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SUMMARY

Recent research concerning measurements of agreement between different methods

or different raters have received wide attention. The concordance correlation coefficient

(CCC) has been used to assess agreement between two raters or two measuring meth-

ods while the measurements are taken on the same continuous scale. However, the

circumstances of repeated measurements may arise, e.g. longitudinal studies in clinical

trials or bioassay data with sub-samples. The random variables are not independent

nor identically distributed in that kind of situation. To appropriately account for the

covariance between measurements, we have fitted three-level linear mixed-effect models

with random intercepts at two levels. The model parameters are estimated using an

expectation-maximization [E-M] like approach by iterating between the Empirical Bayes

[EB] estimates of the random effects and maximum marginal likelihood estimates of the

fixed and covariance parameters. For comparing agreement between two raters, we utilize

two-level and three-level models to estimate CCC and observe that three-level models

fit better for the dataset we collected in GAIT study. In order to handle missing data,

we did the analysis with missing values by using mixed-effects model, model imputation,

multiple imputation and pattern mixed model. We have achieved at consistent results

among all the methods handling missingness in the dataset. The proposed model also

gives us the opportunities to evaluate agreement after adjusting for the other covariates.

We also use an approach to get the generalized confidence interval of CCC for further

statistical inference. Our approach represents a first attempt in evaluating CCC for data

with multiple level variations.
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1. INTRODUCTION

Osteoarthritis (OA) is the most common form of all arthritides, afflicting at least 16

million persons in the United States. Based on 2010-2012 data from the National Health

Interview Survey (NHIS), an estimated 52.5 million (22.7%) of adults have self-reported

doctor-diagnosed arthritis. Based on 2003 NHIS data, a projected 67 million (25%) adults

aged 18 years or older will have doctor-diagnosed arthritis by the year 2030. Large, weight

bearing large joints are often involved, especially the knee, leading to limited activities of

daily routine. Effective therapies for OA are limited but include general health measures

such as exercise, weight loss, medications including non-steroidal anti-inflammatory drugs

(NSAIDs), analgesics, and surgery, most often total joint replacement. Current medical

therapies have only been proven to provide symptomatic relief in OA; however, the

potential to prevent structural deterioration in OA has been postulated for some medical

treatments.

Currently, plain radiography is the ‘structure’ outcome measure recommended by

consensus committees for OA of the knee. Efforts to study the potentially disease-

modifying therapies have been hampered by the challenges with accurately measuring

disease progression, because of large variability in the rate of expected radiographic joint

space narrowing, and the very small differences in Joint Space Width [JSW] that are

being measured (2008, [1]; 2004, [2]). Unfortunately, these limitations of measurements

remain a barrier to studies of structural modification in OA, as accurate and reproducible

measurements are not uniformly obtained.

A number of different protocols to standardize study radiographs have been pro-

posed, some including fluoroscopic guidance with the aim of improving precision (2003,

[3]; 2009, [4]). In addition, manual and computer based techniques to measure the JSW
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have been used. Some computerized methods have shown better accuracy compared to

manual readings (1996, [5]; 1994, [6]).

Glucosamine/Chondroitin Arthritis Intervention Trial, (GAIT) N01-AR-9-2236, is

an NIH funded, placebo-controlled, parallel, double-blind, five-arm randomized clinical

trial, which was designed to determine whether glucosamine, chondroitin sulfate and/or

the combination of glucosamine and chondroitin sulfate are more effective than placebo

and whether the combination is more effective than glucosamine or chondroitin sulfate

alone in the treatment of knee pain associated with osteoarthritis (OA) of the knee.

Daniel O. Clegg, M.D, Professor of Medicine and Chief of the Division of Rheumatology,

University of Utah School of Medicine, directed the coordinating center which oversaw

the research, patient recruitment, and data collection efforts of thirteen study centers

across the country. The Biostatistical Center led by Domenic Reda, Ph.D., was located

at the Edward Hines Jr. VA Hospital in Hines, IL. The Biostatistical Center assisted

in the planning and development of the study protocol; developed a randomization pro-

cedure and distributed information about randomization to all clinical sites; developed

data forms and an Operations Manual; established procedures for data entry, data mon-

itoring, and data quality control; monitored patient recruitment and provided monthly

enrollment reports; maintained data files; monitored quality control, protocol compliance,

and prepared all statistical reports. To further explore issues encountered in measuring

Joint Space Width (JSW) from radiographs of knees affected by OA, the GAIT ancillary

structural radiographic study is designed to compare results among two manual readers

and a computer measurement system.

Subjects enrolled in the GAIT ancillary structural study met the original GAIT

inclusion criteria, summarized as aged 40 years or older with clinical evidence of painful

OA of the knee for at least six months, and radiographic evidence of OA as determined
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by having a Kellgren & Lawrence grade 2- or 3-rated radiograph of the index knee. Six

hundred and sixty-two of the 1583 original GAIT study participants were also enrolled in

the structural study (2008, [7]; 2006, [8]). For each participant signed informed consent as

approved by the IRB and HIPAA was procured. The parent trial was registered (Clinical

Trials.gov NCT00032890).

In the GAIT structural study, each entering patient had a semi-flexed weight-bearing

radiograph of the knees before starting investigational therapy in the primary study and

following 12 and 24 months of therapy. For each knee, the JSW was defined as the

narrowest dimension in the medial compartment of the knee. This location was not

necessarily at the middle of the weight-bearing surface of the medial tibia (the point

used for measuring the rim to floor distance) and/or at any specified distance from the

medial condyle. The direction or line upon which the JSW measurement was taken

was perpendicular to the plane of the joint surfaces and not necessarily in parallel with

the axis of the lower extremity. The site used to measure JSW could not include an

osteophyte or involve the tibial spine. All manual measurements were performed using

the Mitutoyo Digimatic Calipers (Mitutoyo Products) and recorded to the hundredth

millimeter.

Figure 1 is a photograph showing the position for the MTP view of the knee. The

first metatarsophalangeal joint is positioned directly below the front of the film cassette.

The knees are flexed until the knees touch front and middle of the film cassette. The

X-ray beam is horizontal and parallel to the floor. The patient stands on the sheet of

paper. The outline of the feet are marked on the sheet so as to facilitate repositioning at

subsequent visits.
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Figure 1: Photograph showing the position for the metatarsophalangeal (MTP) view of
the knee

Figure 2 shows both knees appearing in the center of the film. The long axes of the

tibiae are parallel to the margins of the film and exposure parameters allow adequate

depiction of anatomy. Medial and lateral joint spaces of both knees are correctly de-

lineated. In this case bicompartmental osteoarthritis of both knees predominant in the

medial compartments is seen.

Figure 2: Acceptable: Good Quality Radiograph of the Knees
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Figure 3 is a diagram illustrating the normal variability in the posterior inclination

of the medial tibial plateau (range 0◦-10◦) among knees positioned for radiography in the

semiflexed MTP view. The tibiofemoral angle is determined by the radiographic position.

The angle between the 2 limb bones is similar between examinations and is only changed

if the patient unusually alters his/her pelvic tilt. The site of JSW measurement remains

the same between knees and coincides with the load transmission region across the joint

(arrows), and is parallel to the film and perpendicular to the femoral and tibial margins.

Figure 3: Diagram illustrating the normal variability in the posterior inclination of the
medial tibial plateau (range 0◦-10◦) among knees positioned for radiography in the semi-
flexed MTP view.

Each radiograph was evaluated for meeting inclusion criteria for the structural study.

The images were blinded and coded at the Hines CSP Coordinating Center as to patient

name, participating clinic, treatment group and date the X-ray was taken. The X-rays

were read by physician investigators without knowledge of the patient name, participat-

ing clinic, treatment, and date of X-ray. These blinded images were read by physician

investigators in matched pre-post pairs, but read in a randomly assigned order. Each

X-ray was interpreted independently by two investigators: Dr. Williams, MD, a rheuma-

tologist with extensive experience in clinical investigation and previous experience in
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radiographic interpretation of clinical trials, and Dr. Julia Crim, MD, a musculoskeletal

radiologist. Each reader reviewed plain hard copy radiographs and measured the JSW

with calipers. An additional non-technical rater used the computer program Mdisplay by

Buckland-Wright (1994, [9]) to measure JSW on digitized images of each film. Mdisplay

is a semi-automated program requiring a user to mark the endpoints of the medial tib-

ial and femoral condyles and then an edge finding algorithm determines the joint space

borders.

To determine whether manual measurement of JSW on plain radiographs is equally

as reproducible as computer generated measurements of digitalized radiographs, it is

necessary to perform statistical evaluation of the agreement. Ideally, new measurements

would be compared with true values; however, in the case of measuring JSW - as is

often the case - true values of the measurement in question are unknown. Typically, new

measurements are compared with measurements from the gold standard methods of the

field in question. In statistics, the term ‘Agreement’ refers to both accuracy when a true

value is known and precision when the true value is unknown.

In Chapter 2, the general statistical literature review of agreement will be addressed.

In Chapter 3, we review the methodology of evaluating agreement. In Chapter 4, we

provide the three-level mixed-effect models we used to estimate the extent of agreement.

In Chapter 5, we provide the results of simulations. In Chapter 6, we apply the method to

the example of JSW. In Chapter 7, we apply the different methods for handling missing

data. In Chapter 8 we adjust other covariates to evaluate agreement between raters. In

Chapter 9 we estimate the generalized confidence interval for CCC by generalized pivot

statistics. Finally, we draw conclusions and provide some discussions in Chapter 10.
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2. STATISTICAL LITERATURE REVIEW ON

AGREEMENT

Cohen (1960, [10]) defined kappa as a coefficient of inter-rater agreement to evaluate

the degree of agreement for nominal scales. Nominal scales were at the time popular in

the clinical-social-personality areas of psychology. Historically, two or more raters in-

dependently categorized items, and simple agreement between raters was sufficient for

categorization without being held to predetermined, outside rating criteria. There was

no sense of the correctness of categorization, and the raters equally and independently

applied their judgment. Additionally, there were no restrictions placed on the distri-

bution of ratings over categories for either rater. There existed a need to determine

the reliability of rater judgments, and Cohen’s kappa attempted to fill this void. In or-

der to calculate kappa, data structure first paired ordinal observations with a bivariate

multinomial distribution. Assuming that the units were independent, the categories of

the nominal scale were independent, and the raters operated independently; kappa was

interpreted as the proportion of joint categorizations in which there is agreement after

excluding the contribution due to chance agreement.

Cohen (1968, [11]) later developed a weighted kappa which counted disagreements

differently and proved especially useful when categories were ordinal. Three matrices

were involved : the matrix of observed scores, the matrix of expected scores based on

chance agreement, and the weight matrix. Weight matrix cells located on the diagonal

(upper-left to bottom-right) represent disagreement and thus contain zeros. Off-diagonal

cells contain weights indicating the seriousness of that disagreement. Commonly, cells off

the diagonal were weighted according to their distance from the diagonal; adjacent cells

were weighted 1, cells two spaces from the diagonal were weighted 2, and so on. Cohen’s
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kappa is limited to the measurement of agreement between two raters and is applied to

categorical data only.

Fleiss (1971, [12]) developed Fleiss’ kappa for a similar measure of agreement when

there are more than two raters. The Fleiss kappa, however, is a multi-rater generalization

of Scott’s π statistic, not Cohen’s kappa, and was designed to take into account the

possibility of guessing. However, if the assumptions of rater independence and other

factors are not met, Fleiss’ kappa may underestimate the true level of agreement (Zapf,

2016, [72]). Furthermore, values of Fleiss’ kappa do not have a direct interpretation, and

thus it has become common for researchers to accept low kappa values in their inter-rater

reliability studies.

Low levels of inter-rater reliability are not acceptable in health care or in clinical

research, especially when results of studies may change clinical practice in a way that

leads to poor patient outcomes. The Pearson correlation coefficient measures a linear

relationship only, and fails to detect any departure from the 45◦ line or any other rela-

tionships. The paired t-test and the least square analysis may mislead when data are

scattered or data have different trends other than agreement. The traditional methods of

measuring agreement on continuous variables such as the Pearson correlation coefficient,

the paired t-test, or the least squares analysis of slope (= 1) and intercept (= 0), have

obvious limitations.

Several recent statistical approaches to measure continuous variable agreement are

discussed below:

(i) Descriptive tools, such as pairwise plots with a 45-degree line, and Bland-Altman

plots (Bland and Altman, 1986, [13]);
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(ii) Unscaled summary indices based on absolute differences of measurements, such

as mean squared deviation including repeatability coefficient and reproducibility

coefficient, limits of agreement (Bland and Altman, 1999, [33]), coverage probability,

and total deviation index (Lin et al., 2002, [18]);

(iii) Scaled summary indices, such as the intraclass correlation coefficient (ICC), con-

cordance correlation coefficient (CCC), coefficient of individual agreement, and de-

pendability coefficient. (Lin (1989), (1992), [14, 15] ).

The pairwise plot with a 450 line passing through the origin is the simplest display

comparing the results of two methods of measurement. Ideally, all the observations would

be on or around the 450 line. In practice, however, data points will be clustered near

the line and it will be difficult to assess between-method differences. The Bland-Altman

plot [13] displays the differences of methods against their mean. If the differences in

measurements are normally distributed, 95% of differences would lie between the mean

difference ±1.96 x SD. In practice, two times standard deviation is used.

When using the simple graphical methods changed to describing the 95% confidence

interval of the difference of measurement, the mean and standard deviation of the dif-

ferences were assumed to be the same throughout the range of measurement. However,

the mean difference may also be approximately proportional to the magnitude of the

measurement. In other words, the variances may increase when mean difference between

raters increases.

Bland and Altman (1986, [13)] extended the basic approach to resolve the issue of

inconsistent variance with a simple logarithmic transformation approach and a regression

approach. They used one-way analysis of variance, with subject as the factor to estimate

the within-subject standard deviation from the square root of the residual mean square



10

and assumed the mean difference between replicates to be zero. A nonparametric ap-

proach by using the percentage of change was used when the distribution of data was

skewed. This method displays the difference and magnitude of agreement, but still does

not show the scale.

Lin (1989, [14]; 1992, [15]) proposed a new index, Concordance Correlation Coef-

ficient (CCC), to evaluate reproducibility. CCC evaluates the agreement between two

readings from the same sample by measuring the variation from the 450 line through the

origin, or the concordance line. Departure from the standard is measured by how far the

observations deviate from the concordance line on a scale of 1 (perfect agreement) to -1

(perfect reversed agreement or, perfect disagreement), and including 0 (no agreement).

It consists of a measure of precision (not correctable) multiplied by a measure of accuracy

(correctable), and was referred to as ρc. This index measured a scale shift (ratio of 2

standard deviations) and a location shift.

We will use CCC to evaluate agreement between different raters in this dissertation.

CCC depends largely on analytical range and the intra-sample variation. In certain cases

where there are practical difficulties using CCC, the mean of squared difference (MSD) is

the recommended approach. MSD is a good statistical index when individual departure of

paired data is of particular interest. Lin et al. (2002, [18]) introduced the total deviation

index (TDI (1−p)) and coverage probability (CP). This proposed method aims to capture

a proportion of data (difference of two observers) called coverage probability within a

boundary, or total deviation index, from target value. For example, we will evaluate that

at least 80% of observations are located within 10% relative deviation of their target

values. In this case, we set the TDI at 10% and test whether or not CP exceeds 80%.

The TDI (1 − p) describes a boundary such that a majority 100(1 − p) percent of the

differences (or percentages for the log transformed data) of paired observations are within



11

the boundary. The limit is similar to that of the prediction interval.

Since 1989, CCC has been widely used as a measure of reproducibility in prac-

tice. Lin’s method was applicable for studies evaluating two raters or methods without

replication. Chinchilli et al. (2001, [29]; 2009, [50]) extended Lin‘s approach to repeated

measures designs by using a weighted concordance correlation coefficient. However, those

methods cannot adjust the effects of covariates, especially when one needs to model agree-

ment of multiple readings. Barnhart et al. ( 2001, [28]; 2010, [57]) modeled CCC via

three sets of estimating equations by a generalized estimating equation (GEE) approach.

The proposed approach is flexible for several reasons: first, it can incorporate more than

two correlated readings and test for the equality of pairwise concordant correlation co-

efficient estimates; second, it can incorporate covariates towards prediction in marginal

distributions; third, it can be used to identify covariates towards prediction of concor-

dance correlation coefficients; and finally, it requires minimal distribution assumptions.

However, the proposed GEE method for estimating the CCC has the tendency to un-

derestimate the true concordance correlation coefficient when sample size is small. This

may be due to the fact that the empirically corrected standard error is smaller than the

actual standard deviation. This is also the limitation of GEE approach.

Instead of moment estimation methods, Carrasco (2003, [17]) proposed a mixed

effects model to estimate the CCC. He also demonstrated that ICC and CCC are the

same measure of agreement estimated by assuming the raters had a fixed effect, and so the

contribution of the variability of the raters’ means to the ICC will be a sum of squares

rather than a variance. The CCC can be extended to more than two raters by using

the variance components approach. It can be adjusted for confounding covariates by

incorporating them into the mixed model. The CCC of variance components estimation

results in a more accurate point estimate than does the moment method.
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In summary, the pairwise plot and the Bland-Altman plot (1986, [13]) convey an

intuitive sense of agreement visually, but do not quantify the degree of agreement. Lin’s

CCC measures both scale and location shifts to quantify the agreement between two

raters. He also assumes the samples to be independent. Chinchilli (2001, [29]) extended

Lin‘s approach for repeated measures. Barnhart (2001, [28]) modeled CCC by a general-

ized estimating equation (GEE) approach, but this method may result in underestimation

of the CCC. Carrasco (2003, [17]) proposed a mixed effects model to estimate ICC. By

assuming a fixed rater effect, he demonstrated that ICC and CCC are the same. In our

study, three raters evaluated subjects’ joint space width at baseline and one/two years

post-treatment. In order to find the intra-rater CCC, we randomly selected 29 subjects

at each time point for repeated readings. There are three levels of correlation in this

study: 1) multiple X-rays at the same time point; 2) individual person level correlation

over time; and 3) group level correlations. We propose a three-level mixed model to

estimate the CCC.
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3. METHODOLOGY

3.1 Cohen’s kappa on categorical data

Cohen’s kappa measures the agreement between two raters classifying subjects into

distinct, mutually exclusive categories. Suppose raters X and Y are evaluating one vari-

able with k categories from N independent subjects. Let p11 represent the percentage

of the subjects both raters assigned to category 1 given all subjects,..., ptt represent the

percentage of the subjects both raters assigned to category t given all subjects, and pij

represent the percentage of the subjects assigned to category i by one rater and assigned

to category j by the other given all subjects. Further, let p.j denote the marginal per-

centage of column j and pi. denote the marginal percentage of row i.

Table I: Agreement between two raters on one categorical variable with T categories

Rater Y
Rater X Category 1 2 ... k Total

1 p11 p12 ... p1k p1.
2 p21 p22 ... p2k p2.
...
T pk1 pk2 ... pkk pk.

total p.1 p.k 1.0

Let

po = p11 + p22 + ...+ pkk, (3.1)
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and

pe = p.1p1. + p.2p2. + ...+ p.kpk., (3.2)

Cohen’s Kappa is

κ = po − pe
1− pe

, (3.3)

where po is the sum of percentage at diagonals, or observed agreement between raters;

pe is the sum of the products of marginal distributions, or the estimated hypothetical

probability of chance agreement; κ represents Cohen’s kappa, adjusting for the possibility

of agreement occurring by chance.

If κ is less than 0 (i.e., if the observed agreement is less than what would have been

expected by chance), there is no further practical interest. If κ = 1, then the raters are

in complete agreement. For a κ less than 0.70, generally the inter-rater agreement is

considered to be poor; on the other hand, when κ is greater than 0.70, inter-rater agree-

ment is considered to be satisfactory. Below, we examine two examples showing when

Kappa is adequate (example 1) and when kappa is inadequate (example 2) for evaluating

agreement between 2 raters involving k = 2 categories of classification only.

Table II: Example 1: Cohen’s Kappa evaluation showing perfect agreement

Rater Y
Rater X Category 1 2 Total

1 30 0 30 n.1
2 0 70 70 n.2

total 30 70 100 n..
n1. n2.



15

In this case, Cohen’s kappa is:

κ = po − pe
1− pe

= 1− 0.58
1− 0.58 = 1.

Table III: Example 2: Cohen’s Kappa evaluation showing inadequate agreement

Rater Y
Rater X Category 1 2 Total

1 1 6 7 n.1
2 13 80 93 n.2

total 14 86 100 n..
n1. n2.

Here, Cohen’s kappa is:

κ = po − pe
1− pe

= 0.81− 0.8096
1− 0.8096 = 0.002.

We can see that kappa works perfectly well when all the n subjects are rated by the two

raters with 100 percent ‘matching’ between the two categories. That simply means that

the sum of the diagonal frequencies is n — irrespective of the decomposition. However,

Cohen’s kappa performs poorly about inter-rater agreement in case of marginal hetero-

geneity as in the second example — even though there is predominantly high percentage

of match [81 out of 100] between the two raters.

We reiterate that in case of 100 percent matching along the main diagonal, Cohen’s

kappa always takes the value 1 - as it should. Is it also equally true that in case of 100

percent ‘mismatch’ i.e., 100 percent matching along the ‘anti-diagonals’, kappa assumes
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the value ‘-1’ ? It is tempting to assert that kappa is -1, that means it is a case of

completely reverse agreement or perfect disagreement. Sinha et al (2006) [26] pointed

out an interesting feature of kappa in this scenario. Example 3 shows a situation wherein

there is not even a single agreement case on the diagonals.

Table IV: Example 3: Cohen’s Kappa evaluation under 100 percent mismatch

Rater Y
Rater X Category 1 2 Total

1 0 60 60 n.1
2 40 0 40 n.2

total 40 60 100 n..
n1. n2.

Here, Cohen’s kappa is:

κ = po − pe
1− pe

= 0− 0.48
1− 0.48 = −0.923.

Sinha et al (2006, [26]) observed that kappa captures 100 percent reverse agreement

i.e., assumes the value of ‘-1’ if and only if pe = 0.5, that means p12 = p21 = 0.5 for the

two categories.

This reflects on a ‘defect’ or imperfection in the definition of kappa. Sinha et al

(2006, [26]) went ahead to modify the original kappa formula as:

κM1 = po − pe
π1.π2. + π.1π.2

.

Here, πi. = ni./n, π.j = n.j/n. The modification is based on the analysis of situation
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leading to total disagreement between two raters. Computation now leads to κ = 0−0.48
0.48 =

−1.

However, we will not discuss this issue any further nor we will adopt this modified

formula for kappa in our study.

To overcome the limitation of Cohen’s kappa being applicable for two raters, Fleiss’

kappa (1971, [12]) addresses agreement for any number of raters giving categorical as-

signments to a fixed number of subjects/items. Again, it does not work well in case of

marginal heterogeneity or reverse agreement when the cumulative product of marginals

is not equal to 0.5.

As before, let N be the total number of subjects, and n be the number of raters,

and let k be the number of categories into which assignments are made independently

by each of the n raters of each of the N subjects. The subjects are indexed by i = 1, ...

N and the categories are indexed by j = 1, ... k. Let nij represent the number of raters

who assigned the i-th subject to the j-th category.

Let pj be the proportion of all assignments which are attributed to the j-th category:

pj = 1
Nn

(
N∑
i=1

nij),
k∑
j=1

pj = 1;

where
k∑
j=1

nij = n,
N∑
i=1

k∑
j=1

nij = Nn.

Since number of all possible pairwise raters among n raters is n(n− 1)/2, the extent

of agreement among the n raters for the ith subject would be the proportion of pairwise

raters matching for the jth category, given the total number of pairs, for all the categories
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combined. Therefore, pi is defined as:

pi = 1
n(n− 1)/2

k∑
j=1

nij(nij − 1)/2,

p̄ is the mean of the p′is

p̄ = 1
N

N∑
i=1

pi.

If the raters made their assignments completely at random, the mean proportion of

agreement is expected to be:

p̄e =
k∑
j=1

p2
j =

k∑
j=1

( 1
Nn

N∑
i=1

nij)2.

Fleiss’ kappa is defined as

κ = p̄− p̄e
1− p̄e

. (3.4)

The factor 1 − p̄e gives the degree of agreement that is attainable above that at-

tributable to chance, and p̄ − p̄e gives the degree of agreement actually achieved above

chance. The statistic κ takes values between 0 and 1, where a value of 1 means complete

agreement. Fleiss’ initial goal was to extend kappa to 3 raters and more. But Fleiss’ gen-

eralized statistic does not reduce to kappa if the number of raters is 2. Instead, it reduces

to another agreement coefficient called Π, proposed by Scott (1955, [32]). Nonetheless,

Fleiss decided to refer to his coefficient as a generalized kappa.
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3.2 Paired t-test and Pearson correlation coefficient

Cohen’s kappa and Fleiss’ kappa are commonly used to evaluate agreement on cate-

gorical variables; however, evaluating the agreement between two raters on a continuous

variable/scale is another common question. There are several traditional statistics or

tests used for that purpose, the Pearson correlation coefficient being one of them. Pear-

son’s correlation coefficient is defined as

ρx,y = Cov(x, y)
σxσy

, (3.5)

that is, the covariance of the two variables divided by the product of their standard

deviations.

Another traditional method is developed by considering a paired vector of observa-

tions X and Y, with all paired data around the 450 concordance line X = Y . If each

reading in X is identical to the corresponding one in Y, then we say X and Y are in

perfect agreement. Bland and Altman (1986, [13]; 1999, [33]) used the paired t-test to

see how closely the samples agree in paired samples.

The test statistic is calculated as:

t = d̄√
s2/n

, (3.6)

where d̄ is the mean difference, s2 is the sample variance based on the differences, n is

the sample size and t is the Student t with n-1 degrees of freedom.

However, Pearson’s correlation coefficient reflects the linear relationship. Lin (1989)

pointed out that the results by those methods may be misleading. Figure 4 shows three
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cases where Pearson’s correlation coefficients are very high due to strong linear relation-

ships, but in fact there is strong disagreement between raters. The upper plot shows a

situation where Pearson’s correlation coefficient shows highly significant linear relation-

ship, however, the rater Y’s measurements are always higher than X rater, that means,

fails to detect the disagreement based on location; the middle plot shows strong linear

relationsip, however, a failure to detect disagreement on scale, and the lower plot shows

strong linear relationship, however, a failure to detect disagreement on both location and

scale.

The paired t-test evaluates means rather than individual pairs. Figure 5 shows

several examples where paired t-test misleads the agreement between measurements. The

paired t-test data in the top four plots in Figure 5 will fail to reject H0 even though there

is strong disagreement between the raters because the mean of the difference between

ratings in these examples is close to 0. The paired t-test fails to explain the nature of

the relationship between the responses given by the two raters. In the final example in

Figure 5 the difference between the two raters is very consistent, although one rater had

a reliably higher evaluation than the other. Therefore when the standard deviation of the

difference is small enough, and when the number of pairs is large enough, the result of

mean difference divided by the standard error will be large enough that the test statistic

will reject H0 despite showing strong agreement between two raters. Yet the paired t-test

fails to highlight the nature of the agreement, as the rater on the Y axis consistently rates

the items higher than the rater on the X axis, a disagreement on location despite overall

strong agreement on scale.
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Figure 4: Three cases where Pearson’s correlation coefficient fails to detect disagreement
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Figure 5: Several cases where paired t-test misleads to the conclusion of agreement
measures

3.3 Lin’s Mean Squared Deviation

In order to quantify the agreement on both location and scale, Lin (1989, [14])

introduced the Mean Squared Deviation [MSD] to evaluate an aggregated deviation from

the identity line, a frequently- used measure for studying the differences between two

vectors of observations. When there are two raters MSD is defined as E(Y −X)2. It can
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be expressed as:

MSD = (µy − µx)2 + σ2
y + σ2

x − 2σyx(= ε2, say). (3.7)

The notations are as usual. From equation (3.7), we can see that MSD is always

≥ 0, MSD increases when there is a large difference between means or variances, or both.

The drawback of the MSD is that though it is intuitively meaningful, there is no easy way

to set up an upper acceptable limit for MSD to evaluate the goodness of the agreement.

Naturally, when we have paired observations based on the ratings provided by the

two raters independently on each of n subjects, the sample analogue of MSD is based

on observed means, variances and the correlation coefficient. Note that σyx stands for

population covariance between X and Y .

3.4 Lin’s Concordance Correlation Coefficient

In a series of papers, Lin (1989, [14]; 1992, [15]; 2007, [16]) and Lin et al. (2002, [18])

studied various aspects of MSD involving two raters in a continuous scale. In order to

avoid the drawbacks of MSD, Concordance Correlation Coefficient (CCC) was introduced

to measure the agreement between two raters in a standardized scale. It is denoted by

ρc and is defined as

ρc =1− E(Y −X)2

E(Y −X)2 | ρ = 0

=1− ε2

σ2
y + σ2

x + (µy − µx)2

= 2σyx
σ2
y + σ2

x + (µy − µx)2 . (3.8)



24

Here, E(Y −X)2 gives the mean square for within sample total deviation,and E(Y −

X)2 | ρ = 0 gives the mean square for total deviation under zero correlation set-up. So

CCC is a standardized form of MSD lying between [-1, 1].

When two raters are grading n independent subjects, paired observations on Y and

X are randomly collected, and it is assumed that

(i) Yi and Xi have a bivariate distribution with mean

µy
µx

, and variance

 σ2
y σyx

σyx σ2
x

;

(ii) Yi and Yj are independent when i 6= j;

(iii) Xi and Xj are independent when i 6= j.

The sample counter-part of ρc is the so-called plug-in estimator based on sample

means, sample variances and the sample covariance.

In order to achieve an approximation to the normal distribution, Lin (1989) trans-

formed ρc using Fisher’s z transformation to obtain

λ̂ = tanh−1(ρ̂c) = 1
2 ln(1 + ρ̂c

1− ρ̂c
), (3.9)

This quantity has an asymptotically normal distribution with mean tanh−1(ρc), and

variance

1
n− 2{

(1− ρ2)ρ2
c

(1− ρ2
c)ρ2 + 2ρ3

c(1− ρc)ν2

ρ(1− ρ2
c)2 − ρ4

cν
4

2ρ2(1− ρ2
c)2},

where,

ν = | µy − µx |√
σxσy

.
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From equation (3.8), since,

E(Y −X)2

E((Y −X)2 | ρ = 0) ≥ 0; (3.10)

1− E(Y −X)2

E((Y −X)2 | ρ = 0) ≤ 1;

and,

E[(y − µy) + (x− µx)]2 ≥ 0; (3.11)

(µx − µy)2 ≥ 0;

σ2
y + σ2

x + 2σyx + (µy − µx)2 ≥ 0;

2σyx ≥ −(σ2
y + σ2

x + (µy − µx)2);
2σyx

σ2
y + σ2

x + (µy − µx)2 ≥ −1.

It follows that CCC is between -1 and 1. CCC will be 1 only when µy = µx and

σyx = σ2
y = σ2

x, or the distribution of observations from two raters are identical. CCC

will be 0 when σyx = 0, meaning the distribution of observations from two raters are

independent. CCC will be -1 when µy = µx and -σyx = σ2
y = σ2

x, or the pair of y and x

are on line of y = -x, -450. So we can see that CCC measures agreement on both location

and scale between two raters, but it is limited to only two raters.
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3.5 Mixed-Effects Regression Models

In our study, the JSW of participants was measured repeatedly at three time points.

The covariance between repeated measurements on the same subject, covariance between

categorizations assigned by the same rater, and covariance between the raters reading

the same feature-related naturally come into the picture and all these have a direct

role to play in the analysis of data. Traditional methods are limited due to restrictive

assumptions concerning the variance-covariance structure of the repeated measures. The

univariate ”mixed-model” analysis of variance assumes that the variances and covariances

of the dependent variable across time are equal. Mixed-effects regression models (MRMs)

are used to estimate the sample mean and variance-covariance structure. Hedeker and

Gibbons [19] point out that a basic characteristic of MRMs is the inclusion of random

subject effects into the regression model in order to account for the influence of subjects

on their repeated observations. When the same subjects are repeatedly measured over

time, their responses are correlated over time, and their estimated trend line or curve

can be expected to deviate systematically from the overall mean trend line. Additionally,

they indicate the degree of subject variation that exists in the population of subjects.

If individuals have no influence on their repeated outcomes, then all of the random

terms would equal 0. However, it is more likely that subjects will have positive or nega-

tive influences on their longitudinal data, and so the random terms will deviate from 0.

In addition, it may be assumed that the errors of measurement are conditionally indepen-

dent and this seems to be more reasonable than the ordinary independence assumption

associated with the general linear model. Vide Laird and Ware (1982, [20]).
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Firstly, the traditional 2-level model for longitudinal data is described as follows:

yi = X iβ +Zivi + εi,

where i = 1, 2, ..., N subjects, j = 1, 2, ..., ni observations from subject i;

(i) yi is the ni × 1 response vector for individual i;

(ii) X i is the ni × p design matrix for the fixed effects;

(iii) β is a p× 1 vector of unknown fixed effects parameters;

(iv) Zi is the ni × r design matrix for the random effects;

(v) vi is an r × 1 vector of unknown random effects following N(0,Σν),

(vi) εi is a ni × 1 residual vector following N(0, σ2Ini).

The within-subjects mixed effect level-1 model for typical random intercept and

trend (j = 1, ..., ni)

yij = b0i + b1iX1ij
+ εij,

The between-subjects level-2 model (i = 1, ..., N)

b0i = β0 + ν0i;

b1i = β1 + ν1i.

Here, β0 is the group level intercept; β1 is the group level-1 slope; ν0i is the ith indi-

vidual’s deviation intercept from the average of the group, and ν1i is the ith individual’s
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slope deviation from the group level slope. In practice, the number of levels of data must

be considered when the multilevel data are collected for more than two levels. As long

as the variance attributable to a higher-order level is perceived, the higher-order level

may/should be included in the model.

A 3-level model for longitudinal data is described as follows:

yijk = X ijkβ +Z(3)ijkvi +Z(2)ijkuij + εijk,

where i = 1, 2, ..., N subjects, denote the level-3 units; j = 1, 2, ..., ni observations, denote

level-2 units nested within the i-th level-3 unit; k = 1, 2, ..., nij, denote level-1 units nested

within the pair (i, j). So there are N level-3 units, ∑N
i=1 ni level-2 units and ∑N

i=1
∑ni
j=1 nij

level-1 units.

(i) yijk is the vector of ∑N
i=1

∑ni
j=1 nij×1, where i denotes the level-3 unit, j denotes the

level-2 unit nested within the ith level-3 unit, and k denotes the level-1 unit nested

within the pair (i, j);

(ii) X ijk is the ∑N
i=1

∑ni
j=1 nij × p design matrix for the fixed effects;

(iii) β is a p× 1 vector of unknown fixed parameters;

(iv) Z(3)ijk is the ∑N
i=1

∑ni
j=1 nij × r design matrix for the level-3 random effects;

(v) vi is an r × 1 vector of unknown level-3 random effects following N(0,Σν);

(vi) Z(2)ijk is the ∑N
i=1

∑ni
j=1 nij × q design matrix for the level-2 random effects;

(vii) uij is an q × 1 vector of unknown level-2 random effects following N(0,Σu);

(viii) εijk is a vector of∑N
i=1

∑ni
j=1 nij×1 standing for residual vector followingN(0, σ2I∑N

i=1

∑ni
j=1 nij

).
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3.6 Estimation of Concordance Correlation Coefficient

When observations are not independent, Fleiss (1971, [12]) proposed the following

model for continuous variables measured at m time periods from N subjects by k raters.

Yijl = µ+ αi + βj + εijl, (3.12)

where individual i = 1, 2, ..., N , observer j = 1, 2, ..., k, and measurement l = 1, 2, ...,m;

µ is the overall mean, αi is the individual effect (random), βj is the fixed effect of the jth

rater, and εijk is the random error.

Assumption : αi ∼ N(0, σ2
α), εijk ∼ N(0, σ2

ε ), and error terms are independent with

any other component of the measurement model. Intraclass correlation coefficients (ICC)

are measures of the relative similarity of quantities which share the same observational

units of a sampling and/or measurement process. Carrasco (2003, [17]) assumed the

rater’s effect is fixed. Based on this model and assumption, the intraclass correlation

coefficient (ICC) is:

ICC = ρICC = σ2
α

σ2
α + σ2

β + σ2
ε

. (3.13)

After assuming that raters’ effects are fixed, and that one measurement by each rater on

each subject is taken (m =1), the following equalities are fulfilled.

Let µj = µ+ βj, and µi = µ+ βi.

σ2
α = 2

k(k − 1)

k−1∑
i=1

k∑
j=i+1

σij,

σ2
β = 1

k(k − 1)

k−1∑
i=1

k∑
j=i+1

(µi − µj)2,
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σ2
ε = 2

k(k − 1)

k−1∑
i=1

k∑
j=i+1

1
2(σ2

i + σ2
j − 2σij)

=1
k

k∑
i=1

σ2
i −

2
k(k − 1)

k−1∑
i=1

k∑
j=i+1

σij.

where σ2
i and µ are the variance and mean of the measurements made by rater i; σij is

the covariance between raters i and j. Putting all of those together,

ρICC =
2∑k−1

i=1
∑k
j=i+1 σij

(k − 1)∑k
i=1 σ

2
i +∑k−1

i=1
∑k
j=i+1(µi − µj)2 . (3.14)

That is exactly the same expression as the CCC for k raters, implying that CCC

can be estimated by variance components through a mixed effects model. The beauty of

this method is that it measures the CCC for more than two raters. However, there is a

strong assumption that the raters have fixed effects and that samples are independent.

3.7 Hypothesis testing of agreement

Sinha and Dutta (2013, [27]) developed a likelihood ratio test for a hypothesis of

the form H0 : |µx − µy| ≥ ε0, σx

σy
or σy

σx
≥ η0, ρ ≤ ρ0 where ε0 is close to 0, and η0 and ρ0

are close to 1 by assuming x and y are paired measurements by two raters. They follow

bivariate normal distribution, denoted by:

X
Y

 ∼ N2


µx
µy

 ,
 σ2

x ρσxσy

ρσxσy σ2
y


 . (3.15)
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This testing problem is equivalent to testing the union of four composite hypotheses:

H01 : µx = µ, µy = µ+ ε0, σx = σ, σy = ση0, ρ = ρ0; (3.16)

H02 : µx = µ, µy = µ+ ε0, σx = σ, σy = σ

η0
, ρ = ρ0;

H03 : µx = µ, µy = µ− ε0, σx = σ, σy = ση0, ρ = ρ0;

H04 : µx = µ, µy = µ− ε0, σx = σ, σy = σ

η0
, ρ = ρ0.

The likelihood function is written as

L(µx, µy, σx, σy, ρ|data) = 1
(2πσxσy

√
1− ρ2)n

exp[− 1
2(1− ρ2) (3.17)

n∑
i=1

(xi − µx
σx

)2 − 2ρ(xi − µx
σx

)(yi − µy
σy

) + (yi − µy
σy

)2].

Let

λ1 =
max
Θ01

L(µx, µy, σx, σy, ρ|data)

max
Θ

L(µx, µy, σx, σy, ρ|data) , (3.18)

where Θ = (µx, µy, σx, σy, ρ) and Θ01 = (µ, σ). MLE of µ and σ are

µ̂ =ax̄+ (1− a)ȳ∗, (3.19)

σ̂2 = Q(µ̂)
2n(1− ρ2

0) .
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where

x̄ = 1
n

n∑
i=1

xi, (3.20)

ȳ∗ =ȳ − ε0 = 1
n

n∑
i=1

yi − ε0,

Sxx =
n∑
i=1

(xi − x̄)2,

Syy =
n∑
i=1

(yi − ȳ)2,

Sxy =
n∑
i=1

(xi − x̄)(yi − ȳ),

k =1 + η2
0 − 2ρ0η0,

a =η0(η0 − ρ0)
k

,

Q(µ) =Q1(µ) +Q2,

Q1(µ) =n[(x̄− µ)2 − 2ρ0

η0
(x̄− µ)(ȳ∗ − µ) + 1

η2
0
(ȳ − µ)2)],

Q2 =Sxx − 2ρ0

η0
Sxy + 1

η2
0
Syy.

Sinha and Dutta (2013, [27]) established that
√
nT a−→N(0, 1) where

Q∗2 =SxxSyy − 2Sxy, (3.21)

V =
√
n(x̄− ȳ∗)
σ
√
k

,

V 2
1 V

2
2 = Q∗2

σ4η2
0(1− ρ2

0) ,

T = V

(V 2
1 V

2
2 ) 1

4
.
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4. THREE-LEVEL MIXED-EFFECTS MODEL AND

ESTIMATION OF CONCORDANCE CORRE-

LATION COEFFICIENT

In our study, we will use CCC to evaluate agreement between the raters. As de-

scribed in the introduction, independent subjects were followed for two years. X-rays

were taken at baseline, one year and two years apart. Two radiologists manually mea-

sured joint space width based on X-rays. One computerized rating system read the

same measurements. Each rater took second, repeated measurements on all 29 subjects’

X-rays for all three time points. This presents data with multiple types of variation:

within-subjects repeated measures at different time points, repeated evaluations at same

time point, and variation between subjects and within raters. In our study, we assume

individual subjects are independent, but that readings within subjects are not indepen-

dent. Readings from the same rater are assumed to have variation between different time

points and also within the same time point in case of repeat measurements. There are

two levels of covariance between raters, one associated with patient-level variation and

another associated with repeated readings of the same x-ray. We assume the ratings by

one rater is X, and ratings by another rater is W. Let

X = µX + µ+ θ, (4.1)

W = µW + ν + γ. (4.2)

where µX and µW are the mean of X and W; µ and ν are denoted as the within subject

variability. µ ∼ N(0, σ2
µ), ν ∼ N(0, σ2

ν); θ and γ are denoted as the within raters

variability. θ ∼ N(0, σ2
θ), γ ∼ N(0, σ2

γ), and θ and γ are independent.
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Thus even if the distributions of µ and ν are identical and µX = µY , not necessarily

θ ≡ γ; and hence ρc will not measure perfect correlation. In fact, the goal is to find the

agreement between the raters over k ratings cross multiple time points of n independent

subjects. For non-identical ratings from two raters over subjects, the CCC is as follows:

ρc = 2cov(X,W )
var(W ) + var(X) + (µW − µX)2 . (4.3)

Note that when X ≡ W, that means, cov(X,W ) = var(X) = var(W ), and µX = µW ,

ρc = 1, or − 1, for same / opposite direction of covariance of X and W.

Let i = 1, 2, . . ., N ; i.e., there are N subjects;

j(i) = 0, 1, 2, . . ., Ti; i.e., the ith subject is measured at Ti time points ;

k(ij) = 1, 2, . . ., Kij; i.e., the ith subject at the jth time point is measured kij times ;

Xijk represents readings from one rater; Wijk represents readings from another rater.

The data structure is shown in figure 6.

Figure 6: Data levels by one rater

We proposed a three-level mixed model in terms of replicates (level-1) nested within

X-rays (level-2) which are nested within subjects (level-3):

xijk = PX1iβX + PX2ivXij + PX3iuXi + EXijk
, (4.4)
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wijk = PW1iβW + PW2ivWij + PW3iuWi + EWijk
. (4.5)

Here, P.1i is ni × p design matrix for the fixed effects, p is the number of fixed variables

in the model, P.3i and P.2i are the design matrices for the level-3, level-2 effects. β is an

(p× 1) vector of regression coefficients, including intercept and slope, and E.ijk
,v.ij,u.i,

denote level-1, level-2, and level-3 random effects, respectively. u.i is random subject

effect and explains the between-subject variability, denoted by G. v.ij is the within-

subject variability, denoted by Q, and measures ith subject effect different time point

variability. v.ij ∼ N(0, Q);u.i ∼ N(0, G);Eijk ∼ N(0,Σ).

The assumptions are:

(i) UXi, VXij and EXi are independent;

(ii) UXi and UXi′ are independent, i 6= i′;

(iii) VXij and VXi′j are independent, i 6= i′;

(iv) Cov(VXij, VXij′) 6= 0, j 6= j′.

(v) UWi, VWij and EWi are independent;

(vi) UWi and UWi′ are independent, i 6= i′;

(vii) VWij and VWi′j are independent, i 6= i′;

(viii) Cov(VWij, VWij′) 6= 0; j 6= j′.

(ix) Cov(UXi, UWi) 6= 0, for the two raters evaluating the same subject;

(x) Cov(VXij, VWij) 6= 0, for the two raters evaluating the same subject at the same

time point;
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(xi) Elements in EXijk
and EWijk

are independent, EXijk
and EWijk

are also independent.

Note that if D(VXij)= Cov(VXij, VXij′)=0, i.e., in the absence of within-rater varia-

tions, we arrive at the model discussed by Chinchille et al. (1996, [71]; 2001, [69]; 2007,

[70]), Choudhary, P. K. et al. (2005, [53]), Carstensen, B. et al. (2008, [51]).

Let Yijk =
(
Xijk Wijk

)′
, combine those two equations together. The new model

is:

Yijk = P1iβ + P3iUi + P2iVij + Eijk, (4.6)

P1i =

PX1i 0

0 PW1i

 , β =
(
β′X β′W

)′
,

P2i =

PX2i 0

0 PW2i

 , Ui =
(
UXi

′ UWi
′
)′
,

P3i =

PX3i 0

0 PW3i

 , Vij =
(
VXij

′ VWij
′
)′
.

Typically, given the heterogeneity of the data, random intercept and trend are used

in three-level models and random intercepts are used in two-level models. That is to say,

subject i has subject-level difference from the average baseline and slope of the group.

Nested within subject i, given one time point, there are k observations. The measurement

refers to difference from the average of all the measurements at that time point. Figure

7 shows one example of that situation.
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Figure 7: Two subjects multiple readings cross multiple time points by one rater
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Figure 8: Subject i two readings by three raters at three time point - real data example

Figure 8 shows one example from real data. Subject was measured at three time

points. Three raters read the measurement two times at each time point. The blue series

represent rater one; the brown series represent rater two and the green series represent

rater three. The highlighted lines are the average of each rater. We can see that first

rater has smaller variation and the second rater has larger variation. The computer rater

i.e., rater three has similar variation to rater one. The estimates of baseline, slope cross

time by rater are varied and different.

Let xijk denote k-th measurement at time j for subject i rated by one rater. The model
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expands to:

xijk = β0 + β1t+ θ0i + θ1it+ ν0k(i) + εijk, (4.7)

where

i = subject 1, 2, ..., N;

j = time 0, 1, 2,..., T;

k = replication 1, 2,..., K.

In this model,

β0 is the baseline average of xijk.

β1 is the slope of xijk across time.

θ0i is random intercept for subject i.

θ1i is random slope for subject i.

ν0k(i) is random intercept of kth observation nested within the ith subject. ν0k(i) and

ν0j′ (i) are assumed to be uncorrelated

εijk is random error and assumed to be autocorrelated.

Similarly, the model for the other rater is:

wijk = β′0 + β′1t+ θ′0i + θ′1it+ ν ′0k(i) + ε′ijk, (4.8)

with all the variables similarly defined as in xijk.

Define yijkl =
(
xijk|(l = 1) wijk|(l = 2)

)′
. Combining these two equations together,

the new model is:

yijkl = β0δ(l=1) + β1δ(l=1)t+ θ0iδ(l=1) + θ1itδ(l=1) + ν0k(i)δ(l=1)

+ β′0δ(l=2) + β′1δ(l=2)t+ θ′0iδ(l=2) + θ′1itδ(l=2) + ν ′0k(i)δ(l=2) + εijkl.

(4.9)
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The outcome measurement vector for first subject:

x1 =


x̃11

...

˜x1T

 =




x111

...

x11K


...

x1T1

...

x1TK





.

Mean vector for 1st subject:

uX1 = E(X1) = β01TK×1 + β1



1K

21K
...

T1K


TK×1

.

Here, 1K is defined as:

1K =
(

1 1 . . . 1
)′

1×K
.

Variance covariance structure for x1t:

Σtt = Σx1t =


σ2
θ0 + σ2

θ1t
2 σ2

θ0 + σ2
θ1t

2 σ2
θ0 + σ2

θ1t
2

... ... ...

σ2
θ0 + σ2

θ1t
2 σ2

θ0 + σ2
θ1t

2 σ2
θ0 + σ2

θ1t
2


K×K

+ σ2
ν0JK×K + σ2

eIK×K

= (σ2
θ0 + σ2

θ1t
2)JK×K + σ2

ν0JK×K + σ2
eIK×K .



41

Covariance structure between two different time points of the same subject:

Σtt′ = Cov(x1t, x1t′) = (σ2
θ0 + σ2

θ1tt
′)JK×K + σ2

ν0JK×K + σ2
eΩtt′

K×K ,

where ΩTK×TK defines an auto-correlated variance covariance structure.

Covariance structure for x1:

Cov(x1) =


Σ11 Σ12 . . . Σ1T

... ... ... ...

ΣT1 ΣT2 . . . ΣTT


KT×KT

.

Covariance structure for w1 is similar to x1;

Covariance structure for xi and wi′ is 0, where i 6= i′;

Covariance structure for xi,wi:

Cov(x1,w1) = Cov

θ0i + θ1it+ ν0k(i),

θ′0i + θ′1it+ ν ′0k(i)

 .

Let Σ0xw = Cov(ν0k(i), ν
′
0k(i)) + Cov(θ0i, θ

′
0i), for which between-raters variability is zero

for two different subjects.

Cov(x1,w1) = IT ⊗ (Σ0xwJk×k),

Cov(X,W ) = IN ⊗ [IT ⊗ (Σ0XWJk×k)].
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So,

CCC = ρc = 2cov(X,W )
var(W ) + var(X) + (µW − µX)2 ,when x and w are scaled.

=
2× 1

2tr(ΣXX + ΣWW − ΣX−W )
tr(ΣXX) + tr(ΣWW ) + (µx − µW )′(µX − µW ) ,when x and w are not scaled.

(4.10)

How do we claim CCC ≤ 1? If and only if µX = µW , tr(ΣXX) = tr(ΣWW ), tr(ΣX−W ) =

0,

CCC ≤ tr(ΣXX + ΣWW − ΣX−W )
tr(ΣXX) + tr(ΣWW ) + (µX − µW )′(µX − µW ) ≤

2tr(ΣXX)− 0
2tr(ΣXX) = 1.

If and only µX = µW , tr(ΣXX) = tr(ΣWW ), tr(ΣX−W ) ≤ 4tr(ΣXX),

,

CCC ≥ tr(ΣXX + ΣWW − 4ΣXX)
tr(ΣXX) + tr(ΣWW ) + (µX − µW )′(µX − µW ) ≥

−2tr(ΣXX)
2tr(ΣXX) = −1.

4.1 Parameter Estimation

There are several ways for estimating the parameters in mixed-effects models. Newton-

Raphson and EM Algorithms are the most popular (Lindstrom, 1998, [21]). The expectation-

maximization (EM) algorithm is used to estimate the parameters in the proposed model

(4.9). In the E-step, with the current values of the other parameters, we compute the

”expected a posteriori” or empirical Bayes (EB) estimates of the random effects as well

as the conditional variances of the random effects, given the data. In the M-step, given

the current values of the random effects, we obtain the maximum marginal likelihood

(MML) or restricted maximum [marginal] likelihood (REML) estimates of the regression

coefficients, error variances, and the variances of the random effects. The algorithm iter-
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ates between the EB and MML or REML estimates until convergence is achieved. That

is to say:

(i) Give initial value(s) for parameter(s),

(ii) ‘E’ (Expectation)-step, calculate expected value based on parameters and given

random variables, conditional variance of the random variables by expected values,

(iii) ‘M’ (Maximization)-step, estimate parameters and the variance terms by MML or

REML based on random variables.

(iv) Repeat

• using estimated parameter values as true values to get expected values, and

• using expected values as observed values, iterating until convergence.

We have discussed before that the measurement yi and random effect ui,vij have

the following joint distribution :


yi

ui

vij

 ∼MVN




P1iβ

0

0

 ,

P3iQP

T
3i + P2iGP

T
2i + Σi P2iG P3iQ

GP T
2i G 0

QP T
3i 0 Q



 ,

where Q, G are the variance of 1-level and 2-level random effects and Σi is a 12×12

block diagonal error covariance matrix.

In fact, since this is a linear mixed model for a continuous variable, as Gibbons and

Hedeker pointed out, the 3-level linear model can be written as a 2-level mixed-effect
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model for continuous variables. Let

y∗i =
(
yi1, yi2, ..., yimi

)′
,

P1i =
(

pi1, pi2, ..., pimi

)′
,

Zi =



p(3)i1 p(3)i1 0 ... 0

p(3)i2 0 p(2)i1 ... 0

. . . . 0

. . . . 0

. . . . 0

p(3)ini 0 0 ... p(2)ini



,

vi =
(
νi, νi1, ..., νini

)′
,

then this set of regression equations can be written as

y∗i = P1iβ + Zivi + εi. (4.11)

Then the observation y∗i and random effects vi have joint normal distribution

y∗i
vi

 ∼MVN


P1iβ

0

 ,
ZiΣvZT

i + Σi ZiΣv

ΣvZT
i Σv


 , (4.12)

where Σv is a ni × ni covariance matrix of random effects; in our case, ni will be 2, and

Σi is a 12× 12 block diagonal matrix of the error covariance matrices of all links.
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4.1.1 Empirical Bayes Estimation

The Empirical Bayes (EB) approach takes into account two stochastic processes,

one for the data f(y∗|v; η), and the other one for the random effects g(v). Here, f

is the likelihood function (probability density), that describes probability of the data

associated with the random effects v and parameters η (β, σ). Instead of considering

v as fixed values, we assume a prior distribution π(v|η) is placed on v. After the data

is obtained, the distribution of v can be updated by combining the prior distribution

with the observed data. The resulting distribution of v is called posterior distribution

π(v|y∗, η). The posterior distribution is the basis of all Bayesian inference. The estimate

of v is the mean of the posterior distribution, that is,

E(v|y∗, η) =
∫
v × π(v|y∗, η)dv.

If η is known, the posterior distribution can be derived via the following Bayes’ rule,

p(v|y∗, η) = f(y∗|v)× π(v|η)∫
f(y∗|v)× π(v|η)dv = f(y∗|v)× π(v|η)

m(y∗|η) , (4.13)

where m(y∗|η) is the marginal distribution of y∗ given η.

In almost all cases, however, η is unknown. Empirical Bayes and fully Bayesian

approaches differ in how to proceed from here. Empirical Bayes would estimate ε from

marginal distribution m(y∗|η) to get η̂ via techniques such as MLE and then plug in η̂

to get p(v|y∗, η̂). Empirical Bayes considers p(v|y∗, η̂) as the posterior distribution of v.

A statistician who decides to take the fully Bayesian approach would place a distri-

bution on η, or η ∼ h(η|λ) where λ is the hyperparameter. The posterior distribution of
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vvec can be derived in the following way,

p(v|y∗, λ) =
∫
f(y∗|v)× π(v|η)h(η|λ)dη∫ ∫
f(y∗|v)× π(v|η)h(η|λ)dvdη =

∫
f(v|y∗, η)× h(η|y∗, λ)dη. (4.14)

Now we apply EB to estimate vi in model 4.9. As we described before, observed mea-

surement y∗i and random effect vi have the following joint distribution,

y∗i
vi

 ∼MVN


P1iβ

0

 ,
ZiΣvZT

i + Σi ZiΣv

ΣvZT
i Σv


 . (4.15)

The conditional distribution of vi given y∗i can be expressed as

vi|y∗i ∼ N(ΣvZT
i (ZiΣvZT

i + Σi)−1(y∗i − P1iβ),Σv − ΣvZT
i (ZiΣvZT

i + Σi)−1ZiΣv).

(4.16)

The EB posterior distribution of vi can be obtained after replacing Σv, Σi and β with

their corresponding estimates. There are several ways to estimate Σv, Σi and β. The

most used are maximum likelihood estimation (MLE) and Restricted maximum likelihood

estimation (REML) which will be discussed in the next section.

The posterior mean of vi and posterior covariance of vi provide EB estimates of vi

and its covariance, denoted as ṽi and Σ̃v|y∗i , respectively.
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ṽi = ΣvZT
i (ZiΣvZT

i + Σi)−1(y∗i − P1iβ)

= Σv[(ZiΣvZT
i (ZT

i )−1 + Σi(ZT
i )−1]−1(y∗i − P1iβ)

= Σv[ZiΣv + Σi(ZT
i )−1]−1Zi(Zi)−1(y∗i − P1iβ)

= Σv[(Zi)−1ZiΣv + (Zi)−1Σi(ZT
i )−1]−1(Zi)−1(y∗i − P1iβ)

= Σv
[
Σv + (ZT

i Σ−1
i Zi)−1

]−1
(ZT

i Zi)−1ZT
i (y∗i − P1iβ)

= R(ZT
i Zi)−1ZT

i (y∗i − P1iβ),

Σ̃v|y∗i = Σv − ΣvZT
i (ZiΣvZT

i + Σi)−1ZiΣv

= [I − ΣvZT
i (ZiΣvZT

i + Σi)−1Zi]Σv

= {I − Σv[ZiΣvZT
j (ZT

i )−1 + Σi(ZT
i )−1]−1Zi}Σv

= {I − Σv[ZiΣv + Σi(ZT
i )−1]−1Zi}Σv

= {I − Σv[Z−1
i ZiΣv +Z−1

i Σi(ZT
i )−1]−1}Σv

= {I − Σv[Σv + (ZT
i Σ−1

i Zi)−1]−1}Σv

= (I −R)Σv,

(4.17)

where R = Σv
[
Σv + (ZT

i Σ−1
i Zi)−1

]−1
.

4.2 Maximum (Marginal) Likelihood Estimation

As noted in the previous section, in order to obtain EB estimates of random effect

v and its covariance, Σi and β in model 4.11 need to be estimated from the marginal

distribution of Y ∗. There are several techniques to obtain estimates of Σi and β, includ-

ing maximum likelihood estimation and restricted maximum likelihood estimation which
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will be discussed in this section and the next. According to model 4.9,

y∗|v ∼ N(P1β +Zv,Σ), (4.18)

and

v ∼ N(0,Σv). (4.19)

So the joint distribution of y∗ and v is:

f(y∗,v) =f(y∗|v)f(v)

∝exp[−1
2(y − P1β − zv)TΣ−1(y − P1β − zv)]

exp[−1
2v

TΣ−1
v v].

(4.20)

And the log likelihood is :

l = logf(y∗,v) =− 1
2(y − P1β − zv)TΣ−1(y − P1β − zv)

− 1
2v

TΣ−1
v v + c.

(4.21)

In order to find the MLE of βi,, we need to minimize this function:

Q(β,v) =(y − P1β − zv)TΣ−1(y − P1β − zv)

− vTΣ−1
v v

=yTΣ−1y − 2βTP T
1 Σ−1y + 2βTP T

1 Σ−1zv − 2vTzTΣ−1y

+ βTP T
1 Σ−1P1β + vTzTΣ−1zv − vTΣ−1

v v.

(4.22)

That means, to get the MLE of β, we differentiate the previous function with respect to

β.
∂Q(β,v)
∂β

= −2P T
1 Σ−1y + 2P T

1 Σ−1zv + 2P T
1 Σ−1P1β = 0. (4.23)
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Hence,

β̂ = (P T
1 Σ−1P1)−1P T

1 Σ−1(y − zv). (4.24)

The covariance of β is derived in the following steps.

Cov(β̂) = [(P T
1 (ZΣvZT + Σ)−1P1]−1. (4.25)

For the covariance of Σ, we can go back to model 4.9 again, and we rewrite the model

as the following.

Y ∗ = P1β + Zv + ε = P1β + ε∗. (4.26)

ε∗ ∼ N(0,V ). (4.27)

Here,

V = ZΣvZT + Σ. (4.28)

So the likelihood for (β,V ) will be:

l(β,v) = −1
2Ln|V |+ (y − P1β)TV −1(y − P1β) + c. (4.29)

To maximize the log likelihood, let σ2
ii be the diagonal elements of Σ, σij be the

off-diagonal elements of Σ, σ2
v(ii) be the diagonal elements of G, and σv(ij) be the off-

diagonal elements of G.
∂|V |
∂σij

= (2− δij)|Σij|, (4.30)

∂|V |
∂σv(ij)

= ZZT (2− δij)|Gij|, (4.31)

where δij is the Kronecker delta, δij = 0 for i 6= j, and δij = 1 for i = j. A general
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principle for maximizing the likelihood with respect to each element of Σ and G is to

equate the derivative of the log likelihood with respect to that particular element of the

matrix to zero and solve the resulting equations for all the elements.

In the case of this study, we assume Σ = σ2
iiI and G = σ2

v(ii)I.

σ̂2 = 1
N

N∑
i=1

[
(yi − P1iβ̂)T (yi − P1iβ̂) + tr(ZiΣv|yi

ZT
i )
]
, (4.32)

σ̂v = 1
n

n∑
i=1

(
ṽiṽ

T
i + Σ̃v|yi

)
. (4.33)

Interestingly enough, as ṽi → 0, and Σv|yi
→ 0, σ̂2 goes to the MLE, ignoring random

subject effects. In other words, σ̂2 takes into account both estimated residuals and the

EB estimate of the uncertainty of the random effect.

4.3 Restricted Maximum Likelihood Estimation (REML)

One property of ML estimation is that it does not take into account the degrees of

freedom that are involved in estimating fixed effects in variance components estimation.

When the sample size is large enough, the resulting bias can be ignored. However, when

the sample size is not sufficiently large, we will consider Restricted Maximum Likelihood

Estimation (REML). Rather than using the observed data (Y vector) directly, REML is

based on linear combinations of elements of y after fitting the fixed effects equivalent to

residuals.[Searle and Casella, Variance Components (2006, [34])].

That means, we choose k so that kTP1β = 0 ∀β. Hence, kP1 = 0. Therefore, the

form of k must be kT = c(I − P1P
−
1 ) or kT = cT (I − P1P

+
1 ) for any c. So KT would be

chosen to be full row rank of N − rP1 .
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Given Y ∼ N(P1β,V ), we have KTY ∼ N(0, KTV K).

The REML equation can therefore be derived from the ML equation as in 3.42 by

replacements as:

(i) Replace Y by KTY .

(ii) Replace P1 by KTP1 = 0.

(iii) Replace Z by KTZ.

(iv) Replace V by KTV K = 0.

With lR being the likelihood function of KTY ,

lR = −1
2(N − r)Ln(2π)− 1

2Ln|K
TV K| − 1

2y
TK(KTV K)−1KTy. (4.34)

Let

P = V −1 − V −1P1(P T
1 V

−1P1)−P T
1 V

−1 = K(KTV K)−1KT , (4.35)

then,

∂P

∂σ2
i

= −K(KTV K)−1frac∂KTV K∂σ2
i (KTV K)−1KT

= −K(KTV K)−1KT ∂V

∂σ2
i

K(KTV K)−1KT

= −P ∂V

∂σ2
i

P

= −PZZTP.

(4.36)
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Hence,

∂lR
∂σ2

i

= −1
2tr

[
(KTV K)−1KTZZTK] + 1

2Y
TPZZTPY

= −1
2tr(PZZ

T ) + 1
2Y

TPZZTPY.

(4.37)

For the information matrix, the second derivative of lR:

∂lR
∂σ2

i ∂σ
2
j

= −1
2tr(PZjZ

T
j PZiZ

T
i )− Y TPZjZ

T
j PZiZiPY. (4.38)

As we can see, ML estimators for the variance components are biased because they

do not take into account the loss in degrees of freedom from the estimation of fixed

effects. The REML method corrects this, but REML estimation has the same procedure

for estimating the fixed effects as ML.

SAS version 9.4 PROC MIXED procedure is used for this project.
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5. SIMULATION STUDY

A simulation study was carried out to evaluate the accuracy and reliability of the

parameter estimation algorithm. For this purpose, 1000 data sets—each data set contain-

ing 30 subjects having X-rays taken at three time-points, and each x-ray subsequently

reviewed twice by two different raters—were generated according to the following model.

The proposed values for the model parameters are based on several situations: CCC close

to 1, close to 0 and the estimated value close to the real data. Twelve observations for

each subject were generated according to the following model,

yijkl = β0δ(l=1) + β1δ(l=1)t+ θ0iδ(l=1) + ν0k(i)δ(l=1)

+ β′0δ(l=2) + β′1δ(l=2)t+ θ′0iδ(l=2) + ν ′0k(i)δ(l=2) + εijkl.

(5.1)

Assumptions were used to generate the true values for fixed and random effects

parameters:

(i) The parameters β0, β
′
0, β1, β

′
1 were fitted in fixed values.

(ii) θ0i, ν0j(i) and εijkl are independent.

(iii)

θ0i

θ′0i

 ∼ N


0

0

 ,
 σ2

θ σθθ′

σθθ′ σ2
θ′


.

(iv)

ν0j(i)

ν ′0j(i)

 ∼ N


0

0

 ,
 σ2

ν σνν′

σνν′ σ2
ν′


, but ν0j′(i) and ν ′0j(i) are uncorrelated when

j′ 6= j.

(v) ε ∼ N(0, σ2), and independent.
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For each simulated data set, fixed effect and random effect parameters were estimated

according to the estimation method described in last section. The performance of this

method is evaluated using biases and root mean squared errors (RMSE). The evaluation

quantities are defined as follows:

5.1 Bias

Bias is the expected difference between the estimated value and the true value, i.e.

Bias(θ̂, θ) = E(θ̂− θ). We took the mean of the estimated parameters as estimators and

calculated the difference between the estimators and the true values.

5.2 Root mean squared error

Mean squared error(MSE), V ar(θ̂)+Bias(θ, θ̂)2, is debatably the most reliable quan-

tity to evaluate the performance of estimators with as it holds both accuracy(bias) and

precision (variance). Root Mean Squared error (RMSE), maintaining the same unit as the

quantity being estimated, is derived by finding the square root of MSE. For an unbiased

estimator(bias=0), the RMSE is the standard error (se) of the estimate.

Intra-rater CCC is used for measuring the agreement among multiple replications

measured by a single rater. Inter-rater CCC is used for measuring the agreement among

different raters. In this simulated data set, we assume there are two raters. So intra-

and inter-CCC are calculated following formula (3.24). In the following tables, the

abbreviations are as follows: EST=estimate, STD=Standard Deviation, RMSE=root

mean squared error, Intral=1=Intra-CCC for rater 1, Intral=2=Intra-CCC for rater 2,
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Inter=Inter-CCC between two raters.

As shown in Tables V-VI, the estimated fixed and random effects β0, β1, var(β0i),

var(β1i), σ2
0i, σ

2
1i, and σ2

γ are very close to their respective true values when simulate the

extreme situation. The biases in absolute values are small (less than 0.2); and RMSEs

are less than 0.4.

Table VII shows the result simulated from the true data distribution, the estimated

fixed and random effects are also very close to their respective true values. The biases

in absolute values and RMSEs are better than the extreme situation. Taken together,

this simulation study demonstrates the accuracy and precision in estimating the model

parameters.

Table V: Simulation to evaluate performance of estimators when CCC is close to 1

Category Parameter True Value EST(STD) Bias RMSE

Fixed

β0 4.00 3.9828 (0.2481) -0.0172 0.2487
β
′
0 4.00 3.9830 (0.2482) -0.0170 0.2488
β1 -0.20 -0.1755 (0.1295) 0.0245 0.1318
β
′
1 -0.20 -0.1756 (0.1295) 0.0244 0.1318

Random variance

σ2
ν 1.00 0.9844 (0.3544) -0.0156 0.3547
σ2
θ 1.00 1.0058 (0.1883) 0.0058 0.1883

σ2
ν′

1.00 0.9843 (0.3549) -0.0157 0.3552
σ2
θ′

1.00 1.0063 (0.1883) 0.0063 0.1884
σ2 0.05 0.0025 (0.0003) -0.0475 0.0475
σνν′ 1.00 0.9843 (0.3546) -0.0157 0.3549
σθθ′ 1.00 1.0061 (0.1882) 0.0061 0.1883

CCC
Intral=1 0.98 0.9987 (0.0003) 0.0231 0.0231
Intral=2 0.98 0.9987 (0.0003) 0.0187 0.0187
Inter 0.98 0.9987 (0.0003) 0.0231 0.0231
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Table VI: Simulation to evaluate performance of estimators when CCC is close to 0

Category Parameter True Value EST(STD) Bias RMSE

Fixed

β0 4.00 3.9822 (0.2485) -0.0178 0.2491
β
′
0 8.00 8.0010 (0.2524) 0.0010 0.2524
β1 -0.20 -0.1751 (0.1302) 0.0249 0.1325
β
′
1 -0.20 -0.2003 (0.1309) -0.0003 0.1309

Random variance

σ2
ν 1.00 0.9836 (0.3546) -0.0164 0.3550
σ2
θ 1.00 1.0052 (0.1908) 0.0052 0.1908

σ2
ν′

1.00 0.9955 (0.3478) -0.0045 0.3478
σ2
θ′

1.00 0.9908 (0.1890) -0.0092 0.1892
σ2 0.20 0.0399 (0.0043) -0.1601 0.1601
σνν′ 0.00 0.0102 (0.2533) 0.0062 0.2533
σθθ′ 0.01 0.0124 (0.1297) 0.0074 0.1299

CCC
Intral=1 0.91 0.9795 (0.0049) 0.0704 0.0706
Intral=2 0.91 0.9798 (0.0048) 0.0707 0.0709
Inter 0.00 0.0021 (0.0263) 0.0015 0.0263

Table VII: Simulation to evaluate performance of estimators when CCC corresponds 
almost to real data

Category Parameter True Value EST(STD) Bias RMSE

Fixed

β0 3.65 3.6385 (0.2238) -0.0076 0.2240
β
′
0 4.11 4.0998 (0.1932) -0.0053 0.1933
β1 -0.10 -0.0861 (0.0552) 0.0090 0.0560
β
′
1 -0.16 -0.1502 (0.0545) 0.0077 0.0551

Random variance

σ2
ν 1.36 1.3540 (0.3653) -0.0083 0.3654
σ2
θ 0.11 0.1115 (0.0354) 0.0001 0.0354

σ2
ν′

0.97 0.9669 (0.2663) -0.0050 0.2663
σ2
θ′

0.08 0.1042 (0.0354) 0.0211 0.0412
σ2 0.16 0.1613 (0.0173) -0.0007 0.0173
σνν′ 1.12 1.1131 (0.3044) -0.0065 0.3045
σθθ′ 0.10 0.1085 (0.0283) 0.0060 0.0289

CCC
Intral=1 0.90 0.8951 (0.0284) -0.0059 0.0290
Intral=2 0.93 0.8640 (0.0358) -0.0664 0.0754
Inter 0.81 0.8014 (0.0434) -0.0107 0.0447
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6. DATA ANALYSIS

In this section, we will apply the methods discussed in the previous chapters to

evaluate agreement between different raters.

Back to the GAIT trial, subjects enrolled in the GAIT ancillary structural study met

the original GAIT inclusion criteria, summarized as being at least 40 years of age with

clinical evidence of painful OA of the knee for at least immediate past six months and

radiographic evidence of OA as determined by having a Kellgren Lawrence grade 2- or 3-

rated radiograph of the index knee. As mentioned earlier, 662 of the 1583 original GAIT

study participants were also in the structural study. Patients were asked to continue

following-up even if they stopped taking their assigned treatment. The study treatments

were glucosamine hydrochloride (HCl) 500 mg three times daily, sodium chondroitin

sulfate 400 mg three times daily, both glucosamine and chondroitin sulfate as above,

celecoxib 200 mg once daily or placebo daily.

The metatarsophalangeal films were obtained as previously described, using the

method of Buckland-Wright on participants in the GAIT radiographic substudy at base-

line, at one year and two years or until study exit. The films were blinded and digitized

for computer joint space width measurement, but were also read as hard copy films by

two expert readers using digital calipers. During the course of study, a sample of all films

was re-read by the raters and a computer rater. These were used to establish intra-and

inter-rater reliability. Blinded radiographs were manually read by two raters. All mea-

surements were recorded by the Mitutoyo Digimatic Calipers (Mitutoyo Products) and

recorded as millimeters and to the hundredth millimeter. As has been elaborated before,

for each knee, the joint space width (JSW) was the narrowest dimension in the medial

compartment of the knee. This location was not necessarily at the middle of the weight-
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bearing surface of the medial tibia (the point used for measuring the TIRD and rim to

floor distance) and/or at any specified distance from the medial condyle. The direction

or line upon which the JSW measurement was taken was perpendicular to the plane of

the joint surfaces and not necessarily in parallel with the axis of the lower extremity (the

line used to measure TIRD and rim to floor). The site used to measure JSW did not

include an osteophyte nor involve the tibial spine.

6.1 Baseline analysis

The baseline JSWs of 281 participants were used to evaluate the agreement be-

tween raters. The mean and standard deviation of the difference were presented in

the readings to provide information regarding the average magnitude of the difference.

Inter-rater agreement between readers is assessed statistically by an unconditional intra-

class correlation (ICC). The differences in readings between readers were also examined

using Bland-Altman plots to graphically investigate systematic differences in disagree-

ment[Bland, 1986, 1993]. Agreement in a Bland-Altman plot is indicated by differences

that fall within the 95% confidence limits of mean difference. The results in this section

are based on one reading by each rater. Table VIII shows that raters 1 and 2 have higher

ICC and lower mean difference on JSW at baseline.

Examination of the Bland-Altman plots for all evaluated films shows that rater 1

was the most reliable as most readings fell within the 2SD boundary, whereas rater 2 was

less so and the computer poorest of all. The plots (Figures 9 - 11)were done based on

one reading by each rater at baseline.
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Figure 9: Rater 1 vs Rater 2 Bland-Altman plot n=281 radiographs.

Figure 10: Rater 1 vs Computer Bland-Altman plot n=281 radiographs.
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Figure 11: Rater 2 vs Computer Bland-Altman plot n=281 radiographs.

Table VIII: Descriptive statistics for human and computer: Joint Space Width n=281
radiographs

ICC Mean difference 95%CI
Rater 1 vs Rater 2 0.90 -0.02 -0.08, 0.04
Rater 1 vs Computer 0.80 -0.20 -0.28, -0.12
Rater 2 vs Computer 0.83 -0.18 -0.26, -0.11

6.2 Agreement on the three time points

Twenty-nine participants had completed X-rays at three time point and the quality

of the films were accepted.

In figures 12, 13, and 14:

1. JSW0 1: Reader 1 first reading for baseline X-ray

2. JSW0 2: Reader 2 first reading for baseline X-ray
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3. JSW0: Reader 3 (computer reader) first reading for baseline X-ray

4. JSW0 1 2: Reader 1 second reading for baseline X-ray

5. JSW0 2 2: Reader 2 second reading for baseline X-ray

6. JSW0 3 2: Reader 3 (computer reader) second reading for baseline X-ray

7. JSW1 1: Reader 1 first reading for one year X-ray

8. JSW1 2: Reader 2 first reading for one year X-ray

9. JSW1: Reader 3 (computer reader) first reading for one year X-ray

10. JSW1 1 2: Reader 1 second reading for one year X-ray

11. JSW1 2 2: Reader 2 second reading for one year X-ray

12. JSW1 3 2: Reader 3 (computer reader) second reading for one year X-ray

13. JSW2 1: Reader 1 first reading for one year X-ray

14. JSW2 2: Reader 2 first reading for one year X-ray

15. JSW2: Reader 3 (computer reader) first reading for one year X-ray

16. JSW2 1 2: Reader 1 second reading for two year X-ray

17. JSW2 2 2: Reader 2 second reading for two year X-ray

18. JSW2 3 2: Reader 3 (computer reader) second reading for two year X-ray
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Figure 12: Correlation between observations at baseline

Figure 13: Correlation between observations at one year follow up
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Figure 14: Correlation between observations at two year follow up

From the three plots, we can see that the correlation of the second reading of the

second rater at three time points compared to the first reading are relatively low. The

correlation of the second reading of this rater with the two readings of the other two

raters are lower than the first reading of this rater with the two readings of the other

two raters. It may indicate the degree of agreement for this rater with the other raters

is relatively lower.

When we look closely at the agreement between two readings from the same rater,

scatter plots in Figures 15-17 indicate the intra-CCC for each rater. Two readings by

rater 1 at the three time points are very similar to each other; they narrowly cross y = x

lines. The variation by rater two is larger than that for rater 1, the range of spots at

figure 16 being wide. The first reading of the third rater at the second time point is rel-

atively larger than the second reading, most spots being above the line y = x; however,

the reverse happened at the third time point. Table IX shows the Intra-CCC for each
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rater. The value of Intra-CCC by the mixed model suggests that rater one is the most

reliable rater of the three. Table X presents results of CCC between rater 1 and 2, rater

1 and 3, and rater 2 and 3. We use inter-CCC to show the quantitative agreement level

between the raters. CCC between the second rater with the other raters are relatively

smaller. Also, we estimate CCC by three-level (5.1) and two-level mixed effects models

(similar to 5.1 but without random terms at the third level). The estimates of fixed vari-

ables by three-level model are almost the same as those by the two-level mixed effects

model, but the third level variance-covariance removes some variation from the model

error term variance and increases the covariance between raters slightly. Therefore, we

get a higher CCC estimation by three-level models than the two-level models. In fact,

based on the data structure as we showed before, the three-level model captures different

levels of variance and covariance, and the results are closer to the real data. Therefore,

CCC based on the three-level model is better than the one by a two-level model.

Figure 15: Scatter plot for rater 1 between two readings
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Figure 16: Scatter plot for rater 2 between two readings

Figure 17: Scatter plot for rater 3 between two readings
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7. MISSING DATA

Missing data is very common in longitudinal studies, even in very well designed

and controlled clinical trials. It can be caused by participants dropping out or if they

are assessed at a given study time point, only providing responses to part of the study

variables. The reasons for dropout are varied such as randomly missed, adverse event,

disappointed with the treatment effects, and so on.

7.1 Missing data mechanisms and main methods

To decide how to handle missing data, it is helpful to know how they are missing.

Rubin (1976, [36]) described three missing data mechanisms.

(i) Missingness Completely At Random (MCAR). MCAR means if missingness does

not depend on the data values, missing or observed. If data are missing completely

at random, then the analysis based on complete data does not introduce bias.

(ii) Missing At Random (MAR). MAR is defined as when missingness only depends on

the observed data values, and is independent from missing values. Both MCAR

and MAR allow missingness to depend on observed correlated variables.

(iii) Missing Not At Random (MNAR). MNAR means that missingness depends on

the missing data values. Missingness with the MNAR mechaism is also called

nonignorable missingness.

Table IX: Intra-ICC estimation for three raters

Intra-ICC Rater 1 Rater 2 Rater 3
0.9190 0.8778 0.8436



67

Table X: Inter-CCC estimation by three-level model and two-level model

Inter-CCC estimation between rater one and two
Category Parameter Three-level model Two-level model

Est(Std) Est(Std)

Fixed

β0 3.6461 (0.2333) 3.6461 (0.2304)
β

′

0 3.3876 (0.2342) 3.3876 (0.2339)
β1 -0.0952 (0.0723) -0.0952 (0.0623)
β

′

1 -0.0632 (0.0634) -0.0632 (0.0623)

Random variance

σ2
θ 1.3252 (0.3818) 1.3514 (0.3813)

σθθ′ 1.0882 (0.3511) 1.1596 (0.3509)
σ2
θ′ 1.3964 (0.3940) 1.3991 (0.3940)
σ2
ν 0.0706 (0.0616)

σνν′ 0.2142 (0.0374)
σ2
ν′ 0.0000 (.)
σ2 0.4659 (0.0434) 0.4498 (0.0375)

CCC Inter 0.6900 0.6266
Inter-CCC estimation between rater one and three

Fixed

β0 3.6461 (0.2291) 3.6461 (0.2264)
β

′

0 4.1051 (0.1955) 4.1051 (0.1935)
β1 -0.0952 (0.0576) -0.0952 (0.0454)
β

′

1 -0.1579 (0.0532) -0.1579 (0.0454)

Random variance

σ2
θ 1.3623 (0.3814) 1.3866 (0.3812)

σθθ′ 1.1196 (0.3161) 1.1538 (0.3160)
σ2
θ′ 0.9719 (0.2746) 0.9868 (0.2744)
σ2
ν 0.1114 (0.0371)

σνν′ 0.1025 (0.0272)
σ2
ν′ 0.0831 (0.0319)
σ2 0.1620 (0.0174) 0.2390 (0.0199)

CCC Inter 0.8121 0.7670
Inter-CCC estimation between rater two and three

Fixed

β0 3.3876 (0.2345) 3.3876 (0.2340)
β

′

0 4.1051 (0.1989) 4.1051 (0.1983)
β1 -0.0632 (0.0645) -0.0632 (0.0628)
β

′

1 -0.1579 (0.0645) -0.1579 (0.0628)

Random variance

σ2
θ 1.3935 (0.3940) 1.3979 (0.3940)

σθθ′ 0.9504 (0.3002) 1.0034 (0.3000)
σ2
θ′ 0.9461 (0.2745) 0.9504 (0.2744)
σ2
ν 0.0000 (.)

σνν′ 0.1589 (0.0282)
σ2
ν′ 0.0000 (.)
σ2 0.4832 (0.0439) 0.4572 (0.0381)

CCC Inter 0.6006 0.5497
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Little and Rubin (2002, [35]) summarized four main methods to handle missing data.

The first method, called complete case analysis, is the simplest approach; it is also

known as list-wise deletion. This method excludes missing cases and only analyzes the

complete cases. In other wards, the inference drawn is based on the subjects with the

observed data only. This method usually leads to biased estimates and loses power,

especially when there is a large amount of missing data. If the observed data is a ran-

dom sample from the full data with a small portion of missingness, unbiased parameter

estimates might be achieved. However the analysis still has potential loss of precision.

The second method is by weighting. This is extended from complete case analysis.

The approach adapts sampling method in survey data and involves an estimate of the

probability of completeness. The weight is inversely proportional to the probability of

selection multiplied by the probability of completeness. That is to say, the estimate of

population mean is expressed as:

ȳ =
∑ yi

πip̂i
/
∑

(πip̂i)−1.

where yi is observed data, πi is the known probability of selection into the sample, and

p̂i is the probability of completeness. This method can reduce estimates’ bias from the

complete case analysis. However, the computation of variance using this method is not

straight-forward; in addition, that computation is intensive.

The third method is imputation. Imputation means filling in the missing data

with a value generated by different imputation approaches. After imputation, the new

data will be analyzed as if they were complete. There are many ways of imputation.

Imputations can be single imputation and multiple imputation. One of the common
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imputation approaches is mean imputation. That means, the average of the completed

data is filled in as the missing data. Another common imputation approach is Hot-deck

imputation. It imputes the missing values by matching the observed part of the unit

with an unit that is fully observed. Many variants of the Hot-deck imputation approach

exist. These approaches differ mainly in how they find a match, including matching

through stratification, neighborhood matching, weighting based on distance, and so on.

That means the previous observed data is filled in for the missing data. A relatively

advanced imputation is regression imputation by using a regression model to predict the

missing data based on the other observed variables. The missing data will be filled by

the predicted value after model parameter(s) estimation. The advantages for imputation

are:

(i) Can handle a mixture of discrete and continuous variables;

(ii) Imputation is relatively easy to conduct;

(iii) The method can be relatively easily implemented.

The disadvantage are:

(i) Under improper imputation, accurate variance is not easy to find;

(ii) Conditionally specified models may be incompatible and the algorithm may not be

convergent.

The single imputation methods do not take into account uncertainty created by

missing data. To solve this problem, Rubin (1987, [37]) developed Multiple Imputation

(MI). The procedure of MI is:
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(i) Imputation based on the joint normal model.

(ii) Multiple imputed data sets can be analyzed by any statistical models.

(iii) Combination of model fit results from the imputed full data by Rubin’s rule.

Monte Carlo (MC) simulation is often used in MI. Tanner and Wong (1987, [38])

and Gelfand and Smith (1990, [39]) showed MC is :

1. The circular formulas can be used to iteratively solve the computation problem

through Monte Carlo simulation. Gibbs sampler is a Monte Carlo simulation ap-

proach to the computation problem.

2. In Gibbs sampler, an initial value for model parameter, say θ or for the missing

data are given. For example, suppose that an initial θ is given, denoted by θ(0).

3. The next step is to impute the missing values based on ymisi(1) ∼ f(ymisi(1) |yobsi , θ0).

4. Once ymisi(1) , i = 1, . . . , n are imputed, θ is updated by θ1 ∝ ∏n
i=1 f(ymisi(1) |yobsi , θ)p(θ).

5. The simulation is continued until convergence: when the distribution for the sim-

ulated random variables is (virtually) unchanged from one round to the next.

Rubin’s combination rule:

1. With m imputed data sets, yobs1 , y
mis(k)
1 , . . . , yobsn , ymis(k)

n , fit a model f(y, θ) to obtain

the maximum likelihood estimator θ̂k and the associated variance estimates V̂k, for

k = 1, . . . ,M .

2. Combine the estimates of θ to obtain θ̂ = 1
M

∑M
1 θ̂k.
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3. The variance of θ̂ is estimated by V = 1
M

∑M
1 V̂k + (1 + 1

M
) 1
M−1

∑M
1 (θ̂k− θ̂)2, where

(1 + 1
M

) is an adjustment for finite number of imputations.

The last method Rubin described is a model-based procedure, otherwise known as

a likelihood based procedure. This approach models the observed data, draws inferences

based on likelihood, and estimates the parameters of interest by maximizing likelihood.

The estimates of variance by this procedure will consider missingness in the data. To

take into account the effect of missing data, one could generate a likelihood including

a model of missing data mechanism besides the model for observed data. Therefore,

this method has an advantage of flexibility. If models are correctly specified, the infer-

ences drawn based on the model are more efficient compared to the methods mentioned

above. Rubin (1976, [36]) defined a full model including both the distributions of data

and missing-data mechanism. One issue is related to the closed-form solution of the

maximum likelihood problem under monotone missing data. Variance of the maximum

likelihood estimator needs to be obtained in making inference about model parameters.

When the missing data forms arbitrary missing data patterns, the close-form solution

may not exist. When the parameters for the different conditional models are related,

separate maximization cannot be done, even if we have monotone missing data pat-

terns. Expectation-Maximization algorithm and related methods will be used to solve

this problem.

Properties of methods are strongly influenced by assumptions made about miss-

ing mechanism. Mixed effect models(MRM), Generalized Estimating Equations(GEE),

Covariance Pattern Model (CPM) analyze data with missing as incomplete. However,

different methods have different mechanism assumptions. Generalized Estimating Equa-

tions assumes special case of MCAR. Likelihood based methods (MRM, CPM) assume

MAR. When the missing data are nonignorable, Little (1995, [41]) discussed the selec-
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tion models and pattern-mixture models for handling it. The selection model combines

a model for the ideal complete data with a model of missingness processes. Hedeker and

Gibbons (1997, [40]) developed pattern mixture models by using missing data pattern in-

formation in the longitudinal modeling. The pattern-mixture models stratify the missing

data into different patterns and construct a corresponding complete-data model within

strata. In the pattern-mixture model framework, subjects in the same strata share the

same pattern of missing data. The complete data model is estimated for each pattern

and the pattern-specific estimates are averaged into an overall result.

7.2 GAIT Study and JSW Missing Data Mechanisms

In GAIT study, we have different types of missing reasons, such as patient withdrawn

from the study due to adverse events, due to not willing to do follow up X-rays, lost follow

up, the quality of the X-rays, the different rater’s judgment of the quality of the X-rays.

Figure 18 is the missing pattern of the three rater’s first readings. Computer reading

at baseline (JSW0) was used to judge whether the patients qualified for this study or

not. None of the observations of this variable is missing. However, besides variable

JSW0, there are unique combinations of 16 missing patterns, as showing in Figure 18.

Out of 328 subjects, the 109 who have completed three time points X-rays and got JSW

measured by three rater. All the others have at least one missing data by at least one

rater. Among 109 completed subjects, 30 subjects were randomly selected. Three raters

were asked to perform the second reading for all the X-rays of the 30 selected subjects.

However, they completed the second readings for 29 subjects. In other words, only 29

subjects have completed data with two readings at three time points by three raters.
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Figure 18: Missing pattern

7.3 Mixed Effect model used for handling missing data

Among 328 subjects who have at least one x-ray rated, only 29 subjects have com-

pleted data. We randomly select 10 subjects from 299 subjects who have missing data

and combine their data with the 29 completers. We do this 10 times and get 10 sam-

ples. Each sample data has 29 completers and 10 subjects with missing data. Assuming

missing pattern is MAR, mixed effect model (same as model described in 5.1) is used for
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handling missing data by EM algorithm conditional on observed values of the dependent

variable. After we get the estimates from the 10 samples, the average of the estimates

and inter-CCC between raters are calculated.

Similarly, we randomly select 15 subjects from the subjects with missing, and com-

bine with the 29 completers, do the same process 10 times and get another 10 samples.

The average inter-CCCs are estimated by these 10 samples.

Table XI lists the results from complete data (n=29), average estimates from com-

bining missing data and complete data(n=39, 44). When the sample size gets larger,

the means of the JSW are similar at each time point although the variance of the JSW

by each rater and the covariance between raters are larger, the speed of covairance in-

creasing is slightly larger than each rater’s variance increasing. The inter-CCC is pretty

stable between rater 1 and 3 when adding more subjects with missing values. That may

be due to those two raters being more consistent and the missingness being at random.

The inter-CCCs are getting better between 1 and 2, 2 and 3. That may be due to rater

2 having a larger variation on the second readings. We add more data which provides

more information and helps to confirm the agreement of the second rater with the other

raters.

In summary, when adding more subjects, the average of mean differences are similar,

the variance of each rater and the covariance between raters are getting slightly larger,

the average inter-CCCs from 10 samples with 10 subjects with missing or 15 with miss-

ing by handling missing using mixed models are slightly larger compared with the results

from complete data.
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Table XI: CCC estimation including missing data by three-level mixed effects models

Inter-CCC estimation between rater one and two
Category Parameter Complete Adding 10 with missing Adding 15 with missing

Est(Std) Est(Std) Est(Std)

Fixed

β0 3.6461 (0.2333) 3.7440 (0.0493) 3.7322 (0.0490)
β

′

0 3.3876 (0.2342) 3.5065 (0.0488) 3.5091 (0.0477)
β1 -0.0952 (0.0723) -0.0959 (0.0045) -0.0975 (0.0043)
β

′

1 -0.0632 (0.0634) -0.0655 (0.0035) -0.0651 (0.0033)

Random variance

σ2
θ 1.3252 (0.3818) 1.4589 (0.3831) 1.5376 (0.3922)

σθθ′ 1.0882 (0.3511) 1.2338 (0.3523) 1.2996 (0.3586)
σ2
θ′ 1.3964 (0.3940) 1.4963 (0.3857) 1.5420 (0.3878)
σ2
ν 0.0706 (0.0616) 0.0638 (0.0555) 0.0642 (0.0544)

σνν′ 0.2142 (0.0374) 0.2007 (0.0338) 0.1986 (0.0329)
σ2
ν′ 0.0000 (.) 0.0000 (.) 0.0000 (.)
σ2 0.4659 (0.0434) 0.4434 (0.0397) 0.4385 (0.0388)

Total variance
σ2

1 1.8617 1.9660 2.0404
σ12 1.8623 1.9397 1.9805
σ2

2 1.3024 1.4345 1.4982
CCC Inter 0.6900 0.7237 0.7345

Inter-CCC estimation between rater one and three

Fixed

β0 3.6461 (0.2291) 3.7519 (0.2047) 3.7203 (0.1976)
β

′

0 4.1051 (0.1955) 4.1631 (0.1697) 4.1273 (0.1622)
β1 -0.0952 (0.0576) -0.0918 (0.0542) -0.1005 (0.0537)
β

′

1 -0.1579 (0.0532) -0.1515 (0.0509) -0.1581 (0.0492)

Random variance

σ2
θ 1.3623 (0.3814) 1.4405 (0.3511) 1.4958 (0.3458)

σθθ′ 1.1196 (0.3161) 1.1453 (0.2807) 1.1833 (0.2740)
σ2
θ′ 0.9719 (0.2746) 0.9629 (0.2372) 0.9911 (0.2302)
σ2
ν 0.1114 (0.0371) 0.1137 (0.0363) 0.1240 (0.0386)

σνν′ 0.1025 (0.0272) 0.1111 (0.0276) 0.1201 (0.0289)
σ2
ν′ 0.0831 (0.0319) 0.1005 (0.0341) 0.1042 (0.0340)
σ2 0.1620 (0.0174) 0.1613 (0.0171) 0.1621 (0.0172)

Total variance
σ2

1 1.6357 1.7155 1.7820
σ13 1.2170 1.2246 1.2575
σ2

3 1.2221 1.2564 1.3034
CCC Inter 0.8121 0.8179 0.8210

Inter-CCC estimation between rater two and three

Fixed

β0 3.3876 (0.2345) 3.5154 (0.0445) 3.4975 (0.0416)
β

′

0 4.1051 (0.1989) 4.1654 (0.0298) 4.1290 (0.0272)
β1 -0.0632 (0.0645) -0.0641 (0.0036) -0.0649 (0.0034)
β

′

1 -0.1579 (0.0645) -0.1543 (0.0036) -0.1576 (0.0032)

Random variance

σ2
θ 1.3935 (0.3940) 1.4450 (0.3628) 1.4822 (0.3579)

σθθ′ 0.9504 (0.3002) 0.9769 (0.2670) 1.0132 (0.2615)
σ2
θ′ 0.9461 (0.2745) 0.9289 (0.2362) 0.9593 (0.2300)
σ2
ν 0.0000 (.) 0.0000 (.) 0.0000 (.)

σνν′ 0.1589 (0.0282) 0.1530 (0.0271) 0.1487 (0.0259)
σ2
ν′ 0.0000 (.) 0.0053 (0.0695) 0.0025 (0.0596)
σ2 0.4832 (0.0439) 0.4618 (0.0399) 0.4539 (0.0383)

Total variance
σ2

2 1.8767 1.9068 1.9361
σ23 1.4293 1.3959 1.4157
σ2

3 1.1093 1.1299 1.1619
CCC Inter 0.6006 0.6221 0.6338
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7.4 Use of imputation for handling missing data

As we discussed in the previous section, there are many methods for imputation.

Filling the data using the mean is not appropriate in our case since we want to evaluate

the agreements between raters; simply using the mean will force the evaluation to be the

similar, that will introduce bias on evaluating agreement. We also know that JSW will

decrease by time for everybody, and the decreasing trend is varied by subjects. Thus, the

last observation carried forward is not appropriate either. If we recall the scatter plots

in Figures 6.7-6.9, we find a high linear correlation between the second readings and the

first readings for each rater at each timepoint. Hence, we will get the model estimation

based on complete data for the second readings through the first readings after adjusting

for the baseline characteristics. The second reading missing data will be filled by the

predicted value given subjects baseline characteristics, such as age and WOMAC pain

stratum.

The model used for imputation is the following:

y2 = β0 + β1y1 + β2x1 + β3x2,

Here, y2 means the second reading, and y1 means the first reading by the same rater and

at the same time point. x1 means age and x2 means WOMAC pain stratum.

Figures 19-21 are the plots of model fit diagnostics for each rater at baseline. The

model fits very well for Rater 1 (R-square = 0.87) and 3(R-square = 0.74), but not for

rater 2 (R-square = 0.27). The predicted second readings are closer to the observed value

by first and the third raters. This is due to the second reading of the second rater being

inconsistent with the first reading, unlike the other raters.
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Figure 19: Model used for imputation rater 1

Figure 20: Model used for imputation rater 2
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Figure 21: Model used for imputation rater 3

The information in Figures 19-21 confirms the conclusion we got from the previous

scatter plots. The models fitting for each rater at the other time points are similar to

the baseline.

After the missing data of second readings are imputed, the data is applied to the

mixed model (4.10) to evaluate the inter-CCC between raters. Repeating this for all

sample data described in the previous section, we get the average of the estimation.

TableXII lists the results from complete data (n=29) and average estimates from datasets

with additional 10 samples with imputed data (n=39, 44). When the sample size gets

larger, the estimation of mean of the JSW are similar, the first-level and second-level

variance are getting larger and that leaves the third-level variance, left-over variance

decreasing. The estimated inter-CCCs are very close of both completed data and imputed

data.
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Table XII: CCC estimation including missing data by model imputation

Inter-CCC estimation between rater one and two
Category Parameter Complete Adding 10 with missing Adding 15 with missing

Est(Std) Est(Std) Est(Std)

Fixed

β0 3.6461 (0.2333) 3.7185 (0.0478) 3.7044 (0.0474)
β

′

0 3.3876 (0.2342) 3.4456 (0.0444) 3.4346 (0.0424)
β1 -0.0952 (0.0723) -0.0947 (0.0044) -0.1006 (0.0041)
β

′

1 -0.0632 (0.0634) -0.0629 (0.0033) -0.0595 (0.0030)

Random variance

σ2
θ 1.3252 (0.3818) 1.4190 (0.3702) 1.4958 (0.3783)

σθθ′ 1.0882 (0.3511) 1.1463 (0.3291) 1.1949 (0.3308)
σ2
θ′ 1.3964 (0.3940) 1.3628 (0.3494) 1.3749 (0.3434)
σ2
ν 0.0706 (0.0616) 0.0769 (0.0531) 0.0804 (0.0523)

σνν′ 0.2142 (0.0374) 0.2031 (0.0320) 0.1943 (0.0311)
σ2
ν′ 0.0000 (.) 0.0000 (.) 0.0000 (.)
σ2 0.4659 (0.0434) 0.4368 (0.0375) 0.4278 (0.0358)

Total variance
σ2

1 1.8617 1.9327 2.0040
σ12 1.8623 1.7996 1.8028
σ2

2 1.3024 1.3494 1.3892
CCC Inter 0.6900 0.7104 0.7180

Inter-CCC estimation between rater one and three

Fixed

β0 3.6461 (0.2291) 3.7511 (0.2023) 3.7311 (0.1949)
β

′

0 4.1051 (0.1955) 4.2026 (0.1693) 4.1843 (0.1608)
β1 -0.0952 (0.0576) -0.0941 (0.0542) -0.1061 (0.0542)
β

′

1 -0.1579 (0.0532) -0.1583 (0.0516) -0.1669 (0.0501)

Random variance

σ2
θ 1.3623 (0.3814) 1.4082 (0.3425) 1.4499 (0.3346)

σθθ′ 1.1196 (0.3161) 1.1302 (0.2767) 1.1531 (0.2669)
σ2
θ′ 0.9719 (0.2746) 0.9554 (0.2356) 0.9677 (0.2252)
σ2
ν 0.1114 (0.0371) 0.1330 (0.0367) 0.1560 (0.0401)

σνν′ 0.1025 (0.0272) 0.1182 (0.0284) 0.1325 (0.0308)
σ2
ν′ 0.0831 (0.0319) 0.1289 (0.0339) 0.1424 (0.0336)
σ2 0.1620 (0.0174) 0.1425 (0.0137) 0.1371 (0.0126)

Total variance
σ2

1 1.6357 1.6837 1.7430
σ13 1.2170 1.2268 1.2472
σ2

3 1.2221 1.2484 1.2856
CCC Inter 0.8121 0.8138 0.8143

Inter-CCC estimation between rater two and three

Fixed

β0 3.3876 (0.2345) 3.4730 (0.0405) 3.4555 (0.0366)
β

′

0 4.1051 (0.1989) 4.2021 (0.0295) 4.1844 (0.0265)
β1 -0.0632 (0.0645) -0.0631 (0.0032) -0.0628 (0.0028)
β

′

1 -0.1579 (0.0645) -0.1570 (0.0035) -0.1665 (0.0031)

Random variance

σ2
θ 1.3935 (0.3940) 1.3323 (0.3312) 1.3295 (0.3162)

σθθ′ 0.9504 (0.3002) 0.9412 (0.2552) 0.9576 (0.2441)
σ2
θ′ 0.9461 (0.2745) 0.9348 (0.2355) 0.9513 (0.2251)
σ2
ν 0.0000 (.) 0.0000 (.) 0.0000 (.)

σνν′ 0.1589 (0.0282) 0.1531 (0.0285) 0.1538 (0.0268)
σ2
ν′ 0.0000 (.) 0.0336 (0.0549) 0.0392 (0.0477)
σ2 0.4832 (0.0439) 0.4422 (0.0366) 0.4291 (0.0343)

Total variance
σ2

2 1.8767 1.7744 1.7586
σ23 1.4293 1.4105 1.4196
σ2

3 1.1093 1.0943 1.1114
CCC Inter 0.6006 0.6075 0.6196
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7.5 Use of multiple imputation for handling missing data

The Markov chain Monte Carlo (MCMC) method is used for missing data multiple

imputation. MCMC is a sequence of random variables in which the distribution of each

element depends only on the value of the previous element. When a Markov chain is

long enough for the distribution of the elements to stabilize to a stationary distribution,

we get the distribution of interest. Repeatedly simulating steps of the chain, simulates

drawing from the distribution of interest. In our situation, we use this method to impute

all the missing values. Each sample with missing values is imputed 5 times, resulting in

5 datasets for each sample data. Each dataset is analyzed by the same mixed model to

get model fit. Rubin’s combination rule is used to get the combination results for each

sample. Then, the average of 10 samples is calculated in tableXIII. The results suggest

that when data have 25% missingness (10 subjects with missing), the average of model

estimation is very close to the complete data; however, when missingness gets worse (15

subjects with missing, 34%), the MCMC methods may introduce more uncertainty, as a

result, agreement between the raters becomes smaller.

7.6 Use of pattern mixture model for handling missing data

When missing data are nonignorable (MNAR), standard statistical models can yield

badly biased results. The problem is that the observed data provide no information to

either confirm or refute ignorability. In other words, we cannot test the missingness is

MAR vs. MNAR. Pattern mixture model is used as the sensitivity analysis.
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Table XIII: Inter-CCC estimation including missing data by multiple imputation

Inter-CCC estimation between rater one and two
Category Parameter Complete Adding 10 with missing Adding 15 with missing

Est(Std) Est(Std) Est(Std)

Fixed

β0 3.6461 (0.2333) 3.7650 (0.2152) 3.7421 (0.2054)
β

′

0 3.3876 (0.2342) 3.4534 (0.2348) 3.4562 (0.2283)
β1 -0.0952 (0.0723) -0.0896 (0.0747) -0.1082 (0.0766)
β

′

1 -0.0632 (0.0634) -0.0550 (0.0685) -0.0584 (0.0715)

Random variance

σ2
θ 1.3252 (0.3818) 1.4264 (0.3676) 1.4039 (0.3527)

σθθ′ 1.0882 (0.3511) 1.1117 (0.3499) 1.0804 (0.3714)
σ2
θ′ 1.3964 (0.3940) 1.4655 (0.4164) 1.6046 (0.5172)
σ2
ν 0.0706 (0.0616) 0.0804 (0.0770) 0.1413 (0.1422)

σνν′ 0.2142 (0.0374) 0.2697 (0.0667) 0.3262 (0.1077)
σ2
ν′ 0.0000 (.) 0.0000 (.) 0.0000 (.)
σ2 0.4659 (0.0434) 0.6005 (0.1103) 0.7175 (0.1989)

Total variance
σ2

1 1.8617 2.1073 2.2627
σ12 1.8623 2.0659 2.3221
σ2

2 1.3024 1.3814 1.4066
CCC Inter 0.6900 0.6501 0.6062

Inter-CCC estimation between rater one and three

Fixed

β0 3.6461 (0.2291) 3.7650 (0.2107) 3.7421 (0.2000)
β

′

0 4.1051 (0.1955) 4.1998 (0.1773) 4.1890 (0.1660)
β1 -0.0952 (0.0576) -0.0896 (0.0606) -0.1082 (0.0607)
β

′

1 -0.1579 (0.0532) -0.1477 (0.0594) -0.1625 (0.0599)

Random variance

σ2
θ 1.3623 (0.3814) 1.4757 (0.3676) 1.4686 (0.3510)

σθθ′ 1.1196 (0.3161) 1.1731 (0.2910) 1.1509 (0.2726)
σ2
θ′ 0.9719 (0.2746) 0.9840 (0.2454) 0.9570 (0.2292)
σ2
ν 0.1114 (0.0371) 0.1199 (0.0472) 0.1391 (0.0598)

σνν′ 0.1025 (0.0272) 0.1163 (0.0358) 0.1398 (0.0444)
σ2
ν′ 0.0831 (0.0319) 0.0962 (0.0476) 0.1196 (0.0639)
σ2 0.1620 (0.0174) 0.2001 (0.0297) 0.2178 (0.0358)

Total variance
σ2

1 1.6357 1.7957 1.8255
σ13 1.2170 1.2803 1.2944
σ2

3 1.2221 1.2895 1.2907
CCC Inter 0.8121 0.8014 0.7885

Inter-CCC estimation between rater two and three

Fixed

β0 3.3876 (0.2345) 3.4534 (0.2351) 3.4562 (0.2285)
β

′

0 4.1051 (0.1989) 4.1998 (0.1816) 4.1890 (0.1715)
β1 -0.0632 (0.0645) -0.0550 (0.0694) -0.0584 (0.0723)
β

′

1 -0.1579 (0.0645) -0.1477 (0.0715) -0.1625 (0.0739)

Random variance

σ2
θ 1.3935 (0.3940) 1.4623 (0.4161) 1.6010 (0.5172)

σθθ′ 0.9504 (0.3002) 0.9432 (0.2868) 0.9145 (0.3015)
σ2
θ′ 0.9461 (0.2745) 0.9434 (0.2456) 0.9023 (0.2301)
σ2
ν 0.0000 (.) 0.0000 (.) 0.0000 (.)

σνν′ 0.1589 (0.0282) 0.2130 (0.0641) 0.2757 (0.2757)
σ2
ν′ 0.0000 (.) 0.0000 (.) 0.0000 (.)
σ2 0.4832 (0.0439) 0.6196 (0.1040) 0.7391 (0.1944)

Total variance
σ2

2 1.8767 1.7744 2.3402
σ23 1.4293 1.4105 1.6415
σ2

3 0.6006 0.6059 0.5439
CCC Inter 0.6006 0.6059 0.5439
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One sample with 10 subjects with missing data and another sample with 15 are

applied by pattern mixture model. TableXIV shows that for the first sample, 29 have

complete data, 5 have all first readings but have all second readings missing, and the

other 5 have one or more missing values at first readings and all second readings. Simi-

larly, the second sample has 29 completed data, 3 have all first readings but missing all

second readings, the other 12 have one or more missing at first readings and all second

readings. In this case, we use two dummy variables D1 and D2. Indicator variable of D1

is 0 for complete data at all first readings and 1 for any types missing at first readings.

Similarly D2 is 0 for complete data at second readings and 1 for any types of missing at

second readings.

Table XIV: Missing data pattern for two sample data

Data of 29 completers and 10 with missing
jsw0 1 jsw0 2 jsw0 jsw1 1 jsw1 2 jsw1 jsw2 1 jsw2 2 jsw2 2nd n D1 D2

X X X X X X X X X X 29 0 0
X X X X X X X X X . 5 0 1
X X X X X X . . . . 2 1 1
X X X X X . X X X . 1 1 1
. . X . . X . . X . 1 1 1
. . X . . X . . . . 1 1 1

Data of 29 completers and 15 with missing
X X X X X X X X X X 29 0 0
X X X X X X X X X . 3 0 1
X X X X X X X . X . 1 1 1
X X X X X X . . . . 3 1 1
. . X . . X . . X . 7 1 1
. . X . . X . . . . 1 1 1
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Mixed-effects pattern mixture model is written:

yijkl = β0δ(l=1) + β1δ(l=1)t+ θ0iδ(l=1) + ν0j(i)δ(l=1)

+ β′0δ(l=2) + β′1δ(l=2)t+ θ′0iδ(l=2) + ν ′0j(i)δ(l=2)

+ β0m1δ(l=1)D1 + β1m1δ(l=1)D1t+ β′0m1δ(l=2)D1 + β′1m1δ(l=2)D1t

+ β0m2δ(l=1)D2 + β1m2δ(l=1)D2t+ β′0m2δ(l=2)D2 + β′1m2δ(l=2)D2t+ εijkl.

(7.1)

In this model:

(i) β0, β1, β′0 and β′1 are for completers.

(ii) β0m1, β1m1, β′0m1 and β′1m1 indicate how the group with first reading missing differ

from the completers.

(iii) β0m2, β1m2, β′0m2 and β′1m2 indicate how the group with second reading missing differ

from the completers.

After model estimation, the average results are obtained by using sample proportions as

estimates of missing-data pattern proportions. Vide Little (1995, [41]). That is to say,

̂̄
β = π̂cβ̂c + ˆπm1 ˆβdm1 + ˆπm2 ˆβdm2 = β̂c + ˆπm1 ˆβm1 + ˆπm2 ˆβm2 (7.2)

Here, β̂c corresponds to the coefficients of the group with completed data in the current

model formulation; ˆβdm1 and ˆβdm2 correspond to the coefficients of the group with missing

data at first readings or second readings in the current model; ˆβm1 corresponds to the

group with missing values at first readings coefficients differing from the completers

group in the current model formulation; ˆβm2 correspond to the group with missing values

differing from the completers group at second readings coefficients in the current model
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formulation; ˆπm1, ˆπm2 are the sample proportion of missing first readings and second

readings.

Delta Method is used for estimating asymptotic variance of averaged estimates

[Hedeker’s handout on pattern mixture model].

V̂ ( ˆ̄β) = V̂ (β̂c) + ˆπm1
2V ( ˆβm1) + ˆβm1

2
V ( ˆπm1) + ˆπm2

2V ( ˆβm2) + ˆβm2
2
V ( ˆπm2) (7.3)

In this case, under marginal model for completion,

V (π̂m) = π̂m(1− π̂m)/N = nmnc/N
3. (7.4)

After taking both average estimation and the estimated asymptotic variance of av-

eraged estimates into consideration, the results are shown in tableXV. TableXV also

includes the results from the mixed-effect model estimation on the data with 10, 15 sub-

jects missing. We can see that the inter-CCCs from pattern mixture model estimation

are slightly lower than the results from the mixed effect model. That may be due to the

uncertainty reducing the agreement between raters which are counted to the considera-

tion.

In summary, mixed model, model based imputation, multiple imputation, and pat-

tern mixture imputation give us very similar results. That may suggest that the missing

at random assumption is met in this case.
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Table XV: Inter-CCC estimation including missing data by pattern mixture model

Inter-CCC estimation between rater one and two
Parameter Adding 10 with missing Est(Std) Adding 15 with missing Est(Std)

Mixed model Pattern mixed model Mixed model Pattern mixed model
β0 3.7460 (0.2087) 3.4547 (0.3424) 3.7626 (0.2254) 3.6105 (0.5075)
β

′

0 3.5271 (0.2130) 3.2081 (0.2727) 3.5021 (0.2204) 3.4222 (0.4981)
β1 -0.0680 (0.0635) -0.1225 (0.1320) -0.0902 (0.0655) -0.1594 (0.1949)
β

′

1 -0.0407 (0.0570) -0.1083 (0.1188) -0.0602 (0.0587) -0.1381 (0.2060)
σ2
θ 1.3634 (0.3462) 1.2778 (0.3344) 1.5758 (0.4041) 1.5160 (0.4009)

σθθ′ 1.1934 (0.3282) 1.0724 (0.3090) 1.3161 (0.3657) 1.2656 (0.3654)
σ2
θ′ 1.4752 (0.3683) 1.3357 (0.3437) 1.5448 (0.3912) 1.5235 (0.3971)
σ2
ν 0.0533 (0.0511) 0.0527 (0.0520) 0.0559 (0.0533) 0.0574 (0.0547)

σνν′ 0.1884 (0.0318) 0.1897 (0.0325) 0.1935 (0.0330) 0.1968 (0.0338)
σ2
ν′ 0.0000 (.) 0.0000 (.) 0.0000 (.) 0.0000 (.)
σ2 0.4280 (0.0375) 0.4319 (0.0382) 0.4365 (0.0389) 0.4422 (0.0397)
σ2

1 1.8447 1.7624 2.0682 2.0156
σ12 1.9032 1.7676 1.9813 1.9657
σ2

2 1.3818 1.2621 1.5096 1.4624
Inter-CCC 0.7302 0.7043 0.7359 0.7295
Inter-CCC estimation between rater one and three

β0 3.7727 (0.1967) 3.5742 (0.3424) 3.8222 (0.1980) 3.6835 (0.3579)
β

′

0 4.1898 (0.1635) 4.0891 (0.2727) 4.2164 (0.1604) 4.1333 (0.1405)
β1 -0.0678 (0.0511) -0.1338 (0.1320) -0.0771 (0.0511) -0.1884 (0.1074)
β

′

1 -0.1318 (0.0478) -0.2363 (0.1188) -0.1217 (0.0446) -0.1127 (0.8266)
σ2
θ 1.3367 (0.3225) 1.2786 (0.3177) 1.5114 (0.3465) 1.4269 (0.3354)

σθθ′ 1.0646 (0.2591) 1.0278 (0.2574) 1.1880 (0.2720) 1.1456 (0.2689)
σ2
θ′ 0.8982 (0.2195) 0.8786 (0.2202) 0.9912 (0.2265) 0.9752 (0.2284)
σ2
ν 0.0993 (0.0317) 0.0963 (0.0314) 0.0956 (0.0313) 0.0980 (0.0320)

σνν′ 0.0971 (0.0236) 0.0922 (0.0229) 0.0866 (0.0216) 0.0882 (0.0220)
σ2
ν′ 0.0793 (0.0287) 0.0742 (0.0278) 0.0675 (0.0259) 0.0675 (0.0259)
σ2 0.1568 (0.0163) 0.1573 (0.0164) 0.1593 (0.0166) 0.1587 (0.0166)
σ2

1 1.5928 1.5322 1.7663 1.6836
σ13 1.1343 1.1101 1.2180 1.2014
σ2

3 1.1617 1.1200 1.2746 1.2338
Inter-CCC 0.8148 0.7965 0.8206 0.7806
Inter-CCC estimation between rater two and three

β0 3.5559 (0.2073) 3.3079 (0.3424) 3.5524 (0.2024) 3.4748 (0.3735)
β

′

0 4.1952 (0.1678) 4.0883 (0.2727) 4.2197 (0.1637) 4.1320 (0.2051)
β1 -0.0449 (0.0582) -0.1211 (0.1320) -0.0451 (0.0578) -0.1394 (0.1452)
β

′

1 -0.1368 (0.0579) -0.2338 (0.1188) -0.1267 (0.0557) -0.1088 (0.8626)
σ2
θ 1.4280 (0.3515) 1.3090 (0.3329) 1.4588 (0.3496) 1.4200 (0.3483)

σθθ′ 0.9469 (0.2555) 0.8811 (0.2475) 1.0071 (0.2570) 0.9750 (0.2567)
σ2
θ′ 0.8801 (0.2222) 0.8565 (0.2220) 0.9531 (0.2264) 0.9381 (0.2285)
σ2
ν 0.0000 (.) 0.0000 (.) 0.0000 (.) 0.0000 (.)

σνν′ 0.1433 (0.0248) 0.1432 (0.0253) 0.1380 (0.0247) 0.1395 (0.0251)
σ2
ν′ 0.0000 (.) 0.0000 (.) 0.0000 (.) 0.0000 (.)
σ2 0.4461 (0.0379) 0.4478 (0.0384) 0.4374 (0.0368) 0.4413 (0.0374)
σ2

2 1.8741 1.7568 1.8962 1.8613
σ23 1.3262 1.3043 1.3905 1.3794
σ2

3 1.0902 1.0243 1.1451 1.1145
Inter-CCC 0.6230 0.5842 0.6309 0.6002
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8. INFLUENCE OF COVARIATES ON CCC

Choudhary (2017, [31]) showed that covariates may affect either the mean or the

variance of the estimated agreement. The covariates may include both subject-level, such

as the gender of the subject or other baseline characteristics, and model-level covariates,

such as the quality of measurement method itself, as method-level categorical covariates

in the analysis.

8.1 Subject-level covariates adjusted for estimating CCC

In model 4.6 we proposed that we can include extra covariates in the model. In the

GAIT study, baseline characteristics were collected. Those variables are subject-level. We

try to apply gender, age, baseline pain level and several other variables in the model; only

age and baseline pain level have significant effects on the JSW measurements. Therefore,

the inter-CCC are evaluated after adjusting the two covariates.

TablesXVI-XVIII show the results of agreement on mean, variance and total CCC

estimates between rater 1 and 2, 1 and 3, 2 and 3. We can see that the baseline of

JSW estimates have changed after including two covariates; in fact, for the same age and

same pain severity level patients, the mean difference between raters are the same as not

adjusting the two covariates. However, the variance and covariance of JSW by different

raters are decreasing after adjusting age and baseline pain effects. The level of covariance

decreasing is even more than variance. That means the inter-CCC estimates are lower

than the estimates not adjusting covariates.
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Table XVI: Inter-CCC estimation between rater 1 and 2 after adjusting age and baseline
pain

Category Parameter no covariates adjust two co-variates
Est(Std) Est(Std)

Fixed

β0 3.6461 (0.2333) 7.1573 (1.2859)
β

′

0 3.3876 (0.2342) 6.8987 (1.2860)
β1 -0.0952 (0.0723) -0.0952 (0.0723)
β

′

1 -0.0632 (0.0634) -0.0632 (0.0634)
βpain -0.1761 (0.4323)
βage -0.0642 (0.0224)

Random variance

σ2
θ 1.3252 (0.3818) 1.0903 (0.3313)

σθθ′ 1.0882 (0.3511) 0.8502 (0.2987)
σ2
θ′ 1.3964 (0.3940) 1.1555 (0.3422)
σ2
ν 0.0706 (0.0616) 0.0706 (0.0616)

σνν′ 0.2142 (0.0374) 0.2142 (0.0374)
σ2
ν′

σ2 0.4659 (0.0434) 0.4659 (0.0434)

Agreement

ȳ1 − ȳ2 0.2265 0.2266
V1 1.8617 1.6268
V2 1.8623 1.6214

Covariance 1.3024 1.0644
Inter 0.6900 0.6452

Table XVII: Inter-CCC estimation between rater 1 and 3 after adjusting age and baseline
pain

Category Parameter no covariates adjust two co-variates
Est(Std) Est(Std)

Fixed

β0 3.6461 (0.2291) 7.2741 (0.9257)
β

′

0 4.1051 (0.1955) 7.7330 (0.9170)
β1 -0.0952 (0.0576) -0.0952 (0.0576)
β

′

1 -0.1579 (0.0532) -0.1579 (0.0532)
βpain -0.5655 (0.3076)
βage -0.0712 (0.0159)

Random variance

σ2
θ 1.3623 (0.3814) 1.0890 (0.3122)

σθθ′ 1.1196 (0.3161) 0.8203 (0.2389)
σ2
θ′ 0.9719 (0.2746) 0.6466 (0.1924)
σ2
ν 0.1114 (0.0371) 0.1114 (0.0371)

σνν′ 0.1025 (0.0272) 0.1025 (0.0272)
σ2
ν′ 0.0831 (0.0319) 0.0831 (0.0319)
σ2 0.1620 (0.0174) 0.1620 (0.0174)

Agreement

ȳ1 − ȳ2 -0.3963 -0.3962
V1 1.6357 1.3624
V2 1.2170 0.8917

Covariance 1.2221 0.9228
Inter 0.8121 0.7655
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Table XVIII: Inter-CCC estimation between rater 2 and 3 after adjusting age and baseline
pain

Category Parameter no covariates adjust two co-variates
Est(Std) Est(Std)

Fixed

β0 3.3876 (0.2345) 6.8448 (1.0569)
β

′

0 4.1051 (0.1989) 7.5623 (1.0479)
β1 -0.0632 (0.0645) -0.0632 (0.0645)
β

′

1 -0.1579 (0.0645) -0.1579 (0.0645)
βpain -0.5108 (0.3526)
βage -0.0675 (0.0182)

Random variance

σ2
θ 1.3935 (0.3940) 1.1840 (0.3538)

σθθ′ 0.9504 (0.3002) 0.6880 (0.2384)
σ2
θ′ 0.9461 (0.2745) 0.6306 (0.1974)
σ2
ν 0.0000 (.) 0.0000 (.)

σνν′ 0.1589 (0.0282) 0.1589 (0.0282)
σ2
ν′ 0.0000 (.) 0.0000 (.)
σ2 0.4832 (0.0439) 0.4832 (0.0439)

Agreement

ȳ1 − ȳ2 -0.6228 -0.6228
V1 1.8767 1.6672
V2 1.4293 1.1138

Covariance 1.1093 0.8469
Inter 0.6006 0.5345
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9. STATISTICAL INFERENCE OF CONCORDANCE

CORRELATION COEFFICIENT

To find the distribution of the CCC of whole data is very hard. Hypothesis testing

of CCC is even more challenging (2013, [27]). Thus, we take a simple case of two raters

with no covariates, as the standard value of CCC is unknown. The golden standard of

CCC in our problem is not available in the literature. Instead of hypothesis testing, we

construct the confidence interval of CCC(2017, [31]). This is because confidence intervals

provide more information than p-values.

9.1 Generalized confidence interval estimated for CCC

To keep the case simple and avoid repeated measurements at different time point in

this initial try, we use three raters’ first readings at the two years X-ray. For each paired

observations of two raters, they follow the bivariate normal distribution, denoted by:

Y1

Y2

 ∼ N2


µ1

µ2

 ,
σ11 σ12

σ12 σ22


 ,

let µ =

µ1

µ2

 and Σ =

σ11 σ12

σ12 σ22

.

In order to evaluate the agreement, it is enough to construct a confidence interval

for the CCC, say θ, given by

CCC = θ = 2Cov(y1, y2)
σ2
y1 + σ2

y2 + (µy1 − µy2)2 .
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Let (Ȳ1, Ȳ2) denote the sample mean vector and define

S =
n∑
i=1

Y1i − Ȳ1

Y2i − Ȳ2


Y1i − Ȳ1

Y2i − Ȳ2

 =

S11 S12

S12 S22

 .

Then (
Ȳ1 Ȳ2

)′
∼ N2(µ, (1/n)Σ),

and S ∼ W2(Σ, n − 1), the bivariate Wishart distribution with scale matrix Σ and

degree of freedom n-1. We shall now construct a generalized pivot statistic for θ, whose

percentile will be used to obtain a generalized confidence interval for θ. The generalized

pivot statistic will be a function of the random variables
(
Ȳ1 Ȳ2

)′
and S, defined above,

and the corresponding observed values, say (ȳ1, ȳ2)′ and s, and is required to satisfy the

conditions:

(i) Given (ȳ1, ȳ2)′ and s, the distribution of the generalized pivot statistic is free of any

unknown parameters;

(ii) The observed value of the generalized pivot statistic obtained by replacing (Ȳ1, Ȳ2)′

and S with (ȳ1, ȳ2)′ and s, respectively is simply θ, the parameter of interest;

We shall actually construct two generalized pivot statistics that satisfy the above

properties and numerically investigate their performance. Since S ∼ W2(Σ, n − 1), we

shall use the following properties of the Wishart distribution:

U22 = S22
σ22
∼ χ2

n−1,

U11.2 = S11.2
σ11.2
∼ χ2

n−2,

Z1 = (S12 − σ12
σ22
S22)/

√
σ11.2S22 ∼ N(0, 1),
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where S11.2 = S11 − S2
12/S22, σ11.2 = σ11 − σ2

12/σ22 and χ2
r denote a central chi-square

distribution with r degree of freedom. Here, the random variables U22, U11.2 and Z1 are

independently distributed. Denote the observed value of Sij(i, j = 1, 2) by sij and the

observed value of S11.2 by s11.2. Define

R22 =σ22

S22
s22 = s22

U22
, (9.1)

R12 =σ22

S22
s12 − [√s11.2s22

S12 − σ12
σ22
S22√

σ11.2S22

√
σ11.2

S11.2

σ22

S22
],

= s12

U22
− [√s11.2s22

Z1√
U11.2U22

],

R11 =σ11.2

S11.2
s11.2 + R2

12
R22

= s11.2

U11.2
+ R2

12
R22

.

The observed values of R11, R12 and R22 are obtained by replacing the S ′ijs with

s′ijs and S11.2 with s11.2, and these observed values are easily seen to be σ11, σ12 and σ22,

respectively. In other words, the matrix R given by R =

R11 R12

R12 R22

 has an observed

value. Note that R is positive definite. Now define

T11 =(ȳ1 − ȳ2)− (Ȳ1 − Ȳ2)− (µ1 − µ2)√
(σ11 − 2σ2

12 + σ22)/n

√
(R11 − 2R12 +R22)/n (9.2)

=(ȳ1 − ȳ2)− Z2√
n

√
R11 − 2R12 +R22,

where Z2 = (Ȳ1−Ȳ2)−(µ1−µ2)√
(σ11−2σ2

12+σ22)/n
∼ N(0, 1) and is independent of U22, U11.2 and Z1. We note

that the observed value of T11 is a generalized pivot statistic for µ1 − µ2. Similarly, R11
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is a generalized pivot statistic for σ11; R22 is a generalized pivot statistic for σ22; R12 is

a generalized pivot statistic for σ12. Thus, T, a generalized pivot statistic for θ is given by

T =
2[ s12
U22
− [√s11.2s22

Z1√
U11.2U22

]]
s11.2
U11.2

+ R2
12

R22
+ s22

U22
+ [(y1 − y2)− Z2√

n

√
R11 − 2R12 +R22]2

(9.3)

= 2R12

R11 +R22 + T 2
11

.

The percentile of T provide confidence limits for CCC. We note that T is a function

of the independent random variables U22, U11.2, Z1 and Z2, and the observed quantities

(ȳ1 − ȳ2)′ and the s′ijs. The following algorithm is used to determine the percentiles of

T:

(i) For a given sample of first X-ray readings by two raters (y1i, y2i)′, i = 1, . . . , 29,

compute the sample mean (ȳ1, ȳ2)′ and the sum of squares and the sum of products

matrix

s =
n∑
i=1

y1i − ȳ1

y2i − ȳ2


y1i − ȳ1

y2i − ȳ2

 =

s11 s12

s12 s22

 .

(ii) For j = 1, . . . , 10000, generate U22 ∼ χ2
n−1, U11.2 ∼ χ2

n−2, Z1 ∼ N(0, 1) and Z2 ∼

N(0, 1) and compute R11, R12, R22 and T11.

(iii) Compute T.

(iv) End j loop. That means, repeat 10000 and get T with 10000 values.

(v) Order the T’s to get the histogram, the 100(α/2)th and 100(1− α/2)th percentile
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of T. Provide a Monte Carlo estimate of the two sided 100(1−α) confidence limits

for CCC.

Figures 22-24 show the histogram of simulated CCCs between different raters. The mean

of CCC between two manual raters are higher than between rater and computer.

TableXIX gives the simulated coverage probabilities (CP) of the three generalized con-

fidence intervals for CCC between rater 1 and rater 2, rater 1 and computer, rater 2

and computer, based on the percentiles of T, for a 95 percent nominal level. The second

column is the estimate CCC from samples between the different raters. The third column

is the 95% generalized confidence interval by the method described. The last column is

the coverage probabilities using 1000 simulations. From the results, we can see that all

estimated CCC by sample are included in the 95% generalized confidence interval; CP is

around 94% for the confidence interval after simulating 1000 times. The results also show

that CCC between two raters’ evaluations is better than each of them with computer at

first readings of two year X-rays.

Table XIX: Inter-CCC for human and computer: Joint Space Width

Between raters CCC estimate value 95%CI CP
Rater 1 vs Rater 2 0.9388 0.8677, 0.9667 94.7%
Rater 1 vs Computer 0.8662 0.7308, 0.9235 93.9%
Rater 2 vs Computer 0.8712 0.7543, 0.9242 94.2%



94

Figure 22: Histogram of 10000 simulated CCCs between raters 1 and 2

Figure 23: Histogram of 10000 simulated CCCs between rater 1 and computer

Figure 24: Histogram of 10000 simulated CCCs between rater 2 and computer
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10. CONCLUSION

Assessment of agreement has been studied in many areas. Lin’s concordance correla-

tion coefficient has been commonly used in evaluating agreement for continuous variables.

We follow Lin’s idea of CCC, and apply it for longitudinal data with multiple replicates. A

three level mixed-effect model is developed to evaluate the three level covariance between

longitudinal data with replicate readings of the three raters, furthermore we estimate the

variance covariance structure and sample means in order to estimate the CCC. Our ap-

proach is designed not only for complete data, but also for data with missing values. In

addition, it can also be used for evaluating agreement after adjusting for covariates.

The expectation-maximization (EM) algorithm is used to estimate the parameters

of the proposed model. The restricted maximum likelihood approach is used to take into

account the degrees of freedom that are involved in estimating fixed effects in variance

components estimation. One of the advantages of using EM is that the likelihood-based

approach can handle unbalanced data, missing values, and covariates naturally. The

reason to use REML rather than MML is that it’s very common the sample size is

limited in real data.

Simulation results show the excellent performance of our approach using three-level

mixed-effect models for several situations: CCC close to 1, close to 0, and the estimated

value close to the real data. In addition, the sample size we simulated is 30, not large;

after running 10000 times, it demonstrates the accuracy and precision in estimating

parameters.

The proposed model is applied to the complete data set sample we collected in the

GAIT trial. We observe that the estimates of fixed variable by the three-level mixed
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effects model are almost the same as by the two-level mixed effects model. However,

the third level variance-covariance removes some variation from the model error term

variance and increases the covariance between raters slightly. Thus, we get better CCC

estimation by three-level models than the two-level models. In this situation, the three-

level model captures different levels of variances and covariances, and the results are

closer to the real data. Therefore, CCC based on three-level model is better.

We also analyze the data with missing values collected in the GAIT trial. Four

methods for handling missing values are used including mixed model, model based im-

putation, multiple imputation, and pattern mixed model. Ten data samples with 10 and

15 subjects with missing data are combined with the complete data sets. The average

inter-CCCs for first two methods are slightly larger than the estimates by complete data.

It may be due to the covariance estimated by EM or the model imputation is larger than

it is supposed to be. The latter two methods generate slightly smaller CCC estimation

than the one by complete data. It may be caused by the uncertainty introduced. The

assumption of the first three methods is missing at random and the last one assumes

missing not at random. All methods gave us very similar results. That may suggest that

the missing at random assumption is met in this case. In general, it will be good to use

the pattern mixture model including missing pattern information to estimate CCC as

the sensitivity analysis.

The three-level mixed-effect model can get the CCC estimation after adjusting the

baseline characteristics. However, the estimation is smaller than the one without ad-

justing. This is because the covariance and variance are decreasing after adjusting the

baseline characteristics variables, especially covariance which decreases more. Choudhary

(2017, [31]) pointed out there are some types of variables called “measurement method”

variables which may cause the mean difference; however, we have not included this type
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of covariate in the models yet.

Statistical inference of CCC is performed by constructing the generalized confidence

interval based on a simple case without covariates. This procedure simplifies the hypoth-

esis testing and other inference procedures.

The model we proposed is based on a bivariate distribution. More work to include

multiple raters will be done in the future. The other limitation is that construction

of a generalized conference interval is based on one reading by each rater at last time

point without covariates. The further statistical inference work on complicated datasets

including multiple levels of covariance adjust by covariates will be taken into account

later.

Taken together, our work attempts to estimate CCC by three-level mixed-effects

model for multiple level covariance data. To illustrate our methods, we used a data set

from the GAIT clinical trial.



98

CITED LITERATURE

1. Le Graverand, M.P., et al., Head-to-head comparison of the Lyon Schuss and fixed

flexion radiographic techniques. Long-term reproducibility in normal knees and

sensitivity to change in osteoarthritic knees. Ann Rheum Dis, 2008. 67(11): p.

1562-6.

2. Mazzuca, S.A., et al., Pitfalls in the accurate measurement of joint space narrowing

in semiflexed, anteroposterior radiographic imaging of the knee. Arthritis Rheum,

2004. 50(8): p. 2508-15.

3. Dupuis, D.E., et al., Precision and accuracy of joint space width measurements of

the medial compartment of the knee using standardized MTP semi-flexed radio-

graphs. Osteoarthritis Cartilage, 2003. 11(10): p. 716-24.

4. Hunter, D.J., M.P. Le Graverand, and F. Eckstein, Radiologic markers of os-

teoarthritis progression. Curr Opin Rheumatol, 2009. 21(2): p. 110-7.

5. Ravaud, P., et al., Assessment of joint space width in patients with osteoarthritis

of the knee: a comparison of 4 measuring instruments. J Rheumatol, 1996. 23(10):

p. 1749-55.

6. Buckland-Wright, J.C., et al., Quantitative microfocal radiographic assessment of

osteoarthritis of the knee from weight bearing tunnel and semiflexed standing views.

J Rheumatol, 1994. 21(9): p. 1734-41.

7. Sawitzke, A.D., et al., The effect of glucosamine and/or chondroitin sulfate on

the progression of knee osteoarthritis: a report from the glucosamine/chondroitin

arthritis intervention trial. Arthritis Rheum, 2008. 58(10): p. 3183-91.



99

8. Clegg, D.O., et al., Glucosamine, chondroitin sulfate, and the two in combination

for painful knee osteoarthritis. N Engl J Med, 2006. 354(8): p. 795-808.

9. Buckland-Wright, J.C., Quantitative radiography of osteoarthritis. Ann Rheum

Dis, 1994. 53(4): p. 268-75.

10. Jacob Cohen, A Coefficient of Agreement for Nominal Scales, Educational and

Psychological Measurement, 1960, Vol. 20, p. 37-46.

11. Cohen, J., Weighed kappa: Nominal scale agreement with provision for scaled

disagreement or partial credit. Psychological Bulletin 1968, 70 (4): p. 213-220.

12. Fleiss, J.L., Measuring nominal scale agreement among many raters. Psychological

Bulletin 1971, 76 (5): p. 378-382.

13. Bland, J. Martin and Altman, Douglas G., Statistical methods for assessing agree-

ment between two methods of clinical measurement. The Lancet, Feb 8 1986: p.

307-310.

14. Lawrence I-Kuei Lin, A Concordance Correlation Coefficient to Evaluate Repro-

ducibility, Biometrics 1989, 45, p. 255-268.

15. Lawrence I-Kuei Lin, Assay Validation Using the Concordance Correlation Coeffi-

cient, Biometrics 1992, 48, p. 599-604.

16. Lawrence I-Kuei Lin, Overview of Agreement Statistics for Medical Devices, Jour-

nal of Biopharmaceutical Statistics, 2007, 18:1, p. 126-144.

17. Josep L. Carrasco and L. Jover, Estimating the Generalized Concordance Correla-

tion Coefficient through Variance Components, Biometrics 2003, 59, p. 849-858.



100

18. Lawrence Lin, A. S. Hedayat, Bikas Sinha, and Min Yang, Statistical Methods in

Assessing Agreement: Models, Issues, and Tools, ASA Theory and Methods 2002,

Vol.97, p.257-270.

19. Hedeker, R. D. Gibbons, and B. R. Flay. Random-effects regression models for

clustered data: With an example from smoking prevention research. Journal of

Consulting and Clinical Psychology 1994, 62: p. 757-765.

20. N. M. Laird and J. H. Ware. Random-effects models for longitudinal data. Bio-

metrics 1982, 38: p. 963-974.

21. M.J. Lindstrom and D.M. Bates. Newton-Raphson and EM algorithms for linear

mixed-effects models for repeated-measures data. Journal of the American Statis-

tical Association 1998, 83: p. 1014-1022.

22. Bikas Kumar Sinha, Erki Liski and Arto Luoma , Optimal designs in random

coefficient linear regression models, Calcutta Statist. Assoc. Bull. 1996, 46, p.

211-229.

23. Bikas Kumar Sinha, Erkki Liski, Arto Luoma & N K Mandal, Optimal design for an

inverse prediction problem under random coefficient, Jour. Indian Soc. Agricultural

Statist. 49 1996/97, p. 277-288.

24. Bikas Kumar Sinha, Erkki Liski, Arto Luoma & N K Mandal, Optimal designs for

prediction in random coefficient linear regression model, J. N. Srivastava Felicitation

Volume. J. Combin. Inform. System Sci. 23, 1998.

25. L Lin, AS Hedayat, W Wu, Statistical Tools for Measuring Agreement, Springer

Science and Business Media 2012.



101

26. Bikas K. Sinha, Pornpis Yimprayoon, Montip Tiensuwan, Cohen’s Kappa Statis-

tic: A Critical Appraisal and Some Modifications, Calcutta Statistical Association

Bulletin, 2006, Volume: 58 issue: 3-4, p. 151-170.

27. G Dutta, BK Sinha, Some Further Aspects of Assessment of Agreement involving

Bivariate Normal Responses, International Journal of Statistical Sciences, 2013f

Vol. 13, 2013, p. 1-19.

28. Barnhart, H. X. and Williamson, J. M., Modelling concordance correlation via GEE

to evaluate reproducibility. Biometrics 57, 2001, p. 931-940.

29. King TS, Chinchilli VM, A generalized concordance correlation coefficient for con-

tinuous and categorical data, Stat Med. 2001 Jul 30;20(14): p. 2131-47.

30. Ionut Betu and Thomas Mathew, Comparing the means and variances of a bivariate

log-normal distribution, Statistics in Medicine, 2008; 27: p. 2684-2669

31. Choudhary, Pankaj K. and Nagaraja, Haikady N., Measuring Agreement Models,

Methods, and Applications. Wiley, 2017.

32. Scott, W., Reliability of content analysis: The case of nominal scale coding. Public

Opinion Quarterly, 1955, 19(3), p. 321-325.

33. Bland, J. Martin and Altman, Douglas G., Measuring agreement in method com-

parison studies, Stat Methods Med Res, 1999, Jun; 8(2): p. 135-60.

34. Searle, Shayle R., Casella, George, Variance Components, John Wiley Sons, Inc.,

2006.

35. Little, Roderick J. A., and Rubin, Donald B., Statistical Analysis with Missing

Data, Wiley, 2nd version, 2002.



102

36. Rubin, Donald B., Inference and missing data, Biometrika, Volume 63, Issue 3,

1976, p. 581-592.

37. Rubin DB. Multiple imputation for nonresponse in surveys. New York: John Wiley

Sons, Inc.; 1987.

38. Tanner, Martin A., and Wong, Wing Hung, The Calculation of Posterior Distribu-

tions by Data Augmentation, Journal of the American Statistical Association, Vol.

82, No. 398, 1987, p. 528-540.

39. Gelfand, Alan E., and Smith, Adrian F. M., Sampling-Based Approaches to Cal-

culating Marginal Densities, Journal of the American Statistical Association, Vol.

85, No. 410. 1990, p. 398-409.

40. Hedeker, D., and Gibbons, R. D., Application of random-effects pattern-mixture

models for missing data in longitudinal studies, Psychological Methods, 2(1), 1997,

p. 64-78.

41. Little, Roderick J. A., Modeling the Drop-Out Mechanism in Repeated-Measures

Studies, Journal of the American Statistical Association, 90:431, 1995, p. 1112-

1121.

42. Lin, Lawrence, S Hedayat, A, Wu, Wenting, A Unified Approach for Assessing

Agreement for Continuous and Categorical Data, Journal of biopharmaceutical

statistics 17, 2007, p. 629-52.

43. Barnhart, H. X., Haber, M. J. and Lin, L. I., An overview on assessing agreement

with continuous measurement, Journal of Biopharmaceutical Statistics 17, 2007, p.

529-569.



103

44. Barnhart, H. X., Haber, M. J. and Song, J., Overall concordance correlation coef-

ficient for evaluating agreement among multiple observers. Biometrics 58, 2002, p.

1020-1027.

45. Barnhart, H. X., Kosinski, A. S. and Haber, M. J., Assessing individual agreement.

Journal of Biopharmaceutical Statistics 17, 2007b, p. 697-719.

46. Barnhart, H. X., Lokhnygina, Y., Kosinski, A. S. and Haber, M. J., Comparison

of concordance correlation coefficient and coefficient of individual agreement in

assessing agreement, Journal of Biopharmaceutical Statistics 17, 2007c, p. 721-

738.

47. Barnhart, H. X., Song, J. and Haber, M. J., Assessing intra, inter and total agree-

ment with replicated readings. Statistics in Medicine 24, 2005, p. 1371-1384.

48. Carrasco, J. L., Caceres, A., Escaramis, G. and Jover, L., Distinguishability and

agreement with continuous data. Statistics in Medicine 33, 2014, p. 117-128.

49. Carrasco, J. L., Jover, L., King, T. S. and Chinchilli, V. M., Comparison of con-

cordance correlation coefficient estimating approaches with skewed data. Journal

of Biopharmaceutical Statistics 17, 2007, p. 673-684.

50. Carrasco, J. L., King, T. S. and Chinchilli, V. M., The concordance correlation

coefficient for repeated measures estimated by variance components. Journal of

Biopharmaceutical Statistics19, 2009, p. 90-105.

51. Carstensen, B., Simpson, J. and Gurrin, L. C., Statistical models for assessing

agreement in method comparison studies with replicate measurements. The Inter-

national Journal of Biostatistics 4, 2008, article 16.



104

52. Choudhary, P. K. and Nagaraja, H. N., Assessment of agreement using intersection-

union principle. Biometrical Journal 47, 2005a, p. 674-681.

53. Choudhary, P. K. and Nagaraja, H. N., Selecting the instrument closest to a gold

standard, Journal of Statistical Planning and Inference 129, 2005b, p. 229-237.

54. Choudhary, P. K. and Nagaraja, H. N., A two-stage procedure for selection and

assessment of agreement of the best instrument with a gold standard. Sequential

Analysis 24, 2005c, p. 237-257.

55. Choudhary, P. K. and Nagaraja, H. N., Tests for assessment of agreement using

probability criteria. Journal of Statistical Planning and Inference 137, 2007, p.

279-290.

56. Choudhary, P. K. and Ng, H. K. T., A tolerance interval approach for assessment

of agreement using regression models for mean and variance. Biometrics 62, 2006,

p. 288-296.

57. Choudhary, P. K. and Yin, K., Bayesian and frequentist methodologies for analyz-

ing method comparison studies with multiple methods. Statistics in Biopharma-

ceutical Research 2, 2010, p. 122-132.

58. Choudhary, P. K., Sengupta, D. and Cassey, P., A general skew-t mixed model

that allows different degrees of freedom for random effects and error distributions.

Journal of Statistical Planning and Inference 147, 2014, p. 235-247.

59. Donner, A., Eliasziw, M. and Klar, N., Testing the homogeneity of kappa statistics.

Biometrics 52, 1996, p. 176-183.

60. Donner, A., Shoukri, M. M., Klar, N. and Bartfay, E., Testing the equality of two

dependent kappa statistics. Statistics in Medicine 19, 2000, p. 373-387.



105

61. Fay, M. P., Random marginal agreement coefficients: Rethinking the adjustment

for chance when measuring agreement. Biostatistics 6, 2005, p. 171-180.

62. Feuerman, M. and Miller, A. R., Relationships between statistical measures of

agreement: Sensitivity, specificity and kappa. Journal of Evaluation in Clinical

Practice 14, 2008, p. 930-933.

63. Finney, D. J., A note on the history of regression. Journal of Applied Statistics 23,

1996, p. 555-557.

64. Fitzmaurice, G. M., Laird, N. M. and Ware, J. H., Applied Longitudinal Analysis,

2nd edn., 2011, John Wiley, Hoboken, NJ.

65. Gamer, M., Lemon, J., Fellows, I. and Singh, P., irr: Various Coefficients of Inter-

rater Reliability and Agreement, 2012, R package version 0.84.

66. Guo, Y. and Manatunga, A. K., Nonparametric estimation of the concordance

correlation coefficient under univariate censoring. Biometrics 83, 2007, p. 164-172.

67. Haber, M. J. and Barnhart, H. X., Coefficients of agreement for fixed observers,

Statistical Methods in Medical Research 15, 2006, p. 255-271.

68. Hutson, A. D., A multi-rater nonparametric test of agreement and corresponding

agreement plot, Computational Statistics and Data Analysis 54, 2010, p. 109-119.

69. King, T. S. and Chinchilli, V. M., Robust estimators of the concordance correlation

coefficient, Journal of Biopharmaceutical Statistics 11, 2001b, p. 83-105.

70. King, T. S., Chinchilli, V. M. and Carrasco, J. L., A repeated measures concordance

correlation coefficient, Statistics in Medicine 26, 2007a, p. 3095-3113.



106

71. Chinchilli, V. M., Martel, Juliann K., A Weighted Concordance Correlation Co-

efficient for Repeated Measurement Designs, Biometrics Vol. 52, No. 1, 1996, p.

341-353.

72. Zapf, Antonia, Castell, Stefanie, Morawietz, Lars, Measuring inter-rater reliability

for nominal data - which coefficients and confidence intervals are appropriate? BMC

Medical Research Methodology, 2016, p. 16-93.



***** 08/29/2012 mixed model to get the corresponding variance ****; 

*****   using 29 films three readers and two readings data - agree  ****; 

*****   get the distribution for each reader one by one  ****; 

*****************************************************************************; 

options nodate nonumber nocenter ; 

libname in1 'K:\NIHGAIT\sasmast\saslib'; 

libname in2 'K:\NIHGAIT\sasmast\st\data'; 

libname in3 'K:\NIHGAIT\SASMAST\ST\SAS\agreement_longitudinal\data'; 

data agree; 

set in3.agree; 

*if reader=1;

idfilm=id*100+time; 

run; 

proc means data=agree; 

class idfilm; 

var jsw; 

run; 

data subjectone; 

set agree; 

if id = 102154; 

run; 

proc sort data=subjectone; 
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by id reader time reading; 

run; 

proc means data=agree; 

class idreader time; 

var jsw; 

output out=std_film; 

run;  

proc print data=std_film; 

run; 

data test; 

set std_film; 

if _stat_='STD' and jsw=0; 

run; 

* take two std with 0 at two time point away; 

data agree_t; 

set agree; 

 if idreader=1042292 and time=0 then delete; 

 if idreader=1071461 and time=1 then delete; 

run;  

 

*first try; 

/*PROC MIXED METHOD=REML COVTEST DATA=agree; 

  CLASS ID idreader idfilm; 

  MODEL jsw =  time /SOLUTION; 

  RANDOM INTERCEPT  /SUB=ID TYPE=UN G; 
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  RANDOM INTERCEPT  /SUB=idreader(id) TYPE=UN G; 

  RANDOM INTERCEPT  /SUB=idreading(idreader) TYPE=UN G; 

RUN; */*model estimation works, have to find the meaning of this model, three level or four level 

model; 

*second try; 

/*PROC MIXED METHOD=REML COVTEST DATA=agree; 

  CLASS ID idreader idreading; 

  MODEL jsw =  time /SOLUTION; 

  RANDOM INTERCEPT  /SUB=ID TYPE=UN G; 

  RANDOM INTERCEPT  /SUB=idreader(id) TYPE=UN G; 

  RANDOM INTERCEPT  /SUB=idreading(idreader(id)) TYPE=UN G; 

RUN;*/* there's Syntax error; 

*get the intra-ccc for first reader; 

data agree1; 

set agree; 

if reader=1; 

TIMEC=TIME; 

run; 

proc means data=agree1 mean std min max; 

class timec reading; 

var jsw; 

run; 

data agree1_plot; 

set agree1; 

if timec=1 then jsw=jsw+8; 

if timec=2 then jsw=jsw+16; 
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run; 

data agree1_1(keep=id idfilm jsw1_1); 

set agree1_plot; 

if reading=1; 

jsw1_1=jsw; 

run; 

data agree1_2(keep=id idfilm jsw1_2); 

set agree1_plot; 

if reading=2; 

jsw1_2=jsw; 

run; 

data agree1_p; 

merge agree1_1 agree1_2; 

by id idfilm; 

run; 

 

ods rtf file='K:\NIHGAIT\SASMAST\ST\SAS\agreement_longitudinal\doc\Reader one_all_09122018.rtf'; 

Title1 'Intra CCC for reader one'; 

PROC MIXED METHOD=REML COVTEST DATA=agree1; 

  CLASS ID idfilm reading TIMEc; 

  MODEL jsw =  READing READing* time/SOLUTION; 

  RANDOM reading  /SUB=ID TYPE=UN G; 

  

 ods output SolutionF=e1;*fixed effect estimates for estimating mean; 

 ods output   CovParms=r1; 
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RUN; 

proc transpose data=r1 out=r1transpose; 

run; 

  

data r1transpose (keep=v1 v12 v2); 

set r1transpose; 

v1=col1+col4; 

v12=col2; 

v2=col3+col4; 

if _n_=1; 

run; 

proc transpose data=e1 out=e1transpose; 

run; 

 

data e1transpose(keep=dif0 dif1 dif2 dif); 

set e1transpose; 

dif0=col2; 

dif1=dif0+(col4-col5); 

dif2=dif0+(col4-col5)*2; 

dif=(dif0+dif1+dif2)/3; 

if _n_=2; 

run; 

data intra1; 

merge r1transpose e1transpose; 

inter=(2*v12)/(v1+v2+(dif*dif)); 
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run; 

 

ods rtf close; 

 

PROC MIXED METHOD=REML COVTEST DATA=agree1; 

  CLASS ID idfilm; 

  MODEL jsw =  time /SOLUTION; 

  RANDOM INTERCEPT TIME  /SUB=ID TYPE=UN G; 

  RANDOM INTERCEPT TIME  /SUB=idfilm(id) TYPE=UN G; 

RUN;*not positive deifined stop here; 

/*PROC MIXED METHOD=REML COVTEST DATA=agree1; 

  CLASS ID idfilm TIMEc; 

  MODEL jsw =  time/SOLUTION; 

  RANDOM INTERCEPT  /SUB=ID TYPE=UN G; 

  RANDOM INTERCEPT  /SUB=idfilm(id) TYPE=UN G; 

  REPEATED timec / SUB=ID TYPE=AR(1) R RCORR; 

RUN;*/ *nonpositive definite estimated R matrix for id 102154; 

 

 

* get the intra-ccc for the second reader; 

data agree2; 

set agree; 

if reader=2; 

timec=time; 

run; 
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proc sort data=agree2; 

by id time; 

run; 

proc means data=agree2; 

var jsw; 

by id time; 

run; 

data agree2_check; 

set agree2; 

if id in (102154, 102172, 102193, 102233, 104299, 104301, 104327)then delete; 

run; 

 

proc means data=agree2 mean std min max; 

class timec reading; 

var jsw; 

run; 

data agree2_plot; 

set agree2; 

if timec=1 then jsw=jsw+8; 

if timec=2 then jsw=jsw+16; 

run; 

data agree2_1(keep=id idfilm jsw2_1); 

set agree2_plot; 

if reading=1; 

jsw2_1=jsw; 
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run; 

data agree2_2(keep=id idfilm jsw2_2); 

set agree2_plot; 

if reading=2; 

jsw2_2=jsw; 

run; 

data agree2_p; 

merge agree2_1 agree2_2; 

by id idfilm; 

run; 

 

 

/*PROC MIXED METHOD=REML COVTEST DATA=agree2_check nobound; 

  CLASS ID idfilm timec; 

  MODEL jsw =  time /SOLUTION; 

  RANDOM INTERCEPT  /SUB=ID TYPE=UN G; 

 REPEATED timec / SUB=ID TYPE=AR(1) R RCORR; 

 run;*/ 

ods rtf file='K:\NIHGAIT\SASMAST\ST\SAS\agreement_longitudinal\doc\Reader two_all09122018.rtf'; 

Title1 'Intra-CCC for Reader two'; 

PROC MIXED METHOD=REML COVTEST DATA=agree2; 

  CLASS ID idfilm reading TIMEc; 

  MODEL jsw =  READing READing* time/SOLUTION; 

  RANDOM reading  /SUB=ID TYPE=UN G; 

  

114



 ods output SolutionF=e2;*fixed effect estimates for estimating mean; 

 ods output   CovParms=r2; 

RUN; 

proc transpose data=r2 out=r2transpose; 

run; 

  

data r2transpose (keep=v1 v12 v2); 

set r2transpose; 

v1=col1+col4; 

v12=col2; 

v2=col3+col4; 

if _n_=1; 

run; 

proc transpose data=e2 out=e2transpose; 

run; 

 

data e2transpose(keep=dif0 dif1 dif2 dif); 

set e2transpose; 

dif0=col2; 

dif1=dif0+(col4-col5); 

dif2=dif0+(col4-col5)*2; 

dif=(dif0+dif1+dif2)/3; 

if _n_=2; 

run; 

data intra2; 

115



merge r2transpose e2transpose; 

intra=(2*v12)/(v1+v2+(dif*dif)); 

run; 

 

ods rtf close; 

* get the intra-ccc for the third reader; 

data agree3; 

set agree; 

if reader=3; 

run; 

proc means data=agree3 mean std min max; 

class timec reading; 

var jsw; 

run; 

data agree3_plot; 

set agree3; 

if timec=1 then jsw=jsw+8; 

if timec=2 then jsw=jsw+16; 

run; 

data agree3_1(keep=id idfilm jsw3_1); 

set agree2_plot; 

if reading=1; 

jsw3_1=jsw; 

run; 

data agree3_2(keep=id idfilm jsw3_2); 
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set agree2_plot; 

if reading=2; 

jsw3_2=jsw; 

run; 

data agree3_p; 

merge agree3_1 agree3_2; 

by id idfilm; 

run; 

ods rtf file='K:\NIHGAIT\SASMAST\ST\SAS\agreement_longitudinal\doc\Reader three_all09122018.rtf'; 

Title1 'Intra-CCC for Reader three'; 

PROC MIXED METHOD=REML COVTEST DATA=agree3; 

  CLASS ID idfilm reading TIMEc; 

  MODEL jsw =  READing READing* time/SOLUTION; 

  RANDOM reading  /SUB=ID TYPE=UN G; 

  

 ods output SolutionF=e3;*fixed effect estimates for estimating mean; 

 ods output   CovParms=r3; 

RUN; 

proc transpose data=r3 out=r3transpose; 

run; 

  

data r3transpose (keep=v1 v12 v2); 

set r3transpose; 

v1=col1+col4; 

v12=col2; 
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v2=col3+col4; 

if _n_=1; 

run; 

proc transpose data=e3 out=e3transpose; 

run; 

 

data e3transpose(keep=dif0 dif1 dif2 dif); 

set e3transpose; 

dif0=col2; 

dif1=dif0+(col4-col5); 

dif2=dif0+(col4-col5)*2; 

dif=(dif0+dif1+dif2)/3; 

if _n_=2; 

run; 

data intra3; 

merge r1transpose e1transpose; 

intra=(2*v12)/(v1+v2+(dif*dif)); 

run; 

 

ods rtf close; 

PROC MIXED METHOD=REML COVTEST DATA=agree3; 

  CLASS ID idfilm; 

  MODEL jsw =  time /SOLUTION; 

  RANDOM INTERCEPT time /SUB=ID TYPE=UN G; 

  RANDOM INTERCEPT  /SUB=idfilm(id) TYPE=UN G; 
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RUN;* log likelyhood test nosignificant difference with the previous random intercept model stop here; 

DATA AGREETEST13; 

SET AGREE; 

IF READER=1 OR READER=3; 

timec=time; 

RUN; 

ods rtf file='K:\NIHGAIT\SASMAST\ST\SAS\agreement_longitudinal\doc\Agreement between Reader 

one and three_all.rtf'; 

Title1 'Inter-CCC for Reader one and three'; 

 

PROC MIXED METHOD=REML COVTEST DATA=AGREEtest13; 

  CLASS ID READER idfilm; 

  MODEL jsw = READER READER* time /SOLUTION noint; 

  RANDOM  READER/SUB=ID TYPE=UN G; 

 *RANDOM READER /SUB=idfilm(id) TYPE=UN G; 

ods output SolutionF=e13;*fixed effect estimates for estimating mean; 

  ods output   CovParms=r13; 

RUN;* G matrix for random slope and three level model is not positive definite; 

proc transpose data=r13 out=r13transpose; 

run; 

  

 

data r13transpose; 

set r13transpose; 

v1=col1+col4+col7; 

v12=col2+col5; 
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v2=col3+col6+col7; 

if _n_=1; 

run; 

proc transpose data=e13 out=e13; 

run; 

 

data e13transpose(keep=dif0 dif1 dif2); 

set e13transpose; 

dif0=col1-col2; 

dif1=dif0+(col3-col4); 

dif2=dif0+(col3-col4)*2; 

if _n_=2; 

run; 

data inter; 

merge r13transpose e13transpose; 

inter=(2*v12/(v1+v2+(dif0*dif0))+2*v12/(v1+v2+(dif1*dif1))+2*v12/(v1+v2+(dif2*dif2)))/3; 

run; 

 

 

ods rtf close; 

DATA AGREETEST12; 

SET AGREE; 

IF READER=1 OR READER=2; 

timec=time; 

if id in (102154, 102172, 102193, 102233, 104299, 104301, 104327)and reader=2 and reading=2 then 

delete; 
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RUN; 

ods rtf file='K:\NIHGAIT\SASMAST\ST\SAS\agreement_longitudinal\doc\Agreement between Reader 

one and two_all.rtf'; 

Title1 'Inter-CCC for Reader one and two'; 

PROC MIXED METHOD=REML COVTEST DATA=AGREEtest12; 

  CLASS ID READER idfilm; 

  MODEL jsw = READER READER* time /SOLUTION noint; 

  RANDOM  READER/SUB=ID TYPE=UN G; 

*RANDOM READER /SUB=idfilm(id) TYPE=UN G;

RUN; 

ods rtf close; 

DATA AGREETEST23; 

SET AGREE; 

IF READER=2 OR READER=3; 

timec=time; 

if id in (102154, 102172, 102193, 102233, 104299, 104301, 104327)and reader=2 and reading=2 then 

delete; 

RUN; 

ods rtf file='K:\NIHGAIT\SASMAST\ST\SAS\agreement_longitudinal\doc\Agreement between Reader 

two and three_all.rtf'; 

Title1 'Inter-CCC for Reader two and three'; 

title2 'Without the obs with two reading at the same value'; 

PROC MIXED METHOD=REML COVTEST DATA=AGREEtest23; 

  CLASS ID READER idfilm; 

  MODEL jsw = READER READER* time /SOLUTION noint; 
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  RANDOM  READER/SUB=ID TYPE=UN G; 

*RANDOM READER /SUB=idfilm(id) TYPE=UN G;

RUN; 

ods rtf close; 
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