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SUMMARY

In this thesis, we consider the question of sufficient conditions for energy equality for a number of

systems, and from a number of different perspectives. In the first part, our main focus is on the

classical 3-dimensional Navier-Stokes equations (and, to a certain extent, the n-dimensional Euler

equations). We give criteria on the integrability properties of the solution which guarantee that

the natural energy law holds; these integrability criteria depend on the size and structure of the

singularity set. In particular, we consider the cases when the singularity set is either restricted to

a single time-slice (the first possible time of blowup) or when the singularity set has (parabolic)

Hausdorff dimension strictly less than 3. One important situation where we are able to prove energy

balance is the case of Type-I in time blowup for the 3-dimensional Navier-Stokes Equations.

In the time-slice singularity case, we can sometimes quantify the possible failure of the energy

law in those situations where we cannot prove energy balance. This is done using the so-called

energy measure E : the weak-∗ limit of the measures |u(t)|2 dx as t approaches the first possible

time of blowup. We give bounds on the lower local dimension and the concentration dimension of

the energy measure associated to a given solution, in terms of the integrability class to which the

solution belongs.

The idea of relating criteria for energy equality to the size of the singularity set is inspired by the

celebrated Caffarelli-Kohn-Nirenberg theorem, which states that the parabolic Hausdorff dimension

of the singularity set is at most 1 for suitable weak solutions of the Navier-Stokes equations. In recent

years, analogues of the Caffarelli-Kohn-Nirenberg Theorem have been discovered for the fractional

Navier-Stokes equations. Accordingly, we apply our method to those equations as well.

In the second part of the thesis, we treat inhomogeneous models, where the density is not assumed

to be constant. First, we consider the inhomogeneous incompressible Euler and Navier-Stokes equa-

tions. We show that the natural energy balance law holds for solutions of this system which belong

to a certain class of Besov spaces of smoothness 1/3; our criteria are reminiscent of those of the

famous Onsager conjecture.
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Next, we turn our attention to a newer model of collective dynamics, sometimes called the Fractional

Euler Alignment model. This system has previously been studied only in classical regularity spaces,

where the natural energy law is obvious. Therefore before considering the question of energy equality,

we first define an acceptable notion of a weak solution. We develop an existence theory for L∞ “weak”

solutions, and give Besov regularity criteria sufficient to guarantee energy balance for weak solutions.

We also prove existence and uniqueness of W 1,∞ “strong” solutions. More regular solutions of the

Euler Alignment model have been shown to exhibit fast alignment of the velocity, and convergence

to a flocking state, in the absence of an external force. We show that fast alignment still holds for

weak solutions, and that fast alignment and flocking hold for strong solutions.
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CHAPTER 1

Introduction1

In this Introduction, we give a more detailed overview of the contents of this thesis. There are

essentially two main parts: The first part treats homogeneous models such as the classical Euler and

Navier-Stokes equations, as well as the fractional Navier-Stokes equations. The second part treats

inhomogeneous models, namely the density-dependent Euler and Navier Stokes systems, as well as

the Fractional Euler Alignment model. In the first part, we treat the question of energy balance

exclusively, with an approach and set of tools that are geometric in nature. In the second part, we

use Littlewood-Paley theory to establish conditional energy equality for the models we consider. In

the case of the Fractional Euler Alignment model, we also treat questions of well-posedness for the

model, which have previously only been considered in classical regularity spaces.

1. Homogeneous Models

1.1. Energy Equality at the First Blowup Time. We begin by considering the incom-

pressible Euler or Navier-Stokes initial value problem on Rn:

∂tu+ u · ∇u− ν∆u = −∇p,(1)

∇ · u = 0,(2)

u(t0) = u0.(3)

Here we understand that ν = 0 and n ≥ 3 if we are considering the Euler Equations, and that n = 3

if ν > 0. In either case, we assume that u0 ∈ H
n
2 +1+ε(Rn) for some ε > 0, so that there exists a

1This Introduction is largely excerpted from the following works:
[38] T. M. Leslie and R. Shvydkoy. The energy balance relation for weak solutions of the density-dependent Navier-
Stokes equations. J. Differential Equations, 261(6):3719–3733, 2016.
[39] Trevor M. Leslie and Roman Shvydkoy. Conditions Implying Energy Equality for Weak Solutions of the Navier–
Stokes Equations. SIAM J. Math. Anal., 50(1):870–890, 2018. Copyright c© 2018 Society for Industrial and Applied
Mathematics. Reprinted with permission. All rights reserved.
[37] T. M. Leslie and R. Shvydkoy. The Energy Measure for the Euler and Navier-Stokes Equations. Arch. Ration.
Mech. Anal. (to appear).
[36] T. M. Leslie. Weak and Strong Solutions to the Forced Fractional Euler Alignment System. ArXiv e-prints,
March 2018.
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2

unique local-in-time solution

(4) u ∈ C([t0, t1);H n
2 +1+ε(Rn)),

for some t1 > 0, with the associated pressure given by

(5) p = RiRj(uiuj),

where Ri, Rj denote the classical Riesz transforms. We assume that (u, p) can be extended to some

larger time interval [t0, T ], with T ≥ t1, with u a weak solution on the larger interval, which is

weakly continuous in L2 at t = t1. If ν > 0, we assume that u is a Leray-Hopf solution on [t0, T ].

Let Ω ⊂ Rn be a bounded subdomain and assume u ∈ L3(t0, t1;L3(Ω)) (this is automatic if ν > 0).

We will work either on Ω or on the full space Rn; in the latter case we will assume without further

comment that u ∈ L3(t0, t1;L3(Rn)). We stress that even when we work on Ω, the pair (u, p) will

solve (1)–(3) on the full space.

By a classical result of Leray [35], it is known that for divergence-free initial data u0 ∈ L2, there

exists a weak solution to the Navier-Stokes system (1)–(3) on [t0, T ] such that u ∈ L2H1 ∩ L∞L2

and

(6)
∫
R3
|u(t)|2 dx ≤

∫
R3
|u(s)|2 dx− 2ν

∫ t

s

∫
R3
|∇u|2 dxdτ

for all t ∈ (t0, T ] and a.e. s ∈ [t0, t] including s = t0. Moreover, strong solutions to (1)–(3) satisfy

the corresponding energy equality:

(7)
∫
R3
|u(t)|2 dx−

∫
R3
|u0|2 dx = −2ν

∫ t

t0

∫
R3
|∇u|2 dxdτ.

Since the introduction of these Leray-Hopf solutions, it has been notoriously difficult to establish

energy equality for all such solutions. It is of obvious mathematical interest to resolve this question;

energy equality is clearly a prerequisite for regularity, and can be a first step in proving conditional

regularity results, c.f. [46]. But beyond purely mathematical interest, the question of energy balance

is motivated on physical grounds as well: Knowing (7) rather than (6) rules out the presence of

anomalous energy dissipation due to the nonlinearity, a phenomenon normally associated with weak

solutions of the inviscid Euler system in the framework of the so-called Onsager conjecture [43]

(more on this below). This allows, as stipulated, for example, in the text of Frisch [26], to precisely

equate the classical Kolmogorov residual energy anomaly εν → ε0 of a turbulent flow to the Onsager

dissipation in the limit of vanishing viscosity.



3

In the first part of this thesis, we will examine the following local version of the energy equality

(7), obtained by trivial manipulations of (1) and (2), and automatically valid for all nonnegative

σ ∈ C∞0 (Ω× [t0, t1]) and all t ∈ [t0, t1):∫
Ω
|u(t)|2σ(t) dx =

∫
Ω
|u(t0)|2σ(t0) dx− 2ν

∫ t

t0

∫
Ω
|∇u|2σ dx dt

+
∫ t

t0

∫
Ω
|u|2(∂tσ + ν∆σ) dx dτ +

∫ t

t0

∫
Ω

(|u|2 + 2p)u · ∇σ dx dτ.
(8)

We concern ourselves first with the question of whether (8) continues to hold when t = t1. The

answer is clearly affirmative if u remains regular at t = t1; therefore we assume without loss of

generality that u does in fact lose regularity at time t = t1. In this case we can legitimately claim

only that the local energy inequality holds at t = t1 for all non-negative test-functions σ. That this

holds is a simple consequence of the weak lower semicontinuity of the L2 norm and the regularity in

time of σ:∫
Ω
|u(t1)|2σ(t1) dx ≤ lim

t→t−1

∫
Ω
|u(t)|2σ(t) dx

=
∫

Ω
|u(t0)|2σ(t0) dx− 2ν

∫ t1

t0

∫
Ω
|∇u|2σ dx dt

+
∫ t1

t0

∫
Ω
|u|2(∂tσ + ν∆σ) dxdτ +

∫ t1

t0

∫
Ω

(|u|2 + 2p)u · ∇σ dxdτ.

(9)

We ask, then: under what circumstances may we conclude that (8) survives the first blowup time,

i.e. (8) rather than just (9) holds at t = t1?

1.1.1. Background on the Energy Equality. To begin with, we give one sufficient condition for

the energy equality (8) to hold at time t = t1, which gives a partial answer to the question above,

and which we will use extensively below. For U an open subset of Rn and I a relatively open interval

in [t0, T ], we define the “Onsager regular” function class OR(Rn × I) and its local-in-space version

OR(U × I) as follows:

OR(Rn × I) = {f ∈ L3(Rn × I) : lim
y→0

1
|y|

∫
I

∫
Rn
|f(x+ y, t)− f(x, t)|3 dx dt = 0}.

OR(U × I) = {f ∈ L3(U × I) : σf ∈ OR(Rn × I), for all σ ∈ C∞0 (U)}.

We sometimes omit parts of the notation for these spaces when there is no risk of sacrificing clarity.

We say that a point (x0, t0) is Onsager regular if there exists an open set U and a relatively open

interval I such that (x0, t0) ∈ OR(U × I). Further, an open set D ⊂ Rn × [t0, T ] is Onsager regular

if it consists entirely of Onsager regular points. A point (x0, t0) is called Onsager singular if it is
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not Onsager regular, and the Onsager singular set Σons is defined as the collection of all Onsager

singular points. We have the following:

Lemma 1.1 ([52]). Let u be any weak solution of the Euler Equations on [t0, T ] (not necessarily

satisfying the regularity conditions described above), and let D be a regular set for u. Then whenever

σ ∈ C∞0 (D), we have

(10)
∫
|u(t)|2σ(t) dx−

∫
|u(s)|2σ(s) dx−

∫ t

s

∫
|u|2∂tσ dx dτ =

∫ t

s

∫
(|u|2 + 2p)u · ∇σ dx dτ

for all s, t ∈ [t0, T ].

The proof of this Lemma extends without difficulty to Leray-Hopf solutions of the Navier-Stokes

equations. Therefore, when we make the additional regularity assumptions (4) the relevant sufficient

condition for (8) to survive the first blowup time t = t1 is that u ∈ OR(Ω× [t0, t1]).

The quoted result of [52] is a local critical version of a long list of preceding sufficient conditions

documented in the extensive body of literature on the so-called Onsager conjecture. This conjecture,

formulated in 1949 by Lars Onsager [43], states that 1/3 is a critical smoothness in the sense that

solutions to the Euler equations of smoothness greater than 1/3 must conserve energy, and that

solutions with smoothness less than 1/3 might not. The positive direction of this conjecture was

resolved in [12] by Constantin, E, and Titi and has been subsequently refined in, for example,

Duchon, Robert [20], and Cheskidov, et al [7]. The other direction of the conjecture is not as

relevant for the present work; however, we mention that it has been recently resolved by Isett [29],

following a series of breakthrough ideas originating in topology by De Lellis and Székelyhidi [16, 17].

We do not attempt to give a detailed overview of this side of the subject, instead we refer the reader

to [18] for more references and an extensive survey.

The question of energy equality has of course also been extensively studied for Leray-Hopf solutions

of the 3-dimensional Navier-Stokes equations; we mention only a few results. Lions [40] and La-

dyzhenskaja et al. [34] proved independently that such solutions satisfy the (global) energy equality

under the additional assumption u ∈ L4(t0, T ;L4) (see also [48], [49] for improvements in higher

spatial dimensions). Actually, the L4L4 criterion is recoverable from that of [52] (and earlier results),

since L4L4 ∩ L2H1 ⊂ OR by interpolation. Later, Kukavica [33] proved sufficiency of the weaker

but dimensionally equivalent criterion p ∈ L2(t0, T ;L2). In [10], energy equality was proven for

u ∈ L3D(A5/12) on a bounded domain; an extension to exterior domains was proved in [24]. (Here

A denotes the Stokes operator.) In [46], Seregin and Šverák have proven energy equality (regularity,
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in fact) for suitable weak solutions whose associated pressure is bounded from below in some sense;

their paper makes use of the low-dimensionality of the singular set for suitable weak solutions that is

guaranteed by the celebrated Caffarelli-Kohn-Nirenberg Theorem [2]. A cutoff procedure was used

in [50] to establish energy equality; there it was assumed that the singularity was confined to a curve

s ∈ C1/2([0, T ];R3) and additionally that u ∈ L3L9/2, ∇u ∈ L3L9/5((0, T ) × R3\Graph(s))loc, the

assumption dimensionally equivalent to the class OR.

In the first part of the present work, we will make various integrability assumptions on our solution u

and focus mainly on the first time of blowup. Of all the hypotheses on u that we consider, however,

there is one that deserves special attention, namely the case where a solution u of the Navier-Stokes

equations undergoes Type-I in time blowup. By this we mean that

(11) ‖u(t)‖L∞(R3) ≤
C√
t1 − t

,

for some constant C > 0. The Type-I assumption is of particular significance because of its invariance

under the natural rescaling for the Navier-Stokes equations. See [47] for a discussion and further

references. In fact, it is proved in [47] that axially symmetric solutions of the Navier-Stokes equations

which experience Type-I in time blowup (and satisfy some natural technical assumptions) are regular,

and therefore satisfy the energy equality.

1.1.2. Definition of the Energy Measure. Let us set t0 = −1, t1 = 0 for convenience. We refine

our initial question somewhat:

Question 1.2. Suppose u satisfies (1)–(5). Under what additional integrability assumptions on u

may we conclude that (8) holds at t = t1 = 0? If we cannot prove (8) for a given integrability

assumption on u, how bad is the worst failure of (8) that we cannot eliminate under that same

assumption?

Note that the second part of this question presupposes that we can meaningfully and quantifiably

distinguish between different instances of failure of (8). The tool that we use to justify the tacit

assumption in this question (and address the question itself) is the energy measure E , which we

define to be the weak-∗ limit of the measures |u(t)|2 dx Ω as t → 0−. (The symbol denotes

restriction of a measure onto a given set.) To see that E is well-defined, note that |u(t)|2 dx is

a bounded sequence of Radon measures, so that there exists a subsequence |u(tk)|2 dx Ω which

converges weak-∗ to some Radon measure. Any two such measures agree as distributions by (8).

Thus E is uniquely determined as a linear functional on C0(Ω), by density of C∞0 (Ω) in C0(Ω).
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We can reinterpret (9) as saying that dE ≥ |u(0)|2 dx Ω in the sense of measures, with equality

if and only if (8) is valid at t = 0. This fact clarifies how properties of the energy measure may be

used to examine the possible failure of energy equality. In particular, we introduce the following two

quantities, the lower local dimension d(x, E) of E at x ∈ Ω, and the concentration dimension D of E

in Ω, defined respectively by

(12) d(x, E) = lim inf
r→0

ln E(Br(x))
ln r ,

(13) D = inf{dimH(S) : S ⊂ Ω compact, and E(S) > 0},

with the convention that D = n if the collection over which the infimum is taken is empty. Roughly

speaking, lower values of d(x, E) and D correspond to more severe energy concentration and thus

more singular solutions u. The local dimension is a standard geometric measure theoretic quantity,

see [41], while the concentration dimension was first introduced in [53], together with the energy

measure itself. Originally, the energy measure was developed in conjunction with a study of energy

concentration and drain phenomena, especially for the purpose of excluding certain cases of self-

similar blowup.

1.1.3. Overview of Main Results on the First Blowup Time. Chapter 2 of this thesis, which

deals with energy equality at the first possible blowup time, breaks into several pieces. In the first

part, (Section 1), we give a systematic study of the energy measure. In particular, we discuss a

connection between the Onsager singular set, the energy measure, and the local energy equality

(8). Furthermore, we relate the concentration dimension of E to the phenomenon of concentration

of energy, and we use basic tools of measure theory to understand the defect measure θ = E −

|u(0)|2 dx Ω.

In the second part (Sections 2–3), we prove local energy bounds on u. Under the assumption that

u ∈ Lq,∗(−1, 0;Lp) (and additional assumptions if q = ∞), our main results are stated in terms of

bounds on the quantity

(14) A(r, x0) = 1
rβ

sup
−rα<t<0

∫
Br(x0)

|u(x, t)|2 dx,

where

α = q

q − 1

(
1 + n

p

)
; β = q

q − 1

(
n− 2n

p
− 2 + n

q

)
.
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The definitions of α and β are motivated by considerations of scale-invariance; see Section 2 below.

(However, we note here that p and q must be such that p ≥ 3 and β ≥ 0.) We will prove that on

any compact set K ⊂⊂ Ω, there exists R > 0 and a constant C such that for any r ∈ (0, R) and

any x0 ∈ K, we have sup{A(r, x0) : x0 ∈ K, 0 < r < R} ≤ C. If q = ∞, then the extra required

hypothesis is either that u ∈ L∞Lp (i.e. strong in time), or that u satisfies the explicit power-law

bound ‖u(t)‖L∞(Rn) ≤ C|t|−1/q. In the strong-in-time case, we will have the same conclusion as

before; in the power-law bound case, we will prove that sup{A(r, x0) : x0 ∈ Rn, r > 0} ≤ C. For

the detailed statement of these bounds, see Section 2. Finally, we note that we can obtain similar

bounds on A(r, x0) even if p < 3 in some cases, if u is a solution of the Navier-Stokes equations; see

Section 3.

The uniform bounds on A(r, x0) just mentioned have several important consequences. First and

foremost, we consider the special case (p, q) = (∞, 2) under the power-law assumption. If n = 3

and u solves the Navier-Stokes equations, then the hypothesis is precisely the Type-I condition (11).

In this case, the bound A(r, x0) ≤ C actually implies that u satisfies a certain Type-I in space

condition, which is enough to guarantee energy equality. For details of this argument, see Section 3.

For now, we record the end result as a Theorem:

Theorem 1.3. Let (u, p) be a solution to the Navier-Stokes initial value problem (1)–(3) which

satisfies (5) and is regular on the time interval [t0, t1) = [−1, 0). If u experiences Type-I in time

blowup (11) at t = 0, then u still preserves the energy law on the closed interval [−1, 0] including

the first blowup time.

The second consequence of our uniform bounds on A(r, x0) is that we obtain a uniform lower

bound on the local dimension d(x0, E) of the energy measure for points x0 ∈ Ω (or x0 ∈ Rn);

namely d(x0, E) ≥ β. This follows straightforwardly from the definitions of A(r, x0) and d(x0, E).

Actually, we can say slightly more. We make a conclusion about not just the local dimension,

but also about uniform boundedness of the upper β-density of the energy measure: Θ∗β(E , x) =

lim supr→0(2r)−βE(Br(x)), see [41]. This quantitatively expresses the fact that E behaves no worse

than the Hausdorff β-dimensional measure under a given LqLp condition on u. See Section 1.4.

By a covering argument, the bounds on A(r, x0) give the same lower bound for the concentration

dimension as for the lower local dimension: D ≥ β. For the details of this covering argument, see

Section 1.4. However, if u ∈ LqLp for some p and q such that p < ∞ and β > 0, this bound is
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demonstrably not optimal; in this case we give more refined bounds for D using different methods

described below.

For the Euler equation, the improvement on D mentioned above is the following:

(15) u ∈ LqLp(Ω)⇒ D ≥ n−
2
q

1− 2
p −

1
q

.

The latter is strictly larger than β if p < ∞ and β > 0. Consequently, we find that if the set

of singular points at time t = 0 has dimension lower than stated in (15), then the energy of the

solution is conserved; see Theorem 4.1 for the full statement. For the Navier-Stokes equations, the

improvement is even more dramatic in view of the Caffarelli-Kohn-Nirenberg Theorem, [2], which

tells us that the Hausdorff dimension d of the singularity set is at most 1 (see Section 1.3 for more

details). Consequently, we argue that a certain range of LqLp conditions implies energy equality.

Theorem 4.4 states the full range of bounds and energy law criteria in this case.

1.1.4. Additional Remarks on the First Blowup Time. In the power-law assumption case, our

bounds on A(r, x0) constitute an infinitesimal improvement over a result of [53]. In that paper,

almost the same uniform bound A(r, x0) ≤ C was proved, except that α and β are replaced by α+ δ

and β − δ in that setting. In particular, the lower bounds we obtain on the local dimension are

already known from [53], since the local dimension is insensitive to the presence of the δ’s. On the

other hand, removing the δ’s is crucial in order to prove Theorem 1.3, which is only available with

the sharper estimate. Key in obtaining the improved bound is a modified inequality for the pressure,

which depends on u in a way that is essentially local in nature.

For all cases other than the power-law assumption, the bounds on A(r, x0) that we establish are,

to the best of our knowledge, completely new. We use an iteration procedure reminiscent of the

partial regularity theory for the Navier-Stokes equations, c.f. [45], [2]. Especially in the critical case

p =∞, our choice of the scaling α plays an important role in preserving smallness from step to step.

This scaling is different, however, from the usual Navier-Stokes scaling (where α = 2), except on

the Prodi-Serrin line 3
p + 2

q = 1. Above this line (i.e. when 3
p + 2

q > 1), the dissipation is of lower

order, according to our scaling. This partially explains why (when p ≥ 3) our method gives the same

bounds for the Euler and Navier-Stokes case, rather than an improved statement for Navier-Stokes

due to the dissipation.

We make one more remark in order to bring attention to two recent works. First, in the paper [6] of

Chae and Wolf, the authors consider Type-I blowup for the Euler equations, and it is proved that
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under the assumption

sup
−1<t<0

(−t)‖∇u(t)‖L∞ <∞,

the energy measure has no atoms. Actually, their statement is more general than this, but we cite

it in simplified form because their definition of the energy measure is slightly different from ours.

Second, our Theorem 1.3 has recently been generalized by Cheskidov and Luo [8]. In their paper

they use completely different tools and prove that the energy equality survives a Type-I in time

blowup even without the assumption that the solution is regular prior to the blowup. However,

their work makes more direct use of the enstrophy than our approach, and therefore does not yield

results in the inviscid case, whereas our approach does.

1.2. Some Extensions: Space-Time Singularities and Fractional Navier-Stokes. In

Chapter 3, we examine energy equality for the classical and fractional Navier-Stokes equations for

more general singularity sets. That is, we consider singularity sets which are spread out in space-

time. A tool like the energy measure is not obviously available in this setting, but we can still

use essentially the same cutoff procedure as we use to bound the concentration dimension of the

energy measure from below. For the classical Navier-Stokes equations, our method improves the

Lions/Ladyzhenskaja L4L4 criterion if the singularity set has parabolic Hausdorff dimension strictly

less than 1.

In light of recent extensions of the Caffarelli-Kohn-Nirenberg to the fractional Navier-Stokes system,

c.f. [30, 61, 60, 11], it is also natural to see what our method tells us for those equations. We give

our results on the fractional system in Section 2.

2. Inhomogeneous Models

2.1. The Inhomogeneous Incompressible Navier-Stokes Equations. In the second part

of the thesis, the first model we consider is the density-dependent incompressible Navier-Stokes

system:

∂t(ρu) + div(ρu⊗ u)− µ∆u = −∇p+ ρf,(16)

∂tρ+ div(ρu) = 0,(17)

div u = 0.(18)
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Here u(x, t) represents the d-dimensional velocity, f(x, t) is an external force (with values in Rd),

p(x, t) is the pressure, ρ(x, t) is the density, and µ is the viscosity coefficient (which we take to be

constant). We consider (16)–(18) for x ∈ Td and t ≥ 0. It is known, see [40, 28, 58], that if u0

is divergence-free and square-integrable, ρ ≤ ρ0 ≤ ρ for some positive constants ρ and ρ, and if

f ∈ L2([0, T ];L2(Td)), then there exists a Leray-Hopf type global weak solution to the system (ρ, u)

such that ρ ≤ ρ ≤ ρ, u ∈ L2([0, T ];H1(Td)), and (ρ, u) satisfies the energy inequality

(19) E(t)−E(0) ≤ −µ
∫ t

0
‖∇u‖2L2(Td) ds+

∫ t

0

∫
Td
ρu ·f dx ds, where E(s) = 1

2

∫
Td×{s}

ρ|u|2 dx.

Fluids with variable distribution of density arise in many physical contexts. In particular, they

appear prominently in Rayleigh-Taylor mixing when a heavier layer fluid on top of lighter one

gets mixed under the force of gravity, creating an non-homogeneous turbulent layer. Although an

analogue of the classical Kolmogorov theory of turbulence for non-homogeneous fluids has not yet

been developed, it appears to be evident that under proper self-similarity assumptions on the velocity

increments δu = u(r + `) − u(r) and density δρ a limited level of regularity would be expected of

u and ρ in the limit of vanishing viscosity. Such regularity should allow for a residual amount of

energy to be dissipated in the limit by analogy with the Kolmogorov’s 0th law of turbulence, see

[26]. Mathematical study of the question of what this critical regularity might be has been a subject

of many recent publications centered around the so-called Onsager conjecture, discussed above. In

this work we address the same question in the context of the full density-dependent forced system

(16)–(18) with or without viscosity.

Let us recall that a weak solution to (16)–(18) is a triple (ρ, u, p) ∈ L∞t,x ×L2
t,x ×D′ (D′ is the space

of distributions) such that for any triple of smooth test functions (η, ψ, γ), one has∫
Td
ρu · ψ(s) dx

∣∣∣∣t
0
−
∫ t

0

∫
Td

(
ρu · ∂sψ+(ρu⊗ u) : ∇ψ + p divψ

)
dx ds

= µ

∫ t

0

∫
Td
u ·∆ψ dxds+

∫ t

0

∫
Td
ρf · ψ dx ds,

(20)

(21)
∫
Td
ρη(s) dx

∣∣∣∣t
0

=
∫ t

0

∫
Td

(ρ∂sη + (ρu · ∇)η) dxds,

(22)
∫
Td
u · ∇γ = 0.
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In (20), we write A : B for
∑d
i,j=1 aijbij , where A = (aij), B = (bij). If ρ and u are smooth, then

using ψ = u we readily obtain the energy balance relation:

(23) E(t)− E(0) = −µ
∫ t

0
‖∇u‖2L2(Td) ds+

∫ t

0

∫
Td
ρu · f dxds.

In the context of weak solutions even in the class u ∈ L2H1, such a manipulation is not feasible;

as usual, the problem is a lack of sufficient regularity to integrate by parts. This leaves room for

additional mechanisms of energy dissipation due to the work of the nonlinear term. In the case

µ = 0, due to time reversibility the energy may also increase above the legitimate change resulting

from the work of force. Our main result provides a sharp sufficient regularity condition on (ρ, u, p)

to guarantee energy balance (23) to hold. We use Besov spaces to state our criteria as motivated by

numerous previous studies on Onsager conjecture; see for example [12, 7, 23]. The definitions are

standard and recalled in Section 1.2 of Chapter 4.

Theorem 2.1. Let (ρ, u, p) be a weak solution to the density-dependent incompressible Navier-Stokes

equations on Td, d > 1. Assume (ρ, u, p) satisfies

u ∈ L2([0, T ];H1(Td)), 0 < ρ ≤ ρ ≤ ρ <∞, and f ∈ L2([0, T ]× Td),(24)

ρ ∈ La([0, T ];B
1
3
a,∞), u ∈ Lb([0, T ];B

1
3
b,c0

), p ∈ L b
2 ([0, T ];B

1
3
b
2 ,∞

), 1
a

+ 3
b

= 1, b ∈ [3,∞].(25)

Then (ρ, u, p) satisfies the energy balance relation (23) on the time interval [0, T ].

The assumption on the pressure in (25) is in natural correspondence to the condition on velocity. In

fact, it follows from the latter in the case of constant density (see Remark 1.4 of Chapter 4). Such

a conclusion, however, cannot be made in the density-dependent case when the density has limited

regularity as ours. In general the pressure is only known to exist as a distribution. We will see

in the proof that the first line of assumptions (24) pertains to the control of the viscous and force

terms in the local energy budget relation, while (25) is used to control anomalous flux due to the

transport term. So, as a byproduct of the proof we obtain an energy conservation condition for the

Euler equation.

Theorem 2.2. Suppose (ρ, u, p) is a weak solution to the density-dependent incompressible Euler

equations on Td with zero force, the same set of assumptions (25), and 0 < ρ ≤ ρ ≤ ρ < ∞. Then

the energy is conserved in time.
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In the case when b = 3, we recover the result of [7] in the homogeneous case. However, for an

inhomogeneous fluid, when b = 3 one must assume rather strong regularity of the density, namely

ρ ∈ B1/3
∞,∞ = C1/3, the usual Hölder class. It is shown in [22] that the Besov space u ∈ B1/3

3,∞ is

sharp to control the energy flux in a homogeneous fluid. It is therefore not expected to be improved

in the above results.

We also derive an extension to the density-dependent case of the classical Kármán-Howarth-Monin

relation for the energy flux due to nonlinearity in the statistically homogeneous turbulence. It

suggests that any of the conditions in the range of (25) arise naturally.

Finally, we note that an alternative version of our condition has appeared in [25]; the latter also

applies to compressible Euler system. Pertaining to the incompressible case, the result claims energy

conservation under the conditions

u ∈ Bαp,∞((0, T )× Td), ρ, ρu ∈ Bβq,∞((0, T )× Td), p ∈ Lp
∗
((0, T )× Td),

where 1 ≤ p, q ≤ ∞, 0 ≤ α, β ≤ 1, and 2
p+ 1

q = 1, 1
p+ 1

p∗ = 1, 2α+β > 1. Notice that when p = q = 3

this gives a better base integrability, and with α = β = 1/3 + ε it gives a weaker assumption on u

and ρ in space. (The result is likely to be improved to 1/3 with a vanishing c0 assumption on the

Littlewood-Paley pieces.) It also requires no regularity on the pressure. However, all of the above is

assumed in time as well, and also on the product ρu. Therefore there is no direct inclusion on either

side between the results of Theorems 2.1–2.2 and those of [25].

2.2. The Forced Euler-Alignment System. In the final chapter, we consider another model,

this time from collective dynamics. For some fixed α ∈ (0, 2), we treat the system

ut + uu′ = −Λα(ρu) + uΛαρ+ f,(26)

ρt + (ρu)′ = 0,(27)

for (x, t) ∈ T × [0,∞). Here and below, we use primes ′ to denote spatial derivatives. The torus T

may have arbitrarily large period, but we work on the 2π-periodic torus for the sake of definiteness.

Here u = u(x, t) is the macroscopic velocity, ρ = ρ(x, t) is the density (assumed nonnegative), and

f = f(x, t) is an external forcing term, assumed given. The operator −Λα is (up to a constant) the

classical fractional Laplacian, with kernel

(28) φα(z) =
∑
k∈Z

1
|z + 2πk|1+α , z ∈ [−π, π]\{0}.
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The action of −Λα on a sufficiently regular function g : T→ R is given explicitly by

−Λαg(x) =
∫
T
(g(x+ z)− g(x))φα(z) dz =

∫
R
(u(x+ z)− u(x)) dz

|z|1+α ,

with the integral taken in the principal value sense. Let us temporarily consider the situation where

f ≡ 0. In this setting, (26)–(27) becomes a special case of the system

ut + uu′ = Lφ(ρu)− uLφρ,(29)

ρt + (ρu)′ = 0,(30)

where Lφ is given by

Lφg(x) =
∫
T
φ(|x− y|)(g(y)− g(x)) dy.

The system (29)–(30) can in turn be interpreted as a macroscopic limit of the system

(31)

 ẋi = vi,

v̇i = 1
N

∑N
j=1 φ(|xi − xj |)(vj − vi),

asN →∞. The system (31) is the celebrated Cucker-Smale model [15], which describes the positions

xi and velocities vi of N agents whose binary interaction law depends on the radial influence function

φ ≥ 0. We do not attempt an overview of the existing literature related to this model; rather we cite

only a few results which are pertinent to the present context and refer the reader to, for example, [4]

and references therein for a more substantial review. See also the Introduction of [19] for a useful

and concise overview of some relevant results.

The system (31) and its long-time dynamics are associated with two especially notable phenomena.

First, the velocities align to a constant (given by momentum divided by mass—both of these are

conserved), and second, the system exhibits the so-called flocking phenomenon, whereby the agents

gather into a crowd of finite diameter. However, it seems that in order for these characteristics to

emerge, the kernel φ must involve some (non-physical) long-range interactions (c.f. [5], [15], [55],

[59]). In order to emphasize rather the local interactions, one recent strategy has been to use a

kernel φ which is singular at the origin, for example φ = φα. This is the case we treat in the present

work, at the macroscopic level of the system (26)–(27). See also [42] for another approach on the

level of the agents.

Within the last few years, the system (26)–(27) has received a fair amount of attention; the papers

[54], [55], [56], and [19] all give well-posedness results in classical regularity spaces in the case f ≡ 0.

The second and third of these also show that classical solutions of the system exhibit flocking (see
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below for more details). In [32], the well-posedness of (26)–(27) is studied in the case where f is

replaced by an attraction-repulsion interaction that depends on ρ and (the derivative of) a given

kernel K.

In dimensions higher than 1, there are very few results on the analogues of the systems (26)–(27)

or (29)–(30). He and Tadmor [27] have considered the analogue of (29)–(30) in two dimensions in

the case of smooth kernels φ. And very recently, Shvydkoy [51] gave the first results to treat the

analogue of the (forceless, singular) system (26)–(27) in arbitrary dimensions n > 1. The latter work

proves a small data result for the full range α ∈ (0, 2).

The present work differs from all those cited above in that it treats well-posedness in low-regularity

spaces, for an arbitrary external force f (which is sufficiently regular). Before giving more details

on the results contained here and past work on the equations, however, we pause to give some

definitions that will be helpful in this discussion.

2.2.1. Auxiliary Quantities and Notation. An interesting feature of the system (26)–(27) is that

certain combinations of u and ρ formally satisfy conservation laws or transport equations. For

example, define e := u′ − Λαρ. Then the velocity equation can be rewritten as

(32) ut + ue = −Λα(ρu) + f.

Differentiating this, applying Λα to the density equation, and subtracting, we obtain an evolution

equation for e:

(33) et + (ue)′ = f ′.

Next, we define q := e/ρ. Taking the time derivative of q and using the density equation, we see

that q satisfies

(34) qt + uq′ = f ′

ρ
.

But then q′ satisfies an equation like (33):

(35) q′t + (uq′)′ = (qt + uq′)′ =
(
f ′

ρ

)′
.

And finally, q′/ρ satisfies an equation like (34):

(36)
(
q′

ρ

)
t

+ u

(
q′

ρ

)′
= 1
ρ

(
f ′

ρ

)′
.
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Obviously this process can be continued, but q′/ρ is the highest order quantity of this type that we

make use of below.

We also set notation for the (conserved) mass M associated to the system:

M =
∫
T
ρdx.

2.2.2. Weak, Strong, and Regular Solutions. We now define several notions of a solution to (26)–

(27). For weaker notions of a solution, we include e as part of our definitions. To write down a

weak formulation, it is helpful to use (32) instead of the original velocity equation. We also include

a weak form of the definition of e.

Definition 2.3. Let (u0, ρ0, e0) ∈ L∞ × L∞ × L∞ satisfy the compatibility condition

(37)
∫
T
e0ϕ+ u0ϕ

′ + ρ0Λαϕdx = 0, for all ϕ ∈ C∞(T)

We say that (u, ρ, e) is a weak solution on the time interval [0, T ], satisfying the initial data

(u0, ρ0, e0), if

• u, ρ, ρ−1, and e all belong to L∞(0, T ;L∞).

• u and ρ belong to L2(0, T ;Hα/2).

• (u, ρ, e) satisfies the following weak form of (26)–(27), for all ϕ ∈ C∞(T× [0, T ]) and a.e.

t ∈ [0, T ]:

(38)
∫
T
u(t)ϕ(t) dx−

∫
T
u0ϕ(0) dx−

∫ t

0

∫
T
u∂tϕdxds =

∫ t

0

∫
T
−ueϕ− ρuΛαϕ+ fϕdx ds,

(39)
∫
T
ρ(t)ϕ(t) dx−

∫
T
ρ0ϕ(0) dx−

∫ t

0

∫
T
ρ∂tϕdxds =

∫ t

0

∫
T
ρuϕ′ dx ds.

• The compatibility condition (37) propagates in time, in the sense that

(40)
∫ T

0

∫
T
eϕ+ uϕ′ + ρΛαϕdxds = 0, for all ϕ ∈ C∞(T× [0, T ]).

We say that (u, ρ, e) is a weak solution on [0, T ) (0 < T ≤ ∞) if (u, ρ, e) is a weak solution on [0, T ′]

for all T ′ ∈ (0, T ).

Definition 2.4. Let (u0, ρ0, e0) ∈W 1,∞×W 1,∞×W 1,∞ satisfy the compatibility condition (37). We

say that (u, ρ, e) is a strong solution on the time interval [0, T ], satisfying the initial data (u0, ρ0, e0),
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if (u, ρ, e) is a weak solution such that u, ρ, and e all belong to L∞(0, T ;W 1,∞). We say that (u, ρ, e)

is a strong solution on [0, T ) (0 < T ≤ ∞) if (u, ρ, e) is a strong solution on [0, T ′] for all T ′ ∈ (0, T ).

The quantity e need not play a role in the definition of higher-regularity solutions, though it does

remain an important quantity for the analysis of such solutions.

Definition 2.5. We say that (u, ρ) is a regular solution of (26)–(27), on the time interval [0, T ],

satisfying the initial condition (u0, ρ0) ∈ H4 ×H3+α, if

• (u, ρ) satisfies (26)–(27) in the classical sense.

• (u, ρ) ∈ C([0, T ];H4 ×H3+α),

• ρ(x, t) ≥ c for some c > 0, for all (x, t) ∈ T× [0, T ], and

• u(0) = u0 and ρ(0) = ρ0 a.e. in T.

We say that (u, ρ) is a regular solution on the time interval [0, T ) (0 < T ≤ ∞) if (u, ρ) is a regular

solution on [0, T ′] for all T ′ ∈ (0, T ).

2.2.3. Alignment and Flocking. In the discussion above, we have already mentioned the phe-

nomena of alignment and flocking in the context of agent-based models. We now give the more

precise definitions associated to the macroscopic system (26)–(27).

Definition 2.6. A solution (u, ρ, e) is said to experience alignment if the diameter of the velocities

tends to zero as t→∞:

A(t) := ess sup
x,y∈T

|u(x, t)− u(y, t)| → 0, as t→∞.

We say that the solution undergoes fast alignment if the convergence A(t)→ 0 is exponentially fast.

Definition 2.7. We define the set of flocking states F as in [55]:

F := {(u, ρ) : u is constant, ρ(x, t) = ρ∞(x− tu)}.

We say that (u, ρ) converges to a flocking state (u, ρ) ∈ F in the space X × Y if

(41) ‖u(·, t)− u‖X + ‖ρ(·, t)− ρ(·, t)‖Y → 0 as t→∞.

And furthermore, we say that (u, ρ) experiences fast flocking in X × Y if the convergence rate of

(41) is exponentially fast.
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2.2.4. Previous and Present Results. The existing well-posedness theory for the system (26)–

(27) mostly concerns the special case f ≡ 0. In [54], a priori estimates implying the local existence

of regular solutions for the case 1 ≤ α < 2 and f ≡ 0 were given. With local existence in hand,

the authors refined these estimates and proved global in time existence of solutions. Further refine-

ments were given in [55], which proves that regular solutions undergo fast alignment and converge

exponentially quickly to a flocking state in H3 ×H3−ε, for any ε > 0.

The first treatment of well-posedness for the case 0 < α < 1, f ≡ 0 appeared in [19]. Later, the

results of [54], [55] were extended to the case 0 < α < 1 in [56], which obtains local and global

existence as a byproduct of the proof of flocking and fast alignment. In [32] the authors prove results

analogous to those of [19], in the presence of an additional force of the form −∂xK ∗ ρ.

The techniques used in the two groups of papers [54], [55], [56] and [19], [32] are quite different

from one another. The first group uses regularity theory for fractional parabolic equations and

relies extensively on the nonlinear maximum principle of [14]; the nonlinear maximum principle was

originally used to prove a well-posedness result for the critical SQG equation. The papers [19], [32]

use instead the modulus of continuity method, which has also been used to treat (for example) the

SQG equation in [31].

In this work, we consider the case of a general external force f which is regular enough for our

computations to go through. In principle, we could include the force considered in [32] in our

existence results, but to do so we would need to repeat several of the arguments from [32], rendering

the inclusion somewhat artificial. The problem is that the density in [32] is not obviously bounded a

priori, and in fact may grow exponentially in time. Since their force in turn depends on the density,

we would need to make quite a few adjustments to our arguments (and intermediate conclusions) in

order to include this case. To simplify our arguments, we assume that our force f and a sufficient

number of its spatial derivatives are uniformly bounded in T× [0,∞). In particular, our arguments

ultimately do not apply to the force considered in [32]. Rather, we extend the result of [54], [55],

and [56], concerning existence of regular solutions, to the forced case (for nice enough f). We

construct both weak and strong solutions as limits of regular solutions. These solutions are slightly

more regular (in the Hölder sense) than one can conclude a priori using only the definitions of weak

and strong solutions. However, the strong solutions we construct are in fact unique within their

class; therefore, the regularity properties obtained by the method of construction are enjoyed by all

strong solutions.



18

The results described thus far are all basically in the spirit of [54], [55], [56] (and, to a certain extent,

[32]). We also include, however, a discussion of the natural energy laws of the system (26)–(27)

which has no counterpart in any of the aforementioned papers. (The energy equalities are obvious for

solutions in classical regularity spaces, so there was no need for such a discussion in those contexts.)

We propose Onsager-type criteria that guarantee that these energy laws hold for weak solutions.

We emphasize that these criteria are valid for any weak solutions, not just the ones we construct

as limits of regular solutions. To treat the nonlinear term, we rely on the techniques of [38] (which

in turn relies on [7], [12]). However, existing commutator estimates seem to be insufficient to treat

the dissipation term directly, and we therefore devote a fair amount of effort to showing that the

dissipation cannot cause any problems. It turns out that our Onsager-type criteria are satisfied for

all weak solutions in the case where α ∈ [1, 2). For smaller α one can prove the analogous energy

inequalities for the constructed solutions, even if our Onsager-type criteria are not satisfied.

We state our main results in the following four theorems.

Theorem 2.8. Let (u0, ρ0) ∈ H4 × H3+α, with ρ−1
0 ∈ L∞, and assume that f ∈ L∞(0,∞;H4).

Then there exists a global-in-time regular solution of (26)–(27) associated to the initial data (u0, ρ0).

Theorem 2.9. Let (u0, ρ0, e0) ∈ L∞ × L∞ × L∞ satisfy the compatibility condition (37). Assume

additionally that ρ−1
0 ∈ L∞ and that f ∈ L∞(0,∞;W 1,∞). Then there exists a global-in-time

weak solution (u, ρ, e) associated to the initial data (u0, ρ0, e0), which satisfies the following energy

inequalities:

(42) 1
2

∫
T
ρu2(t) dx+ 1

2

∫ t

0

∫
T

∫
R
ρ(x)ρ(y) |u(x)− u(y)|2

|x− y|1+α dy dx ds ≤ 1
2

∫
T
ρ0u

2
0 dx+

∫ t

0

∫
T
ρuf dx ds

(43)
∫
T
ρ(t)2 dx+ 1

2

∫ t

0

∫
T

∫
R

(ρ(x) + ρ(y)) |ρ(x)− ρ(y)|2

|x− y|1+α dy dx ds ≤
∫
T
ρ2

0 dx−
∫ t

0

∫
T
eρ2 dx ds.

For this solution, u and ρ are Hölder continuous on compact sets of T×(0,∞) (with Hölder exponent

depending on the compact set). Moreover, in the case where f is compactly supported in time, the

velocity field u exhibits fast alignment to a constant.

Theorem 2.10. Let (u, ρ, e) be any weak solution on [0, T ], with f ∈ L2(T × [0, T ]). If α ∈ (0, 1),

we assume additionally that u ∈ L3(0, T ;B1/3
3,c0

) and ρ ∈ L3(0, T ;B1/3
3,∞). If α ∈ [1, 2), no additional

assumption is needed. Then (u, ρ, e) satisfies the following energy equalities for a.e. t ∈ [0, T ]:

(44) 1
2

∫
T
ρu2(t) dx+ 1

2

∫ t

0

∫
T

∫
R
ρ(x)ρ(y) |u(x)− u(y)|2

|x− y|1+α dy dx ds = 1
2

∫
T
ρ0u

2
0 dx+

∫ t

0

∫
T
ρuf dx ds
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(45)
∫
T
ρ(t)2 dx+ 1

2

∫ t

0

∫
T

∫
R

(ρ(x) + ρ(y)) |ρ(x)− ρ(y)|2

|x− y|1+α dy dx ds =
∫
T
ρ2

0 dx−
∫ t

0

∫
T
eρ2 dx ds.

Theorem 2.11. Let (u0, ρ0, e0) ∈W 1,∞×W 1,∞×W 1,∞ satisfy the compatibility condition (37), and

assume additionally that ρ−1
0 ∈ L∞, that f ∈ L∞(0,∞;W 2,∞), and that α 6= 1. Then there exists

a unique global-in-time strong solution (u, ρ, e) associated to the initial data (u0, ρ0, e0). For this

solution, u and ρ belong to Cloc((0,∞);C1). Moreover, in the case where f is compactly supported

in time, (u, ρ) undergoes fast flocking in W 1,∞ × L∞ to some (u, ρ) ∈ F . In fact, the convergence

occurs in C1,ε × C1,ε for some ε > 0 (though we make no statement on the rate of convergence in

this space). Finally, even in the case α = 1, any strong solution is unique if it exists.

Remark 2.12. It may seem somewhat strange that the case α = 1 should be excluded from our

existence result on strong solutions. The reason why our method does not yield existence of strong

solutions in this case will be clear later from the estimates in Section 4.1; for now we simply note

that the exclusion of the case α = 1 has some precedent. In fact, the arguments of [54], [56] prove

existence of solutions in H3×H2+α for all α ∈ (0, 2)\{1}; going up one more derivative is necessary

only for α = 1. It seems likely that our method could be applied to the case α = 1 (or other α, for

that matter) to yield solutions in W 2,∞; however, we prefer to leave this case for future research.

The outline of Chapter 5 is as follows. In Section 1, we prove a priori bounds at the L∞ level

for regular solutions. Once these are established, the rest of the proof of Theorem 2.8 follows the

same steps as in [54], [56], with trivial modifications. We keep careful track of the dependencies of

constants involved in these a priori bounds, in order to prove that they survive the limiting procedure

we use to construct weak solutions in Section 2. Some additional bounds beyond those required for

Theorem 2.8 are needed to pass to the limit; we also include these in Section 1. In Section 3, we

prove Theorem 2.10. In Section 4, we continue proving bounds on regular solutions at the W 1,∞

level, and in Section 5 we use these bounds to prove the existence of strong solutions when α 6= 1.

Section 5 also contains the proof of the rest of Theorem 2.11.



CHAPTER 2

Energy Equality at the First Blowup Time: Considerations

for the Classical Euler and Navier-Stokes Equations1

1. The Energy Measure

1.1. Energy Measure and the Local Energy Equality. Let us look at the classical Lebesgue

decomposition of the energy measure relative to dx Ω:

dE = f dx Ω + dµ, dx ⊥ dµ.

According to the discussion in the Introduction, the defect measure dθ = dE − |u(0)|2 dx Ω is

nonnegative. Therefore we have f ≥ |u(0)|2 a.e., and dµ ≥ 0 in general. In light of this, it is natural

to attribute a possible failure of the local energy equality to two phenomena:

• Concentration: dµ > 0;

• Oscillation: f > |u(0)|2.

It is easy to give one sufficient condition to rule out oscillation. We recall the definition of the

Onsager singular set Σons from the Introduction (and abuse notation throughout this chapter by

identifying Σons with its time-slice at t = 0). Let U be the largest open set in Ω for which u ∈ OR(U)

(i.e., let U be the union of all such sets). Define the set of Onsager singular points by Σons = Ω\U ;

this set is relatively closed in Ω. According to the previous lemma, the defect measure θ is supported

on Σons. So, if |Σons| = 0, then the defect measure is mutually singular to dx. (Here and below, we

use |A| to denote the Lebesgue measure of a set A ⊂ Rn.) Thus the above Lebesgue decomposition

becomes

dE = |u(0)|2 dx Ω + dθ, dx ⊥ dθ,

i.e. f = |u(0)|2 and µ = θ. The size of the set Σons is related to the phenomenon of intermittency

in fully developed turbulence and is out of scope of this present work.

1This chapter is largely excerpted from:
[37] T. M. Leslie and R. Shvydkoy. The Energy Measure for the Euler and Navier-Stokes Equations. Arch. Ration.
Mech. Anal. (to appear).
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1.2. Concentration Dimension. Generally, the smaller the set on which E is concentrated,

the more severe we view the blowup. The concentration dimension assigns a numerical value to the

concentration of the energy measure, namely the smallest Hausdorff dimension of a set of positive

E-measure:

D = inf{dimH(S) : S ⊂ Ω compact, and E(S) > 0}.

We recall that if the above family of sets is empty, then we set D = n by convention. This situation

occurs when the energy is drained from the domain Ω, a scenario not excluded at the time of blowup.

Generally, if D = n one might say that the measure has no lower dimensional concentration. This,

however, does not rule out the presence of a singular component dµ. It can still be concentrated

on a set of Lebesgue measure zero, but of dimension 3. If, however, we have D < n, then the

concentration pertains to the singular part dµ only, since obviously f dx vanishes on any subset

of Ω with dimension less than n. It is in the case D < n only where we can properly address the

concentration issue.

By analogy with the set of Onsager-singular points, which encompasses the maximal set on which

the energy equality may fail, we introduce a corresponding set of singularities which encompasses

any possible concentration of the energy measure. Again, we define a set Σ as complementary to

(46) Rn\Σ = {x ∈ Rn : ∃ open U, x ∈ U,∃p > 2,∃ε > 0 : u ∈ L∞(−ε, 0;Lp(U))}.

Clearly Rn\Σ is open, so Σ is closed.

Lemma 1.1. The energy measure dE is absolutely continuous with respect to Lebesgue measure dx

on Ω\Σ. Hence, supp dµ ⊂ Σ.

Proof. Let A ⊂ Ω\Σ be a set of Lebesgue measure zero. We need to show E(A) = 0. By

considering the sequence A ∩ {x ∈ A : dist(x, ∂Ω\Σ) > 1/k} we may assume without loss of

generality that A has a positive distance to ∂Ω\Σ. Moreover, by inner regularity we may assume

that A is compact. Thus, A is compactly embedded into Ω\Σ. For every point x ∈ A we can find

an open neighborhood Ux, εx > 0 and px > 2 as in the definition (46). By compactness there is a

finite subcover, and hence we can pick the smallest of all ε’s and p’s to find a compactly embedded

open neighborhood U of A such that u ∈ L∞(−ε, 0;Lp(U)). We further reduce U to V ⊂ U (still

containing A) with |V | < δ. Find a function σ ∈ C0(V ), 0 ≤ σ ≤ 1, and σ|A = 1. Then

E(A) ≤
∫
σ dE = lim

t→0

∫
|u(t)|2σ dx ≤ ‖u‖2L∞(−ε,0;Lp(U))|V |

p−2
p < Cδ

p−2
p .
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This shows that E(A) = 0, and the lemma follows. �

Let us note that since in general there is no relationship between the sets Σ and Σons, we cannot

claim that the local energy equality necessarily holds on the set Ω\Σ. Instead, we only rule out the

concentration phenomenon, while oscillation may still occur. To summarize, the lemma claims

dE (Ω\Σ) = f dx (Ω\Σ), f ≥ |u(0)|2.

Lemma 1.1 has two additional immediate consequences. By definition of Σ, we have Σ = ∅ if

u ∈ L∞(−1, 0;Lp(Ω)) for some p > 2, in which case µ is trivial (since suppµ ⊂ Σ by Lemma 1.1).

This rules out any concentration and allows us to conclude that D = n in this case. The second

consequence is that we may take the infimum in the definition of D over sets that are contained in

Σ, rather than over general compact subsets of Ω. We record these two corollaries for reference:

Corollary 1.2. If u ∈ L∞(−1, 0;Lp(Ω)) for some p > 2, then the energy measure suffers no

concentration. That is, Σ = ∅, and therefore D = n.

Corollary 1.3. The dimension of concentration is equal to

D = inf{dimH(S) : S ⊂ Ω ∩ Σ compact, and E(S) > 0}.

Proof. Let us denote the new dimension D′ for reference. Clearly, D′ ≥ D, since the new

infimum is taken over a smaller family. Let us address the case D = n separately. In this case

D′ = n, either by convention (if no sets S are available), or because D′ ≥ D. If D < n, we can pick

ε > 0 and a set S with dimH(S) ≤ D + ε < n such that E(S) > 0. However, |S| = 0, and hence by

Lemma 1.1 we have E(S\Σ) = 0. We can then replace S with S∩Σ without changing its E-measure.

But then dimH(S ∩ Σ) ≤ dimH(S), while E(S ∩ Σ) > 0; thus D′ ≤ dimH(S) < D + ε. This proves

the statement. �

1.3. Navier-Stokes and Suitable Weak Solutions. In the case of the NSE, the partial

regularity theory of Caffarelli, Kohn, and Nirenberg [2] allows us to restrict attention to lower-

dimensional singular sets at time t = 0, even though we have not assumed that our solution u is

suitable. Indeed, assume (u, p) satisfies (1)–(5), and assume u be a Leray-Hopf weak solution on

[−1, 0] (which is regular on [−1, 0)). Let (ũ, p̃) be a suitable weak solution on [− 1
2 ,∞), with initial

data ũ(− 1
2 ) := u(− 1

2 ) and pressure p̃ = RiRj(uiuj). Assume without loss of generality that ũ is

weakly continuous in time; this can be achieved by modifying ũ on a Lebesgue null set of times.

Then By weak-strong uniqueness, we have (u, p) = (ũ, p̃) on [− 1
2 , 0). Then, by weak continuity in
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time, we have u(0) = ũ(0). Since ũ is suitable, the Caffarelli-Kohn-Nirenberg Theorem implies that

the parabolic 1-dimensional Hausdorff measure of S̃ is 0, where S̃ is the set of singular points of ũ.

Note that by the Prodi-Serrin criterion, ũ is C∞ in the spatial variables on the complement of S̃.

This immediately implies that Σons∪Σ ⊂ S̃∩{t = 0}, and hence that the dimensions of Σons and Σ

are both at most 1. Combining the fact that dimH(Σ) ≤ 1 with Corollary 1.3, we may also conclude

that D ≥ 1. These facts will be used in Section 4.2.

1.4. Upper Densities, Local Dimension, and Concentration Dimension. As mentioned

in the Introduction, the uniform bounds A(r, x0) ≤ C, or

(47) sup
−rα<t<0

∫
Br(x0)

|u(x, t)|2 dx ≤ Crβ ,

imply slightly more than just a lower local dimension of at least β. Once we know that β is a lower

bound, we can refine our geometric measure-theoretic statement by asserting the finiteness of the

upper β-density of E . Let us recall that for 0 ≤ s <∞ and µ a Radon measure, the upper s-density

of µ at x ∈ Rn is given by

(48) Θ∗s(µ, x) = lim sup
r→0

(2r)−sµ(Br(x)).

If µ has finite s-density at x, then, roughly speaking, µ behaves near x like s-dimensional Hausdorff

measure on an s-dimensional set: µ(Br(x)) . rs.

Let us also give the covering argument alluded to in the Introduction, which relates bounds of the

form (47) to lower bounds on D. Suppose we have µ(Br(x)) ≤ C(K)rs, for all x ∈ K and all

sufficiently small r > 0. Then for any set S ⊂ Ω with dimH(S) < s and for any compact subset

K ⊂ S, we have µ(K) ≤
∑
i µ(Bri(xi)) ≤ C

∑
rsi → 0, as the cover closes on K. So, µ(K) = 0, and

hence µ(S) = 0 by inner regularity. This shows that D ≥ s.

Interestingly, the above argument does not proved a sharp bound on D from below, due to the

fact that the covering argument using additivity of E is simply not optimal. One obtains a better

estimate by examining the cover in its entirety via the local energy inequality, c.f. Section 4.

2. Local Dimension of the Energy measure

Let u be a classical solution to the Euler equation on time interval [−1, 0). Let Ω ⊂ Rn be an

open bounded domain. Suppose that u ∈ Lq,∗(−1, 0;Lp(Ω)) for some p ≥ 3 and q > 1. Out of the

classical two parameter family of scaling symmetries of the Euler equation there is one that leaves
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the LqLp-condition invariant, namely

(49) u(x, t) 7→ λα−1u(λx, λαt), where α = q

q − 1(1 + n

p
).

With the scaling (49) in mind, we state our main results for this section as follows.

Proposition 2.1. Let Ω ⊂ Rn be an open domain and K ⊂ Ω a compact subset. Suppose u is

a solution to the Euler equations satisfying u ∈ Lq,∗(−1, 0;Lp(Ω)) with 3 ≤ p < ∞, or satisfying

u ∈ Lq(−1, 0;L∞(Ω)), and in both cases

(50) 2n
p

+ 2 + n

q
≤ n.

Then there exist positive constants R = R(n, p, q, u,K) and C0 = C0(n, p, q, u,K) such that for all

r ∈ (0, R) we have

(51) sup
−rα<t<0, x0∈K

∫
Br(x0)

|u(x, t)|2 dx ≤ C0 r
β ,

where α = q
q−1

(
1 + n

p

)
and β = q

q−1

(
n− 2n

p −
2+n
q

)
.

Note that (50) is precisely equivalent to the condition β ≥ 0. Our other main result of this section

is the following:

Proposition 2.2. Suppose u is a solution to the Euler equation which is regular on [−1, 0) and

satisfies the bound ‖u(t, ·)‖L∞ ≤ c0|t|−1/q, n+2
n ≤ q. Then there exists a constant C = C(u, n, q)

such that

(52) sup
−1<t<0, x0∈Rn

∫
|x−x0|<r

|u(x, t)|2 dx ≤ Crn−
2
q−1 .

We define several scale-invariant quantities relating to the scaling (49), which will be used in the

proof of Proposition 2.1. First, denote Qr := Br × (−rα, 0), and let (p)r = 1
|Br|

∫
Br
p(x) dx denote

the average of p on Br. We define

A(r) = 1
rβ

sup
−rα<t<0

∫
Br

|u(x, t)|2 dx, (energy)

G(r) = 1
rβ+1

∫
Qr

|u(x, t)|3 dxdt, (flux)

P (r) = 1
rβ+1

∫
Qr

|p− (p)r||u|dx dt, (pressure).
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Remark 2.3. The inequality (52) can be expressed as u ∈ L∞M2,n− 2
q−1 , whereMp,λ is the Morrey

space with integrability p and rate index λ. This observation plays an important role in the proof

of Theorem 1.3; see the end of Section 3.

We devote the next three subsections to the proof of Proposition 2.1; Proposition 2.2 is proved in

Section 2.4.

2.1. Essential estimates. The proof of Proposition 2.1 is executed by induction on scales

according to the sequence of bounds A(r) → G(r) → P (r) → A(r/2). Although the details of the

iteration procedure depend on which hypothesis is used, the proofs of both cases rely on common

estimates on the quantities A,G, P . We start with an elementary L3L3 estimate away from the

boundary.

Claim 2.4. Suppose u ∈ Lq,∗(−1, 0;Lp(Ω)), where (p, q) satisfies 3 ≤ p ≤ ∞ and (50). Then

u ∈ L3L3(Ω) and p ∈ L3/2L3/2(Ωε) for any Ωε = {x ∈ Ω : dist(x, ∂Ω) > ε}.

Proof. Note that q > p/(p−2), by (50). By reducing q we can assume without loss of generality

that u ∈ LqLp, i.e. strong in q, yet q > p/(p − 2) still holds. Then finiteness of ‖u‖L3L3(Ω) follows

easily by interpolation and Hölder’s inequality:∫ T

0
‖u‖3L3(Ω) dt ≤

∫ T

0
‖u‖

2(p−3)
p−2

L2(Ω) ‖u‖
p
p−2
Lp(Ω) dt ≤ ‖u‖

2(p−3)
p−2

L∞L2(Ω)‖u‖
p
p−2
LqLp(Ω)T

1− p
q(p−2) .

Let η : Rn → R be a smooth function such that η ≡ 1 on Ωε/2 and supp η ⊂ Ω. Let Ri, Rj denote

the Riesz transforms on Rn, and let

Kij(y) = nyiyj − δij |y|2

nωn|y|n+2

denote the kernel of RiRj . (Here δij is the Kronecker delta, and ωn is the volume of the unit ball in

Rn.) Since p = RiRj(uiuj), we can use the boundedness of the Riesz transforms on L3/2 to estimate

‖p‖L3/2(Ωε) as follows:

‖p‖L3/2(Ωε) ≤ ‖RiRj(ηuiuj)‖L3/2(Ωε) + ‖RiRj((1− η)uiuj)‖L3/2(Ωε)

≤ C‖ηuiuj‖L3/2(Rn) +
∥∥∥∥∫

Rn
Kij(· − y)(1− η(y))ui(y)uj(y) dy

∥∥∥∥
L3/2(Ωε)

≤ C‖u‖2L3(Ω) + C

∥∥∥∥∥
∫

Ωc
ε/2

|u(y)|2

| · −y|n
dy

∥∥∥∥∥
L3/2(Ωε)

≤ C‖u‖2L3(Ω) + Cε−n‖u‖2L2(Ω)|Ωε|2/3.

From here it is obvious that taking the L3/2 norm in time yields a finite quantity. �
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In what follows we assume without loss of generality that 0 ∈ Ω and r < 1
2dist(0, ∂Ω). We start

with local energy equality

(53)
∫
|u(t)|2σ(t) dx =

∫
|u(s)|2σ(s) dx+

∫ t

s

∫
|u|2∂tσ dx dτ +

∫ t

s

∫
(|u|2 + 2p)u · ∇σ dxdτ,

valid for any σ ∈ C∞0 ([−1, 0]×Ω) and −1 ≤ s ≤ t < 0. Let ψ : [0,∞)→ R be a smooth nonincreasing

function such that ψ(z) = 1 for z ≤ 1, and ψ(z) = 0 for z ≥ 2. Define φr(x, t) = ψ(|x|/r)ψ(|t|/rα),

so that φr is 1 on Qr and zero outside Q2r. Putting σ = φr in the local energy equality yields

(54) sup
−rα≤t≤0

∫
Br

|u(t)|2 dx ≤
∫
|u|2|∂tφr|dxdτ +

∫
|u|3|∇φr|dxdτ + 2

∫
|p− (p)r||u||∇φr|dx dτ,

Note that

|φr| ≤ χQ2r , |∇φr| ≤ Cr−1χQ2r , |∂tφr| ≤ Cr−αχQ2r .

Evaluating the above at half the radius r → r/2 and dividing through by rβ yields 2

A(r/2) ≤ 1
rα+β

∫
Qr

|u|2 dxdτ + 1
r1+β

∫
Qr

|u|3 dxdτ + 1
r1+β

∫
Qr

|p− (p)r||u|dx dτ

≤ r2(1+β)/3

rα+β · (rn+α)1/3
(

1
r1+β

∫
Qr

|u|3 dx dτ
)2/3

+G(r) + P (r)

≤ G(r)2/3 +G(r) + P (r).

We have obtained

(55) A(r/2) ≤ C[G(r)2/3 +G(r) + P (r)].

Next, we establish a bound on the flux G(r) in terms of A(r).

G(r) = r−β−1
∫ 0

−rα

∫
Br

|u(x, t)|3 dxdt

≤ r−β−1
∫ 0

−rα

(∫
Br

|u(x, t)|2 dx
) p−3
p−2

(∫
Br

|u(x, t)|p dx
) 1
p−2

dt

≤ r−
β
p−2−1

∫ 0

−rα

(
1
rβ

∫
Br

|u(x, t)|2 dx
) p−3
p−2

(∫
Br

|u(x, t)|p dx
) 1
p−2

dt

≤ r−
β
p−2−1A(r)

p−3
p−2

∫ 0

−rα

(∫
Br

|u(x, t)|p dx
) 1
p−2

dt.

Denote f(t) = ‖u‖Lp . Under the time integral we have a quantity bounded by f
p
p−2 . We know,

however, that f ∈ Lq,∗, and that under our assumption (50) we have p
p−2 < q. This allows us to

2In all intermediate estimates we omit constants C which are independent of the radius.
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extract the same asymptotic behavior in r as if f were in the strong Lq-space. Indeed,∫ 0

−rα
f(t)

p
p−2 dt ≤ p

p− 2

∫ ∞
0

λ
2
p−2 min{|{f > λ}|, rα} dλ.

Using that |{f > λ}| ≤ C/λq and splitting the integral, we obtain a bound by rα−
αp

q(p−2) . Adding

this power of r to the already present power − β
p−2 − 1 gives a net power 0. Thus, we obtain

(56) G(r) ≤ CA(r)
p−3
p−2 .

The case p <∞ has a clear advantage of yielding a power of A smaller than 1, while the case p =∞

is critical. The latter can be handled in a similar way under the strong Lq in time condition: making

the obvious adjustments for p =∞ in the estimates on G(r) above, we obtain the alternative bound

(57) G(r) ≤ Cε(r)A(r),

where

(58) ε(r) = ‖u‖Lq(−rα,0;L∞).

The small parameter ε(r), which vanishes as r → 0, allows us to compensate for the accrued constant

C and close the circle of bounds A(r)→ G(r)→ P (r)→ A(r/2) by induction. (See below for more

details.)

In order to handle the weak case of Lq,∗L∞, we need an explicit power bound in time, and we use

a more subtle argument, c.f. Section 2.4.

Turning now to the pressure term, we recall the following local pressure inequality.

Lemma 2.5. There exists an absolute constant c such that whenever p ∈ L3/2(Bρ) and −∆p =

∂i∂j(uiuj) a.e. on Bρ, then for any r ∈ (0, ρ/2] we have

‖p− (p)r‖L3/2(Br) ≤ c‖u‖2L3(B2r) + cr
2
3n+1

∫
2r<|y|<ρ

|u|2

|y|n+1 dy

+ c
r

2
3n+1

ρ
2
3n+1

(∫
Bρ

|u|3 + |p|3/2 dy
) 2

3

.

(59)

This inequality is proven for n = 3 in in Lemma 15.12 in [44]. (Actually, the inequality is stated there

with a time integral; (59) is obtained as an intermediate step in their proof.) The n-dimensional

case is adaptable by simply replacing 3 with n in the appropriate places. We provide the details in

Appendix A. Since we are considering only times prior to the first possible blowup, the hypotheses
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are valid for the pair (u(t), p(t)) in either the Euler or Navier-Stokes case. Therefore we may use

this estimate for either set of equations. Note that subtracting off the average on Brk is crucial in

order to obtain this local estimate, since p depends nonlocally on u.

Choose R < 1
2dist(0, ∂Ω) and write rj = R/2j for all j ∈ N. Then using the local pressure inequality

with r = rk and ρ = R/2 = r1, we will obtain an estimate on P (rk). First, we split the integral in

the second term into dyadic shells rj+1 ≤ |y| < rj and estimate |y|−n−1 pointwise on each of these

shells before replacing the shells with balls. The result is

‖p− (p)rk‖L3/2(Brk ) ≤ ‖u‖2L3(Brk−1 ) + r
2
3n+1
k

k−2∑
j=1

r
−(n+1)
j ‖u‖2L2(Brj ) + 1

2( 2
3n+1)k g(t),

where g(t) is some function belonging to L3/2
t , by Claim 2.4. We turn this into a bound on P (rk)

as follows:

P (rk) ≤ 1
r1+β
k

∫ 0

−rα
k

‖u‖2L3(Brk−1 )‖u‖L3(Brk ) dt+ r
2
3n−β
k

k−2∑
j=1

r−n−1
j

∫ 0

−rα
k

‖u‖2L2(Brj )‖u‖L3(Brk ) dt

+ 1
2( 2

3n+1)k r1+β
k

∫ 0

−rα
k

g(t)‖u‖L3(Brk ) dt

≤ G(rk−1) + r
2
3n−β
k

k−2∑
j=1

r−n−1
j r

n
3
j

∫ 0

−rα
k

‖u‖L3(Brk )‖u‖2L3(Brj ) dt+ 1
2( 2

3n+1)k r
2(1+β)/3
k

G(rk)1/3

≤ G(rk−1) + r
2
3n−β
k

k−2∑
j=1

r−n−1
j r

n
3
j r

β+1
j G(rk)1/3G(rj)2/3 + 1

2( 2
3n+ 1

3−
2
3β)k R2(1+β)/3

G(rk)1/3

Using the fact that the powers of rj in the sum add up to β, and the fact that 2
3n+ 1

3 −
2
3β > 0, we

have obtained the following:

(60) P (rk) ≤ C max{G(r1), . . . , G(rk)}+ CR−2(1+β)/3G(rk)1/3,

with C independent of k and R in the range R < 1
2dist(0, ∂Ω).

2.2. Case u ∈ Lq,∗Lp, 3 ≤ p <∞. Let us fix an arbitrary initial radius R < 1
2dist(0, ∂Ω), and

set a constant A > 1 to be determined later but so that

A(R) < A.

This sets the initial step in the induction on k = 0, 1, . . .. Suppose we have

A(rj) < A,
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for all j ≤ k. By (56) we have

G(rj) ≤ C1A
1−δ, δ = 1

p− 2 ,

for all j ≤ k. In view of (60),

P (rk) ≤ C2A
1−δ,

where C2 depends on the (fixed) constant R. (Note that we used that A > 1 to bound of A(1−δ)/3

by A1−δ.) Returning to (55), we obtain

A(rk+1) ≤ C3A
1−δ,

where still C3 depends only on R. By setting A > max{1, C1/δ
3 } initially, we have achieved the

bound

A(rk+1) < A,

which finishes the induction.

2.3. Case u ∈ LqL∞. Let us fix R < 1
2dist(0, ∂Ω), R < 1, so that ε(R) < 1. (Recall that ε(r) is

defined by (58).) Let E denote the total energy ‖u‖2L2 , which is independent of time on the interval

[−1, 0). We aim to show that the bound

(61) A(r) < R−βE +R−1−β := A

propagates through scales for initial R sufficiently small. Clearly it holds for r0 = R. Suppose we

have

A(rj) < A

for all j ≤ k. Denote ε = ε(R) for convenience. Since ε(r) ≤ ε for r ≤ R, the bound (57) gives us

G(rj) < C1εA

for all j ≤ k as well. The pressure bound (60) yields

P (rk) < C2εA+ C3ε
1/3A1/3R−2(1+β)/3.

However, R−2(1+β)/3 < A2/3, by (61). So,

P (rk) < C4ε
1/3A.
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Returning to (55) again, we find that

A(rk+1) < C5(ε2/3A2/3 + εA+ ε1/3A) ≤ C6ε
1/3A,

where C6 is independent of R. Picking R so that C6ε
1/3(R) < 1 finishes the induction.

2.4. Case ‖u(t)‖L∞ ≤ c0|t|−1/q. Assume f(t) := ‖u(t, ·)‖L∞ ≤ c0
|t|1/q , where n+2

n ≤ q. In this

case we disregard the subdomain Ω and work on the full space only. Let ψ : [0,∞)→ R be a standard

bump function—equal to 1 on {|x| ≤ 1/2} and supported inside {|x| < 1}. Denote φr(x) = ψ(|x|/r)

and define

E(t, r) =
∫
|u(x, t)|2φr(x) dx, Ek(t, r) = E(t, 2kr)

2kn .

Note that by definition of E(t, r) we have

‖u(t)‖2L2(Br) ≤ E(t, 2r) ≤ ‖u(t)‖2L2(B2r).

We have the following Lemma:

Lemma 2.6. There exists a constant C0 = C0(u, n, q) such that for any s < t < 0 and r > 0, we

have

(62) E(t, r) ≤ rnf(s)2 + C0

r

∫ t

s

f(τ)
∑
j∈N

2−jEj(τ, r) dτ.

Before giving the proof, let us make a few remarks. Fix r > 0 and then set

(63) t0 = −rq
′
, C1 = C0c0q

′,

where q′ is the Hölder conjugate of q. Iteration of the Lemma will eventually allow us to prove the

bound

(64) E(t, r) ≤ rnf(t0)2eC1 + CM1
M ! ‖u‖

2
L∞L2 ,

valid for t ∈ (t0, 0) and all M ∈ N. The constant C1 is chosen so that

(65) C0

r

∫ 0

t0

f(τ) dτ ≤ C0c0q
′t

1/q′
0 r−1 = C1.

Taking M →∞ in (64), we obtain

(66) E(t, r) ≤ Crnf(t0)2 ≤ Crn−
2
q−1 , t ∈ (−rq

′
, 0),
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where the second inequality follows from the assumed bound on f and the definition of t0. This is

almost the desired bound in Proposition 2.2, except that the time interval does not extend to −1

in the negative direction. However, the bound E(t, r) ≤ Crn−
2
q−1 follows automatically from the

assumption ‖u(t)‖L∞ ≤ C|t|−1/q when t ∈ [−1, rq′ ]. Therefore in order to prove Proposition 2.2, it

suffices to prove the Lemma (and the fact that the bound (64) follows).

Proof of Lemma 2.6. Without loss of generality we assume x0 = 0. We use our time-

independent test function φr (53), dropping the subscript for convenience:

(67)
∫
|u(x, t)|2φ(x) dx =

∫
|u(x, s)|2φ(x) dx+

∫ t

s

∫
(|u|2 + 2p)u · ∇φ dxdτ.

Applying the obvious pointwise bounds, we get

E(t, r) ≤ E(s, r) + C

r

∫ t

s

∫
Br

|u|3 + |p− (p)r||u|dxdτ

≤ E(s, r) + C

r

∫ t

s

‖u‖3L3(Br) + ‖p− (p)r‖L3/2(Br)‖u‖L3(Br) dτ.

Take ρ→∞ in (59); the last term tends to zero because u ∈ L3(−1, 0;L3(Rn)).

(68) ‖p− (p)r‖L3/2(Br) ≤ c‖u‖2L3(B2r) + cr
2n
3 +1

∫
2r<|y|<∞

|u|2

|y|n+1 dy.

As before, we split the remaining integral into dyadic shells, estimate |y|−n−1 on each shell, and

then replace the shells with balls. We obtain

r
2n
3 +1

∫
2r<|y|<∞

|u|2

|y|n+1 dy ≤ r 2n
3 +1

∞∑
j=1

(2jr)−n−1
∫
B2j+1r

|u|2 dy ≤ Cr−n3
∞∑
j=3

2−jEj(t, r).

So

‖p− (p)r‖L3/2(Br)‖u‖L3(Br) ≤ c‖u‖3L3(B2r) + Cr−
n
3 ‖u‖L3(Br)

∞∑
j=3

2−jEj(t, r).

Next,

‖u(τ)‖L3(Br) ≤ Cf(τ) 1
3E(τ, 2r) 1

3 ≤ Cf(τ)r n3 .

Therefore∫ t

s

‖p− (p)r‖L3/2(Br)‖u‖L3(Br) dτ ≤ C
∫ t

s

f(τ)E(τ, 4r) + f(τ)
∞∑
j=3

2−jEj(τ, r) dτ

≤ C
∫ t

s

f(τ)
∞∑
j=2

2−jEj(τ, r) dτ,
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and consequently,

E(t, r) ≤ E(s, r) + C

r

∫ t

s

‖u‖3L3(Br) + ‖p− (p)r‖L3/2(Br)‖u‖L3(Br) dτ

≤ rnf(s)2 + C0

r

∫ t

s

f(τ)
∞∑
j=1

2−jEj(τ, r) dτ,

where C0 is defined so that the last inequality holds. �

The final step in the proof of Proposition 2.2 consists of showing that iteration of (62) gives (64).

Proof of (64). Notice that the quantities Ek(t, r) possess the following scaling property:

Ej(t, 2kr)
2kn = Ej+k(t, r), j, k ∈ N ∪ {0}.

We can therefore rescale the bound (62) as follows:

Ek(t, r) = E(t, 2kr)
2kn ≤ rnf(s)2 + C0

r

∫ t

s

f(τ)
∞∑
j=1

2−j−k · Ej(τ, 2
kr))

2kn dτ

≤ rnf(s)2 + C0

r

∫ t

s

f(τ)
∞∑

j=k+1
2−jEj(τ, r) dτ.

We don’t actually use the fact that this last sum starts from j = k + 1; for our purposes it suffices

to use a rougher bound, where we trivially replace the sum above with a sum over all of N:

(69) Ek(t, r) ≤ rnf(s)2 + C0

r

∫ t

s

f(τ)
∞∑
j∈N

2−jEj(τ, r) dτ.

Next, we iterate to obtain (64). By (69), we immediately have

(70) E(t, r) = E0(t, r) ≤ rnf(t0)2 + C0

r

∫ t

t0

f(t1)
∑
k1∈N

2−k1Ek1(t1, r) dt1,

(71) Ek1(t1, r) ≤ rnf(t0)2 + C0

r

∫ t1

t0

f(t2)
∑
k2∈N

2−k2Ek2(t2, r) dt2.

Substituting (71) into (70), we get

E(t, r) ≤ rnf(t0)2
[
1 + C0

r

∫ t

t0

f(t1) dt1
]

+ C0

r

∫ t

t0

f(t1)
∑
k1∈N

2−k1
C0

r

∫ t1

t0

f(t2)
∑
k2∈N

2−k2Ek2(t2, r) dt2 dt1

≤ rnf(t0)2 [1 + C1] + C2
0
r2

∫ t

t0

f(t1)
∫ t1

t0

f(t2)
∑

k1,k2∈N
2−(k1+k2)Ek2(t2, r) dt2 dt1,
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where we have applied (65) in order to reach the last inequality. This completes our second iteration.

We claim that at the Mth step, we will have the bound

(72) E(t, r)≤ rnf(t0)2
M−1∑
j=0

Cj1
j! + CM0

rM

∫ t

t0

f(t1) · · ·
∫ tM−1

t0

f(tM )
∑

k1,...,kM∈N

EkM (tM , r)
2k1+···+kM

dtM · · · dt1.

We have shown this is true for M = 1, 2. Now we induct, using this bound to derive step M + 1,

which we will see has the same form. Indeed, Lemma 2.6 gives us

(73) EkM (tM , r) ≤ rnf(t0)2 + C0

r

∫ tM

t0

f(tM+1)
∑

kM+1∈N
2−kM+1EkM+1(tM+1, r) dtM+1;

substituting this into our inductive hypothesis, we get

E(t, r) ≤ rnf(t0)2

M−1∑
j=0

Cj1
j! + CM0

rM

∫ t

t0

f(t1) · · ·
∫ tM−1

t0

f(tM ) dtM · · · dt1


+ CM+1

0
rM+1

∫ t

t0

f(t1) · · ·
∫ tM

t0

f(tM+1)
∑

k1,...,kM+1∈N

EkM+1(tM+1, r)
2k1+···+kM+1

dtM+1 · · · dt1.

Since

(74) CM0
rM

∫ t

t0

f(t1) · · ·
∫ tM−1

t0

f(tM ) dtM · · · dt1 = 1
M !

[
C0

r

∫ t

t0

f(τ) dτ
]M
≤ CM1

M ! ,

we have now proved (72). Having established (72), we can prove (64) quickly. First, we clearly have

M−1∑
j=0

Cj1
j! < eC1 .

To deal with the other term in (72), we estimate each EkM (tM , r) trivially by ‖u‖L∞L2 (so the entire

sum can be bounded by ‖u‖L∞L2). Then we use (74) to take care of the nested integrals.

Altogether we have

E(t, r) ≤ rnf(t0)2eC1 + CM1
M ! ‖u‖

2
L∞L2 ,

which is (64). �

Corollary 2.7. Under the assumptions of either of Propositions 2.1 or 2.2, we have the bound

d(x, E) ≥ β for all x ∈ Ω. Furthermore, the β-density of E is uniformly bounded on Ω.
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3. Applications to the Navier-Stokes Equations

If we consider the 3-dimensional Navier-Stokes equations instead of the n-dimensional Euler equa-

tions, we can reach conclusions in the same spirit as those above. We describe the necessary modi-

fications below. Adding

(75) − 2ν
∫
|∇u|2σ dx dτ + ν

∫
|u|2∆σ dxdτ

to the right side of (53), we obtain the energy equality for the Navier-Stokes equations. However,

the first of these terms can be dropped without affecting the inequality. The way we deal with the

second term depends on the method and test function used for the Euler case; these depend in turn

on the assumptions made on u.

We consider together the cases u ∈ Lq,∗Lp or u ∈ LqL∞ (subject of course to the restrictions on p

and q described above). We take σ = φr as constructed above when considering these cases. The

second term of (75) can clearly be bounded above by

C

r2

∫
Q2r

|u|2 dx dτ.

We claim that we can ignore this term as well. Indeed, β > 2 whenever

3
p

+ 2
q
> 1.

The negation of this inequality is precisely the Prodi-Serrin condition. Therefore we may assume

without loss of generality that β > 2, so that

C

r2

∫
Q2r

|u|2 dxdτ ≤ C

rβ

∫
Q2r

|u|2 dx dτ.

The right side of this inequality is the same quantity we use to bound the term
∫
|u|2|∂tφr|dxdτ

that appears in (54); therefore it is clear that the addition of the viscous term can cause no trouble.

That is, (51) holds whenever the Prodi-Serrin condition fails, while it is obsolete whenever the

Prodi-Serrin condition holds.

Remark 3.1. We mention one other extension of Proposition 2.1 before moving on, which is ap-

plicable only to the Navier-Stokes system. We can obtain a condition similar to (51) under the

assumption u ∈ LqLp for some pairs (p, q) with p < 3, simply by interpolation with the enstrophy
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space L2H1. In particular, this is possible when

9
p

+ 5
q
≤ 4, 2 < p < 3.

If (p, q) satisfies this condition and u ∈ LqLp, then u also belongs to LaL3, where

a =
6
p − 1

3
p + 1

q − 1

We can apply Proposition 2.1 to u ∈ LaL3, yielding

sup
−rα̃<t<0, x0∈K

∫
Br(x0)

|u(x, t)|2 dx ≤ C0 r
β̃ ,

where

α̃ =
2( 6
p − 1)

3
p −

1
q

, β̃ =
4− 9

p −
5
q

3
p −

1
q

.

When ‖u(t)‖L∞ ≤ c0|t|−1/q (and we use the corresponding time-independent test function σ = φr =

φ from Section 2.4), we may estimate the second term of (75) as follows:

∫ t

t0

∫
|u|2∆φ dx dτ ≤

[∫ t

t0

∫
Br

|u|3 dxdτ
] 2

3

· C
r2 · [|t0|r

3] 1
3

≤
(
|t0|
r

) 1
3
[
C

r

∫ t

t0

f(τ)E(τ, 2r) dτ
] 2

3

≤ C|t0|r−1 + C

r

∫ t

t0

f(τ)E(τ, 2r) dτ.

The second term can be absorbed into a term already existing in our energy estimates. We claim

that running the first term through the iteration scheme yields a quantity which can be bounded

above by C|t0|r−1eC1 , which is of the same order as rq′−1. Note that this is at least the required

order r3− 2q′
q whenever q ≤ 2, therefore Proposition 2.2 holds for the Navier-Stokes equations when

n = 3 and 5/3 ≤ q ≤ 2. On the other hand, the conclusion is trivial whenever q > 2, by the

Prodi-Serrin criterion.

We now sketch the argument needed to substantiate our claim regarding the term C|t0|r−1. By

making straightforward adjustments to the proof of Lemma 2.6, we can write

(76) E(t, r) ≤ r3f(s)2 + C|s|
r

+ C0

r

∫ t

s

f(τ)
∑
j∈N

2−jEj(τ, r) dτ, −1 ≤ s ≤ t < 0,
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together with its rescaled version

(77) Ek(t, r) ≤ r3f(s)2 + C|s|
2k(n+1)r

+ C0

r

∫ t

s

f(τ)
∑
j∈N

2−jEj(τ, r) dτ, −1 ≤ s ≤ t < 0,

the analog of (69). Setting s = t0, we have the analogs of (70) and (71):

(78) E(t, r) = E0(t, r) ≤ r3f(t0)2 + C|t0|
r

+ C0

r

∫ t

t0

f(t1)
∑
k1∈N

2−k1Ek1(t1, r) dt1,

(79) Ek1(t1, r) ≤ r3f(t0)2 + C|t0|
r

+ C0

r

∫ t1

t0

f(t2)
∑
k2∈N

2−k2Ek2(t2, r) dt2.

So our second iterative step becomes

E(t, r) ≤
[
r3f(t0)2 + C|t0|

r

]
[1 + C1] + C2

0
r2

∫ t

t0

f(t1)
∫ t1

t0

f(t2)
∑

k1,k2∈N
2−(k1+k2)Ek2(t2, r) dt2 dt1,

whereas our Mth step yields

E(t, r) ≤
[
r3f(t0)2 + C|t0|

r

]M−1∑
j=0

Cj1
j!

+ CM0
rM

∫ t

t0

f(t1) · · ·
∫ tM−1

t0

f(tM )
∑

k1,...,kM∈N

EkM (tM , r)
2k1+···+kM

dtM · · · dt1.

Bounding the two sums and the nested integrals as before, then taking M → ∞, we obtain the

bound

E(t, r) ≤ [r3f(t0)2 + C|t0|r−1]eC1 ≤ Cr3− 2
q−1 ,

justifying our claim. We pause to record this as a Proposition:

Proposition 3.2. Propositions 2.1 and 2.2 remain valid for solutions of 3D Navier-Stokes equation,

where 0 is the first time of blowup.

We are now in a position to prove Theorem 1.3.

Proof. Recall (c.f. Remark 2.3) that Proposition 2.2 can be reframed as the implication

‖u(t)‖L∞(Rn) ≤
c0
|t|1/q

=⇒ u ∈ L∞M2,n− 2
q−1 .

In the Type-I case for the 3-dimensional Navier-Stokes equations, we have q = 2, n = 3, so that the

above becomes

‖u(t)‖L∞(R3) ≤
c0√
t

=⇒ u ∈ L∞M2,1.
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Before proceeding with the proof, we note that this is the implication “Type-I in time implies Type-I

in space” alluded to in the Introduction. By “Type-I in space,” we mean we mean a blowup which

occurs under control of a scaling invariant norm in space—in this case the Morrey space M2,1

with integrability 2 and rate 1. So it remains to show that the Type-I in space condition implies

energy equality. We argue as follows: Since M1,2 is invariant under shifts f 7→ f(· − x0) and the

rescaling f(x) 7→ λf(λx), we have by Cannone’s Theorem [3] that u ∈ L∞B−1
∞,∞. Consequently,

interpolation with the enstrophy space L2H1 = L2B1
2,2 puts the solution into the Onsager-critical

class L3B
1/3
3,3 ⊂ OR, from which we conclude energy equality. �

4. Concentration Dimension of the Energy Measure

As explained in Section 1, the results above directly imply a lower bound on D. For example, if u

belongs to LqLp and (p, q) satisfies (50), p ≥ 3, and q <∞, then we have

(80) D ≥ β = q

q − 1

(
n− 2n

p
− 2 + n

q

)
.

It turns out that for pairs (p, q) such that p < ∞ and β > 0, one can obtain a sharper bound by

exploiting the local energy inequality directly for the entire cover of a concentration set.

In what follows, we make use of the following alternate form of the local energy equality in terms of

the energy measure. For any σ ∈ C∞0 (Ω× (−1, 0]), we have

(81)
∫
σ(0) dE =

∫ 0

−1

∫
Ω
|u|2∂tσ + (|u|2 + 2p)u · ∇σ − 2ν(|∇u|2σ − u⊗∇σ : ∇u) dx dτ,

where as usual we understand that ν = 0 for the Euler Equations. Notice that we have killed off

the initial data by requiring support in Ω× (−1, 0] rather than Ω× [−1, 0]. By approximation, (81)

holds for all σ ∈ Lip0((−1, 0]× Ω).

4.1. Euler Equations.

Theorem 4.1. Define a function f(p, q) by

f(p, q) = n−
2
q

1− 2
p −

1
q
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where we interpret 1
∞ = 0. Suppose u ∈ LqLp(Ω) for some (p, q) satisfying (50), and suppose d ≥ 0

satisfies

d ≤ f(p, q), if q ≤ p ≤ ∞, q <∞

d < f(p, q), if 3 ≤ p < q <∞, or if 2 < p ≤ ∞ = q.

(82)

Then E(S) = 0 for every S ⊂ Ω with finite d-dimensional Hausdorff measure. In particular, if

dimH(Σons) satisfies (82), then u satisfies the local energy equality on [−1, 0]. Regardless of the size

of Σons, the right side of (82) gives a lower bound on the concentration dimension D. Similarly, if

dimH(Σ) satisfies (82), then D = n.

L∞L3 L∞L2

L2L∞

L5/3L∞ f(p, q) = 0

f(p, q) = 1
2

f(p, q) = 1

f(p, q) = 5
2

f(p, q) =
2

f(p, q) =
3

2

f(p, q) = 3

L
11
3 L

11
3

L5L3

x = 1
p

y = 1
q

Figure 1. Level curves of the lower bound on the concentration dimension for
the Euler equations, n = 3.

Remark 4.2. Notice that

n−
2
q

1− 2
p −

1
q

=
n− 2n

p −
2+n
q

1− 2
p −

1
q

≥
n− 2n

p −
2+n
q

1− 1
q

= β,

with equality precisely when p = ∞. So the lower bound on D given by the present theorem is

indeed better than (80) except when p =∞, when it is the same.

Proof. The statement regarding the concentration set Σ is a direct consequence of Corollary

1.3. Next, recall from Section 1 that the two conditions |Σons| = 0 and E(Σons) = 0 together imply

energy equality. Of course, if dimH(Σons) < n (which occurs whenever dimH(Σons) satisfies (82)),

then |Σons| = 0 trivially and we need only prove E(Σons) = 0 in order to conclude energy equality.
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Therefore the conclusion holds trivially for u ∈ L∞Lp(Ω), p > 2, since we have already proven

D = n in this case (see Corollary 1.2).

It remains to show that E(S) = 0 whenever dimH(S) satisfies (82). Let us first reduce to the case

p, q ∈ [3,∞). This can fail for three reasons: q < 3, p =∞, or q =∞. We have already dealt with

the last case; the other two are covered by the following interpolation argument. Suppose q < p ≤ ∞

and put r = 2 + q − 2q
p . Then (r, r) satisfies (50), r ∈ [3,∞), and u ∈ LrLr, as it lies along the

line segment joining LqLp with L∞L2. (That is, ( 1
r ,

1
r ) lies between ( 1

p ,
1
q ) and ( 1

2 , 0) on the line

2px+ q(p− 2)y = p.) Furthermore, it is easy to check that

n− 2
r − 1− 2r

r

= n− 2
q − 1− 2q

p

,

and therefore that d ≤ n − 2
r−1− 2r

r

, so that E(S) = 0, as desired. For the remainder of the proof,

we assume that p, q ∈ [3,∞).

Choose δ ∈ (0, ε/3), then choose xi ∈ Ωε, ri ∈ (0, δ) for all i, such that S ⊂
⋃
iBri(xi) and∑∞

i=1 r
d
i . Hd(S) + 1. Denote Ii = (−2rαi , 0) (where α is determined below). Let ψ(s) be the usual

(symmetric, radially decreasing) cut-off function on the line with ψ(s) = 1 on |s| < 1.1 and ψ(s)

vanishing on |s| > 1.9. Let φi(x, t) = ψ(|x− xi|/ri)ψ(t/rαi ). Define

φN = sup
1≤i≤N

φi, φ = sup
i∈N

φi.

Then each φN is continuous with support in Ωε× (0, T ], 0 ≤ φN ≤ 1, and φN increases pointwise to

φ, which is identically 1 on S × {0}. So

E(S) ≤
∫
φ(0) dE = lim

N→∞

∫
φN (0) dE ,

by monotone convergence. Furthermore, each φN is differentiable a.e., with

(83) |∂φN (x, t)| ≤ sup
1≤i≤N

|∂φi(x, t)|, a.e., see [21, Theorem 4.13].

(In fact, we even have |∂φ(x, t)| ≤ supi∈N |∂φi(x, t)|, though we don’t use it.) Therefore, an approx-

imation argument shows that we can put φN in the local energy equality:

lim
t→0

∫
Ω
|u(t)|2φN (t) dx =

∫ 0

−1

∫
Ω
|u|2∂tφN + (|u(t)|2 + 2p)u · ∇φN dxdτ.
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Putting all this together, we obtain

(84) E(S) ≤ lim
N→∞

∫ 0

−1

∫
Ω
|u|2∂tφN + (|u|2 + 2p)u · ∇φN dxdτ.

For d small enough, we will obtain uniform bounds on

CN =
∫ 0

−1

∫
Ω
|u|2∂tφN dx dτ, DN + PN =

∫ 0

−1

∫
Ω

(|u|2 + 2p)u · ∇φN dxdτ.

Using Hölder’s inequality and (83), we have

CN ≤ C‖u‖2Lq(I,Lp(Ω))

∫ 0

−1

(
N∑
i=1

r
− αp
p−2 +n

i χIi(t)
) p−2

p
q
q−2

dt


q−2
q

DN + PN ≤ C‖u‖3Lq(I,Lp(Ω))

∫ 0

−1

(
N∑
i=1

r
− p
p−3 +n

i χIi(t)
) p−3

p
q
q−3

dt


q−3
q

Note that to bound PN , we have also used boundedness of the Riesz transforms on Lp/2 (recall

that p ∈ [3,∞)). That is, we use the bound ‖p‖Lp/2 ≤ C‖u‖2Lp before exhausting the remaining

integrability on ∇φN . The following lemma allows us to bound the quantities CN , DN + PN for

small enough d:

Lemma 4.3 ([39]). Let d, δ, ri, Ii be as above, and let σ, s be positive numbers. Suppose the sum

H =
∑
i r
d
i is finite. Then the inequality

(85)
∫ (∑

i

r−σi χIi(t)
)s

dt . Hs

holds whenever s ≥ 1 and d ≤ α
s − σ, or s < 1 and d < α

s − σ. When d = 0, the above holds

(trivially) under the non-strict assumption 0 ≤ α
s − σ.

Proof. Case 1. s ≥ 1. By Hölder’s inequality, we have(∑
i

r−σi χIi(t)
)s

=
(∑

i

rdi r
−σ−d
i χIi(t)

)s
≤ Hs−1

∑
i

r
d−(σ+d)s
i χIi(t).(86)

Integrating in time, we obtain

∫ (∑
i

r−σi χIi(t)
)s

dt . Hs−1
∑
i

r
d−(σ+d)s+α
i .

The sum is at most H whenever the condition stated in the lemma is satisfied.
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Case 2. s < 1. For each j ∈ Z, define Rj := {ri : ri ∈ [2−j , 2−j+1)}, and letNj denote the cardinality

of Rj . Clearly, Nj . 2jdH and Nj = 0 for j ≤ 0. Also denote Jj = [−2(−j+1)α, 2(−j+1)α]. So if

ri ∈ Rj , then r−σi χIi(t) ≤ 2jσχJj (t). Therefore,

∫ (∑
i

r−σi χIi(t)
)s

dt ≤
∫ ∑

j

Nj2jσχJj (t)

s

dt . Hs

∫ ∑
j

2j(σ+d)χJj (t)

s

dt

≤ Hs

∫ ∞∑
j=1

2j(σ+d)sχJj (t) dt . Hs
∞∑
j=1

2j((σ+d)s−α).

The final sum converges to an adimensional number by the assumption of the lemma. �

We translate the hypotheses and conclusion of the Lemma into statements involving p, q, α, and d;

then we optimize in α. When dealing with CN , we set σ = αp
p−2 − n and s = p−2

p
q
q−2 . Denoting

HN =
∑N
i=1 r

d
i , we conclude that

(87) CN ≤ ‖u‖2Lq(I,Lp(Ω))H
1− 2

p

N whenever


d ≤ n−

2
qα

1− 2
p

, 2 ≤ q ≤ p ≤ ∞,

d < n−
2
qα

1− 2
p

, 2 ≤ p < q ≤ ∞.

Dealing with DN + PN is essentially the same: we set σ = p
p−3 − n and s = p−3

p
q
q−3 and apply the

lemma to conclude that

(88) DN + PN ≤ ‖u‖3Lq(I,Lp(Ω))H
1− 3

p

N whenever


d ≤ n− 1−α(1− 3

q )
1− 3

p

, 3 ≤ q ≤ p <∞,

d < n− 1−α(1− 3
q )

1− 3
p

, 3 ≤ p < q ≤ ∞.

In light of the bound HN ≤ Hd(S) + 1, which is uniform in both N and δ, we have

E(S) ≤ ‖u‖2Lq(I,Lp(Ω))(Hd(S) + 1)1− 2
p + ‖u‖3Lq(I,Lp(Ω))(Hd(S) + 1)1− 3

p ,

by (84), whenever the conditions on d from (87), (88) are satisfied for some α. (Note that, while

the estimates on CN and DN + PN are valid for the ranges of p and q stated above, we continue

to work under the assumption that p and q both lie in the range p, q ∈ [3,∞).) Since |I| → 0 as

δ → 0, we have ‖u‖Lq(I,Lp(Ω)) → 0 as well (as q < ∞), and therefore E(S) = 0. The choice of α

which maximizes

min
{
n−

1− α(1− 3
q )

1− 3
p

, n−
2
qα

1− 2
p

}
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(and therefore gives the optimal range for d) is given by

(89) α =
1− 2

p

1− 2
p −

1
q

.

Substituting this value of α into the conditions on d derived above, we conclude that E(S) = 0

whenever

d ≤ n−
2
q

1− 2
p −

1
q

, 3 ≤ q ≤ p <∞

d < n−
2
q

1− 2
p −

1
q

, 3 ≤ p < q <∞.

(90)

This completes the proof. �

4.2. Navier-Stokes Equations. In the case of the Navier-Stokes equations, the optimal con-

dition on d analogous to (82) breaks into many different parts, depending on p and q. To streamline

the statement of the theorem, let us introduce notation for the various regions involved. Each region

defined below consists of pairs (p, q) ⊂ [1,∞]2.

I :=
{
p ≥ q, 1

p
+ 1
q
>

1
2 ,

6
p

+ 5
q
≤ 3
}
, II :=

{
3 ≤ p < q,

1
p

+ 1
q
≥ 1

2 ,
6
p

+ 5
q
≤ 3
}
,

III :=
{

(p, q) : 2 < p < 3,
(

1
2 −

1
p

)(
2− 3

p

)
≤ 1
q
≤
(

1
2 −

1
p

)(
2− 3

p

)(
7
6 −

1
p

)−1}
,

IV :=
{

1
p

+ 1
q
≤ 1

2 ,
3
p

+ 1
q
≤ 1
}
, V :=

{
1
p

+ 1
q
<

1
2 ,

1
q
<

(
1
2 −

1
p

)(
2− 3

p

)}∖
IV.

(91)

Let us introduce also a piecewise function defined on these regions, which will serve as a sort of

threshold dimension in what follows:

f(p, q) = 3−
2
q

1− 2
p −

1
q

, in I ∪ II, f(p, q) = 3−
2
q ( 6
p − 1)

(2− 3
p −

3
q )(1− 2

p )
, in III,

f(p, q) = 3, in IV ∪V.

Theorem 4.4. Suppose u ∈ LqLp(Ω) for some (p, q) satisfying (50), and suppose d ≥ 0 satisfies

d ≤ f(p, q), (p, q) ∈ I

d < f(p, q), (p, q) ∈ II ∪ III ∪ IV ∪V.
(92)

Then E(S) = 0 for every S ⊂ Ω with finite d-dimensional Hausdorff measure. In particular, if

dimH(Σons) satisfies (92), then u satisfies the local energy equality. Regardless of the size of Σons,
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L∞L3 L∞L2

L2L∞

L5/3L∞

I

II

III

IV

V

L2L6

x = 1
p

y = 1
q

Figure 2. The regions of (p, q)-space involved in the statement of Theorem 4.4.

Figure 3. A 3D plot of the lower bound on the concentration dimension for the
Navier-Stokes equations.

the right side of (92) gives a lower bound on the concentration dimension D. Similarly, if dimH(Σ)

satisfies (92), then D = 3.

Remark 4.5. For (p, q) ∈ III, the formula defining f(p, q) can be written as a deviation from the

formula in the neighboring region II:

3−
2
q ( 6
p − 1)

(2− 3
p −

3
q )(1− 2

p )
= 3−

2
q

1− 2
p −

1
q

−
( 3
p − 1)(3− 6

p −
4
q )

(1− 2
p )(1− 2

p −
1
q )(2− 3

p −
3
q )
.

Remark 4.6. In Figure 2, to highlight values of f(p, q) along jump discontinuities the boundary

segments are dotted according to which of two adjoining regions contains the segment in question.
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For example, Region IV contains the segment joining L2L∞ with L4L4 along which f = 3, but

Region II contains the segment joining L4L4 with L6L3.

Proof. The claims regarding Σ and Σons follow by the same reasoning as in the proof of

Theorem 4.1. Also, the local energy equality for the space L4L4 gives the result in region IV. To

treat the remaining regions, let us use the same setup and test function as in the proof of Theorem

4.1, assuming n = 3. Since ν > 0 now, we do have to consider the two additional terms

EN =
∫ 0

−1

∫
Ω
|∇u|2φN dxdτ, FN =

∫ 0

−1

∫
Ω
u⊗∇φN : ∇udxdτ.

Taking N → ∞ and then δ → 0, it is clear that EN vanishes in the limit regardless of (p, q). It

turns out that FN is also never limiting with respect to the best possible value of D, but it takes a

bit of work to see this.

We treat the remaining four regions in turn as follows:

• In Regions I and II, we reuse the bounds (87) and (88) (with n = 3), and we show that the

analogous bounds for FN are strictly better in these two regions. Strictly speaking, this

argument only works for q ≥ 3, but we can use the same logic as in the previous proof to

cover the missing region I ∩ {q < 3}.

• In Region III, we reuse (87) once again, but (88) is no longer valid for any pair (p, q)

under consideration. We give a replacement bound using the enstrophy, which is valid for

2 < p < 3, then we optimize as in the previous theorem.

• In Region V, we use a sort of bootstrap argument. First, we construct a function g(p, q)

defined on Region V such that E(S) = 0 whenever dimH(S) < g(p, q). Then, we show that

g(p, q) > 1 everywhere on V. By the discussion in Section 1.3, we know that dimH(Σons) ≤

1 < g(p, q), and therefore that E(Σons) = 0. But this implies that dE = |u(0)|2 dx and

that the local energy equality holds for t = 0. This obviously implies D = 3, which is the

desired conclusion for Region V.

Step 1: Regions I and II. In accordance with the outline above, we assume without loss of

generality that q ≥ 3. Estimating

FN ≤ C‖u‖2Lq(I,Lp(Ω))‖∇u‖L2L2

∫ 0

−1

(
N∑
i=1

r
− 2p
p−2 +3

i χIi(t)
) p−2

p
q
q−2

dt


q−2
2q
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and applying Lemma 4.3, we conclude that

(93) FN ≤ ‖u‖Lq(I,Lp(Ω))‖∇u‖L2L2H
1
2−

1
p

N whenever


d ≤ 3−

2
qα−(α−2)

1− 2
p

, 2 ≤ q ≤ p ≤ ∞,

d < 3−
2
qα−(α−2)

1− 2
p

, 2 ≤ p < q ≤ ∞.

Comparison with (87) shows that our condition on FN is superfluous if α ≥ 2, which is satisfied by

(89) exactly when 1
p + 1

q ≥
1
2 . But 1

p + 1
q ≥

1
2 holds for all (p, q) ∈ I∪ II. Therefore we can ignore FN

in Regions I and II and read off the relevant conclusion from the previous theorem in these regions

(with n = 3). That is, E(S) = 0 holds if S has finite d-dimensional Hausdorff measure, where d

satisfies

d ≤ 3−
2
q

1− 2
p −

1
q

, (p, q) ∈ I,

d < 3−
2
q

1− 2
p −

1
q

, (p, q) ∈ II.

(94)

This takes care of Regions I and II completely. However, before proceeding we note that our condition

cannot be improved by considering α < 2: in this case, the bounds on d from (88) and (93) can both

be improved by increasing α, while the bound on d from (87) is superfluous.

Step 2: Region III. Region III lies entirely in the range {2 < p < 3}, where (88) is not applicable.

Therefore we estimate DN + PN differently:

(95) DN + PN ≤ ‖u‖3βL2H1‖u‖3(1−β)
LqLp

(∫
sup
i
r−σi χIi(t) dt

) 1
σ

,

where

(96) 1
3 = β

6 + 1− β
p

=⇒ β =
6
p − 2
6
p − 1

; 1
σ

= 1− 3β
2 −

3(1− β)
q

=
2− 3

p −
3
q

6
p − 1

.

Now using the notation of Lemma 4.3, we have∫
sup
i
r−σi χIi(t) dt ≤

∫
sup
j

2jσχJj (t) dt .
∑
j

(2α−σ)−j ,



46

which is bounded whenever σ < α. Note that this condition is independent of d, so we formulate it

as a bound on α:

(97) α >

6
p − 1

2− 3
p −

3
q

.

Reasoning as before, we have control over both CN and FN whenever

(98) d < 3−
2
qα

1− 2
p

and α ≥ 2. Now

(99)
6
p − 1

2− 3
p −

3
q

> 2 ⇐⇒ 2
p

+ 1
q
>

5
6 ,

and every pair (p, q) in Region III satisfies 2
p + 1

q >
5
6 . (This is not difficult to show algebraically,

but it is even easier to see geometrically by noting that the line 2
p + 1

q = 5
6 passes through L6L3 and

L∞L12/5.)

Therefore we can substitute (97) into (98) in order to conclude that E(S) = 0 whenever d = dimH(S)

satisfies

(100) d < 3−
2
q ( 6
p − 1)

(1− 2
p )(2− 3

p −
3
q )
, (p, q) ∈ III.

This is the desired conclusion for Region III.

Step 3: Region V. The general strategy for dealing with Region V is outlined at the beginning of

the proof. We recall that to complete the proof, it suffices to find a function g(p, q) > 1 on V such

that dimH(S) < g(p, q) implies that E(S) = 0. In order to define this function g(p, q), we first split

the region V further into three pieces:

(101) Va := V ∩ {p ≥ 3}, Vb := V ∩ {p < 3} ∩
{

2
p

+ 1
q
≤ 5

6

}
, Vc := V ∩

{
2
p

+ 1
q
>

5
6

}
.

In Region Vc, we can reason as in Step 2 and define g(p, q) by the right side of (100). Furthermore,

g(p, q) = 3−
2
q ( 6
p − 1)

(1− 2
p )(2− 3

p −
3
q )

= 3−
2(1− 2

p )(2− 3
p −

3
q )− 4((2− 3

p )( 1
2 −

1
p )− 1

q )
(1− 2

p )(2− 3
p −

3
q )

= 1 +
4[(2− 3

p )( 1
2 −

1
p )− 1

q ]
(1− 2

p )(2− 3
p −

3
q )

> 1,

since 1
q < (2− 3

p )( 1
2 −

1
p ) for (p, q) ∈ V.
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In the Regions Va and Vb, we set α = 2 and note that the restrictions on d due to (87) and (93)

coincide in this case. On the other hand, the restriction due to DN +PN becomes superfluous here.

This is easy to see for (p, q) ∈ Vb, since (97) is satisfied in this region by (99). For (p, q) ∈ Va, one can

also compare (87) and (88) directly, but the following argument is perhaps more insightful: Notice

that, as we increase α, the requirements on d become more stringent for (87) and less stringent for

(88). The two conditions coincide when α is given by (89). As discussed in Step 1, this value of α

is less than 2 if 1
p + 1

q <
1
2 , which is satisfied for all pairs (p, q) ∈ V. Therefore, (88) is superfluous

when (p, q) ∈ Va and α = 2. We therefore define

g(p, q) = 3−
4
q

1− 2
p

, (p, q) ∈ Va ∪Vb.

Since 2
p + 2

q < 1 in V, we have

(102) 3−
4
q

1− 2
p

=
2(1− 2

p −
2
q ) + (1− 2

p )
1− 2

p

> 1, (p, q) ∈ V,

and therefore g(p, q) > 1 in Va ∪Vb, and therefore in all of V. This completes the proof. �



CHAPTER 3

More on Energy Equality: General Singularity Sets,

Fractional Navier-Stokes1

1. General singularities

Even if the energy equality is known on each time interval of regularity including at the critical time,

it is unknown whether energy equality holds globally on the time interval of existence of the weak

solution. This is due to lack of a proper gluing procedure that could restore energy equality from

pieces. In this section, we therefore address the question of energy balance when the singularity set

Σons is spread in space-time. We consider only the case when ν > 0.

When dealing with a singularity set that is spread in space-time, we must change our approach from

that of the previous chapter. Indeed, our method in the setting of the first blowup time was built on

the fact that no term of (8) ‘sees’ the singularity set before the end of the limiting procedure. We

considered (8) as a sequence of local energy equalities, indexed by time, and we made our conclusions

by taking limits. Once we fix a time interval on which singularities may be present, we immediately

lose our natural sequence of equalities; it is not even clear what a replacement family of equalities

would have as its index! Fortunately, Lemma 1.1 from the Introduction suggests a collection of

equalities to consider, and our experience in the previous chapter with the concentration dimension

suggests how we might index these equalities.2 We can actually preserve the spirit of the argument

used to deal with the concentration dimensions, with a few important modifications. However, to

the author’s knowledge, there is not a natural analogue of the energy measure in this situation.3

Therefore, we can only answer in a binary way the question of whether it is possible to conclude

energy balance under a given integrability condition on the solution.

1This chapter is largely excerpted from:
[39] Trevor M. Leslie and Roman Shvydkoy. Conditions Implying Energy Equality for Weak Solutions of the Navier–
Stokes Equations. SIAM J. Math. Anal., 50(1):870–890, 2018. Copyright c© 2018 Society for Industrial and Applied
Mathematics. Reprinted with permission. All rights reserved.
In particular, the cited article is the original source of all figures contained in this chapter.
2This way of framing things is, in the author’s opinion, logically correct; however, it is anachronistic. In fact, the
technique of ‘cutting out’ the singularity set as described in this chapter predates the arguments in the previous
chapter which give bounds on the concentration dimension.
3One might try, though, to see what is possible with the Duchon-Robert distribution of [20]. We leave the exploration
of this topic to future research.
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In light of these differences, we alter our approach somewhat. First, we content ourselves with

studying the global energy equality

(103) 1
2

∫
|u(t)|2 dx− 1

2

∫
|u0|2 dx = −ν

∫ t

0

∫
|∇u(x, s)|2 dx ds.

In the classical Navier-Stokes case, our method can easily be adjusted to prove the local energy

equality whenever we can establish the global one. However, this is not true of the fractional Navier-

Stokes equations, which we consider below. We prefer to keep our approach to the two equations as

unified as is practical, and we therefore restrict attention to (103) (and later its fractional analogue).

We now describe the modified method in full detail. The analogue of (10) in the present context is∫
R3
|u|2φ(t) dx−

∫
R3
|u|2φ(s) dx−

∫ t

s

∫
R3
|u|2∂tφdxdτ

=
∫ t

s

∫
R3
|u|2u · ∇φ dxdτ + 2

∫ t

s

∫
R3
pu · ∇φ dx dτ

− 2ν
∫ t

s

∫
R3
|∇u|2φ− 2ν

∫ t

s

∫
R3
u⊗∇φ : ∇udxdτ,

(104)

which is valid for all φ ∈ C∞0 ((R3 × [0, T ])\Σons). An approximation argument shows that (53)

remains valid for functions φ (supported outside Σons, as before) which belong only to W 1,∞ rather

than C∞. The main idea of this section is to construct a sequence of test functions which satisfy

this equality and to show that passing to the limit causes it to reduce to (103).

Recall that Leray–Hopf solutions satisfy u(t) → u(0) strongly in L2(R3) as t → 0+. Therefore,

in order to establish (103), it suffices to prove energy balance on the time interval [s, T ] for each

s ∈ (0, T ); the Onsager singularity set at the initial time is irrelevant for our analysis. Therefore, we

introduce the following singularity set, which we call the postinitial singularity set S (or simply the

singularity set when it will cause no confusion), defined by

S = Σons\(R3 × {0}).

Working with S rather than all of Σons allows us to obtain better conditions guaranteeing energy

balance for solutions which have arbitrary divergence free initial condition u0 ∈ L2 (but which have

small postinitial singularity sets). A priori, this replacement requires us to assume s > 0 rather

than s ≥ 0 in (53). However, as pointed out above, we may extend to s = 0 by continuity, so that

we may consider S instead of Σons at no real cost. We will make the standing assumption that the

Lebesgue measure |S| of S in R3 × [0, T ] is equal to zero.
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Let us label each of the terms in (104) and rewrite the equation as

(105) A−B − C = D + 2P − 2νE − 2νF.

Having established the above considerations and notation, we can now describe the main idea more

clearly and succinctly. Given a Leray–Hopf solution u and its (postinitial) singularity set S, we seek

a sequence {φδ}δ>0 of test functions such that

• suppφδ ⊂ (R3× [0, T ])\S and φδ ∈W 1,∞(R3× [0, T ]) (so (104) is valid for 0 < s < t ≤ T );

• 0 ≤ φδ ≤ 1 and φδ → 1 pointwise a.e. as δ → 0 (which is possible since |S| = 0),

guaranteeing the convergence of the terms A, B, and E to their natural limits∫
R3
|u(t)|2 dx,

∫
R3
|u(s)|2 dx,

∫ t

s

∫
R3
|∇u|2 dxdτ,

respectively. These convergences follow from the fact that u ∈ L∞L2 ∩ L2H1, together

with the dominated convergence theorem.

When A, B, and E tend to their natural limits, we see that in order to establish energy balance

on [s, T ], it suffices to prove that the other terms C, D + 2P , and F vanish as δ → 0. In order to

ensure this, we make integrability assumptions on the solution u, i.e., u ∈ Lq(0, T, Lp(R3)) for some

pair (p, q) of integrability exponents. The set of admissible values for p and q, which will make the

terms C, D+ 2P and F vanish, depend on the integrability properties of the functions φδ, which in

turn depend on the size of S. Below we will generally suppress the notation δ from the subscript of

our sequence of test functions.

We make one more remark before proceeding to construct the test functions. One remaining technical

difference between the setting of Chapter 2 and the present one is that we have no freedom in choosing

the time scale of the covering cylinders; rather, the scale should already be built into the definition

of the Hausdorff dimension. We choose to work with the classical parabolic dimension, i.e., α = 2

in our terms. Consequently, the conclusion of Lemma 4.3 may not be valid when s < 1. Instead,

we can only prove that the left side of (85) is bounded above by H (multiplied by some constant

which is independent of δ) under the stronger assumption σs+ d ≤ α = 2. This is achieved simply

by bringing the exponent s inside the sum. However, the condition σs+ d ≤ α = 2 is the sharpest

possible under which the conclusion of the lemma holds, as one can see by considering an example

of the opposite extreme, where all the intervals Ii are disjoint. However, the proof of the lemma in
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the case s ≥ 1 does not depend on the intervals Ii being nested; the proof and conclusion remain

valid in this case.

Assume then that S has finite d-dimensional parabolic Hausdorff measure for some d ∈ (0, 1] but

no other special properties.4 Our method does not yield anything new for d > 1, so we do not treat

these values of d. Let δ > 0; then choose finitely many (xi, ti) ∈ R3 × (0, T ] and ri ∈ (0, δ) such

that S ⊂ Q :=
⋃
iQi, where Qi = Bri(xi) × (ti − r2

i , ti + r2
i ). Write Ii = (ti − 2r2

i , ti + 2r2
i ). Let

Q∗ denote the union of the double-dilated cylinders and I =
⋃
i Ii. Let ψ be the usual (symmetric,

radially decreasing) cutoff function with ψ(s) = 1 on |s| < 1.1 and ψ(s) = 0 for s > 1.9; put

φi = ψ(|x− xi|/ri)ψ(|t− ti|/r2
i ) and φ = 1− supi φi.

We note that we have |I| → 0 as δ → 0, even though the intervals Ii are no longer nested. This is

because

(106) |I| ≤
∑
i

|Ii| .
∑
i

r
d+(2−d)
i < δ2−d

∑
i

rdi

and because d < 2 in all cases considered in this section.

Assume p ≤ q. Using bounds analogous to (87), (93), we see that C,F → 0 whenever(
2p
p− 2 − 3

)
p− 2
p

q

q − 2 + d ≤ 2,

or, simplifying,

(107) 3
p

+ 2− d
q
≤ 3− d

2 (p ≤ q).

Similarly, if ∞ > q ≥ p ≥ 3, then D,P → 0 whenever

(108) 3
p

+ 2− d
q
≤ 4− d

3 (3 ≤ p ≤ q <∞).

Of course, when d ∈ [0, 1], we have 4−d
3 ≤ 3−d

2 , so the restriction (108) is limiting in this case.

On the other hand, if p < 3, then we use (95) and (96). Estimating

‖∇φ‖σLσL∞ ≤
∑
i

∫
r−σi χIi(t) dt ≤

∑
i

r2−σ
i ,

4Let us note that in the special case d = 0, S is once again a finite point set. The energy balance relation holds on
each of the finitely many time-slices associated to each of the points in S under the criteria of the previous section.
Therefore, it holds under these criteria for a general 0-dimensional singularity set; we assume d > 0 without loss of
generality.
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we see that D,P → 0 whenever and 2− σ ≥ d, i.e.,

(109) 4− d
p

+ 2− d
q
≤ 5− 2d

3 , p < 3.

Notice that we could have also reached this inequality by interpolation. This argument covers all

terms under consideration in the case p ≤ q; it remains to deal with the case when p > q. Most of the

analysis from the single time-slice situation carries over in this case since Lemma 4.3 from Chapter

2 does not require nested Ii in the case s ≥ 1. However, the lack of freedom to choose α restricts

the applicable range of pairs (p, q). After translating the condition s(σ + d) ≤ 2 into conditions on

C,D, P, F , we see that D,P are most stringent when p ≥ q ≥ 3 and correspond to the condition

3− d
p

+ 2
q
≤ 4− d

3 , 3 ≤ q ≤ p.

Using interpolation to treat the cases p = ∞, q < 3, and q = ∞ as well, we can state our criteria

for energy balance as follows:

2(3− d)
p

+ 5− d
q
≤ 3− d, q ≤ 3 ≤ p(110a)

3− d
p

+ 2
q
≤ 4− d

3 , 3 ≤ q ≤ p(110b)

3
p

+ 2− d
q
≤ 4− d

3 , 3 ≤ p ≤ q(110c)

4− d
p

+ 2− d
q
≤ 5− 2d

3 , p ≤ 3 ≤ q.(110d)

As d → 1−, these criteria collectively collapse to the region implicated by the Lions L4L4 condi-

tion. However, when d ∈ (0, 1) we obtain a new region bounded by the points L
5−d
3−dL∞, L3L

9−3d
2−d ,

L
15−3d

4−d L
15−3d

4−d , L
6−3d
1−d L3, L∞L

5−2d
12−3d . See Figure 4.

2. Fractional Navier-Stokes Equations

In this section, we present extensions of some of our results for the classical Navier-Stokes equations

to the case of fractional dissipation γ < 1:

∂tu+ u · ∇u+ νΛ2γu = −∇p(111)

div u = 0(112)

where Λ̂su = |ξ|sû. We define the Onsager regular and singular sets as in the classical case. In the

fractional dissipation case, weak solutions belong to L2Hγ ∩ L∞L2, and the analogue of (104) can
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L∞L3 L∞L2

L2L∞

L
5−d
3−dL∞

L
15−3d
4−d L

15−3d
4−d

n
ew

L2L6

L4L4

L
6−3d
1−d L3

L∞L
12−3d
5−2d

L3L
9−3d
2−d

x = 1
p

y = 1
q

1

L∞L3 L∞L2

L2L∞ L2L6

L4L4

x = 1
p

y = 1
q

1

Figure 4. LqLp spaces which guarantee energy equality for the 3D Navier-Stokes
equations, for a general singularity set of dimension 0 < d < 1 (left) and d = 1
(right). Our method gives new results when d < 1.

be written ∫
R3
|u|2φ(t) dx−

∫
R3
|u|2φ(s) dx−

∫ t

s

∫
R3
|u|2∂tφ dxdτ

=
∫ t

s

∫
R3
|u|2u · ∇φ dx dτ + 2

∫ t

s

∫
R3
pu · ∇φdxdτ − 2ν

∫ t

s

∫
R3
|Λγu|2φdxdτ

− 2ν
∫ t

s

∫
R3

Λγu · uΛγφ− 2ν
∫ t

s

∫
R3

Λγu · [Λγ(uφ)− (Λγu)φ− uΛγφ] dx dτ

(113)

As in the classical case, this equality is valid for φ ∈W 1,∞(R3× [0, T ]) which are supported outside

the Onsager singular set. We label our terms in the same manner as in the classical case:

A−B − C = D + 2P − 2νE − 2νF − 2νG.

As before, convergence of A,B,E is obvious; proving energy equality amounts to showing that the

other terms vanish. We consider the global energy equality for both the time-slice and the general

singularity cases. Though the calculations pertaining to the concentration dimension of the energy

measure can be extended to the time-slice case in a rather straightforward manner, it is not obvious

how to extend the bounds on the local dimension in a manner analogous to that of Section 3. We

therefore prefer to leave the analysis of both cases for future research.

For sufficiently regular f and γ ∈ (0, 2), we have

Λγf(x) = −cγ
∫
δ−zδzf(x)
|z|3+γ dz = c̃γ p.v.

∫
δzf(x)
|z|3+γ dz,
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where δz denotes the difference operator δzf(x) = f(x+ z)− f(x). We also recall the bound

(114) ‖Λγφ‖La . ‖φ‖1−γLa ‖∇φ‖
γ
La ,

valid for φ ∈W 1,a, a ∈ [1,∞], γ ∈ (0, 1). We will use this without comment in what follows.

Lemma 2.1. Let u ∈ Hγ ∩ Lp, p > 2, γ ∈ (0, 1), and φ ∈W 1, 2p
p−2 . Then

(115) ‖Λγ(uφ)− (Λγu)φ− uΛγφ‖L2 . ‖u‖Lp‖φ‖1−γ
L

2p
p−2
‖∇φ‖γ

L
2p
p−2

.

The inequality continues to hold when p = 2 and 2p/(p− 2) is replaced by ∞.

Proof. We use the identity

[Λγ(uφ)− (Λγu)φ− uΛγφ](x) = −
∫
δzu(x) δzφ(x)
|z|3+γ dz

and estimate the right side of this equality. Let r > 0 be arbitrary for now. Then∥∥∥∥∫ δzu δzφ

|z|3+γ dz
∥∥∥∥
L2
≤
∫
|z|≤r

‖δzu δzφ‖L2

|z|3+γ dz +
∫
|z|>r

‖δzu δzφ‖L2

|z|3+γ dz

≤ 2‖u‖Lp
[∫
|z|≤r

‖∇φ‖
L

2p
p−2

|z|2+γ dz +
∫
|z|>r

2‖φ‖
L

2p
p−2

|z|3+γ dz
]

≤ 2r−γ‖u‖Lp [r‖∇φ‖
L

2p
p−2

+ 2‖φ‖
L

2p
p−2

].

Put r = ‖φ‖
L

2p
p−2
‖∇φ‖−1

L
2p
p−2

to complete the proof. �

We apply this Lemma to our original test function φ:∫
‖uΛγφ‖2L2 + ‖Λγ(uφ)− (Λγu)φ− uΛγφ‖2L2 dt

.
∫

(‖u‖Lp‖φ‖1−γ
L

2p
p−2
‖∇φ‖γ

L
2p
p−2

)2 dt

≤ ‖u‖2LqLp‖φ‖
2(1−γ)

L∞L
2p
p−2
‖∇φ‖2γ

L
2qγ
q−2 L

2p
p−2

.

Now with the bound |∇φ(x, t)| ≤ supi |∇φi(x, t)|, we obtain

(116) ‖∇φ‖
2qγ
q−2

L
2qγ
q−2 L

2p
p−2
≤
∫ (∑

i

r
− 2p
p−2 +3

i χIi(t)
) p−2

p
q
q−2γ

dt.

So we can use Lemma 4.3 from Chapter 2 to give conditions on when |F |+ |G| → 0, depending on

whether we are dealing with the one-slice or general type singularity.
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Remark 2.2. It has been shown (c.f. [30, 61, 60, 11]) that 5−4γ serves as an upper bound for the

dimension of the singular set, provided that γ ∈ ( 3
4 , 1) ∪ (1, 5

4 ). Interestingly, the value γ = 3
4 plays

a significant role in our analysis as well, as is perhaps evidenced by the figures below. We include

some analysis relating to the empty case γ ∈ ( 3
4 , 1), d > 5 − 4γ just to see what the method gives

us as compared to when γ < 3
4 , where an analogue of the Caffarelli-Kohn-Nirenberg Theorem is not

available.

2.1. One-time singularity case, 1
2 < γ < 1. We recall some of the conditions for the vanish-

ing of C and D+P and (using the lemma) add to them conditions for the vanishing of F +G. Note

that the restriction (118) below on D+P is only valid inside the square p, q ≥ 3, just as before. We

deal with this case first and investigate the case p < 3 separately:

(117) 3− d
p

+ α

q
≤ 3− d

2 , p ≥ q ≥ 2; 3− d
p

+ α

q
<

3− d
2 , 2 ≤ p < q

(118) 3− d
p

+ α

q
≤ 2 + α− d

3 , p ≥ q ≥ 3; 3− d
p

+ α

q
<

2 + α− d
3 , 3 ≤ p < q

(3− d)γ
p

+ α

q
≤ (3− d)γ + α− 2γ

2 ,
1
q
− γ

p
≥ 1− γ

2 , p, q ≥ 2(119a)

(3− d)γ
p

+ α

q
<

(3− d)γ + α− 2γ
2 ,

1
q
− γ

p
<

1− γ
2 , p, q ≥ 2.(119b)

The line 1
q −

γ
p = 1−γ

2 joins L
2

1−γ L∞ with L2L2. It plays the role for F +G that the bisectrice plays

for C and D+P . Also note that for each restriction, all inequalities are nonstrict in the special case

d = 0, just as before.

When d ≤ 5 − 4γ, we find using the same argument as in the classical case that α = 5−d
2 gives

the optimal region. At this value of α, (117) and (118) coincide, and (119a) and (119b) are less

restrictive than (117) and (118). Furthermore, since the line corresponding to (117) rotates about

L∞L2, we may use interpolation to remove the restriction q ≥ 3.

In the case p < 3, we repeat the argument used for the classical Navier-Stokes case and make changes

where necessary. Assume first that γ ≥ 3
4 . Then we have

(120) |D|+ |P | ≤ ‖u‖3βL2H1‖u‖3(1−β)
LqLp ‖∇φ‖LσL∞ ,
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where

(121) 1
3 = (3− 2γ)β

6 + 1− β
p

=⇒ β = 6− 2p
6− (3− 2γ)p ; 1− β = (2γ − 1)p

6− (3− 2γ)p

(122) 1
σ

= 1− 3β
2 −

3(1− β)
q

= 2γpq − 3p(2γ − 1)− 3q
(6− (3− 2γ)p)q .

Now

‖∇φ‖σLσL∞ =
∫

sup
i
r−σi χIi(t) dt ≤

∫
sup
j

2jσχJj (t) dt .
∑
j

(2α−σ)−j ,

and the sum on the right is bounded whenever σ < α. Substituting in for σ and simplifying,

(123) 2 + α

p
+ (2γ − 1)α

q
<

3− 2γ + 2αγ
3 .

Note that as α increases, the line corresponding to equality rotates counterclockwise about L2L
6

3−2γ .

Combining (117) and (123) with inequality replaced by equality in both cases, we find the curve

6(3− d)x2 + 6(6γ − 5− (2γ − 1)d)xy − (4γ + 3)(3− d)x

− (22γ − 15− (2γ − 1)3d)y + 2γ(3− d) = 0,
(124)

where x = p−1 and y = q−1. Notice that the curve contains both L2L
6

3−2γ and L∞L2, as we expect.

(Indeed, these points are the axes of rotation for our lines.) However, since we are restricted to the

case p < 3, the part of the curve that we can use is limited to that connecting L
15−3d

3−d L3 and L∞L2.

If γ < 3
4 , then (120) is not valid for all values of p, q. In particular, we need 3β ≤ 2 for the obvious

application of Hölder to be valid, which translates to p ≥ 3
2γ . When γ ∈ ( 1

2 ,
3
4 ), we also see that the

two places where the curve (124) crosses the x-axis are at x = 1
2 and x = 2γ

3 . When γ ∈ ( 1
2 ,

3
4 ), we

have 2γ
3 ∈ ( 1

3 ,
1
2 ). So the curve still gives us a meaningful restriction up to the point where it crosses

the x-axis for the first time. Once γ < 1
2 , however, we have 2γ

3 < 1
3 , so the use of enstrophy does

not allow us to make any statement about the range p < 3.

All in all, our criteria for energy equality in the case 1
2 < γ < 1, 0 ≤ d ≤ 5− 4γ can be stated as

(125) 2(3− d)
p

+ 5− d
q
≤ 3− d, p ≥ q; 2(3− d)

p
+ 5− d

q
< 3− d, 3 ≤ p < q

6(3− d)x2 + 6(6γ − 5− (2γ − 1)d)xy − (4γ + 3)(3− d)x

− (22γ − 15− (2γ − 1)3d)y + 2γ(3− d) > 0, 1
3 < x < min{1

2 ,
2γ
3 }.

(126)

Once again, strict inequalities are replaced by nonstrict ones if d = 0.
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Figure 5. LqLp spaces which guarantee energy equality for the 3D γ-fractional
Navier-Stokes Equations, with 3

4 ≤ γ < 1 (left) or 1
2 < γ < 3

4 (right) and time-slice
singularity of dimension 0 < d ≤ 5− 4γ.

Figure 5 diagrams our results for a fixed value of d ∈ (0, 5 − 4γ) (we use d = 2
3 ) and varying

γ ∈ ( 1
2 , 1). Note that L

6γ−2
2γ−1L

6γ−2
2γ−1 serves as the analogue of the Lions space in the present context,

because interpolation between this space and L2Hγ lands in the Onsager space L3B
1/3
3,c0

.

As we take d → 5 − 4γ from below, the new region above the bisectrice collapses to the segment

[L∞L
2γ

2γ−1 , L
6γ−2
2γ−1L

6γ−2
2γ−1 ]. In this respect, the value d = 5−4γ serves a similar role to the value d = 1

in the classical case. Things are slightly more complicated when 5−4γ < d < 3. In this case, setting

α equal to its usually optimal value of α = 5−d
2 places too heavy a burden on F + G; for a fixed

p, we must increase α to optimize until the restrictions on C and F + G coincide. An elementary

computation gives the optimal value of α to be

(127) αCF (x) = (3− d)(1− γ)(1− 2x) + 2γ (x = p−1).

We see then that as x increases, the optimal value of α decreases. When p ≥ 3, the restriction on

D+P is always less stringent for this value of α than the corresponding restriction for C. However,

as x increases beyond 1
3 , αCF (x) eventually becomes sufficiently small so that (123) becomes limiting

once again. At this point, the optimal restriction is once again determined by the intersection of the

C and D + P lines, following the curve (124). Indeed, along the curve (124), α is given by

(128) αCDP (x) = 3[(3− d)(2γ − 1)− 2](1− 2x) + 4γ
2(2γ − 3x) .
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Figure 6. LqLp spaces which guarantee energy equality for the 3D γ-fractional
Navier-Stokes equations, with 3

4 ≤ γ < 1 (left) or 1
2 < γ < 3

4 (right) and time-slice
singularity of dimension 5− 4γ < d < 3.

Now

αCDP (1/3) = 5− d
2 < 2γ < αCF (1/3),

whereas

αCDP (1/2) = 4γ
4γ − 3 > 2γ = αCF (1/2) (3/4 < γ < 1),

lim
x→ 2γ

3
−
αCDP (x) =∞ > αCF (2γ/3) (1/2 < γ ≤ 3/4).

So there must be some x0 ∈ ( 1
3 ,min{ 1

2 ,
2γ
3 }), where αCDP (x0) = αCF (x0). The actual value of x0

does not seem to take a particularly enlightening form in general, but it can be easily calculated

given γ ∈ ( 1
2 , 1) and d ∈ (5− 4γ, 3). See Figure 6.

Altogether, the criteria for energy equality in the case γ ∈ ( 1
2 , 1) and d ∈ (5−4γ, 3) can be stated as

(129) 4(1− γ)(3− d)xy − 2(3− d+ (d− 1)γ)y + (1− 2x)(3− d) > 0, x < x0

6(3− d)x2 + 6(6γ − 5− (2γ − 1)d)xy − (4γ + 3)(3− d)x

− (22γ − 15− (2γ − 1)3d)y + 2γ(3− d) > 0, x0 < x < min{1
2 ,

2γ
3 }.

(130)

2.2. One-time singularity case, 0 < γ ≤ 1
2 . Much of the analysis of the previous subsection

carries over to the case when γ ∈ (0, 1
2 ]. However, there are a few important differences. For one

thing, the Lions region is the single point L∞L∞ when γ = 1
2 and trivial otherwise. Second, the

case d > 5− 4γ is geometrically impossible since 5− 4γ > 3 here. Finally, we cannot say anything

about the region p < 3. As was mentioned earlier, the enstrophy argument used to deal with this
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Figure 7. LqLp spaces guaranteeing energy equality for the 3D γ-fractional
Navier-Stokes equations, γ ∈ (0, 1

2 ), and time-slice singularity of dimension d < 3.

region for larger values of γ does not apply when γ ∈ (0, 1
2 ). In fact, we cannot even get any new

information by interpolation with the Leray–Hopf line since the point L2L
6

3−2γ lies on the line x = 1
3

when γ = 1
2 and to the right of this line when γ < 1

2 . So the region for which we have proved energy

equality is independent of γ for γ < 1
2 ; the region depends only on d. See Figure 7.

2.3. General singularities. We fix α = 2γ in consideration of the natural scaling. The

restrictions corresponding to C, D + P , and F +G become

(131) 3− d
p

+ 2γ
q
≤ 3− d

2 , p ≥ q ≥ 2; 3
p

+ 2γ − d
q

≤ 3− d
2 , 2 ≤ p < q

(132) 3− d
p

+ 2γ
q
≤ 2 + 2γ − d

3 , p ≥ q ≥ 3; 3
p

+ 2γ − d
q

≤ 2 + 2γ − d
3 , 3 ≤ p < q

3− d
p

+ 2
q
≤ 3− d

2 ,
1
q
− γ

p
≥ 1− γ

2 , p, q ≥ 2(133a)

3γ
p

+ 2γ − d
q

≤ 3γ − d
2 ,

1
q
− γ

p
<

1− γ
2 , p, q ≥ 2.(133b)

We will not present figures pertaining to this particular situation, as the reader can easily verify

conditions above for any particular values of γ, d, p, q. However, we make several comments.

First, we note that the measure of I may not vanish for certain combinations of γ, d. Mimicking the

argument of (106) only gives |I| → 0 when d ≤ 2γ. If d > 2γ, then we continue with the additional

assumption that Hd(S) is actually zero (rather than merely finite, as we usually assume).
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Assume first that γ ∈ ( 1
2 , 1). Then (132) is more stringent than (131) when d < 5 − 4γ; the two

inequalities coincide when d = 5−4γ. At this value of d, the region satisfying (131), (132) is exactly

the region already covered by the analogue of the Lions result. So only the case d < 5− 4γ can give

new information. However, in contrast to the classical case, the restrictions (133a), (133b) are not

always superfluous. If γ < 1
2 , then the Lions region is trivial, and consequently the value d = 5− 4γ

has no special significance for our argument in the case of a general 2γ-parabolic d-dimensional

singularity with γ ∈ (0, 1
2 ).

When d = 0, the singularity set can be covered by finitely many time-slices, and the region covered

is the same as in the one-slice case. When d ∈ (0, 2γ − 1), the DP -lines are limiting, but there

is still a nontrivial region covered in the range p < 3 by interpolation. This region disappears

when d = 2γ − 1, but the DP -lines remain the limiting restriction until d surpasses the value
1
2 (5 + γ −

√
9γ2 − 18γ + 25), at which point the lower FG-line (corresponding to (133b)) cuts into

both the upper and the lower DP -lines. This situation prevails until d reaches the value 5γ−4γ2

3−2γ , at

which point the lower FG-line becomes more stringent than the lower DP -line everywhere below the

bisectrice. However, at this point, the upper FG-line is still less stringent than the upper DP -line;

this changes once d surpasses 1. Note that the point L
5−d
3−dL∞ is no longer included in the region

covered for d > 1. Rather, the upper FG-line lies strictly below the interpolation line obtained

in the region q < 3 from the uppermost point on the DP segment. When d lies in the range

d ∈ [1, 2γ + 1− 2
√

3γ2 − 3γ + 1), the upper DP -line remains more stringent than the FG-lines on

a small segment. However, once d ≥ 2γ + 1 − 2
√

3γ2 − 3γ + 1, the FG restrictions are limiting in

all cases.

There are a few larger values of significance for d, but they involve the interaction between the

FG-lines and the Lions region rather than the FG-lines and the other restrictions imposed by our

method. We describe briefly the bifurcations of the diagrams. When d reaches the value 2− γ, the

Lions point L
6γ−2
2γ−1L

6γ−2
2γ−1 lies on the lower FG segment. When d = γ(5− 4γ), the new region below

the bisectrice disappears entirely (since 3γ−d
6γ = 2γ−1

3 for this value of d). The new region disappears

entirely into the Lions region once d = 2−γ
γ . Indeed, at this value of d, we have 3−d

4 = 2γ−1
2γ ;

furthermore, both the upper FG-line and the line containing the upper part of the boundary for

the Lions region pass through L∞L2. Therefore, the upper FG-line collapses to (a portion of) the

boundary of the Lions region when d = 2−γ
γ .



CHAPTER 4

Energy Equality for the Inhomogeneous Incompressible

Navier-Stokes and Euler Equations1

In this chapter we consider the question of energy equality for the system (16)–(18), as outlined in

the Introduction.

1. Preliminaries and Preparations for the Main Theorem

In [7] it was shown that if u ∈ L3(0, T ;B1/3
3,c0

(Rd)) ∩ Cw([0, T ];L2(Rd)) is a weak solution to the

(homogeneous) incompressible Euler equations, then u conserves energy. The authors define an

energy flux ΠQ(t) describing the energy dissipated from scales associated to wave numbers λq = 2q

for −1 ≤ q ≤ Q. To prove their result, they bound ΠQ(t) using the convolution of a sequence

involving the Littlewood-Paley projections of the solution u with a localization kernel; they conclude

by noting that their bound tends to zero in the limit. We follow a similar program in this section.

After motivating our use of Besov spaces by generalizing the Kármán-Howarth-Monin relation to

the present context, we recall the definition of a Besov space and set some notation. Next, we derive

an energy budget relation associated to the density-dependent Navier-Stokes equations. Finally, we

define localization kernels and present some estimates that will streamline the proof of our theorem.

1.1. Kármán-Howarth-Monin relation. Let us motivate the use of Besov spaces and the

choice of regularity classes by ideas from the turbulence theory. Our immediate goal is to extend the

classical Kármán-Howarth-Monin relation to the density-dependent case, see [26]. Let us suppose

that our fluid reached a state of fully developed turbulence in which statistical laws with respect

to an ensemble average 〈·〉 are independent of a location in space where are measured2. In order

to measure how much regularity is needed to control the energy flux we derive a formula for the

physical space energy flux due to the nonlinear transport term defined by

π(`) = 1
4∂t〈u(r + `) · u(r)(ρ(r + `) + ρ(r))〉T.

1Most of this chapter is taken from:
[38] T. M. Leslie and R. Shvydkoy. The energy balance relation for weak solutions of the density-dependent Navier-
Stokes equations. J. Differential Equations, 261(6):3719–3733, 2016.
2The common term homogeneous turbulence may be misleading in our settings as our density still remains variable.
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Note that it coincides with the classical flux in the case when ρ is constant, and it is symmetric with

respect to r + `, r. Let us use the notation ui = ui(r), u′i = ui(r + `), ∂i = ∂
∂ri

, ∂′i = ∂
∂`i

. From the

transport term in the momentum equation (16) we obtain

−4π(`) = 〈∂j(ρ′u′ju′i)ui〉+ 〈ρ′u′i∂j(ujui)〉+ 〈∂j(ρujui)u′i〉+ 〈ρui∂j(u′ju′i)〉.(134)

Note that ∂j(ρ′u′ju′i) = ∂′j(ρ′u′ju′i), and 〈∂′j(ρ′u′ju′i)ui〉 = ∂′j〈ρ′u′ju′iui〉. Similarly, 〈ρui∂j(u′ju′i)〉 =

∂′j〈ρuiu′ju′i〉. As to the two terms in the middle we first perform integration by parts. This can be

justified by first averaging over the fluid domain Td. Since the ensembles are independent of r, this

does not change the quantities. Then switching the order of averaging, integrating by parts, switching

again, and un-averaging produces the result. So, 〈ρ′u′i∂j(ujui)〉 = −〈∂j(ρ′u′i)ujui〉 = −∂′j〈ρ′u′iujui〉,

and similarly, 〈∂j(ρujui)u′i〉 = −〈ρujui∂j(u′i)〉 = −∂′j〈ρujuiu′i〉. We thus obtain

(135) 4π(`) = −∂′j〈ρ′u′ju′iui〉+ ∂′j〈ρ′u′iujui〉+ ∂′j〈ρujuiu′i〉 − ∂′j〈ρuiu′ju′i〉.

Let us denote δu(`) = u(r+ `)− u(r), and similar for ρ. The expression on the right can be written

(136) −∇` · 〈(δ(ρu) · δu)δu〉.

This can be proved directly by breaking the above into individual terms and noting that 〈ρ′u′ju′iu′i〉 =

〈ρujuiui〉 are independent of `, and ∂′j〈ρuiuiu′j〉 = 0 by the divergence-free condition, and ∂′j〈ρ′u′iu′iuj〉 =

0 by the same reason after changing r → r − `. Applying the algebraic identity δ(fg) = 1
2 [(f +

f ′)δg + (g + g′)δf ] to (136), we obtain

(137) π(`) = −1
8∇` · 〈δρδu((u(r + `) + u(r)) · δu)〉 − 1

8∇` · 〈(ρ(r + `) + ρ(r))|δu|2δu〉.

This is a direct generalization of the classical Kármán-Howarth-Monin relation. One can see from

this relation that there are a few different ways to cause the flux to vanish, in terms of distribution

of smoothness and integrability between ρ and u. Given that ρ ∈ L∞ is a natural assumption, the

last term vanishes if u is 1/3 regular in L3-sense. Then, for the first term to vanish one must also

have that u is 1/3 regular in Lb-sense and ρ is 1/3 regular in La-sense, where 1
a + 3

b = 1. This leads

to the use of Besov spaces and suggests that the set of assumptions (25) is sharp.

1.2. Besov Spaces via Littlewood-Paley Decomposition. We follow the setup of [9] and

[7] in defining the Littlewood-Paley projections of the functions ρ, u, p. Fix χ ∈ C∞0 (B(0, 1)) such

that χ(ξ) = 1 for |ξ| ≤ 1
2 . Define φ(ξ) = χ( ξ2 ) − χ(ξ). Define length scales λq = 2q, and define
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ϕ−1(ξ) = χ(ξ), ϕq(ξ) = φ(λ−1
q ξ) for q ∈ N∪{0}. Then

∑∞
q=−1 ϕq ≡ 1; in particular

∑∞
q=−1 ϕq(k) = 1

for all k ∈ Zd. We do not distinguish notationally between ϕq and its restriction to the integer

lattice, but occasionally it will be necessary to interpret ϕq in the latter sense. Note that ϕq, ϕr

have disjoint supports unless r ∈ {q− 1, q, q+ 1}. Let F and F−1 denote the Fourier transform and

inverse transform for Td: F(f)(k) =
∫
Td f(x)e−2πik·x dx, F−1(g)(x) =

∑
k∈Zd g(k)e2πik·x.

Define the following functions:

hq = F−1(ϕq), h̃Q = F−1(χ(λ−1
Q+1 · )),

uq = F−1(ϕqFu) = hq ∗ u, u≤Q =
Q∑

q=−1
uq = F−1(χ(λ−1

Q+1 · )Fu) = h̃Q ∗ u,

u∼Q =
Q+2∑
q=Q−2

uq, u>Q =
∞∑

q=Q+1
uq.

Write A := N ∪ {0,−1}. The Besov space Bsp,r(Td) (s ∈ R, p, r ∈ [1,∞]) is the space of tempered

distributions u whose corresponding norm, defined by

‖u‖Bsp,r(Td) =
∥∥(λsq‖uq‖Lp(Td))q∈A

∥∥
`r(A) ,

is finite. Clearly Bsp,r(Td) ⊂ Bs
′

p′,r′(Td) for s′ ≤ s, p′ ≤ p, r′ ≥ r. Furthermore, Bsa,∞ ⊂ La for

all a ∈ [1,∞), s > 0. We define Bsp,c0
(Td) as the space of tempered distributions u such that

λsq‖uq‖Lp(Td)
q→∞−→ 0, together with the norm inherited from Bsp,∞(Td). This space contains Bsp,r(Td)

for all r ∈ [1,∞). We will write Bsp,r for Bsp,r(Td) unless the abbreviation could cause confusion.

1.3. Derivation of the Energy Budget Relation. Define E≤Q(s) := 1
2
∫
Td

(ρu)2
≤Q

ρ≤Q
(s) dx,

the energy associated to scales λq for q ≤ Q. Define U = (ρu)≤Q
ρ≤Q

and put ψ = U≤Q in (20), to yield

2E≤Q(s)
∣∣t
0 =

∫ t

0

∫
((ρu)≤Q · ∂sU + (ρu⊗ u)≤Q : ∇U + p≤Q divU) dx ds

− µ
∫ t

0

∫
∇u≤Q : ∇U dxds+

∫ t

0

∫
(ρf)≤Q · U dxds.

(138)

On the other hand, we can rewrite the definition of E≤Q using the weak form of the density equation:

E≤Q(s)
∣∣t
0 = 1

2

∫
Td×{s}

ρ≤QU
2 dx

∣∣∣∣t
0

= 1
2

∫
Td×{s}

ρ(U2)≤Q dx
∣∣∣∣t
0

= 1
2

∫ t

0

∫ (
ρ∂s(U2)≤Q + (ρu · ∇)(U2)≤Q

)
dxds.
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Then, we easily see that

E≤Q(s)
∣∣t
0 = 1

2

∫ t

0

∫ (
ρ≤Q∂s(U2) + ((ρu)≤Q · ∇)(U2)

)
dx ds

=
∫ t

0

∫
((ρu)≤Q · ∂sU + ((ρu)≤Q ⊗ U) : ∇U) dxds.

Subtracting the result from (138), we obtain the energy budget relation at scales q ≤ Q:

(139) E≤Q(t)− E≤Q(0) =
∫ t

0
ΠQ(s) ds− εQ(t) +

∫ t

0

∫
(ρf)≤Q · U dx ds.

Here ΠQ(s) is the flux through scales of order Q due to the nonlinearity and the pressure:

ΠQ =
∫
FQ(ρ, u) : ∇U dx+

∫
p≤Q divU dx;(140)

FQ(ρ, u) = (ρu⊗ u)≤Q − U ⊗ (ρu)≤Q.(141)

Also, εQ and
∫ t

0
∫

(ρf)≤Q ·U dx ds represent the energy dissipation due to local interactions and the

external force, respectively, at scales q ≤ Q. Now εQ is given by

εQ(t) = µ

∫ t

0

∫
∇u≤Q : ∇U dx ds.

Also denote

ε(t) = µ

∫ t

0
‖∇u‖2L2 ds.

We aim to show that for appropriate (ρ, u, p) and all t ∈ [0, T ], we have (as Q → ∞) that

E≤Q(t) → E(t),
∫ t

0 ΠQ(s) ds → 0, εQ(t) → ε(t), and
∫ t

0
∫

(ρf)≤Q · U dxds →
∫ t

0
∫
ρu · f dx ds.

These convergences will immediately imply that (23) holds for (ρ, u, p).

1.4. The Localization Kernel and Estimates on the Littlewood-Paley Projections.

Let a, b ∈ [1,∞], s ∈ (0, 1], and let f be a real-valued function. Define the following:

Ks
q =

 λs−1
q , q ≥ 0;

λsq, q < 0;
dsa,q(f) = λsq‖fq‖La ; Ds

a,Q(f) =
∞∑

q=−1
Ks
Q−qd

s
a,q(f).

We can define these expressions analogously for the vector-valued f . Note that in view of summability

of the kernel we have

(142) lim sup
Q→∞

Ds
a,Q(f) ∼ lim sup

q→∞
dsa,q(f)

where the similarity constant depends only on s.
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Proposition 1.1. For f ∈ Bsa,∞, g ∈ Btb,∞, a, b ∈ [1,∞], s, t ∈ (0, 1), we have the following

estimates:

‖(fg)≤Q − f≤Qg≤Q‖Lc . λ−s−tQ Ds
a,Q(f)Dt

b,Q(g), 1
c

= 1
a

+ 1
b
,(143)

‖(fg)≤Q − f≤Qg≤Q‖La . λ−sQ Ds
a,Q(f)‖g‖L∞ ,(144)

‖∇f≤Q‖La . λ1−s
Q Ds

a,Q(f),(145)

‖f>Q‖La ≤ λ−sQ Ds
a,Q(f).(146)

Remark 1.2. Let us note that (144) is still meaningful when s = 1. However, in this case, the

kernel is not localized in the region q > 0, which meets finitely many terms in the convolution D.

Nonetheless, uniform bounds on the convolution would be applicable under stronger summability

assumption on Littlewood-Paley components of f . For example, when a = 2 and f ∈ H1 we clearly

have

D1
2,Q(f) ≤ ‖f‖H1 .

Proof. Since

h̃Q ∗ f = f≤Q,

∫
h̃Q(y) dy = 1,

we can write

(fg)≤Q − f≤Qg≤Q = rQ(f, g)− f>Qg>Q,

where

(147) rQ(f, g) =
∫
h̃Q(y)(f(· − y)− f(·))(g(· − y)− g(·)) dy.

Therefore, to prove (143) it suffices to estimate rQ(f, g), f>Q, g>Q appropriately.

We can write

‖f>Q‖La ≤ λ−sQ
∑
q>Q

λsQ−qλ
s
q‖fq‖La = λ−sQ

∑
q>Q

Ks
Q−qd

s
a,q(f) ≤ λ−sQ Ds

a,Q(f).

This proves (146). The same reasoning yields ‖g>Q‖Lb ≤ λ−tQ Dt
b,Q(g), and by Hölder,

‖f>Qg>Q‖Lc ≤ λ−s−tQ Ds
a,Q(f)Dt

b,Q(g).

Next, we have

(148) ‖fq(· − y)− fq(·)‖La =
∥∥∥∥∫ 1

0
(∇fq)(· − θy) · y dθ

∥∥∥∥
La
≤ |y|‖∇fq‖La . |y|λq‖fq‖La .
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We use (148) for q ≤ Q in the following estimate:

‖f(· − y)− f(·)‖La . λ1−s
Q

∑
q≤Q

λs−1
Q ‖fq(· − y)− fq(·)‖La + λ−sQ

∑
q>Q

λsQ‖fq(· − y)− fq(·)‖La

. λ1−s
Q

∑
q≤Q

λs−1
Q−qλ

s−1
q · |y|λq‖fq‖La + λ−sQ

∑
q>Q

λsQ−qλ
s
q‖fq‖La

= λ1−s
Q |y|

∑
q≤Q

Ks
Q−qd

s
a,q(f) + λ−sQ

∑
q>Q

Ks
Q−qd

s
a,q(f)

≤ (λQ|y|+ 1)λ−sQ Ds
a,Q(f).

Clearly ‖g(· − y) − g(·)‖Lb ≤ (λQ|y| + 1)λ−tQ Dt
b,Q(g), by the same argument. Now we can easily

estimate rQ(f, g):

‖rQ(f, g)‖Lc ≤
∫
|h̃Q(y)|‖f(· − y)− f(·)‖La‖g(· − y)− g(·)‖Lb dy

.

(∫
|h̃Q(y)|(λQ|y|+ 1)2 dy

)
λ−s−tQ Ds

a,Q(f)Dt
b,Q(g)

. λ−s−tQ Ds
a,Q(f)Dt

b,Q(g).

This proves (143). The proof of (144) follows the same lines, except we apply ‖g>Q‖L∞ ≤ ‖g‖L∞ ,

and ‖g(· − y) − g(·)‖L∞ ≤ 2‖g‖L∞ . The latter results in the term (λQ|y| + 1) with power 1 inside

the hQ-integral, which is also bounded uniformly in Q.

Finally, we write

‖∇f≤Q‖La . λ1−s
Q

∑
q≤Q

λs−1
Q ‖∇fq‖La . λ1−s

Q

∑
q≤Q

λs−1
Q−qλ

s−1
q · λq‖fq‖La

= λ1−s
Q

∑
Q−q≥0

Ks
Q−qd

s
a,q(f) ≤ λ1−s

Q Ds
a,Q(f).

�

Proposition 1.3. Let f ∈ Bsa,∞, g ∈ Bsb,∞, a, b ∈ [1,∞], s ∈ (0, 1), 1
c = 1

a + 1
b . Then

(149) ‖∇(fg)≤Q‖Lc . λ1−s
Q (Ds

a,Q(f)‖g‖Lb +Ds
b,Q(g)‖f‖La).

Proof. First, notice that if p or r is greater than Q + 2 and |p − r| > 2, then the Fourier

support of fpgr lies outside the ball of radius λQ+1 centered at 0. In particular, (fpgr)≤Q vanishes.

Therefore

(fg)≤Q = (f≤Q+2g≤Q+2)≤Q +
∑

max{p,r}>Q+2
|p−r|≤2

(fpgr)≤Q,
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so we have

(150) ‖∇(fg)≤Q‖Lc ≤ ‖∇(f≤Qg≤Q)‖Lc + ‖∇(f∼Qg≤Q + f≤Qg∼Q)‖Lc +
∑
p,r>Q
|p−r|≤2

‖∇(fpgr)≤Q‖Lc .

We estimate each of the terms on the right side of this inequality. First, we have

(151) ‖∇(f≤Qg≤Q)‖Lc ≤ ‖∇f≤Q‖La‖g‖Lb+‖∇g≤Q‖Lb‖f‖La.λ1−s
Q

(
Ds
a,Q(f)‖g‖Lb+Ds

b,Q(g)‖f‖La
)
.

Next,

‖∇(f∼Qg≤Q)‖Lc . ‖∇f∼Q‖La‖g‖Lb + ‖∇g≤Q‖Lb‖f‖La

. λ1−s
Q

(
Ds
a,Q(f)‖g‖Lb +Ds

b,Q(g)‖f‖La
)
,

where we note that ‖∇f∼Q‖La ∼ λ1−s
Q Ds

a,Q(f) and use (145) in order to obtain the second inequality.

We can estimate ‖∇(f≤Qg∼Q)‖Lc similarly, concluding that

‖∇(f∼Qg≤Q + f≤Qg∼Q)‖Lc . λ1−s
Q (Ds

a,Q(f)‖g‖Lb +Ds
b,Q(g)‖f‖La).(152)

By differential Bernstein’s and Hölder inequalities we have

‖∇(fpgr)≤Q‖Lc . λQ‖fp‖La‖gr‖Lb

Using this we obtain

∑
p,r>Q
|p−r|≤2

‖∇(fpgr)≤Q‖Lc . λ1−s
Q

∑
p>Q

λsQ−qλ
s
q‖fp‖La‖g‖Lb ≤ λ1−s

Q Ds
a,Q(f)‖g‖Lb .

Combining this estimate with (150), (151), and (152) immediately yields the desired statement. �

Remark 1.4. One can also show (by a proof nearly identical to the above) that if f, g ∈ Bsa,∞ ∩ Lb

with 1
a + 1

b = 1
c and a, b ∈ [1,∞], then ‖∇(fg)≤Q‖Lc . λ1−s

Q (Ds
a,Q(f)‖g‖Lb +Ds

a,Q(g)‖f‖Lb).

Remark 1.5. Recall the following result for the classical Navier-Stokes equations (i.e. (16) and

(18), with ρ ≡ 1, f ≡ 0): If (u, p) is a weak solution, with u ∈ Cα for some α ∈ (0, 1), then p =

∆−1(div div(u ⊗ u)) ∈ Cα. We can generalize this result using Proposition 1.3: Assume u ∈ Bsa,∞,

with a ∈ [2,∞] and s ∈ (0, 1); then p ∈ Bsa/2,∞. Indeed, we have

λsQ‖pQ‖La/2 ∼ λ−(1−s)
Q ‖ div(u⊗ u)Q‖La/2 . (Ds

a,Q(u))2.

This observation motivates our integrability assumption on p in Theorem 2.1 of the Introduction.
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2. Estimates on the Flux

First, we give a decomposition of FQ(ρ, u) which is more conducive to estimates. In order to do so

we define, in analogy with (147), the quantity

rQ(ρ, u, u) =
∫
h̃Q(y)[ρ(x− y)− ρ(x)][u(x− y)− u(x)]⊗ [u(x− y)− u(x)] dy.

Lemma 2.1. FQ(ρ, u) can be written as

FQ(ρ, u) =rQ(ρ, u, u)− 1
ρ≤Q

[(ρu)≤Q − ρ≤Qu≤Q]⊗ [(ρu)≤Q − ρ≤Qu≤Q] + ρ>Qu>Q ⊗ u>Q

+ 2Sym([(ρu)≤Q − ρ≤Qu≤Q]⊗ u>Q) + ρ[(u⊗ u)≤Q − u≤Q ⊗ u≤Q].
(153)

Proof. We can write

rQ(ρ, u, u) = (ρu⊗ u)≤Q − 2Sym[(ρu)≤Q ⊗ u] + ρ≤Qu⊗ u− ρrQ(u, u)

= (ρu⊗ u)≤Q − 2Sym[((ρu)≤Q − ρ≤Qu≤Q)⊗ u]

+ ρ≤Q(u⊗ u− u≤Q ⊗ u− u⊗ u≤Q)− ρrQ(u, u)

= (ρu⊗ u)≤Q − 2Sym[((ρu)≤Q − ρ≤Qu≤Q)⊗ u]

− ρ≤Qu≤Q ⊗ u≤Q + ρ≤Qu>Q ⊗ u>Q − ρrQ(u, u)

= (ρu⊗ u)≤Q − 2Sym[((ρu)≤Q − ρ≤Qu≤Q)⊗ u]− ρ≤Qu≤Q ⊗ u≤Q

− ρ[(u⊗ u)≤Q − u≤Q ⊗ u≤Q]− ρ>Qu>Q ⊗ u>Q,

where Sym denotes the symmetric part. Therefore

(ρu⊗ u)≤Q = rQ(ρ, u, u) + 2Sym([(ρu)≤Q − ρ≤Qu≤Q]⊗ u)

+ ρ[(u⊗ u)≤Q − u≤Q ⊗ u≤Q] + ρ≤Qu≤Q ⊗ u≤Q + ρ>Qu>Q ⊗ u>Q.

Since we also have

(ρu)≤Q ⊗ (ρu)≤Q
ρ≤Q

= 1
ρ≤Q

[(ρu)≤Q − ρ≤Qu≤Q]⊗ [(ρu)≤Q − ρ≤Qu≤Q]

+ 2Sym([(ρu)≤Q − ρ≤Qu≤Q]⊗ u≤Q) + ρ≤Qu≤Q ⊗ u≤Q,

subtracting the right sides of the last two equations gives the desired representation. �
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Theorem 2.2. Assume that 0 < ρ ≤ ρ ≤ ρ <∞ and that (ρ, u, p) satisfies

(154) ρ ∈ B1/3
a,∞, u ∈ B

1/3
b,c0

, p ∈ B1/3
b/2,∞,

1
a

+ 3
b

= 1, b ∈ [3,∞].

Then the flux ΠQ defined by (140) tends to zero as Q→∞.

Proof. Clearly

‖rQ(ρ, u, u)‖Lb/2 .
∫
|h̃Q(y)|‖u(· − y)− u(·)‖2Lb dy,

and we can follow the proof of Proposition 1.1 to conclude ‖rQ(ρ, u, u)‖Lb/2 . λ
−2/3
Q (D1/3

b,Q(u))2.

Using (144), we can estimate∥∥∥∥ 1
ρ≤Q

[(ρu)≤Q − ρ≤Qu≤Q]⊗ [(ρu)≤Q − ρ≤Qu≤Q]
∥∥∥∥
Lb/2
. ρ−1(λ−1/3

Q D
1/3
b,Q(u)ρ)2 . λ−2/3

Q (D1/3
b,Q(u))2

Using ‖ρ>Q‖L∞ ≤ ρ and (146), we get ‖ρ>Qu>Q ⊗ u>Q‖Lb/2 . λ−2/3
Q (D1/3

b,Q(u))2.

Combining (144) and (146) yields

‖[(ρu)≤Q − ρ≤Qu≤Q]⊗ u>Q‖Lb/2 ≤ (λ−1/3
Q D

1/3
b,Q(u)ρ)(λ−1/3

Q D
1/3
b,Q(u)) . λ−2/3

Q (D1/3
b,Q(u))2

Finally,

‖ρ[(u⊗ u)≤Q − u≤Q ⊗ u≤Q]‖Lb/2 . ρλ−2/3(D1/3
b,Q(u))2 . λ−2/3(D1/3

b,Q(u))2.

Therefore,

‖FQ(ρ, u)‖Lb/2 . λ
−2/3
Q (D1/3

b,Q(u))2.

We also have ∇U = ρ−1
≤Q∇(ρu)≤Q − ρ−2

≤Q(ρu)≤Q ⊗ ∇ρ≤Q. Write 1
a + 1

b = 1
c . Then using the two

Propositions of the previous section, we estimate:

‖∇U‖Lc . ‖∇(ρu)≤Q‖Lc + ‖ρu‖Lb‖∇ρ≤Q‖La . λ
2/3
Q

(
D

1/3
a,Q(ρ)‖u‖Lb +D

1/3
b,Q(u)

)
.

Therefore

(155)
∫
FQ(ρ, u) : ∇U dx . (D1/3

b,Q(u))2(D1/3
a,Q(ρ)‖u‖Lb +D

1/3
b,Q(u)

)
Next, we deal with the pressure term. Note that by (22), we have∫

p≤Q divU dx = −
∫
∇p≤Q · (U − u≤Q) dx.
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So ∫
Td
p≤Q divU dx . ‖∇p≤Q‖Lb/2‖(ρu)≤Q − ρ≤Qu≤Q‖Lc

. λ2/3
Q D

1/3
b/2,Q(p) · λ−2/3D

1/3
a,Q(ρ)D1/3

b,Q(u) = D
1/3
a,Q(ρ)D1/3

b,Q(u)D1/3
b/2,Q(p).

Thus

|ΠQ| . D1/3
b,Q(u)

[
D

1/3
b,Q(u)

(
D

1/3
a,Q(ρ)‖u‖Lb +D

1/3
b,Q(u)

)
+D

1/3
a,Q(ρ)D1/3

b/2,Q(p)
]
.

In view of (142) and our assumptions on ρ, u, p, the bracketed term in each estimate is uniformly

bounded in Q, while D1/3
b,Q(u) tends to zero as Q→∞. Therefore limQ→∞ΠQ = 0, as claimed. �

Note that we obtain Theorem 2.2 from the Introduction as a corollary: By Theorem 2.2 (from this

chapter), as well as (142) and the dominated convergence theorem, we have

E≤Q(t)− E≤Q(0) =
∫ t

0
ΠQ(s) ds Q→∞−→ 0.

Now we prove Theorem 2.1 from the Introduction:

Proof. It remains to show εQ(t)→ ε(t) and
∫ t

0
∫

(ρf)≤Q · U dxds→
∫ t

0
∫
ρu · f dxds. Now∫

∇u≤Q : ∇U dx =
∫
∇u≤Q : ∇(U − u≤Q) dx+ ‖∇u≤Q‖2L2 ,

and clearly ∫ t

0
‖∇u≤Q(s)‖2L2 ds→

∫ t

0
‖∇u(s)‖2L2 ds.

Next, ∫
∇u≤Q : ∇(U − u≤Q) dx = −

∫
∆u≤Q : ((ρu)≤Q − ρ≤Qu≤Q)ρ−1

≤Q dx.

Using (144) and the remark following Proposition 1.1 we estimate∣∣∣∣∫ ∆u≤Q : ((ρu)≤Q − ρ≤Qu≤Q)ρ−1
≤Q dx

∣∣∣∣ ≤ ‖∆u≤Q‖L2λ−1
Q ‖u‖H1‖ρ‖L∞ρ−1.

Then

‖∆u≤Q‖L2λ−1
Q ≤

∑
q≤Q

λ2
q−Q‖∇uq‖2L2

1/2

.

Since the latter vanishes as Q→∞ a.e. in time and is uniformly bounded by the dominant H1-norm

of u we obtain

∫ t

0
‖∆u≤Q‖L2λ−1

Q ‖u‖H1 ds ≤ ‖u‖L2H1

∫ t

0

∑
q≤Q

λ2
q−Q‖∇uq‖2L2 ds

1/2

→ 0.
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Finally, the convergence
∫ t

0
∫

(ρf)≤Q · U dxds→
∫ t

0
∫
ρu · f dxds is rather straightforward. Indeed,

write

ρf · u− (ρf)≤Q · U = (ρf − (ρf)≤Q)u+ (ρf)≤Q(u− U).

Note that u, ρf ∈ L2
t,x, hence (ρf)≤Q → ρf strongly in L2

t,x, and hence
∫

(ρf − (ρf)≤Q)u → 0.

Similarly, u−U = 1
ρ≤Q

(ρ≤Qu− (ρu)≤Q) = 1
ρ≤Q

(ρ≤Qu≤Q− (ρu)≤Q) +u>Q. Again, u>Q → 0 in L2
t,x,

while for the difference ρ≤Qu≤Q − (ρu)≤Q we can use (144) with s = 1, a = 2 to conclude that it

also tends to zero in L2
t,x. This finishes the proof. �

Remark 2.3. Let us discuss a few extensions. First, one can see from the proof that the full strength

of the integrability in time assumption on u was not used. Rather, the hypothesis u ∈ Lb(0, T ;B1/3
b,c0

)

can be replaced by the weaker assumption that

lim
q→0

∫ T

0
λb/3q ‖uq‖bLb ds = 0.

This is equivalent to a space-time averaged increment condition

lim
y→0

1
|y|b/3

∫ T

0

∫
Td
|u(x+ y, t)− u(x, t)|b dxdt = 0.

Second, time integrability in (25) can be replaced with its own exponents

ρ ∈ La
′
B

1
3
a,∞, u ∈ Lb

′
B

1
3
b,c0

, p ∈ L b′
2 B

1
3
b
2 ,∞

,
1
a

+ 3
b

= 1, 1
a′

+ 3
b′

= 1.

Finally, it appears possible to extend the results to the system with density-dependent kinematic

viscosity µ = µ(ρ) with sufficiently smooth µ. We leave calculations pertaining to this case to future

research.



CHAPTER 5

Energy Equality and Well-Posedness for the Fractional Euler

Alignment Model1

1. Existence of and Bounds on Regular Solutions

The proof of local-in-time existence of regular solutions of (26)–(27) follows the arguments of [54],

[56] with trivial adjustments to account for the forcing term. The proof of global-in-time existence

mostly carries over to the forced case. The only step that requires adjustment from the unforced

argument is proving L∞ bounds on the quantities u, ρ, ρ−1, and e that do not blow up in finite

time. Once such bounds are established, the proof of global-in-time existence again requires only

minor adjustments to the proof in the unforced case. In what follows we assume that (u, ρ) is a

regular solution and that e = u′ − Λαρ and q = e/ρ. For the purposes of proving global existence

of regular solutions, we only need to show that (u, ρ) remains bounded in H4 ×H3+α on bounded

time intervals (or, effectively, we need to show that u, ρ, and e remain bounded in L∞ on bounded

time intervals); however, we will later construct weak solutions as limits of regular solutions, and

in order to ensure that our L∞ bounds survive the limiting process, we track the dependencies of

these bounds carefully and relate each to the initial data. The limiting process we use also requires

some kind of compactness, which we satisfy by proving bounds in Hölder spaces. We also derive the

energy laws (44) and (45) that are satisfied by regular solutions. These equalities in particular show

that u and ρ are bounded in L2Hα/2 on finite time intervals, with bounds depending only on the

L∞ norms of the initial data and some other fixed quantities.

1.1. L∞ Bounds on First-Order Quantities. We collect the bounds on u, ρ, and e together

in the following proposition.

Proposition 1.1. Let (u, ρ) be a regular solution on the time interval [0,∞), and define e and q as

above. The following bounds hold for some positive constants ci, i = 0, 1, . . . , 4 and for all x ∈ T,

1This chapter is taken from:
[36] T. M. Leslie. Weak and Strong Solutions to the Forced Fractional Euler Alignment System. ArXiv e-prints,
March 2018.
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t ≥ 0.

|u(x, t)| ≤ ‖u0‖L∞ + t‖f‖L∞x,t(156)

c0 exp(−c1t) ≤ ρ(x, t) ≤ c3 exp(c4t)(157)

|q(x, t)| ≤ c2 exp(c1t)(158)

|e(x, t)| ≤ c2c3 exp((c1 + c4)t)(159)

The constants c0 and c2 depend only on ‖ρ−1
0 ‖L∞ , ‖q0‖L∞ , M, and α; the constant c1 depends only

on ‖f ′‖L∞x,t , M, and α; the constant c3 depends only on ‖ρ0‖L∞ , c2, M, and α; and c4 depends

only on c1 and α.

Remark 1.2. Our proof of the lower bound on the density is the same in spirit of the corresponding

bound in [32] and uses a ‘breakthrough scenario’ type argument. We include the argument for our

force f in its entirety for the sake of completeness.

Throughout the proof of Proposition 1.1 (as well as in Section 4.1 below), we will tacitly make use

of the following application of the classical Rademacher Theorem:

Lemma 1.3. Suppose g : T×R+ → R is a Lipschitz function, such that for every x ∈ T, the function

g(x, ·) is differentiable on all of R+. For each t ∈ R+, let x+(t) and x−(t) denote points in T

where g(·, t) achieves its maximum and minimum, respectively, and define g+(t) = g(x+(t), t) and

g−(t) = g(x−(t), t). Then

• g+(t) and g−(t) are Lipschitz, with the same Lipschitz constant as g, and

• ∂tg+(t) = ∂tg(x+(t), t) and ∂tg−(t) = ∂tg(x−(t), t) for a.e. t ∈ R+.

For a proof of this precise statement, see for example the Appendix of [13].

Proof of Proposition 1.1. Part 1: Bounds on u

Let x+(t) and x−(t) denote a maximum and a minimum, respectively, for u(·, t).

We write the velocity equation as

(160) ut + uu′ = −Λα(ρu) + uΛαρ+ f =
∫
R

u(·+ z)− u
|z|1+α ρ(·+ z) dz + f.

It is clear from the form of the integral in (160) and the nonnegativity of ρ that

[−Λα(ρu) + uΛα(ρ)](x+(t), t) ≤ 0 ≤ [−Λα(ρu) + uΛα(ρ)](x−(t), t).
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This immediately implies that

[∂tu− f ](x+(t), t) ≤ 0 ≤ [∂tu− f ](x−(t), t),

so that

∂t‖u(t)‖L∞ ≤ ‖f‖L∞t,x ,

from which (156) follows by integration.

Part 2: Lower Bound on ρ; Bounds on q

To avoid estimating ρ in terms of derivatives of u, we rewrite the density equation as

(161) ρt + uρ′ = −qρ2 − ρΛαρ.

Evaluating at a minimum x−(t) of ρ(·, t), we obtain

(162) ∂tρ(x−(t), t) ≥ −‖q(t)‖L∞ρ−(t)2 + ρ−(t)Λαρ(x−(t), t).

Here ρ−(t) denotes the minimum of ρ at time t. (Below we will use the analogous notation ρ+(t) for

the maximum at time t.) We now require a bound on q, which is feasible because of the transport

equation (34) that it satisfies. We have

(163) ‖q(t)‖L∞ ≤ ‖q0‖L∞ + ‖f ′‖L∞x,t

∫ t

0
ρ−(s)−1 ds,

Now we can substitute (163) into (162) to eliminate q(t). We obtain

(164) ∂tρ(x−(t), t) ≥ −
[
‖q0‖L∞ + ‖f ′‖L∞x,t

∫ t

0
ρ−(s)−1 ds

]
ρ−(t)2 + ρ−(t)Λαρ(x−(t), t).

In order to establish the desired lower bound on ρ, we use (164) and argue by contradiction. But

let us first define the constants involved. Denote ι(r) := inf |x|<r φα(x), where φα is as in (28). Note

that ι(r) <∞ for all r > 0 and that ι(π) = infx∈T φα(x) > 0. Define

(165) c0 = 1
2 min

{
ρ−(0), ι(π)M

2πι(π) + ‖q0‖L∞

}
, c1 =

2‖f ′‖L∞x,t
ι(π)M ,

We claim that the desired lower bound on ρ holds for this choice of c0, c1. Indeed, suppose that

the lower bound in (157) fails; then we can define t0 := inf{t ≥ 0 : ρ−(t) = c0 exp(−c1t)}. Clearly

t0 > 0, since ρ−(0) ≥ 2c0 by definition of c0. Furthermore, ρ−(s) ≥ c0 exp(−c1s) for s ∈ [0, t0], so
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that

‖q0‖L∞ + ‖f ′‖L∞x,t

∫ t0

0
ρ−(s)−1 ds ≤ ‖q0‖L∞ + ‖f ′‖L∞x,t

∫ t

0
c−1
0 exp(c1s) ds

= ‖q0‖L∞ + ι(π)M
2 [ρ−(t0)−1 − c−1

0 ]

≤ ‖q0‖L∞ + ι(π)M
2

[
ρ−(t0)−1 − 2(2πι(π) + ‖q0‖L∞)

ι(π)M

]
= ι(π)M

2ρ−(t0) − 2πι(π).

We also have

Λαρ(x−(t0), t0) =
∫
T
φα(z)(ρ(x−(t0) + z, t0)− ρ−(t0)) dz

≥
∫
T
ι(π)(ρ(x− + z, t0)− ρ−(t0)) dz

= ι(π)M− 2πι(π)ρ−(t0).

Substituting the two previous estimates into (164) then gives us

∂tρ(x−(t0), t0) ≥ −
[
ι(π)M
2ρ−(t0) − 2πι(π)

]
ρ−(t0)2 + ρ−(t0)[ι(π)M− 2πι(π)ρ−(t0)]

= ρ−(t0)ι(π)M
2 > 0.

It follows that ρ−(s) < c0 exp(−c1s) for some time s < t0, contradicting our choice of t0. This proves

the lower bound on ρ.

The bound (158) on q is obtained, with c2 = ι(π)M/(2c0), by substituting the lower bound on ρ

into (163).

Part 3: Upper Bound on ρ; Bounds on e

For this bound, we exploit the singularity of the kernel, using the fact that lim supr→0 rι(r) = ∞.

Recall that for z ∈ [−π, π]\{0}, φα(z) is defined as in (28), so that for r ∈ (0, π], we have

ι(r) = 1
r1+α +

∑
k∈N

1
(2πk + r)1+α +

∑
k∈N

1
(2πk − r)1+α .

Both the sums in the equation above are bounded by some constant: ι(r) ≤ r−1−α + C. Let

r0 ∈ (0, π) be such that r−1−α
0 = C. (This is certainly possible, because taking r = π in the second

sum above shows that C > π−1−α.) Then

(166) r−1−α ≤ ι(r) ≤ 2r−1−α, for r ∈ (0, r0).
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Now we define

(167) c3 = max
{

2‖ρ0‖L∞x , 4M(2c2) 1
α ,

2
c2
Mr−1−α

0

}
, c4 = 1 + α

α
c1.

We claim that the desired upper bound for ρ holds for this choice of c3, c4. Suppose that the upper

bound of (157) fails; then we can define t0 := inf{t ≥ 0 : ρ+(t) = c3 exp(c4t)}. Clearly t0 > 0, since

ρ+(0) ≤ c3/2 by definition of c3.

Let x+(t0) denote the x-value where the maximum of ρ(·, t0) is achieved and put

r1 := min
{

(2c2 exp(c1t0))−
1
α , r0

}
.

Then

∂tρ(x+(t0), t0) ≤ ‖q(t0)‖L∞ρ+(t0)2 + ρ+(t0)
∫
|z|<r1

φα(z)(ρ(x+(t0) + z, t0)− ρ+(t0)) dz

≤ ‖q(t0)‖L∞ρ+(t0)2 + ι(r1)ρ+(t0)(M− r1ρ+(t0))

= [‖q(t0)‖L∞ − r1ι(r1)]ρ+(t0)2 + ι(r1)Mρ+(t0).

By choice of r1, we have

r1ι(r1) ≥ r−α1 ≥ 2c2 exp(c1t0).

Combining this with the upper bound in (158), we continue the estimate above:

∂tρ(x+(t0), t0) ≤ [c2 exp(c1t0)− 2c2 exp(c1t0)]ρ+(t0)2 + ι(r1)Mρ+(t0)

= [ι(r1)M− c2 exp(c1t0)ρ+(t0)]ρ+(t0).

But then by our choices of r0, r1, c3, c4, and t0, we have

ι(r1)M≤ 2
[
min

{
(2c2 exp(c1t0))−

1
α , r0

}]−1−α
· M

= 2Mmax
{

(2c2 · (2c2) 1
α exp(c4t0), r−1−α

0

}
≤ c2 max

{
4M (2c2)

1
α ,

2
c2
Mr−1−α

0

}
exp(c4t0)

≤ c2c3 exp(c4t0) = c2ρ+(t0),

which implies that

∂tρ(x+(t0), t0) ≤ c2ρ+(t0)2[1− exp(c1t0)] < 0,

contradicting the definition of t0. This proves the upper bound on ρ.
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In light of the relation e = qρ, the upper bound (159) on e is obtained by multiplying the upper

bounds for q and ρ. �

As noted above, this essentially completes the proof of the existence of a global-in-time regular

solution for any initial data (u0, ρ0) ∈ H4 ×H3+α away from vacuum.

1.2. Energy Equality and Bounds in L2Hα/2. Next, we recall that regular solutions satisfy

the certain energy equalities (44), (45). Multiplying the velocity equation by ρ and the density

equation by u, then adding the results together, we obtain the momentum equation:

(168) (ρu)t + (ρu2)′ = −ρΛα(ρu) + ρuΛαρ+ ρf.

Multiply (168) by u and add ρu times the velocity equation. The result is

(169) (ρu2)t + (ρu3)′ = −2ρu[Λα(ρu)− uΛαρ] + 2ρuf,

or, after integration,

d
dt

∫
T
ρu2 dx = −

∫
T

2ρuΛα(ρu)− 2ρu2Λαρ dx+ 2
∫
T
ρuf dx

= −
∫
T

2ρuΛα(ρu)− ρu2Λαρ− ρΛα(ρu2) dx+ 2
∫
T
ρuf dx

= −
∫
T

∫
R
ρ(x)ρ(y) |u(x)− u(y)|2

|x− y|1+α dy dx+ 2
∫
T
ρuf dx.

We used the self-adjointness of Λα to pass from the first to the second line. Integrating in time, we

obtain the following energy equality:

1
2

∫
T
ρu2(t) dx+

∫ t

0

∫
T

∫
R
ρ(x)ρ(y) |u(x)− u(y)|2

|x− y|1+α dy dxds = 1
2

∫
T
ρ0u

2
0 dx+

∫ t

0

∫
T
ρuf dx ds,

which is (44). This equality also proves that u is bounded in L2(0, T ;Hα/2) by a constant depending

on ‖u0‖L∞ , ‖ρ0‖L∞ , ‖ρ−1
0 ‖L∞ , ‖e0‖L∞ , ‖f‖L∞t W 1,∞

x
, M, T , and α.

The derivation of (45) is similar. We start with the density equation, multiply by ρ, and integrate,

obtaining

1
2

d
dt

∫
T
ρ(t)2 dx = −

∫
T
(ρu)′ρdx = 1

2

∫
T
(ρ2)′udx = −1

2

∫
T
ρ2(e+ Λαρ) dx

= −1
2

∫
T
eρ2 + ρ2Λαρdx.
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Symmetrizing, we get∫
T
ρ2Λαρ dx = 1

2

∫
T

∫
R

(ρ2(x)− ρ2(y))ρ(x)− ρ(y)
|x− y|1+α dy dx = 1

2

∫
T

∫
R

(ρ(x) + ρ(y)) |ρ(x)− ρ(y)|2

|x− y|1+α dy dx.

Therefore∫
T
ρ(t)2 dx+ 1

2

∫ t

0

∫
T

∫
R
(ρ(x) + ρ(y)) |ρ(x)− ρ(y)|2

|x− y|1+α dy dxds =
∫
T
ρ2

0 dx−
∫ t

0

∫
T
eρ2 dxds,

which is (45). Thus ρ is also bounded in L2(0, T ;Hα/2) by a constant depending only on ‖ρ0‖L∞x ,

‖ρ−1
0 ‖L∞x , ‖e0‖L∞x , ‖f‖L∞t W 1,∞

x
, M, α, and T . Finally, since L∞ ∩Hα/2 is an algebra, we have that

ρu is bounded in L2(0, T ;Hα/2), with a bound that depends only on ‖f‖L∞t W 1,∞
x

,M, α, T , and the

L∞ norms of u0, ρ0, ρ−1
0 , and e0.

1.3. Bounds in Hölder Spaces. Let [·]Cγ(T) denote the Hölder seminorm

[g]Cγ(T) = sup
x,y∈T
x6=y

|g(x)− g(y)|
|x− y|γ

,

for any g ∈ Cγ(T). Below we will write Cγ for Cγ(T), with the understanding that this will always

denote the seminorm with respect to spatial variables only (not including time). As mentioned

above, our construction of weak solutions will require bounds on u and ρ in some Hölder space. The

precise statement that we use is recorded below:

Proposition 1.4. Let (u, ρ) be a regular solution on the time interval [0,∞). There exists γ > 0

such that ρ, m = ρu, and u satisfy bounds of the form

[ρ(t)]Cγ ≤ t−γ/αCT , t ∈ (0, T ](170)

[m(t)]Cγ ≤ t−γ/αCT , t ∈ (0, T ](171)

[u(t)]Cγ ≤ t−γ/αCT , t ∈ (0, T ].(172)

The constants CT may depend on ‖f‖L∞t W 1,∞
x

, M, α, T , and the L∞ norms of u0, ρ0, ρ−1
0 , and e0.

The number γ ultimately depends only on these same quantities.

Remark 1.5. For the purposes of constructing a weak solution, the bounds

[u(t)]Cγ ≤ Cδ,T , [ρ(t)]Cγ ≤ Cδ,T , t ∈ [δ, T ].

would suffice. (Here Cδ,T is a constant that may depend on the same quantities as CT above, and

also may depend on δ.) However, the explicit bound (170) will be used later to control ρ′.
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Remark 1.6. The main Theorem of [57] plays a key role here. In the case when α ∈ (0, 1),

the hypothesis of [57] asks for the drift u to be C1−α
x,t (in both time and space). However, all

that is really used in the proof there is the Hölder regularity in space, uniformly in time, i.e.

L∞(0, T ;C1−α). This is fortunate for us, since the latter is exactly the norm we can control for

u, by the equality e = u′ − Λαρ. Therefore, when we refer to the result of [57] here and below,

it should be understood that (when α ∈ (0, 1)) we consider the version of the statement with the

relaxed hypothesis u ∈ L∞(0, T ;C1−α).

Proof. The bound (172) follows from (170), (171), and the bounds from the previous subsec-

tion, since

u(y)− u(x) = ρ(y)−1[m(y)−m(x)] + u(x)ρ(y)−1[ρ(x)− ρ(y)].

As for (170) and (171), we begin by writing the density and momentum equations in parabolic form:

ρt + uρ′ + ρΛαρ = −eρ(173)

mt + um′ + ρΛαm = −em+ ρf.(174)

The diffusion operator ρΛα for these equations has kernel K(x, h, t) = ρ(x, t)|h|−1−α, so they are of

the type considered in [57]. The quantities −eρ and −em + ρf play the role of (bounded) forcing

terms. In order to apply the main result of [57], we split into two cases. In the first case, we assume

α ∈ (0, 1). In this case, we apply ∂−1
x to the relation u′ = e + Λαρ, then take C1−α norms, to

conclude that u(t) is bounded in C1−α, with bounds that depend only on ‖f‖L∞t W 1,∞
x

, M, α, T ,

and the L∞ norms of u0, ρ0, ρ−1
0 , and e0. (Notice that (172) is actually trivially satisfied in this

case.) Therefore the hypothesis of the main theorem of [57] is satisfied, and we may conclude that

that there exists γ > 0, depending only on ‖u‖L∞(0,T ;C1−α), such that

[ρ(t)]Cγ ≤
CT
tγ/α

(‖ρ‖L∞(T×(0,T )) + ‖eρ‖L∞(T×(0,T )))(175)

[m(t)]Cγ ≤
CT
tγ/α

(‖m‖L∞(T×(0,T )) + ‖em− ρf‖L∞(T×(0,T ))),(176)

where the constant CT here depends only on T and ‖u‖L∞(0,T ;C1−α). Absorbing the L∞ norms

on the right hand sides of (175) and (176), and recalling that C1−α depends only on ‖f‖L∞t W 1,∞
x

,

M, α, T , and the L∞ norms of u0, ρ0, ρ−1
0 , and e0, we obtain (170) and (171), with the claimed

dependencies.

The situation is similar if α ∈ [1, 2). In this [57] gives us γ > 0, depending only on ‖u‖L∞(T×(0,T )),

such that (175) and (176) continue to hold, with CT depending only on T and ‖u‖L∞(T×(0,T )). Since
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‖u‖L∞(T×(0,T )) itself depends only on ‖f‖L∞t W 1,∞
x

, M, α, T , and the L∞ norms of u0, ρ0, ρ−1
0 , and

e0, this completes the proof of the second case. �

Remark 1.7. In the case α ∈ (1, 2), we can apply ∂−αx to the relation Λαρ = u′− e, then take Cα−1

norms, to conclude that ρ is bounded in Cα−1, with bounds that depend only on ‖f‖L∞t W 1,∞
x

, M,

α, T , and the L∞ norms of u0, ρ0, ρ−1
0 , and e0. In particular, the bound (170) is trivially satisfied

in this case.

1.4. Bounds on Time Derivatives.

Proposition 1.8. Let (u, ρ) be a regular solution on the time interval [0,∞) and let e = u′ − Λαρ.

Then for any T > 0, ∂tu is bounded in L2(0, T ;H−α/2). Furthermore, ∂tρ and ∂te are bounded in

L∞(0, T ;H−1). In each case, the bounds depend only on ‖f‖L∞t W 1,∞
x

, M, α, T , and the L∞ norms

of u0, ρ0, ρ−1
0 , and e0.

Proof. For ϕ ∈ Hα/2(T), we have

〈u(t), ϕ〉H−α/2×Hα/2 − 〈u(s), ϕ〉H−α/2×Hα/2 =
∫ t

s

〈g(s), ϕ〉H−α/2×Hα/2 ds,

where

〈g(s), ϕ〉H−α/2×Hα/2 =
∫
T
−ue(s)ϕ− Λα/2(ρu)(s)Λα/2ϕ+ f(s)ϕdx.

Since

‖g(s)‖H−α/2 ≤ C[‖u(s)‖L∞‖e(s)‖L∞ + ‖ρu(s)‖Hα/2 + ‖f(s)‖L∞ ],

the desired bound on ∂tu thus follows from the results of Sections 1.1 and 1.2.

For ϕ ∈ H1(T), we have

〈ρ(t), ϕ〉H−1×H1 − 〈ρ(s), ϕ〉H−1×H1 =
∫ t

s

∫
T
ρu(s)ϕ′ dxds.

Therefore

‖∂tρ(s)‖H−1 ≤ C‖ρu(s)‖L∞ ,

so that the desired bound on ∂tρ follows from the results of Section 1.1. The bound for ∂te can be

proved in the same way. �
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2. Weak Solutions

2.1. Properties of General Weak Solutions. Let (u, ρ, e) be a weak solution on the time

interval [0, T ] associated to the initial data (u0, ρ0, e0) ∈ L∞×L∞×L∞. The purpose of this section

is to record three simple facts about such a general weak solution, namely

• The quantity e satisfies a weak form of (33). That is, for all ϕ ∈ C∞(T × [0, T ]) and a.e.

t ∈ [0, T ], we have

(177)
∫
T
e(t)ϕ(t) dx−

∫
T
e0ϕ(0) dx−

∫ t

0

∫
T
e∂tϕdx ds =

∫ t

0

∫
T
ueϕ′ + f ′ϕdxds.

• The solution (u, ρ, e) converges weak-∗ in L∞ to the initial data.

• The weak time derivative of u is a well-defined element of L2(0, T ;H−α/2); the weak time

derivatives of ρ and e are well-defined elements of L∞(0, T ;H−1).

To see that the first of these is true, note first that (40) implies that for all for all ϕ ∈ C∞(T× [0, T ])

and a.e. t ∈ [0, T ], we have ∫
T
eϕ(t) + uϕ′(t) + ρΛαϕ(t) dx = 0.

For any t ∈ [0, T ] for which the above holds and any ϕ ∈ C∞(T× [0, T ]), we have then that∫
T
e(t)ϕ(t) dx−

∫
T
e0ϕ(0) dx

= −
[∫

T
uϕ′(t) dx−

∫
T
u0ϕ

′(0) dx
]
−
[∫

T
ρΛαϕ(t) dx−

∫
T
ρ0Λαϕ(0) dx

]
= −

[∫ t

0

∫
T
u∂tϕ

′ dxds− ueϕ′ − ρuΛαϕ′ + fϕ′ dxds
]
−
[∫ t

0

∫
T
ρ∂tΛαϕdxds+ ρuΛαϕ′ dx ds

]
= −

∫ t

0

∫
T
u(∂tϕ)′ + ρΛα(∂tϕ) dxds+

∫ t

0

∫
T
ueϕ′ + f ′ϕdxds

=
∫ t

0

∫
T
e∂tϕdx ds+

∫ t

0

∫
T
ueϕ′ + f ′ϕdxds.

This proves (177), for a.e. t ∈ [0, T ] and all ϕ ∈ C∞(T× [0, T ]).

To observe the weak-∗ convergence to the initial data, substitute any (time-independent) ϕ ∈ C∞(T)

into the weak formulation (38), (39) or into (177). Clearly
∫
T(u(t)− u0)ϕdx → 0 as t → 0+, since

the right side of (38) is an integral from 0 to t of an integrable quantity. Since C∞(T) is dense in

L1(T), we conclude that
∫
T(u(t)−u0)ϕdx→ 0 as t→ 0+, for any ϕ ∈ L1(T), i.e. u(t) ∗⇀ u0 weak-∗

in L∞, as t→ 0+. The situation is similar for ρ and e.
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Finally, the statement regarding the time derivatives is proved in a manner similar to that of Section

1.4.

2.2. Construction of a Weak Solution. In this section we construct a weak solution as a

subsequential limit of regular solutions with mollified initial data, as the mollification parameter

tends to zero. The following version of the Aubin-Lions-Simon compactness Lemma ([58], c.f.

Theorem II.5.16 in [1]) will allow us to use the bounds from Section 1 to choose an appropriate

subsequence.

Lemma 2.1. Let X ⊂ Y ⊂ Z be Banach spaces, where the embedding X ⊂ Y is compact and the

embedding Y ⊂ Z is continuous. Assume p, r ∈ [1,∞], and define for T > 0 the following space:

E = {v ∈ Lp(0, T ;X) : dv
dt ∈ L

r(0, T ;Z)}.

(1) If p <∞, the embedding E ⊂ Lp(0, T ;Y ) is compact.

(2) If p =∞ and r > 1, then the embedding E ⊂ C([0, T ], Y ) is compact.

Let γ be as in Section 1.3. In the notation of the Aubin-Lions-Simon Lemma, we set

XT = Cγ , Y = C0, Z = H−1, Eδ,T = {v ∈ L∞(δ, T ;Cγ) : ∂tv ∈ L2(δ, T ;H−1)}.

The conclusion of the Lemma is then that the embedding Eδ,T ⊂ C([δ, T ];C0) is compact for any

T > δ > 0.

Choose (u0, ρ0, e0) ∈ L∞ × L∞ × L∞, satisfying ρ−1
0 ∈ L∞ and the compatibility condition (37).

Let η ∈ C∞c (R) be a standard mollifier (
∫
η = 1, supp η ⊂ {|x| ≤ 1}), and let fε denote the

convolution of f by ε−1η(ε−1·): fε(x) = ε−1 ∫
R η(ε−1y)f(x − y) dy. Let (uε, ρε) denote the global

strong solution associated to the initial data ((u0)ε, (ρ0)ε) and let eε = (uε)′ − Λαρε. Note that

(e0)ε = (u0)′ε − Λα(ρ0)ε = eε(0) automatically.

Claim 2.2. The sequences uε and ρε are bounded in Eδ,T for any T > δ > 0.

Proof. Fix T > δ > 0. In order to prove the claim, one needs to prove the following two

statements:

(1) uε and ρε are bounded sequences of L∞(δ, T ;Cγ).

(2) ∂tu
ε and ∂tρ

ε are bounded sequences of L2(δ, T ;H−1).
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We have essentially proved these statements already. We provide the remaining details for half of

the first statement only; the rest follows the same reasoning.

Section 1.3 establishes that the norm of uε in L∞(δ, T ;Cγ) can be bounded above by a quantity

that depends only on ‖f‖L∞t W 1,∞
x

,M, α, T , δ, and the L∞ norms of (u0)ε, (ρ0)ε, (ρ0)−1
ε , and (e0)ε.

But these L∞ norms are bounded by those of u0, ρ0, ρ−1
0 , and e0, respectively, and the remaining

quantities are fixed. Therefore uε is a bounded sequence in L∞(δ, T ;Cγ). �

Applying the Aubin-Lions-Simon Lemma, we can now choose a subsequence {εk}, tending to zero as

k →∞, such that uεk and ρεk converge (strongly) in C([2−N , 2N ];C0), with N any natural number.

Using a standard diagonal argument, we obtain a further subsequence, which we continue to denote

by εk, such that uεk and ρεk converge to functions u and ρ, respectively, in Cloc((0,∞);C0).

Using the same logic as in the Claim above, we also have that eε is bounded in L∞(T× [0, T ]) and

both uε and ρε are bounded in L2(0, T ;Hα/2). Therefore we may choose a further subsequence (still

denoted εk) such that eεk converges weak-∗ in L∞(T× [0, T ]) to some e ∈ L∞(T× [0, T ]), and so that

uεk and ρεk converge weakly in L2(0, T ;Hα/2) to u and ρ. Then we can use a diagonal argument

as above to send T →∞. To summarize, there exists a subsequence {εk} and a triple (u, ρ, e), such

that as k →∞, we have

uεk → u and ρεk → ρ strongly in Cloc((0,∞);C0);

uεk ⇀ u and ρεk ⇀ ρ weakly in L2
loc(0,∞;Hα/2);

eεk
∗
⇀ e weak- ∗ in L∞loc(T× [0,∞)).

Now (uεk , ρεk) is a regular solution (therefore (uεk , ρεk , eεk) is a weak solution) for each k. We can

therefore consider each term in each equation of the weak formulation and easily see that the above

convergences guarantee that (u, ρ, e) satisfies the weak formulation. This completes the existence

part of Theorem 2.9. The construction gives Hölder continuity on compact sets of T×(0,∞). Indeed,

if γ is the Hölder exponent associated to the interval [0, T ] as in Section 1.3, then for any γ̃ ∈ (0, γ),

the convergences uεk → u and ρεk → ρ can be taken in L∞(δ, T ;C γ̃) for any fixed δ > 0.

Remark 2.3. If α 6= 1, slightly more information is available. If 0 < α < 1, then the above

construction can be modified slightly to give uεk → u in C([0,∞);C1−α−κ), for any κ ∈ (0, 1− α);

if 1 < α < 2, then we can obtain ρεk → ρ in C([0,∞);Cα−1−κ) for any κ ∈ (0, α− 1).
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2.3. Energy Inequality for Constructed Solutions. We now prove that the solutions con-

structed above satisfy (42) and (43). To prove these inequalities, we essentially use the fact that they

are true (with equality) for regular enough solutions, then pass to the limit k →∞ in the sequence

(uεk , ρεk , eεk) from the proof of existence above. However, since the solution behaves a little better

away from time zero, we initially work on [δ, t] for some δ > 0. We prove (42) first. We start with

the equality

(178)
∫
T
ρεk(uεk)2(s) dx

∣∣∣∣t
δ

+
∫ t

δ

∫
T

∫
R
ρεk(x)ρεk(y) |u

εk(x)−uεk(y)|2

|x− y|1+α dy dxds = 2
∫ t

δ

∫
T
ρεkuεkf dxds.

The first term and the forcing term are easily seen to converge to their natural limits, by uniform

convergence of ρεk , uεk on any time interval [δ, T ]. To deal with the second term on the left, we

write

(179)
∫ t

δ

∫
T

∫
R

[ρεk(x)ρεk(y)− ρ(x)ρ(y)] |u
εk(x)− uεk(y)|2

|x− y|1+α dy dx ds→ 0, as k →∞,

which is valid by uniform convergence of ρεk away from time zero, as well as the L2Hα/2 bound on

uεk , which is uniform in k. We also have

(180)
∫ t

δ

∫
T

∫
R
ρ(x)ρ(y) |u(x)−u(y)|2

|x− y|1+α dy dx ds ≤ lim inf
k→∞

∫ t

δ

∫
T

∫
R
ρ(x)ρ(y) |u

εk(x)−uεk(y)|2

|x− y|1+α dy dxds,

by weak lower semicontinuity. Taking limits in (178) thus yields

(181)
∫
T
ρu2(t) dx+

∫ t

δ

∫
T

∫
R
ρ(x)ρ(y) |u(x)− u(y)|2

|x− y|1+α dy dxds ≤
∫
T
ρu2(δ) dx+ 2

∫ t

δ

∫
T
ρuf dxds

Next, we note that

(182)
∫
T
ρεk(uεk)2(δ) dx ≤

∫
T
(ρ0)εk(u0)2

εk
dx+ 2

∫ δ

0

∫
T
ρεkuεkf dxds.

This is obtained from the energy equality for (uεk , ρεk) on [0, δ], by dropping the enstrophy term.

We can estimate the force term on the right by Cδ, where C is independent of k and δ (but may

depend on t), and then take k → ∞. The term on the left converges to its natural limit for the

same reason as above; the initial data term converges to its natural limit by standard properties of

mollifiers. We are left with ∫
T
ρu2(δ) dx ≤

∫
T
ρ0u

2
0 dx+ Cδ.

Combining this with (181), we obtain

(183)
∫
T
ρu2(t) dx+

∫ t

δ

∫
T

∫
R
ρ(x)ρ(y) |u(x)− u(y)|2

|x− y|1+α dy dxds ≤
∫
T
ρ0u

2
0 dx+2

∫ t

δ

∫
T
ρuf dxds+Cδ.
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And now, taking δ → 0 yields (42).

The inequality (43) is proved in a very similar way. The only difference in approach is for the last

term, on [δ, t]. We write∫ t

δ

∫
T
eεk(ρεk)2 dxds−

∫ t

δ

∫
T
eρ2 dxds =

∫ t

δ

∫
T
eεk [(ρεk)2 − ρ2] dxds+

∫ t

δ

∫
T
(eεk − e)ρ2 dx ds.

We use uniform convergence of the ρεk on [δ, t] to treat the first term and weak-∗ convergence of eεk

to treat the second. This finishes the proof of the inequalities (42), (43).

2.4. The Case of a Compactly Supported Force. If the force f is identically zero, or, more

generally, if it is compactly supported in time, then there are several implications for the solutions

we have constructed. We take a moment to collect a few of these.

(1) If f ≡ 0, then the constants c1 and c4 from (157)–(159) are both zero, so that u, ρ, ρ−1,

and e can all be bounded above for all time by constants. If f is compactly supported in

time, then all these quantities are still uniformly bounded, but the constants we can use

to bound them will be larger, due to the potential growth during the time interval where

f is supported. These uniform bounds will survive the limiting process used to construct

weak solutions.

(2) As a consequence of the uniform boundedness of u, ρ, ρ−1, and e, the quantity γ from

Section 1.3 can be taken to be independent of T . Thus, the Hölder regularization will

survive the limiting process (with Hölder exponent γ − κ for any κ ∈ (0, γ)).

(3) As soon as the force is turned off, we have a fast alignment of the velocity field; that is,

the velocity amplitude A(t) = maxx,y |u(x, t)−u(y, t)| decays exponentially fast for regular

solutions. In particular, the case of zero force gives

A(t) ≤ A(0)e−Mι(π)t,

where ι(r) = inf |x|<r φα(x) and φα is the kernel of Λα, as above. See Lemma 1.1 of [55]

for the short proof of this statement. Therefore the alignment survives the limiting process

used to construct weak solutions, so that (the constructed) weak solutions also enjoy the

alignment property if the force is compactly supported.

The constructed weak solutions do not possess quite enough regularity for us to prove that they

experience flocking (which also requires convergence of the density profile) in the case of a compactly
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supported force; however, we will see that flocking occurs for strong solutions under the assumption

of compactly supported force.

3. Energy Balance for Weak Solutions

In this section, we provide conditions which guarantee that the natural energy laws hold for weak

solutions. We emphasize that the criteria we consider apply to any weak solutions, not just those

weak solutions which can be constructed as in the previous section.

To begin with, we note that it turns out to be easier to work with a momentum-based equation

when proving (44). However, due to the limited regularity of our weak solutions, we must prove

that such a formulation is valid for our solutions. In this proof and those below, we will make use of

Littlewood-Paley theory, for which we some basic notions have already been introduced in Chapter

4. Actually, we will make extensive use of the commutator estimates proved there.

3.1. The Weak Momentum Equation. For smooth functions f and g, we define

T (f, g) = −Λα(fg)− gΛαf.

When (ρ, u, e) is a weak solution, we can make sense of the expression ρT (ρ, u) in a weak sense.

Define X = Hα/2 ∩ L∞, and for each s > 0, let ρT (ρ, u)(s) denote the element of X∗ given by

〈ρT (ρ, u), ϕ〉X∗,X =
∫
−Λα/2(ρu)Λα/2(ρϕ) + Λα/2(ρ)Λα/2(ρuϕ) dx.

Proposition 3.1. Let (u, ρ, e) be a weak solution on the time interval [0, T ]. Then for each ϕ ∈

C∞(T× [0, T ]) and a.e. t ∈ [0, T ], we have that∫
ρuϕ(t) dx−

∫
ρ0u0ϕ(0) dx−

∫ t

0

∫
ρu∂tϕ(s) dx ds

=
∫ t

0

∫
ρu2ϕ′ dx ds+

∫ t

0
〈ρT (ρ, u), ϕ〉X∗,X ds+

∫ t

0

∫
ρfϕ dx ds.

(184)

Proof. Substitute the test function (ρ≤Qϕ)≤Q into the weak velocity equation. We obtain∫
T
ρ≤Qu≤Q(t)ϕ(t) dx−

∫
T
(ρ0)≤Q(u0)≤Qϕ(0) dx−

∫ t

0

∫
T
u≤Q(∂tρ≤Qϕ+ ρ≤Q∂tϕ) dxds

=
∫ t

0

∫
T
−(ue)≤Qρ≤Qϕ− (ρu)≤QΛα(ρ≤Qϕ) + ρ≤Qf≤Qϕdxds.

(185)
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Then substitute (u≤Qϕ)≤Q into the weak density equation:∫
T
ρ≤Qu≤Q(t)ϕ(t) dx−

∫
T
(ρ0)≤Q(u0)≤Qϕ(0) dx−

∫ t

0

∫
T
ρ≤Q(∂tu≤Qϕ+ u≤Q∂tϕ) dxds

=
∫ t

0

∫
T
(ρu)≤Q(u′≤Qϕ+ u≤Qϕ

′) dxds.
(186)

Finally, project the compatibility condition onto the first Q modes:

(187) e≤Q = u′≤Q − Λαρ≤Q

We use (187) to eliminate u′≤Q from (186), then we add the result to (185). We obtain∫
T
ρ≤Qu≤Q(t)ϕ(t) dx−

∫
T
(ρ0)≤Q(u0)≤Qϕ(0) dx−

∫ t

0

∫
T
ρ≤Qu≤Q∂tϕdxds

=
∫ t

0

∫
T
(ρu)≤Qu≤Qϕ′ dxds+

∫ t

0

∫
[(ρu)≤Qe≤Q − ρ≤Q(ue)≤Q]ϕdxds

+
∫ t

0

∫
(ρu)≤Q[ϕΛαρ≤Q − Λα(ρ≤Qϕ)] dxds+ ρ≤Qf≤Qϕdx ds.

Note that we have used the product rule and the fundamental theorem of calculus to simplify the

left side of this equation. It should now be clear that each integral converges to its natural limit, so

that the equation (184) holds. �

Remark 3.2. It seems likely that the converse direction is also true, i.e., that replacing (38) with

(184) should give an equivalent weak formulation. To try to prove this, one might try the following

strategy: Denote U := ρ−1
≤Q(ρu)≤Q and substitute (ρ−1

≤Qϕ)≤Q into (184). Subtract from this equation

the result of substituting
(
ρ−1
≤QUϕ

)
≤Q

into (39). After performing some manipulations, one obtains

∫
Uϕ(t) dx−

∫
Uϕ(0) dx−

∫ t

0

∫
U∂tϕ(t) dx

=
∫ t

0

∫
[(ρu2)≤Q − (ρu)≤QU ]

(
ϕ

ρ≤Q

)′
dxds+

∫ t

0

∫
(ρT (ρ, u))≤Q

ϕ

ρ≤Q
− ϕT (ρ≤Q, u≤Q) dxds

+
∫ t

0

∫
−ρ≤Qu≤QΛαϕ− u≤Qe≤Qϕ+ (ρf)≤Q

ρ≤Q
ϕdxds+ 1

2

∫ t

0
(U2 − u2

≤Q)ϕ′ dx ds.

All integrals on the left side and the last two integrals on the right side obviously converge to

the natural limits. The second term on the right side also converges to zero, though this requires

some work (involving computations similar to those of Section 3.4). However, it appears that the

first term on the right side requires some additional smoothness in order to pass to the limit; the

Onsager-type assumption (191) below is sufficient. Therefore, we can currently claim only that the

two weak formulations are equivalent under this additional assumption. As noted below, (191) is

automatically satisfied when α ≥ 1.
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3.2. The Energy Budget. Let E≤Q(t) denote the energy associated to scales λq for q ≤ Q,

and let E(t) denote the total energy:

E≤Q(t) = 1
2

∫ (ρu)2
≤Q

ρ≤Q
(t) dx; E(t) = 1

2

∫
ρu2(t) dx.

The energy budget relation at scales q ≤ Q has the same structure as the one for the inhomogeneous

Navier-Stokes system, which was derived in Chapter 4, Section 1.3. We do not re-derive it here;

rather we simply recall the form of the equation:

(188) E≤Q(t)− E≤Q(0) =
∫ t

0
ΠQ(s) ds− εQ(t) +

∫ t

0

∫
(ρf)≤Q · U dxds.

As before, ΠQ(s) is the flux through scales of order Q due to the nonlinearity, defined by

ΠQ =
∫
FQ(ρ, u)U ′ dx;(189)

FQ(ρ, u) = (ρu2)≤Q − U(ρu)≤Q.(190)

The quantities εQ and
∫ t

0
∫

(ρf)≤Q ·U dxds represent the change in energy due to the local interac-

tions and the external force, respectively, at scales q ≤ Q. Now εQ is given by a different expression

than in the inhomogeneous Navier-Stokes case:

εQ(t) = −
∫ t

0

∫
T
(ρT (ρ, u))≤QU dxds.

We also denote

ε(t) = 1
2

∫ t

0

∫
R

∫
T
ρ(x)ρ(y) |u(x)− u(y)|2

|x− y|1+α dxdy ds

It was already shown in Chapter 4 that E≤Q(t)→ E(t) and
∫ t

0
∫

(ρf)≤Q ·U dxds→
∫ t

0
∫
ρu ·f dxds

in all cases we are interested in. We aim to show that
∫ t

0 ΠQ(s) ds → 0 and εQ(t) → ε(t) as well;

this will immediately imply that the energy balance relation holds.

Actually, it was already shown above that
∫ t

0 ΠQ(s) dt→ 0 as Q→∞ whenever

ρ ∈ L4(0, T ;B
1
3
4,∞), u ∈ L4(0, T ;B

1
3
4,c0

).

We do not expect to improve on the smoothness parameter here, but we have a bit of additional

information now, namely the fact that u ∈ L∞L∞. We can consequently weaken the integrability

assumptions; see below. We also claim that εQ → ε holds in fact for all weak solutions, since such

solutions satisfy ρ, u ∈ L∞L∞ ∩ L2Hα/2, which is really all that is needed in order to pass to the

limit for this term. In the following two subsections, we will prove that the natural energy law (44)
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holds under the assumption that

(191) ρ ∈ L3(0, T ;B
1
3
3,∞), u ∈ L3(0, T ;B

1
3
3,c0

).

Now (191) is automatically satisfied if α ∈ [1, 2), since L∞L∞ ∩L2H1/2 ⊂ L3B
1/3
3,3 by interpolation.

We will prove (the more difficult half of) Theorem 2.10 over the course of the next two subsections.

The proof of the other half (actually, a more general statement) is contained in Section 3.5.

3.3. Conditional Convergence of the Nonlinear Term. We recall the following from

Chapter 4, Section 2.

Lemma 3.3. FQ(ρ, u) can be written as

FQ(ρ, u) = rQ(ρ, u, u)− 1
ρ≤Q

[(ρu)≤Q − ρ≤Qu≤Q]2 + ρ>Qu>Q ⊗ u>Q

+ 2[(ρu)≤Q − ρ≤Qu≤Q]u>Q + ρ[(u2)≤Q − u2
≤Q],

(192)

where

rQ(ρ, u, u) =
∫
h̃Q(y)[ρ(x− y)− ρ(x)][u(x− y)− u(x)]2 dy,

and h̃Q is a Schwartz function.

With these facts in hand, we are now in a position to prove that the nonlinear term vanishes under

our hypotheses.

Proposition 3.4. The quantity FQ(ρ, u) satisfies the bound

(193) ‖FQ(ρ, u)‖L3/2 . λ
−2/3
Q (D1/3

3,Q(u))2

whenever u ∈ B1/3
3,∞ and ρ ∈ L∞.

This bound follows from the decomposition (192) and Proposition 1.1 from Chapter 4.

Theorem 3.5. Suppose u ∈ L3B
1/3
3,c0

and ρ ∈ L3B
1/3
3,∞. Then

∫ t
0 ΠQ(s) ds→ 0 as Q→∞.

Proof. First we write

U ′ = 1
ρ≤Q

[(ρu)′≤Q − Uρ′≤Q].

Since L∞ ∩B1/3
3,∞ is an algebra, we have ρu ∈ L3B

1/3
3,∞. Therefore

‖U ′‖L3 . λ2/3
Q [D1/3

3,Q(ρu) +D
1/3
3,Q(ρ)],
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by (145). So ∫ t

0
FQ(ρ, u)U ′ ds .

∫ t

0
(D1/3

3,Q(u))2[D1/3
3,Q(ρu) +D

1/3
3,Q(ρ)] ds.

By (142), the definition of B1/3
3,c0

, and the dominated convergence theorem, we conclude that the

integral tends to zero, as needed. �

3.4. Unconditional Convergence of the Dissipation Term. In this subsection, we prove:

Theorem 3.6. Any weak solution (ρ, u) satisfies εQ → ε, as Q→∞.

Since the dissipation term involves fractional derivatives, we introduce a modified version of the

localization kernel of Chapter 4. Define

K̃q =

 λ
−α/2
q , q ≥ 0;

λ
α/2
q , q < 0;

d̃q(f) = λα/2q ‖fq‖L2 ; D̃Q(f) =
∞∑

q=−1
K̃Q−qd̃q(f).

Note that

(194) lim sup
Q→∞

D̃Q(f) ∼ lim sup
q→∞

d̃q(f),

where the similarity constant depends only on α.

Proposition 3.7. For f ∈ Bα/22,∞, 0 < α < 2, we have the following estimates:

‖Λαf≤Q‖2 . λα/2Q D̃Q(f),(195)

‖f>Q‖2 ≤ λ−α/2Q D̃Q(f).(196)

The proofs of (195) and (196) are similar to those of (145) and (146), respectively, and are omitted.

Remark 3.8. We will also repeatedly use the following basic facts without comment below:

(1) If supp f̂ ⊂ BλQ(0), then ‖Λαf‖L2 . λαQ‖f‖L2 .

(2) For f ∈ Bα/22,∞, the inequalities in (195) and (196) continue to hold when f≤Q and f>Q are

replaced with fQ. That is, for such f , we have

‖ΛαfQ‖2 . λα/2Q D̃Q(f), ‖fQ‖2 ≤ λ−α/2Q D̃Q(f).

(3) For k ∈ Z, we have D̃Q(f) ∼ D̃Q+k(f), with the similarity constant depending only on k.

(To see this, simply note that K̃q+k ∼ K̃q for each q ∈ Z, with a similarity constant that

depends on k but not on q.)
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Of course, analogous properties hold when we consider first derivatives instead of fractional deriva-

tives, but the fractional case is the one which is relevant below.

To prove Theorem 3.6, we write

|εQ(t)− ε(t)| ≤
∣∣∣∣εQ(t) +

∫ t

0

∫
ρ≤Qu≤QT (ρ≤Q, u≤Q) dx ds

∣∣∣∣
+
∣∣∣∣∫ t

0

∫
ρ≤Qu≤QT (ρ≤Q, u≤Q) dxds+ ε(t)

∣∣∣∣ ,
and we show that both terms tend to zero as Q→∞. Let us take care of the (much easier) second

term presently. We write∫ t

0

∫
R

∫
T
ρ≤Q(x)ρ≤Q(y) |u≤Q(x)− u≤Q(y)|2

|x− y|1+α dxdy ds−
∫ t

0

∫
R

∫
T
ρ(x)ρ(y) |u(x)− u(y)|2

|x− y|1+α dxdy ds

=
∫ t

0

∫
R

∫
T
[ρ≤Q(x)ρ≤Q(y)− ρ(x)ρ(y)] |u(x)− u(y)|2

|x− y|1+α dxdy ds

+
∫ t

0

∫
R

∫
T
ρ≤Q(x)ρ≤Q(y) [(u≤Q − u)(x)− (u≤Q − u)(y)][(u≤Q + u)(x)− (u≤Q + u)(y)]

|x− y|1+α dxdy ds.

The first term here tends to zero by the dominated convergence theorem (the dominating function

being C‖ρ‖2L∞
|u(x)−u(y)|2
|x−y|1+α ), while the second term is bounded above by

∫ t

0
‖ρ‖2L∞‖u≤Q − u‖Hα/2‖u≤Q + u‖Hα/2 ds→ 0,

which tends to zero as Q→∞. It thus remains to show that∣∣∣∣εQ(t) +
∫ t

0

∫
ρ≤Qu≤QT (ρ≤Q, u≤Q) dx ds

∣∣∣∣→ 0, as Q→∞.

We write the relevant difference as∫
ρT (ρ, u)U≤Q − ρ≤Qu≤QT (ρ≤Q, u≤Q) dx

=
∫
ρ≤Qu≤QΛα(ρ≤Qu≤Q)− (ρΛα(ρu))≤QU dx+

∫
(ρuΛαρ)≤QU − ρ≤Qu2

≤QΛαρ≤Q dx =: A+B.

Expanding further gives

A =
∫

[ρ≤Qu≤Q − (ρu)≤Q]Λα(ρ≤Qu≤Q + (ρu)≤Q) dx+
∫

[ρ≤QΛα(ρu)≤Q − (ρΛα(ρu))≤Q]U dx

=: A1 +A2;

B =
∫

[(ρuΛαρ)≤Q − (ρu)≤QΛαρ≤Q]U dx+
∫
ρ−1
≤Q[(ρu)≤Q − ρ≤Qu≤Q][(ρu)≤Q + ρ≤Qu≤Q]Λαρ≤Q dx

=: B1 +B2.
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The terms A1 and B2 are easy to treat:

A1 . ‖ρ≤Qu≤Q − (ρu)≤Q‖L2 · ‖Λα(ρ≤Qu≤Q + (ρu)≤Q)‖L2

≤ λ−αQ D
α/2
2,Q (ρ)Dα/2

2,Q (u) · λαQ‖ρ≤Qu≤Q + (ρu)≤Q‖L2 . Dα/2
2,Q (ρ)Dα/2

2,Q (u);

B2 ≤ ‖ρ−1
≤Q‖L∞‖(ρu)≤Q − ρ≤Qu≤Q‖L2‖(ρu)≤Q + ρ≤Qu≤Q‖L∞‖Λαρ≤Q‖L2

≤ C · λ−αQ D
α/2
2,Q (ρ)Dα/2

2,Q (u) · C · λαQ‖ρ≤Q‖L2 . Dα/2
2,Q (ρ)Dα/2

2,Q (u).

Thus

A1 +B2 . D
α/2
2,Q (ρ)Dα/2

2,Q (u),

where the implied constant is independent of Q (but may depend on the L∞ norms of ρ and u).

To deal with A2 and B1, we need to work more: Since ρΛα(ρu) and ρuΛαρ are in general only

L2H−α/2, the commutator estimate (143) does not directly apply. To overcome this difficulty, we

decompose the commutator (fΛαg)≤Q − f≤QΛαg≤Q in such a way that repeated use of (195) and

(196) (and related inequalities) becomes an adequate substitute for (143) in the treatment of A2

and B1. Actually, we state our decomposition for the more general commutator (fg)≤Q − f≤Qg≤Q,

with the idea that g will be replaced by Λαg below.

We set the notation

fq+ = fq+1 + fq+2, fr− = fr−2 + fr−1 (q ≥ −1, r ≥ 1).

Lemma 3.9. The following decomposition holds:

(fg)≤Q − f≤Qg≤Q =
∑

q>Q+2
[fqgq− + fq−gq + fqgq]≤Q + [fQ+g≤Q + f≤Q+2gQ+ ]≤Q

− [f(Q−2)+g≤Q−2 + f≤Qg(Q−2)+ ]Q+1 − [fQg≤Q−1 + f≤QgQ]Q+2.

Proof. Notice that if p or r is greater than Q+ 2 and |p− r| > 2, then the Fourier support of

fpgr lies outside the ball of radius λQ+1 centered at 0. In particular, (fpgr)≤Q vanishes. Therefore

(fg)≤Q = (f≤Q+2g≤Q+2)≤Q +
∑

max{p,r}>Q+2
|p−r|≤2

(fpgr)≤Q.

So

(fg)≤Q − f≤Qg≤Q = [(fg)≤Q − (f≤Q+2g≤Q+2)≤Q] + [(f≤Q+2g≤Q+2)≤Q − f≤Qg≤Q]

=
∑

max{p,r}>Q+2
|p−r|≤2

(fpgr)≤Q + [f≤Q+2g≤Q+2 − f≤Qg≤Q]≤Q − (f≤Qg≤Q)>Q.
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We have the somewhat more explicit representation for the sum:

(197)
∑

max{p,r}>Q+2
|p−r|≤2

(fpgr)≤Q =
∑

q>Q+2
[fqgq− + fq−gq + fqgq]≤Q.

Writing f≤Q+2 = f≤Q + fQ+ (and similarly for g≤Q+2), then expanding f≤Q+2g≤Q+2, we obtain

(198) (f≤Q+2g≤Q+2)≤Q − (f≤Qg≤Q)≤Q = [fQ+g≤Q + f≤Q+2gQ+ ]≤Q.

Finally, we note that (fpgr)q = 0 whenever max{p+ 2, r + 2} < q. Therefore

(f≤Qg≤Q)>Q = [f(Q−2)+g≤Q−2 + f≤Qg(Q−2)+ ]Q+1 + [fQg≤Q−1 + f≤QgQ]Q+2,(199)

Summing up the right hand sides of (197) and (198), then subtracting the right hand side of (199),

we thus obtain the desired decomposition. �

Proposition 3.10. Let (f, g) be either (ρ, ρu) or (ρu, ρ). Then

∣∣∣∣∫ [(fΛαg)≤Q − f≤QΛαg≤Q]U dx
∣∣∣∣ .

∑
q>Q

λαq ‖fq‖2L2

 1
2
∑
q>Q

λαq ‖gq‖2L2

 1
2

+D
α/2
2,Q (ρ)Dα/2

2,Q (u)

+ [D̃Q(fu) + D̃Q(f) + D̃Q(u)]D̃Q(g).

Proof. We replace and g with Λαg in the decomposition of the Lemma, then multiply by U

and integrate.∫
[(fΛαg)≤Q − f≤QΛαg≤Q]U dx =

∫
U≤Q

∑
q>Q+2

[fqΛαgq− + fq−Λαgq + fqΛαgq] dx

+
∫
U≤Qf≤Q+2ΛαgQ+ dx

+
∫

[U≤QfQ+Λαg≤Q − UQ+1f(Q−2)+Λαg≤Q−2 − UQ+2fQΛαg≤Q−1] dx

−
∫

[UQ+1f≤QΛαg(Q−2)+ + UQ+2f≤QΛαgQ] dx

=: I + II + III− IV.

Note that we have moved the outermost Littlewood-Paley projections onto the U ’s and regrouped

some terms.
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We estimate I and II, as well as the first term in each of III and IV. The remaining terms in III and

IV can be estimated similarly.

|I| ≤ ‖U≤Q‖L∞
∑

q>Q+2
[‖fq‖L2‖Λαgq−‖L2 + ‖fq−‖L2‖Λαgq‖L2 + ‖fq‖L2‖Λαgq‖L2 ]

.
∑

q>Q+2
[‖fq−2‖L2 + ‖fq−1‖L2 + ‖fq‖L2 ] · λαq [‖gq−2‖L2 + ‖gq−1‖L2 + ‖gq‖L2 ].

Then by Cauchy-Schwarz, we conclude that

(200) |I| .

∑
q>Q

λαq ‖fq‖2L2

 1
2
∑
q>Q

λαq ‖gq‖2L2

 1
2

.

The next term is the most troublesome. We begin by rewriting U as ρ−1
≤Q[(ρu)≤Q− ρ≤Qu≤Q] +u≤Q

and splitting the integral.

II =
∫
ρ−1
≤Q[(ρu)≤Q − ρ≤Qu≤Q]≤Qf≤Q+2ΛαgQ+ dx+

∫
(u≤Q)≤Qf≤Q+2ΛαgQ+ dx.

We bound the first term of II as follows:∣∣∣∣∫ ρ−1
≤Q[(ρu)≤Q − u≤Q]≤Qf≤Q+2ΛαgQ+ dx

∣∣∣∣ ≤ ‖ρ≤Q‖L∞‖(ρu)≤Q − ρ≤Qu≤Q‖L2‖f≤Q+2‖L∞‖ΛαgQ+‖L2

≤ C · Cλ−αQ D
α/2
2,Q (ρ)Dα/2

2,Q (u) · C · CλαQ . D
α/2
2,Q (ρ)Dα/2

2,Q (u).

To estimate the second term, we recall that gQ+ = (gQ+)>Q−1; we can then move the projection

> Q− 1 onto the other term (u≤Q)≤Qf≤Q+2 in the integrand:∫
(u≤Q)≤Qf≤Q+2ΛαgQ+ dx =

∫
[(u≤Q)≤Qf≤Q+2]>Q−1ΛαgQ+ dx

To see why this is useful, we need to massage the resulting expression a bit:

[(u≤Q)≤Qf≤Q+2]>Q−1 = [(u≤Q − (u≤Q)>Q)(f − f>Q+2)]>Q−1

= [(u− u>Q − (u>Q)≤Q)(f − f>Q+2)]>Q−1

= (fu)>Q−1 − (f>Q+2u)>Q−1 − [(u>Q + (u>Q)≤Q)f≤Q+2]>Q−1.

The point is that, taking L2 norms, we can now apply (196) to every term in this last expression:

‖[(u≤Q)≤Qf≤Q+2]>Q−1‖L2 ≤ ‖(fu)>Q−1‖L2 + ‖f>Q+2‖L2‖u‖L∞ + 2‖u>Q‖L2‖f‖L∞

. λ−α/2Q [D̃Q(fu) + D̃Q(f) + D̃Q(u)]
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Thus ∣∣∣∣∫ [(u≤Q)≤Qf≤Q+2]ΛαgQ+ dx
∣∣∣∣ ≤ ‖[(u≤Q)≤Qf≤Q+2]>Q−1‖L2 ‖ΛαgQ+‖L2

. [D̃Q(fu) + D̃Q(f) + D̃Q(u)]D̃Q(g).

Overall, II is bounded by

(201) |II| . Dα/2
2,Q (ρ)Dα/2

2,Q (u) + [D̃Q(fu) + D̃Q(f) + D̃Q(u)]D̃Q(g).

We estimate first term in III as follows:∣∣∣∣∫ U≤QfQ+Λαg≤Q dx
∣∣∣∣ ≤ ‖U‖L∞‖fQ+‖L2‖Λαg≤Q‖L2

≤ C · Cλ−α/2Q D̃Q(f) · λα/2Q D̃Q(g) . D̃Q(f)D̃Q(g).

The second and third terms in III enjoy the same bound, which is proved the same way. Thus

(202) |III| . D̃Q(f)D̃Q(g).

Finally, the first term in IV is bounded by∣∣∣∣∫ UQ+1f≤QΛαg(Q−2)+ dx
∣∣∣∣ =

∣∣∣∣∫ [U − u≤Q]Q+1f≤QΛαg(Q−2)+ dx+
∫

(uQ+1)≤Qf≤QΛαg(Q−2)+ dx
∣∣∣∣

. Dα/2
2,Q (ρ)Dα/2

2,Q (u) + D̃Q(u)D̃Q(g).

(The intermediate steps are all similar to those used for previous terms.) And the other term in IV

enjoys the same bound, so that

(203) |IV| . Dα/2
2,Q (ρ)Dα/2

2,Q (u) + D̃Q(u)D̃Q(g).

Combining (200), (201), (202), and (203), we obtain the desired statement. �

Corollary 3.11. We have∣∣∣∣∫ ρT (ρ, u)U≤Q − ρ≤Qu≤QT (ρ≤Q, u≤Q) dx
∣∣∣∣

.

∑
q>Q

λαq ‖ρq‖2L2

 1
2
∑
q>Q

λαq ‖(ρu)q‖2L2

 1
2

+D
α/2
2,Q (ρ)Dα/2

2,Q (u)

+ [D̃Q(ρu) + D̃Q(ρ) + D̃Q(u)]D̃Q(ρu) + [D̃Q(ρu2) + D̃Q(u)]D̃Q(ρ).
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Consequently, we have

(204)
∫ t

0

∣∣∣∣∫ ρT (ρ, u)U≤Q − ρ≤Qu≤QT (ρ≤Q, u≤Q) dx
∣∣∣∣ dt→ 0, as Q→∞.

Proof. The displayed bound follows easily from the previous Proposition and the discussion

at the beginning of this subsection. Indeed, recall that, in the notation from earlier,∫
ρT (ρ, u)U≤Q − ρ≤Qu≤QT (ρ≤Q, u≤Q) dx = A1 +A2 +B1 +B2.

We have already shown above that A1 + B2 . D
α/2
2,Q (ρ)Dα/2

2,Q (u). The Proposition gives us bounds

for A2 (with (f, g) = (ρ, ρu)) and B1 (with (f, g) = (ρu, ρ)):

A2 .

∑
q>Q

λαq ‖ρq‖2L2

 1
2
∑
q>Q

λαq ‖(ρu)q‖2L2

 1
2

+Dα/2
2,Q (ρ)Dα/2

2,Q (u)+[D̃Q(ρu)+D̃Q(ρ)+D̃Q(u)]D̃Q(ρu).

B1 .

∑
q>Q

λαq ‖ρq‖2L2

 1
2
∑
q>Q

λαq ‖(ρu)q‖2L2

 1
2

+Dα/2
2,Q (ρ)Dα/2

2,Q (u)+[D̃Q(ρu2)+D̃Q(ρu)+D̃Q(u)]D̃Q(ρ).

Adding up the bounds on A1, A2, B1, and B2, we obtain the displayed estimate claimed in the

Corollary.

The claimed limit then follows by the dominated convergence theorem, with dominating function

C[‖ρ‖2
Hα/2 + ‖u‖2

Hα/2 ]. �

This completes the proof of Theorem 3.6.

3.5. Energy Balance for the ρ Equation. It is not difficult to show that (45) holds under

the same assumptions as we proved for (44). Actually, something slightly more general is true:

Proposition 3.12. Let (u, ρ, e) be a weak solution on [0, T ] and assume that u and ρ satisfy

(205) ρ ∈ La(0, T ;Bσa,∞), u ∈ Lb(0, T ;Bτb,c0
), 2

a
+ 1
b

= 2σ + τ = 1.

Then (45) holds for a.e. t ∈ [0, T ].

Remark 3.13. As suggested above, (191) is a special case of (205). The reason the latter hypothesis

is more flexible is that our proof of Theorem 3.5 strongly depends on the fact that ρu ∈ B1/3
3,∞ ∩L∞

(by the algebra property of this space), whereas the argument of the present Proposition above

requires information only about ρ and u.
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Proof. Substitute (ρ≤Q)≤Q into the weak density equation. This gives

1
2

∫
T
ρ(s)2

≤Q dx
∣∣∣∣t
0

=
∫ t

0

∫
T
(ρu)≤Qρ′≤Q dxds

=
∫ t

0

∫
T
[(ρu)≤Q − ρ≤Qu≤Q]ρ′≤Q dx ds− 1

2

∫ t

0

∫
T
ρ2
≤Q(e≤Q + Λaρ≤Q) dx ds.

The first integral vanished as Q→∞, since∣∣∣∣∫ t

0

∫
T
[(ρu)≤Q − ρ≤Qu≤Q]ρ′≤Q dx ds

∣∣∣∣ ≤ ∫ t

0
Ds
a,Q(ρ)2Dt

b,Q(u) ds.

The other terms tend to their natural limits. The only convergence requiring justification is∫ t

0

∫
T
ρ2
≤QΛαρ≤Q dxds→ 1

2

∫ t

0

∫
T

∫
R

(ρ(x) + ρ(y)) |ρ(x)− ρ(y)|2

|x− y|1+α dy dx ds, as Q→∞.

But this follows from an argument entirely similar to that of the convergence (204) which is proved

above. We therefore omit the proof. �

4. More Bounds on Regular Solutions: Toward a Theory of Strong Solutions

In order to construct strong solutions, we use essentially the same limiting process that we did for

weak solutions. In order to carry out this procedure up one level in regularity, we also give L∞ (and

Hölder) bounds on u′, ρ′, and e′ below, and we track dependence of these bounds on the initial data

as before.

4.1. L∞ Bounds on Derivatives. In this subsection, we prove L∞ bounds on ρ′, u′, and e′.

The density once again requires the most work. We begin by eliminating all derivatives of u from

the ρ′ equation. Recall that u′ = e+ Λαρ. Replacing u′′ by e′ + Λαρ′ does not completely eliminate

the need to estimate derivatives of u, as the e′ equation involves u′. Therefore we replace e′ with q′:

(206) e′ = ρ2
(
q′

ρ

)
+ qρ′,

and therefore

(207) ρu′′ = ρ3
(
q′

ρ

)
+ eρ′ + ρΛαρ′.

This is a more satisfactory replacement in light of the transport equation (36) satisfied by q′/ρ.

In light of the above considerations, we write the ρ′ equation as

(208) ρ′t + uρ′′ + ρΛαρ′ = −ρ3
(
q′

ρ

)
− 3eρ′ − 2ρ′Λαρ.
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We multiply by ρ′ and evaluate at a maximum x+(t) of |ρ′(·, t)|, yielding

1
2∂t[(ρ

′)2](x+(t), t) = −ρ3ρ′
(
q′

ρ

)
(x+(t), t)− 3e(ρ′)2(x+(t), t)

− 2(ρ′)2Λαρ(x+(t), t)− ρρ′Λαρ′(x+(t), t)

≤ ‖ρ(t)‖3L∞‖ρ′(t)‖L∞
∥∥∥∥q′ρ (t)

∥∥∥∥
L∞

+ 3‖e(t)‖L∞‖ρ′(t)‖2L∞

+ 2|(ρ′)2Λαρ(x+(t), t)| − ρρ′Λαρ′(x+(t), t).

In order to bound ‖(q′/ρ)(t)‖L∞ , we evaluate (36) at a maximum of (q′/ρ)(·, t), integrate in time,

and substitute the previously obtained lower bound for ρ. The result is∥∥∥∥q′ρ (t)
∥∥∥∥
L∞
≤
∥∥∥∥ q′0ρ0

∥∥∥∥
L∞

+
∫ t

0

∥∥∥∥f ′′ρ2 −
f ′ρ′

ρ3

∥∥∥∥
L∞

ds

≤ ‖q′0‖L∞‖ρ−1
0 ‖L∞ +

‖f ′′‖L∞x,t
2c20c1

[exp(2c1t)− 1] +
‖f ′‖L∞x,t
c30

∫ t

0
exp(3c1s)‖ρ′(s)‖L∞ ds.

For the present purposes, the following rougher bound will suffice:

(209)
∥∥∥∥q′ρ (t)

∥∥∥∥
L∞
≤ CT ( sup

s∈[0,t]
‖ρ′(s)‖L∞ + 1), t ∈ [0, T ].

Here CT is a constant that depends on ‖q0‖W 1,∞ , T , ‖f‖L∞t W 2,∞
x

, α, M, and the L∞ norms of ρ0,

and ρ−1
0 . However, for the remainder of this subsection, we will use CT to denote a constant that

can depend on ‖f‖L∞t W 2,∞
x

, M, α, T , ‖ρ−1
0 ‖L∞ , and the W 1,∞ norms of u0, ρ0, and e0. Recalling

that |ρ(x, t)| ≤ CT and |e(x, t)| ≤ CT , we have proved the following bound, which we pause to record

as a Lemma.

Lemma 4.1. Let (u, ρ) be a regular solution. If x+(t) is a maximum of |ρ′(·, t)|, then

(210) 1
2∂t[(ρ

′)2](x+(t), t) ≤ CT ( sup
s∈[0,t]

‖ρ′(s)‖2L∞ + 1) + 2|(ρ′)2Λαρ(x+(t), t)| − ρρ′Λαρ′(x+(t), t),

where CT is a constant that may depend on ‖f‖L∞t W 2,∞
x

, M, α, T , ‖ρ−1
0 ‖L∞ , and the W 1,∞ norms

of u0, ρ0, and e0.

We now provide some bounds on the final two terms of the above inequality. We will use the notation

(211) Dαg(y) :=
∫
R

|g(y)− g(y + z)|2

|z|1+α dz

for functions g such that the integral makes sense.
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Before proceeding, we make note of the following facts, which will be useful later: The following

bounds hold for a maximum x of g′ and some absolute constant c5:

(212) g′Λαg′(x) ≥ Dαg
′(x)

(213) Dαg
′(x) ≥ c5

|g′(x)|2+α

‖g‖αL∞
.

Both of these follow from the nonlinear maximum principle of [14].

The ‘bad’ term in the inequality from the Proposition above is |(ρ′)2Λαρ|. In order to estimate this

term, we will use the following decomposition of the fractional Laplacian Λα:

Lemma 4.2. Let ϕ ∈ C∞c (R) be even, identically 1 on [−1, 1], and supported in (−2, 2). The following

decomposition holds for sufficiently smooth g and any r > 0:

(214) Λαg(x) =
∫
R

z

α
ϕ
(z
r

) g′(x)− g′(x+ z)
|z|1+α dz+

∫
R

[
1− ϕ

(z
r

)
+ z

αr
ϕ′
(z
r

)] g(x)− g(x+ z)
|z|1+α dz.

Consequently, we have the following bounds:

|Λαg(x)| ≤ Cr1−α2 Dαg
′(x) 1

2 + Cr−α‖g‖L∞ .(215)

|Λαg(x)| ≤ Cr1−α2 Dαg
′(x) 1

2 + Crγ−α[g]Cγ .(216)

Proof. Rewrite the right side of (214) as follows:

RHS =
∫
R

zϕ
(
z
r

)
g′(x)

α|z|1+α dz +
∫
R

z

α|z|1+α

[
1
r
ϕ′
(z
r

)
(g(x)− g(x+ z))− ϕ

(z
r

)
g′(x+ z)

]
dz

+
∫
R

[
1− ϕ

(z
r

)] g(x)− g(x+ z)
|z|1+α dz.

(217)

The first integral vanishes, while the second can be rewritten as∫
R

z

α|z|α
d
dz

[
ϕ
(z
r

)
(g(x)− g(x+ z))

]
dz =

∫
R
ϕ
(z
r

) g(x)− g(x+ z)
|z|1+α dz,

after integrating by parts. Combining with the third term in (217), we obtain the usual integral

formula for Λαg. This completes the proof of (214). To obtain the inequality under consideration,

use Cauchy-Schwarz on the first integral in (214) and pull out the L∞ norm or Cγ seminorm in the

second. �

Lemma 4.3. Let (u, ρ) be a regular solution on the time interval [0, T ]. The following bounds holds

for a maximum x+(t) of ρ′(·, t) and some constant CT which may depend only on ‖f‖L∞t W 2,∞
x

, M,
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α, T , ‖ρ−1
0 ‖L∞ , and the W 1,∞ norms of u0, ρ0, and e0.

|(ρ′)2Λαρ(x+(t), t)| ≤ CT ‖ρ′(t)‖2+α
L∞ + 1

4ρ−(t)Dαρ
′(x+(t), t), t ∈ [0, T ];(218)

|(ρ′)2Λαρ(x+(t), t)| ≤ CT
‖ρ′(t)‖2+α−γ

L∞

tγ/α
+ 1

4ρ−(t)Dαρ
′(x+(t), t), t ∈ (0, T ].(219)

Proof. We begin by putting g = ρ in (216). We use (170) for the first term; on the second we

use Young’s inequality, followed by (213).

|(ρ′)2Λαρ(x+(t), t)| ≤ Crγ−α‖ρ′(t)‖2L∞ [ρ(t)]Cγ +Dαρ
′(x+(t), t)1/2 · C‖ρ′(t)‖2L∞r1−α/2

≤ CT rγ−α
‖ρ′(t)‖2L∞
tγ/α

+ 1
8ρ−(t)Dαρ

′(x+(t), t) + c6ρ−(t)−1‖ρ′(t)‖4L∞r2−α

≤ CT
‖ρ′‖2+α−γ

L∞

tγ/α
+ 1

8ρ−(t)Dαρ
′(x+(t), t) + c5

8
ρ−(t)
ρ+(t)α ‖ρ

′(t)‖2+α
L∞

≤ CT
‖ρ′‖2+α−γ

L∞

tγ/α
+ 1

4ρ−(t)Dαρ
′(x+(t), t),

provided that we choose

r =
[
c5ρ−(t)2

8c6ρ+(t)α

] 1
2−α

‖ρ′(t)‖−1
L∞ ,

where c5 is the constant from (213).

The inequality (218) is established similarly, starting with (215) instead of (216). �

Theorem 4.4. Let (u, ρ) be a regular solution on the time interval [0,∞). For each T > 0, there

exists a constant Cρ
′

T , which may depend on ‖f‖L∞t W 2,∞
x

, M, α, T , ‖ρ−1
0 ‖L∞ , and the W 1,∞ norms

of u0, ρ0, and e0, such that ‖ρ′(t)‖L∞ ≤ Cρ
′

T , for t ∈ [0, T ].

Proof. Step 1: We find a time t∗ such that |ρ′(t)| does not grow too much on the interval

[0, t∗]; more specifically,

(220) ‖ρ′(t)‖L∞ ≤ 2‖ρ′0‖L∞ , for t ∈ [0, t∗].

To this end, we apply (210), (212), (218), and (213) to conclude that we have

∂t‖ρ′(t)‖2L∞ = ∂t[(ρ′)2](x+(t), t) ≤ C1[‖ρ′‖2L∞(T×[0,t]) + 1] + C1‖ρ′(t)‖2+α
L∞ ≤ C1‖ρ′‖2+α

L∞(T×[0,t])

on the interval t ∈ [0, 1]. This implies that

‖ρ′(t)‖2L∞ ≤
‖ρ′0‖2L∞[

1− C1α‖ρ′0‖αL∞
2 t

]2/α for 0 ≤ t < 2
C1α|ρ′0|αL∞

.
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In particular, putting

t∗ = min
{

2(1− 2−α)
C1α‖ρ′0‖αL∞

, 1
}
,

we obtain (220), as needed. Note that C1 depends only on ‖u0‖L∞ , ‖ρ0‖L∞ , ‖ρ−1
0 ‖L∞ , ‖q0‖W 1,∞

x
,

‖f‖L∞t W 2,∞
x

, α, and M, so that t∗ depends only on these quantities and ‖ρ′0‖L∞ .

Step 2: We obtain bounds on ρ′ for t ≥ t∗, by using (219). The point is that in light of the reduction

of the power 2+α to 2+α−γ, we can now absorb the bad term into the dissipation. At a maximum

x+(t) of ρ′, we have

1
2∂t[(ρ

′)2](x+(t), t) ≤ CT [‖ρ′‖2L∞(T×[0,t]) + 1] + 2|(ρ′)2Λαρ(x+(t), t)| − ρρ′Λαρ′(x+(t), t)

≤ CT [‖ρ′‖2L∞(T×[0,t]) + 1] + 2
[
CT ‖ρ′(t)‖2+α−γ

L∞ t−γ/α + 1
4ρ−(t)Dαρ

′(x+(t), t)
]

− ρ−(t)Dαρ
′(x+(t), t)

≤ CT [‖ρ′‖2L∞(T×[0,t]) + t−γ/α‖ρ′(t)‖2+α−γ
L∞ + 1]− cT ‖ρ′(t)‖2+α

L∞ .

We claim that this implies

‖ρ′(t)‖L∞ ≤ max


(

5CT
cT

) 1
α

,

(
2CT
t
γ/α
∗ cT

) 1
γ

, 3‖ρ′0‖L∞ , 1

 =: Cρ
′

T , for t ∈ [0, T ].

Indeed, let t0 be the largest possible time in the interval [0, T ] such that ‖ρ′(t)‖L∞ ≤ Cρ
′

T for all

t ∈ [0, t0]. Then t0 > t∗ by Step 1 and the definition of Cρ
′

T . Suppose that t∗ < t0 < T . Then

‖ρ′(t0)‖L∞ = supt∈[0,t0] ‖ρ′(t)‖L∞ = Cρ
′

T , so that

1
2∂t[(ρ

′)2](x+(t), t) ≤ CT ‖ρ(t0)‖2L∞
(

2− cT
2CT

(Cρ
′

T )α
)

+ CT ‖ρ(t0)‖2+α−γ
L∞

(
1

t
γ/α
0
− cT

2CT
(Cρ

′

T )γ
)

≤ CT ‖ρ(t0)‖2L∞
(

2− 5
2

)
+ CT ‖ρ(t0)‖2+α−γ

L∞

(
1

t
γ/α
0
− 1
t
γ/α
∗

)
< 0,

contradicting the definition of t0. We conclude therefore that t0 = T , finishing the proof. �

Now that we have this bound on ρ′, it is easy to establish bounds on e′. Recall the relation (206)

and the bound (209); combining these with our bounds on ρ′, we conclude that e′ is uniformly

bounded on T× [0, T ] as well, by a constant CT which is allowed to depend on ‖f‖L∞t W 2,∞
x

, M, α,

T , ‖ρ−1
0 ‖L∞ , and the W 1,∞ norms of u0, ρ0, and e0.
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To bound u′, we need to consider two cases, depending on the values of α. When α ∈ (0, 1), we

simply recall that u′ = e+ Λαρ, which we now know to be bounded on T× [0, T ] by a constant CT

which is allowed to depend on ‖f‖L∞t W 2,∞
x

,M, α, T , ‖ρ−1
0 ‖L∞ , and the W 1,∞ norms of u0, ρ0, and

e0. For α ∈ [1, 2), however, we do not yet have a bound on ‖Λαρ‖∞. We argue as follows in the case

α ∈ (1, 2). (Note that we do not include α = 1.) We differentiate (174), then replace u′ by m′

ρ −
uρ′

ρ

and evaluate at a maximum x+(t) of |m′(·, t)|, to obtain

(221) ∂tm
′ + |m

′|2

ρ
− uρ′m′

ρ
+ e′m+ em′ = −ρ′Λαm− ρΛαm′ + ρ′f + ρf ′

(where we understand that all terms are evaluated at (x+(t), t). Multiplying by m′(x+(t), t), we

obtain (bracketing the lower-order terms)

1
2∂t[(m

′)2](x+(t), t) = − (m′)3

ρ
(x+(t), t)− ρ′m′Λαm(x+(t), t)− ρm′Λαm′(x+(t), t)

+
[
uρ′|m′|2

ρ
− e′mm′ − e|m′|2 +m′ρ′f + ρm′f ′

]
(x+(t), t),

so that

1
2∂t[(m

′)2](x+(t), t) ≤ CT [‖m′(t)‖3L∞ + 1] + |ρ′m′Λαm(x+(t), t)| − ρm′Λαm′(x+(t), t),

with CT depending only on the usual quantities. To estimate |ρ′m′Λαm(x+(t), t)|, we take r = 1 in

(215) to obtain

|ρ′m′Λαm(x+(t), t)| ≤ C‖ρ′(t)‖L∞‖m′(t)‖L∞ [Dαm
′(x+(t), t) 1

2 + ‖m‖L∞ ]

≤ 1
4ρ−(t)Dαm

′(x+(t), t) + CT [‖m′‖2L∞ + 1].

Applying (212) and (213) once more, we obtain the following bound:

1
2∂t[(m

′)2](x+(t), t) ≤ CT [‖m′(t)‖3L∞ + 1] + |ρ′m′Λαm(x+(t), t)| − ρm′(x+(t), t)Λαm′(x+(t), t)

≤ CT [‖m′(t)‖3L∞ + 1]− cT ‖m′(t)‖2+α
L∞ .

Since α > 1, we can conclude using similar reasoning as in the proof of the bound on ‖ρ′(t)‖L∞

(though the present situation is slightly simpler, since we do not have to reason differently for small

and large times). We now pause to record the obtained bounds as a Proposition:

Proposition 4.5. Let (u, ρ) be a regular solution on the time interval [0,∞). For each T > 0, there

exists a constant Ce′T , which may depend on ‖f‖L∞t W 2,∞
x

, M, α, T , ‖ρ−1
0 ‖L∞x , and the W 1,∞ norms
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of u0, ρ0, and e0, such that ‖e′(t)‖L∞ ≤ Ce
′

T , for t ∈ [0, T ]. If α 6= 1, there exists a constant Cu′T

depending on the same quantities, such that ‖u′(t)‖L∞ ≤ Cu
′

T , for t ∈ [0, T ].

4.2. Bounds in Hölder Spaces. For α 6= 1, we can now establish Hölder bounds on u′ and

ρ′ in the same way that we treated u and ρ above. We give the details only for ρ′. The right side

of (208) is bounded in L∞(0, T ;L∞) for any T > 0. Therefore we can apply [57] to (208) now, to

conclude that for some γ1 > 0, we have

(222)

[ρ′(t)]Cγ1 ≤
CT
tγ1/α

(
‖ρ′‖L∞(T×(0,T )) +

∥∥∥∥ρ3
(
q′

ρ

)
+ 3eρ′ + 2ρ′Λαρ

∥∥∥∥
L∞(T×(0,T ))

)
≤ CT
tγ1/α

, t ∈ (0, T ].

Here CT is allowed to depend on ‖f‖L∞t W 2,∞
x

,M, α, T , ‖ρ−1
0 ‖L∞ , and the W 1,∞ norms of the initial

data. We record this, as well as the analogous bounds for m′ and u′, in the following Proposition:

Proposition 4.6. Let (u, ρ) be a regular solution on the time interval [0,∞) and assume α 6= 1.

Then for any T > 0, there exists γ1 > 0 such that ρ, m = ρu, and u satisfy bounds of the form

[ρ′(t)]Cγ1 ≤ t−γ1/αCT , t ∈ (0, T ](223)

[m′(t)]Cγ1 ≤ t−γ1/αCT , t ∈ (0, T ](224)

[u′(t)]Cγ1 ≤ t−γ1/αCT , t ∈ (0, T ](225)

The constants CT may depend on ‖f‖L∞t W 2,∞
x

, M, α, T , ‖ρ−1
0 ‖L∞ , and the W 1,∞ norms of u0, ρ0,

and e0. The number γ1 ultimately depends only on these same quantities.

5. Strong Solutions

Our next goal is to prove the existence and uniqueness of global strong solutions. We accomplish

this in all cases under consideration except the case α = 1, where we prove only uniqueness. We will

proceed as follows. First, we give the proof of existence for α 6= 1; this follows essentially the same

outline as the proof of the existence part of Theorem 2.9. Next, we take a brief detour to clarify the

regularity of the time derivative ∂tu in the case when α ∈ [1, 2). This discussion does not contain

any deep facts, but it is strictly speaking necessary in order to carry out the integration-by-parts

argument in our uniqueness argument. As a byproduct of this discussion, though, we obtain a self-

contained proof of the energy equality (44) for strong solutions. Finally, our proof of uniqueness

follows a standard Grönwall-type argument. Note, however, that a bit of care is required in handling

the dissipation term.
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5.1. Existence (α 6= 1). We have shown above that uε and ρε are bounded sequences of

L∞(δ, T ;C1,γ1) for each T > δ > 0. Applying the Aubin-Lions-Simon Theorem as before, we can

find a subsequence of the sequence εk constructed in the proof of Theorem 2.9, which we will continue

to label εk, such that uεk → u and ρεk → ρ strongly in Cloc((0,∞);C1). Now (eεk)′ is bounded in

L∞(T× [0, T ]); therefore it converges weak-∗ (up to a subsequence) as k →∞ to some g in the same

class. We claim that g = e′. Indeed, we have as k →∞ that∫ T

0

∫
T
(eεk)′ϕdx dt =

∫ T

0

∫
T
uεkϕ′′+ρεkΛαϕ′ dxdt→

∫ T

0

∫
T
uϕ′′+ρΛαϕ′ dx dt = −

∫ T

0

∫
T
eϕ′ dxdt.

But this limit is also equal to
∫ T

0
∫
T gϕ by assumption. Therefore e is weakly differentiable in space,

with weak derivative e′ = g. It follows that (eεk)′ converges weak-∗ to e′. Since (u, ρ, e) is already

known to be a weak solution, by Theorem 2.9, this proves that (u, ρ, e) is in fact a strong solution.

5.2. Time Derivatives of Strong Solutions. We begin by noting a few properties of strong

solutions. Most of these are basically obvious from the definition, but we believe it is useful to have

them recorded explicitly. First, we note that the evolution equations for ρ and e are true pointwise

a.e., instead of merely in the weak sense; furthermore, all terms that appear in the equation belong

to L∞(0, T ;L∞) for any T > 0:

ρt + (ρu)′ = 0, a.e., and in L∞(0, T ;L∞);(226)

et + (ue)′ = f ′, a.e., and in L∞(0, T ;L∞).(227)

The same is true for the u-equation if α < 1. If α = 1, it may not be the case that Λα(ρu) ∈ L∞,

but it will belong to (for example) L2. (This is a rather academic point at the moment, though,

since we have not proven the existence of strong solutions for α = 1.) If α > 1, though, a pointwise

a.e. interpretation is not available. However, we can still view the equation in L2H−α/2, as we did

for weak solutions.

ut + ue = −Λα(ρu) + f, a.e., and in L∞(0, T ;L∞), if α ∈ (0, 1);(228)

ut + ue = −Λα(ρu) + f, a.e., and in L2(0, T ;L2), if α ∈ (0, 1];(229)

ut + ue = −Λα(ρu) + f, in L2(0, T ;H−α/2); α ∈ (0, 2).(230)

Thus a bit of care is warranted in treating time derivatives of u. We next show that the following

formula is valid even when α ∈ (1, 2):

(231) 1
2∂tu

2 = u∂tu = −u(ue)− uΛα(ρu) + uf in L2H−α/2.
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Of course, when we write (for example) u∂tu, we mean the element of H−α/2 defined by

〈u∂tu, φ〉H−α/2,Hα/2 = 〈∂tu, uφ〉H−α/2,Hα/2 ;

the latter is perfectly well defined for any α ∈ (0, 2) (but for different reasons, depending on whether

α ∈ (0, 1] or α ∈ (1, 2)). We will use this interpretation of u∂tu and similar elements of H−α/2 below

without further comment.

Note that (231) is obvious if α ∈ (0, 1]; therefore we assume below that α > 1. But then Hα/2(T) is

an algebra, and ‖uφ‖Hα/2 ≤ C‖u‖Hα/2‖φ‖Hα/2 . Thus

|〈uΛα(ρu), φ〉H−α/2×Hα/2 | =
∫

Λα/2(ρu)Λα/2(uφ) dx ≤ C‖ρu‖Hα/2‖u‖Hα/2‖φ‖Hα/2 .

It follows that the right side of (231) belongs to L2H−α/2 and is equal to u∂tu in this sense. It

remains to show that this quantity is in fact equal to ∂tu2. To do this, we write

〈u(s)2, φ〉H−α/2×Hα/2

∣∣∣∣t
0

=
∫
T
u(s) · u(s)φdx

∣∣∣∣t
0

for some time-independent function φ ∈ C∞(T) and use the weak formulation of the u-equation,

with uφ serving as the test function. Note that since this weak formulation requires a very slight

modification in this case to allow for the rough test function uφ; to deal with this, we simply write

a duality pairing in H−α/2 ×Hα/2 when necessary. We have

〈u(s)2, φ〉H−α/2×Hα/2

∣∣∣∣t
0

=
∫ t

0

(
〈∂tu− Λα(ρu), uφ〉H−α/2×Hα/2 +

∫
[fuφ− (ue)(uφ)] dx

)
ds

=
∫ t

0
〈u∂tu− u(ue)− uΛα(ρu) + fu, φ〉H−α/2×Hα/2 ds

=
∫ t

0
〈2u∂tu, φ〉H−α/2×Hα/2 ds.

This proves the claim. Now we have ρ, u2 ∈ L2H1, ∂tρ, ∂t(u2) ∈ L2H−1, so we can apply the usual

integration-by-parts formula to ρu2 as follows:

1
2

∫
ρu2(s) dx

∣∣∣∣t
0

= 1
2

∫ t

0
〈∂tρ, u2〉H−1×H1 + 〈u∂tu, ρ〉H−1×H1 ds

=
∫ t

0

∫
(ρu)(uu′) dx+ 〈−ue− Λα(ρu) + f, ρu〉H−α/2×Hα/2 ds

=
∫ t

0
ρu2(u′ − e) + ρuf − 〈Λα(ρu), ρu〉H−α/2×Hα/2 .
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Then recalling the definitions of e and T , this yields

1
2

∫
ρu2(s) dx

∣∣∣∣t
0

=
∫ t

0

∫
ρuf dx+ 〈T (ρ, u), ρu〉H−α/2×Hα/2 ds

= −
∫ t

0

∫
R

∫
T
ρ(x)ρ(y) |u(x)− u(y)|2

|x− y|1+α dxdy ds+
∫ t

0

∫
T
ρuf dxds.

Thus we have a self-contained proof of the validity of the energy equality (44) for strong solutions.

One can prove (45) even more easily. The main point here, though, is the validity of the integration

by parts. We will use this below in our proof of the uniqueness.

5.3. Uniqueness. Next, we prove uniqueness. Let (u1, ρ1, e1) and (u2, ρ2, e2) be two solutions

to (26)–(27) with the same initial data. We assume ui, ρi, ei ∈W 1,∞ for i = 1, 2. Define

uδ = u1 − u2, ρδ = ρ1 − ρ2, eδ = e1 − e2, qδ = q1 − q2,

uσ = u1 + u2, ρσ = ρ1 + ρ2, eσ = e1 + e2, qσ = q1 + q2.

Then by the integration-by-parts formula (which is valid for all α ∈ (0, 2) by the discussion in the

previous subsection), we have∫
ρσu

2
δ(s) dx

∣∣∣∣t
0

=
∫ t

0
〈∂tρσ, u2

δ〉H−1×H1 + 2〈uδ∂tuδ, ρσ〉H−1×H1 ds

= 2
∫ t

0

∫
(ρu)σ(uδu′δ) dx+ 〈−(ue)δ − Λα(ρu)δ, ρσuδ〉H−α/2×Hα/2 ds.

Expanding (ρu)σ, (ue)δ and (ρu)δ yields∫
ρσu

2
δ(s) dx

∣∣∣∣t
0

=
∫ t

0

∫
ρσuσuδ(u′δ − eδ) + ρδu

2
δu
′
δ − ρσu2

δu
′
σ + ρσu

2
δΛαρσ dx ds

−
∫ t

0
〈Λα(ρσuδ) + Λα(ρδuσ), ρσuδ〉H−α/2×Hα/2 ds.

Using the definitions of eδ and T , then symmetrizing, we obtain∫
ρσu

2
δ(s) dx

∣∣∣∣t
0

=
∫ t

0

∫
[ρδu′δ − ρσu′σ]u2

δ dx+ 〈T (ρσ, uδ) + T (ρδ, uσ), ρσuδ〉H−α/2×Hα/2 ds

=
∫ t

0

∫
[ρδu′δ − ρσu′σ]u2

δ dx ds− 1
2

∫ t

0

∫
R

∫
T
ρσ(x)ρσ(y) |uδ(x)− uδ(y)|2

|x− y|1+α dx dy ds

+
∫ t

0
〈T (ρδ, uσ), ρσuδ〉H−α/2×Hα/2 ds.

For convenience, let us denote

εδ(t) := 1
2

∫ t

0

∫
R

∫
T
ρσ(x)ρσ(y) |uδ(x)− uδ(y)|2

|x− y|1+α dxdy ds.
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We can estimate the term
∫
|〈T (ρδ, uσ), ρσuδ〉H−α/2×Hα/2 |dx as follows.∫

|Λα/2(ρσuδuσ)||Λα/2(ρδ)|+ |Λα/2(ρσuδ)||Λα/2(ρδuσ)|dx

≤ C‖ρσuσuδ‖Hα/2‖ρδ‖Hα/2 + C‖ρσuδ‖Hα/2‖ρδuσ‖Hα/2

≤ C‖ρσuσ‖W 1,∞‖uδ‖Hα/2‖ρδ‖Hα/2 + C‖ρσ‖W 1,∞‖uδ‖Hα/2‖ρδ‖Hα/2‖uσ‖W 1,∞

≤ C∗‖ρδ‖2Hα/2 + εδ(t).

Above, we have repeatedly used the fact that ‖fg‖Ha/2 ≤ C‖f‖W 1,∞‖g‖Hα/2 for f ∈ W 1,∞, g ∈

Hα/2. To see why this inequality holds, simply note that

‖fg‖2Hα/2 =
∫
R

∫
T

|fg(x)− fg(y)|2

|x− y|1+α dxdy

≤
∫
R

∫
T

2|f(x)|2|g(x)− g(y)|2

|x− y|1+α dx dy +
∫
R

∫
T

2|f(x)− f(y)|2|g(y)|2

|x− y|1+α dx dy

≤ 2‖f‖2L∞‖g‖2Hα/2 + C‖f‖2W 1,∞‖g‖2L2 ≤ C‖f‖2W 1,∞‖g‖2Hα/2 .

Thus, for any α ∈ (0, 2), we have

(232) ‖√ρσuδ(t)‖2L2 ≤ C
∫ t

0
‖uδ(s)‖2L2 ds+ C∗

∫ t

0
‖ρδ(s)‖2Hα/2 ds.

At this stage in the proof, the (possibly quite large) constant C∗ may appear worrisome. But as

we will see below, the ρδ equation carries a term of the form −
∫ t

0 ‖ρδ(s)‖
2
Hα/2 ds. Therefore, by

multiplying the entire ρδ equation by C∗ and adding the result to (232), we may absorb this bad

term.

We now treat the ρδ equation. We obtain

d
dt

∫
ρ2
δ

ρσ
dx =

∫ 2ρδ∂tρδ
ρσ

+ ρ2
δ∂t

(
1
ρσ

)
dx

≤ −
∫
ρδ(ρ′σuδ + ρσu

′
δ + ρ′δuσ + ρδu

′
σ)

ρσ
dx+ C‖ρδ‖2L2 .

Using the fact that

u′δ = 1
2(qδρσ + qσρδ) + Λαρδ,

we write ∫
ρδu
′
δ dx = 1

2

∫
(qδρσ + qσρδ)ρδ dx+

∫
|Λα/2ρδ|2 dx.
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Therefore

d
dt

∥∥∥∥ ρδ√
ρσ

∥∥∥∥2

L2

≤ −
∫
ρδ(ρ′σuδ + ρσu

′
δ + ρ′δuσ + ρδu

′
σ)

ρσ
dx+ C‖ρδ‖2L2

= −
∫
ρδuδ

ρ′σ
ρσ

dx− 1
2

∫
(qδρσ + qσρδ)ρδ dx− ‖Λα/2ρδ‖2L2

+ 1
2

∫
ρ2
δ

(ρσuσ)′

ρ2
σ

dx+ C‖ρδ‖2L2

≤ C[‖uδ‖2L2 + ‖ρδ‖2L2 + ‖qδ‖2L2 ]− ‖Λα/2ρδ‖2L2 .

So adding up, integrating in time, and multiplying by the constant C∗ from (232), we obtain

(233) C∗
∥∥∥∥ ρδ√

ρσ
(t)
∥∥∥∥2

L2

≤ C
∫ t

0
‖uδ(s)‖2L2 + ‖ρδ(s)‖2L2 + ‖qδ(s)‖2L2 ds− C∗

∫ t

0
‖ρδ(s)‖2Hα/2 ds.

Adding this to (232), we obtain

(234) ‖√ρσuδ(t)‖2L2 + C∗
∥∥∥∥ ρδ√

ρσ
(t)
∥∥∥∥2

L2

≤ C
∫ t

0
‖uδ(s)‖2L2 + ‖ρδ(s)‖2L2 + ‖qδ(s)‖2L2 ds.

Finally, we deal with the qδ equation.

(235) d
dt

∫
q2
δ dx = −

∫
uδq
′
σqδ + uδq

′
δqδ + 2f ′

ρ1ρ2
ρδqδ dx ≤ C‖uδ‖2L2 + C‖ρδ‖2L2 + C‖qδ‖2L2 .

Integrating and adding to (234), we obtain

(236) ‖√ρσuδ(t)‖2L2 + C∗
∥∥∥∥ ρδ√

ρσ
(t)
∥∥∥∥2

L2

+ ‖qδ(t)‖2L2 ≤ C
∫ t

0
‖uδ(s)‖2L2 + ‖ρδ(s)‖2L2 + ‖qδ(s)‖2L2 ds.

This proves that uδ, ρδ, and qδ are identically zero, thus establishing uniqueness.

5.4. The Case of a Compactly Supported Force (α 6= 1). We finally note that, for α 6= 1,

the construction above gives our solution sufficient regularity so that we can prove that flocking

occurs in the special case where f ≡ 0 (or when f is compactly supported in time). The key

observation is that the velocity field u is C1 for all positive time; therefore we can apply the results

of [55] (when α > 1) and [56] (when α < 1) to show the existence of a flocking pair. (Actually,

the results of [55] are stated and proved only for the case α = 1, but trivial adjustments give the

analogous statements and proofs for α > 1.) We quote the results of intermediate steps without

proof, giving details only for the existence of a flocking state.

First, membership of u(t) in C1(T), t > 0 allows us to prove the estimate

(237) Dαu
′(x) ≥ c|u′(x)|2+α

A(t)α ,
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where A(t) denotes the diameter of the velocities, as before, and c is some positive absolute constant.

Recall that in Section 2.4 we showed that A(t) decays exponentially quickly in time if f is compactly

supported. Thus (237) allows us to absorb powers of u′ into Dαu
′ after a finite time. For a proof of

(237), see Lemma 3.3 in [55] and Lemma 2.2 in [56]. The estimate (237) is used to prove that

(238) ‖u′(·, t)‖L∞ ≤ Ce−δt,

for some δ > 0; see Lemma 3.4 in [55] and Lemma 2.3 in [56]. Thus the convergence of u(t) toward

the constant u (c.f. Section 1.3) occurs exponentially quickly in W 1,∞ rather than just in L∞.

Now, in the case where f is compactly supported in time, all of the bounds of Section 4 can be

taken to be constant bounds. Therefore, for large t (say t > 1), u(t) and ρ(t) are uniformly bounded

in C1,γ1 for some γ1 > 0, and ρ(t) is bounded in W 1,∞ for all t. Defining ρ̃(x, t) = ρ(x − tu, t)

and writing the density equation in the moving reference frame, we conclude that ‖ρ̃t‖L∞ ≤ Ce−δt

on account of the uniform boundedness of ρ(t) in W 1,∞ and the estimate (238). It follows that ρ̃

converges in L∞ to a limiting state ρ∞. Defining ρ(x, t) = ρ∞(x − tu), this completes the proof of

fast flocking in W 1,∞ × L∞ toward (u, ρ).

We can conclude flocking in stronger spaces if we are willing to sacrifice the exponential rate of

convergence. Since u(t) and ρ(t) are uniformly bounded in C1,γ1 , we must in fact have convergence

in C1,ε × C1,ε for every ε ∈ (0, γ1) by compactness and by uniqueness of the limit in W 1,∞ × L∞.



APPENDIX A

The Local Pressure Inequality

In this appendix, we prove Lemma 2.5 of Chapter 2, which we recall for the convenience of the

reader.

Lemma. There exists an absolute constant c such that whenever p ∈ L3/2(Bρ) and −∆p = ∂i∂j(uiuj)

a.e. on Bρ, then for any r ∈ (0, ρ/2] we have

‖p− (p)r‖L3/2(Br) ≤ c‖u‖2L3(B2r) + cr
2
3n+1

∫
2r<|y|<ρ

|u|2

|y|n+1 dy

+ c
r

2
3n+1

ρ
2
3n+1

(∫
Bρ

|u|3 + |p|3/2 dy
) 2

3

.

(239)

Proof. We follow the proof in [44] quite closely. Let φ ∈ C∞0 (Rn) be such that 0 ≤ φ(x) ≤ 1

for all x, φ(x) ≡ 1 on {|x| ≤ 3ρ/4}, suppφ ⊂ {|x| < ρ}, and the derivatives satisfy |∇φ| ≤ cρ−1 and

|∂i∂jφ| ≤ cρ−2. Then by the solution formula for the Poisson equation and an integration by parts,

φp can be written

φp(x) = −cn
∫
Rn

∆(φp)(y) dy
|x− y|n−2

= cn

∫
Rn

1
|x− y|n−2 [φ∂i∂j(uiuj)− 2∇φ · ∇p− p∆φ](y) dy

= cn

∫
|y|<2r

[
∂i∂j

1
|x− y|n−2

]
φuiuj(y) dy + cn

∫
|y|≥2r

[
∂i∂j

1
|x− y|n−2

]
φuiuj(y) dy

− cn
2

∫
xj − yj
|x− y|n

(∂iφ)uiuj(y) dy + cn

∫ (∂i∂jφ)uiuj(y) dy
|x− y|n−2

− cn
2

∫
xi − yi
|x− y|3

p∂iφ(y) dy + cn

∫
p∆φ(y)
|x− y|n−2 dy.

We write the end result as φp = p1,1 + p1,2 + p2,1 + p2,2 + p3,1 + p3,2 (with terms appearing in the

same order as before). Clearly it suffices to estimate ‖pi,j − (pi,j)r‖L3/2(Br) for each i, j. Henceforth

we drop the notation for the dependence of our constant on n.

By the Calderón-Zygmund Theorem,

‖p1,1‖L3(Br) =
∥∥∥∥[∂i∂j c

| · |n−2

]
∗ φuiujχB2r

∥∥∥∥
L3/2(Rn)

≤ C‖φuiujχB2r‖L3/2(Rn) ≤ C‖u‖2L3(B2r),

110
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and therefore

(240) ‖p1,1 − (p1,1)‖L3/2(Br) ≤ 2C‖u‖2L3(B2r).

The other terms are bounded by estimating gradients and using the Mean Value Theorem. We will

use the estimate

‖g − (g)r‖L3/2(Br) ≤ cr
2
3n‖g − (g)r‖L∞ ≤ cr

2
3 +1‖∇g‖L∞(Br)

repeatedly, without further comment. To bound p1,2, we write

|∇p1,2(x)| ≤ c
∫
|y|>2r

φ|u|2 dy
|x− y|n+1 ≤ 2n+1c

∫
2r<|y|<ρ

|u|2

|y|n+1 dy.

Thus

(241) ‖p1,2 − (p1,2)‖L3/2(Br) ≤ cr
2
3n+1

∫
2r<|y|<ρ

|u|2

|y|n+1 dy.

Next, noting that ∂iφ ≡ 0 in B3ρ/4, we have for |x| < r ≤ ρ/2 that

|∇p2,1(x)| ≤ c
3∑
j=1

∫
3ρ
4 ≤|y|≤ρ

|(∂iφ)uiuj |
|x− y|n

dy ≤ c
∫

3ρ
4 ≤|y|≤ρ

cρ−1|u|2

(ρ/4)n dy

≤ cρ−n+1
∫
Bρ

|u|2 dy ≤ ρ− 2
3n−1

(∫
Bρ

|u|3 dy
)2/3

.

Thus

(242) ‖p2,1 − (p2,1)‖L3/2(Br) ≤ c
r

2
3n+1

ρ
2
3n+1

(∫
Bρ

|u|3 dy
)2/3

.

Essentially the same argument gives a bound of the same order for p2,2. Similarly, p3,1 and p3,2 can

be bounded by

(243) ‖p3,i − (p3,i)‖L3/2(Br) ≤ c
r

2
3n+1

ρ
2
3n+1

(∫
Bρ

|p|3/2 dy
)2/3

.

Combining all these bounds yields the desired statement.

�



APPENDIX B

Permissions for the Inclusion of Published Works

All previously published material in this thesis has been included with permission.

The following paper is published by Elsevier, which allows for reprinting in doctoral theses:

[38] T. M. Leslie and R. Shvydkoy. The energy balance relation for weak solutions of the density-
dependent Navier-Stokes equations. J. Differential Equations, 261(6):3719–3733, 2016.

Elsevier’s policy is as follows: “Authors can include their articles in full or in part in a thesis or disser-
tation for non-commercial purposes.” This policy is available at https://www.elsevier.com/about/our-
business/policies/copyright/permissions (accessed 3/24/2018).

The following paper is published by the Society for Industrial and Applied Mathematics (SIAM):

[39] Trevor M. Leslie and Roman Shvydkoy. Conditions Implying Energy Equality for Weak Solu-
tions of the Navier–Stokes Equations. SIAM J. Math. Anal., 50(1):870–890, 2018.

Permission to reprint this paper has been obtain via email correspondence (3/16/2018):

Dear Mr. Leslie:
SIAM is happy to give permission to reprint the material [from [39]]. In any
credit lines, please cite the complete bibliographic information for the original
article and include the wording “Copyright c©2018 Society for Industrial and
Applied Mathematics. Reprinted with permission. All rights reserved.”
Sincerely,
Kelly Thomas
Managing Editor, SIAM
thomas@siam.org

The following paper is published by Springer, which allows for reprinting in doctoral theses:

[37] T. M. Leslie and R. Shvydkoy. The Energy Measure for the Euler and Navier-Stokes Equations.
Arch. Ration. Mech. Anal. (to appear).

The following is taken from Springer’s Copyright Transfer Agreement, received by the author on
4/11/2018:

Author’s Retained Rights
Author(s) retain the following non-exclusive rights for the published version
provided that, when reproducing the Article or extracts from it, the Author(s)
acknowledge and reference first publication in the Journal:

• to reuse graphic elements created by the Author(s) and contained in
the Article, in presentations and other works created by them;

• they and any academic institution where they work at the time may
reproduce the Article for the purpose of course teaching (but not for
inclusion in course pack material for onward sale by libraries and in-
stitutions);

• to reproduce, or to allow a third party Assignee to reproduce the Article
in whole or in part in any printed volume (book or thesis) written by
the Author(s).

112



Cited Literature

[1] Franck Boyer and Pierre Fabrie. Mathematical tools for the study of the incompressible Navier-Stokes equations
and related models, volume 183 of Applied Mathematical Sciences. Springer, New York, 2013.

[2] L. Caffarelli, R. Kohn, and L. Nirenberg. Partial regularity of suitable weak solutions of the Navier-Stokes
equations. Comm. Pure Appl. Math., 35(6):771–831, 1982.

[3] Marco Cannone. Ondelettes, paraproduits et Navier-Stokes. Diderot Editeur, Paris, 1995. With a preface by Yves
Meyer.
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