
Detecting and Tracking Communities in Social Networks

BY

CHAYANT TANTIPATHANANANDH
B.Eng., Chiang Mai University, Thailand, 2002

M.S., University of Illinois at Chicago, 2007

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Chicago, 2013

Chicago, Illinois

Defense committee:

Tanya Berger-Wolf, Chair and Advisor
Bhaskar DasGupta
Philip Yu
Robert Kenyon
Vijay Subramanian, Northwestern University

Copyright by

Chayant Tantipathananandh

2013

ACKNOWLEDGMENTS

This work would not have been possible without the help of my advisor Tanya Berger-

Wolf who has been very supportive and encouraging throughout regardless of my stubborn

ignorance. I am thankful to the members of my thesis committee, Bhaskar DasGupta, David

Kempe, Robert Kenyon, Vijay Subramanian, and Philip Yu, for their helpful feedback and

advice. I am also grateful to a number of professors, Gyorgy Turan, Druv Mubayi, Robert

Sloan, Dan Rubinstein, Clement Yu, and Klaus Miescke, for their teaching and guidance.

I am grateful to my lab mates and friends, Andrew Ring, Arun Maiya, Chihua Ma, Habiba,

Heba Basiony, Marco Maggioni, Mayank Lahiri, Paul Varkey, Rajmonda Sulo Cáceres, and

Saad Sheikh, for their help and encouragement.

Last but not least, this thesis would not have been possible if not for the love and support

from my family. Thank you!

C. T.

ii

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1
1.1 Motivations . 2
1.2 Organization of the Thesis . 4

2 PRELIMINARIES . 6
2.1 Basic Notations . 6
2.2 Problem Statements . 7
2.2.1 Community Identification in Dynamic Social Networks 8
2.2.2 Tracking Communities over Time 8

3 RELATED WORK . 11
3.1 Sociology of Cohesive Groups 12
3.2 Community Identification in Static Networks 13
3.2.1 Local Notions . 14
3.2.2 Global Notions . 19
3.2.3 Data Clustering . 21
3.2.3.1 Distance-based Clustering . 22
3.2.3.2 Hierarchical Methods . 23
3.2.4 Spectral Graph Clustering . 25
3.2.5 Modularity Optimization . 26
3.3 Correlation Clustering . 27
3.4 Tracking Communities over Time 28
3.5 Dynamic Community Detection 31
3.6 Other Related Work . 33

4 TRACKING COMMUNITIES OVER UNIFORM TIMESTEPS 36
4.1 Social Cost Model . 36
4.2 Cost Graph . 37
4.3 Approximation Algorithms . 40
4.3.1 Group Graph . 42
4.3.2 A Special Case: Complete Partitions 44
4.3.2.1 Algorithm Description . 44
4.3.2.2 Performance Analysis . 45
4.3.3 The General Case . 48
4.3.3.1 Path Cover Problem . 48
4.3.3.2 Algorithm Description . 49
4.3.3.3 Performance Analysis . 50

iii

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

4.4 Post-Processing Steps . 56
4.4.1 Dynamic Programming Post-Processing 56
4.4.2 Iterative Path-Cover Heuristic 58
4.5 Experiments . 58
4.5.1 Experimental Setup . 59
4.5.2 Coloring Results . 60
4.6 Summary . 61

5 TRACKING COMMUNITIES: THE GENERAL CASE 65
5.1 Definitions and Notations . 65
5.2 Sighting Graph . 67
5.3 TDK Model . 69
5.3.1 Problem Formulation . 73
5.4 Approach via Reduction to Correlation Clustering 77
5.5 Unilateral Improvement and Contraction Algorithm 77
5.6 Experiments . 79
5.6.1 Data Pre-Processing . 80
5.6.2 Experimental Setup . 80
5.6.3 Results . 82
5.7 Summary . 83

6 DETECTING COMMUNITIES IN DYNAMIC NETWORKS . 90
6.1 Notations and Definitions . 90
6.2 Probabilistic Model . 92
6.2.1 Maximum Likelihood . 96
6.3 Method . 96
6.4 Experimental Results . 97
6.4.1 Synthetic Network Generator . 97
6.4.2 Results . 97
6.4.3 Comparison With Other Methods 98
6.4.4 Experiments on Real Datasets 100
6.4.5 Haggle3 Dataset . 102
6.5 Summary . 104

7 CONCLUSION . 109
7.1 Summary of Contributions . 109
7.1.1 Tracking Communities . 110
7.1.2 Detecting and Tracking Communities 111
7.2 Future Directions . 111
7.2.1 Tracking Communities . 111
7.2.2 Detecting and Tracking Communities 112
7.2.3 Miscellaneous . 113

iv

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

APPENDICES . 114
Appendix A . 115
Appendix B . 119
Appendix C . 121

CITED LITERATURE . 127

VITA . 137

v

LIST OF TABLES

TABLE PAGE
I Datasets and their statistics in Chapter 4. 59
II Performance of PCC and IPCC with the dynamic programming

post-processing. 64
III Reproduction of the Southern Women dataset 116
IV Freeman’s 21 static community assignments in Southern Women. 116
V Datasets and their statistics in Appendix A 117

vi

LIST OF FIGURES

FIGURE PAGE
1 An example subgraph C which is both a 4-plex and a 3-core. 17
2 Left: An example of an interaction sequence. Right: The corre-

sponding cost graph. 38
3 The group graph of the sequence of community snapshots from Fig-

ure 2. 43
4 The dynamic communities in Southern Women of total cost 74 pro-

duced by algorithm PCC alone with cost setting α = β1 = β2 = 1 . . . 61
5 The dynamic communities in Southern Women of total cost 43 pro-

duced by algorithm IPCC with the dynamic programming post-processing
with cost setting α = β1 = β2 = 1 . 62

6 The optimal dynamic communities in Southern Women of total cost
36 produced by the exhaustive search with cost setting α = β1 = β2 = 1 63

7 How to synchronize sightings. 66
8 Left: an example sequence of sightings. Right: the corresponding

sighting graph. 68
9 Optimality gaps LO/OPTf on Grevy’s zebra dataset. 83
10 Optimality gaps LL/(OPTf − offset) on Grevy’s zebra dataset. . . 84
11 LL on Grevy’s zebra dataset. OPTf is the optimal value to the SDP

relaxation which is an upper bound on the optimal LL. 85
12 Optimality gaps LO/OPTf on Onager dataset. 86
13 Optimality gaps LL/(OPTf − offset) on Onager dataset. 87
14 LL on onager dataset. OPTf is the optimal value to the SDP relax-

ation which is an upper bound on the optimal LL value. 88
15 Rand index distance to ground truth (left column) and the upper

bound on the approximation ratio (right column) of the SDP algorithm
for psw = 0.30, N = 15, T = 10, k = 3. 99

16 The distance to the ground truth of three algorithms with the best
parameter settings, over 10 trials of synthetic data sets with N = 10, T =
10, k = 2. 100

17 Community structures in the Haggle at the first timestep detected
under various (Csw, Cfn, Cfp). 101

18 Community structures in the Haggle dataset with parameters (Csw, Cfn, Cfp) =
(5, 5, 5). 102

19 Community structures in Haggle dataset at timesteps 29–33. The
first column is detected with (Csw, Cfn, Cfp) = (5, 1, 5) and the second
column is detected with (Csw, Cfn, Cfp) = (1, 1, 5). 105

20 Intra-cluster density at timesteps 1–14 in the Haggle dataset. . . . 106
21 Inter-cluster density over timesteps 1–14 in the Haggle dataset. . . . 106

vii

LIST OF FIGURES (Continued)

FIGURE PAGE

22 Haggle3. The timesteps are 5–7. Parameters are set as follows. In
all three rows, Csw = 5, Cfn = 1. From the top to the bottom row, Cfp =
1, 5, 10. As Cfp increases, the cluster becomes larger as the inter-cluster
edges are penalized more and intra-cluster non-edges are penalized less. 107

23 Haggle3, timesteps 22–31. The first and third rows are detected with
parameters Csw = 5, Cfn = 1, Cfp = 10. The second and forth rows are
detected with parameters Csw = 5, Cfn = 5, Cfp = 10. There are note-
worthy differences between these two parameter settings at timesteps 25
and 30. The former gives one big, sparser cluster while the latter gives
several smaller, denser clusters. 108

viii

LIST OF ABBREVIATIONS

DCI Dynamic community interpretation (problem).

EM Expectation-Maximization (algorithm).

GPS Global positioning system.

i.i.d. independent and identically distributed

LHS Left hand side (of an equation).

LP Linear program.

MAP Maximum a posteriori probability.

PTAS Polynomial-time approximation scheme.

QP Quadratic program.

RHS Right hand side (of an equation).

SDP Semidefinite program.

TDK Time-decay (model).

UIC Unilateral improvement and contraction (algorithm).

VP Vector program.

ix

SUMMARY

Community detection is an important task in social network analysis. Social interactions

exist within some social context and communities are a fundamental form of social contexts.

Communities are intuitively characterized as “unusually densely knit” subsets of a social net-

work. This notation becomes more problematic if the social interactions change over time. The

interplay between social interacts and social contexts are crucial to understand the evolution

of networks. Thus, it is important to both detect communities and track their changes.

My contributions fall into two categories. First, I consider the problem of tracking commu-

nities over time, assuming that partitions into communities are already given for all snapshot

graphs. The question is which community snapshot becomes which community snapshot at an-

other point in time. My contributions to the first part are models and algorithms for tracking

communities. I show a constant-factor approximation algorithm based on path cover, another

algorithm based on a state-of-the-art approximation algorithm for the Correlation Clus-

tering problem, and a fast heuristic algorithm which produces even better solutions in practice

than the two prior algorithms. Tools developed for this task can be used for longitudinal social

network analysis, ecological inference, etc. Secondly, I consider the combined problem of de-

tecting communities in network snapshots and simultaneously tracking them. For this second

part, I show an algorithm based on the state-of-the-art approximation algorithm, similar to

the above. This gives the first algorithm for the dynamic community detection problem which

produces a numerical approximation guarantee of a solution.

x

CHAPTER 1

INTRODUCTION

Many systems in the world can be represented as networks in which network links represent

relationships between the interrelating parts (nodes) of the systems. Examples of well-known

networks are social media and online social networking sites such as Facebook, Google+, and

Twitter. Networks have been used to model systems of interrelating parts in many fields ranging

from social sciences to behavioral ecology to molecular biology, from civil engineering to elec-

trical engineering, to computer science. Network links, in different domains, represent various

kinds of relationships such as human friendship, organizational structures, physical proximity

of animals, interconnectivity of infrastructures, Web hyperlinks, or even more abstract relation-

ships such as similarity of data points.

One of the most important observations about networks in the nature is the existence of

communities (15; 43; 46; 100; 101; 102). Communities, also known as modules and clusters,

are sets of nodes which are relatively more connected, and are believed to be the intrinsic

structures in networks in the nature. Nodes in the same community often share interesting

properties such as a common function, interest, or purpose. Thus, community detection is

one of the most important problems in network analysis. Among the areas to which network

analysis is applicable, my research interest is specifically in developing computational methods

for analyzing networks which arise in sociology and behavioral ecology such as those which

1

2

describe friendship links and animal social interactions. Next, I review important questions in

these specific fields which motivate my work.

1.1 Motivations

One of the most important questions in sociology is that about communities. This is known

as the Community Question (101) which can be paraphrased as: How does the community

structure affect the social interactions among the people? Vice versa, how does the social

interactions among people affect the community structure? In terms of social network, this

question asks how community structure affects the formation and evolution of links between

nodes, and vice versa. The nature of a human community used to be confined by geography.

In fact, the term community once used to mean a place. As the technology in transportation

and communication shifted, the mode of social interactions has changed, and so did the way

people interact with their communities (5). Nevertheless, communities still exist and are the

foundations of human societies (15; 101; 102). Thus, the question about communities is still

important. To answer it, we need to first be able to identify the community structure in a

social network. Despite the importance and the long history of the problem of identifying

communities, there is still no consensus answer to the problem.

At the heart of my thesis is the one aspect of social networks that has not been sufficiently

addressed — time. We seem to perceive the world as slowly evolving and essentially static.

Fifty years ago, Wilbert Moore made an observation (67) that “social sciences tended to neglect

the way the limits and flows of time intersect the persistent and changeful qualities of human

enterprises.” He corroborated his observation by noting the dominance of static models in social

3

analysis at the time, and further made an observation that “all analytical sciences tend to perfect

their descriptions of elements and observations of combinations before they develop the capacity

to observe orderly transformations in the course of time.” In the present days, static models are

still dominant in social network analysis. In particular, most work on identifying communities

assumes that social networks and the underlying community structures are static. Given the

pace at which our societies have changed, any conclusions drawn from such static analysis are

unlikely to withstand the test of time. Moreover, given this fifty-year-old observation of Moore,

I doubt that we would ever perfect the descriptions of elements and proceed to investigate the

transformations. This clearly necessitates the development of frameworks and algorithms for

identifying the community structures in ever-changing social networks, which is at the heart of

my thesis.

Besides humans, other social animals are prevalent in the animal kingdom. Time is still

a very important aspect in studying social behaviors of animals. Especially for conservation

purposes, it is important to be able to detect and recognize changes as they happen in order

to contain the damages or reverse the process before it is too late. The most basic social

interactions of many animals are in the form of social groups. Many species (including birds,

spiders, fishes, and mammals) live in groups. Group living offers the strength in numbers which

helps compensate for the predation risk (17; 57). Group living also offers a place for social

learning (58) by which animals learn about foraging areas, dangerous places, food preferences,

predator recognition, preferences on mates, just to name a few. Social interactions in animals

are intrinsically confined by spatial proximity since the interactions involve an individual seeing,

4

hearing, smelling, or touching other individuals. To juxtapose with human, animal social groups

are similar to what human communities used to be in the past when face-to-face meetings were

the most common mode of social interaction. Nonetheless, the complexity of animal societies

ranges from very simple to fairly complex, from shoals of fish to pair-bonding birds to social

hierarchies in primates (24). In a simple society in which interactions mean being in close

physical proximity, the corresponding social network is quite easy to construct and study. In

a more complex society in which members of a social group form bonds with certain other

members, it is difficult to gauge the strength of the bonds (88). Unlike with humans, we

cannot interview or use questionnaires with animals (but, thankfully, they do not use email

or cellphones). Although there is a way to estimate the strength of the bonds using associate

indices (24), it is less than ideal especially when we know that social interactions change over

time. These association indices treat the group events as independent sampling events, and as a

result, disregard the chronological continuity and ordering. This problem is perhaps most severe

in species which live in fission-fusion societies (17; 23; 57). The changes in group compositions

are probably the most interesting part to observe and study in such societies. This necessitates

the development of methods for analyzing transitions of social groups, which is at the heart of

this thesis.

1.2 Organization of the Thesis

In this thesis, I developed computational solutions for the problem of tracking communities

especially in social networks which change over time. In particular, the main contribution of

my thesis is two-pronged. The first is a well-motivated computational framework. The other

5

is very efficient and accurate algorithms for the task. The rest of the thesis is organized as

follows. Chapter 2 gives the definitions of notations and a formal statement of the problems

which are addressed in this thesis. Chapter 3 surveys the existing literature on the problem

and other related topics. After that, the thesis is conceptually separated into two parts. The

first part, which spans two chapters 4 and 5, deals with the problem of tracking communities

over time, assuming that community membership in each snapshot of the network is already

given. The goal of this part is to develop computational tools which consistently string together

these snapshots of community memberships across time. In particular, Chapter 4 presents a

solution to a special case in which time is treated as a series of discrete and uniform timesteps.

In other words, the snapshots are assumed to represent community memberships at equidistant

timesteps. This special case naturally arises in many applications where data can be collected

at pre-defined time intervals. In Chapter 5, I relax this assumption about uniform timesteps

and consider the general case of the problem of tracking communities over timesteps of variable

length. This concludes the first part. The second part is Chapter 6 in which I consider the

problem of identifying communities in a general dynamic network and simultaneously tracking

them over time. Lastly, Chapter 7 gives concluding remarks and future directions.

Lastly, software used in this thesis is or will be made available at the following website:

http://compbio.cs.uic.edu/~chayant/commdy/.

http://compbio.cs.uic.edu/~chayant/commdy/

CHAPTER 2

PRELIMINARIES

In this section, I give the basic definitions which I use throughout the thesis, and formally

definite the problem of identifying communities in dynamic social networks.

2.1 Basic Notations

A static graph is denoted by G = (V,E) where V is a set of n vertices and E ⊆ V ×V is a set

of edges. Although some graphs here contain self loops (u, u) ∈ E, most of them do not. Graphs

here also do not have multiple edges between the same pair of vertices. For such a simple graph

G = (V,E) with no self loops, G can have as many as
(|V |

2

)
edges where

(
n
k

)
= n!

k!(n−k)! is the

binomial coefficient, 0 ≤ k ≤ n.

In social network terminology, it is more common to refer to the vertices and edges of a

graph as nodes and links. I will use the terms interchangeably. For a graph G, I will also

use V (G) to denote the vertex set of G and E(G) to denote the edge set of G. Let A = [Aij]

denotes the adjacency matrix of the graph G where Aij denotes the element at the ith row and

jth column. Aij = 1 if (i, j) is an edge in G, otherwise 0. Let N(v) denote the neighborhood

of v, which is the set of vertices adjacent to v. Let dv denote the degree of the vertex v, which

is the number of neighbors of v. For a subset of vertices C ⊆ V, let G[C] denote the induced

subgraph on C. That is, G[C] is the graph on vertex set C and the edges in E(G) with both

end points in C. Since non-induced subgraphs arise very rarely in my context, I will use the

6

7

terms subgraph and induced subgraph, interchangeably, unless stated otherwise. A partition of

a set S is a collection of disjoint subsets P = {P1, . . . , Pk} , called parts or clusters, whose union⋃k
i=1 Pi equals to S. All partitions in this thesis are partitions of the vertex set of some graph,

unless stated otherwise. Each element of S belongs to exactly one part. Thus, a partition of a

vertex set can be thought of as an assignment of vertices to communities. The terms partition,

clustering, and community assignment will be used interchangeably.

A dynamic social network, or simply a network, on a vertex set V is a sequence of snapshot

graphs G = 〈G1, . . . , Gm〉 over m discrete timesteps t1 < t2 < · · · < tm. The snapshot at time

ti is the graph Gi = (Vi, Ei) on vertex set Vi ⊆ V which is a subset of all the vertices in the

network. The vertices in Vi are known to be interacting at timestep ti and the edges in Ei

represent the observed interactions at that timestep. For the vertices not in Vi, we do not know

anything about their interactions at timestep ti, or the lack thereof. A community structure or

a coloring is a function χ : V × {t1, . . . , tm} → N. Each color represents a unique community.

The interpretation is that the color χ(v, t) represents the community with which the vertex v

is affiliated at the timestep t. A vertex v at a timestep t is affiliated with the same community

as a vertex v′ at a timestep t′ if and only if χ(v, t) = χ(v′, t′).

2.2 Problem Statements

In this section, I formally state two problems to be addressed later in this thesis: (a)

community detection in dynamic social networks, and (b) tracking communities over time.

8

2.2.1 Community Identification in Dynamic Social Networks

The problem of identifying communities in a dynamic social network can be generally defined

as follows. Given a dynamic social network G = 〈G1, . . . , Gm〉, we want to find the community

structure χ which best explains the social interactions in G. I will define what best means in

later chapters. The problem statement suggests that the problem can be solved in two steps:

1. Finding communities in each snapshot graph Gi,

2. Stringing the communities across snapshots into a community structure χ.

The Step 1 is essentially finding communities in a static graph, which is not the main focus of

this thesis (see Chapter 3 for a survey). Step 2 is the main focus of this thesis. Now, I formally

define the problem in Step 2. Having done Step 1, we have partitioned the vertex set Vi into

community membership Ci = {C1, . . . , Cki} which best explains the social interactions observed

at time ti. Together, 〈C1, . . . , Cm〉 is a series of community memberships over all timesteps. The

problem is to find a coloring function χ which best explains 〈C1, . . . , Cm〉. Again, I will define

what I mean by best later. In addition to solving the problem in two separate steps, I also

present how to solve the problem in one step in Chapter 6.

2.2.2 Tracking Communities over Time

In real world, the membership of communities tend to change gradually. Backstrom et al.

observe this on the communities of LiveJournal users and communities of conference publica-

tions on DBLP (5). So it is important not only to detect communities but also to track the

changes in membership over time. In this section, we review other work on tracking commu-

9

nities over time. That is, we suppose that communities with each snapshot of the network are

have been detected. Now, the questions are: Which community in one snapshot becomes which

community in the next snapshot? What membership changes occur in between?

The problem of tracking communities is motivated by a problem in behavioral ecology

in studying animals which live in fission-fusion societies such as zebra and the Asiatic wild

ass (92). During a field drive, one group of animals is usually sighted and observed at a time.

The observers visually observe the behaviors of the group members from distance for a certain

period of time. It is possible two separate groups or more are encountered at the same time,

but such occurrences are rare. Group membership in a fission-fusion society is fluid. A natural

question is which group that we observe today is the same group which were previously observed.

Groups in this setting are manifestations of perpetual communities. Inversely, a community is a

consistent string of groups seen on different days. This is the problem of tracking communities

over time. Loosely speaking, it is about how to string different groups from the same day into

communities which span multiple days.

The problem of tracking communities over time is very similar to the second step in the

two-step process mentioned in the previous section. Strictly speaking, the problem of tracking

communities is more general than the Step 2 in the two-step process. Step 1 in the two-step

process produces a sequence of partitions of the entire graph, while the problem of tracking

communities requires as an input only a sequence of collections of disjoint groups, which are

not necessarily partitions of the entire graph. That is, some communities can be unobserved at

some timesteps. This means, if we use the two-step process to detect communities in a dynamic

10

social network, then Step 1 does not need to produce a partition of the entire graph. It may

selectively produce only clusters on which it has high confidence. This relieves the algorithm

from trying to put every vertex in some cluster, the result of which usually is a rather artificial

collection of clusters.

CHAPTER 3

RELATED WORK

In this chapter, I survey the current literature on the community identification problem and

other closely related problems. First, I review the work on identifying communities in static

graphs. Then, I review the literature on data clustering which is a long-standing problem. Many

methods for identifying communities are inspired by methods for data clustering. Then, I review

the work on a more recent problem, the Correlation Clustering problem. Then, I shift

the gear to consider work which explicitly takes the time aspect of networks into consideration.

In particular, I gives a review of the work on tracking communities over time. Lastly, I review

the work on identifying communities in dynamic social networks.

One aspect in all of the above problems, which has been completely ignored, is that seeing

patterns is a matter of magnifying scale. There is no right or wrong way of looking at a

system. You can look at a system at different magnifying powers and find different patterns

and structures at different levels. This explains why every single method has a magnification

knob built in, either as a hard-wired or variable parameter. This magnifying knob is what

one uses to change the sizes of the communities or the number of communities. Ideally, one

should be able to use the same method to obtain different results ranging from a partition with

singleton clusters to a partition with one big cluster containing all vertices. The availability of

a magnifying knob has been perceived as a limitation of methods (38; 91) but evidences suggest

that this is inevitable in clustering problems (55; 62).

11

12

In this chapter, I will refer to the set of vertices under consideration as a candidate set or

just a subgraph (induced by some certain candidate set) instead of a community to emphasize

the fact that it may not represent an actual community yet. I will start with the sociological

concept of communities, since this is where it all begins.

3.1 Sociology of Cohesive Groups

In sociology, the terms groups and communities are often used interchangeably to refer to

the same concept of cohesive groups (13; 14; 45; 101). Sometimes, the term subgroup is used

instead if the term group is used to refer to a sample of the population (100). According to

Reeves (80), all sociological groups have the following properties in common:

Cohesiveness Cohesiveness is the force that holds a group together. The level of cohesiveness

varies according to many factors such as existence of threats from the outside, strength

of leadership, group identity and objectives, and relationships among group members.

Norms Group norms are the standards of behaviors which arise naturally until they have

become tradition-like. Group norms are the laws of the group and reveal things that a

group holds as values.

Sanctions Group sanctions are the policing force which enforces the group norms. Norms of a

group change over time. A new norm maybe introduced to the group, while an old norm

vanishes unless the group members maintain it.

Objectives Group objectives are the reasons why a group exists. The objectives of the group

come from all of its members who continue to maintain those objectives. Objectives may

13

change from time to time according to internal and external changes, so that the group

remains competent.

Self-perpetuation A group is a living entity which has a desire to survive and continue to

live. The most important element to self-perpetuation is the leader-follower relationship.

The health and survival of the group depend on decisions made by the leader and how

the followers evaluate those decisions as fitting the group objectives.

In summary, all groups share the same set of properties to some extent. For a group to exist

and continue to survive, there must be some cohesive force which holds its members together.

As a group continue to survive and thrive, it develops its own social norms and traditions which

are deemed to be important by its members, and are enforced by the means of group sanctions.

The objectives of the group are evaluated from time to time to reflect changes from the inside

and outside. The interactions between the leader and the followers determine the group’s

effectiveness in achieving its objectives, its health, and its survival. These are the sociological

aspects which all groups share and should be taken into consideration when formalizing the

notion of groups or communities. One thing to note here is that the time aspect is part of

almost all of the above properties and changes are inherent to the nature of groups. With this

in mind, we proceed to review approaches taken by researchers to define and identify cohesive

groups in social networks.

3.2 Community Identification in Static Networks

Having mentioned Moore’s observation about the dominance of static analysis in social

sciences (67) in Chapter 1, it is not so surprising to find that the majority of work on identifying

14

communities assumes that social networks are static. Nevertheless, it is still an important

question since there are cases in which networks can and should be assumed to be static. In

this section, a social network is represented as an undirected graph G = (V,E) in which an

edge (u, v) ∈ E represents a social relationship or interaction between the nodes u and v.

Unless stated otherwise, a graph G is unweighted. There are several survey papers on this

topic (16; 25; 38; 39; 41; 61; 70; 77; 83). Intuitively, communities are areas in the network

which have relatively more connections within the areas than across different areas. However,

no single formal definition of communities is universally accepted (38). Even then, in many

cases, researchers usually start by stating some intuitions about communities, then proceed

to describe a heuristic algorithm which find communities that capture the intuitions, without

formally define what communities are. Such notions of communities are usually termed as

being operationally or algorithmically defined, which essentially means that communities are

whatever the heuristic algorithms output. In this section, I try to categorize methods for

identifying communities based on the nature of communities that the methods capture.

3.2.1 Local Notions

In this section, communities are viewed as independent patterns which repeat themselves.

Here, we are concerned with finding all community-like patterns without worrying about how

the patterns fit together into one picture of overall community structure. To some extent, such

communities can be considered as autonomous units. This was how the notion of communities

was viewed in the early development of social network analysis, which was heavily influenced by

graph theory (84). As a result, the early definitions of communities are mostly graph-theoretic

15

and local. One thing that these early definitions have in common is that they are all maximal

subgraphs with respect to some graph-theoretic properties.

The simplest, yet strictest definition of a community is a clique, which is a complete sub-

graph. Every vertex is adjacent to every other vertex in a clique. Because of its restrictive

nature, many researchers have proposed “better” alternatives of cliques by considering the

diameter of a (sub-) graph. Cliques are subgraphs with diameter one,1 so other subgraphs

with small diameters can potentially be community-like as well. This gives three variations of

cliques: n-cliques, n-clans, and n-clubs. All are maximal subgraphs of diameter n. The subtle

differences between n-cliques, n-clans, and n-clubs are in the choices of graphs and subgraphs

used in computing the distances. n-cliques use the distances in the original graph. n-clubs

use the distances in the subgraphs. n-clans use the distances in both the original graph and

the subgraphs. These choices affect the computational complexity of the algorithms for finding

them. See (100) for details.

Derényi et al. (29) generalized the notion of cliques in a slightly different way by means

of clique adjacency. Two cliques of size k are considered adjacent if they share all but one

vertex. If two cliques overlap one another significantly, then they would be put in the same

community. This notion of clique adjacency is used to defined a notion of community, called

clique percolation, which is the maximal collection of adjacent cliques of the same size k. A

1The diameter of a graph is the longest distance (which is defined as the length of the shortest path)
between any two vertices in the graph.

16

collection of adjacent cliques is community-like since the vertices are highly knitted throughout,

although the diameter of the subgraph can be potentially large.

Another measure of cohesiveness, which is used to define communities, is the minimum

number of intra-cluster neighbors. A k-plex is a maximal subgraph whose vertices are adjacent

to all but at most k other vertices in the subgraph. Formally, a k-plex is a maximal subgraph

in which |C − {v} −N(v)| ≤ k for all v ∈ C. Similarly, a k-core is a maximal subgraph whose

vertices are adjacent to at least k other vertices in the subgraph. Formally, a k-core is a maximal

subgraph in which |N(v) ∩ C| ≥ k for all v ∈ C. In other words, k-plex requires the minimum

number of cluster members which each vertex cannot miss (being adjacent to), while k-core

requires the minimum number of cluster members to which each vertex has to be adjacent.

The two concepts are complimentary to one another. In fact, a k-core on ` vertices is an

(`− k − 1)-plex. Figure 1 shows an example in which C is both a 4-plex and a 3-core.

The notions that I have presented so far only capture the cohesiveness inside a subgraph. It

is also important to consider how disconnected a subgraph is from the rest of the network. An

LS-set is a subgraph in which each vertex has at least half of its neighbors inside the subgraph.

LS-sets are also known as strong communities. Instead of counting the neighbors of each vertex,

we can also count the neighbors of the subgraph itself. This is known as a weak community,

which is a subgraph which has at least half of its neighbors inside the subgraph. Another

version of strong and weak communities is that of Hu et al. (52) which takes into account not

only the number of neighbors in the subgraph but also those in the neighboring communities.

17

G
C

Figure 1: An example subgraph C which is both a 4-plex and a 3-core.

Another way to locally define a community is to constrain both the numbers of neighbors in-

side and outside the candidate set. An example is (α, β)-community proposed by He et al. (49).

For α < β, an (α, β)-community is a subgraph on vertex set C such that each vertex in C has

at least β neighbors in C and each vertex outside C has at most α neighbors in C.

Another measure of cohesiveness is the connectivity number of a graph, which is how many

vertices (or edges) needed to be removed to disconnect the graph (30). A graph is k-vertex-

connected, or just k-connected, if there is a set of k vertices whose removal disconnects the

graph. A graph is k-edge-connected if there is a set of k edges whose removal disconnects

the graph. Not only for graph, this notion can also be used to measure the connectivity of a

pair of vertices. The edge-connectivity of two vertices is the number of edges whose removal

18

disconnects the pair. Edge-connectivity of a pair of vertices measures the fault tolerance of the

network in connecting the pair. A lambda set is a subgraph in which any pair of verities has a

larger edge-connectivity than any pair of vertices with (exactly) one end point in the subgraph.

Cohesiveness measures are also known as fitness measures (99). The higher the measure on

a subgraph, the more community-like the subgraph is. The first is intra-cluster density which

is the fraction of the number of edges in the subgraph,

density(C) =
|E(G[C])|(|C|

2

) .

Another measure is relative density which is the ratio between the number of intra-cluster edges

and the number of edges which touch the subgraph,

relative-density(C) =
|E(G[C])|

| {(u, v) ∈ E : u ∈ S} |
.

Then, we define a threshold of the fitness measure above which a subgraph is a community.

Another measure of how disconnected a subgraph is from the rest of the network is conduc-

tance, which is the ratio between the size of the cut and the volume of the set,

conductance(C) =
| {(u, v) ∈ E : u ∈ C, v 6∈ C} |
min

{
volume(C), volume(C)

} ,

19

where the volume of a set C is volume(C) =
∑

v∈C dv. The lower the conductance value, the

more community-like a candidate set is. Thus, a community is defined as a candidate set whose

conductance is no greater than a certain threshold.

The problem with using local definitions is that they treat communities as independent

entities out of context. Using local approaches, we might be able to quickly find many interesting

structures in the network, but a network is a system of interrelated parts. Local approaches

lack the capability to explain how communities in a network interact with one another. This

motivates kinds of definitions based on global structures of the networks, which I review next.

3.2.2 Global Notions

Compared the local notions of communities in the previous section, the notions in this section

are based on the structural information about the whole graph. As mentioned previously, local

definitions are usually “self-centric” in nature. Global notions look at the network link structure

and all candidate sets that form a community structure as a whole. In particular, a good quality

function should capture the notion of a good collection of communities. A quality function is

a function which takes a partition of the vertex set of a graph and outputs a number which

quantifies how likely the parts of the partition are communities of the graph. Since the notion of

communities itself is not universally defined, we have to keep in mind that each quality function

captures only one aspect of communities.

20

Let C be a clustering (a partition) of a graph and let Cv denote the cluster of node v. One

quality function is performance which is the fraction of all vertex pairs classified correctly by

the partition,

Performance(C) =
| {(u, v) ∈ E : Cu = Cv} |+ | {(u, v) 6∈ E : Cu 6= Cv} |(

n
2

) ,

where ∼C denotes the equivalence relation associated with a partition C (u ∼C v if and only if

the vertices u and v are in the same part of C).

Another quality function is the coverage which is the fraction of edges of the graph which

fall inside the parts of the partition,

Coverage(C) =
| {(u, v) ∈ E : Cu = Cv} |

|E|

Another way to define a global notion of communities is to use a null model. A community

structure is an evidence of heterogeneity in a social network. Links are biased toward vertices

which belong to the same communities. On the other hand, a random graph, such as Erdős-

Rényi (34), imposes homogeneity of link structure, and thus is unlikely to have a community

structure.

This leads to the definition of modularity by Newman and Girvan (72),

Q(C) =
∑
u,v∈V

[
Auv
2|E|

− dudv

4|E|2

]
δ(Cu, Cv),

21

where δ is the Kronecker delta and Cu is the community ID of u. That is, δ(Cu, Cv) = 1 if u and

v are in the same community, otherwise δ(Cu, Cv) = 0. The intuition behind the formula is that

it compares the number of intra-cluster edges in the original graph with the expected number

of intra-cluster edges when the graph is randomly rewired based on the degrees of the nodes.

Modularity was boasted to be a way to automatically discover the true number of communities.

However, there are known problems associated with maximizing modularity (48; 51; 61; 62)

such as the tendency to favor approximately equally-sized clusters. It still remains unconvincing

whether maximizing modularity can really uncover the true number of communities.

Another way to think of modularity is in the framework of the Correlation Clustering

problem (discussed in Section 5.4). Modularity, as an objective function, converts an undirected

graph into a complete graph with both positive and negative weights. Thus, it is neither

a similarity function nor a distance function. Clustering in a graph with both positive and

negative weights is precisely the Correlation Clustering problem.

The community detection problem is closely related to the data clustering problem. In data

clustering, Jon Kleinberg (55) proved an impossibility result which states that there are no

clustering algorithms (or, clustering functions) which satisfy three properties of good clustering

algorithms, simultaneously. Unfortunately, it is unknown whether the theorem generalizes to

the community detection problem. I will discuss about this in more details in Section 3.6.

3.2.3 Data Clustering

Data clustering, also known as cluster analysis, differs from the community detection prob-

lem in that the entities being clustered are data points from some ambient space. In other

22

words, data clustering tries to group items based on their attributes while community detection

tries to group items based on their relationships. The notions of similarity and distance are

commonly used in data clustering. To use a data clustering technique to do community detec-

tion, one starts with embedding a social graph in some space so that data clustering methods

can be used. For example, spectral graph clustering embeds the vertices in the eigenspace of

some graph Laplacian. It then derives some similarity measures from the graph topology and

finally applies data clustering methods. Some data clustering techniques, such as hierarchical

methods, do not require an embedding of graph in some space as long as the similarity between

every pair of data points can be computed.

3.2.3.1 Distance-based Clustering

Many community detection algorithms use transitional techniques developed for data clus-

tering, also known as cluster analysis. In data clustering, data points belong to some vector

space in which a norm or distance is defined. The number of expected clusters k is usually

given as a parameter. The most popular technique is perhaps k-means in which one wants to

cluster the data points such that the intra-cluster sum of squared distances is minimized,

k∑
i=1

∑
xj∈Si

||xj − µi||2,

where µi is the mean of the points in cluster Si. The problem is NP-hard and is usually solved

using Lloyd algorithm (65) which converges to a local optimum. Other variations of k-means

are k-centers, k-medians, and k-medoids. Also, Rattigan et al. (79) extended k-means to graph

23

clustering. One advantage of these methods is that they not only partition the data points but

also partition the ambient space. For example, the result of k-means is a partition of the data

space into Voronoi cells. Thus, the result can be used to classify new data points by assigning

each new data point to the cluster whose mean is nearest. To use these methods, we need

to first embed an input graph in some metric space. Spectral clustering in Section 3.2.4 is

an example of such embedding. Embedding can be natural for some graphs but artificial for

others.

3.2.3.2 Hierarchical Methods

Community structures in the real world usually have nested structure. Examples of different

granularities of communities include townships, counties, states, countries. Thus, it is more

reasonable to model a community structure as a dendrogram instead of a partition. By looking

at different levels in a dendrogram, one can zoom in and zoom out to look at the community

structure at different granularities.

Agglomerative algorithms start from all vertices in singleton clusters (by themselves). Then,

two clusters are merged based on their similarity. The merging continues until only one cluster

is left. There are several ways to define the similarity of two clusters, which gives rise to

different agglomerative algorithms. Single linkage defines the similarity between two clusters

as the maximum similarity (or more commonly, minimum distance) between the vertices from

the two clusters. Complete linkage, the opposite of single linkage, defines the cluster similarity

as the minimum similarity (or maximum distance) between the vertices from the two clusters.

Average linkage defines the cluster similarity as the average of all pairs of vertices from the two

24

clusters. Average linkage is also known as UPGMA which stands for Unweighted Pair Group

Method with Arithmetic Mean.

Divisive algorithms start with all vertices in one big cluster. Then, a cluster is spliced

into two based on the members’ similarity. The process continues until every vertex is in a

cluster by itself. An example is CONCOR (12; 100) which stands for CONvergence of iterated

CORrelations. CONCOR is based on the observation that, if one repeatedly computes the

correlation matrix from a correlation matrix, the entries of the result converge to either +1 or

−1 (except some rare circumstances). Moreover, the rows and columns of this matrix can be

(simultaneously) permuted so that the entries are grouped together into four blocks such that

the two blocks along the main diagonal are all 1 and the two off-diagonal blocks are all −1. The

block structure can then be used to bisection the data points.

The hierarchical clustering method produces as an output a dendrogram, which formally

is a chain of partitions P1 � · · · � Pn in which each partition is finer than the next, denoted

by Pi � Pi+1. For two partitions P and Q of the same set, P is finer than than Q if and

only if every part of P is contained in some part of Q. A chain of partitions expresses the

nested structure from the finest partition to the coarsest partition. This is the point of using

hierarchical clustering, to find an a priori nested structure. However, Fortunato and Castellino

noted that, in most cases, the procedures yield dendrograms which are rather artificial (38).

This raises two questions: 1) Does the method output a hierarchy which is completely different

from the true hierarchy? 2) Does the method try to output a hierarchy even though the system

is not hierarchical structured? The former question is a matter of algorithmic precision and

25

correctness. The latter question rather raises the question of how to determine the existence of

a hierarchical structure in a network.

Once we have an output from a hierarchical clustering, we usually find the level in the

dendrogram which yields the right partition of the graph using quality functions in Section 3.2.2.

Hierarchical methods requires a similarity (or dissimilarity) function between the data

points. They do not need the data points to belong to some ambient space. This sometimes

makes them very slow in practice since the similarity function might be computationally hard.

3.2.4 Spectral Graph Clustering

Spectral clustering uses eigenvectors of matrices (of similarity between objects) to partition

the data points. The idea is to change the basis of a matrix of similarity to the eigenspace of

the matrix. Then, the eigenvectors are clustered using standard techniques such as k-means

or a hierarchical method. This helps, for example, cope with the limitation of k-means that it

produces a partition of space into convex Voronoi cells. For more information, see a tutorial on

spectral clustering by Luxburg (66), a survey by Spielman and Teng (89). For spectral graph

clustering, the adjacency matrix of the graph is transformed into a Laplacian matrix (73; 87).

Then, the first few eigenvectors of the Laplacian are computed using, for example, Arnoldi

iterative algorithm (3). These eigenvectors are then used as a basis and the k-means clustering

is performed on the data points which are projected on the eigenvectors. The choice of graph

Laplacians affects the results (38). An unnormalized Laplacian tends to favor clusters with inter-

cluster density, while a normalized Laplacian tends to balance the high intra-cluster density and

low inter-cluster density.

26

Spectral graph clustering has a nice interpretation when the input graph has an obvious

community structure such as communities are well-separated into connected components or

low-density cuts. However, it is not clear how this intuition generalizes to the more complex

cases such as social networks observed in the real world.

3.2.5 Modularity Optimization

Modularity (see definition in Section 3.2.2) is a popular quality function among network

researchers. There are a few algorithms which aim to optimize this function in particular.

There is a betweenness-based divisive algorithm by Girvan and Newman (46). The idea is that

edge-betweenness centrality can be used as an estimate of the likelihood that an edge is a bridge

that connects two communities. The betweenness centrality (42) of an edge is the sum, over each

vertex pair, of the fraction of the shortest paths between the vertex pair that passes through the

edge. It measures how important an edge is in helping the vertices connecting to one another

via shortest paths. Since communities are areas in a network with dense connections within

and sparse connections in between, edges between communities tend to have relatively high

betweenness centrality. The algorithm proceeds by first computing the betweenness centrality

of edges. It then removes an edge with the highest betweenness centrality, one at a time, until

the graph becomes disconnected for the first time. Then, the whole process is repeated on each

connected component until there are no more edges.

Another algorithm is the agglomerative algorithm by Clauset, Newman, and Moore (21).

The algorithm starts with all vertices in clusters by themselves. Then, it finds two clusters to

merge such that the modularity value increases the most. It continues merging two clusters in

27

this manner until all vertices are in the same cluster. The algorithm is quite fast, but it does

not always produce high modularity value in practice, compared to the next algorithm.

Another algorithm is the Louvain algorithm by Blondel et al. (9). It starts with all vertices

in clusters by themselves. Then, for each vertex, it tries to reassign the vertex to the cluster of

its neighbor which increases the modularity value the most. If reassigning to a neighbor’s cluster

does not increase the modularity value, it stays with its current cluster. This process repeats

until no vertices can find a better cluster to be reassigned to. The algorithm then contracts each

cluster into a supervertex, keeping track of the number of multiple edges between the clusters

as the edge weight. The self loops are also kept. The whole process is then repeated on this new

graph until the contraction does not reduce the number of nodes. The Louvain algorithm is fast

and produces good solutions in practice although neither its time complexity nor approximation

guarantee is known. In this thesis, I will present a slightly modified algorithm based on the

Louvain algorithm for a more general clustering problem, Correlation Clustering, which

is the topic of the next section. I will also show how to cast the problem of detecting and

tracking communities as a Correlation Clustering problem so as to use my algorithm and

other existing approximation algorithms for Correlation Clustering to detect and track

communities.

3.3 Correlation Clustering

Correlation Clustering is the problem of clustering a graph with real-valued edge

weights. Positive edge weights signify the confidence levels that the two end points should

be clustered together, while negative edge weights signify the confidence levels that the two

28

end points should not be clustered together. There are two versions of Correlation Clus-

tering problem. We can either maximize the sum of intra-cluster edge weights or minimize

the sum of inter-cluster edge weights. The former is known as Maximizing Agreement

and the latter is known as Minimizing Disagreement. The optimal solution of the two

problems are the same, but approximation algorithms are different since one problem is maxi-

mization and the other is minimization. Maximizing Agreement is NP-hard (6) and APX-

hard (19). Charikar et al. (19) used semidefinite program (SDP) relaxation and a hyperplane

rounding scheme to give a 0.7664-approximation algorithm. Swamy (93), independently from

Charikar et al., used the same SDP relaxation and two different hyperplane rounding schemes

to give 0.75- and 0.7666-approximation algorithms. Elsner and Schudy (32) used both linear

program (LP) and SDP relaxations to cluster newsgroups and observed that the SDP relax-

ation gave a tighter bound than the LP relaxation. Minimizing Disagreement is NP-hard

and APX-hard (6) and has O(log n)-approximation algorithms (19; 27; 33).

Approximation algorithms usually perform worse than heuristics on real-world data since

they guarantee their performance in all cases, including rare cases. However, approximation

algorithms provide not only a solution to the problem but also a bound on the optimal solution.

Thus, we can think of an approximation algorithm as a way to compute a bound on the optimal

solution, which can then be compared with the solutions of any other algorithms.

3.4 Tracking Communities over Time

The problem of tracking communities is motivated by a problem in behavioral ecology in

studying animals which live in fission-fusion societies such as Grevy’s zebra and the Asiatic

29

wild ass (92). During a field drive, one animal group is sighted and observed, usually one

at a time. The observers record the behaviors of the group members for a certain period of

time. It is possible that we encounter two separate groups or more at the same time, but

such occurrences are rare. Group membership in a fission-fusion society is fluid and always

evolving. To understand the dynamics of a fission-fusion society, it is important to trace how

groups persist and evolve over time. We can view groups as manifestations of perpetuating

communities. Inversely, a community is a consistent string of groups seen on different days.

The problem of tracking communities is about stringing different groups from the same day

into communities which span multiple days.

The problem of tracking communities over time is very similar to Step 2 in the two-step

process in Section 2.2.1. Strictly speaking, the problem of tracking communities is more general

than Step 2 in the two-step process because Step 1 of the two-step process produces a sequence

of partitions of the entire graph, while the problem of tracking communities requires as an input

a sequence of collections of disjoint groups, which are not necessarily partitions of the entire

graph. That is, some communities can be unobserved at some timesteps. This means, if we

use the two-step process to detect communities in a dynamic social network, then Step 1 does

not need to produce a partition of the entire graph. It may selectively produce only clusters

on which it has high confidence. This relieves the algorithm from trying to put every vertex in

some cluster, the result of which usually is a rather artificial collection of clusters.

There is a handful of work specifically on the problem of tracking communities over time.

Berger-Wolf and Saia (8) proposed a framework which defines communities as independent

30

local patterns similar to those in Section 3.2.1. There, a community (or, metagroup) is a

sequence of groups which have sufficiently high similarity. The similarity between two groups

is the number of common members normalized by the sizes of the two groups. Characteristics

of communities are studied via community-based statistical measures such as number of all

possible communities, their sizes and life spans. Also, they proposed an approach to study

the survival of the communities via finding a critical set of groups whose removal leaves only

short-lived communities.

Spiliopoulou et al. (90) proposed a framework, called MONIC, for tracking communities

over time. The framework utilizes a similarity function of groups at different timesteps. The

function takes into account the number of common members, the sizes of the groups, and the

time decay between the groups. Then, two groups are strung together as being in the same

community if their similarity is above a certain threshold. The framework not only strings

groups into communities but also detects splitting and merging of communities by a separate

sets of threshold parameters. Not only the framework has a lot of parameters to set, it also

makes many assumptions about the dynamics of communities (which we are trying to infer).

The resulting communities are rather ad hoc.

Berger-Wolf, Kempe and I proposed the first framework which rigorously formulates the

problem of tracking communities as an optimization problem (95). Then, we presented sev-

eral heuristic and approximation algorithms (7; 94; 95; 96). In Chapter 4, I will present an

approximation algorithm for this problem, published in (94). Although the appealing aspect

of this framework is the social costs model which has its roots in the social sciences view of

31

group dynamics (75), the framework has a strong assumption that all timesteps must have the

same length. In Chapter 5, I will introduce an improved framework which can handle data

with timesteps of variable length. To the best of my knowledge, this is the only framework in

the literature which can track communities in a sequence of partial partitions over timesteps of

variable length.

3.5 Dynamic Community Detection

In this section, I review the work on community detection in dynamic networks. There

are several algorithms which detect communities and simultaneously track them over time.

In the area of database and data mining, Aggarwal and Yu (1) proposed an online method

for detecting changes and data summarization for offline exploratory querying. Their focus

is on online analytical processing (OLAP) applications rather than modeling and detecting

communities. Another line of work is that of Falkowski et al. (35; 36) who, using a graph-

theoretic approach, proposed a two-step methods for detecting communities and tracking their

changes over time. They use Girvan-Newman algorithm (46) for both steps. Their focus

is on detecting and visualization rather than modeling and inferring dynamic communities.

Sun et al. (91) proposed GraphScope, a parameter-free clustering method for dynamic networks

based on minimum description length principle. The method is an online heuristic algorithm

which detects drastic changes in the input stream. The output is an encoded sequence of

graph segments. The graph snapshots in each segment are encoded using the same grouping

(clustering) of vertices. For each new arrival of graph snapshot, the method tries to incorporate

the new graph snapshot into the current segment by regrouping, splitting and merging groups

32

of vertices in the current segment so as to keep the encoding cost low. It then compares that

encoding cost with the cost of starting a new segment to choose the better of the two. The graph

snapshots in each segment can be considered as an i.i.d. sample and can be aggregated into a

single static graph. In principle, the method does not detect dynamic communities per se since it

does not allow gradual changes to culminate into a radical change in retrospect. It also does not

try to see if there are groups which survive the drastic changes between two adjacent segments

or not. Thus, it is essentially the Step 1 of the two-step process in Section 2.2.1. Palla et al. (74)

studied clique percolation and evolution under a restrictive model which consider evolution only

between adjacent timesteps. Chi et al. (20) proposed an evolutionary spectral clustering which

regulates the temporal smoothness. The algorithm is based on k-means. Chakrabarti et al. (18)

proposed a framework for clustering data points which gradually change over time based on

k-means clustering and agglomerative clustering. Lin et al. (64) proposed FacetNet, a Bayesian

framework with a regularization for smoothness of evolution. They gave an iterative algorithm

which converges to a local optimum. Tong et al. (98) proposed Colibri, an approach to find

low-rank approximations of the adjacency matrix of static and dynamic graphs. The low-rank

approximations can be used to find communities, but it is still not clear how to do so or how

well it would do since the claim is not supported by an argument or an experiment. The

experiments there show only the performance in compression-related tasks. Asur et al. (4)

proposed an event-based framework for tracking clusters over time. Xu et al. (103) proposed

a hidden Markov model for a dynamic network and community evolution. They used the EM

algorithm (28) to find the MAP estimation. Sarkar and Moore (82) modeled a dynamic network

33

using using a Euclidean latent space and showed that the problem of learning the latent space

from the data is tractable. Several other researchers used mixed membership stochastic block

models (2; 44; 104). Following Newman’s approach to formulating the network modularity (71)

for static networks, Mucha et al. (68) proposed a quality function for dynamic communities

based on a null model in terms of stability under Laplacian dynamics. Then, they optimize

the function using the Louvain method (9) and post-process the results with Kernighan-Lin

node swapping (54). Berger-Wolf and I extended our approach for tracking communities to

simultaneously detect and track communities (97). There, we presented a heuristic algorithm

and bounded how close the heuristic solutions were to the optimal solutions using approximation

algorithms (93).

3.6 Other Related Work

In this section, I review Kleinberg’s impossibility theorem for clustering and Theseus’ Para-

dox. Kleinberg took an axiomatic approach to study clustering functions (55). He considers

three desirable properties of a clustering function:

Scale Invariance The clustering function produces the same partition of data points after the

distances between the data points are scaled by a positive constant.

Richness Any partition is a possible output from the clustering function (given the right

input). That is, the image (or range) of the clustering function is the entire set of all

possible partitions of the data points.

34

Consistency The clustering function is not sensitive to data exaggeration. For any set of data

points and the corresponding partition outputted by the clustering, an exaggeration1 is a

combination of the following transformations: (a) decreasing the distance between data

points in the same cluster, or (b) increasing the distance between data points in different

clusters.

The impossibility theorem states that no clustering functions can simultaneously satisfy all

of the above properties. However, the theorem applies only to the data clustering problem. It

is reasonable to conjecture that a similar result holds true for the community detection problem

as well. If so, this suggests that any parameter-free methods inevitably have some undesirable

property. A similar problem arises when we consider the problem of tracking communities over

time. The question about an object whose parts keep changing over time has been posted by

ancient greeks since at least 75 A.C.E. It is known as Theseus’ paradox.

According to Plutarch (76), “The ship wherein Theseus and the youth of Athens returned

had thirty oars, and was preserved by the Athenians down even to the time of Demetrius

Phalereus, for they took away the old planks as they decayed, putting in new and stronger timber

in their place, insomuch that this ship became a standing example among the philosophers, for

the logical question of things that grow; one side holding that the ship remained the same, and

the other contending that it was not the same.”

1This is known as Γ-transformation in the original paper.

35

The two sides differ on the perception of changes with respect to time. The former perceives

the changes as happening slowly so the ship always retains its identity after each repair. The

latter perceives the changes as happening quickly (time flies) so that the ship loses its identity

bit by bit after each repair. In our context, the ship of Theseus is a community and the planks

are the members of the community. Thus, without an a priori assumption about the rate of

the process, any method is likely to incorrectly track communities which change over time. In

other word, a method for tracking communities needs to know about how fast the underlying

evolutionary process is. A method which takes the rate of change as a parameter will allow us

to obtain either side of the Theseus’ paradox as an answer.

With this in mind, we revisit GraphScope (91) which is a parameter-free method. Since it

is parameter-free, it is restrictive in the scenario in Theseus’ paradox. It is warranted to be

able to find only one side of the paradox as it has no idea about the rate of changes in the data

or the rate of changes that the user has in mind.

CHAPTER 4

TRACKING COMMUNITIES OVER UNIFORM TIMESTEPS

In this chapter, we consider a simple case in which all timesteps have the same length. For

simplicity, we label the timesteps as 1, . . . ,m instead of t1, . . . , tk. We are going to consider only

the task of tracking communities. That is, the snapshots of communities are either known or

already detected, and are given to us as C = 〈C1, . . . , Cm〉. Recall that each Ct is a partition of

only the subset of individuals whose social interactions at time t are known. In other words, it

is possible that
⋃
S∈Ct S (V. The parts of Ct are community snapshots or groups. I will use the

two terms interchangeably.

4.1 Social Cost Model

First, we introduce a social cost model. Standard definitions of communities in social

networks rely on various measures of cohesiveness (72; 100). The formulation focuses on the

temporal change in group membership. In deriving an optimization formulation of community

tracking, we make the following explicit assumptions about the behavior of individuals:

1. In each timestep, every group is a representative of some community. If two groups are

present at the same time, there is a reason they are separate and , thus, represent distinct

communities. One community should not be split into two groups or more (although

temporary splitting can be accounted for by the mechanism of absence and visiting).

36

37

2. An individual is a member of exactly one community at any point in time. While the indi-

vidual can change community affiliation over time, it is affiliated with only one community

at any given moment. Notice that this does not preclude an individual from belonging to

multiple communities over the course of the observation. It requires that the individual,

in each timestep, determines “which hat to wear today.”

3. An individual tends not to change its community affiliation very frequently. There is

a cost of leaving the old community, missing the comfort of old friends, to join a new

community, making new friends.

4. An individual is frequently present in the group representing the community with which

it is affiliated. It rarely missies being with its community’s group, and rarely is with other

community’s groups. That is, individuals within a community interact more than those

in different communities.

We will use these properties to define an optimization problem, in which we assign costs

to deviation from the behaviors posited above. These costs can be intuitively modeled as a

graph coloring problem, albeit with a different objective function from the traditional graph

coloring (30). We will use the properties to define an optimization problem, Next, we introduce

a cost graph to help simplifying the calculation of social cost.

4.2 Cost Graph

Our graph GC = (VC , EC) has one individual vertex vi,t for each individual i ∈ V and each

timestep t = 1, . . . ,m. In addition, there is one group vertex vg,t for each group g ∈ Ct. For each

individual i and timestep t ≤ m − 1, there is an edge from vi,t to vi,t+1. Finally, we have an

38

edge between vi,t and vg,t whenever i ∈ g at time t. Figure 2 shows an example of an interaction

sequence on the left panel and the corresponding cost graph representation on the right panel,

with a coloring showing the social costs in the setting according to the interpretation. In the

left panel of the figure, each row corresponds to a timestep, with time going from top to bottom.

Each rectangle represents an observed group and the circles within are the member individuals.

The circles outside the rectangles are the unobserved individuals. Similarly, in the right panel,

the squares are group vertices and the circles are individual vertices. Not all edges that incur

cost are drawn for visibility. The coloring shows the costs of switching (α), absence (β1), and

visiting (β2).

5

5

5

5

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

5 4 2 3 1

5 12 3 4

5 2 4 1

5 2 3 4

5 2 4 13 5 1 2 3 4

β2

α

α

α
β1

T1

T2

T3

T4

T5

β2

β1

3

1

Figure 2: Left: An example of an interaction sequence. Right: The corresponding cost graph.

39

We define a community interpretation of a graph GC as a vertex coloring χ : VC → N of

GC . The color of an individual vertex vi,t represents the individual i’s community affiliation at

timestep t. Similarly, the color of a group vertex vg,t gives the community that g represents.

Notice that this definition automatically ensures that each individual belongs to exactly one

community in each timestep, and each group represents exactly one community. We call a

community interpretation valid if and only if, for each timestep t, no two groups g and g′

share the same color. This ensures Postulate 1, namely that only one group represents each

community in each timestep.

To measure the quality of a community interpretation, we use costs to penalize violations

of Postulates 3–4. There are three different types of costs, switching, absence and visiting.

To allow for different relative importance of these properties, we parameterize the problem by

non-negative parameters α, β1 and β2.

switching cost A switching cost of α is incurred whenever an individual changes its color.

That is, if the individual edge does not have matching colors, χ(vi,t) 6= χ(vi,t+1).

absence cost An absence cost of β1 is incurred if an individual vertex does not have an edge

to the group of the same color (in the same timestep). That is, χ(vi,t) = χ(vg,t) but i 6∈ g.

visiting cost A visiting cost of β2 is incurred if an individual vertex has an edge to the group

of a different color from its own. That is, i ∈ g but χ(vi,t) 6= χ(vg,t)

If an individual is present at timestep t, but not in its group, then it incurs both absence

and visiting costs. The first cost penalizes the individual for being absent from its current

40

community, while the second cost penalizes the individual for being different from its current

group.

In (95), we also have a color cost for each color that an individual uses. We decided to omit

the color cost since it introduces, without any significant benefit, computational complexity

when we want to fix the group coloring and optimally color the individual vertices (the dynamic

programming algorithm is fixed-parameter tractable instead of polynomial time) . We can

always compensate for the lack of color cost when breaking ties.

The optimization problem is then to find the valid community interpretation minimizing

the total cost resulting from the switching costs, absence costs, and visiting costs. Once such

a coloring χ has been found, we identify community c with the set of groups of coloring c.

The community structure is the collection of all communities. Notice that we explicitly allow

a community to change and evolve over time. once we have a community structure, we can

derive from it an affiliation sequence for each individual i.

The Minimum Community Interpretation problem is, given an sequence of groups C =

〈C1, . . . , Cm〉 and costs α, β1, β2 ≥ 0, to find a minimum cost valid coloring of the corresponding

cost graph.

This problem is NP-hard and APX-hard. See proof in (7; 95).

4.3 Approximation Algorithms

As we have noted, the Minimum Community Interpretation problem is NP-hard. In

this section, we present two approximation algorithms: the first solves a special case and the

other solves the general case of the problem. Both algorithms produce a solution within a con-

41

stant factor of the optimal solution, regardless of the input size. Recall that, for a minimization

problem in general, a ρ-approximation algorithm is a polynomial-time algorithm which, on all

instances of the problem, produces a solution which is always at most ρ times of the optimal

solution. The idea is to devise an algorithm which always prefers switching over absence or

visiting. Note that, it is the ratios between the costs that affect the optimal solution, not the

actual values of the costs. If the switching cost α is much higher than both β1 and β2 (e.g.,

death for betrayal) then individuals will be more likely to choose to be with one community and

will never switch from it. It would rather incur absence or visit costs rather than one switch.

On the other hand, if the absences and visits are much more expensive than a switch (e.g.,

a customer membership program) then individuals would rather switch their affiliation than

incurring either an absence or visit. In this algorithm, we assume that we are in this latter

case, so we would like find a community interpretation which incurs no absence or visit and

minimizes the number of switches. We begin by considering a special case with the assumption

that every individual is observed at all times. In other words,
⋃
S∈Ct S = V for all t. Under this

assumption, I will present an algorithm based on maximum weight bipartite matching and show

that it is a ρ1-approximation where ρ1 = α
min{α,β2/2} = max

{
1, 2α

β2

}
. Later in Section 4.3.3, I

will consider the general problem where some individuals might be unobserved at some point

in time. I will present another algorithm which uses path cover instead of matching. I will

show that it is a ρ2-approximation where ρ2 = 2α
min{α,β1,β2/2} = max

{
2, 2α

β1
, 4α
β2

}
. Note that the

approximation guarantees of both algorithms depend only on the cost parameters and does not

depend on the size of the input. Therefore, they are constant factor.

42

4.3.1 Group Graph

To design both algorithms, we use another auxiliary graph. The group graph of a sequence of

community snapshots C is a directed acyclic graph D = (V,E). The intuition is that the group

graph represents the flow of individuals from one group to another. For a technical reason, we

add dummy groups to represent groups that we do not see in the data at the beginning and the

end of the timeline. For each (real) group g observed at time t ≥ 2, let g′ ⊆ g be the individuals

in g who are observed for the first time in g. If g′ is not empty, then we add a dummy group

g′ at time 1. Similarly, for each (real) group g observed at time t ≤ T − 1, let g′ ⊆ g now be

the individuals in g who are observed for the last time in g. If g′ is not empty, then we add a

dummy group g′ at time T . When all individuals are observed at all times, there are no dummy

groups.

Next, we create a vertex g ∈ V for every real or dummy group g. We create edges going out

from each vertex g ∈ V as follows. For each individual i ∈ g, we find the next group h containing

i such that i does not appear in any other groups in between. If the edge (g, h) has not been

created, we create it and set its label to be λ(g, h) = {i}. If there already is an edge (g, h),

we update its label to λ(g, h) ∪ {i}. Finally, we set the edge weight to be w(g, h) = |λ(g, h)|.

Intuitively, the set λ(g, h) contains the individuals that flow along the edge (g, h) and the edge

weight w(g, h) signifies the amount of the flow. From now on, we use the words groups and the

vertices of the group graph interchangeably.

43

Figure 3 shows the group graph of the sequence of community snapshots from Figure 2.

The edges are labeled with the individuals in λ(g, h). There are no dummy vertices since every

individual is observed at the first and the last times.

5

5

5

5

41
2,3

2

3
4

4

1

1

432

2

Figure 3: The group graph of the sequence of community snapshots from Figure 2.

A group graph D can be created in polynomial time in the size of the input by the following

simple algorithm. The algorithm runs in Θ(Tk2) time. This is tight since it is possible that

w(gi, gj) > 0 for every i < j.

We note the similarity between the group graph and the meta-group graph by Berger-Wolf

and Saia (8). In particular, a group graph is the transitive reduction (or Hasse diagram) of a

meta-group graph.

44

Algorithm 1: CreateGroupGraph

Input: interaction sequence C.
g1, . . . , gk ← the real and dummy groups in C in increasing order of time, breaking ties
arbitrarily.
V ← {g1, . . . , gk} , E ← ∅
for i = 1, . . . , k − 1 do

A← gi
for j = i+ 1, . . . , k do

if gj ∩A 6= ∅ then
E ← E ∪ {(gi, gj)}
w(gi, gj)← |A ∩ gj |
A← A \ gj

end

end

end
return D = (V,E)

4.3.2 A Special Case: Complete Partitions

In this section, we assume that all individuals are observed at all timesteps. Algorithm 2

was first presented and analyzed in (94).

4.3.2.1 Algorithm Description

The heart of the above algorithm is finding a maximum weight matching on bipartite graphs,

which can be done in Θ(n3) time by the Kuhn-Munkres algorithm (also known as the Hungarian

method) (56; 59; 69). Once we have matchings M∗t ’s, coloring the group vertices according to

the connected components induced by the matching edges can be done in time linear in |V |

and |E|, and coloring the individual vertices can be done in time linear in n and m. Thus, the

running time of the Algorithm MC is Θ(mn3).

45

Algorithm 2: MatchingCommunities (MC)

Input: snapshots of communities C.
G = (V,E)← undirected version of the group graph of C dropping edge orientations.
for time t = 1, . . . ,m− 1 do

Gt ← induced subgraph of G on Vt ∪ Vt+1 where Vt is the set of groups at time t.
M∗t ← maximum weight matching on Gt.

end

G′ ← (V,
⋃m−1
t=1 M∗t) (subgraph of G obtained by taking only the matching edges)

Color (the groups in) each connected component of G′ by a distinct color.
Color each individual at each timestep by the same color as the group in which it was
observed so that all groups are monochromatic.

4.3.2.2 Performance Analysis

We first give an upper bound on the cost of a coloring produced by Algorithm MC. Then,

we give a lowerbound on the cost of an optimal coloring. For any set of edges M (matching or

not), we write w(M) =
∑

e∈M w(e) to denote its total weight.

Proposition 1. Let C be an interaction sequence with all individuals present at all times. Let

M∗1 , . . . ,M
∗
m−1 be the matchings that produces a coloring χ of C in Algorithm MC. Then, the

cost of χ is

c(χ) = α

m−1∑
t=1

(n− w(M∗t)).

Proof. We note that Algorithm MC colors the groups and individuals such that all groups are

monochromatic. Thus, the resulting coloring χ does not have any absence or visit costs, and has

only the switching costs. Consider each time t ≤ m − 1. The individuals who incur switching

46

costs are those whose groups at times t and t + 1 are not matched by M∗t . Since there are

n− w(M∗t) such individuals, the proposition holds.

Now, we give a lowerbound on the cost of an optimal coloring by giving a lower bound on

the cost of any valid coloring of C.

Lemma 2. Let C be an interaction sequence with all individuals present at all times. Let χ

be a valid coloring of C with cost c(χ). Let G1, . . . , Gm−1 be as in Algorithm MC. Let µ1 =

min
{
α, β22

}
for convenience. Then, there exist matchings M1, . . . ,Mm−1 on G1, . . . , Gm−1,

respectively, such that

c(χ) ≥ µ1

m−1∑
t=1

(n− w(Mt)). (4.1)

Proof. For any valid coloring χ, let ct(χ) denote the cost that χ incurs between times t and

t + 1. Since there are no absence costs, this can include three possible types of costs: one for

switching color between t and t + 1 and two for visiting other communities at time t or t + 1.

We claim that, for a valid coloring χ and time t ≤ m − 1, there exists a matching Mt on Gt

such that

ct(χ) ≥ µ1(n− w(Mt)). (4.2)

47

Let Mt be the matching containing all the edges whose end points (groups) are colored the

same in χ. This is well-defined since, for any color a of χ, there can be at most one group from

each time colored a, since χ is a valid coloring. Thus, a vertex in Vt is matched to at most one

vertex in Vt+1 and vice versa.

Now, we consider each edge (g, h) of Gt unmatched by Mt. Since groups g and h have

different colors in χ, each individual i ∈ g ∩ h must incur at least µ1. This is so since if i

switches colors, then i incurs α. Otherwise, i must visit g or h (or both) and, thus, incurs β2

which is at least β2
2 . The reason for the half factor is that, for each visiting cost at time t, we

might count it twice: once in ct−1 and once in ct. Thus i incurs at least µ1. Since there are

n−w(Mt) individuals whose groups are unmatched, inequality (Equation 4.2) holds as claimed.

Since we count every cost no more than once, c(χ) ≥
∑m−1

i=1 ct(χ). Now, the lemma follows.

Now we show approximation factor of the Algorithm MC.

Theorem 3. For convenience, let

µ1 = min

{
α,
β2

2

}
, ρ1 =

α

µ1
= max

{
1,

2α

β2

}
.

Given an interaction sequence C with all individuals present at all times, Algorithm MC pro-

duces, in polynomial time, a coloring with cost at most ρ1 times of the optimal.

Proof. Let χ∗ be an optimal coloring of C. LetM = {Mt} be the set of matchings as in Lemma 2.

For convenience, let w̄(M) =
∑m−1

t=1 (n − w(Mt)) (and thus, by Lemma 2, µ1w̄(M) ≤ c(χ∗)).

48

Let χ be the coloring produced by Algorithm MC. Let Mχ = {Mχ
t } be the set of matchings

used in producing χ and w̄(Mχ) =
∑m−1

t=1 (n− w(Mχ
t)). We observe that,

µ1 · w̄(Mχ) ≤ µ1 · w̄(M) ≤ c(χ∗) ≤ c(χ) = α · w̄(M).

The first inequality holds since Mχ
t are of maximum weight, the second follows from Lemma 2,

and the third follows from the optimality of χ∗. The last equality holds by Proposition 1. Since,

c(χ∗)

c(χ)
≤ α

µ1
= ρ1, the theorem follows.

If α ≥ β2
2 , then ρ1 = 1 and the algorithm always produces an optimal coloring. Note, that

it is straightforward to convert Algorithm MC into a streaming algorithm, since we only need

to store the groups at the latest time and their color while using space that is constant in n

and m.

4.3.3 The General Case

In the previous section we made an assumption that all individuals are observed at all

timesteps. In this section, we consider the general case of the problem in which some individuals

might be unobserved at times. We present a ρ2-approximation algorithm for the general case

and analyze its performance guarantee. The algorithm with make uses of a polynomial-time

problem Path Cover which is defined as follows.

4.3.3.1 Path Cover Problem

Given a directed graph D = (V,E), a directed path is a sequence of distinct vertices P =

v1, . . . , vk such that every (vi, vi+1) is an edge of D. Two directed paths P1 and P2 are vertex-

49

disjoint if they share no vertices. A path cover P on D is a set of pairwise vertex-disjoint

paths (30) in which every vertex lies on (is covered by) a path in P. The Minimum Path

Cover problem is to find a path cover with the minimum number of paths. The decision

version of the problem on general graphs is NP-complete (40). However, on directed acyclic

graphs (DAGs), the problem can be solved in polynomial time via a reduction to the matching

problem in bipartite graphs (22).

Equivalently, we can maximize the number of edges in P. For a directed graph D = (V,E)

with edge weights w : E → Z+, the objective of the path cover is to maximize the total weight

of the edges in the path cover, w(P) =
∑

P∈P
∑

e∈P w(e). It is straightforward to extend the

aforementioned reduction to the weighted case.

It is more convenient to use the minimization version of the weighted path cover problem,

since we define our problem of identifying communities as a minimization problem. We describe

the minimum weight path cover problem as follows. LetW =
∑

e∈E w(e) and w̄(P) = W−w(P).

In other words, w̄(P) is the total weight of the uncovered edges. By the definition of w̄,

maximizing w(P) is equivalent to minimizing w̄(P) at the optimal point, so in the next section,

we will minimize w̄(P) instead.

4.3.3.2 Algorithm Description

Now we describe the approximation algorithm in Algorithm 3. We reserve one color ε not

to be assigned to any group. Intuitively, individuals with color ε are considered to be in the

“missing” community at the time. We refer to ε as the color of absence.

50

Algorithm 3: PathCoverCommunities (PCC)

Input: An interaction sequence C.
D = (V,E)← CreateGroupGraph(C)
P∗ ← Find minimum weight path cover on D using Kuhn-Munkres.
Color (real groups in) each path P ∈ P∗ by a distinct color.
for edges (g, h) ∈ E do

Color the individuals in λ(g, h) from the time they were in g until they were in h by
the same color as g.

end
Color the remaining vertices by ε.

First, we observe that the algorithm runs in polynomial time. Furthermore, we observe that

a coloring χ by Algorithm PCC is valid. If χ is not valid, then there exist two groups g, h at

some timestep t to which χ assign the same color. By construction, g and h must lie on the

same path P for some P ∈ P. Since every edge in D is oriented from some time t to another

time t′ > t, any path in D lists its group vertices in strictly increasing order of time. Thus, g

and h are at different time steps, which is a contradiction.

4.3.3.3 Performance Analysis

We first show an upper bound on the cost of the solution, a lowerbound on the optimal

solution, then the approximation factor.

Proposition 4. Let P∗ be a minimum weight path cover on D with weight w̄(P∗). Let χ be

the coloring produced from P∗ by Algorithm PCC with cost c(χ). Then,

c(χ) ≤ 2α · w̄(P∗).

51

Proof. By construction, χ incurs only α costs. We consider each edge (g, h) of D uncovered by

P∗ and each individual i ∈ λ(g, h) :

• If g, h are consecutive in time, then i incurs a cost α.

• If g, h are not consecutive in time, then i incurs 2α, for switching to the color of absence ε

and switching back.

Thus, each uncovered edge (g, h) incurs a cost of at most 2α · w̄(g, h), resulting in the total of

at most 2α · w̄(P∗).

Before showing the lowerbound, we introduce some notation. Let χ be a fixed coloring. For

each edge (g, h) of D, we associate with it the sum of the following costs of χ:

• α for every individual i ∈ λ(g, h) that switches color between the times i was in g and h.

• β1 for every individual i ∈ λ(g, h) that is absent from group h′ after the time i was in g and

before i was in h.

• β2
2 for every individual i ∈ λ(g, h) that visits group g.

• β2
2 for every individual i ∈ λ(g, h) that visits group h.

Note that we omit the cost for individual i ∈ λ(g, h) being absent from some group h′ at the

same time as from g or h. Although we could add β1
2 , this suffices for our purposes.

52

For any subgraph D′ ⊆ D, we define c(χ|D′) to be the sum of the costs of χ associated with

the edges of D′ as described above. As noted above, since some costs are omitted,

c(χ) ≥ c(χ|D). (4.3)

This notation is useful when we decompose group graph D into pairwise edge-disjoint subgraphs

D1, . . . , Dk such that D = ∪jDj . It is easy to see that,

c(χ|D) ≥
∑
j

c(χ|Dj). (4.4)

We will write c(χ|E) to denote c(χ|D) where E is the edge set of D.

We also use a similar notation for path cover. For any path cover P on group graph D, we

write w̄(P|D) to emphasize that it is the total weight of the edges of D uncovered by P. Let

the group graph D be decomposed into vertex-disjoint subgraphs D1, . . . , Dk, where D = ∪jDj .

Let C = {e ∈ E : ∀j e /∈ Dj)} be the set of edges that are not in any of the parts D1, . . . , Dk.

Let w(C) =
∑

e∈C w(e) be the total weight of C. Let Pj be any path cover on each Dj with

weight w̄(Pj |Dj). Then, P = ∪jPj is a path cover on D with weight,

w̄(P|D) =
∑
j

w̄(Pj |Dj) + w(C). (4.5)

Having defined the necessary notation, we give a lowerbound on the cost of any valid color-

ing, including the optimal solution.

53

Lemma 5. Let D = (V,E) be the group graph of an interaction sequence C. Let χ be a valid

coloring of C. Then, there exists a path cover P on D such that

c(χ|D) ≥ µ2 · w̄(P|D),

where µ2 = min
{
α, β1,

β2
2

}
.

Proof. We show this by induction on the number of edges |E|. Consider the following 3 cases.

Case 1: D is not (weakly) connected. Then, D can be decomposed into connected compo-

nents D1, . . . , Dk for some k ≥ 2. Since |E(Dj)| < |E| for all j, there exists a path cover Pj on

each Dj such that c(χ|Dj) ≥ µ2 · w̄(Pj |Dj) holds, by induction. By inequality (Equation 4.4)

and induction,

c(χ|D) ≥
∑
j

c(χ|Dj) ≥ µ2

∑
j

w̄(Pj |Dj).

Let P = ∪jPj be the path cover of D. Since there are no edges going between Dj ’s, equa-

tion (Equation 4.5) amounts to w̄(P|D) =
∑

j w̄(Pj |Dj) and the desired result follows,

c(χ|D) ≥ µ2

∑
j

w̄(Pj |Dj) ≥ µ2 · w̄(P|D).

Case 2: D is (weakly) connected and not monochromatic. Consider the partition of V

induced by the coloring χ. That is, each part in the partition is the set of vertices of each

color in χ. If D is not monochromatic, then χ partitions V into parts V1, . . . , V`, for some

54

` ≥ 2, where Vj is the set of groups colored j. Let Dj = D[Vj] be the induced subgraph of D

corresponding to the monochromatic part j.

Let C be the set of edges that are not in any of the subgraphs Dj . We observe that, for

each such edge (g, h) ∈ C, the groups g and h have different color in χ since they belong to

different parts. By a similar argument as in the proof of Lemma 2, each individual i ∈ λ(g, h)

must incur the cost of at least µ1 ≥ µ2. Thus, c(χ|C) ≥ µ2 · w(C).

Since |E(Dj)| < |D| for all j, there exists a path cover Pj on each Dj such that c(χ|Dj) ≥

µ2 · w̄(Pj |Dj) holds, by induction. Let P = ∪jPj be the path cover on D. By inequality (Equa-

tion 4.4), induction, and the above observation about c(χ|C), we obtain,

c(χ|D) ≥
∑
j

c(χ|Dj) + c(χ|C)

≥ µ2

∑
j

w̄(Pj |Dj) + µ2 · w(C).

Now the desired result follows from equation (Equation 4.5),

c(χ|D) ≥ µ2

∑
j

w̄(Pj |Dj) + µ2 · w(C) = µ2 · w̄(P).

Case 3: D is (weakly) connected and monochromatic. Suppose for the moment that D

has some edges. Let (g, h) be one of the shortest edges in D in the sense that g and h were

observed closest in time. Let h1, . . . , hd be the out-neighbors of g in increasing order of time,

and g1, . . . , ge be the in-neighbors of h in decreasing order of time. Note that g = g1 and h = h1.

55

If g has more than one out-neighbor, we consider each individual i ∈ ∪j≥2λ(g, hj). If i

switches color at any point between the time that group g was observed and the time that

group hj was observed, then i incurs α, which we map to (g, hj). Otherwise, either i visits

both groups g and hj , or i is absent from group h (since g, h, hj have the same color). In the

former case, i incurs 2β2, half of which we map to (g, hj). In the latter case, i incurs β1, which

we map to (g, hj). In all cases, each i ∈ λ(g, hj) maps the cost of at least min {α, β1, β2} ≥ µ2

to (g, hj). If h has more than one in-neighbor, a similar argument also works for individuals

i ∈ ∪j≥2λ(gj , h).

Let C = {(g, hj)} ∪
{

(gj′ , h)
}

be the set of edges going out from g and coming into h. The

above argument gives a lower bound c(χ|C) ≥ µ2 ·w(C \ {(g, h)}) ≥ µ2 ·w(C). We remove the

edges in C from D. Let D′ = (V,E \C) be the resulting graph. Since (g, h) ∈ C, |E(D′)| < |E|

and exists a path cover P ′ on D′ such that c(χ|D′) ≥ µ2 · w̄(P ′|D′), by induction. We join the

path in P ′ ending at g with the path in P ′ starting at h. The result is a path cover P on D.

Using inequality (Equation 4.4), induction, and the above lowerbound on c(χ|C), we obtain,

c(χ|D) ≥ c(χ|D′) + c(χ|C) ≥ µ2 · w̄(P ′|D′) + µ2 · w(C).

Now the desired result follows from equation (Equation 4.5),

c(χ|D) ≥ µ2 · w̄(P ′|D′) + µ2 · w(C) = µ2 · w̄(P).

56

It remains to show Case 3 for D without any edges. Since D is connected, D is a vertex.

Let the path cover P be the entire graph D. Thus, c(χ|D) ≥ w̄(P|D) = 0 trivially holds.

Therefore, the lemma follows.

Now we give the performance guarantee of Algorithm PCC.

Theorem 6. Algorithm PCC is a ρ2-approximation where

ρ2 =
2α

µ2
= max

{
2,

2α

β1
,
4α

β2

}
, µ2 = min

{
α, β1,

β2

2

}
.

Proof. The theorem follows from the lowerbound from Lemma 5, application of inequality (Equa-

tion 4.3), and the upper bound from Proposition 4. The argument is similar to the proof of

Theorem 3.

4.4 Post-Processing Steps

In this section, I present two improvements for practical purposes. The first way is to

recolor the individual vertices optimally while keeping the color of group vertices fixed. This

will involve dynamic programming with time complexity that depends on the number of colors

used by the group vertices. To further eliminate unnecessary colors, we will perform another

processing step based on iterative path-cover heuristic.

4.4.1 Dynamic Programming Post-Processing

We first observe one weakness of the Algorithm PCC. It produces the same coloring re-

gardless of the values of α, β1, β2. In particular, if we increase α keeping β1 and β2 fixed, there

57

is a point at which, in an optimal coloring, no individual switches color. From this point on,

increasing α does not change the cost of the optimal coloring. However, the cost by Algorithm

PCC increases linearly in α. Nevertheless, there is a simple way to alleviate the problem. In

particular, we use Algorithm PCC to color the group vertices, then use the following dynamic

programming algorithm to color the individual vertices.

For each individual x ∈ V and time t = 1, . . . ,m, the minimum cost of coloring x at time t

with a color c ∈ C can be written recursively as:

MinCost(x, t, c) = Costab+vi(x, t, c) +

min
c′∈C

[Costsw(c, c′) + MinCost(x, t− 1, c′)] if t > 1,

0 if t = 1,

where Costab+vi(x, t, c) is the sum of the absence and visiting costs if individual x is at timestep

t has color c, and Costsw(c, c′) = csw if c 6= c′ and 0 otherwise. This recursion can be computed

using dynamic programming. By keeping track of the minimizer c′ of each MinCost(x, t, c), we

can trace back the optimal coloring of each individual x starting at the color c that minimizes

MinCost(x, t, c) at time t = m. Another thing we need to consider is the choice of color set C

for varying c and c′. One option is to use the colors used by the groups plus one extra color,

say 0. The extra color allows individuals to be colored differently from any group at any point

in time. The time complexity of the dynamic programming algorithm is Θ(nm|C|). This is a

stripped down version of the one in (95; 96) which involves a color cost γ. The removal of the

color cost allows us to simplify the dynamic programming algorithm further and remove the

exponential factor from the running time.

58

4.4.2 Iterative Path-Cover Heuristic

One problem arises when we apply the above dynamic programming algorithm. In particu-

lar, Algorithm PCC may produce a coloring which uses a large number of colors. This increases

the complexity of the dynamic programming algorithm above. When the timeline is long, this

problem is mostly caused by short paths in a cover. Recall that the vertices in the group graph

are groups and they have timesteps. We say that two paths are time-disjoint if one path ends

(in time) before the other path starts. We observe that we can recolor two time-disjoint paths

with the same color for free and the resulting coloring will still be proper. This can be casted

as another path cover problem as follows. We start each iteration with a path cover P which is

initially set to be the trivial path cover in which each path contains a single vertex. We create

another group graph D′ where each vertex corresponds to the union of groups on each path in

P. Then, we create an edge in a similar manner as in Algorithm 1. Then, we find a maximum

weight path cover P ′ on D′. We set P = P ′, and iterate with the path contraction until the

constructed group graph D′ contains no edges with positive weights. Finally, we produce a

coloring in the same way as before. Each path in the path cover is assigned a unique color

which is used to color the (original) groups on the path. Since the recoloring of time-disjoint

paths does not incur any new cost, the result is still a ρ2-approximation algorithm.

4.5 Experiments

In previous section, I have showed that, theoretically, algorithm IPCC is efficient and guar-

antees good solutions. In this section, I will empirically evaluate the performance of algorithm

IPCC on datasets. To find a path cover, I will reduce the path cover instance to an integer pro-

59

gram. The constraint matrix of this integer program can be shown to be totally unimodular.1

Thus, the linear program relaxation has an integral optimal solution. From there, I use a com-

mercial package solver CPLEX to solve the LP relaxation. After the IPCC algorithm produces

a coloring of the groups, we run the dynamic programming algorithm to color the individuals.

We ran this on several datasets as listed in Table I. See Appendix A for the description of the

datasets.

Dataset Individuals Timesteps Groups

Grevy’s zebra 27 44 75
Haggle-41 41 418 2131
Haggle-264 264 425 1411
Onagers 29 82 308
Plains zebra 2510 1268 7907
Reality Mining 96 1577 3958
Southern Women 18 14 14

TABLE I: Datasets and their statistics in Chapter 4.

4.5.1 Experimental Setup

On each dataset we find the optimal solution either by exhaustive search or by estimat-

ing the lowerbound on the optimal solution using the interval lowerbounding technique (see

Appendix B). We compare the solution by the IPCC algorithm to this benchmark both nu-

1 Path cover is equivalent to bipartite matching. The sufficient condition is trivial. See (22) for the
necessary condition. The constraint matrix of bipartite matching is known to be totally unimodular.

60

merically and, where possible, structurally. For each cost setting, we compare the theoretical

approximation ratio of ρ2 to the actual ratio of the cost of the algorithm to the optimal solu-

tion (shown in parentheses in all the results tables). Note that the coloring cost of the IPCC

algorithm does not change when β2 changes since the algorithm incurs only α costs. Table II

shows the performance results of PCC and IPCC algorithms.

4.5.2 Coloring Results

In this section, we show the actual community structure (coloring) on the Southern Women

dataset as produced by our algorithms. Naturally, we start with the cost setting (α, β1, β2) =

(1, 1, 1). Figure 4, Figure 5, and Figure 6 show the colorings produced by the PCC algorithm,

the IPCC algorithm, and the exhaustive search, respectively. The details of the exhaustive

search is given in (95; 96) and Appendix B. In the figures, time goes from the top to the

bottom. The rectangles represent groups or community snapshots. The circles in a rectangle

represent the individual members of the group. If the color of a circle is different from that of

the group, then its circle has a red border indicating that the individual is paying a visiting

cost. Small diamond shapes represent individuals who are not in any groups at the time.

Red rectangles with white background surrounding a diamond indicate an absent cost. Lines

connect an individual to itself in the next timestep. Red lines correspond to a switching cost

being paid. Note, that the overall structure of dynamic communities remains very similar

despite the difference in the costs of the colorings. Thus, qualitatively the algorithm infers

communities that are close to the optimal.

61

14151718

123 45 679

123

23 4579 1013 1415

1013 1415 1112

10 1112 13 14 13 9816 1718

13 2 4 5 6

1 23 4 67814

1411121315

1 2 4

13 1415

1315 1 2 43678910 16 1112

13 4 5

131514

Figure 4: The dynamic communities in Southern Women of total cost 74 produced by algorithm
PCC alone with cost setting α = β1 = β2 = 1

4.6 Summary

In this chapter, we formulate the Minimum Community Interpretation problem and

present two approximation algorithms: the first is for the special case when every individual is

in a group at all timesteps and the other is for the general case of the problem. We analyze

the performance guarantee of the algorithms. The proposed algorithms are up-to-now still

the only rigorous computational solutions to the Minimum Community Interpretation

problem in dynamic networks with provable performance guarantees. While the theoretical

62

14151718

123 45 679

123

23 4579 1013 1415

1013 1415 1112

10 1112 13 14 13 9816 1718

13 2 4 5 6

1 23 4 67814

1411121315

1 2 4

13 1415

1315 1 2 43678910 16 1112

13 4 5

131514

Figure 5: The dynamic communities in Southern Women of total cost 43 produced by algorithm
IPCC with the dynamic programming post-processing with cost setting α = β1 = β2 = 1

analysis guarantees a constant factor approximation, in practice the best implementation of

our algorithm finds solutions very close to the optimal solution numerically, and even closer

structurally. Moreover, both algorithms completed in less than 2 minutes on networks of several

thousand individuals. Thus, our algorithms can be used in practice to infer communities in large

dynamic social networks.

63

14151718

123 45 679

123

23 4579 1013 1415

1013 1415 1112

10 1112 13 14 13 9816 1718

13 2 4 5 6

1 23 4 67814

1411121315

1 2 4

13 1415

1315 1 2 43678910 16 1112

13 4 5

131514

Figure 6: The optimal dynamic communities in Southern Women of total cost 36 produced by
the exhaustive search with cost setting α = β1 = β2 = 1

64

α, β1, β2 Bound or optimum ρ2 PCC IPCC+DP
G

re
v
y
’s

1,1,3 ≥ 56 4 106 (1.89) 76 (1.39)
1,1,2 ≥ 56 4 106 (1.89) 76 (1.36)
1,1,1 ≥ 51 4 106 (2.08) 69 (1.35)
2,1,1 ≥ 59 8 212 (3.59) 98 (1.66)
3,1,1 ≥ 59 12 318 (5.39) 109 (1.85)

H
g-

2
64

1,1,3 ≥ 2030 4 3347 (1.65) 2442 (1.20)
1,1,2 ≥ 2030 4 3347 (1.65) 2442 (1.20)
1,1,1 ≥ 1015 4 3347 (3.30) 2194 (2.16)
2,1,1 ≥ 1015 8 6694 (6.60) 3111 (3.06)
3,1,1 ≥ 1015 12 10041 (9.89) 3700 (3.65)

H
g-

41

1,1,3 ≥ 1013.0 4 1547 (1.53) 1218 (1.20)
1,1,2 ≥ 1013.0 4 1547 (1.53) 1218 (1.20)
1,1,1 ≥ 506.5 4 1547 (3.05) 1158 (2.29)
2,1,1 ≥ 506.5 8 3094 (6.11) 1700 (3.36)
3,1,1 ≥ 506.5 12 4641 (9.16) 2101 (4.15)

O
n

ag
er

s

1,1,3 ≥ 125 4 282 (2.26) 192 (1.54)
1,1,2 ≥ 125 4 282 (2.26) 192 (1.54)
1,1,1 ≥ 125 4 282 (2.26) 175 (1.43)
2,1,1 ≥ 121 8 564 (4.66) 255 (2.11)
3,1,1 ≥ 121 12 846 (6.99) 298 (2.46)

P
la

in
s

1,1,3 ≥ 44925.0 4 85630 (1.91) 45785 (1.02)
1,1,2 ≥ 44925.0 4 85630 (1.91) 45785 (1.02)
1,1,1 ≥ 22462.5 4 85630 (3.81) 45785 (2.04)
2,1,1 ≥ 22462.5 8 171260 (7.62) 55578 (2.47)
3,1,1 ≥ 22462.5 12 256890 (11.44) 58928 (2.62)

R
ea

li
ty

1,1,3 ≥ 12498.0 4 21374 (1.71) 17066 (1.36)
1,1,2 ≥ 12489.0 4 21374 (1.71) 17066 (1.36)
1,1,1 ≥ 6244.5 4 21374 (3.42) 14943 (2.39)
2,1,1 ≥ 6244.5 8 42748 (6.85) 19792 (3.17)
3,1,1 ≥ 6244.5 12 64149 (10.27) 22147 (3.55)

S
W

1,1,3 48 4 78 (1.62) 50 (1.04)
1,1,2 48 4 78 (1.62) 50 (1.04)
1,1,1 36 4 78 (2.17) 43 (1.19)
2,1,1 41 8 156 (3.80) 50 (1.22)
3,1,1 42 12 234 (5.57) 53 (1.26)

TABLE II: Performance of PCC and IPCC with the dynamic programming post-processing.

CHAPTER 5

TRACKING COMMUNITIES: THE GENERAL CASE

In the last chapter, we consider a special case of the problem of tracking communities when

all timesteps have uniform length. In this chapter, we consider the general case of the problem

in which timesteps have variable length. We will formulate a model using the intuition of

animal sightings, but the model will be applicable to other kind of data as well. A sighting is

a group of individuals which are observed to be interacting with each other for a duration of

time. Sightings are imperfect but observable manifestations of the hidden communities. The

model is conceptually a hidden Markov model. Informally, the hidden community structure

determines with which community an individual is affiliated at a given point in time, as well as

when an individual switches its community affiliation. The model we present below generates a

community structure together with an observable sequence of sightings. Then, the problem of

tracking communities becomes the reverse problem of inferring the hidden community structure

from a given sequence of sightings.

5.1 Definitions and Notations

Let {x1, . . . , xn} denote a population of n individuals. We observe this population in the

form of sightings S1, . . . , Sk. Each sighting Si is a subset of the population which is observed

to be socially interacting with one another at time Ti > 0 for a time duration di > 0. Ide-

ally, Si is the manifestation of some hidden community over a short period of time di. The

65

66

assumption that all di’s are small will be come important later on when we use Poisson

processes. A sequence of sightings is the collection of all the sightings with their metadata:

S = 〈(S1, T1, d1), . . . , (Sk, Tk, dk)〉. We assume that Ti’s are in chronological order, that is,

T1 ≤ T2 ≤ · · · ≤ Tk. Furthermore, we assume that an individual belongs to at most one sighting

at any given time. In other words, if Si ∩ Sj 6= ∅, then [Ti, Ti + di) ∩ [Tj , Tj + dj) = ∅. Lastly,

we assume that the observation is done in synchronized time steps, that is, any two consecutive

sightings Si and Si+1 are either in the same timestep (Ti = Ti+1 ∧ di = di+1) or in disjoint time

steps (Ti + di ≤ Ti+1). It is easy to see that any sequence of sightings which satisfies the first

two assumptions can be made to satisfy the third assumption by appropriately partitioning the

sightings over time (see Figure 7 for an example).

tim
e

Figure 7: How to synchronize sightings.

67

5.2 Sighting Graph

Given a sequence of sightings S, we create the sighting graph of S as follows. Let t1 < · · · < tm

be the unique timestamps at which sightings S1, . . . , Sk happen (m ≤ k). Note that ti’s denote

the unique timesteps and Ti denotes the timestep at which sighting Si is observed. We create

a vertex si for each sighting Si and create a vertex vx,t for each individual x = x1, . . . , xn and

each time t ∈ {t1, . . . , tm} . We will leave the construction of the edges until after we explain the

probabilistic model. Figure 8 shows an example of a sequence of sightings and its corresponding

sighting graph when it is complete. In the left panel, the circles connected by line segments

are individuals in different sightings. Rectangles are sightings whose height represent the du-

ration of a sighting. Note that some individuals may not be sighted in some timesteps. In the

right panel, the circles are individual vertices. The rectangles are sighting vertices. The solid

lines between two circles connect individual vertices in adjacent timesteps. The individual and

sighting vertices in each timestep form a complete bipartite subgraph. The solid lines between

a circle and a rectangle connect an individual vertex to the vertex of of its sighting. A dotted

line connects an individual vertex to the vertices of the sightings that the individual does not

belong to.

In the same spirit as in Chapter 4, a community interpretation of a given S consists of two

parts: a community structure and a sighting interpretation. A community structure is a coloring

χC : {vx,t} → N of the individual vertices in the corresponding sighting graph. Colors corre-

spond to communities, so we will use the two terms interchangeably. We say that an individual

x switches its community affiliation between time Ti + di and Ti+1 if χC(vx,Ti) 6= χC(vx,Ti−1).

68

d1

d2

d4

d5

d3

1 2 3 4 5

2 3 41 5

2 31 5

1 53 4

1 2 3 54

t1

t2

t3

t4

t5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2,3,4 5

1,2,3 54

2,3,51

1 3,4 5

1 2 3 4 5

541,2,3

t1

t2

t3

t4

t5

Figure 8: Left: an example sequence of sightings. Right: the corresponding sighting graph.

Note that we do not know the exact time when the switch happens. We know only the dura-

tion between which it happens. When considering a time step t, we will refer to the coloring

of the individual vertices at timestep t as a community assignment. We also have a sighting

interpretation which is a coloring χS : {si} → N of the sighting vertices in the corresponding

sighting graph. We treat χS as a vector in Nm so that two different sightings with identical

members but sighted at different times can have different colors. Together, we call the pair

of coloring functions a community interpretation χ : {vx,t} ∪ {si} → N of the sighting graph

or of the sequence of sighting. Intuitively, most individuals x at a timestep Ti would have the

same color as its sighting Si 3 x and different sightings observed at the same timestep t would

have different colors. However, the color of a member x may be different from the color of its

sighting Si 3 x and may match another sighting Sj 63 x, meaning that x is just visiting with

the rest of the members of the sighting but does not belong to their community. We also note

69

that, unlike in Chapter 4, here, we allow two or more sightings at the same timestep to have

the same color. This can be interpreted as a community splitting. Of course, this only happens

only if it is the best explanation of the observed data. In other words, the solution is optimal.

Now we are ready to present the probabilistic model which generates a community structure

and an observed sequence of sightings.

5.3 TDK Model

We call our model TDK as it takes time decay into account. We are going to model

how each individual switches community and becomes absent from its community as events

in Poisson processes (81). In a Poisson process, the inter-arrival time between events follows

an exponential distribution with the same rate as that of the Poisson process. Recall, for an

exponential random variable with rate λ, the cumulative distribution function is 1 − e−λt for

t ≥ 0, and 0 elsewhere.

Let U be a distribution over the set of all finite-dimensional vectors to be specified later.

We draw (t1, . . . , tm) from U , resampling if the ti’s are not unique. At the end of the process,

we relabel them so that t1 < · · · < tm. These will be the times at which the hidden model

emits observable sightings. We draw (d1, . . . , dm) from another distribution D over the set of

all finite-dimensional vectors to be specified later. These will be the durations of the sightings.

Our model resembles the hidden Markov model (HMM). Recall that HMM consists of three

parts: the initial state, the state transition, and the emission (or the output). In our model,

states correspond to community assignments and an emission is a collection of sightings which

represent communities at that time.

70

First, we generate the hidden community structure which is essentially a sequence of assign-

ments of individuals to communities at different times. We first pick a community assignment

at time t1 from the set of all partitions of {x1, . . . , xn} uniformly at random. Then, at any

point, an individual can independently switch community with some probability. If an indi-

vidual x switches, the identity of its new community depends only on its current community.

Consider time ti = t2, . . . , tm−1 at which some community switching may happen. Let λsw

be the rate of switching. Consider any individual x. Let the time until the next switching of

x be a random variable Tx,ti which follows an i.i.d. exponential distribution with rate λsw. If

Tx,ti < ti+1−ti then x switches community between time ti and ti+1. Otherwise, x stays with its

current community. Here, I assume that every interval [ti, ti+1] is small enough that I can apply

the orderliness assumption of Poisson processes, which states that the probability of x switching

twice or more is 0. The probability of x switching is Psw(x, ti) := 1−e−λsw(ti+1−ti). If x switches

between ti and ti+1, then x chooses its new community from a probability distribution px,ti . We

will specify px,ti(·) later. All we need for now is that, given that individual x switches between ti

and ti+1, the function px,ti(c) gives the conditional probability that x switches to a community

c. This completes the state transition of x. The transitions of all individuals together determine

the community structure χC . Thus, the probability of a community structure χC is,

P1 :=
1

Bn

xn∏
x=x1

tm−1∏
t=t1

[Psw(x, t) · px,t(χ(vx,ti+1))]Isw(x,t)

· [1− Psw(x, t)]1−Isw(x,t), (5.1)

71

where Bk is the kth Bell number1 and Isw(x, ti) is the indicator variable equal to 1 if χ(vx,ti) 6=

χ(vx,ti+1) and 0 otherwise. Here, we define 00 = 1.

Once we have determined the hidden community structure χC , we emit observable sightings

in each timestamp ti. The emission at time ti depends only on the community assignment at

time ti. Consider any time ti = t1, . . . , tm. Let Xi be the random set variable indicating the

communities to be sighted at time ti. Let rti(B) be the probability that Xi = B. We will specify

rti(·) later. The sightings Si are random set variables corresponding to the members of each

community in Xi to be sighted with two-sided errors: some members of that community might

not be in Si (false negative) and some members of Si might not be members of the community

(false positive). Let λab be the rate of an individual being absent from its current community.

Consider some individual x. Let Ux,ti be an i.i.d. exponential random variable with rate λab

indicating the time until the next absence of x. The probability that x is absent during time

interval [ti, ti + di) is Pab(i, ti) := 1 − e−λabdi . If Ux,ti < di, then x is absent from its current

community. Here, I also assume that all di’s are small enough such that I can use the orderliness

assumption of Poisson processes. An absent individual will be sighted with a new community

Yx,ti randomly chosen from a distribution qx,ti to be specified later. If the community of x was

1The kth Bell number is the number of partitions of a k-set.

72

not part of Xi, then it will have to be part of a community in Xi since x has to be sighted as

absent from some community. Thus, the sighting observed at time ti is:

Si = {x : χ(vx,ti) ∈ Xi, Ux,ti ≥ di}

∪ {x : χ(vx,ti) 6∈ Xi, Ux,ti < di, Yx,ti ∈ Xi} .

The first part of Si are the members of one of the communities in Xi who are not absent at the

time. The second part are those who are absent from their communities to be with Si. Once

we are done with all the timesteps t1, . . . , tm, we obtain a complete community structure χC .

Given a community structure χC , the conditional probability of a sighting dataset S is,

P2 :=

xn∏
x=x1

tm∏
t=t1

[Pab(x, t) · qx,t(Yx,t)]Iab(x,t)

· [1− Pab(x, t)]1−Iab(x,t) (5.2)

where Iab(x, ti) is the indicator variable equal to 1 if x is absent during [ti, ti + di).

Let θ = (λsw, λab, {px,t} , {qx,t} , {rt}) be the parameters defining all the distributions. Mul-

tiplying the probabilities in (Equation 5.1) and (Equation 5.2), we obtain the probability of a

community interpretation χ = χC ∪ χS and a sighting data set S,

Pr[χ,S|θ] = P1 · P2,

73

The probabilistic model is essentially complete, pending only the specification of the nonessen-

tial elements p’s, q’s, and r’s. We call this model TDK for it takes into account the time decay.

In reality, we observe only the sighting dataset S while the true community interpretation χ

is hidden. So we would like to infer the community interpretation χ and parameters θ that

maximize the likelihood of S:

`(χ, θ|S) = Pr(χ,S|θ).

Now we are ready to formulate the problem of inferring the community structure from the

sighting data.

5.3.1 Problem Formulation

In the previous section, we describe the probabilistic model which generates a hidden com-

munity structure and an observable sequence of sightings. Now we formally state the reverse

process of inferring the community structure from the sighting data. We pose it in the form

of finding a maximum likelihood path for the corresponding Markov chain. Given a rate of

switching λsw and a rate of absence λab, We would like to find χ, pU , pD, pS , {px,t} , {qx,t} , {rt}

which together maximize the likelihood of a given sighting dataset S. Since we only care about

the community interpretation χ, now we prove that we can easily find optimal distributions p’s,

q’s, r’s for any community interpretation χ (including the optimal one).

74

Theorem 1. Given λsw, λab, and χ, the following set of degenerate distributions maximizes the

likelihood of S, ti, di, under the TDK model:

pU ((t1, . . . , tm)) = 1,

pD((d1, . . . , dm)) = 1,

pS({χ(sj) : tj = t}) = 1 for all t,

px,ti(χ(vx,ti+1)) = 1 for all x and ti

qx,t(χ(vx,t)) = 1 for all x 6∈ Si and all t,

qx,ti(χ(Si)) = 1 for all x ∈ Si and all ti,

rti(χ(Si)) = 1 for all ti,

and 0 elsewhere.

Proof. Since all probabilities are at most 1, removing the LHS terms from Equation 5.1 and

Equation 5.2 gives an upper bound which is equal to that when plugging in the RHS into

Equation 5.1 and Equation 5.2.

With Theorem 1, the probabilistic model is complete. Note that these over-fitting distribu-

tions p’s, q’s, r’s can be thought of as parts of the data that we do not care to model. If we have

a hypothesis related to these parts, then they should be replaced by some other distributions

to reflect the hypothesis.

75

Theorem 1 can be used to set the distributions p’s, q’s, r’s in finding a community inter-

pretation χ that maximizes the likelihood of S. We are now ready to define the problem of

inferring community interpretation from a sighting dataset:

Dynamic Community Interpretation (DCI): Given a rate of switching λsw, a rate

of absence λab, and a sighting dataset S = 〈(S1, t1, d1), . . . , (Sm, tm, dm)〉, find a community

interpretation χ which maximizes the likelihood of S under the TDK model.

Thus, we have defined the Dynamic Community Interpretation problem as that of

finding clusters of individuals over time that maximize the likelihood of sighting data under the

TDK model. More explicitly, taking the log of (Equation 5.1)–(Equation 5.2), we obtain,

`1 := − logBn +

xn∑
x=x1

tm−1∑
t=t1

[Isw(x, t) logPsw(x, t)

+ (1− Isw(x, t)) log(1− Psw(x, t))] ,

`2 :=

xn∑
x=x1

tm∑
t=t1

[Iab(x, t) logPab(x, t)]

+ (1− Iab(x, t)) log(1− Pab(x, t))] .

Thus, maximizing the likelihood is equivalent to maximizing `1+`2. In this form, the cluster-

ing problem that we are trying to solve is known as Maximizing Agreement (6). To complete

the reduction to Correlation Clustering, we use the abstraction of the sighting graph with

the addition of edge weights that correspond to the terms in `1 + `2. Recall, the sighting graph

has a vertex vx,ti for each individual x at time ti and a vertex si for each sighting Si. We now

describe the edges of the sighting graph. We connect the vertex si to all the individual vertices

76

at the same time ti as Si. That is, for each x and each si, there is an edge between si and

vx,ti . At this point, each time t = t1, . . . , tm corresponds to a connected component which is

a complete bipartite graph between two parts: {si : ti = t} and {vx,t : x = x1, . . . , xn} . Then,

we connect the vertices of each individual x into a path vx,t1 , . . . , vx,tm . The weight of an edge

is the log of the likelihood that the two endpoints of the edge belong to the same community.

That is, the weight of an edge corresponds to the appropriate term in `1 + `2.

On this weighted sighting graph, the Dynamic Community Interpretation problem

is nearly equivalent to the Maximizing Agreement problem. To make the two problems

equivalent, we can show by some straightforward algebraic manipulation that edge weights

should be set to the following log odds:

w(vx,ti , vx,ti+1) =log
1− Psw(x, ti)

Psw(x, ti)

w(si, vx,ti) = log
1− Pab(x, ti)
Pab(x, ti)

if x ∈ Si

w(si, vx,ti) = log
Pab(x, ti)

1− Pab(x, ti)
if x 6∈ Si

In the right panel of Figure 8, the solid edges between two circles are weighted by log 1−Psw(x,t)
Psw(x,t) .

The solid edges between a circle and a rectangle are weighted by log 1−Pab(x,t)
Pab(x,t) . The dotted edges

are weighted by log Pab(x,t)
1−Pab(x,t) . For visibility reason, the dotted edges are shown only for timestep

t5 but exist for every ti.

With that, the objective function has changed from maximizing the log likelihood to maxi-

mizing the sum of intra-cluster edge weights in the sighting graph (see Figure 8), which is exactly

77

the Maximizing Agreement problem. Thus, we can use the approximation algorithms for

Correlation Clustering to solve Dynamic Community Interpretation. In the next

two sections, we will present two algorithms for solving Dynamic Community Interpreta-

tion. The first is a pair of approximation algorithms for Correlation Clustering based

on SDP relaxation, and the other is our UIC heuristic algorithm.

5.4 Approach via Reduction to Correlation Clustering

Now that we have the reduction from Dynamic Community Interpretation to Corre-

lation Clustering, we use approximation algorithms for Maximizing Agreement to find

a clustering for Dynamic Community Interpretation.

See Appendix C for more details.

Although the interior-point method runs in polynomial time and the two rounding schemes

are very efficient, in practice, the state-of-the-art SDP solvers still take quite long to solve a

decently-sized SDP to optimality. We need a faster and better algorithm for Correlation

Clustering and Dynamic Community Interpretation for any realistic network sizes.

In this paper, we will also solve the SDP relaxation since the optimal solution to the SDP

relaxation can upper-bound the optimal solution to Correlation Clustering and Dynamic

Community Interpretation. In the next section, we present a fast heuristic which produces

very near-optimal solutions.

5.5 Unilateral Improvement and Contraction Algorithm

Now we introduce Unilateral Improvement and Contraction (UIC) algorithm. The algorithm

is based on the Louvain algorithm based on maximizing modularity (9). The UIC algorithm

78

starts with a trivial clustering where each vertex is in a cluster by itself. Then, it repeatedly

makes a unilateral improvement until it can do no more. A unilateral improvement is the

one in which a vertex chooses its new cluster from a set of candidates. The candidates are

the vertex’s current cluster and the neighboring clusters. It chooses a new cluster so that the

resulting clustering has the highest objective value. Here, the objective function is the sum of

the intra-cluster edge weights. When no vertex can find a better cluster, the algorithm contracts

each cluster into a super vertex. In particular, the vertices in each cluster Ci are replaced by

a super vertex vCi . All edge weights (both inter-cluster and intra-cluster1) are preserved by

setting w(vCi , vCj) =
∑

u∈Ci

∑
v∈Cj

w(u, v). Then, the algorithm repeats from the top on this

new graph. This process repeats until every vertex is in a cluster by itself, at which point the

graph after contraction will be identical to the graph before contraction. The outline of the

algorithm is shown below.

First, we show that the UIC algorithm terminates on all inputs. We observe that a vertex i

always has its current cluster χ(i) as a candidate. This implies that the objective value always

increases. Since the maximum sum of edge weights is finite value, the while loop terminates at

some point. Then, we contract the clusters only if the size of graph will strictly decrease, thus,

this contraction ends at some point.

1For i = j, the weight of each intra-cluster edge is accounted twice in the sum, preserving the objective
function.

79

Algorithm 4: UIC algorithm for Maximizing Agreement

Input: a graph G = (V,E) with edge weights w : E → R.
χ← every vertex in a cluster by itself.
while objective value strictly increases do

for each node i ∈ V do
Assign i to the cluster in {χ(j) : j ∈ N(i) ∪ {i}} that yields the highest objective
value, breaking ties lexicographically.

end

end
If |Range(χ)| < |V |, then contract each cluster of size at least two into a supervertex,
aggregate edge weights accordingly, and repeat from the top.

We implemented the UIC algorithm in Python. This is sufficiently efficient as it takes only

a few seconds in all the cases that we consider. Since the ordering of the vertices might affect

the quality of the solutions, we report our vertex ordering here:

〈s1, . . . , sm〉||〈vx1,t1 , . . . , vx1,tk〉|| · · · ||〈vxn,t1 , . . . , vxn,tk〉.

In the next section, we will show that the UIC algorithm produces near-optimal solutions.

5.6 Experiments

In this section, we present our experiments and results. We use two datasetes Grevy’s zebra

and onager (see Sections A.2.1 and A.2.2 in the appendices for more details).

80

5.6.1 Data Pre-Processing

We use two datasets of animal sightings to showcase the TDK model. The sizes of the

datasets are small enough that the SDP relaxation can be solved in timely fashion so that we

can try a wide range of λsw, λab values.

We preprocessed the datasets as follows. The field records do not contain the durations

of sightings, thus, we estimate them from the average delay between two consecutive sightings

within six hours of one another. The average delay between sightings is 57.90 minutes in

Grevy’s zebra and 46.39 minutes in onager. Therefore, we think one hour is a good estimate

of the maximum duration of sightings. Having this in mind, we estimate the starting time and

ending time of each sighting by extending from the time point at which it was recorded 30

minutes before and 30 later, as long as it does not overlap with another sighting with some

common members. In other words, if Si and Sj overlap (ti ≤ tj), we use the middle point

(ti + tj)/2 as the ending time of Si and the starting time of Sj .

5.6.2 Experimental Setup

In this section, we compare the quality of the clusterings produced by Swamy’s algorithms

and the UIC algorithm. We show the results on both Grevy’s zebra and onager datasets under

different rate values λsw, λab ∈ {0.1, 0.2, . . . , 1.0} in the unit of events per day.

To measure the quality of a solution, we compute the optimality gap. For an instance I

of a problem, the optimality gap of an algorithm A is γ(A, I) = A(I)
OPT(I) where A(I) is the

solution value by A and OPT(I) is the optimal value. Since computing OPT(I) is NP-hard

in general, we usually use a bound on OPT(I) to bound γ(A, I) instead. The relationship

81

between optimality gap and the approximation ratio is that the latter is the optimality gap in

the worst case of the algorithm. For a maximization problem, the approximation ratio of A is

ρ(A) = inf
I∈Π

γ(A, I) which is always at most 1.

Even though we reduce Dynamic Community Interpretation to Correlation Clus-

tering, their objective values are different. Let LL denote the log-likelihood which is the

objective value of Dynamic Community Interpretation. Let LO denote the sum of log

odds which is the objective value of Correlation Clustering. For LO, we know that

Swamy’s 2-hyperplane rounding has approximation ratio of 0.75 and, when choosing the best

between 2-hyperplane rounding and 6-center rounding, the approximation ratio is 0.7666 (93).

Although we can compute LL from LO via LL = LO − offset, the approximation ratio of any

algorithm for Correlation Clustering does not translate in a straightforward way to an

approximation ratio for Dynamic Community Interpretation. Therefore, we will have to

look at the optimality gaps associated with both LL and LO.

For the experiment, we ran each randomized rounding algorithm for 1000 trials. We noticed

that the 4-hyperplane rounding performed better than the 2-hyperplane rounding in all the cases

we considered. Thus, we show only the results of the 4-hyperplane rounding (SDP+4HP) and

the 6-center rounding (SDP+6CT). Moreover, we also tried to improve the solutions further by

post-processing with dynamic programming (95). The idea is that we keep the coloring of the

sightings fixed and optimally recolor the individual vertices. The post-processing is guaranteed

not to worsen the solution, so we post-processed both of our baseline algorithms and denote

the results by appending +DP appropriately.

82

5.6.3 Results

First, we look at the results on the Grevy’s dataset. Figure 9 shows the optimality ratios of

LO. Even before the post-processing with the dynamic programming algorithm, UIC outper-

forms both SDP+4HP and SDP+6CT in all cases. After the post-processing, SDP+4HP+DP

outperforms UIC in the 21 cases and UIC+DP in 10 cases. SDP+6CT+DP is still outper-

formed by UIC in all the cases. In cases in which UIC is outperformed, the optimality gaps

of UIC are already at least 0.99. We omit SDP+6CT since it performs relatively poorly. It is

clear from the figure that the post-processing improves UIC only slightly. The most important

observation is that UIC is the only algorithm here which produces a solution with optimality

gap at least 0.99 in all the cases (SDP+4HP+DP misses the cut by only 10 cases). Figure 10

shows the optimality ratios for LL. Note that, since Dynamic Community Interpretation

technically1 is a minimization problem, the optimality gap is at least 1. The smaller the gap, the

better. The results are similar to the optimality ratios for LO. For completeness, we compare

the actual LL values and the bounds from the SDP relaxation in Figure 11.

Now we look at the results on the onager dataset. Figure 12 shows the optimality ratios

for LO. It is clear from the figure that UIC outperforms both baseline algorithms even after

the post-processing. Again, the optimality gap of UIC is at least 0.99 in all the cases. We omit

both SDP+4HP and SDP+6CT since they perform relatively poorly. The optimality ratio of

UIC is at least 0.99 in all cases. For completeness, we compare the optimality ratios for LL

1Log-likelihood is always negative, so the absolute value of the optimal value is smaller than the
absolute value of a solution value produced by an algorithm.

83

SDP+4HP
+DP

0.985 0.995

●

●

●●●●

●

●●●●●

●
●
●

●●●●●●●●●●● ●●●●

●●●

●●
●●●

●●●●●●●
●●●●
●

●

●●●●●●●●● ●●
●
●●●● ●●●●●●

●●●●●●●● ●●
●●

●

●

●

●
●

●

●

●
●

●
●●●●●

●

●

●●●●

●

●●●●●

●
●
●

●●●●●●●●●●●●●●●

●●●

●●
●●●

●●●●●●●●●●●
●

●

●●●●●●●●●●●
●
●●●●●●●●●●

●●●●●●●●●●
●●
●

●

●

●
●

●

●

●
●
●

●●●●●

0.985 0.995

0.
98

5
0.

99
5

●

●

●●●●

●

●●●●●

●
●
●

●●●●●●●●●●●●●●●

●●●

●●
●●●

●●●●●●●●●●●
●

●

●●●●●●●●●●●
●
●●●●●●●●●●
●●●●●●●●●●

●●
●

●

●

●
●

●

●

●
●
●

●●●●●

0.
98

5
0.

99
5

●

●
●●●●

●

●

●●●●●●● ●●●●●
●●●●●●

●●●●

●●● ●●●●● ●●

●
●
●
●●●●●●●

● ●●●●●●●●●

●

●●●●●

●

●●
●●●●
●
●●●●●●●

●●

●●

●

●

● ●●
● ●●●

●

●

●●●●

SDP+6CT
+DP

●

●
●●●●

●

●

●●●●●●● ●●●●●
●●●●●●

●●●●

●●●●●●●●●
●

●
●
●
●●●●●●●

●●●●●●●●●●

●

●●●
●●

●

●●
●●●●

●
●●●●●●●

●●

●●

●

●

●●●
●●●●

●

●

●●●● ●

●
●●●●

●

●

●●●●●●● ●●●●●
●●●●●●

●●●●

●●●●●●●●●
●

●
●
●
●●●●●●●

●●●●●●●●●●

●

●●●
●●

●

●●
●●●●
●
●●●●●●●

●●

●●

●

●

●●●
●●●●

●

●

●●●●

● ●

●●●●

●

●●●●●

●●●

●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●● ●● ●●

● ●●●●

●●●●●
● ●

●●●●

●

●●●●●

●●●

●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●● ●●●
●●●●●●●●●●
● ●●●● ●● ●●●

●●●●●

●●●●● UIC

0.
98

5
0.

99
5

●●

●●●●

●

●●●●●

●●●

●●●
●●●●●
●●●●●

●●●●●●●
●●●

●●●●●

●●●●●

0.985 0.995

0.
98

5
0.

99
5

●
●

●●●●

●

●●●●●

●●●

●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●
● ●●●●

●●●●●
●

●

●●●●

●

●●●●●

●●●

●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●● ●●●● ●● ●●●
●●●●●

●●●●●

0.985 0.995

●
●

●●●●

●

●●●●●

●●●

●●●
●●●●●

●●●●● UIC+DP

Figure 9: Optimality gaps LO/OPTf on Grevy’s zebra dataset.

in Figure 13 and compare the actual LL values with the bounds from the SDP relaxation in

Figure 14.

5.7 Summary

We present the TDK model which is a probabilistic model for community and observation

data. Then, we formulate Dynamic Community Interpretation as the problem of finding

84

SDP+4HP
+DP

1.0 1.6 2.2

●

●

●
●●●

●

●●●●●

●
●
●

●●
●●●
●

●
●●

●
●
●●

●

● ●●
●●

●

●

●
●●●

●

●●●●●

●
●
●

●●●
●●●●●●●●●●●●●●●●●●●

●●
●●●●
●
●●

●
●
●●
●

●●
●●●

1.0 1.6 2.2

1.
0

1.
6

2.
2

●

●

●
●●●

●

●●●●●

●
●
●

●●●
●●●●●●●●●●●●●●●●●●●
●●
●●●●
●
●●

●
●
●●
●

●●
●●●

1.
0

1.
6

2.
2

●

●

●●●
●

●

●
●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●
●●●●●●●●●●●
●
●●

●●
●

●
●●● ●● ●●

● ●

●●●●

SDP+6CT
+DP

●

●

●●
●

●

●

●
●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●
●●●●●●●●●●●
●
●●

●●
●
●
●●●●●●●

● ●

●●●●

●

●

●●
●
●

●

●
●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●
●●●●●●●●●●●
●
●●

●●
●
●
●●●●●●●

● ●

●●●●

●

●

●●●●

●

●●●●●

●●●

●●
●●●●●●●●●●●●●
●●●●●●● ●●●

●● ●●●

●●●●
● ●

●

●●●●

●

●●●●●

●●●

●●●
●●● ●●● ●●●●
●●●● ●

● ●●●● UIC

1.
0

1.
6

2.
2

●

●

●●●●

●

●●●●●

●●●

●●
●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●

●●●●
●

1.0 1.6 2.2

1.
0

1.
6

2.
2

●

●

●●●●

●

●●●●●

●●●

●●
●●●●●●●●●●●●●●●●●●●● ●●●

●● ●●●

●●●●● ●

●

●●●●

●

●●●●●

●●●

●● ●●● ●●●●
●●●● ●

● ●●●●

1.0 1.6 2.2

●

●

●●●●

●

●●●●●

●●●

●●
●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●

●●●●● UIC+DP

Figure 10: Optimality gaps LL/(OPTf − offset) on Grevy’s zebra dataset.

85

SDP+4HP
+DP

−600 −200

●●●●●●●

●●●●●

●●●

●●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●
●●

●●●
●●●● ●●●●● ●●●●●●●

●●●●●

●●●

●●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●

●●
●●●
●●●●●●●●●

−600 −200

●●●●●●●

●●●●●

●●●

●●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●

●●
●●●
●●●●●●●●●

−
60

0
−

20
0

●●●●●●●

●●●●●

●●●

●●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●

●●
●●●

●●●●●●●●●

−
60

0
−

20
0

●●●●●●●

●
●●●●

●●●

●●●●●
●●●●●●
●●●●

●●●●●●●●●●
●●●●●●●●●
●●●●
●●●●●●●
●
●●●●●●●●●●●●

●●●●●●●
●
●●
●●
●
●

●●●
●●●●
●

●●●●● SDP+6CT
+DP

●●●●●●●

●
●●●●

●●●

●●●●●
●●●●●●
●●●●

●●●●●●●●●●
●●●●●●●●●
●●●●
●●●●●●●
●
●●●●●●●●●●●●
●●●●●●●
●
●●
●●
●
●
●●●
●●●●●

●●●●● ●●●●●●●

●
●●●●

●●●

●●●●●
●●●●●●
●●●●

●●●●●●●●●●
●●●●●●●●●
●●●●
●●●●●●●
●
●●●●●●●●●●●●

●●●●●●●
●
●●
●●
●
●
●●●
●●●●●

●●●●● ●●●●●●●

●
●●●●

●●●

●●●●●
●●●●●●
●●●●

●●●●●●●●●●
●●●●●●●●●
●●●●
●●●●●●●
●
●●●●●●●●●●●●

●●●●●●●
●
●●
●●
●
●
●●●

●●●●●

●●●●●

●
●●●●●●

●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
● ●

●●●●●●

●●●●●

●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●● ●●●●●

UIC
●

●●●●●●

●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●
●●●●●●●

−
60

0
−

20
0

●
●●●●●●

●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●

−
60

0
−

20
0

●
●●●●●●

●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●

● ●
●●●●●●

●●●●●

●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●● ●●●●●
●

●●●●●●

●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●

●●●●●●
●●●●

UIC+DP

●
●●●●●●

●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●

●●●●●●●●
●●●●●●●●●●

−600 −200

●
●
●●●●
●

●●●●●

●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●
●●●●● ●

●
●●●●

●

●●●●●

●●●

●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●

●●●●●

−600 −200

●
●
●●●●
●

●●●●●

●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●

●●●●●
●●●●● ●

●
●●●●
●

●●●●●

●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●

●●●●●
●●●●●

−600 −200

−
60

0
−

20
0

OPTf

Figure 11: LL on Grevy’s zebra dataset. OPTf is the optimal value to the SDP relaxation
which is an upper bound on the optimal LL.

86

SDP+4HP
+DP

0.88 0.96

●●●

●

● ●● ●●●●●

●

●●

●

● ●●●●●●●●●

●

●●●●●●●●●●●●

●●

●●●●●

●

●●●

●●

●●●

●

●●●●●●●●

●

●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●

●●

●●●●●

●

●●●

●●

0.88 0.96

0.
88

0.
96

●●●

●

●●●●●●●●

●

●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●

●●

●●●●●

●

●●●

●●

0.
88

0.
96 ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●

●

●

●●●●●● ●●●

●

●●●●●●●●●● ●●●●●
●
●●●●●●

●
● ●●●●●● ●●●●●

SDP+6CT
+DP

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●
●
●●●●●●
●
●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●
●
●●●●●●
●
●●●●●●●●●●●●

●● ●●●●●●●●● ●●● ●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●● ●●●●● ●●● ●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

UIC

0.
88

0.
96

●●

0.88 0.96

0.
88

0.
96

●● ●●●●●●●●● ●●● ●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●● ●●●●● ●●● ●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.88 0.96

●●

UIC+DP

Figure 12: Optimality gaps LO/OPTf on Onager dataset.

87

SDP+4HP
+DP

1 3 5

●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●

●● ●●●●●●

●

●●

●

●●●●●●●●●●

●

●●●●● ●●●●●●●

●●

●●●●●

●

●●●

●●

●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●

●●

●●●●●

●

●●●

●●

1 3 5

1
3

5

●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●

●●

●●●●●

●

●●●

●●

1
3

5

●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●●●●●
●●● ●

●

●●●●●●●●● ●●●●●●

●
●●●●●●

●
●●

●●●● ●●●● ●●

SDP+6CT
+DP

●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●●●●●
●●●●

●

●●●●●●●●●●●●●●●

●
●●●●●●
●
●●
●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●●●●●
●●●●

●

●●●●●●●●●●●●●●●

●
●●●●●●
●
●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●● ●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●● ●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

UIC

1
3

5
●●●●●●●●●●●●●●●●●●●●●●●●

●●

1 3 5

1
3

5

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●● ●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●● ●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

1 3 5

●●●●●●●●●●●●●●●●●●●●●●●●
●●

UIC+DP

Figure 13: Optimality gaps LL/(OPTf − offset) on Onager dataset.

88

SDP+4HP
+DP

−6000

●●●

●

● ●● ●●●●●

●

●●
●

● ●●●●●●●●●

●

●●●●●●●●●●●●

●●

●●●●●

●

●●●

●●

●●●

●

●●●●●●●●

●

●●
●
●●●●●●●●●●

●

●●●●●●●●●●●●

●●

●●●●●

●

●●●

●●

−6000

●●●

●

●●●●●●●●

●

●●
●
●●●●●●●●●●

●

●●●●●●●●●●●●

●●

●●●●●

●

●●●

●●

−
60

00

●●●

●

●●●●●●●●

●

●●
●
●●●●●●●●●●

●

●●●●●●●●●●●●

●●

●●●●●

●

●●●

●●

−
60

00

●●

●

●

●

●●●●●● ●●●

●

●●●●●●●●●● ●●●●●●
●●●●●●

●
● ●●●●●● ●●●●●

SDP+6CT
+DP

●●

●

●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●
●●●●●●
●
●●●●●●●●●●●● ●●

●

●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●
●●●●●●
●
●●●●●●●●●●●● ●●

●

●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●
●●●●●●
●
●●●●●●●●●●●●

●● ●●●●●●●●● ●●● ●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●● ●●●●● ●●● ●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

UIC

●●

−
60

00

●●

−
60

00

●● ●●●●●●●●● ●●● ●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●● ●●●●● ●●● ●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

UIC+DP

●●

−6000

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●● ●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●● ●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

−6000

●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●

−6000

−
60

00

OPTf

Figure 14: LL on onager dataset. OPTf is the optimal value to the SDP relaxation which is
an upper bound on the optimal LL value.

89

a community structure in dynamic networks which maximizes the likelihood of the observed

data under the TDK model. We show how to solve the problem by reducing Dynamic Com-

munity Interpretation to Correlation Clustering problem so as to use the available

approximation algorithms for Correlation Clustering to solve it. The approximation al-

gorithms provides a good upper bound on the optimal value but it is slow in practice. As a

solution, we propose UIC algorithm, a fast heuristic for solving Correlation Clustering

and Dynamic Community Interpretation and use the upper bound given by the approx-

imation algorithms to measure the quality of the solutions produced by the UIC algorithm.

The experimental results are surprising, that the solutions produced by UIC algorithm are 0.99

times of the optimal solutions to Correlation Clustering and 1.93 times of the optimal

solutions to Dynamic Community Interpretation. Thus, the UIC algorithm finds near-

optimal solutions to Dynamic Community Interpretation (for which it was designed) but

can also be used as a general algorithm for Correlation Clustering, which opens a line of

theoretical inquiry, from time complexity to approximability.

CHAPTER 6

DETECTING COMMUNITIES IN DYNAMIC NETWORKS

In this chapter, I consider the problem of detecting communities in a network which changes

over time and simultaneously tracking changes of community structure. This work first ap-

peared in (97).

6.1 Notations and Definitions

Recall from Chapter 2 that a network on a vertex set V is a sequence of snapshot graphs

G = 〈G1, . . . , Gm〉 overm discrete timesteps t1, . . . , tm. In this chapter, we assume that timesteps

are uniform (ti+1− ti = tj+1− tj for all i, j). The snapshot of the network at time ti is a graph

Gi = (Vi, Ei) on some subset Vi ⊆ V of all vertices in the network. The vertices in Vi are

known to be interacting (or not interacting) at timestep ti and the edges in Ei represent the

interactions at that timestep. For the vertices not in Vi, we do not know anything about their

interactions at timestep ti, or the lack thereof. A community structure is a coloring function

χ : V × {t1, . . . , tm} → N. Each color represents a unique community. The interpretation is, at

a timestep t, a vertex v is in the community represented by the color χ(v, t). When restricted

to a particular timestep ti, we refer to χ as the community membership at time ti. The problem

of detecting and tracking communities in a network G can be posted as finding a community

structure χ which best explains the interactions in G. Now, let us formally define what best

means in this context.

90

91

We assume the following behavioral model:

Gradual changes: Individuals change community affiliation not very often.

Reliable true positive: Members of the same community mostly interact with each other.

Negligible false positive: Members of different communities rarely interact with each other.

We translate these three assumptions into social costs:

Switching cost: each individual u incurs Csw when changing community affiliation:

χ(u, ti) 6= χ(u, ti+1).

False negative cost: two individuals u and v incur Cfn when they belong to the same com-

munity but do not interact:

χ(u, ti) = χ(v, ti) and (u, v) 6∈ Ei.

False positive cost: two individuals u and v incur Cfp when they belong to different com-

munities but do interact:

χ(u, ti) 6= χ(v, ti) and (u, v) ∈ Ei.

92

The Network Community Interpretation problem is to find a coloring χ that mini-

mizes the total cost of switching, false negative, and false positive:

c(χ) = Csw

m−1∑
i=1

| {u ∈ V : χ(u, ti) 6= χ(u, ti+1)} |

+Cfn

m∑
i=1

| {(u, v) 6∈ Ei : χ(u, ti) = χ(v, ti)} |

+Cfp

m∑
i=1

| {(u, v) ∈ Ei : χ(u, ti) 6= χ(v, ti)} |.

It is easy to see that the decision version of Network Community Interpretation is

NP-complete. This can be shown by a straightforward reduction from the unweighted Min-

imizing Disagreement problem (see Appendix C). Given a complete graph G = (V,E) in

which each edge is labeled either as + or −, we create an instance of Network Community

Interpretation on one-timestep network G = 〈(V,E+)〉 where E+ is the set of the edges with

the + label. To complete the construction, we set the cost parameters (Csw, Cfn, Cfp) = (0, 1, 1).

If G has a coloring of cost at most b then G has a clustering with at most b disagreements.

Next, we show that there is a probabilistic generative model the likelihood of which is

maximized by the Network Community Interpretation problem.

6.2 Probabilistic Model

We have formulated the Network Community Interpretation. We now present a

generative probabilistic model whose likelihood is maximized by the Network Community

Interpretation problem. The first three parameters are:

• k the number of communities,

93

• n the number of individuals, and

• m the the number of timesteps.

The probabilistic model generates a community interpretation χ and a dynamic network G =

〈G1, . . . , GT 〉. Each snapshot is a graph Gi = (V,Ei) on the same vertex set V of n vertices.

We introduce three more parameters:

• psw the probability of an individual switching community affiliation,

• pfn the probability of a false non-edge (missing intra-community edge), and

• pfp the probability of a false edge (extra inter-community edge).

First, we generate the hidden community structure χ. We begin by generating the initial

community membership at the first timestep t1. From there on, the community membership

at timestep ti is generated based only on the community membership at previous timestep ti1 ,

independently from everything else. At the first timestep t1, each individual independently picks

one of the k choices as its initial community uniformly at random. Then, given the community

membership at timestep ti−1, we generate the community membership at timestep ti as follows.

Each individual independently decides to switch community with probability psw. Otherwise,

the individual stays with its current community. An individual who decided to switch picks its

new community uniformly at random from the k − 1 choices.

Then, we generate the an observable dynamic network. The network snapshot Gi = (V,Ei)

depends only on the community membership at time ti and is independent of everything else.

Thus, we generate each Gi separately. For each pair of vertices (u, v) from the same community,

94

we join them by an edge with probability 1 − pfn. Otherwise (u, v) is a missing intra-cluster

edge. Similarly, for each pair of vertices (u, v) from different communities, they are joined by

an edge with probability pfp. Such (u, v) is an extra intra-cluster edge.

With respect to χ and G, recall that a false negative is a non-edge between two community

members, and a false positive is an edge that goes across two communities. Let Nsw be the

number of switches in χ, Nfn be the number of false negatives, and Nfp be the number of false

positives. Let Mfp be the total number of edges in G, and Mfn be the total number of non-edges

in G. Note that Mfp =
∑T

t=1 |Et| and Mfp + Mfn = T
(
N
2

)
. Under this model with parameter

λ = (k,N, T, psw, pfn, pfp), the probability of a given G, χ is,

Pr[G, χ|λ] =
1

kN

(
psw

(k − 1)(1− psw)

)Nsw

(1− psw)N(T−1)

×
(

pfn

1− pfn

)Nfn

(1− pfn)Mfn

×
(

pfp

1− pfp

)Nfp

(1− pfp)Mfp

By taking natural logarithm and simplifying, we obtain,

ln Pr[G, χ|λ] = C +Nsw ln

(
psw

(k − 1)(1− psw)

)
+Nfn ln

(
pfn

1− pfn

)
+Nfp ln

(
pfp

1− pfp

)
.

95

where C is the sum of the terms not depending on χ. We observe that the log-probability

has terms similar to the coloring cost c(χ) in Equation Equation 6.1. Thus, maximizing the

log-probability is the same as minimizing the coloring cost by setting,

Csw = − ln
psw

(k − 1)(1− psw)
,

Cfn = − ln
pfn

1− pfn
, Cfp = − ln

pfp

1− pfp
.

In practice, we try to infer χ from an observed dynamic network G. For a given χ, ln Pr[G, χ|λ]

is the likelihood of the parameter λ. Thus, an optimal coloring χ of a dynamic network G, which

minimizes c(χ), also maximizes the likelihood of the parameter λ.

Solving the above equation system gives model parameters in terms of cost setting.

psw =
k − 1

eCsw + k − 1
, pfn =

1

eCfn + 1
, pfp =

1

eCfp + 1
.

One issue is that multiplying Csw, Cfn,Cfp by a constant changes the base of the logarithm. So

we do not actually have a one-to-one correspondence between cost setting and model parameter

setting.

Also, it can be shown that:

• psw < 1
2 if and only if Csw > ln(k − 1),

• pfn <
1
2 if and only if Cfn > 0,

• pfp <
1
2 if and only if Cfp > 0.

96

6.2.1 Maximum Likelihood

When we infer a community interpretation from an observation, we do not know the param-

eter λ. One way to estimate this is to use the maximum likelihood principle. Recall that for a

multinomial distribution, the maximum likelihood estimators are the proportions of the events

that occur. Naturally, one would assume a hidden Markov model and apply the EM algorithm.

However, computing the expectation of numbers of switches, absences, and visits is not easy

since it involves a complicated summing over all community interpretations. So we use Nsw,

Nfn, Nfp of the community interpretation χ that maximizes Pr[χ|λ] instead, and estimate psw,

pfn, pfp as,

p̂sw =
Nsw

N(T − 1)
, p̂fn =

Nfn

Mfn
, p̂fp =

Nfp

Mfp
.

So the approach is similar to the EM algorithm (28). We start with some psw, pfn, pfp,

say equal to 1
4 . We compute the corresponding costs Csw, Cfn, Cfp, then find a community

interpretation χ that minimizes the cost which also maximizes the probability Pr[χ|λ]. Then,

we recompute psw, pfn, pfp from χ and repeat until converge.

6.3 Method

Since we have reduced the problem to the Minimizing Disagreement in the Correlation

Clustering problem, I use an approach based on Swamy’s approximation algorithms (see

Section C.2 in the appendix) to solve the problem. Instead of rounding the SDP optimal

solution with random k-hyperplane rounding or k-center rounding, I use single-linkage clustering

to round the optimal solution to the SDP to a solution to the strict quadratic program. In

97

particular, the first block of the semidefinite matrix is the Gram’s matrix and can be transformed

into Euclidean distances, which are used in single-linkage clustering.

6.4 Experimental Results

We now present the results of our algorithm on several synthetic and real datasets. First,

we generate synthetic datasets with known community structures to test the accuracy of our

method and to compare it to alternative approaches. We then apply the algorithms to real

dynamic networks. Although our algorithm take three parameters Csw,Cfn,Cfp, it is the ratios

between them that affect the optimal community structure since scaling the parameters by any

positive constant does not change the optimal solution.

6.4.1 Synthetic Network Generator

Due to space limitation, we briefly describe our synthetic data generator. As a hidden

Markov model, it first randomly assigns each individual at time t = 1 to one of the k commu-

nities. For each timestep t ≥ 1, it generates an observed network Gt based on the probability

pfn of false negatives and the probability pfp of false positives. Then, it reassigns community

affiliation for the next timestep t+ 1 based on the probability psw of switching.

6.4.2 Results

The first question is: If we know the true community structure, how close to the truth is

the community structure produced by the SDP method? To answer this, we generate dynamic

networks using different psw, pfn, pfp, and run the SDP method using different Csw, Cfn, Cfp.

Since the results are similar, show only one representative case psw = 0.3. In Figure 15, the left

column shows the distance (Rand index (78)) to the ground truth. In the top row, the SDP

98

method can find the true structure (distance=0), given the right parameter setting. In the

other rows, it finds solutions close to the truth, but not identical. This is because of the high

perturbation. However, the relationship between ratios Cfn/Cfp and pfn/pfp is clear. We observe

how the probability ratio pfn/pfp (which varies from the top to the bottom rows) affects the cost

ratio Cfn/Cfp at which the SDP method achieves the minimum distance to the ground truth.

This conforms with the intuition that when Cfn < Cfp, the algorithm trades false positives for

false negatives (since pfn > pfn). The right column of Figure 15 shows the upper bound on the

approximation ratio of the SDP algorithm to the optimal solution (as discussed in Section 6.3).

Note that in some cases, this upper bound is exactly 1, indicating that the SDP method has

found an optimal solution. However, the distance to the ground truth (in the corresponding

plots in the left column) is greater than 0, indicating that the optimal structures found under

those parameter settings do not match the ground truth.

6.4.3 Comparison With Other Methods

We compared our SDP algorithm with other competitive methods for detecting dynamic

communities using the two-step approach. First, we ran methods for detecting static com-

munities on each snapshot graph to find a group structure. We use Girvan-Newman algo-

rithm (GN) and Clauset-Newman-Moore algorithm (CNM), in particular, the implementations

from SNAP (63). Once we discovered the group structure in each timestep, we ran our branch-

and-bound algorithm (95) to find an optimal community interpretation. We vary the parameter

settings within a certain range. Although this performs an exhaustive search, our test datasets

99

 0

 0.2

 0.4

 0.6

 0.8

 1

10
-4

10
-2

10
0

10
2

10
4

Cfn/Cfp

Pfn=0.01 Pfp=0.01

Cfn=10
1

Cfn=10
2

Cfn=10
3

Cfn=10
4

Cfn=10
5

Cfn=10
6

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

10
-4

10
-2

10
0

10
2

10
4

Cfn/Cfp

Pfn=0.01 Pfp=0.01

Cfn=10
1

Cfn=10
2

Cfn=10
3

Cfn=10
4

Cfn=10
5

Cfn=10
6

 0

 0.2

 0.4

 0.6

 0.8

 1

10
-4

10
-2

10
0

10
2

10
4

Cfn/Cfp

Pfn=0.01 Pfp=0.30

Cfn=10
1

Cfn=10
2

Cfn=10
3

Cfn=10
4

Cfn=10
5

Cfn=10
6

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

10
-4

10
-2

10
0

10
2

10
4

Cfn/Cfp

Pfn=0.01 Pfp=0.30

Cfn=10
1

Cfn=10
2

Cfn=10
3

Cfn=10
4

Cfn=10
5

Cfn=10
6

 0

 0.2

 0.4

 0.6

 0.8

 1

10
-4

10
-2

10
0

10
2

10
4

Cfn/Cfp

Pfn=0.20 Pfp=0.10

Cfn=10
1

Cfn=10
2

Cfn=10
3

Cfn=10
4

Cfn=10
5

Cfn=10
6

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

10
-4

10
-2

10
0

10
2

10
4

Cfn/Cfp

Pfn=0.20 Pfp=0.10

Cfn=10
1

Cfn=10
2

Cfn=10
3

Cfn=10
4

Cfn=10
5

Cfn=10
6

Figure 15: Rand index distance to ground truth (left column) and the upper bound on the
approximation ratio (right column) of the SDP algorithm for psw = 0.30, N = 15, T = 10, k = 3.

100

CNM GN SDP
0.
0

0.
2

0.
4

di
st
an
ce

Figure 16: The distance to the ground truth of three algorithms with the best parameter
settings, over 10 trials of synthetic data sets with N = 10, T = 10, k = 2.

are sufficiently small and the branch-and-bound algorithm can find the optimal solution within

one minute in most cases with only few cases that take longer.

We generated 10 dynamic networks for each generator parameter values psw, pfn, pfp. For

each trial, we ran each method over different parameter settings and take the one that is closest

to the ground truth. Figure 16 shows this result. Overall, SDP method outperforms the two

other methods.

6.4.4 Experiments on Real Datasets

We have done experiments on two Bluetooth traces from the Haggle project. The results

on both traces are similar so we present only one of them (86). We consider only the Bluetooth

devices in the project and ignore the other devices since we do not have their complete traces.

For each one hour interval, we create an undirected edge (u, v) at the corresponding timestep if

u has seen v in this interval. This result in a dynamic network with one has 9 nodes, 467 edges,

101

84 timesteps. The number of timesteps is still too large for the SDP method to analyze in its

entirety, so we split the timeline into four smaller chunks, each is ≈ 20 timesteps. Figure 17

shows the network at the first timestep with nodes color-coded by community affiliation detected

by the SDP method. Black solid lines are true positives. Red solid lines are false positives.

Red dotted lines are false negatives. As can be seen in the figure, the higher the ratio Cfn/Cfp

is, the fewer the false negatives and the more the false positives there are. The fewer the false

negatives decreases there are, the smaller and denser the clusters become.

1 2

3

4
58

9 6

7

1 2

3

4

5

8

9

6

7

1
2

3

4

5

8

9

6
7

1 2

3

4

58

9

6

7

(5, 1, 5) (5, 5, 1) (5, 5, 5) (5, 10, 1)

Figure 17: Community structures in the Haggle at the first timestep detected under various
(Csw, Cfn, Cfp).

Next we show the community structure in the first few timesteps detected with (Csw, Cfn, Cfp) =

(5, 5, 5), which seems to be a good setting. Figure 18 shows that there is cluster {1, 2, 4–8} which

is quite stable over timesteps 4–6.

Next, we vary Csw ∈ {1, 5} and fix Cfn = 1 and Cfp = 5. Figure 19 illustrates that that,

when switching is cheap (Csw = 1 v.s. Csw = 5), clusters are more stable over time with few

102

1

2

4
5

8
6

7

3 9

1 2

4 5

8
6

7

3

9

1

2

4
5

8
6

7

3
9

1
4

8

6

2

3
9

57

t = 4 t = 5 t = 6 t = 7

Figure 18: Community structures in the Haggle dataset with parameters (Csw, Cfn, Cfp) =
(5, 5, 5).

nodes changing affiliation. As can be seen in the first column at t = 33, the big cluster still

exists even when most of its connections are gone. The expensive Csw cost slows down the rate

of affiliation changes.

To quantitatively illustrate how our SDP method behaves under different parameter settings,

we compute the intra-cluster and inter-cluster densities within each timestep to show how

densely connected and well-separated the clusters are. Figures Figure 20 and Figure 21 show

the time series of intra-cluster density and inter-cluster density, respectively. The density is

computed as the percentage of edges inside the clusters (or between clusters).

6.4.5 Haggle3 Dataset

We run the SDP method on Haggle3 using parameter settings as used in the previous section.

Figure 22 shows the community structures at timesteps 5–8 in Haggle 3. We set Csw = 5 and

Cfn = 5. We can observe that as the ratio Cfn/Cfp decreases, the inter-cluster edges are penalized

more and the intra-cluster non-edges are penalized less. As a result, the clusters become larger

103

as they need to include more edges. The big clusters start to form at timestep 6 and disband

at timestep 8. A closer look at timesteps 6 and 7 and parameter settings Cfn = 1 and 5 tells us

more about the dynamics of this cluster. At time 6, the nodes {1, 3, 8, 23, 34, 41} are considered

a part of the big clusters in both Cfp = 1 and Cfp = 5. However, at time 7, these nodes leave

the big cluster when setting Cfp = 1. The setting Cfp = 5 still considers these nodes a part of

the big cluster. There can be two possible interpretations of node affiliation.

A similar observation can be made about nodes {8, 9, 10, 14, 22, 24, 35, 37, 38} . These nodes

are a part of the big cluster at time 5 when Cfp = 10, but not when Cfp = 5. Their affiliation

with the big cluster is not strong enough to be considered part of the big cluster in the latter

parameter setting.

Another interesting observation is in Figure 23. In both parameter settings and most

timesteps, there is one big cluster with a few nodes weakly connected to it. Timesteps 25

and 30 are the points where the community structures detected can be ambiguous. With pa-

rameter setting (Csw, Cfn, Cfp) = (5, 1, 10), the SDP detects that the big cluster is still a big

cluster. However, with parameter setting (Csw, Cfn, Cfp) = (5, 5, 10), the previously big cluster

is detected as being separated into 2−−3 smaller clusters. These clusters are denser and con-

tain only few intra-cluster non-adjacent members. Moreover, these clusters are well connected

through several inter-cluster edges. This is a result of the Cfn cost becoming more expensive

unilaterally.

104

6.5 Summary

We extend our previous work on finding communities in dynamic social networks (7) to

arbitrary networks, getting rid of the assumption that the individuals in each timestep are

partitioned into groups. To the best of our knowledge, our method is the first that is based

on social theory. We formulate the Network Community Interpretation problem and

devise an approximation algorithm via SDP relaxation and a heuristic rounding scheme. The

algorithm produces a community interpretation with an approximation guarantee. We show

empirically that the method produces solutions which are near optimal and close to the ground

truth of the synthetic data. Our method outperforms the two-step approach. We also show

how the SDP method can be used to find dynamic communities in a real dataset. A natural

question one may have is: How good is the theoretical approximation guarantee? Another

future direction is the available SDP solvers are not scalable and speeding up SDP solvers is an

active area of research. Thus, speeding up our algorithm will need a new angle.

105

t = 29

3

9

1

6
7

2

4 3 1

6

7
24

9

t = 30

3 9

1

7
24

6

3

1

7

24
9

6

t = 31

3 9

1

7
24

6

3
9

1

2
4

6

7

t = 32

3 9

1

2 4 6

7

3 9

1

2 4 6

7

t = 33

3 9

1

2 4 6

7

3

9

2
1

6

7

4

Figure 19: Community structures in Haggle dataset at timesteps 29–33. The first column is
detected with (Csw, Cfn, Cfp) = (5, 1, 5) and the second column is detected with (Csw, Cfn, Cfp) =
(1, 1, 5).

106

●

●

●

●

● ● ●

● ● ● ● ● ● ●

2 4 6 8 10 12 14

0
20

40
60

80
10

0

● sw1.fn5.fp5
sw5.fn5.fp5
sw10.fn5.fp5

●

●

● ●

●

●
●

● ● ● ● ● ● ●

2 4 6 8 10 12 14

0
20

40
60

80
10

0

● sw1.fn1.fp5
sw1.fn5.fp5
sw1.fn10.fp5

● ●

●
● ● ●

●

● ●
● ● ● ● ●

2 4 6 8 10 12 14

0
20

40
60

80
10

0

● sw5.fn5.fp1
sw5.fn5.fp5
sw5.fn5.fp10

Csw ∈ {1, 5, 10} , Cfn = 5, Cfp = 5 Csw = 1, Cfn ∈ {1, 5, 10} , Cfp = 5 Csw = 5, Cfn = 5, Cfp ∈ {1, 5, 10}

Figure 20: Intra-cluster density at timesteps 1–14 in the Haggle dataset.

●

●

●

● ●

●
●

●

●
● ● ● ● ●

2 4 6 8 10 12 14

0
20

40
60

80
10

0

● sw1.fn5.fp5
sw5.fn5.fp5
sw10.fn5.fp5

●

● ● ● ● ● ●

●

●
● ● ● ● ●

2 4 6 8 10 12 14

0
20

40
60

80
10

0

● sw1.fn1.fp5
sw1.fn5.fp5
sw1.fn10.fp5

●

● ●
●

●

●

●

●

● ● ● ● ● ●

2 4 6 8 10 12 14

0
20

40
60

80
10

0

● sw5.fn5.fp1
sw5.fn5.fp5
sw5.fn5.fp10

Csw ∈ {1, 5, 10} , Cfn = 5, Cfp = 5 Cfn = 1, Cfn ∈ {1, 5, 10} , Cfp = 5 Csw = 5, Cfn = 5, Cfp ∈ {1, 5, 10}

Figure 21: Inter-cluster density over timesteps 1–14 in the Haggle dataset.

107

t = 5 t = 6 t = 7

1

10

22

29

34

40

41 3225

8
9

24
35

37
14

11

19
7

5

33

18

38

3

4
2836

30

16

27

39 1720

2126

23

12

215

31

1

10

22

29
34

40
41

332
411

16

19

25
27

28

33

39
5 8

7
18 9

2435

37

14
36

17
20

38
30

21

26

23

12

2

15

31

1
34

41

39

8

38

10

2240 32

4

11

25

27
28

18

35

36 30

23

29

24

3

5

16

19

33

37

20

2

31

7

21

9
12

14

17

15

26

1

10

22

29
34

40
41

32

4

16 19

25
27

28
33

39 5

7

18

36

20

8

9
24

35

37

14

38

11

3

30

17

21

26

2312

2

15

31

1
10

22

29

34
40

41
3

32
4

11
16

19
25

27

28
33

39
5
8

7
18

9

2435

37

14
36

17

20

38

30

21

26
23

12

2
1531

1
10

22

34

40

41
3

324
11

25

27
28

39

8

18
35

36

38
30

23

29

24

5

16

19

33

37

20

2

7

21

9
12

14

17

15

26

31

1
10

22

29

34
40

41
32

411

16 19
25

27
28 33

39
5 8

7
18

9
2435

37

14

36
20

38

3

30
17

21
26

23

12

2
31

15
1 10

22

29

3440

41 3
32 411

16 19
25

27

28
33

39
5 8

718

92435

37

14
36

17
20

38
30

21

26 23

12

2
31

15

1

10

22

34

40

41
3

32

4
11
25

27

2839

8

18
35 36

38
30

23

29 24

14

5

16

19

33

37

20

2

31

7 21

15

9
12

1726

Figure 22: Haggle3. The timesteps are 5–7. Parameters are set as follows. In all three rows,
Csw = 5, Cfn = 1. From the top to the bottom row, Cfp = 1, 5, 10. As Cfp increases, the cluster
becomes larger as the inter-cluster edges are penalized more and intra-cluster non-edges are
penalized less.

108

t = 22 t = 23 t = 24 t = 25 t = 26

1 3

5

6

89

13 15

16

17
19

24
27
28

29

30
33

35
3637

4022

7
1020

23

26

38

14

39

2

3425

32 12

31

11

4

1 3

5

6

89

13 1516 19 24

27

30
33

35

3637

227

10
2023

26

38

14
2
34

25

32

17

28

40

39

29

11 12

31

4

1 3

5

6

89

13 15
16 1719

24 27
28

29

30
33

35
3637

4022

71020

23

26
38

14
39

2
34

25

32 11

4

12

31

1 2

3

4

56

7 8
9 11
13

14 15
16

17

19
22

23
24 28

2930

32
3435

36

38
39

40
10

26
27

37

33

20

12
18

1 2

3

4

6

7
89 1114

15 17

19

22

29
30 32 34

35

36
38

40

10
27

37

33

5

16

13

39

23

12

24

28

26
20

18

1

3

6
8

9

15 16

17

19

24

27

28

29

33

36

37

40

22

7

10

20
23

26

38
14

392

25 32
13

35

5

30
34

12

31

11

4

1

5

6

16

24

27

30

33
36

37

20

23

2

34

3

15
22

26

25

9

13

19

7

10

14

8

35

38

32

17
40 39

28

29
11

12

31

4

1 3

5

6

8

9 15
16
17

19
24

27

28

29

30

33

35

36
37

4022

7
10

20

23

26

38 14

39
2

34
25

32

4

13

11

12
31

1

2

3

4

5

6
7

89

11

13

14

15

16
17

19

22

23

24
28

29
30 32

34

35

36

38

39

40 10
27

37

26

33

20

12

18

1

3

30

32
34

36

27

2
4

5

6
79

11
1415

17

1922

35

38

40

10

33

29

16

837

13

39

23

12

24

28

26

20

18

t = 27 t = 28 t = 29 t = 30 t = 31

1 3

4

6

78

11
14 15

16

17 19
22

23

28 29

30
32 34

35
36

38
4010

27

37

33

2

5

9

13

24

39

26
20 12

18

1

3

5

6

7

8
11

13 14
15

17 19
22
23

24
28

30
32 34

35
36

39 10
27

37

2

4

189
16 38

4029

26

33
20

12

1 3

5

6

89

11 13
14

16

19 22

24

28

29
30

32
34 35

36

39

1026
27

37
2

23

4

7
18

15

17

12

38
40

33

20

1 2

4

8

911

14
19

22 24
34

37 39
3

10

23
26

27
28

30

36
38

29

33

35

40

5
6

16
17

32

13

20

7
1812

25

15

1

2 4

8

9

1114

22 24
34 37
39

3 10
23

26

27
28

30
36 29

33

35

40
616

17

32

13
12

19 38
20

5

7
18

25

15

1 4

6

7

8

11

14

15
17

19

22

23

28

29

32
34

35

36

38

40

10
27

37

33

2

3

5

16

30

9

13

24
39

26

20

12

18

1 6

15
19

30

32

35
1027 37

223

3

8

13

28

4

5

7

14

22

24

36

18

11

9

34

39

16
40

17

29

38

26

33
20

12

1
6

8

9

11
16

19

2224
29

30

34

35

39

10

26
27 2

23

3

4
5

14

32

37

7
18

13

36

28

15

17

12

38
40

33

20

1

2

4

8

9

11
14

19
22

24

34
37

39
310

23
26

28

30

36

38
2933 35

40
5

6
16

17
32

27

13

20

7
18

12
25

15

1

2

4

8

9

11
14

22
24

34

37

39

3
10

23

26

27

28

30

36

29

33 35

616

17

32
13

40

12

19
38

20

5

7
18

25

15

Figure 23: Haggle3, timesteps 22–31. The first and third rows are detected with parameters
Csw = 5, Cfn = 1, Cfp = 10. The second and forth rows are detected with parameters Csw =
5, Cfn = 5, Cfp = 10. There are noteworthy differences between these two parameter settings at
timesteps 25 and 30. The former gives one big, sparser cluster while the latter gives several
smaller, denser clusters.

CHAPTER 7

CONCLUSION

In this chapter, I summarize the state of my work and propose future directions. I have

presented a survey on the existing literature on community detection in both static networks and

dynamic networks. There is not much work which explicitly considers the temporal aspect of

social networks, especially for the community detection problem. Most work still tries perfecting

models or algorithms, assuming that the networks and their community structures as essentially

static. I emphasize the importance of time and refer the observation of Moore (67) that social

analysis should consider time as both a boundary condition and a measure of persistence and

change. No samples are perfectly i.i.d., thus it is important to model the data at hand as

generated from a latent structure which changes over time. In my setting, it is important to

detect communities in social networks and allow the inferred community structure to evolve.

7.1 Summary of Contributions

This thesis yields solutions to two versions of the general problem of detecting and tracking

communities over time. The first is the problem of tracking communities over time, assuming

that communities in each snapshot are already detected. The other is the problem of simul-

taneously detecting and tracking communities over time. In the following, I summarize my

contributions for each problem separately.

109

110

7.1.1 Tracking Communities

When the communities in each snapshot are already detected, the problem is to string the

communities across time, answering the question: Which community becomes which commu-

nity? I have presented two frameworks for tracking communities over discrete timesteps.

The first framework assumes that timesteps are of uniform length, thus simplifying the

math involved. The framework is grounded on social costs which are well-motivated by both

sociology and behavioral ecology. I have presented approximation algorithms based on bipartite

matching and path cover which guarantee solutions to be within constant factors of the optimal

solutions. I also presented a post-processing step via a dynamic programming to optimally color

the individuals further.

The other framework allows timesteps to have variable length. I have presented a framework

which has a probabilistic interpretation and formulated an optimization whose solution is a

maximum likelihood estimate of the probabilistic model. Then, I proposed the UIC algorithm,

a fast heuristic algorithm which was originally designed to maximize only the modularity. I

showed that this algorithm can be used to solve the Correlation Clustering problem, and

to solve the problem of tracking communities over time. Then, I showed the approximation

performance of the UIC algorithm by comparing its solutions with the bounds on the optimal

solutions. The results showed that the UIC algorithm performs surprisingly well in all cases

that I have considered.

Both are the only work on the subject which can compute the approximation ratios of the

solutions and allow some low-confidence clusters to be omitted from the input.

111

7.1.2 Detecting and Tracking Communities

For the setting in which we have a dynamic social network, I have presented a framework

which has a probabilistic interpretation and formulated an optimization problem whose solution

is a maximum likelihood estimate of the probabilistic model. I showed that we can used

approximation algorithms for Correlation Clustering problem to solve this optimization

problem and also bound the optimal solutions. This is the only work on this problem which

can compute the approximation factors of the solutions.

7.2 Future Directions

There are many directions which one may take from here. Again, I discussed about future

directions for each problem separately in the first two subsections that follow. The rest of the

section are about miscellaneous future directions.

7.2.1 Tracking Communities

The question about the time complexity of the Louvain algorithm, as well as the UIC

algorithm, is still an open one. Although each iteration of the Louvain algorithm has time

complexity of O(m) where m is the number of edges, the time complexity of the entire algorithm

is still unknown. The algorithm terminates, but nobody knows how many iterations it takes

in the worst case. Although the original authors observed that the time complexity is linear in

their experiments on synthetic data (9), the time complexity O(m) listed in the latest survey

paper (38) is rather an erroneous one since, otherwise, it would imply that the algorithm always

takes a constant number of iterations in the worst case, a rather plausible contradiction.

112

I also have noted the difference between minimization problems and maximization problems

in terms of their approximation ratios. Although I used Swamy’s approximation algorithms for

Correlation Clustering (which are for a maximization problem) to compute bounds for the

problem of tracking communities (a minimization problem, technically), the constant factors of

Swamy’s algorithms do not translate into constant factors in my setting since the optimization

sense changes. It is still an open question how to bound the approximation guarantee of both

Swamy’s algorithms and the UIC algorithm in my setting.

Another interesting question is, can we solve the dual of the SDP relaxation, heuristically?

Is there an algorithm similar to the UIC algorithm which can heuristically solve the dual SDP?

The pair of the UIC algorithm and its “dual” algorithm will be a more efficient and more

scalable alternative than the UIC algorithm and the interior-point method for SDP.

7.2.2 Detecting and Tracking Communities

The UIC algorithm is applicable to a wide variety of problems, especially those which involve

maximum likelihood estimates or maximum a posterior probability estimates. Both MLE and

MAP problems can be reduced to the Correlation Clustering problem in which the UIC

algorithm is applicable, and so is the SDP bounding technique. For the problem of detecting

and tracking communities, my previous algorithm is based on solving an SDP relaxation using

the interior-point method and a rounding via hierarchical clustering. I expect that the UIC

algorithm will outperform my previous algorithm by an order of magnitude.

As I mentioned that the UIC algorithm is applicable to any MLE and MAP problems, it

would be interesting to try other probabilistic models which simultaneously generate dynamic

113

networks and communities structures such as those by Lin et al. (64) and Xu et al. (103). It

would be interesting to compare the performance of the UIC algorithm and other algorithms

such as those based on the EM algorithm.

7.2.3 Miscellaneous

In Chapter 4, I formulated the Dynamic Community Interpretation problem with a

constraint that a coloring has to be proper. Recall that, a proper coloring does not assign

the same color to two or more groups at each timestep. This constraint originated rather

only for technical convenience to justify the use of discrete objects such as matching and path

cover to devise approximation algorithms. We can always relax this constraint to allow two or

more groups at the same timestep to have the same color. This will allow the framework to

take into account splitting of a community and merging of communities in a rigorous manner.

Fortunately, the UIC algorithm can still find a solution to this relaxed problem.

An ability to track communities over time in the way that I formulated allows us to do

more accurate job at detecting communities in each snapshot. We are not constrained to find

a partition of the entire snapshot anymore. We can identify only the communities with high

confidence level and omit the ones with low confidence level. The algorithms for tracking com-

munities are still able to track them over time. This not only eliminates artificial communities

from the snapshot but also improve the efficiency of the whole process.

APPENDICES

114

115

Appendix A

DATASETS

A.1 Social Networks

A.1.1 Southern Women

Southern Women dataset. Collected by Davis et al. (26). Meta-analysis by Freeman (41).

Affiliation network is shown in Table III. Table IV shows the assignments of individuals into

three communities A, B, and C by the 21 static methods by Freeman.

A.2 Animal Sightings

A.2.1 Grevy’s zebra

The Grevy’s zebra (Equus grevyi) dataset (92) was collected by observing a population of

Grevy’s zebra in Laikipia, Kenya, from June to August in 2002. Predetermined loops were

driven typically once a day by ecologists making visual scans of the herds. Individual zebras

were identified by the pattern of stripes (60). An interaction represents social association, as

determined by spatial proximity and the domain knowledge of ecologists.

A.2.2 Onager

The onager (Equus hemionus khur) dataset (92) was collected by observing a population of

onagers (Asiatic wild asses) in the Little Rann of Kutch desert in Gujarat, India, from January

to May in 2003. Individual onagers were identified by markings on their body and, similar

to zebras, the data represent visual scans of the population by ecologists, typically once a

116

Appendix A (Continued)

Names of Participants

Social events in Old City Herald

6
/
2
7

3
/
2

4
/
1
2

9
/
2
6

2
/
2
5

5
/
1
9

3
/
1
5

9
/
1
6

4
/
8

6
/
1
0

2
/
2
3

4
/
7

1
1
/
2
1

8
/
3

1. Mrs. Evelyn Jefferson x x x x x x x x
2. Miss Laura Mandeville x x x x x x x
3. Miss Theresa Anderson x x x x x x x x
4. Miss Brenda Rogers x x x x x x x
5. Miss Charlotte McDowd x x x x
6. Miss Frances Anderson x x x x
7. Miss Eleanor Nye x x x x
8. Miss Pearl Oglethorpe x x x
9. Miss Ruth DeSand x x x x
10. Miss Verne Sanderson x x x x
11. Miss Myra Liddell x x x x
12. Miss Katherine Rogers x x x x x x
13. Mrs. Sylvia Avondale x x x x x x x
14. Mrs. Nora Fayette x x x x x x x x
15. Mrs. Helen Lloyd x x x x x
16. Mrs. Dorothy Murchison x x
17. Mrs. Olivia Carleton x x
18. Mrs. Flora Price x x

TABLE III: Reproduction of the Southern Women dataset

Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1. DGG41 A A A A A A A A AB B B B B B B B B B
2. HOM50 A A A A A A A AB B B B B B B B
3. P&c72 A A A A A A A A A B B B B B B B B B
4. BGR74 A A A A A A A A B B B B BC BC C C
5. BBA75 A A A A A A A B A B B B B B B B B B
6. BCH78 A A A A A A B B B B B B
7. DOR79 A A A A A A A A B B B B B B
8. BCH91 A A A A A A A A A B B B B B B B B B
9. FRE92 A A A A A A A A B B B B B B B
10. E&B93 A A A A A A A A B B B B B B
11. FR193 A A A A A A A A A B B B B B B B B B
12. FR293 A A A A A A A B B B B B B B B B B B
13. FW193 A A A A A A A A A B B B B B B AB B B
14. FW293 A A A A A A A A B B B B B B B B
15. BE197 A A A A A A A A B B B B B B
16. BE297 A A A A A A A A A B B B B B B B B B
17. BE397 A A A A A A A A A B B B B B B B B B
18. S&F99 A A A A A A A A A B B B B B B B B
19. ROB00 A A A A A A A A A B B B B B B B B B
20. OSB00 A A A A A A A A A A A A A A A A B B
21. NEW01 A A A A A A A B A B B B B B B B B B

TABLE IV: Freeman’s 21 static community assignments in Southern Women.

117

Appendix A (Continued)

day. An interaction represents an association as determined by physical proximity and domain

knowledge.

TABLE V: Datasets and their statistics in Appendix A

Statistics Grevy’s Onager

Number of sightings 130 408
Number of timestamps 130 405
Number of individuals 17 29
Avg. sighting size 3.91 1.94
Avg. sightings per individual 29.88 27.31

A.2.3 Plains Zebra

The plains zebra (Equus burchelli) dataset was collected by observing the population in

Kenya from 2003 to 2008 (37; 53) in a manner similar to the Grevy’s zebra dataset.

A.3 Bluetooth Proximity Networks

In general, the range of Bluetooth is 5–30 meters (10).

A.3.1 Reality Mining

We use three networks derived from Bluetooth proximity log. The data were collected by

the MIT Media lab (31). They consist of communication, proximity, location, and activity

information from 100 subjects at MIT over the course of the 2004–2006 academic years.

118

Appendix A (Continued)

A.3.2 Haggle

The Haggle dataset consists of social interactions among attendees of the 2005 IEEE Infocom

conference who were carrying a Bluetooth-enabled device which record handshakes with other

Bluetooth devices during the conference (85). Two separate datasets represent interactions at

this event. One consists only of 41 participants and the other consists of 264 nodes, containing

the 41 participants and the other divides seen by the first 41 devices. The participants were

tracked over the full 4 days of the conference at 10 minute intervals.

119

Appendix B

INTERVAL LOWERBOUND

This is the same exhaustive search as in (95; 96). A new contribution is the use of divide-

and-conquer together with dynamic programming to improve the lowerbound in the branch-

and-bound exhaustive search. The idea is we want to partition the dataset along the time axis

into smaller datasets such that they are small enough that the exhaustive search terminates

quickly. In particular, we want to find a partition of the time interval [1,m] into disjoint

intervals [1, t1−1], [t1, t2−1], [t2, t3−1], . . . , [tk,m] so that the exhaustive search on each interval

terminates within a certain small time limit, say one second. In particular, we will attempt

the exhaustive search with time limit on all I ⊆ [1,m]. Let c(I) be the minimum coloring cost

on an interval I computed by the exhaustive search, setting c(I) =∞ if the exhaustive search

does not terminates in time. We will use c(I) to construct a lowerbound on c([1,m]).

Let us fix any optimal coloring χ with the minimum cost c([1,m]). Let cχ(t, t′) denote the

coloring cost of χ when restricting the dataset to the interval [t, t′]. First, we observe that, for

each interval I with c(I) <∞, we have

c(I) ≤ cχ(I) (B.1)

120

Appendix B (Continued)

since χ gives a feasible solution to the problem in which c(I) is optimal. With this in mind, we

want to find a partition I of [1,m] into disjoint intervals which maximizes c(I) since,

c(I) =
∑
I∈I

c(I) ≤
∑
I∈I

cχ(I) ≤ cχ([1,m]) = c([1,m]).

The first inequality follows from Equation B.1. The second inequality holds since the quantity

on the LHS accounts for a subset of the quantity on the RHS. Let `(t, t′) denote a lowerbound

on cχ([t, t′]). We can express `(t, t′) recursively as,

`(t, t′) =

c([t, t′]) if c([t, t′]) <∞,

maxi=1,...,t′−t {`(t, t+ i− 1) + `(t+ i, t′)} otherwise.

To make sure that the recursion is well-defined, we make sure that the time limit on the

exhaustive search is long enough that it terminates on all intervals [t, t+ 1]. (We cannot rely on

c([t, t]) since it is zero.) This recursion can be computed using dynamic programming by filling

the table in increasing order of interval lengths t′ − t. We can use `([1,m]) as a lowerbound to

compute the approximation guarantee of the solution by any algorithm. Furthermore, we can

use `([t, t′]) in branch-and-bound (95; 96).

121

Appendix C

CORRELATION CLUSTERING

This is an introduction to Swamy’s algorithm for Correlation Clustering (93), followed

by the details of my implementation.

C.1 General Approach for Dividing an Approximation Algorithm Using SDP

Semidefinite programming is a popular tool for devising approximation algorithms especially

for graph problems. Introduced by Goemans and Williamson (47), the technique is to first

formulate the problem as a strict quadratic program, which is then relaxed to a vector program.

Such vector program relaxation has an equivalent formulation as a semidefinite program (SDP),

which is solvable in polynomial time by the interior-point method (50). Once we obtain an

optimal solution to the SDP, we perform the Choleskey factorization on it to obtain an optimal

solution to the vector program relaxation, which is, in turn, rounded by a randomized algorithm

to get a solution to the strict quadratic program, which gives a solution to the original problem.

The approximation guarantee is analytically obtained by comparing the expectation of the

rounded solution to the optimal solution to the SDP.

C.2 SDP Relaxation for Correlation Clustering

Swamy gave two approximations algorithms, both are based on the standard approach for

designing an approximation algorithm using semidefinite programming relaxation. The only

difference between the two is the rounding schemes. First, the Maximizing Agreement

122

Appendix C (Continued)

problem is formulated as a strict quadratic program (QP), which is then relaxed to a vector

program (VP). The VP relaxation has an equivalent formulation as a semidefinite program

(SDP) which can be solved to any arbitrary precision in polynomial time using the interior-

point method (50). Once an optimal solution to the SDP is obtained, Cholesky factorization

is used to obtain an optimal solution to the VP. Then, the optimal solution to the VP is

rounded to obtain a solution to the QP. The rounded solution is also a solution to Maximizing

Agreement and Dynamic Community Interpretation. The two rounding schemes that

give rise to two slightly different algorithms are k-hyperplane rounding and k-center rounding.

We refer the reader to (93) for more details on algorithms and the rounding schemes.

Now we describe Swamy’s SDP relaxation for Maximizing Agreement. All matrices in

this section are n-by-n real symmetric matrices unless noted otherwise. For a matrix X, let xij

denote its entry at row i and column j. We write X ≥ 0 if all entries xij ’s are nonnegative. We

write X � 0 if X is positive semidefinite, that is, xTXx ≥ 0 for all x ∈ Rn. For two matrices

X and Y, we write X � Y if X − Y is positive semidefinite. The matrix inner product is

X • Y = trXY =
∑

i

∑
j xijyij . Consider a weighted undirected graph G = (V,E). The edge

weights are represented as a matrix C where cij is the weight of (i, j) ∈ E. Let {e1, . . . , en} be

the standard basis for Rn, that is, ei is the unit vector whose ith element is 1. Swamy’s SDP

relaxation for Maximizing Agreement on G is:

123

Appendix C (Continued)

(Primal SDP)

maximize: C •X

subject to: eie
T
i •X = 1 1 ≤ i ≤ n

(eie
T
j + eje

T
i) •X ≥ 0 {i, j} ∈ E

X � 0

(Dual SDP)

minimize: I • Z

subject to: (eie
T
j + eje

T
i) • Z ≤ 0 {i, j} ∈ E

Z � C

The interior-point method (50) can be used to solve an SDP in time polynomial in the size

of the problem and the desired precision of the solution. Once we have an optimal solution to

the SDP, we use the following rounding schemes to obtain a solution to the original problem of

Maximizing Agreement.

We solve the SDP relaxation using CSDP (11) an efficient implementation of a primal-dual

algorithm for SDP written in C. CSDP solves an SDP only with equality constraints, so we use a

standard technique to transform an inequality constraint to an equality constraint. We replace

124

Appendix C (Continued)

each inequality constraint Ai •X ≥ 0, i = 1, . . . ,m, with the following equality constraint where

yi’s are slack variables.

A′i •X ′ :=

 Ai

−eTi ei

 •

X

y1

. . .

ym

= 0.

Here, {e1, . . . , em} is the standard basis of Rm. The constraint X ′ � 0 ensures that the slack

variables yi are nonnegative, implying the replaced inequality constraints. Since CSDP appro-

priately handles block matrices with a combination of dense, sparse, and diagonal blocks, this

does not introduce any extra complexity. The primal SDP becomes.

maximize:

 C

0

 •X ′

subject to:

 eie
T
i

0

 •X ′ = 1 1 ≤ i ≤ n

 eie
T
j + eje

T
i

−ekeTk

 •X ′ = 0 ek = (i, j) ∈ E

X ′ � 0

125

Appendix C (Continued)

We compiled CSDP using Intel C++ Composer XE 2013 with Math Kernel Library 11.0.

We ran the solver on a machine with four 8-core Intel Xeon 2GHz CPUs and 64GB RAM. The

average solving time is 1.45 minutes on Grevy’s zebra and 138 minutes on onager. The big

difference is because each iteration of the interior-point method involves O(m3) factorization of

a dense m-by-m Schur complement matrix where m is the number of constraints. In our case,

m is equal to |V |+ |E|.

C.3 Rounding Schemes

After we obtain an optimal solution X to the primal SDP, we compute the Cholesky fac-

torization Y TY = X where Y is an upper triangular matrix. This can be done in O(n3) and

efficient implementations are available from LAPACK packages. Let y•j denote the jth column

of Y. Since the diagonal entries of X are constrained to be one, the vectors y•j ’s are points

on the surface of the unit (n − 1)-hypersphere. A rounding scheme, in general, partitions the

space and the y•j ’s into parts. Then, the y•j ’s in each part are assigned to one cluster. For an

SDP relaxation with unitary constraints on the diagonal entries like ours, there are two popular

rounding schemes: hyperplane rounding and center rounding.

C.3.1 Hyperplane Rounding

This rounding scheme was first introduced by Goemans and Williamson for Max k-Cut

problem. We generate k random unit vectors v1, . . . , vk ∈ Rn as follows. We first draw each

component independently from the standard normal distribution. The probability that each

vi = 0 is zero. In practice, we reject and resample until vi 6= 0. Then, we normalize each vector

into a unit vector. Each vector vi serves as the normal vector of a hyperplane which altogether

126

Appendix C (Continued)

divide the space into at most 2k parts (some parts may not contain any point y•j). Recall that

the points y•j ’s correspond to the vertices in the sighting graph. We then assign all the points

in each part to the same cluster.

C.3.2 Center Rounding

This rounding scheme was first introduced by Karger, Motwani and Sudan for Graph

Coloring problem. We start by generating k random vectors v1, . . . , vk ∈ Rn by drawing each

coordinate independently from the standard normal distribution. Here, we do not normalize

the vectors as we did previously. They will serve as centers of clusters. Then, we assign each

y•j to the nearest vj , breaking ties lexicographically.

Swamy shows that 2-hyperplane rounding produces a solution which is at least 0.75 of the

optimal value in expectation. By randomly choosing between 2-hyperplane rounding and 6-

center rounding, the solution is at least 0.7666 of optimal value in expectation. In later section,

we will look at how these two rounding schemes perform in practice.

Technically, k-hyperplane (k-center) rounding produces at most 2k clusters (k clusters).

However, these clusters are not necessarily connected. To be fair, we have to count each

connected component in each part as a cluster. This will allow extreme cases to happen, for

example, the one in which all nodes are in the same cluster or the one in which all nodes are in

their own clusters by themselves.

127

CITED LITERATURE

1. Aggarwal, C. C. and Yu., P. S.: Online analysis of community evolution in data streams. In
Proceedings of the SIAM International Data Mining Conference (SDM’05), 2005.

2. Airoldi, E. M., Blei, D. M., Fienberg, S. E., and Xing, E. P.: Mixed membership stochastic
blockmodels. Journal of Machine Learning Research, 9:1981–2014, June 2008.

3. Arnoldi, W. E.: The principle of minimized iterations in the solution of the matrix
eigenvalue problem. Quarterly of Applied Mathematics, 9(1):17–29, 1951.

4. Asur, S., Parthasarathy, S., and Ucar, D.: An event-based framework for characterizing
the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge
Discovery from Data (TKDD), 3(4):16:1–16:36, December 2009.

5. Backstrom, L., Huttenlocher, D., Kleinberg, J., and Lan, X.: Group
formation in large social networks: membership, growth, and evolu-
tion. In Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’06, pages 44–54. ACM, 2006.

6. Bansal, N., Blum, A., and Chawla, S.: Correlation clustering. Machine Learning, 56(1):89–
113, 2004.

7. Berger-Wolf, T., Tantipathananandh, C., and Kempe, D.: Dynamic community identi-
fication. In Link Mining: Models, Algorithms, and Applications, eds, P. S. Yu, J.
Han, and C. Faloutsos, pages 307–336. Springer New York, 2010.

8. Berger-Wolf, T. and Saia, J.: A framework for analysis of dynamic social net-
works. In Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’06, pages 523–528. ACM, 2006.

9. Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E.: Fast unfolding
of communities in large networks. Journal of Statistical Mechanics: Theory and
Experiment, 2008(10):P10008, 2008.

10. Bluetrace: Bluetooth range: 100m, 1km, or 10km? http://www.bluair.pl/bluetooth-
range, March 2013.

128

11. Borchers, B. and Young, J.: Implementation of a primal–dual method for sdp on a shared
memory parallel architecture. Computational Optimization and Applications,
37:355–369, 2007. 10.1007/s10589-007-9030-3.

12. Breiger, R. L., Boorman, S. A., and Arabie, P.: An algorithm for clustering relational data
with applications to social network analysis and comparison with multidimensional
scaling. Journal of Mathematical Psychology, 12(3):328–383, 8 1975.

13. Brown, H.: People, groups, and society. Open University Press, 1985.

14. Brown, R.: Group Processes: Dynamics Within and Between Groups. Wiley, 2000.

15. Bruhn, J.: The Sociology of Community Connections. Springer Science+Business Media
B.V., 2011.

16. Caldarelli, G. and Veespignani, A.: Large Scale Structure and Dynamics of Compex
Networks: From Information Technology to Finance and Natural Science. Com-

plex Systems and Interdisciplinary Science Series. World Scientific Publishing Com-
pany, Incorporated, 2007.

17. Caro, T.: Cheetahs of the Serengeti Plains: Group Living in an Asocial Species. Wildlife
Behavior and Ecology series. University of Chicago Press, 1994.

18. Chakrabarti, D., Kumar, R., and Tomkins, A.: Evolutionary cluster-
ing. In Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’06, pages 554–560, New York, NY,
USA, 2006. ACM.

19. Charikar, M., Guruswami, V., and Wirth, A.: Clustering with qualitative information.
Journal of Computer and System Sciences, 71(3):360–383, 2005.

20. Chi, Y., Song, X., Zhou, D., Hino, K., and Tseng, B. L.: Evolutionary spectral clus-
tering by incorporating temporal smoothness. In Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery and data mining,

KDD ’07, pages 153–162, New York, NY, USA, 2007. ACM.

21. Clauset, A., Newman, M. E. J., and Moore, C.: Finding community structure in very
large networks. Physical Review E, 70:066111, Dec 2004.

129

22. Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.: Introduction to algorithms.
Cambridge, MA, USA, MIT Press, 2001.

23. Croft, D. P., Arrowsmith, B. J., Bielby, J., Skinner, K., White, E., Couzin, I. D., Magurran,
A. E., Ramnarine, I., and Krause, J.: Mechanisms underlying shoal composition
in the trinidadian guppy, poecilia reticulata. Oikos, 100(3):429–438, 2003.

24. Croft, D. P., James, R., and Krause, J.: Exploring animal social networks. Princeton
University Press, 2010.

25. Danon, L., Dı́az-Guilera, A., Duch, J., and Arenas, A.: Comparing community struc-
ture identification. Journal of Statistical Mechanics: Theory and Experiment,
2005(09):P09008, 2005.

26. Davis, A., Gardner, B. B., and Gardner, M. R.: Deep South. Chicago, IL, The University
of Chicago Press, 1941.

27. Demaine, E. and Immorlica, N.: Correlation clustering with partial information.
In Approximation, Randomization, and Combinatorial Optimization.. Algorithms
and Techniques, eds, S. Arora, K. Jansen, J. Rolim, and A. Sahai, volume 2764

of Lecture Notes in Computer Science, pages 71–80. Springer Berlin / Heidelberg,
2003. 10.1007/978-3-540-45198-3 1.

28. Dempster, A. P., Laird, N. M., and Rubin, D. B.: Maximum likelihood from incom-
plete data via the em algorithm. Journal of the Royal Statistical Society. Series B
(Methodological), 39(1):pp. 1–38, 1977.

29. Derényi, I., Palla, G., and Vicsek, T.: Clique percolation in random networks. Physical
Review Letters, 94:160202, Apr 2005.

30. Diestel, R.: Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

31. Eagle, N. and Pentland, A.: Reality mining: Sensing complex social systems. Journal of
Personal and Ubiquitous Computing, 2006.

32. Elsner, M. and Schudy, W.: Bounding and comparing methods for correlation clustering
beyond ilp. In Proceedings of the Workshop on Integer Linear Programming for
Natural Langauge Processing, ILP ’09, pages 19–27, Stroudsburg, PA, USA, 2009.
Association for Computational Linguistics.

130

33. Emanuel, D. and Fiat, A.: Correlation clustering – minimizing disagreements on arbitrary
weighted graphs. In Algorithms - ESA 2003, eds, G. Battista and U. Zwick, vol-
ume 2832 of Lecture Notes in Computer Science, pages 208–220. Springer Berlin
Heidelberg, 2003.

34. Erdos, P. and Renyi, A.: On random graphs. Publicationes Mathematicae, 6:290–297,
1959.

35. Falkowski, T.: Community Analysis in Dynamic Social Networks. Dissertation, University
Magdeburg, 2009.

36. Falkowski, T., Bartelheimer, J., and Spiliopoulou, M.: Mining and visualizing the evolu-
tion of subgroups in social networks. Web Intelligence, 2006.

37. Fischhoff, I. R., Sundaresan, S. R., Cordingley, J., and Rubenstein, D. I.: Habitat use and
movements of plains zebra (equus burchelli) in response to predation danger from
lions. Submitted, 2007.

38. Fortunato, S.: Community detection in graphs. Physics Reports, 486(3–5):75–174, 2 2010.

39. Fortunato, S. and Castellano, C.: Community structure in graphs. In Encyclopedia of
Complexity and Systems Science, ed. R. A. Meyers, pages 1141–1163. Springer,

2009.

40. Franzblau, D. S. and Raychaudhuri, A.: Optimal hamiltonian completions and path covers
for trees, and a reduction to maximum flow. The ANZIAM Journal, 44:193–204,
September 2002.

41. Freeman, L.: Finding social groups: A meta-analysis of the southern women data. In
Dynamic Social Network Modeling and Analysis, eds, R. Breiger, K. Carley, and
P. Pattison. Washington, D.C., The National Academies Press, 2003.

42. Freeman, L. C.: A set of measures of centrality based on betweenness. Sociometry, pages
35–41, 1977.

43. Freeman, L. C.: The sociological concept of “group”: An empirical test of two models.
American Journal of Sociology, 98(1):152–166, 1992.

131

44. Fu, W., Song, L., and Xing, E. P.: Dynamic mixed membership blockmodel for
evolving networks. In Proceedings of the 26th Annual International Conference
on Machine Learning, ICML ’09, pages 329–336, New York, NY, USA, 2009. ACM.

45. Gallaher, A. and Padfield, H.: The Dying community. Advanced seminar series. Univer-
sity of New Mexico Press, 1980.

46. Girvan, M. and Newman, M. E. J.: Community structure in social and biological networks.
Proceedings of the National Academy of Sciences, 99(12):7821–7826, 2002.

47. Goemans, M. X. and Williamson, D. P.: Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. Journal of the
ACM (JACM), 42(6):1115–1145, November 1995.

48. Good, B. H., de Montjoye, Y.-A., and Clauset, A.: Performance of modularity maximiza-
tion in practical contexts. Physical Review E, 81:046106, Apr 2010.

49. He, J., Hopcroft, J., Liang, H., Suwajanakorn, S., and Wang, L.: Detecting the structure
of social networks using (,)-communities. In Algorithms and Models for the Web
Graph, eds, A. Frieze, P. Horn, and P. Pra lat, volume 6732 of Lecture Notes in

Computer Science, pages 26–37. Springer Berlin Heidelberg, 2011.

50. Helmberg, C., Rendl, F., Vanderbei, R., and Wolkowicz, H.: An interior-point method for
semidefinite programming. SIAM Journal on Optimization, 6(2):342–361, 1996.

51. Holmström, E., Bock, N., and Brännlund, J.: Modularity density of network community
divisions. Physica D: Nonlinear Phenomena, 238(14):1161–1167, 7 2009.

52. Hu, Y., Chen, H., Zhang, P., Li, M., Di, Z., and Fan, Y.: Comparative definition of com-
munity and corresponding identifying algorithm. Physical Review E, 78:026121,
Aug 2008.

53. Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, L. S., and Rubenstein, D.: Energy-
efficient computing for wildlife tracking: design tradeoffs and early experiences
with zebranet. ACM SIGOPS Operating Systems Review, 36(5):96–107, October
2002.

54. Kernighan, B. and Lin, S.: An eflicient heuristic procedure for partitioning graphs. Bell
system technical journal, 1970.

132

55. Kleinberg, J.: An impossibility theorem for clustering. Advances in neural information
processing systems, pages 463–470, 2003.

56. Kleinberg, J. and Tardos, E.: Algorithm Design. Boston, MA, USA, Addison-Wesley
Longman Publishing Co., Inc., 2005.

57. Krause, J. and Ruxton, G.: Living in Groups. Oxford Series in Ecology and Evolution.
OUP Oxford, 2002.

58. Krebs, J. and Davies, N.: Behavioural Ecology: An Evolutionary Approach. Wiley, 1997.

59. Kuhn, H. W. and Yaw, B.: The hungarian method for the assignment problem. Naval
Research Logistics Quarterly, pages 83–97, 1955.

60. Lahiri, M., Tantipathananandh, C., Warungu, R., Rubenstein, D. I., and Berger-Wolf,
T. Y.: Biometric animal databases from field photographs: Identification of indi-
vidual zebra in the wild. In Proceedings of the 1st ACM International Conference
on Multimedia Retrieval, page 6. ACM, 2011.

61. Lancichinetti, A. and Fortunato, S.: Community detection algorithms: a comparative
analysis. Physical Review E, 80(5):056117, 2009.

62. Lancichinetti, A. and Fortunato, S.: Limits of modularity maximization in community
detection. Physical Review E, 84:066122, Dec 2011.

63. Leskovec, J.: Stanford network analysis platform (SNAP), Oct 2010.
http://snap.stanford.edu/.

64. Lin, Y.-R., Chi, Y., Zhu, S., Sundaram, H., and Tseng, B. L.: Facetnet: a framework for
analyzing communities and their evolutions in dynamic networks. In Proceedings
of the 17th international conference on World Wide Web (WWW ’08), 2008.

65. Lloyd, S.: Least squares quantization in PCM. IEEE Transactions on Information
Theory, 28(2):129–137, September 2006.

66. Luxburg, U.: A tutorial on spectral clustering. Statistics and Computing, 17(4):395–416,
2007.

67. Moore, W.: Man, time, and society. Wiley, 1963.

133

68. Mucha, P. J., Richardson, T., Macon, K., Porter, M. A., and Onnela, J.-P.: Commu-
nity structure in time-dependent, multiscale, and multiplex networks. Science,
328(5980):876–878, 2010.

69. Munkres, J.: Algorithms for the assignment and transportation problems. Journal of the
Society for Industrial and Applied Mathematics, 5(1):pp. 32–38, 1957.

70. Newman, M. E. J.: Detecting community structure in networks. The European Physical
Journal B - Condensed Matter and Complex Systems, 38(2):321–330, 2004.

71. Newman, M. E. J.: Modularity and community structure in networks. Proceedings of the
National Academy of Sciences, 103(23):8577–8582, 2006.

72. Newman, M. E. J. and Girvan, M.: Finding and evaluating community structure in
networks. Physical Review E, 69, 2004.

73. Ng, A. Y., Jordan, M. I., Weiss, Y., et al.: On spectral clustering: Analysis and an
algorithm. Advances in neural information processing systems, 2:849–856, 2002.

74. Palla, G., Barabási, A.-L., and Vicsek, T.: Quantifying social group evolution. Nature,
446(7136):664–667, 2007.

75. Pearson, M. and West, P.: Drifting smoke rings: Social network analysis and markov
processes in a longitudinal study of friendship groups and risk-taking. Connections,
25(2), 2003.

76. Plutarch: Theseus. 75 A.C.E.

77. Porter, M., Onnela, J., and Mucha, P.: Communities in networks. Notices of the AMS,
56(9):1082–1097, 2009.

78. Rand, W. M.: Objective criteria for the evaluation of clustering methods. Journal of the
American Statistical Association, 66(336):pp. 846–850, 1971.

79. Rattigan, M. J., Maier, M., and Jensen, D.: Graph clustering with network structure
indices. In Proceedings of the 24th international conference on Machine learning
(ICML’07), pages 783–790, New York, NY, USA, 2007. ACM.

80. Reeves, E.: The Dynamics of Group Behavior. American Management Assoc., 1970.

134

81. Ross, S.: Introduction to Probability Models. Elsevier Science, 2006.

82. Sarkar, P. and Moore, A.: Dynamic social network analysis using latent space models.
ACM SIGKDD Explorations Newsletter, 7(2), December 2005.

83. Schaeffer, S. E.: Graph clustering. Computer Science Review, 1(1):27 – 64, 2007.

84. Scott, J.: Social Network Analysis: A Handbook. SAGE Publications, 2000.

85. Scott, J., Gass, R., Crowcroft, J., Hui, P., Diot, C., and Chaintreau, A.: CRAW-
DAD trace cambridge/haggle/imote/infocom (v. 2006-01-31). Downloaded
from http://crawdad.cs.dartmouth.edu/cambridge/haggle/imote/infocom, Jan-
uary 2006.

86. Scott, J., Gass, R., Crowcroft, J., Hui, P., Diot, C., and Chaintreau, A.: CRAW-
DAD trace cambridge/haggle/imote/intel (v. 2006-01-31). Downloaded from
http://crawdad.cs.dartmouth.edu/cambridge/haggle/imote/intel, January 2006.

87. Shi, J. and Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22(8):888–905, August 2000.

88. Shultz, S.: Bondedness and sociality. Behaviour, 147:775–803(28), 2010.

89. Spielman, D. A. and Teng, S.-H.: Spectral partitioning works: Planar graphs and finite
element meshes. Linear Algebra and its Applications, 421(2 - 3):284 – 305, 2007.

90. Spiliopoulou, M., Ntoutsi, I., Theodoridis, Y., and Schult, R.: Monic: modeling and moni-
toring cluster transitions. In Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining, KDD ’06, pages 706–711,

New York, NY, USA, 2006. ACM.

91. Sun, J., Faloutsos, C., Papadimitriou, S., and Yu, P.: Graphscope: parameter-free
mining of large time-evolving graphs. In Proceedings of the 13th ACM SIGKDD
international conference on Knowledge discovery and data mining, KDD ’07,

pages 687–696. ACM, 2007.

92. Sundaresan, S., Fischhoff, I., Dushoff, J., and Rubenstein, D.: Network metrics reveal
differences in social organization between two fission–fusion species, grevy’s zebra
and onager. Oecologia, 151:140–149, 2007.

135

93. Swamy, C.: Correlation clustering: Maximizing agreements via semidefinite pro-
gramming. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’04, pages 519–520, 2004.

94. Tantipathananandh, C. and Berger-Wolf, T.: Constant-factor approximation algorithms
for identifying dynamic communities. In Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data mining, KDD ’09,

pages 827–836. ACM, 2009.

95. Tantipathananandh, C., Berger-Wolf, T., and Kempe, D.: A framework for community
identification in dynamic social networks. In Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery and data mining,

KDD ’07, pages 717–726. ACM, 2007.

96. Tantipathananandh, C.: Community Identification in Dynamic Social Networks Using
Generalized Coloring. Master’s thesis, University of Illinois at Chicago, 2006.

97. Tantipathananandh, C. and Berger-Wolf, T. Y.: Finding communities in dynamic so-
cial networks. In Proceedings of the 11th IEEE International Conference on Data
Mining, eds, D. J. Cook, J. Pei, W. Wang, O. R. Zäıane, and X. Wu, ICDM ’11,

pages 1236–1241. IEEE, 2011.

98. Tong, H., Papadimitriou, S., Sun, J., Yu, P. S., and Faloutsos, C.: Colibri: fast mining
of large static and dynamic graphs. In Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining, KDD ’08,

2008.

99. Š́ıma, J. and Schaeffer, S. E.: On the np-completeness of some graph cluster mea-
sures. In Proceedings of the 32nd conference on Current Trends in Theory and
Practice of Computer Science, SOFSEM’06, pages 530–537, Berlin, Heidelberg,
2006. Springer-Verlag.

100. Wasserman, S. and Faust, K.: Social Network Analysis. Cambridge University Press,
1994.

101. Wellman, B.: The network community: An introduction to networks in the global village.
Networks in the Global Village, 1999.

102. Wellman, B. and Gulia, M.: Net surfers don’t ride alone: Virtual communities as com-
munities. Networks in the global village, pages 331–366, 1999.

136

103. Xu, T., Zhang, Z., Yu, P. S., and Long, B.: Generative models for evolutionary cluster-
ing. ACM Transactions on Knowledge Discovery from Data (TKDD), 6(2):7:1–
7:27, July 2012.

104. Yang, T., Chi, Y., Zhu, S., Gong, Y., and Jin, R.: A bayesian approach toward finding
communities and their evolutions in dynamic social networks. In Proceedings
of the Ninth SIAM International Conference on Data Mining, SDM ’09, February
2009.

VITA

NAME: Chayant Tantipathananandh

EDUCATION: Ph.D., Computer Science, University of Illinois at Chicago, Chicago, Illi-
nois, 2013.

M.S., Computer Science, University of Illinois at Chicago, Chicago, Illinois,
2007.

B.Eng. (honor), Computer Engineering, Chiang Mai University, Chiang
Mai, Thailand, 2002.

ACADEMIC
EXPERIENCE:

Research Assistant, Computational Population Biology Lab, Department
of Computer Science, University of Illinois at Chicago, 2006–2013.

Teaching Assistant, Department of Computer Science, University of Illinois
at Chicago:

• Computer Algorithm I, 2008 and 2011.

• Computer Architecture I, 2011.

• Languages and Automata, 2012.

PROFESSIONAL
EXPERIENCE:

Software Engineering Intern, Google, Mountain View, California, 2012.

System Engineer, C.S.I. Group, Bangkok, Thailand, 2002–2004.

Software Engineering Intern, Electricity Generating Authority of Thailand
(EGAT), Nonthaburi, Thailand, 2001.

PROFESSIONAL
MEMBERSHIP:

Institute of Electrical and Electronics Engineers (IEEE)

Special Interest Group on Knowledge Discovery and Data Mining
(ACM SIGKDD)

HONORS: Phi Kappa Phi, University of Illinois at Chicago, 2007.

Outstanding Engineering Student Award, Crown Prince Foundation, Thai-
land, 2001

137

138

Outstanding Engineering Student Awards, Chiang Mai University, 1999,
2000, 2001, 2002.

PUBLICATIONS: M. Schumer, R. Birger, C. Tantipathananandh, J. Aurisano, M. Mag-
gioni, P. Mwangi Infestation by a Common Parasite is Correlated with
Ant Symbiont Identity in a Plant-Ant Mutualism. Biotropica, 2013.

C. Tantipathananandh, T. Berger-Wolf. Finding Communities in
Dynamic Social Networks. Proceedings of the 11th IEEE International
Conference on Data Mining, 2011.

T. Berger-Wolf, I. R. Fischhoff, D. I. Rubenstein, S. R. Sundaresan, C.
Tantipathananandh. Dynamic Analysis of Social Networks of Equids. Ap-
plications of Social Network Anslysis, 2010.

T. Berger-Wolf, M. Lahiri, C. Tantipathananandh, D. Kempe. Finding
Structure in Dynamic Networks. The 1st Workshop on Information in Net-
works, 2009.

K. Reda, C. Tantipathananandh, T. Berger-Wolf, J. Leigh, A. Johnson.
Poster: SocioScape a Tool for Interactive Exploration of Spatio-Temporal
Group Dynamics in Social Networks. InfoVis, 2009.

C. Tantipathananandh, T. Berger-Wolf. Constant-Factor Approximation
Algorithm for Identifying Dynamic Communities. Proceedings of the 15th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2009.

C. Tantipathananandh, T. Berger-Wolf, D. Kempe. A Framework For
Identifying Communities in Dynamic Social Networks. Proceedings of the
13th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2007.

Habiba, C. Tantipathananandh, T. Berger-Wolf. Betweenness Centrality
Measure in Dynamic Networks. DIMACS Technical Report, 2007.

C. Tantipathananandh. Community Identification in Dynamic Social
Networks Using Generalized Coloring. Master’s thesis, University of Illi-
nois at Chicago, 2007.

	to1 Introduction
	 Motivations
	 Organization of the Thesis

	to2 Preliminaries
	 Basic Notations
	 Problem Statements
	 Community Identification in Dynamic Social Networks
	 Tracking Communities over Time

	to3 Related Work
	 Sociology of Cohesive Groups
	 Community Identification in Static Networks
	 Local Notions
	 Global Notions
	 Data Clustering
	 Distance-based Clustering
	 Hierarchical Methods

	 Spectral Graph Clustering
	 Modularity Optimization

	 Correlation Clustering
	 Tracking Communities over Time
	 Dynamic Community Detection
	 Other Related Work

	to4 Tracking Communities over Uniform Timesteps
	 Social Cost Model
	 Cost Graph
	 Approximation Algorithms
	 Group Graph
	 A Special Case: Complete Partitions
	 Algorithm Description
	 Performance Analysis

	 The General Case
	 Path Cover Problem
	 Algorithm Description
	 Performance Analysis

	 Post-Processing Steps
	 Dynamic Programming Post-Processing
	 Iterative Path-Cover Heuristic

	 Experiments
	 Experimental Setup
	 Coloring Results

	 Summary

	to5 Tracking Communities: The General Case
	 Definitions and Notations
	 Sighting Graph
	 TDK Model
	 Problem Formulation

	 Approach via Reduction to Correlation Clustering
	 Unilateral Improvement and Contraction Algorithm
	 Experiments
	 Data Pre-Processing
	 Experimental Setup
	 Results

	 Summary

	to6 Detecting Communities in Dynamic Networks
	 Notations and Definitions
	 Probabilistic Model
	 Maximum Likelihood

	 Method
	 Experimental Results
	 Synthetic Network Generator
	 Results
	 Comparison With Other Methods
	 Experiments on Real Datasets
	 Haggle3 Dataset

	 Summary

	to7 Conclusion
	 Summary of Contributions
	 Tracking Communities
	 Detecting and Tracking Communities

	 Future Directions
	 Tracking Communities
	 Detecting and Tracking Communities
	 Miscellaneous

	to APPENDICES
	to Appendix A
	to Appendix B
	to Appendix C
	to CITED LITERATURE
	to VITA

