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CONTRIBUTION OF AUTHORS
Chapter | is an introduction to planetary gearbox fault diagnosis, research background,
motivation, and scientific contribution. Chapter Il is a literature review covering the state of
the art machinery fault diagnostic techniques including signal processing and data mining
based methods. Chapter Il introduces the experimental test rig, fault seeded test, and
fundamental of planetary gearbox. Chapter 1V presents an unpublished research study of the
vibration based planetary gearbox diagnostic methodology using spectral averaging. Chapter
V presents a new planetary gearbox fault diagnostic method using an acoustic emission sensor.
The majority of the content is composed of previously published work (Yoon, J. and He, D.,
2015, “Planetary gearbox fault diagnostic method using acoustic emission sensors”, IET
Science, Measurement, and Technology, DOI: 10.1049/iet-smt.2014.0375.) for which | was
the first author and perform the research. My advisor, Dr. David He supervised the research
and edited the manuscripts. Chapter VI presents a new planetary gearbox fault diagnosis on the
use a single piezoelectric strain sensor. The majority of the content is composed of previously
published work (Yoon, J., He, D., and Van Hecke, B., 2015, “On the use a single piezoelectric
strain sensor for wind turbine planetary gearbox fault diagnosis”, IEEE Transactions on
Industrial Electronics, DOI: 10.1109/T1E.2015.2442216.) for which | was the first author and
perform the research. My advisor, Dr. David He supervised the research and edited the
manuscripts and Dr. Brandon Van Hecke aided in collection of the data. Chapter VII also
presents an unpublished comparative research study on the vibration, acoustic emission,
piezoelectric strain analysis introduced in Chapter 1V, V, and VI. Finally, Chapter VIII

provides a synthesis of the research presented in this dissertation.
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SUMMARY

Vibration analysis has been widely accepted in the field of machinery fault diagnosis.
However, vibration signals theoretically have the amplitude modulation (AM) effect caused by
time variant vibration transfer paths due to rotating planet gears and planet carrier around the sun
gear. Their complex spectral structure makes it difficult to diagnose PGB faults via vibration
analysis.

In this dissertation, new effective and efficient PGB diagnostic methodologies and tools
using alternative sensors have been developed and validated with seeded fault tests with a PGB on
a wind turbine simulator. Specifically, the following new effective and efficient PGB fault
diagnostic methods are presented: a vibration based PGB diagnostic method, an acoustic emission
(AE) based PGB diagnostic method, and a piezoelectric (PE) strain sensor based PGB diagnostic
method.

The newly developed PGB fault diagnostic methods and tools have several significant
advantages. First, a new vibration based PGB fault diagnostic method was developed using the
Welch’s spectral averaging. All localized PGB faults were isolable with this method while the
conventional vibratory analyses of the time synchronous averaging (TSA), enveloping or the
vibration separation (VS) technigues were not able to. Second, the heterodyning data acquisition
(DAQ) system was applied to PGB in order to overcome the known challenge of the high sampling
rate for AE analysis. Besides, with the AE based PGB fault diagnostic methods, not only it was
isolating the location of the localized faults, but it is potentially capable of capturing incipient
faults by using AE. Lastly, for the PE strain sensor based PGB diagnostic method, research
reported in the literature has shown that strain sensor signals are closely related to torsional

vibration, in which the only modulation effects are the AM and frequency modulation (FM) caused

XV



by gear faults under constant input and output torque. Also, results from the PE strain sensor based
condition indicators (CIs) were isolable for all localized faults and remain relatively stationary
within the same loading condition regardless the change of the shaft speed. Those Cls could be
utilized in establishing a threshold based condition monitoring system and is verifying that the
measurements from a PE strain sensor are heavily affected by the torque change.

The research described in this dissertation was conducted in four stages: (1) developing an
effective vibration based PGB diagnostic method with Welch’s spectral averaging, (2) developing
an effective AE based PGB diagnostic method using the heterodyning data acquisition (DAQ)
system, (3) developing an effective PE strain sensor based PGB diagnostic method, and (4) a
comparative study over all method developed in the stage of (1), (2) and (3). Different localized
faults on sun gear, planet gear, and ring gear were seeded and tested. The comparative results have
shown that the AE based PGB fault diagnostic method have shown that it is more desirable than
the vibration based PGB fault diagnostic method with lower diagnostic error rates and higher
reliability. On the other hand, the PE strain based fault diagnostic method could be the most

desirable in that it didn’t require a help of machine learning in PGB fault diagnostics.
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l. INTRODUCTION

A. Background and Motivation

Planetary gearboxes (PGB) are desired for high power transmission applications as their
unique design allows distributing the input torque in parallel and minimizing gearbox size. Thus,
PGB is widely adopted in design of the following applications:

— Powertrain to convert wind power to electrical power in a wind turbine;

— Drivetrain to generate uplift force in a helicopter transmission system;

— Bucket wheel driving system to manage random varying load in the digging process of

a surface mining excavator.
Especially, wind energy is one of the fastest growing energy source among various renewable
energy options. Establishment of more proactive maintenance strategy is required before the recent
massive industrial wind projects enter the wear-out failure zone. This will particularly be true for
the off-shore wind farms, where not only the availability of the site for maintenance can be
restricted but also the saline environment easily accelerates the mechanical and chemical failures.
Recent papers have reported the fault diagnostic methods of a wide range of wind turbine
components such bearing (Gong and Qiao, 2013), rotor (Vedreno-Santos et al., 2014; Cusido et
al., 2008), electrical system (Freire et al., 2013), generator (Yang et al., 2010), energy conversion
system (Karimi et al., 2008), hydraulics, pitch adjustment, yaw system, lubricant (Zhu et al., 2014),
and etc. in order to extend the service time of wind turbine systems at their maximum rates.
However, as reported in the technical reports from the US national renewable energy laboratory
(NREL), the gearbox failure is the leading contributor to the total wind turbine downtime (Sheng
et al., 2011). In the meantime, the statistics reported in Sheng (2014) have shown that 26% and

25% of all gearbox failures recorded in 2013 and 2014, respectively, were due to direct gear failure.



Similarly, according to Astridge (1989), 19.1% of all the helicopter transmission failures
came from the gear failure. Therefore, developing an accurate and reliable PGB condition
monitoring method for these assets is very desirable for improved availability while the cost of
unscheduled maintenance is reduced. Representing examples of the PGB applications are provided

in Figure 1.

Figure 1. PGB applications for (a) wind turbine (GE Drivetrain Technologies, 2015),(b) Bucket
wheel excavator (FLSmidth, 2015), and (c) Rotorcraft transmission (Eurocopter, 2015).

When time variant disturbances and non-stationary operating conditions such as speed and

loading changes are applied to a mechanical system, periodic or random oscillation occurs and it
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defines vibration. Vibration analysis is carried for a machinery fault detection in an industrial or
maintenance project to eliminate unnecessary costs and equipment downtime. To date, transverse
vibration (generally known as ‘vibration’) analysis using accelerometer has been established as
the industry standard for most of the machinery health condition monitoring. However, for the
PGB application, transverse vibration signals theoretically have the amplitude modulation (AM)
effect caused by time variant vibration transfer paths due to the unique dynamic structure of
rotating planet gears. Provided in Figure 2, a pictorial example of the AM effect of PGB is

displayed.
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Figure 2. The AM effect of vibration signal on PGB.



Resultantly, it could be complicated to diagnose PGB faults via a vibration analysis such as time
synchronous averaging (TSA, Braun, 1975), or vibration separation (VS, McFadden, 1991).
Attractive solutions to this problem are either applying frequency/time-frequency vibration
analysis methods or using alternative sensors that could be less sensitive to AM effect for PGB
fault diagnosis. To overcome the above mentioned challenges, the following PGB fault diagnostic
methodologies and tools will be developed: vibration analysis with Welch’s spectral averaging;
alternative sensors of AE and piezoelectric (PE) strain sensors.

First, Welch’s spectral averaging method (Welch, 1967), recently reported for bearing fault
diagnosis, by Bechhoefer et al., 2013a; Van Hecke et al., 2014a. Their methodology comprises the
time synchronous resampling (TSR) technique with Welch’s spectral averaging to obtain a power
spectral density (PSD) estimate of the vibration signals. This PSD estimate will be utilized in
search of an effective vibration based PGB fault diagnostic method. No similar research has
reported in the literature for PGB fault diagnostic method.

Next, acoustic emission (AE) sensors in the machinery fault diagnostics area recently have
captured growing acceptance.AE signals can be defined as the elastic stress waves generated inside
a solid material (e.g. mechanical components made with metal) due to energy release. Thus, the
AE sensor as failure analysis source could be beneficial to PGB fault diagnosis in that AE signals
propagate from the wave source (i.e. faults) to sensing apparatus within mechanical components.
Because of the fact that AE sensor can potentially be more sensitive to the incipient faults than
vibration sensors, AE based machinery fault detection and diagnosis have attracted many research
activities (Al-Balushi and Samanta, 2002; Loutas et al., 2011).Al-Ghamd and Mba (2006) have

shown not only that AE offers an earlier fault detection than vibration, but also that AE provides



an indication of the fault level. Scheer et al. (2007) have shown that AE is effective to capture
early stage of gear faults (e.g. tooth edge fracture and pitting) before they grow to change their
vibration behavior. In Lucas (2012), AE is described as follows in comparison to vibration: (1)
With AE, an early stage of defect including worn by usage and minor defects can be identified. In
the meantime with vibration, damages must grow in a certain level to be represented by vibratory
behaviors; (2) AE can pick up other faults such as a lack of lubrication, friction, and cracking, and
(3) AE is considered as the next generation of vibration for condition monitoring. However, the
high sampling rate requirement between 2 to 10 MHz has been one of the greatest obstacle for
widespread and practical implementations of AE based fault diagnosis. Recent studies have shown
that the high sampling rate issue of AE for fault diagnosis could be overcome by applying
heterodyne based frequency reduction technique (Qu et al., 2014; Bechhoefer et al., 2013b; Van
Hecke et al., 2014a; Yoon et al., 2014). Until today, no effective AE based PGB fault diagnostic
method has been developed using the heterodyne technique and no single method were reported
to isolate different PGB fault locations of sun gear, planet gear, and ring gear.

Finally, one attractive solution is to utilize alternative sensors that have less sensitivity to
the AM effect for PGB fault diagnosis and prognosis. In a recent paper, Feng and Zuo (2013) have
shown the effectiveness of torsional vibration analysis for PGB fault diagnosis using a torque
sensor. The frequency characteristics of torsional vibration were shown to be solely sensitive to
the AM and FM effects caused by gear faults under constant torque on input and output shafts.
Kiddy et al. (2011) used fiber optic strain signals for PGB fault diagnosis and showed a close
relationship between strain measurement and torque changes. Although promising, the research
reported in the literature on using less AM effect sensitive signals for PGB fault diagnosis has

certain limitations. The torque sensors used by Feng and Zuo (2013) are more expensive than



vibration and strain sensors and require special installation. The fiber optic strain sensor array used
by Kiddy et al. (2011) had to be embedded on the PGB components in order to be effective.
Besides, those fiber optic strain sensors can only be sampled at a maximum sampling rate up to 1
kHz, which limits its coverage on shaft speed above 2060 rpm. Lastly, the strain signals were
analyzed the same way as vibration signals. Fiber optic sensor signals were analyzed using the
vibration separation technique after low frequency components were filtered out. No effective
signal analysis techniques have been developed for strain signals. The PE strain sensor is desirable
in having an improved strain resolution and applicability of a higher sampling rate in comparison
with the conventional strain gauge sensors (Banaszak, 2001) or the fiber optic strain sensors (Jiang
et al., 2013). Until today, no effective PE strain signal based PGB fault diagnostic analysis
techniques have been reported. Also, no PE strain analysis method were displayed to isolate
different PGB fault locations of sun gear, planet gear, and ring gear. To overcome the above
mentioned challenges and fulfill the diagnostic capability on PGB faults, a research investigation

via PE strain sensor signal analysis has been conducted and is reported in this dissertation.

B. Dissertation Scope and Scientific Contribution

In this dissertation, new PGB diagnostic methodologies and tools will be developed using
vibration, AE, and PE strain sensors. The potential contributions will include:
(1) New effective vibratory PGB fault diagnostic methods and tools developed using Welch’s

spectral averaging;



(2) New effective and computationally efficient PGB fault diagnostic methods and tools
developed using AE sensor signal analysis techniques that are potentially less sensitive to
the AM effect;

(3) New effective and computationally efficient PGB fault diagnostic methods and tools
developed using PE strain sensor signal analysis techniques that are potentially less
sensitive to the AM effect;

(4) A comparative study over all of PGB fault diagnostic methods developed in previous stages.
There is no similar study available that is comparing the diagnostic performance of all three
vibration, AE, and PE strain for PGB application;

(5) Validation of the developed diagnostic methods and tools using seeded fault tests on a PGB

test rig in the laboratory.

C. Dissertation Outline

The proposal is outlined as following. CHAPTER |11 gives a literature review on current
PGB fault diagnostic techniques. CHAPTER Il introduces the experimental test rig and PGB
fundamentals. CHAPTER IV explains the methodology details and validation results of the
vibration based PGB fault diagnostics methodology using Welch’s spectral averaging (SA).
CHAPTER V depicts the methodology details and validation results for the new AE based PGB
fault diagnostics methods. CHAPTER VI describes the development procedures details and
validation results for the new PE strain sensor based PGB fault diagnostic method and tools.
CHAPTER VII presents the comparative study for all those three vibration, AE, and PE strain
methods and tools. CHAPTER VIII concludes the dissertation for the new PGB fault diagnostic

methods.



1. LITERATURE REVIEW

(Parts of the literature review in this chapter were previously published as Yoon, J., He, D., and
Van Hecke, B., 2015, “On the use a single piezoelectric strain sensor for wind turbine planetary
gearbox fault diagnosis”, IEEE Transactions on Industrial Electronics, DOI:
10.1109/TIE.2015.2442216. and Yoon, J. and He, D., 2014, “Planetary gearbox fault diagnostic
method using acoustic emission sensors”, IET Science, Measurement, and Technology, DOI:
10.1049/iet-smt.2014.0375.)

In this chapter, relevant literatures are reviewed. In particular, currently available PGB fault
diagnosis techniques are reviewed intensively in Section A divided into two parts: vibration
analysis and non-vibration analysis. Then, AE based machinery fault diagnostic methods and
applications are reviewed in Section B. A brief review on the data mining based machinery fault

diagnostic methods is followed in Section C.

A. PGB Fault Diagnostics

PGB fault diagnosis techniques could generally be split into two categories: vibration based

and non-vibration analysis based. They are viewed in the next two sections.

1. Vibration Analysis

In general, vibration is the most widely researched condition parameter in the field of
machinery health diagnostics (e.g. bearings, gears, shafts, and etc.). Common vibration measuring
apparatus includes accelerometers, displacement sensors, and velocity sensors. In industrial

applications, useful methodologies vary depending on their specific environment.



Likewise, a large portion of PGB diagnostic systems has been devoted to vibration analysis
using accelerometers. Time synchronous averaging (TSA) is one of the most representing signal
processing techniques for vibration analysis to extract a periodic waveform from noisy signals of
rotating machines (Braun, 1975; McFadden, 1987). The underlying idea of TSA is to intensify a
periodically repeated waveform by computing the ensemble average of successive periods of a
waveform of interest. Although TSA has been widely accepted to the fixed axes gear applications,
literature to date barely finds TSA based PGB fault diagnosis. As reported in the literature, PGB
fault diagnosis is very complicated for the following two reasons: (1) the complexity in dynamic
rolling structures does not allow for direct attachment of sensors within the rotating elements for
example, the sun and planet gears (Samuel et al., 2004); (2) PGB includes multiple and
complicated gear meshes; dynamic rotating planets and it load sharing introduces complex gear
mesh excitations (Luo et al., 2014).

In a recent review study, Lei et al., (2014) summarized the PGB condition monitoring and
fault diagnosis and prognosis methodologies in a review study. A vibration analysis technique
specialized in PGB application, namely “vibration separation (VS)” was introduced by McFadden
(1991) and McFadden and Howard (1990). Vibration separation enables to decompose a raw
vibration signal into individual PGB component (e.g. sun gear or planet gears) oriented vibration
signals by taking windowed vibration signals only when the vibration sensor, ring gear, planet gear,
and sun gear are aligned inline. The windowed vibration signals are recombined specifically for
the targeted gear component by utilizing the geometric properties of corresponding PGB. A
pictorial description of the vibration separation technique is provided in Figure 3 and Figure 4. In
the Figure 3, assume that the planet gear #1, which is marked in red, is the gear component of

interest. In the first place, vibration separation is initiated when all of sun gear, planet gear #1, and



ring gear are placed in line with a vibration sensor; perpendicularly aligned in this example (see
Figure 3(a)). From the moment, the vibration sensor collects a windowed vibration signal for tooth
hunting. Until the planet gear #1 becomes available perpendicularly again, the sun gear and other
planet gears operates as designed (see Figure 3(b) through Figure 3(e)). When the planet gear #1
forms the next perpendicular alignment (see Figure 3(f)), the vibration sensor collects another
windowed vibration signal. This procedure is repeated until the number of collected vibration
windows and the number of planet gear teeth becomes the same. Then, the windowed vibration
samples are decomposed upon the particular planetary gear geometry. Provided in Figure 4,
vibration decomposition procedure is pictorially explained. Each windowed vibration signals are

relocated by their tooth order and combined in time domain.

Vibration sensor
"""" is activated for

- Planet gear 1 (red)

Vibration sensor
is unactivated ~ ~

@) (b) ©

Vibration sensor Vibration sensor Vibration sensor
~"" is active for =" is active for =" is activated for

planet gear 2 planet gear 3 planet gear 1 (red) again

N
. Gear teeth in regards to
the vibration path altered

(@ (e ®

Figure 3. Graphical representation of vibration separation technique.
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Subsequent studies by Howard (1990), McFadden (1994), Samuel et al. (2004), and
Lewicki et al. (2011) validated this research with slightly modified versions of the technique.

However, the fundamental idea of vibration separation remains unchanged.

4‘ Planet passes of a planet gear of interest !

s Iime (t)

Windowed data of cycle 1 ‘ ‘Windowed data of cycle 2 Windowed data of cycle 3 ‘

Re-locating windowed
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Re-locate windowed
data upon gear tooth
geometry

2 3 4 24 25 26 —— . 12172 23
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Time (t)

Figure 4. Vibration separation decomposition procedure.

Other researches on PGB fault diagnostic methods associated with vibration sensor could
be found in the literature. Bartelmus and Zimroz (2009a) showed that the spectral characteristics
of vibration signal obtained from planetary gear help not only fault detection but gear fault location.
They further proposed a linear relation between the operating conditions and the signal amplitude

based diagnostic feature for PGB condition monitoring with a time-varying load (Bartelmus and
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Zimroz, 2009b). Then, Zimroz and Batkowiak (2013) suggested using data vectors based principal
component analysis and canonical discriminant analysis to reduce data dimensions and increase
diagnostic accuracy under non-stationary circumstances. Feng and Zuo (2012) derived
mathematical models of a faulty planetary gear for detecting and locating a fault by considering
the characteristic frequency of AM and frequency modulation (FM) effects. Feng and Liang
(2014a) showed that an adaptive optimal kernel based method performs well to extract the time-
varying characteristic frequencies of PGB under non-stationary conditions. Feng et al., (2015)
suggested that the iterative generalized demodulation can be used to improve the time-frequency
readability of synchrosqueezing transform. Additionally, Feng et al.(2013) proposed the local
mean decomposition based joint amplitude and frequency demodulation analysis for PGB fault
diagnosis. To address the weak feature extraction in PGB fault diagnosis, Lei et al. (2013)
presented an adaptive stochastic resonance method to strengthen the characteristic frequencies.
Feng and Liang (2014b) introduced a Fourier dictionary into an iterative atomic decomposition
thresholding method to enhance the gear fault characteristic frequency. Wu et al. (2004) have
shown the detectability of a planet carrier crack in a planetary gearbox. In their study, raw vibration
data and TSA data were transferred to the frequency domain and wavelet domain to obtain
differentiable features. In a paper by Patrick et al. (2007), a vibration data based framework for
on-board fault diagnosis and failure prognosis of helicopter transmission component was presented.
In their study, TSA preprocessed vibration data and particle filter based diagnostic and prognostic
models were used. Barszcza and Randall (2009) applied spectral kurtosis method for PGB fault
detection of gear tooth crack in wind turbine application. Hilbert-Huang transform (HHT, Huang
et al., 1998) analysis also has been recently applied to vibration analysis of rotational machinery

fault detection (Liu et al., 2006 and Yan et al., 2006). However, the fundamental issue of the AM
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effect of PGB has not been resolved. Thus, one attractive solution to this problem could be using
alternative sensor signals that have less sensitivity to AM effect for PGB fault diagnosis and
prognosis.

2. Non-vibration Analysis

Non-vibration based PGB fault diagnostic techniques are reviewed in this section. Two
types of sensor analysis techniques are reported in the literature. One is torsional vibration analysis
using torque sensor and the other one is strain analysis using fiber optic sensor. As pointed out,
vibration signals theoretically have the AM effect caused by time variant vibration transfer paths
due to the unique dynamic structure of rotating planet gears. First, in Feng and Zuo (2013), the
effectiveness of torsional vibration analysis for PGB fault diagnosis was shown by using a torque
sensor. The frequency characteristics of torsional vibration were displayed to be solely sensitive
to the AM and FM effects caused by gear faults under constant torque on input and output shafts.

Then, Kiddy et al. (2011) used fiber optic strain signals for PGB fault diagnosis and showed
a close relationship between strain measurement and torque changes. In this study, fiber optic
strain signals were divided into two parts based on their frequency: low frequency part and high
frequency components. Actual damage detection was performed by using vibration separation
technique by analyzing the high frequency component only. Although promising, the research
reported in the literature on using less AM effect sensitive signals for PGB fault diagnosis has
certain limitations. The torque sensors used by Feng and Zuo (2013) are more expensive than
vibration and strain sensors and require special installation. The fiber optic strain sensor array
used by Kiddy et al. (2011) had to be embedded in the PGB in order to be effective. The strain
signals of fiber optic strain sensor can only be sampled at a maximum sampling rate up to 1 kHz,

which limits its coverage on shaft speed above 2060 rpm.
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B. AE Based Machinery Fault Diagnostic Methods

AE is commonly defined as transient elastic waves within a material, caused by the release
of localized stress energy (Mathews, 1983). AE was originally developed for non-destructive
evaluation / testing (NDE/T) of static structures, however, those sudden internal stress
redistributions are assumed to be related to failure on mechanical components such as crack
initiation and growth, crack opening and closure, pitting on various monolithic materials, or
composite materials. While vibration analysis is relatively well established, AE analysis is still
immature not only for PGB fault diagnostics but for the entire machinery fault diagnostics field.

An early endeavor to explain an AE based fault detection technique could be found in the
literature. For gears, Tomoya et al. (1994) analyzed the fatigue crack growth in a carburized
gear tooth by AE. In their paper, it was shown that AE energy rate increased proportionally to the
stress intensity factor and crack growth rate. Tandon and Mata (1999) applied AE to spur gears
test rig with jet oil lubrication system to investigate the detectability gear pitting damages.
Simulated pitting has constant depth (500um) but variable diameter (250/350/450/550/1100 and
2200um). Their investigation has shown the advantage of AE over vibration for early detection of
defects in gears by observing that the AE data displayed a sharp increase in the parameters when
the defect size was around 500um while vibration data displayed a comparable increase when the
defect size was more than 1000um. For bearings, Yoshioka and Fujiwara (1982; 1984) have shown
that AE parameters were able to identify bearing defects before their appearance in the vibration
range. This led to an investigation that used the AE technique for the detection of subsurface cracks
resulting from rolling contact fatigue (Yoshioka, 1992). The method provided the ability to
determine the position of sub-surface fatigue cracks by relating the crack positions to the location

of the AE signal source. The conclusions of Yoshioka and Fujiwara (1982; 1984) were later
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validated by Hawman and Galinaitisin (1988) in a study that also made the observation that AE
techniques are able to detect bearing faults earlier than vibration analysis methods.

More recently, machinery fault diagnostic capability using AE analysis have captured
growing acceptance due to the fact that AE sensor can potentially be more sensitive to the incipient
faults than vibration sensors. In Al-Balushi and Samanta (2002), energy-based features were
extracted from the time domain AE to construct energy index. Their method was further test for
early fault diagnostic ability compared to other AE methods and vibration methods. In Al-Ghamd
and Mba (2006), an experimental investigation on AE technique was provided in order to detect
the presence of mechanical defect on a radially loaded bearing and its size. In their study, it has
shown not only that AE offer an earlier fault detection than vibration, but also that AE provides an
indication of the fault level. Scheer et al. (2007) have shown that AE is effective to capture early
stage of gear faults (e.g. tooth edge fracture and pitting) before they grow to change their vibration
behavior. In a study by Eftekharnejad et al. (2011) in comparing the applicability of AE and
vibration technologies for the monitoring of rolling bearing degradation, it was shown that AE was
more sensitive for incipient fault detection when compared to vibration. In Lucas (2012), AE is
described as follows in comparison to vibration: (1) With AE, an early stage of defect including
worn by usage and minor defects can be identified. In the meantime with vibration, damages must
grow in a certain level to be represented by vibratory behaviors; (2) AE can pick up other faults
such as a lack of lubrication, friction, and cracking, and (3) AE is considered as the next generation
of vibration for condition monitoring.

Despite the fact that AE has been studied a while and its feasibility is well proven, AE for
machine fault diagnosis has not been widely applied yet in industrial applications because of the

high computational cost and difficulties in AE analysis. AE is distinguishable from acoustic signals
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in that acoustic signals generally lie on the audible range of human (e.g. 20 Hz ~ 20 kHz). On the
contrary, AE signals lie on a higher frequency range (e.g. 1 kHz ~ 1 MHz). Thus a high sampling
rate between 2 to 10 MHz has been a typical choice of sampling rate for AE data collection. Other
issues may arise including a high data volume and complicated feature of AE signals, which make
the AE data processing challenging. Recent studies indicate that the fundamental issue of high
sampling rate could be overcome by applying frequency reduction technique so called heterodyne
technique. Bechhoefer et al. (2013) and Qu et al. (2013a; 2014) have shown the effectiveness AE
based fault detection and diagnosis using heterodyne technique with a split torque type gearbox.
Other researches in regards to AE sensor could be found in the literature. Empirical mode
decomposition (EMD, Huang et al., 1998) based analysis technique has been recently applied to
AE analysis of full ceramic bearing fault diagnostic methods (He et al., 2011; Yoon et al., 2013).
Welch’s spectral averaging based steel bearing fault diagnostic methods were developed in Van
Heckeet al., 2014b. In the preceding papers, EMD was utilized in pre-processing before AE
features were extracted. Then AE features were utilized in training supervised learning algorithms.

C. Data Mining Based Machinery Fault Diagnostic Methods

Machine fault diagnostics is a mapping procedure of a combinatorial information of
features (F!) and measurements (M™) toward fault types (T™). That is F* x M™ — T", where
[,m,and n stands for dimensions of feature space (F), measurement space(M), and fault type
space(T), respectively. Previously, this mapping was performed manually by experienced experts.
Recently, data mining based diagnostics approaches were successfully applied to this mapping and
the approaches could be classified: statistical approach and machine learning approaches.

Machine learning approaches utilize computational algorithms to “learn” information
directly from given data without predetermined model equations. Those algorithms adaptively
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evolve through learning process and samples. Specifically, supervised learning for classification
is a popular choice in data mining based diagnostics approaches. The diagnostic system obtains
availability to classify the machine status into different classes (e.g. healthy, faulty, or
identification of probable failure mode) based on input data (or signal) as a result of learning
process. Supervised learning for classification (Mathworks, 2015) includes 1) support vector
machine (SVM), 2) artificial neural network (ANN), 3) Naive Bayes, 4) decision tree, 5) k-nearest
neighbor (KNN), etc. In this dissertation, two types of ANN — the back propagation (BP) and the
large memory storage and retrieval (LAMSTAR) — and KNN will be mainly utilized.

ANN is a computational model that mimics a biological (human or animal) central nervous
system (CNS). It comprises a layered network of simple processing elements (also called as
neurons) such that this network enables to simulate a complex non-linear function or model. The
decision making principles in the most of ANN approaches are alike. If the ‘n’inputs denoted as

{xij;i=12,..,n}are fed into jth neuron, output ‘y;’ satisfies as:

yj=1fy [Z Wijxij] 1)
i=1

wherefy (+) represents nonlinear activation function. BP network (Rumelhart et al., 1986) is the
most representing ANN methodology which performs weight adjustment back and forth using
gradient descent. A graphical structure of the BP network is provided in Figure 5.
BP training process could be described in the following three steps and repeated until a desired
error criteria is met (Rojas 1996):
(1) Feed-forward computation: The summation of output signal from each neuron at the
former layer are computed and saved. Also the evaluated derivatives of the activation

functions are saved. In this step sigmoid function could be used as excitation.
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Figure 5. A graphical structure of the BP network.

(2) Back propagation from output layer to hidden layer and input layer: Back propagated error
§ of each layer is computed and saved at each neuron. Now the partial derivatives of error
with respect weight propagation are saved.

(3) Weight updating: after computing errors in partial derivative forms, the neuronal weights
are adjusted in the negative gradient direction. Herein, the learning constant of y defines
the range of the correction.

The BP network based classification approach has been one of the most popular amongst the entire
ANN algorithms. However, BP networks have the potential danger of being captured by local
minima (Rojas 1996, Graupe, 2013). Also, in comparison to other machine learning methods, the
BP network takes far more processing time. Therefore, in this dissertation, another ANN technique
of LAMSTAR is presented for a machinery fault classifier. Unlike the other supervised learning
algorithms, LAMSTAR network has barely been reported in the prognostics and health

management (PHM) field. However, the LAMSTAR network was introduced in biomedical,
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financial, and image processing fields due to its rapid processing capability. The LAMSTAR
network was previously a United States patented (Graupe, 1999) ANN but currently is in the public
domain (Google Patents, 2015). As opposed to the BP NN, the LAMSTAR network is claimed to
be less sensitive to local minima phenomena (Graupe and Kordylewski, 1998). Besides, it is shown
Its unique reward/punishment structure promises that the LAMSTAR network circumvents the
local minima and converges to the desired output. In addition to that, LAMSTAR is faster than the
BP network by as much as 30%, faster than SVM by as much as 55% (Graupe, 2013). Kohonen’s
self-organizing map (SOM, Kohonen 1984) modules enable a LAMSTAR network to handle a
huge amount of data in a short time. In an extreme cases, LAMSTAR network was shown to be
almost one thousand times faster than BP network while a similar level of classification accuracy
was achieved (Kordylewski et al. 2001).

The LAMSTAR produces a winning decision ‘v’ from the J output neurons in the decision
SOM module by considering the sum of link weights that connect the winning neuron w, in each

k of the K input SOM modules.

E(j) = ZL’;}",W eJ @)
keEK
E(w) ZE()),Vj€E]J. 3

WhereL’;’}" represents the links between neuron i in k™ module and neuron j in m™ module. When
feedback as to the correct decision becomes available, the LAMSTAR updates the link weight

values associated with the decision making process as follows:

LIt +1) = LiT(©) + AL 4)
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LiTM(e+1) = LT (D) — AM ()
L(0)=0 (6)
whereAL and AM are pre-specified reward and punishment values, respectively. The details of
LAMSTAR network implementation could be found in (Graupe, 2013).
In Yoon et al. (2013), LAMSTAR network is explored for the first time in the PHM field
to develop a full ceramic bearing fault diagnostic system. In this study, LAMSTAR network has
shown to be effective and efficient tool as a machinery fault classifier. In TABLE 1, a brief

summary on all three fault classifiers are provided.
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Figure 6. A graphical structure of the LAMSTAR network (Yoon et al., 2013)
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TABLE I.
THE THREE SUPERVISED LEARNING ALGORITHMS

Algorithm Description

KNN - One of the simplest supervised learning algorithm
(Altman, 1992) - An object is classified by a majority vote of its neighbors

- One of the most popular ANN methodology which mimics the biological
BP network CNS
(Rumelhart et - Neural structure is optimized by back and forth propagated errors
al., 1986) - BP network could potentially be captured by a local minima

- The convergence of BP learning is slow

- SOM based ANN which claims to be less sensitive to a local minima and
faster in training than BP

LAMSTAR - Unique link-weight system attempts to imitate the efficient storage and
(Graupe and retrieval capabilities in big data applications

Kordylewski, - Inherent transparency by link-weight system provides a forgetting
1998) capability in time-varying applications

- United States patented (#US5920852) but is open for research and is in
public domain.
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1. EXPERIMENTAL TEST RIG

(The majority of the content in this chapter is composed of previously published work as Yoon, J.,
He, D., and Van Hecke, B., 2015, “On the use a single piezoelectric strain sensor for wind turbine
planetary gearbox fault diagnosis”, IEEE Transactions on Industrial Electronics, DOI:
10.1109/TIE.2015.2442216. and Yoon, J. and He, D., 2014, “Planetary gearbox fault diagnostic
method using acoustic emission sensors”, IET Science, Measurement, and Technology, DOI:
10.1049/iet-smt.2014.0375.)

This chapter introduces the experimental test rig used to validate the PGB fault diagnostic

methods presented later on.

A. Introduction of the PGB Test Rig

Provided in Figure 7 displays the front view of the PGB test rig used in data collection the

under different gear health and operating conditions.

el | > g

Main shaft

3-phase 10HP
induction motor

e |

Figure 7. The front view of the PGB test rig.
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The PGB test rig composes four main parts: (1) the DAQ systems, (2) the driving part, (3)
the PGB gearbox, (4) the load generator. The DAQ systems will be introduced in each chapter by
introducing their sensors and design purposes. A Hall effect sensor and a toothed wheel mounted
on the motor shaft were paired to records the real-time shaft rotating remarks. The driving motor
is a 3-phase 10 HP induction motor with a motor controller. The output shaft of the gearbox is
connected to an electricity generator and a grid tie to serve as a load generator. The structure of

the PGB test rig is similar to those used in a residential wind turbine.

B. Fundamental of PGB

In this dissertation, a commercially available single stage PGB with a 5:1 speed reduction
ratio was used. Amongst the three different PGB operational types, a specific PGB with the fixed
ring gear was utilized. Provided in Figure 8, a notional sketch of the PGB structure with the fixed

ring gear could be found.

Planet carrier

Output shaft

Sun gear

Input (driving)
shaft

Ring gear

Planet gear (annulus)

Figure 8. Notional sketch of a PGB structure.
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For this type of PGB, the number of teeth is linear to the radius of each gears pitch circle.
This indicates that the input to output velocity ratio is also related to the angular velocity (w) of

the gears. The gear ratio can be defined as:
R = —
Wy

z
= 142
Al

()

where w; is the angular velocities on it" gear component; z; is the number of teeth on it" gear
component; the gear component index subscript 1, 2, 3, and A correspond sun, planet, ring, and
planet carrier, respectively. The planet carrier rotation speed (i.e. output speed) in frequency could

be obtained as:

fa=% (8)

where f; is the rotation speed in frequency at i*"* gear component. Also, a meshing characteristic

frequency of PGB can be obtained as:

f12125 _ f1- 73
(z1 + z3) R

fiz = faz = )

where f;; is the relative rotation speed in frequency between it" and j* gear component. The most

common three failure modes of the PGB is the sun gear fault, planet gear fault, and ring gear fault.

The corresponding fault frequencies are represented as follows:

_ _ fiz3s
—> _ Anyzy73 1
ff,Z_ (f2+fa)_(Z§—le) ( )
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f1z1s

B (z1 + 73) 12)

ff,3 =5 fa

where fr; indicates the fault frequency at it" gear component; srepresents the number of planet
gears in the gearbox. For more details, see Bartelmus and Zimroz (2011). TABLE Il and TABLE
Il present the structural information and characteristic frequencies of the PGB used in this

dissertation.

TABLE Il
THE PARAMETERS OF THE PGB.

Number of teeth

Number of teeth Number of teeth  Number of planet
Parameter on planet gear .
on sun gear (z) (2) on ring gear (z3) gears (s)
2
Value 27 41 108 3
TABLE 111

CHARACTERISTIC FREQUENCIES OF THE PGB AT VARIED INPUT SHAFT SPEED.

Input Shaft Output Shaft Meshing Sun Fault Planet Fault Ring Fault
Speed in Speed in Frequency Frequency Frequency Frequency
Frequency (f1) Frequency (fa)  (fiz = f23) (fr1) (fr2) (f£.3)
10 2 216 24 10.67 6

20 4 432 48 21.33 12

30 6 648 72 32.00 18

40 8 864 96 42.67 24

50 10 1080 120 53.33 30

* All the values are in unit of Hz.
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V. VIBRATION BASED PLANETARY GEARBOX DIAGNOSIS
USING SPECTRAL AVERAGING

The wind energy industry currently utilizes vibratory analysis as a standard method for
PGB condition monitoring. Amongst them, the vibration separation (VS) is considered as one of
the well-established vibratory analysis techniques. However, the drawbacks of the VS technique
as reported in the literature include: potential sun gear fault diagnosis limitation, multiple sensors
and large data requirement, and vulnerability to external noise. This paper presents a new method
using a single vibration sensor for PGB fault diagnosis. It combines the techniques of enveloping,
Welch’s spectral averaging, and data mining based fault classifiers. Using the presented approach,
vibration fault features for wind turbine PGB are extracted as condition indicators (Cls) for fault
diagnosis and Cls are used as inputs to fault classifiers for PGB fault diagnosis. The presented
methodology is validated using a set of seeded fault tests performed on a PGB test rig in a
laboratory. The results have shown a promising PGB fault diagnosis performance with the
presented method.

The remainder of the Chapter is organized as follows. Section A gives a detailed
explanation of the proposed methodology. In Section B, the details of the PGB test rig, seeded
fault tests in a laboratory, and the experimental setup for validating the proposed methodology.
Section C presents the PGB fault diagnostic results from the seeded fault tests. Finally, Section D

concludes the Chapter.

26



A. Methodology

The framework of the methodology for wind turbine PGB fault diagnosis is provided in
Figure 9. The methodology will be explained in two sections. Section A.1 approach for processing
the PGB vibration signals followed by computation of Cls in Section A.2. Then, the Cls are further

input into machine learning algorithms for PGB fault diagnosis.
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Figure 9. The framework of the methodology for PGB fault diagnosis.

1. Spectral Averaging Based Machinery Fault Diagnosis

Welch (1967) expressed the theoretical background of this approch by letting Z(j), for j =

0,...N — 1 be a sample from a stationary, stochastic sequence whose expected value of E(Z) = 0
and letting Z (j) have spectral density P(f), |f| < % where £ is the normalized frequency. Then if

one takes several possibly overlapping segments of length L with starting points of the segments
M units apart and letting Z;(j),j = 0, ..., L — 1 be the first segment. Then,

Z,.(J) =Z(j), forj=1,..,L—1 (13)

Likewise,

27



Z,()=ZG+M), forj=1,..,L—1 (14)

And finally,

7.() = Z( + (K = DM), forj=1,..,L—1 (15)

The result comprises K segments (i.e.Z; (j), ..., Z,(j)) covering the entire sample of interest such
that (k — 1)M + L = N. Then, from each modified segment of length L, a periodogram is obtained.
In other words, a proper windowing function can be applied for fourier transforms of segments.

This can be expressed in mathematical form as:
1 L-1
Fem) =1 )" Ze(DW (ke @i/ (16
j=0

where i stands for the imaginary unit. The periodograms correspond to the K number of segments

can be obtained as:

L
Bi(f) = 5IAm?, fork =12,...K (17)

where f, = %,for n=0, ...,%; S = %Z?;& W?2(j). Finally, the Welch’s PSD estimate, P(f,), is

obtained by averaging Eq (5) as:
K
~ 1
P(f) = Y Be(f) (19
k=1

Figure 10 displays a graphical representation of the SA for rotating machinery fault diagnosis
shown in Van Hecke et al. (2014b). To implement the SA for machinery fault diagnosis, the sensor
signals must be segmented by a particular size. The shaft revolutionary information is first obtaind
by using the tachometer’s zero-crossing. The data points in each revulution is interpolated and

resampled into equally sized revolutions by applying the time synchronized resampling (TSR,
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Bechhoefer et al., 2013a). Then the duration between shaft revolutions with two overlaps before
and after is utilized as the segments to apply SA. The SA based vibration fault features were
obtained from the time domain signal as below:

xsa = |FHIF DI (19)

where F and F~1 represent Fourier transform and inverse Fourier transform, respectively;
|F(x)|? originally refers to the PSD of the signal x but is replaced with the PSD estimate with

Welch’s method in this study. The terminology “Welch” indicates the Cls from x4, hereafter.
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Figure 10. Welch's method for machinery fault diagnosis.
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2. Vibration Based Fault Feature Extraction

In this Chapter, the Cls reported effective for gear fault diagnosis using vibration signals
for wind turbine applications will be computed as reported in Sheng (2012). The five basis Cls
were selected: root mean square (RMS), peak to peak (P2P), skewness (SK), kurtosis (KT), and
crest factor (CF). Each type of Cl can be computed using different input signals. Other types of
input signals were generated by pre-processing: residual, energy operator (EO), narrow band (NB),
amplitude modulation (AM), frequency modulation (FM), The residual is a time domain signal
with the primary meshing and shaft components removed from the input signal. Gear distributed
fault (GDF) is used as an effective CI for distributed gear faults wear and multiple tooth cracks.

GDF is calculated from the formula below:

_ StdDev(residual signal)

- 20
StdDev(original signal) (20)

The EO introduced by Teager (1992) is defined as the residual of the autocorrelation function as

following:
Xgo,i = xIZN,L' = Xin,i-1 - Xivi+n(fori =2,3,..,N — 1) (21)

wherex ; is the i element of EO data; xy ; is the i element of the input datax;y. The NB
filtered signal, x5, could be obtained by filtering out all tones except those of the gear mesh and
the characteristic frequencies. In this Chapter, the characteristic frequencies are the sun gear fault
frequency, planet gear fault frequency, and ring gear fault frequency, respectively. AM and FM
Cls are obtained by AM analysis and FM analysis of xy5. AM and FM signals are the absolute
value and the derivative of the angle of the Hilbert transform of x5, respectively. For more details

of NB, AM, and FM, please see Sheng (2012). Finally, Welch’s method is further processed to
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TABLE IV

THE DEFINITIONS OF THE CIS FOR THE VIBRATION BASED PGB DIAGNOSIS

Input Signal (x;y)

Raw EO NB AM FM Welch Welch EO
Time A residual of Amplitude Frequency
synchronous the Narrow band modulation of ~ modulation of Welch windowed Energy operator
Basis Cl Fomula averaged and  autocorrelation pass filtered NB filtered NB filtered  spectral averaging of Welch
raw signal function (xng) signal signal (xs4) [(xsa)Eo]
(xXrsa/%raw) (*£0) [AM (xnB)] [FM (xng)]
Root mean
square RMS(x;y) = RMS (x;5):measures the energy evolution of the input signal.
(RMS)
Peak to PaP(xin)
peak (P2P)  _ [max Cx;) — min (x;)] P2P(x;y):measures the maximum difference within the input signal.
2
SK(x{N) s
N o
Skewness _ ;Zi=1(xi —X) SK (x;y):measures the asymmetry of the input signal about its mean value. A negative SK value and positive SK value imply
(SK) N n 2 3 the data has a longer or fatter left tail and the data has a longer or fatter right tail, respectively.
[ Ezévzl(xi _f) ]
KT (xn) .
. N _
&U_SOSIS PN EIC k) KT (x;y):measures the peakedness, smoothness, and the heaviness of tail in the input signal.
2
=G — 9]
Crest _ P2P(xy) : . . . .
factor (CF) CF(x;y) = m CF (x;y):measures the ratio between P2P (x;y) and RMS(x;y) to describe how extreme the peaks are in the input signal.

Note: x; is i" element of the input datax;y; N is the length of the input datax;; max(-) returns the maximal element of input datax;,; min(-) returns the
minimal element ofinput datax,; ¥ is a mean value of the input datax,y defined as ¥, x; /N; NB, AM, and FM refers to a narrow band, amplitude
modulation, and frequency modulation, respectively.
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obtain Welch Cls and Welch EO Cls. TABLE IV provides the definitions of the Cls investigated

for PGB fault diagnosis.

B. Experimental Setup

This section covers the experimental setup used to validate the presented vibration based
PGB fault diagnostic method. First, The DAQ system for vibration based PGB fault diagnosis is
briefly introduce in section B.1. Then, seeded gear fault test procedure and DAQ plan will be

shown in section B.2.

1. The DAQ System for Vibration Sensors

Figure 11displays the PGB test rig used in vibration data collection the under different gear
health and operating conditions. The DAQ system includes a local data collector (LDC, model:
turbine PhD by Renewable NRG systems), two high speed accelerometers, and tachometer. A Hall
effect sensor and a toothed wheel mounted on the motor shaft were paired to records the real-time

shaft rotating remarks. The detail settings for the DAQ system are provided in TABLE V.

32



3Phase 10HP Generator

induction motor

Remote
control
PC

Close view of the gearbox area

Figure 11. The PGB test rig for wind turbine simulator.

TABLEV

VIBRATION DAQ SETTING PARAMETERS.

Vibration sensor 1

Vibration sensor 2

Tachometer

Sensor
Manufacturer

Sampling rate

Sample recoding
time for TSA

Sample
recording time
for SA

High speed accelerometer
NRG systems

6104 (Hz)

40 (sec)x5 samples

4 (sec) x50 samples

High speed accelerometer
NRG systems

24414 (Hz)

20 (sec) x5 samples

2 (sec) x50 samples

Hall effect sensor
Sensoronix

1000 (Hz)
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2. Seeded Gear Faults

Three types of PGB faults were created: sun gear partial tooth cut, planet gear partial tooth
cut, and ring gear tooth breakage. Each type of gear fault was artificially created by damaging a
tooth on a sun gear, planet gear, and ring gear as shown in Figure 12. Both healthy and faulty
gearboxes were tested under 20 combinational conditions of four varying loading conditions: 0%
loading, 25% loading, 50% loading, and 75% loading out of the rated torque of the PGB, and five
varying shaft speeds: 10 Hz, 20 Hz, 30 Hz, 40 Hz, and 50 Hz. After switching one gearbox to
another, vibration sensors were mounted in the same location on the PGB to preserve the

experimental consistency.

Figure 12. Seeded faults: (a) sun gear fault, (b) planet gear fault, (c) ring gear fault.

C. Validation Results

Figure 13 provides an overview of the experimental procedures including the proposed

methodology.
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Figure 13. Overview of the experiment procedure for PGB fault diagnosis.

During the experiment, vibration data were processed with the following four different
methods: (a) TSA, (b) enveloping then TSA. The presented methods are the proposed solution in
this paper and include: (c) Welch’s method (i.e. SA), (d) enveloping then Welch’s method. After
each processing technique was applied, the Cls were computed. First, low pass filtering was
performed before each vibration processing technique as shown in Figure 13. Fast kurtogram, as
reported in Antoni (2007), was applied to find universal filter bands for each vibration sensor.

Statistics of the impulsivity locations over varied input shaft speed suggests that the accelerometer
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1 and 2 have impulsivity located below 3 kHz and 12 kHz; thus, 3 kHz and 12 kHz were chosen

for the cutoff frequencies in the low pass filters for accelerometer 1 and 2, respectively.

TABLE VI, gives a summary on the percentage separation of faulty gears from the healthy

one using Cls generated by each of the four methods.

TABLE VI
STATISTICAL SEPARATION OF EACH CIS FOR PGB FAULT ISOLATION.

Accelerometer 1 (fs = 6104)

Sun fault Planet fault Ring
(@ TSA - >80%: P2P :
(b) Env-TSA - >80%: P2P >80%: RMS, P2P
> 90%: RMS, Res RMS >80%: Res RMS, Res CF
o > , > , ,
Methog | (©) Welch \?VE:EOO/OI'DZRPES RMS, Res P2P, | ~8006: P2P, Res P2P, EO EO P2P, W RMS, W KT,
P2P, W RMS, WEO P2P WEO RMS
0 .
(d) Env- >80%: Res RMS, EO RMs, | 20020725, Res RIS, EO 1 >004: Res RMIS, EO RMS,
Welch WEO P2P Nee v WEO RMS, WEO P2P
Accelerometer 2 (fs = 24414)
Sun Planet Ring
/-
@) TSA >80%: Res GRgl:s, Res P2P, ] = 00%: GDF
>80%: Res RMS, Res P2P, | >80%: RMS, Res RMS, Res
(b) Env-TSA GDE pop -
0/n"
E;ﬂoso %: ResRMS,WEO | _ o0 "
> 90%: FMO > >909%: FMO, W RMS,
Method | o \elch >80%: Res RMS, Res KT, gfﬂOSA"Engfése\fvpggF’, EO | wEo KT, WEO SK
GDF ' ' ' >80%: W KT, W CF, W
WEQ p2P SK, WEO RMS
>80%: RMS, W KT, W SK *
0 .
(d) Env- >80%: Res RMS, EO RMS, EIE\;/IOS/O.EPOZE’ZSe\SNRF’:gg EO | >80%: Res RMS, EO RMS,
Welch WEO P2P Wea b : WEO RMS, WEO P2P

* Note: “Res” stands for the residual signal.

The percentage separation is defined as the percentage of the data samples that show a
statistically significant difference between the Cls of the fault gear and healthy gear. From TABLE
VI, one can see that the conventional signal processing techniques, method (a) and (b), barely
differentiate the faulty PGBs from the healthy ones. On the other hand, the proposed method (c)
and method (d) generated multiple Cls displaying PGB fault isolating performance. Also from

TABLE VI, one can see that the most effective Cls were obtained when vibration signals of
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accelerometer 2 were processed with method (c). These Cls include FMO achieving 90%
separation for the sun gear fault, Res RMS and WEO RMS achieving 100% separation for the
planet gear fault, and GDF achieving 100% for the ring gear fault.

Figure 14 graphically shows the separation of the fault gear from the healthy gear achieved
by above mentioned Cls. Each point and the vertical bar at each point represent the averaged ClI

value and the 95% confidence interval.
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35
2 J
3 / 1
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g 2 1 j /
= o / ) / /
15 =
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1 y y
05 Sy 0T 0D I W0 0 0 00 W DI (H) 007030 2050 1020 30 20 50 1020 0 40 50 0.0 T 40 %0 (Ho)
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Healthy —— Planet gear fault | Healthy Ring gear fault
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Figure 14. Effective Cls (a) FMO: healthy vs. Sun gear fault, (b) Residual RMS: healthy vs.
planet gear fault, (c) WEO RMS: healthy vs. planet gear fault, (d) GDF: healthy vs. ring gear
fault.
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Effective Cls in TABLE VI were further utilized to isolate the fault locations (e.g. sun,
planet, ring, or healthy) using three fault classifiers: KNN, BP, and LAMSTAR. In TABLE VII

and

, the PGB fault diagnostic results using those fault classifiers are presented with the
individual Cls and combinations of Cls. PGB operational parameters such as loading and shaft

speed were included.

TABLE VII
PGB FAULT DIAGNOSTIC RESULTS USING INDIVIDUAL ClI

Cl: FMO

Classifier KNN (k=15) BP (N=40) LAMSTAR

Type of fault Mean error (p) St(zc:j)ev. Mean error (p) Stcé:)ev. Mean error (p) Stcé(;j)ev.
Healthy 24.56 2.94 47.79 20.27 62.97 7.95
Sun 39.48 3.04 47.08 26.97 73.11 6.70
Planet 38.66 3.24 51.04 21.41 66.65 10.87
Ring 49.03 2.89 43.33 31.43 78.25 6.49
Overall 37.94 1.31 47.24 12.38 70.24 1.56
Cl: Res RMS

Classifier KNN (k=15) BP (N=30) LAMSTAR

Type of fault Mean error (i) Stcé(:i)ev. Mean error () Stcé:)ev. Mean error (p) Stcé(:j)ev.
Healthy 20.50 2.37 43.97 21.75 34.67 3.83
Sun 38.04 2.94 32.63 25.79 42.58 3.38
Planet 19.21 2.42 54.16 22.01 33.39 3.45
Ring 34.07 2.80 29.47 20.32 47.43 3.36
Overall 27.95 1.03 40.32 13.18 39.47 1.14
Cl: GDF

Classifier KNN (k=15) BP (N=30) LAMSTAR

Type of fault Mean error (p) St(z:)ev. Mean error (p) St(z:)ev. Mean error (p) Stc(i(;:i)ev.
Healthy 12.30 2.01 24.30 11.80 12.7 1.98
Sun 25.11 2.59 45.45 32.60 28.12 2.94
Planet 22.14 2.39 31.81 12.96 26.13 2.62
Ring 15.13 1.85 15.89 15.70 16.01 1.65
Overall 18.67 0.87 29.64 12.86 20.74 1.07
Cl: WEO RMS

Classifier KNN (k=15) BP (N=40) LAMSTAR

Type of fault Mean error (p) Stcz;i)ev. Mean error (p) Stcé(;j)ev. Mean error (p) Stcz(;j)ev.
Healthy 77.20 2.28 62.37 25.16 73.50 7.72
sSun 70.79 2.47 73.67 12.83 78.67 6.76
Planet 73.65 2.39 80.26 13.13 77.91 8.06
Ring 70.24 2.23 84.54 12.87 75.27 7.08
Overall 72.97 1.03 75.20 0.97 76.34 0.95

* Note: k is the search radius for a majority vote of its neighbors in KNN; N is the number of neurons in the hidden layer in BP

network.
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TABLE VIII
PGB DIAGNOSTIC RESULTS USING CI COMBINATION

15t CI combination: FMO, Res RMS, WEO RMS, GDF

Classifier KNN (k=3) BP (N=40) LAMSTAR

Type of fault Mean error (p) St(z:)ev. Mean error (p) St(z:)ev. Mean error (p) St(zc?)ev.
Healthy 1.52 0.88 4.56 13.64 1.99 0.73
Sun 6.38 1.44 9.24 18.49 6.67 1.50
Planet 433 1.30 14.13 21.60 4.43 1.11
Ring 2.27 1.01 7.96 22.77 2.81 0.87
Overall 3.63 0.56 8.94 12.71 3.98 0.54

2nd CI combination: P2P, FMO, Res RMS, Res KT, Res P2P, GDF, EO RMS, EO P2P, W RMS, W P2P, WEO RMS, WEO
P2P, WEO KT, WEO SK.

Classifier KNN (k=4) BP (N=40) LAMSTAR

Type of fault Mean error (i) St(z(:i)ev. Mean error (1) Sto(l;l)ev. Mean error (L) Stcé;i)ev.
Healthy 28.73 247 14.33 18.19 29.15 2.67
Sun 2311 2.65 2242 22.76 22.29 2.38
Planet 21.24 2.38 14.06 13.03 19.31 2.00
Ring 29.73 2.68 11.44 18.02 30.04 2.40
Overall 25.71 1.20 15.51 12.44 25.20 1.22

* Note: k is the search radius for KNN; N is the number of neurons in the hidden layer in BP network

Out of 2000 samples, 70% of the data were randomly chosen and utilized for training and
the remaining 30% of data were used for validation. In order to measure the statistical fault
diagnostic performance, all classifiers were run 50 times in a random sampling manner. The
average error rates (% of error) and its standard deviation were presented. The error rate is defined
as the percentage of misclassified samples in validation. For KNN, the search radius of k was
investigated within k = 3~15 range and the minimal error rate is shown on each table. Also, for
the BP network, the neuronal structures in the hidden layer were investigated for N = 10, 20, 30,
40, and 50 and the one showing the minimal error is provided.

As one can see from TABLE VII, none of the single CI provides acceptable diagnostic
performance for all three fault classifiers although each CI can detect faults from at least one or
more PGB fault types. Thus, two combinations of Cls were generated. In the first ClI combination,

the Cls showing the highest statistical separation (i.e.>90% for sun gear fault, 100% for planet
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gear and ring gear faults) were grouped. In the second CI combination, the Cls with the second
highest statistical separation (i.e.> 80% for sun gear fault, > 90% for planet gear and ring gear
faults) were included. The fault diagnostic results with both Cls combinations are provided in

. KNN achieved the overall best error rate of 3.63% when the first CI combination were
used. When the local minima convergence is ignored, BP network achieved less than 5% overall
diagnostic error rate. However, the final error rate drastically dropped down when the local minima
convergence is considered. It should be noted that the occurrence of local minima convergence
was approximately 12~16% over 50 runs and it is well reflected on the standard deviation of the
error rate. Lastly, LAMSTAR network achieved the similar diagnostic error rate of 3.98% as it is
claimed to be insensitive to the local minima issue unlike BP network. However, LAMSTAR
network achieved the minimal standard deviation and it is desired aspect from the reliability
perspective.

D. Conclusions

In this Chapter, a new method using a single vibration sensor for PGB fault diagnosis was
presented. It combines the techniques of enveloping, Welch’s spectral averaging, and data mining
based fault classifiers. Using the presented approach, vibration fault features for wind turbine PGB
are extracted as Cls and Cls are used as inputs to fault classifiers for PGB fault diagnosis. The
presented method was validated with a set of seeded fault tests performed on a PGB test rig in a
laboratory. First, the digitized accelerometer signals were processed by SA technique to extract
PGB fault features and to compute Cls. The effective Cls were grouped into two combination sets
according to the level of statistical separation followed by training three machine learning
algorithms as fault classifiers: KNN, BP network, and LAMSTAR network. Each fault classifier

was run 50 times to obtain the statistical results. The validation results have shown: (1) the minimal
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error rate of 3.63% was achieved using KNN when the first set of ClI combination was used; (2)
an average diagnostic error rate of 8.94% was achieved using the BP algorithm. The local minima
convergence was observed at a rate of 12~16% out of 50 runs; (3) LAMSTAR network displayed
less sensitivity to the local minima issue and achieved a similar level of diagnostic error rate of
3.98% compared to KNN when the first set of Cl combination was used. Also, LAMSTAR
network resulted in the minimal standard deviation which is a desirable measurement from the
reliability perspective. In summary, the proposed method effectively differentiated the localized
faults on all gears: sun gear, planetary gear, and ring gear, which has not been presented in the

literature.
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V. A NEW PLANETARY GEARBOX FAULT DIAGNOSTIC METHOD
USING AN ACOUSTIC EMISSION SENSOR

(The majority of the content in this chapter is a preprint of an accepted paper submitted to IET
Science, Measurement, and Technology and subject to Institution of Engineering and Technology
Copyright. The copy of record will be available at IET Digital Library as Yoon, J. and He, D.,
2015, “Planetary gearbox fault diagnostic method using acoustic emission sensors”, IET Science,
Measurement, and Technology, DOI: 10.1049/iet-smt.2014.0375.)

In this Chapter, a new AE sensor based planetary gearbox (PGB) fault diagnostic method
is presented. It is sometimes painful to identify the vibration directions if the sources are complex
and combinative. Hence, applying an AE sensor analysis could be beneficial to PGB fault
diagnosis in that AE signals propagate from the wave source (i.e. faults) to sensing apparatus
within mechanical components. The method includes a heterodyne based AE data acquisition
system, empirical mode decomposition (EMD) based AE signal analysis method, and computation
of condition indicators (Cls) for PGB fault diagnosis. The heterodyne technique is hardware-
implemented to downshift the sampling frequency of AE signals at a rate compatible to vibration
analysis. The sampled AE signals are processed using EMD to extract PGB fault features and
compute the Cls. The Cls are input into supervised learning algorithms for PGB fault diagnosis.
The method is validated on a set of seeded localized faults on all gears: sun gear, planetary gear,
and ring gear. The validation results have shown a promising PGB fault diagnostic performance
using the presented method.

The main contribution of the chapter is the development of the new PGB fault diagnosis
method using AE sensors and the validation of the method using seeded gear tooth cut and

breakage faults on all PGB gears: sun gear, planetary gear, and ring gear. Even though some of the
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components of the presented method have been used for a long time, integrating AE sensor with
them for PGB fault diagnosis and validating the method with real seeded fault tests on a PGB test
rig has never been reported in the literature.

The remainder of the Chapter is organized as follows. Section A gives a detailed
explanation of the presented methodology. In Section B, the experiments setup to validate the
presented methodology and the seeded fault tests on a laboratory PGB test rig are explained.
Section C presents the PGB fault diagnostic results from the seeded fault tests. Finally, Section D
concludes the Chapter by showing a promising PGB fault diagnostic performance using the

presented method.

A. Methodology

An overview of the proposed AE based PGB fault diagnostic methodology is provided in
Figure 15. The heterodyne technique is hardware-implemented to sample AE signals at a rate of
100 kHz which is compatible to vibration analysis. The sampled AE signals are then processed
using EMD to extract PGB fault features and compute Cls. The Cls are further input into fault

classifiers.
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Figure 15. Overview of the proposed PGB fault diagnostic method with AE sensor.

1. AE Sampling Rate Reduction Using Heterodyne Technique

The theoretical foundation of heterodyne technique for AE sensor will be reviewed in this
section. To apply AE based machine fault diagnosis, one technical challenge is to deal with the
data storage and processing burden caused by the high sampling rate of an AE sensor. To meet the
challenge, heterodyne technique (Fessenden, 1902) was hardware implemented to build up the AE
DAQ system. Heterodyning is a radio signal processing technique which downshifts the frequency
of the AE signals so that its sampling rate be comparable to that of vibration signals. Qu et al.
(2013b) has shown that heterodyne based AE DAQ could be effective at a sampling rate as low as
to 20 kHz for a split torque type gearbox.

The AE demodulating technique implemented in this Chapter works like a radio quadrature

demodulator: shifting the carrier frequency to baseband, followed by low pass filtering. For two
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signals with different frequencies f; and f,, respectively, their product could be written by

trigonometric identities as:

sin(2rfit) sin(2nf,t) = %cos[Zn(fl - f)t] — %cos[Zn(fl + f,)t] (22)

where f; is the AE carrier frequency and f, is the demodulator’s reference signal frequency.
Technically, the heterodyning technique is aimed especially at demodulating the amplitude
modulated signals. Although, frequency and phase modulation are potentially existent, they are
considered trivial and will not be discussed herein. The amplitude modulation process can be
mathematically expressed as:

U, = (U, + mx) cos w.t (23)
where, U, is the amplitude modulated signal, U,, is the carrier signal amplitude, m is the
modulation coefficient, x is the signal of interest, and w, is the carrier signal frequency. By
introducing an amplitude and frequency for x by X,, and Q, respectively, the signal of interest x
can be represented as:

x = XpycosQt (24)
Note that it is assumed that Q) is much smaller than w.. Then, with the heterodyne technique, the
modulated signal will be multiplied by a unit amplitude reference signal cos(w.t). Then the

resulting U, can be written as:
1 1
U, = (U, + mx) cos(w,t) cos(w,t) = (U,, + mx) [E + Ecos(Za)ct) (25)
Substituting Equation (24) into Equation (25) yields:

1 1 1
U, = 5 U, + Emecoth + > Umcos(wct) (26)
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1
+ Zme[cos(Za)C + )t + cosQw, — Q)t]

Because U,, is assumed not to contain any useful information related to the modulated signal, it

could be cancelled out. From Equation (26), it can be concluded that only the second term
%mecoth will remain after applying low pass filter, while the high frequency components

around frequency 2w, will be removed. In the final heterodyning demodulation step, the signal
frequency can be reduced to 10s of kHz. The resulting frequency range for AE signals becomes
comparable to that of typical vibration signals. Thus, a lower sampling rate in an AE DAQ system
can be used.

Finding a proper carrier signal is critical to the successful implementation of the heterodyne
technique in AE DAQ. Since each AE sensor product from varying manufacturers has a unique
frequency characteristic, the optimization process is necessary. The details of the optimization

process are described in (Qu et al., 2014).

2. EMD Based AE Feature Extraction

EMD has been proven to be an effective method in analyzing non-stationary signals for
rotational machinery fault detection. It has been shown in (He et al., 2011; 2013) that the EMD
method was effective in processing AE signals and extracting AE features for bearing fault
diagnosis applications. Therefore, in this paper, the EMD method is utilized to extract AE features
from heterodyned AE signals for PGB fault diagnosis. One of the advantages of using EMD based
AE feature extraction is that it does not require pre-specified basis functions or filters. Instead, it
decomposes an input signal by direct extraction of the local energy associated signals (i.e. IMFs).

The pseudo-code of the EMD based AE feature extraction is provided in TABLE IX.
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TABLE IX
PSEUDO-CODE OF EMD FOR AE FEATURE EXTRACTION PROCEDURE
[Ci(t), fori=1..N]=EMD[f(t)]

1. Calculate the local maxima and local minima of f (t).

2. Calculate the lower and upper envelopes of £ (t) using cubic spline.
3. Calculate mean values m(t) by averaging the lower envelope and the upper
envelope.
4. Subtract them(t) from thef (t) to produce the IMF candidate component:
hy (1) = f(t) — m(t)
A. IFh; (t) is the true IMF, go to the next step and save the IMF component
as Ci(t) = hy(b).

B. ELSE, go back to Step 1 until the below stop condition is met.
T

[hm—l (t) - hm (t)]z
”2; B0

where h,,_;(t) and h,,(t) denote the IMF candidates of the m — 1 and m iterations,

respectively. SD is typically chosen between 0.2 and 0.3.

5. Calculate the residual component by subtracting IMF component from the f(t) as:

res;(t) = f(t) — Ci(t)

6. Repeat Steps 1-5 until the last residual component (res;(t))becomes a monotonic
function and no more IMF component can be extracted or the envelopes becomes
smaller than a pre-determined value.

7. Pick the best k number of IMFs from the energy significance perspectives.

8. Accumulate IMFs to obtain AE based PGB fault features using (27).

After IMF components {c;(t), fori=1,2,...,N} are extracted from f(t), a certain
number (e.g. k(k < N)) of c;(t) are accumulated from the energy significance perspective as

follows:

47



k

XEMD = Z c;(t). 27

=1

Using (6) the Cls will be further computed for PGB fault diagnosis.

3. AE Sensor Based Fault Feature Extraction

The five basis measurements were chosen: root mean square (RMS), peak to peak (P2P),
skewness (SK), kurtosis (KT), and crest factor (CF). Cls were computed using those basis
measurements over varied input signals: Raw AE signals, energy operator (EO), narrow band
(NB), amplitude modulation (AM), frequency modulation (FM), spectral averaging (SA) via
Welch’s method (Welch), and EO of the Welch. FMO is obtained as an effective ClI for distributed
gear faults wear and multiple tooth cracks. FMO is calculated from the formula below:

Fmo = 228 (28)
XAy

where A, is the sum of the gear mesh harmonics.
The EO in Teager (1992) is defined as the residual of the autocorrelation function as

following:

XEo,i = xIZN,L' — XIN,i-1 " XIN,i+1
(29)
(fori =2,3,..,N—1)
where xg ; is the i"" element of EO data; x,y ; is the i"" element of the input datax;y. The NB
filtered signal, x5, could be obtained by filtering out all tones except those of the gear mesh and
the characteristic frequencies. In this Chapter, the characteristic frequencies are the sun gear fault
frequency, planet gear fault frequency, and ring gear fault frequency, respectively. Finally, AM

and FM Cls are obtained by AM analysis and FM analysis ofxyz. AM and FM signals are the

absolute value and the derivative of the angle of the Hilbert transform of x, respectively.
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The SA based Cls were obtained as below:

Xweten = |FHIF )2 (30)
where F and F~1 represent Fourier transform and inverse Fourier transform, respectively;
|F(x)|? originally refers to the power spectral density (PSD) of x and is replaced with the PSD
estimate with Welch’s method. The terminology “Welch” refers to the SA obtained by the Welch’s
PSD estimate hereafter. TABLE X provides the definitions of the Cls investigated for PGB fault

diagnosis. Once the Cls are computed, they will be used train the PGB fault classifiers using three

supervised learning algorithms.
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TABLE X

THE DEFINITIONS OF THE CIS FOR THE AE BASED PGB DIAGNOSIS
Input Signal (x;y)
Raw: EO: NB: AM: FM: Welch: Welch EO:
A residual of Amplltu_de Frequen_cy Welch
. modulation modulation .
Raw input the Narrow band windowed  Energy operator
. . - of NB of NB
Cl Formula signal autocorrelati pass filtered - - spectral of Welch
. filtered filtered .
(xraw) on fUﬂCtIOﬂ (xNB) i H averagmg [(xWelch)EO]
(Xp0) signal signal (x )
EO [AM (xyp)] [FM (xy5)] wetch
Root
mean RMS (x;y): measures the energy evolution of a signal
square N7 9y gnal.
(RMS)
Peakto  P2P(xpy)
peak [max (x;) — min (x; P2P(x;y): measures the maximum difference within the data range.
(P2P) = 2
SK(X{N) 5
Skewness ;Z?Ll(xi — %) SK (x;5): measures the asymmetry of the data about its mean value. A negative SK value and positive SK value
(SK) - T . 3 imply the data has a longer or fatter left tail and the data has a longer or fatter right tail, respectively.
[ ~T(x — %) ]
KT (xn) .
. v _
K?E(T))S'S — N iz (i — %) _ KT (x;y): measures the peakedness, smoothness, and the heaviness of tail in a data set.
2, G - 07
Crest P2P(x;y) : he ratio b d describe h he peaks are i
factor CF(xy) = IN CF (x;y): measures the ratio between P2P (x;y) and RMS(x;y) to describe how extreme the peaks are in a
(CF) RMS(xy) waveform.
Note: x; is i" element of the input datax;y; N is the length of the input datax;; max(-) returns the maximal element of input datax,,; min(-) returns the

minimal element ofinput datax,; x is a mean value of the input datax, defined as ¥V, x; /N; NB, AM, and FM refers to a narrow band, amplitude
modulation, and frequency modulation, respectively.
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B. Experimental Setup

This section covers the experimental setup used to evaluate the presented AE sensor based
PGB fault diagnostic methodology. Figure 16 displays the AE PGB test rig with AE DAQ setting

used to conduct the PGB seeded fault tests.

Close view of the gearbox area

3Phase 10HP
induction motor

Generator

’q,
“'

{ ;l’ 3 < B~
DAQ
board

Figure 16. The PGB test rig with AE DAQ setting.

ss| Demodulation
board

Function generator
for reference signal

1. The AE DAQ System Using the Heterodyne Technique

The DAQ system includes a National Instruments (NI)’s DAQ board with a maximum
analog input sampling rate of 1.25MHz, a wideband differential AE sensor, a pre-amplifier
(20/40/60 db), a demodulation board, and a carrier frequency generator. A Hall effect sensor was
used as the tachometer paired with a toothed wheel mounted on the motor shaft. Provided in Figure

17 and is the AE based DAQ system using the heterodyne technique
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Figure 17. The AE based DAQ system using the Heterodyne technique.

TABLE XI
AE DAQ SETTING PARAMETERS.

AE sensor Tachometer
Sensor Wideband differential sensor Hall effect sensor
Manufacturer Physical Acoustics Sensoronix
Pre-amplifier 40db -
Sampling rate 100k (Hz) -

Used only for

Sample recording time 2 (sec) getting shaft speed only.

2. The Seeded Gear Faults

Three types of PGB faults were created: sun gear partial tooth cut, planet gear partial tooth
cut, and ring gear tooth breakage. Each type of gear fault was created by artificially damaging a
tooth on a sun gear, planet gear, and ring gear, respectively (see Figure 18).

During the seeded fault tests, AE signals were collected with a sampling rate of 100 kHz.
The tachometer signals were recorded to get revolution stamps. Both the healthy gearbox and the

gearboxes with seeded faults were tested at five different input shaft speeds: 10 Hz, 20 Hz, 30 Hz,
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40 Hz, and 50 Hz. In addition to the shaft speed variation, varying loading conditions were added
at the output shaft of the gearbox: 0%, 25%, 50%, and 75% of the maximum torque of the PGB.
From each fault seeded PGBs, a total of 1,840 samples of one second AE data were collected
(overall 7,360 samples for all fault types). After switching one gearbox to another, AE sensors

were mounted in the same location on the PGB to preserve the experimental consistency.

Figure 18. Seeded faults (a) sun gear fault, (b) planet gear fault, and (c) ring gear fault.

C. Validation Results

Upon examining the frequency spectrums of AE signals, the fundamental fault frequencies
could not be identified. All of the AE signals were acquired using heterodyne based DAQ and
processed using EMD. The first four IMF components were then summed using Equation (27) to
compute the Cls. Among all of the Cls, FMO showed 95% statistical separation for the sun gear
fault, RMS displayed 100% statistical separation for the planet gear fault, and Welch CF, Welch
EO KT, and Welch EO SK showed 100% statistical separation for the ring gear fault, respectively.

Provided in Table VII is the summary of the statistically separable Cls. In addition to the result
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from the proposed method, the conventional vibratory analysis results using TSA and enveloping
in (Yoon et. al., 2015) are provided for a comparison purpose. Note that the vibratory analysis
results in this paper were obtained using the same PGB test rig and a commercially available wind
turbine DAQ system. From Table VI, one can see that the AE based methods provide better fault
separation performance than the vibration based methods.

TABLE XII
STATISTICAL SEPARATION OF EACH CIS FOR PGB FAULT ISOLATION

Sun fault Planet fault Ring

Vibration Sensor 1 (sampling rate: 6104 Hz; sampling time: 40 sec)
TSA - >80%: P2P -
Enveloping- - >80%: P2P >80%: RMS and P2P
TSA
Vibration Sensor 2 (sampling rate: 24414 Hz; sampling time: 20 sec)

0 .
TSA égOFA). Res RMS, Res P2P, ) >90%: GDFE
Enveloping- >80%: Res RMS, Res P2P, >80%: RMS, Res RMS, Res )
TSA GDF P2P

AE analysis w/ the proposed method (sampling fate: 100kHz; sampling time 1 sec)
100%: Welch CF, Welch EO
KT, and Welch EO SK

>90%: Welch RMS, Welch
KT, and Welch SK

>90%: FMO 100%: RMS

>90%: FMO, NB RMS, NB
P2P, Welch EO RMS,

Heterodyned ) and Welch EO P2P
AE-EMD | Z00%: KT CEEOP2REO "> 50%: KT, AM RMS, AM
Weich CE ' P2P, Welch RMS, >80%: P2P, Welch EO RMS,
Welch KT, Welch P2P, Welch EO P2P, and
Welch CF, and Welch Welch EO CF
SK

Figure 19 to Figure 21 present the Cls that could effectively separate the healthy gear from
the sun, planet, and ring gear faults with error bars (averaged CI values with 95% confidence
intervals) under 4 loading conditions: 0% loading, 25% loading, 50% loading, and 75% loading.
Under each loading condition, CI values for the following 4 shaft speed are displayed: 10 Hz, 20

Hz, 30 Hz, 40 Hz, and 50 Hz.
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Figure 19. Sun gear fault detecting CI: FMO.
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Figure 20. Planet gear fault detecting Cls: (a) FMO, (b) RMS, and (c) WEO P2P.
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Figure 21. Ring gear fault detecting Cls: (a) Welch KT, (b) Welch CF, (c) Welch EO KT, and
(d) Welch EO SK.

Cls were further utilized to classify the faults (e.g. sun, planet, ring, or healthy) using three
classifiers: KNN, BP, and LAMSTAR. In TABLE XIII through TABLE XIV, the diagnostic
results using the three classifiers with both the single Cls and combination of Cls are presented.
For any single Cls and CI combinations, the operational parameter of loading condition and shaft
rotating speed were included. Out of 7360 samples, 70% of the data were randomly chosen and
utilized for training and the remaining 30% of data were used for validation. In order to provide

fault diagnostic performance statistically, all classifiers were run 50 times with random sampling
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and the average error rates (% of error) were computed. The error rate is defined as the percentage
of misclassified samples in validation.
The fault diagnostic results using the three classifiers with individual Cls as inputs are

provided in TABLE XIII.

TABLE XIlI1
PGB FAULT DIAGNOSTIC RESULTS USING INDIVIDUAL CIS
Cl: FMO Cl: RMS
Classifier KNN (k=15) BP (N=40) LAMSTAR KNN (k=15) BP(N=40) LAMSTAR
Healthy 33.45 31.78 41.93 20.46 38.7 25.18
Sun gear fault 44.84 52.88 60.68 9.62 29.2 21.25
Planet gear fault 43.14 40.04 54.45 6.28 3.32 26.49
Ring gear fault 35.70 36.88 49.22 13.35 29.62 30.16
Overall 39.28 40.48 51.57 12.43 25.24 25.77
Cl: Welch CF Cl: Welch EO KT
Classifier KNN (k=15)  BP (N=40) LAMSTAR  KNN (k=4) BP (N=40) LAMSTAR
Healthy 9.21 10.98 16.81 38.63 18.76 17.59
Sun gear fault 5.63 7.62 14.47 21.83 13.86 16.97
Planet gear fault 8.91 7.32 15.67 43.64 23.64 25.97
Ring gear fault 7.43 24.04 13.27 16.79 23.28 25.75
Overall 7.79 12.54 15.06 30.22 19.9 21.57
Cl: Welch EO SK
Classifier KNN (k=15) BP (N=40) LAMSTAR
Healthy 17.09 16.58 15.88
Sun gear fault 10.01 10.86 24.18
Planet gear fault 18.02 21.12 26.60
Ring gear fault 11.27 23.12 22.14
Overall 14.10 17.92 22.20

* Note: k is the search radius for a majority vote of its neighbors in KNN; N is the number of neurons in the hidden
layer in BP network

As shown, for all three classifiers, none of the single Cls provides an acceptable level of
diagnostic performance although each Cls display statistical separation capability for a particular
fault type as shown in Table VII. Thus, two combinations of Cls were generated. In the first CI
combination, the Cls showing the highest statistical separation (i.e. =90% for sun gear fault, 100%
for planet gear and ring gear faults) were grouped. In the second CI combination, the Cls showing

over 80% statistical separation were added to the first combination (i.e. = 80% for sun gear fault,
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> 90% for planet gear and ring gear faults). The fault diagnostic results using those generated CI
combinations are provided in TABLE XIV.

TABLE XIV

PGB DIAGNOSTIC RESULTS USING CI COMBINATION
1t CI combination: FMO, RMS, W CF, WEO KT, and WEO SK

Classifier KNN (k=4) BP (N=40) LAMSTAR
Healthy 17.25 5.96 0.29
Sun gear fault 16.16 5.92 0.27
Planet gear fault 24.84 5.85 0.51
Ring gear fault 10.74 6.37 0.58
Overall 17.25 6.04 0.41

2" Cl combination: KT, CF, FM0, RMS, EO P2P, EO KT, EO SK, NB RMS, NB P2P, W RMS, W KT, W CF,
W SK, WEO RMS, WEO P2P, WEO KT, and WEO SK

Type of fault KNN (k=4) BP (N=40) LAMSTAR
Healthy 6.41 6.59 4.6
Sun gear fault 7.19 6.63 6.52
Planet gear fault 8.59 6.64 6.11
Ring gear fault 5.62 7.17 8.66
Overall 6.95 6.78 6.47

* Note: k is the search radius for a majority vote of its neighbors in KNN; N is the number of neurons in the hidden
layer in BP network

Seen from TABLE XIV, KNN achieved 7% error rate when the 2" CI combination was
used. The search radius of k was investigated for k = 3~15 range and the minimal classification
error rate of 7% was achieved when k = 4. For BP network, different numbers of hidden neurons
(N) were investigated and the best performance was achieved when the BP network with N = 40
was used. Although BP network achieved less than 1% overall diagnostic error rate when the local
minima convergence is ignored, it should be noted that the occurrence of local minima
convergence was around 12~16% out of 50 total runs. When BP network was converged to a local
minima, the error rate in diagnostics drastically increases up to 25~75%. Thus, taking the local
minima cases into consideration, the average diagnostic error rate increases to 7% and is similar
to that of KNN achieved with the second Cl combination. As described in Section 2.4, LAMSTAR

network is not sensitive to the local minima issue and achieved the lowest diagnostic error rate of
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<1%. It is, however, noted that LAMSTAR network achieved the best diagnostic result when a

minimal but carefully selected CI combination with the highest statistical separation was used.

D. Conclusions

In this Chapter, a new PGB fault diagnostic method using AE sensors was presented. The
presented method combines a heterodyne based AE DAQ system, EMD based AE signal analysis
method, computation of Cls, and data mining based PGB fault diagnosis. The heterodyne
technique was hardware implemented to sample AE signals at a rate comparable to vibration based
methodologies. The presented method is considered the first reported effort in using AE sensor for
PGB fault diagnosis and has been validated using seeded gear tooth cut and breakage faults on all
PGB gears: sun gear, planetary gear, and ring gear, which has not been presented in the literature.
First, the sampled AE signals were processed using EMD to extract PGB fault features and
compute Cls. The Cls were grouped into two combination sets according to the level of statistical
separation followed by training three supervised learning algorithms (i.e. classifier): KNN, BP,
and LAMSTAR. Each classifier was run 50 times to obtain the results. The validation results have
shown: (1) An error rate of 7% was achieved using KNN when the second set of CI combination
was used; (2) An average diagnostic error rate of 7% was achieved using the BP algorithm.
However, a local minima convergence was observed at a rate of 12~16% out of 50 runs; (3) The
LAMSTAR network displayed less sensitivity to the local minima issue. The best overall
diagnostic error rate of about 0.5% was achieved using the LAMSTAR network when the first ClI

combination set was used.
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VI. ON THE USE A SINGLE PIEZOELECTRIC STRAIN SENSOR FOR WIND
TURBINE PLANETARY GEARBOX FAULT DIAGNOSIS

(The majority of the content in this chapter is composed of previously published work. © [2015]
IEEE. Reprinted, with permission, from [Yoon, J., He, D., and Van Hecke, B., On the use a single
piezoelectric strain sensor for wind turbine planetary gearbox fault diagnosis, IEEE Transactions
on Industrial Electronics, DOI: 10.1109/TIE.2015.2442216])

Planetary gearboxes are widely used in the drivetrain of wind turbines. Any planetary
gearbox failure could lead to breakdown of the whole drivetrain and major loss of wind turbines.
Therefore, planetary gearbox fault diagnosis is important to reducing the downtime and
maintenance cost and improving the reliability and lifespan of wind turbines. Planetary gearbox
fault diagnosis has been done mostly through vibration analysis over the past years.

In a recent paper, Feng and Zuo (2013) pointed out that vibration signals theoretically have
the amplitude modulation effect caused by time variant vibration transfer paths due to the unique
dynamic structure of rotating planet gears. One attractive solution to this problem is to use
alternative sensor signals that have less sensitivity to the AM effect for PGB fault diagnosis and
prognosis. They have shown the effectiveness of torsional vibration analysis for PGB fault
diagnosis using a torque sensor. The frequency characteristics of torsional vibration were shown
to be solely sensitive to the AM and FM effects caused by gear faults under constant torque on
input and output shafts. Kiddy et al. (2011) used fiber optic strain signals for PGB fault diagnosis
and showed a close relationship between strain measurement and torque changes. Although
promising, the research reported in the literature on using less AM effect sensitive signals for PGB
fault diagnosis has certain limitations. The torque sensors used by Feng and Zuo (2013) are more

expensive than vibration and strain sensors and require special installation. In another paper, a
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fiber optic strain sensor array used by Kiddy et al. (2011) had to be embedded in the PGB in order
to be effective. In their study, fiber optic strain sensors could only be sampled at a maximum
sampling rate up to 1 kHz, which limits its coverage on shaft speed above 2060 rpm. Also, the
strain signals were analyzed the same way as vibration signals. Fiber optic sensor signals were
analyzed using the vibration separation technique after low frequency components were filtered
out.

To overcome the above mentioned challenges in developing effective PGB fault diagnosis
capability, a research investigation on wind turbine planetary gearbox fault diagnosis via strain
sensor signal analysis has been conducted and is reported in this Chapter. The PE strain sensor
based planetary gearbox fault diagnosis method can be considered as an attractive alternative to
traditional vibration analysis based approaches because the PE strain sensor signals are closely
correlated to torsional vibration, which is less sensitive to the amplitude modulation effect caused
by rotating vibration transfer path. Also, compared to the conventional strain gauge sensors and
accelerometers, the PE strain sensors have certain advantages that could be summarized as follows:
(1) ability to measure the first derivative of physical deformation, (2) high linearity and sensitivity
from their superior noise immunity as compared to differentiated sensing performance of
conventional strain sensors (Banaszak (2001); Lee and O’Sullivan (1991)), (3) high frequency
range (Jiang et al.(2013)), (4) space-efficiency without a structural change on the measuring target
(Kon et al. (2007)), and (5) negligible high temperature effect on the measurement output (Jiang
et al.(2013), and Sirohi and Chopra (2000)). The aforementioned benefits allow for PE strain
sensors to potentially have greater sensing resolution and accuracy. Thus, it is potentially easy and
effective to diagnose planetary gearbox faults via stain sensor signal analysis. In this Chapter, a

new method using a single piezoelectric strain sensor for planetary gearbox fault diagnosis is
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presented. The method is validated on a set of seeded localized faults on all gears: sun gear,
planetary gear, and ring gear. The validation results have showed a satisfactory planetary gearbox
fault diagnostic performance using strain sensor signal analysis.

The remainder of the Chapter is organized as follows. Section A gives a detailed
explanation of the presented methodology. In Section B, the experiments setup to validate the
presented methodology and the seeded fault tests on a laboratory PGB test rig are explained.
Section C presents the PGB fault diagnostic results from the seeded fault tests. Finally, Section D

concludes the Chapter.

A. Methodology

An overview of the proposed methodology is provided in Figure 22. First, the PE strain
sensor signals and tachometer signals are digitized simultaneously. Then, the low-pass filter is
applied to the raw PE strain signal. As reported in Wachel and Szenasi (1993), after considering
the torsional natural frequency and its higher harmonics at varied shaft speeds, it was concluded
that the response range of torsional vibration is less than 1 kHz and doesn’t exceed that of radial
vibration. Also, in vibration analysis, a universal low-pass filter with a cutoff frequency of 20 kHz
or less is commonly used to attenuate the signal of interest. Thus, a low-pass filter with a cut-off
frequency of 20 kHz was used in this Chapter since there is no similar research previously available.
Using the tachometer signals, the TSA signal, residual signals, and other input signals are
computed. Lastly, the Cls are computed.

This Chapter will focus on the localized gear faults, while neglecting the faults of any other
components such as shafts or bearings. The major components of the methodology are explained
in the following two sections. Section 1 provides a brief review of TSA and the computation of

Cls used for planetary gearbox fault diagnosis is explained in Section 2.
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Figure 22.0verview of the methodology.

1. Time Synchronous Average

TSA is one of the most widely utilized signal processing techniques to extract a periodic
waveform from noisy signals of rotating machines. The underlying idea of TSA is to obtain a
periodically repeated waveform of interest over N number of revolutions. Theoretically, when a

rotating machine is running at a constant speed, the periodic waveform is intensified while any
noises are suppressed with a noise reduction rate of \/LN Consider a signal x(t) composed of a

periodic signal y(t) with known period T and additive noisee(t):
x(t) = y(@) +e(t) (31)

Assuming the total number of N observed periods, the TSA of x(t) can be expressed as:
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1 o N-1
o= ), X =1T) (32
r=

As N — oo, the TSA signal x5, approaches to y(t). More details about TSA could be found in
(Braun, 1975; McFadden, 1987; and Bechhoefer and Kingsley, 2009).

Basically, TSA chops up the raw sensor signal into multiple single revolution signals. Then,
each of the revolution signals are resampled (via stretching or shrinking) to have the same number
of sample points in one revolution. Then, the final periodic signal is obtained by averaging the
resampled signals. After TSA is computed, any kind of fault diagnostic condition indicators can
be evaluated. Even though successful TSA applications to other sensor analysis such as AE signals
(Quetal., 2013a; 2014), application of TSA to PE strain signal processing for PGB fault diagnosis

has not yet been reported.

2. PE Strain Sensor Based Fault Feature Extraction

Cls computed using vibration signals have been used effectively for gear fault diagnosis in
real applications such as condition monitoring systems installed in helicopters and wind turbines
(Sheng, 2012). In this Chapter, the Cls reported effective for gear fault diagnosis using vibration
signals for wind turbine applications will be computed using the PE strain sensor signals. TABLE
XV provides the definitions of the Cls investigated for PGB fault diagnosis.

The Cls can be defined into five general types: root mean square (RMS), peak to peak (P2P),
skewness (SK), kurtosis (KT), and crest factor (CF). Each type of CI can be computed using
different input signals. In addition to TSA signals, other types of input signals can be generated:
residual, narrow band (NB), AM, and FM. Residual is a TSA signal with the primary meshing and
shaft components being removed. The energy operator (EO) (Teager, 1992) is defined as the

residual of the autocorrelation function as following:
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XE0,i-1 = xTZ"SA,i - (xTSA,i—l 'xTSA,i+1)» fori=23,..,N—1 (33)
wherexg, ; is the i™ element of EO data; xrg, ; is the i™ element of x;s,. The NB filtered signal,
Xy, could be obtained by filtering out all tones except those of the gear mesh and the characteristic
frequencies. In this Chapter, the characteristic frequencies are the sun gear fault frequency, planet
gear fault frequency, and ring gear fault frequency, respectively. Finally, AM and FM Cls are
obtained by AM analysis and FM analysis of xy5. AM and FM signals are the absolute value and
the derivative of the angle of the Hilbert transform of x,p, respectively. For more details of NB,

AM, and FM, please see (Sheng, 2012).
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TABLE XV

THE DEFINITIONS OF THE CIS FOR THE PE STRAIN BASED PGB DIAGNOSIS

Input Signal (x;y)

Residual:
TSA signal
TSA: with the EO: AM: Amplitude  FM: Frequency
Time primary residual of the NB: Narrow modulation of modulation of
Cl Formula synchronous meshing and autocorrelation band pass NB filtered NB filtered
averaged signal shaft function filtered (xyp) signal signal
(*rs4) components (%£0) (AM (xnp)) (FM(xng))
removed
(XRes)
Root RMS (x;5)
mean N ' . .
square = |y z X RMS (x;y): measures the energy evolution of a signal.
(RMS) i=1
Peakto  P2P(x;y)
peak (max (x;) — min (x;)) P2P (x;y): measures the maximum difference within the data range.
(P2P) = 2
SK(xn) .
Skewness  _ 1/N X, (g — %) SK (x;5): measures the asymmetry of the data about its mean value. A negative SK value and positive SK value
(SK) ) 3 imply the data have a longer or fatter left tail and the data have a longer or fatter right tail, respectively.
[\[1/1\’ T — %) j
KT (x;y) .
. N _
KL(J}:[%S 1S — M KT (x;)): measures the peakedness, smoothness, and the heaviness of tail in a data set.
_\2
20 - D]
fc,jur:iztr CF () = P2P(xy) CF (x;y): measures the ratio between P2P (x;y) and RMS(x;y) to describe how extreme the peaks are in a
(CF) NS RMS(x;n) waveform.

Note: x; is i element of the input datax,y; N is the length of the input datax;,; max(-) returns the maximal element of input datax,; min(-) returns the minimal element of input datax,; ¥ is a

mean value of the input datax, defined as ¥, x; /N.

66



B. Experimental Setup

This section covers the experimental setup used to validate the PE strain sensor based

planetary gearbox fault diagnostic technique.

1. The DAQ System for the PE Strain Sensor

Figure 23displays the PGB test rig used to collect the PE strain sensor data under varying
gear health and operating conditions. The DAQ system includes a National Instruments (NI)’ DAQ
board with a maximum analog input sampling rate of 1.25 MHz, a PE strain sensor, and a signal
conditioner with an unity gain from PCB Piezotronics. A Hall effect sensor was used as the
tachometer paired with a toothed wheel mounted on the motor shaft. The PE strain sensor was

glued on the housing of the ring gear as shown in Figure 23(c).

3-phase 10HP
induction motor

-~

i Main shaft 7
& PGB

Enlarged gearbox area

(b) ©

Figure 23. The PGB test rig for wind turbine simulator: (a) DAQ system connection, (b) the front
view of the PGB test rig, (c) the enlarged view on the input shaft and sensor location.
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2. Seeded Gear Fault Tests

This section covers the experimental setup used to validate the PE strain sensor based PGB
fault diagnostic technique. Three types of PGB faults were created: sun gear tooth fault, planet
gear tooth fault, and ring gear tooth fault. Each type of the gear fault was created by artificially

damaging a tooth on a sun gear, planetary gear, and ring gear, respectively (see Figure 24).

Tooth

] - breakage
b ()
Figure 24. Seeded faults: (a) sun gear fault, (b) planet gear fault, (c) ring gear fault.

During the seeded fault tests, PE strain sensor signals were collected with a sampling rate
of 100 kHz. The tachometer signals were simultaneously recorded along with the PE strain signals
to get revolution stamps. Both the healthy gearbox and the gearboxes with seeded faults were
tested at five different input shaft speeds: 10 Hz, 20 Hz, 30 Hz, 40 Hz, and 50 Hz. At each speed,
five samples were collected. In addition to the shaft speed variation, varying loading conditions
were applied at the output shaft of the gearbox: 0%, 25%, 50%, and 75% of the maximum torque

of the planetary gearbox. At each loading condition, 25 samples (five samples per shaft speed for
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five varying speeds) were taken. In addition, the PE strain sensors were carefully mounted at the

same location of the gearbox for each data collection.

TABLE XVI
PE STRAIN SENSOR DAQ SETTING PARAMETERS.

PE strain sensor Tachometer

ICP Piezoelectric strain sensor with

Sensor s . Hall effect sensor
titanium housing

Manufacturer PCB Piezotronics Sensoronix
Signal conditioner Unity gain -
Sampling rate 100k (Hz) 100k (Hz)

10 Hz — 30 sec

20 Hz — 24 sec
Sample recording time 30 Hz - 16 sec -

40 Hz - 12 sec

50 Hz — 10 sec

C. Validation Results

The validation results for the seeded fault tests conducted on the planetary gearbox test rig
are provided in this section. Samples of the raw PE strain signals and their spectra are provided in
Figure 25. Upon examining the frequency spectrums, the fundamental fault frequencies could not
be identified. Thus, the calculated fault frequencies shown in TABLE 111l could not be used as the
basis for band pass filter selection. Following the filter band optimization procedure in Van Hecke
(2014a), Shannon entropy was computed on the healthy PGB signals after the implementation of
different filter bands. Figure 26 shows an example of this technique applied to a healthy PGB
signal at shaft speed of 50Hz. The highest level of entropy was observed with the use of a 0 ~ 20
kHz for all the filter bands. Therefore, a low-pass filter with a cutoff frequency of 20 kHz was

selected and utilized for the results presented in this Chapter.
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Figure 25. Sample raw PE strain sensor signals and their spectra at 50% output loading and 10Hz

input shaft speed: (a)healthy, (b) sun gear fault, (c) planet gear fault, and (d) ring gear fault.
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Figure 26. Entropy of band pass filtered healthy PGB signal at a shaft speed of 50Hz.
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After the TSA signals were obtained, then all of the Cls described in Section A-2 were
computed. Among the computed Cls, four of them were found effective: TSA RMS, TSA P2P,
residual RMS, and residual P2P. Figure 27shows the TSA RMS plots for different gearbox health
conditions at different shaft speeds and loading conditions. As one can see from the figure, by
using TSA RMS alone, the three gear faults can be clearly separated. As the loading increases, the
separation of the gear faults gets better. Also, by using TSA RMS alone, all the three gear faults
can be clearly separated from the healthy condition. The detectability of the gear faults gets better
as the loading increases. For all of the four gearbox conditions, TSA RMS remains relatively
stationary within the same loading condition regardless the change of the shaft speed. This also
shows that the TSA RMS is heavily correlated to the torque level of the gearbox. The vertical bar
for each data point shown in Figure 27 represents a 95% confidence interval from the TSA RMS

statistics.
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Figure 27. TSA RMS plot.

In order to check the statistical significance of the gear fault separation using TSA RMS,
an analysis of variance (ANOVA) test was conducted using the TSA RMS data. In this test, it was
assumed that the shaft speed has no effect on TSA RMS within a loading condition. The following
hypotheses were established based on aforementioned assumptions:

Hot g = pp =tz = iy
(34)

H;: atleast oney; # p;
(fori,j = 1,2,3,and 4; i # j)

where y; is mean Cl value of the i™ gear health condition at a fixed loading condition, i = 1, 2, 3,

and 4 represents healthy gearbox, sun gear fault, planet gear fault, and ring gear fault, respectively.

Displayed in
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TABLE XVII is the summary of ANOVA results with a 99% confidence level.
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TABLE XVII

SUMMARY OF ANOVA RESULTS FOR TSA RMS

Loading Source DF SS MS F P
Factor 3 0.0334141 0.0111380  1605.12 0.000
0% Error 96 0.0006662  0.0000069
Total 99 0.0340802
Factor 3 0.1481272 0.0493757  8261.04 0.000
25% Error 96 0.0005738  0.0000060
Total 99 0.1487010
Factor 3 0.4641124 0.1547041  10614.42 0.000
50% Error 96 0.0013992 0.0000146
Total 99 0.4655116
Factor 3 0.845794  0.281931 781.55 0.000
75% Error 96 0.034630  0.000361
Total 99 0.880424
Note that in
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TABLE XViIl, notations DF, SS, MS, F, and P refer to the degree of freedom, the sum of
squares, the mean square, the F-test value, and the p-value, respectively. These notations will be
used in the remaining tables in related to ANOVA test. From the table, the P-values for all loading
conditions are 0.000. With a 99% confidence level, the null hypotheses should be rejected (a =
0.01 > 0). Therefore, it is safe to say that the separation of all the gear faults tested using TSA
RMS is statistically significant at all loading conditions.

The results for the other three Cls: TSA P2P, residual RMS, and residual P2P are presented
in the same way as TSA RMS in the following. Their associated plots of the Cls are provided in
Figure 28 to Figure 30 and the ANOVA results in TABLE XVIII to TABLE XX, respectively.
Similar results like TSA RMS can be observed for the other two Cls: TSA P2P and residual RMS.
However, the diagnostic performance of these two Cls at the 0% loading condition is not as good
as TSA RMS. A clear diagnosis of the gear faults can be observed at 25%, 50%, and 75% loading
conditions. When the loading level reaches 25% or above, TSA P2P and residual RMS can be
ranked like TSA RMS as the following order: ring gear fault — planet gear fault — sun gear fault
— healthy gear. For residual P2P, a clear diagnosis of the gear faults can be observed only when
the loading level reaches to 50% or above.Note that in TABLE XVIII to TABLE XX, even under
the low loading conditions, the null hypothesis in (25) is rejected. This is because all the faulty Cls
are significantly different from the healthy Cls even though the difference among the faulty CIs is
not statistically significant. Also, note that for the four effective Cls, some of them have shown
less sensitive to the change of the speed under the same loading condition, for example, TSA RMS.
Others may have shown more sensitive to the change of the speed under the same loading
condition, for example, Residual P2P. However, all those Cls increase their values as the loading

level increases.
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TABLE XVIII

SUMMARY OF ANOVA RESULTS FOR TSA P2P

Loading Source DF SS MS F P

Factor 3 0.1199638  0.0399879 611.06 0.000
0% Error 96 0.0062822  0.0000654

Total 99 0.1262461

Factor 3 0.775791  0.258597 1065.47 0.000
25% Error 96 0.023300  0.000243

Total 99 0.799091

Factor 3 1.615071  0.538357 2682.91 0.000
50% Error 96 0.019264  0.000201

Total 99 1.634335

Factor 3 3.25105 1.08368 787.88 0.000
75% Error 96 0.13204 0.00138

Total 99 3.38309
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TABLE XIX

10Hz
20Hz

30Hz

75%

40Hz
50Hz

SUMMARY OF ANOVA RESULTS FOR RESIDUAL RMS

Loading Source DF SS MS F P

Factor 3 0.0001227  0.0000409 147.50 0.000
0% Error 96 0.0000266  0.0000003

Total 99 0.0001493

Factor 3 0.0006061  0.0002020 56.46 0.000
25% Error 96 0.0003436  0.0000036

Total 99 0.0009497

Factor 3 0.0025676  0.0008559 219.08 0.000
50% Error 96 0.0003750  0.0000039

Total 99 0.0029427

Factor 3 0.0038871  0.0012957 233.04 0.000
75% Error 96 0.0005337  0.0000056

Total 99 0.0044208
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SUMMARY OF ANOVA RESULTS FOR RESIDUAL P2P

Loading Source DF SS MS F P

Factor 3 0.0019954 0.0006651 76.63 0.000
0% Error 96 0.0008333  0.0000087

Total 99 0.0028287

Factor 3 0.0087545 0.0029182 79.85 0.000
25% Error 96 0.0035084 0.0000365

Total 99 0.0122630

Factor 3 0.0323371 0.0107790 193.51 0.000
50% Error 96 0.0053475 0.0000557

Total 99 0.0376846

Factor 3 0.0557005 0.0185668 239.39 0.000
75% Error 96 0.0074456 0.0000776

Total 99 0.0631462

D. Conclusions
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In this Chapter, a new PE strain sensor based wind turbine PGB fault diagnostic
methodology is presented. The presented method was accomplished through a combination of low
pass filtering, TSA, and Cls to extract diagnostic features for PGB diagnosis. First, the PE strain
sensor signal is low-pass filtered to retain the information related to the gear conditions. Then, the
TSA signal is computed to obtain the periodically repeated waveform while white noise is
suppressed. The presented method was validated using data collected from seeded fault tests
conducted on a planetary gearbox test rig in a laboratory. The validation results have shown that
by utilizing the TSA based PE strain sensor signal processing approach, fully separable diagnostic
Cls towards all PGB fault types were captured regardless of shaft speed and output shaft loading
condition. In summary, the four Cls extracted from PE strain sensor signals: TSA RMS, TSA P2P,
residual RMS, and residual P2P effectively differentiate the localized faults such as gear tooth
crack and breakage from all gears: sun gear, planetary gear, and ring gear, which has not been
presented in the literature. The current PGB diagnostic methods mainly rely on vibration signal
analysis. They provide limited fault diagnosis for PGB due to time varying vibration transfer paths.
The PE strain sensor based diagnostic technique presented in this Chapter provides an attractive

alternative to the current vibration analysis based approach.
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VII. COMPARATIVE STUDY

PGB fault diagnosis has been done mostly through vibration analysis over the past years.
However, the recent literature reported that there exist alternative diagnostic methods for PGB
fault diagnosis which potentially be less sensitive to the vibratory AM effect caused by time variant
vibration transfer paths. This Chapter presents a comparative study for PGB fault diagnostics with
seeded localized faults using vibration, AE, and PE strain measurements. This is the first known
attempt comparing the PGB fault diagnostic performance of all those three sensor analyses. First,
the vibration signals were analyzed using the conventional signal processing methods of TSA, SA,
enveloping, and etc. The vibration analysis with the Welch’s spectral averaging was obtained
followed by. Then, the AE analysis was conducted using the heterodyne technique based AE DAQ
system, in which AE sampling rate become at a rate compatible to vibration analysis. Lastly, the
PE strain analysis method was constructed using the fact that strain sensor signals is closely
correlated to torsional vibration, which is insensitive to the vibratory AM effect caused by rotating
planet gears and its career. Each sensor signal was further fault feature extracted using the Cls for
the drivetrain diagnostic methods, currently used in the wind industry. Machine learning methods
were further applied upon necessity. Results have shown that the AE sensor based analysis could
give slightly improved results from the accuracy and the reliability stand points. Also, the PE strain
analysis based diagnosis could be advantageous than vibration and AE in that it could isolate the

faulty components without using any machine learning techniques.

A. Methodology

In addition to the currently available vibration based machinery fault diagnostic methods

such as low-pass filtering, TSA, enveloping, and their combinational methods, herein, Welch’s SA
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based PGB fault diagnostic methods for vibratory analysis, AE sensor, and PE strain sensor based
PGB fault diagnostic methods are investigated in a comparative study manner. VValidation of the
fault diagnostic methods was conducted from the seeded fault tests on a PGB test rig in the
laboratory. Before the results are presented, each of the diagnostic methods are reviewed in this
section. The overview of each PGB diagnostic methods are diagrammed in Figure 31 through

Figure 33.

1. Vibration Based PGB Diagnosis

Although VS method is one of the well-established vibration analysis technique for PGB,
VS could not be applicable to this study with the following reasons. First, sun gear fault cannot be
detected by the PGB geometry as described in Samuel et al. (2004).Second, the vibration sample
size is not big enough to apply VS technique. Therefore, in this Chapter, vibration signals were
processed for the following four different methods (shown in Figure 31): (a) TSA, (b) enveloping
then TSA, (¢) TSR followed by Welch’s method (i.e. SA), (d) TSR, enveloping, then Welch’s
method. First two methods of (a) and (b) are widely used vibration analysis methods and chosen
for comparative results among vibration analyses. The Fast kurtogram was applied to find a
universal filter band for each vibration sensor. The presented methods of (c) and (d) combine TSR,
enveloping, SA for rotating machinery, fast kurtogram, computation of Cls, or implementation of
PGB fault diagnostic classifiers. The details of the implementation can be found in Chapter IV.

The overview of the vibration based PGB diagnostic method is diagrammed in Figure 31.
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Figure 31. Overview of vibration based PGB fault diagnosis.

2. AE Based PGB Diagnosis

A new AE sensor based PGB fault diagnostic method was presented in the previous
Chapters. The presented method comprises a heterodyne based AE DAQ system, EMD based
rotating machinery fault diagnostic method, computation of Cls, and data mining based PGB fault

classifiers. The details of the implementation can be found in Chapter V. The overview of the AE

based PGB diagnostic methods is diagrammed in Figure 32.
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Figure 32. Overview of AE based PGB fault diagnosis.

3. PE Strain Sensor Based PGB Diagnosis

A new PE strain sensor based PGB fault diagnostic method was presented in the previous
Chapters. The presented method comprises a PE strain sensor attached on the outside of the
gearbox housing, low-pass filtering, TSA, and computation of Cls. Although the background idea
of the methodology is same as that shown in Chapter VI, the cutoff frequency for the low-pass
filter was slightly modified in this Chapter. By adapting the similar filter-band optimization
procedure from the Chapter V, a new filter-band was selected for the new PE strain sensor data
with 2-second duration because the highest level of entropy was observed with the use of a0 ~ 5
kHz for all the filter bands and shaft speed investigate. The overview of the updated PE strain
sensor based PGB diagnostic method is diagrammed in Figure 33.
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Figure 34. Entropy of band pass filtered healthy PGB signal at a shaft speed of 50Hz.
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4. Fault Feature Extraction for Comparative Study

The six basis measurements were chosen: root mean square (RMS), peak to peak (P2P),
skewness (SK), kurtosis (KT), crest factor (CF), and Shannon entropy (SEnt). Cls were computed
using those basis measurements over varied input signals: Raw AE signals (TSA for PE strain
sensor), energy operator (EO), narrow band (NB), amplitude modulation (AM), frequency
modulation (FM), spectral averaging (SA) via Welch’s method (Welch), and EO of the Welch.
FMO is obtained as an effective ClI for distributed gear faults wear and multiple tooth cracks. FMO

is calculated from the formula below:

whereA,, is the sum of the gear mesh harmonics. Gear distributed fault (GDF) is used as an
effective CI for distributed gear faults wear and multiple tooth cracks. GDF is calculated from the

formula below:

_ StdDev(residual signal)

- 36
StdDev(original signal) (36)

The EO in Teager (1992) is defined as the residual of the autocorrelation function as following:

XEo,i = xIZN,i — XIN,i-1 * XIN,i+1
@37)
(fori =2,3,...,N —1)
wherexg ; is the i element of EO data; x;y ; is the i element of the input datax;y. The NB
filtered signal, xy, could be obtained by filtering out all tones except those of the gear mesh and

the characteristic frequencies. In this Chapter, the characteristic frequencies are the sun gear fault

frequency, planet gear fault frequency, and ring gear fault frequency, respectively. Finally, AM
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and FM Cls are obtained by AM analysis and FM analysis ofxyz. AM and FM signals are the
absolute value and the derivative of the angle of the Hilbert transform of x,, respectively.
The SA based vibration fault features were obtained as below:
Xweten = 1FHUF)ID)I (38)

where F and F~1 represent Fourier transform and inverse Fourier transform, respectively;
|F(x)|? originally refers to the power spectral density (PSD) of x and is replaced with the PSD
estimate with Welch’s method. The terminology “Welch” refers to the SA obtained by the Welch’s
PSD estimate hereafter. TABLE XXI provides the new definitions of the Cls investigated for PGB
fault diagnosis. Once the Cls are computed, they will be used train the PGB fault classifiers using

three supervised learning algorithms upon necessity.
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TABLE XXI

THE DEFINITIONS OF THE CIS FOR THECOMPARATIVE STUDY

Input Signal (x;y)

Residual:
Slg_nal _EO: _ FM: Welch: _
Raw or with residual of NB: Frequency Welch Welch EO:
TSA: primary the Narrow modulation windowed Energy
Cl Formula (x .or meshing autocorrela  band pass of NB spectral operator
R“W) and shaft tion filtered filtered avira in of Welch
X1s4 component  function (xnB) signal (x g )g [Cewercn)eo]
s removed (xg0) (AM(xyp)) (FM(xyp)) wetch
(XrEs)
RMS (x;5)
RMS 1N ZN 5 RMS (x,,):measures the energy evolution of a signal.
= X
i=1 '
P2P(x;n)
P2P (max (x;) — min (x;)) P2P (x;y):measures the maximum difference within the data range.
B 2
SK (xn) \
SK _ 1/N Z, 0 — %) SK (x;y):measures the asymmetry of the data about its mean value. A negative SK value and positive SK value
> 3 imply the data have a longer or fatter left tail and the data have a longer or fatter right tail, respectively.
N -
[\/1/1\/ iz (X — %) J
N 4
N Yo, (x; — %) ) o
KT KT (x;y) = - 2 KT (x;y):measures the peakedness, smoothness, and the heaviness of tail in a data set.
2, G - 07
CE CF(xy) = P2P(x;y) CF (x;y):measures the ratio between P2P (x;y) and RMS(x,y) to describe how extreme the peaks are in a
Xin RMS (x;) waveform.
SEnt(x;,)
SEnt SEnt(x;,)measures the Shannon entropy of an input signal.

~0 tonted)
L

Note: x; is i™ element of the input datax,; N is the length of the input datax;,; max(-) returns the maximal element of input datax,,; min(-) returns the minimal element of input datax,; % is a

mean value of the input datax, defined as ¥, x; /N.
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B. Experimental Setup

This section covers the experimental setup used to compare the performance of the

vibration, AE sensor, PE strain sensor based PGB fault diagnostic methodology.

1. The PGB Test Rig

The PGB test rig comprises four main parts: (1) the DAQ systems, (2) the driving motor,
(3) the PGB gearbox, (4) the load generator. The DAQ system captures vibration, AE, and PE
strain data. The driving motor is a 3-phase 10 HP induction motor with a motor controller. A Hall
effect sensor and a toothed wheel were mounted on the driving shaft and utilized to records the
real-time shaft rotating remarks. For the PGB, a commercially available single stage PGB with a
5:1 speed reduction ratio was used. Then, the output end of the PGB was connected to a generator
and a grid tie to serve as a load generator. The compositional structure of the PGB test rig is similar
to those used in the residential wind turbines. The front view of the PGB test rig is provided in

Figure 35.

Main shaft
& PGB

3-phase 10HP
induction motor

Motor

controller

Figure 35. The front view of the PGB test rig.
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Provided in Figure 36 is the schematic setup of the DAQ system. First, the vibration data
were recorded using a commercially available vibratory wind turbine condition monitoring system
from Renewable NRG Systems. The DAQ system comprises two high speed accelerators and a
tachometer. Because the typical choice of sampling frequency of vibration data is under 20 kHz,
vibration sensor 1 and vibration sensor 2 were sampled at rates of 24,414 Hz and 6,104 Hz,
respectively. Second, the AE and PE strain sensor data were recorded using a National Instrument
(NI)’s DAQ board with a maximum analog input sampling rate of 1.25MHz. Because there were
no similar study of PGB fault diagnosis using AE and PE strain analyses, the sampling rate were
identically chosen as 100 kHz. For the composition of AE DAQ, a wideband differential AE sensor,
pre-amplifier (20db/40db/60db), demodulation board, and carrier frequency generator were
utilized. Since the natural frequencies of AE lie in a higher frequency range (e.g. 1 kHz ~ 1 MHz),
a high sampling rate between 2 to 10 MHz has been a typical choice of for AE analysis. However,
the AE signals used in this study were sampled at 100 kHz, which is a rate compatible to vibration
analysis, with an aid of hardware-implemented heterodyne technique. On the other hand, the PE
strain sensor DAQ was comprised of a piezoelectric strain sensor and a signal conditioner. The PE
strain sensor used in this study has a response frequency range from 0.5 to 100 kHz. In order to
get the most of information, a sample rate of 100 kHz was used for the PE strain sensor because
the maximum allowable sampling rate for the used sensor is 100 kHz. The details of the vibratory

DAQ settings and the AE and PE strain DAQ settings are provided in TABLE XXI|I.
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Figure 36. Schematic setup of the DAQ system.

TABLE XXII

NI DAQ board

(AE / PE strain)
Max Al sampling rate: 1.25M

Tachometer
signals

DAQ SETTING FOR COMPARATIVE STUDY.

Sampling Recording time
Sensor Sensor type Manufacturer
yp utacty rate (Hz) (sec)

Vibration sensor 1 High speed
for TSA, enveloping accelerometer NRG systems 6104 40
Vibration sensor 1 High speed
for Welch’s SA accelerometer NRG systems 6104 4
Vibration sensor 2 High speed
for TSA, enveloping accelerometer NRG systems 24414 20
Vibration sensor 2 High speed
for Welch’s SA accelerometer NRG systems 24414 2
Vibration Hall effect sensor NRG systems 1000 -
Tachometer (Sensoronix)

Wideband
AE sensor differential Physical Acoustics 100k 2

AE sensor
PE strain sensor Piezoelectric strain PCB Piezotronics 100k 2

sensor

AEIPE strain Hall effect sensor Sensoronix 100k -

tachometer
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2. The Seeded Gear Faults

Similarly to the previous chapters, three types of PGB faults were created: sun gear tooth
fault, planet gear tooth fault, and ring gear tooth fault. Each type of the gear fault was created by
artificially damaging a tooth on a sun gear, planetary gear, and ring gear, respectively (see Figure

37).

Tooth
breakage

(©
Figure 37. Seeded faults: (a) sun gear fault, (b) planet gear fault, (c) ring gear fault.

During the seeded fault tests, the tachometer signals were simultaneously recorded along with the
vibration, AE, and PE strain signals to get revolution stamps. Both the healthy gearbox and the
fault seeded gearboxes were tested at five different input shaft speeds: 10 Hz, 20 Hz, 30 Hz, 40
Hz, and 50 Hz. In addition to the shaft speed variation, varying loading conditions were applied at
the output shaft of the gearbox: no loading, 25%, 50%, and 75% of the rated torque of the PGB.
In each experimentation, the sensors were carefully mounted at the same location to prevent any

uncontrolled environmental parameters.
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C. Comparative Results

The comparative results for the vibration, AE, and PE strain sensors conducted on the PGB
test rig are provided in this section. Provided in TABLE XXIII is the summary of the statistically
separable Cls using all vibration, AE sensor, and PE strain sensor methods.

TABLE XXIII implies that the conventional signal processing techniques — method (a) and
(b)- barely differentiate the faulty PGBs from the healthy ones. On the other hand, the Welch’s
SA based vibratory analysis methods (c) and (d) include Cls which isolate PGB fault from the
healthy ones; those Cls include FMO for the sun gear fault above 90%, Res RMS and WEO RMS
for the planet gear fault 100%, and GDF for the ring gear fault 100%. Because the most separable
Cls were obtained when the vibration sensor 2 was analyzed with the method (c), Welch’s SA
method would be utilized in this comparative study. Those resulting Cls were further utilized to

diagnose the fault locations using three fault classifiers: KNN, BP, and LAMSTAR.
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TABLE XXIII
STATISTICAL SEPARATION OF EACH CIS FOR PGB FAULT ISOLATION

Accelerometer 1 (fs = 6104)

Sun fault Planet fault Ring
a - =>80%: -
(a) TSA 80%: P2P
nv- - > 0: > 0: s
(b) Env-TSA 80%: P2P 80%: RMS, P2P
. > 90%: RMS, Res RMS >80%: Res RMS, Res CF
0 = ' 2 , )
M\gtlrk:bd (c) Welch =80 /‘"V'TIEESORQ"Z% ResP2P, | ~80%: P2P, Res P2P, EO EO P2P, W RMS, W KT,
P2P, W RMS, WEO P2P WEO RMS
0 .
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As shown from TABLE VII, none of the single CI provides acceptable diagnostic
performance for all three fault classifiers although each CI can isolate faults from at least one or
more PGB fault types. Also shown in TABLE VIII, two combinations of Cls were tested. From
the fault diagnostic results, KNN achieved the overall minimal error rate of 3.63% when the first
CI combination were used. LAMSTAR network, however, achieved the similar diagnostic error
rate of 3.98% along with the lowest standard deviation. That is, LAMSTAR network could be
equally desired as KNN from the reliability perspective.

In Chapter V, PGB fault diagnostic method using AE analysis were presented. The method
combines the hardware-implemented heterodyne AE DAQ system, EMD method, computation of
Cls, and implementation of PGB fault diagnostic classifiers. Provided in Table XXIII is the
summary of the statistically separable Cls results from all AE methods. Among all of the Cls, FMO
showed 95% statistical separation for the sun gear fault, RMS displayed 100% statistical separation
for the planet gear fault, and Welch CF, Welch EO KT, and Welch EO SK showed 100% statistical
separation for the ring gear fault, respectively. Those effective Cls were further utilized to classify
the faults (e.g. sun, planet, ring, or healthy) using the three classifiers: KNN, BP, and LAMSTAR.
Provided in TABLE XIlIl and TABLE XIV are the diagnostic results using the three classifiers
with both the individual Cls and the combinational Cls. As one can see from TABLE XIlI|I, for all
three classifiers, none of the individual Cls achieved acceptable level of fault diagnostic
performance although those Cls display statistical separablability for at least one fault type. from
TABLE XIV, it can be seen that LAMSTAR network achieved the lowest diagnostic error rate of
<1% when the first combination of Cls were used while KNN achieved 7% error rate when the
second CI combination was used. For the comparative study, the result from the LAMSTAR

network will be utilized for AE analysis.
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Lastly, from Chapter VI, PGB fault diagnostic method using PE strain analysis is were
presented. However, the sample recording time was reduced to two second for fair comparison
with vibration analysis and AE analysis. The method combines the low pass filtering with the
cutoff frequency of 5 kHz, TSA, and computation of Cls. After the PE strain signals were low pass
filtered, Cls described in Section A-3 were computed. Among the computed Cls, a few Cls were
newly found effective: TSA RMS, TSA Shannon entropy (SEnt), Residual RMS, Residual SEnt,
W RMS, and W P2P. Figure 38 shows those effective Cls for different gearbox health conditions

at varying shaft speeds and loading conditions.
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Figure 38. PGB fault diagnostic Cls from PE strain analysis: (a) TSA RMS, (b) TSA Shannon
Entropy, (c) Residual RMS, (d) Residual SEnt, () Welch RMS, and (f) Welch P2P.



As one can see from Figure 38, by using TSA RMS, Welch RMS, and Welch P2P, the Cls
remained relatively stationary within the same loading condition regardless the change of the shaft
speed. Those Cls also showed that the PE strain sensor based Cls are heavily affected by the torque
level of the gearbox. The vertical bars for each data point represent 95% confidence intervals.

Provided in TABLE XXIV is the comparative summary of the PGB fault diagnostic
methods.

TABLE XXIV
COMPARATIVE SUMMARY OF THE PGB FAULT DIAGNOSTIC METHODS

Vibration AE PE strain
Analysis method Welch’s SA Heterodyne AE, TSA
EMD
Sampling frequency (Hz) 24414 100k 100k
Sample recording time (sec) 2 2 2
Fault detecting Cls for particular 0 0 0
gear faults
Fault diagnosable Cls for all gear
faults X X ©
Fault_ dlagnqstlc ability  using 0 0 Not required
machine learning
~3%
Fault diagnostic error rate (w/ both KNN, < 1% -

and LAMSTAR) (W LAMSTAR)
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VIII. CONCLUSIONS

In this dissertation, effective and efficient PGB fault diagnostic methods and tools were
developed and validated on a set of seeded localized faults on all gears: sun gear, planetary gear,
and ring gear. Specifically, to overcome the PGB’s known issue of the AM effect, caused by
rotating vibration transfer path, new PGB fault diagnostic methods were developed using:
vibration analysis with Welch’s spectral averaging; alternative sensors of AE and PE strain sensors
and their associated analysis methods.

In Chapter 1V, the spectral averaging (SA) based PGB fault diagnostic method using a
vibration sensor was presented. The proposed method is comprised of the TSR, SA for rotating
machinery, computation of Cls, and implementation of PGB diagnostic systems. The presented
method was validated with a set of seeded fault tests performed on a PGB test rig in a laboratory.
First, the digitized accelerometer signals were processed by TSR and SA technique to compute
Cis and to extract PGB fault features. The effective Cls were grouped into two combination sets
according to the level of statistical separation followed by training three machine learning
algorithms: KNN, BP network, and LAMSTAR network. The validation results have shown: (1)
the minimal error rate of 3.63% was achieved using KNN with the chosen CI combination; (2) An
average diagnostic error rate of 8.94% was achieved using the BP algorithm. Meanwhile, the local
minima convergence was observed at a rate of 12~16% out of all occurrences; (3) LAMSTAR
network displayed a similar level of diagnostic error rate of 3.98% as KNN. But LAMSTAR
network achieved the minimal standard deviation and it is a desired aspect from the reliability
perspective. In summary, the presented method effectively differentiated the localized faults on all

gears: sun gear, planetary gear, and ring gear, which has not been presented in the literature.
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In Chapter V, a new AE sensor based PGB fault diagnostic method was presented. The
presented method comprises a heterodyne based AE DAQ system, EMD based rotating machinery
fault diagnostic method, computation of Cls, and data mining based PGB fault classifiers. By
applying the heterodyne technique, the AE response frequency could be downshifted from several
hundred kHz to below 10s of kHz. Besides, the AE signals could be demodulated to remove non-
vital high frequency components while the fault characteristic components are maintained. As a
result, the AE signals could be sampled at a rate comparable to that of vibration analysis. The
presented AE method was validated with a set of seeded fault tests performed on a PGB test rig in
a laboratory. First, the sampled AE signals were signal processed using EMD to extract PGB fault
features and compute Cls. Those Cls were then grouped into two combination sets according to
the level of statistical separation followed by training three supervised learning algorithms (i.e.
classifier): KNN, BP, and LAMSTAR. The results have shown the followings: (1) An error rate
of 7% was achieved using KNN; (2) An average diagnostic error rate of 7% was achieved using
the BP algorithm. However, a local minima convergence was observed at a rate of 12~16%); (3)
The LAMSTAR network displayed less sensitivity to the local minima issue. The best overall
diagnostic error rate of about 0.5% was achieved using LAMSTAR network.

In Chapter VI, a new piezoelectric strain sensor based PGB fault diagnostic methodology
was presented. The presented method was accomplished through a combination of low pass
filtering, TSA, and Cls to extract diagnostic fault features for PGB. Since there was no similar
study available in the literature, a filter-band optimization procedure was performed to apply the
low-pass filter. Then, the varied input signals and CIS were computed which are widely used in
real applications such as health and usage monitoring systems (HUMS) installed in helicopters and

the condition monitoring systems in wind turbines. The presented method was further validated
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using data collected from seeded fault tests conducted on a PGB test rig in a laboratory. The
validation results have shown that fully separable diagnostic Cls towards all PGB fault types were
captured regardless of shaft speeds and loading conditions. A total of four Cls were extracted from
PE strain sensor signals: TSA RMS, TSA P2P, residual RMS, and residual P2P which effectively
differentiate the localized faults on all gears: sun gear, planetary gear, and ring gear, which has not
been presented in the literature. The PE strain sensor based PGB fault diagnostic technique
presented in this chapter provides an attractive alternative to the current vibration analysis based
approach.

The comparative results for the vibration, AE, and PE strain sensors conducted on the PGB
test rig are provided in Chapter VII. From the conventional signal processing techniques for
machinery fault diagnostics such as TSA, enveloping, VS and etc. were investigated. Then those
developed in the previous Chapters were utilized to provide a comparative study from the PGB
diagnostic feasibility stand point. The following conclusion could be drawn:

- The conventional analysis techniques such as TSA, enveloping, VS barely shown any
differential results for the faulty PGBs from the healthy PGBs.

- The Welch’s SA based vibratory analysis was able to diagnose two types of localized PGB
faults with an aid of machine learning techniques; the minimal error rate around 3~4% was
achieved using KNN and LAMSTAR, however, LAMSTAR network achieved the
minimal standard deviation and it is a desired aspect from the reliability perspective.

- The AE based analysis was more accurate than the Welch’s SA based vibratory analysis
for the PGB fault diagnostic method; the best diagnostic error rate of ~0.5% was achieved

using LAMSTAR network.
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The PE strain sensor based analysis was desirable in that any machine learning was not
required in PGB diagnosis. The following Cls were found effective: TSA RMS, TSA
Shannon entropy (SEnt), Residual RMS, Residual SEnt, W RMS, and W P2P. Assume that
the output loading is a known parameter using power-torque equation from the generator.
For those effective Cls, some of them have shown less sensitive to the change of the speed
under the same loading condition, for example, TSA RMS. It can be observed that the CI
level of TSA RMS almost linearly increased when loading condition increased. Therefore,
in the varying loading scenario, this CI can be used by setting thresholds (or formulating
threshold equation) for the known loading condition. In addition to that, other Cls may
have shown more sensitive to the change of the speed under the same loading condition,
for example, SEnt. Under the varying shaft speed scenario, the CI level of SEnt almost

linearly decreased when shaft speed increased.
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