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SUMMARY

One of the fundamental problems in data analysis is how to represent the data. Real-world

signals of practical interest such as color imaging, video sequences and multi-sensor networks,

are usually generated by the interaction of multiple factors and thus can be intrinsically repre-

sented by higher-order tensors. Application of conventional linear analysis methods to higher-

order data tensor representation is typically performed by conversion of the data to very long

vectors, thus inevitably losing spatial locality as well as imposing a huge computational and

memory burden. As a result, great efforts have been made to extend conventional linear anal-

ysis methods that rely on data representation in the form of vectors, for higher-order data

analysis. This thesis is dedicated to the study of higher-order data analysis including retrieval,

classification and representation, within the mathematical framework provided by multilinear

algebra.

We first present a higher-order singular value decomposition (HOSVD)-based method for

robust indexing and retrieval of higher-order data in responding to various query structures.

We prove theoretically that, for real tensors, the set of HOSVD orthogonal matrices of a sub-

tensor is equivalent to the corresponding subset of HOSVD orthogonal matrices of the original

tensor. Therefore, if we first arrange all tensors in the database compactly as a higher-order

tensor, then we only need to conduct HOSVD once on the total tensor.

We then extend linear discriminant analysis (LDA) for higher-order data classification.

We propose two multilinear discriminant analysis methods, Direct General Tensor Discrimi-

x



SUMMARY (Continued)

nant Analysis (DGTDA) and Constrained Multilinear Discriminant Analysis (CMDA). Both

DGTDA and CMDA seek a tensor-to-tensor projection onto a lower-dimensional tensor sub-

space, which is most efficient for discrimination.

Finally, we propose Generalized Tensor Compressive Sensing (GTCS)–a unified framework

for compressive sensing of higher-order tensors. GTCS offers an efficient means for representa-

tion of multidimensional data by providing simultaneous acquisition and compression from all

tensor modes.

xi



CHAPTER 1

INTRODUCTION

One of the fundamental problems in data analysis is how to represent the data. While

conventional data analysis methods such as linear discriminant analysis (LDA) and compressive

sensing (CS) theory rely on data representation in the form of vectors, many data types in

various applications such as color imaging, video sequences, and multi-sensor networks, are

intrinsically represented by higher-order tensors. Application of conventional analysis methods

to higher-order data representation is typically performed by conversion of the data to very long

vector, thus inevitably losing spatial locality and imposing a huge computational and memory

burden. Recently, multilinear algebra, the algebra of higher-order tensors, was applied to the

analysis of the multi-factor structure of multidimensional signals. Tensor defines multilinear

operators over a set of vector spaces and is a natural generalization of vector and matrix.

Consequently, multilinear analysis subsumes linear analysis as a special case and offers a unifying

mathematical framework to address problems involving multi-factor data.

This thesis is dedicated to the study of high-order data analysis including retrieval, classifi-

cation and representation, within the mathematical framework provided by multilinear algebra.

In Chapter 2, we first prove that for real tensors, the HOSVD orthogonal matrices of a sub-

tensor can be well approximated by those corresponding mode matrices obtained from applying

HOSVD to the original tensor. We then propose a robust HOSVD-based multilinear approach

for efficiently indexing and retrieving multifactor data according to the format of the query,

1
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either complete or partial. Simulation in the context of multi-object multi-camera motion

trajectory indexing and retrieval demonstrated the efficiency and robustness of the proposed

approach.

In Chapter 3, we first show that a closed-form solution to the optimal projection sought

by GTDA exists. We subsequently propose Direct GTDA (DGTDA) which not only gets rid

of parameter tuning but also achieves the optimal projection directly. We demonstrate that

DGTDA outperforms GTDA in terms of both training efficiency and classification accuracy.

In addition, we propose Constrained Multilinear Discriminant Analysis (CMDA) that looks for

a set of projection matrices with orthonormal columns by iteratively maximizing the scatter

ratio criterion. We prove theoretically that in the limit, the value of the scatter ratio criterion

in CMDA approaches its extreme value, if it exists, with bounded error. In fact, experimental

results show that in most cases, the optimization procedure of CMDA converges, thus lead-

ing to superior and stabler classification performance in comparison to DATER. To our best

knowledge, CMDA is the first scatter ratio maximization-based MDA method that exhibits

convergency.

Finally in Chapter 4, we propose Generalized Tensor Compressive Sensing (GTCS)–a unified

framework for compressive sensing of higher-order tensors. GTCS offers an efficient means for

representation of multidimensional data by providing simultaneous acquisition and compression

from all tensor modes. In addition, we compare the performance of the proposed method with

Kronecker compressive sensing (KCS). We demonstrate experimentally that GTCS outperforms

KCS in terms of both accuracy and speed.



CHAPTER 2

HIGHER-ORDER SINGULAR VALUE DECOMPOSITION

(HOSVD)-BASED HIGH-ORDER DATA INDEXING AND RETRIEVAL

Higher-order singular value decomposition (HOSVD), a natural multilinear extension of the

matrix SVD, computes the orthonormal spaces associated with different modes of the tensor. It

is widely employed for feature extraction, dimensionality reduction etc. However, due to the vast

quantities of tensor entries involved in calculation, it inevitably suffers from high computational

cost, especially when recalculation of HOSVD is frequently required. To address the problem, we

prove theoretically that for real tensors, the set of HOSVD orthogonal matrices of a sub-tensor

is equivalent to the corresponding subset of HOSVD orthogonal matrices of the original tensor.

Therefore, if we first arrange all tensors in the database compactly as a higher-order tensor, then

we only need to conduct HOSVD once on the total tensor. We subsequently propose a robust

HOSVD-based multilinear approach for efficiently indexing and retrieving multifactor data, in

responding to various query structures. We also apply the proposed method for indexing and

retrieval of multi-camera multi-object motion trajectory. Simulation results demonstrate the

superior performance of the proposed approach in terms of both robustness and efficiency.

2.1 Introduction

Singular value decomposition (SVD) has served as a powerful tool in linear analysis. To

perform SVD, samples should be represented in vector form where only one factor is allowed to

3
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vary. However, in most real applications, the data are the composite consequence of multiple

factors and naturally require higher-order tensor representation. For instance, Shashua and

Levin (1) first employed 3rd-order tensor instead of matrix of vectorized images to represent an

image ensemble. Correspondingly, matrix SVD needs to be generalized in order to deal with

multifactor data. The higher-order singular value decomposition (HOSVD) is such a natural

extension of matrix SVD within the mathematical framework of multilinear algebra. Although

it has been shown that some nice properties of SVD such as uniqueness and existence cannot

be guaranteed in its higher-order counterpart, HOSVD still provides satisfactory performance

in multilinear analysis. For example, Alex et al. (2) demonstrated the power of HOSVD in the

context of facial image ensemble classification.

Specifically in the field of motion analysis, such as motion trajectory indexing and retrieval,

large volume motion data are usually represented compactly in higher-order tensor form. One

common problem is that these tensors are usually of very high dimensionality and therefore,

to accelerate processing, dimensionality reduction is always necessary. In analogy to applying

SVD for feature extraction as well as dimensionality reduction of linear samples, HOSVD offers

a multilinear tool to seek the optimal lower-dimensional tensor subspace that preserves the data

class structure. Due to the vast quantities of tensor entries involved in calculation, HOSVD

inevitably suffers from high computational cost and therefore is less employed in applications

where recalculation of HOSVD is frequently needed. For instance, referring to the motion

trajectory indexing and retrieval problem mentioned above, if the structure of the query is

known and fixed, all the samples in the database can be stored in the same structure as the
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query and HOSVD needs only to be conducted once. However, in practice, the query may

contain either complete information as the database do or only partial information from certain

modes. In the sense of tensor, a partial query may be (1) either a tensor of the same order

yet of smaller size in certain modes or (2) a lower-order sub-tensor. Apparently, obtaining

the HOSVD unitary matrices of the new tensors efficiently, preferably without recalculating

HOSVD will greatly improve the efficiency of the processing algorithms. In (3), Xiang et al.

presented dynamic tensor HOSVD downdating algorithm to address the first problem and this

paper will focus on the solution to the latter.

The rest of the paper is organized as follows. We first prove theoretically in Section 2.2 that

the HOSVD unitary matrices of a sub-tensor can be well approximated by those corresponding

mode matrices obtained from applying HOSVD to the original tensor. We then propose a

robust HOSVD-based multilinear approach for efficiently indexing and retrieving multifactor

data according to the format of the query in Section 2.3. Section 2.4 applies the proposed

method to multifactor motion trajectory analysis which can dynamically adjust the database

according to the query structure. At last, Section 3.7 concludes the paper and discusses briefly

on future work.

2.2 Theoretical Foundation

We propose Theorem 2.2.3 which later serves as the theoretical foundation of the higher-

order tensor data indexing and retrieval algorithm introduced in Section 2.3. In order to prove

Theorem 2.2.3, we state two lemmas first.
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Lemma 2.2.1 (4, Thm. 3.3) Let X ∈ R
L1×...×LM . Let Uk ∈ R

Lk×L
′

k where UT
k Uk = I and

L
′

k ≤ Lk for k = 1, . . . ,M . Then the function f(X̂ ) = ‖X−X̂‖2F , where rankk(X̂ ) = L
′

k, is min-

imized, when X̂ ∈ R
L1×...×LM is given by X̂ = (X

∏M
k=1×kU

T
k )

∏M
k=1×kUk = X

∏M
k=1×k(UkU

T
k ).

Proof It is sufficient to prove Y minimizes g(Y) = ‖X−Y
∏M

k=1×kUk‖
2
F , where Y = X

∏M
k=1×kU

T
k ∈

R
L′1×...×L′

M .

Let E = X − Y
∏M

k=1×kUk. Then we have

E

M∏

k=1

×kU
T
k = (X − Y

M∏

k=1

×kUk)

M∏

k=1

×kU
T
k

= X
M∏

k=1

×kU
T
k − Y

M∏

k=1

×kUk

M∏

k=1

×kU
T
k

= X
M∏

k=1

×kU
T
k − Y

M∏

k=1

×k(U
T
k Uk)

= X
M∏

k=1

×kU
T
k − Y.

Therefore, Y
∏M

k=1×kUk is the least square estimation of X , i.e. g(Y) is minimized when Y =

X
∏M

k=1×kU
T
k . This completes the proof.

Lemma 2.2.2 (4, Thm. 3.4) Let X ∈ R
L1×...×LM . Let Uk ∈ R

Lk×L
′

k where UT
k Uk = I and

L
′

k ≤ Lk for k = 1, . . . ,M . Then maximizing f(Uk|
M
k=1) = ‖X − X

∏M
k=1×k(UkU

T
k )‖2F is

equivalent to minimizing g(Uk|
M
k=1) = ‖X

∏M
k=1×kU

T
k ‖

2
F .
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Proof Let Y = X
∏M

k=1×kU
T
k ∈ R

L′1×...×L′
M .

f(Uk|
M
k=1) = ‖X − (X

M∏

k=1

×kU
T
k )

M∏

k=1

×kUk‖
2
F

= ‖X − Y

M∏

k=1

×kUk‖
2
F

= ‖X‖2F − 2〈X , (X
M∏

k=1

×kU
T
k )

M∏

k=1

×kUk〉+ ‖Y‖
2
F

= ‖X‖2F − 2〈X

M∏

k=1

×kU
T
k ,X

M∏

k=1

×kU
T
k 〉+ ‖Y‖

2
F

= ‖X‖2F − ‖Y‖
2
F .

Thus maximizing f(Uk|
M
k=1) is equivalent to minimizing g(Uk|

M
k=1) = ‖Y‖

2
F . This completes the

proof.

Theorem 2.2.3 Let X ∈ R
L1×...×LM . For an arbitrary set {i1, . . . , in} ⊂ {1, . . . ,M}, let

(U∗i1 , . . . , U
∗
in
) be a solution of

(U∗i1 , . . . , U
∗
in
) = arg min

(Ui1
,...,Uin )

J∑

j=1

‖Xj − Yj

n∏

k=1

×ikUik‖
2
F ,

J = Lin+1 · . . . · LiM , {in+1, . . . , iM} = {1, . . . ,M}\{i1, . . . , in}, (2.1)

where U∗ik ∈ R
Lik

×L′ik , U∗Tik
U∗ik = I, L′ik ≤ Lik for k = 1, . . . , n. Yj ∈ R

L′i1
×...×L′in , Xj ∈

R
Li1
×...×Lin is the jth sub-tensor of X obtained by varying indices i1, . . . , in with fixed indices

in+1, . . . , iM and rankk(Yj

∏n
k=1×ikUik) = L

′

k.
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Let (U∗1 , . . . , U
∗
M ) be a solution of

(U∗1 , . . . , U
∗
M ) = arg min

(U1,...,UM )
‖X − Y

M∏

k=1

×k Uk‖
2
F , (2.2)

where U∗ik ∈ R
Lik

×L′ik , U∗Tik
U∗ik = I for k = 1, . . . ,M . L′ik ≤ Lik for k = 1, . . . , n and L′ik = Lik

for k = n+ 1, . . . ,M . Y ∈ R
L′1×...×L′

M and rankk(Y
∏M

k=1×kUk) = L
′

k.

Then (U∗i1 , . . . , U
∗
in
) in (Equation 2.1) is equivalent to the (U ∗i1 , . . . , U

∗
in
) tuple of (U∗1 , . . . , U

∗
M )

in (Equation 2.2).

Proof According to Lemma 2.2.1, ‖X−Y
∏M

k=1×kUk‖
2
F is minimized when Y = X

∏M
k=1×kU

T
k ∈

R
L′1×...×L′

M . Since for k = n + 1, . . . ,M , L′ik = Lik , we also have U∗ikU
∗T
ik

= I. Therefore,

according to Lemma 2.2.2

min
(U1,...,UM )

‖X − Y
M∏

k=1

×k Uk‖
2
F

= ‖X − X
M∏

k=1

×kU
T
k

M∏

k=1

×k Uk‖
2
F

= ‖X − X
M∏

k=1

×k(UkU
T
k )‖2F

= ‖X − X
n∏

k=1

×ik(UikU
T
ik
)‖2F

= min
(Ui1

,...,Uin )
‖X − X

n∏

k=1

×ikU
T
ik

n∏

k=1

×ik Uik‖
2
F

= max
(Ui1

,...,Uin )
‖X

n∏

k=1

×ikU
T
ik
‖2F .

Hence ‖X
∏n

k=1×ikU
T
ik
‖2F is maximized by the (U∗i1 , . . . , U

∗
in
) tuple of (U∗1 , . . . , U

∗
M ).
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Next, let B = X
∏n

k=2×ikU
T
ik
. Thus

B(i1) = X(i1)(Uin ⊗ . . .⊗ Ui2)

= [X1(i1) · · · XJ (i1)](Uin ⊗ . . .⊗ Ui2)

= [X1(i1)(Uin ⊗ . . .⊗ Ui2) · · · XJ (i1)(Uin ⊗ . . .⊗ Ui2)],

where J = Lin+1 · . . . · LiM and Xj(i1)
∈ R

Li1
×(Li2

·...·Lin ) for j = 1, . . . , J . Then we have

(U∗i1 , . . . , U
∗
in
) = arg max

(Ui1
,...,Uin )

‖X
n∏

k=1

×ikU
T
ik
‖2F

= arg max
(Ui1

,...,Uin )
‖B×i1U

T
i1
‖2F

= arg max
(Ui1

,...,Uin )
tr{UT

i1
B(i1)B

T
(i1)

Ui1}

= arg max
(Ui1

,...,Uin )
tr{UT

i1
[

J∑

j=1

Xj(i1)
(Uin ⊗ . . .⊗ Ui2)

(Uin ⊗ . . .⊗ Ui2)
TXj

T
(i1)

]Ui1}

= arg max
(Ui1

,...,Uin )

J∑

j=1

‖Xj

n∏

k=1

×ikUik‖
2
F

= arg min
(Ui1

,...,Uin )

J∑

j=1

‖Xj − Yj

n∏

k=1

×ikUik‖
2
F .

This completes the proof.
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Suppose the HOSVD of a real tensor X ∈ R
L1×...×LM is

X = S
M∏

k=1

×kUk,

where Uk ∈ R
Lk×Lk ’s are orthogonal and S ∈ R

L1×...×LM . In other words, S = X
∏M

k=1×kU
T
k

minimizes ‖X − S
∏M

k=1×kUk‖
2
F = 0. Based on Theorem 2.2.3, the (Ui1 , . . . , Uin) tuple of

(U1, . . . , UM ) also minimizes
∑J

j=1 ‖Xj − Yj

∏n
k=1×ikUik‖

2
F = 0, which means each ‖Xj −

Yj

∏n
k=1×ikUik‖

2
F = 0. Therefore,

Xj = Yj

n∏

k=1

×ikUik , j = 1, . . . , (Lin+1 · . . . · LiM ).

That is to say, Ui1 , . . . , Uin also serve as the HOSVD orthogonal matrices of the sub-tensor Xj .

Also, the corresponding core tensor Yj can be obtained by Xj

∏n
k=1×ikU

T
ik
. Once the HOSVD

of the total tensor is known, there is no need to calculate the HOSVD of any sub-tensors, which

in fact can be obtained directly.

2.3 Higher-Order Data Indexing and Retrieval

Assume that the whole database is represented compactly as an M th-order tensor X ∈

R
L1×...×LM , where different tensor modes correspond to different factors of the data. Given

an arbitrary query tensor T ∈ R
Li1
×...×Lin consisting of a subset {i1, . . . , in} of the M tensor

modes. The higher-order data indexing procedure and retrieval procedure are summarized in

Table Table I and Table II respectively. Although S ∈ R
L1×...×LM , it usually contains vast zero

entries, thus can serve as indexing tensors efficiently.
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TABLE I

THE HIGHER-ORDER DATA INDEXING PROCEDURE
Input The total database tensor X ∈ R

L1×...×LM , the tensor
modes {i1, . . . , in} contained in the query tensor.

1. Conduct HOSVD on the database tensor X and obtain unitary
projection matrices U1, . . . , UM and the core tensor S, i.e.

X = S
∏M

k=1×kUk.

2. Rearrange X into sub-tensors Xj ∈ R
Li1
×...×Lin for j = 1,

. . . , (Lin+1 · . . . · LiM ).
3. Obtain indexing tensor X ind

j by X ind
j = Xj

∏n
k=1×ikU

T
ik
,

for j = 1, . . . , (Lin+1 · . . . · LiM ).
Output Indexing tensors X ind

j for j = 1, . . . , (Lin+1 · . . . · LiM ).

TABLE II

THE HIGHER-ORDER DATA RETRIEVAL PROCEDURE
Input The query tensor T ∈ R

Li1
×...×Lin and indexing tensors

X ind
j for j = 1, . . . , (Lin+1 · . . . · LiM ), the similarity

threshold σ.

1. Obtain the indexing query tensor,i.e. T ind = T
∏n

k=1×ikU
T
ik
.

2. Compare the Frobenius distance Dj between indexing tensor
X ind

j and T ind, i.e. Dj = ‖X
ind
j − T ind‖F , retrieve

those whose Dj is less than σ.
Output Retrieved sub-tensors Xj ’s.
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2.4 Simulation Results

We test the performance of the proposed approach on the 2nd CAVIAR dataset (5) for the

indexing and retrieval of multi-camera multi-object motion trajectories.

2.4.1 Tensor representation of the 2nd CAVIAR data set

The 2nd CAVIAR dataset contains a set of surveillance video clips of the same scene obtained

by cameras from two different viewpoints, one corridor view and one frontal view. We first

concatenate x- and y-location information of each object trajectory into one column vector,

called single trajectory vector v. We then align v’s as columns of multiple trajectory matrix

M whose column number is equal to the number of objects in the particular video sequence.

Here, each multiple trajectory matrix contains the motion information of a group of objects

within one video clip. Multiple trajectory matrices with the same number of columns are then

aligned to form a 3rd-order tensor, referred to as multiple trajectory tensor. Finally, multiple

trajectory tensors from different cameras construct a 4th-order tensor X along the dimension

of cameras. Figure Figure 1 gives an example of the process to obtain a 4th-order tensor from

2 cameras each containing 3 video sequences of time duration L with 2 moving objects. For

video sequences of different length, every single trajectory is sampled to the same length 2L.

Similarly, we form the CAVIAR database into a 200× 2× 47× 2 tensor with modes corre-

sponding to motion trajectory, object, video clip and camera respectively. To be more specific,

this tensor consists of 47 video clips obtained by 2 cameras with 2 motion trajectories of length

200 in each clip.



13

Figure 1. Tensor representation of multi-camera multi-object motion trajectories.

2.4.2 Complete query—two trajectories from two cameras

We first input a complete query of size 200× 2× 2 consisting of motion trajectory matrices

from two cameras. The precision and recall curve in this case is depicted in Figure Figure 2(a).

Retrieval results are shown in Figure Figure 3.
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Figure 2. Precision and recall curve: (a) complete query; (b) partial query.
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Retrieval results for complete query: (a)-(b) query; (c)-(d) most-similar results;
(e)-(f) second most-similar results.

2.4.3 Partial query 1–single trajectory from two cameras

In this case, we select one single motion trajectory from each camera and form a partial

query of size 200× 2. The retrieval results and precision and recall curve are shown in Figure

Figure 4, Figure Figure 2(b) respectively.

2.4.4 Partial query 2–double trajectories from one camera

In the last case, we select one motion trajectory matrix of size 200× 2 from one camera as

a different kind of partial query. The retrieval results are shown in Figure Figure 5.

To sum up, the experimental results demonstrate the efficiency and robustness of the pro-

posed approach in responding to various query structures.
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Retrieval results for partial query 1: (a)-(b) query; (c)-(d) most-similar results;
(e)-(d) second most-similar results.

2.5 Conclusion

In this paper, we first proved theoretically that the set of HOSVD unitary matrices of a

sub-tensor is equivalent to the corresponding subset of HOSVD unitary matrices of the original

tensor. We then proposed a robust HOSVD-based multilinear approach for efficiently indexing

and retrieving multifactor data, in responding to various query structures. Simulation results

demonstrated the robustness and the superior performance of the proposed approach. Although

we only applied our approach to motion trajectory analysis, it can serve as a unifying framework

for a variety of computer vision problems involving multifactor data. As can be seen in the

simulation part, we assumed that the certain modes contained in the query were known and
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(a) (b)

(c)

Figure 5. Retrieval results for partial query case 2: (a) query; (b) most-similar results; (c)
second most-similar results.

adjusted the database accordingly. However, in most real applications, the correspondence

between the tensor structure in the query and database is unknown. Future work will focus on

the solution to the unknown case.



CHAPTER 3

MULTILINEAR DISCRIMINANT ANALYSIS FOR HIGHER-ORDER

TENSOR DATA CLASSIFICATION

Linear discriminant analysis (LDA) has played a crucial role as a subspace learning method

in computer vision and pattern recognition applications. LDA relies on data representation in

the form of vectors. However, many data types do not lend themselves to vector representation.

Instead, real-world data, usually generated from the interaction of multiple factors, can be

naturally represented by higher-order tensors. Recent efforts have been made to extend LDA for

tensor data classification, which is generally referred to as the multilinear discriminant analysis

(MDA) problem. MDA seeks a tensor-to-tensor projection (TTP) to a lower-dimensional tensor

subspace that is most efficient for discrimination (some literature aim at a tensor-to-vector

projection (TVP), which is beyond the scope of this paper). Existing examples include General

Tensor Discriminant Analysis (GTDA) and Discriminant Analysis with Tensor Representation

(DATER). To measure the separation of samples in the new tensor subspace, MDA methods

mainly employ one of the two criteria: scatter ratio criterion (e.g. DATER) and scatter difference

criterion (e.g. GTDA). The optimal TTP should be the one that maximizes such criterion.

Due to the dependency among tensor modes, it seems that no closed-form solution to this

optimization problem exists, hence both the two methods attempt to resolve such dependency

through iterative approximation. GTDA is known to be the first MDA method that converges

over iterations. However, its performance relies highly on tuning of the parameter in the scatter

17
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difference criterion. On the other hand, although DATER usually results in better classification

performance, it does not converge, yet the number of iterations executed upon termination has

a direct impact on DATER’s performance. We first show that a closed-form solution to the

optimal projection sought by GTDA exists. We subsequently propose Direct GTDA (DGTDA)

which not only gets rid of parameter tuning but also achieves the optimal projection directly.

We demonstrate that DGTDA outperforms GTDA in terms of both training efficiency and

classification accuracy. In addition, we propose Constrained Multilinear Discriminant Analysis

(CMDA) that looks for a set of projection matrices with orthonormal columns by iteratively

maximizing the scatter ratio criterion. We prove theoretically that in the limit, the value of the

scatter ratio criterion in CMDA approaches its extreme value, if it exists, with bounded error.

In fact, experimental results show that in most cases, the optimization procedure of CMDA

converges, thus leading to superior and stabler classification performance in comparison to

DATER. To our best knowledge, CMDA is the first scatter ratio maximization-based MDA

method that exhibits convergency.

3.1 Introduction

Linear discriminant analysis (LDA)(6) has been widely employed for subspace learning (e.g.

dimensionality reduction, feature extraction etc. ) in computer vision and pattern recogni-

tion applications. Although real data of natural and social sciences are usually of very high

dimension, the underlying structure can in many cases be characterized by a small number

of parameters. For instance, in many statistical pattern recognition problems, such as face
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recognition (7)(8) and image retrieval (9), in order to visualize the intrinsic structure of the

high-dimensional data, LDA often serves as a preprocessing step to reduce the dimensionality.

One of the fundamental problems in data analysis is how to represent the data. Image is

intrinsically a matrix. However, since LDA takes vectors as input, image typically has to be

vectorized first, during which spatial locality is inevitably lost. Some recent works have started

to consider an image object as a matrix for unsupervised learning problem(10; 11). Many efforts

have been devoted to the extension of LDA which takes matrices as input. Liu et al. (12) pro-

posed a special LDA that projects matrix data to some vector space for discrimination. Later,

Kong et al. (13) extended traditional Fisher Discriminant Analysis (FDA) to 2DFDA where

data matrix is projected onto a two-dimensional tensor subspace and showed its advantages in

solving small sample size problem. Its multi-class counterpart 2DLDA was then proposed by Ye

et al. (14). Due to the dependency of the projection matrices on each other, no direct solutions

exist. Therefore, they derived an iterative algorithm that fixes one of the projection matrices at

a time. However, 2DLDA does not converge over iterations. Similar method was employed by

(15) for tensor subspace learning. Whereas in (16), TensorLDA overcomes such dependency by

imposing an orthonormality constraint on the two matrices and arrived at closed-form solutions.

However, such solutions are not optimal.

In fact, natural images are generated by the interaction of multiple factors related to scene

structure, illumination and imaging. Recently, multilinear algebra, the algebra of higher-

order tensors, was applied to the analysis of the multi-factor structure of image ensembles

(17; 18; 19; 20). Tensor defines multilinear operators over a set of vector spaces and is a nat-
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ural generalization of matrix. Consequently, multilinear analysis subsumes linear analysis as

a special case and offers a unifying mathematical framework to address problems involving

multi-factor data. Vasilescu and Terzopoulos presented Tensorface (17) which represents a set

of face images as a higher-order tensor and applies higher-order singular value decomposition

(HOSVD) to disentangle the constituent factors. However, since Tensorface still considers each

image as a vector, it is computationally expensive and not optimal for recognition. Our pre-

vious work (20) also employed HOSVD for dimensionality reduction, yet we represented each

image as a matrix and achieved lower retrieval error rate than Tensorface.

Within multilinear algebra framework, the extension of LDA for tensor data classification

has gained growing interest over the past few years, which is usually referred to as multilinear

discriminant analysis (MDA) problem. Generally speaking, MDA methods can be categorized

into two directions based on dimensionality of the learned subspace (21): MDA that seeks

a tensor-to-vector projection (TVP) for discrimination in a lower-dimensional vector space

and MDA that looks for a tensor-to-tensor projection (TTP) for discrimination in a tensor

subspace. To measure the separation of samples in the new tensor subspace, two criteria are

usually employed: the scatter ratio criterion and the scatter difference criterion. The optimal

projection should be the one that maximizes such criterion. The first TVP-based MDA was

known as Tensor Rank-One Discriminant Analysis (TR1DA) (22; 23), derived from tensor rank-

one decomposition (24). TR1DA aims at a TVP that maximizes the scalar scatter difference

criterion. However, due to this criterion, TR1DA relies on coordinates. Later, another TVP-

based MDA method, Uncorrelated Multilinear Discriminant Analysis (UMLDA) was introduced
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in (25). UMLDA extracts uncorrelated discriminative features through a TVP that optimizes a

scalar scatter ratio criterion. In terms of TTP-based MDA methods, the discriminant analysis

with tensor representation (DATER)(18), later also known as Multilinear Discriminant Analysis

(MDA)(26) was proposed for tensor data classification (to avoid confusion, we refer to this

method as DATER in following discussions). However, like its 2D counterpart 2DLDA(14),

DATER does not converge over iterations either. Thus it is hard to determine the number of

iterations it should run before termination, which has a direct impact on DATER’s performance.

On the other hand, (19) proposed General Tensor Discriminant Analysis (GTDA) which learns

a tensor subspace by scatter difference maximization. GTDA is known to be the first convergent

MDA method. However, its performance relies highly on tuning of the parameter in the scatter

difference criterion. In this paper, we first show that a closed-form solution to the optimal

projection sought by GTDA exists. We subsequently propose Direct GTDA (DGTDA) which

not only gets rid of parameter tuning but also achieves the optimal projection directly. We

demonstrate that DGTDA outperforms GTDA in terms of both training time efficiency and

classification accuracy. In addition, we propose Constrained Multilinear Discriminant Analysis

(CMDA) that looks for a set of projection matrices with orthonormal columns by iteratively

maximizing the scatter ratio criterion. We prove theoretically that in the limit, the value of the

scatter ratio criterion in CMDA approaches its extreme value, if it exists, with bounded error.

Our main contributions are summarized as follows.

1. We prove mathematically the existence of a global maximum of the scatter difference

criterion that GTDA attempts to optimize over iterations and as a matter of fact, such
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global maximum can be obtained directly. We then propose a closed-form solution to

GTDA, namely, DGTDA.

2. The proposed DGTDA also gets rid of parameter tuning which has a major impact on

the performance of GTDA. We show that DGTDA outperforms GTDA in terms of both

training efficiency and classification accuracy.

3. We propose CMDA which learns a set of projection matrices with orthonormal columns

by iteratively maximizing the scatter ratio criterion. We prove theoretically that in the

limit, the value of the scatter ratio criterion in CMDA approaches its extreme value,

if it exists, with bounded error. In fact, experimental results show that in most cases,

the optimization procedure of CMDA converges, thus leading to superior and stabler

classification performance in comparison to DATER. To our best knowledge, CMDA is

the first scatter ratio maximization-based MDA method that exhibits convergency.

4. We also show that unlike DGTDA to GTDA, no closed-form solution exists to avoid the

iterative procedure in CMDA.

The rest of the chapter is organized as follows. Section 3.2 first reviews basic concepts

in multilinear algebra and LDA. Section 3.3 generalizes LDA concepts to their multilinear

counterparts. Section 3.4 then proposes DGTDA and CMDA. Section 3.5 introduces a simple

nearest neighbor classifier employed in the simulations. Section 3.6 experimentally compares

DGTDA and CMDA to GTDA and DATER. Finally, Section 3.7 concludes the paper.
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3.2 Review of Multilinear Algebra and Linear Discriminant Analysis

3.2.1 Multilinear Algebra Background

In this section, we introduce the following definitions frequently used in multilinear algebra

(27) as well as notations used in this paper. Throughout the discussion, lower-case charac-

ters represent scalar values (a, b, . . .), bold-face characters represent vectors (a,b, . . .), capitals

represent matrices (A,B, . . .) and calligraphic capitals represent tensors (A,B, . . .).

A tensor is a multidimensional array. The order of a tensor is the number of tensor modes.

For instance, tensor X ∈ R
I1×I2×...×IN has order N and the dimension of its nth mode (also

called mode n directly) is In.

Kronecker Product The Kronecker product of matrices A ∈ R
I×J and B ∈ R

K×L is denoted

by A⊗B. The result is a matrix of size(IK)× (JL) and defined by

A⊗B =




a11B a12B · · · a1JB

a21B a22B · · · a2JB

...
...

. . .
...

aI1B aI2B · · · aIJB




.

Two useful properties of Kronecker product are: (A⊗B)(C ⊗D) = AC ⊗BD and (A⊗B)T =

AT ⊗BT .

Mode-n Product The mode-n product of a tensor X ∈ R
I1×I2×...×IN and a matrix U ∈ R

J×In

is denoted by X ×n U and is of size I1 × . . .× In−1 × J × In+1 × . . .× IN . By element, we have

(X ×n U)i1...in−1jin+1...iN =
∑In

in=1 xi1i2...iNujin .
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Mode-n Fiber and Mode-n Unfolding The mode-n fiber of a tensor X ∈ R
I1×I2×...×IN is

obtained by fixing every index but in. The mode-n unfolding of X , which is also called mode-n

matricization, is denoted by X(n) and arranges the mode-n fibers to be the columns of the

resulting In × (I1 · I2 · . . . · In−1 · In+1 · . . . · IN ) matrix.

We have, Y = X ×1U1×2U2× . . .×N UN ⇔ Y(n) = UnX(n)(UN ⊗ . . .⊗Un+1⊗Un−1⊗ . . .⊗U1)
T .

To simplify the notation, we denote X ×1U1×2U2× . . .×N UN by X
∏N

k=1×kUk and denote

UN ⊗ . . .⊗ Un+1 ⊗ Un−1 ⊗ . . .⊗ U1 by ⊗1
k=N,k 6=nUk.

3.2.2 Linear Discriminant Analysis Background

Linear Discriminant Analysis (LDA) seeks the direction of projection that is most effi-

cient for discrimination in a lower-dimensional subspace. Suppose that we have a set of p

d-dimensional vector samples x1,x2, . . . ,xp belonging to c classes and ni is the number of sam-

ples in class i such that p =
∑c

i=1 ni. Let xi,j denote the jth sample in class i, then the

mean vector of class i is given by mi =
1
ni

∑ni

j=1 xi,j and the total mean vector of all samples

is m = 1
p

∑c
i=1

∑ni

j=1 xi,j = 1
p

∑c
i=1 nimi. In Fisher Discriminant Analysis (FDA)(6) where

c = 2, only one discriminant function is needed. Hence a natural generalization for c−class

problem involves c− 1 discriminant functions. Therefore, our goal is to find a projection from

d-dimensional space to a (c − 1)−dimensional subspace. Expressed in matrix form, y = U Tx,

where x ∈ R
d, y ∈ R

c−1 and U = [u1 u2 · · ·uc−1] ∈ R
d×(c−1).

A measure of separation between two projected classes is the distance between the projected

sample means. For instance, square of the distance between projected sample means of class a

and b is, ‖UTma−UTmb‖
2
F = ‖UT (ma−mb)‖

2
F = tr{UT (ma−mb)(ma−mb)

TU}, where the
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subscript F stands for Frobenius norm. The larger the distance is, the better the separation

between class a and b is.

To avoid the trivial case where we enlarge this distance by merely scaling U , we can maximize

it relative to some measure of the standard deviation within classes. If we define the scatter

matrix Si for class i and the within-class scatter matrix SW by Si =
∑ni

j=1(xi,j−mi)(xi,j−mi)
T

and SW =
∑c

i=1 Si respectively, then an estimate of the standard deviation of the projected

samples in class i, denoted by S̃i can be expressed as

S̃i =

ni∑

j=1

(UTxi,j − UTmi)(U
Txi,j − UTmi)

T

= UT [

ni∑

j=1

(xi,j −mi)(xi,j −mi)
T ]U

= UTSiU, (3.1)

and the within-class scatter matrix in the projected subspace S̃W is

S̃W =
c∑

i=1

ni∑

j=1

(UTxi,j − UTmi)(U
Txi,j − UTmi)

T

=
c∑

i=1

UTSiU = UT (
c∑

i=1

Si)U,

= UTSWU.
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Similarly, if we define the between-class scatter matrix SB, an estimate of the standard deviation

between classes, to be SB =
∑c

i=1 ni(mi −m)(mi −m)T , then in the projected subspace,

S̃B =
c∑

i=1

ni(U
Tmi − UTm)(UTmi − UTm)T

= UT [
c∑

i=1

ni(mi −m)(mi −m)T ]U

= UTSBU.

Now our goal is to find the optimal projection to a lower-dimensional space that maximizes the

between-class scatter S̃B while minimizing the within-class scatter S̃W . Therefore, the objective

function that we try to optimize is,

J(U) =
‖

∑c
i=1 niU

T (mi −m)‖2

‖
∑c

i=1

∑ni

j=1 U
T (xi,j −mi)‖2

=
tr{UTSBU}

tr{UTSWU}
. (3.2)

(Equation 3.2) is usually referred to as the scatter ratio criterion. Another criterion that is also

frequently used is the scatter difference criterion defined as,

J(U) = tr{UTSBU} − ζtr{UTSWU}. (3.3)

The solution to (Equation 3.3) is equivalent to that to (Equation 3.2) when ζ in (Equation 3.3)

is the Lagrange multiplier. It is known that (Equation 3.2) can be solved as the generalized

eigenvalue problem, that is, the first n column vectors of an optimal U are the generalized
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eigenvectors that correspond to the n largest eigenvalues in SBu = λSWu (28). Moreover, if

SW is nonsingular, this can be converted to a conventional eigenvalue problem.

3.3 Multilinear Discriminant Analysis: Objective

In this section, we extend LDA concepts to their counterparts in the framework of multilinear

algebra. Suppose that we have a set of p tensor samples X1,X2, . . . ,Xp ∈ R
I1×I2×...×IN belonging

to c classes and again ni is the number of samples in class i such that p =
∑c

i=1 ni. Let Xi,j

denote the jth sample in class i, then the class mean tensor for class i is given by Mi =

1
ni

∑ni

j=1 Xi,j and the total mean tensor is M = 1
p

∑c
i=1

∑ni

j=1Xi,j =
1
p

∑c
i=1 niMi.

The projection now is from a I1 × I2 × . . . × IN -dimensional tensor space to a I ′1 × I ′2 ×

. . .× I ′N -dimensional tensor subspace. Our goal is to find the set of optimal projection matrices

U1, U2, . . . , UN ( Un ∈ R
In×I′n for n = 1, . . . , N) for the most accurate classification in the

projected subspace where

Yi,j = Xi,j

N∏

k=1

×kU
T
k ∈ R

I′1×I′2×...×I′
N . (3.4)

Then the sample mean for projected class i is given by

M̃i =
1

ni

ni∑

j=1

Yi,j =
1

ni

ni∑

j=1

(Xi,j

N∏

k=1

×kU
T
k )

=Mi

N∏

k=1

×kU
T
k (3.5)
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and is simply the projection of Mi. Similarly, the total mean tensor of the projected samples

is M
∏N

k=1×kU
T
k .

As in LDA, distances between the c projected sample means serve as our measure of sep-

aration for the projected samples. We employ Frobenius norm of the difference between two

tensors to measure the separation or distance between the two tensors. As a result, it does not

matter if we calculate the distance through tensors or their matrix unfoldings. Therefore, we

may convert tensors to the more familiar matrix form by matrix unfolding.

In stead of using tensor samples, if we first unfold the tensors to mode-n unfoldings and view

the unfolded matrices as our training samples, then the mode-n between-class scatter matrix

in the projected, by all tensor modes, tensor subspace, is defined as follows,

Bn =
c∑

i=1

ni[(Mi

N∏

k=1

×kU
T
k )(n) − (M

N∏

k=1

×kU
T
k )(n)][(Mi

N∏

k=1

×kU
T
k )(n) − (M

N∏

k=1

×kU
T
k )(n)]

T

=
c∑

i=1

ni[(Mi −M)
N∏

k=1

×kU
T
k ](n)[(Mi −M)

N∏

k=1

×kU
T
k ]T(n)

=
c∑

i=1

ni[U
T
n (Mi −M)(n)(⊗

1
k=N,k 6=nU

T
k )T ][UT

n (Mi −M)(n)(⊗
1
k=N,k 6=nU

T
k )T ]T

=UT
n [

c∑

i=1

ni(Mi −M)(n)(⊗
1
k=N,k 6=nUk)(⊗

1
k=N,k 6=nU

T
k )(Mi −M)T(n)]Un

=UT
n {

c∑

i=1

ni[(Mi −M)
N∏

k=1,k 6=n

×kU
T
k ](n)[(Mi −M)

N∏

k=1,k 6=n

×kU
T
k ]T(n)}Un

=UT
n B

n̄
nUn.

Here, Bn̄
n denotes the mode-n between-class scatter matrix in the projected, by all tensor modes

except for mode n, tensor subspace, where the subscript n specifies scatter in terms of mode-n
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unfolded samples and the superscript n̄ specifies the non-projection mode n, in other words,

the tensor samples are projected by all tensor modes, except for mode n. The mode-n between

class scatter matrix characterizes separation between c classes in terms of mode-n unfoldings

of the tensor samples.

Similarly, the mode-n within-class scatter matrix is defined as,

Wn =
c∑

i=1

ni∑

j=1

[(Xi,j

N∏

k=1

×kU
T
k )(n) − (Mi

N∏

k=1

×kU
T
k )(n)][(Xi,j

N∏

k=1

×kU
T
k )(n) − (Mi

N∏

k=1

×kU
T
k )(n)]

T

=UT
n {

c∑

i=1

ni∑

j=1

[(Xi,j −Mi)
N∏

k=1,k 6=n

×kU
T
k ](n)[(Xi,j −Mi)

N∏

k=1,k 6=n

×kU
T
k ]T(n)}Un

=UT
n W

n̄
nUn,

where W n̄
n represents the mode-n within-class scatter matrix in the projected, except for mode

n, tensor subspace.

Employing the above definition, maximizing
∑c

i=1 ni‖(Mi−M)
∏N

k=1×kU
T
k ‖

2
F , the Frobe-

nius distance between the projected sample means, is equivalent to maximizing tr{U T
n B

n̄
nUn},

simply because of the fact that ‖A‖2F = tr(AAT ) for any matrix A and that matrix unfolding

does not affect the Frobenius norm. Similarly, minimizing
∑c

i=1

∑ni

j=1 ‖(Xi,j−Mi)
∏N

k=1×kU
T
k ‖

2
F
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is equivalent to minimizing tr{UT
n W

n̄
nUn}. As a result, for each mode n, we have an objective

function

J(Un) =

∑c
i=1 ni‖(Mi −M)

∏N
k=1×kU

T
k ‖

2
F∑c

i=1

∑ni

j=1 ‖(Xi,j −Mi)
∏N

k=1×kU
T
k ‖

2
F

(3.6)

=
tr{UT

n B
n̄
nUn}

tr{UT
n W

n̄
nUn}

, (3.7)

and the set of optimal projection matrices should maximize J(Un) for n = 1, . . . , N simultane-

ously to best preserve the given class structure.

Although obtained through different derivations, it can be easily shown that the SB, SW

in DATER(18) as well as Bn, Wn in GTDA (19) are in fact the same as Bn̄
n , W

n̄
n , thus we

denote them by Bn̄
n , W

n̄
n uniformly throughout following discussions. DATER has the same

objective function for each mode n as in (Equation 3.7) while GTDA optimizes a generalized

scatter difference criterion of (Equation 3.3), that is, tr(UT
n B

n̄
nUn) − ζtr(UT

n W
n̄
nUn) under the

constraint that UT
n Un = I, where ζ is a user controlled tuning parameter.

3.4 Multilinear Discriminant Analysis: Algorithm

Because the projection matrices for each mode depend on those of the other modes, they

cannot be computed independently. One common approach is to employ iterative approxima-

tion. Existing examples include DATER and GTDA. We begin with a review of each algorithm

and we then introduce the proposed algorithms.

3.4.1 Direct General Tensor Discriminant Analysis

Table Table III summarizes the training procedure of GTDA. At step 5, GTDA seeks to
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TABLE III

TRAINING PROCEDURE OF GTDA

Input: Training tensors Xi,j |
1≤j≤ni

1≤i≤c ∈ R
I1×I2×...×IN , their class labels

i ∈ {1, 2, . . . , c}, dimensionality of the reduced tensor subspace
I ′1 × I ′2 × . . .× I ′N , the tuning parameter ζ, the maximum
number of iterations Tmax.

Initialization: Initialize U 0
n = 1In×I′n

|Nn=1 (All entries of U0
n are 1).

Step 1. For t = 1, 2, . . . , Tmax{
Step 2. For n = 1, 2, . . . , N do{
Step 3. Calculate Bn̄t

n =
∑c

i=1 ni[(Mi −M)×1 U
tT
1 × . . .×n−1 U

tT
n−1

×n+1U
t−1T
n+1 × . . .×N U t−1T

N ](n)[(Mi −M)×1 U
tT
1 × . . .

×n−1U
tT
n−1 ×n+1 U

t−1T
n+1 × . . .×N U t−1T

N ]T(n);

Step 4. Calculate W n̄t
n =

∑c
i=1

∑ni

j=1[(Xi,j −Mi)×1 U
tT
1 × . . .

×n−1U
tT
n−1 ×n+1 U

t−1T
n+1 × . . .×N U t−1T

N ](n)[(Xi,j −Mi)×1 U
tT
1

× . . .×n−1 U
tT
n−1 ×n+1 U

t−1T
n+1 × . . .×N U t−1T

N ]T(n);

Step 5. Optimize U?t
n = argmaxUT U=I tr[U

T (Bn̄t
n − ζW n̄t

n )U ] by SVD
on Bn̄t

n − ζW n̄t
n .

}End For loop in Step 2.

Step 6. Check convergence: Err(t) =
∑N

n=1 ‖U
t
nU

t−1T
n − I‖F ≤ ε.

}End For loop in Step 1.

Step 7. Yi,j = Xi,j

∏N
k=1×kU

T
k .

Output: The projection matrices Un ∈ R
In×I′n |Nn=1 constrained by

UT
n Un = I and the projected tensors Yi,j |

1≤j≤ni

1≤i≤c ∈ R
I′1×I′2×...×I′

N .
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optimize tr[UT
n (Bn̄

n − ζW n̄
n )Un] with the constraint UT

n Un = I by singular value decomposition

(SVD) on Bn̄
n − ζW n̄

n . We show next that a global optimum of this objective can be obtained

directly without iterations and subsequently propose an efficient algorithm, Direct General

Tensor Discriminant Analysis (DGTDA).

Theorem 3.4.1 The global optimum of GTDA objective function can be obtained directly.

Proof For simplicity, we prove the 2nd order case, where samples are 2nd order tensors, namely

matrices∈ R
I1×I2 . Note that the proof can be easily extended to higher-order case. Now we

aim to find 2 projection matrices U1 ∈ R
I1×I′1 and U2 ∈ R

I2×I′2 . To avoid confusion, we first

introduce the notations used in the proof:

B1̄,2̄
1 =

c∑

i=1

ni(Mi −M)(1)(Mi −M)T(1),

W 1̄,2̄
1 =

c∑

i=1

ni∑

j=1

(Xi,j −Mi)(1)(Xi,j −Mi)
T
(1),

B1̄,2̄
2 =

c∑

i=1

ni(Mi −M)(2)(Mi −M)T(2),

W 1̄,2̄
2 =

c∑

i=1

ni∑

j=1

(Xi,j −Mi)(2)(Xi,j −Mi)
T
(2),

B2̄
2 =

c∑

i=1

ni(Mi −M)(2)U1U
T
1 (Mi −M)T(2),

W 2̄
2 =

c∑

i=1

ni∑

j=1

(Xi,j −Mi)(2)U1U
T
1 (Xi,j −Mi)

T
(2),

where the subscript specifies the unfolded mode and the superscripts specify the modes without

projection.
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For the 2nd order case, apparently we have the following relationship:

B1̄,2̄
1 =

c∑

i=1

ni(Mi −M)(1)(Mi −M)T(1)

=
c∑

i=1

ni(Mi −M)T(2)(Mi −M)(2)

W 1̄,2̄
1 =

c∑

i=1

ni∑

j=1

(Xi,j −Mi)(1)(Xi,j −Mi)
T
(1)

=
c∑

i=1

ni∑

j=1

(Xi,j −Mi)
T
(2)(Xi,j −Mi)(2).

Suppose at iteration t, we obtain U t
1 by SVD on some matrix. Let us denote by ut

1,k the kth

column of this U t
1 and keep only the first I ′1 columns so that U t

1 ∈ R
I1×I′1 now. Therefore,

U t
1U

tT
1 =

I′1∑
k=1

ut
1,ku

tT
1,k = I −

I1∑
k=I′1+1

ut
1,ku

tT
1,k. Here, we use utT

1,k to denote the transpose of ut
1,k,

that is, (ut
1,k)

T to save space later. Consequently, at iteration t, the optimal U t
2 can then be

obtained by

U?t
2 = arg max

UT
2 U2=I

tr[UT
2 (B

2̄t
2 − ζW 2̄t

2 )U2]

= arg max
UT
2 U2=I





tr{UT
2 [

c∑
i=1

ni(Mi −M)(2)U
t
1U

tT
1 (Mi −M)T(2)]U2}

−ζtr{UT
2 [

c∑
i=1

ni∑
j=1

(Xi,j −Mi)(2)U
t
1U

tT
1

(Xi,j −Mi)
T
(2)]U2}





= arg max
UT
2 U2=I





tr{UT
2 [

c∑
i=1

ni(Mi −M)(2)(I −
I1∑

k=I′1+1

ut
1,ku

tT
1,k)

(Mi −M)T(2)]U2} − ζtr{UT
2 [

c∑
i=1

ni∑
j=1

(Xi,j −Mi)(2)

(I −
I1∑

k=I′1+1

ut
1,ku

tT
1,k)(Xi,j −Mi)

T
(2)]U2}




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= arg max
UT
2 U2=I





tr{UT
2 [

c∑
i=1

ni(Mi −M)(2)(Mi −M)T(2)]U2}−

tr{UT
2 [

c∑
i=1

ni(Mi −M)(2)(
I1∑

k=I′1+1

ut
1,ku

tT
1,k)

(Mi −M)T(2)]U2} − ζtr{UT
2 [

c∑
i=1

ni∑
j=1

(Xi,j −Mi)(2)

(Xi,j −Mi)
T
(2)]U2}+ ζtr{UT

2 [
c∑

i=1

ni∑
j=1

(Xi,j −Mi)(2)

(
I1∑

k=I′1+1

ut
1,ku

tT
1,k)(Xi,j −Mi)

T
(2)]U2}





= arg max
UT
2 U2=I





tr{UT
2 (B

1̄,2̄
2 − ζW 1̄,2̄

2 )U2} − tr{UT
2




[
c∑

i=1
ni(Mi −M)(2)(

I1∑
k=I′1+1

ut
1,ku

tT
1,k)

(Mi −M)T(2)]− ζ[
c∑

i=1

ni∑
j=1

(Xi,j −Mi)(2)

(
I1∑

k=I′1+1

ut
1,ku

tT
1,k)(Xi,j −Mi)

T
(2)]





U2}





= arg max
UT
2 U2=I





tr{UT
2 (B

1̄,2̄
2 − ζW 1̄,2̄

2 )U2} − {
I1∑

k=I′1+1

tr{UT
2





[
c∑

i=1
ni(Mi −M)(2)u

t
1,ku

tT
1,k

(Mi −M)T(2)]− ζ[
c∑

i=1

ni∑
j=1

(Xi,j −Mi)(2)

ut
1,ku

tT
1,k(Xi,j −Mi)

T
(2)]





U2}}





= arg max
UT
2 U2=I





tr{UT
2 (B

1̄,2̄
2 − ζW 1̄,2̄

2 )U2} − {
I1∑

k=I′1+1

tr{utT
1,k





[
c∑

i=1
ni(Mi −M)T(2)U2U

T
2

(Mi −M)(2)]−

ζ[
c∑

i=1

ni∑
j=1

(Xi,j −Mi)(2)

U2U
T
2 (Xi,j −Mi)(2)]





ut
1,k}}




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= arg max
UT
2 U2=I





tr{UT
2 (B

1̄,2̄
2 − ζW 1̄,2̄

2 )U2} − {
I1∑

k=I′1+1

tr{utT
1,k





[
c∑

i=1
ni(Mi −M)T(2)

(Mi −M)(2)]−

ζ[
c∑

i=1

ni∑
j=1

(Xi,j −Mi)
T
(2)

(Xi,j −Mi)(2)]





ut
1,k}}





= arg max
UT
2 U2=I





tr{UT
2 (B

1̄,2̄
2 − ζW 1̄,2̄

2 )U2}−

{
I1∑

k=I′1+1

tr{utT
1,k(B

1̄,2̄
1 − ζW 1̄,2̄

1 )ut
1,k}}





(3.8)

= arg max
UT
2 U2=I

tr{UT
2 (B

1̄,2̄
2 − ζW 1̄,2̄

2 )U2} (3.9)

As we can see, the second term in (Equation 3.8) is a fixed value that cannot be changed at

this step. Thus, optimizing (Equation 3.8) is equivalent to optimizing (Equation 3.9). Also, we

know that the second term in (Equation 3.8) will achieve its minimum when U t
1 are obtained

through SVD on B1̄,2̄
1 − ζW 1̄,2̄

1 . In other words, if we obtain U2 through SVD on B1̄,2̄
2 − ζW 1̄,2̄

2

and U1 through SVD on B1̄,2̄
1 − ζW 1̄,2̄

1 , the mode-2 objective function will achieve its global

maximum value. Same thing holds for the mode-1 objective function. Thus, we are able to

achieve the optimal projection of GTDA directly without any iteration. This completes the

proof.

Based on the above theorem, we propose Direct General Tensor Discriminant Analysis (DGTDA)

whose training stage is summarized in Table Table IV.
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TABLE IV

TRAINING PROCEDURE OF DGTDA

Input: Training tensors Xi,j |
1≤j≤ni

1≤i≤c ∈ R
I1×I2×...×IN , their class labels

i ∈ {1, 2, . . . , c}, dimensionality of the reduced tensor subspace
I ′1 × I ′2 × . . .× I ′N .

Step 1. For n = 1, 2, . . . , N do{

Step 2. Calculate B 1̄,2̄,...,N̄
n =

∑c
i=1 ni[(Mi −M)(n)][(Mi −M)(n)]

T ;

Step 3. Calculate W 1̄,2̄,...,N̄
n =

∑c
i=1

∑ni

j=1[(Xi,j −Mi)(n)][(Xi,j −Mi)(n)]
T ;

Step 4. Optimize U?
n = argmaxUT U=I tr[U

T (B1̄,2̄,...,N̄
n − ζW 1̄,2̄,...,N̄

n )U ] by

SVD on B1̄,2̄,...,N̄
n −W 1̄,2̄,...,N̄

n ,

where ζ = λmax((W
1̄,2̄,...,N̄
n )−1B1̄,2̄,...,N̄

n ).
}End For loop in Step 1.

Step 5. Yi,j = Xi,j

∏N
k=1×kU

T
k .

Output: The projection matrices Un ∈ R
In×I′n |Nn=1 constrained by UT

n Un = I

and the projected tensors Yi,j |
1≤j≤ni

1≤i≤c ∈ R
I′1×I′2×...×I′

N .

3.4.2 Constrained Multilinear Discriminant Analysis

Table Table V describes the training stage of DATER. Due to the fact that DATER does not

converge over iterations, its performance is highly affected by the number of iterations executed

upon termination. It is also impossible to determine when to terminate the algorithm. We next

propose an iterative MDA method, Constrained Multilinear Discriminant Analysis (CMDA),

whose training procedure is summarized in Table Table VI. The main difference of CMDA in

comparison to DATER lies in step 5 where a new Un at iteration t is sought under the constraint

that UnU
T
n = I. As in GTDA, such Un can be obtained by SVD on (W n̄

n )
−1Bn̄

n . We demonstrate

that unlike DATER, the value of the scatter ratio criterion in CMDA approaches its extreme

value, if it exists, with bounded error in the limit. Such property leads to superior and stabler
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TABLE V

TRAINING PROCEDURE OF DATER

Input: Training tensors Xi,j |
1≤j≤ni

1≤i≤c ∈ R
I1×I2×...×IN , their class labels

i ∈ {1, 2, ..., c}, dimensionality of the reduced tensor subspace
I ′1 × I ′2 × ...× I ′N , the maximum number of iterations Tmax.

Initialization: Initialize U 0
n = IIn×I′n

|Nn=1.

Step 1. For t = 1, 2, ..., Tmax{
Step 2. For n = 1, 2, ..., N do{
Step 3. Calculate Bn̄t

n =
∑c

i=1 ni[(Mi −M)×1 U
tT
1 × . . .×n−1 U

tT
n−1

×n+1U
t−1T
n+1 × . . .×N U t−1T

N ](n)[(Mi −M)×1 U
tT
1 × . . .

×n−1U
tT
n−1 ×n+1 U

t−1T
n+1 × . . .×N U t−1T

N ]T(n);

Step 4. Calculate W n̄t
n =

∑c
i=1

∑ni

j=1[(Xi,j −Mi)×1 U
tT
1 × . . .

×n−1U
tT
n−1 ×n+1 U

t−1T
n+1 × . . .×N U t−1T

N ](n)[(Xi,j −Mi)×1 U
tT
1

× . . .×n−1 U
tT
n−1 ×n+1 U

t−1T
n+1 × . . .×N U t−1T

N ]T(n);

Step 5. Optimize U?t
n = argmax tr(UT Bn̄t

n U)
tr(UT W n̄t

n U)
by eigenvalue

decomposition on (W n̄t
n )−1Bn̄t

n .
}End For loop in Step 2.

Step 6. If t > 2 and ‖U t
n − U t−1

n ‖ < I ′nInε, n = 1, . . . , N, break.
}End For loop in Step 1.

Output: The projection matrices Un ∈ R
In×I′n |Nn=1.
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classification performance in comparison to DATER. To our best knowledge, CMDA is the first

scatter ratio maximization-based MDA method that exhibits convergency.

We first define a new term ”asymptotically bounded sequence” in order to describe the

phenomenon we observe.

Asymptotically Bounded Error A sequence fn has asymptotically bounded error if en =

un − ln converges, i.e. limn→+∞ en = c where ln ≤ fn ≤ un.

Asymptotically Bounded Sequence A sequence fn is an asymptotically bounded sequence

if fn has asymptotically bounded error and its boundary sequences un and ln converge where

ln ≤ fn ≤ un.

If one of the bounds of fn converges, say, limn→+∞ un = u, then limn→+∞ ln = u−c. Hence

in the limit, the value of fn will be lower bounded by u− c and upper bounded by u. In fact,

there are two possible behaviors of fn in the long run, one is that it actually converges to some

limit value as its boundary sequences do, the other is that it always oscillates around the value

u− c/2 and the variation of its value is bounded by c
2 . Although it does not really converge in

the latter case, since the variation is bounded, its behavior is to some extent stable.

Let Sn be the set that includes all possible Un, that is, Un ∈ Sn constrained by UT
n Un = I,

for n = 1, 2, . . . N . Define a continuous function f : S1 × S2 × . . .× SN → R
+:

f(Un|
N
n=1) =

c∑
i=1

ni‖(Mi−M)
N∏

k=1

×kUT
k
‖2

F

c∑
i=1

ni∑
j=1

‖(Xi,j−Mi)
N∏

k=1
×kUT

k
‖2

F

.

Then construct N different mappings based on f :
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TABLE VI

TRAINING PROCEDURE OF CMDA

Input: Training tensors Xi,j |
1≤j≤ni

1≤i≤c ∈ R
I1×I2×...×IN , their class labels

i ∈ {1, 2, ..., c}, dimensionality of the reduced tensor subspace
I ′1 × I ′2 × ...× I ′N , the maximum number of iterations Tmax.

Initialization: Initialize U 0
n = 1In×I′n

|Nn=1 (All entries of U0
n are 1).

Step 1. For t = 1, 2, ..., Tmax{
Step 2. For n = 1, 2, ..., N do{
Step 3. Calculate Bn̄t

n =
∑c

i=1 ni[(Mi −M)×1 U
tT
1 × . . .×n−1 U

tT
n−1

×n+1U
t−1T
n+1 × . . .×N U t−1T

N ](n)[(Mi −M)×1 U
tT
1 × . . .

×n−1U
tT
n−1 ×n+1 U

t−1T
n+1 × . . .×N U t−1T

N ]T(n);

Step 4. Calculate W n̄t
n =

∑c
i=1

∑ni

j=1[(Xi,j −Mi)×1 U
tT
1 × . . .

×n−1U
tT
n−1 ×n+1 U

t−1T
n+1 × . . .×N U t−1T

N ](n)[(Xi,j −Mi)×1 U
tT
1

× . . .×n−1 U
tT
n−1 ×n+1 U

t−1T
n+1 × . . .×N U t−1T

N ]T(n);

Step 5. Optimize U?t
n = argmaxUT U=I

tr(UT Bn̄t
n U)

tr(UT W n̄t
n U)

by SVD on (W n̄t
n )−1Bn̄t

n .

}End For loop in Step 2.

Step 6. Check convergence:
∑N

n=1 ‖U
t
n(U

(t−1)
n )T − I‖ ≤ ε.

}End For loop in Step 1.

Step 7. Yi,j = Xi,j

∏N
k=1×kU

T
k .

Output: The projection matrices Un ∈ R
In×I′n |Nn=1 constrained by

UT
n Un = I and the projected tensors Yi,j |

1≤j≤ni

1≤i≤c ∈ R
I′1×I′2×...×I′

N .
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fn(Un) = f(Un;Uk|
n−1
k=1 , Uk|

N
k=n+1), for n = 1, 2, . . . N, where f(Un;Uk|

n−1
k=1 , Uk|

N
k=n+1) means

that the function f varies with Un with fixed Uk|
n−1
k=1 and Uk|

N
k=n+1. Based on these mappings,

we define

gn(Un) = arg max
UT

n Un=I,Un∈Sn

fn(Un) = arg max
UT

n Un=I

tr{UT
n [

c∑
i=1

ni(Mi−M)(n)(⊗
1
k=N,k 6=n

UkUT
k
)(Mi−M)T

(n)
]Un}

tr{UT
n [

c∑
i=1

ni∑
j=1

(Xi,j−Mi)(n)(⊗
1
k=N,k 6=n

UkUT
k
)(Xi,j−Mi)T(n)]Un}

,

where the mapping gn(Un) is calculated by arg maximizing fn(U
t
n) at the t

th iteration with

the given U t
k|

n−1
k=1 in the tth iteration and U t−1

k |Nk=n+1 in the t− 1th iteration.

Given randomly initialized U
(0)
l ∈ Sl for l = 1, 2, . . . N, the iterative optimization procedure

of CMDA generates a sequence of items U
(t)
l via gl(Ul) which correspond to a sequence of items

fl(U
(t)
l ), called the objective function sequence.

Theorem 3.4.2 Given randomly initialized U 0
n ∈ Sn, n = 1, 2, . . . N , the objective function

sequence fl(U
(t)
l ) generated by CMDA iterative optimization procedure is an asymptotically

bounded sequence.

Proof For simplicity, we prove the 2nd order case, where all samples are matrices∈ R
I1×I2 and

we aim to find two projection matrices U1 ∈ R
I1×I′1 and U2 ∈ R

I2×I′2 . This proof can be easily

generalized to higher-order case.

Suppose at iteration t, we obtained U t
1 by SVD on some matrix and keep only the first

I ′1 columns so that U t
1 ∈ R

I1×I′1 . Therefore, U t
1U

tT
1 =

I′1∑
k=1

ut
1,ku

tT
1,k = I −

I1∑
k=I′1+1

ut
1,ku

tT
1,k.

Consequently, at iteration t, the optimal U t
2 can be obtained by
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U?t
2 = arg max

UT
2 U2=I

tr(UT
2 B2U2)

tr(UT
2 W2U2)

= arg max
UT
2 U2=I

tr





UT
2 [

c∑
i=1

ni(Mi −M)(2)U
t
1

U tT
1 (Mi −M)T(2)]U2





tr





UT
2 [

c∑
i=1

ni∑
j=1

(Xi,j −Mi)(2)U
t
1

U tT
1 (Xi,j −Mi)

T
(2)]U2}





= arg max
UT
2 U2=I





tr{UT
2 [

c∑
i=1

ni(Mi −M)(2)

(I −
I1∑

k=I′1+1

ut
1,ku

tT
1,k)(Mi −M)T(2)]U2}









tr{UT
2 [

c∑
i=1

ni∑
j=1

(Xi,j −Mi)(2)

(I −
I1∑

k=I′1+1

ut
1,ku

tT
1,k)(Xi,j −Mi)

T
(2)]U2}





= arg max
UT
2 U2=I





tr{UT
2 [

c∑
i=1

ni(Mi −M)(2)(Mi −M)T(2)]U2}−

tr{UT
2 [

c∑
i=1

ni(Mi −M)(2)(
I1∑

k=I′1+1

ut
1,ku

tT
1,k)

(Mi −M)T(2)]U2}









tr{UT
2 [

c∑
i=1

ni∑
j=1

(Xi,j −Mi)(2)(Xi,j −Mi)
T
(2)]U2}

−tr{UT
2 [

c∑
i=1

ni∑
j=1

(Xi,j −Mi)(2)(
I1∑

k=I′1+1

ut
1,ku

tT
1,k)

(Xi,j −Mi)
T
(2)]U2}




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= arg max
UT
2 U2=I





tr{UT
2 [

c∑
i=1

ni(Mi −M)(2)(Mi −M)T(2)]U2}−

{
I1∑

k=I′1+1

tr{utT
1,k[

c∑
i=1

ni(Mi −M)(1)

(Mi −M)T(1)]u
t
1,k}}









tr{UT
2 [

c∑
i=1

ni∑
j=1

(Xi,j −Mi)(2)(Xi,j −Mi)
T
(2)]

U2} − {
I1∑

k=I′1+1

tr{utT
1,k[

c∑
i=1

ni∑
j=1

(Xi,j −Mi)(1))

(Xi,j −Mi)
T
(1)]u

t
1,k}}





= arg max
UT
2 U2=I





tr



 UT

2 B
1̄,2̄
2 U2



−





I1∑
k=I′1+1

tr{utT
1,kB

1̄,2̄
1 ut

1,k}





tr



 UT

2 W
1̄,2̄
2 U2



−





I1∑
k=I′1+1

tr{utT
1,kW

1̄,2̄
1 ut

1,k}









= arg max
UT
2 U2=I





tr



 UT

2 B
1̄,2̄
2 U2





tr



 UT

2 W
1̄,2̄
2 U2





−

I1∑

k=I′1+1

tr



 utT

1,kB
1̄,2̄
1 ut

1,k





tr



 UT

2 W
1̄,2̄
2 U2





tr



 UT

2 W
1̄,2̄
2 U2





tr



 UT

2 W
1̄,2̄
2 U2





−

I1∑

k=I′1+1

tr



 utT

1,kW
1̄,2̄
1 ut

1,k





tr



 UT

2 W
1̄,2̄
2 U2









= arg max
UT
2 U2=I





tr



 UT

2 B
1̄,2̄
2 U2





tr



 UT

2 W
1̄,2̄
2 U2





−

I1∑

k=I′1+1

tr



 utT

1,kB
1̄,2̄
1 ut

1,k





I1∑
k=1

tr



 utT

1,kW
1̄,2̄
1 ut

1,k





1−

I1∑

k=I′1+1

tr



 utT

1,kW
1̄,2̄
1 ut

1,k





I1∑
k=1

tr



 utT

1,kW
1̄,2̄
1 ut

1,k








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= arg max
UT
2 U2=I

tr



 UT

2 B
1̄,2̄
2 U2





tr



 UT

2 W
1̄,2̄
2 U2





−





I′1∑
k=1

tr



 utT

1,kW
1̄,2̄
1 ut

1,k





I1∑
k=I′1+1

tr



 utT

1,kB
1̄,2̄
1 ut

1,k





+

I1∑
k=I′1+1

tr



 utT

1,kW
1̄,2̄
1 ut

1,k





I1∑
k=I′1+1

tr



 utT

1,kB
1̄,2̄
1 ut

1,k









−1

1−





I′1∑
k=1

tr



 utT

1,kW
1̄,2̄
1 ut

1,k





I1∑
k=I′1+1

tr



 utT

1,kW
1̄,2̄
1 ut

1,k





+ 1





−1

= arg max
UT
2 U2=I

tr



 UT

2 B
1̄,2̄
2 U2





tr



 UT

2 W
1̄,2̄
2 U2





−





I′1∑
k=1

tr



 utT

1,kW
1̄,2̄
1 ut

1,k





I1∑
k=I′1+1

tr



 utT

1,kB
1̄,2̄
1 ut

1,k





+

I1∑
k=I′1+1

tr



 utT

1,kW
1̄,2̄
1 ut

1,k





I1∑
k=I′1+1

tr



 utT

1,kB
1̄,2̄
1 ut

1,k









−1

1−





I′1∑
k=1

tr



 utT

1,kW
1̄,2̄
1 ut

1,k





I1∑
k=I′1+1

tr



 utT

1,kB
1̄,2̄
1 ut

1,k





I1∑
k=I′1+1

tr



 utT

1,kB
1̄,2̄
1 ut

1,k





I1∑
k=I′1+1

tr



 utT

1,kW
1̄,2̄
1 ut

1,k





+ 1





−1

= arg max
UT
2 U2=I

tr



 UT

2 B
1̄,2̄
2 U2





tr



 UT

2 W
1̄,2̄
2 U2





.

Denote the maximum value and the minimum value of the term

I′1∑
k=1

tr



 utT

1,kW
1̄,2̄
1 ut

1,k





I1∑
k=I′1+1

tr



 utT

1,kB
1̄,2̄
1 ut

1,k





by

amax and amin respectively. Then the objective function f2(U
t
2) is upper bounded by function
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f2(U
t
2)

upper =

tr



 UT

2 B
1̄,2̄
2 U2





tr



 UT

2 W
1̄,2̄
2 U2





−





amax+

I1∑
k=I′1+1

tr



 utT

1,kW
1̄,2̄
1 ut

1,k





I1∑
k=I′1+1

tr



 utT

1,kB
1̄,2̄
1 ut

1,k




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As the CMDA iterative procedure proceeds, both the values of f2(U
t
2)

upper and f2(U
t
2)

lower

increase monotonically. Moreover, they both achieve their maximum values, denoted by f upper

and f lower respectively, when U2 = arg max
UT
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Hence, both f2(U
t
2)

upper and f2(U
t
2)

lower converge monotonically. Similarly, we can prove that

f1(U
t
1) is upper and lower bounded by two monotonically convergent sequences f1(U

t
1)

upper and
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f1(U
t
1)

lower. Since f2(U
t
2)

upper > f1(U
t
1)

upper and f2(U
t
2)

lower > f1(U
t
1)

lower, together we have

the following relationship:

f1(U
t
1)

upper < f2(U
t
2)

upper < f1(U
t+1
1 )upper < f2(U

t+1
2 )upper . . . ≤ fupper;

f1(U
t
1)

lower < f2(U
t
2)

lower < f1(U
t+1
1 )lower < f2(U

t+1
2 )lower . . . ≤ f lower. (3.10)

Therefore, the sequence fl(U
(t)
l ) generated by the CMDA iterative optimization procedure is up-

per and lower bounded by two monotonically convergent sequences, thus it is an asymptotically

bounded sequence. This completes the proof.

As a result, we can stop the iterative optimization procedure when the change of f between

two successive iterations is small enough. To be more specific, the algorithm either halts when f

reaches its extreme value or the change of f between two successive iterations is always smaller

than the threshold ε = fupper − f lower.

3.4.3 Algorithm Analysis and Discussions

To show that W n̄
n is generally nonsingular in CMDA and DGTDA, we only need to compare

the original feature space dimensionality to n−c where n is the sample number and c is the class

number as in Section 3.2.2. In traditional LDA, a sample must be vectorized, in our case, the

dimensionality of the sample after vectorization is I1×I2×. . .×IN , which is a considerably large

number compared to n − c. However in CMDA and DGTDA, the sample is now represented

in tensor form and we deal with each tensor mode separately. The original feature space

dimensionality of each mode is In, which is much smaller than I1×I2× . . .×IN . Hence it is less
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possible to result in singular SW . In conclusion, the proposed methods overcome the frequently

appeared USP in LDA by employing tensor representation and conducting optimization on each

tensor mode separately.

For ease of understanding, let us assume that the sample tensor X ∈ R
I1×I2×...×IN has

uniform dimensionality in all modes, that is, I1 = I2 = . . . = IN = L. Then Table Table VII

compares the time and space complexities of all the algorithms discussed above. Here T denotes

the number of iterations.

TABLE VII

COMPUTATIONAL COMPLEXITY ANALYSIS
Method Time Complexity Space Complexity

LDA O(L3N ) O(L2N )
GTDA/DATER/CMDA O(TNL3) O(NL2)

DGTDA O(NL3) O(NL2)

3.5 Multilinear Discriminant Analysis: Classification

By the end of the training stage, with the learned projection matrices Un|
N
n=1, the lower-

dimensional tensor subspace representation Yi,j of each Xi,j belonging to class i is computed

as in (Equation 3.4). When a query tensor X is received, we first compute its tensor subspace

representation by

Y = X
∏N

k=1×kU
T
k ∈ R

I′1×I′2×...×I′
N .
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We then compare the Frobenius distance between Y and each Yi,j , the class label of X is

determined by the label of the training tensor that has the minimum distance,

i∗ = argmin
i
‖Yi,j − Y‖F .

In the following experiment section, we use this classification method for all algorithms for

its simplicity in computation.

3.6 Experimental Results

To evaluate the effectiveness of our proposed methods, we compare DGTDA and CMDA

with two other MDA methods that employ TTP, DATER and GTDA for face image ensemble

recognition on the extended Yale Face Database B (29). Classifier introduced in Section 3.5 is

employed for all algorithms. All the algorithms are implemented and run on a desktop with 8G

RAM and Intel Core i7 CPU without code optimization.

3.6.1 The Extended Yale Face Database B and Experiment Settings

The extended Yale Face Database B contains single light source images of 28 human subjects

under 9 poses and 64 illumination conditions. To speedup calculations, we crop the image to

keep only the center area that contains face and resize each cropped face image to have 73× 55

pixels. For each subject, poses 0, 2, 4, 6, 8 are used to form 5 3rd-order tensors as training

samples for that class, each of size 73× 55× 64. In other words, each sample tensor contains 64

images under various illumination conditions with one pose of the same person. Similarly, poses

1, 3, 5, 7 form 4 test tensors of each class. To sum up, the number of classes c is 28. Within

each class, the number of training tensor samples ni is 5 for i = 1, 2, . . . c. The number of testing

query tensors for each class is 4, so in total, there are 4×28 = 112 tensor samples that are used
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to test the classification performance. 64 images of a single person under various illumination

conditions with one pose, which form a sample tensor, are shown in Figure Figure 6. Note that

there are 18 images corrupted during acquisition, but we use them in the training process as

well.

Figure 6. 64 images from a sample tensor.
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There are two parameters that need to be determined. The first one is the user-controlled

tuning parameter ζ in GTDA. As illustrated in (19), in real-world applications, a manually

chosen value of ζ always achieves better prediction results than the calculated value, we set ζ to

be the largest eigenvalue of (W n̄
n )
−1Bn̄

n for each mode objective function in GTDA. Note that

it varies as iteration continues. However, in DGTDA, ζ is determined. The other parameter

is the threshold ε used to check convergence of the iterative optimization procedures in GTDA

and CMDA. Denote the mode-n convergence error at iteration t by Errt
n = ‖U t

n(U
t−1
n )T − I‖F

for n = 1, 2, 3. Thus the total convergence error Errt =
∑3

i=1Err
t
n. Then we say the algorithm

converges when |Errt
n −Errt−1

n | ≤ ε for n = 1, 2, 3, where ε = 10−5. The maximum number of

iteration Tmax is chosen to be 50. Since DATER does not converge, we choose its number of

iterations to be the same as the number of iterations CMDA takes to converge.

3.6.2 Performance Evaluation

For simplicity, we assume that all tensor modes have the same reduced dimensionality,

that is, I ′1 = I ′2 = I ′3 = Dim. We vary Dim from 1 to 54 to test the performance of each

method with different reduced dimensionality, the results are shown in Figure Figure 7. To

show that there does not exist a direct solution to CMDA, we also compare its performance

with ”a direct solution”, denoted by DCMDA where the projection matrix Un for mode n is

obtained independently with other matrices being set to I, like in DGTDA. In general, MDA

methods based on scatter ratio maximization (CMDA, DATER, even DCMDA) outperform

those based on scatter difference maximization (DGTDA, GTDA). To be more specific, we

make the following observations: 1) the fact that CMDA always performs better than DCMDA
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confirms that DCMDA is not the optimal solution for CMDA, hence there does not exist a

direct solution to CMDA as DGTDA to GTDA; 2) when using the same number of iterations,

DATER achieves higher accuracy for lower-dimensionality 1 to 23 while CMDA performs better

between dimensionality 24 and 54; in fact, the performance of DATER vary dramatically as

the reduced dimensionality Dim increases; 3) the performance of DGTDA is as good as, if not

better, that of GTDA at a majority of reduced dimensionality.
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Figure 7. Classification accuracy comparison.
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In terms of training time costs, experimental results coincide with theoretical predictions

that the time cost for DGTDA is the same as the average time cost for one iteration of GTDA

and the average time cost for each iteration of CMDA is almost the same as DATER. Therefore,

we summarize in Table Table VIII the time cost for each iteration of GTDA and CMDA during

training procedure.

3.6.3 Convergence Examination

Table Table IX summarizes the number of iterations it takes for GTDA and CMDA to

converge, as well as the Err values upon termination of iteration. GTDA usually takes 3 to

6 iterations to converge while CMDA takes 30 on average, if it converges. There are only 10

out of 54 cases in total that CMDA does not converge within 50 number of iterations. This

indicates that although in Theorem 3.4.2 we only prove that the objective function sequence of

CMDA is asymptotically bounded, it could actually be convergent.

We specifically look into the convergence of CMDA and GTDA when Dim = 4 and Dim =

44 for example. Figure 8(a) and Figure 8(b) compare the convergence error Err1, Err2, Err3

and Err with respect to the number of iteration t when Dim = 4. Similarly, Figure 8(c) and

Figure 8(d) show comparison results when Dim = 44. In both cases, the two methods converge

over iterations. According to the proof of Theorem 3.4.2, CMDA converges to its optimum, if

it exists, with oscillations, hence it takes more iterations than GTDA to converge.

Also, we examine the classification performance of CMDA, GTDA and DATER with respect

to the number of iteration. Figures 9(a) and 9(b) display the results. Due to the convergence

of CMDA and GTDA, they both provide relatively stable classification performance as they
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approach convergence. However, the performance of DATER varies dramatically as iteration

continues and it is hard to determine when to terminate the iterative procedure so as to achieve

good performance.

3.7 CONCLUSION

Linear discriminant analysis (LDA) relies on data representation in the form of vectors.

However, real-world data are usually generated from the interaction of multiple factors, and thus

naturally employ higher-order tensor representations. As a result, recent efforts have been made

to extend LDA for tensor data classification, which is generally referred to as the multilinear

discriminant analysis (MDA) problem. In this paper, we propose two MDA methods, DGTDA

and CMDA, which seek an optimal tensor-to-tensor projection (TTP) for discrimination in a

lower-dimensional tensor subspace. DGTDA finds the projection directly by maximizing the

scatter difference criterion while CMDA learns the projection iteratively by maximizing the

scatter ratio criterion. We demonstrate that DGTDA outperforms GTDA in terms of both

training efficiency and classification accuracy. In addition, we prove theoretically that in the

limit, the value of the scatter ratio criterion in CMDA approaches its extreme value, if it exists,

with bounded error. In fact, experimental results show that in most cases, the optimization

procedure of CMDA converges, thus leading to superior and stabler classification performance

in comparison to DATER. To our best knowledge, CMDA is the first scatter ratio maximization-

based MDA method that exhibits convergency.

Finally, there are still some aspects of the proposed methods that deserve further study.

We only prove that the objective function sequence generated by CMDA iterative procedure
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is asymptotically bounded. We are not sure if such procedure always converges. If not, what

factors affect its convergency? Besides, both DGTDA and CMDA are multilinear, they can

not capture the nonlinear structure of the data manifold effectively. It remains unclear how to

generalize our approach to nonlinear case.
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TABLE VIII

TRAINING TIME COMPARISON (SECONDS)
avg. time/iteration avg. time/iteration

Dim GTDA CMDA Dim GTDA CMDA

1 27.2 19.5 28 29.0 28.6
2 27.3 26.2 29 29.1 28.7
3 27.1 26.2 30 29.0 28.5
4 27.2 26.9 31 29.0 28.5
5 27.2 26.9 32 29.3 28.6
6 27.1 27.0 33 29.2 28.7
7 27.1 27.0 34 29.7 28.8
8 27.4 27.0 35 30.0 29.3
9 27.4 27.1 36 30.0 29.1
10 27.4 27.1 37 30.2 28.9
11 27.4 27.0 38 30.5 29.2
12 27.5 27.1 39 30.5 29.4
13 27.6 27.2 40 30.8 29.3
14 27.4 27.2 41 31.0 29.5
15 27.4 27.6 42 31.3 29.5
16 27.6 27.3 43 31.5 29.6
17 27.8 27.5 44 31.7 29.7
18 27.8 27.4 45 32.2 29.8
19 28.0 27.6 46 32.2 29.9
20 27.8 27.7 47 32.3 30.2
21 28.0 27.7 48 32.4 30.0
22 28.0 27.6 49 32.8 30.3
23 28.0 27.8 50 33.0 30.5
24 28.0 27.8 51 34.5 30.6
25 28.3 27.9 52 35.3 30.8
26 28.1 28.0 53 35.2 30.8
27 28.5 28.1 54 35.8 30.9
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TABLE IX

CONVERGENCE EXAMINATION
] of iterations Err ] of iterations Err

Dim GTDA CMDA GTDA CMDA Dim GTDA CMDA GTDA CMDA

1 3 5 23.7710 23.7710 28 4 28 17.9044 17.9044
2 4 ≥ 50 23.5803 23.5806 29 4 20 17.6483 17.6484
3 5 ≥ 50 23.3880 23.3890 30 4 15 17.3884 17.3884
4 5 31 23.1940 23.1945 31 4 16 17.1243 17.1243
5 6 ≥ 50 22.9984 22.9992 32 4 20 16.8558 16.8558
6 4 ≥ 50 22.8011 22.8012 33 6 22 16.5827 16.5827
7 4 26 22.6021 22.6023 34 5 27 16.3048 16.3048
8 3 43 22.4012 22.4013 35 4 12 16.0217 16.0217
9 3 39 22.1985 22.1990 36 4 16 15.7332 15.7332
10 3 ≥ 50 21.9939 22.0014 37 4 14 15.4388 15.4388
11 3 21 21.7874 21.7881 38 4 17 15.1382 15.1382
12 4 ≥ 50 21.5788 21.8319 39 4 16 14.8310 14.8310
13 3 ≥ 50 21.3681 21.3685 40 4 13 14.5165 14.5165
14 3 ≥ 50 21.1553 21.4341 41 4 13 14.1943 14.1944
15 3 ≥ 50 20.9403 22.0450 42 4 17 13.8637 13.8637
16 3 28 20.7230 20.7231 43 4 13 13.5239 13.5239
17 3 26 20.5034 20.5034 44 4 11 13.1739 13.1739
18 3 21 20.2813 20.2813 45 4 15 12.8127 12.8127
19 4 16 20.0567 20.0567 46 4 13 12.4388 12.4388
20 3 16 19.8294 19.8294 47 4 20 12.0506 12.0506
21 5 16 19.5995 19.5995 48 5 11 11.6458 11.6458
22 4 26 19.3667 19.3668 49 4 10 11.2215 11.2215
23 4 22 19.1310 19.1311 50 4 11 10.7736 10.7736
24 5 21 18.8923 18.8924 51 4 ≥ 50 10.2960 11.5608
25 4 23 18.6504 18.6504 52 4 11 9.7787 9.7787
26 4 14 18.4052 18.4052 53 4 30 9.2030 9.2032
27 4 25 18.1566 18.1566 54 4 25 8.5212 8.5212
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(c) Dim=44 Err1, Err2, Err3 vs. number of iteration
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Figure 8. Convergence error examination.
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Figure 9. Classification accuracy vs. number of iterations.



CHAPTER 4

GENERALIZED TENSOR COMPRESSIVE SENSING

Compressive sensing (CS) has triggered enormous research activity since its first appearance.

CS exploits the signal’s sparseness or compressibility in a particular domain and integrates data

compression and acquisition. While conventional CS theory relies on data representation in the

form of vectors, many data types in various applications such as color imaging, video sequences,

and multi-sensor networks, are intrinsically represented by higher-order tensors. Application

of CS to higher-order data representation is typically performed by conversion of the data to

very long vectors that must be measured using very large sampling matrices, thus imposing a

huge computational and memory burden. We propose Generalized Tensor Compressive Sensing

(GTCS)–a unified framework for compressive sensing of higher-order tensors. GTCS offers an

efficient means for representation of multidimensional data by providing simultaneous acquisi-

tion and compression from all tensor modes. In addition, we compare the performance of the

proposed method with Kronecker compressive sensing (KCS). We demonstrate experimentally

that GTCS outperforms KCS in terms of both accuracy and speed.

4.1 Introduction

Recent literature has witnessed an explosion of interest in sensing that exploits structured

prior knowledge in the general form of sparsity, meaning that signals can be represented by

only a few coefficients in some domain. Central to much of this recent work is the paradigm of

58
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compressive sensing (CS), also known under the terminology of compressed sensing, compressive

sampling or compress sensing (30; 31; 32). CS theory permits relatively few linear measurements

of the signal while still allowing exact reconstruction via nonlinear recovery process. The key

idea is that the sparsity helps in isolating the original vector. The first intuitive approach to

a reconstruction algorithm consists in searching for the sparsest vector that is consistent with

the linear measurements. However, this `0-minimization problem is NP-hard in general and

thus computationally infeasible. There are essentially two approaches for tractable alternative

algorithms. The first is convex relaxation, leading to `1-minimization (33), also known as basis

pursuit (34), whereas the second constructs greedy algorithms. Besides, in image processing, the

use of total-variation minimization which is closely connected to `1-minimization first appears

in (35) and is widely applied later on. By now basic properties of the measurement matrix

which ensure sparse recovery by `1-minimization are known: the null space property (NSP)

(36) and the restricted isometry property (RIP) (37).

An intrinsic limitation in conventional CS theory is that it relies on data representation in

the form of vector. In fact, many data types do not lend themselves to vector data representa-

tion. For example, images are intrinsically matrices. As a result, great efforts have been made

to extend traditional CS to CS of data in matrix representation. A straightforward implemen-

tation of CS on 2D images recasts the 2D problem as traditional 1D CS problem by converting

images to long vectors, such as in (38). However, despite of considerably huge memory and com-

putational burden imposed by long vector data and large sampling matrix, the sparse solutions

produced by straightforward `1-minimization often incur visually unpleasant, high-frequency
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oscillations. This is due to the neglect of attributes known to be widely possessed by images,

such as smoothness. In (39), instead of seeking sparsity in the transformed domain, they pro-

posed a total variation-based minimization to promote smoothness of the reconstructed image.

Later, as an alternative for alleviating the huge computational and memory burden associated

with image vectorization, block-based CS (BCS) was proposed in (40). In BCS, an image is

divided into non-overlapping blocks and acquired using an appropriately-sized measurement

matrix.

Another direction in the extension of CS to matrix CS generalizes CS concept and outlines

a dictionary relating concepts from cardinality minimization to those of rank minimization

(41; 42; 43). The affine rank minimization problem consists of finding a matrix of minimum rank

that satisfies a given set of linear equality constraints. It encompasses commonly seen low-rank

matrix completion problem (43) and low-rank matrix approximation problem as special cases.

(41) first introduced recovery of the minimum-rank matrix via nuclear norm minimization. (42)

generalized the RIP in (37) to matrix case and established the theoretical condition under which

the nuclear norm heuristic can be guaranteed to produce the minimum-rank solution.

Real-world signals of practical interest such as color imaging, video sequences and multi-

sensor networks, are usually generated by the interaction of multiple factors or multimedia

and thus can be intrinsically represented by higher-order tensors. Therefore, the higher-order

extension of CS theory for multidimensional data has become an emerging topic. One direction

attempts to find the best rank-R tensor approximation as a recovery of the original data tensor

as in (44), they also proved the existence and uniqueness of the best rank-r tensor approximation
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in the case of 3rd order tensors. The other direction (45; 46) uses Kronecker product matrices

in CS to act as sparsifying bases that jointly model the structure present in all of the signal

dimensions as well as to represent the measurement protocols used in distributed settings. We

propose Generalized Tensor Compressive Sensing (GTCS)–a unified framework for compressive

sensing of higher-order tensors. In addition, we propose two reconstruction procedures, a serial

method (GTCS-S) and a parallelizable method (GTCS-P). Experimental results demonstrate

the outstanding performance of GTCS in terms of both recovery accuracy and speed.

4.2 Background

4.2.1 Multilinear algebra

Outer Product and Tensor Product In linear algebra, the outer product typically refers

to the tensor product of two vectors. u◦v = uv>. In this paper, we won’t differentiate between

outer product and tensor product. To distinguish from Kronecker product, we use ◦ to denote

tensor product of two vectors while ⊗ to denote Kronecker product. They can be related by

u ◦ v = u⊗ v> and vec(u ◦ v) = v⊗ u, where vec(·) denotes the vectorization of matrix along

columns.

CANDECOMP/PARAFAC Decomposition (47)For a tensor X ∈ R
N1×N2×...×Nd , the

CANDECOMP/PARAFAC (CP) decomposition is X ≈ [λ;A(1), A(2), ..., A(d)] ≡
∑R

r=1 λra
(1)
r ◦

a
(2)
r ◦ ... ◦ a

(d)
r , where λ = [λ1 λ2...λR]

> ∈ R
R and A(i) = [a

(i)
1 a

(i)
2 ...a

(i)
R ] ∈ R

Ni×R for i = 1, ..., d.

Core Tucker Decomposition Let X ∈ R
N1×...×Nd with mode-i unfoldingX(i) ∈ R

Ni×(N1·...·Ni−1·Ni+1·...·Nd).

Denote by Ri(X ) ⊂ R
Ni the column space of X(i) whose rank is ri. Let c1,i, . . . , cri,i be a basis
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in Ri(X ). Then the subspace V(X ) := R1(X ) ◦ . . . ◦ Rd(X ) ⊂ R
N1×...×Nd contains X . Clearly

a basis in V consists of the vectors ci1,1 ◦ . . . ◦ cid,d where ij ∈ [rj ] := {1, . . . , rj} and j ∈ [d].

Hence the core Tucker decomposition of X is

X =
∑

ij∈[rj ],j∈[d]

ξi1,...,idci1,1 ◦ . . . ◦ cid,d. (4.1)

There are many ways to get a weaker decomposition as

X =
K∑

i=1

a
(1)
i ◦ . . . ◦ a

(d)
i , a

(j)
i ∈ Rj(X ), j ∈ [d]. (4.2)

A simple constructive way is as follows. First decompose X(1) as X(1) =
∑r1

j=1 cj,1g
>
j,1 (e.g. by

singular value decomposition (SVD)). Now each gj,1 can be viewed as a tensor of order d − 1

∈ R2(X )◦ . . .◦Rd(X ) ⊂ R
N2×...×Nd . Unfold each gj,1 in mode 2 to obtain gj,1(2) and decompose

gj,1(2) =
∑r2

l=1 dl,2,jf
>
l,2,j , dl,2,j ∈ R2(X ), fl,2,j ∈ R3(X ) ◦ . . . ◦ Rd(X ). Continuing in this way

we get a decomposition of type (Equation 4.2). Note that if X is s-sparse then each vector in

Ri(X ) is s-sparse and each rank ri is at most s. So K ≤ sd−1.

4.2.2 Compressive sensing

Compressive sensing is one of the ways to encode sparse information. A vector x ∈ R
N is

called s-sparse if it has at most s nonzero coordinates. The CS measurement protocol measures

the signal x with the measurement matrix A ∈ R
m×N where m < N and transmits the encoded

information y ∈ R
m where y = Ax. The receiver knows A and attempts to recover x from y.

Since m < N , there are usually infinitely many solutions for such under-constrained problem.
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However, if x is known to be sufficiently sparse, then exact recovery of x is possible, which

establishes the fundamental tenet of CS theory. The recovery is done by finding a solution

z? ∈ R
N satisfying

z? = argmin{‖z‖1, Az = y}. (4.3)

Such z? coincides with x. The following well known result states that each s-sparse solution

can be recovered uniquely if A satisfies the null space property of order s, denoted as NSPs.

That is, if Aw = 0,w ∈ R
N \ {0}, then for any subset S ⊂ {1, . . . , N} with cardinality |S| = s

it holds that ‖vS‖1 < ‖vSc‖1, where vS denotes the vector that coincides with v on the index

set S and is set to zero on Sc.

A simple way to generate such A is to use A sampled randomly from Gaussian or Bernoulli

distributions. Then there exists a universal constant c such that if

m ≥ 2cs ln
N

s
(4.4)

then the recovery of x using (Equation 4.3) is successful with probability at least 1− exp(−m
2c).

Recently, the extension of CS theory for multidimensional signals has become an emerging

topic. The objective of our paper is to consider the case where the s-sparse vector x is repre-

sented as an s-sparse tensor X = [xi1,...,iN ] ∈ R
N1×...×Nd . If we ignore the structure of X as a
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tensor, and view it as a vector of size N = N1 · . . . · Nd, clearly, we can transmit X as x by

using y = Ax. If we use a random A as described above, we need m to be at least of order

m ≥ 2cs(− ln s+
d∑

i=1

lnNi). (4.5)

In (46), Kronecker compressive sensing (KCS) constructs A from Kronecker product A :=

U1 ⊗ . . . ⊗ Ud, where Ui ∈ R
mi×Ni for i = 1, . . . , d and each Ui has NSPs property. Then x is

recovered uniquely from y = Ax by `1-minimization. In this paper, we analyze the compression

and reconstruction of tensor X from the tensor Y = X ×1 U1 × . . . ×d Ud ∈ R
m1×...×md using

a sequence of `1-minimizations similar to the minimization in (Equation 4.3). The advantage

of our method is that our recovery problems are in terms of each Ui, which are much smaller

comparing with the recovery related to A as given by the minimization in (Equation 4.3).

This means that the amount of computations of our method is much less than that given by

(Equation 4.3). If we choose our matrices Ui at random then we have the condition

mi ≥ 2cs ln
Ni

s
, i = 1, . . . , d. (4.6)

4.3 Tensor compressive sensing

4.3.1 Tensor compressive sensing with serial recovery

We first discuss our method for matrices, i.e. d = 2 and then for tensors d ≥ 3.
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Theorem 4.3.1 Let X = [xij ] ∈ R
N1×N2 be s-sparse. Let Ui ∈ R

mi×Ni and assume that Ui

has NSPs property for i = 1, 2. Define

Y = [ypq] = U1XU>2 ∈ R
m1×m2 . (4.7)

Then X can be recovered uniquely using the following procedure. Let y1, . . . ,ym2 ∈ R
m1 be the

columns of Y . Let z?
i ∈ R

N1 be a solution of

z?
i = min{‖zi‖1, U1zi = yi}, i = 1, . . . ,m2. (4.8)

Then each z?
i is unique and s-sparse. Let Z ∈ R

N1×m2 be the matrix with columns z?
1, . . . , z

?
m2
.

Let w>1 , . . . ,w
>
N1

be the rows of Z. Then the jth row of X is the solution u?
j ∈ R

N2 of

u?
j = min{‖uj‖1, U2uj = wj}, j = 1, . . . , N1. (4.9)

Proof Let Z = XU>2 ∈ R
N1×m2 . Assume that z?

1, . . . , z
?
m2

are the columns of Z. Note that z?
i

is a linear combination of the N2 columns of X, given by the ith row of U2. Since X is s-sparse,

z?
i has at most s nonzero entries. Note that Y = U1Z, it follows that yi = U1z

?
i . Since U1

has NSPs, we deduce the equality (Equation 4.8). Observe next that Z> = U2X
>. Hence the

column wj of Z> is wj = U2u
?
j . Since X is s-sparse, each u?

j is s-sparse. The assumption that

U2 has NSPs property implies (Equation 4.9). This completes the proof. ¥
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If we choose U1, U2 to be random, then we need the assumption (Equation 4.6). We now make

the following observation. Suppose we know that each column of XU T
2 is s1-sparse and each

row of X is s2-sparse. Then from the proof of Theorem 4.3.1 it follows that we can recover X,

on the assumption that U1 has NSPs1 and U2 has NSPs2 .

Theorem 4.3.2 (GTCS-S) Let X = [xi1,...,id ] ∈ R
N1×...×Nd be s-sparse. Let Ui ∈ R

mi×Ni and

assume that Ui has NSPs property for i = 1, . . . , d. Define

Y = [yj1,...,jd
] = X ×1 U1 × . . .×d Ud ∈ R

m1×...×md . (4.10)

Then X can be recovered uniquely using the following recursive procedure. Unfold Y in mode 1,

Y(1) = U1X(1)[⊗
2
k=dUk]

> ∈ R
m1×(m2·...·md).

Let y1, . . . ,ym2·...·md
be the columns of Y(1). Then yi = U1zi where each zi ∈ R

N1 is s-sparse.

Recover each zi using (Equation 4.3). Let Z = X ×2 U2 × . . . ×d Ud ∈ R
N1×m2×...×md with its

mode-1 fibers being z1, . . . , zm2·...·md
. Unfold Z in mode 2,

Z(2) = U2X(2)[⊗
3
k=dUk ⊗ I]> ∈ R

m2×(N1·m3·...·md).

Let w1, . . . ,wN1·m3·...·md
be the columns of Z(2). Then wj = U2vj where each vj ∈ R

N2 is s-

sparse. Recover each vj using (Equation 4.3). Continue the above procedure for mode 3, . . . , d

and X can be reconstructed in series.
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As for matrices, assume mode-i fibers of X ×i+1Ui+1× . . .×dUd is si-sparse for i = 1, . . . , d− 1

and mode-d fibers of X is sd-sparse, then we can relax the condition such that Ui only has to

satisfy NSPsi
for i = 1, . . . , d.

4.3.2 Tensor compressive sensing with parallel recovery

Theorem 4.3.3 (GTCS-P) Let X = [xi1,...,id ] ∈ R
N1×...×Nd be s-sparse. Let Ui ∈ R

mi×Ni

and assume that Ui has NSPs property for i = 1, . . . , d. Define Y as in (Equation 4.10), then

X can be recovered uniquely using the following procedure. Consider a decomposition of Y such

that,

Y =
K∑

i=1

b
(1)
i ◦ . . . ◦ b

(d)
i , b

(j)
i ∈ Rj(Y) ⊆ UjRj(X ), j ∈ [d]. (4.11)

Let w
(j)?
i ∈ Rj(X ) ⊂ R

Nj be a solution of

w
(j)?
i = min{‖w

(j)
i ‖1, Ujw

(j)
i = b

(j)
i }, i = 1, . . . ,K, j = 1, . . . , d. (4.12)

Thus each w
(j)?
i is unique and s-sparse. Then,

X =
K∑

i=1

w
(1)
i ◦ . . . ◦w

(d)
i , w

(j)
i ∈ Rj(X ), j ∈ [d]. (4.13)
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Proof Since X is s-sparse, each vector in Rj(X ) is s-sparse. So if each Uj has NSPs, we can

get a unique s-sparse vector w
(j)
i ∈ Rj(X ) such that Ujw

(j)
i = b

(j)
i and obtain a tensor

Z =
K∑

i=1

w
(1)
i ◦ . . . ◦w

(d)
i , w

(j)
i ∈ Rj(X ), j ∈ [d]. (4.14)

We have (X −Z)×1U1× . . .×dUd = 0. We next show Z = X . For that we are going to assume

slightly more general scenario. Namely each Rj(X ) ⊆ Vj ∈ R
Nj such that each nonzero vector

in Vj is s-sparse. So Rj(Y) ⊆ UjRj(X ) ⊆ UjVj for j ∈ [d]. Assume X 6= Z. We next prove by

induction on mode k which yields contradiction to this assumption.

When k = 1, unfold X and Z in mode 1 to obtain matrices X(1) and Z(1). The column space

of X(1) and Z(1) are contained in V1 while the row spaces are contained in V̂1 := V2 ◦ . . . ◦Vd.

Since we assume that X 6= Z, thus X(1) − Z(1) 6= 0. Then X(1) − Z(1) =
∑p

i=1 uiv
>
i where

rank (X(1)−Z(1)) = p, u1, . . . ,up ∈ V1,v1, . . . ,vp ∈ V̂1 are linearly independent. Observe next

that U1u1, . . . , U1up are linearly independent. To show this, 0 =
∑p

i=1 aiU1ui = U1u, u =

∑p
i=1 aiui ∈ V1. Since u is s-sparse and U1 has NSPs we deduce that u = 0, so a1 = . . . =

ap = 0.

Since (X − Z)×1 U1 × . . .×d Ud = 0, it is equivalent to

0 = U1(X(1) − Z(1))(Ud ⊗ . . .⊗ U2)
> = U1(X(1) − Z(1))Û

>
1 =

p∑

i=1

(U1ui)(Û1vi)
>.
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Since U1u1, . . . , U1up are linearly independent it follows that Û1vi = 0 for i = 1, . . . , p. There-

fore,

(X(1) − Z(1))Û
>
1 = (

p∑

i=1

uiv
>
i )Û

>
1 =

p∑

i=1

ui(Û1vi)
> = 0.

Fold back to tensor form, this is equivalent to

(X − Z)×1 I ×2 U2 × . . .×d Ud = (X − Z)×2 U2 × . . .×d Ud = 0. (4.15)

Suppose when k = m, we have (X − Z) ×m Um × . . . ×d Ud = 0. Continue to unfold X

and Z in mode m, The column space of X(m) and Z(m) are contained in Vm while the row

spaces are contained in V̂m := V1 ◦ . . . ◦ Vm−1 ◦ Vm+1 ◦ . . . ◦ Vd. Since we assume that

X 6= Z, thus X(m) − Z(m) 6= 0. Then X(m) − Z(m) =
∑q

i=1 fig
>
i where rank (X(m) − Z(m)) = q,

f1, . . . , fq ∈ Vm,g1, . . . ,gq ∈ V̂m are linearly independent. Observe next that Umf1, . . . , Umfq

are linearly independent.

Since (X − Z)×m Um × . . .×d Ud = 0, it is equivalent to

0 = Um(X(m) − Z(m))(Ud ⊗ . . .⊗ Um+1 ⊗ I)> = Um(X(m) − Z(m))Û
>
m =

q∑

i=1

(Umfi)(Ûmgi)
>.

Since Umf1, . . . , Umfq are linearly independent it follows that Ûmgi = 0 for i = 1, . . . , q. There-

fore,

(X(m) − Z(m))Û
>
m = (

q∑

i=1

fig
>
i )Û

>
m =

q∑

i=1

fi(Ûmgi)
> = 0.
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Fold back to tensor form, this is equivalent to

(X − Z)×1 I × . . .×m I ×m+1 Um+1 × . . .×d Ud = (X − Z)×m+1 Um+1 × . . .× Ud = 0.

Consequently, when m = d, by unfolding X and Z in mode d, we will derive that

X − Z = 0.

This brings contradiction to our assumption that X 6= Z. Thus, it proves that X = Z. This

completes the proof. ¥

In fact, if all vectors ∈ Ri(X ) are si-sparse, then Ui only has to satisfy NSPsi
. The above

recovery procedure consists of two stages: the decomposition stage and the reconstruction stage

where the latter can be implemented in parallel.

4.4 Experimental Results

We experimentally demonstrate the performance of GTCS methods on sparse image and

video sequence. In (46), KCS has shown its outstanding performance for compression of multidi-

mensional signals in comparison with several other methods such as independent measurements

and partitioned measurements. Therefore, we choose KCS as a comparison to the proposed

GTCS methods. Our experiments use the `1-minimization solvers from (48). We set the same

threshold to determine the termination of `1-minimization in all subsequent experiments. All

simulations are executed on a desktop with 2.4 GHz Intel Core i5 CPU and 8GB RAM.
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4.4.1 Sparse image representation

As shown in Figure 11(a), the original black and white image is of size 64× 64 (N = 4096

pixels). Its columns are 14-sparse and rows are 18-sparse. The image itself is 178-sparse. We

let the number of measurements evenly split among the two modes, that is, for each mode, the

randomly constructed Gaussian matrix U is of size K × 64. Therefore the KCS measurement

matrix U ⊗ U is of size K2 × 4096. Thus the total number of samples is K2. We define the

normalized number of samples to be K2

N
. For GTCS, both the serial recovery method GTCS-

S and the parallelizable recovery method GTCS-P are implemented. In the matrix case, we

simply conduct SVD on the compressed image in the decomposition stage of GTCS-P. Although

the reconstruction stage of GTCS-P is parallelizable, we here recover each vector in series. We

comprehensively examine the performance of all the above methods by varying K from 1 to 45.

Figure 10(a) and 10(b) compare the peak signal to noise ratio (PSNR) and the recovery

time respectively. Both KCS and GTCS methods achieve PSNR over 30dB when K = 39.

As K increases, GTCS-S tends to outperform KCS in terms of both accuracy and efficiency.

Although PSNR of GTCS-P is the lowest among the three methods, it is most time efficient.

Moreover, with parallelization of GTCS-P, the recovery procedure can be further accelerated

considerably. The reconstructed images when K = 38, that is, using 0.35 normalized number of

samples, are shown in Figure 11(b)11(c)11(d). Though GTCS-P recovers much noisier image,

it is good at recovering the non-zero structure of the original image.



72

0 0.1 0.2 0.3 0.4
0

20

40

60

80

100

120

140

Normalized number of samples (K*K/N)

P
S

N
R

 (d
B

)

 

 

GTCS−S
GTCS−P
KCS

(a) PSNR comparison

0 0.1 0.2 0.3 0.4
0

5

10

15

20

25

Normalized number of samples (K*K/N)

R
ec

on
st

ru
ct

io
n 

tim
e 

(s
ec

)
 

 

GTCS−S
GTCS−P
KCS

(b) Recovery time comparison

Figure 10. PSNR and reconstruction time comparison on sparse image.

4.4.2 Sparse video representation

We next compare the performance of GTCS and KCS on video data. Each frame of the

video sequence is preprocessed to have size 24 × 24 and we choose the first 24 frames. The

video data together is represented by a 24× 24× 24 tensor and has N = 13824 voxels in total.

To obtain a sparse tensor, we manually keep only 6× 6× 6 nonzero entries in the center of the

video tensor data and the rest are set to zero. Therefore, the video tensor itself is 216-sparse

and its mode-i fibers are all 6-sparse for i = 1, . . . , 3. The randomly constructed Gaussian

measurement matrix for each mode is now of size K × 24 and the total number of samples

is K3. Therefore, the normalized number of samples is K3

N
. In the decomposition stage of
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(a) The original sparse image (b) GTCS-S recovered image

(c) GTCS-P recovered image (d) KCS recovered image

Figure 11. The original image and the recovered images by GTCS and KCS using 0.35
normalized number of samples.

GTCS-P, we employ a decomposition described in Section 4.2.1 to obtain a weaker form of the

core Tucker decomposition. We vary K from 1 to 13.

Figure 12(a) depicts PSNR of the first non-zero frame recovered by all three methods. All

methods exhibit an abrupt increase in PSNR at K = 10 (using 0.07 normalized number of

samples). Also, Figure 12(b) summarizes the recovery time. In comparison to the image case,
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Figure 12. PSNR and reconstruction time comparison on sparse video.

the time advantage of GTCS becomes more important in the reconstruction of higher-order

tensor data.

We specifically look into the recovered frames of all three methods when K = 12. Since

all the recovered frames achieve a PSNR higher than 40 dB, it is hard to visually observe any

difference compared to the original video frame. Therefore, we display the reconstruction error

image defined as the absolute difference between the reconstructed image and the original image.

Figures 13(a)13(b)13(c) visualize the reconstruction errors of all three methods. Compared to

KCS, GTCS-S achieves much lower reconstruction error using much less time.



75

5
10

15
20

5
10

15
20

0

2

4

6
x 10−4

 

Column indexRow index
 

R
ec

on
st

ru
ct

io
n 

er
ro

r

1

2

3

4

5

x 10−4

(a) Reconstruction error of
GTCS-S

5
10

15
20

5
10

15
20

0

5

10

15

 

Column indexRow index
 

R
ec

on
st

ru
ct

io
n 

er
ro

r

2

4

6

8

10

12

(b) Reconstruction error of
GTCS-P

5
10

15
20

5
10

15
20

0

0.002

0.004

0.006

0.008

0.01

 

Column indexRow index
 

R
ec

on
st

ru
ct

io
n 

er
ro

r

1

2

3

4

5

6

7

8
x 10−3

(c) Reconstruction error of KCS

Figure 13. Visualization of the reconstruction error in the recovered video frame 9 using 0.125
normalized number of samples.

4.5 Conclusion

In this paper, we propose Generalized Tensor Compressive Sensing (GTCS)–a unified frame-

work for compressive sensing of higher-order tensors. In addition, we propose two reconstruction

procedures, a serial method (GTCS-S) and a parallelizable method (GTCS-P). We then com-

pare the performance of the proposed method with Kronecker compressive sensing (KCS) on

both image and video data. Experimental results show that GTCS outperforms KCS in terms

of both accuracy and efficiency. The advantage of our method mainly comes from the fact that

our recovery problems are in terms of each tensor mode, which are much smaller comparing

with the recovery related to the vectorization of all tensor modes. Such advantage becomes

more important as the order of the data increases. We state our theorems for sparse tensors.

However, most real-world data are not really sparse, instead, they are only compressible in some
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domain. Future work will focus on demonstrating the effectiveness of GTCS on compressible

higher-order data.



CHAPTER 5

CONCLUSION

This thesis summarized our research in the application of multilinear algebra to higher-

order data analysis including retrieval, classification and representation. It mainly consisted of

a HOSVD-based multilinear indexing and retrieval approach of multifactor data in Chapter 2,

a multilinear extension of LDA for higher-order data classification in Chapter 3 and a unified

framework for compressive sensing of higher-order tensors which integrates acquisition and

compression from all tensor modes in Chapter 4. We discussed these algorithms in detail and

demonstrated their superior performance through exhaustive computer simulations, compared

to existing methods.

Finally, there are still some aspects of the proposed methods that deserve further study. In

all the proposed methods, we assumed that the correspondence of the tensor modes in all data

is known whereas in most real applications, the correspondence between the tensor structures

is unknown. Future work will examine the performance of the proposed methods without such

correspondence. In Chapter 3, we only proved that the objective function sequence generated by

CMDA iterative procedure is asymptotically bounded. We are not sure if such procedure always

converges. If not, what factors affect its convergency? Besides, both DGTDA and CMDA are

multilinear, they can not capture the nonlinear structure of the data manifold effectively. It

remains unclear how to generalize our approach to nonlinear case. In Chapter 4, we stated

our theorems for sparse tensors. However, most real-world data are not really sparse, instead,

77
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they are only compressible in some domain. Future work will also look into the effectiveness of

GTCS on compressible higher-order data.
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