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SUMMARY 

 

Vibration analysis has been widely accepted in the field of machinery fault diagnosis. 

However, vibration signals theoretically have the amplitude modulation (AM) effect caused by 

time variant vibration transfer paths due to rotating planet gears and planet carrier around the sun 

gear. Their complex spectral structure makes it difficult to diagnose PGB faults via vibration 

analysis. 

In this dissertation, new effective and efficient PGB diagnostic methodologies and tools 

using alternative sensors have been developed and validated with seeded fault tests with a PGB on 

a wind turbine simulator. Specifically, the following new effective and efficient PGB fault 

diagnostic methods are presented: a vibration based PGB diagnostic method, an acoustic emission 

(AE) based PGB diagnostic method, and a piezoelectric (PE) strain sensor based PGB diagnostic 

method.  

The newly developed PGB fault diagnostic methods and tools have several significant 

advantages. First, a new vibration based PGB fault diagnostic method was developed using the 

Welch’s spectral averaging. All localized PGB faults were isolable with this method while the 

conventional vibratory analyses of the time synchronous averaging (TSA), enveloping or the 

vibration separation (VS) techniques were not able to. Second, the heterodyning data acquisition 

(DAQ) system was applied to PGB in order to overcome the known challenge of the high sampling 

rate for AE analysis. Besides, with the AE based PGB fault diagnostic methods, not only it was 

isolating the location of the localized faults, but it is potentially capable of capturing incipient 

faults by using AE. Lastly, for the PE strain sensor based PGB diagnostic method, research 

reported in the literature has shown that strain sensor signals are closely related to torsional 

vibration, in which the only modulation effects are the AM and frequency modulation (FM) caused 
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by gear faults under constant input and output torque. Also, results from the PE strain sensor based 

condition indicators (CIs) were isolable for all localized faults and remain relatively stationary 

within the same loading condition regardless the change of the shaft speed. Those CIs could be 

utilized in establishing a threshold based condition monitoring system and is verifying that the 

measurements from a PE strain sensor are heavily affected by the torque change. 

The research described in this dissertation was conducted in four stages: (1) developing an 

effective vibration based PGB diagnostic method with Welch’s spectral averaging, (2) developing 

an effective AE based PGB diagnostic method using the heterodyning data acquisition (DAQ) 

system, (3) developing an effective PE strain sensor based PGB diagnostic method, and (4) a 

comparative study over all method developed in the stage of (1), (2) and (3). Different localized 

faults on sun gear, planet gear, and ring gear were seeded and tested. The comparative results have 

shown that the AE based PGB fault diagnostic method have shown that it is more desirable than 

the vibration based PGB fault diagnostic method with lower diagnostic error rates and higher 

reliability. On the other hand, the PE strain based fault diagnostic method could be the most 

desirable in that it didn’t require a help of machine learning in PGB fault diagnostics. 
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I. INTRODUCTION 

A. Background and Motivation 

Planetary gearboxes (PGB) are desired for high power transmission applications as their 

unique design allows distributing the input torque in parallel and minimizing gearbox size. Thus, 

PGB is widely adopted in design of the following applications: 

– Powertrain to convert wind power to electrical power in a wind turbine; 

– Drivetrain to generate uplift force in a helicopter transmission system; 

– Bucket wheel driving system to manage random varying load in the digging process of 

a surface mining excavator. 

Especially, wind energy is one of the fastest growing energy source among various renewable 

energy options. Establishment of more proactive maintenance strategy is required before the recent 

massive industrial wind projects enter the wear-out failure zone. This will particularly be true for 

the off-shore wind farms, where not only the availability of the site for maintenance can be 

restricted but also the saline environment easily accelerates the mechanical and chemical failures. 

Recent papers have reported the fault diagnostic methods of a wide range of wind turbine 

components such bearing (Gong and Qiao, 2013), rotor (Vedreno-Santos et al., 2014; Cusido et 

al., 2008), electrical system (Freire et al., 2013), generator (Yang et al., 2010), energy conversion 

system (Karimi et al., 2008), hydraulics, pitch adjustment, yaw system, lubricant (Zhu et al., 2014), 

and etc. in order to extend the service time of wind turbine systems at their maximum rates. 

However, as reported in the technical reports from the US national renewable energy laboratory 

(NREL), the gearbox failure is the leading contributor to the total wind turbine downtime (Sheng 

et al., 2011). In the meantime, the statistics reported in Sheng (2014) have shown that 26% and 

25% of all gearbox failures recorded in 2013 and 2014, respectively, were due to direct gear failure.  
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Similarly, according to Astridge (1989), 19.1% of all the helicopter transmission failures 

came from the gear failure. Therefore, developing an accurate and reliable PGB condition 

monitoring method for these assets is very desirable for improved availability while the cost of 

unscheduled maintenance is reduced. Representing examples of the PGB applications are provided 

in Figure 1.  

 

  
(a) (b) 

 
(c) 

 

Figure 1. PGB applications for (a) wind turbine (GE Drivetrain Technologies, 2015),(b) Bucket 

wheel excavator (FLSmidth, 2015), and (c) Rotorcraft transmission (Eurocopter, 2015). 

 

When time variant disturbances and non-stationary operating conditions such as speed and 

loading changes are applied to a mechanical system, periodic or random oscillation occurs and it 
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defines vibration. Vibration analysis is carried for a machinery fault detection in an industrial or 

maintenance project to eliminate unnecessary costs and equipment downtime. To date, transverse 

vibration (generally known as ‘vibration’) analysis using accelerometer has been established as 

the industry standard for most of the machinery health condition monitoring. However, for the 

PGB application, transverse vibration signals theoretically have the amplitude modulation (AM) 

effect caused by time variant vibration transfer paths due to the unique dynamic structure of 

rotating planet gears. Provided in Figure 2, a pictorial example of the AM effect of PGB is 

displayed. 

 

 

Figure 2. The AM effect of vibration signal on PGB. 



4 

 

 

Resultantly, it could be complicated to diagnose PGB faults via a vibration analysis such as time 

synchronous averaging (TSA, Braun, 1975), or vibration separation (VS, McFadden, 1991). 

Attractive solutions to this problem are either applying frequency/time-frequency vibration 

analysis methods or using alternative sensors that could be less sensitive to AM effect for PGB 

fault diagnosis. To overcome the above mentioned challenges, the following PGB fault diagnostic 

methodologies and tools will be developed: vibration analysis with Welch’s spectral averaging; 

alternative sensors of AE and piezoelectric (PE) strain sensors. 

First, Welch’s spectral averaging method (Welch, 1967), recently reported for bearing fault 

diagnosis, by Bechhoefer et al., 2013a; Van Hecke et al., 2014a. Their methodology comprises the 

time synchronous resampling (TSR) technique with Welch’s spectral averaging to obtain a power 

spectral density (PSD) estimate of the vibration signals. This PSD estimate will be utilized in 

search of an effective vibration based PGB fault diagnostic method. No similar research has 

reported in the literature for PGB fault diagnostic method. 

Next, acoustic emission (AE) sensors in the machinery fault diagnostics area recently have 

captured growing acceptance.AE signals can be defined as the elastic stress waves generated inside 

a solid material (e.g. mechanical components made with metal) due to energy release. Thus, the 

AE sensor as failure analysis source could be beneficial to PGB fault diagnosis in that AE signals 

propagate from the wave source (i.e. faults) to sensing apparatus within mechanical components. 

Because of the fact that AE sensor can potentially be more sensitive to the incipient faults than 

vibration sensors, AE based machinery fault detection and diagnosis have attracted many research 

activities  (Al-Balushi and Samanta, 2002; Loutas et al., 2011).Al-Ghamd and Mba (2006) have 

shown not only that AE offers an earlier fault detection than vibration, but also that AE provides 
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an indication of the fault level. Scheer et al. (2007) have shown that AE is effective to capture 

early stage of gear faults (e.g. tooth edge fracture and pitting) before they grow to change their 

vibration behavior. In Lucas (2012), AE is described as follows in comparison to vibration: (1) 

With AE, an early stage of defect including worn by usage and minor defects can be identified. In 

the meantime with vibration, damages must grow in a certain level to be represented by vibratory 

behaviors; (2) AE can pick up other faults such as a lack of lubrication, friction, and cracking, and 

(3) AE is considered as the next generation of vibration for condition monitoring. However, the 

high sampling rate requirement between 2 to 10 MHz has been one of the greatest obstacle for 

widespread and practical implementations of AE based fault diagnosis. Recent studies have shown 

that the high sampling rate issue of AE for fault diagnosis could be overcome by applying 

heterodyne based frequency reduction technique (Qu et al., 2014; Bechhoefer et al., 2013b; Van 

Hecke et al., 2014a; Yoon et al., 2014). Until today, no effective AE based PGB fault diagnostic 

method has been developed using the heterodyne technique and no single method were reported 

to isolate different PGB fault locations of sun gear, planet gear, and ring gear. 

Finally, one attractive solution is to utilize alternative sensors that have less sensitivity to 

the AM effect for PGB fault diagnosis and prognosis. In a recent paper, Feng and Zuo (2013) have 

shown the effectiveness of torsional vibration analysis for PGB fault diagnosis using a torque 

sensor. The frequency characteristics of torsional vibration were shown to be solely sensitive to 

the AM and FM effects caused by gear faults under constant torque on input and output shafts. 

Kiddy et al. (2011) used fiber optic strain signals for PGB fault diagnosis and showed a close 

relationship between strain measurement and torque changes. Although promising, the research 

reported in the literature on using less AM effect sensitive signals for PGB fault diagnosis has 

certain limitations. The torque sensors used by Feng and Zuo (2013) are more expensive than 
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vibration and strain sensors and require special installation. The fiber optic strain sensor array used 

by Kiddy et al. (2011) had to be embedded on the PGB components in order to be effective. 

Besides, those fiber optic strain sensors can only be sampled at a maximum sampling rate up to 1 

kHz, which limits its coverage on shaft speed above 2060 rpm. Lastly, the strain signals were 

analyzed the same way as vibration signals. Fiber optic sensor signals were analyzed using the 

vibration separation technique after low frequency components were filtered out. No effective 

signal analysis techniques have been developed for strain signals. The PE strain sensor is desirable 

in having an improved strain resolution and applicability of a higher sampling rate in comparison 

with the conventional strain gauge sensors (Banaszak, 2001) or the fiber optic strain sensors (Jiang 

et al., 2013). Until today, no effective PE strain signal based PGB fault diagnostic analysis 

techniques have been reported. Also, no PE strain analysis method were displayed to isolate 

different PGB fault locations of sun gear, planet gear, and ring gear. To overcome the above 

mentioned challenges and fulfill the diagnostic capability on PGB faults, a research investigation 

via PE strain sensor signal analysis has been conducted and is reported in this dissertation.  

 

 

B. Dissertation Scope and Scientific Contribution 

In this dissertation, new PGB diagnostic methodologies and tools will be developed using 

vibration, AE, and PE strain sensors. The potential contributions will include: 

(1) New effective vibratory PGB fault diagnostic methods and tools developed using Welch’s 

spectral averaging;  
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(2) New effective and computationally efficient PGB fault diagnostic methods and tools 

developed using AE sensor signal analysis techniques that are potentially less sensitive to 

the AM effect; 

(3) New effective and computationally efficient PGB fault diagnostic methods and tools 

developed using PE strain sensor signal analysis techniques that are potentially less 

sensitive to the AM effect; 

(4) A comparative study over all of PGB fault diagnostic methods developed in previous stages. 

There is no similar study available that is comparing the diagnostic performance of all three 

vibration, AE, and PE strain for PGB application; 

(5) Validation of the developed diagnostic methods and tools using seeded fault tests on a PGB 

test rig in the laboratory. 

 

C. Dissertation Outline 

The proposal is outlined as following. CHAPTER II gives a literature review on current 

PGB fault diagnostic techniques. CHAPTER III introduces the experimental test rig and PGB 

fundamentals. CHAPTER IV explains the methodology details and validation results of the 

vibration based PGB fault diagnostics methodology using Welch’s spectral averaging (SA). 

CHAPTER V depicts the methodology details and validation results for the new AE based PGB 

fault diagnostics methods. CHAPTER VI describes the development procedures details and 

validation results for the new PE strain sensor based PGB fault diagnostic method and tools. 

CHAPTER VII presents the comparative study for all those three vibration, AE, and PE strain 

methods and tools. CHAPTER VIII concludes the dissertation for the new PGB fault diagnostic 

methods. 



8 

 

II. LITERATURE REVIEW 

(Parts of the literature review in this chapter were previously published as Yoon, J., He, D., and 

Van Hecke, B., 2015, “On the use a single piezoelectric strain sensor for wind turbine planetary 

gearbox fault diagnosis”, IEEE Transactions on Industrial Electronics, DOI: 

10.1109/TIE.2015.2442216. and Yoon, J. and He, D., 2014, “Planetary gearbox fault diagnostic 

method using acoustic emission sensors”, IET Science, Measurement, and Technology, DOI: 

10.1049/iet-smt.2014.0375.) 

In this chapter, relevant literatures are reviewed. In particular, currently available PGB fault 

diagnosis techniques are reviewed intensively in Section A divided into two parts: vibration 

analysis and non-vibration analysis. Then, AE based machinery fault diagnostic methods and 

applications are reviewed in Section B. A brief review on the data mining based machinery fault 

diagnostic methods is followed in Section C. 

 

A. PGB Fault Diagnostics 

PGB fault diagnosis techniques could generally be split into two categories: vibration based 

and non-vibration analysis based.  They are viewed in the next two sections. 

 

1. Vibration Analysis 

In general, vibration is the most widely researched condition parameter in the field of 

machinery health diagnostics (e.g. bearings, gears, shafts, and etc.). Common vibration measuring 

apparatus includes accelerometers, displacement sensors, and velocity sensors. In industrial 

applications, useful methodologies vary depending on their specific environment.  
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Likewise, a large portion of PGB diagnostic systems has been devoted to vibration analysis 

using accelerometers. Time synchronous averaging (TSA) is one of the most representing signal 

processing techniques for vibration analysis to extract a periodic waveform from noisy signals of 

rotating machines (Braun, 1975; McFadden, 1987). The underlying idea of TSA is to intensify a 

periodically repeated waveform by computing the ensemble average of successive periods of a 

waveform of interest. Although TSA has been widely accepted to the fixed axes gear applications, 

literature to date barely finds TSA based PGB fault diagnosis. As reported in the literature, PGB 

fault diagnosis is very complicated for the following two reasons: (1) the complexity in dynamic 

rolling structures does not allow for direct attachment of sensors within the rotating elements for 

example, the sun and planet gears (Samuel et al., 2004); (2) PGB includes multiple and 

complicated gear meshes; dynamic rotating planets and it load sharing introduces complex gear 

mesh excitations (Luo et al., 2014).  

In a recent review study, Lei et al., (2014) summarized the PGB condition monitoring and 

fault diagnosis and prognosis methodologies in a review study. A vibration analysis technique 

specialized in PGB application, namely “vibration separation (VS)” was introduced by McFadden 

(1991) and McFadden and Howard (1990). Vibration separation enables to decompose a raw 

vibration signal into individual PGB component (e.g. sun gear or planet gears) oriented vibration 

signals by taking windowed vibration signals only when the vibration sensor, ring gear, planet gear, 

and sun gear are aligned inline. The windowed vibration signals are recombined specifically for 

the targeted gear component by utilizing the geometric properties of corresponding PGB. A 

pictorial description of the vibration separation technique is provided in Figure 3 and Figure 4. In 

the Figure 3, assume that the planet gear #1, which is marked in red, is the gear component of 

interest. In the first place, vibration separation is initiated when all of sun gear, planet gear #1, and 
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ring gear are placed in line with a vibration sensor; perpendicularly aligned in this example (see 

Figure 3(a)). From the moment, the vibration sensor collects a windowed vibration signal for tooth 

hunting. Until the planet gear #1 becomes available perpendicularly again, the sun gear and other 

planet gears operates as designed (see Figure 3(b) through Figure 3(e)). When the planet gear #1 

forms the next perpendicular alignment (see Figure 3(f)), the vibration sensor collects another 

windowed vibration signal. This procedure is repeated until the number of collected vibration 

windows and the number of planet gear teeth becomes the same. Then, the windowed vibration 

samples are decomposed upon the particular planetary gear geometry. Provided in Figure 4, 

vibration decomposition procedure is pictorially explained. Each windowed vibration signals are 

relocated by their tooth order and combined in time domain. 

 

 

Figure 3. Graphical representation of vibration separation technique. 
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Subsequent studies by Howard (1990), McFadden (1994), Samuel et al. (2004), and 

Lewicki et al. (2011) validated this research with slightly modified versions of the technique. 

However, the fundamental idea of vibration separation remains unchanged. 

 

Figure 4. Vibration separation decomposition procedure. 

 

Other researches on PGB fault diagnostic methods associated with vibration sensor could 

be found in the literature. Bartelmus and Zimroz (2009a) showed that the spectral characteristics 

of vibration signal obtained from planetary gear help not only fault detection but gear fault location. 

They further proposed a linear relation between the operating conditions and the signal amplitude 

based diagnostic feature for PGB condition monitoring with a time-varying load (Bartelmus and 
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Zimroz, 2009b). Then, Zimroz and Batkowiak (2013) suggested using data vectors based principal 

component analysis and canonical discriminant analysis to reduce data dimensions and increase 

diagnostic accuracy under non-stationary circumstances. Feng and Zuo (2012) derived 

mathematical models of a faulty planetary gear for detecting and locating a fault by considering 

the characteristic frequency of AM and frequency modulation (FM) effects. Feng and Liang 

(2014a) showed that an adaptive optimal kernel based method performs well to extract the time-

varying characteristic frequencies of PGB under non-stationary conditions. Feng et al., (2015) 

suggested that the iterative generalized demodulation can be used to improve the time-frequency 

readability of synchrosqueezing transform. Additionally, Feng et al.(2013) proposed the local 

mean decomposition based joint amplitude and frequency demodulation analysis for PGB fault 

diagnosis. To address the weak feature extraction in PGB fault diagnosis, Lei et al. (2013) 

presented an adaptive stochastic resonance method to strengthen the characteristic frequencies. 

Feng and Liang (2014b) introduced a Fourier dictionary into an iterative atomic decomposition 

thresholding method to enhance the gear fault characteristic frequency. Wu et al. (2004) have 

shown the detectability of a planet carrier crack in a planetary gearbox. In their study, raw vibration 

data and TSA data were transferred to the frequency domain and wavelet domain to obtain 

differentiable features. In a paper by Patrick et al. (2007), a vibration data based framework for 

on-board fault diagnosis and failure prognosis of helicopter transmission component was presented. 

In their study, TSA preprocessed vibration data and particle filter based diagnostic and prognostic 

models were used. Barszcza and Randall (2009) applied spectral kurtosis method for PGB fault 

detection of gear tooth crack in wind turbine application. Hilbert-Huang transform (HHT, Huang 

et al., 1998) analysis also has been recently applied to vibration analysis of rotational machinery 

fault detection (Liu et al., 2006 and Yan et al., 2006). However, the fundamental issue of the AM 
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effect of PGB has not been resolved. Thus, one attractive solution to this problem could be using 

alternative sensor signals that have less sensitivity to AM effect for PGB fault diagnosis and 

prognosis. 

2. Non-vibration Analysis 

Non-vibration based PGB fault diagnostic techniques are reviewed in this section. Two 

types of sensor analysis techniques are reported in the literature. One is torsional vibration analysis 

using torque sensor and the other one is strain analysis using fiber optic sensor. As pointed out, 

vibration signals theoretically have the AM effect caused by time variant vibration transfer paths 

due to the unique dynamic structure of rotating planet gears. First, in Feng and Zuo (2013), the 

effectiveness of torsional vibration analysis for PGB fault diagnosis was shown by using a torque 

sensor. The frequency characteristics of torsional vibration were displayed to be solely sensitive 

to the AM and FM effects caused by gear faults under constant torque on input and output shafts.   

Then, Kiddy et al. (2011) used fiber optic strain signals for PGB fault diagnosis and showed 

a close relationship between strain measurement and torque changes. In this study, fiber optic 

strain signals were divided into two parts based on their frequency: low frequency part and high 

frequency components. Actual damage detection was performed by using vibration separation 

technique by analyzing the high frequency component only. Although promising, the research 

reported in the literature on using less AM effect sensitive signals for PGB fault diagnosis has 

certain limitations. The torque sensors used by Feng and Zuo (2013) are more expensive than 

vibration and strain sensors and require special installation.  The fiber optic strain sensor array 

used by Kiddy et al. (2011) had to be embedded in the PGB in order to be effective.  The strain 

signals of fiber optic strain sensor can only be sampled at a maximum sampling rate up to 1 kHz, 

which limits its coverage on shaft speed above 2060 rpm.  
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B. AE Based Machinery Fault Diagnostic Methods 

AE is commonly defined as transient elastic waves within a material, caused by the release 

of localized stress energy (Mathews, 1983). AE was originally developed for non-destructive 

evaluation / testing (NDE/T) of static structures, however, those sudden internal stress 

redistributions are assumed to be related to failure on mechanical components such as crack 

initiation and growth, crack opening and closure, pitting on various monolithic materials, or 

composite materials. While vibration analysis is relatively well established, AE analysis is still 

immature not only for PGB fault diagnostics but for the entire machinery fault diagnostics field.  

An early endeavor to explain an AE based fault detection technique could be found in the 

literature. For gears, Tomoya et al. (1994) analyzed the fatigue crack growth in a carburized 

gear tooth by AE. In their paper, it was shown that AE energy rate increased proportionally to the 

stress intensity factor and crack growth rate. Tandon and Mata (1999) applied AE to spur gears 

test rig with jet oil lubrication system to investigate the detectability gear pitting damages. 

Simulated pitting has constant depth (500µm) but variable diameter (250/350/450/550/1100 and 

2200µm). Their investigation has shown the advantage of AE over vibration for early detection of 

defects in gears by observing that the AE data displayed a sharp increase in the parameters when 

the defect size was around 500µm while vibration data displayed a comparable increase when the 

defect size was more than 1000µm. For bearings, Yoshioka and Fujiwara (1982; 1984) have shown 

that AE parameters were able to identify bearing defects before their appearance in the vibration 

range. This led to an investigation that used the AE technique for the detection of subsurface cracks 

resulting from rolling contact fatigue (Yoshioka, 1992). The method provided the ability to 

determine the position of sub-surface fatigue cracks by relating the crack positions to the location 

of the AE signal source. The conclusions of Yoshioka and Fujiwara (1982; 1984) were later 
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validated by Hawman and Galinaitisin (1988) in a study that also made the observation that AE 

techniques are able to detect bearing faults earlier than vibration analysis methods.  

More recently, machinery fault diagnostic capability using AE analysis have captured 

growing acceptance due to the fact that AE sensor can potentially be more sensitive to the incipient 

faults than vibration sensors. In Al-Balushi and Samanta (2002), energy-based features were 

extracted from the time domain AE to construct energy index. Their method was further test for 

early fault diagnostic ability compared to other AE methods and vibration methods. In Al-Ghamd 

and Mba (2006), an experimental investigation on AE technique was provided in order to detect 

the presence of mechanical defect on a radially loaded bearing and its size. In their study, it has 

shown not only that AE offer an earlier fault detection than vibration, but also that AE provides an 

indication of the fault level. Scheer et al. (2007) have shown that AE is effective to capture early 

stage of gear faults (e.g. tooth edge fracture and pitting) before they grow to change their vibration 

behavior. In a study by Eftekharnejad et al. (2011) in comparing the applicability of AE and 

vibration technologies for the monitoring of rolling bearing degradation, it was shown that AE was 

more sensitive for incipient fault detection when compared to vibration. In Lucas (2012), AE is 

described as follows in comparison to vibration: (1) With AE, an early stage of defect including 

worn by usage and minor defects can be identified. In the meantime with vibration, damages must 

grow in a certain level to be represented by vibratory behaviors; (2) AE can pick up other faults 

such as a lack of lubrication, friction, and cracking, and (3) AE is considered as the next generation 

of vibration for condition monitoring. 

Despite the fact that AE has been studied a while and its feasibility is well proven, AE for 

machine fault diagnosis has not been widely applied yet in industrial applications because of the 

high computational cost and difficulties in AE analysis. AE is distinguishable from acoustic signals 
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in that acoustic signals generally lie on the audible range of human (e.g. 20 Hz ~ 20 kHz). On the 

contrary, AE signals lie on a higher frequency range (e.g. 1 kHz ~ 1 MHz). Thus a high sampling 

rate between 2 to 10 MHz has been a typical choice of sampling rate for AE data collection. Other 

issues may arise including a high data volume and complicated feature of AE signals, which make 

the AE data processing challenging. Recent studies indicate that the fundamental issue of high 

sampling rate could be overcome by applying frequency reduction technique so called heterodyne 

technique. Bechhoefer et al. (2013) and Qu et al. (2013a; 2014) have shown the effectiveness AE 

based fault detection and diagnosis using heterodyne technique with a split torque type gearbox.  

Other researches in regards to AE sensor could be found in the literature. Empirical mode 

decomposition (EMD, Huang et al., 1998) based analysis technique has been recently applied to 

AE analysis of full ceramic bearing fault diagnostic methods (He et al., 2011; Yoon et al., 2013). 

Welch’s spectral averaging based steel bearing fault diagnostic methods were developed in Van 

Heckeet al., 2014b. In the preceding papers, EMD was utilized in pre-processing before AE 

features were extracted. Then AE features were utilized in training supervised learning algorithms.   

C. Data Mining Based Machinery Fault Diagnostic Methods 

Machine fault diagnostics is a mapping procedure of a combinatorial information of 

features (𝐅𝒍) and measurements (𝐌𝑚) toward fault types (𝐓𝑛). That is 𝐅𝑙 × 𝐌𝑚 → 𝐓𝑛 , where 

𝑙, 𝑚, and 𝑛 stands for dimensions of feature space (𝐅), measurement space(𝐌), and fault type 

space(𝐓), respectively. Previously, this mapping was performed manually by experienced experts. 

Recently, data mining based diagnostics approaches were successfully applied to this mapping and 

the approaches could be classified: statistical approach and machine learning approaches.  

Machine learning approaches utilize computational algorithms to “learn” information 

directly from given data without predetermined model equations. Those algorithms adaptively 
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evolve through learning process and samples. Specifically, supervised learning for classification 

is a popular choice in data mining based diagnostics approaches. The diagnostic system obtains 

availability to classify the machine status into different classes (e.g. healthy, faulty, or 

identification of probable failure mode) based on input data (or signal) as a result of learning 

process. Supervised learning for classification (Mathworks, 2015) includes 1) support vector 

machine (SVM), 2) artificial neural network (ANN), 3) Naïve Bayes, 4) decision tree, 5) k-nearest 

neighbor (KNN), etc. In this dissertation, two types of ANN – the back propagation (BP) and the 

large memory storage and retrieval (LAMSTAR) – and KNN will be mainly utilized. 

ANN is a computational model that mimics a biological (human or animal) central nervous 

system (CNS). It comprises a layered network of simple processing elements (also called as 

neurons) such that this network enables to simulate a complex non-linear function or model. The 

decision making principles in the most of ANN approaches are alike. If the ‘n’inputs denoted as 

{𝑥𝑖𝑗; 𝑖 = 1,2, … , 𝑛} are fed into jth neuron, output ‘𝑦𝑗’ satisfies as: 

 𝑦𝑗 = fN [∑ 𝑤𝑖𝑗𝑥𝑖𝑗

𝑛

𝑖=1

] (1) 

wherefN(⋅) represents nonlinear activation function. BP network (Rumelhart et al., 1986) is the 

most representing ANN methodology which performs weight adjustment back and forth using 

gradient descent. A graphical structure of the BP network is provided in Figure 5.  

BP training process could be described in the following three steps and repeated until a desired 

error criteria is met (Rojas 1996): 

(1) Feed-forward computation: The summation of output signal from each neuron at the 

former layer are computed and saved. Also the evaluated derivatives of the activation 

functions are saved. In this step sigmoid function could be used as excitation. 
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Figure 5. A graphical structure of the BP network. 

 

(2) Back propagation from output layer to hidden layer and input layer: Back propagated error 

δ of each layer is computed and saved at each neuron. Now the partial derivatives of error 

with respect weight propagation are saved. 

(3) Weight updating: after computing errors in partial derivative forms, the neuronal weights 

are adjusted in the negative gradient direction. Herein, the learning constant of γ defines 

the range of the correction. 

The BP network based classification approach has been one of the most popular amongst the entire 

ANN algorithms. However, BP networks have the potential danger of being captured by local 

minima (Rojas 1996, Graupe, 2013). Also, in comparison to other machine learning methods, the 

BP network takes far more processing time. Therefore, in this dissertation, another ANN technique 

of LAMSTAR is presented for a machinery fault classifier. Unlike the other supervised learning 

algorithms, LAMSTAR network has barely been reported in the prognostics and health 

management (PHM) field. However, the LAMSTAR network was introduced in biomedical, 
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financial, and image processing fields due to its rapid processing capability. The LAMSTAR 

network was previously a United States patented (Graupe, 1999) ANN but currently is in the public 

domain (Google Patents, 2015). As opposed to the BP NN, the LAMSTAR network is claimed to 

be less sensitive to local minima phenomena (Graupe and Kordylewski, 1998). Besides, it is shown 

Its unique reward/punishment structure promises that the LAMSTAR network circumvents the 

local minima and converges to the desired output. In addition to that, LAMSTAR is faster than the 

BP network by as much as 30%, faster than SVM by as much as 55% (Graupe, 2013). Kohonen’s 

self-organizing map (SOM, Kohonen 1984) modules enable a LAMSTAR network to handle a 

huge amount of data in a short time. In an extreme cases, LAMSTAR network was shown to be 

almost one thousand times faster than BP network while a similar level of classification accuracy 

was achieved (Kordylewski et al. 2001).  

The LAMSTAR produces a winning decision ‘v’ from the J output neurons in the decision 

SOM module by considering the sum of link weights that connect the winning neuron w, in each 

k of the K input SOM modules. 

 𝐸(𝑗) = ∑ 𝐿𝑖,𝑗
𝑘,𝑚

𝑘∈𝐾

, ∀𝑗 ∈ 𝐽 (2) 

 𝐸(𝑣) ≥ 𝐸(𝑗), ∀𝑗 ∈ 𝐽. (3) 

where𝐿𝑖,𝑗
𝑘,𝑚

 represents the links between neuron i in kth module and neuron j in mth module. When 

feedback as to the correct decision becomes available, the LAMSTAR updates the link weight 

values associated with the decision making process as follows: 

 

 𝐿𝑖,𝑗
𝑘,𝑚(𝑡 + 1) = 𝐿𝑖,𝑗

𝑘,𝑚(𝑡) + Δ𝐿 (4) 
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 𝐿𝑖,𝑗
𝑘,𝑚(𝑡 + 1) = 𝐿𝑖,𝑗

𝑘,𝑚(𝑡) − Δ𝑀 (5) 

 𝐿(0) = 0 (6) 

whereΔ𝐿 and Δ𝑀 are pre-specified reward and punishment values, respectively. The details of 

LAMSTAR network implementation could be found in (Graupe, 2013).  

In Yoon et al. (2013), LAMSTAR network is explored for the first time in the PHM field 

to develop a full ceramic bearing fault diagnostic system. In this study, LAMSTAR network has 

shown to be effective and efficient tool as a machinery fault classifier. In TABLE I, a brief 

summary on all three fault classifiers are provided. 

 

 
Figure 6. A graphical structure of the LAMSTAR network (Yoon et al., 2013) 
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TABLE I. 

THE THREE SUPERVISED LEARNING ALGORITHMS 

Algorithm Description 

KNN 

(Altman, 1992) 

- One of the simplest supervised learning algorithm  

- An object is classified by a majority vote of its neighbors 

BP network 

(Rumelhart et 

al., 1986) 

- One of the most popular ANN methodology which mimics the biological 

CNS 

- Neural structure is optimized by back and forth propagated errors 

- BP network could potentially be captured by a local minima 

- The convergence of BP learning is slow 

LAMSTAR 

(Graupe and 

Kordylewski, 

1998) 

- SOM based ANN which claims to be less sensitive to a local minima and 

faster in training than BP 

- Unique link-weight system attempts to imitate the efficient storage and 

retrieval capabilities in big data applications 

- Inherent  transparency  by  link-weight system provides a forgetting 

capability in time-varying applications 

- United States patented (#US5920852) but is open for research and is in 

public domain. 
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III. EXPERIMENTAL TEST RIG 

(The majority of the content in this chapter is composed of previously published work as Yoon, J., 

He, D., and Van Hecke, B., 2015, “On the use a single piezoelectric strain sensor for wind turbine 

planetary gearbox fault diagnosis”, IEEE Transactions on Industrial Electronics, DOI: 

10.1109/TIE.2015.2442216. and Yoon, J. and He, D., 2014, “Planetary gearbox fault diagnostic 

method using acoustic emission sensors”, IET Science, Measurement, and Technology, DOI: 

10.1049/iet-smt.2014.0375.) 

This chapter introduces the experimental test rig used to validate the PGB fault diagnostic 

methods presented later on. 

A. Introduction of the PGB Test Rig 

Provided in Figure 7 displays the front view of the PGB test rig used in data collection the 

under different gear health and operating conditions.  

 

Figure 7. The front view of the PGB test rig. 
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The PGB test rig composes four main parts: (1) the DAQ systems, (2) the driving part, (3) 

the PGB gearbox, (4) the load generator. The DAQ systems will be introduced in each chapter by 

introducing their sensors and design purposes. A Hall effect sensor and a toothed wheel mounted 

on the motor shaft were paired to records the real-time shaft rotating remarks. The driving motor 

is a 3-phase 10 HP induction motor with a motor controller. The output shaft of the gearbox is 

connected to an electricity generator and a grid tie to serve as a load generator. The structure of 

the PGB test rig is similar to those used in a residential wind turbine. 

B. Fundamental of PGB 

In this dissertation, a commercially available single stage PGB with a 5:1 speed reduction 

ratio was used. Amongst the three different PGB operational types, a specific PGB with the fixed 

ring gear was utilized. Provided in Figure 8, a notional sketch of the PGB structure with the fixed 

ring gear could be found.  

 

Figure 8. Notional sketch of a PGB structure. 
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For this type of PGB, the number of teeth is linear to the radius of each gears pitch circle. 

This indicates that the input to output velocity ratio is also related to the angular velocity (𝜔) of 

the gears. The gear ratio can be defined as:  

 

𝑅 =
𝜔1

𝜔𝐴

= 1 +
𝑧3

𝑧1

 (7) 

where 𝜔i is the angular velocities on i𝑡ℎ  gear component; 𝑧i is the number of teeth on i𝑡ℎ  gear 

component; the gear component index subscript 1, 2, 3, and A correspond sun, planet, ring, and 

planet carrier, respectively. The planet carrier rotation speed (i.e. output speed) in frequency could 

be obtained as: 

 𝑓𝑎 =
𝑓1

𝑅
 (8) 

where 𝑓𝑖 is the rotation speed in frequency at i𝑡ℎ gear component. Also, a meshing characteristic 

frequency of PGB can be obtained as: 

 𝑓12 = 𝑓23 =
𝑓1𝑧1𝑧3

(𝑧1 + 𝑧3)
=

𝑓1 ⋅ 𝑧3

𝑅
 (9) 

where 𝑓𝑖𝑗 is the relative rotation speed in frequency between i𝑡ℎ and j𝑡ℎ gear component. The most 

common three failure modes of the PGB is the sun gear fault, planet gear fault, and ring gear fault. 

The corresponding fault frequencies are represented as follows: 

 𝑓𝑓,1 = 𝑠 ⋅ (𝑓1 − 𝑓𝑎) =
𝑓1𝑧3𝑠

(𝑧1 + 𝑧3)
 (10) 

 𝑓𝑓,2 = 2(𝑓2 + 𝑓𝑎) =
4𝑛1𝑧1𝑧3

(𝑧3
2 − 𝑧1

2)
 (11) 
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 𝑓𝑓,3 = 𝑠 ⋅ 𝑓𝑎 =
𝑓1𝑧1𝑠

(𝑧1 + 𝑧3)
 (12) 

where 𝑓𝑓,𝑖 indicates the fault frequency at i𝑡ℎ gear component; 𝑠represents the number of planet 

gears in the gearbox. For more details, see Bartelmus and Zimroz (2011).  TABLE II and TABLE 

III present the structural information and characteristic frequencies of the PGB used in this 

dissertation. 

TABLE II 

THE PARAMETERS OF THE PGB. 

Parameter 
Number of teeth 

on sun gear (𝑧1) 

Number of teeth 

on planet gear 

(𝑧2) 

Number of teeth 

on ring gear (𝑧3) 

Number of planet 

gears (𝑠) 

Value 27 41 108 3 

 

TABLE III 

CHARACTERISTIC FREQUENCIES OF THE PGB AT VARIED INPUT SHAFT SPEED. 

Input Shaft 

Speed in 

Frequency (𝑓1) 

Output Shaft 

Speed in 

Frequency (𝑓𝑎) 

Meshing 

Frequency  

(𝑓12 = 𝑓23) 

Sun Fault 

Frequency  

(𝑓𝑓,1)  

Planet Fault 

Frequency  

(𝑓𝑓,2) 

Ring Fault 

Frequency  

(𝑓𝑓,3) 

10 2 216 24 10.67 6 

20 4 432 48 21.33 12 

30 6 648 72 32.00 18 

40 8 864 96 42.67 24 

50 10 1080 120 53.33 30 

* All the values are in unit of Hz. 
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IV. VIBRATION BASED PLANETARY GEARBOX DIAGNOSIS  

USING SPECTRAL AVERAGING 

 

The wind energy industry currently utilizes vibratory analysis as a standard method for 

PGB condition monitoring. Amongst them, the vibration separation (VS) is considered as one of 

the well-established vibratory analysis techniques. However, the drawbacks of the VS technique 

as reported in the literature include: potential sun gear fault diagnosis limitation, multiple sensors 

and large data requirement, and vulnerability to external noise. This paper presents a new method 

using a single vibration sensor for PGB fault diagnosis.  It combines the techniques of enveloping, 

Welch’s spectral averaging, and data mining based fault classifiers. Using the presented approach, 

vibration fault features for wind turbine PGB are extracted as condition indicators (CIs) for fault 

diagnosis and CIs are used as inputs to fault classifiers for PGB fault diagnosis.  The presented 

methodology is validated using a set of seeded fault tests performed on a PGB test rig in a 

laboratory. The results have shown a promising PGB fault diagnosis performance with the 

presented method. 

The remainder of the Chapter is organized as follows. Section A gives a detailed 

explanation of the proposed methodology. In Section B, the details of the PGB test rig, seeded 

fault tests in a laboratory, and the experimental setup for validating the proposed methodology. 

Section C presents the PGB fault diagnostic results from the seeded fault tests. Finally, Section D 

concludes the Chapter. 
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A. Methodology 

The framework of the methodology for wind turbine PGB fault diagnosis is provided in 

Figure 9. The methodology will be explained in two sections. Section A.1 approach for processing 

the PGB vibration signals followed by computation of CIs in Section A.2. Then, the CIs are further 

input into machine learning algorithms for PGB fault diagnosis. 

 

Figure 9. The framework of the methodology for PGB fault diagnosis. 

1. Spectral Averaging Based Machinery Fault Diagnosis 

Welch (1967) expressed the theoretical background of this approch by letting 𝑍(𝑗), for 𝑗 =

0, … 𝑁 − 1 be a sample from a stationary, stochastic sequence whose expected value of 𝐸(𝑍) = 0 

and letting 𝑍(𝑗) have spectral density 𝑃(𝑓), |𝑓| ≤
1

2
, where 𝑓 is the normalized frequency. Then if 

one takes several possibly overlapping segments of length 𝐿 with starting points of the segments 

𝑀 units apart and letting Z1(𝑗), 𝑗 = 0, … , 𝐿 − 1 be the first segment. Then, 

 𝑍1(𝑗) = 𝑍(𝑗), for 𝑗 = 1, … , 𝐿 − 1 (13) 

Likewise, 
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 𝑍2(𝑗) = 𝑍(𝑗 + 𝑀), for 𝑗 = 1, … , 𝐿 − 1 (14) 

And finally, 

 Z𝑘(𝑗) = 𝑍(𝑗 + (𝐾 − 1)𝑀), for 𝑗 = 1, … , 𝐿 − 1 (15) 

The result comprises 𝐾 segments (i.e.𝑍1(𝑗), … , 𝑍𝑘(𝑗)) covering the entire sample of interest such 

that (𝑘 − 1)𝑀 + 𝐿 = 𝑁. Then, from each modified segment of length 𝐿, a periodogram is obtained. 

In other words, a proper windowing function can be applied for fourier transforms of segments. 

This can be expressed in mathematical form as: 

 𝐹𝑘(𝑛) =
1

𝐿
∑ 𝑍𝑘(𝑗)𝑊(𝑘)𝑒−𝑖(2𝑘𝑗𝑛/𝐿)

𝐿−1

𝑗=0

 (16) 

where 𝑖 stands for the imaginary unit. The periodograms correspond to the 𝐾 number of segments 

can be obtained as: 

 𝐵𝑘(𝑓𝑛) =
𝐿

𝑆
|𝐹𝑘(𝑛)|2, for 𝑘 = 1,2, … , 𝐾 (17) 

where 𝑓𝑛 =
𝑛

𝐿
, for n = 0, … ,

𝐿

2
; S =

1

𝐿
∑ 𝑊2(𝑗)𝐿−1

𝑗=0 . Finally, the Welch’s PSD estimate, �̂�(𝑓𝑛), is 

obtained by averaging Eq (5) as: 

 �̂�(𝑓𝑛) =
1

𝐾
∑ 𝐵𝑘(𝑓𝑛)

𝐾

𝑘=1

 (18) 

Figure 10 displays a graphical representation of the SA for rotating machinery fault diagnosis 

shown in Van Hecke et al. (2014b). To implement the SA for machinery fault diagnosis, the sensor 

signals must be segmented by a particular size. The shaft revolutionary information is first obtaind 

by using the tachometer’s zero-crossing. The data points in each revulution is interpolated and 

resampled into equally sized revolutions by applying the time synchronized resampling (TSR, 
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Bechhoefer et al., 2013a). Then the duration between shaft revolutions with two overlaps before 

and after is utilized as the segments to apply SA. The SA based vibration fault features were 

obtained from the time domain signal as below: 

 𝑥𝑆𝐴 = |ℱ−1(|ℱ(𝑥)|2)| (19) 

where ℱ  and ℱ−1  represent Fourier transform and inverse Fourier transform, respectively; 

|ℱ(𝑥)|2 originally refers to the PSD of the signal 𝑥 but is replaced with the PSD estimate with 

Welch’s method in this study. The terminology “Welch” indicates the CIs from 𝑥𝑆𝐴, hereafter. 

 

Figure 10. Welch's method for machinery fault diagnosis. 

  



30 

 

2. Vibration Based Fault Feature Extraction 

In this Chapter, the CIs reported effective for gear fault diagnosis using vibration signals 

for wind turbine applications will be computed as reported in Sheng (2012). The five basis CIs 

were selected: root mean square (RMS), peak to peak (P2P), skewness (SK), kurtosis (KT), and 

crest factor (CF). Each type of CI can be computed using different input signals. Other types of 

input signals were generated by pre-processing: residual, energy operator (EO), narrow band (NB), 

amplitude modulation (AM), frequency modulation (FM), The residual is a time domain signal 

with the primary meshing and shaft components removed from the input signal. Gear distributed 

fault (GDF) is used as an effective CI for distributed gear faults wear and multiple tooth cracks. 

GDF is calculated from the formula below: 

 𝐺𝐷𝐹 =
StdDev(residual signal)

StdDev(original signal)
 (20) 

The EO introduced by Teager (1992) is defined as the residual of the autocorrelation function as 

following: 

 𝑥𝐸𝑂,𝑖 = 𝑥𝐼𝑁,𝑖
2 − 𝑥𝐼𝑁,𝑖−1 ⋅ 𝑥𝐼𝑁,𝑖+1,(for 𝑖 = 2, 3, … , 𝑁 − 1) (21) 

where𝑥𝐸𝑂,𝑖 is the ith element of EO data; 𝑥𝐼𝑁,𝑖 is the ith element of the input data𝑥𝐼𝑁. The NB 

filtered signal, 𝑥𝑁𝐵, could be obtained by filtering out all tones except those of the gear mesh and 

the characteristic frequencies. In this Chapter, the characteristic frequencies are the sun gear fault 

frequency, planet gear fault frequency, and ring gear fault frequency, respectively. AM and FM 

CIs are obtained by AM analysis and FM analysis of 𝑥𝑁𝐵. AM and FM signals are the absolute 

value and the derivative of the angle of the Hilbert transform of 𝑥𝑁𝐵, respectively. For more details 

of NB, AM, and FM, please see Sheng (2012). Finally, Welch’s method is further processed to 
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TABLE IV 

THE DEFINITIONS OF THE CIS FOR THE VIBRATION BASED PGB DIAGNOSIS 

  Input Signal (𝑥𝐼𝑁) 

  Raw EO NB AM FM Welch Welch EO 

Basis CI Fomula 

Time 

synchronous 

averaged and 

raw signal 

(𝑥𝑇𝑆𝐴/𝑥𝑟𝑎𝑤) 

A residual of 

the 

autocorrelation 

function 

(𝑥𝐸𝑂) 

Narrow band 

pass filtered 

(𝑥𝑁𝐵) 

Amplitude 

modulation of 

NB filtered 

signal 

[𝐴𝑀(𝑥𝑁𝐵)] 

Frequency 

modulation of 

NB filtered 

signal 

[𝐹𝑀(𝑥𝑁𝐵)] 

Welch windowed 

spectral averaging 

(𝑥𝑆𝐴) 

Energy operator 

of Welch 

[(𝑥𝑆𝐴)𝐸𝑂] 

Root mean 

square 

(RMS) 
𝑅𝑀𝑆(𝑥𝐼𝑁) = √

1

𝑁
∑ 𝑥𝑖

2

𝑁

𝑖=1

 𝑅𝑀𝑆(𝑥𝐼𝑁):measures the energy evolution of the input signal. 

Peak to 

peak (P2P) 

𝑃2𝑃(𝑥𝐼𝑁)

=
[ max

1≤𝑖≤𝑁
(𝑥𝑖) − min

1≤𝑖≤𝑁
(𝑥𝑖)]

2
 

𝑃2𝑃(𝑥𝐼𝑁):measures the maximum difference within the input signal. 

Skewness 

(SK) 

𝑆𝐾(𝑥𝐼𝑁)

=

1

𝑁
∑ (𝑥𝑖 − �̅�)𝑁

𝑖=1
3

[√
1

𝑁
∑ (𝑥𝑖 − �̅�)𝑁

𝑖=1
2

]

3 
𝑆𝐾(𝑥𝐼𝑁):measures the asymmetry of the input signal about its mean value. A negative SK value and positive SK value imply 

the data has a longer or fatter left tail and the data has a longer or fatter right tail, respectively. 

Kurtosis 

(KT) 

𝐾𝑇(𝑥𝐼𝑁)

=
𝑁 ∑ (𝑥𝑖 − �̅�)𝑁

𝑖=1
4

[∑ (𝑥𝑖 − �̅�)𝑁
𝑖=1

2
]

2 𝐾𝑇(𝑥𝐼𝑁):measures the peakedness, smoothness, and the heaviness of tail in the input signal. 

Crest 

factor (CF) 
𝐶𝐹(𝑥𝐼𝑁) =

𝑃2𝑃(𝑥𝐼𝑁)

𝑅𝑀𝑆(𝑥𝐼𝑁)
 𝐶𝐹(𝑥𝐼𝑁):measures the ratio between 𝑃2𝑃(𝑥𝐼𝑁) and 𝑅𝑀𝑆(𝑥𝐼𝑁) to describe how extreme the peaks are in the input signal. 

Note: 𝑥𝑖 is ith element of the input data𝑥𝐼𝑁; 𝑁 is the length of the input data𝑥𝐼𝑁; max (⋅) returns the maximal element of input data𝑥𝐼𝑁; min (⋅) returns the 

minimal element ofinput data𝑥𝐼𝑁; �̅� is a mean value of the input data𝑥𝐼𝑁 defined as ∑ 𝑥𝑖
𝑁
𝑖=1 /𝑁; NB, AM, and FM refers to a narrow band, amplitude 

modulation, and frequency modulation, respectively. 
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obtain Welch CIs and Welch EO CIs. TABLE IV provides the definitions of the CIs investigated 

for PGB fault diagnosis. 

B. Experimental Setup 

This section covers the experimental setup used to validate the presented vibration based 

PGB fault diagnostic method. First, The DAQ system for vibration based PGB fault diagnosis is 

briefly introduce in section B.1. Then, seeded gear fault test procedure and DAQ plan will be 

shown in section B.2. 

1. The DAQ System for Vibration Sensors 

Figure 11displays the PGB test rig used in vibration data collection the under different gear 

health and operating conditions. The DAQ system includes a local data collector (LDC, model: 

turbine PhD by Renewable NRG systems), two high speed accelerometers, and tachometer. A Hall 

effect sensor and a toothed wheel mounted on the motor shaft were paired to records the real-time 

shaft rotating remarks. The detail settings for the DAQ system are provided in TABLE V.  
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Figure 11. The PGB test rig for wind turbine simulator. 

TABLE V 

VIBRATION DAQ SETTING PARAMETERS. 

 Vibration sensor 1 Vibration sensor 2 Tachometer 

Sensor High speed accelerometer High speed accelerometer Hall effect sensor 

Manufacturer NRG systems NRG systems Sensoronix 

Sampling rate 6104 (Hz) 24414 (Hz) 1000 (Hz) 

Sample recoding 

time for TSA 
40 (sec)×5 samples 20 (sec) ×5 samples - 

Sample 

recording time 

for SA 
4 (sec) ×50 samples 2 (sec) ×50 samples - 
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2. Seeded Gear Faults 

Three types of PGB faults were created: sun gear partial tooth cut, planet gear partial tooth 

cut, and ring gear tooth breakage. Each type of gear fault was artificially created by damaging a 

tooth on a sun gear, planet gear, and ring gear as shown in Figure 12. Both healthy and faulty 

gearboxes were tested under 20 combinational conditions of four varying loading conditions: 0% 

loading, 25% loading, 50% loading, and 75% loading out of the rated torque of the PGB, and five 

varying shaft speeds: 10 Hz, 20 Hz, 30 Hz, 40 Hz, and 50 Hz. After switching one gearbox to 

another, vibration sensors were mounted in the same location on the PGB to preserve the 

experimental consistency. 

 

Figure 12. Seeded faults: (a) sun gear fault, (b) planet gear fault, (c) ring gear fault. 

 

C. Validation Results 

Figure 13 provides an overview of the experimental procedures including the proposed 

methodology.  
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Figure 13. Overview of the experiment procedure for PGB fault diagnosis. 

During the experiment, vibration data were processed with the following four different 

methods: (a) TSA, (b) enveloping then TSA. The presented methods are the proposed solution in 

this paper and include: (c) Welch’s method (i.e. SA), (d) enveloping then Welch’s method. After 

each processing technique was applied, the CIs were computed. First, low pass filtering was 

performed before each vibration processing technique as shown in Figure 13. Fast kurtogram, as 

reported in Antoni (2007), was applied to find universal filter bands for each vibration sensor. 

Statistics of the impulsivity locations over varied input shaft speed suggests that the accelerometer 
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1 and 2 have impulsivity located below 3 kHz and 12 kHz; thus, 3 kHz and 12 kHz were chosen 

for the cutoff frequencies in the low pass filters for accelerometer 1 and 2, respectively.  

TABLE VI, gives a summary on the percentage separation of faulty gears from the healthy 

one using CIs generated by each of the four methods.  

TABLE VI 

STATISTICAL SEPARATION OF EACH CIS FOR PGB FAULT ISOLATION. 

Accelerometer 1 (fs = 6104) 

 Sun fault Planet fault Ring 

Method 

(a) TSA - ≥80%: P2P - 

(b) Env-TSA - ≥80%: P2P ≥80%: RMS, P2P 

(c) Welch 
≥80%: Res RMS, Res P2P, 

WEO P2P 

≥ 𝟗0%: RMS, Res RMS  

≥80%: P2P, Res P2P, EO 

P2P, W RMS, WEO P2P 

≥80%: Res RMS, Res CF, 

EO P2P, W RMS, W KT, 

WEO RMS 

(d) Env-

Welch 

≥80%: Res RMS, EO RMS, 

WEO P2P 

≥80%: P2P, Res RMS, EO 

RMS, EO P2P, W P2P, 

WEO P2P 

≥80%: Res RMS, EO RMS, 

WEO RMS, WEO P2P 

Accelerometer 2 (fs = 24414) 

 Sun Planet Ring 

Method 

(a) TSA 
≥80%: Res RMS, Res P2P, 

GDF 
- ≥90%: GDF 

(b) Env-TSA 
≥80%: Res RMS, Res P2P, 

GDF 

≥80%: RMS, Res RMS, Res 

P2P  
- 

(c) Welch 

≥ 𝟗0%: FM0  

≥80%: Res RMS, Res KT, 

GDF 

≥100%: Res RMS, WEO 

RMS 

≥90%: P2P, Res P2P, EO 

RMS, EO P2P, W P2P, 

WEO P2P 

≥80%: RMS, W KT, W SK 

≥100%: GDF  

≥90%: FM0, W RMS, 

WEO KT, WEO SK 

≥80%: W KT, W CF, W 

SK, WEO RMS 

(d) Env-

Welch 

≥80%: Res RMS, EO RMS, 

WEO P2P 

≥80%: P2P, Res RMS, EO 

RMS, EO P2P, W P2P, 

WEO P2P 

≥80%: Res RMS, EO RMS, 

WEO RMS, WEO P2P 

* Note: “Res” stands for the residual signal. 

The percentage separation is defined as the percentage of the data samples that show a 

statistically significant difference between the CIs of the fault gear and healthy gear. From TABLE 

VI, one can see that the conventional signal processing techniques, method (a) and (b), barely 

differentiate the faulty PGBs from the healthy ones. On the other hand, the proposed method (c) 

and method (d) generated multiple CIs displaying PGB fault isolating performance. Also from 

TABLE VI, one can see that the most effective CIs were obtained when vibration signals of 
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accelerometer 2 were processed with method (c).  These CIs include FM0 achieving 90% 

separation for the sun gear fault, Res RMS and WEO RMS achieving 100% separation for the 

planet gear fault, and GDF achieving 100% for the ring gear fault.  

Figure 14 graphically shows the separation of the fault gear from the healthy gear achieved 

by above mentioned CIs. Each point and the vertical bar at each point represent the averaged CI 

value and the 95% confidence interval. 

 
     (a) 

 

 
    (b) 

 

 
    (c) 

 

 
    (d) 

 

Figure 14. Effective CIs (a) FM0: healthy vs. Sun gear fault, (b) Residual RMS: healthy vs. 

planet gear fault, (c) WEO RMS: healthy vs. planet gear fault, (d) GDF: healthy vs. ring gear 

fault. 
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Effective CIs in TABLE VI were further utilized to isolate the fault locations (e.g. sun, 

planet, ring, or healthy) using three fault classifiers: KNN, BP, and LAMSTAR. In TABLE VII 

and  

, the PGB fault diagnostic results using those fault classifiers are presented with the 

individual CIs and combinations of CIs. PGB operational parameters such as loading and shaft 

speed were included.  

TABLE VII 

PGB FAULT DIAGNOSTIC RESULTS USING INDIVIDUAL CI 

CI: FM0 

Classifier KNN (k=15) BP (N=40) LAMSTAR 

Type of fault Mean error (μ) 
Std dev.  

(σ) 
Mean error (μ) 

Std dev.  

(σ) 
Mean error (μ) 

Std dev.  

(σ) 

Healthy 24.56 2.94 47.79 20.27 62.97 7.95 

Sun 39.48 3.04 47.08 26.97 73.11 6.70 

Planet 38.66 3.24 51.04 21.41 66.65 10.87 

Ring 49.03 2.89 43.33 31.43 78.25 6.49 

Overall 37.94 1.31 47.24 12.38 70.24 1.56 

CI: Res RMS 

Classifier KNN (k=15) BP (N=30) LAMSTAR 

Type of fault Mean error (μ) 
Std dev.  

(σ) 
Mean error (μ) 

Std dev.  

(σ) 
Mean error (μ) 

Std dev.  

(σ) 

Healthy 20.50 2.37 43.97 21.75 34.67 3.83 

Sun 38.04 2.94 32.63 25.79 42.58 3.38 

Planet 19.21 2.42 54.16 22.01 33.39 3.45 

Ring 34.07 2.80 29.47 20.32 47.43 3.36 

Overall 27.95 1.03 40.32 13.18 39.47 1.14 

CI: GDF 

Classifier KNN (k=15) BP (N=30) LAMSTAR 

Type of fault Mean error (μ) 
Std dev.  

(σ) 
Mean error (μ) 

Std dev.  

(σ) 
Mean error (μ) 

Std dev.  

(σ) 

Healthy 12.30 2.01 24.30 11.80 12.7 1.98 

Sun 25.11 2.59 45.45 32.60 28.12 2.94 

Planet 22.14 2.39 31.81 12.96 26.13 2.62 

Ring 15.13 1.85 15.89 15.70 16.01 1.65 

Overall 18.67 0.87 29.64 12.86 20.74 1.07 

CI: WEO RMS 

Classifier KNN (k=15) BP (N=40) LAMSTAR 

Type of fault Mean error (μ) 
Std dev.  

(σ) 
Mean error (μ) 

Std dev.  

(σ) 
Mean error (μ) 

Std dev.  

(σ) 

Healthy 77.20 2.28 62.37 25.16 73.50 7.72 

Sun 70.79 2.47 73.67 12.83 78.67 6.76 

Planet 73.65 2.39 80.26 13.13 77.91 8.06 

Ring 70.24 2.23 84.54 12.87 75.27 7.08 

Overall 72.97 1.03 75.20 0.97 76.34 0.95 

* Note: k is the search radius for a majority vote of its neighbors in KNN; N is the number of neurons in the hidden layer in BP 

network. 
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TABLE VIII 

PGB DIAGNOSTIC RESULTS USING CI COMBINATION 

1st CI combination: FM0, Res RMS, WEO RMS, GDF 

Classifier KNN (k=3) BP (N=40) LAMSTAR 

Type of fault Mean error (μ) 
Std dev.  

(σ) 
Mean error (μ) 

Std dev.  

(σ) 
Mean error (μ) 

Std dev.  

(σ) 

Healthy 1.52 0.88 4.56 13.64 1.99 0.73 

Sun 6.38 1.44 9.24 18.49 6.67 1.50 

Planet 4.33 1.30 14.13 21.60 4.43 1.11 

Ring 2.27 1.01 7.96 22.77 2.81 0.87 

Overall 3.63 0.56 8.94 12.71 3.98 0.54 

2nd CI combination: P2P, FM0, Res RMS, Res KT, Res P2P, GDF, EO RMS, EO P2P, W RMS, W P2P, WEO RMS, WEO 

P2P, WEO KT, WEO SK. 

Classifier KNN (k=4) BP (N=40) LAMSTAR 

Type of fault Mean error (μ) 
Std dev.  

(σ) 
Mean error (μ) 

Std dev.  

(σ) 
Mean error (μ) 

Std dev.  

(σ) 

Healthy 28.73 2.47 14.33 18.19 29.15 2.67 

Sun 23.11 2.65 22.42 22.76 22.29 2.38 

Planet 21.24 2.38 14.06 13.03 19.31 2.00 

Ring 29.73 2.68 11.44 18.02 30.04 2.40 

Overall 25.71 1.20 15.51 12.44 25.20 1.22 

* Note: k is the search radius for KNN; N is the number of neurons in the hidden layer in BP network 

 

Out of 2000 samples, 70% of the data were randomly chosen and utilized for training and 

the remaining 30% of data were used for validation. In order to measure the statistical fault 

diagnostic performance, all classifiers were run 50 times in a random sampling manner. The 

average error rates (% of error) and its standard deviation were presented. The error rate is defined 

as the percentage of misclassified samples in validation. For KNN, the search radius of 𝑘 was 

investigated within 𝑘 = 3~15 range and the minimal error rate is shown on each table. Also, for 

the BP network, the neuronal structures in the hidden layer were investigated for N = 10, 20, 30, 

40, and 50 and the one showing the minimal error is provided. 

As one can see from TABLE VII, none of the single CI provides acceptable diagnostic 

performance for all three fault classifiers although each CI can detect faults from at least one or 

more PGB fault types. Thus, two combinations of CIs were generated. In the first CI combination, 

the CIs showing the highest statistical separation (i.e.≥90% for sun gear fault, 100% for planet 
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gear and ring gear faults) were grouped. In the second CI combination, the CIs with the second 

highest statistical separation (i.e.≥ 80% for sun gear fault, ≥ 90% for planet gear and ring gear 

faults) were included. The fault diagnostic results with both CIs combinations are provided in 

. KNN achieved the overall best error rate of 3.63% when the first CI combination were 

used. When the local minima convergence is ignored, BP network achieved less than 5% overall 

diagnostic error rate. However, the final error rate drastically dropped down when the local minima 

convergence is considered. It should be noted that the occurrence of local minima convergence 

was approximately 12~16% over 50 runs and it is well reflected on the standard deviation of the 

error rate. Lastly, LAMSTAR network achieved the similar diagnostic error rate of 3.98% as it is 

claimed to be insensitive to the local minima issue unlike BP network. However, LAMSTAR 

network achieved the minimal standard deviation and it is desired aspect from the reliability 

perspective. 

D. Conclusions 

In this Chapter, a new method using a single vibration sensor for PGB fault diagnosis was 

presented.  It combines the techniques of enveloping, Welch’s spectral averaging, and data mining 

based fault classifiers. Using the presented approach, vibration fault features for wind turbine PGB 

are extracted as CIs and CIs are used as inputs to fault classifiers for PGB fault diagnosis.  The 

presented method was validated with a set of seeded fault tests performed on a PGB test rig in a 

laboratory. First, the digitized accelerometer signals were processed by SA technique to extract 

PGB fault features and to compute CIs. The effective CIs were grouped into two combination sets 

according to the level of statistical separation followed by training three machine learning 

algorithms as fault classifiers: KNN, BP network, and LAMSTAR network. Each fault classifier 

was run 50 times to obtain the statistical results. The validation results have shown: (1) the minimal 
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error rate of 3.63% was achieved using KNN when the first set of CI combination was used; (2) 

an average diagnostic error rate of 8.94% was achieved using the BP algorithm. The local minima 

convergence was observed at a rate of 12~16% out of 50 runs; (3) LAMSTAR network displayed 

less sensitivity to the local minima issue and achieved a similar level of diagnostic error rate of 

3.98% compared to KNN when the first set of CI combination was used. Also, LAMSTAR 

network resulted in the minimal standard deviation which is a desirable measurement from the 

reliability perspective. In summary, the proposed method effectively differentiated the localized 

faults on all gears: sun gear, planetary gear, and ring gear, which has not been presented in the 

literature.  
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V. A NEW PLANETARY GEARBOX FAULT DIAGNOSTIC METHOD  

USING AN ACOUSTIC EMISSION SENSOR 

 

(The majority of the content in this chapter is a preprint of an accepted paper submitted to IET 

Science, Measurement, and Technology and subject to Institution of Engineering and Technology 

Copyright. The copy of record will be available at IET Digital Library as Yoon, J. and He, D., 

2015, “Planetary gearbox fault diagnostic method using acoustic emission sensors”, IET Science, 

Measurement, and Technology, DOI: 10.1049/iet-smt.2014.0375.) 

In this Chapter, a new AE sensor based planetary gearbox (PGB) fault diagnostic method 

is presented. It is sometimes painful to identify the vibration directions if the sources are complex 

and combinative. Hence, applying an AE sensor analysis could be beneficial to PGB fault 

diagnosis in that AE signals propagate from the wave source (i.e. faults) to sensing apparatus 

within mechanical components. The method includes a heterodyne based AE data acquisition 

system, empirical mode decomposition (EMD) based AE signal analysis method, and computation 

of condition indicators (CIs) for PGB fault diagnosis. The heterodyne technique is hardware-

implemented to downshift the sampling frequency of AE signals at a rate compatible to vibration 

analysis. The sampled AE signals are processed using EMD to extract PGB fault features and 

compute the CIs. The CIs are input into supervised learning algorithms for PGB fault diagnosis. 

The method is validated on a set of seeded localized faults on all gears: sun gear, planetary gear, 

and ring gear. The validation results have shown a promising PGB fault diagnostic performance 

using the presented method.  

The main contribution of the chapter is the development of the new PGB fault diagnosis 

method using AE sensors and the validation of the method using seeded gear tooth cut and 

breakage faults on all PGB gears: sun gear, planetary gear, and ring gear. Even though some of the 
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components of the presented method have been used for a long time, integrating AE sensor with 

them for PGB fault diagnosis and validating the method with real seeded fault tests on a PGB test 

rig has never been reported in the literature. 

The remainder of the Chapter is organized as follows. Section A gives a detailed 

explanation of the presented methodology. In Section B, the experiments setup to validate the 

presented methodology and the seeded fault tests on a laboratory PGB test rig are explained. 

Section C presents the PGB fault diagnostic results from the seeded fault tests. Finally, Section D 

concludes the Chapter by showing a promising PGB fault diagnostic performance using the 

presented method. 

A. Methodology 

An overview of the proposed AE based PGB fault diagnostic methodology is provided in 

Figure 15. The heterodyne technique is hardware-implemented to sample AE signals at a rate of 

100 kHz which is compatible to vibration analysis. The sampled AE signals are then processed 

using EMD to extract PGB fault features and compute CIs. The CIs are further input into fault 

classifiers. 
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Figure 15. Overview of the proposed PGB fault diagnostic method with AE sensor. 

1. AE Sampling Rate Reduction Using Heterodyne Technique 

The theoretical foundation of heterodyne technique for AE sensor will be reviewed in this 

section. To apply AE based machine fault diagnosis, one technical challenge is to deal with the 

data storage and processing burden caused by the high sampling rate of an AE sensor. To meet the 

challenge, heterodyne technique (Fessenden, 1902) was hardware implemented to build up the AE 

DAQ system. Heterodyning is a radio signal processing technique which downshifts the frequency 

of the AE signals so that its sampling rate be comparable to that of vibration signals. Qu et al. 

(2013b) has shown that heterodyne based AE DAQ could be effective at a sampling rate as low as 

to 20 kHz for a split torque type gearbox. 

The AE demodulating technique implemented in this Chapter works like a radio quadrature 

demodulator: shifting the carrier frequency to baseband, followed by low pass filtering. For two 



45 

 

signals with different frequencies 𝑓1  and  𝑓2 , respectively, their product could be written by 

trigonometric identities as: 

 sin(2𝜋𝑓1𝑡) sin (2𝜋𝑓2𝑡) =
1

2
cos[2𝜋(𝑓1 − 𝑓2)𝑡] −

1

2
cos[2𝜋(𝑓1 + 𝑓2)𝑡] (22) 

where 𝑓1  is the AE carrier frequency and 𝑓2  is the demodulator’s reference signal frequency. 

Technically, the heterodyning technique is aimed especially at demodulating the amplitude 

modulated signals. Although, frequency and phase modulation are potentially existent, they are 

considered trivial and will not be discussed herein. The amplitude modulation process can be 

mathematically expressed as: 

 𝑈𝑎 = (𝑈𝑚 + 𝑚𝑥) cos 𝜔𝑐𝑡 (23) 

where, 𝑈𝑎  is the amplitude modulated signal, 𝑈𝑚  is the carrier signal amplitude, 𝑚  is the 

modulation coefficient, 𝑥  is the signal of interest, and 𝜔𝑐  is the carrier signal frequency. By 

introducing an amplitude and frequency for 𝑥 by 𝑋𝑚 and Ω, respectively, the signal of interest 𝑥 

can be represented as:  

 𝑥 = 𝑋𝑚𝑐𝑜𝑠Ω𝑡 (24) 

Note that it is assumed that Ω is much smaller than 𝜔𝑐. Then, with the heterodyne technique, the 

modulated signal will be multiplied by a unit amplitude reference signal cos (𝜔𝑐𝑡). Then the 

resulting 𝑈𝑜 can be written as: 

 𝑈𝑜 = (𝑈𝑚 + 𝑚𝑥) cos(𝜔𝑐𝑡) cos(𝜔𝑐𝑡) = (𝑈𝑚 + 𝑚𝑥) [
1

2
+

1

2
cos(2𝜔𝑐𝑡)] (25) 

Substituting Equation (24) into Equation (25) yields: 

 𝑈𝑜 =
1

2
𝑈𝑚 +

1

2
𝑚𝑋𝑚𝑐𝑜𝑠Ω𝑡 +

1

2
𝑈𝑚𝑐𝑜𝑠(2𝜔𝑐𝑡) (26) 
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+
1

4
𝑚𝑋𝑚[𝑐𝑜𝑠(2𝜔𝑐 + Ω)𝑡 + 𝑐𝑜𝑠(2𝜔𝑐 − Ω)𝑡] 

Because 𝑈𝑚 is assumed not to contain any useful information related to the modulated signal, it 

could be cancelled out. From Equation (26), it can be concluded that only the second term 

1

2
𝑚𝑋𝑚𝑐𝑜𝑠Ω𝑡 will remain after applying low pass filter, while the high frequency components 

around frequency 2𝜔𝑐 will be removed. In the final heterodyning demodulation step, the signal 

frequency can be reduced to 10s of kHz. The resulting frequency range for AE signals becomes 

comparable to that of typical vibration signals. Thus, a lower sampling rate in an AE DAQ system 

can be used. 

Finding a proper carrier signal is critical to the successful implementation of the heterodyne 

technique in AE DAQ. Since each AE sensor product from varying manufacturers has a unique 

frequency characteristic, the optimization process is necessary. The details of the optimization 

process are described in (Qu et al., 2014). 

2. EMD Based AE Feature Extraction 

EMD has been proven to be an effective method in analyzing non-stationary signals for 

rotational machinery fault detection. It has been shown in (He et al., 2011; 2013) that the EMD 

method was effective in processing AE signals and extracting AE features for bearing fault 

diagnosis applications. Therefore, in this paper, the EMD method is utilized to extract AE features 

from heterodyned AE signals for PGB fault diagnosis. One of the advantages of using EMD based 

AE feature extraction is that it does not require pre-specified basis functions or filters. Instead, it 

decomposes an input signal by direct extraction of the local energy associated signals (i.e. IMFs). 

The pseudo-code of the EMD based AE feature extraction is provided in TABLE IX. 
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TABLE IX 

PSEUDO-CODE OF EMD FOR AE FEATURE EXTRACTION PROCEDURE 

[ 𝐶𝑖(𝑡), 𝑓𝑜𝑟 𝑖 = 1 … 𝑁 ] = EMD[𝑓(𝑡)] 

1. Calculate the local maxima and local minima of𝑓(𝑡). 

2. Calculate the lower and upper envelopes of𝑓(𝑡) using cubic spline. 

3. Calculate mean values 𝑚(𝑡)  by averaging the lower envelope and the upper 

envelope. 

4. Subtract the𝑚(𝑡) from the𝑓(𝑡) to produce the IMF candidate component: 

ℎ𝐼 (𝑡)  =  𝑓(𝑡)  −  𝑚(𝑡) 

A. IFℎ𝐼 (𝑡) is the true IMF, go to the next step and save the IMF component 

as 𝐶𝑖(𝑡)  =  ℎ𝑚(𝑡).  

B. ELSE, go back to Step 1 until the below stop condition is met. 

𝑆𝐷 ≥ ∑
[ℎ𝑚−1(𝑡) − ℎ𝑚(𝑡)]2

ℎ𝑚−1
2 (𝑡)

𝑇

𝑡=1

 

where ℎ𝑚−1(𝑡) and ℎ𝑚(𝑡) denote the IMF candidates of the m − l and m iterations, 

respectively. 𝑆𝐷 is typically chosen between 0.2 and 0.3. 

5. Calculate the residual component by subtracting IMF component from the 𝑓(𝑡) as: 

𝑟𝑒𝑠𝑖(𝑡) = 𝑓(𝑡) − 𝐶𝑖(𝑡) 

6. Repeat Steps 1-5 until the last residual component (𝑟𝑒𝑠𝑖(𝑡))becomes a monotonic 

function and no more IMF component can be extracted or the envelopes becomes 

smaller than a pre-determined value. 

7. Pick the best k number of IMFs from the energy significance perspectives. 

8. Accumulate IMFs to obtain AE based PGB fault features using (27). 

 

After IMF components {𝑐𝑖(𝑡) , 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑁 } are extracted from 𝑓(𝑡) , a certain 

number (e.g. 𝑘(𝑘 ≤ 𝑁)) of 𝑐𝑖(𝑡) are accumulated from the energy significance perspective as 

follows: 
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 𝑥𝐸𝑀𝐷 = ∑ 𝑐𝑖(𝑡)

𝑘

𝑖=1

. (27) 

Using (6) the CIs will be further computed for PGB fault diagnosis. 

3. AE Sensor Based Fault Feature Extraction 

The five basis measurements were chosen: root mean square (RMS), peak to peak (P2P), 

skewness (SK), kurtosis (KT), and crest factor (CF). CIs were computed using those basis 

measurements over varied input signals:  Raw AE signals, energy operator (EO), narrow band 

(NB), amplitude modulation (AM), frequency modulation (FM), spectral averaging (SA) via 

Welch’s method (Welch), and EO of the Welch. FM0 is obtained as an effective CI for distributed 

gear faults wear and multiple tooth cracks. FM0 is calculated from the formula below: 

 𝐹𝑀0 =
𝑃2𝑃

∑ 𝐴𝑘
 (28) 

where 𝐴𝑘 is the sum of the gear mesh harmonics.  

The EO in Teager (1992) is defined as the residual of the autocorrelation function as 

following: 

 

𝑥𝐸𝑂,𝑖 = 𝑥𝐼𝑁,𝑖
2 − 𝑥𝐼𝑁,𝑖−1 ⋅ 𝑥𝐼𝑁,𝑖+1, 

(for 𝑖 = 2, 3, … , 𝑁 − 1) 

(29) 

where 𝑥𝐸𝑂,𝑖 is the ith element of EO data; 𝑥𝐼𝑁,𝑖 is the ith element of the input data𝑥𝐼𝑁. The NB 

filtered signal, 𝑥𝑁𝐵, could be obtained by filtering out all tones except those of the gear mesh and 

the characteristic frequencies. In this Chapter, the characteristic frequencies are the sun gear fault 

frequency, planet gear fault frequency, and ring gear fault frequency, respectively. Finally, AM 

and FM CIs are obtained by AM analysis and FM analysis of𝑥𝑁𝐵. AM and FM signals are the 

absolute value and the derivative of the angle of the Hilbert transform of 𝑥𝑁𝐵, respectively. 
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The SA based CIs were obtained as below: 

 𝑥𝑊𝑒𝑙𝑐ℎ = |ℱ−1(|ℱ(𝑥)|2)| (30) 

where ℱ  and ℱ−1  represent Fourier transform and inverse Fourier transform, respectively; 

|ℱ(𝑥)|2 originally refers to the power spectral density (PSD) of 𝑥 and is replaced with the PSD 

estimate with Welch’s method. The terminology “Welch” refers to the SA obtained by the Welch’s 

PSD estimate hereafter. TABLE X provides the definitions of the CIs investigated for PGB fault 

diagnosis. Once the CIs are computed, they will be used train the PGB fault classifiers using three 

supervised learning algorithms. 
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TABLE X 

THE DEFINITIONS OF THE CIS FOR THE AE BASED PGB DIAGNOSIS 

  Input Signal (𝑥𝐼𝑁) 

  Raw: EO: NB: AM: FM: Welch: Welch EO: 

CI Formula 

Raw input 

signal 

(𝑥𝑟𝑎𝑤) 

A residual of 

the 

autocorrelati

on function 

(𝑥𝐸𝑂) 

Narrow band 

pass filtered 

(𝑥𝑁𝐵) 

Amplitude 

modulation 

of NB 

filtered 

signal 

[𝐴𝑀(𝑥𝑁𝐵)] 

Frequency 

modulation 

of NB 

filtered 

signal 

[𝐹𝑀(𝑥𝑁𝐵)] 

Welch 

windowed 

spectral 

averaging 

(𝑥𝑊𝑒𝑙𝑐ℎ) 

Energy operator 

of Welch 

[(𝑥𝑊𝑒𝑙𝑐ℎ)𝐸𝑂] 

Root 

mean 

square 

(RMS) 

𝑅𝑀𝑆(𝑥𝐼𝑁)

= √
1

𝑁
∑ 𝑥𝑖

2

𝑁

𝑖=1

 
𝑅𝑀𝑆(𝑥𝐼𝑁): measures the energy evolution of a signal. 

Peak to 

peak 

(P2P) 

𝑃2𝑃(𝑥𝐼𝑁)

=
[ max

1≤𝑖≤𝑁
(𝑥𝑖) − min

1≤𝑖≤𝑁
(𝑥𝑖)]

2
 

𝑃2𝑃(𝑥𝐼𝑁): measures the maximum difference within the data range. 

Skewness 

(SK) 

𝑆𝐾(𝑥𝐼𝑁)

=

1

𝑁
∑ (𝑥𝑖 − �̅�)𝑁

𝑖=1
3

[√
1

𝑁
∑ (𝑥𝑖 − �̅�)𝑁

𝑖=1
2

]

3 
𝑆𝐾(𝑥𝐼𝑁): measures the asymmetry of the data about its mean value. A negative SK value and positive SK value 

imply the data has a longer or fatter left tail and the data has a longer or fatter right tail, respectively. 

Kurtosis 

(KT) 

𝐾𝑇(𝑥𝐼𝑁)

=
𝑁 ∑ (𝑥𝑖 − �̅�)𝑁

𝑖=1
4

[∑ (𝑥𝑖 − �̅�)𝑁
𝑖=1

2
]

2 𝐾𝑇(𝑥𝐼𝑁): measures the peakedness, smoothness, and the heaviness of tail in a data set. 

Crest 

factor 

(CF) 
𝐶𝐹(𝑥𝐼𝑁) =

𝑃2𝑃(𝑥𝐼𝑁)

𝑅𝑀𝑆(𝑥𝐼𝑁)
 

𝐶𝐹(𝑥𝐼𝑁): measures the ratio between 𝑃2𝑃(𝑥𝐼𝑁) and 𝑅𝑀𝑆(𝑥𝐼𝑁) to describe how extreme the peaks are in a 

waveform. 

Note: 𝑥𝑖 is ith element of the input data𝑥𝐼𝑁; 𝑁 is the length of the input data𝑥𝐼𝑁; max (⋅) returns the maximal element of input data𝑥𝐼𝑁; min (⋅) returns the 

minimal element ofinput data𝑥𝐼𝑁; �̅� is a mean value of the input data𝑥𝐼𝑁 defined as ∑ 𝑥𝑖
𝑁
𝑖=1 /𝑁; NB, AM, and FM refers to a narrow band, amplitude 

modulation, and frequency modulation, respectively.  
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B. Experimental Setup 

This section covers the experimental setup used to evaluate the presented AE sensor based 

PGB fault diagnostic methodology. Figure 16 displays the AE PGB test rig with AE DAQ setting 

used to conduct the PGB seeded fault tests. 

 

Figure 16. The PGB test rig with AE DAQ setting. 

 

1. The AE DAQ System Using the Heterodyne Technique 

The DAQ system includes a National Instruments (NI)’s DAQ board with a maximum 

analog input sampling rate of 1.25MHz, a wideband differential AE sensor, a pre-amplifier 

(20/40/60 db), a demodulation board, and a carrier frequency generator. A Hall effect sensor was 

used as the tachometer paired with a toothed wheel mounted on the motor shaft. Provided in Figure 

17 and is the AE based DAQ system using the heterodyne technique 
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Figure 17. The AE based DAQ system using the Heterodyne technique. 

 

TABLE XI 

AE DAQ SETTING PARAMETERS. 

 AE sensor Tachometer 

Sensor Wideband differential sensor Hall effect sensor 

Manufacturer Physical Acoustics Sensoronix 

Pre-amplifier 40db - 

Sampling rate 100k (Hz) - 

Sample recording time 2 (sec) 
Used only for  

getting shaft speed only. 

 

2. The Seeded Gear Faults 

Three types of PGB faults were created: sun gear partial tooth cut, planet gear partial tooth 

cut, and ring gear tooth breakage. Each type of gear fault was created by artificially damaging a 

tooth on a sun gear, planet gear, and ring gear, respectively (see Figure 18).  

During the seeded fault tests, AE signals were collected with a sampling rate of 100 kHz. 

The tachometer signals were recorded to get revolution stamps. Both the healthy gearbox and the 

gearboxes with seeded faults were tested at five different input shaft speeds: 10 Hz, 20 Hz, 30 Hz, 
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40 Hz, and 50 Hz. In addition to the shaft speed variation, varying loading conditions were added 

at the output shaft of the gearbox: 0%, 25%, 50%, and 75% of the maximum torque of the PGB. 

From each fault seeded PGBs, a total of 1,840 samples of one second AE data were collected 

(overall 7,360 samples for all fault types). After switching one gearbox to another, AE sensors 

were mounted in the same location on the PGB to preserve the experimental consistency. 

 

Figure 18. Seeded faults (a) sun gear fault, (b) planet gear fault, and (c) ring gear fault. 

 

C. Validation Results 

Upon examining the frequency spectrums of AE signals, the fundamental fault frequencies 

could not be identified. All of the AE signals were acquired using heterodyne based DAQ and 

processed using EMD. The first four IMF components were then summed using Equation (27) to 

compute the CIs. Among all of the CIs, FM0 showed 95% statistical separation for the sun gear 

fault, RMS displayed 100% statistical separation for the planet gear fault, and Welch CF, Welch 

EO KT, and Welch EO SK showed 100% statistical separation for the ring gear fault, respectively. 

Provided in Table VII is the summary of the statistically separable CIs. In addition to the result 
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from the proposed method, the conventional vibratory analysis results using TSA and enveloping 

in (Yoon et. al., 2015) are provided for a comparison purpose. Note that the vibratory analysis 

results in this paper were obtained using the same PGB test rig and a commercially available wind 

turbine DAQ system. From Table VII, one can see that the AE based methods provide better fault 

separation performance than the vibration based methods. 

TABLE XII 

STATISTICAL SEPARATION OF EACH CIS FOR PGB FAULT ISOLATION 

 Sun fault Planet fault Ring 

Vibration Sensor 1 (sampling rate: 6104 Hz; sampling time: 40 sec) 

TSA - ≥80%: P2P - 

Enveloping-

TSA 
- ≥80%: P2P ≥80%: RMS and P2P 

Vibration Sensor 2 (sampling rate: 24414 Hz; sampling time: 20 sec) 

TSA 
≥80%: Res RMS, Res P2P, 

GDF 
- ≥90%: GDF 

Enveloping-

TSA 

≥80%: Res RMS, Res P2P, 

GDF 

≥80%: RMS, Res RMS, Res 

P2P  
- 

AE analysis w/ the proposed method (sampling fate: 100kHz; sampling time 1 sec) 

Heterodyned 

AE - EMD 

≥90%: FM0 100%: RMS 
100%: Welch CF, Welch EO 

KT, and Welch EO SK 

≥80%: KT, CF,EO P2P, EO 

KT, EO SK, and 

Welch CF 

≥90%: FM0, NB RMS, NB 

P2P, Welch EO RMS, 

and Welch EO P2P 

≥90%: Welch RMS, Welch 

KT, and Welch SK 

≥80%: KT, AM RMS, AM 

P2P, Welch RMS, 

Welch KT, Welch P2P, 

Welch CF, and Welch 

SK 

≥80%: P2P, Welch EO RMS, 

Welch EO P2P, and 

Welch EO CF 

 

Figure 19 to Figure 21 present the CIs that could effectively separate the healthy gear from 

the sun, planet, and ring gear faults with error bars (averaged CI values with 95% confidence 

intervals) under 4 loading conditions: 0% loading, 25% loading, 50% loading, and 75% loading. 

Under each loading condition, CI values for the following 4 shaft speed are displayed: 10 Hz, 20 

Hz, 30 Hz, 40 Hz, and 50 Hz. 
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Figure 19. Sun gear fault detecting CI: FM0. 

 

 
a 

 
b 

 
c 

 

Figure 20. Planet gear fault detecting CIs: (a) FM0, (b) RMS, and (c) WEO P2P. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 21. Ring gear fault detecting CIs: (a) Welch KT, (b) Welch CF, (c) Welch EO KT, and  

(d) Welch EO SK. 

 CIs were further utilized to classify the faults (e.g. sun, planet, ring, or healthy) using three 

classifiers: KNN, BP, and LAMSTAR. In TABLE XIII through TABLE XIV, the diagnostic 

results using the three classifiers with both the single CIs and combination of CIs are presented. 

For any single CIs and CI combinations, the operational parameter of loading condition and shaft 

rotating speed were included. Out of 7360 samples, 70% of the data were randomly chosen and 

utilized for training and the remaining 30% of data were used for validation. In order to provide 

fault diagnostic performance statistically, all classifiers were run 50 times with random sampling 
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and the average error rates (% of error) were computed. The error rate is defined as the percentage 

of misclassified samples in validation. 

The fault diagnostic results using the three classifiers with individual CIs as inputs are 

provided in TABLE XIII.  

TABLE XIII 

PGB FAULT DIAGNOSTIC RESULTS USING INDIVIDUAL CIS 

 CI: FM0 CI: RMS 

Classifier KNN (k=15) BP (N=40) LAMSTAR KNN (k=15) BP (N=40) LAMSTAR 

Healthy 33.45 31.78 41.93 20.46 38.7 25.18 

Sun gear fault 44.84 52.88 60.68 9.62 29.2 21.25 

Planet gear fault 43.14 40.04 54.45 6.28 3.32 26.49 

Ring gear fault 35.70 36.88 49.22 13.35 29.62 30.16 

Overall 39.28 40.48 51.57 12.43 25.24 25.77 

 CI: Welch CF CI: Welch EO KT 

Classifier KNN (k=15) BP (N=40) LAMSTAR KNN (k=4) BP (N=40) LAMSTAR 

Healthy 9.21 10.98 16.81 38.63 18.76 17.59 

Sun gear fault 5.63 7.62 14.47 21.83 13.86 16.97 

Planet gear fault 8.91 7.32 15.67 43.64 23.64 25.97 

Ring gear fault 7.43 24.04 13.27 16.79 23.28 25.75 

Overall 7.79 12.54 15.06 30.22 19.9 21.57 

 CI: Welch EO SK  

Classifier KNN (k=15) BP (N=40) LAMSTAR    

Healthy 17.09 16.58 15.88    

Sun gear fault 10.01 10.86 24.18    

Planet gear fault 18.02 21.12 26.60    

Ring gear fault 11.27 23.12 22.14    

Overall 14.10 17.92 22.20    

* Note: k is the search radius for a majority vote of its neighbors in KNN; N is the number of neurons in the hidden 

layer in BP network 

 

 As shown, for all three classifiers, none of the single CIs provides an acceptable level of 

diagnostic performance although each CIs display statistical separation capability for a particular 

fault type as shown in Table VII. Thus, two combinations of CIs were generated. In the first CI 

combination, the CIs showing the highest statistical separation (i.e. ≥90% for sun gear fault, 100% 

for planet gear and ring gear faults) were grouped. In the second CI combination, the CIs showing 

over 80% statistical separation were added to the first combination (i.e. ≥ 80% for sun gear fault, 
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≥ 90% for planet gear and ring gear faults). The fault diagnostic results using those generated CI 

combinations are provided in TABLE XIV. 

TABLE XIV 

PGB DIAGNOSTIC RESULTS USING CI COMBINATION 

1st CI combination: FM0, RMS, W CF, WEO KT, and WEO SK 

Classifier KNN (k=4) BP (N=40) LAMSTAR 

Healthy 17.25 5.96 0.29 

Sun gear fault 16.16 5.92 0.27 

Planet gear fault 24.84 5.85 0.51 

Ring gear fault 10.74 6.37 0.58 

Overall 17.25 6.04 0.41 

2nd CI combination: KT, CF, FM0, RMS, EO P2P, EO KT, EO SK, NB RMS, NB P2P, W RMS, W KT, W CF, 

W SK, WEO RMS, WEO P2P, WEO KT, and WEO SK 

Type of fault KNN (k=4) BP (N=40) LAMSTAR 

Healthy 6.41 6.59 4.6 

Sun gear fault 7.19 6.63 6.52 

Planet gear fault 8.59 6.64 6.11 

Ring gear fault 5.62 7.17 8.66 

Overall 6.95 6.78 6.47 

* Note: k is the search radius for a majority vote of its neighbors in KNN; N is the number of neurons in the hidden 

layer in BP network 

 

 Seen from TABLE XIV, KNN achieved 7% error rate when the 2nd CI combination was 

used. The search radius of 𝑘 was investigated for 𝑘 = 3~15 range and the minimal classification 

error rate of 7% was achieved when 𝑘 = 4. For BP network, different numbers of hidden neurons 

(𝑁) were investigated and the best performance was achieved when the BP network with 𝑁 = 40 

was used. Although BP network achieved less than 1% overall diagnostic error rate when the local 

minima convergence is ignored, it should be noted that the occurrence of local minima 

convergence was around 12~16% out of 50 total runs. When BP network was converged to a local 

minima, the error rate in diagnostics drastically increases up to 25~75%. Thus, taking the local 

minima cases into consideration, the average diagnostic error rate increases to 7% and is similar 

to that of KNN achieved with the second CI combination. As described in Section 2.4, LAMSTAR 

network is not sensitive to the local minima issue and achieved the lowest diagnostic error rate of 
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≤1%. It is, however, noted that LAMSTAR network achieved the best diagnostic result when a 

minimal but carefully selected CI combination with the highest statistical separation was used. 

 

D. Conclusions 

In this Chapter, a new PGB fault diagnostic method using AE sensors was presented. The 

presented method combines a heterodyne based AE DAQ system, EMD based AE signal analysis 

method, computation of CIs, and data mining based PGB fault diagnosis. The heterodyne 

technique was hardware implemented to sample AE signals at a rate comparable to vibration based 

methodologies. The presented method is considered the first reported effort in using AE sensor for 

PGB fault diagnosis and has been validated using seeded gear tooth cut and breakage faults on all 

PGB gears: sun gear, planetary gear, and ring gear, which has not been presented in the literature. 

First, the sampled AE signals were processed using EMD to extract PGB fault features and 

compute CIs. The CIs were grouped into two combination sets according to the level of statistical 

separation followed by training three supervised learning algorithms (i.e. classifier): KNN, BP, 

and LAMSTAR. Each classifier was run 50 times to obtain the results. The validation results have 

shown: (1) An error rate of 7% was achieved using KNN when the second set of CI combination 

was used; (2) An average diagnostic error rate of 7% was achieved using the BP algorithm. 

However, a local minima convergence was observed at a rate of 12~16% out of 50 runs; (3) The 

LAMSTAR network displayed less sensitivity to the local minima issue. The best overall 

diagnostic error rate of about 0.5% was achieved using the LAMSTAR network when the first CI 

combination set was used.  
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VI. ON THE USE A SINGLE PIEZOELECTRIC STRAIN SENSOR FOR WIND 

TURBINE PLANETARY GEARBOX FAULT DIAGNOSIS 

 

(The majority of the content in this chapter is composed of previously published work. © [2015] 

IEEE. Reprinted, with permission, from [Yoon, J., He, D., and Van Hecke, B., On the use a single 

piezoelectric strain sensor for wind turbine planetary gearbox fault diagnosis, IEEE Transactions 

on Industrial Electronics, DOI: 10.1109/TIE.2015.2442216]) 

Planetary gearboxes are widely used in the drivetrain of wind turbines. Any planetary 

gearbox failure could lead to breakdown of the whole drivetrain and major loss of wind turbines. 

Therefore, planetary gearbox fault diagnosis is important to reducing the downtime and 

maintenance cost and improving the reliability and lifespan of wind turbines. Planetary gearbox 

fault diagnosis has been done mostly through vibration analysis over the past years.  

In a recent paper, Feng and Zuo (2013) pointed out that vibration signals theoretically have 

the amplitude modulation effect caused by time variant vibration transfer paths due to the unique 

dynamic structure of rotating planet gears. One attractive solution to this problem is to use 

alternative sensor signals that have less sensitivity to the AM effect for PGB fault diagnosis and 

prognosis. They have shown the effectiveness of torsional vibration analysis for PGB fault 

diagnosis using a torque sensor. The frequency characteristics of torsional vibration were shown 

to be solely sensitive to the AM and FM effects caused by gear faults under constant torque on 

input and output shafts. Kiddy et al. (2011) used fiber optic strain signals for PGB fault diagnosis 

and showed a close relationship between strain measurement and torque changes. Although 

promising, the research reported in the literature on using less AM effect sensitive signals for PGB 

fault diagnosis has certain limitations. The torque sensors used by Feng and Zuo (2013) are more 

expensive than vibration and strain sensors and require special installation. In another paper, a 
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fiber optic strain sensor array used by Kiddy et al. (2011) had to be embedded in the PGB in order 

to be effective. In their study, fiber optic strain sensors could only be sampled at a maximum 

sampling rate up to 1 kHz, which limits its coverage on shaft speed above 2060 rpm. Also, the 

strain signals were analyzed the same way as vibration signals. Fiber optic sensor signals were 

analyzed using the vibration separation technique after low frequency components were filtered 

out. 

To overcome the above mentioned challenges in developing effective PGB fault diagnosis 

capability, a research investigation on wind turbine planetary gearbox fault diagnosis via strain 

sensor signal analysis has been conducted and is reported in this Chapter. The PE strain sensor 

based planetary gearbox fault diagnosis method can be considered as an attractive alternative to 

traditional vibration analysis based approaches because the PE strain sensor signals are closely 

correlated to torsional vibration, which is less sensitive to the amplitude modulation effect caused 

by rotating vibration transfer path. Also, compared to the conventional strain gauge sensors and 

accelerometers, the PE strain sensors have certain advantages that could be summarized as follows: 

(1) ability to measure the first derivative of physical deformation, (2) high linearity and sensitivity 

from their superior noise immunity as compared to differentiated sensing performance of 

conventional strain sensors (Banaszak (2001); Lee and O’Sullivan (1991)), (3) high frequency 

range (Jiang et al.(2013)), (4) space-efficiency without a structural change on the measuring target 

(Kon et al. (2007)), and (5) negligible high temperature effect on the measurement output (Jiang 

et al.(2013), and Sirohi and Chopra (2000)). The aforementioned benefits allow for PE strain 

sensors to potentially have greater sensing resolution and accuracy. Thus, it is potentially easy and 

effective to diagnose planetary gearbox faults via stain sensor signal analysis. In this Chapter, a 

new method using a single piezoelectric strain sensor for planetary gearbox fault diagnosis is 
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presented. The method is validated on a set of seeded localized faults on all gears: sun gear, 

planetary gear, and ring gear. The validation results have showed a satisfactory planetary gearbox 

fault diagnostic performance using strain sensor signal analysis. 

The remainder of the Chapter is organized as follows. Section A gives a detailed 

explanation of the presented methodology. In Section B, the experiments setup to validate the 

presented methodology and the seeded fault tests on a laboratory PGB test rig are explained. 

Section C presents the PGB fault diagnostic results from the seeded fault tests. Finally, Section D 

concludes the Chapter. 

A. Methodology 

An overview of the proposed methodology is provided in Figure 22. First, the PE strain 

sensor signals and tachometer signals are digitized simultaneously. Then, the low-pass filter is 

applied to the raw PE strain signal. As reported in Wachel and Szenasi (1993), after considering 

the torsional natural frequency and its higher harmonics at varied shaft speeds, it was concluded 

that the response range of torsional vibration is less than 1 kHz and doesn’t exceed that of radial 

vibration. Also, in vibration analysis, a universal low-pass filter with a cutoff frequency of 20 kHz 

or less is commonly used to attenuate the signal of interest. Thus, a low-pass filter with a cut-off 

frequency of 20 kHz was used in this Chapter since there is no similar research previously available. 

Using the tachometer signals, the TSA signal, residual signals, and other input signals are 

computed. Lastly, the CIs are computed.  

This Chapter will focus on the localized gear faults, while neglecting the faults of any other 

components such as shafts or bearings.  The major components of the methodology are explained 

in the following two sections. Section 1 provides a brief review of TSA and the computation of 

CIs used for planetary gearbox fault diagnosis is explained in Section 2. 
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Figure 22.Overview of the methodology. 

1. Time Synchronous Average 

TSA is one of the most widely utilized signal processing techniques to extract a periodic 

waveform from noisy signals of rotating machines. The underlying idea of TSA is to obtain a 

periodically repeated waveform of interest over N number of revolutions. Theoretically, when a 

rotating machine is running at a constant speed, the periodic waveform is intensified while any 

noises are suppressed with a noise reduction rate of 
1

√𝑁
. Consider a signal 𝑥(𝑡) composed of a 

periodic signal 𝑦(𝑡) with known period 𝑇𝑅 and additive noise𝑒(𝑡): 

 𝑥(𝑡) = 𝑦(𝑡) + 𝑒(𝑡) (31) 

Assuming the total number of 𝑁 observed periods, the TSA of 𝑥(𝑡) can be expressed as: 



64 

 

 𝑥𝑇𝑆𝐴 =
1

𝑁
∑ 𝑥(𝑡 − 𝑟𝑇𝑅)

𝑁−1

𝑟=0
 (32) 

As 𝑁 → ∞, the TSA signal 𝑥𝑇𝑆𝐴 approaches to 𝑦(𝑡). More details about TSA could be found in 

(Braun, 1975; McFadden, 1987; and Bechhoefer and Kingsley, 2009). 

Basically, TSA chops up the raw sensor signal into multiple single revolution signals. Then, 

each of the revolution signals are resampled (via stretching or shrinking) to have the same number 

of sample points in one revolution. Then, the final periodic signal is obtained by averaging the 

resampled signals. After TSA is computed, any kind of fault diagnostic condition indicators can 

be evaluated. Even though successful TSA applications to other sensor analysis such as AE signals 

(Qu et al., 2013a; 2014), application of TSA to PE strain signal processing for PGB fault diagnosis 

has not yet been reported. 

2. PE Strain Sensor Based Fault Feature Extraction 

CIs computed using vibration signals have been used effectively for gear fault diagnosis in 

real applications such as condition monitoring systems installed in helicopters and wind turbines 

(Sheng, 2012).  In this Chapter, the CIs reported effective for gear fault diagnosis using vibration 

signals for wind turbine applications will be computed using the PE strain sensor signals. TABLE 

XV provides the definitions of the CIs investigated for PGB fault diagnosis. 

The CIs can be defined into five general types: root mean square (RMS), peak to peak (P2P), 

skewness (SK), kurtosis (KT), and crest factor (CF). Each type of CI can be computed using 

different input signals. In addition to TSA signals, other types of input signals can be generated: 

residual, narrow band (NB), AM, and FM. Residual is a TSA signal with the primary meshing and 

shaft components being removed. The energy operator (EO) (Teager, 1992) is defined as the 

residual of the autocorrelation function as following: 
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 𝑥𝐸𝑂,𝑖−1 = 𝑥𝑇𝑆𝐴,𝑖
2 − (𝑥𝑇𝑆𝐴,𝑖−1 ∙ 𝑥𝑇𝑆𝐴,𝑖+1), 𝑓𝑜𝑟 𝑖 = 2, 3, … , 𝑁 − 1 (33) 

where𝑥𝐸𝑂,𝑖 is the ith element of EO data; 𝑥𝑇𝑆𝐴,𝑖 is the ith element of 𝑥𝑇𝑆𝐴.The NB filtered signal, 

𝑥𝑁𝐵, could be obtained by filtering out all tones except those of the gear mesh and the characteristic 

frequencies. In this Chapter, the characteristic frequencies are the sun gear fault frequency, planet 

gear fault frequency, and ring gear fault frequency, respectively. Finally, AM and FM CIs are 

obtained by AM analysis and FM analysis of 𝑥𝑁𝐵. AM and FM signals are the absolute value and 

the derivative of the angle of the Hilbert transform of 𝑥𝑁𝐵, respectively. For more details of NB, 

AM, and FM, please see (Sheng, 2012). 
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TABLE XV 

THE DEFINITIONS OF THE CIS FOR THE PE STRAIN BASED PGB DIAGNOSIS 

  Input Signal (𝑥𝐼𝑁) 

CI Formula 

TSA: 

Time 

synchronous 

averaged signal 

(𝑥𝑇𝑆𝐴) 

Residual:  

TSA signal 

with the 

primary 

meshing and 

shaft 

components 

removed 

(𝑥𝑅𝐸𝑆) 

EO:  

residual of the 

autocorrelation 

function 

(𝑥𝐸𝑂) 

NB: Narrow 

band pass 

filtered (𝑥𝑁𝐵) 

AM: Amplitude 

modulation of 

NB filtered 

signal 

(𝐴𝑀(𝑥𝑁𝐵)) 

FM: Frequency 

modulation of 

NB filtered 

signal 

(𝐹𝑀(𝑥𝑁𝐵)) 

Root 

mean 

square 

(RMS) 

𝑅𝑀𝑆(𝑥𝐼𝑁)

= √1/𝑁 ∑ 𝑥𝑖
2

𝑁

𝑖=1
 

𝑅𝑀𝑆(𝑥𝐼𝑁): measures the energy evolution of a signal. 

Peak to 

peak 

(P2P) 

𝑃2𝑃(𝑥𝐼𝑁)

=
( max

1≤𝑖≤𝑁
(𝑥𝑖) − min

1≤𝑖≤𝑁
(𝑥𝑖))

2
 

𝑃2𝑃(𝑥𝐼𝑁): measures the maximum difference within the data range. 

Skewness 

(SK) 

𝑆𝐾(𝑥𝐼𝑁)

=
1/𝑁 ∑ (𝑥𝑖 − �̅�)𝑁

𝑖=1
3

[√1/𝑁 ∑ (𝑥𝑖 − �̅�)𝑁
𝑖=1

2
]

3 𝑆𝐾(𝑥𝐼𝑁): measures the asymmetry of the data about its mean value. A negative SK value and positive SK value 

imply the data have a longer or fatter left tail and the data have a longer or fatter right tail, respectively. 

Kurtosis 

(KT) 

𝐾𝑇(𝑥𝐼𝑁)

=
𝑁 ∑ (𝑥𝑖 − �̅�)𝑁

𝑖=1
4

[∑ (𝑥𝑖 − �̅�)𝑁
𝑖=1

2
]

2 𝐾𝑇(𝑥𝐼𝑁): measures the peakedness, smoothness, and the heaviness of tail in a data set. 

Crest 

factor 

(CF) 
𝐶𝐹(𝑥𝐼𝑁) =

𝑃2𝑃(𝑥𝐼𝑁)

𝑅𝑀𝑆(𝑥𝐼𝑁)
 

𝐶𝐹(𝑥𝐼𝑁): measures the ratio between 𝑃2𝑃(𝑥𝐼𝑁) and 𝑅𝑀𝑆(𝑥𝐼𝑁) to describe how extreme the peaks are in a 

waveform. 

Note: 𝑥𝑖 is ith element of the input data𝑥𝐼𝑁; 𝑁 is the length of the input data𝑥𝐼𝑁; max (⋅) returns the maximal element of input data𝑥𝐼𝑁; min (⋅) returns the minimal element of input data𝑥𝐼𝑁; �̅� is a 

mean value of the input data𝑥𝐼𝑁 defined as ∑ 𝑥𝑖
𝑁
𝑖=1 /𝑁.  
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B. Experimental Setup 

This section covers the experimental setup used to validate the PE strain sensor based 

planetary gearbox fault diagnostic technique. 

1. The DAQ System for the PE Strain Sensor 

Figure 23displays the PGB test rig used to collect the PE strain sensor data under varying 

gear health and operating conditions. The DAQ system includes a National Instruments (NI)’ DAQ 

board with a maximum analog input sampling rate of 1.25 MHz, a PE strain sensor, and a signal 

conditioner with an unity gain from PCB Piezotronics. A Hall effect sensor was used as the 

tachometer paired with a toothed wheel mounted on the motor shaft. The PE strain sensor was 

glued on the housing of the ring gear as shown in Figure 23(c). 

 
(a) 

(b) (c) 

Figure 23. The PGB test rig for wind turbine simulator: (a) DAQ system connection, (b) the front 

view of the PGB test rig, (c) the enlarged view on the input shaft and sensor location. 
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2. Seeded Gear Fault Tests 

This section covers the experimental setup used to validate the PE strain sensor based PGB 

fault diagnostic technique. Three types of PGB faults were created: sun gear tooth fault, planet 

gear tooth fault, and ring gear tooth fault. Each type of the gear fault was created by artificially 

damaging a tooth on a sun gear, planetary gear, and ring gear, respectively (see Figure 24). 

 

 

Figure 24. Seeded faults: (a) sun gear fault, (b) planet gear fault, (c) ring gear fault. 

 

During the seeded fault tests, PE strain sensor signals were collected with a sampling rate 

of 100 kHz. The tachometer signals were simultaneously recorded along with the PE strain signals 

to get revolution stamps. Both the healthy gearbox and the gearboxes with seeded faults were 

tested at five different input shaft speeds: 10 Hz, 20 Hz, 30 Hz, 40 Hz, and 50 Hz. At each speed, 

five samples were collected. In addition to the shaft speed variation, varying loading conditions 

were applied at the output shaft of the gearbox: 0%, 25%, 50%, and 75% of the maximum torque 

of the planetary gearbox. At each loading condition, 25 samples (five samples per shaft speed for 
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five varying speeds) were taken. In addition, the PE strain sensors were carefully mounted at the 

same location of the gearbox for each data collection. 

TABLE XVI 

PE STRAIN SENSOR DAQ SETTING PARAMETERS. 

 PE strain sensor Tachometer 

Sensor 
ICP Piezoelectric strain sensor with 

titanium housing 
Hall effect sensor 

Manufacturer PCB Piezotronics Sensoronix 

Signal conditioner Unity gain - 

Sampling rate 100k (Hz) 100k (Hz) 

Sample recording time 

10 Hz – 30 sec 

20 Hz – 24 sec 

30 Hz – 16 sec 

40 Hz – 12 sec 

50 Hz – 10 sec 

- 

 

C. Validation Results 

The validation results for the seeded fault tests conducted on the planetary gearbox test rig 

are provided in this section. Samples of the raw PE strain signals and their spectra are provided in 

Figure 25. Upon examining the frequency spectrums, the fundamental fault frequencies could not 

be identified. Thus, the calculated fault frequencies shown in TABLE III could not be used as the 

basis for band pass filter selection. Following the filter band optimization procedure in Van Hecke 

(2014a), Shannon entropy was computed on the healthy PGB signals after the implementation of 

different filter bands. Figure 26 shows an example of this technique applied to a healthy PGB 

signal at shaft speed of 50Hz. The highest level of entropy was observed with the use of a 0 ~ 20 

kHz for all the filter bands.  Therefore, a low-pass filter with a cutoff frequency of 20 kHz was 

selected and utilized for the results presented in this Chapter. 
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Figure 25. Sample raw PE strain sensor signals and their spectra at 50% output loading and 10Hz 

input shaft speed: (a)healthy, (b) sun gear fault, (c) planet gear fault, and (d) ring gear fault. 

 

Figure 26. Entropy of band pass filtered healthy PGB signal at a shaft speed of 50Hz. 
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After the TSA signals were obtained, then all of the CIs described in Section A-2 were 

computed. Among the computed CIs, four of them were found effective: TSA RMS, TSA P2P, 

residual RMS, and residual P2P. Figure 27shows the TSA RMS plots for different gearbox health 

conditions at different shaft speeds and loading conditions. As one can see from the figure, by 

using TSA RMS alone, the three gear faults can be clearly separated. As the loading increases, the 

separation of the gear faults gets better. Also, by using TSA RMS alone, all the three gear faults 

can be clearly separated from the healthy condition. The detectability of the gear faults gets better 

as the loading increases. For all of the four gearbox conditions, TSA RMS remains relatively 

stationary within the same loading condition regardless the change of the shaft speed. This also 

shows that the TSA RMS is heavily correlated to the torque level of the gearbox. The vertical bar 

for each data point shown in Figure 27 represents a 95% confidence interval from the TSA RMS 

statistics.  
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Figure 27. TSA RMS plot. 

In order to check the statistical significance of the gear fault separation using TSA RMS, 

an analysis of variance (ANOVA) test was conducted using the TSA RMS data. In this test, it was 

assumed that the shaft speed has no effect on TSA RMS within a loading condition. The following 

hypotheses were established based on aforementioned assumptions: 

 

H0: 𝜇1 = 𝜇2 = 𝜇3 = 𝜇4 

H1: at least one𝜇𝑖 ≠ 𝜇𝑗  

(for 𝑖, 𝑗 = 1,2,3, and 4;  𝑖 ≠ 𝑗) 

(34) 

where 𝜇𝑖 is mean CI value of the 𝑖th gear health condition at a fixed loading condition, i = 1, 2, 3, 

and 4 represents healthy gearbox, sun gear fault, planet gear fault, and ring gear fault, respectively. 

Displayed in   
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TABLE XVII is the summary of ANOVA results with a 99% confidence level. 
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TABLE XVII 

SUMMARY OF ANOVA RESULTS FOR TSA RMS 

Loading Source DF SS MS F P 

0% 

Factor 3 0.0334141 0.0111380 1605.12 0.000 

Error 96 0.0006662 0.0000069   

Total 99 0.0340802    

25% 

Factor 3 0.1481272 0.0493757 8261.04 0.000 

Error 96 0.0005738 0.0000060   

Total 99 0.1487010    

50% 

Factor 3 0.4641124 0.1547041 10614.42 0.000 

Error 96 0.0013992 0.0000146   

Total 99 0.4655116    

75% 

Factor 3 0.845794 0.281931 781.55 0.000 

Error 96 0.034630 0.000361   

Total 99 0.880424    

 

Note that in   



75 

 

TABLE XVII, notations DF, SS, MS, F, and P refer to the degree of freedom, the sum of 

squares, the mean square, the F-test value, and the p-value, respectively. These notations will be 

used in the remaining tables in related to ANOVA test. From the table, the P-values for all loading 

conditions are 0.000. With a 99% confidence level, the null hypotheses should be rejected (α =

0.01 > 0). Therefore, it is safe to say that the separation of all the gear faults tested using TSA 

RMS is statistically significant at all loading conditions. 

The results for the other three CIs: TSA P2P, residual RMS, and residual P2P are presented 

in the same way as TSA RMS in the following. Their associated plots of the CIs are provided in 

Figure 28 to Figure 30 and the ANOVA results in TABLE XVIII to TABLE XX, respectively. 

Similar results like TSA RMS can be observed for the other two CIs: TSA P2P and residual RMS. 

However, the diagnostic performance of these two CIs at the 0% loading condition is not as good 

as TSA RMS. A clear diagnosis of the gear faults can be observed at 25%, 50%, and 75% loading 

conditions. When the loading level reaches 25% or above, TSA P2P and residual RMS can be 

ranked like TSA RMS as the following order: ring gear fault → planet gear fault → sun gear fault 

→ healthy gear. For residual P2P, a clear diagnosis of the gear faults can be observed only when 

the loading level reaches to 50% or above.Note that in TABLE XVIII to TABLE XX, even under 

the low loading conditions, the null hypothesis in (25) is rejected. This is because all the faulty CIs 

are significantly different from the healthy CIs even though the difference among the faulty CIs is 

not statistically significant.  Also, note that for the four effective CIs, some of them have shown 

less sensitive to the change of the speed under the same loading condition, for example, TSA RMS. 

Others may have shown more sensitive to the change of the speed under the same loading 

condition, for example, Residual P2P.  However, all those CIs increase their values as the loading 

level increases. 
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Figure 28. TSA P2P plot. 

 

TABLE XVIII 

SUMMARY OF ANOVA RESULTS FOR TSA P2P 

Loading Source DF SS MS F P 

0% 

Factor 3 0.1199638 0.0399879 611.06 0.000 

Error 96 0.0062822 0.0000654   

Total 99 0.1262461    

25% 

Factor 3 0.775791 0.258597 1065.47 0.000 

Error 96 0.023300 0.000243   

Total 99 0.799091    

50% 

Factor 3 1.615071 0.538357 2682.91 0.000 

Error 96 0.019264 0.000201   

Total 99 1.634335    

75% 

Factor 3 3.25105 1.08368 787.88 0.000 

Error 96 0.13204 0.00138   

Total 99 3.38309    
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Figure 29. Residual RMS plot. 

 

 

TABLE XIX 

SUMMARY OF ANOVA RESULTS FOR RESIDUAL RMS 

Loading Source DF SS MS F P 

0% 

Factor 3 0.0001227 0.0000409 147.50 0.000 

Error 96 0.0000266 0.0000003   

Total 99 0.0001493    

25% 

Factor 3 0.0006061 0.0002020 56.46 0.000 

Error 96 0.0003436 0.0000036   

Total 99 0.0009497    

50% 

Factor 3 0.0025676 0.0008559 219.08 0.000 

Error 96 0.0003750 0.0000039   

Total 99 0.0029427    

75% 

Factor 3 0.0038871 0.0012957 233.04 0.000 

Error 96 0.0005337 0.0000056   

Total 99 0.0044208    
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Figure 30. Residual P2P plot. 

 

 

TABLE XX 

SUMMARY OF ANOVA RESULTS FOR RESIDUAL P2P 

Loading Source DF SS MS F P 

0% 

Factor 3 0.0019954 0.0006651 76.63 0.000 

Error 96 0.0008333 0.0000087   

Total 99 0.0028287    

25% 

Factor 3 0.0087545 0.0029182 79.85 0.000 

Error 96 0.0035084 0.0000365   

Total 99 0.0122630    

50% 

Factor 3 0.0323371 0.0107790 193.51 0.000 

Error 96 0.0053475 0.0000557   

Total 99 0.0376846    

75% 

Factor 3 0.0557005 0.0185668 239.39 0.000 

Error 96 0.0074456 0.0000776   

Total 99 0.0631462    

 

D. Conclusions 
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In this Chapter, a new PE strain sensor based wind turbine PGB fault diagnostic 

methodology is presented. The presented method was accomplished through a combination of low 

pass filtering, TSA, and CIs to extract diagnostic features for PGB diagnosis. First, the PE strain 

sensor signal is low-pass filtered to retain the information related to the gear conditions. Then, the 

TSA signal is computed to obtain the periodically repeated waveform while white noise is 

suppressed. The presented method was validated using data collected from seeded fault tests 

conducted on a planetary gearbox test rig in a laboratory. The validation results have shown that 

by utilizing the TSA based PE strain sensor signal processing approach, fully separable diagnostic 

CIs towards all PGB fault types were captured regardless of shaft speed and output shaft loading 

condition. In summary, the four CIs extracted from PE strain sensor signals: TSA RMS, TSA P2P, 

residual RMS, and residual P2P effectively differentiate the localized faults such as gear tooth 

crack and breakage from all gears: sun gear, planetary gear, and ring gear, which has not been 

presented in the literature. The current PGB diagnostic methods mainly rely on vibration signal 

analysis. They provide limited fault diagnosis for PGB due to time varying vibration transfer paths. 

The PE strain sensor based diagnostic technique presented in this Chapter provides an attractive 

alternative to the current vibration analysis based approach.  
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VII. COMPARATIVE STUDY 

PGB fault diagnosis has been done mostly through vibration analysis over the past years. 

However, the recent literature reported that there exist alternative diagnostic methods for PGB 

fault diagnosis which potentially be less sensitive to the vibratory AM effect caused by time variant 

vibration transfer paths. This Chapter presents a comparative study for PGB fault diagnostics with 

seeded localized faults using vibration, AE, and PE strain measurements. This is the first known 

attempt comparing the PGB fault diagnostic performance of all those three sensor analyses. First, 

the vibration signals were analyzed using the conventional signal processing methods of TSA, SA, 

enveloping, and etc. The vibration analysis with the Welch’s spectral averaging was obtained 

followed by. Then, the AE analysis was conducted using the heterodyne technique based AE DAQ 

system, in which AE sampling rate become at a rate compatible to vibration analysis. Lastly, the 

PE strain analysis method was constructed using the fact that strain sensor signals is closely 

correlated to torsional vibration, which is insensitive to the vibratory AM effect caused by rotating 

planet gears and its career. Each sensor signal was further fault feature extracted using the CIs for 

the drivetrain diagnostic methods, currently used in the wind industry. Machine learning methods 

were further applied upon necessity. Results have shown that the AE sensor based analysis could 

give slightly improved results from the accuracy and the reliability stand points. Also, the PE strain 

analysis based diagnosis could be advantageous than vibration and AE in that it could isolate the 

faulty components without using any machine learning techniques. 

A. Methodology 

In addition to the currently available vibration based machinery fault diagnostic methods 

such as low-pass filtering, TSA, enveloping, and their combinational methods, herein, Welch’s SA 
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based PGB fault diagnostic methods for vibratory analysis, AE sensor, and PE strain sensor based 

PGB fault diagnostic methods are investigated in a comparative study manner. Validation of the 

fault diagnostic methods was conducted from the seeded fault tests on a PGB test rig in the 

laboratory. Before the results are presented, each of the diagnostic methods are reviewed in this 

section. The overview of each PGB diagnostic methods are diagrammed in Figure 31 through 

Figure 33. 

1. Vibration Based PGB Diagnosis 

Although VS method is one of the well-established vibration analysis technique for PGB, 

VS could not be applicable to this study with the following reasons. First, sun gear fault cannot be 

detected by the PGB geometry as described in Samuel et al. (2004).Second, the vibration sample 

size is not big enough to apply VS technique. Therefore, in this Chapter, vibration signals were 

processed for the following four different methods (shown in Figure 31): (a) TSA, (b) enveloping 

then TSA, (c) TSR followed by Welch’s method (i.e. SA), (d) TSR, enveloping, then Welch’s 

method. First two methods of (a) and (b) are widely used vibration analysis methods and chosen 

for comparative results among vibration analyses. The Fast kurtogram was applied to find a 

universal filter band for each vibration sensor. The presented methods of (c) and (d) combine TSR, 

enveloping, SA for rotating machinery, fast kurtogram, computation of CIs, or implementation of 

PGB fault diagnostic classifiers. The details of the implementation can be found in Chapter IV. 

The overview of the vibration based PGB diagnostic method is diagrammed in Figure 31. 
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Figure 31. Overview of vibration based PGB fault diagnosis. 

 

2. AE Based PGB Diagnosis 

A new AE sensor based PGB fault diagnostic method was presented in the previous 

Chapters. The presented method comprises a heterodyne based AE DAQ system, EMD based 

rotating machinery fault diagnostic method, computation of CIs, and data mining based PGB fault 

classifiers. The details of the implementation can be found in Chapter V. The overview of the AE 

based PGB diagnostic methods is diagrammed in Figure 32. 
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Figure 32. Overview of AE based PGB fault diagnosis. 

 

3. PE Strain Sensor Based PGB Diagnosis 

A new PE strain sensor based PGB fault diagnostic method was presented in the previous 

Chapters. The presented method comprises a PE strain sensor attached on the outside of the 

gearbox housing, low-pass filtering, TSA, and computation of CIs. Although the background idea 

of the methodology is same as that shown in Chapter VI, the cutoff frequency for the low-pass 

filter was slightly modified in this Chapter. By adapting the similar filter-band optimization 

procedure from the Chapter V, a new filter-band was selected for the new PE strain sensor data 

with 2-second duration because the highest level of entropy was observed with the use of a 0 ~ 5 

kHz for all the filter bands and shaft speed investigate. The overview of the updated PE strain 

sensor based PGB diagnostic method is diagrammed in Figure 33. 
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Figure 33.Overview of PE strain sensor based PGB fault diagnosis. 

 

Figure 34. Entropy of band pass filtered healthy PGB signal at a shaft speed of 50Hz. 
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4. Fault Feature Extraction for Comparative Study 

The six basis measurements were chosen: root mean square (RMS), peak to peak (P2P), 

skewness (SK), kurtosis (KT), crest factor (CF), and Shannon entropy (SEnt). CIs were computed 

using those basis measurements over varied input signals:  Raw AE signals (TSA for PE strain 

sensor), energy operator (EO), narrow band (NB), amplitude modulation (AM), frequency 

modulation (FM), spectral averaging (SA) via Welch’s method (Welch), and EO of the Welch. 

FM0 is obtained as an effective CI for distributed gear faults wear and multiple tooth cracks. FM0 

is calculated from the formula below: 

 𝐹𝑀0 =
𝑃2𝑃

∑ 𝐴𝑘
 (35) 

where𝐴𝑘  is the sum of the gear mesh harmonics. Gear distributed fault (GDF) is used as an 

effective CI for distributed gear faults wear and multiple tooth cracks. GDF is calculated from the 

formula below: 

 𝐺𝐷𝐹 =
StdDev(residual signal)

StdDev(original signal)
 (36) 

The EO in Teager (1992) is defined as the residual of the autocorrelation function as following: 

 

𝑥𝐸𝑂,𝑖 = 𝑥𝐼𝑁,𝑖
2 − 𝑥𝐼𝑁,𝑖−1 ⋅ 𝑥𝐼𝑁,𝑖+1, 

(for 𝑖 = 2, 3, … , 𝑁 − 1) 

(37) 

where𝑥𝐸𝑂,𝑖  is the ith element of EO data; 𝑥𝐼𝑁,𝑖  is the ith element of the input data𝑥𝐼𝑁 . The NB 

filtered signal, 𝑥𝑁𝐵, could be obtained by filtering out all tones except those of the gear mesh and 

the characteristic frequencies. In this Chapter, the characteristic frequencies are the sun gear fault 

frequency, planet gear fault frequency, and ring gear fault frequency, respectively. Finally, AM 
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and FM CIs are obtained by AM analysis and FM analysis of𝑥𝑁𝐵. AM and FM signals are the 

absolute value and the derivative of the angle of the Hilbert transform of 𝑥𝑁𝐵, respectively. 

The SA based vibration fault features were obtained as below: 

 𝑥𝑊𝑒𝑙𝑐ℎ = |ℱ−1(|ℱ(𝑥)|2)| (38) 

where ℱ and ℱ−1 represent Fourier transform and inverse Fourier transform, respectively; 

|ℱ(𝑥)|2 originally refers to the power spectral density (PSD) of 𝑥 and is replaced with the PSD 

estimate with Welch’s method. The terminology “Welch” refers to the SA obtained by the Welch’s 

PSD estimate hereafter. TABLE XXI provides the new definitions of the CIs investigated for PGB 

fault diagnosis. Once the CIs are computed, they will be used train the PGB fault classifiers using 

three supervised learning algorithms upon necessity. 
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TABLE XXI 

THE DEFINITIONS OF THE CIS FOR THECOMPARATIVE STUDY 

  Input Signal (𝑥𝐼𝑁)   

CI Formula 

Raw or 

TSA: 

(𝑥𝑅𝑎𝑤  or 

𝑥𝑇𝑆𝐴) 

Residual:  

Signal 

with 

primary 

meshing 

and shaft 

component

s removed 

(𝑥𝑅𝐸𝑆) 

EO: 
residual of 

the 

autocorrela

tion 

function 

(𝑥𝐸𝑂) 

NB: 

Narrow 

band pass 

filtered 

(𝑥𝑁𝐵) 

AM: 

Amplitude 

modulation 

of NB 

filtered 

signal 

(𝐴𝑀(𝑥𝑁𝐵)) 

FM: 

Frequency 

modulation 

of NB 

filtered 

signal 

(𝐹𝑀(𝑥𝑁𝐵)) 

Welch: 
Welch 

windowed 

spectral 

averaging 

(𝑥𝑊𝑒𝑙𝑐ℎ) 

Welch EO: 

Energy 

operator 

of Welch 

[(𝑥𝑊𝑒𝑙𝑐ℎ)𝐸𝑂] 

RMS 

𝑅𝑀𝑆(𝑥𝐼𝑁)

= √1/𝑁 ∑ 𝑥𝑖
2

𝑁

𝑖=1
 

𝑅𝑀𝑆(𝑥𝐼𝑁):measures the energy evolution of a signal. 

P2P 

𝑃2𝑃(𝑥𝐼𝑁)

=
( max

1≤𝑖≤𝑁
(𝑥𝑖) − min

1≤𝑖≤𝑁
(𝑥𝑖))

2
 

𝑃2𝑃(𝑥𝐼𝑁):measures the maximum difference within the data range. 

SK 

𝑆𝐾(𝑥𝐼𝑁)

=
1/𝑁 ∑ (𝑥𝑖 − �̅�)𝑁

𝑖=1
3

[√1/𝑁 ∑ (𝑥𝑖 − �̅�)𝑁
𝑖=1

2
]

3 𝑆𝐾(𝑥𝐼𝑁):measures the asymmetry of the data about its mean value. A negative SK value and positive SK value 

imply the data have a longer or fatter left tail and the data have a longer or fatter right tail, respectively. 

KT 𝐾𝑇(𝑥𝐼𝑁) =
𝑁 ∑ (𝑥𝑖 − �̅�)𝑁

𝑖=1
4

[∑ (𝑥𝑖 − �̅�)𝑁
𝑖=1

2
]

2 𝐾𝑇(𝑥𝐼𝑁):measures the peakedness, smoothness, and the heaviness of tail in a data set. 

CF 𝐶𝐹(𝑥𝐼𝑁) =
𝑃2𝑃(𝑥𝐼𝑁)

𝑅𝑀𝑆(𝑥𝐼𝑁)
 

𝐶𝐹(𝑥𝐼𝑁):measures the ratio between 𝑃2𝑃(𝑥𝐼𝑁) and 𝑅𝑀𝑆(𝑥𝐼𝑁) to describe how extreme the peaks are in a 

waveform. 

SEnt 
𝑆𝐸𝑛𝑡(𝑥𝑖𝑛)

= − ∑ 𝑥𝑖
2log (𝑥𝑖

2)
𝑖

 
𝑆𝐸𝑛𝑡(𝑥𝑖𝑛)measures the Shannon entropy of an input signal. 

Note: 𝑥𝑖 is ith element of the input data𝑥𝐼𝑁; 𝑁 is the length of the input data𝑥𝐼𝑁; max (⋅) returns the maximal element of input data𝑥𝐼𝑁; min (⋅) returns the minimal element of input data𝑥𝐼𝑁; �̅� is a 

mean value of the input data𝑥𝐼𝑁 defined as ∑ 𝑥𝑖
𝑁
𝑖=1 /𝑁.  
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B. Experimental Setup 

This section covers the experimental setup used to compare the performance of the 

vibration, AE sensor, PE strain sensor based PGB fault diagnostic methodology. 

1. The PGB Test Rig 

The PGB test rig comprises four main parts: (1) the DAQ systems, (2) the driving motor, 

(3) the PGB gearbox, (4) the load generator. The DAQ system captures vibration, AE, and PE 

strain data. The driving motor is a 3-phase 10 HP induction motor with a motor controller. A Hall 

effect sensor and a toothed wheel were mounted on the driving shaft and utilized to records the 

real-time shaft rotating remarks. For the PGB, a commercially available single stage PGB with a 

5:1 speed reduction ratio was used. Then, the output end of the PGB was connected to a generator 

and a grid tie to serve as a load generator. The compositional structure of the PGB test rig is similar 

to those used in the residential wind turbines. The front view of the PGB test rig is provided in 

Figure 35. 

 

Figure 35. The front view of the PGB test rig. 
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Provided in Figure 36 is the schematic setup of the DAQ system. First, the vibration data 

were recorded using a commercially available vibratory wind turbine condition monitoring system 

from Renewable NRG Systems. The DAQ system comprises two high speed accelerators and a 

tachometer. Because the typical choice of sampling frequency of vibration data is under 20 kHz, 

vibration sensor 1 and vibration sensor 2 were sampled at rates of 24,414 Hz and 6,104 Hz, 

respectively. Second, the AE and PE strain sensor data were recorded using a National Instrument 

(NI)’s DAQ board with a maximum analog input sampling rate of 1.25MHz. Because there were 

no similar study of PGB fault diagnosis using AE and PE strain analyses, the sampling rate were 

identically chosen as 100 kHz. For the composition of AE DAQ, a wideband differential AE sensor, 

pre-amplifier (20db/40db/60db), demodulation board, and carrier frequency generator were 

utilized. Since the natural frequencies of AE lie in a higher frequency range (e.g. 1 kHz ~ 1 MHz), 

a high sampling rate between 2 to 10 MHz has been a typical choice of for AE analysis. However, 

the AE signals used in this study were sampled at 100 kHz, which is a rate compatible to vibration 

analysis, with an aid of hardware-implemented heterodyne technique. On the other hand, the PE 

strain sensor DAQ was comprised of a piezoelectric strain sensor and a signal conditioner. The PE 

strain sensor used in this study has a response frequency range from 0.5 to 100 kHz. In order to 

get the most of information, a sample rate of 100 kHz was used for the PE strain sensor because 

the maximum allowable sampling rate for the used sensor is 100 kHz. The details of the vibratory 

DAQ settings and the AE and PE strain DAQ settings are provided in TABLE XXII. 
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Figure 36. Schematic setup of the DAQ system. 

 

TABLE XXII 

DAQ SETTING FOR COMPARATIVE STUDY. 

Sensor Sensor type Manufacturer 
Sampling  

rate (Hz) 

Recording time 

(sec) 

Vibration sensor 1 

for TSA, enveloping 

High speed 

accelerometer 
NRG systems 6104 40 

Vibration sensor 1 

for Welch’s SA 

High speed 

accelerometer 
NRG systems 6104 4 

Vibration sensor 2 

for TSA, enveloping 

High speed 

accelerometer 
NRG systems 24414 20 

Vibration sensor 2 

for Welch’s SA 

High speed 

accelerometer 
NRG systems 24414 2 

Vibration 

Tachometer 
Hall effect sensor 

NRG systems  

(Sensoronix) 
1000 - 

AE sensor 

Wideband 

differential  

AE sensor 

Physical Acoustics 100k 2 

PE strain sensor 
Piezoelectric strain 

sensor 
PCB Piezotronics 100k 2 

AE/PE strain 

tachometer 
Hall effect sensor Sensoronix 100k - 
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2. The Seeded Gear Faults 

Similarly to the previous chapters, three types of PGB faults were created: sun gear tooth 

fault, planet gear tooth fault, and ring gear tooth fault. Each type of the gear fault was created by 

artificially damaging a tooth on a sun gear, planetary gear, and ring gear, respectively (see Figure 

37). 

 

Figure 37. Seeded faults: (a) sun gear fault, (b) planet gear fault, (c) ring gear fault. 

 

During the seeded fault tests, the tachometer signals were simultaneously recorded along with the 

vibration, AE, and PE strain signals to get revolution stamps. Both the healthy gearbox and the 

fault seeded gearboxes were tested at five different input shaft speeds: 10 Hz, 20 Hz, 30 Hz, 40 

Hz, and 50 Hz. In addition to the shaft speed variation, varying loading conditions were applied at 

the output shaft of the gearbox: no loading, 25%, 50%, and 75% of the rated torque of the PGB. 

In each experimentation, the sensors were carefully mounted at the same location to prevent any 

uncontrolled environmental parameters. 
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C. Comparative Results 

The comparative results for the vibration, AE, and PE strain sensors conducted on the PGB 

test rig are provided in this section. Provided in TABLE XXIII is the summary of the statistically 

separable CIs using all vibration, AE sensor, and PE strain sensor methods. 

TABLE XXIII implies that the conventional signal processing techniques – method (a) and 

(b)– barely differentiate the faulty PGBs from the healthy ones. On the other hand, the Welch’s 

SA based vibratory analysis methods (c) and (d) include CIs which isolate PGB fault from the 

healthy ones; those CIs include FM0 for the sun gear fault above 90%, Res RMS and WEO RMS 

for the planet gear fault 100%, and GDF for the ring gear fault 100%.  Because the most separable 

CIs were obtained when the vibration sensor 2 was analyzed with the method (c), Welch’s SA 

method would be utilized in this comparative study. Those resulting CIs were further utilized to 

diagnose the fault locations using three fault classifiers: KNN, BP, and LAMSTAR. 
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TABLE XXIII 

STATISTICAL SEPARATION OF EACH CIS FOR PGB FAULT ISOLATION 

Accelerometer 1 (fs = 6104) 

 Sun fault Planet fault Ring 

Vib. 

Method 

(a) TSA - ≥80%: P2P - 

(b) Env-TSA - ≥80%: P2P ≥80%: RMS, P2P 

(c) Welch 
≥80%: Res RMS, Res P2P, 

WEO P2P 

≥ 𝟗0%: RMS, Res RMS  

≥80%: P2P, Res P2P, EO 

P2P, W RMS, WEO P2P 

≥80%: Res RMS, Res CF, 

EO P2P, W RMS, W KT, 

WEO RMS 

(d) Env-

Welch 

≥80%: Res RMS, EO RMS, 

WEO P2P 

≥80%: P2P, Res RMS, EO 

RMS, EO P2P, W P2P, 

WEO P2P 

≥80%: Res RMS, EO RMS, 

WEO RMS, WEO P2P 

Accelerometer 2 (fs = 24414) 

 Sun fault Sun fault Sun fault 

Vib. 

Method 

(a) TSA 
≥80%: Res RMS, Res P2P, 

GDF 
- ≥90%: GDF 

(b) Env-TSA 
≥80%: Res RMS, Res P2P, 

GDF 

≥80%: RMS, Res RMS, Res 

P2P  
- 

(c) Welch 

≥90%: FM0  

≥80%: Res RMS, Res KT, 

GDF 

≥100%: Res RMS, WEO 

RMS 

≥90%: P2P, Res P2P, EO 

RMS, EO P2P, W 

P2P, WEO P2P 

≥80%: RMS, W KT, W SK 

≥100%: GDF  

≥90%: FM0, W RMS, 

WEO KT, WEO SK 

≥80%: W KT, W CF, W 

SK, WEO RMS 

(d) Env-

Welch 

≥80%: Res RMS, EO RMS, 

WEO P2P 

≥80%: P2P, Res 

RMS, EO RMS, EO 

P2P, W P2P, WEO 

P2P 

≥80%: Res RMS, EO RMS, 

WEO RMS, WEO P2P 

  AE sensor (fs = 100k) 

  Sun fault Sun fault Sun fault 

AE 

Method 

≥90%: FM0 

≥80%: KT, CF,EO P2P, EO 

KT, EO SK, and  

W CF 

≥100%: RMS 

≥90%: FM0, NB RMS, NB 

P2P, WEO RMS, and 

WEO P2P 

≥80%: KT, AM RMS, AM 

P2P, W RMS, W KT, 

W P2P, W CF, and W 

SK 

≥100%: W CF, WEO KT, 

and WEO SK 

≥90%: W RMS, W KT, and 

W SK 

≥80%: P2P, WEO RMS, 

WEO P2P, and WEO 

CF 

  PE strain sensor (fs = 100k) 

  Sun fault Sun fault Sun fault 

PE Strain Method 
≥100%: TSA RMS, TSA SEnt 

≥90%:Res RMS, Res SEnt, W RMS, W P2P, W SEnt 
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As shown from TABLE VII, none of the single CI provides acceptable diagnostic 

performance for all three fault classifiers although each CI can isolate faults from at least one or 

more PGB fault types. Also shown in TABLE VIII, two combinations of CIs were tested. From 

the fault diagnostic results, KNN achieved the overall minimal error rate of 3.63% when the first 

CI combination were used. LAMSTAR network, however, achieved the similar diagnostic error 

rate of 3.98% along with the lowest standard deviation. That is, LAMSTAR network could be 

equally desired as KNN from the reliability perspective. 

In Chapter V, PGB fault diagnostic method using AE analysis were presented. The method 

combines the hardware-implemented heterodyne AE DAQ system, EMD method, computation of 

CIs, and implementation of PGB fault diagnostic classifiers. Provided in Table XXIII is the 

summary of the statistically separable CIs results from all AE methods. Among all of the CIs, FM0 

showed 95% statistical separation for the sun gear fault, RMS displayed 100% statistical separation 

for the planet gear fault, and Welch CF, Welch EO KT, and Welch EO SK showed 100% statistical 

separation for the ring gear fault, respectively. Those effective CIs were further utilized to classify 

the faults (e.g. sun, planet, ring, or healthy) using the three classifiers: KNN, BP, and LAMSTAR. 

Provided in TABLE XIII and TABLE XIV are the diagnostic results using the three classifiers 

with both the individual CIs and the combinational CIs. As one can see from TABLE XIII, for all 

three classifiers, none of the individual CIs achieved acceptable level of fault diagnostic 

performance although those CIs display statistical separablability for at least one fault type. from 

TABLE XIV, it can be seen that LAMSTAR network achieved the lowest diagnostic error rate of 

≤1% when the first combination of CIs were used while KNN achieved 7% error rate when the 

second CI combination was used. For the comparative study, the result from the LAMSTAR 

network will be utilized for AE analysis. 
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Lastly, from Chapter VI, PGB fault diagnostic method using PE strain analysis is were 

presented. However, the sample recording time was reduced to two second for fair comparison 

with vibration analysis and AE analysis. The method combines the low pass filtering with the 

cutoff frequency of 5 kHz, TSA, and computation of CIs. After the PE strain signals were low pass 

filtered, CIs described in Section A-3 were computed. Among the computed CIs, a few CIs were 

newly found effective: TSA RMS, TSA Shannon entropy (SEnt), Residual RMS, Residual SEnt, 

W RMS, and W P2P. Figure 38 shows those effective CIs for different gearbox health conditions 

at varying shaft speeds and loading conditions. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 38. PGB fault diagnostic CIs from PE strain analysis: (a) TSA RMS, (b) TSA Shannon 

Entropy, (c) Residual RMS, (d) Residual SEnt, (e) Welch RMS, and (f) Welch P2P. 
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As one can see from Figure 38, by using TSA RMS, Welch RMS, and Welch P2P, the CIs 

remained relatively stationary within the same loading condition regardless the change of the shaft 

speed. Those CIs also showed that the PE strain sensor based CIs are heavily affected by the torque 

level of the gearbox. The vertical bars for each data point represent 95% confidence intervals. 

Provided in TABLE XXIV is the comparative summary of the PGB fault diagnostic 

methods.  

TABLE XXIV 

COMPARATIVE SUMMARY OF THE PGB FAULT DIAGNOSTIC METHODS 

 Vibration AE PE strain 

Analysis method Welch’s SA 
Heterodyne AE, 

EMD 
TSA 

Sampling frequency (Hz) 24414 100k 100k 

Sample recording time (sec) 2 2 2 

Fault detecting CIs for particular 

gear faults 
O O O 

Fault diagnosable CIs for all gear 

faults 
× × O 

Fault diagnostic ability using 

machine learning 
O O Not required 

Fault diagnostic error rate 

~3% 

(w/ both KNN, 

and LAMSTAR) 

< 1% 
(w/ LAMSTAR) 

- 
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VIII. CONCLUSIONS 

In this dissertation, effective and efficient PGB fault diagnostic methods and tools were 

developed and validated on a set of seeded localized faults on all gears: sun gear, planetary gear, 

and ring gear. Specifically, to overcome the PGB’s known issue of the AM effect, caused by 

rotating vibration transfer path, new PGB fault diagnostic methods were developed using: 

vibration analysis with Welch’s spectral averaging; alternative sensors of AE and PE strain sensors 

and their associated analysis methods. 

In Chapter IV, the spectral averaging (SA) based PGB fault diagnostic method using a 

vibration sensor was presented. The proposed method is comprised of the TSR, SA for rotating 

machinery, computation of CIs, and implementation of PGB diagnostic systems. The presented 

method was validated with a set of seeded fault tests performed on a PGB test rig in a laboratory. 

First, the digitized accelerometer signals were processed by TSR and SA technique to compute 

Cis and to extract PGB fault features. The effective CIs were grouped into two combination sets 

according to the level of statistical separation followed by training three machine learning 

algorithms: KNN, BP network, and LAMSTAR network. The validation results have shown: (1) 

the minimal error rate of 3.63% was achieved using KNN with the chosen CI combination; (2) An 

average diagnostic error rate of 8.94% was achieved using the BP algorithm. Meanwhile, the local 

minima convergence was observed at a rate of 12~16% out of all occurrences; (3) LAMSTAR 

network displayed a similar level of diagnostic error rate of 3.98% as KNN. But LAMSTAR 

network achieved the minimal standard deviation and it is a desired aspect from the reliability 

perspective. In summary, the presented method effectively differentiated the localized faults on all 

gears: sun gear, planetary gear, and ring gear, which has not been presented in the literature. 
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In Chapter V, a new AE sensor based PGB fault diagnostic method was presented. The 

presented method comprises a heterodyne based AE DAQ system, EMD based rotating machinery 

fault diagnostic method, computation of CIs, and data mining based PGB fault classifiers. By 

applying the heterodyne technique, the AE response frequency could be downshifted from several 

hundred kHz to below 10s of kHz. Besides, the AE signals could be demodulated to remove non-

vital high frequency components while the fault characteristic components are maintained.  As a 

result, the AE signals could be sampled at a rate comparable to that of vibration analysis. The 

presented AE method was validated with a set of seeded fault tests performed on a PGB test rig in 

a laboratory. First, the sampled AE signals were signal processed using EMD to extract PGB fault 

features and compute CIs. Those CIs were then grouped into two combination sets according to 

the level of statistical separation followed by training three supervised learning algorithms (i.e. 

classifier): KNN, BP, and LAMSTAR. The results have shown the followings: (1) An error rate 

of 7% was achieved using KNN; (2) An average diagnostic error rate of 7% was achieved using 

the BP algorithm. However, a local minima convergence was observed at a rate of 12~16%; (3) 

The LAMSTAR network displayed less sensitivity to the local minima issue. The best overall 

diagnostic error rate of about 0.5% was achieved using LAMSTAR network. 

In Chapter VI, a new piezoelectric strain sensor based PGB fault diagnostic methodology 

was presented. The presented method was accomplished through a combination of low pass 

filtering, TSA, and CIs to extract diagnostic fault features for PGB. Since there was no similar 

study available in the literature, a filter-band optimization procedure was performed to apply the 

low-pass filter. Then, the varied input signals and CIS were computed which are widely used in 

real applications such as health and usage monitoring systems (HUMS) installed in helicopters and 

the condition monitoring systems in wind turbines. The presented method was further validated 
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using data collected from seeded fault tests conducted on a PGB test rig in a laboratory. The 

validation results have shown that fully separable diagnostic CIs towards all PGB fault types were 

captured regardless of shaft speeds and loading conditions. A total of four CIs were extracted from 

PE strain sensor signals: TSA RMS, TSA P2P, residual RMS, and residual P2P which effectively 

differentiate the localized faults on all gears: sun gear, planetary gear, and ring gear, which has not 

been presented in the literature. The PE strain sensor based PGB fault diagnostic technique 

presented in this chapter provides an attractive alternative to the current vibration analysis based 

approach. 

The comparative results for the vibration, AE, and PE strain sensors conducted on the PGB 

test rig are provided in Chapter VII. From the conventional signal processing techniques for 

machinery fault diagnostics such as TSA, enveloping, VS and etc. were investigated. Then those 

developed in the previous Chapters were utilized to provide a comparative study from the PGB 

diagnostic feasibility stand point. The following conclusion could be drawn: 

- The conventional analysis techniques such as TSA, enveloping, VS barely shown any 

differential results for the faulty PGBs from the healthy PGBs. 

- The Welch’s SA based vibratory analysis was able to diagnose two types of localized PGB 

faults with an aid of machine learning techniques; the minimal error rate around 3~4% was 

achieved using KNN and LAMSTAR, however, LAMSTAR network achieved the 

minimal standard deviation and it is a desired aspect from the reliability perspective. 

- The AE based analysis was more accurate than the Welch’s SA based vibratory analysis 

for the PGB fault diagnostic method; the best diagnostic error rate of ~0.5% was achieved 

using LAMSTAR network. 
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- The PE strain sensor based analysis was desirable in that any machine learning was not 

required in PGB diagnosis. The following CIs were found effective: TSA RMS, TSA 

Shannon entropy (SEnt), Residual RMS, Residual SEnt, W RMS, and W P2P. Assume that 

the output loading is a known parameter using power-torque equation from the generator. 

For those effective CIs, some of them have shown less sensitive to the change of the speed 

under the same loading condition, for example, TSA RMS. It can be observed that the CI 

level of TSA RMS almost linearly increased when loading condition increased. Therefore, 

in the varying loading scenario, this CI can be used by setting thresholds (or formulating 

threshold equation) for the known loading condition. In addition to that, other CIs may 

have shown more sensitive to the change of the speed under the same loading condition, 

for example, SEnt. Under the varying shaft speed scenario, the CI level of SEnt almost 

linearly decreased when shaft speed increased. 
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