacementConsole, that deals with the construction of sub-proofs.

By extending CHIAAutomataConsole, the ChIPS console inherits all the methods that execute

commands to load the model, the claim, and perform the model checking procedure. This, in

particular, is managed through the module CHIAChecker, that allows to check if the loaded

model IBA satisfies, does not satisfy or possibly-satisfies the loaded claim BA (or BADecorated,

in our case). In addition to the inherited methods, our console implements:

• loadDecoratedClaim() allows the user to load an XML file that corresponds to an enriched

BA, a decorated claim automaton;

• checkAndBuildProof() is the central method of our approach. It first calls the method

check() from its parent class that computes the model checking procedure. Then, de-

pending on the satisfaction value result (i.e., if it is different from “notsatisfied”), the

procedure that builds the master proof is started. At the end of it, both the proof and

the dependency-graph are printed out.

121

Figure 25: The class diagram of the chips.framework package

122

4.3 Interaction with the tool

We present an example of the interaction the user can have with ChIPS. After running the

application, the user can choose between the automata and the replacement mode.

ChIPS > aut

The aut command allows the user to enter the automata mode, opposed to the command rep,

that allows to access the replacement mode.

ChIPSmaster > cp NORMAL

The cp command activates the method changePolicy. It allows the user to switch between a

KRIPKE policy (set by default) and a NORMAL policy.

ChIPSmaster > lm <modelFilePath >

The lm commands stands for loadModel and allows the user to load the IBA that represents

the system he/she wants to analyze by specifying the path of the XML file defined as showed in

Listing 4.2.

ChIPSmaster > lcd <claimFilePath >

123

The ldc command stands for loadDecoratedClaim; specifically it loads the XML file in the

specified path (like, for example, the one in Listing 4.1) as the DecoratedBA that represents

the claim with LTL formulae as states attributes.

ChIPSmaster > ckbp <intersectionFilePath >

<proofFilePath > <graphFilePath >

The ckbp command stands for checkAndBuildProof. This is the central command to activate

our procedure. It performs model checking using CHIA’s modules and, when the result is yes or

possibly-yes, uses the result to build the proof. The user must specify the path of three files to

be created or overwritten where the tool can output the structure of the intersection automaton

used, the content of the deductive proof, and the dependency-graph structure.

ChIPSmaster > exit

exit allows the user to exit the mode he/she has entered. If used from ChIPS >, it exits the

console.

CHAPTER 5

CASE STUDY

In this chapter, we analyze an academic case study to evaluate the applicability of the proposed

approach. The case study has been considered in [4, 9] and represents a communication protocol,

in charge of sending a message. An initial, high level and incomplete model of the system M

is represented in Figure 26 as an incomplete Büchi automaton (see Definition 2.6).

q1 send1 send2

q3 q2

start fail

ok ok fail

success abort

Figure 26: Model of the system in charge of sending a message

When the system is started, the automaton moves from the initial state to the first transparent

module, send1, which represents a function performing the first attempt to send a message. If

the first try succeeds, the final state q3 is entered. If the first attempt is not successful, the

124

125

system activates a second function, send2, that tries to send the message again, for example

by using a different communication device. If this attempt succeeds, the accepting state q3

is reached, otherwise the abort state q2 is reached. The system can move from one state to

another using the limited set of actions {start, ok, f ail, success, abort} that define its alphabet.

The developer might want to know whether this initial design satisfies the requirements of the

system. Consider, for example, the liveness property “whenever a message is sent, then it will

eventually reach the receiver” formalized in linear temporal logic as φ = 2(send → ♦success).

The developer may want to know if it is satisfied in its incomplete design.

The incomplete model checking procedure helps to find out if the model of this system satisfies

or possibly satisfies φ. The model checking procedure intersects the IBA representing the model

M with the BA representing the negation of the property φ. In Figure 27, we show the BA Φ̄

equivalent to the LTL formula ¬2(send → ♦success).

p1 p2

Σ

send ∧ ¬success

¬success

Figure 27: Automaton representing the negated claim

126

The deductive proof exploits the LTL formulae associated with each state of the claim. As

explained in Section 2.2.2, these formulae are obtained from the tableau associated with ¬φ,

which is represented in Figure 28. Note that su is a shortcut for the proposition success and

se for send. According to Proposition 2.1[8], we can express the sub-formulae, on the states of

Φ̄, as η(p1) and η(p2).

♦(se ∧ �¬su)(1)

se ∧ ¬su(2)

se,¬su(3)

se,¬su,#�¬su(4)

�¬su(5)

¬su,#�¬su(6)

�¬su = (5)

©♦(se ∧ �¬su) (7)

♦(se ∧ �¬su)

Figure 28: LTL tableau for ¬2(send → ♦success)

• η(p1) = #♦(send ∧�¬success) - It is derived by following the right branch of the tableau

and by applying the rules of Table I. Below node (7) we find a formula that already

exists in the same branch: it indeed corresponds to the one on the root (1). Therefore,

we return the formula of the last numbered node of the tree, (7), as representative of

127

state p1. Note that this formula is assigned to the initial node of the BA Φ̄ since (1) has

no incoming nodes. Because of Proposition 2.1, µ(p1) = #�(¬send ∨ ♦success).

• η(p2) = �¬success ∧ send - It is derived by following the left branch of the tree. After

applying a dynamic rule (with the “next” symbol) to node (6), we find the �¬success

formula, that is already present in node (5). We therefore perform a conjunction of the

formulae held in the parents of the nodes with the repeated formula. Node (4), parent

of (5), contains {send,¬success,#�¬success} and node (6), parent of the leaf of the

branch, contains {¬success,#�¬success}. By conjoining these two formulae, we obtain

that η(p2) = #�¬success ∧ ¬success ∧ send. According to the first fixed-point eq. in

Equation 2.1, we derive η(p2) = (#�¬success∧¬success)∧ send = �¬success∧ send. For

Proposition 2.1, µ(p2) = ¬send ∨ ♦success.

In the next sections, we simulate a scenario where incomplete model checking [4] is applied

to the just described model and claim automata, followed by the construction of the master

proof (see Section 5.1). Then, we assume the initial system to be refined using two example

replacements for the transparent states, that are used, along with the constraint computed like

in [4], to perform a procedure of replacement checking [4] that allows to build two specific sub-

proofs (Section 5.2). At each refinement step, the newly computed sub-proof allows to solve

the dependencies related to it (see Section 5.3).

5.1 Master proof building

Let us consider the model and claim automata introduced in the last section. The incom-

plete model checking procedure verifies if the model of this system already satisfies or if it

128

possibly satisfies φ. In the second case, the model checking procedure returns a ⊥ value (see

Definition 2.15), meaning that M possibly satisfies φ. In this case, the developer may use the

presented procedure to compute a master proof that shows why the model does not contain

any accepting run that satisfies the negated property, but contains possibly accepting runs that

could violate the property.

q1, p1, 0

send1, p1, 0 send1, p2, 0

q3, p1, 1 q3, p2, 1

send2, p1, 0 send2, p2, 0

q2, p1, 1

q2, p2, 1

q2, p2, 2 q2, p2, 0

start

fail

ok

fail

ok

success

fail

ok

abort

ok

fail

abort

abort

abort

Σ

send∧!success

!success

Σ

send∧!success

!success

Figure 29: Intersection automaton for the sending message example

129

In Figure 29, we represent the intersection automaton computed between the model M and

the negated automaton Φ̄, associated with the property φ. The states marked with a dotted

border (mixed states) and the transitions identified with dotted lines (constrained transitions)

are obtained by combining transparent states of the model and transitions executed in their

replacements with states and transitions of the claim. The runs that involve these states and

transitions are possible runs since they depend on how transparent states are refined.

Figure 29 also shows, on a red background, a cycle among the accepting states that, if reached,

determines a violation of the property. The three states involved represent a dangerous com-

ponent, that is rejected from the graph during the procedure of proof building, as explained in

Section 3.2.3.

As specified in the Paragraph “Nodes collapsing” of Section 3.2.1, the first step of the proof

generation concerns the collapsing of nodes that derive from the same model and claim states.

In the case study under analysis, the procedure collapses (q2, p2, 0), (q2, p2, 1) and (q2, p2, 2) into

the node (q2, p2) and converts the transitions among these three nodes into a self-loop insisting

on the new one. For all other states of the automaton, only the first two components of their

labels are memorized.

Furthermore, the algorithm extends the intersection automaton with failed states (Paragraph

“Failed” of Section 3.2.1). This step does not have any effect on the current intersection since

all possible combinations between a state of the model and a state of the claim have already

been included in the original intersection.

130

q1, p1

send1, p1

artificial
initial node

send1, p2

q3, p1 q3, p2

FAIL

send2, p1 send2, p2

q2, p1 q2, p2

REJECT

FAIL

FAIL

IND IND

IND IND

Figure 30: Graph analyzed for the rule generation

The graph depicted in Figure 30 represents the simplified intersection automaton. This version

of the automaton is analyzed to identify all strongly connected components and to establish a

partial order relation ≺ among them, as specified in Definition 3.5. C ≺ C ′ means that if there

is an edge from a node in C to a node in C ′, it is necessary to consider C ′ before C. This order

assures that, each time a component is analyzed, all the SCCs that are reachable from it, have

been already processed.

The SCCs are identified by the Tarjan’s algorithm[22] and are later sorted according to the

mentioned partial order: (q3, p2), (q2, p1), (q3, p1), (q2, p2), (send2, p2), (send2, p1), (send1, p2),

(send1, p1).

131

After the succession of SCCs has been computed, each of them is processed to identify the

kind of correctness assertion that can be derived from it. In this particular case, all SCCs are

composed by a single node. We remind the reader to make reference to Figure 11 and Figure 12

that should help distinguish between cases.

Since (q3, p2) is a regular, non-accepting, failed node (Figure 11g), the RuleFail is triggered.

The same rule is applied to the states (q2, p1) (situation of Figure 11e) and (q3, p1) (Figure 11g),

since in both cases the states are regular, non-accepting, with no successors except for them-

selves. Differently, (q2, p2) is a non-trivial SCC composed by a single accepting node. As

specified in Figure 11a, this condition leads to a dangerous situation. The component is re-

jected from the proof, and so is the transition from (send2, p2) leading to it, since any safe

replacement of the transparent states would not allow any run to reach (q2, p2). Note that, in

case the refined system did not comply with the specification, the procedure of proof building

would have not started. For this reason, the only interesting components for the proof, are the

ones that form an empty intersection automaton. Finally, (send2, p2), (send2, p1), (send1, p2),

(send1, p1) are all mixed nodes that present both a self-loop and successors: RuleInd is applied

according to Figure 12b. Notice that in Figure 30 the rules to be applied are indicated on the

side of each component.

The sorted list of SCCs is used to build the rules that produce the master proof. Listing 5.1

schematizes the deductive reasoning that proves that the model in Figure 26 possibly-satisfies

the requirement φ = �(send → ♦¬success). At a later stage, when the transparent states

get refined, the procedure progressively builds dedicated sub-proofs that eventually solve the

132

dependencies on hold. Indeed, we note that certain rules present conclusions that are final,

i.e., sure-validities (see Definition 3.6), as for example the three RuleFail at the beginning

of the listing. Others, instead, present conclusions that are not final yet, i.e., possible-validities

(see Definition 3.7) that depend on the resolution of the uncertainty of rules built on earlier

processed SCCs. For example, this is the case of the three RuleInd applied to the components

(send2, p2), (send2, p1), (send1, p2), (send1, p1).

Note that the validities in the conclusion of a rule are possible if the same rule presents at

least a possible-premise, or if the state upon which the validity is built is mixed. A validity in

the premise is possible if there exists a previous rule, showing the same validity as a possible-

conclusion. We remind that the symbol |=P marks the possible-validities present in both premise

and conclusion of rules.

During the application of RuleConj, note that send1 has been chosen as the artificial initial

node, instead of the nominal initial node q1, representative of all modelM automaton, because

it is the first reachable node that is not semantically empty (as specified in Definition 3.9),

whereas the nominal initial node of this automaton q1 does not contain any information, since

it has no incoming transitions.

The possible-conclusion send1 |=P µ(φ) of the final rule means that the master proof is not

complete.

133

1. Using the RuleFail axiom on the node (q3, p2), we obtain:

q3 |= µ(p2) = ¬send ∨ ♦success

2. Using the RuleFail axiom on the node (q2, p1), we obtain:

q2 |= µ(p1) = #�(¬send ∨ ♦success)

3. Using the RuleFail axiom on the node (q3, p1), we obtain:

q3 |= µ(p1) = #�(¬send ∨ ♦success)

4. Node (q2, p2) is rejected.

5. Applying the RuleInd to the SCC = (send2, p2),

where Exit(SCC) = {(q3, p2)}, we obtain:

send2 → {q3}

q3 |= µ(p2) = ¬send ∨ ♦success
send2 |=P µ(p2) = ¬send ∨ ♦success

Applying line 1 as a premise to line 5, we obtain:

send2 |=P ¬send ∨ ♦success

6. Applying the RuleInd to the SCC = (send1, p2),

where Exit(SCC) = {(send2, p2), (q3, p2)}, we obtain:

send1 → {send2, q3}

q3 |= µ(p2) = ¬send ∨ ♦success
send2 |=P µ(p2) = ¬send ∨ ♦success
send1 |=P µ(p2) = ¬send ∨ ♦success

Applying lines 1, 5 as a premise to line 6, we obtain:

send1 |=P ¬send ∨ ♦success

134

7. Applying the RuleInd to the SCC = (send2, p1),

where Exit(SCC) = {(send2, p2), (q2, p1), (q3, p1)}, we obtain:

send2 → {q2, q3}

q2 |= µ(p1) = #�(¬send ∨ ♦success)
q3 |= µ(p1) = #�(¬send ∨ ♦success)
send2 |=P µ(p2) = ¬send ∨ ♦success
send2 |=P µ(p1) = #�(¬send ∨ ♦success)

Applying line 1, 2, 5 as premises to line 7, we obtain:

send2 |=P #�(¬send ∨ ♦success)

8. Applying the RuleInd to the SCC = (send1, p1),

where Exit(SCC) = {(send1, p2), (send2, p1), (q3, p1)}, we obtain:

send1 → {send2, q3}

send1 |=P µ(p2) = ¬send ∨ ♦success
send2 |=P µ(p1) = #�(¬send ∨ ♦success)
q3 |= µ(p1) = #�(¬send ∨ ♦success)
send1 |=P µ(p1) = #�(¬send ∨ ♦success)

Applying line 3, 6, 7 as premises to line 8, we obtain:

send1 |=P #�(¬send ∨ ♦success)

9. Using rule CONJ, we obtain:

send1 |=P µ(p1) = #�(¬send ∨ ♦success)
send1 |=P µ(p2) = ¬send ∨ ♦success
µ(p1) ∧ µ(p1) → φ = �(¬send ∨ ♦success)
send1 |=P φ = �(¬send ∨ ♦success)

Applying line 6, 8 as premises to line 9, we obtain:

send1 |=P �(¬send ∨ ♦success) = φ

Listing 5.1: Deductive proof of M |= φ for the sending message system

135

5.2 Computing the sub-proofs

When the developer refines a transparent state, he/she can consequently trigger the compu-

tation of its dedicated sub-proof and then update the master proof by solving the lines that

depend on the refinement of the considered transparent state. The sub-proof computation

procedure exploits the sub-property and the replacement for a specific transparent state.

A sub-property indicates those behaviors that should be forbidden to any replacement of the

considered state, in order for the whole system to work properly. In particular, any run leading

to a red outgoing transition must be avoided because it corresponds to a behavior of the system

that violates the requirement. The runs leading to yellow outgoing transitions, moreover, should

be possibly avoided, since they help reaching dangerous areas of the intersection automaton.

Nevertheless, for the purposes of this proof, they are treated as perfectly admissible runs.

Figure 31a-b presents the sub-properties associated with the transparent states send1 and send2,

computed according to [4]. The one associated with the replacement of send1 indicates that

any run that passes through this state by entering the incoming green transition q1 and exiting

through one of the outgoing yellow transitions send2 (marked with the abbreviation se2) is a run

that possibly violates the claim. The term possibly indicates that we are not already violating

φ, but we are also not guaranteeing that the run will not reach a red outgoing transition, i.e., a

violating run, in the transparent states reached after the one under analysis. The sub-property

for the replacement of send2, instead, specifies that any run entering the state send2 through

a yellow in-transition send1 and exiting through the red out-transition q2, is possibly violating

(since we are not sure that the yellow incoming port is reachable).

136

q1

se1, p1, 0 se1, p2, 0

se2se2

star t

f ail f ail

Σ

se∧¬su

¬suc

se1

se2, p1, 0 se2, p2, 0

se1

q2

f ail f ail

f ail

Σ

se∧¬su

¬suc

(a) Sub-property for send1 (b) Sub-property for send2

Figure 31: Sub-properties for the sending message example

At this stage, the question is whether it is possible or not to refine the system (i.e., to find a

suitable replacement for send1 and send2) in such a way that the model M not only possibly-

satisfies, but finally satisfies the required property φ = �(send → ♦¬success).

Figure 32 represents the proposed replacement for state send1. It specifies that, by firing the

transition coming from q1 labeled with start, it is possible to reach the state q14. The automaton

Msend1 , by sending a message, moves from q14 to q15. State q15 is connected to the outgoing

transition send2 labeled with f ail, and the outgoing transition q3 labeled with ok.

The framework uses this replacement in the sub-proof computation. An intersection automaton

between this and the sub-property of Figure 31a is computed as Rsend1∩S̄send1 . As done for the

computation of the master proof, the sub-proofs computation requires to modify the intersection

structure computed with respect to Definition 2.19[4].

137

q14 q15

q1

se2

q3

start send

ok

fail

Figure 32: Replacement for state send1

More precisely, it is necessary to collapse the nodes with the same first two components (in

this case study this phase has no impact), and add the failed nodes, configurations of the re-

placement that fail to satisfy the sub-property, that did not originally belong to the intersection

computed in [4] (see Paragraph “Failed” of Section 3.2.1). Here, the failed state (q14, p2) and the

failed transition with empty label 〈q1, {}, (q14, p2)〉 are added. Figure 33 shows the intersection

automaton Isend1 = (Rsend1 ∩ S̄send1) after this step has been applied.

Then, the procedure considers the need of adding blue ports (see Definition 3.11) to the in-

tersection structure. Blue ports complete the information about all the possible exits from

the replacement automaton than a run can take. In this case, an out-transition that is not

considered by the sub-property (because not dangerous) is q3. The procedure, therefore, adds

two out-transitions 〈(q15, p1), {}, q3〉 and 〈(q15, p2), {}, q3〉, which correspond to two out-ports q3,

marked with color blue.

138

q1

q14, p1 q14, p2

q15, p1 q15, p2

se2 se2

s
ta

r
t

s
e
n
d

send

f
a
il

f
a
il

Figure 33: First extention step for automaton Rsend1 ∩ S̄send1

Finally, the procedure transforms the out-ports into states, by replicating them for all the claim

states that could be reached from that point. We explicitly specify the combination between

the model state of the ports and the state of the sub-property which they are intersected with.

Notice that all states derived from the expansion of out-ports are failed nodes, since an out-port

lacks successors, by definition.

Figure 34 describes the state of the intersection automaton after these two steps have been

performed. First the blue port q3 has been added. Later, both the yellow out-port send2 and

the blue q3 ports have been split into states representing the intersection of the model state of

the port and a reachable claim state.

139

We consider the incoming port as the real initial node of the intersection automaton and,

therefore, the nodes directly reached by it, (q14, p1) and (q14, p2), as artificial initial nodes (see

Definition 3.9) to be used in the proof.

q1

q14, p1 q14, p2

q15, p1 q15, p2

se2, p1 q3, p1 se2, p2 q3, p2

s
ta

r
t

s
e
n
d

send

f a
il ok f a

il ok

Figure 34: Second extention step for automaton Rsend1 ∩ S̄send1

A quick observation of this simple graph shows that all nodes correspond to trivial SCCs. The

computation of the partial order relation specified in Definition 3.5, returns the following

relations:

(q14, p1) ≺ (q15, p1), (q15, p2);

(q15, p1) ≺ (send2, p1), (q3, p1);

(q15, p2) ≺ (send2, p2), (q3, p2).

140

An order for the SCCs that suits our purpose is for example:

(q14, p2),(q3, p2),(q3, p1),(send2, p2),(send2, p1),(q15, p2),(q15, p1),(q14, p1)

The sub-property computation procedure does not require to reject any component. Since all

the components are non-accepting, non-mixed single states, the RuleFail is applied to the

components that have no successors (it is the case of Figure 11g) and RuleSucc to the ones

with successors (Figure 11h).

Listing 5.2 presents the sub-proof computed from the automaton previously described.

The conclusion q14 |=P φ is equivalent to say send1 |=P φ. The replacement is complete, but

the out-port send2 is still a transparent state, therefore the conclusion is still possible and not

sure yet. Briefly, the validities derived from the first bullet line of Listing 5.2 represents the

conclusions derived on the out-ports and the failed node (q14, p2). It can be observed that

they all represents sure-validities with the exception of the two related to send2. These trivial

statements are used to derive the conclusions of the following rules. Notice that whenever

the premise of a rule contain a possible validity, the conclusion is marked as possible too.

RuleConj is based on the artificial initial node q14 directly reached by the in-port q1.

141

• Nodes (q14, p2), (q3, p1), (q3, p2), (send2, p1), (send2, p2). RuleFail.

q14 |= µ(p2), q3 |= µ(p1), q3 |= µ(p2), send2 |=P µ(p1), send2 |=P µ(p2)

• SCC = (q15, p1), Exit(SCC) = {(send2, p1), (q3, p1)}. RuleSucc.

q15 → {send2, q3}

q3 |= µ(p1) = #�(¬send ∨ ♦success)
send2 |=P µ(p1) = #�(¬send ∨ ♦success)
q15 |=P µ(p1) #�(¬send ∨ ♦success)

• SCC = (q15, p2). Exit(SCC) = {(send2, p2), (q3, p2)}. RuleSucc.

q15 → {send2, q3}

q3 |= µ(p2) = ¬send ∨ ♦success
send2 |=P µ(p2) = ¬send ∨ ♦success
q15 |=P µ(p2) = ¬send ∨ ♦success

• SCC = (q14, p1), Exit(SCC) = {(q15, p1), (q15, p2)}. RuleSucc.

q14 → {q15}

q15 |=P µ(p1) = #�(¬send ∨ ♦success)
q15 |=P µ(p2) = ¬send ∨ ♦success
q14 |=P µ(p1) = #�(¬send ∨ ♦success)

• RuleConj.

q14 |=P µ(p1) = #�(¬send ∨ ♦success)
q14 |=P µ(p2) = ¬send ∨ ♦success
µ(p1) ∧ µ(p2) → φ = ♦(send ∧ �¬success)
q14 |=P φ = ♦(send ∧ �¬success)

Listing 5.2: Deductive sub-proof of send1 |= φ

142

After the sub-property presented in Figure 31b has been computed, the replacement in Figure 35

is proposed for the transparent state send2. State q16 is the destination of the in-transition

〈send1, f ail, q16〉. By sending a message, the automaton moves from q16 to q17. After waiting for

one transition (reaching q18), the system either moves towards q19 by acknowledging the data

transmission, or moves towards q20 if the timeout interval has passed. Both states guarantee a

retry action that leads back to q16. State q21 corresponds to a failure state that is not reachable

from the other states of the replacement. q19 is the source of the out-transition 〈q19, ok, q3〉 and

q21 is the source of the out-transition 〈q21, f ail, q2〉.

q16 q17 q18

q20

q19

q21

se1

q2

q3

fail send wait

ack

timeout

retry

retry

ok

fail

Figure 35: Replacement for state send2

The replacement of send2 is checked against the related sub-property in Figure 31b. Figure 36

represents the intersection computed between them. With respect to the intersection output by

143

the replacement checking procedure in [4], we applied various modifications. First, the nodes

with different third component {0,1,2}, but deriving from the same model and claim states,

have been collapsed into a unique one. Since all possible combinations between the states of

the replacement and the ones of the sub-property already appeared in the intersection, there

were no failed nodes to be added. The blue port q3 was added. Finally, it was replicated for

the two claim states. Notice that the red port q3 belonging to the sub-property of send2 can

never be reached.

q16, p1

q17, p1

q18, p1

q20, p1q19, p1

q16, p2

q17, p2

q18, p2

q20, p2 q19, p2

q3, p1 q3, p2
q2

se1 se1

f
a
il

s
e
n
d

send

w
a
it

ac
k t .out

r
e
tr
y

ok

r
e
tr
y

f
a
il

s
e
n
d

w
a
it

ackt .o
ut

r
e
tr
y

ok

r
e
tr
y

Figure 36: Extention of intersection automaton Rsend2 ∩ S̄send2

144

The proposed procedure requires to identify the strongly connected components of the graph

and to sort them according to the partial order relation of Definition 3.5. Through

Tarjan’s SCCs search algorithm we find two trivial components, (q3, p2), (q3, p1) and two

non-trivial ones, SCC1 = {(q16, c2,1), (q17, c2,1), (q18, c2,1), (q19, c2,1), (q20, c2,1)} and SCC2 =

{(q16, c2,2), (q17, c2,2), (q18, c2,2), (q19, c2,2), (q20, c2,2)}.

A suitable processing order can, therefore, be (q3, p2), (q3, p1), SCC2, SCC1. By analyzing these

SCCs and applying a rule to each one, the sub-proof in Listing 5.3 is obtained.

Similarly to the sub-proof for the transparent state send1, the conclusion q16 |= φ is equivalent

to say send2 |= φ, being q16 the artificial initial node of the replacement. Since the replacement

is complete, i.e., it does not contain any transparent state, the proof is complete too. All the

validities presented are indeed sure-validities.

• Nodes (q3, p1), (q3, p2). RuleFail. q3 |= µ(p1), q3 |= µ(p2)

• SCC2 = {(q16, p2), (q17, p2), (q18, p2), (q19, p2), (q20, p2)}, Exit(SCC 2) = {(q3, p2)}.

RuleInd.

q3 |= µ(p2) = ¬send ∨ ♦success
q16 → {q17}

q17 → {q18}

q18 → {q19, q20}

q19 → {q16, q3}

q20 → {q16}

q16 |= µ(p2) = ¬send ∨ ♦success
q17 |= µ(p2) = ¬send ∨ ♦success
q18 |= µ(p2) = ¬send ∨ ♦success
q19 |= µ(p2) = ¬send ∨ ♦success
q20 |= µ(p2) = ¬send ∨ ♦success

145

• SCC1 = {(q16, p1), (q17, p1), (q18, p1), (q19, p1), (q20, p1)}. Exit(SCC1) =

{(q17, p2), (q3, p1)}. RuleInd.

q3 |= µ(p1) = #�(¬send ∨ ♦success)

q17 |= µ(p2) = ¬send ∨ ♦success

q16 → {q17}

q17 → {q18}

q18 → {q19, q20}

q19 → {q16, q3}

q20 → {q16}

q16 |= µ(p1) = #�(¬send ∨ ♦success)

q17 |= µ(p1) = #�(¬send ∨ ♦success)

q18 |= µ(p1) = #�(¬send ∨ ♦success)

q19 |= µ(p1) = #�(¬send ∨ ♦success)

q20 |= µ(p1) = #�(¬send ∨ ♦success)

• RuleConj.

q16 |= µ(p1) = #�(¬send ∨ ♦success)

q16 |= µ(p2) = ¬send ∨ ♦success

µ(p1) ∧ µ(p2) → φ = �(¬send ∨ ♦success)

q16 |= φ = �(¬send ∨ ♦success)

Listing 5.3: Deductive sub-proof of send2 |= φ

146

5.3 Plugging the sub-proofs into the master proof

Notice that the sub-proof just computed for send2 is final, i.e., it does not contain possible-

validities. The derived conclusion, send2 |= φ can, therefore, be considered sure. On the other

hand, the proof related to send1 is not complete because, when computed, its result depended

on the replacement of send2. This means it is possible to proceed and use the results of the

second sub-proof to update the ones of first sub-proof, along with the ones of the master proof.

Table V represents the depGraph structure that describes the dependencies between master

proof and its sub-proofs, before starting the plugging procedure. It is immediate to see that

the depList corresponding to the sub-proofs for send2 is empty (therefore, the proof is marked

as closed). The depList usually contains, for each key specified on the left (a SCC of the

intersection graph) the list of the components the key depends on. More practically, to the

component of the second replacement q16p1, corresponds a sure-validity in the proof, i.e., its

decision does not depend on solving other possible-validities. Instead, if q16p1 had depended on

another component, it would have been necessary to wait until the component in its depList

was sure, in order to proceed and mark q16p1 as sure too.

Let us have a look at the first two columns: the key send1p1 depends on the components send1p2

and send2p1. The symbol (t) indicates that the key of that line refers to a transparent state

itself. When sure conclusions are derived about send1 and send2 (our case, since the sub-proofs

for send1 and send2 are marked as closed), we can easily see that all elements in the depList of

the master can be eliminated. When a depList is empty, the conclusion on the bottom can be

declared sure.

147

TABLE V: RESOLUTION OF DEPENDENCIES - STEP 1

Master proof (M)

key depList Sub-proof (send1) Sub-proof (send2)
send1p1 send1p2,send2p1(T) key depList key depList
send1p2 send2p2(T) q14p1 q15p1,q15p2 q16p1 /

q3p1 / q14p2 /
q3p2 / q15p1 send2p1 q20p1 /

send2p1 send2p2(T) q15p2 send2p2 q16p2 /
send2p2 (T) send2p1 (T)

q2p1 / send2p2 (T) q20p2 /
q3p1 / q3p1 /
q3p2 / q3p2 /

closed
(send2) q16 |= φ

In this case study, after the replacement proposed has been substituted in the transparent state

for send2, we can remove all the occurrences of components related to send2 from the depLists

of the master proof and the sub-proof for send1. This step is represented in Table VI. Now

also the depLists in the sub-proof of send1 are empty and the proof is closed.

Finally, also the occurrences related to send1 can be eliminated. We empty the last dependency

left in the master proof (see Table VII), and can declare the master proof closed too.

The obtained proof is composed by a master proof related toM, containing the initial skeleton of

the final proof, and by two sub-proofs corresponding to the transparent states of the initial model

send1 and send2. Since the two proposed replacements are completely specified, no additional

refinement round is needed. By using the dependency graph to keep track of dependencies and

delete the ones solved, the proof can be declared complete when all depLists are empty and

each column referring to a (sub)proof is marked as “closed”.

148

TABLE VI: RESOLUTION OF DEPENDENCIES - STEP 2

Master proof (M)

key depList Sub-proof (send1) Sub-proof (send2)
send1p1 send1p2,����send2p1(T) key depList key depList
send1p2 ����send2p2��(T) q14p1 ����q15, p1,���q15p2 q16p1 /

q3p1 / q14p2 /
q3p2 / q15p1 ����send2p1 q20p1 /

send2p1 ����send2p2��(T) q15p2 ����send2p2 q16p2 /
send2p2 ��(T) send2p1 ��(T)

q2p1 / send2p2 ��(T) q20p2 /
q3p1 / q3p1 /
q3p2 / q3p2 /

closed closed
(send1) q14 |= φ (send2) q16 |= φ

TABLE VII: RESOLUTION OF DEPENDENCIES - STEP 3

Master proof (M)

key depList Sub-proof (send1) Sub-proof (send2)
send1p1 ����send1p2��(T) key depList key depList
send1p2 / q14p1 / q16p1 /

q3p1 / q14p2 /
q3p2 / q15p1 / q20p1 /

send2p1 / q15p2 / q16p2 /
send2p2 / send2p1 /

q2p1 / send2p2 / q20p2 /
q3p1 / q3p1 /
q3p2 / q3p2 /

closed closed closed
(M) send1 |= φ (send1) q14 |= φ (send2) q16 |= φ

CHAPTER 6

STATE OF THE ART

Incremental methods of verification are designed to support the current agile development

processes. Ad hoc formalisms have been defined to iteratively specify the model of the system.

Verification and its techniques are profoundly dependent on the specific frameworks in which

the analyzed problem is considered [28]. This means that the solutions found to verify if

the properties of interest holds, are various in different contexts. It is very difficult to find

a universally recognized best practice in this area. In Section 6.1 we present the state of the

art on the different formalisms used to express incompleteness in the modeling process. When

the model and the properties of interest have been formalized, the verification methods need

a renovation that includes an enrichment of the procedure to support a greater number of

situations. Section 6.2 presents the state of the art on the model checking approaches proposed

in literature. Finally, Section 6.3 presents an overview on the main approaches that have

combined the model checking technique with features derived from deductive verification to

offer a more complete verification output, similarly to the result this thesis aims to obtain.

6.1 Modeling incomplete systems

Different formalisms to represent incompleteness of systems have been proposed over time.

Each of them is associated to a particular refinement process dependent on the characteristics

of the formalism itself.

149

150

A specific notation engineered to express specifications is represented by Hierarchical State

Machines (HSMs) [9]. This formalism includes ordinary states and superstates that are HSMs

themselves. The entry state is a unique ordinary state, whilst exit states can be more than

one. Entry and exit states connect the single HSM to the ones at higher or lower levels. Two

are the advantages of HSMs: first, the possibility to specify systems in a step-wise refinement

way using superstates and their ability to specify modules at different levels of detail; second,

the possibility to replace multiple superstates of the machine with the same specified HSM.

Note that the refinement process of HSMs is applied by connecting a superstate of a HSM to a

replacement of it (which is another HSM).

Another formalism considered to represent systems is Labelled Transition Systems (LTSs).

Since LTSs are not suitable to express incompleteness features and distinguish between different

levels of granularity, Larsen and Thomsen extended them through Modal Transition Systems

(MTSs)[29]. Differently from LTSs that only include one kind of transitions, MTSs present

necessary and admissible transitions (also called possible in [30]). Several notions of refinements

for MTSs have been proposed in literature, as thoroughly indicated in [31].

Similarly to an MTS, a Kripke Modal Transition System (KMTS) [32, 33] divides necessary and

possible behaviors of a system by using two kinds of transitions sets: must (
must
−−−−→) and maybe

(
maybe
−−−−−−→) transitions. The set of maybe transitions is included in the set of must transitions. A

KMTS considers abstract states of the system M as representatives of a set of concrete states

of the system M ′ which refines M. The main difference with the MTS formalism, is that here

states are labeled instead of transitions. An abstract state is labeled with atomic propositions

151

that are satisfied or not satisfied by all the concrete states of M ′. Some propositions on the

label of a state of M may be left unspecified and assigned only when the M is refined with

M ′. Notice that Huth et al.[32] and Shoham and Grumberg [33] have presented solutions for

the refinement process of KMTSs.

LTSs are considered by Giannakopoulou et al.[28] as systems that have been set up in an

unknown environment. The interaction between the environment and the LTS is triggered

through actions that label the transition of the LTS. The interface operator ↑ specifies the

set of the actions A of the model which are observable from the environment. This operator

describes how the model interacts with this environment. The refinement step corresponds to

the specification of the environment in which the model is executed.

In [34] Sharifloo and Spoletini have introduced a particular variation of LTS, where the set of

states is partitioned into regular states and transparent states, special states that can repre-

sent more complex components still unknown. These systems are called Incomplete Labelled

Transition Systems (ILTSs). The approach is similar to the one by [4] in the context of Büchi

automata.

A particular kind of Statecharts[35] has been presented in [36, 37]. Classical Statecharts are a

structured graphical formalism used to describe reactive systems. Evolving Statecharts can be

considered as incomplete hierarchical Statecharts, that support step-wise specification. Their

hierarchical architecture is what makes them appropriate for incremental modeling. An algo-

rithm to transform Statecharts into the equivalent ILTSs [34] is presented in [36] to allow the

verification process.

152

6.2 Model checking and incompleteness

Model checking was born following two different general approaches. The first was indepen-

dently developed in the United States (Clarke and Emerson [1]) and in France (Queille and

Sifakis [2]). It was introduced under the name of temporal model checking mainly because

specifications are here expressed in temporal logic, according to the definition of Pnueli [17].

Systems are here described as finite state transition systems and the procedure consists of check-

ing if the system is a model for the given specification. The second approach, instead, uses a

specification formalized through an automaton. The system automaton is compared to the

automaton representing the desired specification to establish if the first’s behavior is conform

to the second one’s. Literature presents different versions of conformity, among which we cite

language inclusions introduced in [38] (the one that probably became more successful), refine-

ment orderings [39], and observational equivalence [40]. Vardi and Wolper showed how the two

approaches could be related, expressing the temporal model checking in terms of automata[20].

Model checking has been used in contexts where the model to be checked was incomplete at

first, and later refined in a step-wise manner. The checking techniques are obviously strictly

dependent on the modeling formalism used and on the specification expression. The claim

is usually formalized as an LTL formula, a CTL formula (see Section 2.2) or directly as an

automaton.

Alur and Yannakakis[9] consider the model checking of Hierarchical State Machines with re-

spect to both LTL and CTL properties. As far as the procedure to verify CTL formulae is

concerned, usually after the refinement process, a HSM is converted into a flat Finite State

153

Machine (expanded structure), by recursively substituting each box of the structure with the

corresponding Finite State Machine (FSM). In [9], though, this step is avoided, allowing the

complexity of the original algorithm to decrease exponentially. As to specifications given as

automata, given a HSM K and an automaton A which may be obtained from an LTL formula,

the model checking problem is to solve the automaton-emptiness problem, i.e., to check whether

L(A) ∩ KF is empty, being KF an expanded version of K .

The concepts of safety properties and scenarios are introduces in [41] where they are used to

synthesize MTSs that represent the upper and lower bounds, respectively, on the behaviors of

a system. Safety properties therefore include all the possible behaviors the system can exhibit,

and scenarios include less behaviors than the ones the final model should present. Model

checking is performed by merging the MTS that represents the safety property with the MTS

that represents the scenario. This procedure returns the MTS equivalent to their least common

refinement. From the analysis of the obtained system, it is possible to infer if the scenario is

satisfied, possibly satisfied or not satisfied in the model synthesized from the property.

The model checking on systems specified as Kripke MTS was mainly addressed using CTL to

specify the property[42].

As we mentioned in Section 6.1, Giannakopoulou et al. [28] consider system models specified

with LTSs extended by an additional interface operator ↑, that defines the interaction of the

model with its unknown environment. The model checking procedure consists in verifying that

the model combined with the environment does satisfy the claim also specified in terms of a

(deterministic) LTS. The traditional approach that returns yes/no answer is modified to obtain

154

yes (when the model satisfies the claim in all the possible environment), no (when the the

model violates the claim in all environments), and maybe (in the other cases).

A model checking algorithm to be used with ILTSs is proposed in [34]. In addition to verify-

ing if the requirements hold, their procedure outputs a set of constraints for the unspecified

components, if necessary. After the components have been specified, the verification can be

performed in an isolated way only between the new components and the constraints, similarly

to what is done in [4].

6.3 Combining model checking and deductive verification

Each formal method was developed and applied with different intents and within different

contexts. Nevertheless, experiments from literature like [7] have demonstrated that often the

integration of different formal methods to work towards a same goal may allow adding up their

strengths, while alleviating some of their weaknesses. Many works witness there is no such

a distinction anymore between model checking based approaches and theorem-proving based

approaches. Several contributions have in fact considered a combination of these techniques.

To quote from Tan and Cleaveland[43]: “Traditionally, model checkers have been viewed as

decision procedures that return yes/no answers reflecting the correctness of the system being

analyzed.” With the development of techniques that could exploit model checking results, many

have agreed that the idea of using proofs to provide information that justifies the result can be

of great interest to the users of model checkers. Most of these works, like [8] and [3], have focused

on cases where finding a counter-example is not feasible. Others works, like [43] and [44], have

155

explored the complimentary approach, by enriching the verification output in case the model

checking procedure returned a negative answer.

In general, the interest has been dedicated to find ways to certify the correct behavior of soft-

ware, be this represented as programming code or as an abstract model of it. [45] and [46],

among others, argue for the need of a proof certificate, that confirms the correctness of a suc-

cessful model checking run. This is achieved by using the potentiality of deductive verification

to provide intuition that justifies why the program works.

In particular, [46] accompanies a positive answer to the model checking query with a certificate

whose correctness can be checked automatically and symbolically. Differently from [8] and our

work, it does not present a deductive proof that is useful to the user to evaluate design choices,

but a certificate to be verified automatically. Their idea is profoundly supported by the need

of compact solutions for the verification of large systems, while [8] guarantees a better support

with smaller examples.

Necula, instead, introduces the proof-carrying code (PCC)[47], an interesting example of certi-

fying the behavior of a program that is not trusted. Their work is used by [45] to prove safety

temporal properties through small correctness deductions, by manipulating the results of model

checking through a technique of lazy abstraction that supplies annotations. [47] and [45] both

work on code rather than on a separately constructed abstract model of it. In addition, their

local checks are performed at the level of the edges of the analyzed graph, similarly to what we

propose and differently from [8], that employs transition labeled models.

156

As already mentioned, [44] presents another approach that makes use of the information gath-

ered by a model checker but the goal is exactly the opposite of the other mentioned works.

This time the annotations are provided in case of counter-example generation. Their motiva-

tion is driven by the excessive conciseness of a small counterexample given in terms of states

and transitions of the model, therefore bound to the modeling formalism used. Even though

with different aims, the witness generation for ACTL (a subset of universally-quantified CTL

that they propose) is similar to the concept that [8] and our work use for generating proofs of

satisfaction for LTL properties.

Several other works have devised proof systems for model checkers. These enrichment of the

model checking procedure is encoded in different formulations through different works in lit-

erature. Among the contributions that deal with result certification it is worth highlighting

some.

Namjoshi [48] developed, in parallel with Peled, Pnueli and Zuck[3, 8], a proof system and

algorithm for symbolic representation, in particular for the µ-calculus. Other works that have

faced this issue in the context of µ-calculus are [49] and [50]. [43] extended Namjoshi’s work

in the case of local model-checking, presenting a special data structure, the support sets, to

generate “diagnostic-information generation” and “justification generation”. Model checking

results[51, 52] are used both to explain why a Kripke structure fails to satisfy a temporal

property, and to return a portion of the system, witness, that is responsible for the property

being satisfied.

157

Other attempts to combine model checking with deductive verification are presented in [53, 54],

where the result of model checking is accepted as an axiom by the theorem prover. To overcome

the limit of model checking to only treat finite state systems, [54] attempts to verify the finite

parts of complex systems automatically to narrow the state space that needs to be analyzed

deductively. The same idea is followed by [50, 55] using explicit state model checkers and

generating tableau proofs.

All these approaches decorate the model checking result with pieces of information and an-

notations that are obviously strictly connected to the modeling formalism and, therefore, the

architecture of the model checker used. Nevertheless, we observe two common issues:

• All the mentioned methods [8], [3], [48], [45], [47], and [43] describe various ideas to in-

strument tools to produce formal proofs of the model checking verdict. Nonetheless, a

long run still has to be covered before the contribution of the verification tools can be

reused in the certification process, which is the future challenge to be faced;

• Namjoshi[56] arises a legitimate issue by observing that using deductive verification on

abstracted models still fails to describe the missing link from the abstract program leading

back to the concrete one: justifications for both positive and negative answer of the model

checking query, are therefore not always really meaningful for the purposes of the designer.

We finally mention a few examples in literature that have contributed to develop Compositional

verification, a technique based on breaking up the verification of a system into smaller tasks

that involve performing the verification of its components separately, and then combining the

proofs. Works that have implemented this idea are by Larsen and Tomsen[29], that present

158

a compositional correctness proof, by McMillan[57], where theorem proving has been used to

prove conditions for sound compositional reasoning, Finkbeiner et al.[58] that perform deductive

verification on modular systems, Larsen et al.[59] that show a methodology to build a state-

based proof which is oriented to the formalization of constraints for concurrent software systems.

This procedure aims at reducing the dimension of the verification problem under investigation,

by exploiting compositionality and abstraction aspects.

CHAPTER 7

CONCLUSIONS

Software pervades every aspects of our modern lives. While the software development process

has nowadays reached maturity in many aspects, its correctness can never be achieved in its

entirety. Fortunately, verification methods supply a substantial help in locating the errors in

the designs and in the code.

Regrettably, software verification is still often seen as a heavy burden that slows down the

production process. The hard work of the formal methods engineers is to introduce and integrate

new software reliability techniques and tools that respond to the market demand. Flexibility

and modularity are definitely two of the most important features that successful solutions should

present.

In literature, several contributions to software verification have dealt with incompleteness in

its various forms, promoting incremental perspectives and modular approaches. An interesting

number of works has instead addressed the issue of combining different techniques to resolve

diverse aspects of verification in an integrated way.

This thesis has weighed the advantages and drawbacks of model checking and deductive ver-

ification techniques, and has suggested a novel approach to perform deductive verification on

incompletely specified systems by exploiting the results obtained through model checking.

159

160

This chapter presents the final considerations about our procedure of incremental deductive

proofs construction. Section 7.1 describes the contribution of our methodology together with

its limits, while Section 7.2 discusses some possible future works.

7.1 Contributions and limits

This thesis has analyzed the features of two different formal verification techniques and eval-

uated the benefits that their use can bring during the design phase. Within this context, we

may summarize our contributions as follows:

• We considered the incremental model checking approach presented in [4]; their procedure

offers an infrastructure to model incompletely specified systems and reason on them to an-

alyze required properties an their satisfiability. In our work, we exploited their structures

and results to automatically feed a procedure of deductive proof generation;

• We considered the approach described in [3, 8], that integrates model checking with the

possibility to generate deductive systems that describe the computed intersection au-

tomaton. Our idea was to modify this work to proceed in a modular way, by taking into

consideration an initially incomplete model that is refined step by step;

• By combining the two mentioned works, this thesis extrapolated an integrated approach

that follows the developer from the beginning to the end of the design phase according to

the following scenarios:

161

– When a complete (or incomplete) model is considered against a satisfied requirement,

our approach allows to prove why this happens, by deriving the requirement as a

theorem of the model;

– When an incomplete model is considered against a possibly-satisfied requirement,

our approach builds a deductive proof that is incomplete itself and, to be completed,

requires information coming from the model refinement;

– When an incomplete model is refined by substituting the incomplete modules with

suitable replacements (checked against the appropriate constraint), we are able to

build ad hoc proofs for only the considered new portions of the model.

• We provide a methodology to link results related to sub-parts of the model to the ones

related to the whole model. Our procedure uses a data structure that contains informa-

tion about the hierarchy that relates the computed proofs and the dependencies among

each other. Proofs associated to lower level components contribute to complete the ones

associated to the higher level modules.

• We validated our approach through the realization of a prototype tool that receives, as

inputs, descriptions of a model and a requested property and implements the algorithms

to build a deductive proof to be output to the user;

• We tested the feasibility of the technique in a case study that models the functioning of a

communication channel system. In the case study, we built a master proof associated to

162

the incomplete initial system and later provided some example refinements to show how

the entire flow of the approach work.

Our contribution presents two additional advantages with respect to other system verification

solutions: we include the benefits of an incremental methodology and the benefits of a widely

used technique such as model checking enriched by a justification of a positive output.

Even though our approach is able to prove properties of a lot of systems, one of its main

drawbacks is that, at the current stage, it only supports sequential systems. Deductive proofs

are indeed interesting also for concurrent systems. Nevertheless, in some cases, concurrent

systems can be expressed as if they were sequential, by simply using variables assignment as

they where constant propositions.

Another limitation of our approach is the time requested to compute proofs. Without doubt,

a considerable wait is added to the already known complexity of model checking. We believe,

nevertheless, that the insight and information gained by the proof completely repays the com-

putational effort. In any case, the output is provided to the designer as a deductive proof to

ponder, therefore the “human time” required covers the time overhead we added to traditional

verification.

In conclusion, our approach represents an exploration of applicable techniques to the problem

of agile verification. As a proof of concept, we re-engineered the procedure suggested in [8] to

be inserted in an existing model checking framework for incomplete systems.

163

7.2 Perspectives for future work

The directions for future improvements are various, from both theoretical and implementative

perspectives. We would like to explore:

• the possibility to extend the approach to concurrent systems;

• the chance to consider sets of fairness conditions, in addition to the user specified claim.

This would require adding different versions of deductive rules;

• modeling formalisms alternative to Büchi automaton, such as fair transition systems and

modal transition systems (that could better grasp the essence of programs states and their

evolution, especially in case of concurrency);

• the possibility to handle situations where both the system and the property are incom-

pletely specified: including incomplete properties, would help inferring additional prop-

erties and investigate behaviors that we might want to request to systems;

• more complex case studies that could help understand the scalability of the methodology.

The thesis has evaluated the presented approach using a simple case study representa-

tive of many interesting features. However, it would be interesting to consider different

scenarios and apply the procedure to bigger benchmarks;

• a completion of the prototype tool proposed in this thesis. We intend to implement the

sub-proofs generation and the resolution of dependencies to supply a complete framework

that might be used with bigger models, guiding the user from the beginning to the end

of the design process.

164

Our work was inspired by the idea of widening the range of agile methods of formal verification.

A modular technique to perform model checking and together initialize deductive systems can

be an example for other original and agile methods that help the integration of verification

within the development process.

CITED LITERATURE

1. Clarke, E. M. and Emerson, E. A.: Design and synthesis of synchronization skeletons using
branching-time temporal logic. In Logic of Programs, Workshop, pages 52–71, London,
UK, UK, 1982. Springer-Verlag.

2. Queille, J.-P. and Sifakis, J.: Specification and verification of concurrent systems in ce-
sar. In Proceedings of the 5th Colloquium on International Symposium on Programming,
pages 337–351, London, UK, UK, 1982. Springer-Verlag.

3. Peled, D., Pnueli, A., and Zuck, L.: From falsification to verification. In FST TCS 2001:
Foundations of Software Technology and Theoretical Computer Science, eds. R. Hariha-

ran, V. Vinay, and M. Mukund, volume 2245 of Lecture Notes in Computer Science, pages
292–304. Springer Berlin Heidelberg, 2001.

4. Menghi, C., Spoletini, P., and Ghezzi, C.: Dealing with incompleteness in automata-based
model checking. 2015.

5. Baier, C. and Katoen, J.-P.: Principles of Model Checking (Representation and Mind
Series). The MIT Press, 2008.

6. Pnueli, A. and Zuck, L.: Verification of multiprocess probabilistic protocols. Distributed
Computing, 1(1):53–72,

7. Clarke, E. M. and Wing, J. M.: Formal methods: State of the art and future directions.
ACM Comput. Surv., 28(4):626–643,

8. Peled, D. and Zuck, L.: From model checking to a temporal proof. In Proceedings of the
8th International SPIN Workshop on Model Checking of Software, SPIN ’01, pages 1–14,

New York, NY, USA, 2001. Springer-Verlag New York, Inc.

9. Alur, R. and Yannakakis, M.: Model checking of hierarchical state machines. ACM
Transactions on Programming Languages and Systems (TOPLAS), 23(3):273–303,

10. Büchi, J.: On a decision method in restricted second order arithmetic. In The Collected
Works of J. Richard Büchi, eds. S. Mac Lane and D. Siefkes, pages 425–435. Springer New
York, 1990.

11. Mealy, G. H.: A method for synthesizing sequential circuits. Bell System Technical Journal,
34(5):1045–1079,

12. Clarke, Jr., E. M., Grumberg, O., and Peled, D. A.: Model Checking. Cambridge, MA,
USA, MIT Press, 1999.

13. Peled, D. and Wilke, T.: Stutter-invariant temporal properties are expressible without the
next-time operator. Information Processing Letters, 63(5):243 – 246,

165

CITED LITERATURE (Continued) 166

14. Peled, D., Wilke, T., and Wolper, P.: An algorithmic approach for checking closure prop-
erties of temporal logic specifications and omega-regular languages. Theoretical Computer
Science, 195(2):183 – 203, Concurrency Theory.

15. Manna, Z. and Pnueli, A.: Completing the temporal picture. In Automata, Languages and
Programming, eds. G. Ausiello, M. Dezani-Ciancaglini, and S. Della Rocca, volume 372 of

Lecture Notes in Computer Science, pages 534–558. Springer Berlin Heidelberg, 1989.

16. ed. B. W. Wah Wiley Encyclopedia of Computer Science and Engineering. John Wiley &
Sons, Inc., 2008.

17. Pnueli, A.: The temporal logic of programs. In Proceedings of the 18th Annual Symposium
on Foundations of Computer Science, SFCS ’77, pages 46–57, Washington, DC, USA,

1977. IEEE Computer Society.

18. Gerth, R., Peled, D., Vardi, M. Y., and Wolper, P.: Simple on-the-fly automatic verification
of linear temporal logic. In In Protocol Specification Testing and Verification, pages 3–18.
Chapman & Hall, 1995.

19. Wolper, P.: The tableau method for temporal logic: An overview.

20. Vardi, M. Y. and Wolper, P.: An automata-theoretic approach to automatic program
verification. In Proc. 1st Symp. on Logic in Computer Science, pages 332–344, Cambridge,
June 1986.

21. Courcoubetis, C., Vardi, M., Wolper, P., and Yannakakis, M.: Memory-efficient algo-
rithms for the verification of temporal properties. In FORMAL METHODS IN SYSTEM
DESIGN, pages 275–288, 1992.

22. Tarjan, R.: Depth first search and linear graph algorithms. SIAM Journal on Computing,

23. Manna, Z. and Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems:
Specification. New York, NY, USA, Springer-Verlag New York, Inc., 1991.

24. Bhat, G., Cleaveland, R., and Grumberg, O.: Efficient on-the-fly model checking
for ctl. In Logic in Computer Science, 1995. LICS’95. Proceedings., Tenth Annual IEEE
Symposium on, pages 388–397. IEEE, 1995.

25. Gastin, P. and Oddoux, D.: Fast ltl to büchi automata translation. In Computer
Aided Verification, eds. G. Berry, H. Comon, and A. Finkel, volume 2102 of Lecture
Notes in Computer Science, pages 53–65. Springer Berlin Heidelberg, 2001. Tool URL:
http://www.lsv.ens-cachan.fr/ gastin/ltl2ba/.

26. Cliche command-line shell. https://code.google.com/p/cliche/.

27. Barak naveh. jgrapht a free java graph library, 2011. http://jgrapht.org/.

28. Giannakopoulou, D., Pasareanu, C. S., and Barringer, H.: Assumption generation for
software component verification. pages 3–12, 2002.

https://code.google.com/p/cliche/
http://jgrapht.org/

CITED LITERATURE (Continued) 167

29. Larsen, K. G. and Thomsen, B.: Compositional proofs by partial specification of processes.
In Mathematical Foundations of Computer Science 1988, eds. M. P. Chytil, V. Koubek,
and L. Janiga, volume 324 of Lecture Notes in Computer Science, pages 414–423. Springer
Berlin Heidelberg, 1988.

30. Chechik, M., Brunet, G., Fischbein, D., and Uchitel, S.: Partial behavioural models
for requirements and early design. In Methods for Modelling Software Systems (MMOSS),
eds. E. Brinksma, D. Harel, A. Mader, P. Stevens, and R. Wieringa, number 06351 in
Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2007. Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany.

31. Uchitel, S., Alrajeh, D., Ben-David, S., Braberman, V., Chechik, M., Caso, G., D’ippolito,
N., Fischbein, D., Garbervetsky, D., Kramer, J., Russo, A., and Sibay, G.: Supporting
incremental behaviour model elaboration. Comput. Sci., 28(4):279–293,

32. Huth, M., Jagadeesan, R., and Schmidt, D. A.: Modal transition systems: A foundation
for three-valued program analysis. pages 155–169. Springer, 2000.

33. Shoham, S. and Grumberg, O.: Monotonic abstraction-refinement for ctl. In In TACAS,
pages 546–560. Springer, 2004.

34. Sharifloo, A. M. and Spoletini, P.: Lover: light-weight formal verification of adaptive
systems at run time. In Formal Aspects of Component Software, pages 170–187. Springer
Berlin Heidelberg, 2013.

35. Harel, D.: Statecharts: A visual formalism for complex systems. Sci. Comput. Program.,
8(3):231–274,

36. Ghezzi, C., Menghi, C., Sharifloo, A. M., and Spoletini, P.: On requirements verifi-
cation for model refinements. In Requirements Engineering Conference (RE), 2013 21st
IEEE International, pages 62–71. IEEE, 2013.

37. Ghezzi, C., Menghi, C., Sharifloo, A. M., and Spoletini, P.: On requirement verification
for evolving statecharts specifications. Requirements Engineering, 19(3):231–255,

38. Har’El, Z. and Kurshan, R. P.: Software for analytical development of communications
protocols. AT&T Technical Journal, 69(1):45–59,

39. Cleaveland, R., Parrow, J., and Steffen, B.: The concurrency workbench: A semantics-
based tool for the verification of concurrent systems. ACM Trans. Program. Lang. Syst.,
15(1):36–72,

40. Fernandez, J.-C., Garavel, H., Kerbrat, A., Mounier, L., Mateescu, R., and Sighireanu,
M.: Cadp - a protocol validation and verification toolbox. In Proceedings of the 8th
International Conference on Computer Aided Verification, CAV ’96, pages 437–440, Lon-
don, UK, UK, 1996. Springer-Verlag.

41. Uchitel, S., Brunet, G., and Chechik, M.: Synthesis of partial behavior models from
properties and scenarios. IEEE Transactions on Software Engineering, 35(3):384–406,

CITED LITERATURE (Continued) 168

42. Chechik, M., Devereux, B., Easterbrook, S., and Gurfinkel, A.: Multi-valued symbolic
model-checking. ACM Trans. Softw. Eng. Methodol., 12(4):371–408,

43. Tan, L. and Cleaveland, R.: Evidence-based model checking. In Computer Aided
Verification, eds. E. Brinksma and K. Larsen, volume 2404 of Lecture Notes in Computer
Science, pages 455–470. Springer Berlin Heidelberg, 2002.

44. Gurfinkel, A. and Chechik, M.: Proof-like counter-examples. In In Tools and Algorithms
for the Construction and Analysis of Systems, pages 160–175, 2003.

45. Henzinger, T. A., Necula, G. C., Jhala, R., Sutre, G., Majumdar, R., and Weimer, W.:
Temporal-safety proofs for systems code. In Computer Aided Verification, eds. E. Brinksma
and K. Larsen, volume 2404 of Lecture Notes in Computer Science, pages 526–538. Springer
Berlin Heidelberg, 2002.

46. Kupferman, O. and Vardi, M. Y.: From complementation to certification,

47. Necula, G. C.: Proof-carrying code. In Proceedings of the 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’97, pages 106–119, New

York, NY, USA, 1997. ACM.

48. Namjoshi, K. S.: Certifying model checkers. In Computer Aided Verification, eds. G. Berry,
H. Comon, and A. Finkel, volume 2102 of Lecture Notes in Computer Science, pages 2–13.
Springer Berlin Heidelberg, 2001.

49. Kick, A.: Generation of witnesses for global µ-calculus model checking. http://liinwww.
ira.uka.de/~kick.

50. Yu, S. and Luo, Z.: Implementing a model checker for lego. In FME’97: Industrial
Applications and Strengthened Foundations of Formal Methods, pages 442–458. Springer,
1997.

51. Clarke, E. M., Grumberg, O., McMillan, K. L., and Zhao, X.: Efficient generation of
counterexamples and witnesses in symbolic model checking. In Proceedings of the 32nd
annual ACM/IEEE Design Automation Conference, pages 427–432. ACM, 1995.

52. Stirling, C.: Local model checking games (extended abstract). In CONCUR ’95:
Concurrency Theory, eds. I. Lee and S. Smolka, volume 962 of Lecture Notes in Computer
Science, pages 1–11. Springer Berlin Heidelberg, 1995.

53. Joyce, J. and Seger, C.: The hol-voss system: Model-checking inside a general-purpose
theorem-prover. In Higher Order Logic Theorem Proving and Its Applications, eds. J.
Joyce and C.-J. Seger, volume 780 of Lecture Notes in Computer Science, pages 185–198.
Springer Berlin Heidelberg, 1994.

54. Rajan, S., Shankar, N., and Srivas, M.: An integration of model-checking with auto-
mated proof checking. In Computer-Aided Verification, CAV ’95, ed. P. Wolper, volume 939
of Lecture Notes in Computer Science, pages 84–97, Liege, Belgium, jun 1995. Springer-
Verlag.

http://liinwww.ira.uka.de/~kick
http://liinwww.ira.uka.de/~kick

CITED LITERATURE (Continued) 169

55. Sprenger, C.: A verified model checker for the modal µ-calculus in coq. In Tools and
Algorithms for the Construction and Analysis of Systems, ed. B. Steffen, volume 1384 of
Lecture Notes in Computer Science, pages 167–183. Springer Berlin Heidelberg, 1998.

56. Namjoshi, K. S.: Lifting temporal proofs through abstractions. In Verification,
Model Checking, and Abstract Interpretation, eds. L. Zuck, P. Attie, A. Cortesi, and
S. Mukhopadhyay, volume 2575 of Lecture Notes in Computer Science, pages 174–188.
Springer Berlin Heidelberg, 2003.

57. McMillan, K.: Verification of infinite state systems by compositional model checking. In
Correct Hardware Design and Verification Methods, eds. L. Pierre and T. Kropf, volume
1703 of Lecture Notes in Computer Science, pages 219–237. Springer Berlin Heidelberg,
1999.

58. Finkbeiner, B., Manna, Z., and Sipma, H.: Deductive verification of modular systems. In
Compositionality: The Significant Difference, eds. W.-P. de Roever, H. Langmaack, and A.
Pnueli, volume 1536 of Lecture Notes in Computer Science, pages 239–275. Springer Berlin
Heidelberg, 1998.

59. Larsen, K. G., Steffen, B., and Weise, C.: A constraint oriented proof methodology based
on modal transition systems. In In BRICS Notes, pages 17–40. Springer-Verlag, 1995.

VITA

Anna Bernasconi

Education B.S., Mathematical Engineering
Politecnico di Milano
September 2012

M.S., Engineering of Computing Systems
Politecnico di Milano
2012-2015

M.S., Computer Science
University of Illinois at Chicago, Chicago, IL
2012-2015

Work Experience Junior Analyst
Business Intelligence and Datawarehouse Architectures
Quantyca S.R.L., Monza, Italy
October 2014 - Present

Language Skills Italian, Native speaker

English, Full working proficiency
2012 TOEFL - 107/120
2009 Certificate in Advanced English - B
2013 A semester of study abroad in Chicago, Illinois

Spanish, Intermediate knowledge
2011/12 A year of study abroad in Madrid, Spain

170

	1Introduction
	 Motivation
	 Original contributions and structure of the thesis

	2Background and used formalisms
	 Modeling the system
	 Complete models
	 Incomplete models
	 Refining incomplete models

	 Formalizing the specification
	 Syntax and semantics of LTL
	 LTL to automata
	 Labeled Generalized Büchi Automata

	 LTL model checking
	 Checking complete models
	 Checking incomplete models
	 Constraints and refinement checking

	 Proof of M-validity of property

	3Contribution
	 High level outline
	 Computing the master proof
	 Extending the intersection
	 Identification of strongly connected components
	 Rules writing
	 Rules conjunction
	 Dependency graph
	 Output of the proof

	 Computing the sub-proofs
	 Intersection for the sub-proof
	 Rules application

	 Plugging the sub-proofs into the master proof

	4Tool support: ChIPS
	 The CHIA tool
	 A Checker Initializing Proof Systems: ChIPS
	 Modeling
	 Input and output
	 Building the proof
	 Initial framework

	 Interaction with the tool

	5Case study
	 Master proof building
	 Computing the sub-proofs
	 Plugging the sub-proofs into the master proof

	6State of the Art
	 Modeling incomplete systems
	 Model checking and incompleteness
	 Combining model checking and deductive verification

	7Conclusions
	 Contributions and limits
	 Perspectives for future work

	 CITED LITERATURE
	 VITA

