Phylogenomic Systematics of Lichenized Fungi at Multiple Taxonomic Levels

BY

TODD J. WIDHELM

B.S., University of Nebraska at Omaha, 2005

M.S., University of Nebraska at Omaha, 2008

THESIS

Submitted as partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Biological Sciences

in the Graduate College of the

University of Illinois at Chicago, 2019

Chicago, Illinois

Defense Committee:

Roberta Mason-Gamer, Chair and Advisor Thorsten Lumbsch, Field Museum Mary Ashley, Biological Sciences Boris Igic, Biological Sciences Stefan Green, DNA sequencing facility This dissertation is dedicated to my parents Robin and Gary Widhelm for their love and support, and my wife Huini Wu who has been my source for inspiration making this dissertation possible.

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Roberta Mason-Gamer for providing the opportunity to pursue a graduate degree and for her direction. I am incredibly grateful to Dr. Thorsten Lumbsch for providing superior guidance in lichen research. I also appreciate Dr. Robert Egan for introducing me to lichenology and for guidance during my master's degree. I also acknowledge Dr. Mary Ashley, Dr. Boris Igic, and Dr. Stefan Green for their support on graduate committees during this Ph.D. program.

The work presented in this dissertation was funded by the Field Museum, the American Bryological and Lichenological Society, and the University of Illinois at Chicago. I also acknowledge the teaching assistantships provided by the University of Illinois at Chicago during this Ph.D. program.

Support in the form of sample collection, molecular laboratory work, data analyses, and communication of the dissertation were aided by Felix Grewe, Jen-Pan Huang, Joel Mercado, Matt Nelsen, Steven D. Leavitt, Ekaphan Kraichak, Nicholas Crouch, Karolis Ramanauskas, Dawson White, Natalia Cortez Delgado, Natalia Ruiz, Francesca R. Bertoletti, Matt J. Asztalos, Bernard Goffinet, Robert Lücking, Bibiana Moncada, Nicolas Magain, Matt von Konrat, Juan Larrain, Peter de Lange, Dan Blanchon, Allison Knight, Gintaras Kantvilas, Taylor Quedenseley, Robert Harms, David Sutherland, and Emmanuël Sérusiaux.

I am also grateful for the support of my extended family and friends. The list of people that made a difference is much too long to put in this work. But I especially thank my wife Huini Wu, parents Robin and Gary Widhelm, and sister and brother-in-law Holly and Brandon Anderson for their love and support.

iii

CONTRIBUTION OF AUTHORS

<u>Chapter 2.</u> Multiple historical processes obscure phylogenetic relationships in a taxonomically difficult group (Lobariaceae, Ascomycota)

T.W. wrote the manuscript, prepared and sequenced the target capture samples, conducted phylogenetic analyses, and generated the figures and tables. T.W. collected some of the specimens in Australia, New Zealand, Chile, and the United States. F.G., J.H., R.L., B.G., R.M., and H.T.L aided with research design and writing the paper. F.G. provided bioinformatic guidance for bait design and dataset assembly. B.G. provided funding for baits. J.M and B.M. provided specimens for the study. All authors reviewed the manuscript.

<u>Chapter 3. Oligocene origin and drivers of diversification in the genus Sticta (Lobariaceae, Ascomycota)</u>

T.W. wrote the manuscript, performed laboratory work, conducted molecular analyses, and generated figures and tables. T.W. collected some of the specimens in Australia and the United States. J.M. provided specimens from the Caribbean. B.M. provided specimens from South America. E.S. provided specimens from Macronesia. J.H., R.L., B.G., R.M., and H.T.L helped with research design and writing the paper. N.C. provided assistance with statistical analyses. All authors reviewed the manuscript. F.B. and M.A. assisted with molecular laboratory work. All authors reviewed the manuscript.

Chapter 4. Using RADseq to understand the circum-Antarctic distribution of the lichenized fungus *Pseudocyphellaria glabra* (Ascomycota, Peltigeraceae)

T.W., F.G., J.H., and H.T.L. planned and designed the research. T.W., F.G., and H.T.L collected the specimens in Australia, New Zealand, and Chile T.W. performed laboratory work and molecular analyses, and generated figures and tables. T.W. wrote the manuscript with help from R.M. and H.T.L. K.R. performed RADseq data assemblies at the University of Illinois at Chicago. All authors reviewed the manuscript.

CONTRIBUTION OF AUTHORS (continued)

Chapter 5. Picking holes in traditional species delimitations: an integrative taxonomic reassessment of the *Parmotrema perforatum* group (Parmeliaceae, Ascomycota)

T.W., R.E, S.L., and H.T.L planned and designed the research. T.W. and R.E. collected the specimens in Texas and Louisiana. T.W. performed laboratory work, conducted molecular analyses and generated figures and tables. T.W. wrote the manuscript with help from R.E., S.L., and H.T.L. E.K. helped with statistical analyses. F.B. and M.A. assisted with molecular laboratory work. All authors reviewed the manuscript.

TABLE OF	CONTENTS
----------	----------

1. Introduction	1
1.1 General Biology of Lichenized Fungi	1
1.1.1 The nature and evolution of the lichen symbiosis1.1.2 Taxonomy of lichenized fungi1.1.3 The morphological variation in lichenized fungi	3
1.1.4 Reproduction in lichenized fungi	5
1.1.5 Secondary chemistry in lichenized fungi	
1.1.6 Ecology and biogeography of lichenized fungi 1.2 References	
2. Multiple historical processes obscure phylogenetic relationships in a taxonomically difficu	
group (Lobariaceae, Ascomycota)	
2.1 Introduction	20
2.2 Methods	23
2.2.1 Taxon sampling	
2.2.2 Bait design	
2.2.3 Library preparation	28
2.2.4 Data processing	
2.2.5 Concatenation of datasets	
2.2.6 Maximum likelihood and species tree analyses	
2.2.7 Analysis of gene-tree discordance and tree space	32
2.2.8 Tests for reticulate evolution	
2.2.9 Dated phylogeny of Lobariaceae	
2.3 Results	
2.3.1 Efficiency of sequencing data recovery and assembly of datasets	
2.3.2 Topological patterns among data types and phylogeny reconstruction methods	
2.3.3 Evidence for rapid diversification and gene-tree discordance	
2.3.4 Evidence for reticulate evolution in Lobariaceae	
2.3.5 Timing of divergence in Lobariaceae	
2.4 Discussion	48
2.5 Conclusion	53
2.6 References	54
3. Oligocene origin and drivers of diversification in the genus <i>Sticta</i> (Lobariaceae, Ascomyc	
3.1 Introduction	66
3.2. Materials and Methods	70
3.2.1 Taxon sampling	70
3.2.2 DNA isolation, polymerase chain reaction (PCR) amplification, and sequencing	
3.2.3 Sequence alignment	
3.2.4 Phylogenetic analyses, molecular dating and calibrations	

TABLE OF CONTENTS (continued)

	~-
3.2.5 Biogeographic analyses and ancestral area reconstruction	
3.2.6 Diversification Analyses	
3.2.7 Binary state speciation and extinction (BiSSE) analyses	
3.3 Results	
3.3.1 Molecular data	
3.3.2 Phylogenetic analyses	
3.3.3 Divergence time analyses	
3.3.4 Biogeographic Analysis	
3.3.5 Diversification analysis	
3.3.6 Binary state speciation and extinction (BiSSE) analyses	
3.4 Discussion	
3.4.1 Oligocene origin, Miocene diversification, and frequent long-distance disp	
Sticta	
3.4.2 High long-distance dispersal rate of <i>Sticta</i>	
3.4.3 Decrease in net diversification over time	
3.4.4 Binary state speciation and extinction (BiSSE) analyses	
3.5. Conclusions	
3.6 References	
4. Using RADseq to understand the circum-Antarctic distribution of the lichenized fu	mane
<i>Pseudocyphellaria glabra</i> (Ascomycota, Peltigeraceae)	0
4.1 Introduction	
4.2 Materials and methods	
121 Sampling	120
4.2.1 Sampling	
4.2.2 DNA isolation and quality assessment	
4.2.3 Metagenomic DNA sequencing and mycobiont reference genome assembly	
4.2.4 RADseq library prep and Illumina sequencing	
4.2.5 RADseq data assembly	
4.2.6 Phylogenetic analysis	
4.2.7 Identification of panmictic clusters	
4.2.8 Estimation of shared ancestry	
4.3 Results	
4.3.1 Reference genome assembly and RADseq results	
4.3.2 Phylogenetic analysis	
4.3.3 Population subdivision analyses	
4.3.4 Discriminant analysis of principal components	
4.3.5 Estimation of co-ancestry	
4.4 Discussion	
4.5 Conclusion	
4.6 References	

TABLE OF CONTENTS (continued)

5. Picking holes in traditional species delimitations: an integrative taxonomic reassessment of the <i>Parmotrema perforatum</i> group (Parmeliaceae, Ascomycota)
5.1 Introduction
5.2 Materials and methods
5.2.1 Taxon sampling1615.2.2 Molecular methods1685.2.3 Sequence alignment and phylogenetic analysis1695.2.4 Inference of putative populations1715.2.5 Species tree inference1715.2.6 Species delimitation1725.3 Results173
5.3.1 Sympatry of Parmotrema perfomatum group species1735.3.2 Sequences and alignment1735.3.3 Phylogenetic analysis1735.3.4 Inference of putative population clusters1765.3.5 Species tree inference1795.3.6 Species delimitation analysis1805.3.7 Micromophological measurements1815.4 Discussion183
5.4.1 Evolutionary relationships1845.4.2 Species delimitation1865.5 Conclusions186
5.6 References
APPENDICES
APPENDIX A
APPENDIX B
APPENDIX C
VITA
PERMISSION TO REPRINT

LIST OF TABLES

TABLE I. SAMPLES SEQUENCED USING TARGET CAPTURE IN THE CURRENTSTUDY WITH VOUCHER DATA AND GENBANK ACCESSION NUMBERS
TABLE II. SUMMARY OF DATASETS ANALYZED IN THE CURRENT STUDY
TABLE III. LIKELIHOOD AND AIC SCORES FOR ALL RETICULATION SCENARIOSUSING THE MPL APPROACH.42
TABLE IV. LIKELIHOOD AND AIC SCORES FOR ALL RETICULATION SCENARIOSUSING THE ML APPROACH.43
TABLE V. NODE AGES ESTIMATED IN MCMCTREE WITH MINIMUM ANDMAXIMUM STANDARD DEVIATIONS IN MILLIONS OF YEARS.47
TABLE VI. SPECIMEN SAMPLING AND GENBANK ACCESSION NUMBERS. 72
TABLE VII. POLYMERASE CHAIN REACTION PRIMERS AND ANNEALINGTEMPERATURES USED IN THIS STUDY.83
TABLE VIII. ALIGNMENT INFORMATION AND NUCLEOTIDE EVOLUTION MODELSUSED FOR ANALYSES.85
TABLE IX. DIVERGENCE TIMES ESTIMATED WITH THE 118-TIP DATASET USING RATE CALIBRATED YULE AND SECONDARY CALIBRATIONS WITH YULE, CALIBRATED YULE, AND BIRTH/DEATH PRIORS SET IN BEAST
TABLE X. DIVERGENCE TIME ESTIMATIONS FROM FOUR DIFFERENTCONCATENATED ALIGNMENTS
TABLE XI. BISSE MODEL TESTING FOR PHOTOBIONT ASSOCIATION WITH ESTIMATIONS OF SPECIATION, EXTINCTION, AND TRANSITION RATES FOR EACH MODEL (CYANOBACTERIAL = '0', GREEN-ALGAL = '1')
TABLE XII. BISSE MODEL TESTING FOR ANDEAN ASSOCIATION WITH ESTIMATIONS OF SPECIATION, EXTINCTION, AND TRANSITION RATES FOR EACH MODEL (NON-ANDEAN = '0', ANDEAN = '1')
TABLE XIII. MEAN PAIRWISE MEASURES OF POPULATION SUBDIVISION FOR THEFIVE MAJOR POPULATIONS OF P. GLABRA.140
TABLE XIV. SITES AND POPULATIONS SAMPLED IN THIS STUDY, LIST OF THE SPECIES COLLECTED AT EACH LOCATION, AND VOUCHER SPECIMENS. ALL VOUCHERS ARE DEPOSITED AT OMA. TAXA MARKED WITH AN ASTERISK WERE PRESENT, BUT SPECIMENS DID NOT YIELD A PCR PRODUCT. MULTIPLE THALLI SEQUENCED FROM A SINGLE COLLECTION ARE INDICATED WITH, E.G. "-A, B, C", AFTER THE COLLECTION NUMBER. 163

LIST OF TABLES (continued)

TABLE XV. COLLECTION NUMBERS WITH CORRESPONDING ALLELE NUMBER
AND GENBANK ACCESSION NUMBER OF ALL INGROUP SPECIMENS INCLUDED IN
THE ANALYSIS
TABLE XVI. SAMPLE IDENTIFICATION AND GENBANK ACCESSION NUMBERS FOR
LOCI FROM OUTGROUP TAXA
TABLE XVII. PRIMERS USED FOR PCR AMPLIFICATION AND SEQUENCING
NUCLEAR RIBOSOMAL IGS, ITS, NULSU AND PROTEIN CODING GENES GPD, MCM7,
<i>RPB1</i> , AND <i>TSR1</i>
TABLE XVIII. HYBPIPER BLASTX STATS. 198
TABLE XIX. BISSE_TYPE1_ERROR_FS_OUTPUT_TAB. 205
TABLE XX. BISSE_TYPE1_ERROR_ANDES_Q01_TAB. 218
TABLE XXI. SPECIMEN VOUCHER INFORMATION. 220
TADLE VVIL CTATICTICS ON THE NUMBED OF DADESO DEADS. TOTAL UNIVADDED
TABLE XXII. STATISTICS ON THE NUMBER OF RADESQ READS, TOTAL UNMAPPED
LOCI ASSEMBLED IN PYRAD, LOCI MAPPED TO THE REFERENCE GENOME WITH
BOWTIE2, AND LOCI IN THE 1000MIN DATASET

LIST OF FIGURES

LIST OF FIGURES (continued)

Figure 8. (A) Distribution of character states for photobiont association and Andean tectonic influence mapped onto the tips of the 118-tip phylogeny with the five well-supported major clades labeled at the nodes. Photobiont: Green-algal associations shown in green; cyanobacterial associations shown in grey. Andean tectonic influence: Andean species shown in blue and non-Andean species shown in orange. (B) Posterior distributions (95%) from a BiSSE MCMC analysis of photobiont associations. The plots are as follows; top = speciation rate, middle = extinction rates, and bottom = transitions. Cyanobacterial associations ("1") are depicted in grey and green-algal associations ("0") are in green. (C) Posterior distributions (95%) from a BiSSE MCMC analysis of Andean tectonic associations. The plots are as follows; top = speciation rate, middle = extinction rates, and bottom = transitions. The plots are as follows; top = speciation rate, middle = non-Andean species ("0") are in green. (C) Posterior distributions (95%) from a BiSSE MCMC analysis of Andean tectonic associations. The plots are as follows; top = speciation rate, middle = extinction rates, and bottom = transitions. Andean species ("1") are depicted in blue and non-Andean species ("0") are in orange
Figure 9. Global distribution of <i>P. glabra</i> in (A) southern South America and (B) Australia and New Zealand from GBIF collection records. Degrees longitude are displayed on the X-axes and latitude on the Y-axes
Figure 10. Natural habit of <i>P. glabra</i> (A) when hydrated, (B), in dry conditions, and (C) the lower cortex
Figure 11. Phylogenetic tree (A) inferred from from <i>P. glabra</i> , and <i>P. homoeophylla</i> RADseq data. The population collection sites from all major land masses are shown on the maps (B) and represented by colors on the tips (TAS=dark blue, VIC=light blue, CHI=green, NZN=dark red, NZS=light red, CAM=orange, PHO & PFR=black). Bootstrap values between 70-100% are indicated at the nodes by the size of the grey circles. The unit of branch length is substitutions per site
Figure 12. Genomic variation by non-parametric DAPC. (A) DAPC scatter plot of the densities of the populations of <i>P. glabra</i> (TAS=dark blue, VIC=light blue, CHI=green, NZN=dark red, NZS=light red) estimated with six PCA and four DA eigenvalues (B) Bar plot of group membership probabilities
Figure 13.Clustered fineRADstructure co-ancestry matrix estimated from the 1000min_no_PHO dataset including 216 <i>P. glabra</i> samples. The heatmap shows pairwise co-ancestry between individuals, with black, blue and purple representing the highest levels, red and orange indicating intermediate levels, and yellow representing the lowest levels of shared coancestry
Figure 14. Species delimitation and evolutionary relationships in the <i>Parmotrema perforatum</i> group as hypothesized by W. L. Culberson (1973). Each sorediate species (circles) is descended from an apotheciate species (squares) with the same secondary chemistry. Diagnostic secondary lichen acid composition is represented by color (green = norstictic acid only, red = alectoronic acid, purple = norstictic+stictic acid)
Figure 15. Twenty-five sites sampled in 2006. White dots indicate samples selected for this study

LIST OF FIGURES (continued)

Figure 16. Phylogeny of the <i>Parmotrema perforatum</i> group with other <i>Parmotrema</i> species selected as outgroup inferred from a seven locus data set as the most likely tree in a ML analysis which was congruent with the BEAST BI. Support was evaluated with ML bootstrap proportions (BS) and bayesian posterior probabilities (BPP) which are mapped onto the branches. Support is depicted as the bold branches: (ML-BS>75 / BPP>95). Colours represent chemical composition of the sample collected inferred by TLC (green = norstictic acid only, red = alectoronic acid, purple = norstictic+stictic acid). Apotheciate (sexual) species are depicted as squares while sorediate (asexual) species are shown as circles.
Figure 17. A, Mean L(K) (\pm SD) over ten runs for each K value. B, Δ K calculated as Δ K = m L00(K) /s[L(K)]. The modal value of this distribution is the true K(*) or the uppermost level of structure, here three clusters
Figure 18. Average conidia length of apotheciate (sexually reproducing) species of the PPG. 180
Figure 19. *BEAST species tree for the <i>Parmotrema perforatum</i> group. Posterior probabilities at branches indicate support from the *BEAST analysis. The posterior probability of each delimited species calculated by BP&P are indicated in italics in front of each putative species or in the node indicating the support if the two species are combined by BP&P. The highly supported BP&P posterior probabilities are shown in bold
Figure 20. Maximum likelihood analyses conducted without <i>Podostictina</i> , <i>Yarrumia</i> , or both. Bootstrap support is depicted at the nodes
Figure 21. PhyloNet ML networks for five taxa. For each reticulation scenario, the log likelihood and AIC are reported under the networks
Figure 22. A DensiTree plot of 297 gene trees used to produce the five-taxa datasets 204
Figure 23. Genomic variation by non-parametric DAPC. (A) DAPC scatter plot of the densities of the populations of <i>P. glabra</i> (TAS=dark blue, VIC=light blue, CHI=green, NZN=dark red, NZS=light red, CAM=orange, PHO=black) estimated with 14 PCA and six DA eigenvalues (B) Bar plot of group membership probabilities. 230
Figure 24. Reference-based RADseq assembly statistics. (A) The strong, positive, linear association between the number of RADseq reads and total RAD loci assembled. (B) The strong, positive, linear association between the number of total RAD loci assembled and those mapped to the reference genome. (C) The very strong, positive, linear association between the number of napped loci and the total number of loci in the final assembly

LIST OF ABBREVIATIONS

AIC	Akaike information criterion
AICc	Akaike information criterion corrected for small sample sizes
ASTRAL	Accurate Species TRee ALgorithm
BAMM	Bayesian Analysis of Macroevolutionary Mixtures
BEAST	Bayesian evolutionary analysis sampling trees
BI	Bayesian inference
BIC	Bayesian information criterion
BiSSE	Binary state speciation and extinction
BLAST	Basic local alignment search tool
BP&P	Bayesian Phylogenetics and Phylogeography
BPP	Bayesian posterior probability
BS	Bootstrap support
CAM	Campbell Island, New Zealand
CHI	Chile
CTR	Cretaceous Terrestrial Revolution
DA	Discriminant analysis
DAPC	Discriminant analysis of principal components
DEC	Dispersal-extinction-cladogenesis
DNA	Deoxyribonucleic acid
dNTP	Deoxyribose nucleoside triphosphate
ESS	Effective sampling size
F	Field Museum Herbarium
GLC	General lineage concept
GPD	Glyceraldehyde-3-phosphate-dehydrogenase
GTRGAMMA	General time reversible nucleotide substitution model with gamma distributed rate variation among sites

LIST OF ABBREVIATIONS (continued)

GT	Horizontal gene transfer
IGS	Intergenic spacer
ILS	Incomplete lineage sorting
ITS	Internal transcribed spacer
JGI	Joint Genome Institute
Κ	Number of subpopulations
K-Pg	Cretaceous-Paleogene boundary
LDD	Long-distance dispersal
MAF	Minor allele frequency
MAFFT	Multiple alignment using fast Fourier transform
MCM7	DNA replication licensing factor
MCMC	Markov chain Monte Carlo
MDS	Multidimensional scaling
ML	Maximum likelihood
ММСО	Mid-Miocene climatic optimum
MPL	Maximum pseudo-likelihood
MSC	Multispecies coalescent
mtSSU	Mitochondrial small subunit
MUSCLE	MUltiple Sequence Comparison by Log-Expectation
Mya	Million years ago
NGS	Next-generation sequencing
nuLSU	Nuclear large subunit
NZN	New Zealand, North Island
NZS	New Zealand, South Island

LIST OF ABBREVIATIONS (continued)

OMA	University of Nebraska at Omaha Herbarium
ΟΤΑ	University of Otago Herbarium
PCA	Principal components analysis
PCR	Polymerase chain reaction
РНО	Pseudocyphellaria homoeophylla
PP	Posterior probability
RADseq	Restriction site-associated DNA sequencing
RAxML	Randomized Axelerated Maximum Likelihood
RPB1	RNA polymerase beta subunit one
SNP	Single nucleotide polymorphism
TAS	Tasmania, Australia
TLC	Thin-layer chromatography
Tsr1	Ribosome biogenesis protein
VIC	Victoria, Australia
WAG	Whelan And Goldman amino acid replacement model
q	Character state transition
μ	Extinction
λ	Speciation

SUMMARY

The past few decades has seen a surge in molecular data used to understand the evolution of lichenized fungi. Studies have been conducted to understand the taxonomic placement of lichenized fungi in the fungal kingdom, the diversification of higher-level taxonomic groups, the delimitation of species, and the genetic structure of populations. As in many other groups, the taxonomic value of morphological and chemical phenotypic characters for lichenized fungi are difficult to assess without other independent sources of data. Therefore, molecular data have provided a new line of evidence to critically evaluate the usefulness of phenotypic characters. Today lichenologists are using molecular data to test traditional hypotheses of homology based on phenotypic data. Generally, the findings are that many traditional systematic concepts are incongruent with molecular concepts, but a deeper understanding of the evolutionary history is gained. The first chapter in this dissertation introduces the evolution, taxonomy, and biogeography of lichenized fungi. The remaining chapters all use molecular data to understand the evolutionary relationships of lichenized fungi at different levels of taxonomy. Two chapters focus on the diversification of taxonomic groups above the species level, the next chapter focuses on population genetics, and the final chapter focuses on the delimitation of species boundaries.

Three chapters in this dissertation focus on the lobarioid clade in the family Peltigeraceae which until the past 10 years was not well studied. The lobarioid clade was once the family Lobariaceae, but it was recently synonymized with Peltigeraceae using a temporal banding approach. Temporal-banding is becoming a trend in higher-level classification of lichenized fungi and uses time-calibrated phylogenies to identify and define temporal bands for comparable ranks above the species level and aims for a more consistent taxonomic ranking system.

xvii

SUMMARY (continued)

Chapter two, "<u>Multiple historical processes obscure phylogenetic relationships in a</u> <u>taxonomically difficult group</u>" is the first study in lichenized fungi to use target-capturing. Nearly 400 single-copy nuclear loci were sequenced to reconstruct the first time-calibrated phylogeny of the lobarioid clade of Peltigeraceae. The first molecular phylogeny reconstructed for this clade used three genetic loci, but could not resolve the nodes along the backbone, leaving the relationships of genera unresolved. Using two orders of magnitude more loci, this study aimed to resolve these relationships. The stem age of the lobariod clade was like other families found in previous research and the generic relationships became clearer, but the backbone was still resistant to resolution. Further investigation found evidence that this was can be explained by historic processes, including ancient hybridizations and rapid diversification that occurred near the Cretaceous-Paleogene boundary. Hundreds of individual gene trees had massive genetree discordance and evidence for ancient reticulate evolution. Due to these evolutionary processes, even with 400 loci, the generic relationships remain somewhat unresolved, but a clearer understanding of the processes influencing the evolution of the group was gained.

Chapter three, "<u>Oligocene origin and drivers of diversification in the genus *Sticta*" used a five-locus time-calibrated phylogeny to understand the timing of diversification of the genus. This study was the first to reconstruct a time-calibrated, multi-locus phylogeny for the genus *Sticta*. Other genus-level studies in lichenized fungi that estimated divergence times among species at worldwide to regional scales found that most lichenized genera diversified within the last 40 Mya and in *Sticta*, the timing of diversification was similar. This dissertation chapter also used ancestral state reconstructions to understand the how photobiont association and Andean uplift influenced the diversification of the genus. An ancestral range reconstruction was also conducted to estimate where *Sticta* could have originated.</u>

xviii

SUMMARY (continued)

Chapter four is the final chapter on lobarioid species, "<u>Using RADseq to understand the</u> <u>circum-Antarctic distribution of the lichenized fungus *Pseudocyphellaria glabra*" uses restriction-site-associated DNA sequencing (RADseq) to understand the biogeography and population genetics of a single species with a disjunct range, separated by oceans and seas, occurring in Australia, Chile, and New Zealand. The use of RADseq is challenging in lichenized fungi because isolation of DNA from a lichen thallus results in a metagenome composed mostly of the mycobiont DNA, but it also contains DNA of the photobiont and the microbiome. In this chapter, a reference genome was generated so *P. glabra* mycobiont RAD loci could be used to estimate patterns of genetic differentiation among populations collected in Australia, Chile, and New Zealand and to infer how major physical barriers such as the Pacific Ocean limit genetic exchange among populations.</u>

Chapter five, "Picking holes in traditional species delimitations: an integrative taxonomic reassessment of the *Parmotrema perforatum* group" focuses on a species complex in another family, Parmeliaceae. This species delimitation study required the collection of population samples from eastern Texas and western Louisiana, where all six species live in sympatry. The aim was to use a seven-locus dataset and the integration of a variety of analytical methods determine if the genetic lineages inferred correlated with the traditional species circumscriptions based on secondary chemistry and mode of reproduction. Integrative taxonomy is increasingly used in lichenized fungi to assess species boundaries that were established using phenotypic characters and most studies find that traditional phenotype-based species delimitation vastly underestimated the number of species observed with the "general lineage concept" (GLC) of species. The GLC encourages the use of multiple sources of data to serve as independent lines of evidence in order to generate a robust hypothesis of species boundaries. In this final dissertation

SUMMARY (continued)

chapter, multiple lines of evidence were used including concatenated maximum likelihood phylogeny reconstruction, Bayesian STRUCTURE analysis, multispecies coalescent species tree estimations, and the morphology conidia to determine species boundaries. The main result was that genetic lineages did not correspond directly with the traditional six-species delimitation based solely on secondary chemistry and reproductive mode. The genetic data discovered three lineages with a more complicated evolutionary history than traditionally assumed.

This dissertation outlines the work that was a training program on the latest research techniques in the field of lichenology. The research conducted encompassed most aspects that a professional systematist will encounter in a career. This includes planning field collection trips in the USA and foreign countries, which required obtaining grants and collection permits, preparation of logistical aspects, such as rental cars and accommodations, finding appropriate habitats, collecting and identifying specimens in the field, and finally, getting the specimens back safely so the research could be conducted. Once back in Chicago, the specimens were processed for deposition in the herbarium of the Field Museum, prepared for DNA isolation and sequencing, and analyzed on high performance servers. But the most challenging aspect was interpreting the results of the analyses, finding what was learned, and then framing the ideas in the context of what is already known, not just in the field of lichenology, but in the broader disciplines of systematics and evolutionary biology. The Biological Sciences PhD program at UIC and the collections and laboratories at the Field Museum provided excellent training for me to transform myself from an amateur lichen enthusiast, to a scientist that understands lichens in a much broader perspective.

1. Introduction

1.1 General Biology of Lichenized Fungi

Lichens are an example of mutualistic symbiosis between fungi and photosynthetic green algae or cyanobacteria. The photosynthetic symbiont (photobiont) provides the fungal partner (mycobiont) with carbohydrates, whereas the mycobiont protects the photobiont in the thallus – the physical form of the lichen. Lichenized fungi are ubiquitous and have a stunning diversity with nearly 20,000 described species (Jaklitsch et al. 2016; Lücking, Hodkinson, and Leavitt 2016). For over 200 years, beginning with Linnaeus, lichen taxonomists have been describing and classifying new species. Species were delineated by observing unique sets of fixed characteristics. Over this time span, major breakthroughs were made that increased understanding about lichens, including their symbiotic nature that was not fully recognized in classification until the 1950s (Santesson 1953). New knowledge influenced the classification of lichens and the taxonomy has been constantly shaped by new discoveries, advances in technology, and the use of new sets of characters, such as secondary metabolites (Hawksworth 1976; Lumbsch 1998).

Despite the accumulated knowledge and evolving classification, the taxonomy of lichenized fungi remains challenging. This is mostly due to a persistence of traditional classification that does not always correspond to species inferred with molecular data. Molecular approaches have been increasingly used to understand the phylogenetic relationships of lichenized fungi over the past three decades. Many molecular studies confirmed traditionally delimited species. However, many molecular studies find that the traditional characters are not always correlated with genetic clusters. This chapter introduces (1) the nature and evolution of

the lichen symbiosis, (2) the history of lichen taxonomy, (3) the traditional characters used to delimit lichen species, and (4) the biogeography of lichens.

1.1.1 The nature and evolution of the lichen symbiosis

The lichen symbiosis is one of many fungal associations with photoautotrophic organisms. Other fungal/photoautotrophic symbioses include mycorrhizal fungi that associate with plant roots and endophytic fungi that are found in the leaves of plants. Lichenization is a major lifestyle in the fungal kingdom where the fungal symbiont associates with microscopic green algae or cyanobacteria. Lichenized fungi make up nearly 20% of all described fungal species (Lumbsch and Rikkinen 2017). This nutritional strategy is not confined to a single monophyletic group. Rather, it and has evolved independently multiple times in the evolutionary history of fungi. Some lichenized groups can be closely related to non-lichenized fungi (Gargas et al. 1995; Schoch et al. 2009).

All terrestrial ecosystems have lichenized fungi. In harsh ecosystems such as alpine and arctic tundra and in the sub-Antarctic islands, lichens are dominant. Lichens are poikilohydric and this feature allows them to completely dry out and go dormant for extended periods of time (Lange and Tenhunen 1982). Upon rehydration, metabolic activity resumes. Poikilohydry is one explanation for this dominance in extreme habitats (Werth 2011). For example, there are hundreds of species of lichenized fungi in Antarctica compared to only two species of vascular plants (Øvstedal and Smith 2001). Lichens are also major components of biocrusts. These communities are also composed of cyanobacteria, bacteria, fungi, and bryophytes. All live together and form a crust that covers the soil in arid habitats (Belnap, Weber, and Büdel 2016).

Lichens form a persistent structure called a thallus that is mainly composed of mycobiont hyphae with a photobiont layer positioned below the upper cortex (Nash 2008). The photobiont

cells produce carbohydrates that the fungus consumes for metabolic processes. Mycobiont hyphae are in close contact with the photobiont and many lichens produce specific structures called haustoria that can penetrate the photobiont cell or invaginate the cell wall without penetration (the latter often referred to as appressoria) (Ahmadjian 1993; Honegger 1986). Photobionts can be a chlorophyte green alga or cyanobacterium (mostly *Nostoc* spp.) or both. When isolated and grown in pure culture, the mycobiont does not form a thallus as in the lichen symbiosis but has the appearance like a mold, while isolated photobionts are observed as green microbial colonies (Ahmadjian 1993). However, there is a growing body of evidence that lichens might not be as simple as a two or three partner symbiosis. Recent studies have found many species of bacteria and archaea present in lichen thalli (Bates, Garcia-Pichel, and Nash III 2010; Cardinale et al. 2012; Printzen et al. 2012), as well as lichenicolous fungi (Hawksworth 1994; Lawrey and Diederich 2003), and endolichenic fungi (Arnold et al. 2009; Spribille et al. 2016; U'Ren et al. 2010). Currently, it is unclear how these prokaryotic organisms and additional fungal taxa interact with the main fungal and photosynthetic partners in the lichen thallus, but it is hypothesized that they play a role in the symbiosis (Hodkinson and Lutzoni 2009).

1.1.2 Taxonomy of lichenized fungi

Lichen taxonomy has been constantly modified when new discoveries were made. In the 1860s, Schwendener recognized the dual nature of the lichen symbiosis (Honegger 2009). His discovery, that lichens were composed of fungal hyphae and algae was a breakthrough that took decades to catch on and was disputed among lichenologists at the time (Mitchell 2002). Before that and sometime after, lichens were classified as a separate group within cryptogams. This artificial taxonomic grouping also included bryophytes, ferns and algae, basically all plant and fungus-like organisms that are not seed plants. Linnaeus considered all lichens congeneric and

placed them all in the genus *Lichen* (Jørgensen 1991). Today, there are over 19,400 described species of lichenized fungi. Ninety-eight percent belong to the phylum Ascomycota, whereas the remaining two percent belong to Basidiomycota (Jaklitsch et al. 2016; Lücking, Hodkinson, and Leavitt 2016). Within Ascomycota, the largest class is Lecanoromycetes which includes around 15,000 species (Jaklitsch et al. 2016; Lücking, Hodkinson, and Leavitt 2016; Wijayawardene et al. 2018). In contrast to the large diversity of mycobiont species, the number of photobiont species is estimated to only be in the hundreds, although recent studies have indicated that numerous distinct lineages remain undescribed (Leavitt et al. 2015). This implies that many species of lichenized fungi share the same photobiont species. However, the taxonomy of symbiotic algae is still poorly known.

1.1.3 The morphological variation in lichenized fungi

Lichen thalli have a large diversity of forms and sizes used for classification (Nash 2008). Lichen thalli can be divided into three major growth forms. Crustose lichens are tightly appressed to their substrate. They have no lower surface and must be collected with the substrate. Foliose lichens are leaf-like and have a distinct upper and lower surface. Fruticose lichens are shrub-like and three-dimensional. All these major growth forms are found on all types of substrates, including tree bark, rocks, and soil. The photobiont influences the growth form of a lichen thallus. When both symbionts are grown in axenic cultures (pure cultures, free of other organisms), they both look nothing like they do when they are in symbiotic association. Another striking example is the photosymbiodemes in the genus *Sticta*, where a mycobiont species has two growth forms depending on the type of photobiont; the "chloromorph" as a foliose thallus and the "cyanomorph" as a fruticose thallus (James and Henssen 1976). In traditional taxonomy, these two growth forms of the same species were considered different genera but after thorough morphological studies by James and Henssen (1976) and molecular data Armaleo and Clerc (1991) these morphotypes are regarded as one species. In addition to growth form, there are other vegetative characters of the thallus that are important for classification of lichenized fungi. Features of the upper cortex, the color of the lower surface, the presence of rhizines, root-like attachment structures, and their shape are additionally used to delimit species.

1.1.4 Reproduction in lichenized fungi

Reproductive structures have been used for classification of fungi since its beginning and lichenized fungi are no exception (Nash 2008). Lichenized fungi exhibit both sexual and asexual reproductive strategies. Most lichenized fungi are strictly sexual or mixed, while some are strictly asexual. Lichenized fungi produce either meiotic ascospores or basidiospores in ascomata or basidiomata, respectively. These meiospores usually do not carry photobiont cells when dispersed. Consequently, when a spore lands on a substrate and germinates, it must find an appropriate photosynthetic partner to associate with. The fact that asexual reproduction is common in lichens indicates that this is an issue. The most common types of asexual propagules in lichens are soredia and isidia. Soredia are algal cells wrapped in fungal hyphae and resemble a powder-like mass. Isidia are finger-like projections from the upper surface containing the photosynthetic layer. These asexual structures disperse both symbionts. In some cases, there are two morphologically identical species that differ in reproductive strategy. One is sexual and the other asexual forming a group often referred to as a "species pair" (Mattsson and Lumbsch 1989; Poelt 1972, 1970). The evolution and classification of species pairs have been studied and debated to this day. Some claim them to be separately evolving groups while others view them as conspecific (Buschbom and Mueller 2006; Robinson 1975; Tehler 1982; Mattsson and Lumbsch 1989; Poelt 1970).

The nature of sexual reproduction is poorly understood in lichenized fungi. Lichen fungi produce microscopic conidia. The morphology of conidia (= fungal mitospores) has been used for taxonomy in some groups. Conidia are the result of mitotic cell division and are hypothesized to act as spermatia or asexual spores (Vobis and Hawksworth 1981; Vobis 1980, 1977). When a conidium comes into contact with a hyphal receptory organ, the trichogyne, which is part of the female oogonium (=ascogonium), they fuse and form dikaryotic hyphae that grow in ascomata and form meiosporangia (Ahmadjian 1993; Letrouit-Galinou, Parguey-Leduc, and Janex-Favre 1994). Fusion requires the appropriate mating type. Some lichens are homothallic being able to fuse with the same mating type. This is like plants that can self-fertilize. Other lichens are heterothallic requiring a different mating type to fuse with. This is like self-incompatible plants. Lichenologists are just beginning to understand the genetic loci that regulate mating systems. Both types of mating systems, homothallic and heterothallic, have been observed in lichenized fungi (Honegger and Zippler 2007; Murtagh, Dyer, and Crittenden 2000; Scherrer, Zippler, and Honegger 2005).

1.1.5 Secondary chemistry in lichenized fungi

Fungi use several metabolic pathways to produce secondary metabolites. These compounds are used for classification, especially in lichenized fungi that often contain large amounts of substances, which allowed for characterization of the products even when analytical techniques were less sophisticated (Lumbsch 1998). There is a large diversity of secondary metabolites that are only found in lichen thalli and in total around 1000 substances have been isolated from lichens (Huneck and Yoshimura 1996). The importance of these products for the lichens is currently not well understood but several hypotheses have been formulated and there is evidence supporting a major role of cortical pigments in screening of UV light (McEvoy,

Solhaug, and Gauslaa 2007; McEvoy et al. 2006, 2004). These pigments include the yellowgreen usnic acid or brilliant orange anthraquinones. Medullary compounds have been associated with controlling water saturation of the photobiont (Huneck 2002), or have been shown to have antimicrobial and antiherbivory properties (Nash 2008). The first use of secondary metabolites for taxonomy in lichens was by William Nylander who observed color changes when spotting calcium hypochlorite and potassium hydroxide on different parts of lichen thalli (Nylander 1866). The spot test could be used to sort lichens by the color reaction. Later, the use of chromatographic methods, including thin-layer chromatography (TLC) led to the discovery of more substances and patterns of occurrence of secondary metabolites. These observations led to a description of many new chemotypes or "chemospecies". Currently, most lichenologists agree that a fixed chemical difference needs to be correlated with other fixed characters to warrant recognition at the species level (Egan 1986). In some studies using molecular markers, chemical differences are diagnostic, fixed characters that correspond with the genetic data, while in others chemistry is variable within a population (Leavitt, Moreau, and Lumbsch 2015; Lumbsch 2007; Printzen 2010).

1.1.6 Ecology and biogeography of lichenized fungi

Lichenized fungi have a variety of distributional patterns at micro and macro levels (Galloway 2008). Most lichen thalli are sessile, being firmly attached to their substrate. They must disperse by means of their reproductive structures. Lichens are known to disperse over long distances and are among the first groups of organisms to colonize recently exposed land, such as volcanic islands (Brock 1973). Ascospores are microscopic and much smaller than asexual propagules, such as soredia and isidia. Being much smaller, they probably disperse over longer distances. Some studies suggest intercontinental dispersal facilitated by ascospores (Amo de Paz

et al. 2012; Buschbom 2007; Otálora et al. 2010; Ronnås et al. 2017). Asexual propagules have been shown to disperse at local distances. For example, in *Lobaria pulmonaria*, the mean dispersal for soredia is 200 m (Werth et al. 2006).

Lichenized fungi tend to have larger distributional ranges than seed plants (Leavitt and Lumbsch 2016; Werth 2011). Species with large distributional ranges are hypothesized to disperse over long distances and be ecological generalists. Many lichens show ecological affinities to particular macroclimates. For example, many dominant arctic lichens can be found at high elevation in alpine sites of lower latitudes (Poelt 1987). Furthermore, studies on species range distributions of different species of lichenized fungi have shown that species distributions are determined by ecological factors (Otte, Esslinger, and Litterski 2002, 2005). Widespread morphologically identical species can be composed of potentially isolated populations. The common occurrence of cryptic species is one of the major problems in lichen taxonomy (Lumbsch and Leavitt 2011; Crespo and Lumbsch 2010; Crespo and Pérez-Ortega 2009). Delimitation and classification these groups have proven challenging.

Some lichenized fungi have endemic distributions, i.e. they are only found in a restricted geographic range. These species are hypothesized to have dispersal limitations. Endemic lichen species are usually found in areas that also have endemic vascular plants, such as European (Otte, Esslinger, and Litterski 2002) and North American (Moberg and Nash 1999; Nash 2002) Mediterranean regions, Macaronesia (Simon et al. 2018; Sérusiaux et al. 2011), and the Galapagos Islands (Aptroot and Bungartz 2007). Besides restricted dispersal, there are other explanations for endemic distributions. Some mycobionts may be highly specialized to an endemic photobiont, restricting the range of the mycobiont. Also, some lichenized fungi may have strict microclimatic requirements that are only met in restricted microhabitats. In addition,

some species may have only recently come into existence – some genera of lichenized fungi have been shown to have a burst of diversification during the Pliocene and Pleistocene (Altermann et al. 2014; Lumbsch 2016). These lichens may have not had enough time to disperse and expand their range, exhibiting an endemic range.

Other lichens have disjunct ranges (Culberson 1972). Examples include bipolar species only or predominantly found at the polar regions of the planet (Du Rietz and Skottsberg 1940; Galloway and Aptroot 1995). Others are present on multiple continents and islands that surround Antarctica. Some species are disjunct throughout Fennoscandia, Newfoundland, and the Pacific Northwest. Intercontinental distributions bring up questions about the history of the species being examined. Was this species once widespread and now only fragments of the range exist today (vicariance), or is long-distance dispersal (LDD) the explanation for the disjunct distribution? Generally, vicariance is observed at higher levels of classification (Lücking 2003), such as species of the same genera or family. At the level of species, intercontinental distributions are usually interpreted as a result of LDD. Both processes play a role in the distributional patterns observed in lichenized fungi. In the southern Hemisphere, close to Antarctica, both are observed. Among major landmasses, lichen communities associated with temperate rainforests have the same genera. Typically, species are unique to each continent. However, the strong and sustained wind pattern that circles Antarctica is hypothesized to be responsible for the disjunct ranges of many lichen species that currently occur in Australia, New Zealand, and southern South America (Galloway 1988; Galloway 1979).

1.2 References

Ahmadjian, Vernon. *The Lichen Symbiosis*. Hoboken: John Wiley & Sons. (1993). Altermann, Susanne, Steven D. Leavitt, Trevor Goward, Matthew P. Nelsen, and H. Thorsten

Lumbsch. "How do you solve a problem like *Letharia*? A new look at cryptic species in lichen-forming fungi using Bayesian clustering and SNPs from multilocus sequence data." *PLOS ONE* 9, no. 5 (2014): e97556.

- Amo de Paz, Guillermo, Paloma Cubas, Ana Crespo, John A. Elix, and H. Thorsten Lumbsch.
 "Transoceanic dispersal and subsequent diversification on separate continents shaped diversity of the *Xanthoparmelia pulla* group (Ascomycota)." *PLOS ONE* 7, no. 6 (2012): e39683.
- Aptroot, A., and F. Bungartz. "The lichen genus *Ramalina* on the Galapagos." *The Lichenologist* 39, no. 6 (2007): 519-542.
- Armaleo, Daniele, and Philippe Clerc. "Lichen chimeras: DNA analysis suggests that one fungus forms two morphotypes." *Experimental Mycology* 15, no. 1 (1991): 1-10.
- Arnold, A. Elizabeth, Jolanta Miadlikowska, K. Lindsay Higgins, Snehal D. Sarvate, Paul Gugger, Amanda Way, Valérie Hofstetter, Frank Kauff, and François Lutzoni. "A phylogenetic estimation of trophic transition networks for ascomycetous fungi: Are lichens cradles of symbiotrophic fungal diversification?." *Systematic Biology* 58, no. 3 (2009): 283-297.
- Bates, Scott T., Ferran Garcia-Pichel, and Thomas H. Nash III. "Fungal components of biological soil crusts: Insights from culture-dependent and culture-independent studies" *Bibliotheca Lichenologica* 105 (2010): 197-210.
- Belnap, Jayne, Bettina Weber, and Burkhard Büdel. *Biological Soil Crusts as an Organizing Principle in Drylands*. AG Switzerland: Springer. (2016): 3-13

Brock, Thomas D. "Primary colonization of Surtsey, with special reference to the blue-green

algae." Oikos (1973): 239-243.

- Buschbom, Jutta. "Migration between continents: Geographical structure and long-distance gene flow in *Porpidia flavicunda* (lichen-forming Ascomycota)." *Molecular Ecology* 16, no. 9 (2007): 1835-1846.
- Buschbom, Jutta, and Gregory M. Mueller. "Testing "species pair" hypotheses: Evolutionary processes in the lichen-forming species complex *Porpidia flavocoerulescens* and *Porpidia melinodes*." *Molecular Biology and Evolution* 23, no. 3 (2005): 574-586.
- Cardinale, Massimiliano, Jana Steinová, Johannes Rabensteiner, Gabriele Berg, and Martin Grube. "Age, sun and substrate: triggers of bacterial communities in lichens." *Environmental Microbiology Reports* 4, no. 1 (2012): 23-28.
- Crespo, Ana, and H. Thorsten Lumbsch. "Cryptic species in lichen-forming fungi." *IMA Fungus* 1, no. 2 (2010): 167-170.
- Crespo, Ana, and Sergio Pérez-Ortega. "Cryptic species and species pairs in lichens: A discussion on the relationship between molecular phylogenies and morphological characters." *Anales del Jardín Botánico de Madrid.* 66, no. S1, (2009): 71-81.
- Culberson, William Louis. "Disjunctive distributions in the lichen-forming fungi." *Annals of the Missouri Botanical Garden* 59, no. 2 (1972): 165-173.
- Egan, Robert S. "Correlations and non-correlations of chemical variation patterns with lichen morphology and geography." *The Bryologist* (1986): 99-110.
- Galloway, D. J. "Biogeographical elements in the New Zealand lichen flora." *Plants and Islands* (1979): 201-224.

Galloway, D. J., and A. Aptroot. "Bipolar lichens: A review." Cryptogamic Botany (1995).

- Galloway, D. J. "Plate tectonics and the distribution of cool temperate Southern Hemisphere macrolichens." *Botanical journal of the Linnean Society* 96, no. 1 (1988): 45-55.
- Galloway, D. J. "Lichen Biogeography." In *Lichen Biology*, Edited by T. H. Nash. Cambridge: Cambridge University Press. (2008): 315–35.
- Gargas, Andrea, Paula T. DePriest, Martin Grube, and Anders Tehler. "Multiple origins of lichen symbioses in fungi suggested by SSU rDNA phylogeny." *Science* 268, no. 5216 (1995): 1492-1495.
- Hawksworth, D. L. "Lichen-inhabiting fungi: A fascinating little-explored ecological niche."
 In Aspects of African Mycology: Proceedings of the First Regional Conference on Mycology in Africa. Louvain-la-Neuve: International Mycological Association. (1994): 69-75.
- Hawksworth, D. L. "Lichen chemotaxonomy." In *Lichenology: Progress and Problems*, Edited by D. H. Brown, D. L. Hawksworth, and R. H. Bailey. Cambridge: Academic Press. (1976): 139–184.
- Hodkinson, Brendan P., and François Lutzoni. "A microbiotic survey of lichen-associated bacteria reveals a new lineage from the Rhizobiales." *Symbiosis* 49, no. 3 (2009): 163-180.
- Honegger, Rosmarie. "Ultrastructural studies in lichens: I. Haustorial types and their frequencies in a range of lichens with trebouxioid photobionts." *New Phytologist* 103, no. 4 (1986): 785-795.
- Honegger, Rosmarie. "Simon Schwendener (1829-1919) and the dual hypothesis of lichens." *The Bryologist* 103, no. 2 (2000): 307-313.

- Honegger, Rosmarie, and Undine Zippler. "Mating systems in representatives of Parmeliaceae, Ramalinaceae and Physciaceae (Lecanoromycetes, lichen-forming ascomycetes)." *Mycological Research* 111, no. 4 (2007): 424-432.
- Huneck, S. "Die wasserabweisende Eigenschaft von Flechtenstoffen." *Bibliotheca Lichenologica* 86 (2002): 9-12.
- Huneck, Siegfried, and Isao Yoshimura. "Identification of lichen substances." In *Identification of Lichen Substances*, Berlin, Heidelberg: Springer. (1996): 11-123.
- Jaklitsch, Walter, Hans-Otto Baral, Robert Lücking, H. Thorsten Lumbsch, and Wolfgang Frey. Syllabus of Plant Families-A. Engler's Syllabus der Pflanzenfamilien Part 1/2. Edited by Wolfgang Frey. Stuttgart: Borntraeger Science Publishers. (2016).
- James, P. W., and Aino Henssen. "Morphological and taxonomic significance of cephalodia." In Lichenology: Progress and Problems; Proceedings of an International Symposium. Cambridge: Academic Press. (1976).
- Jørgensen, P. M. "Difficulties in lichen nomenclature." Mycotaxon (1991).
- Lange, O. L., and J. D. Tenhunen. "Water relations and photosynthesis of desert lichens (Proceedings of the Symposia on Lichenology at the 13 International Botanical Congress, Sydney, Australia, Aug. 21-28. Part 2 Compiled by L. Kappen and RW Pogers)." *Journal of the Hattori Botanical Laboratory* 53 (1982): 309-313.
- Lawrey, James D., and Paul Diederich. "Lichenicolous fungi: Interactions, evolution, and biodiversity." *The Bryologist* 106, no. 1 (2003): 80-121.

Leavitt, Steven D., and H. Thorsten Lumbsch. "Ecological biogeography of lichen-forming

fungi." In Environmental and microbial relationships, 15-37. Cham: Springer. (2016).

- Leavitt, Steven D., Corrie S. Moreau, and H. Thorsten Lumbsch. "The dynamic discipline of species delimitation: Progress toward effectively recognizing species boundaries in natural populations." In *Recent Advances in Lichenology*. New Delhi: Springer. (2015): 11-44.
- Leavitt, Steven D., Ekaphan Kraichak, Matthew P. Nelsen, Susanne Altermann, Pradeep K.
 Divakar, David Alors, Theodore L. Esslinger, Ana Crespo, and H. Thorsten Lumbsch.
 "Fungal specificity and selectivity for algae play a major role in determining lichen partnerships across diverse ecogeographic regions in the lichen-forming family
 Parmeliaceae (Ascomycota)." *Molecular Ecology* 24, no. 14 (2015): 3779-3797.
- Letrouit-Galinou, M. A., A. Parguey-Leduc, and M. C. Janex-Favre. "Ascoma structure and ontogenesis in ascomycete systematics." In *Ascomycete Systematics*, Boston, Springer. (1994): 23-36
- Lücking, Robert. "Takhtajan's floristic regions and foliicolous lichen biogeography: A compatibility analysis." *The Lichenologist* 35, no. 1 (2003): 33-53.
- Lücking, Robert, Brendan P. Hodkinson, and Steven D. Leavitt. "The 2016 classification of lichenized fungi in the Ascomycota and Basidiomycota–Approaching one thousand genera." *The Bryologist* 119, no. 4 (2017): 361-417.
- Lumbsch, H. Thorsten, and Steven D. Leavitt. "Goodbye morphology? A paradigm shift in the delimitation of species in lichenized fungi." *Fungal Diversity* 50, no. 1 (2011): 59.
- Lumbsch, H. Thorsten, and Jouko Rikkinen. "Evolution of Lichens." In *The Fungal Community: Its Organization and Role in the Ecosystem, Fourth Edition*. Boca Raton: CRC Press.
 (2017): 53–62.

- Lumbsch, H. Thorsten. "Lichen-forming fungi, Diversification of." In *Encyclopedia of Evolutionary Biology*, Edited by Richard M. Kliman. Cambridge: Academic Press. (2016): 305-311.
- Lumbsch, H. Thorsten. "Recent trends in phylogeny and classification of lichen-forming ascomycetes." In *Fungi: Multifaceted Microbes*. Delhi: Anamaya. (2007): 153-168.
- Lumbsch, H. Thorsten. "Taxonomic use of metabolic data in lichen-forming fungi." In *Chemical Fungal Taxonomy*. New York: Marcel Dekker. (1998): 345-387.
- Mattsson, Jan-Eric, and H. Thorsten Lumbsch. "The use of the species pair concept in lichen taxonomy." *Taxon* (1989): 238-241.
- McEvoy, Maria, Line Nybakken, Knut Asbjørn Solhaug, and Yngvar Gauslaa. "UV triggers the synthesis of the widely distributed secondary lichen compound usnic acid." *Mycological Progress* 5, no. 4 (2006): 221-229.
- McEvoy, Maria, Knut Asbjorn Solhaug, and Yngvar Gauslaa. "Solar radiation screening in usnic acid-containing cortices of the lichen *Nephroma arcticum*." *Symbiosis* 43, no. 3 (2007): 143-150.
- McEvoy, Maria, Knut Asbjørn Solhaug, Line Nybakken, and Yngvar Gauslaa. "Induction of usnic acid synthesis by UV Irradiance in *Xanthoparmelia somloënsis*." In *Lichens in Focus: IAL5 Book of Abstracts*, Edited by T. Randlane and A. Saag. Tartu: Tartu University Press. (2004): 46.
- Mitchell, M. E. "Such a strange theory": Anglophone attitudes to the discovery that lichens are composite organisms, 1871–1890." *Huntia* 11 (2002): 193-207.

- Moberg, Roland, and T. H. Nash. "The genus *Heterodermia* in the Sonoran Desert area." *The Bryologist* 102 (1999): 1-14.
- Murtagh, G. J., P. S. Dyer, and P. D. Crittenden. "Reproductive systems: sex and the single lichen." *Nature* 404, no. 6778 (2000): 564.
- Nash, Thomas H. Lichen Flora of the Greater Sonoran Desert Region. Tempe: Lichens Unlimited. (2002).
- Nash, Thomas H. Lichen Biology. Cambridge: Cambridge University Press. (2008).
- Nylander, William. "Hypochlorite of lime and hydrate of potash, two new criteria in the study of lichens." *Botanical Journal of the Linnean Society* 9, no. 38 (1866): 358-365.
- Otálora, Mónica AG, Isabel Martínez, Gregorio Aragón, and M. Carmen Molina. "Phylogeography and divergence date estimates of a lichen species complex with a disjunct distribution pattern." *American Journal of Botany* 97, no. 2 (2010): 216-223.
- Otte, Volker, Theodore L. Esslinger, and Birgit Litterski. "Biogeographical research on European species of the lichen genus *Physconia*." *Journal of Biogeography* 29, no. 9 (2002): 1125-1141.
- Otte, Volker, Theodore L. Esslinger, and Birgit Litterski. "Global distribution of the European species of the lichen genus *Melanelia* Essl." *Journal of Biogeography* 32, no. 7 (2005): 1221-1241.
- Øvstedal, Dag Olav, and RI Lewis Smith. *Lichens of Antarctica and South Georgia: a guide to their identification and ecology*. Cambridge: Cambridge University Press. (2001).

Poelt, Josef. "Das Konzept der Artenpaare bei den Flechten." Deutsche Botanische Gesellschaft,

neue Folge 4 (1970): 187-198.

- Poelt, J. "Taxonomische Behandlung von Artenpaaren bei den Flechten." *Botaniska Notiser* (1972).
- Poelt, J. "Gesetz der relativen Standortskonstanz bei den Flechten." *Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie* (1987).
- Printzen, Christian. "Lichen systematics: The role of morphological and molecular data to reconstruct phylogenetic relationships." In *Progress in Botany 71*. Berlin, Heidelberg, Springer. (2010): 233-275.
- Printzen, Christian, Fernando Fernandez-Mendoza, Lucia Muggia, Gabriele Berg, and Martin Grube. "Alphaproteobacterial communities in geographically distant populations of the lichen *Cetraria aculeata*." *FEMS Microbiology Ecology* 82, no. 2 (2012): 316-325.
- Du Rietz, Gustaf Einar, and Carl Skottsberg. *Problems of Bipolar Plant Distribution*. Stockholm: Almqvist & Wiksells. (1940).

Robinson, Harold. "Considerations on the evolution of lichens." Phytologia (1975).

- Ronnås, Cecilia, Silke Werth, Otso Ovaskainen, Gergely Varkonyi, Christoph Scheidegger, and Tord Snäll. "Discovery of long-distance gamete dispersal in a lichen-forming ascomycete." *New Phytologist* 216, no. 1 (2017): 216-226.
- Santesson, Rolf. "The New Systematics of Lichenized Fungi." In Proceedings of the 7th International Botanical Congress, Stockholm. (1953): 809–10
- Scherrer, Sandra, Undine Zippler, and Rosmarie Honegger. "Characterisation of the mating-type locus in the genus *Xanthoria* (lichen-forming ascomycetes, Lecanoromycetes)." *Fungal*

Genetics and Biology 42, no. 12 (2005): 976-988.

- Schoch, Conrad L., Gi-Ho Sung, Francesc López-Giráldez, Jeffrey P. Townsend, Jolanta Miadlikowska, Valérie Hofstetter, Barbara Robbertse et al. "The Ascomycota tree of life: A phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits." *Systematic Biology* 58, no. 2 (2009): 224-239.
- Sérusiaux, Emmanuël, Tim Wheeler, and Bernard Goffinet. "Recent origin, active speciation and dispersal for the lichen genus *Nephroma* (Peltigerales) in Macaronesia." *Journal of Biogeography* 38, no. 6 (2011): 1138-1151.
- Simon, Antoine, Bernard Goffinet, Nicolas Magain, and Emmanuël Sérusiaux. "High diversity, high insular endemism and recent origin in the lichen genus *Sticta* (lichenized Ascomycota, Peltigerales) in Madagascar and the Mascarenes." *Molecular Phylogenetics and Evolution* 122 (2018): 15-28.
- Spribille, Toby, Veera Tuovinen, Philipp Resl, Dan Vanderpool, Heimo Wolinski, M. Catherine Aime, Kevin Schneider et al. "Basidiomycete yeasts in the cortex of ascomycete macrolichens." *Science* 353, no. 6298 (2016): 488-492.
- Tehler, Anders. "The species pair concept in lichenology." Taxon (1982): 708-714.
- U'Ren, Jana M., François Lutzoni, Jolanta Miadlikowska, and A. Elizabeth Arnold. "Community analysis reveals close affinities between endophytic and endolichenic fungi in mosses and lichens." *Microbial Ecology* 60, no. 2 (2010): 340-353.
- Vobis, G. "Studies on the germination of lichen conidia." *The Lichenologist* 9, no. 2 (1977): 131-136.

- Vobis, G., and D. L. Hawksworth. "Conidial lichen-forming fungi." In *Biology of Conidial Fungi* 1. Edited by Garry T. Cole and Bryce Kendrick. Cambridge: Academic Press. (1981): 245-273.
- Vobis, G. "Bau und Entwicklung der Flechten-Pycnidien und ihrer Conidien." *Bibliotheca Lichenologica* 14, (1980): 141-215.
- Werth, Silke. "Biogeography and phylogeography of lichen fungi and their photobionts."
 In *Biogeography of microscopic organisms: Is everything small everywhere?* Cambridge:
 Cambridge University Press, (2011): 191-208.
- Werth, Silke, Helene H. Wagner, Felix Gugerli, Rolf Holderegger, Daniela Csencsics, Jesse M.
 Kalwij, and Christoph Scheidegger. "Quantifying dispersal and establishment limitation in a population of an epiphytic lichen." *Ecology* 87, no. 8 (2006): 2037-2046.
- Wijayawardene, Nalin N., Kevin D. Hyde, H. Thorsten Lumbsch, Jian Kui Liu, Sajeewa SN
 Maharachchikumbura, Anusha H. Ekanayaka, Qing Tian, and Rungtiwa Phookamsak.
 "Outline of Ascomycota: 2017." *Fungal Diversity* 88, no. 1 (2018): 167-263.

2. Multiple historical processes obscure phylogenetic relationships in a taxonomically difficult group (Lobariaceae, Ascomycota)

<u>Todd J. Widhelm</u>, Felix Grewe, Jen-Pan Huang, Joel Mercado, Bernard Goffinet, Robert Lücking, Bibiana Moncada, Roberta Mason-Gamer, and H. Thorsten Lumbsch

2.1 Introduction

With the advent of next-generation sequencing (NGS) technology, the evolutionary relationships of many groups on the tree of life are increasingly resolved and our understanding of the diversification of these groups has been significantly improved (Rokas et al. 2003; Gee 2003; Hipp et al. 2014). However, in many groups, despite the use of NGS data, certain nodes have resisted unambiguous resolution. Conflicting topologies have been inferred from independent NGS data throughout the tree of life. For example, the placement of ctenophores and sponges has proven difficult as some studies place either sponges or ctenophores as sister to all other animals (Dunn et al. 2008; Simion et al. 2017). Phylogenomic reconstructions of birds also yielded conflicting relationships for the earliest divergence within Neoaves (Reddy et al. 2017), perhaps due to inferences from unequal data and taxon sampling: 42 Mbp from 48 bird genomes in Jarvis et al. (Jarvis et al. 2014) versus, 0.4 Mbp from 259 loci sampled from 198 species, in Prum et al. (Prum et al. 2015). In the plant kingdom, inferences from NGS datasets resolve Amborella either sister to all other angiosperms (Drew et al. 2014; Zhang et al. 2012) or sister to water lilies (Goremykin et al. 2015; Xi et al. 2014). Similarly, the Gnetales may be sister to pines, all conifers, or all seed plants (Burleigh and Mathews 2004).

Several reasons have been invoked to explain gene-tree discordance (Som 2015). Gene

duplication can cause problems in phylogenetic reconstruction if paralogous loci with different histories are not distinguished within taxa and erroneously analyzed as homologs between taxa (Maddison 1997; Martin and Burg 2002). Rapid diversifications may lead to the fixation of fewer substitutions and hence to difficulties in resolving phylogenetic relationships. When too many speciation events occur in a relatively short period of time, gene genealogies are not expected to be fully sorted among evolutionary lineages leading to incomplete lineage sorting (ILS). Species tree methods can be used to mitigate the effects of ILS, but computational constraints prohibit fully parameterized methods such as *BEAST (Bouckaert et al. 2014) to estimate a species tree directly from hundreds of loci. Instead, species trees for large datasets are estimated from reconstructed gene trees, which can underestimate the support of relationships since these methods use summary statistics or pseudolikelihood (Liu et al. 2015). Moreover, reticulate evolution, in the form of hybridization or horizontal gene transfer (HGT), can lead to incongruence among gene trees and obscure phylogenetic relationships (Xu 2000). Reticulations are not modeled in the commonly used species tree and concatenation approaches and hence specific, computationally intensive programs are needed to examine whether relationships of organisms are more complex than bifurcation (Nakhleh et al. 2005).

Reconstructing phylogenies can be done with either nucleotide and amino acid data and these sources of data can yield incongruent phylogenies (Liu et al. 2014). Nucleotide data can suffer from substitutional saturation at particular sites in a genome (Delsuc, Brinkmann, and Philippe 2005). Such homoplasy is difficult to model in tree reconstruction methods and hence result in phylogenetic signatures being erased (Philippe et al. 2011). In case of ancient divergences, amino acid sequences may be preferable, since they are less prone to saturation.

Fungi of Lobariaceae (recently also treated as a subfamily within Peltigeraceae (Kraichak

et al. 2018)) develop conspicuous foliose macrolichens. Nearly 400 species are currently accepted (Kirk et al. 2008), but the diversity is predicted to reach 800 species (Moncada and Lücking 2012). Inferences from variation in three loci failed to resolved either of the three traditional genera (i.e., Lobaria, Pseudocyphellaria and Sticta) as monophyletic, and were consequently broken up into several genera (e.g. Crocodia, Parmostictina, Podostictina and Yarrumia) (Moncada, Lücking, and Betancourt-Macuase 2013). Despite the discovery of highlysupported, genus-level clades, the relationships among these new genera remain partially unresolved. None of the phenotypic traits, essential to traditional generic concepts in Lobariaceae, i.e., the presence and type of pores in the lower cortex, defined a clade wherein all descendants exhibit the particular traits: Pseudocyphellae and cyphellae no longer define a monophyletic Pseudocyphellaria and Sticta respectively. These pores have been shown to facilitate gas diffusion into the thallus (Nash 1996; Lange, Green, and Ziegler 1988; Green and Lange 2007) and may provide an adaptive advantage in temperate environments (Hale 1981). Cyphellae likely arose independently in *Dendriscosticta*, which is consistently resolved within the Lobaria s.lat. clade composed of genera lacking pores (Moncada, Lücking, and Betancourt-Macuase 2013). Phenotypic characters of the lichen association have been repeatedly shown to be poor phylogenetic predictors for the associated mycobiont (Lumbsch and Leavitt 2011; Printzen 2010; Jaklitsch et al. 2016), and the newly described genera, Crocodia, Parmostictina, Podostictina, and Yarrumia, represent morphological/ecological chimeric forms between Pseudocyphellaria and Sticta.

No study has yet critically estimated divergence times in Lobariaceae, but one study (Gaya et al. 2015) included three specimens from *Sticta*, *Lobaria* and *Pseudocyphellaria* in a fossil calibrated tree of eukaryotes. These samples were monophyletic and split from *Peltigera*

roughly 150 million years ago (Mya) and had a stem age of around 70 Mya. However, another study reported much earlier estimates, with the split from Peltigeraceae around 90 Mya and a stem age of nearly 50 Mya (Simon et al. 2018). Furthermore, two additional studies have estimated divergence times in *Lobaria* and *Sticta*, both reporting a stem age of nearly 30 Mya for each of the genera (Cornejo and Scheidegger 2018; Widhelm et al. 2018 – Chapter 3 in this dissertation).

We have reassessed phylogenetic relationships in Lobariaceae using 400 target captured nuclear protein coding loci, and a variety tree inference method to reconstruct relationships among genera. We sought to assess how historical processes may confound phylogenetic reconstructions and obscure relationships of major lineages within the family. Specifically, we addressed the effect of (1) data type (nucleotides and amino acids), (2) phylogeny reconstruction method (concatenation and species tree approaches), and (3) missing data. Furthermore, we examined our dataset for evidence of historical processes, such as (1) rapid diversification, and (2) reticulate evolution. Finally, we produced a fossil-calibrated phylogeny to estimate the timing of historical events during the diversification of Lobariaceae.

2.2 Methods

2.2.1 Taxon sampling

We sampled representatives of all the current and tentative genera in Lobariaceae. Our dataset includes representatives of the three major classic genera *Lobaria*, *Pseudocyphellaria*, *Sticta*, along with representative samples of the later segregated genera (*Anomolobaria*, *Crocodia*, *Dendriscosticta*, *Lobariella*, *Lobarina*, *Parmostictina*, *Podostictina*, *Ricasolia*, *Yarrumia*, and *Yoshimuriella* (Table I).

DNA#	Genus	Species	Collector	Voucher	Herbarium	Country	Genbank
4005	Ricasolia	amplissima	Tønsberg	44719	F	Norway	SAMN1060297
9930	Lobaria	pulmonaria	Widhelm	TW4	F	U.S. A	SAMN1060298
10048	Sticta	aff. fuliginosa	McCune	35727	F	U.S. A	SAMN1060298
10049	Sticta	aff. limbata	McCune	35726	F	U.S. A	SAMN1060298
14492	Sticta	beauvoisii	Taylor Quedensely	TQ16699	F	U.S. A	SAMN1060298
14493	Sticta	carolinensis	Taylor Quedensely	TQ16700	F	U.S. A	SAMN1060298
14532	Sticta	weigelii	Joel Mercado-Diaz	2284	F	Puerto Rico	SAMN1060298
14538	Sticta	scabrosa	Joel Mercado-Diaz	2287	F	Puerto Rico	SAMN1060298
14657	Sticta	aff.	Joel Mercado-Diaz	2378	F	Puerto Rico	SAMN1060298
14665	Sticta	densiphyllidata	Joel Mercado-Diaz	2389	F	Puerto Rico	SAMN1060298
14681	Pseudocyphellaria	glabra	Lumbsch, Widhelm & Grewe	2046 A	F	Australia	SAMN1060298
14829	Pseudocyphellaria	dissimilis	Lumbsch, Widhelm & Grewe	2173	F	Australia	SAMN1060299
14830	Pseudocyphellaria	carpoloma	Lumbsch, Widhelm & Grewe	2074 D	F	Australia	SAMN1060299
14835	Pseudocyphellaria	crocata	Lumbsch, Widhelm & Grewe	2145	F	Australia	SAMN1060299
14840	Pseudocyphellaria	neglecta	Lumbsch, Widhelm & Grewe	2031	F	Australia	SAMN1060299
14845	Pseudocyphellaria	granulata	Lumbsch, Widhelm & Grewe	2469	F	Australia	SAMN1060299
14850	Yarrumia	coronata	Lumbsch, Widhelm & Grewe	2042	F	Australia	SAMN1060299
15144	Pseudocyphellaria	homoeophylla	de Lange, Lucking & Moncada	???	F	New Zealand	SAMN1060299
15155	Sticta	sp.	Coca	43	F	Colombia	SAMN1060299
15156	Sticta	sp.	Coca	47	F	Colombia	SAMN1060299
15253	Dendriscosticta	platyphylla	Goffinet	13475	CONN	Taiwan	SAMN1060299
15254	Lobaria	linita	Simon	147	CONN	Canada	SAMN1060300
15256	Lobaria	sp.	Goffinet	13511	CONN	Taiwan	SAMN1060300
15257	Lobaria	sp	Goffinet	13563	CONN	Taiwan	SAMN1060300
15258	Nephroma	antarcticum	Goffinet	13963	CONN	Chile	SAMN1060300
15261	Ricasolia	sp.	Goffinet	13062	CONN	Taiwan	SAMN1060300
15271	Anomalobaria	anomala	Simon	150	CONN	Canada	SAMN1060300
15272	Dendriscosticta	aff. wrightii	Goffinet	13227	CONN	Taiwan	SAMN1060300
15273	Nephroma	plumbeum	Goffinet	12673	CONN	Chile	SAMN1060300
15274	Lobarina	oregana	Simon	143	CONN	Canada	SAMN1060300
15275	Lobariella	sp.	Lucking	41013a	BGBM	Colombia	SAMN1060300
15276	Lobariella	sp.	Lucking	41042	BGBM	Colombia	SAMN1060301

TABLE I. SAMPLES SEQUENCED USING TARGET CAPTURE IN THE CURRENT STUDY WITH VOUCHER DATA AND GENBANK ACCESSION NUMBERS.

TABLE I, CONTINUED

DNA #	Genus	Species	Collector	Voucher	Herbarium	Country	Genbank
15277	Lobariella	sp.	Lucking	41025	BGBM	Colombia	SAMN1060301
15278	Yoshimuriella	subdissecta	Moncada	5369	BGBM	Colombia	SAMN10603012
15279	Yoshimuriella	peltigera	Moncada	5389	BGBM	Colombia	SAMN10603013
15280	Yoshimuriella	peltigera	Moncada	5322	BGBM	Colombia	SAMN10603014
15313	Crocodia	poculifera	de Lange, Lucking & Moncada	39102	F	New Zealand	SAMN1060301
15316	Yarrumia	colensoi	de Lange, Lucking & Moncada	38741	F	New Zealand	SAMN1060301
15317	Yarrumia	coronata	de Lange, Lucking & Moncada	38974	F	New Zealand	SAMN1060301
15678	Yoshimuriella	sp.	Joel Mercado-Diaz	2955	F	Dominican Republic	SAMN1060301
15679	Yoshimuriella	sp.	Joel Mercado-Diaz	3072i	F	Dominican Republic	SAMN1060301
15680	Yoshimuriella	sp.	Joel Mercado-Diaz	3067b	F	Dominican Republic	SAMN1060302
15681	Yoshimuriella	sp.	Joel Mercado-Diaz	3133b	F	Dominican Republic	SAMN1060302
15682	Ricasolia	sp.	Joel Mercado-Diaz	2939	F	Dominican Republic	SAMN1060302
15683	Ricasolia	sp.	Joel Mercado-Diaz	3031	F	Dominican Republic	SAMN1060302
15684	Yoshimuriella	sp.	Joel Mercado-Diaz	2991a	F	Dominican Republic	SAMN1060302
15685	Ricasolia	sp.	Joel Mercado-Diaz	3038c	F	Dominican Republic	SAMN1060302
15686	Lobariella	sp.	Joel Mercado-Diaz	3063a	F	Dominican Republic	SAMN1060302
15687	Nephroma	sp.	Joel Mercado-Diaz	3122f	F	Dominican Republic	SAMN1060302
15688	Nephroma	sp.	Joel Mercado-Diaz	3104	F	Dominican Republic	SAMN1060302
15841	Pseudocyphellaria	granulata	Felix Grewe, Todd Widhelm, Matt von Konrat, Juan Larrain	4117	F	Chile	SAMN1060302
15842	Pseudocyphellaria	lecheri	Felix Grewe, Todd Widhelm, Matt von Konrat, Juan Larrain	4118	F	Chile	SAMN1060303
15843	Parmostictina	obvoluta	Felix Grewe, Todd Widhelm, Matt von Konrat, Juan Larrain	4119	F	Chile	SAMN1060303
15844	Pseudocyphellaria	crocata	Felix Grewe, Todd Widhelm, Matt von Konrat, Juan Larrain	4121	F	Chile	SAMN1060303
15845	Pseudocyphellaria	crocata	Felix Grewe, Todd Widhelm, Matt von Konrat, Juan Larrain	4122	F	Chile	SAMN1060303
15847	Podostictina	berberina	Felix Grewe, Todd Widhelm, Matt von Konrat, Juan Larrain	4124	F	Chile	SAMN1060303
15848	Pseudocyphellaria	freycinetii	Felix Grewe, Todd Widhelm, Matt von Konrat, Juan Larrain	4125	F	Chile	SAMN1060303
15849	Podostictina	flavicans	Todd Widhelm, Matt von Konrat, Juan Larrain	4389	F	Chile	SAMN1060303
15850	Yarrumia	coronata	de Lange, Lucking & Moncada	38675	F	New Zealand	SAMN1060303
15851	Yarrumia	colensoi	de Lange, Lucking & Moncada	38836	F	New Zealand	SAMN1060303
15868	Pseudocyphellaria	coriifolia	Todd Widhelm, Matt von Konrat, Juan Larrain	4319	F	Chile	SAMN1060303
15869	Pseudocyphellaria	intricata	Todd Widhelm, Matt von Konrat, Juan Larrain	4353	F	Chile	SAMN1060304
15870	Sticta	hypochroa	Todd Widhelm, Matt von Konrat, Juan Larrain	4354	F	Chile	SAMN1060304
15871	Sticta	caulescens	Todd Widhelm, Matt von Konrat, Juan Larrain	4357	F	Chile	SAMN1060304
15872	Sticta	sp.	Todd Widhelm, Matt von Konrat, Juan Larrain	4358	F	Chile	SAMN1060304

TABLE I, CONTINUED

DNA#	Genus	Species	Collector	Voucher	Herbarium	Country	Genbank
15873	Podostictina	encoensis	Todd Widhelm, Matt von Konrat, Juan Larrain	4401	F	Chile	SAMN10603044
15874	Pseudocyphellaria	haywardiosum	Peter de Lange	12586	F	New Zealand	SAMN10603045
15875	Pseudocyphellaria	haywardiosum	Peter de Lange	12587	F	New Zealand	SAMN10603046
15876	Pseudocyphellaria	cinnamomea	Mark Moorhouse		F	New Zealand	SAMN10603047
15877	Pseudocyphellaria	lividofusa	Peter de Lange	13259	F	New Zealand	SAMN10603048
15878	Pseudocyphellaria	pubescens	Mark Moorhouse		F	New Zealand	SAMN10603049
15879	Sticta	latifrons		CH2534	F	New Zealand	SAMN10603050
15880	Sticta	fuliginosa		CH2547	F	New Zealand	SAMN10603051
15881	Sticta	fuliginosa	Peter de Lange	13163	F	New Zealand	SAMN10603052
15882	Sticta	cinereoglauca		CH2547	F	New Zealand	SAMN10603053
15884	Pseudocyphellaria	sp.	Todd Widhelm, Matt von Konrat, Juan Larrain	4405	F	Chile	SAMN10603054
15885	Parmostictina	hirsuta	Todd Widhelm, Matt von Konrat, Juan Larrain	4417	F	Chile	SAMN10603055
15886	Pseudocyphellaria	sp.	Todd Widhelm, Matt von Konrat, Juan Larrain	4440	F	Chile	SAMN10603056
15887	Podostictina	vaccina	Todd Widhelm, Matt von Konrat, Juan Larrain	4443	F	Chile	SAMN10603057
15888	Crocodia	aurata	Felix Grewe, Todd Widhelm	3496	F	New Zealand	SAMN10603058
15889	Nephroma	australe	Felix Grewe, Todd Widhelm	3516	F	New Zealand	SAMN10603059
15890	Pseudocyphellaria	carpoloma	Felix Grewe, Todd Widhelm	3192	F	New Zealand	SAMN10603060
15891	Pseudocyphellaria	carpoloma	Felix Grewe, Todd Widhelm	3617	F	New Zealand	SAMN10603061
15892	Pseudocyphellaria	chloroluca	Felix Grewe, Todd Widhelm, Dan Blanchon, Peter de Lange	3044	F	New Zealand	SAMN10603062
15893	Pseudocyphellaria	corbettii	Felix Grewe, Todd Widhelm	3190	F	New Zealand	SAMN10603063
15894	Pseudocyphellaria	crocata	Allison Knight	69193a	OTA	New Zealand	SAMN10603064
15895	Podostictina	degelii	Felix Grewe, Todd Widhelm	3594	F	New Zealand	SAMN10603065
15896	Pseudocyphellaria	disimilis	Felix Grewe, Todd Widhelm	3019	F	New Zealand	SAMN10603066
15897	Pseudocyphellaria	episticta	Felix Grewe, Todd Widhelm	3498	F	New Zealand	SAMN10603067
15898	Pseudocyphellaria	montagnei	Felix Grewe, Todd Widhelm	3507	F	New Zealand	SAMN10603068
15899	Pseudocyphellaria	rufovirescens	Felix Grewe, Todd Widhelm	3219	F	New Zealand	SAMN10603069
15900	Sticta	filix	Felix Grewe, Todd Widhelm, Dan Blanchon, Peter de Lange	3074	F	New Zealand	SAMN10603070
15901	Sticta	latifrons	Felix Grewe, Todd Widhelm	3274	F	New Zealand	SAMN10603071
15902	Sticta	lacera	Felix Grewe, Todd Widhelm	3255	F	New Zealand	SAMN10603072
15903	Pseudocyphellaria	corbettii	Felix Grewe, Todd Widhelm, Dan Blanchon, Peter de Lange	3105	F	New Zealand	SAMN10603073
15904	Sticta	subcaperata	Felix Grewe, Todd Widhelm	3310	F	New Zealand	SAMN10603074

2.2.2 Bait design

We designed baits for target capture using Markerminer (Chamala et al. 2015), a bioinformatics pipeline that finds single copy loci in the genome using genome and transcriptome data as inputs. Markerminer is designed for use with angiosperms, and has databases for 15 angiosperm genomes, but other genome databases can be added for customized use of the program. We used the *Lobaria pulmonaria* genome and the gene annotation file (Lobpul1_AssemblyScaffolds_Repeatmasked.fasta and Lobpul1_GeneCatalog_20170213.gff3) from JGI (https://jgi.doe.gov/) to develop a custom database. The result is a simplified reference genome that only contains gene regions and the introns are hard-masked as "N"s in the sequence. We assembled transcriptome data (published in Meiser et al. 2017) from *Evernia prunastri*, *Pseudevernia furfuracea* and *Lasallia pustulata* using Trinity (Grabherr et al. 2011). The resulting transcriptomes and the custom *L. pulmonaria* database were used to identify clusters of single-copy gene transcripts present in the transcriptome assemblies. Next, these were aligned and filtered against the *L. pulmonaria* reference proteome from JGI

(Lobpul1_GeneCatalog_proteins_20170213.aa.fasta) using BLAST. These single-copy genes were re-aligned to the intron hard-masked genome and intron-exon boundaries were identified. Markerminer identified and aligned 1,714 single-copy genes to the hard-masked *L. pulmonaria* reference genome. We selected loci that had at least one exon of at least 500 bp and indicated clear intron-exon boundaries on the hard-masked alignment. The designed baits were collected as 800 separate fasta DNA sequence files from the *L. pulmonaria* and *E. prunastri* (400 each). These sequences were provided to Arbor Biosciences (Ann Arbor, MI, USA) for MYbaits bait design. These filtered baits covered 92% of the desired target positions with at least one bait, therefore all 800 target sequences are represented with at least one bait. One hundred nucleotide-

long baits were designed with two times tiling density resulting in 18,139 raw unfiltered baits. Following Arbor Biosciences recommended filtering process (baits passing "Moderate" BLAST filtering), 17,941 baits were retained for target-capturing.

2.2.3 Library preparation

DNA was obtained using the ZR Fungal/Bacterial DNA MiniPrepTM (Zymo Research, Irvine, CA, USA) or by a cetyl trimethylammonium bromide (CTAB) extraction protocol. The concentration of all DNA isolates was quantified with the Qubit (Thermo Fisher Scientific, Waltham, MA, USA). Two hundred ng of meta-genomic DNA was normalized to a final volume of 52.5 µL in resuspension buffer. Fragments of DNA around 500 bp were generated with M220 Focused-ultrasonicator[™] (Woburn, MA, USA) and then 50 µL was cleaned up with 80 µL SeraPure beads which are an inexpensive alternative to commercially purchased magnetic beads (Glenn et al. 2016). The Adapterama dual-indexing system (Glenn et al. 2016) was used to uniquely barcode all samples using the KAPA Hyper Prep Kit (KAPABiosystems, Wilmington, MA, USA). Twenty-five μ L of the sheared, cleaned bead elution was used in a 30 μ L end-repair and A-tailing reaction followed by a 55 µL ligation to attach the Adapterama stubby y-yolk adapter. The ligation products were subjected to bead-based size selection with SeraPure bead to enrich for fragments of around 550 bp which was eluted in 22 μ L of RSB. Twenty μ L of the elution was used in a limited-cycle (9-11 cycles) polymerase chain reaction (PCR) to attach the barcoded iTru5 and iTru7 Adapterama primers. Subsequently, the PCR products were cleaned with 1X SeraPure beads and eluted in 43 µL of nuclease-free, PCR-grade water. DNA concentrations of all samples were quantified with a Qubit fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) and a subset were checked for proper size distribution of fragments on the Bioanalyzer (Agilent, Santa Clara, CA, USA).

Samples were pooled by phylogenetic relatedness, corresponding to major clades of the previous Lobariaceae three-locus phylogeny (Moncada, Lücking, and Betancourt-Macuase 2013), for hybridization with RNA baits. For each sample, 100-200 ng of DNA was mixed with all samples of each of the five pools and then concentrated in a heated vacuum centrifuge. Pools were hybridized with reagents provided with the baits from Arbor Biosciences for ~20 h at 65°C. After incubation, the baits were attached to streptavidin beads and then washed according to the Arbor Biosciences protocol followed by a post-wash enrichment PCR cycle with KAPA Hifi Hotstart ReadyMix. Each pool went through 11 cycles of PCR except for the outgroup (*Nephroma* samples), which was subjected to 14 cycles. These were cleaned with 1X SeraPure beads and the DNA concentration was quantified on the Qubit and size of distribution of the DNA fragments in the pools were observed on the Bioanalyzer. These pools were mixed together to have 3 ng of DNA per sample in the final 96-sample pool which was used for sequencing at the Field Museum's Pritzker Laboratory with a single 300-cycle v2 MiSeq reagent kit (Illumina, San Diego, CA, USA).

2.2.4 Data processing

The MiSeq run (300 cycles using V2 chemistry) produced 15,835,491 150-bp paired-end reads, which were demultiplexed and adapter-trimmed by Illumina BaseSpace. The raw reads were downloaded to the Field Museum server and quality trimmed with Trimmomatic (Bolger, Lohse, and Usadel 2014) using a quality cutoff of 15 in a 4-bp sliding window, discarding any reads under 35 bp. Only paired, trimmed reads were used in downstream analyses, which is an average of 158,443 reads per sample remaining after trimming with a range from 7929 to 317,874 reads (Table XVIII, Appendix A). These sequences were used for the read files using the program HybPiper (Johnson et al. 2016) which assembles gene regions and extracts exon

sequences for each sample. We generated a target file from the *L. pulmonaria* transcriptome on JGI (Lobpul1_GeneCatalog_proteins_20170213.aa.fasta) that has the complete amino acid sequences of each of the 400 target genes that were used for bait design. The sorted, trimmed reads of each sample were mapped to the targets using the default BLASTX (Camacho et al. 2009) option, which we found recovered much more data (a more complete dataset), especially for the outgroup (*Nephroma* taxa) than the BWA option that uses a nucleotide target file. Upon completion of the HybPiper assembly, the 399 gene sequences (one gene did not produce any sequences) were extracted using retrieve_sequences.py and then batch aligned using MAFFT (Katoh and Standley 2013).

HybPiper will flag a gene if it identifies multiple sequences spanning at least 85% of the gene length (Johnson et al. 2016). When this occurs at a specific gene, HybPiper will choose only one of the sequences, first by selecting the sequence with the highest depth of sequencing and then, if all sequences are similar in coverage, it uses the closest match to the specified target sequence file. For the paralog warning genes, all the copies were extracted (paralog_retriever.py), aligned and phylogenetically analyzed to check the patterns of paralogy for each of these flagged genes. However, paralogous sequences could be present in some datasets that did not have a warning. For example, if one or more taxa yield only one sequence that is paralogous to the others. Furthermore, multiple copies could be alleles or a duplication that postdates a bifurcation which HybPiper would flag, but this case would not cause problems with phylogenetic inference. Future studies will need to use more thorough analyses to have a detailed understanding of how paralogs are influencing phylogenetic reconstructions.

2.2.5 Concatenation of datasets

Multiple nucleotide alignments of single genes were concatenated with FASconCAT-G

(Kück and Longo 2014). One alignment contained 376 loci and 96 tips (376x96nuc) and had 438,036 nucleotide positions with 13.75% gaps and undetermined characters. Only genes that had at least 48 sequences (50% sample representation) were used. Another reduced dataset (297x17nuc) with only 17 taxa, representing all Lobariaceae genera and the well supported subclades in *Sticta* and *Pseudocyphellaria* was generated in HybPiper. With this dataset 297 of the genes had all 17 sequences and these alignments were used to generated gene trees and a concatenated alignment with 338,019 nucleotide positions and 4.04% gaps and undetermined characters. We also generated the same concatenated datasets with amino acid sequences using FASconCAT-G. The dataset with 376 loci and 96 tips (376x96aa) and had 145,467 amino acid positions with 6.34% missing data and 7.26% indels. Finally, the reduced dataset (297x17aa) of 297 loci and 17 tips had 112,265 amino acid positions with no missing data, but it did contain 3.89% indels. A summary of all datasets can be found in table II.

Dataset	# loci	# tips	Positions	missing data
		nucleo	tide data	
397x96nuc	397	96	438036	13.75%
297x17nuc	297	17	338019	0.00%
		amino	acid data	
397x96aa	397	96	145467	6.34%
297x17aa	297	17	112265	0.00%
	397x96nuc 297x17nuc 397x96aa	397x96nuc 397 297x17nuc 297 397x96aa 397	nucleo 397x96nuc 397 96 297x17nuc 297 17 <i>amino</i> 397x96aa 397 96	nucleotide data 397x96nuc 397 96 438036 297x17nuc 297 17 338019 amino acid data 397x96aa 397 96 145467

TABLE II. SUMMARY OF DATASETS ANALYZED IN THE CURRENT STUDY.

2.2.6 Maximum likelihood and species tree analyses

For all full and reduced datasets, concatenated phylogenies and all single gene trees were estimated using the RAxML (Stamatakis 2014) rapid hill climbing algorithm and performing 100 bootstrap replicates. All single gene alignments and all partitions of each concatenated dataset had substitution model selection using either the GTRGAMMA or PROTGAMMA -AUTO models for nucleotide and amino acid models of sequences respectively. Since concatenated datasets can be prone to false positive topologies (Heled and Drummond 2010; Kubatko and Degnan 2007), we also analyzed our datasets with the multi-species coalescent model the program Accurate Species Tree Algorithm (ASTRAL 5.6.1) (Mirarab and Warnow 2015). For the ASTRAL analyses, we inferred species trees from single, fully resolved, and unrooted gene trees mentioned above. Branch support was reported as local posterior probabilities (i.e., the support for a quadripartition).

2.2.7 Analysis of gene-tree discordance and tree space

Regardless of the data type or tree building approach, all of the datasets produced backbones with short internal branches. During rapid diversification, speciation and gene flow occur simultaneously in a relatively short period of time, which can lead to high levels of genetree discordance. Discordance among gene-trees can be the result of incomplete lineage sorting (ILS), reticulate evolution, and homoplasy. The coalescent model implemented in ASTRAL, accounts for ILS, but this approach was still unable to completely resolve the deep divergences in the backbone of the amino acid and nucleotide datasets. Although this does not completely rule out ILS as a source of gene-tree discordance, it does suggest that other historical processes, such as homoplasy or reticulate evolution, which are not accounted for in ASTRAL, were potentially contributing to the poorly resolved backbones in our reconstructions. To conduct analyses on and visualize the gene-tree discordance the best trees from the RAxML analyses for each gene were converted to ultrametric trees using the chronos() function in the R package APE (Paradis, Claude, and Strimmer 2004) with a lambda = 1. This was done using the program SumTrees (Sukumaran and Holder 2015) implemented in DendroPy 4.0.0 (Sukumaran and Holder 2010) to find if there was a common tree topology among the reduced (297x17) amino acid and nucleotide datasets. DensiTree 2.2.5 (Bouckaert 2010) was used to visualize the discordance of gene-tree topologies.

Tree space of the reduced datasets (297x17nuc and 297x17aa) were described using multidimensional scaling (MDS) in R using the customized topclustMDS function described elsewhere. These datasets were used because complete trees (all having 17 tips) were required. Gene trees were loaded into R using the APE package (Paradis, Claude, and Strimmer 2004), then MDS scaling and functions in the cluster package (Maechler 2018) were used to identify the most appropriate number of clusters and the identity of loci comprising each cluster.

2.2.8 Tests for reticulate evolution

Another known source of poor backbone node support in phylogenies is reticulate evolution. This process is not modeled in the most used phylogenomic inference programs such as RAxML or ASTRAL as the output can only be bifurcating. A current program, PhyloNet (Than, Ruths, and Nakhleh 2008), does model this process, and we used it to investigate whether parts of the relationships in the Lobariaceae phylogeny are better supported with a model of reticulate evolution rather than a strictly bifurcating tree. PhyloNet identifies reticulation events using a multi-species network coalescent model that accounts for ILS and reticulate evolution. We first used the maximum pseudo-likelihood approach (InferNetwork_MPL option) on the 297x17nuc dataset, specifying the -po option which optimizes the branch lengths and inheritance

probabilities under full likelihood for the returned species networks. We conducted six analyses with reticulation scenarios ranging from zero to five and then ten with each analysis conducting ten runs and inferring five networks. The zero-reticulation scenario served as a null model and we then increased the reticulation events step-wise to five reticulations to see how each increase fit to the data by calculating AIC for each network. Finally, we conducted a ten-reticulation analysis to see if more than five reticulations could be recovered from our dataset.

Although the MPL approach is computationally fast, under certain conditions, the true reticulation history may not be identifiable (Yu and Nakhleh 2015). Thus, using the drop.tip() function in the R package APE (Paradis, Claude, and Strimmer 2004), we produce a five-tip dataset that contain only *Crocodia*, *Podostictina*, *Pseudocyphellaria*, *Sticta*, and *Yarrumia* (the genera that were usually involved in the reticulations of the MPL analyses), so that we could apply a fully parameterized ML approach (InferNetwork_ML). Due to the taxing computational demands of the fully parameterized ML option of PhyloNet, we only tested zero to three reticulations (using the -po option described above), because the best fitting scenarios in the MPL analyses included three reticulations (see results). Each analysis conducted five runs and produced one network and the total log probabilities were used to calculate AIC to assess model fit.

2.2.9 Dated phylogeny of Lobariaceae

The program MCMCTree 1.2 (Yang 2007; Yang and Rannala 2005) was used to infer divergence times in Lobariaceae. The ML tree (376x96aa), inferred with amino acids and congruent with the one inferred in ASTRAL was used for the dating analyses and the concatenated amino acid matrix. We used CODEML to generate the Hessian matrix using an empirical rate matrix with gamma rates among sites (WAG+Gamma). Using this matrix, we ran

MCMCTree with appropriate rates under the approximate method. Settings were set as follows: independent-rates model, time unit at 100 Ma, sampling fraction at ρ =0.1, and the birth and death rates at $\lambda = \mu = 1$. We ran the analyses with gaps and ambiguities removed (cleandata = 0). The gamma prior for the substitution model was set at six transitions to two transversions rate ratio. The gamma shape parameter for variable rates among sites was set as $\alpha = 1$ The Dirichletgamma prior was set to $\alpha = 2$ and $\beta = 20$ for a diffuse prior. The MCMC was run for 40,000 iterations, with samples taken every other iteration, after a 5% burnin. Two runs were conducted to check for consistency.

We calibrated the phylogeny with the only known fossil from the family, obtained from a 12-24 Myr-old Miocene deposit from northern California. The fossil is an impression that resembles the genus *Lobaria*. A recent study by Cornejo and Scheidegger (Cornejo and Scheidegger 2018), used a molecular clock-calibrated phylogeny of *Lobaria*, to estimate the age of the fossil impression and found that it fits into the time frame of *Lobaria* diversification and placed it near the crown of the genus. Based on that, we calibrated the 376x96aa concatenated phylogeny with the impression fossil, by placing it on the branch between *L. linita* and the remaining *Lobaria* species, with a range of 12 to 24 million years.

2.3 Results

2.3.1 Efficiency of sequencing data recovery and assembly of datasets

Following the read assembly via Hybpiper (Johnson et al. 2016) we recovered 390.65 of the 400 target genes per sample (337.67 with 75% coverage). Most coverage (all 400 genes mapped and 398 having 75% coverage) was achieved for *Lobaria pulmonaria* which was used as the reference in HybPiper and for the bait design. The lowest coverage was in *Sticta cinereoglauca* and *Pseudocyphellaria crocata* for which only 386 and 387 targets were

recovered and only with partial coverage to the extent that at 75% coverage only 32 and 0 genes were recovered (Table XVIII, Appendix A, [hybpiper blastx stats]). This is probably due to the DNA extract quality reducing the hybridization of these sample to the baits. Of the 400 loci sequenced in this study, 138 generated a paralog warning (an average of 14.125 paralogs per sample) involving between one and 95 samples (average 11 taxa with multiple sequences at a given locus). The trees produced after running the HybPiper script paralog_retriever.py to obtain all paralogous sequences for all flagged loci exhibited two patterns: (1) the two sequences retrieved would cluster and form a clade or (2) the two sequences would be resolved in two very different clades, separated by a long branch, which is indicative of an ancestral gene duplication event (data not shown). In all 138 cases, HybPiper selected only one sequence that was most like the target sequence.

2.3.2 Topological patterns among data types and phylogeny reconstruction methods

Initially we generated a nucleotide dataset (376x96nuc; Figure 1A) where all included loci had at least 50% specimen representation (at least 48 sequences regardless of recovered length in HybPiper), which was the case for 376 of the 400 loci. All Lobariaceae formed a wellsupported (100% bootstrap support) clade and the tree had a well-supported backbone with the lowest nodes having a bootstrap support value of 73% (Figure 1A). The earliest diverging clade included samples of *Podostictina* forming a sister-group relationship to the remaining Lobariaceae. The next split reflects the divergence of *Lobaria* and its closely related genera (*Anomolobaria*, *Dendriscosticta*, *Lobariella*, *Lobarina*, *Ricasolia*, and *Yoshimuriella*). The following split gives rise to the clade composed of two sister genera, *Sticta* and *Yarrumia*. The most derived split among genera yields *Crocodia* sister to *Pseudocyphellaria* (Figure 1A).

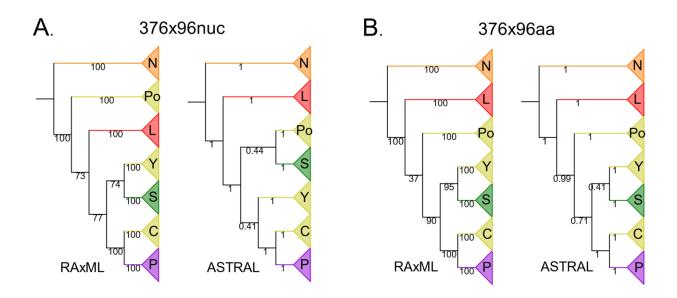


Figure 1 Tree topologies estimated with nucleotide (A) and amino acid (B) data and different tree reconstruction methods (RAxML concatenated vs. ASTRAL species tree). Nodal support, either as bootstrap (RAxML) or local posterior probability (ASTRAL) is depicted under the branches. Abbreviations are as follows: N = Nephroma (outgroup); L = Lobaria s. *lat.* clade (also including *Anomolobaria, Dendriscosticta, Lobariella, Lobarina, Ricasolia,* and *Yoshimuriella*); Po = Podostictina; S = Sticta; Y = Yarrumia; C = Crocodia; P = Pseudocyphellaria.

Subsequently, we analyzed amino acid sequences from the same dataset (376x96aa; Figures. 1B and 2). Again, the calculated tree supported Lobariaceae as a well-supported monophyletic clade, but the tree resulted in even lower backbone support (37%) for the unique ancestry to the *Podostictina* clade, and the clade including *Sticta*, *Yarrumia*, *Crocodia* and *Pseudocyphellaria*. (Figures. 1B and 2).

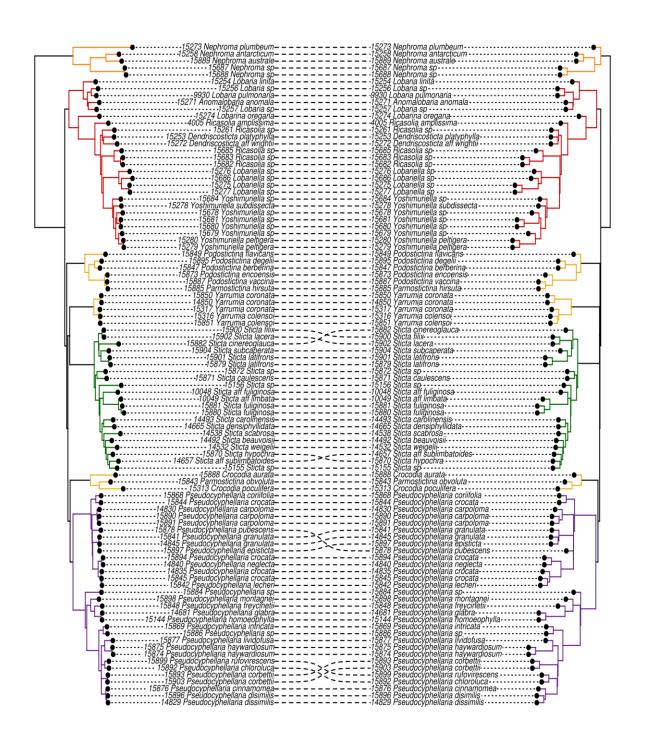


Figure 2. Congruence of topologies inferred with concatenation (A: RAxML) and species tree approaches (B: ASTRAL) from dataset composed of 376 amino acid sequences. Nodal support for the backbone is depicted in Figure 2B. The colors of branches are assigned to clades as follows: Orange: *Nephroma* (outgroup); Red: *Anomolobaria, Dendriscosticta, Lobaria, Lobariella, Lobarina, Ricasolia, Yoshimuriella*; Yellow: *Crocodia, Parmostictina, Podostictina, and Yarrumia* (not monophyletic); Green: *Sticta*; Purple: *Pseudocyphellaria*.

The species tree inferred in ASTRAL with nucleotide sequences conflicted with the same dataset reconstructed from concatenated data in RAxML (376x96nuc; Figure 1A), while the amino acid species tree produced in ASTRAL-II had the same backbone topology as the concatenated amino acid tree (376x96aa; Figures. 1B and 2B). However, in the amino acid tree reconstruction from ASTRAL, two nodes were poorly supported; one associated with the splitting of *Podostictina* (0.71 local posterior probability) and another associated with the branching of *Sticta* and *Yarrumia*, both still forming a monophyletic clade (0.41 local posterior probability). The nucleotide species tree had a similar topology as the amino acid species tree, except that *Yarrumia* was sister to *Crocodia* and *Pseudocyphellaria* with poor support (0.41 local posterior probability). *Podostictina* and *Sticta* formed a poorly supported clade (0.44 local posterior probability) (Figure 1A).

2.3.3 Evidence for rapid diversification and gene-tree discordance

The short backbone branches leading to *Crocodia*, *Parmostictina*, *Podostictina*, *Pseudocyphellaria*, *Sticta*, and *Yarrumia* occurred within a 5-million-year period, which is suggestive of a rapid diversification. To investigate the cause for inconsistent phylogenetic tree results based on potential rapid diversification and gene-tree discordance, we created a pruned dataset (Figure 3) (297x17). This created a complete matrix without missing data which was analyzed with RAxML and ASTRAL based on nuclear and amino acid translations. All four trees differed in their backbone branching patterns (Figure 3A), with incongruent clades receiving strong support. *Podostictina* and *Yarrumia* were the major sources of incongruence, as they were recovered in different relationships depending on the data type and analysis.

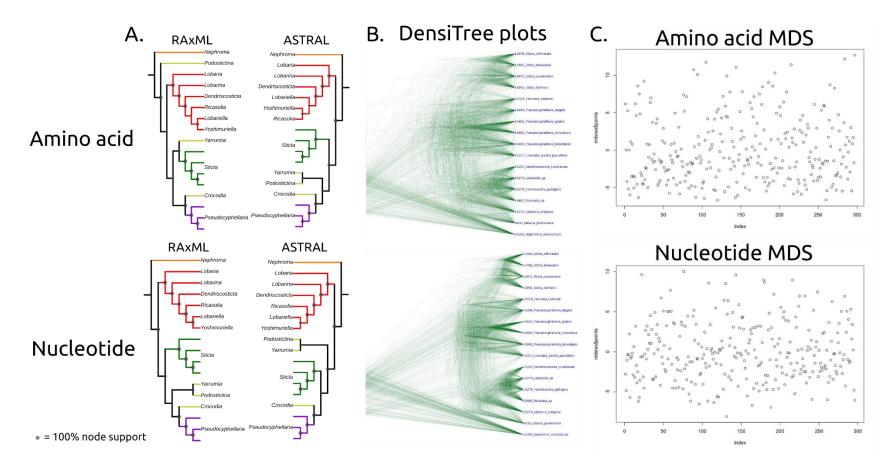


Figure 3. Poor support, incongruence of relationships of genera and gene tree discordance in Lobariaceae with (A.) different methods (RAxML vs. ASTRAL) and different datatypes (amino acid vs. nucleotide) of the reduced dataset of 297 loci and 17 tips with no missing data. Nodal support is depicted by the size of the gray circles in the nodes, with larger circles being higher supported. (B.) DensiTree plots of the gene trees used to produce the 297x17 datasets. (C.) Dimension one of multi-dimensional scaling (MDS) plots of one-to-one Robinson Foulds distances of 297 trees produced from amino acid and nucleotide sequences.

Removing these genera from the dataset, especially *Podostictina*, increased congruence and node support among all trimmed datasets (Figure 21, Appendix A). To find the most common topology we used SumTrees, which recovered 297 unique topologies of each tree reconstruction from the pruned nucleotide and amino acid datasets (Figure 21 & Figure 22, Appendix A). We visualized this gene-tree discordance by using DensiTree, which creates a figure by overlaying all 297 gene trees. Although both datasets recovered clear groupings representing well supported clades, the backbone is depicted as a diffuse cloud of branches (Figure 3B). Using the pairwise Robinson-Foulds distances (topological distances) of gene-trees and MDS, we found that clustering of topologies was not significant and that both the amino acid and nucleotide datasets exhibited a diffuse pattern in all dimensions (Figure 3C). This suggests that the gene-trees in both datasets have no dominant topology.

2.3.4 Evidence for reticulate evolution in Lobariaceae

We used the same pruned 297x17nuc dataset to infer evidence of reticulate evolution in Lobariaceae by using PhyloNet. Although, the maximum pseudo-likelihood (MPL) option (InferNetwork_MPL) in PhyloNet indicated that a three-reticulation model had the best fit to our data, none of the networks produced by PhyloNet had three reticulations (Table III). At most, two reticulations were inferred (Figure 4). The reticulations reconstructed in the networks generally originated in the ancestral nodes or branches of samples from *Crocodia*, *Podostictina*, *Pseudocyphellaria*, *Sticta* and *Yarrumia*. Using a full likelihood approach (InferNetwork_ML) on 17 taxa is too computationally heavy for most servers so we produced a dataset with only *Crocodia*, *Podostictina*, *Pseudocyphellaria*, *Sticta*, and *Yarrumia*. As with the MPL approach, the three-reticulation scenario had the best fit to the data in the ML analysis (Table IV and Figure 21, Figure 22, Appendix A).

Reticulations	k	Total log probability	AIC	
		-4,772.61	9,609.22	
		-4,772.93	9,545.87	
0	32	-4,773.10	9,546.21	
0	52	-4,774.06	9,548.11	
		-4,774.08	9,548.16	
		-4,773.36	9,546.71	Average
		-4,757.90	9,581.80	
		-4,766.82	9,533.64	
1	22	-4,770.67	9,541.33	
1	33	-4,773.04	9,546.08	
		-4,774.05	9,548.10	
		-4,768.50	9,536.99	Average
		-4,749.11	9,566.22	
	34	-4,771.13	9,542.27	
2		-4,771.34	9,542.68	
2		-4,772.93	9,545.87	
		-4,774.05	9,548.11	
		-4,767.71	9,535.43	Average
		-4,687.22	9,444.44	
		-4,743.86	9,487.72	
2	25	-4,760.41	9,520.82	
3	35	-4,772.93	9,545.87	
		-4,773.04	9,546.07	
		-4,747.49	9,494.98	Average
		-4,769.16	9,610.31	
		-4,770.96	9,541.91	
4	26	-4,771.03	9,542.07	
4	36	-4,771.78	9,543.57	
		-4,772.94	9,545.87	
		-4,771.17	9,542.35	Average

TABLE III. LIKELIHOOD AND AIC SCORES FOR ALL RETICULATION SCENARIOS USING THE MPL APPROACH.

TABLE III, CONT	INUED			
Reticulations	k	Total log probability	AIC	
		-4,770.67	9,615.33	
		-4,772.11	9,544.21	
5	37	-4,773.10	9,546.21	
5	57	-4,774.05	9,548.11	
		-4,774.07	9,548.15	
		-4,772.80	9,545.60	Average
		-4,770.66	9,625.33	
		-4,770.96	9,541.92	
10	42	-4,772.93	9,545.87	
10	42	-4,773.04	9,546.07	
		-4,773.32	9,546.63	
		-4,772.18	9,544.36	Average

TABLE IV. LIKELIHOOD AND AIC SCORES FOR ALL RETICULATION SCENARIOS USING THE ML APPROACH.

Reticulations	k	Total log probability	AIC
0	7	-1435.24	2870.48
1	8	-1366.30	2734.60
2	9	-1335.74	2675.48
3	10	-1328.20	2662.40

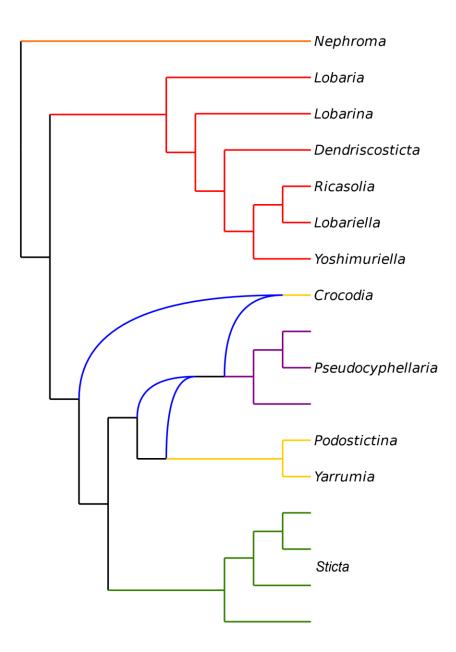


Figure 4. PhyloNet network showing one of the most likely reticulation scenarios.

2.3.5 Timing of divergence in Lobariaceae

Both runs of MCMCTree converged on similar estimations. The average stem age of Lobariaceae was estimated to be 64.4 Mya (91.9-43.4 Mya). Crown divergences of the major clades in Lobariaceae are as follows: *Lobaria s. lat* clade (which also includes *Anomolobaria*, *Dendriscosticta*, *Lobariella*, *Lobarina*, *Ricasolia*, and *Yoshimuriella*), 57.6 Mya (84.0-38.1 Mya); *Podostictina*, 29.5 Mya (53.0-14.2 Mya); *Yarrumia*, 12.4 Mya (21.2-5.9 Mya); *Sticta*, 25.2 Mya (39.9-15.2 Mya); *Crocodia*, 33.4 Mya (56.0-16.7 Mya); and *Pseudocyphellaria*, 54.1 Mya (78.7-35.2 Mya). The results of one of the runs is depicted in Figure 5 and detailed output of the analysis is in Figure 23, Appendix A.

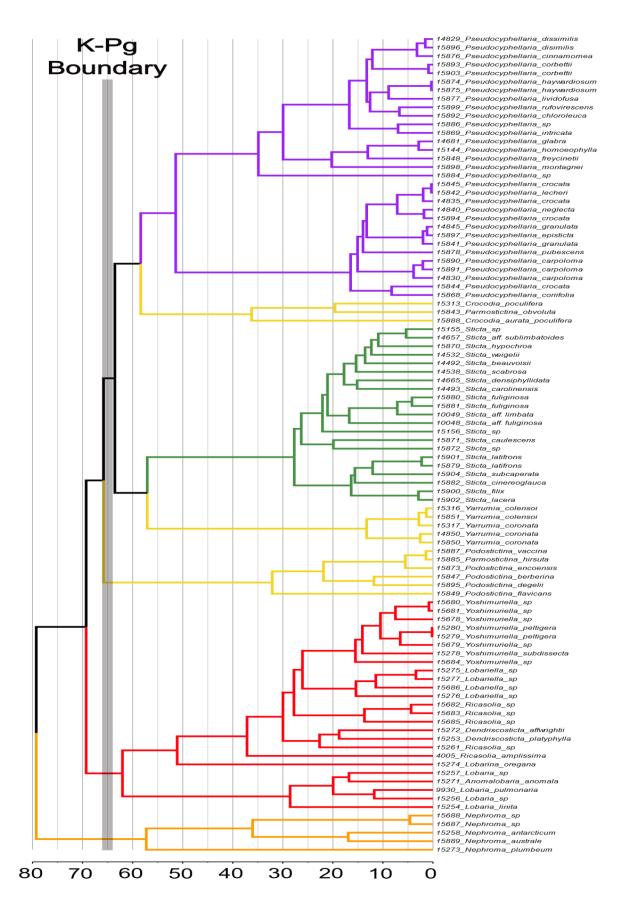


Figure 5. A chronogram estimated by Bayesian relaxed molecular clock implemented in MCMCTree. The ML tree inferred with concatenated amino acid sequences (376x96aa - congruent with the ASTRAL species tree) was used a scaffold for the dating analysis. The grey vertical bar depicts the K-Pg boundary. The timescale is in units of millions of years. Colors of clades: Orange: *Nephroma* (outgroup); Red: *Anomolobaria, Dendriscosticta, Lobaria, Lobariella, Lobarina, Ricasolia, Yoshimuriella*; Yellow: *Crocodia, Parmostictina, Podostictina, and Yarrumia* (not monophyletic); Green: *Sticta*; Purple: *Pseudocyphellaria*.

TABLE V. NODE AGES ESTIMATED IN MCMCTREE WITH MINIMUM AND MAXIMUM STANDARD DEVIATIONS IN MILLIONS OF YEARS.

Clades	Run 1				Run 2			Averaged runs	
Clades	age	minimum	max	age	minimum	max	age	minimum	max
Lobariaceae	69.3	53.4	89	59.4	33.4	94.7	64.4	43.4	91.9
Nephroma	57.3	36.6	86	53.9	31.2	84.6	55.6	33.9	85.3
"Lobaria clade"	62	46.7	81.6	53.2	29.5	86.4	57.6	38.1	84.0
Lobaria	28.5	20	42.5	25.2	14.7	41.1	26.9	17.4	41.8
Dendriscosticta	22.7	13.9	35.2	19.2	9.6	37.4	21.0	11.8	36.3
Ricasolia	13.7	7.7	21.1	11.4	5	20.4	12.6	6.4	20.8
Lobariella	15.4	9.4	22.2	12.9	6.1	21.8	14.2	7.8	22.0
Yoshimuriella	15.5	10.2	21.6	13.1	6.6	21.7	14.3	8.4	21.7
Podostictina	32.1	16.8	54.6	26.8	11.5	51.3	29.5	14.2	53.0
Yarrumia	13.3	6.8	21.7	11.5	5	20.6	12.4	5.9	21.2
Sticta	27.7	18.5	43.2	22.6	11.8	36.6	25.2	15.2	39.9
Crocodia	36.2	20	56.3	30.6	13.4	55.6	33.4	16.7	56.0
Pseudocyphellaria	58.4	43.2	76.2	49.8	27.2	81.1	54.1	35.2	78.7

2.4 Discussion

We produced the first target enrichment dataset of a lineage of lichenized fungi with a goal of resolving the higher-level relationships in Lobariaceae and found that the evolutionary history exhibited rapid diversification and that we could not confidently reconstruct the relationships assuming a strictly bifurcating tree. The phylogenetic positions in which certain lineages are resolved differs when using (1) number of loci or (2) different tree reconstruction methods (Figure 1). However, more slowly-evolving amino acid sequence data yielded more consistent results, especially with the 376-locus dataset, where the RAxML and ASTRAL backbone branching patterns were identical (Figure 2). This topology was highly supported in ASTRAL, but the node leading to Podostictina clade in RAxML was poorly supported (Figure 1B). An increasing number of studies are producing datasets of hundreds, even thousands of loci, and are finding that certain nodes in the tree of life that are still very challenging to resolve with our current inference methods (Reddy et al. 2017; Prum et al. 2015; Jarvis et al. 2014; Xi et al. 2014; Goremykin et al. 2015; Dunn et al. 2008; Simion et al. 2017; Burleigh and Mathews 2004). We found no exception in Lobariaceae. However, even though phylogenetic relationship among genera remained uncertain (c.f., Moncada, Lücking, and Betancourt-Macuase 2013), we were able to further study the factors that are preventing resolution. As a result, our study is the first on lichenized fungi to investigate the underlying mechanisms - namely rapid diversification and reticulations – that may lead to poorly-resolved relationships.

Regardless of the dataset or analysis, the genera were separated by short branches, suggesting a rapid diversification resulting in the genera that were previously placed within *Pseudocyphellaria* (including *Crocodia, Podostictina,* and *Yarrumia*) and *Sticta* (i.e., *Dendriscosticta*). Short branches can be difficult to resolve with confidence, even with large

subgenomic datasets (Wiens et al. 2008). Rapid diversifications can also lead to conflicting topologies among individual gene trees (Maddison 1997). This is consistent with our study, even in our reduced dataset (297x17) with 297 unique rooted topologies (Figure 3). The multi-species coalescent-based species tree approach can account for ILS (Liu and Edwards 2009). However, species trees with short, deep branches, such as those recovered in this study, can result in uninformative gene-trees, and the gene trees may result in erroneous species tree reconstruction (Huang et al. 2010). The inconsistency in phylogenetic reconstruction and low support for certain branching patterns revealed in our study suggest that the short branches in our trees confound species tree approaches in this case. The only time we found a consensus between the two methods was when we used the largest amino acid data set (376x96aa), but node support, was low for some of these relationships (Figures. 1B and 2).

Concatenation of genetic loci has a long history in phylogenetics, but it has also been known to produce highly supported yet conflicting results, especially in the area of tree space known as the "anomaly zone" (Kubatko and Degnan 2007) (when most gene trees in the genome do not reflect the true speciation history). Furthermore, concatenated analyses cannot account for the different evolutionary histories at different loci, which can also produce misleading topologies (Degnan and Rosenberg 2006). They can also be extremely sensitive to outlier loci (Lacey et al. 2018). The probability of sampling an outlier locus increases as the amount of data increases, and it is therefore expected that the effect of such loci will be stronger in larger subgenomic data set (Lacey et al. 2018).

Models that incorporate reticulations always had better fit to the data than models assuming a strictly bifurcating tree (Figure 4, Tables III and IV). Furthermore, in most phylogenetic networks generated, the taxa with labile topological positions (*Podostictina*, *Sticta*)

and *Yarrumia*) were usually associated with the reticulations in the network. Reticulation events can confound both concatenated ML and coalescent-based species tree approaches, causing incongruence and poorly supported relationships (Som 2015; Nakhleh et al. 2005). This could also contribute to the inconsistency among phylogenetic reconstructions and poor nodal supports found in our study. Additionally, the effects of reticulation and rapid diversification may not be independent. Reticulations have been hypothesized to promote subsequent rapid diversification events in cichlids (Meier et al. 2017), yeasts (Leducq et al. 2016), and fungal pathogens (Stukenbrock 2016). Reticulate evolution is most likely to induce rapid diversification when parental lineages occupy highly dissimilar ecological niches but are only moderately genetically differentiated (Kagawa and Takimoto 2018). Recombination among distinct yet compatible evolutionary lineages may generate novel phenotypes to exploit new niches. Although we have shown that reticulate models have a better fit, it is unclear whether they led to a rapid diversification (suggested by the short and poorly supported nodes) in Lobariaceae as the two are not mutually exclusive. Rapid radiations could also increase the chances of reticulate evolution, because so many closely related taxa may not have had the chance to develop effective reproductive barriers before secondary contact occurred in nature. Reticulate evolution may characterize the evolution of a number of lichenized fungi. Hybridization has been invoked to account for patterns in secondary chemistry in Hypotrachyna (Culberson and Hale 1973), and among gene-tree incongruence in Cladonia (Jana et al. 2013) and Lobaria (Cornejo, Chabanenko, and Scheidegger 2018) were seen as compatible with reticulation. In Letharia a reticulate evolutionary history was proposed based on patterns of recombination in nuclear DNA markers (Kroken and Taylor 2001). The other form of reticulate evolution, horizontal gene transfer (HGT), has been discovered with fungal genes being found in the Trebouxia photobionts

(Beck et al. 2015), and with polyketide synthases of actinobacterial origin being found in lichenized fungi (Schmitt and Lumbsch 2009), but HGT has not yet been reported among lichenized fungi and is not hypothesized in this study.

Our topology (376x96aa data sets in Figure 1B and 2) was similar to that of Moncada, Lücking, and Betancourt-Macuase (2013) with the main exceptions being the relationships of Sticta and of genera previously segregated from Pseudocyphellaria (e.g. Crocodia, Parmostictina, Podostictina, and Yarrumia). In the previous study (Moncada, Lücking, and Betancourt-Macuase 2013), Parmostictina, Podostictina and Crocodia formed a well-supported clade (Yarrumia was not included in their analysis) sister to Pseudocyphellaria. In our analyses, the Crocodia and Pseudocyphellaria still formed a sister-group relationship in all datasets, but the relationships of *Parmostictina* and *Podostictina* were poorly supported and differed depending on data type and method of inference: it could be placed sister to either all Lobariaceae, to (Crocodia + Pseudocyphellaria + Sticta + Yarrumia), to Yarrumia, or only to Sticta (Figures. 1, 2, and 3). The erratic placement of Parmostictina and Podostictina, when using different data types and inference methods, exhibits patterns found in other unrelated groups of organisms with unresolved phylogenetic relationships, such as the deep, poorly supported nodes leading to ctenophores and sponges (Dunn et al. 2008; Simion et al. 2017), Amborella (Xi et al. 2014; Goremykin et al. 2015; Drew et al. 2014; Zhang et al. 2012), and Gnetales (Mathews 2009; Burleigh and Mathews 2004). Another relationship that was often but not always recovered was the Sticta and Yarrumia sister relationship.

Our time-calibrated phylogeny recovered a nearly 70 Mya stem age of Lobariaceae which is in agreement with the estimate of Gaya et al. (Gaya et al. 2015) but not with Simon et al. (Simon et al. 2018) where a 50 Mya stem age was reported. Furthermore, our crown age

estimates agree with other dated phylogenies generated for the genera Sticta (Widhelm et al. 2018 - Chapter 3 in this dissertation) and Lobaria (Cornejo and Scheidegger 2018), both of which have crown ages around 30 Mya. The timing of the rapid and reticulate Lobariaceae divergence is near the end of the Cretaceous around 70-60 Mya. The Cretaceous Terrestrial Revolution (Vermeij 2011; Benton 2010) (CTR) occurred between 100 and 70 Mya and is associated with the massive diversification event that gave rise to the angiosperms (Lidgard and Crane 1988, 1990). The increase in angiosperm diversity in the late Cretaceous created new ecological opportunities (Schuettpelz and Pryer 2009; Schneider et al. 2004) and these may have triggered bursts of diversification in spore-dispersing plants (Schuettpelz and Pryer 2009; Schneider et al. 2004; Feldberg et al. 2014; Laenen et al. 2014) mammals (Meredith et al. 2011), and ants (Moreau et al. 2006). Secondary diversification pulses following the CTR and rise of angiosperms are especially linked to the evolution of epiphytism and has been demonstrated in leafy liverworts (Feldberg et al. 2014) and ferns (Schuettpelz and Pryer 2009; Schneider et al. 2004). Most Lobariaceae species are epiphytic and the rapid diversification event seen in our study could be another example of a subsequent pulse in divergence linked to the CTR. The rapid diversification of Lobariaceae was also associated with the Cretaceous-Paleogene (K-Pg) boundary around 66 Mya. Mass extinctions associated with K-Pg boundary may have reduced competition and provided an opportunity for surviving lineages to radiate (Renne et al. 2013). The macrolichen growth form is associated with multiple diversification rate increases following the K-Pg boundary (Huang et al. 2018). Lobariaceae, a lineage composed solely of macrolichens, may have also experienced a similar diversification rate increase as in other clades of lichenized fungi.

Since the application of genetic data to reconstructing the evolutionary relationships of lichenized fungi, our understanding of the diversification of most lineages has significantly improved. Single and multiple locus phylogenies have discovered many relationships that were obscured by homoplasy in phenotypic characters. With the advent of next-generation sequencing (NGS) technology, only a handful of studies have been conducted on groups of lichenized fungi to resolve phylogenetic relationships (Leavitt et al. 2016; Grewe et al. 2017). In traditional phylogenetic studies, fungal-specific primers got around the issue of mixed genomes in DNA isolations, but with genomic studies, the only way to get purely fungal DNA is to culture the fungal symbiont. The ability of lichenized fungi to be cultured varies among groups and it has not been successful in many. Regardless, over ten genomes have been sequenced and are available for study. Recently, studies using purely fungal reference genomes from cultured lichenized fungi have gotten around the issue of using metagenomic DNA isolations, by applying a mapping step that pulls out the fungal reads for use in phylogenomic analyses (Grewe et al. 2017).

2.5 Conclusion

This study is the first to apply the target capturing approach in lichenized fungi to investigate historical processes influencing the evolution of major clades in Lobariaceae. Although we were not able to confidently resolve certain relationships, we were able to investigate why certain nodes remained unresolved, and we have a more thorough understanding of the evolutionary history of the group. We provide evidence for rapid diversification and reticulate evolution in our data set, which would not be possible to infer with only a few loci. However, it is still not clear what the relative effects of rapid diversification and reticulations are on gene tree discordance and difficulties in species tree reconstruction. We encourage the

phylogenetic study of taxonomic groups with uncertain phylogenetic relationships so, as a scientific community, we can understand how historical processes are most likely to obscure relationships in the tree of life. Resolution of some nodes in the tree of life may not always be possible with increasing datasets, but a detailed understanding of the evolutionary events that confound the history of a group are the next best steps to take to make informed decisions about their taxonomic classification.

2.6 References

- Beck, A., P. K. Divakar, N. Zhang, M. C. Molina, and L. Struwe. "Evidence of ancient horizontal gene transfer between fungi and the terrestrial alga *Trebouxia*." *Organisms Diversity & Evolution* 15, no. 2 (2015): 235-248.
- Benton, Michael J. "The origins of modern biodiversity on land." *Philosophical Transactions of the Royal Society B: Biological Sciences* 365, no. 1558 (2010): 3667-3679.
- Bolger, Anthony M., Marc Lohse, and Bjoern Usadel. "Trimmomatic: A flexible trimmer for Illumina sequence data." *Bioinformatics* 30, no. 15 (2014): 2114-2120.
- Bouckaert, Remco, Joseph Heled, Denise Kühnert, Tim Vaughan, Chieh-Hsi Wu, Dong Xie, Marc A. Suchard, Andrew Rambaut, and Alexei J. Drummond. "BEAST 2: A software platform for Bayesian evolutionary analysis." *PLoS Computational Biology* 10, no. 4 (2014): e1003537.
- Bouckaert, Remco R. "DensiTree: Making sense of sets of phylogenetic trees." *Bioinformatics* 26, no. 10 (2010): 1372-1373.
- Burleigh, J. Gordon, and Sarah Mathews. "Phylogenetic signal in nucleotide data from seed plants: Implications for resolving the seed plant tree of life." *American Journal of*

Botany 91, no. 10 (2004): 1599-1613.

- Camacho, Christiam, George Coulouris, Vahram Avagyan, Ning Ma, Jason Papadopoulos, Kevin
 Bealer, and Thomas L. Madden. "BLAST+: Architecture and applications." *BMC Bioinformatics* 10, no. 1 (2009): 421.
- Chamala, Srikar, Nicolás García, Grant T. Godden, Vivek Krishnakumar, Ingrid E. Jordon-Thaden, Riet De Smet, W. Brad Barbazuk, Douglas E. Soltis, and Pamela S. Soltis.
 "MarkerMiner 1.0: A new application for phylogenetic marker development using angiosperm transcriptomes." *Applications in Plant Sciences* 3, no. 4 (2015): 1400115.
- Cornejo, Carolina, Svetlana Chabanenko, and Christoph Scheidegger. "Are species-pairs diverging lineages? A nine-locus analysis uncovers speciation among species-pairs of the *Lobaria meridionalis*-group (Ascomycota)." *Molecular Phylogenetics and Evolution* 129 (2018): 48-59.
- Cornejo, Carolina, and Christoph Scheidegger. "Estimating the timescale of *Lobaria* diversification." *The Lichenologist* 50, no. 1 (2018): 113-121.
- Culberson, Chicita F., and Mason E. Hale. "Chemical and morphological evolution in *Parmelia* sect. *Hypotrachyna*: Product of ancient hybridization?." *Brittonia* 25, no. 2 (1973): 162-173.
- Degnan, James H., and Noah A. Rosenberg. "Discordance of species trees with their most likely gene trees." *PLoS Genetics*2, no. 5 (2006): e68.
- Delsuc, Frédéric, Henner Brinkmann, and Hervé Philippe. "Phylogenomics and the reconstruction of the tree of life." *Nature Reviews Genetics* 6, no. 5 (2005): 361.
- Drew, Bryan T., Brad R. Ruhfel, Stephen A. Smith, Michael J. Moore, Barbara G. Briggs,

Matthew A. Gitzendanner, Pamela S. Soltis, and Douglas E. Soltis. "Another look at the root of the angiosperms reveals a familiar tale." *Systematic Biology* 63, no. 3 (2014): 368-382.

- Dunn, Casey W., Andreas Hejnol, David Q. Matus, Kevin Pang, William E. Browne, Stephen A. Smith, Elaine Seaver et al. "Broad phylogenomic sampling improves resolution of the animal tree of life." *Nature* 452, no. 7188 (2008): 745.
- Feldberg, Kathrin, Harald Schneider, Tanja Stadler, Alfons Schäfer-Verwimp, Alexander R. Schmidt, and Jochen Heinrichs. "Epiphytic leafy liverworts diversified in angiospermdominated forests." *Scientific Reports* 4 (2014): 5974.
- Gaya, Ester, Samantha Fernández-Brime, Reinaldo Vargas, Robert F. Lachlan, Cécile Gueidan,
 Martín Ramírez-Mejía, and François Lutzoni. "The adaptive radiation of lichen-forming
 Teloschistaceae is associated with sunscreening pigments and a bark-to-rock substrate
 shift." *Proceedings of the National Academy of Sciences* 112, no. 37 (2015): 11600-11605.

Gee, Henry. "Evolution: Ending incongruence." Nature 425, no. 6960 (2003): 782.

- Glenn, Travis C., Roger Nilsen, Troy J. Kieran, John W. Finger, Todd W. Pierson, Kerin E. Bentley, Sandra Hoffberg et al. "Adapterama I: Universal stubs and primers for thousands of dual-indexed Illumina libraries (iTru & iNext)." *BioRxiv* (2016): 049114.
- Goremykin, V. V., S. V. Nikiforova, D. Cavalieri, M. Pindo, and Peter Lockhart. "The root of flowering plants and total evidence." *Systematic Biology* 64, no. 5 (2015): 879-891.
- Grabherr, Manfred G., Brian J. Haas, Moran Yassour, Joshua Z. Levin, Dawn A. Thompson, Ido Amit, Xian Adiconis et al. "Trinity: Reconstructing a full-length transcriptome without a genome from RNA-Seq data." *Nature Biotechnology* 29, no. 7 (2011): 644.

- Green, T. G. A., and Otto L. Lange. "Ecophysiological adaptations of the lichen genera *Pseudocyphellaria* and *Sticta* to south temperate rainforests." *The Lichenologist* 23, no. 3 (1991): 267-282.
- Grewe, Felix, Jen-Pen Huang, Steven D. Leavitt, and H. Thorsten Lumbsch. "Reference-based RADseq resolves robust relationships among closely related species of lichen-forming fungi using metagenomic DNA." *Scientific Reports* 7, no. 1 (2017): 9884.
- Hale, Mason E. "Pseudocyphellae and pored epicortex in the Parmeliaceae: Their delimitation and evolutionary significance." *The Lichenologist* 13, no. 1 (1981): 1-10.
- Heled, J., and A. J. Drummond. 2010. "Bayesian inference of species trees from multilocus data." *Molecular Biology and Evolution* 27 (3): 570–80.
- Hipp, Andrew L., Deren Eaton, Jeannine Cavender-Bares, Elisabeth Fitzek, Rick Nipper, andPaul S. Manos. "A framework phylogeny of the American oak clade based on sequencedRAD data." *PLOS ONE* 9, no. 4 (2014): e93975.
- Huang, Huateng, Qixin He, Laura S. Kubatko, and L. Lacey Knowles. "Sources of error inherent in species-tree estimation: Impact of mutational and coalescent effects on accuracy and implications for choosing among different methods." *Systematic Biology* 59, no. 5 (2010): 573-583.
- Huang, Jen-Pan, Ekaphan Kraichak, Steven D. Leavitt, Matthew P Nelsen, and H. Thorsten
 Lumbsch. "Accelerated diversification in three diverse clades of morphologically complex
 lichen-forming fungi after the K-Pg boundary." *BMC Evolutionary Biology*, under review.
 (2019).

Jaklitsch, Walter, Hans-Otto Baral, Robert Lücking, H. Thorsten Lumbsch, and Wolfgang Frey.

Syllabus of Plant Families-A. Engler's Syllabus der Pflanzenfamilien Part 1/2. Edited by Wolfgang Frey. Stuttgart: Borntraeger Science Publishers. (2016).

- Jarvis, Erich D., Siavash Mirarab, Andre J. Aberer, Bo Li, Peter Houde, Cai Li, Simon Ho et al. "Whole-genome analyses resolve early branches in the tree of life of modern birds." *Science* 346, no. 6215 (2014): 1320-1331.
- Johnson, Matthew G., Elliot M. Gardner, Yang Liu, Rafael Medina, Bernard Goffinet, A. Jonathan Shaw, Nyree JC Zerega, and Norman J. Wickett. "HybPiper: Extracting coding sequence and introns for phylogenetics from high-throughput sequencing reads using target enrichment." *Applications in Plant Sciences* 4, no. 7 (2016): 1600016.
- Kagawa, Kotaro, and Gaku Takimoto. "Hybridization can promote adaptive radiation by means of transgressive segregation." *Ecology Letters* 21, no. 2 (2018): 264-274.
- Katoh, Kazutaka, and Daron M. Standley. "MAFFT multiple sequence alignment software version 7: Improvements in performance and usability." *Molecular Biology and Evolution* 30, no. 4 (2013): 772-780.
- Kirk, Paul M., Paul F. Cannon, D. W. Minter, and J. A. Stalpers. *Dictionary of the fungi 10th edition*. Wallingford: CAB International. (2008).
- Kraichak, Ekaphan, Jen-Pan Huang, Matthew Nelsen, Steven D. Leavitt, and H. Thorsten Lumbsch. "A revised classification of orders and families in the two major subclasses of Lecanoromycetes (Ascomycota) based on a temporal approach." *Botanical Journal of the Linnean Society* 188, no. 3 (2018): 233-249.
- Kroken, Scott, and John W. Taylor. "Outcrossing and recombination in the lichenized fungus *Letharia.*" *Fungal Genetics and Biology* 34, no. 2 (2001): 83-92.

- Kubatko, Laura Salter, and James H. Degnan. "Inconsistency of phylogenetic estimates from concatenated data under coalescence." *Systematic Biology* 56, no. 1 (2007): 17-24.
- Kück, Patrick, and Gary C. Longo. "FASconCAT-G: Extensive functions for multiple sequence alignment preparations concerning phylogenetic studies." *Frontiers in Zoology* 11, no. 1 (2014): 81.
- Knowles, L. Lacey, Huateng Huang, Jeet Sukumaran, and Stephen A. Smith. "A matter of phylogenetic scale: Distinguishing incomplete lineage sorting from lateral gene transfer as the cause of gene tree discord in recent versus deep diversification histories." *American Journal of Botany* 105, no. 3 (2018): 376-384.
- Laenen, B., B. Shaw, H. Schneider, B. Goffinet, Emmanuel Paradis, A. Désamoré, J. Heinrichs et al. "Extant diversity of bryophytes emerged from successive post-Mesozoic diversification bursts." *Nature Communications* 5 (2014): 5134.
- Lange, O. L., T. G. A. Green, and H. Ziegler. "Water status related photosynthesis and carbon isotope discrimination in species of the lichen genus *Pseudocyphellaria* with green or bluegreen photobionts and in photosymbiodemes." *Oecologia*75, no. 4 (1988): 494-501.
- Leavitt, Steven D., Felix Grewe, Todd Widhelm, Lucia Muggia, Brian Wray, and H. Thorsten Lumbsch. "Resolving evolutionary relationships in lichen-forming fungi using diverse phylogenomic datasets and analytical approaches." *Scientific Reports* 6 (2016): 22262.
- Leducq, Jean-Baptiste, Lou Nielly-Thibault, Guillaume Charron, Chris Eberlein, Jukka-Pekka
 Verta, Pedram Samani, Kayla Sylvester, Chris T. Hittinger, Graham Bell, and Christian R.
 Landry. "Speciation driven by hybridization and chromosomal plasticity in a wild
 yeast." *Nature Microbiology* 1, no. 1 (2016): 15003.

- Lidgard, Scott, and Peter R. Crane. "Quantitative analyses of the early angiosperm radiation." *Nature* 331, no. 6154 (1988): 344.
- Lidgard, Scott, and Peter R. Crane. "Angiosperm diversification and Cretaceous floristic trends: A comparison of palynofloras and leaf macrofloras." *Paleobiology* 16, no. 1 (1990): 77-93.
- Liu, Liang, and Scott V. Edwards. "Phylogenetic analysis in the anomaly zone." *Systematic Biology* 58, no. 4 (2009): 452-460.
- Liu, Liang, Zhenxiang Xi, Shaoyuan Wu, Charles C. Davis, and Scott V. Edwards. "Estimating phylogenetic trees from genome-scale data." *Annals of the New York Academy of Sciences* 1360, no. 1 (2015): 36-53.
- Liu, Yang, Cymon J. Cox, Wei Wang, and Bernard Goffinet. "Mitochondrial phylogenomics of early land plants: Mitigating the effects of saturation, compositional heterogeneity, and codon-usage bias." *Systematic Biology* 63, no. 6 (2014): 862-878.
- Lumbsch, H. Thorsten, and Steven D. Leavitt. "Goodbye morphology? A paradigm shift in the delimitation of species in lichenized fungi." *Fungal Diversity* 50, no. 1 (2011): 59.
- Maddison, Wayne P. "Gene trees in species trees." Systematic Biology 46, no. 3 (1997): 523-536.
- Maechler, Martin. "Finding groups in data": Cluster analysis extended Rousseeuw et. al." R Package version 2.0.6 (2018).
- Martin, Andrew P., and Theresa M. Burg. "Perils of paralogy: Using HSP70 genes for inferring organismal phylogenies." *Systematic Biology* 51, no. 4 (2002): 570-587.
- Mathews, Sarah. "Phylogenetic relationships among seed plants: Persistent questions and the limits of molecular data." *American Journal of Botany* 96, no. 1 (2009): 228-236.

- Meier, Joana I., David A. Marques, Salome Mwaiko, Catherine E. Wagner, Laurent Excoffier, and Ole Seehausen. "Ancient hybridization fuels rapid cichlid fish adaptive radiations." *Nature Communications* 8 (2017): 14363.
- Meiser, Anjuli, Jürgen Otte, Imke Schmitt, and Francesco Dal Grande. "Sequencing genomes from mixed DNA samples-evaluating the metagenome skimming approach in lichenized fungi." *Scientific Reports* 7, no. 1 (2017): 14881.
- Meredith, Robert W., Jan E. Janečka, John Gatesy, Oliver A. Ryder, Colleen A. Fisher, Emma C. Teeling, Alisha Goodbla et al. "Impacts of the Cretaceous Terrestrial Revolution and KPg extinction on mammal diversification." *Science* 334, no. 6055 (2011): 521-524.
- Mirarab, Siavash, and Tandy Warnow. "ASTRAL-II: Coalescent-based species tree estimation with many hundreds of taxa and thousands of genes." *Bioinformatics* 31, no. 12 (2015): i44-i52.
- Moncada, Bibiana, and Robert Lücking. "Ten new species of *Sticta* and counting: Colombia as a hot spot for unrecognized diversification in a conspicuous macrolichen genus." *Phytotaxa* 74 (2012): 1-29.
- Moncada, Bibiana, Robert Lücking, and Luisa Betancourt-Macuase. "Phylogeny of the Lobariaceae (lichenized Ascomycota: Peltigerales), with a reappraisal of the genus *Lobariella*." *The Lichenologist* 45, no. 2 (2013): 203-263.
- Moreau, Corrie S., Charles D. Bell, Roger Vila, S. Bruce Archibald, and Naomi E. Pierce. "Phylogeny of the ants: Diversification in the age of angiosperms." *Science* 312, no. 5770 (2006): 101-104.
- Nakhleh, Luay, Tandy Warnow, C. Randal Linder, and Katherine St John. "Reconstructing

reticulate evolution in species—Theory and practice." *Journal of Computational Biology* 12, no. 6 (2005): 796-811.

Nash, Thomas H. Lichen biology. Cambridge, Cambridge University Press, (1996).

- Paradis, Emmanuel, Julien Claude, and Korbinian Strimmer. "APE: Analyses of phylogenetics and evolution in R language." *Bioinformatics* 20, no. 2 (2004): 289-290.
- Philippe, Hervé, Henner Brinkmann, Dennis V. Lavrov, D. Timothy J. Littlewood, Michael
 Manuel, Gert Wörheide, and Denis Baurain. "Resolving difficult phylogenetic questions:
 Why more sequences are not enough." *PLoS Biology* 9, no. 3 (2011): e1000602.
- Printzen, Christian. "Lichen systematics: The role of morphological and molecular data to reconstruct phylogenetic relationships." In *Progress in Botany 71*, Berlin, Heidelberg: Springer. (2010): 233-275.
- Prum, Richard O., Jacob S. Berv, Alex Dornburg, Daniel J. Field, Jeffrey P. Townsend, Emily Moriarty Lemmon, and Alan R. Lemmon. "A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing." *Nature* 526, no. 7574 (2015): 569.
- Reddy, Sushma, Rebecca T. Kimball, Akanksha Pandey, Peter A. Hosner, Michael J. Braun,
 Shannon J. Hackett, Kin-Lan Han et al. "Why do phylogenomic data sets yield conflicting trees? Data type influences the avian tree of life more than taxon sampling." *Systematic Biology* 66, no. 5 (2017): 857-879.
- Renne, Paul R., Alan L. Deino, Frederik J. Hilgen, Klaudia F. Kuiper, Darren F. Mark, William
 S. Mitchell, Leah E. Morgan, Roland Mundil, and Jan Smit. "Time scales of critical events around the Cretaceous-Paleogene boundary." *Science* 339, no. 6120 (2013): 684-687.

- Rokas, Antonis, Barry L. Williams, Nicole King, and Sean B. Carroll. "Genome-scale approaches to resolving incongruence in molecular phylogenies." *Nature* 425, no. 6960 (2003): 798.
- Schmitt, Imke, and H. Thorsten Lumbsch. "Ancient horizontal gene transfer from bacteria enhances biosynthetic capabilities of fungi." *PLOS ONE* 4, no. 2 (2009): e4437.
- Schneider, Harald, Eric Schuettpelz, Kathleen M. Pryer, Raymond Cranfill, Susana Magallón, and Richard Lupia. "Ferns diversified in the shadow of angiosperms." *Nature* 428, no. 6982 (2004): 553.
- Schuettpelz, Eric, and Kathleen M. Pryer. "Evidence for a Cenozoic radiation of ferns in an angiosperm-dominated canopy." *Proceedings of the National Academy of Sciences*106, no. 27 (2009): 11200-11205.
- Simion, Paul, Herve Philippe, Denis Baurain, Muriel Jager, Daniel J. Richter, Arnaud Di Franco, Beatrice Roure et al. "A large and consistent phylogenomic dataset supports sponges as the sister group to all other animals." *Current Biology* 27, no. 7 (2017): 958-967.
- Simon, Antoine, Bernard Goffinet, Nicolas Magain, and Emmanuël Sérusiaux. "High diversity, high insular endemism and recent origin in the lichen genus *Sticta* (lichenized Ascomycota, Peltigerales) in Madagascar and the Mascarenes." *Molecular Phylogenetics and Evolution* 122 (2018): 15-28.
- Som, Anup. "Causes, consequences and solutions of phylogenetic incongruence." *Briefings in Bioinformatics* 16, no. 3 (2014): 536-548.
- Stamatakis, Alexandros. "RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies." *Bioinformatics* 30, no. 9 (2014): 1312-1313.

- Stukenbrock, Eva H. "The role of hybridization in the evolution and emergence of new fungal plant pathogens." *Phytopathology* 106, no. 2 (2016): 104-112.
- Sukumaran, J., and M. T. Holder. "SumTrees: Phylogenetic tree summarization. 4.0.0." *Program* and documentation available from the authors at: https://github. com/jeetsukumaran/Dendrophy (2015).
- Sukumaran, Jeet, and Mark T. Holder. "DendroPy: A Python library for phylogenetic computing." *Bioinformatics* 26, no. 12 (2010): 1569-1571.
- Than, Cuong, Derek Ruths, and Luay Nakhleh. "PhyloNet: A software package for analyzing and reconstructing reticulate evolutionary relationships." *BMC Bioinformatics* 9, no. 1 (2008): 322.
- Vermeij, Geerat J. "The energetics of modernization: the last one hundred million years of biotic evolution." *Paleontological Research* 15, no. 2 (2011): 54-62.
- Widhelm, Todd J., Francesca R. Bertoletti, Matt J. Asztalos, Joel A. Mercado-Díaz, Jen-Pan Huang, Bibiana Moncada, Robert Lücking et al. "Oligocene origin and drivers of diversification in the genus *Sticta* (Lobariaceae, Ascomycota)." *Molecular Phylogenetics and Evolution* 126 (2018): 58-73.
- Wiens, John J., Caitlin A. Kuczynski, Sarah A. Smith, Daniel G. Mulcahy, Jack W. Sites Jr, Ted M. Townsend, and Tod W. Reeder. "Branch lengths, support, and congruence: Testing the phylogenomic approach with 20 nuclear loci in snakes." *Systematic Biology* 57, no. 3 (2008): 420-431.
- Xi, Zhenxiang, Liang Liu, Joshua S. Rest, and Charles C. Davis. "Coalescent versus concatenation methods and the placement of *Amborella* as sister to water lilies." *Systematic*

Biology 63, no. 6 (2014): 919-932.

- Xu, Shizhong. "Phylogenetic analysis under reticulate evolution." *Molecular Biology and Evolution* 17, no. 6 (2000): 897-907.
- Yang, Ziheng. "PAML 4: Phylogenetic analysis by maximum likelihood." *Molecular Biology and Evolution* 24, no. 8 (2007): 1586-1591.
- Yang, Ziheng, and Bruce Rannala. "Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds." *Molecular Biology and Evolution* 23, no. 1 (2005): 212-226.
- Yu, Yun, and Luay Nakhleh. "A maximum pseudo-likelihood approach for phylogenetic networks." *BMC Genomics* 16, no. 10 (2015): S10.
- Zhang, Ning, Liping Zeng, Hongyan Shan, and Hong Ma. "Highly conserved low-copy nuclear genes as effective markers for phylogenetic analyses in angiosperms." *New Phytologist* 195, no. 4 (2012): 923-937.

3. Oligocene origin and drivers of diversification in the genus *Sticta* (Lobariaceae, Ascomycota)

<u>Todd J. Widhelm</u>, Francesca R. Bertoletti, Matt J. Asztalos, Joel A. Mercado-Díaz, Jen Pan Huang, Bibiana Moncada, Robert Lücking, Nicolas Magain, Emmanuël Sérusiaux, Bernard Goffinet, Nicholas Crouch, Roberta Mason-Gamer, H. Thorsten Lumbsch

This chapter is a reprint (with minimal formatting) of an original article published in the journal *Molecular Phylogenetics and Evolution*. The citation is as follows:

Widhelm, Todd J., Francesca R. Bertoletti, Matt J. Asztalos, Joel A. Mercado-Díaz, Jen-Pan Huang, Bibiana Moncada, Robert Lücking et al. "Oligocene origin and drivers of diversification in the genus *Sticta* (Lobariaceae, Ascomycota)." *Molecular Phylogenetics and Evolution* 126 (2018): 58-73.

3.1 Introduction

One of the main challenges evolutionary biologists face is identifying the mechanisms that influence the distribution of biodiversity through time and space. As molecular data have become widely available and models for molecular evolution have been well developed, many studies have placed estimates on the timing of diversification through relaxed molecular clock methods (Rutschmann 2006). These time trees have been used for downstream analyses, such as lineage through time plots, and indicated changes in diversification rates across the branches and through time. Furthermore, these time trees have also been used to study different drivers of diversification (Morlon 2014; Ng and Smith 2014; Vamosi and Vamosi 2011; van der Niet and

Johnson 2012). Intrinsic factors, in the form of symbiont associations can give groups the ability to exploit new habitats and resources, allowing them to radiate into new niches (Janson et al. 2008; Stanley 1981). Extrinsic factors, such as tectonic activity, can cause habitat fragmentation and barriers between populations, letting genetic drift and differential selection act on isolated populations (Badgley et al. 2017). Sometimes associated with tectonic activity, climatic changes can increase diversification by promoting range shifts, which can place unique selective pressures on new immigrant populations, allowing divergent selection to affect speciation (Badgley et al. 2017; Hoorn et al. 2010). In most groups, many factors play a role, but it is not clear which exert greater influence in shaping biodiversity. Some drivers of diversification might play a larger role in some groups, while different drivers could be more important in others. In most cases, drivers of diversification are in a dynamic balance (Vamosi and Vamosi 2011). With sampling throughout the entire range of a group of organisms, it may be possible to tease apart the contribution of all drivers and determine the contribution of each to the evolution of organisms on a case-by-case basis (Vamosi and Vamosi 2011; van der Niet and Johnson 2012).

Recent studies have utilized molecular methods and the few available fossils to gain a better understanding of the diversification of groups of lichenized fungi (Amo de Paz et al. 2012, 2011; Blanco et al. 2004; Del-Prado et al. 2016, 2013, Divakar et al. 2012, 2015; Leavitt, Esslinger, and Lumbsch 2012; Leavitt, Moreau, and Lumbsch 2015; Leavitt, Lumbsch, et al. 2013; Leavitt et al. 2012; Magain et al. 2016; Molina et al. 2017). Lichens are a form of symbiotic mutualism where fungi (mycobionts: mostly ascomycetes) form a close association with photosynthetic green algae or cyanobacteria (photobionts). Most of these studies have focused on the family Parmeliaceae, while other families have received less attention (Gaya et al. 2015; Leavitt, Lumbsch, et al. 2013; Leavitt, Esslinger, and Lumbsch 2012; Otálora et al. 2010;

Prieto and Wedin 2013; Sérusiaux et al. 2011). Lobariaceae is a large family of lichenized fungi where phylogenetic relationships are just beginning to be understood. (Moncada, Coca, and Lücking 2013; Moncada, Lücking, and Betancourt-Macuase 2013; Moncada, Lücking, and Coca 2013) investigated relationships in Lobariaceae, and showed that the classification at the genus level did not accurately explain the branching patterns observed when using molecular data and new genera were segregated within the family. The genus *Sticta* was found to include two unrelated lineages; viz. *Sticta sensu stricto* and the *S. wrightii* group, which was reclassified as *Dendriscosticta*. *Sticta sensu stricto* is one of the largest genera in Lobariaceae, but the species diversity is only beginning to be understood. (Kirk et al. 2008) listed 114 species for *Sticta*, but (Moncada, Lücking, and Suárez 2014) after extensive sampling in the Colombian Andes, suggested that the actual global diversity might be four to five times higher. With so much diversity recently revealed, we began to investigate which drivers of diversification played a major role in shaping the diversity of *Sticta* through time and over the landscape.

Long-distance dispersal has been documented in many groups of lichens (Amo de Paz et al. 2012; Buschbom 2007; Del-Prado et al. 2013; Leavitt, Moreau, and Lumbsch 2015; Otálora et al. 2010) and collection records indicate that *Sticta* has colonized oceanic islands throughout the world, suggesting a high dispersal rate in the genus. A recent study (Simon et al. 2018) found evidence for a rapid radiation of *Sticta* in the Western Indian Ocean Islands (Madagascar, Reunion, and Mauritius), but little work has been done on islands in the Pacific, such as Hawaii, where it is unclear whether the species are derived from a single colonization followed by a radiation, or from multiple colonizations of unrelated species on the archipelago. Recent collections in Hawaii allowed us to test which scenario is more likely and where colonizers originated.

Species in Sticta associate with two types of photobionts, cyanobacteria and green algae, which makes the genus a unique study system where biotic interactions can be tested for effects on diversification. In the case of photosymbiodemes, one species of mycobiont can form associations with both photobiont types. The two types, chloro-morphs (containing green algae) and cyano-morphs (containing cyanobacteria, usually Nostoc spp.), can be so different morphologically, that specimens of the same mycobiont species were previously classified as different genera (e.g., Dendrisocaulon spp.) until morphological and molecular data confirmed that one taxon associates with both types of photobiont (Armaleo and Clerc 1991; James and Henssen 1976; Ranft et al. 2018). While photosymbiodemes are often found on separate thalli, there are records of both morphs attached on the same thallus (Dughi 1944, 1936; James and Henssen 1976; F. Moreau 1956). The photosymbiodemic state is thought to be limited to only a few taxa in *Sticta* and it is hypothesized that most species are primarily found in association with only one type of photobiont (either cyanobacteria or green-algal photobionts). Many more species in *Sticta* associate with cyanobacteria compared to green-algae, which invokes the question: Does the cyanobacterial association increase the net diversification rate compared to green-algal associations?

External factors may also be influencing diversification in *Sticta*. A majority of the known *Sticta* species are found in South America (Moncada, Lücking, and Suárez 2014). The Andes has been the site of major radiations in many groups of organisms (Hoorn et al. 2010; Lagomarsino et al. 2016; Madriñán, Cortés, and Richardson 2013; Nürk et al. 2015). Furthermore, a recent study by Magain et al. (Magain et al. 2016) found a recent radiation in the lichen genus *Peltigera* in the Andes. The uplift of the Andes began between 66 and 33 million years ago, with a rapid increase in elevation during the late Miocene and early Pliocene (10-4

Mya). The uplift of mountains influences local and regional climate, creates fragmented habitats, and facilitates immigration of some species, promoting diversification of many groups simultaneously (Badgley et al. 2017; Hoorn et al. 2010). The pattern of high Andean diversity invokes another question of the study: Could the mountain building processes in the Andes have increased the diversification of *Sticta* species in this region relative to others?

With sampling throughout most of the known ranges of *Sticta* and a five gene dataset we produced the first robust time-calibrated phylogeny for the genus. We used this phylogeny to carry out the following aims: (1) estimate the age and ancestral range of *Sticta*, (2) infer the colonization history of Hawaii (3) determine if primary photobiont (green-algal and cyanobacterial) associations affect diversification, and (4) investigate if tectonic activity in the Andes has affected diversification. Note that the two hypothesized mechanisms that may affect the changes in biodiversity patterns through time and space in *Sticta* - i.e., (1) the effect of association with different photobionts and (2) the effect of recent Andean uplifting — are not mutually exclusive. Different mechanisms could have functioned contemporaneously or at different times in the past. Our study investigates some of the mechanisms that are likely to have a significant effect on shaping the biodiversity of *Sticta*.

3.2. Materials and Methods

3.2.1 Taxon sampling

Sampling was conducted in Africa, Madagascar, Europe, Canary Islands, Azores, Australasia, North America, the Colombian Andes, Ecuador, Brazil, Central America, the Caribbean, and Hawaii (Galloway 1997; Magain and Sérusiaux 2015; Moncada, Reidy, and Lücking 2014; Moncada, Coca, and Lücking 2013; Moncada, Lücking, and Coca 2013; Moncada and Lücking 2012; Simon et al. 2018). We selected 222 *Sticta* specimens from the major clades

of the ITS phylogeny of (Moncada, Lücking, and Suárez 2014) representing 132 species-level lineages that were identified by phylogenetic binning approach that allows for type specimens lacking DNA sequence data, to be assigned to clades on a molecular phylogeny via a phenotype data matrix of morphological, anatomical, and chemical characters (Berger, Stamatakis, and Lücking 2011; Parnmen, Lücking, and Lumbsch 2012) (Table VI). This level of sampling has more lineages than listed in the latest official count on species in *Sticta* (Kirk et al. 2008), but it is likely a subset of the global diversity, as areas of Africa, Asia, and Indonesia have not been thoroughly sampled yet. There are nearly 120 described species in Sticta (Kirk et al. 2008), but, recent studies (Magain and Sérusiaux 2015; Moncada, Lücking, and Suárez 2014; Moncada, Coca, and Lücking 2013; Moncada, Lücking, and Coca 2013; Moncada and Lücking 2012; Simon et al. 2018) have demonstrated that the diversity of the genus is underestimated and that there may be 400 to 500 species-level lineages in the genus. With the knowledge of this recently observed diversity, great care has been taken to properly determine species and some samples in this study have been challenging to assign. Those have been marked with a cf., aff. or just S. sp in their name since they are most likely new to science. For assignment of character states in downstream analyses, we assumed these to be new species and used the distribution and photobiont data from the collected material for these specimens.

ID	Taxon	Country of	ITS	МСМ7	mtSSU	nuLSU	RPB1
ID	143011	collection	115	mcm7	mussu	nuLSU	KI DI
DNA9930	Lobaria pulmonaria	U.S.A.	MG367435	MF984336	MG754091	MG063078	MG754080
LCOCOO	Pseudocyphellaria		10725076		1072(000	10725002	12701770
LG0688	citrina	Canary Islands	JQ735976	-	JQ736009	JQ735993	KT281770
DNA5022	Sticta aff. cordillerana	Colombia	KC732553	MF984252	MG754120) MG062963	-
DNA7246	Sticta aff. andreana	Costa Rica	MG367402	MF984284	-	MG063062	-
DNA10048	Sticta aff. fuliginosa	U.S.A.	MG367377	MF984203	-	-	MG754081
DNA14466	Sticta aff. fuliginosa 1	Australia	MG754192	MF984305	MG754180) MG062943	-
DNA7382	Sticta aff. granatensis	Ecuador	MG367416	-	MG754117	7 MG062990	-
DNA7226	Sticta aff. laciniosa	Costa Rica	MG367401	MF984240	-	MG062988	-
JM110	Sticta aff.	Puerto Rico	MG367370	MF984332		MG062978	
5141110	laminobeauvosii	Fuerto Rico	MG307370	MI 904332	-	WG002978	-
DNA10049	Sticta aff. limbata	U.S.A.	MG367378	MF984292	-	-	-
DNA13781	Sticta aff. martinii	New Zealand	MG367383	MF984270	MG754172	2 MG063018	-
DNA13814	Sticta aff. martinii 1	New Zealand	MG367384	MF984227	MG754171	MG063019	-
DNA14262	Sticta aff. martinii 2	New Zealand	MG754193	MF984223	MG754187	7 MG063021	-
DNA7259	Sticta aff. orinoquensis	Costa Rica	-	MF984264	MG754121	MG063077	-
DNA7345	Sticta aff. peltigerella	Colombia	MG367410	MF984216	MG754158	3 MG063049	-
DNA4932	Sticta aff. phyllidiata	Colombia	KC732476	MF984295	-	-	-
JM111	Sticta aff. sinuosa	Puerto Rico	MG367371	MF984330	-	-	-
DNA5541	Sticta aff.	Colombia	KC732639		MG754096	6 MG062985	
DIVASSEI	subscrobiculata	Colonibia	KC752057		MG/54070	WIG002985	
DNA6288	Sticta aff. subtomentella	Colombia	KC732730	MF984259	-	MG063059	-
DNA7260	Sticta aff. tomentosa	Costa Rica	MG367406	MF984315	MG754157	7 MG063051	-
DNA5467	Sticta aff. weigelii	Colombia	MG367390	MF984299	MG754103	3 MG062983	-
DNA6227	Sticta aff. weigelii 1	Colombia	KC732710	MF984320	MG754165	5 MG062980	-
DNA7224	Sticta aff. zahlbruckneri	Costa Rica	MG367400	MF984318	-	MG062991	-
DNA5030	Sticta albocyphellata	Colombia	KC732557	-	MG754114	4 MG062937	-

TABLE VI. SPECIMEN SAMPLING AND GENBANK ACCESSION NUMBERS.

		Country of					
D	Taxon	collection	ITS	МСМ7	mtSSU	nuLSU	RPB1
DNA8197	Sticta albohypoarbuscula	ı Hawaii	MG367434	MF984210	MG754094	MG062923	-
LG0992	Sticta ambavillaria	Reunion	JQ735978	-	JQ736011	JQ735995	-
DNA7373	Sticta andensis	Colombia	KC732548	MF984317	MG754134	MG062956	-
DNA4985	Sticta arachnofuliginosa	Colombia	KC732524	MF984306	-	MG062946	-
DNA5443	Sticta arachnosylvatica	Colombia	KC732580	MF984309	MG754154	MG062948	-
DNA5599	Sticta arbuscula	Colombia	KC732682	-	-	MG063046	-
DNA7253	Sticta arbusculofuliginosa	Costa Rica	MG367404	MF984218	MG754156	MG063050	-
DNA5424	Sticta arbusculotomentosa I	Colombia	KC732572	MF984220	-	MG063041	-
.G3747	Sticta atlantica	Ireland	KT281734	-	KT281690	KT281645	-
G3858	Sticta atlantica 1	Azores	KT281737	-	KT281693	KT281648	KT281784
DNA4999	Sticta atroandensis	Colombia	KC732533	MF984310	-	MG062952	MG754082
DNA14282	Sticta babingtonii	New Zealand	MF373808	MF984256	MG754167	MG063012	-
DNA14493	Sticta beauvoisii 2	U.S.A	MG754194	MF984244	-	MG062957	-
.G3303	Sticta beauvoisii	U.S.A.	KT281725	-	KT281681	KT281636	KT281787
DNA6211	Sticta beauvoisii 1	Colombia	KC732707	MF984328	-	MG062958	-
DNA6357	Sticta borinquensis	Puerto Rico	MG367397	MF984263	-	MG062976	-
DNA4914	Sticta brevior	Colombia	MG367386	-	MG754108	MG062929	-
DNA13507	Sticta caliginosa	New Zealand	MF373760	MF984229	MG754135	MG063035	-
DNA13782	Sticta caliginosa 1	New Zealand	MF373767	-	MG754136	MG063036	-
-G3741	Sticta canariensis	Ireland	KT281733	-	KT281689	KT281644	KT281779
G1333	Sticta canariensis (cyanomorph)	Canary Islands	KT281700	-	KT281658	KT281612	KT281752
.G0962	Sticta caperata	Reunion	JQ735979	-	JQ736012	JQ735996	KT281745
DNA14494	Sticta carolinensis 1	U.S.A	-	MF984234	MG754116	MG063074	-
G3302	Sticta carolinensis	U.S.A.	KT281724	-	KT281680	KT281635	KT281786

ID	I, CONTINUED	Country of	ITS	МСМ7	mtSSU	nuLSU	RPB1
	14.00	collection	115	in cin/	mtsse	nulse	KI DI
DNA6237	Sticta cf. lhermineri	Colombia	MG367393	MF984331	-	MG063009	-
DNA5560	Sticta cf. ocaniensis	Colombia	KC732654	-	-	MG062997	-
DNA5027	Sticta cf. sinuosa	Colombia	KC732554	MF984296	-	MG062977	-
JM112	Sticta ciliata	Puerto Rico	MG367375	MF984323	-	MG063038	-
LG1605	Sticta ciliata 1	Rwanda	KT281717	-	KT281673	KT281629	KT281763
LG2751	Sticta ciliata 2	Canary Islands	KT281712	-	KT281668	KT281624	-
LG3099	Sticta ciliata 3	Azores	KT281715	-	KT281671	KT281627	KT281762
LG3406	Sticta ciliata 4	Canary Islands	KT281713	-	KT281669	KT281625	KT281780
LG3539	Sticta ciliata 5	France	KT281718	-	KT281674	KT281630	KT281774
LG3542	Sticta ciliata 6	France	KT281714	-	KT281670	KT281626	KT281772
LG3781	Sticta ciliata 7	Ireland	KT281716	-	KT281672	KT281628	KT281773
LG3830	Sticta ciliata 8	Canary Islands	KT281719	-	KT281675	KT281631	KT281775
DNA6336	Sticta ciliosylvativa	Colombia	MG367395	MF984205	-	MG063060	-
DNA12977	Sticta cinereoglauca	New Zealand	MG367380	MF984224	-	MG063027	-
DNA13835	Sticta cinereoglauca 1	New Zealand	MF373794	MF984242	MG754139	9 MG063028	-
DNA13863	Sticta cinereoglauca 2	New Zealand	MF373798	MF984241	MG75414() MG063029	-
DNA5526	Sticta cometia	Colombia	KC732626	MF984222	MG754178	3 MG062927	-
DNA4977	Sticta cometiella	Colombia	KC732517	MF984221	MG754177	7 MG062926	-
DNA6179	Sticta delicatula	Colombia	MG367391	MF984237	MG754119	MG062998	-
DNA13506	Sticta dendroides (cyanomorph)	New Zealand	-	MF984233	-	MG063073	-
DNA13875	Sticta dendroides (cyanomorph) 1	New Zealand	MF373799	MF984272	MG754188	3 MG063025	-
DNA13881	Sticta dendroides (cyanomorph) 2	New Zealand	MF373805	MF984253	-	MG063026	-
DNA6358	Sticta densiphyllidiata	Puerto Rico	MG367398	MF984239	-	MG062987	-
LG0945	Sticta dichotoma	Reunion	JQ735981	-	JQ736014	JQ735998	KT281743

		Country of					
ID	Taxon	collection	ITS	MCM7	mtSSU	nuLSU	RPB1
LG0984	Sticta dichotoma 2	Reunion	JQ735982	-	JQ736015	JQ735999	KT281746
DNA5550	Sticta dilatata	Colombia	KC732647	-	MG754125	5 MG063057	-
DNA4945	Sticta dioica	Colombia	KC732486	-	-	MG062973	-
DNA5015	Sticta dioica 1	Colombia	KC732546	MF984246	MG754105	5 MG062974	MG754083
LG1040	Sticta duplolimbata	Reunion	JQ735984	-	JQ736001	JQ736017	KT281751
LG0919	Sticta duplolimbata 2	Rwanda	KT281696	-	KT281654	KT281651	KT281741
DNA12973	Sticta filix	New Zealand	MG367379	MF984228	-	MG063010	-
DNA13779	Sticta filix 1	New Zealand	MF373766	-	-	MG063011	-
DNA4907	Sticta fuliginoides 4	Wales	KC732454	MF984215	-	MG063047	-
LG1421	Sticta fuliginoides	France	KT281701	-	KT281659	KT281613	KT281753
LG3012	Sticta fuliginoides 1	Canary Islands	KT281722	-	KT281678	KT281634	KT281765
LG3551	Sticta fuliginoides 2	France	KT281729	-	KT281685	KT281640	KT281777
LG3733	Sticta fuliginoides 3	Ireland	KT281732	-	KT281688	KT281643	KT281781
LGS4	Sticta fuliginoides 5	Wales	KT281738	-	KT281694	KT281649	KT281785
DNA6226	Sticta Sp. 3	Colombia	KC732709	MF984304	-	MG063048	-
DNA7395	Sticta fuliginosa 9	Brazil	MG367419	MF984303	MG754184	4 MG062939	-
DNA8112	Sticta fuliginosa 10	Hawaii	MG367426	-	MG754185	5 MG062941	-
DNA8114	Sticta fuliginosa 11	Hawaii	MG367427	MF984300	MG754186	5 MG062944	-
DNA8162	Sticta fuliginosa 12	Hawaii	MG367432	MF984301	MG754182	2 MG062942	-
LG1611	Sticta fuliginosa 2	Rwanda	KT281702	-	KT281660	KT281614	KT281754
LG1952	Sticta fuliginosa 3	South Africa	KT281703	-	KT281661	KT281615	KT281755
LG3010	Sticta fuliginosa 4	Canary Islands	KT281721	-	KT281677	KT281633	KT281776
LG3100	Sticta fuliginosa 5	Azores	KT281704	-	KT281662	KT281616	KT281756
LG3537	Sticta fuliginosa 6	France	KT281727	-	KT281683	KT281638	KT281766
LG3729	Sticta fuliginosa 7	Ireland	KT281731	-	KT281687	KT281642	KT281768
LG795	Sticta fuliginosa	Madagasgar	KT281695	-	KT281653	KT281609	KT281740
LGS9	Sticta fuliginosa 8	Wales	KT281739	-	-	KT281650	KT281769

D	Taxon	Country of collection	ITS	MCM7	mtSSU	nuLSU	RPB1
.G0989	Sticta fuliginosa 1	Reunion	KT281698	-	KT281656	KT281610	KT281747
DNA5568	Sticta fuscotomentosa	Colombia	KC732661	MF984280	MG754126	MG063070	-
DNA4959	Sticta gallowayana	Colombia	KC732496	MF984285	-	MG062934	MG754087
DNA5475	Sticta globulifuliginosa	Colombia	KC732608	-	-	MG062924	-
DNA5444	Sticta guascensis	Colombia	KC732581	MF984289	MG754150	MG062928	-
DNA5457	Sticta gyalocarpa	Colombia	KC732594	MF984327	MG754111	MG063043	MG754089
DNA7250	Sticta gyalocarpoides	Costa Rica	MG367403	MF984326	-	MG063044	-
DNA5477	Sticta hirsutofuliginosa	Colombia	KC732610	MF984311	MG754152	MG062950	-
DNA6199	Sticta humboldtii	Colombia	KC732702	MF984312	MG754118	MG062951	-
DNA5586	Sticta hypoglabra	Colombia	KC732667	MF984322	MG754104	MG063001	-
DNA5549	Sticta impressula	Colombia	KC732646	MF984287	MG754110	MG062931	-
DNA7291	Sticta inversa	Colombia	MG367407	MF984213	-	-	-
DNA6339	Sticta isidioimpressula	Colombia	KC732761	MF984219	-	MG062936	-
DNA4982	Sticta isidiokunthii	Colombia	KC732522	MF984288	MG754189	MG062930	MG754088
DNA8081	Sticta isidiopedunculata	Hawaii	MG367425	MF984211	MG754137	MG063037	-
DNA5607	Sticta jaguirreana	Colombia	MG754195	-	MG754162	MG062999	-
DNA7223	Sticta laciniata	Costa Rica	MG367399	-	MG754179	MG062984	-
DNA7301	Sticta laevis	Colombia	MG367409	MF984206	-	MG063052	-
DNA5589	Sticta laselvae	Colombia	KC732673	MF984269	MG754145	MG063008	-
DNA13538	Sticta latifrons	New Zealand	MF373763	MF984230	MG754173	MG063015	-
DNA13876	Sticta latifrons (cyanomorph)	New Zealand	MF373800	-	-	MG063016	-
DNA5460	Sticta leucoblepharis	Colombia	KC732597	MF984276	-	MG063063	-
DNA8131	Sticta limbata 6	Hawaii	MG367428	MF984298	MG754181	MG062940	-
.G2230	Sticta limbata	Canary Islands	KT281706	-	KT281664	KT281618	KT281758
.G2690	Sticta limbata 1	Scotland	KT281707	-	KT281665	KT281619	KT281759
.G2749	Sticta limbata 2	Canary Islands	KT281708	-	KT281666	KT281620	KT281760

collection LG3105 State limbata 3 Azores KT281707 \cdot KT281667 KT281621 \cdot LG3170 Sitca limbata 7 Canada KT281710 \cdot KT281647 KT281623 \cdot LG3544 Sitca limbata 4 France KT281711 \cdot KT281647 KT281639 KT281761 LG3868 Sitca limbata 5 Azores KT281711 \cdot \cdot KT281639 KT281761 DNA5028 Sitca lobulata Colombia KC732555 MF984238 MG754113 MG062901 \cdot DNA5679 Sitca lobulata 1 Colombia KC732762 \cdot \cdot MG062905 \cdot DNA5679 Sitca nacrocyphelia Colombia KC732620 MF984213 \cdot MG062905 \cdot DNA5510 Sitca macrocyphelia Colombia KC732620 MF984131 \cdot MG06305 \cdot DNA5510 Sitca macrocyphelia Colombia KC732620 MF984131 \cdot MG754102	ID	I, CONTINUED Taxon	Country of	ITS	MCM7	mtSSU	nuLSU	RPB1
LG3170Nicta limbata 7CanadaKT281710-KKT281624KT281624CLG3544Sicta limbata 4FranceKT281728-KT28164KT281630KT281761LG3868Sicta limbata 5AoresKT281710-KT28162KT281761KT281620KT281761DNA5028Sicta lobariatidesColombiaKC732555MF984238MG754113MG06296-DNA6279Sicta lobulataColombiaKC732727MG06206-DNA5430Sicta lobulataColombiaKC732767MF984213MG754122MG06296-DNA5430Sicta lambschitColombiaKC732662MF984213MG754122MG06306-DNA5510Sicta macrocyphellasColombiaKC732697MF984218JQ736018JQ736002KT281740DNA5510Sicta macrochyllaColombiaKC732637AF984318JQ736018JQ736002KT281740DNA5510Sicta macrochyllaColombiaKC732637AF984318JQ736018JQ736002KT281740DNA5510Sicta macrochyllaColombiaKC732637JP884318JQ736018JQ736002KT281740DNA5510Sicta macrochyllaColombiaKC732637JP884318JQ736018JQ736012JDNA5510Sicta macrochyllaColombiaKC732637JP884318JQ736118JQJDNA5510Sicta macrochyllaColombiaKC732637JP894318JG754119JJ <th></th> <th></th> <th>collection</th> <th></th> <th></th> <th></th> <th></th> <th></th>			collection					
LG3544 Sitcla limbala 4 France KT281728 - KT28184 KT281634 KT281737 LG3868 Sitcla limbala 5 Acores KT28171 - - KT281620 KT281741 DNA5028 Sitcla lobalata Colombia KC732555 MF984238 MG754U13 MG602900 - DNA4930 Sitcla lobalata Colombia KC732757 MF984214 MG754092 MG062960 - DNA5020 Sitcla lumbschit Colombia KC732757 MF984120 MG74092 MG063060 - DNA5100 Sitcla macrocyphellata Colombia KC732757 MF984120 MG74092 G063050 - DNA5501 Sitcla macrophylla Colombia KC732757 MF984130 - MG63070 - DNA5502 Sitcla macrophylla Colombia KC732670 MF984130 - MG754092 K7281740 DNA5510 Sitcla macrophylla Remion JQ735950 - MG754092 G736002 - - DNA5502 Sitcla macrophylla Colombia K732675 MF98413 MG754102 - - DNA5513 Sitcla macrophylla Colombia K7326167 MF984205 MG754102	LG3105	Sticta limbata 3	Azores	KT281709	-	KT281667	KT281621	-
LG3868Sticta limbata 5AzoresKT281711KT281721KT281721DNA5028Sticta lobariotidesColombiaKC732555MF984238MG754113MG062960-DNA4939Sticta lobulataColombiaKC732727MG062960-DNA6270Sticta lobulataColombiaKC732757MF984212MG75402MG062960-DNA5430Sticta lobulataColombiaKC732575MF984212MG764035DNA5509Sticta macrozyphellataColombiaKC732619MF984212MG764092MG764090LG0946Sticta macrozyphellataColombiaKC732619-MG75402MG764093KT281741DNA5510Sticta macrozyphellataColombiaKC732619-MG75402MG754003KT281741DNA5530Sticta macrozhallinaColombiaKC732637-MG754102MG764033-DNA5520Sticta macrozhallinaColombiaKC732637-MG754102MG063033-DNA5521Sticta macrozhallinaColombiaKC732617-MG754102MG764033-DNA5520Sticta macrozhallinaColombiaKC732514MF984208MG754102MG663032DNA5521Sticta macrozhallinaColombiaKC732514MF984314MG754106MG663032DNA4975Sticta macrozhallinaReunionJQ7359807MF984326	LG3170	Sticta limbata 7	Canada	KT281710	-	-	KT281622	-
DNA5028 Sticta lobarioides Colombia KC732555 MF984238 MG754113 MG062992 . DNA4939 Sticta lobulata Colombia KC732757 MF984274 MG754098 MG062960 . DNA6279 Sticta lobulata I Colombia KC732757 - - MG062961 . . DNA5508 Sticta lumbschi Colombia KC732670 MF984213 MG754092 MG063050 . DNA5510 Sticta macrogylellau Colombia KC732670 MF984213 MG754092 MG063050 . DNA5511 Sticta macrogylellau Colombia KC732670 MF984218 MG754092 MG754092 MG754092 MG754092 MG754092 . DNA5510 Sticta macrophyllau Colombia KC732657 MF984208 MG754012 MG754092 .	LG3544	Sticta limbata 4	France	KT281728	-	KT281684	KT281639	KT281767
DNA4939Sticta lobulataColombiaKC732482MF984271MG754098MG062960-DNA6279Sticta lobulata IColombiaKC73277MG062961-DNA5436Sticta lumbschiiColombiaKC732575MF984212MG754124MG063055-DNA559Sticta macrocyphellataColombiaKC732662MF984313-MG063056-DNA5511Sticta macrocyphellataColombiaKC732619-MG754092MG063045MG754092LG0946Sticta macrophyllaReunionJQ735985-JQ736018JQ736002KT281744DNA5520Sticta macrothallina (cyanomorph)ColombiaKC732637-MG754107MG063033-DNA8521Sticta macrothallina (cyanomorph)ColombiaKC732653MF984314MG754107MG063033-DNA8521Sticta macrothallina (cyanomorph)ColombiaKC732654MF984325DNA8522Sticta macrothallina 	LG3868	Sticta limbata 5	Azores	KT281711	-	-	KT281623	KT281761
NAA6279 Sticta lobulata I Combia KC732727 · · MG06201 · DNA5436 Sticta lumbschi Colombia KC73275 MF98412 MG75412/ HG063055 · DNA5569 Sticta macrocyphellati Colombia KC732662 MF984313 · MG06305 · DNA5510 Sticta macrocyphellati Colombia KC732662 MF984313 · MG06305 · · DNA5510 Sticta macrocyphellati Colombia KC732662 MF984314 · MG06304 MG754002 KT281744 DNA5520 Sticta macrothallinati Colombia KC732657 MF984208 MG754102 MG063032 ·	DNA5028	Sticta lobarioides	Colombia	KC732555	MF984238	MG754113	MG062992	-
NAS436 Sticta humbschi Colombia KC732575 MF98412 MC751212 MG063055 - DNA5590 Sticta macrocyphellau Colombia KC732662 MF984313 - MG063056 - DNA5511 Sticta macrocyphellau Colombia KC732619 - MG754092 MG063050 MG754092 LG0946 Sticta macrophyllau Colombia KC732629 MF984208 MG75412 MG063031 TS218744 DNA5530 Sticta macrothallina Colombia KC732637 - MG754102 MG063032 - <td>DNA4939</td> <td>Sticta lobulata</td> <td>Colombia</td> <td>KC732482</td> <td>MF984271</td> <td>MG754098</td> <td>MG062960</td> <td>-</td>	DNA4939	Sticta lobulata	Colombia	KC732482	MF984271	MG754098	MG062960	-
DNA5569Sticta macrocyphellataColombiaKC732662MF984313-MG063056-DNA5511Sticta macrogyalocarpaColombiaKC732619-MG754092MG063045MG754090LG0946Sticta macrophyllaReunionJQ735985-JQ73618JQ736002KT281744DNA5539Sticta macrothallinaColombiaKC732629MF984208MG754102MG063034-DNA5562Sticta macrothallinaColombiaKC732637-MG754107MG063033-DNA5529Sticta macrothallinaColombiaKC732657-MG754107MG063032-DNA4975Sticta maculofuliginosaColombiaKC732514MF984314MG754106MG063032-DNA4975Sticta maculofuliginosaColombiaKC732637DNA4975Sticta maculofuliginosaColombiaKC732614MF984325DNA4975Sticta maculofuliginosaColombiaKC732614MF984235DNA4975Sticta marilandiaReunionJQ735980DNA1320Sticta menziesiiNew ZealandMG367415MF984251MG754101MG063014DNA13430Sticta menziesiiNew ZealandMF373788MF984254-MG063014DNA13430Sticta menziesiiNew Zealand<	DNA6279	Sticta lobulata 1	Colombia	KC732727	-	-	MG062961	-
DNA5511 Sticta macrogyalocarya Colombia KC732619 - MG754092 MG063045 MG754090 LG0946 Sticta macrophylla Reunion JQ735985 - JQ736018 JQ736002 KT281744 DNA5539 Sticta macrothallina Colombia KC732629 MF984208 MG754102 MG063034 - DNA5562 Sticta macrothallina I Colombia KC732637 - MG754107 MG063033 - DNA5520 Sticta macrothallina I Colombia KC732655 MF984314 MG754107 MG063032 - <td< td=""><td>DNA5436</td><td>Sticta lumbschii</td><td>Colombia</td><td>KC732575</td><td>MF984212</td><td>MG754124</td><td>MG063055</td><td>-</td></td<>	DNA5436	Sticta lumbschii	Colombia	KC732575	MF984212	MG754124	MG063055	-
LG0946Sticta macrophyllaReunionJQ735985-JQ736018JQ736002KT281744DNA5539Sticta macrothallinaColombiaKC732629MF984208MG754122MG063034-DNA5562Sticta macrothallina 1ColombiaKC732637-MG754107MG063033-DNA5529Sticta macrothallina $(cyanomorph)$ ColombiaKC732655MF984314MG754107MG063032-DNA4975Sticta maculofuliginosColombiaKC732514MF984325DNA8052Sticta maculofuliginosColombiaKC732514MF984325DNA8052Sticta maculofuliginosColombiaKC732614MF984325DNA8052Sticta maculofuliginosColombiaKC732614MF984325DNA8052Sticta maculofuliginosColombiaKC732614MF984325DNA8052Sticta maculofuliginosReunionQ735980-MF984325DNA7378Sticta marginalisReunionMG367415MF984255MG75419MG063013DNA13829Sticta menziesii 1New ZealandMF373788MF984255-MG063015DNA13430Sticta menziesii 1New ZealandNF373788MF984255-MG063015 <tr <tr="">DNA13430</tr>	DNA5569	Sticta macrocyphellata	Colombia	KC732662	MF984313	-	MG063056	-
DNA5539 Sticta macrothallina Colombia KC732629 MF984208 MG754122 MG063034 - DNA5562 Sticta macrothallina 1 Colombia KC732637 - MG754107 MG063033 - DNA5529 Sticta macrothallina (yanomorph) Colombia KC732655 MF984314 MG754102 MG063032 - <td>DNA5511</td> <td>Sticta macrogyalocarpa</td> <td>Colombia</td> <td>KC732619</td> <td>-</td> <td>MG754092</td> <td>MG063045</td> <td>MG754090</td>	DNA5511	Sticta macrogyalocarpa	Colombia	KC732619	-	MG754092	MG063045	MG754090
DNA5562Sticta macrothallina IColombiaKC732637-MG754107 MG063033-DNA5529Sticta macrothallina (zyanomorph)ColombiaRC732655MF984314MG754106 MG063032-DNA4975Sticta maculofuliginosaColombiaKC732514MF984325DNA4975Sticta maculofuliginosaColombiaKC732514MF984325DNA4975Sticta maculofuliginosaColombiaKC732514MF984325DNA8052Sticta marculofuliginosaReunionJQ735980-JQ736013JQ735997KT281748DNA7378Sticta marziandiaReunionJQ735980-JQ736013JQ735997KT281748DNA13520Sticta menziesiiNew ZealandMF373761MF984251MG754160MG063015-DNA13820Sticta menziesii 1New ZealandMF373788MF984254-MG063014-DNA13430Sticta menziesii 1New ZealandAF373788MF984255-MG063075-	LG0946	Sticta macrophylla	Reunion	JQ735985	-	JQ736018	JQ736002	KT281744
Sticta macrothallina (zanomorph) Colombia KC732655 MF984314 MG754106 MG063032 A DNA4975 Sticta maculofuliginosa Colombia KC732514 MF984325 -	DNA5539	Sticta macrothallina	Colombia	KC732629	MF984208	MG754122	MG063034	-
DNA5529ColombiaKC732655MF984314MG754106MG063032-DNA4975Sticta maculofuliginosaColombiaKC732514MF984235DNA8052Sticta maculofuliginosaColombiaKC732514MF984302DNA8052Sticta maculofuliginosaHawaiiMG367423MF984302MG754093MG062922LG1023Sticta marginalisReunionJQ735980-JQ736013JQ735997KT281748DNA7378Sticta marilandiaEcuadorMG367415MF984251MG75410MG062971-DNA13522Sticta menziesiiNew ZealandMF373788MF984254-MG063014-DNA13430Sticta menziesiiNew Zealand-MF984255-MG063075-	DNA5562	Sticta macrothallina 1	Colombia	KC732637	-	MG754107	MG063033	-
Sticta maculohyposcrobiculataHawaiiMG367423MF984302MG754093MG062922-LG1023Sticta marginalisReunionJQ735980-JQ736013JQ735997KT281748DNA7378Sticta marilandiaEcuadorMG367415MF984251MG754160MG062971-DNA13522Sticta menziesiiNew ZealandMF373761MF984225MG754191MG063013-DNA13829Sticta menziesii 1New ZealandMF373788MF984254-MG063014-DNA13430Sticta menziesii 1New Zealand-MF984255-MG063075-	DNA5529		Colombia	KC732655	MF984314	MG754106	MG063032	-
DNA8052HawaiiMG367423MF984302MG754093MG062922-LG1023Sticta marginalisReunionJQ735980-JQ736013JQ735997KT281748DNA7378Sticta marilandiaEcuadorMG367415MF984251MG754160MG062971-DNA13522Sticta menziesiiNew ZealandMF373761MF984225MG754191MG063013-DNA13829Sticta menziesii 1New ZealandMF373788MF984254-MG063014-DNA13430Sticta menziesiiNew Zealand-MF984255-MG063075-	DNA4975	Sticta maculofuliginosa	Colombia	KC732514	MF984235	-	-	-
DNA7378Sticta marilandiaEcuadorMG367415MF984251MG754160MG062971-DNA13522Sticta menziesiiNew ZealandMF373761MF984225MG754191MG063013-DNA13829Sticta menziesii 1New ZealandMF373788MF984254-MG063014-DNA13430Sticta menziesiiNew Zealand-MF984255-MG063075-	DNA8052			MG367423	MF984302	MG754093	MG062922	-
DNA13522Sticta menziesiiNew ZealandMF373761MF984225MG754191MG063013-DNA13829Sticta menziesii 1New ZealandMF373788MF984254-MG063014-DNA13430Sticta menziesiiNew Zealand-MF984255-MG063075-	LG1023	Sticta marginalis	Reunion	JQ735980	-	JQ736013	JQ735997	KT281748
DNA13829 Sticta menziesii I New Zealand MF373788 MF984254 - MG063014 - Sticta menziesii DNA13430 New Zealand - MF984255 - MG063075 -	DNA7378	Sticta marilandia	Ecuador	MG367415	MF984251	MG754160	MG062971	-
Sticta menziesii DNA13430 New Zealand - MF984255 - MG063075 -	DNA13522	Sticta menziesii	New Zealand	MF373761	MF984225	MG754191	MG063013	-
DNA13430 New Zealand - MF984255 - MG063075 -	DNA13829	Sticta menziesii 1	New Zealand	MF373788	MF984254	-	MG063014	-
	DNA13430		New Zealand	-	MF984255	-	MG063075	-
Sticta menziesii DNA13883 New Zealand - MF984257 - MG063076 - (cyanomorph) I	DNA13883		New Zealand	-	MF984257	-	MG063076	-
DNA5474 Sticta microisidiata Colombia KC732607 MF984324 MG754144 MG063039 -	DNA5474	Sticta microisidiata	Colombia	KC732607	MF984324	MG754144	MG063039	-

ID	Taxon	Country of collection	ITS	MCM7	mtSSU	nuLSU	RPB1
DNA6186	Sticta microisidiata 1	Colombia	KC732699	MF984325	-	MG063040	-
DNA5446	Sticta minutula	Colombia	KC732583	MF984297	-	MG063042	-
DNA5003	Sticta montana	Colombia	KC732537	MF984248	MG754099	MG062967	MG754084
DNA5010	Sticta montana 1	Colombia	MG367388	MF984249	MG754100	MG062970	MG754086
DNA5017	Sticta montana 2	Colombia	KC732548	MF984247	MG754101	MG062966	-
DNA5605	Sticta montana 3	Colombia	KC732688	MF984321	MG754161	MG062969	-
DNA6229	Sticta montana 4	Colombia	KC732712	-	-	MG062975	-
DNA6326	Sticta montana 5	Colombia	KC732753	MF984250	MG754159	MG062972	MG754085
DNA6327	Sticta montana 6	Colombia	MG367394	MF984245	MG754163	MG062968	-
DNA5524	Sticta neopulmonarioides	Colombia	KC732625	MF984204	MG754115	-	-
DNA5528	Sticta neopulmonarioides1	Colombia	KC732628	-	-	MG062989	-
DNA5537	Sticta neopulmonarioides (cyanomorph)	Colombia	KC732636	MF984236	-	MG062993	-
DNA5557	Sticta neopulmonarioides (cyanomorph) 1	Colombia	KC732651	-	-	MG062994	-
DNA5558	Sticta neopulmonarioides (cyanomorph) 2	Colombia	KC732652	-	-	MG062995	-
DNA5021	Sticta papillata	Colombia	KC732552	MF984232	MG754123	MG063053	-
DNA7371	Sticta papillata 1	Colombia	MG367414	MF984283	MG754133	MG063054	-
DNA5019	Sticta parahumboldtii	Colombia	KC732550	MF984308	MG754151	MG062949	-
DNA4921	Sticta paralimbata	Colombia	KC732466	-	-	MG062959	-
DNA4958	Sticta phyllidiofuliginosa	Colombia	KC732495	MF984329	-	-	-
DNA5456	Sticta phyllidiokunthii	Colombia	KC732593	MF984291	MG754112	MG062932	-
DNA5540	Sticta phyllidiokunthii (chloromorph)	Colombia	KC732638	MF984286	MG754109	MG062933	-
DNA6346	Sticta plumbeociliata	Colombia	KC732767	MF984290	-	MG062935	-

ID	Taxon	Country of collection	ITS	MCM7	mtSSU	nuLSU	RPB1
DNA4934	Sticta pseudobeauvoisii	Colombia	KC732478	MF984265	MG754143	MG063007	-
DNA7254	Sticta pseudodilatata	Costa Rica	MG367405	MF984214	MG754127	MG063058	-
DNA6299	Sticta pseudohumboldtii	Colombia	KC732736	MF984307	-	MG062947	-
DNA4922	Sticta pseudolimbata	Colombia	KC732467	MF984316	MG754142	MG062955	-
DNA5556	Sticta pseudolobaria	Colombia	KC732650	-	-	MG062996	-
DNA6276	Sticta pseudosylvatica	Colombia	KC732724	MF984335	-	MG062953	-
DNA6198	Sticta puracensis	Colombia	KC732701	MF984243	MG754175	i -	-
DNA4953	Sticta rhizinata	Colombia	KC732491	-	MG754097	MG062962	-
DNA7357	Sticta roseocyphellata	Colombia	MG367412	MF984207	MG754176	MG062938	-
JM121	Sticta scabrosa	Puerto Rico	MG367374	MF984334	-	MG063002	-
DNA4948	Sticta scabrosa 1	Colombia	MG367387	MF984258	-	-	-
DNA8042	Sticta scabrosa/hawaiiensis	Hawaii	MG367422	-	MG754148	MG063003	-
DNA8150	Sticta scabrosa/hawaiiensis 1	Hawaii	MG367429	MF984266	MG754147	MG063004	-
DNA8152	Sticta scabrosa/hawaiiensis 2	Hawaii	MG367431	MF984267	MG754149	MG063005	-
DNA8195	Sticta scabrosa/hawaiiensis 3	Hawaii	MG367430	MF984268	MG754146	6 MG063006	-
M114	Sticta schizophylliza	Puerto Rico	MG367376	MF984281	-	MG063071	-
ONA6356	Sticta schizophylliza 1	Puerto Rico	KC732774	MF984282	MG754190	MG063072	-
DNA5405	Sticta sp.	Brazil	KC732568	MF984319	-	MG062954	-
DNA7297	Sticta sp.1	Colombia	MG367408	MF984209	MG754174	MG063061	-
DNA7351	Sticta sp.	Colombia	MG367411	-	MG754153	-	-
DNA7384	Sticta sp.	Brazil	MG367417	-	-	MG063000	-
DNA7389	Sticta sp. 2	Brazil	MG367418	MF984294	MG754183	MG062945	-
DNA8047	Sticta sp.	Hawaii	MG754196	-	MG754095	MG062921	-

ID	I, CONTINUED Taxon	Country of	ITS	MCM7	mtSSU	nuLSU	RPB1
		collection					
LG2229	Sticta sp.	Canary Islands	KT281705	-	KT281663	KT281617	KT281757
LG2752	Sticta sp.	Canary Islands	KT281720	-	KT281676	KT281632	KT281764
LG3173	Sticta sp.	Canada	KT281723	-	KT281679	-	-
JM130	Sticta sp. nov.	Puerto Rico	MG367373	MF984275	-	MG062986	-
DNA13526	Sticta squamata	New Zealand	MG367381	MF984260	MG754138	MG063030	-
DNA13528	Sticta squamata	New Zealand	MG367382	MF984226	MG754168	MG063031	-
DNA4925	Sticta squamifera	Colombia	KC732470	MF984217	-	MG062965	-
DNA14462	Sticta stipitata	Australia	MG754197	MF984274	MG754141	MG063024	-
DNA13537	Sticta subcaperata	New Zealand	MG754198	MF984231	MG754169	MG063017	-
DNA13860	Sticta subcaperata 1	New Zealand	MG754199	-	MG754170	MG063023	-
DNA13861	Sticta subcaperata 2	New Zealand	MG754200	MF984273	-	MG063022	-
DNA13864	Sticta subcaperata 3	New Zealand	MG367385	MF984261	-	MG063020	-
DNA5579	Sticta subfilicinella	Colombia	KT354937	-	-	MG063064	-
LG1038	Sticta sublimbata 1	Reunion	KT281699	-	KT281657	KT281611	KT281750
LG0885	Sticta sublimbata	DR Congo	JQ735986	-	JQ736019	JQ736003	KT281771
DNA6292	Sticta sublimbatoides	Colombia	KC732732	MF984333	-	MG062964	-
LG3536	Sticta sylvatica	France	KT281726	-	KT281682	KT281637	KT281788
LG3723	Sticta sylvatica 1	Great Britain	KT281730	-	KT281686	KT281641	KT281778
LG3780	Sticta sylvatica 2	Ireland	KT281735	-	KT281691	KT281646	KT281782
LG3837	Sticta sylvatica 3	France	KT281736	-	KT281692	KT281647	KT281783
DNA5608	Sticta tomentosa	Colombia	KC732690	MF984279	MG754128	MG063065	-
DNA8041	Sticta tomentosa/hawaiiensis	Hawaii	MG367420	-	MG754130	MG063066	-
DNA8078	Sticta tomentosa/hawaiiensis 1	Hawaii	MG367424	MF984278	MG754131	MG063069	-
DNA8079	Sticta tomentosa/hawaiiensis 2	Hawaii	MG367421	MF984277	MG754132	MG063067	-

ID	Taxon	Country of collection	ITS	МСМ7	mtSSU	nuLSU	RPB1
DNA8184	Sticta	Hawaii	MG367433	_	MG754129	MG063068	
21.10101	tomentosa/hawaiiensis 3		110007100				
LG0925	Sticta umbilicariaeformis	Rwanda	KT281697	-	KT281655	KT281652	KT281742
LG1037	Sticta variabilis	Reunion	JQ735987	-	JQ736020	JQ736004	KT281749
DNA5593	Sticta viviana	Colombia	KC732680	-	MG754155	MG062925	-
DNA4940	Sticta weigelii	Colombia	KC732483	MF984262	MG754102	MG062982	-
DNA6187	Sticta weigelii 1	Colombia	MG367392	MF984293	MG754166	MG062979	-
DNA7358	Sticta weigelii 2	Colombia	MG367413	-	MG754164	MG062981	-

3.2.2 DNA isolation, polymerase chain reaction (PCR) amplification, and sequencing

DNA was isolated from small portions of thallus using the ZR Fungal/Bacterial DNA MiniPrep'" (Zymo Research, Irvine, CA, USA). The internal transcribed spacer (ITS ~ 550 bp, N = 219), ribosomal DNA from the mitochondrial small subunit (mtSSU ~ 800 bp, N = 153) and the nuclear large subunit (nuLSU ~ 550 bp, N = 212) were amplified, along with two low-copy nuclear protein coding genes: DNA replication licensing factor (*MCM7* ~ 600 bp, N = 134) and RNA polymerase beta subunit one (RPBI ~ 1000 bp, N = 60). All PCR amplifications were carried out using MyTaqTM Red DNA Polymerase (Bioline, Taunton, MA, USA). Primers and PCR conditions are summarized in Table VII. Due to poor sequencing results using previously described primers (Mangold et al. 2008; Vilgalys and Hester 1990; Zoller, Scheidegger, and Sperisen 1999), new *Sticta*-specific primers were developed for these loci (Table VII) which increased amplification success. Products that produced high quality PCR bands in agarose gel electrophoresis were cleaned with ExoSAP-IT (USB, Cleveland, OH, USA), following the manufacturer's instructions. Cycle sequencing reactions were carried out using BigDye v3.1 (Applied Biosystems, Foster City, CA, USA) and products were cleaned using an alcohol precipitation method. Sequencing of amplified products was conducted with an ABI 3730 automated sequencer (Applied Biosystems) at the Field Museum in Chicago, IL, USA.

M. I	D • N		Annealing	Df
Marker	Primer Name	Forward Primer Sequence	Temperature (C)	Reference
ITS	ITS1F	CTTGGTCATTTAGAGGAAGTAA	48	Zoller et al. (1999)
115	ITS4	TCCTCCGCTTATTGATATGC	48	Zoner et al. (1999)
ITS	ITS_Sticta_F	GATTTTGTGGGTGGTGGTGC	53	This study
115	ITS_Sticta_R	TTAACCTCGCGTTCGGTTCA	55	This study
mtSSU	mrSSU1	AGCAGTGAGGAATATTGGTC	50	$\mathbf{Z}_{\mathbf{a}} = \mathbf{z}_{\mathbf{a}} $
missu	mrSSU3	ATGTGGCACGTCTATAGCCC	50	Zoller et al. (1999)
mtSSU	mtSSU_Sticta_F	CTTGGAGGAATGAAAAGCAATAGC	43	This study
missu	mtSSU_Sticta_R	TGATGACTTGTCATGTTCCCTCT	43	This study
nuLSU	AL2R	GCGAGTGAAGCGGCAACAGCTC	55	Mangold et al. (2008)
nuLSU	LR3	GGTCCGTGTTTCAAGAC	55	Vilgalys & Hester (1990)
nuLSU	nuLSU_Sticta_F	CCAACAGGGATTGCCTCAGT	53	This state
nuLSU	nuLSU_Sticta_R	ATTACGCCAGCATCCTAGCC	55	This study
	MCM7_Sticta_F	AAGCCATCGGTGCAGGTAAA	<i></i>	
MCM7	MCM7_Sticta_R	CGATTTAGCCACACCAGGGT	65	This study

TABLE VII. Polymerase chain reaction primers and annealing temperatures used in this study.

3.2.3 Sequence alignment

Sequences were assembled and edited using Geneious 8.1.7 (Kearse et al. 2012). All sequences were confirmed as being *Sticta* using Genbank's BLASTn suite (Benson et al. 2013). Multiple sequence alignment was conducted using the MAFFT 7.017 (Katoh and Standley 2013) plugin in Geneious 8.1.7 under default settings. Alignments of ITS and mtSSU were reduced by deleting ambiguously aligned regions using the Gblocks 0.91b server (Castresana 2000), selecting all options for less stringent selection (allowing for smaller final blocks, gap positions within the final blocks, and less strict flanking positions). Each single locus alignment was analyzed using the RaxML 8.2.11 (Stamatakis 2014) plugin in Geneious, each with 100 bootstrap replicates to check for any well-supported conflict among the single locus trees. Four separate concatenated alignments were produced to see how missing data and number of tips affect the estimation of divergence times in *Sticta*. Three alignments were concatenated in Generous with five loci (ITS, *MCM7*, mtSSU, nuLSU, and *RPB1*) having 224, 196, and 118 samples and decreasing amounts of missing loci respectively (Table VIII). A three-locus concatenated dataset containing sequences of ITS, mtSSU and nuLSU of 147 samples was assembled, producing a dataset with no missing loci. The software JModelTest 2.1.10 (Darriba et al. 2012) was used to determine the best-fit nucleotide substitution models for each locus in each of the four alignments (Table VIII).

# of specimens	missing loci	Locus	Aligned length	# in matrix	jModelTest AIC model selection
		ITS	450	218	TIM1+I+G
		MCM7	616	133	TrN+I+G
224	30.54%	mtSSU	673	155	TPM1uf+I+G
		nuLSU	558	211	GTR+I+G
		RPB1	1111	61	TIM3+G
		Total	3408	778	
		ITS	452	194	TIM1+I+G
		MCM7	616	123	TrNef+I+G
196	26.22%	mtSSU	673	153	TIM3+I+G
		nuLSU	558	192	TIM2+I+G
		RPB1	1111	61	TrN+G
		Total	3410	723	
		ITS	452	116	TIM1+I+G
		MCM7	616	86	TVMef+I+G
118	26.95%	mtSSU	673	87	TIM3+I+G
		nuLSU	558	115	TIM2+I+G
		RPB1	1111	27	TrN+G
		Total	3410	431	
		ITS	450	147	GTR+G
147	0.00%	mtSSU	673	147	TPM3uf+I+G
		nuLSU	558	147	TIM2+I+G
		Total	1681	441	

TABLE VIII. ALIGNMENT INFORMATION AND NUCLEOTIDE EVOLUTION MODELS USED FOR ANALYSES.

3.2.4 Phylogenetic analyses, molecular dating and calibrations

Divergence time estimates were estimated in BEAST 2.1 (Bouckaert et al. 2014) using the four concatenated matrices described above (Table VIII). We used secondary calibrations from (Gaya et al. 2015) who estimated a chronogram of Eukaryotes using five loci; the tree was calibrated using eight fossils, two molecular-based calibrations, and forced monophyly at some nodes. The chronogram has representative specimens from the Lobariaceae, with *Lobaria scrobiculata* diverging from *Pseudocyphellaria anomala* and *Sticta beauvoisii* nearly 62.5 ± 20 Mya and *Sticta* diverged from *Pseudocyphellaria* nearly 40 ± 20 Mya. These estimates were used to calibrate the four alignments at the out-group nodes of *Lobaria pulmonaria* and *Pseudocyphellaria crinita*.

Input files were prepared in BEAUti (Bouckaert et al. 2014). For each analysis, clock models and trees were linked for the five loci and the model of DNA evolution, inferred in JModelTest (Table VIII) were strictly used (transitions were not estimated) for site models while nucleotide frequencies were estimated for each locus. In each analysis, a relaxed lognormal molecular clock was applied, and each run began with a random starting tree.

Different priors (yule, calibrated yule and birth/death) were initially tested in exploratory analyses with the 118-specimen dataset to examine their effect on the estimation of divergence times. For comparison of the four alignments we only used a yule prior, which assumes a constant speciation rate per lineage. *Sticta* was monophyletic in exploratory Bayesian and ML analyses, thus *Sticta* was forced to be monophyletic and the node calibration was set to a lognormal distribution at 40 Mya (M parameter = 3.69; S parameter = 0.4). Another calibration forced the monophyly of *Pseudocyphellaria crinita* plus all *Sticta* specimens and was set under a lognormal distribution to 62.5 Mya (M parameter = 4.135; S parameter = 0.4). Each analysis was

run in triplicate for 100,000,000 generations with log and tree samples saved every 10,0000th generation. We used Tracer 1.6 (Rambaut et al. 2014) to estimate run convergence, determine the burn-in cutoff (10% for each analysis), and to obtain effective sampling sizes (ESS) of the estimated parameters (an ESS > 200 was considered appropriate for use in this study). Posterior probabilities of the nodes were calculated with the sampled trees after the burn-in. If all replicates converged, one of the runs was used to produce a maximum-clade-credibility tree in TreeAnnotator 2 (Rambaut and Drummond 2013).

In addition to using secondary calibrations from (Gaya et al. 2015), we analyzed the 118specimen dataset using a molecular evolution rate of 2.43×10^9 substitution/site/year (s/s/y) for the ITS locus that were established by (Leavitt et al. 2012) for the Parmeliaceae. Although the Parmeliaceae is distantly related to the Lobariaceae, we assumed that the rates were comparable, as similar rates of molecular evolution (2.52×10^9 sys/y) have been reported in the distantly related powdery-mildews by (Takamatsu and Matsuda 2004). Analyses were run in triplicate as described above on the 118-specimen dataset.

3.2.5 Biogeographic analyses and ancestral area reconstruction

We used character mapping on the 118-tip time-calibrated phylogeny to investigate major radiations and major dispersal events of *Sticta*. Species were coded as present or absent from four broad geographic regions (New World, Old World, Australasian, and Hawaii). The data for this geographic character coding was determined by searching for geographic ranges in species descriptions in the literature (Brodo, Sharnoff, and Sharnoff 2001; Galloway 2007, 2006, 1998, 1997, 1994; Galloway, Stenroos, and Ferraro 1995; Galloway and Thomas 2001; Magain and Sérusiaux 2015; McDonald, Miadlikowska, and Lutzoni 2003; Moncada, Lücking, and Suárez 2014; Moncada, Coca, and Lücking 2013; Moncada, Lücking, and Betancourt-Macuase 2013;

Moncada and Lücking 2012; Nash et al. 2004; Simon et al. 2018; Smith et al. 2009; Suarez and Lucking 2013). To reconstruct the ancestral ranges for the major clades, we used a dispersalextinction-cladogenesis (DEC) model implemented in Lagrange (Ree and Smith 2008) using the same four-region character coding. In the continuous-time DEC model, range expansion is achieved through dispersal while range contraction is caused by extinction. Due to the highly dispersive nature of lichens and the cosmopolitan distribution of some species (*S. fuliginosa*, *S. limbata*, and *S. tomentosa*), max range sizes and dispersal were unconstrained. The most probable ancestral range of each major clade was mapped onto the phylogeny.

3.2.6 Diversification Analyses

We investigated diversification dynamics with the software Bayesian Analysis of Macroevolutionary Mixtures (BAMM; (Rabosky 2014)). BAMM can detect heterogeneity in speciation and extinction rates along the branches of a time-calibrated phylogeny using reversible MCMC, which explores all possible rate shift configurations and returns the posterior distribution. We used the 118-tip time-calibrated phylogeny as input and adjusted for incomplete sampling at the clade level using the "SamplesProbsFilename" argument in the control file (Clades I, II, and III, 75%; Clade IV, 50%; Clade V, 12.5%; *Pseudocyphellaria*, 0.5%; Lobaria 1%; see result section for the clade I, II, III, and IV). We also ran the analysis without the outgroup, removed with the drop.tips() function in the R package APE (Paradis, Claude, and Strimmer 2004) and obtained similar results. The BAMMtools v. 2.1.5 package in R (Rabosky et al. 2014) was used to determine the priors for the tree with the setBAMMPriors() command. We ran two parallel chains of 10,000,000 generations, sampling every 5O00th tree. Further analyses of the BAMM output files ("mcmcout" and "eventdata") were examined in the BAMMtools v. 2.1.5 package in R. Twenty percent of trees were discarded as burnin and ESS values were

estimated using the coda v. 0.18-1 package in R using the "mcmcout" file as an input. The "eventdata" file was used to visualize phylorate plots which depict diversification rates along the branches. Net diversification rate through time plots were generated using the plotRateThroughTime() function.

3.2.7 Binary state speciation and extinction (BiSSE) analyses

3.2.7.1 Primary photobiont association

To investigate how primary photobiont association affects diversification in Sticta, we performed a BiSSE analysis (Maddison, Midford, and Otto 2007), implemented in the R package diversitree (FitzJohn 2012). Primary photobiont, the photobiont (green algal or cyanobacterial) that is most frequently found to associate with a species, was determined by a literature search of species descriptions (Brodo, Sharnoff, and Sharnoff 2001; Galloway 2007, 2006, 1998, 1997, 1994; Galloway, Stenroos, and Ferraro 1995; D J Galloway and Thomas 2001; Magain and Sérusiaux 2015; McDonald, Miadlikowska, and Lutzoni 2003; Moncada, Reidy, and Lücking 2014; Moncada, Coca, and Lücking 2013; Moncada, Lücking, and Betancourt-Macuase 2013; Moncada and Lücking 2012; Nash et al. 2004; Smith et al. 2009; Suarez and Lucking 2013). In the case of species that are yet to be described, the authors were contacted in order to determine primary photobiont (Robert Lücking, personal communication). Although some species form photosymbiodemes, each of these species are mostly in association with one photobiont or another and these were scored accordingly in the BiSSE analyses. The BiSSE model estimates state-specific rates of character transition (q01 and q10), speciation (λ) and extinction (μ). Species primarily associated with cyanobacteria were assigned "0" and species with green algal associations were assigned "1". Since this dataset has a large asymmetry in character state (93 cyanobacterial species to 25 green algal species) and less than 300 tips, there is a potential that

there is not enough power in the data to accurately estimate differences in parameters in BiSSE (Davis, Midford, and Maddison 2013). To see how sensitive the results are to changes in the data, we randomized the character state assignment on the phylogeny, keeping the same ratio (See section on measuring Type I error below). Initial runs were conducted with no adjustment for sampling, but since the estimated amount of species in *Sticta* is conservatively estimated to be nearly 400 species (Robert Lücking, personal communication), we adjusted for incomplete sampling by entering a fraction of 30% and 29% sampled species for cyanobacterial and green algal species respectively.

We estimated parameters on an unconstrained model, where all parameters (q01, q10, λ 1, μ 0 and μ 1) were allowed to take any value and a fully constrained model, where all parameters were equal (q01 = q10, λ 0 = λ 1, and μ 0 = μ 1). To test for irreversible transition between primary photobiont, we set speciation and extinction rates to take on any value for both states and then compared models were transitions were allowed in only one direction (q01 = 0 and q10 = 0) to models that had transitions equal (q01 = q10) and the full model where transitions take on any value. Equilibrium frequencies of speciation, extinction and transition rates were estimated using Markov chain Monte Carlo (MCMC) sampling using the full model described above. We conducted the estimation with a ten-percent burnin (10,000 MCMC steps) and then 1,000,000 step-process to estimate posterior distributions.

3.2.7.2 Andean tectonic influence on diversification

To gain a better understanding of the large New World radiation of *Sticta* (mostly in Clades I, II, and III), for which we suspected that Andean tectonic activity played a major role, we assigned Andean species "1" and extra-Andean taxa "0". As above, model testing was

conducted and exploratory analyses were performed with and without sampling adjustment, each having similar outcomes.

3.2.7.3 Measuring type I error in datasets

BiSSE analyses can be biased by small sample sizes and asymmetry in character states (Davis, Midford, and Maddison 2013), and is prone to high Type I error rates (Rabosky and Goldberg 2015). To test the sensitivity of our results to both sample size and tip imbalance, we permuted the data 500 times to generate simulated data sets. To each of these simulated data sets we estimated the fit of a model where speciation rates were allowed to vary between states to a model where they were constrained to be equal. We compared to the fit of the two models using likelihood ratio tests. We defined Type I error rate as the proportion of simulated data sets where the free-speciation model was estimated to better explain the data.

3.3 Results

3.3.1 Molecular data

A total of 497 sequences were generated for this study and the other 281 sequences were used in previous studies. Details on number of taxa, unambiguously aligned sites, missing data and JModelTest AIC model selections are summarized in Table VIII. Gblocks removed 233 and 413 ambiguously aligned sites from the ITS and mtSSU datasets respectively. All alignments (individual and combined) are deposited in Treebase (S21378).

3.3.2 Phylogenetic analyses

There was no well-supported conflict among the single-locus trees using RAxML, and concatenated datasets were produced for further analyses. The five-locus datasets analyzed with a Bayesian approach (118, 196, 224-tips) recovered congruent topologies (Figure 6). *Sticta* is a well-supported monophyletic clade in relation to the outgroup species *Pseudocyphellaria crinita*

and Lobaria pulmonaria. Within Sticta, five well-supported, major clades were recovered.

Clades I, II, and III cluster in a well-supported clade sister to clade IV, which contains most of the accessions from Australia and New Zealand. Clade V is sister to the rest of *Sticta*. Backbone support for these five-locus datasets are poor, so phylogenetic relationships among clades should be interpreted with caution. The three-locus data set (147 tips) had different relationships among the major clades where clades IV and V are merged and monophyletic with clades I and III. Clade II is sister to the rest of the specimens. As with the five-locus datasets, backbone support of the three-locus tree was poor. The placement of *Sticta macrothaliana* is ambiguous, but both ML and Bayesian analyses of all datasets suggest that this species forms a distinct lineage.

3.3.3 Divergence time analyses

To see how different priors influence the estimation of divergence times using secondary calibrations, we used the 118-tip dataset to compare the models in BEAST 2.0 (Table IX). Both the yule and births/death models estimated similar divergence times for the calibrated nodes (~ 30.85 mya for *Sticta* and 46.5 mya for *Pseudocyphellaria* and *Sticta*). The calibrated yule model estimated a similar origin for *Sticta* (30.2 mya), but it recovered an earlier divergence of *Pseudocyphellaria* and *Sticta* from *Lobaria* (65.2 mya). The ITS rate calibrated analysis ($2.43 \times 10^9 \text{ s/s/y}$) had similar estimates for the origin of *Sticta* (32.3 mya), but similar to the calibrated yule analysis, the ITS rate estimated the divergence of *Pseudocyphellaria* and *Sticta* to be 63.3 mya.

TABLE IX. DIVERGENCE TIMES ESTIMATED WITH THE 118-TIP DATASET USING RATE CALIBRATED YULE AND SECONDARY CALIBRATIONS WITH YULE, CALIBRATED YULE, AND BIRTH/DEATH PRIORS SET IN BEAST.

Analysis	Sticta (Mya)	Pseudocyphellaria and Sticta (Mya)
ITS rate calibrated (Yule)	32.3	63.3
Analyses using secondary calibrations		
Yule prior	30.8	46.6
Calibrated Yule prior	30.2	65.2
Birth/Death prior	30.9	46.7

Effective sample sizes (ESS), estimated in Tracer, were all well over 200 for all parameters in both the yule and calibrated yule analyses, but in the birth/death and rate calibrated runs, some of the tree likelihoods for individual loci and the combined tree likelihood and posterior were lower than 200. Since a yule prior is a more appropriate model of recent diversification among species level lineages (Drummond et al. 2006), and ESS values were all higher than 200, this prior was used for comparing the four datasets with different amounts of missing data and tips.

All four datasets are compared in Table X. The average origin of *Sticta* is estimated to be 30.0 mya and the origin of *Pseudocyphellaria* and *Sticta* 45.2 mya. All datasets suggest a Miocene dominated diversification of the five major clades in *Sticta* (Table X, Figure 6), but the larger datasets (196 and 224 tips) show diversification throughout and after the Miocene.

Dataset	Max loci	Min loci	# Tips	Sticta only (Mya)	Sticta+Pseudocyphellaria (Mya)
Gappy	5	2	224	32.1	44.5
Less gappy	5	3	196	30.2	44.4
Nonredundant	5	3	118	30.8	46.6
Complete	3	3	147	26.8	-

TABLE X. DIVERGENCE TIME ESTIMATIONS FROM FOUR DIFFERENT CONCATENATED ALIGNMENTS

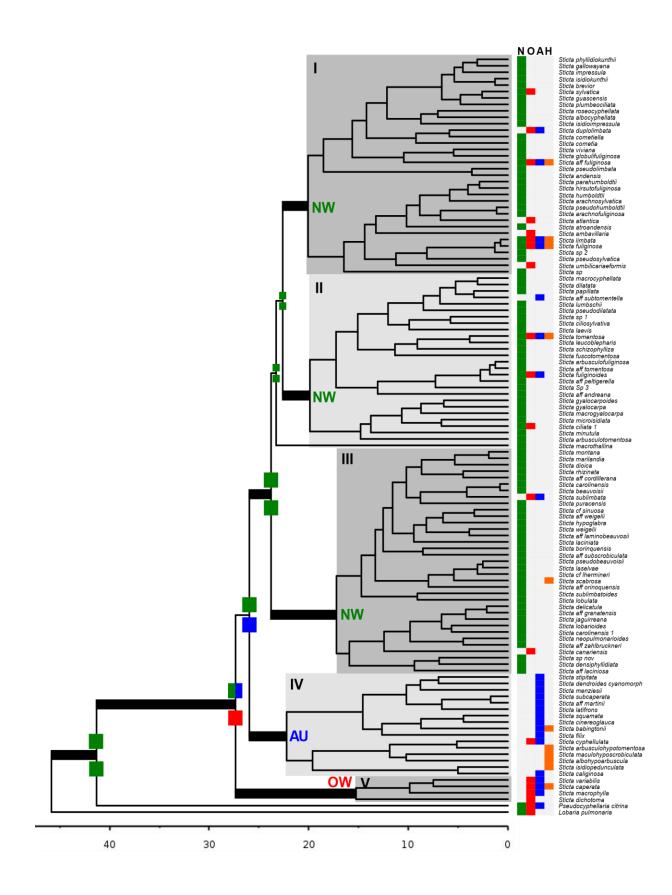


Figure 6. Time-calibrated chronogram of the phylogeny of the genus *Sticta* including 118 tips. Grey boxes circumscribe the major clades I, II, III, IV, and V. Highly supported branches (bootstrap support > 70 and posterior probability > 90) are depicted as thick branches. Four columns of character states for occurrence are coded at the tips of the phylogeny (NW = New World, OW = Old World, AU = Australasian, HA = Hawaii). Ancestral ranges, estimated with the DEC model in Lagrange, are mapped onto the branches indicating species range divergence at the nodes.

3.3.4 Biogeographic Analysis

The 118-tip dataset was used for biogeographic and diversification analyses because it is pruned to have only one individual per species and always had ESS values higher than 200 for all estimated parameters in the BEAST analysis. Geographic character states are mapped onto the 118-tip phylogeny in Figure 6. Geographic structure can be observed; Clades I, II, and III are dominated by New World taxa, suggesting a major radiation in the New World. Similarly, an Australasian radiation of lesser scale, is found in Clade IV. Old World species mostly are found in Clade V, but there seems to be numerous dispersal event from the New World to the Old World. A striking pattern of long-distance dispersal is observed in Hawaiian species, which are represented in every major clade, demonstrating the remarkable dispersal ability of the genus.

Ancestral range reconstructions estimated with the DEC model are mapped onto the phylogeny in Figure 6. Clades I, II and III have ancestral ranges in the New World, Clade IV in Australasia, and Clade V in the Old World. The reconstruction suggests a New World origin for *Sticta*, but this should be interpreted with caution, as backbone support was poor for certain nodes.

3.3.5 Diversification analysis

The ESS obtained from two parallel runs in BAMM were similar and well over 200 and indicated that both runs converged. In the time-calibrated phylogeny of *Sticta*, there were no distinct rate shifts, with the posterior distribution of the number of shifts suggesting zero shifts with a frequency of 0.97. Exploratory analyses run without adjustment for incomplete sampling detected rate shifts in the tree on the ancestral node of *Sticta*. The mean phylorate plot (Figure 7) shows a pattern of decreasing speciation rates through time, but this decrease in rate is low, starting at just below 0.2 lineages per million years and only decreasing slightly through time. On the other hand, extinction rates remained close to zero throughout time.

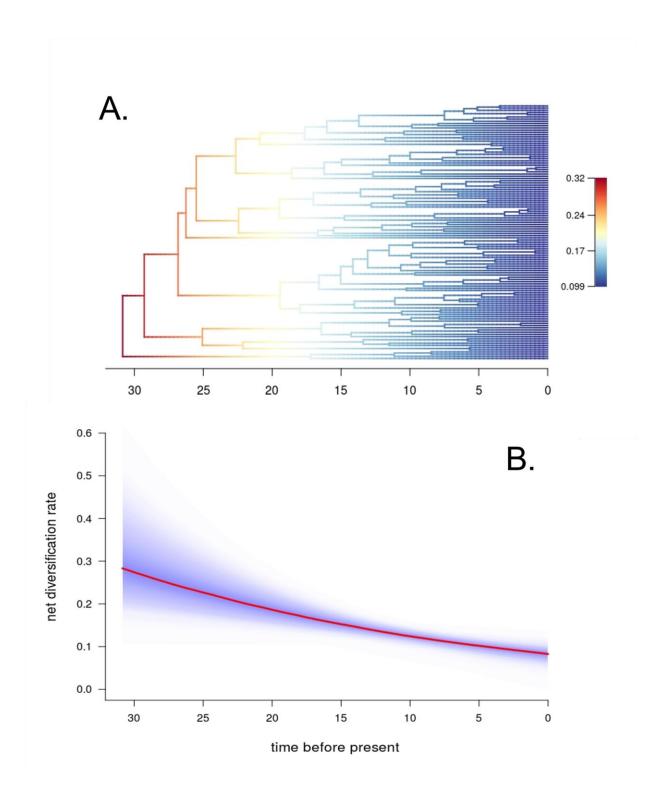


Figure 7. BAMM mean phylorate plot on (A) unrooted *Sticta* phylogeny of 116 tips and (B) a net diversification through time plot.

3.3.6 Binary state speciation and extinction (BiSSE) analyses

3.3.6.1 Primary photobiont association

Model testing results, including estimated speciation, extinction and transition parameters, for analyses adjusted for sampling and unadjusted are listed in Table XI. Sampling adjustment had no effect on the model selection, but the diversification parameters are different. The distribution of character states on the 118-tip tree is visualized in Figure 8A. All the major clades contain both green algal and cyanobacterial species. Clades I and II are composed mostly of primarily cyanobacterial species, but each major clade has one green algal species. Clade III is the largest and it contains nine green algal species. Clades IV and V are composed mostly of green algal taxa, but they both contain cyanobacterial species too.

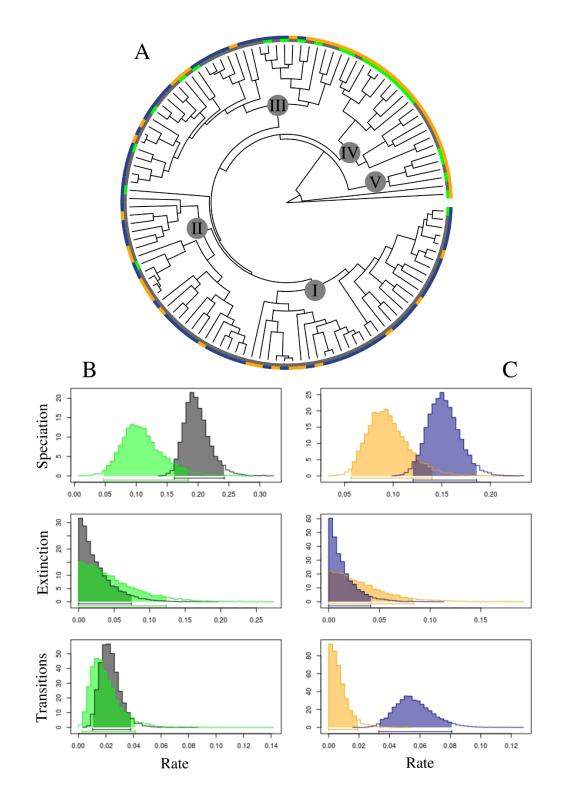


Figure 8. (A) Distribution of character states for photobiont association and Andean tectonic influence mapped onto the tips of the 118-tip phylogeny with the five well-supported major clades labeled at the nodes. Photobiont: Green-algal associations shown in green; cyanobacterial associations shown in grey. Andean tectonic influence: Andean species shown in blue and non-

Andean species shown in orange. (B) Posterior distributions (95%) from a BiSSE MCMC analysis of photobiont associations. The plots are as follows; top = speciation rate, middle = extinction rates, and bottom = transitions. Cyanobacterial associations ("1") are depicted in grey and green-algal associations ("0") are in green. (C) Posterior distributions (95%) from a BiSSE MCMC analysis of Andean tectonic associations. The plots are as follows; top = speciation rate, middle = extinction rates, and bottom = transitions. The plots are as follows; top = speciation rate, middle = extinction rates, and bottom = transitions. Andean species ("1") are depicted in blue and non-Andean species ("0") are in orange.

Regardless of the sampling setting in diversitree, adjusted and unadjusted analyses were congruent (Table XI). Speciation rates were higher for the cyanobacterial state (0) than the green algal state (1), suggesting that cyanobacterial species have a higher speciation rate than green algal species, but there was slight overlap of the posterior distributions (Figure 8B). Both extinction and transition rates were mostly overlapping, indicating that extinction and transitions between primary photobiont are similar regardless of the primary photobiont association.

The "no extinction" and "free-speciation" models had similar likelihoods and AIC scores and fit the tree and state assignments with the highest likelihoods (Table XI). Additionally, these two models produced the same estimates for diversification parameters. Even though it has the best fit, the no extinction model, when testing for Type I error (the inability to determine whether speciation rates are different between photobiont associations), would freeze and all iterations could not be completed, therefore we chose to use the free-speciation model, which only allows for the speciation rates to vary.

TABLE XI. BISSE MODEL TESTING FOR PHOTOBIONT ASSOCIATION WITH ESTIMATIONS OF SPECIATION, EXTINCTION, AND TRANSITION RATES FOR EACH MODEL (CYANOBACTERIAL = '0', GREEN-ALGAL = '1').

No sampling adjustment	sp				ation	extin	ction	transitions	
Model	Df	lnLik	AIC	λ0	λ1	μ0	μ1	q01	q10
No extinction (µ0=0, µ1=0)	4	-447.38	902.77	0.10	0.04	0.00	0.00	0.02	0.02
Free speciation ($\lambda 0$ and $\lambda 1$ take on	4	447 47	902.95	0.10	0.04	0.00	0.00	0.02	
any value)	4	-447.47						0.02	0.02
Equal transition rates (q01=q10)	5	-447.47	904.95	0.10	0.04	0.00	0.00	0.02	0.02
Full BiSSE ($\lambda 0$, $\lambda 1$, $\mu 0$, $\mu 1$, $q01$,	6	117.20	00 C 77	0.10	0.04	0.00	0.00	0.02	0.02
q10 take on any value)	6	-447.39	906.77	0.10	0.04	0.00	0.00	0.02	0.02
Fully constrained ($\lambda 0 = \lambda 1$, $\mu 0 = \mu 1$,	2		008 (3	0.00	0.00	0.00	0.00	0.02	0.02
q01=q10)	3	-451.31	908.62	0.09	0.09	0.00	0.00	0.02	0.02
Mk2 (λ0=λ1, μ0=μ1)	4	-451.17	910.33	0.09	0.09	0.00	0.00	0.02	0.03
unidirectional, green to cyano,	E		912.22	0.10	0.02	0.00	0.02	0.02	0.00
(q10=0)	5	-451.11			0.03	0.00	0.02	0.02	
unidirectional, cyano to green,	E	460.64	931.28	0.07	0.10	0.00	0.00	0.00	0.04
(q01=0)	5	-460.64			0.10	0.00			0.06
Sampling adjustment (cyano 30%, green 29%)				speci	ation	extinction		transitions	
Model	Df	lnLik	AIC	λ0	λ1	μ0	μ1	q01	q10
No extinction (µ0=0, µ1=0)	4	-437.64	883.28	0.18	0.08	0.00	0.00	0.02	0.02
Free speciation ($\lambda 0$ and $\lambda 1$ take on	4	127 69	883.37	0.18	0.08	0.00	0.00	0.02	0.02
any value)	4	-437.68							
Equal transition rates (q01=q10)	5	-437.68	005 75	0.19	0.09	0.00	0.00	0.02	0.02
		-457.08	885.35	0.18	0.08	0.00			
Full BiSSE ($\lambda 0$, $\lambda 1$, $\mu 0$, $\mu 1$, $q01$,								0.02	0.01
Full BiSSE (λ0, λ1, μ0, μ1, q01, q10 take on any value)	6	-437.54	885.55	0.18	0.08	0.00	0.03	0.02	0.01
	6	-437.54	887.09	0.18	0.10	0.00	0.03		
q10 take on any value)								0.02 0.02	0.01
q10 take on any value) Fully constrained ($\lambda 0 = \lambda 1$, $\mu 0 = \mu 1$,	6	-437.54	887.09	0.18	0.10	0.00	0.03		
q10 take on any value) Fully constrained ($\lambda 0=\lambda 1$, $\mu 0=\mu 1$, q01=q10)	6 3 4	-437.54 -444.16 -444.03	887.09 894.31 896.07	0.18 0.16 0.16	0.10 0.16 0.16	0.00 0.00 0.00	0.03 0.00 0.00	0.02 0.02	0.02 0.03
q10 take on any value) Fully constrained ($\lambda 0=\lambda 1$, $\mu 0=\mu 1$, q01=q10) Mk2 ($\lambda 0=\lambda 1$, $\mu 0=\mu 1$)	6	-437.54 -444.16	887.09 894.31	0.18 0.16	0.10 0.16	0.00	0.03 0.00	0.02	0.02
q10 take on any value) Fully constrained ($\lambda 0=\lambda 1$, $\mu 0=\mu 1$, q01=q10) Mk2 ($\lambda 0=\lambda 1$, $\mu 0=\mu 1$) unidirectional, green to cyano,	6 3 4	-437.54 -444.16 -444.03	887.09 894.31 896.07	0.18 0.16 0.16	0.10 0.16 0.16	0.00 0.00 0.00	0.03 0.00 0.00	0.02 0.02	0.02 0.03

In each of the 500 iterations of randomized tip state assignments, the free-speciation model was compared to the fully constrained model using a likelihood ratio test and no matter how the states were distributed, the free-speciation model was better. Therefore, given the phylogeny and the state assignments, our results appear to be driven by Type I error (Table XIX, Appendix B).

3.3.6.2 Andean tectonic influence on diversification

Clades I, II, and III contain mostly New World species, of which, most were collected in the Andes which was tectonically active during the diversification of *Sticta* (Hoorn et al. 2010). We coded the specimens that were collected in the tectonically active region as "1" and those outside as "0". Model testing results are summarized in Table XII. Adjusting for incomplete sampling did not change which models had the best fit [No extinction (p0 = 0, pl = 0) and Unidirectional, Andean to extra-Andean (ql0 = 0)), but speciation and ql0 parameters increased with the adjustment. In the adjusted analysis, which we used to test for Type I error, speciation and transitions are identical in the three most likely models [No extinction (p0 = 0, pt = 0); Unidirectional, Unidirectional, Andean to extra-Andean, (q01 = 0); and Full BiSSE (TO, Al, p0, q1, q0l, ql0 take on any value)]. As mentioned above, the "No extinction" model is not likely, so we used the "Unidirectional, Andean to extra-Andean, (q01 = 0)" model for testing Type I error. The distribution of Andean species is depicted in Figure 8A. Clades I, II and III contain all of the 67 Andean taxa plus six extra-Andean species. The other 51 extra-Andean taxa are found in clades IV and V and evenly distributed throughout the other three clades. Posterior distributions (95%) found Andean taxa to have a higher speciation rate and a tendency for transitions from Andean to extra-Andean state (Figure 8C). As in the photobiont association analysis, the "no extinction" model had the highest likelihood, but when using it to iterate through random

arrangements of state assignments, it would freeze as some arrangements were to computationally problematic. This was the same for the full model as well. The Unidirectional (q01) model did not have this problem and could successfully iterate through 500 arrangements of tip assignments, having a two percent Type I error rate (Table XX, Appendix B).

TABLE XII. BISSE MODEL TESTING FOR ANDEAN ASSOCIATION WITH ESTIMATIONS OF SPECIATION, EXTINCTION, AND TRANSITION RATES FOR EACH MODEL (NON-ANDEAN = '0', ANDEAN = '1').

No sampling adjustment			speciation		extinction		transitions		
Model	Df	lnLik	AIC	λ0	λ1	μ0	μ1	q01	q10
No extinction (µ0=0, µ1=0)	4	-461.4112	930.8224	0.04	0.11	0.00	0.00	0.00	0.04
Unidirectional, Andean to extra-	5	461 4115	032 0220	0.04	0.11	0.00	0.00	0.00	0.04
Andean, (q01=0)	5	-461.4115	932.8229	0.04	0.11	0.00	0.00	0.00	0.04
Full BiSSE (λ0, λ1, μ0, μ1, q01,	6	4(1,4110	024 0225	0.04	0.11	0.00	0.00	0.00	0.04
q10 take on any value)	6	-461.4112	934.8225	0.04	0.11	0.00	0.00	0.00	0.04
Free speciation ($\lambda 0$ and $\lambda 1$ take	4	466 2704	0.40.7590	0.00	0.00	0.00	0.00	0.01	0.02
on any value)	4	-466.3794	940.7589	0.09	0.09	0.00	0.00	0.01	0.03
Equal transition rates (q01=q10)	5	-466.3797	942.7594	0.09	0.09	0.00	0.00	0.03	0.03
Mk2 (λ0=λ1, μ0=μ1)	4	-469.4712	946.9425	0.05	0.11	0.00	0.00	0.03	0.03
Fully constrained ($\lambda 0=\lambda 1$, $\mu 0=\mu 1$,	2	471 (007	0.40.2505	0.05	0.11	0.00	0.00	0.02	0.02
q01=q10)	3	-471.6897	949.3795	0.05	0.11	0.00	0.00	0.03	0.03
Unidirectional, extra-Andean to	-	400 (02	007 20/1	0.10	0.00	0.00	0.07	0.07	0.00
Andean, (q10=0)	5	-488.693	987.3861	0.10	0.08	0.00	0.07	0.06	0.00

Sampling adjustment (extra-Andean 43%, Andean 75%)				speciation		extinction		transitions	
Model	Df	lnLik	AIC	λ0	λ1	μ0	μ1	q01	q10
No extinction (µ0=0, µ1=0)	4	-460.1327	928.2653	0.08	0.14	0.00	0.00	0.00	0.05
Unidirectional, Andean to extra-	5	-460.1022	930.2044	0.08	0.14	0.01	0.00	0.00	0.05
Andean, (q01=0)	3	-400.1022	930.2044	0.08	0.14	0.01	0.00	0.00	0.03
Full BiSSE (λ0, λ1, μ0, μ1, q01,	6	-460.1025	932.205	0.08	0.14	0.01	0.00	0.00	0.05
q10 take on any value)	6	-460.1025	932.205	0.08	0.14	0.01	0.00	0.00	0.05
Mk2 (λ0=λ1, μ0=μ1)	4	-464.3601	936.7201	0.12	0.12	0.00	0.00	0.00	0.04
Fully constrained ($\lambda 0=\lambda 1$, $\mu 0=\mu 1$,	3	-469.1124	944.2247	0.12	0.12	0.00	0.00	0.04	0.04
q01=q10)	3	-409.1124	944.2247	0.12	0.12	0.00	0.00	0.04	0.04
Free speciation ($\lambda 0$ and $\lambda 1$ take	4	4(9.5142	0.45 0.287	0.10	0.12	0.00	0.00	0.04	0.04
on any value)	4	-468.5143	945.0287	0.10	0.13	0.00	0.00	0.04	0.04
Equal transition rates (q01=q10)	5	-468.4796	946.9591	0.10	0.14	0.00	0.01	0.04	0.04
Unidirectional, extra-Andean to	5	-479.3274	968.6548	0.15	0.11	0.00	0.13	0.06	0.00
Andean, (q10=0)	3	-4/9.32/4	906.0348	0.15	0.11	0.00	0.13	0.06	0.00

3.4 Discussion

We investigated the diversification history of *Sticta* by sampling throughout most of the global range of the genus and constructed a time-calibrated phylogeny. The results suggest an Oligocene origin of *Sticta* and a pattern of relatively higher diversification followed by a slowdown in the present. Collections from Hawaii suggest a high long-distance dispersal rate of the *Sticta*. We also investigated the effects of photobiont association and found that the significant association between speciation rate and cyanobacterial photobionts may result from Type I Error. Additionally, we looked into the effect of Andean uplifting and found that speciation rate is higher among *Sticta* species associated with the Andes. The significant results here are robust even when the effect of sampling bias is considered. In the following sections, we will discuss the timing and geographic location of diversification in *Sticta* and then discuss how intrinsic and extrinsic factors affect diversification.

3.4.1 Oligocene origin, Miocene diversification, and frequent long-distance dispersal in Sticta

The time tree (Figure 6) shows that *Sticta* originated in the late Oligocene and radiated into five major clades during the Miocene. The Miocene diversification is parallel with other groups of lichens (Amo de Paz et al. 2012; Leavitt et al. 2012; Leavitt, Esslinger, and Lumbsch 2012) and for diversification of many other groups of organisms (Finarelli and Badgley 2010; Nürk et al. 2015; Shaw et al. 2010). In the early Miocene, global temperatures increased until the MMCO (Flower and Kennett 1994). During this time of elevated temperature, ranges for many tropical and sub-tropical organisms expanded towards the poles and into higher elevations. After the MMCO, these tropical ranges retracted back to the equator and into lower elevations, opening up new habitats and niche space for more temperate organisms. Most species of *Sticta*

inhabit temperate rain forests and higher elevations (cooler temperatures) in tropical regions (Moncada, Lücking, and Suárez 2014). These new temperate spaces may have been the ranges where the major lineages of *Sticta* diversified during the Miocene.

Sticta species inhabit all continents, except Antarctica, and occur on many oceanic islands. Our results suggested that *Sticta* originated in the New World, but this should be interpreted with caution, as our sampling on the 118-tip phylogeny is not complete and adding more taxa to the tree could influence the result. Additionally, the branch support for the backbone is not resolved on some of the nodes (Figure 6). Also, exploratory analyses that divided up ranges into eight ranges, produced ambiguous results on the origin of the genus, but suggested that either South America, Australia or Madagascar to be potential ancestral ranges (data not shown).

Clade IV is composed of all New Zealand and Australian specimens. This suggests that shortly after the continental separation of Australia, Antarctica and South America, before they assumed their current positions, a lineage of *Sticta* became isolated in the Australasian region. Species of this lineage tend to inhabit temperate rain forest ecosystems of New Zealand, and South Eastern Australia and Tasmania. One member of Clade IV was found in Hawaii, which is interesting since prevailing winds are not in favor of Australasian to Hawaii dispersal and could potentially be a case of avian or ocean current mediated dispersal (Gillespie et al. 2012).

3.4.2 High long-distance dispersal rate of Sticta

Hawaiian *Sticta* species in Figure 6, represent up to five independent colonization events. Each colonization of Hawaii originated from one of the five major clades, indicating a high longdistance dispersal ability for species of this genus. Microscopic ascospores and asexual propagules can be carried on the wind during storms and on the feathers and feet of migratory

birds, and even on floating vegetation rafts that become dislodged from land, carrying lichens on ocean currents to other landmasses (Gillespie et al. 2012). Similar to the results in Sticta, a previous research on Hawaiian Pseudocyphellaria (Moncada, Reidy, and Lücking 2014) also found multiple colonization events (some of which are suspected to be anthropogenic). Furthermore, a study of *Porpidia flavicunda* in North Eastern Canada, Greenland, and Scandinavia suggested frequent and recurrent dispersal across the northern Atlantic (Buschbom 2007) and a study on the Xanthoparmelia pulla group (Amo de Paz et al. 2012) found evidence for multiple long-distance dispersal events and subsequent radiation on different continents. Other studies on lichens, however, have found radiations after a single colonization. For example, a study of Lobariella found a radiation after from a single colonization in the Hawaiian archipelago (Lücking, Moncada, and Smith 2017) and another found a radiation in Madagascar and the Mascarenes (Simon et al. 2018). It is still unclear why some groups of lichens seem to have high dispersal rates while other do not and our current understanding of distributional ranges in lichens and the factors shaping those are still in its infancy (Leavitt and Lumbsch 2016; Lumbsch 2016). Further investigation into the traits associated with long-distance dispersal would be an interesting line of research for future studies.

3.4.3 Decrease in net diversification over time

BAMM analysis revealed higher diversification rates on the backbone branches of the phylogeny, with rates decreasing towards the present (Figure 7). There were no distinct rate shifts detected by BAMM, only a trend of cooling diversification rates toward present time in every clade, suggesting that all clades diversify at the same rate in *Sticta*. With such high dispersal rates, *Sticta* may have quickly spread throughout the world, filling all available niche space with species and has reached its carrying capacity, but this is a difficult claim to confirm as

thorough sampling has not been conducted in all parts of the world. Another explanation for a slowing of net diversification rates is the changing climate during the Miocene. Diversification rates for *Sticta* were relatively high leading up to the MMCO (~ 18-14 mya) and then they began to decrease after this warmer period. This may indicate that the climatic changes during the Miocene influenced *Sticta* by continuously and gradually slowing down net diversification. However, as Figure 6 shows that *Sticta* diversified mostly during the Miocene, which is a similar scenario observed in the lichen genus *Melanohalea*, that is thought to have increased diversification rates caused by a drier climate and changes in vegetation patterns that occurred during the Miocene (Leavitt et al. 2012; Leavitt, Esslinger, and Lumbsch 2012). Our BAMM result may be misleading due to incomplete sampling. Even though we adjusted for incomplete sampling at the lineage level, this adjustment does not capture the complexity of branching that may be found in under-sampled lineages. Increasing the sampling on the phylogeny may tell a more accurate story and find rate shifts associated with undiscovered radiations.

3.4.4 Binary state speciation and extinction (BiSSE) analyses

3.4.4.1 Primary photobiont association

Species interactions play a large role in evolution, potentially through increasing the diversification of each partner in the group (Janson et al. 2008; Moran 2007; Stanley 1981). In *Sticta*, cyanobacterial species tend to be found in wetter conditions while green-algal mycobionts of *Sticta* tend to be found in relatively dryer micro climates (James and Henssen 1976). On the phylogeny, there are many more cyanobacterial species than green-algal (93:25 ratio, Figure 8A). Adjusting for incomplete sampling was challenging since BiSSE can only be adjusted by assuming one fraction for the entire tree, or by state (cyanobacterial vs green-algal photobiont). Exploratory analyses of different adjustments were compared to the unadjusted and there was no

large difference between them. The trend was that cyanobacterial associations have a higher, but not significantly higher speciation rate; there was no difference in extinction and transitions (Figure 8B). Moreover, when we randomized the tip assignments of "1" and "0", keeping the same ratio (93 cyanobacterial to 25 green-algal), the free-speciation model always out competed the fully-constrained model in 500 iterations, indicating that the high tip-ratio bias makes it unable to determine if photobiont association is responsible for higher diversification rates in cyanobacterial species. It is expected that some distributions of tip assignments will support the fully constrained model instead of a model where values of speciation are allowed to take on any value. Therefore, the statistical results obtained from the dataset for photobiont association are driven by Type I error.

The presence of photosymbiodemes in *Sticta*, where a single taxon can associate with both cyanobacterial or green-algal photobionts, may explain why we were unable to detect an effect on diversification rate. The ability to form photosymbiodemes is present throughout the phylogeny, and it is hypothesized that many species are photosymbiodemic and we have just missed the other morph (Moncada, Coca, and Lücking 2013). Another reason photobiont associations do not have an effect is that lichen fungi appear to be flexible in their association with particular photobiont genotypes that are geographically or ecologically adapted, allowing the fungus to inhabit multiple habitats by switching to a locally adapted photobiont population (Fernandez-Mendoza et al. 2011; Nelsen and Gargas 2009; Werth and Sork 2014) . It is still unclear if primary photobiont association has any effect in influencing diversification of species in *Sticta* and if this can explain the dominance of cyanobacterial species in the genus. Increased taxon sampling and a closer look for undiscovered photosymbiodemes will help to elucidate this in the future.

3.4.4.2 Andean tectonic influence on diversification

Three of the five major clades recovered in *Sticta* are composed mostly of species that occur in the tectonically active Andes and it has been hypothesized that a major radiation occurred there (Moncada, Lücking, and Suárez 2014). In our study, we hypothesized that Andean species have a higher diversification rates than species occurring outside of the Andes. Our result from BiSSE analysis (Figure 8, Table XII) found that speciation rates are higher (not significantly) in Andean species and found a pattern of transitions from the Andean (tectonically active region) to extra-Andean state (tectonically passive region). Randomization of tip character state assignments while maintaining the same ratio (67 Andean to 51 extra-Andean) found that the fully constrained model would out compete the full model in 11% of the iterations, demonstrating that some configurations will select a much different model of diversification, which implies that the results here were less likely due to Type I error. Our result is congruent with a similar study using BiSSE (Lagomarsino et al. 2016) that found Andean bellflowers (Campanulaceae) to have higher speciation rates than their lowland counterparts. Many other studies have attributed Andean uplift to diversifications in many groups (for a review see: (Hoorn et al. 2010)). Furthermore, a study of the lichen genus Peltigera found a recent and rapid radiation that was associated with the Andes (Magain et al. 2016).

If *Sticta* species were present during Andean uplift periods, coupled with high dispersal rates, a significant diversification event could have been triggered by increasing the carrying capacity of the Andes, allowing for more species of *Sticta* in the region. While the uplift was occurring, many new microhabitats were produced, and the dispersal ability of *Sticta* could have allowed for colonization of many unique habitats in a relatively short span of evolutionary time. Moreover, species associate with both green-algae and cyanobacteria in the Andes region and

photobiont shifts, due to different ecological requirements of the symbiont could have caused divergence.

3.5. Conclusions

We used molecular markers and Bayesian time-calibrated trees to determine that *Sticta* originated in the New World during the Oligocene and diversified throughout the Miocene epoch. Furthermore, we provide evidence that *Sticta* has a high dispersal rate with Hawaiian collections that show multiple independent colonizations of the islands. We also attempted to tease apart the individual contribution of drivers of *Sticta* diversification.

Species interactions have been found to influence diversification in plant-pollenator systems, phytophagous insects, and reef building corals (Janson et al. 2008; Stanley 1981; van der Niet and Johnson 2012), but there are still many gaps in our knowledge in other groups. In *Sticta*, the diversification process did not seem to be influenced by photobiont associations and it is still unclear why there are so many more species that associate with cyanobacteria than green-algae. Further sampling may be able to uncover how photobionts affect diversification of the mycobionts in *Sticta*. However, more sampling may also discover that more species form photosymbiodemes that we currently know.

Researchers, uncertain in the effect of intrinsic factors on diversification have invoked geographical and climatic explanations to explain heterogeneity in biodiversity. *Sticta* is undergoing a slowdown in diversification, which might be associated with cooling climate, but it is unclear whether climate-induced range shifts occurred and if this decrease in net diversification is due to limits on global carrying capacity.

Our results do suggest that Andean tectonic activity, does influence diversification of species in *Sticta* by increasing the speciation rate which is congruent with the growing body of

evidence that the Andes is a hotspot for diversification, not only in lichens, but in almost all groups studied there. This could be explained by the fragmentation and turnover of habitats during the uplift of the Andes, coupled with the incredible dispersal ability of the *Sticta*, which creates the perfect conditions for founder events leading to many isolated populations being selected by different factors on an ever-changing landscape.

Our study adds to the small but growing base of knowledge of the timing and placement of diversification in groups of lichenized fungi by investigating the genus *Sticta*. Furthermore, we investigated the effect of drivers of diversification in *Sticta*, which is relatively rare in the study of lichen evolution and adds not only to the knowledge of lichens, but to the overall knowledge of evolution in the tree of life.

3.6 References

- Amo de Paz, Guillermo, Paloma Cubas, Ana Crespo, John A. Elix, and H. Thorsten Lumbsch.
 "Transoceanic dispersal and subsequent diversification on separate continents shaped diversity of the *Xanthoparmelia pulla* group (Ascomycota)." *PLOS ONE* 7, no. 6 (2012): e39683.
- Amo de Paz, Guillermo, Paloma Cubas, Pradeep K. Divakar, H. Thorsten Lumbsch, and Ana Crespo. "Origin and diversification of major clades in parmelioid lichens (Parmeliaceae, Ascomycota) during the Paleogene inferred by Bayesian analysis." *PLOS ONE* 6, no. 12 (2011): e28161.
- Armaleo, Daniele, and Philippe Clerc. "Lichen chimeras: DNA analysis suggests that one fungus forms two morphotypes." *Experimental Mycology* 15, no. 1 (1991): 1-10.
- Badgley, Catherine, Tara M. Smiley, Rebecca Terry, Edward B. Davis, Larisa RG DeSantis, David L. Fox, Samantha SB Hopkins et al. "Biodiversity and topographic complexity:

Modern and geohistorical perspectives." *Trends in Ecology & Evolution* 32, no. 3 (2017): 211-226.

- Benson, D. A., M. Cavanaugh, K. Clark, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, and E. W. Sayers. "GenBank Nucleic Acids Res 41 (D1)." D36–D42 (2013).
- Berger, Simon A., Alexandros Stamatakis, and Robert Lücking. "Morphology-based phylogenetic binning of the lichen genera *Graphis* and *Allographa* (Ascomycota: Graphidaceae) using molecular site weight calibration." *Taxon* 60, no. 5 (2011): 1450-1457.
- Blanco, Oscar, Ana Crespo, John A. Elix, David L. Hawksworth, and H. Thorsten Lumbsch. "A molecular phylogeny and a new classification of parmelioid lichens containing *Xanthoparmelia*-type lichenan (Ascomycota: Lecanorales)." *Taxon* 53, no. 4 (2004): 959-975.
- Bouckaert, Remco, Joseph Heled, Denise Kühnert, Tim Vaughan, Chieh-Hsi Wu, Dong Xie, Marc A. Suchard, Andrew Rambaut, and Alexei J. Drummond. "BEAST 2: A software platform for Bayesian evolutionary analysis." *PLoS Computational Biology* 10, no. 4 (2014): e1003537.
- Brodo, Irwin M., Sylvia Duran Sharnoff, and Stephen Sharnoff. *Lichens of North America*. New Haven: Yale University Press. (2001).
- Buschbom, Jutta. "Migration between continents: Geographical structure and long-distance gene flow in *Porpidia flavicunda* (lichen-forming Ascomycota)." *Molecular Ecology* 16, no. 9 (2007): 1835-1846.

Castresana, J. "Selection of conserved blocks from multiple alignments for their use in

phylogenetic analysis." *Molecular Biology and Evolution* 17, no. 4 (2000): 540-552.

- Darriba, Diego, Guillermo L. Taboada, Ramón Doallo, and David Posada. "jModelTest 2: More models, new heuristics and parallel computing." *Nature Methods* 9, no. 8 (2012): 772.
- Davis, Matthew P., Peter E. Midford, and Wayne Maddison. "Exploring power and parameter estimation of the BiSSE method for analyzing species diversification." *BMC Evolutionary Biology* 13, no. 1 (2013): 38.
- Del-Prado, Ruth, Oscar Blanco, H. Thorsten Lumbsch, Pradeep K. Divakar, John A. Elix, M. Carmen Molina, and Ana Crespo. "Molecular phylogeny and historical biogeography of the lichen-forming fungal genus *Flavoparmelia* (Ascomycota: Parmeliaceae)." Taxon 62, no. 5 (2013): 928-939.
- Del-Prado, Ruth, Pradeep Kumar Divakar, H. Thorsten Lumbsch, and Ana M. Crespo. "Hidden genetic diversity in an asexually reproducing lichen forming fungal group." *PLOS ONE* 11, no. 8 (2016): e0161031.
- Divakar, Pradeep K., Ana Crespo, Mats Wedin, Steven D. Leavitt, David L. Hawksworth, Leena Myllys, Bruce McCune et al. "Evolution of complex symbiotic relationships in a morphologically derived family of lichen-forming fungi." *New Phytologist* 208, no. 4 (2015): 1217-1226.
- Divakar, Pradeep K., Ruth Del-Prado, H. Thorsten Lumbsch, Mats Wedin, Theodore L.
 Esslinger, Steven D. Leavitt, and Ana Crespo. "Diversification of the newly recognized lichen-forming fungal lineage *Montanelia* (Parmeliaceae, Ascomycota) and its relation to key geological and climatic events." *American Journal of Botany* 99, no. 12 (2012): 2014-2026.

- Drummond, Alexei J., Simon YW Ho, Matthew J. Phillips, and Andrew Rambaut. "Relaxed phylogenetics and dating with confidence." *PLoS Biology* 4, no. 5 (2006): e88.
- Dughi, R. "Etude comparée du *Dendriscocaulon bolacinum* Nyl. et de la céphalodie fruticuleuse du *Ricasolia amplissima* (Scop.) Leight." *Bulletin de la Société Botanique de France* 83, no. 89 (1936): 671-693.
- Dughi, R. "Sur Les Relations, La Position Systématique et l'extension Du Genre
 Dendriscocaulon." Annales de La Faculté Des Sciences de Marseille 2, no. 14 (1944): 147–
 57.
- Fernández-Mendoza, F., S. Domaschke, M. A. García, P. Jordan, María P. Martín, and Christian Printzen. "Population structure of mycobionts and photobionts of the widespread lichen *Cetraria aculeata.*" *Molecular Ecology* 20, no. 6 (2011): 1208-1232.
- Finarelli, John A., and Catherine Badgley. "Diversity dynamics of Miocene mammals in relation to the history of tectonism and climate." *Proceedings of the Royal Society B: Biological Sciences* 277, no. 1694 (2010): 2721-2726.
- FitzJohn, Richard G. "Diversitree: Comparative phylogenetic analyses of diversification in R." *Methods in Ecology and Evolution* 3, no. 6 (2012): 1084-1092.
- Flower, Benjamin P., and James P. Kennett. "The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling." *Palaeogeography, Palaeoclimatology, Palaeoecology* 108, no. 3-4 (1994): 537-555.
- Galloway, D. J. "Studies on the lichen genus Sticta (Schreber) Ach. IV. New Zealand

Species." The Lichenologist 29, no. 2 (1997): 105-168.

- Galloway, D. J. "Studies on the lichen genus *Sticta* (Schreber) Ach.: I. Southern South American species." *The Lichenologist* 26, no. 3 (1994): 223-282.
- Galloway, D. J. Flora of New Zealand Lichens. Revised second edition including lichen-forming and lichenicolous fungi. Volumes 1 and 2. Lincoln, Manaaki Whenua Press. (2007): 261.
- Galloway, D. J., and M. A. Thomas. "Sticta." In Flora of Australia 58 (2001): 78-97.
- Galloway, D. J. "Studies on the lichen genus *Sticta* (Schreber) Ach.: V. Australiuan species." *Tropical Bryology* (1998): 117-160.
- Galloway, D. J. "Notes on the holotype of *Sticta damaecornis* β *weigelii* Ach. (= *Sticta weigelii*)." *The Lichenologist* 38, no. 1 (2006): 89-92.
- Galloway, D. J., Soili Stenroos, and Lidia I. Ferraro. *Lichenes Peltigerales: Lobariaceae y Stictaceae*. Vol. 13, no. 6. Buenos Aires: Consejo Nacional de Investigaciones Científicas y Técnicas. (1995).
- Gaya, Ester, Samantha Fernández-Brime, Reinaldo Vargas, Robert F. Lachlan, Cécile Gueidan,
 Martín Ramírez-Mejía, and François Lutzoni. "The adaptive radiation of lichen-forming
 Teloschistaceae is associated with sunscreening pigments and a bark-to-rock substrate
 shift." *Proceedings of the National Academy of Sciences* 112, no. 37 (2015): 11600-11605.
- Gillespie, Rosemary G., Bruce G. Baldwin, Jonathan M. Waters, Ceridwen I. Fraser, Raisa Nikula, and George K. Roderick. "Long-distance dispersal: A framework for hypothesis testing." *Trends in Ecology & Evolution* 27, no. 1 (2012): 47-56.
- Hoorn, Carina, F. P. Wesselingh, H. Ter Steege, M. A. Bermudez, A. Mora, J. Sevink, Isabel

Sanmartín et al. "Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity." *Science* 330, no. 6006 (2010): 927-931.

- James, P. W., and Aino Henssen. "Morphological and taxonomic significance of cephalodia." In *Lichenology: Progress and Problems; Proceedings of an International Symposium*. Cambridge: Academic Press. (1976).
- Janson, Eric M., John O. Stireman III, Michael S. Singer, and Patrick Abbot. "Phytophagous insect-microbe mutualisms and adaptive evolutionary diversification." *Evolution* 62, no. 5 (2008): 997-1012.
- Katoh, Kazutaka, and Daron M. Standley. "MAFFT multiple sequence alignment software version 7: Improvements in performance and usability." *Molecular Biology and Evolution* 30, no. 4 (2013): 772-780.
- Kearse, Matthew, Richard Moir, Amy Wilson, Steven Stones-Havas, Matthew Cheung, Shane Sturrock, Simon Buxton et al. "Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data." *Bioinformatics* 28, no. 12 (2012): 1647-1649.
- Kirk, P. M., P. F. Cannon, D. W. Minter, and J. A. Stalpers. *Dictionary of the Fungi*.Wallingford: CAB International. (2008).
- Lagomarsino, Laura P., Fabien L. Condamine, Alexandre Antonelli, Andreas Mulch, and Charles
 C. Davis. "The abiotic and biotic drivers of rapid diversification in Andean bellflowers
 (Campanulaceae)." *New Phytologist* 210, no. 4 (2016): 1430-1442.

Leavitt, Steven D., and H. Thorsten Lumbsch. "Ecological biogeography of lichen-forming

fungi." In Environmental and microbial relationships. Cham: Springer. (2016): 15-37.

- Leavitt, Steven D., Pradeep K. Divakar, Yoshihito Ohmura, Li-song Wang, Theodore L.
 Esslinger, and H. Thorsten Lumbsch. "Who's getting around? Assessing species diversity and phylogeography in the widely distributed lichen-forming fungal genus *Montanelia* (Parmeliaceae, Ascomycota)." *Molecular Phylogenetics and Evolution* 90 (2015): 85-96.
- Leavitt, Steven D., Theodore L. Esslinger, Pradeep K. Divakar, and H. Thorsten Lumbsch.
 "Miocene and Pliocene dominated diversification of the lichen-forming fungal genus *Melanohalea* (Parmeliaceae, Ascomycota) and Pleistocene population expansions." *BMC Evolutionary Biology* 12, no. 1 (2012a): 176.
- Leavitt, Steven D., Theodore L. Esslinger, and H. Thorsten Lumbsch. "Neogene-dominated diversification in neotropical montane lichens: Dating divergence events in the lichenforming fungal genus *Oropogon* (Parmeliaceae)." *American Journal of Botany* 99, no. 11 (2012b): 1764-1777.
- Leavitt, Steven D., Fernando Fernández-Mendoza, Sergio Pérez-Ortega, Mohammad Sohrabi,
 Pradeep K. Divakar, Jan Vondrák, H. Thorsten Lumbsch, and Larry L. St Clair. "Local
 representation of global diversity in a cosmopolitan lichen-forming fungal species complex
 (*Rhizoplaca*, Ascomycota)." *Journal of Biogeography* 40, no. 9 (2013a): 1792-1806.
- Leavitt, Steven D., H. Thorsten Lumbsch, Soili Stenroos, and Larry L. St Clair. "Pleistocene speciation in North American lichenized fungi and the impact of alternative species circumscriptions and rates of molecular evolution on divergence estimates." *PLOS ONE* 8, no. 12 (2013b): e85240.

- Lücking, Robert, Bibiana Moncada, and Clifford W. Smith. "The genus *Lobariella* (Ascomycota: Lobariaceae) in Hawaii: Late colonization, high inferred endemism and three new species resulting from "micro-radiation"." *The Lichenologist* 49, no. 6 (2017): 673-691.
- Lumbsch, H. T. "Lichen-forming fungi, Diversification of." In Encyclopedia of Evolutionary Biology, edited by Richard M. Kliman. Cambridge: Academic Press. (2016): 305-311.
- Maddison, Wayne P., Peter E. Midford, and Sarah P. Otto. "Estimating a binary character's effect on speciation and extinction." *Systematic Biology* 56, no. 5 (2007): 701-710.
- Madriñán, Santiago, Andrés J. Cortés, and James E. Richardson. "Páramo is the world's fastest evolving and coolest biodiversity hotspot." *Frontiers in Genetics* 4 (2013): 192.
- Magain, Nicolas, J. Miadlikowska, Bernard Goffinet, Emmanuël Sérusiaux, and François
 Lutzoni. "Macroevolution of specificity in cyanolichens of the genus *Peltigera* section
 polydactylon (Lecanoromycetes, Ascomycota)." *Systematic Biology* 66, no. 1 (2016): 74-99.
- Magain, Nicolas, and Emmanuël Sérusiaux. "Dismantling the treasured flagship lichen *Sticta fuliginosa* (Peltigerales) into four species in Western Europe." *Mycological Progress* 14, no. 10 (2015): 97.
- Mangold, Armin, María P. Martín, Robert Lücking, and H. Thorsten Lumbsch. "Molecular phylogeny suggests synonymy of Thelotremataceae within Graphidaceae (Ascomycota: Ostropales)." *Taxon* 57, no. 2 (2008): 476-486.
- McDonald, Tami, Jolanta Miadlikowska, and François Lutzoni. "The lichen genus *Sticta* in the Great Smoky Mountains: A phylogenetic study of morphological, chemical, and molecular data." *The Bryologist* 106, no. 1 (2003): 61-80.

- Molina, M. Carmen, Pradeep K. Divakar, Trevor Goward, Ana M. Millanes, H. Thorsten Lumbsch, and Ana Crespo. "Neogene diversification in the temperate lichen-forming fungal genus *Parmelia* (Parmeliaceae, Ascomycota)." *Systematics and biodiversity* 15, no. 2 (2017): 166-181.
- Moncada, Bibiana, Luis Fernando Coca, and Robert Lücking. "Neotropical members of *Sticta* (lichenized Ascomycota: Lobariaceae) forming photosymbiodemes, with the description of seven new species." *The Bryologist* 116, no. 2 (2013): 169-201.
- Moncada, Bibiana, and Robert Lücking. "Ten new species of *Sticta* and counting: Colombia as a hot spot for unrecognized diversification in a conspicuous macrolichen genus." *Phytotaxa* 74 (2012): 1-29.
- Moncada, Bibiana, Robert Lücking, and Luisa Betancourt-Macuase. "Phylogeny of the Lobariaceae (lichenized Ascomycota: Peltigerales), with a reappraisal of the genus *Lobariella*." *The Lichenologist* 45, no. 2 (2013): 203-263.
- Moncada, Bibiana, Robert Lücking, and Luis Fernando Coca. "Six new apotheciate species of *Sticta* (lichenized Ascomycota: Lobariaceae) from the Colombian Andes." *The Lichenologist* 45, no. 5 (2013): 635-656.
- Moncada, Bibiana, Robert Lücking, and Alejandra Suárez. "Molecular phylogeny of the genus *Sticta* (lichenized Ascomycota: Lobariaceae) in Colombia." *Fungal Diversity* 64, no. 1 (2014): 205-231.
- Moncada, Bibiana, Brendon Reidy, and Robert Lücking. "A phylogenetic revision of Hawaiian *Pseudocyphellaria sensu lato* (lichenized Ascomycota: Lobariaceae) reveals eight new species and a high degree of inferred endemism." *The Bryologist* 117, no. 2 (2014): 119-

161.

- Moran, Nancy A. "Symbiosis as an adaptive process and source of phenotypic complexity." *Proceedings of the National Academy of Sciences* 104, no. suppl 1 (2007): 8627-8633.
- Moreau, F. "Sur la théorie biomorphogénique des lichens." *Revue Bryologique et Lichénologique* 25 (1956): 183-186.
- Morlon, Hélène. "Phylogenetic approaches for studying diversification." *Ecology Letters* 17, no. 4 (2014): 508-525.
- Nash, Thomas H., B. D. Ryan, Paul Diederich, C Gries, and Frank Bungartz. *Lichen Flora of the Greater Sonoran Desert Region II*. Tempe: Lichens Unlimited. (2004).
- Nelsen, Matthew P., and Andrea Gargas. "Symbiont flexibility in *Thamnolia vermicularis* (Pertusariales: Icmadophilaceae)." *The Bryologist* 112, no. 2 (2009): 404-418.
- Ng, J., and Stacey D. Smith. "How traits shape trees: New approaches for detecting character state-dependent lineage diversification." *Journal of Evolutionary Biology* 27, no. 10 (2014): 2035-2045.
- Nürk, Nicolai M., Simon Uribe-Convers, Berit Gehrke, David C. Tank, and Frank R. Blattner.
 "Oligocene niche shift, Miocene diversification cold tolerance and accelerated speciation rates in the St. John's Worts (*Hypericum*, Hypericaceae)." *BMC Evolutionary Biology* 15, no. 1 (2015): 80.
- Otálora, Mónica AG, Isabel Martínez, Gregorio Aragón, and M. Carmen Molina. "Phylogeography and divergence date estimates of a lichen species complex with a disjunct distribution pattern." *American Journal of Botany* 97, no. 2 (2010): 216-223.

- Paradis, Emmanuel, Julien Claude, and Korbinian Strimmer. "APE: Analyses of phylogenetics and evolution in R language." *Bioinformatics* 20, no. 2 (2004): 289-290.
- Parnmen, Sittiporn, Robert Lücking, and H. Thorsten Lumbsch. "Phylogenetic classification at generic level in the absence of distinct phylogenetic patterns of phenotypical variation: A case study in Graphidaceae (Ascomycota)." *PLOS ONE* 7, no. 12 (2012): e51392.
- Prieto, María, and Mats Wedin. "Dating the diversification of the major lineages of Ascomycota (Fungi)." *PLOS ONE* 8, no. 6 (2013): e65576.
- Rabosky, Daniel L. "Automatic detection of key innovations, rate shifts, and diversitydependence on phylogenetic trees." *PLOS ONE* 9, no. 2 (2014): e89543.
- Rabosky, Daniel L., and Emma E. Goldberg. "Model inadequacy and mistaken inferences of trait-dependent speciation." *Systematic Biology* 64, no. 2 (2015): 340-355.
- Rabosky, Daniel L., Michael Grundler, Carlos Anderson, Pascal Title, Jeff J. Shi, Joseph W.
 Brown, Huateng Huang, and Joanna G. Larson. "BAMM tools: An R package for the analysis of evolutionary dynamics on phylogenetic trees." *Methods in Ecology and Evolution* 5, no. 7 (2014): 701-707.
- Rambaut, A., and A. J. Drummond. "TreeAnnotator v2. 0.4." (2013).
- Rambaut, A., M. A. Suchard, D. Xie, and A. J. Drummond. "Tracer v1. 6. 2014." (2015).
- Ranft, Hannah, Bibiana Moncada, Peter J. de Lange, H. Thorsten Lumbsch, and Robert Lücking.
 "The *Sticta filix* morphodeme (Ascomycota: Lobariaceae) in New Zealand with the newly recognized species *S. dendroides* and *S. menziesii*: Indicators of forest health in a threatened island biota?." *The Lichenologist* 50, no. 2 (2018): 185-210.

- Ree, R. H., and S. A. Smith. "Lagrange: Software for likelihood analysis of geographic range evolution." *Systematic Biology* 57 (2008): 4-14.
- Rutschmann, Frank. "Molecular dating of phylogenetic trees: A brief review of current methods that estimate divergence times." *Diversity and Distributions* 12, no. 1 (2006): 35-48.
- Sérusiaux, Emmanuël, Tim Wheeler, and Bernard Goffinet. "Recent origin, active speciation and dispersal for the lichen genus *Nephroma* (Peltigerales) in Macaronesia." *Journal of Biogeography* 38, no. 6 (2011): 1138-1151.
- Shaw, A. Jonathan, Nicolas Devos, Cymon J. Cox, Sandra B. Boles, Blanka Shaw, Alex M. Buchanan, Lynette Cave, and Rodney Seppelt. "Peatmoss (*Sphagnum*) diversification associated with Miocene Northern Hemisphere climatic cooling?." *Molecular Phylogenetics and Evolution* 55, no. 3 (2010): 1139-1145.
- Simon, Antoine, Bernard Goffinet, Nicolas Magain, and Emmanuël Sérusiaux. "High diversity, high insular endemism and recent origin in the lichen genus *Sticta* (lichenized Ascomycota, Peltigerales) in Madagascar and the Mascarenes." *Molecular Phylogenetics and Evolution* 122 (2018): 15-28.
- Smith, C W, A Aptroot, B J Coppins, A Flechter, O L Gilbert, P W James, and P A Wolseley. *The Lichens of Great Britain and Ireland*. London: British Lichen Society. (2009).
- Stamatakis, Alexandros. "RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies." *Bioinformatics* 30, no. 9 (2014): 1312-1313.
- Stanley Jr, George D. "Early history of scleractinian corals and its geological consequences." *Geology* 9, no. 11 (1981): 507-511.

- Suarez, Alejandra, and Robert Lücking. "Sticta viviana (lichenized Ascomycota: Peltigerales: Lobariaceae), a new species from Colombian paramos." The Lichenologist 45, no. 2 (2013): 153-157.
- Takamatsu, Susumu, and Sanae Matsuda. "Estimation of molecular clocks for ITS and 28S rDNA in Erysiphales." *Mycoscience* 45, no. 5 (2004): 340-344.
- Vamosi, Jana C., and Steven M. Vamosi. "Factors influencing diversification in angiosperms: At the crossroads of intrinsic and extrinsic traits." *American Journal of Botany* 98, no. 3 (2011): 460-471.
- van der Niet, Timotheüs, and Steven D. Johnson. "Phylogenetic evidence for pollinator-driven diversification of angiosperms." *Trends in Ecology & Evolution* 27, no. 6 (2012): 353-361.
- Vilgalys, Rytas, and Mark Hester. "Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species." *Journal of Bacteriology* 172, no. 8 (1990): 4238-4246.
- Werth, Silke, and Victoria L. Sork. "Ecological specialization in Trebouxia (Trebouxiophyceae) photobionts of *Ramalina menziesii* (Ramalinaceae) across six range-covering ecoregions of western North America." *American Journal of Botany* 101, no. 7 (2014): 1127-1140.
- Zoller, Stefan, Christoph Scheidegger, and Christoph Sperisen. "PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming ascomycetes." *The Lichenologist* 31, no. 5 (1999): 511-516.

4. Using RADseq to understand the circum-Antarctic distribution of the lichenized fungus *Pseudocyphellaria glabra* (Ascomycota, Peltigeraceae)

<u>Todd J Widhelm</u>, Felix Grewe, Jen-Pan Huang, Karolis Ramanauskas, Roberta Mason-Gamer, H. Thorsten Lumbsch

4.1 Introduction

Disjunct distributions across vast physical barriers have intrigued scientists because there are clear geographic constrains which physically divide a species into multiple populations. Furthermore, these populations do not always comprise a single randomly mating unit, but are subdivided into smaller entities which can be arranged spatially, temporally, or ecologically (Excoffier 2004). Therefore, a major goal of population genomics is to estimate patterns of genetic structure in natural populations to infer the underlying ecological and evolutionary processes such as migration, extinction, and speciation, that contribute to the observed genetic diversity. Advances in population genomics have generated new ways to approach this study question (Davey and Blaxter 2010). Population genetic structure is characterized by the number of subpopulations within a population, the frequencies of genetic variants in each subpopulation, and the degree of genetic isolation of the subpopulations (Chakraborty 1993). Understanding the genetic structure of a species' populations can uncover whether some have been isolated for long periods of time and the spatial scale at which populations are differentiated (Werth 2010). A better understanding of population genetic structure can also have important implications for the conservation of threatened species and the spread of invasive species.

Many species of lichenized fungi have large distributional ranges and some can be distributed across multiple continents being isolated by large bodies of water. The floras of major landmasses in the Southern Hemisphere, such as New Zealand, Southern South America, and Eastern Australia share many taxonomic groups. This pattern is seen in flowering plants (Winkworth et al. 2002, 2015), ferns (Parris 2001), bryophytes (Miller 1982), and lichens (Galloway 1991). Almost 100 species of lichens are shared between Australia and New Zealand and over 40 species are shared among Australia, New Zealand and southern South America (Galloway 1991; Nash 2008). These Southern Hemisphere disjunct distributions could be the result of two possible processes, vicariance (the breakup of Gondwanaland that separated and isolated ancestral biotas) or long-distance, transoceanic dispersal.

The breakup of Gondwanaland occurred between 155-80 Mya (Stevens 1980) and predates the ages of most species-level lineages, but at the genus and family level, vicariance could explain the many shared groups among southern landmasses (Galloway 1988; Moncalvo and Buchanan 2008). Molecular data suggest that many southern hemisphere plant distributions have arisen only within the last 10 million years (Winkworth et al. 2002). Studies have shown the importance of dispersal for species that have intercontinental distributions (Sanmartín and Ronquist 2004; McGlone 2005; Moreira-Muñoz 2007). The West Wind Drift is a meteorological phenomenon causing cyclonic weather systems to move eastward in a clockwise motion around Antarctica. This pattern was initiated during the Miocene when Australia and South America separated from Antarctica and the eastward flow intensified during the Tertiary and was probably the strongest during the Pleistocene glacial periods (2 mya - 14,000 ya) and to this day it is a dominant weather pattern (Winkworth et al. 2002). These winds are four times as strong as their counterparts in the Northern Hemisphere and play an important role in dispersal (Raven 1973). The floristic similarities of southern landmasses have been shown to be direction-dependent and driven by this wind pattern (Muñoz et al. 2004). Given these strong wind patterns, many scientists assume that dispersal explains the current distribution patterns of species more than the

vicariance hypothesis.

Lichens are symbiotic organisms consisting of a fungus and a photosynthetic green algae or cyanobacteria or both simultaneously. In austral lichen taxa, Galloway (2008) describes two types of mycobiotas, namely the paleoaustral lichens, primitive Gondwanan groups that have poor dispersal abilities, and neoaustral lichens that dispersed after the breakup of Gondwanaland, producing large quantities of vegetative propagules that allow for long-distance dispersal via birds, ocean currents, or the West Wind Drift. Pseudocyphellaria glabra has a disjunct range (Figure 9), occurring in Southeastern Australia, New Zealand, Chile, Argentina, and subantarctic islands and is considered a neoaustral lichen species (Galloway 2008). In New Zealand, P. glabra has the widest range and ecological tolerance of all *Pseudocyphellaria* species (Galloway 2007). It can be found in all forest types, but is most abundant in the wettest of temperate rain forests. It is a large foliose species that is mostly epiphytic, but is also found on moss covered rocks (Figure 10). The species has been hypothesized to be neoaustral and have dispersed after fragmentation of Gondwanaland between the Oligocene and the present (Galloway 1991). The species reproduces sexually with microscopic ascospores and vegetatively with phyllidia which can be present in copious quantities. Both reproductive strategies could be the mode of dispersal via West Wind Drift, birds, and ocean currents.

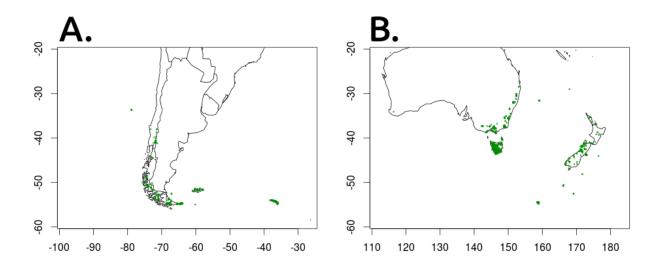


Figure 9. Global distribution of *P. glabra* in (A) southern South America and (B) Australia and New Zealand from GBIF collection records. Degrees longitude are displayed on the X-axes and latitude on the Y-axes.

Figure 10. Natural habit of *P. glabra* (A) when hydrated, (B), in dry conditions, and (C) the lower cortex.

The disjunct distribution of *P. glabra* (Figure 9) makes it an excellent study system for understanding the pattern of genetic differentiation among populations sampled from different landmasses, and how major physical barriers (Pacific Ocean, Tasman Sea, Bass Strait, and Cook Strait) limit genetic exchange among populations. We specifically set out to test two hypotheses: (1) if large bodies of water isolate populations of *P. glabra*, then these populations will be genetically distinct, and (2) given the strong wind patterns in southern hemisphere, *P. glabra* populations on different landmasses will be connected by frequent and ongoing long-distance dispersal (i.e. gene-flow). To address this issue, we collected 286 samples from southeast Australia, North and South Islands of New Zealand, and Chile. We used restriction siteassociated DNA sequencing data (RADseq) for phylogeographic and population genetic analyses in order to understand how the genetic variation of *P. glabra* is distributed across Australia, New Zealand, and Chile and to understand if large bodies of water correspond to major breaks in gene flow.

4.2 Materials and methods

4.2.1 Sampling

Fresh population samples of *P. glabra* were collected in the Australian states of Tasmania and Victoria (TAS and VIC), throughout the North and South Islands of New Zealand (NZN and NZS), and in Chile (CHI) during three field trips from 2015 to 2017 (See Figure 3B for collection locality maps). Additional samples were obtained from historical museum collections including one sample from Campbell Island (CAM) south of New Zealand. The sister species *P. homoeophylla* was also collected in New Zealand. A total of 286 specimens were sampled. At each site, if possible, at least 20 individual thalli were collected on separate trees. All specimens were vouchered in FMNH. (TABLE XXI, Appendix C).

4.2.2 DNA isolation and quality assessment

Genomic DNA was extracted from a roughly one cm2 portion of vegetative tissue. The tissues were disrupted using liquid nitrogen and a mortar and pestle and then the DNAs were isolated using ZR Fungal/Bacterial DNA MiniPrepTM kit (Zymo Research, Irvine, CA, USA) following manufacturer's directions except that macerated tissues were incubated at 65°C for one hour in lysis buffer before proceeding to the isolation steps. The concentration of isolated DNA was determined using the AccuBlue (Biotium, Inc., Fremont, CA, USA) kit and the Tecan plate reader (Tecan Group Ltd., Männedorf, Switzerland). The quality of isolated DNA was assessed by gel electrophoresis.

4.2.3 Metagenomic DNA sequencing and mycobiont reference genome assembly

Metagenomic DNA from sample VIC 2287A (DNA# 14816) was sequenced at the University of Illinois at Chicago Sequencing Core on an Illumina (Illumina Inc, San Diego, CA, USA) NextSeq500 platform. Trimmomatic (Bolger, Lohse, and Usadel 2014) was used to remove poor quality reads and adapter sequences. Bases were trimmed when the average quality of 4-base sliding windows was below 15 and bases at the start and end of reads had a quality below 10. All trimmed reads shorter than 25 bp were filtered out (LEADING:10 TRAILING:10 SLIDING-WINDOW:4:15 MINLEN:25). After quality filtering, a total of 14 gigabases (Gb) of trimmed paired-end reads resulted. The trimmed reads were assembled using SPAdes 3.5.0 (Bankevich et al. 2012) with default parameter settings. The assembled metagenome was used as an input for MetaWatt Binner version 3.5.3 (Strous et al. 2012) which was used to cluster contigs that originated from the mycobiont population of DNA data. The MetaWatt binning procedure uses multivariate statistics of tetranucleotide frequencies combined with the use of interpolated Markov models. Because MetaWatt was originally designed only for prokaryotic organisms, we produced a custom database of 10 axenically cultured lichen-forming fungal genomes available on NCBI to identify contigs of Lecanoromycetes origin. To create the custome database, we performed gene prediction using AUGUSTUS version 2.5.5 (Stanke and Morgenstern 2005) on all 10 genomes. Amino acid sequences of the generated gene models were used by MetaWatt for the identification of bins. Only reads identified as Lecanoromycetes were selected from the metagenomic contigs resulting in 1,149 contigs ranging from 9,960 bp to 84,423 bp in length. Finally, we created a Bowtie2 (Langmead and Salzberg 2012) database from the selected scaffolds for the mapping approach to filter for mycobiont RAD loci.

4.2.4 RADseq library prep and Illumina sequencing

Restriction site associated DNA libraries were prepared and sequenced from whole DNA isolations at the University of Wisconsin-Madison Biotechnology Center. DNA concentration was verified using the Quant-iT[™] PicoGreen® dsDNA kit (Life Technologies, Grand Island, NY). Libraries were prepared as in Elshire et al (2011) with minimal modification; in short, 50 ng of DNA was digested using the 5-bp cutter ApeKI (New England Biolabs, Ipswich, MA) after which barcoded adapters amenable to Illumina sequencing were added by ligation with T4 ligase (New England Biolabs, Ipswich, MA). 192 adapter-ligated samples were pooled and amplified to provide library quantities amenable for sequencing, and adapter dimers were removed by SPRI bead purification. Quality and quantity of the finished libraries were assessed using the Agilent Bioanalyzer High Sensitivity Chip (Agilent Technologies, Inc., Santa Clara, CA) and Qubit® dsDNA HS Assay Kit (Life Technologies, Grand Island, NY), respectively. Libraries were standardized to 2nM. Cluster generation was performed using HiSeq SR Cluster Kit v3 cBot kits (Illumina Inc, San Diego, CA, USA). Flowcells were sequenced using single read, 100bp sequencing and HiSeq SBS Kit v4 (50 Cycle) (Illumina Inc.) on a HiSeq2500 sequencer. Images were analyzed using the standard Illumina Pipeline, version 1.8.2.

4.2.5 RADseq data assembly

The raw reads of *P. glabra* and *P. homoeophylla* from the HiSeq2500 sequencing were processed and assembled as described earlier for metagenomic datasets of lichens (Grewe et al. 2017). This process used ipyRAD (Eaton and Overcast 2016) to demultiplex raw reads and pyRAD (Eaton and Ree 2013) for the remaining steps. An additional mapping step is conducted after the generation of consensus sequences (pyRAD step 5) that used Bowtie2 to filter for mycobiont loci with a reference sequence. Raw Illumina RAD sequences are referred to as 'read' and the clustered reads per individual sample as 'loci'; the final matrices are alignments of homologous loci from multiple samples with nucleotide substitutions referred to as 'SNP'. In pyRAD, we set the datatype to genotype-by-sequencing (gbs), ploidy to haploid (1), a similarity threshold for the clustering of reads within and between individuals to 90% (.90) and a minimum coverage of four samples per locus (4). For the reference-based filtering of RAD loci, we used Bowtie2 with adjusted parameters to allow one permitted mismatch (-N 1), a seed length of 20 (-L 20), up to 20 seed extension attempts (-D 20) and a maximum "re-seeding" of 3 (-R 3). Following an initial round with all sequenced samples, we re-ran step 7 of pyRAD and excluded 70 samples with less than 1000 recovered loci (1000min full dataset). A reduced dataset was generated for population genetic analyses without the 13 P. homoephylla samples with minimum of four samples per locus (1000min no PHO). We used the filtered pyRAD output files from these datasets, such as unlinked snps, alleles and vcf, for further phylogenetic and population genomic analyses as described earlier for lichen RADseq datasets (Grewe et al. 2018).

4.2.6 Phylogenetic analysis

A maximum likelihood (ML) phylogenetic analysis was conducted in RAxML version

8.1.16 (Stamatakis 2014) using the concatenated unlinked SNPs files for the 1000min_full dataset generated by pyRAD which contained all *P. glabra* and *P. homoeophylla* samples with at least 1000 loci (216 samples total). We used the GTRGAMMA model approximation for the ML tree search with 100 bootstrap replicates using the rapid bootstrapping algorithm. The resulting phylogenetic tree was rooted with the *P. homoeophylla* clade and drawn to scale with the online interface of Interactive Tree Of Life (https://itol.embl.de/).

4.2.7 Identification of panmictic clusters

The differences in the population structure of *P. glabra* samples between different landmass populations (1000min_no_PHO; TAS, VIC, NZN, NZS, and CHI; 202 samples total) was calculated by creating a reduced dataset that included all sites with a minor allele frequency larger than 0.05 and greater than 50% coverage using vcftools version 0.1.15 (Danecek et al. 2011). We converted the reduced file to a genind object using the adegenet version 2.0.2 R package. The genind object was further modified to account for haploid genomes and the population membership for samples based on landmass were assigned. This modified genind object was used for population genetic analyses in R.

We estimated Gst (Nei 1973), G'st (Hedrick 2005) and Jost's D (Jost 2008) using the R package mmod version 1.3.3 (Winter 2012) to ascertain the degree of population subdivision among landmass populations. Gst measures gene diversity within and between subpopulations and is useful when mutation rate is low compared to the migration rate. G'st and Jost's D, on the other hand, are important when mutation rate is higher than or equal to migration rate (Whitlock 2011). All measures were used to quantify genomic differentiation. The average per site indices were calculated pairwise among landmass populations and inferred genetic clusters.

We used the Discriminant Analysis of Principal Components (DAPC) to estimate the

genetic structure of 202 *P. glabra* samples (1000min_no_PHO genind datasets) from different landmasses. The DAPC was implemented in the adegenet version 2.1.1 R package (Jombart, Devillard, and Balloux 2010). Initially, data were transformed using a principal components analysis (PCA) and then components of PCA were submitted to a discriminant analysis (DA). We used the function a.score in the adegenet R package using the smart procedure as a criterion for choosing the optimal number of PCs in the PCA step of DAPC. The smart procedure selects an evenly distributed number of PCs in a pre-defined range and computes the a-score for each. Next, the a-score results are interpolated using splines to predict an approximate optimal number of PCs. For the DAPC we used the first six PCs and all four DA-eigenvalues. The results of the analyses were visualized in two ways; one showing genetic variation in genomic space and the other in a STRUCTURE-like plot that shows the predicted group membership.

4.2.8 Estimation of shared ancestry

With the 1000min_no_PHO dataset (202 samples, not including *P. homoeophylla*) we inferred population structure based on nearest neighbor haplotype co-ancestry using the programs RADpainter and fineRADstructure (Malinsky et al. 2018). The fineRADstructure package uses the program RADpainter (Malinsky et al. 2018) to infer a co-ancestry matrix from RADseq data and the Markov chain Monte Carlo (MCMC) clustering algorithm fineSTRUCTURE (Lawson et al. 2012). The alleles output file from pyRAD was converted with the python script finerad_input.py (https://github.com/edgardomortiz/fineRADstructure-tools; last accessed December 3, 2018) with a minimum number of 101 samples (50%) in a locus. The output of the analyses was visualized with the R script fineRADstructurePlot.R provided by the fineRADstructure package.

4.3 Results

4.3.1 Reference genome assembly and RADseq results

We assembled a draft reference genome of *P. glabra* to filter for mycobiont RAD loci. The Illumina NextSeq sequencing of the whole *P. glabra* (2287A VIC) thallus resulted in 42,803,904 metagenomic paired-end reads. First, we trimmed these raw data which reduced the paired-end reads to 40,247,418 (94% of raw data). The trimmed read pairs were then assembled into 1,038,157 scaffolds (N50 = 189,136 bp; L50 count of 513 Kb) with a total size of 494 Mbp (including 1,866 scaffolds of sizes larger than 10 Kb). Further metagenomic binning identified 30.65 Mbp of the assembly as mycobiont derived from which we selected 1,142 scaffolds (N50 = 401 bp; L50 count of 17.123 KB) with sizes larger than 10 kb. The sorted draft genome of *P. glabra* had a total size of 19.36 Mbp.

We included 286 specimens of *P. glabra* from 3 RADseq libraries. The sequence read number of each sample varied from 6,901 for sample 15528_CHI to 3,286,909 for sample 15953_NZN with an average sequence read number of 994,295.95 (sd = 535,452.64). The number of loci (within sample clusters) that pyRAD generated from these sequences directly correlated with the initial number of sequences (R2 = 0.75, TABLE XXII, Appendix C). An average of 16.92% (sd = 7.51%) of all loci mapped to the mycobiont reference genome and, of these, an average of 96.58% (sd = 2.88%) were included into the final pyRAD dataset. The numbers of loci before and after the mapping were directly correlated (R2 = 0.83, TABLE XXII, Appendix C). In addition, the number of mapped loci were strongly correlated to the number of loci included in the final dataset (R2 = 0.99, Table XXII, Appendix C). Seventy samples of *P. glabra* had less than 1,000 loci in the final dataset and were removed from the analysis. All remaining 216 samples in the final dataset had on average of 5073.16 (sd = 3263.88) loci

(TABLE XXII, Appendix C).

4.3.2 Phylogenetic analysis

The ML tree (Figure 11A) was estimated from the 1000min full RADseq matrix with 21,937 distinct alignment patterns and 79.48% missing data. The phylogenetic analyses recovered a well-supported clade containing all P. glabra samples sister to the P. homoeophylla clade. Four samples of P. glabra from Victoria are early divergent and form a well-supported clade. The remaining samples from all landmasses are recovered in two well-supported (100% bootstrap support) clades (Clades A and B) that also contained other well-supported subclades. Clade A contains *P. glabra* individuals from both Islands of New Zealand and Chile (NZN, NZS, and CHI). Samples from Chile in Clade 2 form their own well-supported (100% bootstrap support) clade that is sister to the New Zealand clade (75% bootstrap support). Clade B contains P. glabra individuals from every major landmass (TAS, VIC, NZN, NZS, CAM, and CHI). Australian samples in Clade B (TAS and VIC) form a well-supported subclade (100% bootstrap support). Similarly, Chilean samples (CHI) in Clade B also form a well-supported (91%) bootstrap support) monophyletic clade. The New Zealand (NZN and NZS) samples in Clade 1 are polyphyletic, forming three lineages with no well-supported geographic clusters corresponding to the North or South Islands. The one individual from Campbell Island is in a well-supported (88% bootstrap support) clade with one individual from the South Island of New Zealand.

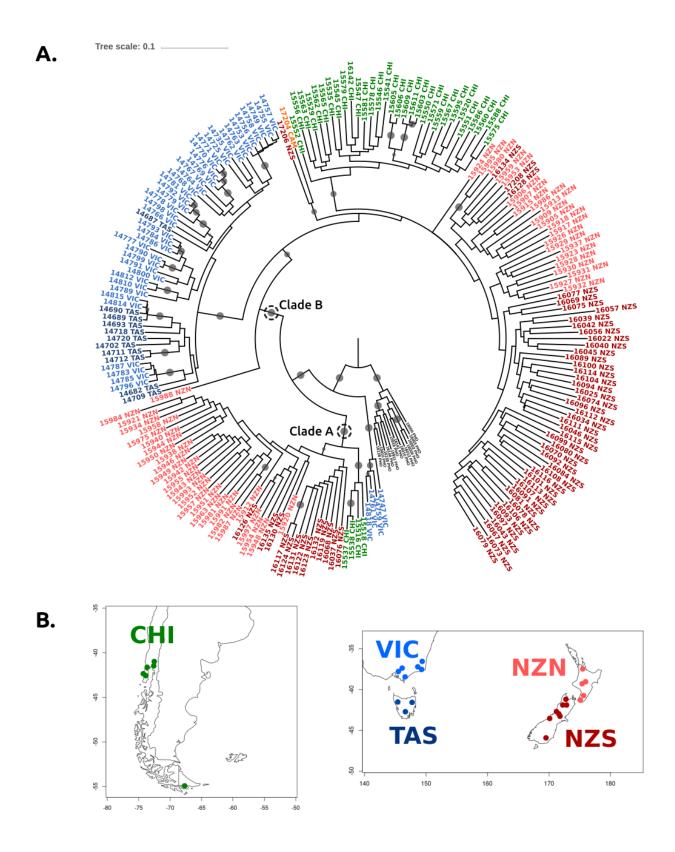


Figure 11. Phylogenetic tree (A) inferred from from *P. glabra*, and *P. homoeophylla* RADseq data. The population collection sites from all major land masses are shown on the maps (B) and

represented by colors on the tips (TAS=dark blue, VIC=light blue, CHI=green, NZN=dark red, NZS=light red, CAM=orange, PHO & PFR=black). Bootstrap values between 70-100% are indicated at the nodes by the size of the grey circles. The unit of branch length is substitutions per site.

4.3.3 Population subdivision analyses

We determined the degree to which populations from different landmasses (TAS, VIC, NZN, NZS, and CHI) are subdivided by Gst, G'st and D measurements. For these analyses, we included only SNPs with a MAF greater than 0.05 and more than 50% coverage. This reduced the RADseq dataset to a total of 2,255 SNPs. The average pairwise values of Gst, G'st and D measures for each population are reported in Table XIII. Average values for Gst, G'st and D that approach 1 indicate that genomes from different populations are completely isolated, but the highest values recovered were slightly above 0.5 for Hendricks G'st for TAS and CHI. Hendrick's G'st reported higher values among populations in general, while Nei's Gst and Jost's D were lower in comparison. All measure indicated that no population was completely isolated from any other population.

Pairwise Nei's Gst				
	CHI	NZN	NZS	TAS
NZN	0.14616298			
NZS	0.11546406	0.06814561		
TAS	0.27533185	0.21892748	0.19753898	
VIC	0.23198384	0.17710142	0.1544978	0.06126183
		Pairwise Hendrick's	G'st	
	CHI	NZN	NZS	TAS
NZN	0.3309072			
NZS	0.2644481	0.1701334		
TAS	0.5198048	0.4508762	0.4077721	
VIC	0.4638908	0.3863554	0.3384012	0.137628
		Pairwise Jost's D		
	CHI	NZN	NZS	TAS
NZN	0.10183161			
NZS	0.07241562	0.04875867		
TAS	0.15491221	0.14304747	0.11619887	
VIC	0.1400209	0.12222243	0.09661457	0.0250716

TABLE XIII. MEAN PAIRWISE MEASURES OF POPULATION SUBDIVISION FOR THE FIVE MAJOR POPULATIONS OF *P. GLABRA*.

4.3.4 Discriminant analysis of principal components

The same 2,255 SNPs dataset used in the population subdivision analyses was also used to differentiate the genomes by their variation in a non-parametric approach with a DAPC (Figure 12). The DAPC combines a PCA with a DA for a separation of genomes based on their variance

between groups rather than the total variance of the sample. We used sampling location to designate populations (landmass populations), three clusters representing Chile, New Zealand and Australia were clearly separated in genomic space, but subclusters representing TAS and VIC were overlapping as were subclusters representing NZN and NZS (Figure 12A). Furthermore, there is evidence for admixture between Chile and New Zealand and between Australia and New Zealand, but not between Chile and Australia (Figure 12B).

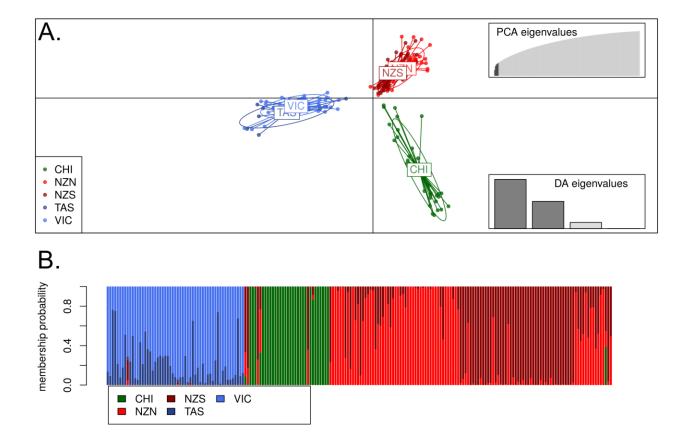


Figure 12. Genomic variation by non-parametric DAPC. (A) DAPC scatter plot of the densities of the populations of *P. glabra* (TAS=dark blue, VIC=light blue, CHI=green, NZN=dark red, NZS=light red) estimated with six PCA and four DA eigenvalues (B) Bar plot of group membership probabilities.

4.3.5 Estimation of co-ancestry

The population genetic structure of P. glabra samples was assessed using a Bayesian model-based approach with the program fineRAD structure. By converting the pyRAD allele output for fineRADstructure, we reduced the dataset to 1,618 unlinked SNPs with a minimum coverage of 101 samples per locus (50% samples per locus). Results from co-ancestry analysis in Figure 13 provided additional information about ancestry between individuals and revealed patterns consistent with the ML phylogenetic analysis in Figure 11A and the DAPC in Figure 12 but also showed finer-scale differences as well. In particular, five major blocks stood out corresponding to (1, lower-left) the individuals from New Zealand and Chile that clustered in Clade A of the ML phylogeny (2, middle-left) a block containing Australian individuals corresponding to the well-supported clade from Clade B of the ML phylogeny, (3, middle-right) a block containing New Zealand samples from Clade B of the ML phylogeny, (4) four individuals from Victoria, Australia which were early divergent in the ML phylogeny, and (5, upper-right) the Chilean individuals from Clade B in the ML phylogeny. In general, the resulting clustered co-ancestry matrix showed that P. glabra samples from Australia (TAS and VIC), Chile (CHI) and New Zealand (NZN and NZS) shared more co-ancestry within each other than between countries. As in the phylogenetic tree (Figure 11A) samples collected in New Zealand formed two clusters with samples found in Clade B sharing less co-ancestry than those from Clade A. The New Zealand and Chile clusters in the upper-right of the matrix have shared coancestry which reflects the clustering in the ML phylogeny. Some samples showed the highest degrees of co-ancestry (dark blue and red subblocks) demonstrating very close relatedness, such as sister or clonal relationships. These results agreed with the ML inference (Figure 11A) in which the same specimens were close sister taxa.

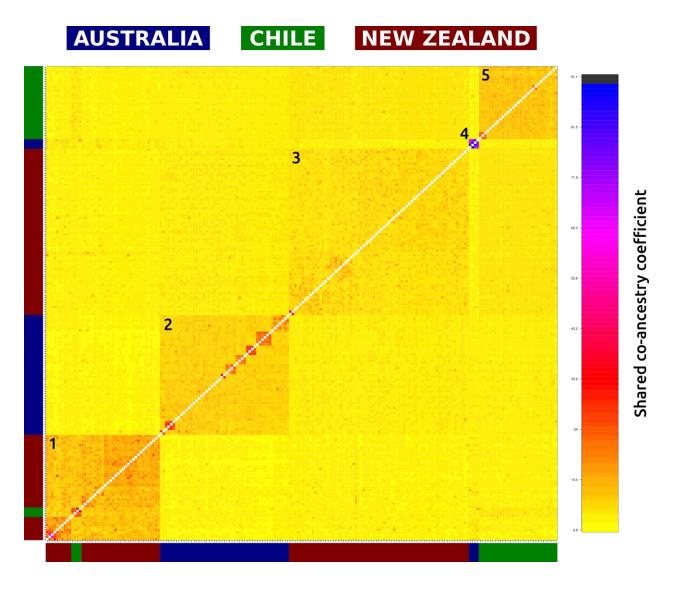


Figure 13.Clustered fineRADstructure co-ancestry matrix estimated from the 1000min_no_PHO dataset including 216 *P. glabra* samples. The heatmap shows pairwise co-ancestry between individuals, with black, blue and purple representing the highest levels, red and orange indicating intermediate levels, and yellow representing the lowest levels of shared coancestry.

4.4 Discussion

Our study results implied that the vast water bodies separating continents of the Southern Hemisphere do not form a disruptive barrier to gene flow among populations of the lichenized fungus *P. glabra* where geographically distant individuals may share more recent ancestry that geographically proximate ones, although statistically detectable genetic structure does exist (based on DAPC). This study corroborated the biology of the species, where lichenized fungi with small-size and a large-quantity of reproductive propagules tend to dispersal well and the disjunct distribution of *P. glabra* can be explained by recent dispersal events (Galloway 2008, 2008, 1991).

Our ML results (Figure 11A) recovered *P. glabra* as a distinct clade sister to the 13 outgroup *P. homoeophylla* samples. The two species have been suggested to be a species pair (Galloway and James 1980) and our RADseq results are consistent with them being distinct lineages. Species pairs are common in lichens and consist of one sexual and one asexual species (Tehler 1982; Mattsson and Lumbsch 1989; Poelt 1972). The asexual species form structures that propagate the fungal and photosynthetic partner simultaneously. Otherwise, species in species pairs are morphologically identical, but were traditionally regarded as distinct species due to their different reproductive modes (Poelt 1972). Each species form distinct groupings in both ML and population genomic analyses (Figure 3A and Figure 23, Appendix C). Samples of *P. glabra* formed multiple distinct lineages and did not show clear geographic structure. Individuals of *P. glabra* from all major landmasses were polyphyletic, but most samples from Chile and Australia formed well-supported clades. New Zealand samples are polyphyletic suggesting a greater genetic variability in New Zealand. This could be due to a longer residency on New Zealand and more ancestral polymorphism. Our own collection experience (Widhelm personal observation) also suggests that the New Zealand population can grow in more forest types and on many different substrates that were not observed in any other populations.

Our population genomic results from the RADseq dataset clearly delimited *P. glabra* into three populations (Figures 12 and 13). This confirms that populations separated by large bodies of water, such as the Tasman Sea and Pacific Ocean are genetically differentiated. Relatively smaller bodies of water, such as the Bass Strait (separating TAS and VIC) and Cook Strait (separating NZN and NZS), are not sufficiently large enough to isolate populations and dispersal is homogenizing the populations. Alternatively, it could be that the Bass and Cook Straits were land bridges during the last glacial maximum (Lambeck and Chappell 2001; Proctor and Carter 1989) and not enough time has passed for populations on each side to become genetically differentiated. The sister species P. homoeophylla is genetically isolated from P. glabra, even though the two species live in sympatry on both islands of New Zealand (Figure 23, Appendix C). Admixture between New Zealand and Chile was detected in the STRUCTURE-like plot of the DAPC analysis (Figure 12B). Seven samples from Chile were assigned to the genetic cluster containing the New Zealand specimens which could be caused by relatively recent long-distance dispersal. This result agrees with the ML phylogeny, where samples from each country clustered together in well-supported clades and with the co-ancestry matrix, where samples from Chile and New Zealand had relatively high levels of co-ancestry. There was slightly less admixture between New Zealand and Australia samples. Only three Australian samples were assigned to the New Zealand genetic cluster. This could possibly be due to east-to-west dispersal across the Tasman Sea. Some cyclonic weather systems are able to disperse east-to-west. Although the prevailing wind pattern is west-to-east at high altitudes, lower altitudes provide opportunities for east-to-west dispersal, and birds are also capable of carrying spores against the dominant wind

patterns (Wardle 1978).

The co-ancestry matrix in Figure 13 indicated that samples originating from a particular landmass shared more co-ancestry than they did with samples from other landmasses. However, based on the fineRADstructure analysis, there was more shared ancestry among samples originating from New Zealand and Chile than between New Zealand and Australia, which is surprising because of the proximity of Australia to New Zealand. The patterns found in the co-ancestry matrix, which are similar to the ML phylogeny, show that multiple independent lineages of *P. glabra* are found in all landmass, suggesting that all lineages have been or are still undergoing long-distance dispersal.

The biogeography of the Southern Hemisphere has intrigued scientists for hundreds of years. When Joseph Hooker visited these areas during an Antarctic Expedition between 1839 and 1843 he was impelled to write Charles Darwin to explain the biological similarities of Australia, New Zealand, and Southern South America (Skottsberg and Pantin 1960). Hooker became convinced that these affinities were only partly explained by dispersal and more so by a fragmented great Southern Continent (Galloway 1988). This idea was supported later by Wegener's theory of continental drift (Wegener 1966) and later by plate tectonics. The breakup of Gondwana did indeed isolate many groups of organisms, including lichens and these ideas dominated the views and explanations of disjunct distributions of species by biogeographers for many years (Swenson, Hill, and McLoughlin 2001; Raven and Axelrod 1972; Brundin 1966). Today, however, dispersal is seen as the primary mechanism for the disjunct distribution at the species level (Sanmartín and Ronquist 2004; McGlone 2005; Moreira-Muñoz 2007). The first sources of data that suggested long-distance dispersal was an important force in the southern hemisphere were palynological where temporal differences in the first appearance of shared taxa (i.e. Australia first, New Zealand second, etc.) were observed. The pollen fossil record suggests that transoceanic dispersal occurred throughout the Tertiary (Macphail 1997; M. Pole 1994; M. S. Pole 2001; Mildenhall 1980). Once molecular methods were developed, studies on plant taxa with eastward dispersal were determined by phylogeny: (Table 1 in Winkworth et al., 2002) and as shown in many previous molecular-based studies, our results showed that dispersal rather than vicariance better explained the genetic pattern of currently disjunct distributed *P. glabra*.

We recently (Widhelm et al. – Chapter 2 in this dissertation) estimated divergence times in the former family Lobariaceae. The family is now considered the lobarioid clade of Peltigeraceae based on a temporal banding approach that reclassified higher-level taxonomic groups in the Lecanoromycetes (Kraichak et al. 2018). The time-tree estimated a crown age for this clade around 70 Mya (Widhelm et al. - Chapter 2 in this dissertation). This time-tree included one sample each of the closely related species P. glabra, P. homoeophylla, and P. freycinetii. The divergence estimates were around 13 Mya for the branching of P. freycinetii and around 3 Mya for P. glabra from P. homoeophylla. If the estimates are accurate, the entire lobarioid clade diversified rapidly at the end and after the breakup of Gondwana (155-80 Mya, Stevens, 1980) and P. glabra, P. homoeophylla, and P. freycinetii evolved relatively recently when the continents were very close to their present configuration. The result from the study by (Widhelm et al – Chapter 2 in this dissertation) is in line with the dispersal hypotheses proposed by previous literature (Sanmartín and Ronquist 2004; McGlone 2005; Moreira-Muñoz 2007). The dominant wind patterns that form a West-to-East directional flow (i.e. West Wind Drift) are probably facilitating the migrations of wind dispersing organisms (Muñoz et al. 2004; Galloway 1991). Similarly, birds such as the migratory albatross and shearwaters could be other possible vectors that carry propagules and spores in both directions (Gillespie et al. 2012).

4.5 Conclusion

Populations of *P. glabra* occur in Australia, Chile, and New Zealand and are genetically structured. They also show that samples of *P. glabra* from all landmasses form a lineage that is distinct from the *P. homoeophylla* lineage that only occurs in New Zealand. Although the origin of *P. glabra* remains unclear, long-distance dispersal, via the dominant wind patterns and possibly by migratory birds has established populations on landmasses between -20S and -60S degrees latitude around Antarctica. The relatively wide ecological tolerance and ability to occur in a variety of habitats and substrates (Galloway 2007) may allow *P. glabra* to be more successful at long-distance dispersal than closely related *Pseudocyphellaria* species, such as *P. homoeophylla* and *P. freycinetii* which are only found in New Zealand and Chile respectively. This study is the first to utilize the power of RADseq to understand the intercontinental distribution of a lichenized fungus at this level and the results suggest that wind patterns and possibly migratory birds can keep populations connected enough to maintain a single species that is divided by large barriers like the Pacific Ocean and the Tasman Sea.

4.6 References

Bankevich, Anton, Sergey Nurk, Dmitry Antipov, Alexey A. Gurevich, Mikhail Dvorkin,

Alexander S. Kulikov, Valery M. Lesin et al. "SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing." *Journal of Computational Biology* 19, no. 5 (2012): 455-477.

Bolger, Anthony M., Marc Lohse, and Bjoern Usadel. "Trimmomatic: A flexible trimmer for Illumina sequence data." *Bioinformatics* 30, no. 15 (2014): 2114-2120.

- Brundin, L. "Transantarctic relationships and their significance, as evidenced by chironomid midges." In Kunglige Svenska Velenskapsakademiens Handlinger. Fjärde Series 11, Stockholm: Almqvist & Wiksell (1966): 1-472.
- Burbridge, N. T. The phytogeography of the australian region." *Australian Journal of Botany* 8: (1960): 75–212.
- Chakraborty, Ranajit. "Analysis of genetic structure of populations: Meaning, methods, and implications." In *Human Population Genetics*. Boston: Springer. (1993): 189-206.
- Danecek, Petr, Adam Auton, Goncalo Abecasis, Cornelis A. Albers, Eric Banks, Mark A.
 DePristo, Robert E. Handsaker et al. "The variant call format and VCFtools."
 Bioinformatics 27, no. 15 (2011): 2156-2158.
- Davey, JohnW, and Mark L. Blaxter. "RADSeq: Next-generation population genetics." *Brief. Funct. Genomics* 10, no. 2 (2011): 108.
- Eaton, Deren., and I. Overcast. "Ipyrad: Interactive assembly and analysis of RADseq data sets." (2016).
- Eaton, Deren, and Richard H. Ree. "Inferring phylogeny and introgression using RADseq data: An example from flowering plants (*Pedicularis*: Orobanchaceae)." *Systematic Biology* 62, no. 5 (2013): 689-706.
- Elshire, Robert J., Jeffrey C. Glaubitz, Qi Sun, Jesse A. Pol, Ken Kawamoto, and Edward S. Buckler. "A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species." *PLOS ONE* 6 (2011): e19379.

- Excoffier, L. "Analysis of Population Subdivision." In *Handbook of Statistical Genetics*. Edited by D. J. Balding, M. Bishop, and C. Cannings. Chichester: John Wiley & Sons. (2004).
- Galloway, D. J., and P. W. James. "Nomenclatural notes on *Pseudocyphellaria* in New Zealand." *The Lichenologist* 12, no. 3 (1980): 291-303.
- Galloway, D. J. Flora of New Zealand Lichens. Revised second edition including lichen-forming and lichenicolous fungi. Volumes 1 and 2. Lincoln: Manaaki Whenua Press. (2007).
- Galloway, D. J. "Phytogeography of southern hemisphere lichens." In *Quantitative Approaches* to Phytogeography. Edited by Pier Luigi Nimis and T.J. Crovello. Dordrecht: Springer. (1991): 233-262.
- Galloway, D. J. "Austral lichenology: 1690–2008." New Zealand Journal of Botany 46 no. 4 (2008) 433–521.
- Galloway, D. J. "Plate tectonics and the distribution of cool temperate Southern Hemisphere macrolichens." *Botanical Journal of the Linnean Society* 96, no. 1 (1988): 45-55.
- Galloway, D. J. "Lichen biogeography." In *Lichen Biology*, Cambridge: Cambridge University Press. (2008). 315–35.
- Gillespie, Rosemary G., Bruce G. Baldwin, Jonathan M. Waters, Ceridwen I. Fraser, Raisa Nikula, and George K. Roderick. "Long-distance dispersal: A framework for hypothesis testing." *Trends in Ecology & Evolution* 27, no. 1 (2012): 47-56.
- Grewe, Felix, Jen-Pen Huang, Steven D. Leavitt, and H. Thorsten Lumbsch. "Reference-based RADseq resolves robust relationships among closely related species of lichen-forming fungi using metagenomic DNA." *Scientific Reports* 7, no. 1 (2017): 9884.

- Grewe, Felix, Elisa Lagostina, Huini Wu, Christian Printzen, and H. Thorsten Lumbsch.
 "Population genomic analyses of RAD sequences resolves the phylogenetic relationship of the lichen-forming fungal species *Usnea antarctica* and *Usnea aurantiacoatra*." *MycoKeys* 43 (2018): 91-113.
- Hedrick, Philip W. "A standardized genetic differentiation measure." *Evolution* 59, no. 8 (2005): 1633-1638.
- Jombart, Thibaut, Sébastien Devillard, and François Balloux. "Discriminant analysis of principal components: A new method for the analysis of genetically structured populations." *BMC Genetics* 11, no. 1 (2010): 94.
- Jost, L. O. U. "GST and its relatives do not measure differentiation." *Molecular Ecology* 17, no. 18 (2008): 4015-4026.
- Kraichak, Ekaphan, Jen-Pan Huang, Matthew Nelsen, Steven D. Leavitt, and H. Thorsten Lumbsch. "A revised classification of orders and families in the two major subclasses of Lecanoromycetes (Ascomycota) based on a temporal approach." *Botanical Journal of the Linnean Society* 188, no. 3 (2018): 233-249.
- Lambeck, Kurt, and John Chappell. "Sea level change through the last glacial cycle." *Science* 292, no. 5517 (2001): 679-686.
- Langmead, Ben, and Steven L. Salzberg. "Fast gapped-read alignment with Bowtie 2." *Nature Methods* 9, no. 4 (2012): 357.
- Lawson, Daniel John, Garrett Hellenthal, Simon Myers, and Daniel Falush. "Inference of population structure using dense haplotype data." *PLoS Genetics* 8, no. 1 (2012): e1002453.

- Macphail, M K. "Correspondence: The importance of dispersal and recent speciation in the flora of New Zealand." *Journal of Biogeography* 26, no. 1. (1997): 113–17.
- Malinsky, Milan, Emiliano Trucchi, Daniel John Lawson, and Daniel Falush. "RADpainter and fineRADstructure: Population inference from RADseq data." *Molecular Biology and Evolution* 35, no. 5 (2018): 1284-1290.
- Mattsson, Jan-Eric, and H. Thorsten Lumbsch. "The use of the species pair concept in lichen taxonomy." *Taxon* (1989): 238-241.
- McGlone, Matt S. "Goodbye Gondwana." Journal of Biogeography 32, no. 5 (2005): 739-740.
- Mildenhall, Dallas C. "New Zealand Late Cretaceous and Cenozoic plant biogeography: A contribution." *Palaeogeography, Palaeoclimatology, Palaeoecology* 31 (1980): 197-233.
- Miller, H. A. "Bryophyte evolution and geography." *Biological Journal of the Linnean Society* 18 no. 2 (1982): 145–96.
- Moncalvo, Jean-Marc, and Peter K. Buchanan. "Molecular evidence for long distance dispersal across the Southern Hemisphere in the *Ganoderma applanatum-australe* species complex (Basidiomycota)." *Mycological Research* 112, no. 4 (2008): 425-436.
- Moreira-Muñoz, A. "The Austral floristic realm revisited." *Journal of Biogeography* 34, no. 10 (2007): 1649-1660.
- Muñoz, Jesús, Ángel M. Felicísimo, Francisco Cabezas, Ana R. Burgaz, and Isabel Martínez.
 "Wind as a long-distance dispersal vehicle in the Southern Hemisphere." *Science* 304, no. 5674 (2004): 1144-1147.

Nash, Thomas H. Lichen Biology. Cambridge: Cambridge University Press. (2008).

- Nei, Masatoshi. "Analysis of gene diversity in subdivided populations." *Proceedings of the National Academy of Sciences* 70, no. 12 (1973): 3321-3323.
- Parris, Barbara S. "Circum-Antarctic continental distribution patterns in pteridophyte species." *Brittonia* 53, no. 2 (2001): 270-283.
- Poelt, J. "Taxonomische Behandlung von Artenpaaren bei den Flechten." *Botaniska Notiser* (1972).
- Pole, Mike. "The New Zealand flora entirely long-distance dispersal?." *Journal of Biogeography* (1994): 625-635.
- Pole, Mike S. "Can long-distance dispersal be inferred from the New Zealand plant fossil record?." *Australian Journal of Botany* 49, no. 3 (2001): 357-366.
- Proctor, Roger, and Lionel Carter. "Tidal and sedimentary response to the late Quaternary closure and opening of Cook Strait, New Zealand: Results from numerical modeling." *Paleoceanography and Paleoclimatology* 4, no. 2 (1989): 167-180.
- Raven, Peter H. "Evolution of subalpine and alpine plant groups in New Zealand." *New Zealand Journal of Botany* 11, no. 2 (1973): 177-200.
- Raven, Peter H., and Daniel I. Axelrod. "Plate tectonics and Australasian paleobiogeography." *Science* 176, no. 4042 (1972): 1379-1386.
- Sanmartín Isabel, and Fredrik Ronquist. "Southern hemisphere biogeography inferred by eventbased models: Plant versus animal patterns." *Systematic Biology* 53, no. 2 (2004): 278-298.

- Skottsberg, Carl Johan Fredrik. "Remarks on the plant geography of the southern cold temperate zone." *Proceedings of the Royal Society of London. Series B. Biological Sciences* 152, no. 949 (1960): 447-457.
- Stamatakis, Alexandros. "RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies." *Bioinformatics* 30, no. 9 (2014): 1312-1313.
- Stanke, Mario, and Burkhard Morgenstern. "AUGUSTUS: A web server for gene prediction in eukaryotes that allows user-defined constraints." *Nucleic Acids Research* 33, (2005): W465-W467.
- Stevens, G. R. "Southwest Pacific faunal palaeobiogeography in Mesozoic and Cenozoic times: A review." *Palaeogeography, Palaeoclimatology, Palaeoecology* 31 (1980): 153-196.
- Strous, Marc, Beate Kraft, Regina Bisdorf, and Halina Tegetmeyer. "The binning of metagenomic contigs for microbial physiology of mixed cultures." *Frontiers in microbiology* 3 (2012): 410.
- Swenson, Ulf, Robert S. Hill, and Stephen McLoughlin. "Biogeography of *Nothofagus* supports the sequence of Gondwana break-up." *Taxon* (2001): 1025-1041.

Wardle, P. "Origin of the New Zealand mountain flora, with special reference to trans-Tasman relationships." *New Zealand Journal of Botany* 16, no. 4 (1978): 535-550.

Wegener, Alfred. The origin of continents and oceans. Chelmsford: Courier Corporation. (1966).

Werth, Silke. "Population genetics of lichen-forming fungi–A review." *The Lichenologist* 42, no. 5 (2010): 499-519.

Tehler, Anders. "The species pair concept in lichenology." Taxon (1982): 708-714.

- Whitlock, Michael C. "G'ST and D do not replace FST." *Molecular Ecology* 20, no. 6 (2011): 1083–91.
- Winkworth, Richard C., Steven J. Wagstaff, David Glenny, and Peter J. Lockhart. "Plant dispersal news from New Zealand." *Trends in Ecology & Evolution* 17, no. 11 (2002): 514-520.
- Winkworth, Richard C., Françoise Hennion, Andreas Prinzing, and Steven J. Wagstaff.
 "Explaining the disjunct distributions of austral plants: The roles of Antarctic and direct dispersal routes." *Journal of Biogeography* 42, no. 7 (2015): 1197-1209.
- Winter, David J. "MMOD: An R library for the calculation of population differentiation statistics." *Molecular Ecology Resources* 12, no. 6 (2012): 1158-1160.

5. Picking holes in traditional species delimitations: an integrative taxonomic reassessment of the *Parmotrema perforatum* group (Parmeliaceae, Ascomycota)

<u>Todd J. Widhelm</u>, Robert S. Egan, Francesca R. Bertoletti, Matt J. Asztalos, Ekaphan Kraichak, Steven D. Leavitt and H. Thorsten Lumbsch

This chapter is a reprint (with minimal formatting) of an original article published in the *Botanical Journal of the Linnean Society*. The citation is as follows:

Widhelm, Todd J., Robert S. Egan, Francesca R. Bertoletti, Matt J. Asztalos, Ekaphan Kraichak, Steven D. Leavitt, and H. Thorsten Lumbsch. "Picking holes in traditional species delimitations: an integrative taxonomic reassessment of the *Parmotrema perforatum* group (Parmeliaceae, Ascomycota)." *Botanical Journal of the Linnean Society* 182, no. 4 (2016): 868-884.

5.1 Introduction

Species delimitation is the process of discovering species boundaries and new species and the recognition of species figures prominently into biodiversity assessments and conservation programs (Mace 2004), and ecological and biogeographical studies frequently use species as basic units. Furthermore, delimiting species is important in the context of understanding many evolutionary mechanisms and processes (Sites and Marshall 2003). Inaccurate species delimitation can lead to erroneous inferences and confound our understanding of nature (Bickford et al. 2007).

A number of species concepts have been proposed, but it is generally accepted that

species can be more accurately delimited if their origins are better understood (Padial et al. 2010). The commonly employed general lineage concept (GLC) recognizes that species are metapopulations that represent distinct evolutionary lineages that can be delimited using any of several criteria associated with lineage formation (Sites and Marshall 2003; Mayden 1997; Knowles and Carstens 2007; de Queiroz 2007; Lumbsch and Leavitt 2011). However, deciding on operational criteria can be daunting (de Queiroz 2007). The application of multiple species delimitation methods all too often leads to incongruent species boundaries, rendering researchers unable to decide how many species they are working with (Sites and Marshall 2003, 2004; Rannala 2015; Mishler, Donoghue, and Farris 1982). Additionally, taxonomic uncertainty can result if researchers are inconsistent in their application of operational species concepts (Agapow et al. 2004). On the other hand, some scientists suggest using all available methods and only delimiting species if congruence is observed in most approaches (Carstens et al. 2013). With the large variety of methods and differences in operational protocols, the development of a uniting integrative approach to species delimitation that combines morphological, chemical, ecological, geographic and phylogenetic data to recognize species level linages is of utmost importance for future taxonomic studies (Padial et al. 2010; Dayrat 2005).

During the past decade, there has been an increased interest in integrative species delimitation that combines multiple lines of evidence (Sites and Marshall 2003; Padial et al. 2010). However, integrating traditional morphological data with molecular data can be challenging due to a number of issues such as the presence of cryptic species (Bickford et al. 2007; Leavitt et al. 2011; Singh et al. 2015) and effects of adaptive radiations (Shaffer and Thomson 2007; Maddison 1997). Traditional phenotype-based methods may fail to detect species boundaries in cryptic lineages resulting in an underestimate of the true number of species

relative to other kinds of data (Bickford et al. 2007). In the case of adaptive radiations, incomplete lineage sorting and hybridization confound genetic inferences and can lead to incorrect interpretations of species boundaries (Maddison 1997; Nosil, Harmon, and Seehausen 2009). Additionally, single-locus barcoding efforts can be useful for initially establishing operational taxonomic units which require further validation with an integrative taxonomic approach (Kekkonen et al. 2015).

With recent advances in DNA sequencing technology, the ability to gather data from multiple unlinked genetic loci has become the standard approach and coalescent-based analytical methods now account for incomplete lineage sorting (Balding, Bishop, and Cannings 2008). Coalescent theory is now being widely applied to empirically delimit species, and many methods are available (Fujita et al. 2012). In lichenized fungi the use of coalescent-based methods has been widely used to delimit species (Singh et al. 2015; Parnmen et al. 2012; Leavitt, Esslinger, et al. 2013; Leavitt et al. 2015; Saag et al. 2014; Kraichak et al. 2015).

Lichens are assemblages of fungi, photosynthetic green alga or cyanobacteria, and many non-photosynthetic bacteria. Therefore, lichens can be considered the symbiotic phenotype of miniature ecological systems rather than individual organisms. Despite their complexity, the taxonomy of lichens has traditionally focused on the fungal partner, and current estimates of 13,500 to 28,000 species of lichen-forming fungi have been proposed (Hawksworth 2001; Feuerer and Hawksworth 2007). With the wide range of species estimates in lichenized fungi, it is clear that there is a need for a standard species delimitation protocol (Lumbsch and Leavitt 2011). Parmeliaceae is the largest family of lichenized fungi (Jaklitsch et al. 2016) and has been the focus of many ecological, geographical, and taxonomic studies (Leavitt et al. 2015; Saag et al. 2014; Thell et al. 2004; Crespo et al. 2010; Amo de Paz et al. 2011, 2012; Del-Prado et al.

2013). One of the largest genera in the Parmeliaceae, *Parmotrema* A. Massal. includes over 350 species distributed primarily in tropical to subtropical regions worldwide. These looselyattached, large-lobed, foliose lichens display a wide variety of chemical variation and reproductive strategies (Blanco et al. 2005).

The *Parmotrema perforatum* group is a complex of species that serves as an excellent model for two controversial topics in species delimitation in lichenized fungi. The first is the species pairs concept, where pairs of taxa that are morphologically and chemically identical differ in their predominant reproductive modes: one taxon is assumed to reproduce sexually (producing apothecia), the other asexually (producing thalloid fragments called lobules, isidia, or soredia) (Mattsson and Lumbsch 1989). The other is the chemospecies concept, where different chemotypes of morphologically identical individuals are classified as distinct species if the chemical differences are correlated with geographical, or ecological differences (Egan 1986).

The *Parmotrema perforatum* group has been extensively studied and delimitation of species in this group has been highly debated (Culberson 1973; Robinson 1975; Culberson and Culberson 1973; Lendemer, Allen, and Noell 2015). The most recent classification recognizes six species in North America (Esslinger n.d.) based on the hypothesis of Culberson & Culberson (1973) who proposed three evolutionary species pairs in the North American group (Figure 14), each with its own distinct chemical profile and biogeography. Each pair has the same secondary lichen chemistry and two reproductive forms, one sexually reproducing form with apothecia (referred to as the primary species) and the other asexually reproducing with soredia (secondary species). He interpreted the three chemically distinct apotheciate species to be sibling species, reproductively isolated but still morphologically identical. He hypothesized that each apotheciate species gave rise, by parallel evolution, to a chemically identical sorediate species.

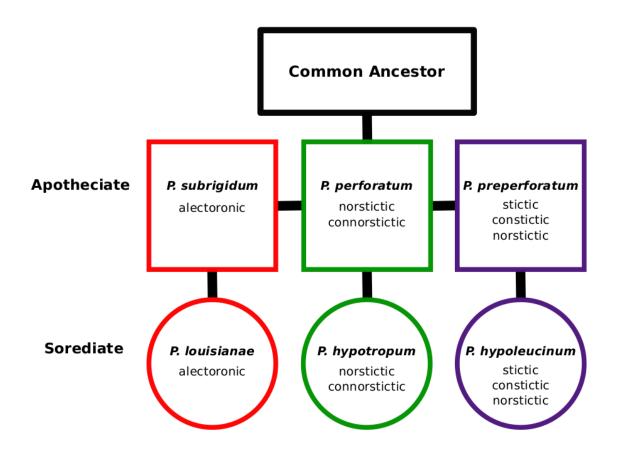


Figure 14. Species delimitation and evolutionary relationships in the *Parmotrema perforatum* group as hypothesized by W. L. Culberson (1973). Each sorediate species (circles) is descended from an apotheciate species (squares) with the same secondary chemistry. Diagnostic secondary lichen acid composition is represented by color (green = norstictic acid only, red = alectoronic acid, purple = norstictic+stictic acid).

We investigated species boundaries in the North American *Parmotrema perforatum* group using population level sampling in Eastern Texas and Western Louisiana where all six currently accepted species occur in sympatry. Using an integrative species delimitation approach, we combined DNA sequence data from seven nuclear loci, differences in reproductive strategies, secondary metabolite variation, and newly discovered variation in conidial morphology to delimit species in the *Parmotrema perforatum* group. We used a suite of empirical approaches to test the traditional hypotheses of species boundaries, including maximum likelihood, Bayesian, and coalescent-based species tree phylogenetic reconstruction approaches, along with a multi-species coalescent model to estimate speciation probabilities.

5.2 Materials and methods

5.2.1 Taxon sampling

All six members of the North American *Parmotrema perforatum* group occur in the southeastern United States, and our sampling focused on 25 sites in Oklahoma, Texas, Louisiana, and Arkansas (Figure 15). At each site, *Parmotrema* specimens were indiscriminately collected during the summer of 2006. At each site, small #2 paper bags were filled with available thalli, providing a site-specific perspective of species diversity and relative abundance. The substrate tree was recorded as "conifer" or "hardwood". Mass collections from two sites in Texas (Lake Limestone, 17 thalli; Fort Parker, 9 thalli) and two sites in Louisiana (Pelican, 10 thalli; Vivian, 8 thalli) are included in the present study (Figures 14 and 15, Table XIV). These four sites were selected because they had the highest species diversity among the 25 sites sampled. Two closely related samples of *P. hypoleucinum* from Spain were also included to test for geographic differentiation of disjunct populations.

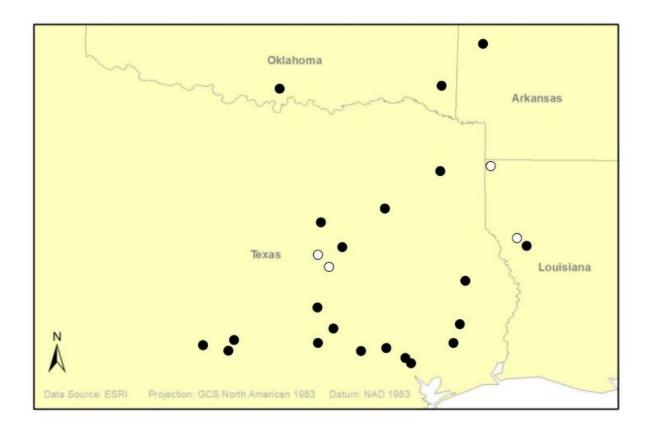


Figure 15. Twenty-five sites sampled in 2006. White dots indicate samples selected for this study.

TABLE XIV. SITES AND POPULATIONS SAMPLED IN THIS STUDY, LIST OF THE SPECIES COLLECTED AT EACH LOCATION, AND VOUCHER SPECIMENS. ALL VOUCHERS ARE DEPOSITED AT OMA. TAXA MARKED WITH AN ASTERISK WERE PRESENT, BUT SPECIMENS DID NOT YIELD A PCR PRODUCT. MULTIPLE THALLI SEQUENCED FROM A SINGLE COLLECTION ARE INDICATED WITH, E.G. "-A, B, C", AFTER THE COLLECTION NUMBER.

Site	Taxa present	Specimen voucher	
	P. perforatum	Widhelm & Egan 606	
Texas, Limestone County: Ft. Parker State Park on the east side of Springfield Lake; 9.7 Kilometers N of	P. hypotropum	Widhelm & Egan 607-A, B, C, D, E	
Groesbeck; 31°35.831' N, 96°32.143' W. 19-July-06 [Populations 1 and 2]	P. preperforatum	Widhelm & Egan 609	
	P. hypoleucinum*	Widhelm & Egan 608-A, B	
	P. subrigidum		
Texas, Limestone County: west of Lake Limestone;		Widhelm & Egan 611-A, B	
17.7 Kilometers SE of Groesbeck; 31°25.733' N,		Widhelm & Egan 615-A, B	
96°22.550' W. 19-July-06 [Populations 3 and 4]	P. perforatum	Widhelm & Egan 612	
	P. hypotropum	Widhelm & Egan 616	
	P. preperforatum	Widhelm & Egan 614-A, B, C	
	P. hypoleucinum	Widhelm & Egan 618-A, B, C	
	P. subrigidum	Widhelm & Egan 619	
		Widhelm & Egan 613-A, B, C	
		Widhelm & Egan 617	
Louisiana, Desoto Parish: 5.6 Kilometers SE of Pelican	P. perforatum	Widhelm & Egan 653-A, B	
on Route 175; 31°51.647' N, 93°33.335'	P. hypotropum	Widhelm & Egan 655	
W. 21-July-06 [Populations 5 and 6]	P. preperforatum	Widhelm & Egan 656	
	P. hypoleucinum*	Widhelm & Egan 654a	
	P. subrigidum	Widhelm & Egan 654-AA, C, D	
	P. louisianae	Widhelm & Egan 657	
		Widhelm & Egan 661	
Louisiana, Caddo Parish: 9.7 Kilometers NNE of Vivian	P. perforatum	Widhelm & Egan 663-A, B, C	
along Route 769 on Black Bayou Lake; edge of a cypress swamp; 32°55.928' N, 93°58.240' W. 21-July-06	P. hypotropum	Widhelm & Egan 664	
[Populations 7 and 8]	P. hypoleucinum	Widhelm & Egan 666-A, B	
	P. louisianae	Widhelm & Egan 665-A, B	
Spain	P. hypoleucinum	Crespo	
	P. hypoleucinum	Crespo	

Presence of secondary metabolites in each individual thallus was determined with thin layer chromatography (TLC) in solvent A (Culberson 1972). Each thallus was scored for presence or absence of norstictic acid, stictic acid, alectoronic acid, soredia, and apothecia. Constictic and connorstictic acids were not scored because they are difficult to distinguish from each other using our TLC method. Based on these five characters, each thallus was identified to one of the six currently accepted species in this complex (Culberson 1973). Herbarium packets were filled with one to many conspecific thalli from each location and assigned a collection number. All voucher specimens are deposited at OMA (Table XIV).

From these collections, a total of forty-four thalli representing the six species of the *Parmotrema perforatum* group in North America north of Mexico were selected for the phylogenetic component of this study: *P. perforatum* (Jacq.) A. Massal (11 specimens), *P. hypotropum* (Nyl.) Hale (9), *P. preperforatum* (Culb.) Hale (8), *P. hypoleucinum* (Steiner) Hale (3), *P. subrigidum* Egan (10) and *P. louisianae* (Hale) Hale (3) (Tables XIV and XV). Mass collections from two sites in Texas (Lake Limestone, 17 thalli; Fort Parker, 9 thalli) and two sites in Louisiana (Pelican, 10 thalli; Vivian, 8 thalli) are included in the present study (Figures 14 and 15, Table XIV). These four sites were selected because they had the highest species diversity among the 25 sites sampled. Two samples of *P. hypoleucinum* from Spain were also included to determine if geographic isolation has been long enough for differentiation to occur. Sequences from *Parmotrema fistulatum*, *P. reticulatum*, *P. cetratum*, *P. perlatum P. pilosum*, *P. haitiense* and *P. crinitum* were used as out-groups to root the allele tree (Genbank accession numbers in Tables XV and XVI).

Collection data	F.M. DNA #	Species	GPD	IGS	ITS	MS456 (Mcm7)	nuLSU	RPB1	MS277 (Tsr1)
Widhelm & Egan 606	2965	P. perforatum	EU665274	KX246410	KX246569	KX246605	KX246449	KX246490	KX246530
Widhelm & Egan 607-A	2966	P. hypotropum	EU665270	KX246411	KX246570	KX246606	—	KX246491	KX246531
Widhelm & Egan 607-B	2967	P. hypotropum	EU665271	KX246412	KX246571	KX246607	KX246450	KX246492	KX246532
Widhelm & Egan 607-C	2968	P. hypotropum	EU665272	KX246413	KX246572	—	KX246451	KX246493	KX246533
Widhelm & Egan 607-D	2969	P. hypotropum	EU665273	KX246414	KX246573	KX246608	KX246452	KX246494	KX246534
Widhelm & Egan 607-E	2970	P. hypotropum	EU665299	KX246415	KX246574	KX246609	KX246453	KX246495	KX246535
Widhelm & Egan 608-A	2971	P. subrigidum	EU665300	KX246416	KX246575	KX246610	KX246454	KX246496	KX246536
Widhelm & Egan 608-B	2972	P. subrigidum	EU665269	KX246417	KX246576	KX246611	KX246455	KX246497	KX246537
Widhelm & Egan 609	2973	P. preperforatum	EU665275	KX246418	KX246577	KX246612	KX246456	KX246498	KX246538
Widhelm & Egan 611-B	2974	P. perforatum	EU665279	KX246419	KX246578	KX246613	KX246457	KX246499	KX246539
Widhelm & Egan 611-C	2975	P. perforatum	EU665280	KX246420	KX246579	KX246614	KX246458	KX246500	KX246540
Widhelm & Egan 612	2976	P. hypotropum	EU665278	KX246421	KX246580	KX246615	KX246459	KX246501	_
Widhelm & Egan 613-A	2977	P. subrigidum	EU665303	KX246422	KX246581	KX246616	KX246460	KX246502	KX246541
Widhelm & Egan 613-B	2978	P. subrigidum	EU665288	KX246423	KX246582	KX246617	KX246461	KX246503	KX246542
Widhelm & Egan 613-C	2979	P. subrigidum	EU665304	KX246424	KX246583	KX246618	KX246462	KX246504	_
Widhelm & Egan 614-A	2980	P. preperforatum	EU665283	KX246425	KX246584	KX246619	KX246463	KX246505	KX246543
Widhelm & Egan 614-B	2981	P. preperforatum	EU665284	KX246426	—	KX246620	KX246464	KX246506	KX246544
Widhelm & Egan 614-C	2982	P. preperforatum	EU665285	KX246427	KX246585	KX246621	KX246465	—	KX246545
Widhelm & Egan 615-A	2983	P. perforatum	EU665281	KX246428	—	KX246622	KX246466	KX246507	
Widhelm & Egan 615-B	2984	P. perforatum	EU665282	KX246429	KX246586	KX246623	KX246467	KX246508	KX246546
Widhelm & Egan 616	2985	P. hypotropum	EU665301	KX246430	—	KX246624	KX246468	KX246509	KX246547
Widhelm & Egan 617	2986	P. subrigidum	EU665276	KX246431	KX246587	—	KX246469	KX246510	
Widhelm & Egan 618-A	2987	P. preperforatum	EU665286	_	KX246588	KX246625	KX246470	KX246511	KX246548
Widhelm & Egan 618-B	2988	P. preperforatum	EU665287	KX246432	KX246589	KX246626	KX246471	KX246512	KX246549
Widhelm & Egan 618-C	2989	P. preperforatum	EU665302	KX246433	KX246590	KX246627	KX246472	KX246513	KX246550
Widhelm & Egan 619	2990	P. hypoleucinum	EU665277	KX246434	—	KX246628	KX246473	KX246514	KX246551
Widhelm & Egan 653-B	2991	P. perforatum	EU665258	_	—	KX246629	—	—	KX246552
Widhelm & Egan 653-C	2992	P. perforatum	EU665305	—	—	—	KX246474	KX246515	_

TABLE XV. COLLECTION NUMBERS WITH CORRESPONDING ALLELE NUMBER AND GENBANK ACCESSION NUMBER OF ALL INGROUP SPECIMENS INCLUDED IN THE ANALYSIS.

	F.M. DNA #					MS456			MS277
Collection data	F .WI. D IVA #	Species	GPD	IGS	ITS	(Mcm7)	nuLSU	RPB1	(Tsr1)
Widhelm & Egan 654-AA	2993	P. subrigidum	EU665261	KX246435	KX246591	KX246630	KX246475	KX246516	KX246553
Widhelm & Egan 654-C	2994	P. subrigidum	EU665306	KX246436	KX246592	KX246631	—	KX246517	KX246554
Widhelm & Egan 654-D	2995	P. subrigidum	EU665307	KX246437	KX246593	KX246632	—	KX246518	KX246555
Widhelm & Egan 654a	2996	P. preperforatum	EU665260	—	KX246594	—	KX246476	KX246519	KX246556
Widhelm & Egan 655	2997	P. perforatum	EU665259	—	KX246595	KX246633	KX246477	KX246520	KX246557
Widhelm & Egan 656	2998	P. hypotropum	EU665257	KX246438	KX246596	KX246634	KX246478	KX246521	KX246558
Widhelm & Egan 657	2999	P. subrigidum	EU665268	KX246439	KX246597	KX246635	KX246479	KX246522	KX246559
Widhelm & Egan 661	3000	P. louisianae	EU665256	KX246440	KX246598	KX246636	KX246480	KX246523	KX246560
Widhelm & Egan 663-A	3001	P. perforatum	EU665308	KX246441	KX246599	KX246637	KX246481	—	KX246561
Widhelm & Egan 663-B	3002	P. perforatum	EU665265	KX246442	KX246600	KX246638	KX246482	KX246524	KX246562
Widhelm & Egan 663-C	3003	P. perforatum	EU665266	—	KX246601	KX246639	KX246483	—	KX246563
Widhelm & Egan 664	3004	P. hypotropum	EU665262	KX246443	KX246602	_	KX246484	—	KX246564
Widhelm & Egan 665-A	3005	P. louisianae	EU665263	KX246444	_	_	KX246485	KX246525	KX246565
Widhelm & Egan 665-B	3006	P. louisianae	EU665264	_	KX246603	KX246640	KX246486	KX246526	KX246566
Widhelm & Egan 666-B	3007	P. hypoleucinum	EU665290	KX246445	_	KX246641	—	KX246527	KX246567
Widhelm & Egan 666-C	3008	P. hypoleucinum	EU665289	KX246446	KX246604	_	KX246487	KX246528	KX246568
Crespo & Sergio 4a	3311	P. hypoleucinum	—	KX246447	_	_	KX246488	_	_
Crespo & Sergio 4b	3312	P. hypoleucinum	_	KX246448	_	_	KX246489	KX246529	_

Table XV, CONTINUED

Species	Sample ID	ITS	nuLSU	RPB1	Mcm7	Tsr1	GPD
Parmotrema cetratum	Uruguay: Maldonado, Osorio 9424 (MVM, MAF-Lich 7649)	AY586576	AY584847	EF092143	KR995649		_
Parmotrema crinitum	Portugal: Lisboa, Crespo s.n. (MAF-Lich 6061)	AY586565	AY584837	GU994723	KR995650	_	_
Parmotrema crinitum	Spain: Tenerife, Crespo & Divakar s.n. (MAF- Lich 16119)	—	_	_	_	KP888272	
Parmotrema fistulatum	_	_		_	_	_	AY249621
Parmotrema fistulatum	Uruguay: Maldonado, Geymonat, 9423 (MVM, MAF -Lich 7655)	AY581057	AY578920	GU994724	KR995651	KP888273	_
Parmotrema haitiense	Australia: Australian Capital Territory, Lowhoff et al. s.n. (MAF-Lich 7657)	AY581055	AY578918	EF092144	KR995652	KP888274	_
Parmotrema perlatum	Portugal: Sintra, Crespo et al. s.n. (MAF-Lich 6965)	AY586566	AY 584838	EF092146	_	_	—
Parmotrema perlatum	Spain: Tenerife, Crespo & Divakar s.n. (MAF- Lich 16122)	_			KR995656	KP888277	_
Parmotrema perlatum	_	—	—	_	_	_	AY249618
Parmotrema pilosum	Uruguay: Maldonado, Sacarabino (MAF-Lich 7656)	AY581056	AY 578919	GU994728	KR995657	KP888278	—
Parmotrema reticulatum	Portugal: Lisboa, Crespo s.n. (MAF-Lich 6067)	AY586579	AY584850	GU994729	KR995658	_	—
Parmotrema reticulatum		_	_				AY249617

TABLE XVI. SAMPLE IDENTIFICATION AND GENBANK ACCESSION NUMBERS FOR LOCI FROM OUTGROUP TAXA.

5.2.2 Molecular methods

Total genomic DNA was isolated from a ca. 30 mg fragment of each thallus using the DNeasy Plant Mini kit (Qiagen, Valencia, CA) following the manufacturer's instructions except grinding was done with 50 µL of lysis buffer and a pinch of sand in a porcelain mortar and pestle. If apothecia were present on the thallus, DNA was extracted from a fragment that was approximately 50-100% apothecia by mass. On thalli without apothecia, lobes were used for DNA isolation. Fungal specific primers (Table XVII) were used to amplify seven nuclear loci. Of these, three were ribosomal loci: the whole internal transcribed spacer (ITS: ITS1, 5.8S, ITS2), a portion of the intergenic spacer (IGS), and a portion of the large subunit (nuLSU). The other four were low-copy protein coding genes, including glyceraldehyde-3-phosphate-dehydrogenase (GPD), DNA replication licensing factor (Mcm7), ribosome biogenesis protein (Tsr1), and the largest subunit of RNA polymerase II (RPB1). Parameters for amplifying the ITS followed Blanco et al. (Blanco et al. 2005), and amplification of IGS and nuLSU employed a 66 °-56 ° C touchdown cycle (Lindblom and Ekman 2006). For GPD, part of the protein coding region spanning three exons and three introns were PCR-amplified using the parameters described in Myllys, Lohtander, & Tehler (Myllys, Lohtander, and Tehler 2001). The Mcm7, Tsr1, and RPB1 loci were amplified as in Schmitt et al., (Schmitt et al. 2009). Unincorporated dNTP and primers for all amplified loci were removed enzymatically by adding 5 units ExoI (Promega) and 0.5 unit shrimp alkaline phosphatase (Promega) to 5 µL of PCR product. The reaction was incubated at 37°C for 45 minutes and 80°C for 15 minutes to deactivate the enzymes. PCR products were used as templates for direct forward and reverse sequencing with BigDyeTerminator v3.1 chemistry. The GPD sequencing reactions were run on an ABI 3730 48-capillary electrophoresis DNA analyzer sequencer (Applied Biosystems, Foster City, CA) at the DNA Sequencing and

Genotyping Core Facility (University of Nebraska Medical Center, Omaha, NE). The other genes

(ITS, nuLSU, IGS, RPB1, Mcm7, Tsr1) were sequenced on the ABI 3730 48-capillary

electrophoresis DNA analyzer sequencer in the Pritzker Laboratory at the Field Museum.

TABLE XVII. PRIMERS USED FOR PCR AMPLIFICATION AND SEQUENCING NUCLEAR RIBOSOMAL IGS, ITS, NULSU AND PROTEIN CODING GENES *GPD*, *MCM7*, *RPB1*, AND *TSR1*.

Marker	Primer name	Forward primer sequence	Annealing temperature °C	Reference
IGS	XIGS_ F XIGS_	5 [†] -GCCGMTGGCTATCATTATCC-3 [†] 5 [†] -TACTGGCAGAATCARCCAGG-3 [†]	56-65 (touchdown)	This study Leavitt <i>et al.</i> (2011)
ITS	R ITS1 F ITS4	5 ¹ -CTTGGTCATTTAGAGGAAGTAA-3 ¹ 5 ¹ -TCCTCCGCTTATTGATATGC-3 ¹	56-65 (touchdown)	Gardes & Bruns (1993) White <i>et al.</i> (1990)
nuLSU	a AL2R	5 ¹ -GCGAGTGAAGCGGCAACAGCTC-3 ¹	56-65 (touchdown)	Mangold et al. (2008)
	LR3	5 ^I -CCGTGTTTCAAGACGGG-3 ^I		Vilgalys & Hester (1990)
GPD	GPD1-LM	5 ¹ -ATTGGCCGCATCGTCTTCCGCAA-3 ¹	60	Myllys et al. (2002)
Mcm7	GPD2-LM Mcm7-709F	5 ¹ -CCCACTCGTTGTCGTACCA-3 ¹ 5 ¹ -ACIMGIGTITCVGAYGTHAARCC-3 ¹	56	Myllys <i>et al.</i> (2002) Schmitt <i>et al.</i> (2009)
RPB1	9RPB1-	5 ¹ -GAYTTDGCIACICCIGGRTCWCCCAT- 3 ¹ 5 ¹ -GARTGYCCDGGDCAY-3 ¹	50	Schmitt <i>et al.</i> (2009) Stiller & Hall (1997)
Tsr1	A fRPB1- C Tsr1-1459for	5 ¹ -CCNGCDATNTCRTTRTCCATRTA-3 ¹ 5 ¹ -CCIGAYGARATYGARCTICAYCC-3 ¹	49	Matheny <i>et al.</i> (2002) Schmitt <i>et al.</i> (2009)
	Tsr1-2308rev	5 [†] -CTTRAARTAICCRTGIGTICC-3 [†]		Schmitt <i>et al.</i> (2009)

5.2.3 Sequence alignment and phylogenetic analysis

Contigs were assembled with Vector NTI 10.1.1 (Invitrogen, Carlsbad, CA) and

Geneious 8.1.7 (Biomatters, Auckland, New Zealand). Traces were carefully examined for

double peaks. If a base call was ambiguous in one read but unambiguous in the complementary

strand sequence, the nucleotide was called as unambiguous. Sequences were aligned with default settings by MUSCLE implemented in Geneious 8.1.7. Data matrix concatenation was also performed in Geneious 8.1.7.

Phylogenetic relationships were inferred using maximum likelihood (ML) and Bayesian inference (BI), in addition to the multispecies coalescent species tree approach. Analyses of individual gene tree topologies yielded no well-supported ($\geq 70\%$ bootstrap values) conflicts, thus phylogenetic relationships were estimated from a seven locus concatenated data matrix using a total-evidence approach (Kluge 1989). The data matrix had approximately 14% missing data; however, phylogenetic analyses have been shown to accurately infer relationships if many characters are sampled overall (Wiens and Morrill 2011). For the ML analysis, we used RAxML v8.0.0 (Stamatakis 2014) to reconstruct the concatenated ML gene-tree. We implemented the GTRGAMMA model and evaluated nodal support using 1000 bootstrap pseudoreplicates. PartitionFinder v1.1.1 (Lanfear et al. 2012) was used to infer the best-fitting partitioning scheme. The input file contained a total of 32 partitions, corresponding to ribosomal RNA genes (5.8s, nuLSU) and spacer regions (IGS, ITS1, ITS2) in the ribosomal repeat regions, introns in protein coding genes (three in GPD and two in RPB1) and first, second, and third codon positions of each exon of the protein coding genes (GPD, Mcm7, RPB1, Tsr1). We used the "greedy" algorithm (heuristic search) with branch lengths estimated as "linked" implemented in PartitionFinder where only one underlying set of branch lengths is estimated. We used the Bayesian Information Criterion (BIC) as implemented in PartitionFinder. We also reconstructed phylogenetic relationships using the concatenated matrix under a Bayesian approach using BEAST v1.8.0 (A J Drummond and Rambaut 2007). The same partitioning scheme that was used in the ML analysis was also used in the Bayesian analysis. We ran two independent Markov

Chain Monte Carlo (MCMC) chains for 20 million generations, implementing a relaxed lognormal clock and a constant coalescent speciation process prior. The first 25% of generations were discarded as burn-in and the remaining trees from the two runs were combined in the program LogCombiner v2.0 (Alexei J. Drummond et al. 2012).

5.2.4 Inference of putative populations

We used the Bayesian clustering program STRUCTURE v.2.3.2 to identify genetic groups without a priori knowledge within the *P. perforatum* group. While STRUCTURE assumes independence of all loci (no linkage), previous studies have demonstrated that single nucleotide polymorphisms (SNPs) from multilocus DNA sequence data can also effectively recover population structure (O'Neill et al. 2013; Altermann et al. 2014). Therefore, we reduced our concatenated, multi-locus dataset to include only polymorphic sites for the STRUCTURE analyses. Indels and 'N's were ignored for the purpose of the SNP identification. We explored the population assignments for K values ranging from 1 to 10, with 10 replicate runs per K value. We used the admixture options, and each mcmc run consisted of 50,000 burn-in generations, followed by 50,000 iterations. Results of the STRUCTURE analyses were evaluated using the Structure Harvester webserver (Earl and vonHoldt 2012), and the optimal number of genetic clusters was inferred using the ΔK method (Evanno, Regnaut, and Goudet 2005).

5.2.5 Species tree inference

We used a coalescent-based hierarchical Bayesian model *BEAST implemented in BEAST v2.0.0 (Drummond and Rambaut 2007; Drummond, Xie, and Heled 2009) to estimate species trees. *BEAST incorporates the coalescent process and the uncertainty associated with gene trees and nucleotide substitution model parameters and estimates the species tree directly from the sequence data (Drummond, Xie, and Heled 2009). Population assignments are required

a priori for *BEAST analyses, and we assigned each individual to species based on two putative population hypotheses: 1) the traditional classification of reproductive mode and chemical profile determined by TLC for a total of six different populations and 2) the three species scenario inferred from the STRUCTURE analysis. We employed bModelTest (Bouckaert 2015), a Bayesian approach implemented in BEAUti, to estimate nucleotide site substitution model for each of the six sequence alignments which were treated as separate partitions (GPD, ITS, Mcm7, nuLSU, *RPB1* and *Tsr1*) in the *BEAST analysis. Two independent MCMC runs of 100 million generations were executed with sampling at every 2000 steps. Chain mixing and convergence were evaluated in Tracer v1.6 (Rambaut et al. 2014) making sure that ESS values were greater than 200. We discarded the first 25% of trees as burn-in and the remaining trees from the two runs were combined in the program LogCombiner v2.0 (Drummond et al. 2012), and the final MCC tree was estimated from the combined posterior distribution of the trees using TreeAnnotator v2 (Drummond et al. 2012). Likelihood values of each species tree (three-species and six-species) were compared with a likelihood ratio test in R, to see which model better describes the data.

5.2.6 Species delimitation

The program BP&P v3.2 (Yang and Rannala 2010) was used to estimate Bayesian posterior probability distributions for alternative models of species delimitation (speciation probabilities). For the BP&P analysis we tested the two hypotheses of species inference found in STRUCTURE (three species scenario) and the traditional circumscription (six species scenario) by using the *BEAST species trees as guide trees from each analysis. In the six species scenario, the six currently accepted taxa were taken as putative species and two starting tree topologies, one representing the traditional hypothetical relationships and the other representing the

*BEAST species tree, were used for each analysis. The gamma prior G (2, 2000) was used on the population size parameters and on sequence divergence, while the Dirichlet prior was assigned to other divergence time parameters. Each was run twice to confirm consistency between runs.

5.3 Results

5.3.1 Sympatry of Parmotrema perfomatum group species

Collection data from 25 sites showed that the distributions of all six species in the *P. perforatum* group species overlap in a ca. 15,000 km² area in eastern Texas and western Louisiana. All specimens were collected on hardwood tree species; none were found on conifers at these sites. Four to six species co-occurred within an area of ca. 100 m2 at each of our four sampled sites (Table XIV). Differences in abundance and combination of taxa varied at different sites. Such extensive co-occurrence of the North American species of the *Parmotrema perforatum* group was unexpected, having never been reported before. All specimens were collected on hardwood tree species.

5.3.2 Sequences and alignment

We generated 276 new sequences from seven loci for this study. The data set of 46 individuals produced a concatenated alignment that spanned 4726 bp. All sequences were submitted to Genbank (Table XV). Approximately 14% of sequences were missing from the concatenated matrix.

5.3.3 Phylogenetic analysis

The ML phylogeny estimated from the concatenated 7-locus dataset (Figure 16) recovered three well-supported, major clades in the *P. perforatum* group individuals sampled. Clade A was comprised of all *P. perforatum s. str.* specimens and a single specimen identified as *P. hypotropum*; all these specimens contain only norstictic acid. Clade B included all specimens

identified as *P. subrigidum* and *P. louisianae*, all of which produce alectoronic acid. Clade C, was comprised of all *P. preperforatum* and *P. hypoleucinum* specimens and all but one specimen of *P. hypotropum* specimens. Clade C has a mixture of chemical profiles, including individuals with stictic and norstictic acids and individuals with only norstictic acid. All specimens of *P. perforatum s. str.* were recovered as monophyletic, but its hypothetical species pair, *P. hypotropum* was polyphyletic, appearing in both Clades A and C. The species pair of *P. subrigidum* and *P. louisianae* clustered together in one monophyletic clade, but neither of these was recovered as monophyletic with some of the *P. preperforatum* was paraphyletic and *P. hypoleucinum* was polyphyletic with some of the *P. hypoleucinum* individuals intermixed with the *P. preperforatum* clade and the other two, from Europe, clustering with specimens of *P. hypotropum*. Each clade contained both apotheciate and sorediate specimens. The BI topology inferred from the concatenated seven-locus data matrix in BEAST was congruent with the ML topology.

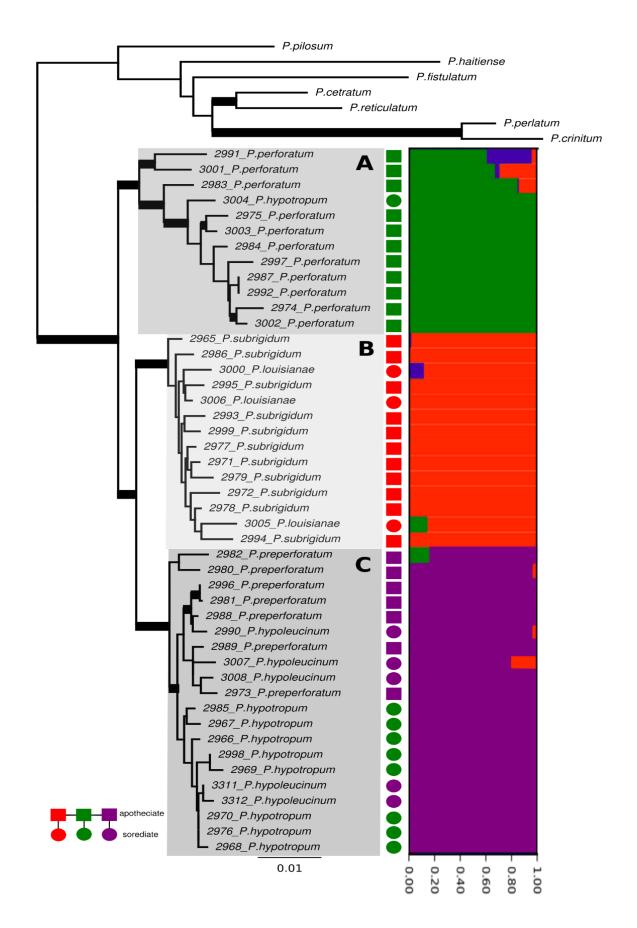


Figure 16. Phylogeny of the *Parmotrema perforatum* group with other *Parmotrema* species selected as outgroup inferred from a seven locus data set as the most likely tree in a ML analysis which was congruent with the BEAST BI. Support was evaluated with ML bootstrap proportions (BS) and bayesian posterior probabilities (BPP) which are mapped onto the branches. Support is depicted as the bold branches: (ML-BS>75 / BPP>95). Colours represent chemical composition of the sample collected inferred by TLC (green = norstictic acid only, red = alectoronic acid, purple = norstictic+stictic acid). Apotheciate (sexual) species are depicted as squares while sorediate (asexual) species are shown as circles.

The partitioning strategy inferred with PartitionFinder resulted in three partitions: (I) the first codon position in the first exon, the third codon position in the second exon, and the second codon position of the third exon and all three introns for *GPD*; all of IGS, 18S, ITS1, and ITS2; the third codon position for *Mcm7*; the second codon in the first exon and third codon in the second exon and both introns for *RPB1*; and the first and third codon positions for *Tsr1*; (ii) the second and third codon positions of the first exon, and the first position in the second exon of *GPD*; the first and second codon positions of *Mcm7*; the first codon position of the first and second exon in *RPB1*; the second codon position of *Tsr1*; and all of the nuLSU; and (iii) the 5.8s gene; the second codon position of the second exon and the first exon and the first and third codon positions of the third exon in *GPD*; and the third codon position of the first exon and the first and third codon positions of the second exon and the first and third codon positions of the third exon in *GPD*; and the third codon position of the first exon and the second codon position of the second exon and the first and third partitions while the GTR+I+G was used for the second partition as these were found to be the best fitting nucleotide substitution models in PartitionFinder.

5.3.4 Inference of putative population clusters

Bayesian clustering using STRUCTURE resulted in strong support for three distinct populations, congruent with the concatenated ML and Bayesian phylogenetic clades A, B, and C.

Most individuals showed little evidence of admixed genomes (probability of assignment to a single genetic cluster >0.95), although a limited number of individuals showed evidence of admixture (Figure 16). Likelihood values in the STRUCTURE analysis peaked at K=3, and the ad hoc Δ K approach supported a three population model as well (Evanno, Regnaut, and Goudet 2005) (Figure 17).

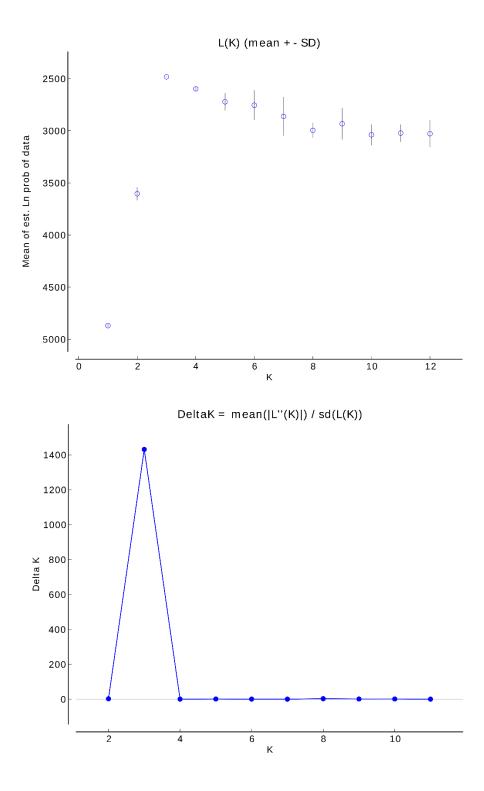


Figure 17. A, Mean L(K) (\pm SD) over ten runs for each K value. B, Δ K calculated as Δ K = m|L"(K)|/s[L(K)]. The modal value of this distribution is the true K(*) or the uppermost level of structure, here three clusters.

5.3.5 Species tree inference

In both *BEAST analyses, run lengths generated effective sample size (ESS) values in the thousands and tree topologies were congruent across independent runs. Figure 16 shows the results of the three species scenario, where asterisks denote the topology recovered by *BEAST. The three species tree is congruent with the backbone branches of the concatenated phylogeny and recovering the three species A, B, and C with PP support greater than 90 on all branches. Figure 18 shows the MCC species tree with PP support from the *BEAST analysis indicated in above the branches. In Figure 18, BP&P species delimitation PP values are shown in italics by the names of putative species and in the nodes to show the PP of combined putative species. The topology of the species tree mirrors the backbone of the ML tree in Figure 17. The *P. perforatum* group was inferred as monophyletic and all branches were highly supported (PP >90) except the clade of *P. preperforatum* and *P. hypoleucinum* (PP = 0.87), which was sister to *P. hypotropum*. Sister to this clade was the clade of the alectoronic acid containing species *P. subrigidum* and *P. louisianae* and sister to the rest of the group was *P. perforatum*.

The likelihood values of the species trees inferred in *BEAST was -10568.3934 and - 10575.2822 for the three- and six-species trees respectively. A chi-squared test of the likelihood ratio had a *p*-value=0, indicating that the three-species model is significantly better than the six-species model at explaining the model.

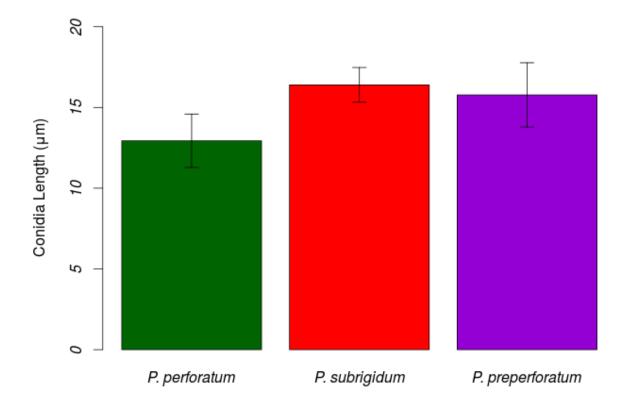


Figure 18. Average conidia length of apotheciate (sexually reproducing) species of the PPG.

5.3.6 Species delimitation analysis

In the three species scenario, BP&P inferred a final species tree that was congruent with the *BEAST three-species tree. It is depicted in Figure 16 by asterisks above the branches. BP&P delimited the three species A, B, and C all with PP = 1.

Despite the difference in starting tree topologies in the six species scenario, BP&P consistently inferred a final species tree topology that was congruent with the *BEAST species tree in Figure 18. Each run consistently delimited four previously described species (*P*.

perforatum, P. hypotropum, P. subrigidum, and *P. louisianae*) and combined *P. preperforatum* and *P. hypoleucinum* into one species. All species were delimited with high speciation probabilities (PP > 95).

5.3.7 Micromophological measurements

In total, 143 conidia from the sexually reproducing specimens of the *P. perforatum* group were measured. Average conidia length was $12.9 \pm 1.7 \mu m$, $16.4 \pm 1.1 \mu m$ and $15.8 \pm 2.0 \mu m$ for *P. perforatum*, *P. subrigidum* and *P. preperforatum*, respectively (Figure 19).

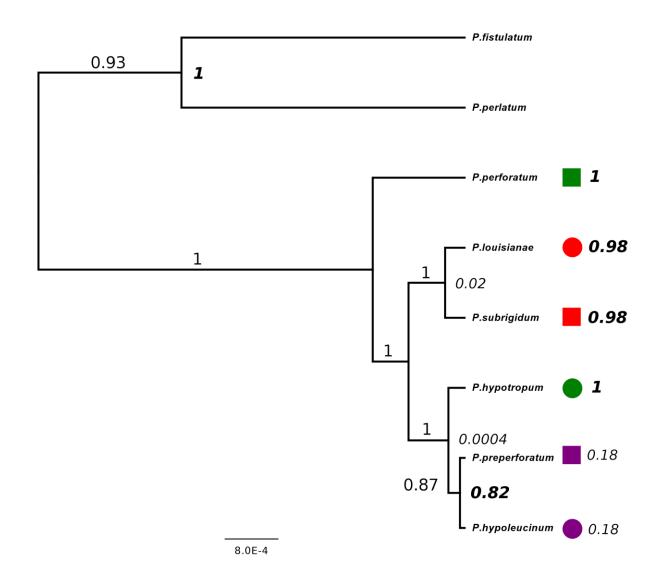


Figure 19. *BEAST species tree for the *Parmotrema perforatum* group. Posterior probabilities at branches indicate support from the *BEAST analysis. The posterior probability of each delimited species calculated by BP&P are indicated in italics in front of each putative species or in the node indicating the support if the two species are combined by BP&P. The highly supported BP&P posterior probabilities are shown in bold.

5.4 Discussion

Our study provides an important case study highlighting the importance of considering independent lines of evidence and analytical approaches for effectively delimiting species in taxonomically challenging groups. An integrative approach incorporating phenotypic characters (secondary metabolite variation, differences in reproductive strategies, and conidial size), analyses of molecular sequence data using Bayesian clustering, ML and BI phylogenetic inference and a coalescent-based species-tree method, and empirical species delimitation analysis in BP&P, provides unprecedented insight into species boundaries and evolutionary relationships in the *P. perforatum* group. We approached the delimitation of species in two ways. The first employed the Bayesian clustering algorithm STRUCTURE to infer putative populations. This approach was congruent with the concatenated phylogeny, inferring three populations that corresponded with the three major clades A, B, and C (Figure 16). Individuals were then assigned to their population for inferring a *BEAST species tree. This tree was used as a starting topology in BP&P for species delimitation. The three-species scenario was highly supported by all analysis methods (Figure 16). The second approach used a six-species scenario assigning individuals to their traditional circumscribed species to infer a *BEAST species tree (Figure 18). This topology was used as a starting tree in the BP&P species delimitation. This approach supported the distinctiveness of the traditionally recognized taxa P. perforatum, P. hypotropum, P. subrigidum and P. louisianae, while P. preperforatum and P. hypoleucinum were found to be conspecific. Although our results highlight the fact that secondary metabolite variation and differences in reproductive mode can serve as taxonomically relevant characters in Parmotrema, traditional species pair concepts and chemotaxonomy are not reflected in evolutionary relationships.

Before secondary chemistry was integrated into the taxonomic treatment of the *P. perforatum* group, only two species, *Parmelia perforata* (apotheciate-fertile) and *P. hypotropa* (sorediate-sterile) were recognized as distinct, based solely on reproductive strategy. However, inclusion of secondary chemical data revealed six diagnosable populations. Culberson (1973) discussed what he considered to be the best taxonomic treatment of species in the *P. perforatum* group and claimed that all the chemical races of the apotheciate morph were sister species, each with a sorediate counterpart considered a secondary species. Based on this interpretation, he described a number of new species (Culberson 1973). By incorporating multilocus sequence data, we have added another valuable resource for species delimitation.

5.4.1 Evolutionary relationships

The ML and BI concatenated phylogenies and the Bayesian clustering program STRUCTURE (Figure 16) recovered well-supported clades that corresponded to the secondary chemistry of specimens, providing support for Culberson's (1973) original hypothesis of chemospecies. For example, all apotheciate-fertile chemically unique specimens were in separate, well-supported clades. However, the relationships among these clades did not correlate with the similarity of secondary chemistries. Alectoronic acid, an orcinol-type depsidone, is distinct from norstictic and stictic acids, which are both β -orcinol-type depsidones; the latter two differ only by the degree of *O*-methylation. Based on the chemical structure of secondary compounds, we would expect that the two clades that contain norstictic acid (Figure 17, Clades A and C) would be sister, but instead, the species containing alectoronic acid (*P. subrigidum* and *P. louisianae*, Figure 16, Clade B) were sister to the clade containing *P. preperforatum* (Figure 16, Clade C). This relationship was also observed in the species trees approach of *BEAST (Figure 18). The BP&P species tree provided the same topology with the highest support of all analyses even when the starting tree matched the traditional hypothesis proposed by Culberson (1973). The observed evolutionary relationships found in all DNA sequence analyses were further confirmed by conidial length data (Figure 19); conidia from *P. perforatum* were smaller (average conidia length 12.9 \pm 1.7 µm) than those of *P. subrigidum* and *P. preperforatum* (average lengths of 16.4 \pm 1.1 µm and 15.8 \pm 2.0 µm respectively).

Culberson (1973) considered the sorediate taxa (secondary species) to be derived from their apotheciate counterpart (primary species), thus forming closely related species pairs. Most studies that address the issue of species pairs find the two species of the pair to be monophyletic in molecular phylogenies (Myllys, Lohtander, and Tehler 2001; Lohtander, Källersjö, and Tehler 1998; Lohtander et al. 2000; Articus et al. 2002; Cubero et al. 2004; Buschbom and Mueller 2006; Wirtz, Printzen, and Lumbsch 2012; Lohtander et al. 1998). However, of the sorediate-sterile individuals of *P. hypotropum*, which only contains norstictic acid, only one specimen clustered with its primary counterpart *P. perforatum* (Figure 16, Clade A), and most specimens formed a clade that was sister to the stictic acid clade of *P. preperforatum* (Figure 16, Clade C). This was unexpected, since *P. hypotropum* was hypothesized to be a derived sterile species pair from *P. perforatum* (Culberson 1973). This evolutionary relationship was further corroborated using the coalescent-based species tree inference programs *BEAST and BP&P, both of which placed *P. hypotropum* sister to the stictic acid clade (Figure 18).

In the other sorediate-sterile taxon, *P. hypoleucinum*, all specimens collected in North America clustered with chemically similar specimens of the apotheciate counterpart *P. preperforatum*, but the individuals from Europe clustered with the *P. hypotropum* sub-clade in Clade C on the ML phylogeny (Figure 16). In the alectoronic clade, *P. louisianae* was always clustered with chemically similar specimens of apotheciate *P. subrigidum* in their own

monophyletic clade (Clade B, Figure 16) with no support for the two to be distinct species, but *BEAST and BP&P always recovered them as distinct lineages with high PP support (Figure 19).

5.4.2 Species delimitation

The analyses of the seven-locus concatenated dataset gave us a first look at the relationships of the individuals in the group, suggesting hypotheses of independently evolving lineages. However, with gene concatenation, there still is the possibility that loci have different evolutionary histories and inaccurate inferences could be drawn (DeGiorgio et al. 2014). Also, species delimitation based on monophyly of clades of genes is usually highly supportive for determining boundaries, but it is not necessary and can potentially lead to inaccurate delimitations (Ross, Murugan, and Li 2008). To address these potential issues, we employed a coalescent-based model to identify well-supported species and to quantify the probability of evolutionary divergence to avoid the possible bias from single-gene or concatenated phylogenies (Knowles and Carstens 2007; Fujita et al. 2012). The species tree generated by the MSC program *BEAST (Figure 18) generally corroborated the topology of the ML phylogeny (Figure 17). This topology was used as a starting tree in the species delimitation program BP&P which is able to detect evolutionary lineages even if they are recently diverged (Yang and Rannala 2010). Using BP&P, all traditional species were delimited with high support values (PP >95%) with the exception of P. preperforatum and P. hypoleucinum which were consistently combined into one species in multiple analyses.

5.5 Conclusions

Our analyses support the presence of three to five distinct species-level lineages in the *Parmotrema perforatum* group in eastern Texas and western Louisiana depending. Using only

DNA sequence data, three populations were inferred with the Bayesian clustering program STRUCTURE and in the concatenated ML and BI phylogenies, corresponding to clades A, B, and C. The MSC methods *BEAST and BP&P both highly supported the three species delimitation. However, when independent chemical and morphological data were included, a more detailed delimitation was the result. In the six-species situation, the currently circumscribed species, *P. perforatum*, *P. hypotropum*, *P. subrigidum and P. louisianae* were delimited using the MSC method BP&P, with the exception of the chemically identical species pair of *P. preperforatum* and *P. hypoleucinum*, which were consistently recovered as conspecific. Furthermore, these species-level lineages were recovered with strong support in both concatenated and MSC species-tree topologies. Even though the six-species model is more finetuned, the likelihood ratio test, showed that the three-species model was significantly better. However, this result is difficult to accept completely at this stage, as we feel that more sampling may be necessary to get a clearer picture of species boundaries in the *P. perforatum* group.

This study provides a detailed investigation of the *P. perforatum* group in the Southern United States, integrating morphology, chemistry, concatenated molecular data and MSC-based methods; however, for a clearer picture of the species boundaries in this group, future studies should include a broader, worldwide sample.

5.6 References

Agapow, Paul-Michael, Olaf Bininda-Emonds, Keith A. Crandall, John L. Gittleman, Georgina
M. Mace, Jonathon C. Marshall, and Andy Purvis. "The impact of species concept on
biodiversity studies." *The Quarterly Review of Biology* 79, no. 2 (2004): 161-179.

Altermann, Susanne, Steven D. Leavitt, Trevor Goward, Matthew P. Nelsen, and H. Thorsten Lumbsch. "How do you solve a problem like *Letharia*? A new look at cryptic species in lichen-forming fungi using Bayesian clustering and SNPs from multilocus sequence data." *PLOS ONE* 9, no. 5 (2014): e97556.

- Amo de Paz, Guillermo, Paloma Cubas, Ana Crespo, John A. Elix, and H. Thorsten Lumbsch.
 "Transoceanic dispersal and subsequent diversification on separate continents shaped diversity of the *Xanthoparmelia pulla* group (Ascomycota)." *PLOS ONE* 7, no. 6 (2012): e39683.
- Amo de Paz, Guillermo, Paloma Cubas, Pradeep K. Divakar, H. Thorsten Lumbsch, and Ana Crespo. "Origin and diversification of major clades in parmelioid lichens (Parmeliaceae, Ascomycota) during the Paleogene inferred by Bayesian analysis." *PLOS ONE* 6, no. 12 (2011): e28161
- Articus, Kristina, Jan-Eric Mattsson, Leif Tibell, Martin Grube, and Mats Wedin. "Ribosomal DNA and β-tubulin data do not support the separation of the lichens *Usnea florida* and *U. subfloridana* as distinct species." *Mycological Research* 106, no. 4 (2002): 412-418.
- Bickford, David J. Lohman, Navjot S. Sodhi, Peter KL Ng, Rudolf Meier, Kevin Winker, Krista K. Ingram, and Indraneil Das. "Cryptic species as a window on diversity and conservation." *Trends in Ecology & Evolution* 22, no. 3 (2007): 148-155.
- Blanco, Oscar, Ana Crespo, Pradeep K. Divakar, John A. Elix, and H. Thorsten Lumbsch.
 "Molecular phylogeny of parmotremoid lichens (Ascomycota, Parmeliaceae)." *Mycologia* 97, no. 1 (2005): 150-159.
- Bouckaert, Remco. "bModelTest: Bayesian site model selection for nucleotide data." *BioRxiv* 1 (2015): 20792.
- Buschbom, Jutta, and Gregory M. Mueller. "Testing "species pair" hypotheses: evolutionary processes in the lichen-forming species complex *Porpidia flavocoerulescens* and *Porpidia*

melinodes." Molecular Biology and Evolution 23, no. 3 (2005): 574-586.

- Carstens, Bryan C., Tara A. Pelletier, Noah M. Reid, and Jordan D. Satler. "How to fail at species delimitation." *Molecular Ecology* 22, no. 17 (2013): 4369-4383.
- Crespo, Ana, Frank Kauff, Pradeep K. Divakar, Ruth del Prado, Sergio Pérez-Ortega, Guillermo Amo de Paz, Zuzana Ferencova et al. "Phylogenetic generic classification of parmelioid lichens (Parmeliaceae, Ascomycota) based on molecular, morphological and chemical evidence." *Taxon* 59, no. 6 (2010): 1735-1753.
- Cubero, Oscar F., Ana Crespo, Theodore L. Esslinger, and H. Thorsten Lumbsch. "Molecular phylogeny of the genus *Physconia* (Ascomycota, Lecanorales) inferred from a Bayesian analysis of nuclear ITS rDNA sequences." *Mycological Research* 108, no. 5 (2004): 498-505.
- Culberson, Chicita F. "Improved conditions and new data for identification of lichen products by standardized thin-layer chromatographic method." *Journal of Chromatography* 72, no. 1 (1972): 113-125.
- Culberson, William Louis. "The *Parmelia perforata* group: niche characteristics of chemical races, speciation by parallel evolution, and a new taxonomy." *The Bryologist* (1973): 20-29.
- Culberson, William Louis, and Chicita F. Culberson. "Parallel Evoluton in Lichen-Forming Fungi." *Science* 180, no. 4082 (1973): 196-198.
- Dayrat, Benoit. "Towards integrative taxonomy." *Biological Journal of the Linnean Society* 85, no. 3 (2005): 407-417.
- DeGiorgio, Michael, John Syring, Andrew J. Eckert, Aaron Liston, Richard Cronn, David B. Neale, and Noah A. Rosenberg. "An empirical evaluation of two-stage species tree inference strategies using a multilocus dataset from North American pines." *BMC*

Evolutionary Biology 14, no. 1 (2014): 67.

- Del-Prado, Ruth, Oscar Blanco, H. Thorsten Lumbsch, Pradeep K. Divakar, John A. Elix, M. Carmen Molina, and Ana Crespo. "Molecular phylogeny and historical biogeography of the lichen-forming fungal genus *Flavoparmelia* (Ascomycota: Parmeliaceae)." *Taxon* 62, no. 5 (2013): 928-939.
- Drummond, Alexei J., and Andrew Rambaut. "BEAST: Bayesian evolutionary analysis by sampling trees." *BMC Evolutionary Biology* 7, no. 1 (2007): 214.
- Drummond, Alexei J., Marc A. Suchard, Dong Xie, and Andrew Rambaut. "Bayesian phylogenetics with BEAUti and the BEAST 1.7." *Molecular Biology and Evolution* 29, no. 8 (2012): 1969-1973.
- Earl, Dent A. "STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method." *Conservation Genetics Resources* 4, no. 2 (2012): 359-361.
- Egan, Robert S. "Correlations and non-correlations of chemical variation patterns with lichen morphology and geography." *The Bryologist* (1986): 99-110.
- Esslinger, Theodore L. n.d. "A cumulative checklist for the lichen-forming, lichenicolous and allied fungi of the continental United States and Canada." https://www.ndsu.edu/pubweb/~esslinge/chcklst/chcklst7.htm (Accessed November 30, 2015).
- Evanno, Guillaume, Sebastien Regnaut, and Jérôme Goudet. "Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study." *Molecular Ecology* 14, no. 8 (2005): 2611-2620.

Feuerer, Tassilo, and David L. Hawksworth. "Biodiversity of lichens, including a world-wide

analysis of checklist data based on Takhtajan's floristic regions." *Biodiversity and Conservation* 16, no. 1 (2007): 85-98.

- Fujita, Matthew K., Adam D. Leaché, Frank T. Burbrink, Jimmy A. McGuire, and Craig Moritz.
 "Coalescent-based species delimitation in an integrative taxonomy." *Trends in Ecology & Evolution* 27, no. 9 (2012): 480-488.
- Gardes, Monique, and Thomas D. Bruns. "ITS primers with enhanced specificity for basidiomycetes-Application to the identification of mycorrhizae and rusts." *Molecular Ecology* 2, no. 2 (1993): 113-118.
- Hawksworth, David L. "The magnitude of fungal diversity: The 1.5 million species estimate revisited." *Mycological Research* 105, no. 12 (2001): 1422-1432.
- Heled, Joseph, and Alexei J. Drummond. "Bayesian inference of species trees from multilocus data." *Molecular Biology and Evolution* 27, no. 3 (2009): 570-580.
- Jaklitsch, Walter, Hans-Otto Baral, Robert Lücking, H. Thorsten Lumbsch, and Wolfgang Frey. Syllabus of Plant Families-A. Engler's Syllabus der Pflanzenfamilien Part 1/2. Edited by Wolfgang Frey. Stuttgart: Borntraeger Science Publishers. (2016).
- Kekkonen, Mari, Marko Mutanen, Lauri Kaila, Marko Nieminen, and Paul DN Hebert."Delineating species with DNA barcodes: A case of taxon dependent method performance in moths." *PLOS ONE* 10, no. 4 (2015): e0122481.
- Kluge, Arnold G. "A concern for evidence and a phylogenetic hypothesis of relationships among *Epicrates* (Boidae, Serpentes)." *Systematic Biology* 38, no. 1 (1989): 7-25.
- Knowles, L. Lacey, and Bryan C. Carstens. "Delimiting species without monophyletic gene trees." *Systematic Biology* 56, no. 6 (2007): 887-895.
- Kraichak, Ekaphan, Robert Lücking, Andre Aptroot, Andreas Beck, Patrick Dornes, Volker

John, James C. Lendemer et al. "Hidden diversity in the morphologically variable script lichen (*Graphis scripta*) complex (Ascomycota, Ostropales, Graphidaceae)." *Organisms Diversity & Evolution* 15, no. 3 (2015): 447-458.

- Lanfear, Robert, Brett Calcott, Simon Ho, and Stephane Guindon. "PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses."
 Molecular Biology and Evolution 29, no. 6 (2012): 1695-1701.
- Leavitt, Steven D., Pradeep K. Divakar, Yoshihito Ohmura, Li-song Wang, Theodore L.
 Esslinger, and H. Thorsten Lumbsch. "Who's getting around? Assessing species diversity and phylogeography in the widely distributed lichen-forming fungal genus *Montanelia* (Parmeliaceae, Ascomycota)." *Molecular Phylogenetics and Evolution* 90 (2015): 85-96.
- Leavitt, Steven D., Theodore L. Esslinger, Toby Spribille, Pradeep K. Divakar, and H. Thorsten Lumbsch. "Multilocus phylogeny of the lichen-forming fungal genus *Melanohalea* (Parmeliaceae, Ascomycota): Insights on diversity, distributions, and a comparison of species tree and concatenated topologies." *Molecular Phylogenetics and Evolution* 66, no. 1 (2013): 138-152.
- Leavitt, Steven D., Johnathon D. Fankhauser, Dean H. Leavitt, Lyndon D. Porter, Leigh A.
 Johnson, and Larry L. St Clair. "Complex patterns of speciation in cosmopolitan "rock posy" lichens–Discovering and delimiting cryptic fungal species in the lichen-forming *Rhizoplaca melanophthalma* species-complex (Lecanoraceae, Ascomycota)." *Molecular Phylogenetics and Evolution* 59, no. 3 (2011): 587-602.
- Leavitt, Steven D., Corrie S. Moreau, and H. Thorsten Lumbsch. "The dynamic discipline of species delimitation: Progress toward effectively recognizing species boundaries in natural populations." In *Recent Advances in Lichenology*, 11-44. New Delhi, Springer. (2015).

- Lendemer, James C., Jessica L. Allen, and Nastassja Noell. "The *Parmotrema* acid test: A look at species delineation in the *P. perforatum* group 40 y later." *Mycologia* 107, no. 6 (2015): 1120-1129.
- Lindblom, Louise, and Stefan Ekman. "Genetic variation and population differentiation in the lichen-forming ascomycete *Xanthoria parietina* on the island Storfosna, central Norway."
 Molecular Ecology 15, no. 6 (2006): 1545-1559.
- Lohtander, Katileena, Mari Källersjö, Roland Moberg, and Anders Tehler. "The family Physciaceae in Fennoscandia: Phylogeny inferred from ITS sequences." *Mycologia* (2000): 728-735.
- Lohtander, Katileena, Mari Källersjö, and Anders Tehler. "Dispersal strategies in *Roccellina capensis* (Arthoniales)." *The Lichenologist* 30, no. 4-5 (1998): 341-350.
- Lohtander, Katileena, Leena Myllys, Rikard Sundin, Mari Källersjö, and Anders Tehler. "The species pair concept in the lichen *Dendrographa leucophaea* (Arthoniales): Analyses based on ITS sequences." *The Bryologist* (1998): 404-411.
- Lumbsch, H. Thorsten, and Steven D. Leavitt. "Goodbye morphology? A paradigm shift in the delimitation of species in lichenized fungi." *Fungal Diversity* 50, no. 1 (2011): 59.
- Mangold, Armin, María P. Martín, Robert Lücking, and H. Thorsten Lumbsch. "Molecular phylogeny suggests synonymy of Thelotremataceae within Graphidaceae (Ascomycota: Ostropales)." *Taxon* 57, no. 2 (2008): 476-486.
- Matheny, P. Brandon, Yajuan J. Liu, Joseph F. Ammirati, and Benjamin D. Hall. "Using *RPB1* sequences to improve phylogenetic inference among mushrooms (*Inocybe*, Agaricales)."
 American Journal of Botany 89, no. 4 (2002): 688-698.

Mace, Georgina M. "The role of taxonomy in species conservation." Philosophical Transactions

of the Royal Society of London. Series B: Biological Sciences 359, no. 1444 (2004): 711-719.

Maddison, Wayne P. "Gene trees in species trees." Systematic Biology 46, no. 3 (1997): 523-536.

- Mattsson, Jan-Eric, and H. Thorsten Lumbsch. "The use of the species pair concept in lichen taxonomy." *Taxon* (1989): 238-241.
- Mayden, Richard L. "A hierarchy of species concepts: The denouement in the saga of the species problem." (1997). In *Species: The Units of Diversity*. edited by M. F. Claridge, H. A. Dawah & M. R. Wilson. London: Chapman & Hall (1997): 381–423.
- Mishler, Brent D., and Michael J. Donoghue. "Species concepts: A case for pluralism." *Systematic Zoology* 31, no. 4 (1982): 491-503.
- Myllys, Leena, Katileena Lohtander, and Anders Tehler. "β-tubulin, ITS and group I intron sequences challenge the species pair concept in *Physcia aipolia* and *P. caesia*." *Mycologia* (2001): 335-343.
- Nosil, Patrik, Luke J. Harmon, and Ole Seehausen. "Ecological explanations for (incomplete) speciation." *Trends in Ecology & Evolution* 24, no. 3 (2009): 145-156.
- O'Neill, Eric M., Rachel Schwartz, C. Thomas Bullock, Joshua S. Williams, H. Bradley Shaffer, X. Aguilar-Miguel, Gabriela Parra-Olea, and David W. Weisrock. "Parallel tagged amplicon sequencing reveals major lineages and phylogenetic structure in the North American tiger salamander (*Ambystoma tigrinum*) species complex." *Molecular Ecology* 22, no. 1 (2013): 111-129.
- Padial, José M., Aurélien Miralles, Ignacio De la Riva, and Miguel Vences. "The integrative future of taxonomy." *Frontiers in Zoology* 7, no. 1 (2010): 16.

Parnmen, Sittiporn, Achariya Rangsiruji, Pachara Mongkolsuk, Kansri Boonpragob, Aparna

Nutakki, and H. Thorsten Lumbsch. "Using phylogenetic and coalescent methods to understand the species diversity in the *Cladia aggregata* complex (Ascomycota, Lecanorales)." *PLOS ONE* 7, no. 12 (2012): e52245.

- de Queiroz, Kevin. "Species concepts and species delimitation." *Systematic Biology* 56, no. 6 (2007): 879-886.
- Rambaut, Andrew, M. A. Suchard, D. Xie, and A. J. Drummond. 2014. "Tracer v1.6." http://beast.bio.ed.ac.uk/Tracer.
- Rannala, Bruce. "The art and science of species delimitation." *Current Zoology* 61, no. 5 (2015): 846-853.
- Robinson, Harold. "Considerations on the evolution of lichens." Phytologia (USA) (1975).
- Ross, Howard A., Sumathi Murugan, and Wai Lok Sibon Li. "Testing the reliability of genetic methods of species identification via simulation." *Systematic Biology* 57, no. 2 (2008): 216-230.
- Saag, Lauri, Kristiina Mark, Andres Saag, and Tiina Randlane. "Species delimitation in the lichenized fungal genus *Vulpicida* (Parmeliaceae, Ascomycota) using gene concatenation and coalescent-based species tree approaches." *American Journal of Botany* 101, no. 12 (2014): 2169-2182.
- Schmitt, I., A. Crespo, P. K. Divakar, J. D. Fankhauser, E. Herman-Sackett, K. Kalb, M. P. Nelsen et al. "New primers for promising single-copy genes in fungal phylogenetics and systematics." *Persoonia* 23 (2009): 35.
- Shaffer, H. Bradley, and Robert C. Thomson. "Delimiting species in recent radiations." *Systematic Biology* 56, no. 6 (2007): 896-906.

Singh, Garima, Francesco Dal Grande, Pradeep K. Divakar, Jürgen Otte, Steven D. Leavitt,

Katarzyna Szczepanska, Ana Crespo et al. "Coalescent-based species delimitation approach uncovers high cryptic diversity in the cosmopolitan lichen-forming fungal genus *Protoparmelia* (Lecanorales, Ascomycota)." *PLOS ONE* 10, no. 5 (2015): e0124625.

- Sites Jr, Jack W., and Jonathon C. Marshall. "Delimiting species: A Renaissance issue in systematic biology." *Trends in Ecology & Evolution* 18, no. 9 (2003): 462-470.
- Sites Jr, Jack W., and Jonathon C. Marshall. "Operational criteria for delimiting species." *Annual Review of Ecology, Evolution, and Systematics*. 35 (2004): 199-227.
- Stamatakis, Alexandros. "RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies." *Bioinformatics* 30, no. 9 (2014): 1312-1313.
- Stiller, John W., and Benjamin D. Hall. "The origin of red algae: Implications for plastid evolution." *Proceedings of the National Academy of Sciences* 94, no. 9 (1997): 4520-4525.
- Thell, Arne, Tassilo Feuerer, Ingvar Kärnefelt, Leena Myllys, and Soili Stenroos. "Monophyletic groups within the Parmeliaceae identified by ITS rDNA, β-tubulin and GAPDH sequences." *Mycological Progress* 3, no. 4 (2004): 297-314.
- Vilgalys, Rytas, and Mark Hester. "Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species." *Journal of bacteriology* 172, no. 8 (1990): 4238-4246.
- White, Thomas J., Thomas Bruns, S. J. W. T. Lee, and J. L. Taylor. "Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics." In *PCR Protocols: A Guide to Methods and Applications*. London: Academic Press. (1990): 315-322.
- Wiens, John J., and Matthew C. Morrill. "Missing data in phylogenetic analysis: Reconciling results from simulations and empirical data." *Systematic Biology* 60, no. 5 (2011): 719-731.

Wirtz, Nora, Christian Printzen, and H. Thorsten Lumbsch. "Using haplotype networks,

estimation of gene flow and phenotypic characters to understand species delimitation in fungi of a predominantly Antarctic *Usnea* group (Ascomycota, Parmeliaceae)." *Organisms Diversity & Evolution* 12, no. 1 (2012): 17-37.

Yang, Ziheng, and Bruce Rannala. "Bayesian species delimitation using multilocus sequence data." *Proceedings of the National Academy of Sciences* 107, no. 20 (2010): 9264-9269.

APPENDICES

APPENDIX A

TABLE XVIII. HYBPIPER BLASTX STATS.

Name	ReadsMapped	GenesMapped	GenesWithContig s	GenesWithSeqs	GenesAt25pct	GenesAt50pct	GenesAt75pct	Genesat150pct	ParalogWarning s
15880-Sticta-fuliginosa	16247	395	244	242	240	214	182	0	2
4005-Ricasolia-amplissima	43711	394	378	378	378	375	366	0	10
15878-Pseudocyphellaria-pubescens	77434	389	378	377	377	375	368	0	12
15871-Sticta-caulescens	66202	396	377	376	375	375	363	0	14
14538-Sticta-scabrosa	104206	393	380	379	379	376	370	0	15
15885-Pseudocyphellaria-hirsuta	49919	387	365	365	365	362	353	0	20
15881-Sticta-fuliginosa	22895	386	311	310	307	294	256	0	8
15682-Ricasolia-sp	67366	393	382	382	382	381	371	0	14
14850-Pseudocyphellaria-rubrina	212630	396	387	387	386	385	381	0	29
15156-Sticta-sp	34842	384	344	343	339	332	307	0	8
15848-Pseudocyphellaria-freycinetii	65127	391	374	374	374	372	366	0	12
15678-Yoshimuriella-sp	23494	390	277	276	274	269	255	0	8
15879-Sticta-latifrons	40643	387	359	358	358	352	335	0	9
15890-Pseudocyphellaria-carpoloma	99794	394	377	376	376	374	369	0	11
15686-Lobaria-sp	25823	390	301	299	298	292	266	0	15
15895-Pseudocyphellaria-degelii	106741	392	380	380	380	378	376	0	16
15272-Dendriscosticta-affwrightii	67788	392	383	383	383	383	375	0	13
15253-Dendriscosticta-kurokawae	84925	392	386	385	385	383	374	0	18
15275-Lobariella-sp	89805	393	383	382	382	380	361	0	22
14492-Sticta-beauvoisii	165286	394	381	380	380	379	376	0	15
9930-Lobaria-pulmonaria	317874	400	398	398	398	398	398	0	19
15874-Pseudocyphellaria- haywardiosum	27024	381	312	312	312	310	295	0	8
15873-Sticta-scabrosa	140166	390	380	379	379	376	373	0	23
15155-Sticta-sp	31980	392	344	343	339	329	301	0	9
15892-Pseudocyphellaria-chloroluca	140011	390	375	375	374	371	365	0	13

Name	ReadsMapped	GenesMapped	GenesWithContig s	GenesWithSeqs	GenesAt25pct	GenesAt50pct	GenesAt75pct	Genesat150pct	ParalogWarning s
15897-Pseudocyphellaria-episticta	76645	394	376	376	376	376	370	0	12
15683-Ricasolia-sp	59859	390	379	379	379	377	370	0	14
15688-Nephroma-sp	37009	381	292	286	284	250	206	0	10
14657-Sticta-affsublimbatoides	12791	381	199	195	194	179	143	0	2
15901-Sticta-latifrons	181353	393	383	382	382	378	374	0	19
5899-Pseudocyphellaria-	105510	393	376	374	373	371	367	0	14
ufovirescens 15276-Lobariella-sp	53711	392	378	378	375	364	339	1	23
5280-Yoshimuriella-peltigera	85126	393	382	381	380	378	371	1	17
5882-Sticta-cinereoglauca	7929	386	79	78	74	54	32	0	0
15884-Pseudocyphellaria-sp	69857	390	374	374	374	374	367	0	14
15257-Lobaria-sp	72323	397	395	395	395	393	392	0	16
15876-Pseudocyphellaria- cinnamomea	40418	390	364	364	362	357	347	0	9
5258-Nephroma-antarcticum	62403	384	341	333	330	297	249	0	6
5847-Pseudocyphellaria-berberina	95431	391	381	380	380	380	377	0	13
4840-Pseudocyphellaria-neglecta	87835	389	374	374	374	373	371	0	15
5869-Pseudocyphellaria-intricata	51376	390	370	369	369	367	359	0	11
5894-Pseudocyphellaria- rocatagroup	73117	393	375	375	375	373	370	0	15
5844-Pseudocyphellaria-crocata	91425	387	375	375	0	0	0	0	14
5684-Lobaria-sp	20432	387	253	250	249	243	231	0	7
5679-Yoshimuriella-sp	39663	390	353	352	352	351	337	0	18
5893-Pseudocyphellaria-corbettii	68465	390	375	374	373	371	363	0	10
5898-Pseudocyphellaria-montagnei	172716	393	383	383	381	379	375	0	16
5902-Sticta-lacera-livida	115924	393	384	383	383	381	374	0	19
5277-Lobariella-sp	88480	391	385	385	384	380	359	1	17
5685-Lobaria-sp	26296	390	320	318	318	309	284	0	11
5896-Pseudocyphellaria-disimilis	63765	389	373	373	373	368	357	0	10
5279-Yoshimuriella-peltigera	175762	395	385	385	385	382	374	0	18
5903-Sticta-martinii	154510	394	381	380	379	375	370	0	10
0048-Sticta-afffuliginosa	36811	384	349	349	347	343	333	0	13
4665-Sticta-densiphyllidata	63900	392	378	377	377	374	362	0	16
5891-Pseudocyphellaria-carpoloma	73265	390	376	376	376	375	370	0	10

Name	ReadsMapped	GenesMapped	GenesWithContig s	GenesWithSeqs	GenesAt25pct	GenesAt50pct	GenesAt75pct	Genesat150pct	ParalogWarning s
14830-Pseudocyphellaria- billardierei	82895	391	378	376	376	374	372	0	12
15877-Pseudocyphellaria-lividofusa	81644	388	372	372	372	369	363	0	9
15875-Pseudocyphellaria- affintricata	28950	386	324	324	324	320	310	0	8
15843-Pseudocyphellaria-obvoluta	69568	388	375	375	374	372	366	0	15
15886-Pseudocyphellaria-sp	121706	391	379	378	377	376	371	0	14
15889-Nephroma-australe	58436	387	319	314	313	296	259	0	7
14532-Sticta-weigelii	30708	387	345	345	345	338	315	0	11
15841-Pseudocyphellaria-granulata	80330	392	374	373	373	373	369	0	15
15274-Lobarina-oregana	103892	398	389	389	389	387	383	0	16
14493-Sticta-carolinensis	119992	390	383	380	380	380	376	0	17
15256-Lobaria-sp	91578	399	398	398	398	398	396	0	18
10049-Sticta-afflimbata	37025	390	352	351	350	342	334	0	11
15887-Pseudocyphellaria-vaccina	87740	390	378	377	377	375	369	0	24
15850-Yarrumia-coronata	92707	393	383	383	382	381	375	0	31
15851-Yarrumia-colensoi	74045	392	377	377	377	376	366	0	30
15254-Lobaria-linita	69494	397	392	392	392	392	390	0	16
15317-Yarrumia-coronata	78530	395	376	376	376	373	365	0	34
15681-Yoshimuriella-sp	43085	390	361	361	361	360	350	0	16
15900-Sticta-filix	145328	396	385	384	383	381	376	0	18
15144-Pseudocyphellaria- homoeophylla	84774	394	377	376	376	375	368	0	14
15271-Anomalobaria-anomala	47259	396	385	384	383	382	379	0	13
15868-Pseudocyphellaria-coriifolia	19578	392	261	258	258	254	232	0	5
15278-Yoshimuriella-subdissecta	167360	393	386	386	386	386	380	1	20
15273-Nephroma-plumbeum	43210	381	294	290	287	250	181	0	4
15687-Nephroma-sp	50277	388	306	300	298	275	224	0	8
15872-Sticta-sp	70932	392	377	376	376	375	368	0	18
15904-Sticta-subcaperata	156960	393	385	381	381	380	377	0	18
15870-Sticta-hypochra	56609	389	372	370	370	365	357	0	13
15316-Yarrumia-colensoi	100375	390	381	381	381	379	370	0	28
15680-Yoshimuriella-sp	54282	390	374	374	374	371	363	0	19
15888-Crocodia-aurata-poculifera	67681	386	370	370	369	367	360	0	13
14835-Pseudocyphellaria-crocata	52660	387	367	367	367	365	359	0	11

TABLE XVIII. CONTINUED

TABLE XVIII. CONTINUED

Name	ReadsMapped	GenesMapped	GenesWithContig	GenesWithSeqs	GenesAt25pct	GenesAt50pct	GenesAt75pct	Genesat150pct	ParalogWarning
15849-Pseudocyphellaria-flavicans	81891	390	377	376	376	375	365	0	13
14829-Pseudocyphellaria-dissimilis	34235	388	348	348	348	347	333	0	10
15842-Pseudocyphellaria-lecheri	45146	387	367	367	366	365	358	0	12
15845-Pseudocyphellaria-crocata	63722	387	372	372	372	372	363	0	12
14681-Pseudocyphellaria-glabra	169690	395	380	379	379	378	372	0	15
15313-Crocodia-aurata-poculifera	87348	389	369	369	369	369	362	0	14
15261-Dendriscosticta-sp	76478	392	384	384	384	382	374	0	18
14845-Pseudocyphellaria-granulata	70414	390	376	376	376	375	371	0	14

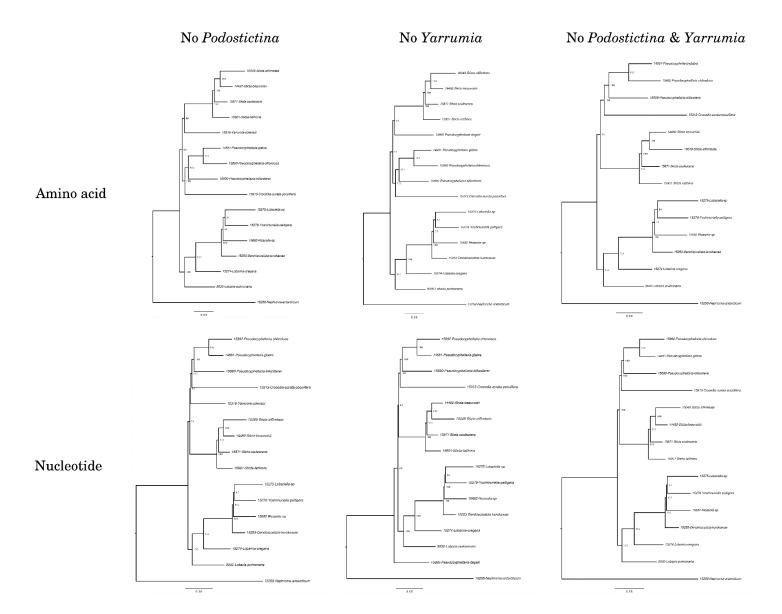


Figure 20. Maximum likelihood analyses conducted without *Podostictina*, *Yarrumia*, or both. Bootstrap support is depicted at the nodes.

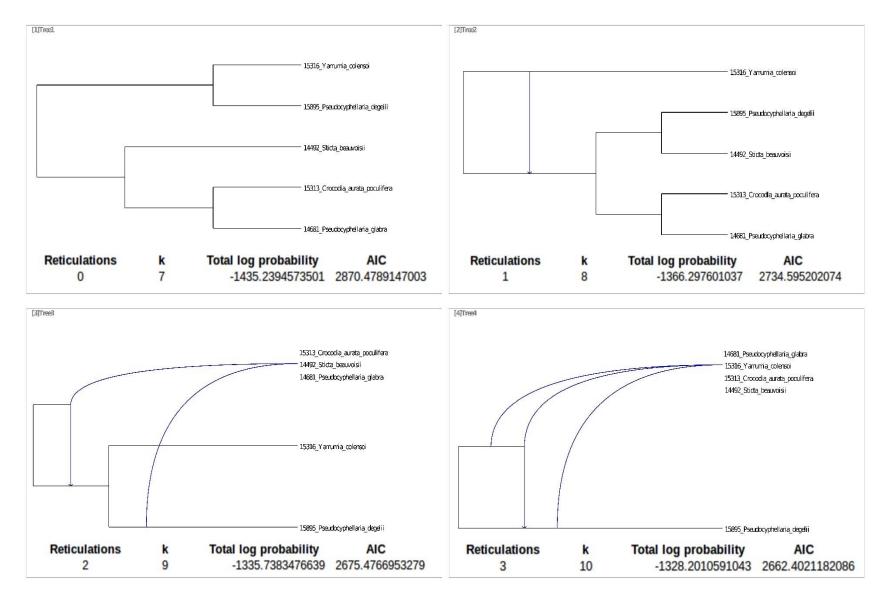
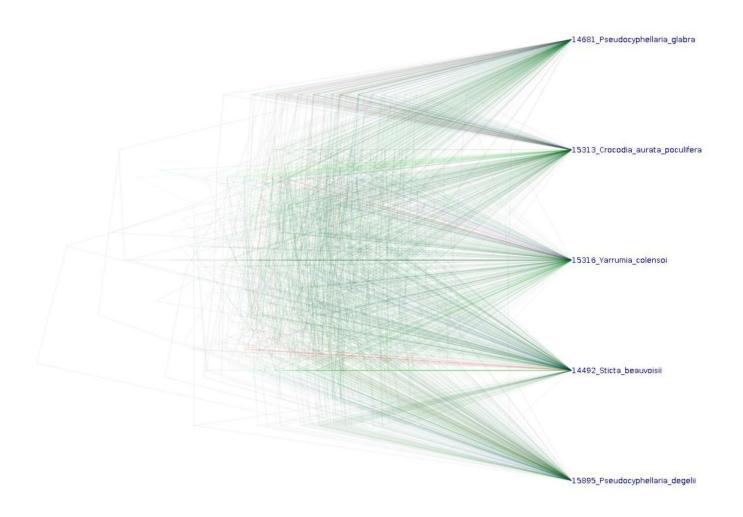
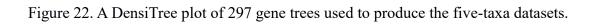




Figure 21. PhyloNet ML networks for five taxa. For each reticulation scenario, the log likelihood and AIC are reported under the networks.

APPENDIX B

TABLE XIX. BISSE TYPE1 ERROR FS OUTPUT TAB.

Free speciation Inlik	MK1 lnlink	P-value	
-453.0334598	-461.7208293	0	
-446.3326743	-456.185631	0	
-452.5660204	-467.5487094	0	
-448.4409255	-461.3138182	0	
-453.6635799	-465.7078711	0	
-455.9191195	-467.3026283	0	
-446.0415487	-456.4762503	0	
-449.5841757	-464.1176214	0	
-450.8700521	-465.4754459	0	
-452.3660765	-460.3896314	0	
-450.7616996	-459.8537142	0	
-449.8442364	-458.7617392	0	
-453.6934017	-465.8725579	0	
-445.6139216	-461.2685178	0	
-444.0935829	-454.3989049	0	
-451.8448645	-459.7662793	0	
-451.0659349	-460.7121476	0	
-453.3167867	-466.5992442	0	
-450.8216473	-463.2256214	0	
-454.5652604	-464.4101676	0	
-447.3915685	-461.3266474	0	
-448.3718325	-462.0114557	0	
-450.8164039	-465.6550844	0	
-451.1254287	-461.9698401	0	
-447.5236554	-462.4288391	0	
455.4425802	-467.62042	0	
-455.3030599	-464.9832458	0	
-451.5266883	-461.0797044	0	
454.0690699	-460.9851401	0	
-453.7837261	-466.3863684	0	
-456.4439032	-464.1782996	0	
-452.5886863	-464.8115485	0	
-455.3462546	-467.555996	0	
-452.6577318	-459.1921188	0	
-448.7469549	-464.2869391	0	
-450.0374357	-462.0024233	0	
-454.8846111	-469.2394012	0	
-447.1342458	-458.2591833	0	
-447.8587455			

Free speciation Inlik	MK1 lnlink	P-value	_
-448.4619439	-462.1481918	0	
-457.380102	-468.4114798	0	
452.6609261	-466.8633401	0	
455.4424234	-466.7421559	0	
451.4709334	-460.3633978	0	
451.5263038	-465.6229023	0	
-449.8606003	-461.2490985	0	
-455.7666675	-469.5249455	0	
451.9548528	-465.7059072	0	
-450.8977848	-463.3416954	0	
-447.3934143	-459.5833944	0	
455.1805463	-463.9582022	0	
-448.7488602	-455.84619	0	
-448.3761209	-463.3279683	0	
-453.0425525	-461.9766297	0	
-451.4677978	-466.2318968	0	
-453.9177097	-460.6274286	0	
446.8090171	-458.04367	0	
-454.9673838	-468.107789	0	
449.7360873	-459.5800885	0	
447.6974974	-460.7253019	0	
455.9017229	-467.415531	0	
-452.0642301	-461.8601719	0	
446.7125528	-461.5351495	0	
456.9196818	-466.0913466	0	
452.1450082	-464.849112	0	
454.6015616	-464.0264228	0	
456.0166208	-468.5122848	0	
-455.3833113	-466.6295235	0	
449.2016536	-463.9196176	0	
459.6439668	-465.9251738	0	
-446.3824782	-456.5757055	0	
-455.4596005	-463.6446678	0	
-451.30943	-459.3674819	0	
446.2914156	-460.0073126	0	
-452.1954654	-464.9073486	0	
-450.9364752	-465.7347841	0	
-448.9170153	-462.6276464	0	
-447.837001	-459.4924811	0	
449.8782375	-462.8482498	0	
-456.9163264	-468.0234727	0	

Free speciation Inlik	MK1 lnlink	P-value	_
-446.3685496	-457.5448217	0	
-453.8613322	-466.4610184	0	
-451.2545293	-463.3265159	0	
451.0210337	-465.6431369	0	
443.0621573	-455.6499227	0	
-453.9367158	-461.4010071	0	
-448.9466754	-459.3651761	0	
-449.0100985	-458.442455	0	
-454.4492425	-464.243407	0	
-448.8482683	-459.776057	0	
452.7891062	-461.614043	0	
453.2894109	-468.0184465	0	
-454.1267704	-464.9674751	0	
-457.4564447	-471.1969709	0	
-447.3807104	-457.7797761	0	
-448.3956568	-457.7946038	0	
-453.6424531	-464.6784383	0	
452.0953149	-464.5017164	0	
-455.1594986	-466.9571553	0	
451.8008581	-461.1797339	0	
-452.1568911	-458.0616056	0	
459.279603	-466.830471	0	
-451.7807074	-461.5477279	0	
-449.5798994	-459.2920984	0	
449.7228739	-461.4392315	0	
-452.2342542	-461.2441771	0	
451.3536489	-465.7475725	0	
-453.2001298	-462.6662996	0	
455.5872674	-468.4051691	0	
-451.6269374	-456.6432309	0	
-453.0494336	-462.7623455	0	
457.8438034	-466.457251	0	
-451.9779309	-466.162925	0	
-451.0276745	-459.0969013	0	
445.094549	-458.9558586	0	
-452.478129	-462.1544474	0	
-451.9341203	-460.547119	0	
-450.5314788	-459.1741365	0	
-458.1162129	-466.5935136	0	
-446.9977665	-461.3104821	0	
-450.0429297	-461.4308079	0	

Free speciation Inlik	MK1 lnlink	P-value	
-450.1443846	-462.7870193	0	
-447.3929874	-455.7093001	0	
453.3866674	-464.4983199	0	
452.2546776	-464.2230343	0	
448.3537262	-461.2633217	0	
449.5049955	-463.9641971	0	
-451.4205447	-465.0976336	0	
-448.8335492	-459.989035	0	
-455.2850831	-464.9440792	0	
-454.5316297	-468.486296	0	
-449.0806078	-458.1481399	0	
454.4781239	-466.5417603	0	
-449.1114152	-460.2027004	0	
-447.499664	-459.212637	0	
-448.9689136	-457.3652081	0	
-451.2824903	-464.026768	0	
-448.8818944	-461.5328124	0	
-449.5225119	-459.8508041	0	
-447.8838331	-459.966532	0	
-450.6780422	-462.5317461	0	
-455.5615876	-466.7569992	0	
-446.8940686	-461.7825037	0	
-445.9240609	-456.106823	0	
451.6506109	-459.5839731	0	
451.471989	-462.8444467	0	
-451.5688282	-461.3574422	0	
449.5823033	-464.1319732	0	
454.3007209	-466.3780492	0	
447.846218	-459.6391116	0	
-452.837424	-466.2215119	0	
-447.5565858	-460.7538609	0	
-450.5965784	-460.4297268	0	
-450.6605104	-463.0416604	0	
-451.9508502	-462.5833625	0	
-447.7388188	-463.0055746	0	
-450.5885569	-464.0618918	0	
-451.9497275	-462.8100295	0	
-451.6820864	-466.3649863	0	
-449.9263214	-462.7078009	0	
-452.266663	-463.185565	0	
-448.3873423	-459.1092683	0	

Free speciation Inlik	MK1 lnlink	P-value	
-453.0923859	-461.3170612	0	
-456.3332817	-465.8512744	0	
450.8913949	-463.4323076	0	
455.4396522	-464.2696916	0	
450.2562107	-464.1503911	0	
-454.6448503	-462.434081	0	
-447.1028636	-456.2289491	0	
-446.9352749	-457.1458794	0	
-452.5263742	-465.1376855	0	
-446.8958678	-461.3790117	0	
-455.9223054	-465.7770914	0	
-450.7366421	-463.341783	0	
-450.6957068	-464.2821535	0	
-445.6585074	-457.9619156	0	
-448.2226678	-461.7016205	0	
-450.3752659	-463.1717692	0	
-455.1798279	-466.7815911	0	
-449.9487899	-458.2851392	0	
-451.8137863	-459.8980165	0	
-451.6267714	-458.2239435	0	
-449.2167382	-463.2325056	0	
-450.6240453	-461.6009328	0	
-454.351143	-465.4603333	0	
-454.0057248	-461.8287871	0	
-455.2808224	-464.2346189	0	
-446.4225341	-458.4165807	0	
-452.6494478	-463.09464	0	
-452.1082432	-466.1034849	0	
-444.544176	-458.240619	0	
-451.8660917	-464.8918006	0	
-450.3043758	-462.8340727	0	
-450.9663808	-460.5905295	0	
-448.7561	-459.9892828	0	
-451.4560882	-462.1016322	0	
-453.2746398	-460.1144152	0	
-451.1188177	-459.2284182	0	
-451.2281028	-464.3941102	0	
-451.744558	-460.4350256	0	
-455.8694528	-465.6526444	0	
-452.2677449	-467.6664661	0	
-452.1210746	-460.5038289	0	

Free speciation Inlik	MK1 lnlink	P-value	
-449.6672097	-463.5618559	0	
-448.7383786	-463.7889265	0	
453.9538021	-460.7516698	0	
450.4792244	-457.2552908	0	
-453.8021702	-465.8076768	0	
-447.6236987	-455.5641351	0	
-453.6302355	-465.4907785	0	
-452.8639873	-458.147202	0	
450.9268265	-462.948657	0	
-453.9263866	-465.9282186	0	
-445.9999478	-456.8385327	0	
-451.1801521	-464.3273722	0	
-457.1460428	-467.2438763	0	
-449.4639307	-461.0853916	0	
-451.2599495	-463.8410268	0	
-453.9820049	-463.5871027	0	
-450.2566125	-462.0397739	0	
-452.1193367	-462.2244713	0	
453.7001413	-464.5042316	0	
-449.9805514	-457.1248922	0	
-449.8047779	-460.3405069	0	
-452.7961746	-465.5164502	0	
-451.9071772	-462.5102883	0	
-453.8619102	-465.2531088	0	
446.4652704	-457.1966751	0	
-456.9210002	-466.7341529	0	
450.4878809	-462.7566165	0	
-451.1226798	-462.5473055	0	
453.3536984	-460.064388	0	
-448.1687549	-460.7252742	0	
-450.557697	-462.0625545	0	
453.0931901	-465.3572884	0	
-455.3582574	-466.3189448	0	
-452.7282054	-465.1853541	0	
-449.3848832	-464.7623552	0	
-445.6889946	-456.8179441	0	
-449.8203878	-463.3524337	0	
-450.9046089	-462.3246539	0	
-450.3356075	-462.4801032	0	
-453.644544	-466.9891646	0	
-449.0721569	-460.8682775	0	

Free speciation Inlik	MK1 lnlink	P-value	
-447.6279661	-457.0614027	0	
453.2821075	-463.2793679	0	
448.0320889	-462.4277266	0	
-450.135772	-465.6886535	0	
-449.018654	-463.0003305	0	
-458.4172263	-465.8410669	0	
-448.8420416	-461.2426729	0	
-448.6841964	-461.3580127	0	
-449.7311061	-458.6609864	0	
-448.5850969	-460.1738681	0	
-457.754427	-469.6834763	0	
-450.3049802	-463.8584413	0	
-452.3272445	-466.5404459	0	
-450.9994314	-459.94859	0	
-455.1509147	-464.2198152	0	
-452.0509377	-464.9095607	0	
-454.0067362	-465.2667638	0	
-451.5647978	-463.2097897	0	
-451.54038	-464.960496	0	
-449.4747857	-459.9678376	0	
-451.526962	-463.6162215	0	
-452.6744496	-466.0750049	0	
-451.5626876	-465.6201051	0	
-450.3066345	-460.6131005	0	
-446.4784406	-457.3018122	0	
-455.398142	-464.489883	0	
-450.3697755	-459.532449	0	
-457.1628095	-468.9440571	0	
-455.2850061	-464.5088639	0	
-459.9806977	-468.6341095	0	
-449.2598849	-459.1886468	0	
-452.7320791	-462.4057572	0	
-451.0907881	-459.8959825	0	
-450.1510659	-459.1505219	0	
-456.3284776	-466.4320561	0	
-456.8942148	-464.1807968	0	
-457.1012307	-466.8651577	0	
-452.0389165	-464.9460455	0	
-447.5217439	-461.333209	0	
-452.7428878	-465.9438403	0	
-453.4089934	-467.7932071	0	

Free speciation Inlik	MK1 lnlink	P-value	
-453.7450867	-465.3661749	0	
-451.6997536	-464.1692602	0	
-451.364277	-461.9453162	0	
-447.7027253	-459.3257612	0	
-456.0384162	-467.516911	0	
-449.8505535	-462.0428748	0	
-451.3128597	-466.1685694	0	
-456.1992855	-466.9178737	0	
-453.0176933	-465.1309394	0	
-444.1248899	-454.0059724	0	
-453.9425024	-463.0236863	0	
-449.2981906	-463.0715684	0	
-449.6012415	-462.2677412	0	
-456.4720522	-470.5948563	0	
-451.3143521	-465.0984991	0	
-451.3657606	-462.9244641	0	
-455.483409	-465.6470692	0	
-453.9879467	-467.6824601	0	
-453.3141616	-464.5166589	0	
-449.5010217	-458.6296314	0	
-452.9212287	-459.6995149	0	
-451.8405045	-461.2159881	0	
-454.1016671	-467.6780542	0	
-457.0980188	-470.2158085	0	
-448.8570564	-458.4287066	0	
-446.7921755	-461.4716628	0	
-455.9057658	-467.2560565	0	
-456.080819	-467.7243321	0	
-452.3462461	-465.6351246	0	
-452.4790499	-464.4308538	0	
-450.1987684	-461.7051799	0	
-450.7102383	-464.4188126	0	
-449.6519002	-460.340023	0	
-454.5659567	-464.9359547	0	
-453.9397425	-465.9029993	0	
-448.9059303	-460.013144	0	
-448.2770333	-461.2661979	0	
-447.7943526	-459.7353571	0	
-455.8398803	-463.5314023	0	
-453.2841348	-464.7390694	0	
-448.10257	-462.1169067	0	

Free speciation Inlik	MK1 Inlink	P-value		
-449.4511173	-460.2563784	0		
-457.2597219	-469.1734878	0		
-453.4708024	-468.1390107	0		
447.9280231	-458.2303078	0		
450.3977788	-458.5096675	0		
-454.29082	-467.3883089	0		
452.1528771	-466.7615411	0		
-450.058851	-462.9840808	0		
453.9692616	-468.852776	0		
-451.2816186	-461.4678	0		
-443.5786452	-455.3207166	0		
455.1436444	-463.6606249	0		
-448.534043	-462.8788716	0		
-446.8711114	-461.1474991	0		
455.0289652	-466.5381001	0		
-452.1855082	-462.6467861	0		
-448.1692608	-459.7654526	0		
-451.0950898	-459.8438025	0		
449.5044178	-462.3792759	0		
452.7388717	-463.9867695	0		
-452.6461523	-462.5289825	0		
455.9223202	-462.7932688	0		
-452.105378	-465.4501331	0		
453.3924506	-463.7013004	0		
-451.5265171	-465.1805253	0		
451.2880253	-459.7728892	0		
454.2447486	-467.3708094	0		
-449.7182666	-457.3547096	0		
-452.7728672	-461.4085695	0		
-447.9708853	-456.1737649	0		
454.7300625	-470.2952329	0		
-450.808366	-462.2404407	0		
-445.6261039	-457.9325944	0		
-453.7900363	-458.2221401	0		
-451.8507546	-461.3866394	0		
-448.2082252	-462.4290848	0		
-449.8821933	-463.5038484	0		
-454.0987857	-465.7008371	0		
-453.2329223	-467.0656634	0		
-455.7692188	-465.9509972	0		
-447.6499867	-461.9518489	0		

Free speciation Inlik	MK1 Inlink	P-value		
-456.5899917	-472.1976789	0		
-451.9012497	-460.395346	0		
-449.8948401	-460.6452467	0		
-449.932856	-465.574787	0		
-454.0333635	-461.5148657	0		
-458.4445617	-470.7660012	0		
-453.7286295	-469.3910788	0		
-452.167333	-463.1688816	0		
-456.7260744	-467.140607	0		
-450.7098344	-461.4329508	0		
-446.2422063	-458.1752932	0		
-453.7027152	-467.730229	0		
-454.9173788	-466.7819684	0		
-451.0098001	-460.4233765	0		
-451.5772185	-463.1592818	0		
-450.004609	-464.3011801	0		
-450.3599462	-463.4298817	0		
-447.9967014	-458.9452744	0		
-449.524956	-464.8453361	0		
-449.703755	-465.321002	0		
-453.9089796	-468.1253116	0		
-450.9536495	-465.2867985	0		
-452.8943435	-466.7084987	0		
-453.4319457	-464.8724456	0		
-455.0458025	-465.6754112	0		
-449.2841786	-458.9835008	0		
-452.7207496	-461.388292	0		
-447.8171227	-457.7599461	0		
-448.5956323	-459.3260343	0		
-452.4736695	-462.0276592	0		
-451.8005816	-460.118923	0		
-443.9548488	-454.3342113	0		
-457.2337025	-471.5569175	0		
-450.6370662	-464.9172277	0		
-454.1295055	-465.9470139	0		
-454.9456831	-462.6900812	0		
-452.8247709	-460.675113	0		
-453.1891127	-459.5060059	0		
-448.6372539	-463.1506819	0		
-449.5210883	-462.2771865	0		
-455.4042601	-462.3066636	0		

Free speciation Inlik	MK1 Inlink	P-value		
-452.1262196	-461.7895631	0		
-453.3413845	-467.688765	0		
-453.7987362	-466.1003556	0		
453.548008	-466.9833351	0		
454.3053794	-468.0043821	0		
452.2548283	-467.9984657	0		
455.2410769	-462.2125709	0		
455.8747541	-469.78487	0		
453.4796713	-468.0266984	0		
444.0939397	-456.9683702	0		
450.4385043	-463.3445036	0		
448.3835333	-461.538537	0		
452.4784552	-462.4620435	0		
452.035133	-466.3906086	0		
452.9058534	-461.5433659	0		
-453.6892687	-463.6439146	0		
-451.8457316	-467.0439001	0		
451.5113729	-458.5581635	0		
-443.6773104	-454.2170042	0		
445.7959534	-460.8722069	0		
452.5070409	-462.5650421	0		
457.7647961	-470.4466009	0		
-458.8030414	-469.0121826	0		
454.271888	-463.5710662	0		
-453.4898733	-464.7107904	0		
453.0252641	-461.325648	0		
448.7505168	-461.4919284	0		
-451.218309	-464.047261	0		
452.7735607	-459.9994762	0		
-447.6323023	-462.3178526	0		
442.6052397	-456.929988	0		
449.4034148	-457.5484872	0		
444.6995979	-452.2162459	0		
-450.9587241	-462.7929001	0		
-451.5817505	-463.7461501	0		
-453.6465293	-459.4183929	0		
-445.2514434	-455.7656509	0		
-455.7515577	-462.236334	0		
-452.5311603	-458.3706069	0		
452.0467815	-464.965338	0		
452.2901775	-462.0736017	0		

Free speciation Inlik	MK1 lnlink	P-value	
-452.90015	-465.4709041	0	
-450.8337055	-465.1931738	0	
-453.7383508	-464.1311739	0	
-449.5033127	-459.3833583	0	
-450.3102926	-457.0957866	0	
-447.4847273	-459.329979	0	
-450.102028	-464.0022249	0	
-455.2677139	-467.0568679	0	
-455.5957286	-469.3443976	0	
-452.0691707	-460.6475596	0	
-450.2784641	-459.7812587	0	
-450.8795351	-466.6446234	0	
-450.3770632	-464.648734	0	
-450.7633411	-461.8934298	0	
-452.445138	-465.1707873	0	
-449.7850646	-460.1163187	0	
-454.677513	-463.754009	0	
-454.383832	-466.0305125	0	
-451.1042764	-462.5720393	0	
-450.5920666	-464.9110168	0	
-454.4616583	-461.4098332	0	
-451.4983949	-462.2686028	0	
-450.2726077	-462.8826772	0	
-452.0819749	-466.2356645	0	
-454.1037932	-469.3239325	0	
-453.9843622	-463.2214179	0	
-453.269521	-467.3218089	0	
-450.3836971	-459.0722699	0	
-449.285439	-459.6267727	0	
-451.8856712	-465.3012156	0	
-452.6979381	-464.2542173	0	
-455.4352964	-469.8048726	0	
-451.682171	-464.1563622	0	
-454.2609689	-466.0596523	0	
-454.3560441	-463.6298443	0	
-454.6696032	-465.9641632	0	
-448.5008081	-462.0836308	0	
-456.3026131	-465.2025172	0	
-451.3773105	-462.6953795	0	
-451.2224356	-459.9371853	0	
-447.3297256	-459.5169828	0	

Free speciation Inlik	MK1 lnlink	P-value	
-451.8228208	-461.3136536	0	
-447.309059	-458.1565107	0	
-453.4054273	-466.0346403	0	
-446.7734846	-458.6450426	0	
-451.85258	-460.9629584	0	
-449.2476648	-459.4463775	0	
-459.9703132	-468.0916156	0	
-447.1472254	-455.1002452	0	
-450.2015091	-458.4443277	0	
-454.3483605	-469.1819002	0	

TABLE XX. BISSE_TYPE1_ERROR_ANDES_Q01_TAB.

TABLE XX.	BISSE_TYPE1_ERROR_ANDES_Q01_TAB.	
no q01 lnlik	MK1 lnlik	P-value
-489.8016292	-476.2167454	0.999999814
-491.4000487	-476.4162103	0.999999956
-487.2179832	-476.3088207	0.999997003
-479.3683717	-476.3902813	0.985334223
-488.6215127	-476.3901397	0.999999242
-489.68726	-476.4409781	0.999999735
-486.479672	-476.3946673	0.999992915
-490.7683527	-476.3955541	0.999999918
-478.4404028	-476.3955253	0.956856109
-477.0715122	-476.8762219	0.468005554
-486.3227429	-476.2583955	0.99999276
-474.0174911	-476.383348	0
-487.00004	-474.4468631	0.999999458
-492.9587782	-476.4013586	0.999999991
-482.871719	-473.6713165	0.999982102
-494.038642	-475.9568	0.999999998
-487.7234775	-476.3968844	0.99999806
-485.0620141	-475.9186719	0.999980997
-479.6807468	-476.394875	0.989638961
-490.5831884	-476.3773877	0.999999902
-494.658378	-475.9970842	0.999999999
-486.0909565	-476.380759	0.999989512
-490.3499809	-476.386874	0.999999874
-476.8863046	-474.4115216	0.973902781
-484.6046622	-476.3912878	0.999949433
-488.575398	-476.3077155	0.99999927
-478.2973156	-474.2562251	0.995529739
-486.094944	-474.7629315	0.999998071
-490.2298238	-476.3982005	0.999999856
-495.2019504	-476.3947271	0.999999999
-488.0468935	-476.3960052	0.999998615
-489.7409904	-476.3946749	0.999999762
-490.4469352	-476.3963543	0.999999885
-490.2697502	-476.3820607	0.999999864
-488.75402 -486.4063284	-476.0008052 -476.398035	0.999999559 0.999992323
-489.7929088	-476.4000754	0.9999992323
-492.1231787	-476.3921772	0.99999998
-481.865897	-476.3793722	0.99999998
-487.6562697	-475.7504775	0.999998938
-487.9073582	-475.977028	0.999998964
-486.3738286	-476.3892709	0.99999213
-487.4589996	-476.1151718	0.999998094
-485.3631159	-476.2917443	0.999979505
-480.1323865	-475.03606	0.998589987
-476.7271184	-474.9394086	0.941359368
-487.3254954	-476.4126901	0.999997014
-487.6483661	-476.3955937	0.999997905
-488.4677525	-476.3948371	0.999999107
-490.1153814	-476.3969346	0.999999838
-496.8744778	-476.400374	1
-484.9418026	-476.2747437	0.999968649
-489.1850381	-476.4481959	0.999999552
-495.30897	-476.0697776	0.999999999
-491.7205833	-476.3335614	0.999999971
-492.5978032	-476.3983606	0.999999987
-491.3712104	-476.3912567	0.999999956
-487.1595542	-475.4346902	0.999998718
-490.4649303	-476.400825	0.999999887
-488.8783492	-476.3947201	0.999999417

TABLE XX, CONTINUED

no q01 lnlik	MK1 lnlik	P-value
-484.572387	-476.389377	0.999947787
-488.8936691	-476.182465	0.99999954
-487.2596843	-476.3955284	0.999996859
-482.0402575	-475.3239439	0.999752714
-486.975879	-476.3948673	0.99999578
-485.497146	-476.1129568	0.999985241
-480.7396523	-476.3964518	0.99679407
-487.5032374	-476.3947399	0.999997565
-481.3673825	-476.3430723	0.998475379
-472.9530584	-474.8843589	0
-494.2299807	-476.3955325	0.999999998
-493.3955975	-476.4215207	0.999999994
-488.4559791	-476.3955222	0.999999095
-483.3996987	-475.6315174	0.999919067
-493.1330686	-476.4820061	0.99999992
-494.411138	-476.413998	0.99999998
-495.0571435	-476.3963432	0.999999999
-489.2808239	-476.394775	0.999999616
-489.5608476	-475.9267565	0.999999823
-486.2347333	-476.3955247	0.999990837
-486.2666542	-476.2834843	0.999992118
-487.7243152	-476.3480582	0.999998157
-483.6238016	-476.3955307	0.999856569
-483.1791173	-476.1024911	0.999831495
-489.9134306	-476.3955464	0.9999998
-493.9020939	-476.3583746	0.999999997
-482.5548856	-476.1369002	0.999659981
-479.1688663	-476.3955253	0.981484246
-481.3970005	-476.3915966	0.998443758
-487.3481373	-475.1826927	0.999999189
-490.7126825	-476.4002943	0.999999912
-492.7380104	-476.3538789	0.99999999
-488.1826301	-476.3934789	0.999998801
-482.1472757	-476.1783931	0.999449926
-487.9713002	-476.2731344	0.999998682
-488.0942543	-476.3955306	0.999998683
-493.8685926	-476.4403653	0.999999997
-492.6272882	-476.3955264	0.999999988
-487.6152292	-476.0096018	0.999998549
-485.1246611	-475.6318742	0.999986829

APPENDIX C

TABLE XXI. SPECIMEN VOUCHER INFORMATION.

Date	Country	DNA number	Latitude	Altitude	Longitude	Collected by	Collection. no.
01/14/16	Australia	14682_TAS	-41.15	110 m	145.1	H.T. Lumbsch, T. Widhelm & F. Grewe	2046 B
01/14/16	Australia	14687_TAS	-41.1333	210 m	145.06667	H.T. Lumbsch, T. Widhelm & F. Grewe	2072 D
01/14/16	Australia	14689_TAS	-41.1333	210 m	145.06667	H.T. Lumbsch, T. Widhelm & F. Grewe	2076 B
01/14/16	Australia	14690_TAS	-41.1333	210 m	145.06667	H.T. Lumbsch, T. Widhelm & F. Grewe	2076 C
01/14/16	Australia	14693_TAS	-41.1333	210 m	145.06667	H.T. Lumbsch, T. Widhelm & F. Grewe	2077 C
01/15/16	Australia	14696_TAS	-41.4667	350 m	145.26667	H.T. Lumbsch, T. Widhelm & F. Grewe	2096 B
01/15/16	Australia	14702_TAS	-41.4667	350 m	145.26667	H.T. Lumbsch, T. Widhelm & F. Grewe	2096 H
01/16/16	Australia	14706_TAS	-42.6833	1050 m	146.58333	H.T. Lumbsch, T. Widhelm & F. Grewe	2144 B
01/16/16	Australia	14708_TAS	-42.6833	1050 m	146.58333	H.T. Lumbsch, T. Widhelm & F. Grewe	2144 D
01/16/16	Australia	14709_TAS	-42.6833	700 m	146.66667	H.T. Lumbsch, T. Widhelm & F. Grewe	2172 A
01/16/16	Australia	14711_TAS	-42.6833	700 m	146.66667	H.T. Lumbsch, T. Widhelm & F. Grewe	2172 C
01/16/16	Australia	14712_TAS	-42.6833	700 m	146.66667	H.T. Lumbsch, T. Widhelm & F. Grewe	2172 D
01/16/16	Australia	14718_TAS	-42.6833	700 m	146.66667	H.T. Lumbsch, T. Widhelm & F. Grewe	2172 J
01/17/16	Australia	14720_TAS	-42.8167	390 m	146.65	H.T. Lumbsch, T. Widhelm & F. Grewe	2201
01/21/16	Australia	14725_VIC	-37.7	740 m	145.7	T. Widhelm & F. Grewe	2259 B
01/21/16	Australia	14727_VIC	-37.7	1149 m	145.66667	T. Widhelm & F. Grewe	2272
01/21/16	Australia	14728_VIC	-37.7	1149 m	145.66667	T. Widhelm & F. Grewe	2272 A
01/21/16	Australia	14729_VIC	-37.7	1149 m	145.66667	T. Widhelm & F. Grewe	2272 B
01/21/16	Australia	14731_VIC	-37.7	1149 m	145.66667	T. Widhelm & F. Grewe	2272 D
01/21/16	Australia	14732_VIC	-37.7167	993 m	145.6	T. Widhelm & F. Grewe	2282 A
01/21/16	Australia	14735_VIC	-37.7167	993 m	145.6	T. Widhelm & F. Grewe	2282 D
01/21/16	Australia	14743_VIC	-37.7	976 m	145.61667	T. Widhelm & F. Grewe	2290 G
01/21/16	Australia	14747_VIC	-37.7	976 m	145.61667	T. Widhelm & F. Grewe	2290 K
01/21/16	Australia	14749_VIC	-37.7	1070 m	145.65	T. Widhelm & F. Grewe	2293 A
01/21/16	Australia	14753_VIC	-37.7	1070 m	145.65	T. Widhelm & F. Grewe	2293 E
01/21/16	Australia	14755_VIC	-37.7	1070 m	145.65	T. Widhelm & F. Grewe	2293 G
01/21/16	Australia	14756_VIC	-37.7	1070 m	145.65	T. Widhelm & F. Grewe	2293 Н
01/21/16	Australia	14757_VIC	-37.7	1070 m	145.65	T. Widhelm & F. Grewe	2293 I
01/21/16	Australia	14758_VIC	-37.7	1070 m	145.65	T. Widhelm & F. Grewe	2293 J

Date	Country	DNA number	Latitude	Altitude	Longitude	Collected by	Collection. no.
01/22/16	Australia	14759_VIC	-37.5167	888 m	145.83333	T. Widhelm & F. Grewe	2311 A
01/22/16	Australia	14761_VIC	-37.5167	888 m	145.83333	T. Widhelm & F. Grewe	2311 C
01/24/16	Australia	14762_VIC	-38.1	655 m	147.4	T. Widhelm & F. Grewe	2324 A
01/25/16	Australia	14763_VIC	-38.45	339 m	146.53333	T. Widhelm & F. Grewe	2402 A
01/25/16	Australia	14764_VIC	-38.45	339 m	146.53333	T. Widhelm & F. Grewe	2402 B
01/25/16	Australia	14766_VIC	-38.45	339 m	146.53333	T. Widhelm & F. Grewe	2402 D
01/25/16	Australia	14767_VIC	-38.45	339 m	146.53333	T. Widhelm & F. Grewe	2402 E
01/25/16	Australia	14768_VIC	-38.45	339 m	146.53333	T. Widhelm & F. Grewe	2402 F
01/25/16	Australia	14769_VIC	-38.45	339 m	146.53333	T. Widhelm & F. Grewe	2403 A
01/25/16	Australia	14770_VIC	-38.45	339 m	146.53333	T. Widhelm & F. Grewe	2403 B
01/25/16	Australia	14771_VIC	-38.45	339 m	146.53333	T. Widhelm & F. Grewe	2403 C
01/25/16	Australia	14772_VIC	-38.45	339 m	146.53333	T. Widhelm & F. Grewe	2403 D
01/25/16	Australia	14776_VIC	-38.45	339 m	146.53333	T. Widhelm & F. Grewe	2403 H
01/26/16	Australia	14777_VIC	-37.3167	1022 m	148.83333	T. Widhelm & F. Grewe	2421 A
01/26/16	Australia	14778_VIC	-37.3167	1022 m	148.83333	T. Widhelm & F. Grewe	2421 B
01/26/16	Australia	14779_VIC	-37.3167	1022 m	148.83333	T. Widhelm & F. Grewe	2421 C
01/26/16	Australia	14780_VIC	-37.3167	1022 m	148.83333	T. Widhelm & F. Grewe	2421 D
01/26/16	Australia	14781_VIC	-37.3167	1022 m	148.83333	T. Widhelm & F. Grewe	2421 E
01/26/16	Australia	14783_VIC	-37.3167	1022 m	148.83333	T. Widhelm & F. Grewe	2421 G
01/26/16	Australia	14784_VIC	-37.3167	1022 m	148.83333	T. Widhelm & F. Grewe	2421 Н
01/26/16	Australia	14785_VIC	-37.3167	1022 m	148.83333	T. Widhelm & F. Grewe	2421 I
01/26/16	Australia	14786_VIC	-37.3167	1022 m	148.83333	T. Widhelm & F. Grewe	2421 J
01/26/16	Australia	14787_VIC	-37.3167	1022 m	148.83333	T. Widhelm & F. Grewe	2421 K
01/26/16	Australia	14789_VIC	-37.3167	1022 m	148.83333	T. Widhelm & F. Grewe	2421 M
01/26/16	Australia	14790_VIC	-37.3167	1022 m	148.83333	T. Widhelm & F. Grewe	2421 N
01/26/16	Australia	14791_VIC	-37.3167	1022 m	148.83333	T. Widhelm & F. Grewe	2421 O
01/26/16	Australia	14792_VIC	-37.3167	1022 m	148.83333	T. Widhelm & F. Grewe	2421 P
01/26/16	Australia	14793_VIC	-37.3167	1022 m	148.83333	T. Widhelm & F. Grewe	2421 Q
01/26/16	Australia	14796_VIC	-37.3167	1022 m	148.83333	T. Widhelm & F. Grewe	2421 T
01/26/16	Australia	14798_VIC	-37.3167	1022 m	148.83333	T. Widhelm & F. Grewe	2421 V
01/26/16	Australia	14799_VIC	-37.3167	1022 m	148.83333	T. Widhelm & F. Grewe	2421 W

Date	Country	DNA number	Latitude	Altitude	Longitude	Collected by	Collection no.
01/26/16	Australia	14800_VIC	-37.3167	1022 m	148.83333	T. Widhelm & F. Grewe	2421 X
01/13/16	Australia	14810_VIC	-41.5	1240 m	147.66667	H.T. Lumbsch, T. Widhelm & F. Grewe	2030 F
01/13/16	Australia	14811_VIC	-41.5	1240 m	147.66667	H.T. Lumbsch, T. Widhelm & F. Grewe	2030 HO
01/13/16	Australia	14812_VIC	-41.5	1240 m	147.66667	H.T. Lumbsch, T. Widhelm & F. Grewe	2030 HO A
01/14/16	Australia	14814_VIC	-41.1333	210 m	145.06667	H.T. Lumbsch, T. Widhelm & F. Grewe	2076
01/14/16	Australia	14815_VIC	-41.1333	210 m	145.06667	H.T. Lumbsch, T. Widhelm & F. Grewe	2076 D
01/21/16	Australia	14816_VIC	-37.6333	554 m	145.71667	T. Widhelm & F. Grewe	2287 A
01/21/16	Australia	14818_VIC	-37.6333	554 m	145.71667	T. Widhelm & F. Grewe	2287 C
12/16/17	Chile	15514_CHI	-41.1906	111.16 m	-72.532718	Todd Widhelm, Matt von Konrat, Juan Larrain	4322
12/16/17	Chile	15516_CHI	-41.1906	111.16 m	-72.532718	Todd Widhelm, Matt von Konrat, Juan Larrain	4324
12/16/17	Chile	15517_CHI	-41.1906	111.16 m	-72.532718	Todd Widhelm, Matt von Konrat, Juan Larrain	4326
12/16/17	Chile	15518_CHI	-41.1906	111.16 m	-72.532718	Todd Widhelm, Matt von Konrat, Juan Larrain	4327
12/16/17	Chile	15520_CHI	-41.1906	111.16 m	-72.532718	Todd Widhelm, Matt von Konrat, Juan Larrain	4329
12/16/17	Chile	15521_CHI	-41.1906	111.16 m	-72.532718	Todd Widhelm, Matt von Konrat, Juan Larrain	4330
12/16/17	Chile	15522_CHI	-41.1906	111.16 m	-72.532718	Todd Widhelm, Matt von Konrat, Juan Larrain	4331
12/16/17	Chile	15523_CHI	-41.1906	111.16 m	-72.532718	Todd Widhelm, Matt von Konrat, Juan Larrain	4332
12/16/17	Chile	15524_CHI	-41.1906	111.16 m	-72.532718	Todd Widhelm, Matt von Konrat, Juan Larrain	4333
12/16/17	Chile	15526_CHI	-41.1906	111.16 m	-72.532718	Todd Widhelm, Matt von Konrat, Juan Larrain	4338
12/16/17	Chile	15527_CHI	-41.1906	111.16 m	-72.532718	Todd Widhelm, Matt von Konrat, Juan Larrain	4339
12/16/17	Chile	15528_CHI	-41.1906	111.16 m	-72.532718	Todd Widhelm, Matt von Konrat, Juan Larrain	4340
12/16/17	Chile	15529_CHI	-41.1906	111.16 m	-72.532718	Todd Widhelm, Matt von Konrat, Juan Larrain	4341
12/16/17	Chile	15530_CHI	-41.1906	111.16 m	-72.532718	Todd Widhelm, Matt von Konrat, Juan Larrain	4342
12/16/17	Chile	15535_CHI	-41.1906	111.16 m	-72.532718	Todd Widhelm, Matt von Konrat, Juan Larrain	4347
12/16/17	Chile	15537_CHI	-41.1739	250 m	-72.517188	Todd Widhelm, Matt von Konrat, Juan Larrain	4351
12/16/17	Chile	15538_CHI	-41.1739	250 m	-72.517188	Todd Widhelm, Matt von Konrat, Juan Larrain	4351A
12/16/17	Chile	15539_CHI	-41.1739	250 m	-72.517188	Todd Widhelm, Matt von Konrat, Juan Larrain	4355
12/16/17	Chile	15540_CHI	-41.1388	1000 m	-72.536507	Todd Widhelm, Matt von Konrat, Juan Larrain	4364
12/16/17	Chile	15541_CHI	-41.1388	1000 m	-72.536507	Todd Widhelm, Matt von Konrat, Juan Larrain	4365
12/16/17	Chile	15542_CHI	-41.1388	1000 m	-72.536507	Todd Widhelm, Matt von Konrat, Juan Larrain	4366
12/16/17	Chile	15543_CHI	-41.1388	1000 m	-72.536507	Todd Widhelm, Matt von Konrat, Juan Larrain	4367

Date	Country	DNA number	Latitude	Altitude	Longitude (Collected by	Collection. no.
12/16/17	Chile	15544_CHI	-41.1388	1000 m	-72.536507	Todd Widhelm, Matt von Konrat, Juan Larrain	4368
12/16/17	Chile	15545_CHI	-41.1388	1000 m	-72.536507	Todd Widhelm, Matt von Konrat, Juan Larrain	4369
12/16/17	Chile	15546_CHI	-41.1388	1000 m	-72.536507	Todd Widhelm, Matt von Konrat, Juan Larrain	4370
12/16/17	Chile	15547_CHI	-41.1388	1000 m	-72.536507	Todd Widhelm, Matt von Konrat, Juan Larrain	4371
12/17/17	Chile	15550_CHI	-41.598	134.17 m	-72.599706	Todd Widhelm, Matt von Konrat, Juan Larrain	4375
12/17/17	Chile	15551_CHI	-41.598	134.17 m	-72.599706	Todd Widhelm, Matt von Konrat, Juan Larrain	4376
12/17/17	Chile	15552_CHI	-41.598	134.17 m	-72.599706	Todd Widhelm, Matt von Konrat, Juan Larrain	4377
12/17/17	Chile	15556_CHI	-41.598	134.17 m	-72.599706	Todd Widhelm, Matt von Konrat, Juan Larrain	4381
12/17/17	Chile	15557_CHI	-41.598	134.17 m	-72.599706	Todd Widhelm, Matt von Konrat, Juan Larrain	4382
12/17/17	Chile	15559_CHI	-41.598	134.17 m	-72.599706	Todd Widhelm, Matt von Konrat, Juan Larrain	4384
12/17/17	Chile	15560_CHI	-41.598	134.17 m	-72.599706	Todd Widhelm, Matt von Konrat, Juan Larrain	4385
12/17/17	Chile	15562_CHI	-41.598	134.17 m	-72.599706	Todd Widhelm, Matt von Konrat, Juan Larrain	4387
12/17/17	Chile	15563_CHI	-41.598	134.17 m	-72.599706	Todd Widhelm, Matt von Konrat, Juan Larrain	4388
12/17/17	Chile	15565_CHI	-41.5938	138.91 m	-72.593082	Todd Widhelm, Matt von Konrat, Juan Larrain	4391
12/17/17	Chile	15567_CHI	-41.5938	138.91 m	-72.593082	Todd Widhelm, Matt von Konrat, Juan Larrain	4393
12/17/17	Chile	15571_CHI	-41.5938	138.91 m	-72.593082	Todd Widhelm, Matt von Konrat, Juan Larrain	4397
12/17/17	Chile	15575_CHI	-41.5938	138.91 m	-72.593082	Todd Widhelm, Matt von Konrat, Juan Larrain	4410
12/17/17	Chile	15578_CHI	-41.5938	138.91 m	-72.593082	Todd Widhelm, Matt von Konrat, Juan Larrain	4414
12/17/17	Chile	15579_CHI	-41.5938	138.91 m	-72.593082	Todd Widhelm, Matt von Konrat, Juan Larrain	4415
12/18/17	Chile	15581_CHI	-41.8872	32.94 m	-73.672813	Todd Widhelm, Matt von Konrat, Juan Larrain	4444
12/18/17	Chile	15586_CHI	-41.8872	32.94 m	-73.672813	Todd Widhelm, Matt von Konrat, Juan Larrain	4449
12/18/17	Chile	15587_CHI	-41.8872	32.94 m	-73.672813	Todd Widhelm, Matt von Konrat, Juan Larrain	4450
12/18/17	Chile	15588_CHI	-41.8872	32.94 m	-73.672813	Todd Widhelm, Matt von Konrat, Juan Larrain	4451
12/18/17	Chile	15589_CHI	-41.8872	32.94 m	-73.672813	Todd Widhelm, Matt von Konrat, Juan Larrain	4452
12/18/17	Chile	15590_CHI	-41.8872	32.94 m	-73.672813	Todd Widhelm, Matt von Konrat, Juan Larrain	4453
12/18/17	Chile	15591_CHI	-41.8872	32.94 m	-73.672813	Todd Widhelm, Matt von Konrat, Juan Larrain	4454
12/18/17	Chile	15592_CHI	-41.8872	32.94 m	-73.672813	Todd Widhelm, Matt von Konrat, Juan Larrain	4455
12/18/17	Chile	15593_CHI	-41.8872	32.94 m	-73.672813	Todd Widhelm, Matt von Konrat, Juan Larrain	4456
12/18/17	Chile	15594_CHI	-41.8872	32.94 m	-73.672813	Todd Widhelm, Matt von Konrat, Juan Larrain	4457
12/18/17	Chile	15595_CHI	-41.8872	32.94 m	-73.672813	Todd Widhelm, Matt von Konrat, Juan Larrain	4458
12/19/17	Chile	15603_CHI	-42.7122	105.41 m	-73.936354	Todd Widhelm, Matt von Konrat, Juan Larrain	4472

Date	Country	DNA number	Latitude	Altitude	Longitude	Collected by	Collection no.
2/19/17	Chile	15605_CHI	-42.7122	105.41 m	-73.936354	Todd Widhelm, Matt von Konrat, Juan Larrain	4472
2/19/17	Chile	15606_CHI	-42.7122	105.41 m	-73.936354	Todd Widhelm, Matt von Konrat, Juan Larrain	4475
2/19/17	Chile	15609_CHI	-42.7122	105.41 m	-73.936354	Todd Widhelm, Matt von Konrat, Juan Larrain	4478
2/19/17	Chile	15611_CHI	-42.7122	105.41 m	-73.936354	Todd Widhelm, Matt von Konrat, Juan Larrain	4482
1/07/17	New Zealand	15905_NZN	-37.317	757 m	175.44699	Felix Grewe, Todd Widhelm, Dan Blanchon, Peter de Lange	3050
1/07/17	New Zealand	15906_NZN	-37.317	757 m	175.44699	Felix Grewe, Todd Widhelm, Dan Blanchon, Peter de Lange	3052
1/07/17	New Zealand	15907_NZN	-37.317	757 m	175.44699	Felix Grewe, Todd Widhelm, Dan Blanchon, Peter de Lange	
1/07/17	New Zealand	15909_NZN	-37.317	757 m	175.44699	Felix Grewe, Todd Widhelm, Dan Blanchon, Peter de Lange	
1/07/17	New Zealand	15910_PHO	-37.317	757 m	175.44699	Felix Grewe, Todd Widhelm, Dan Blanchon, Peter de Lange	
1/07/17	New Zealand	15911_PHO	-37.317	757 m	175.44699	Felix Grewe, Todd Widhelm, Dan Blanchon, Peter de Lange	
1/07/17	New Zealand	15912_NZN	-37.317	757 m	175.44699	Felix Grewe, Todd Widhelm, Dan Blanchon, Peter de Lange	3077
1/07/17	New Zealand	15913_NZN	-37.317	757 m	175.44699	Felix Grewe, Todd Widhelm, Dan Blanchon, Peter de Lange	
1/07/17	New Zealand	15914_NZN	-37.317	757 m	175.44699	Felix Grewe, Todd Widhelm, Dan Blanchon, Peter de Lange	3106
1/07/17	New Zealand	15915_NZN	-37.317	757 m	175.44699	Felix Grewe, Todd Widhelm, Dan Blanchon, Peter de Lange	3107
1/07/17	New Zealand	15916_PHO	-37.317	757 m	175.44699	Felix Grewe, Todd Widhelm, Dan Blanchon, Peter de Lange	3110
1/07/17	New Zealand	15917_NZN	-37.317	757 m	175.44699	Felix Grewe, Todd Widhelm, Dan Blanchon, Peter de Lange	3116
1/07/17	New Zealand	15918_NZN	-37.317	757 m	175.44699	Felix Grewe, Todd Widhelm, Dan Blanchon, Peter de Lange	3122
1/09/17	New Zealand	15919_NZN	-39.205	1154 m	175.54103	Felix Grewe, Todd Widhelm	3143
1/09/17	New Zealand	15920_NZN	-39.205	1154 m	175.54103	Felix Grewe, Todd Widhelm	3144
1/09/17	New Zealand	15921_NZN	-39.205	1154 m	175.54103	Felix Grewe, Todd Widhelm	3145
1/09/17	New Zealand	15923_NZN	-39.205	1154 m	175.54103	Felix Grewe, Todd Widhelm	3147
1/09/17	New Zealand	15924_NZN	-39.205	1154 m	175.54103	Felix Grewe, Todd Widhelm	3148
1/09/17	New Zealand	15926_NZN	-39.205	1154 m	175.54103	Felix Grewe, Todd Widhelm	3151
1/09/17	New Zealand	15927_NZN	-39.205	1154 m	175.54103	Felix Grewe, Todd Widhelm	3152

Date	Country	DNA number	Latitude	Altitude	Longitude	Collected by	Collection. no.
11/09/17	New Zealand	15928_NZN	-39.205	1154 m	175.54103	Felix Grewe, Todd Widhelm	3153
11/09/17	New Zealand	15929_NZN	-39.205	1154 m	175.54103	Felix Grewe, Todd Widhelm	3154
11/09/17	New Zealand	15930_NZN	-39.205	1154 m	175.54103	Felix Grewe, Todd Widhelm	3155
11/09/17	New Zealand	15931_NZN	-39.205	1154 m	175.54103	Felix Grewe, Todd Widhelm	3156
11/09/17	New Zealand	15932_NZN	-39.205	1154 m	175.54103	Felix Grewe, Todd Widhelm	3157
11/09/17	New Zealand	15934_NZN	-39.205	1154 m	175.54103	Felix Grewe, Todd Widhelm	3159
11/09/17	New Zealand	15937_NZN	-39.205	1154 m	175.54103	Felix Grewe, Todd Widhelm	3162
11/09/17	New Zealand	15938_NZN	-39.154	724 m	175.82364	Felix Grewe, Todd Widhelm	3203
11/09/17	New Zealand	15939_NZN	-39.154	724 m	175.82364	Felix Grewe, Todd Widhelm	3204
11/09/17	New Zealand	15940_NZN	-39.154	724 m	175.82364	Felix Grewe, Todd Widhelm	3205
11/09/17	New Zealand	15942_NZN	-39.154	724 m	175.82364	Felix Grewe, Todd Widhelm	3207
11/09/17	New Zealand	15943_NZN	-39.154	724 m	175.82364	Felix Grewe, Todd Widhelm	3212
11/09/17	New Zealand	15944_NZN	-39.154	724 m	175.82364	Felix Grewe, Todd Widhelm	3213
11/09/17	New Zealand	15946_NZN	-39.154	724 m	175.82364	Felix Grewe, Todd Widhelm	3216
11/09/17	New Zealand	15947_NZN	-39.154	724 m	175.82364	Felix Grewe, Todd Widhelm	3218
11/09/17	New Zealand	15948_NZN	-39.154	724 m	175.82364	Felix Grewe, Todd Widhelm	3226
11/09/17	New Zealand	15949_NZN	-39.154	724 m	175.82364	Felix Grewe, Todd Widhelm	3227
11/09/17	New Zealand	15950_NZN	-39.154	724 m	175.82364	Felix Grewe, Todd Widhelm	3228
11/09/17	New Zealand	15951_NZN	-39.154	724 m	175.82364	Felix Grewe, Todd Widhelm	3233
11/09/17	New Zealand	15952_NZN	-39.154	724 m	175.82364	Felix Grewe, Todd Widhelm	3234
11/09/17	New Zealand	15953_NZN	-39.154	724 m	175.82364	Felix Grewe, Todd Widhelm	3235
11/09/17	New Zealand	15954_NZN	-39.154	724 m	175.82364	Felix Grewe, Todd Widhelm	3236
11/09/17	New Zealand	15955_NZN	-39.154	724 m	175.82364	Felix Grewe, Todd Widhelm	3237
11/09/17	New Zealand	15957_NZN	-39.154	724 m	175.82364	Felix Grewe, Todd Widhelm	3239
11/09/17	New Zealand	15958_NZN	-39.154	724 m	175.82364	Felix Grewe, Todd Widhelm	3240
11/09/17	New Zealand	15959_NZN	-39.154	724 m	175.82364	Felix Grewe, Todd Widhelm	3242
11/10/17	New Zealand	15960_NZN	-40.808	290 m	175.54575	Felix Grewe, Todd Widhelm	3275
11/10/17	New Zealand	15963_NZN	-40.808	290 m	175.54575	Felix Grewe, Todd Widhelm	3283
11/10/17	New Zealand	15965_NZN	-40.808	290 m	175.54575	Felix Grewe, Todd Widhelm	3308
11/10/17	New Zealand	15969_NZN	-40.808	290 m	175.54575	Felix Grewe, Todd Widhelm	3313
11/10/17	New Zealand	15971_NZN	-40.808	290 m	175.54575	Felix Grewe, Todd Widhelm	3315

Date	Country	DNA number	Latitude	Altitude	Longitude	Collected by	Collection. no.
11/10/17	New Zealand	15972_NZN	-40.808	290 m	175.54575	Felix Grewe, Todd Widhelm	3316
11/10/17	New Zealand	15975_NZN	-40.808	290 m	175.54575	Felix Grewe, Todd Widhelm	3319
11/11/17	New Zealand	15978_NZN	-41.353	33 m and	174.91752	Felix Grewe, Todd Widhelm, Jeremy Rolfe	3361
11/11/17	New Zealand	15980_NZN	-41.353	up 33 m and	174.91752	Felix Grewe, Todd Widhelm, Jeremy Rolfe	3363
11/11/17	New Zealand	15981_NZN	-41.353	up 33 m and up	174.91752	Felix Grewe, Todd Widhelm, Jeremy Rolfe	3368
11/11/17	New Zealand	15982_NZN	-41.353	$3\overline{3}$ m and	174.91752	Felix Grewe, Todd Widhelm, Jeremy Rolfe	3374
11/11/17	New Zealand	15984_NZN	-41.353	up 33 m and	174.91752	Felix Grewe, Todd Widhelm, Jeremy Rolfe	3377
11/11/17	New Zealand	15986_NZN	-41.353	up 33 m and	174.91752	Felix Grewe, Todd Widhelm, Jeremy Rolfe	3379
11/11/17	New Zealand	15987_NZN	-41.353	up 33 m and	174.91752	Felix Grewe, Todd Widhelm, Jeremy Rolfe	3380
11/11/17	New Zealand	15988_NZN	-41.353	up 33 m and	174.91752	Felix Grewe, Todd Widhelm, Jeremy Rolfe	3381
11/11/17	New Zealand	15991_NZN	-41.353	up 33 m and	174.91752	Felix Grewe, Todd Widhelm, Jeremy Rolfe	3384
11/11/17	New Zealand	15993_NZN	-41.353	up 33 m and	174.91752	Felix Grewe, Todd Widhelm, Jeremy Rolfe	3386
11/11/17	New Zealand	15995_NZN	-41.353	up 33 m and	174.91752	Felix Grewe, Todd Widhelm, Jeremy Rolfe	3388
11/11/17	New Zealand	15996_NZN	-41.353	up 33 m and	174.91752	Felix Grewe, Todd Widhelm, Jeremy Rolfe	3389
11/11/17	New Zealand	15997_NZN	-41.353	up 33 m and	174.91752	Felix Grewe, Todd Widhelm, Jeremy Rolfe	3400
11/13/17	New Zealand	15999 NZS	-41.106	up 367 m	172.72146	Felix Grewe, Todd Widhelm	3438
11/13/17	New Zealand	16000_PHO	-41.106	367 m	172.72146		3439
11/13/17	New Zealand	16002_PHO	-41.106	367 m	172.72146		3441
11/13/17	New Zealand	16003_PHO	-41.106	367 m	172.72146		3442
11/13/17	New Zealand	16009_PHO	-41.106	367 m	172.72146		3448
11/13/17	New Zealand	16010_PHO	-41.106	367 m	172.72146	Felix Grewe, Todd Widhelm	3449
11/13/17	New Zealand	16011_NZS	-41.106	367 m	172.72146	Felix Grewe, Todd Widhelm	3450
11/13/17	New Zealand	16012_PHO	-41.106	367 m	172.72146	Felix Grewe, Todd Widhelm	3451
11/13/17	New Zealand	16014_NZS	-41.106	367 m	172.72146	Felix Grewe, Todd Widhelm	3453

Date	Country	DNA number	Latitude	Altitude	Longitude	Collected by	Collection. no.
11/14/17	New Zealand	16017_NZS	-41.807	625 m	172.84679	Felix Grewe, Todd Widhelm	3500
11/14/17	New Zealand	16019_NZS	-41.807	625 m	172.84679	Felix Grewe, Todd Widhelm	3502
11/14/17	New Zealand	16021_NZS	-41.807	625 m	172.84679	Felix Grewe, Todd Widhelm	3504
11/14/17	New Zealand	16022_NZS	-41.807	625 m	172.84679	Felix Grewe, Todd Widhelm	3505
11/14/17	New Zealand	16024_NZS	-41.807	625 m	172.84679	Felix Grewe, Todd Widhelm	3508
11/14/17	New Zealand	16025_NZS	-41.807	625 m	172.84679	Felix Grewe, Todd Widhelm	3509
11/14/17	New Zealand	16026_NZS	-41.807	625 m	172.84679	Felix Grewe, Todd Widhelm	3510
11/14/17	New Zealand	16027_NZS	-41.807	625 m	172.84679	Felix Grewe, Todd Widhelm	3511
11/14/17	New Zealand	16034_NZS	-41.807	625 m	172.84679	Felix Grewe, Todd Widhelm	3519
11/14/17	New Zealand	16035_NZS	-41.807	625 m	172.84679	Felix Grewe, Todd Widhelm	3520
11/14/17	New Zealand	16036_NZS	-41.807	625 m	172.84679	Felix Grewe, Todd Widhelm	3521
11/14/17	New Zealand	16037_NZS	-41.807	625 m	172.84679	Felix Grewe, Todd Widhelm	3522
11/14/17	New Zealand	16039_NZS	-41.767	139 m	172.19267	Felix Grewe, Todd Widhelm	3525
11/14/17	New Zealand	16040_NZS	-41.767	139 m	172.19267	Felix Grewe, Todd Widhelm	3526
11/14/17	New Zealand	16042_NZS	-41.767	139 m	172.19267	Felix Grewe, Todd Widhelm	3528
11/14/17	New Zealand	16043_NZS	-41.767	139 m	172.19267	Felix Grewe, Todd Widhelm	3529
11/14/17	New Zealand	16045_NZS	-41.767	139 m	172.19267	Felix Grewe, Todd Widhelm	3531
11/14/17	New Zealand	16046_NZS	-41.767	139 m	172.19267	Felix Grewe, Todd Widhelm	3532
11/14/17	New Zealand	16050_NZS	-41.767	139 m	172.19267	Felix Grewe, Todd Widhelm	3536
11/14/17	New Zealand	16056_NZS	-41.767	139 m	172.19267	Felix Grewe, Todd Widhelm	3542
11/14/17	New Zealand	16057_NZS	-41.767	139 m	172.19267	Felix Grewe, Todd Widhelm	3543
11/15/17	New Zealand	16067_NZS	-42.919	851 m	171.55832	Felix Grewe, Todd Widhelm	3597
11/15/17	New Zealand	16068_NZS	-42.919	851 m	171.55832	Felix Grewe, Todd Widhelm	3598
11/15/17	New Zealand	16069_NZS	-42.919	851 m	171.55832	Felix Grewe, Todd Widhelm	3599
11/15/17	New Zealand	16070_NZS	-42.919	851 m	171.55832	Felix Grewe, Todd Widhelm	3600
11/15/17	New Zealand	16072_NZS	-42.919	851 m	171.55832	Felix Grewe, Todd Widhelm	3602
11/15/17	New Zealand	16073_NZS	-42.919	851 m	171.55832	Felix Grewe, Todd Widhelm	3603
11/15/17	New Zealand	16074_NZS	-42.919	851 m	171.55832	Felix Grewe, Todd Widhelm	3604
11/15/17	New Zealand	16075_NZS	-42.919	851 m	171.55832	Felix Grewe, Todd Widhelm	3605
11/15/17	New Zealand	16076_NZS	-42.919	851 m	171.55832	Felix Grewe, Todd Widhelm	3606
11/15/17	New Zealand	16077_NZS	-42.919	851 m	171.55832	Felix Grewe, Todd Widhelm	3607

Date	Country	DNA number	Latitude	Altitude	Longitude (Collected by	Collection. no.
11/15/17	New Zealand	16078_NZS	-42.919	851 m	171.55832	Felix Grewe, Todd Widhelm	3608
11/15/17	New Zealand	16079_NZS	-42.919	851 m	171.55832	Felix Grewe, Todd Widhelm	3609
11/15/17	New Zealand	16080_NZS	-42.919	851 m	171.55832	Felix Grewe, Todd Widhelm	3610
11/15/17	New Zealand	16081_NZS	-42.919	851 m	171.55832	Felix Grewe, Todd Widhelm	3611
11/15/17	New Zealand	16082_NZS	-42.919	851 m	171.55832	Felix Grewe, Todd Widhelm	3612
11/15/17	New Zealand	16084_NZS	-42.919	851 m	171.55832	Felix Grewe, Todd Widhelm	3614
11/15/17	New Zealand	16089_NZS	-42.745	129 m	171.4202	Felix Grewe, Todd Widhelm	3651
11/15/17	New Zealand	16091_NZS	-42.745	129 m	171.4202	Felix Grewe, Todd Widhelm	3653
11/15/17	New Zealand	16092_NZS	-42.718	63 m	171.24679	Felix Grewe, Todd Widhelm	3662
11/15/17	New Zealand	16093_NZS	-42.718	63 m	171.24679	Felix Grewe, Todd Widhelm	3665
11/17/17	New Zealand	16094_NZS	-43.449	100 m	169.9701	Felix Grewe, Todd Widhelm	3671
11/17/17	New Zealand	16096_NZS	-43.449	100 m	169.9701	Felix Grewe, Todd Widhelm	3673
11/17/17	New Zealand	16097_NZS	-43.449	100 m	169.9701	Felix Grewe, Todd Widhelm	3674
11/17/17	New Zealand	16099_NZS	-43.449	100 m	169.9701	Felix Grewe, Todd Widhelm	3676
11/17/17	New Zealand	16100_NZS	-43.449	100 m	169.9701	Felix Grewe, Todd Widhelm	3677
11/17/17	New Zealand	16101_NZS	-43.449	100 m	169.9701	Felix Grewe, Todd Widhelm	3678
11/17/17	New Zealand	16102_NZS	-43.449	100 m	169.9701	Felix Grewe, Todd Widhelm	3679
11/17/17	New Zealand	16103_NZS	-43.449	100 m	169.9701	Felix Grewe, Todd Widhelm	3680
11/17/17	New Zealand	16104_NZS	-43.449	100 m	169.9701	Felix Grewe, Todd Widhelm	3681
11/17/17	New Zealand	16106_NZS	-43.449	100 m	169.9701	Felix Grewe, Todd Widhelm	3683
11/17/17	New Zealand	16107_NZS	-43.449	100 m	169.9701	Felix Grewe, Todd Widhelm	3684
11/17/17	New Zealand	16108_NZS	-43.449	100 m	169.9701	Felix Grewe, Todd Widhelm	3685
11/17/17	New Zealand	16111_NZS	-43.449	100 m	169.9701	Felix Grewe, Todd Widhelm	3688
11/17/17	New Zealand	16112_NZS	-43.449	100 m	169.9701	Felix Grewe, Todd Widhelm	3689
11/17/17	New Zealand	16113_NZS	-43.449	100 m	169.9701	Felix Grewe, Todd Widhelm	3690
11/17/17	New Zealand	16114_NZS	-43.449	100 m	169.9701	Felix Grewe, Todd Widhelm	3691
11/17/17	New Zealand	16115_NZS	-43.449	100 m	169.9701	Felix Grewe, Todd Widhelm	3692
11/17/17	New Zealand	16116_NZS	-43.449	100 m	169.9701	Felix Grewe, Todd Widhelm	3720
11/19/17	New Zealand	16117_NZS	-45.899	34 m	169.49716	Felix Grewe, Todd Widhelm, John Knight	3883
11/19/17	New Zealand	16119_NZS	-45.899	34 m	169.49716	Felix Grewe, Todd Widhelm, John Knight	3885
11/19/17	New Zealand	16120_NZS	-45.899	34 m	169.49716	Felix Grewe, Todd Widhelm, John Knight	3886

Date	Country	DNA number	Latitude	Altitude	Longitude	Collected by	Collection. no.
11/19/17	New Zealand	16121_NZS	-45.899	34 m	169.49716	Felix Grewe, Todd Widhelm, John Knight	3887
11/19/17	New Zealand	16122_NZS	-45.899	34 m	169.49716	Felix Grewe, Todd Widhelm, John Knight	3888
11/19/17	New Zealand	16123_NZS	-45.899	34 m	169.49716	Felix Grewe, Todd Widhelm, John Knight	3889
11/19/17	New Zealand	16124_NZS	-45.899	34 m	169.49716	Felix Grewe, Todd Widhelm, John Knight	3890
11/19/17	New Zealand	16125_NZS	-45.899	34 m	169.49716	Felix Grewe, Todd Widhelm, John Knight	3891
11/19/17	New Zealand	16126_NZS	-45.899	34 m	169.49716	Felix Grewe, Todd Widhelm, John Knight	3892
11/19/17	New Zealand	16127_NZS	-45.899	34 m	169.49716	Felix Grewe, Todd Widhelm, John Knight	3893
11/19/17	New Zealand	16128_NZS	-45.899	34 m	169.49716	Felix Grewe, Todd Widhelm, John Knight	3894
11/19/17	New Zealand	16129_NZS	-45.899	34 m	169.49716	Felix Grewe, Todd Widhelm, John Knight	3895
11/19/17	New Zealand	16130_NZS	-45.899	34 m	169.49716	Felix Grewe, Todd Widhelm, John Knight	3896
11/19/17	New Zealand	16131_NZS	-45.899	34 m	169.49716	Felix Grewe, Todd Widhelm, John Knight	3897
11/19/17	New Zealand	16132_NZS	-45.899	34 m	169.49716	Felix Grewe, Todd Widhelm, John Knight	3898
11/19/17	New Zealand	16133_NZS	-45.899	34 m	169.49716	Felix Grewe, Todd Widhelm, John Knight	3899
11/19/17	New Zealand	16134_NZS	-45.899	34 m	169.49716	Felix Grewe, Todd Widhelm, John Knight	3900
11/19/17	New Zealand	16135_NZS	-45.899	34 m	169.49716	Felix Grewe, Todd Widhelm, John Knight	3901
11/07/17	New Zealand	16138_PHO	-37.317	757 m	175.44699	Felix Grewe, Todd Widhelm, Dan Blanchon, Peter de Lange	3051
11/07/17	New Zealand	16139_PHO	-37.317	757 m	175.44699	Felix Grewe, Todd Widhelm, Dan Blanchon, Peter de Lange	3070
11/07/17	New Zealand	16140_PHO	-37.317	757 m	175.44699	Felix Grewe, Todd Widhelm, Dan Blanchon, Peter de Lange	
11/07/17	New Zealand	16141_PHO	-37.317	757 m	175.44699	Felix Grewe, Todd Widhelm, Dan Blanchon, Peter de Lange	3112
12/14/17	Chile	16142_CHI	-54.9774	313 m	-67.674222	Felix Grewe, Todd Widhelm, Matt von Konrat, Juan Larrain	4268
01/07/18	New Zealand	17204_CAM	-52.5378	20-200 m	169.1497	A. Knight	70993
01/08/18	New Zealand	17205_NZN	-50.8117	50 m	166.0908	A. Knight	70992
01/06/18	New Zealand	17206_NZS	-50.4961	25 m	166.2789	A. Knight	70988
11/16/17	New Zealand	17208_NZS	-45.8167	560 m	170.5439	A. Knight	69177

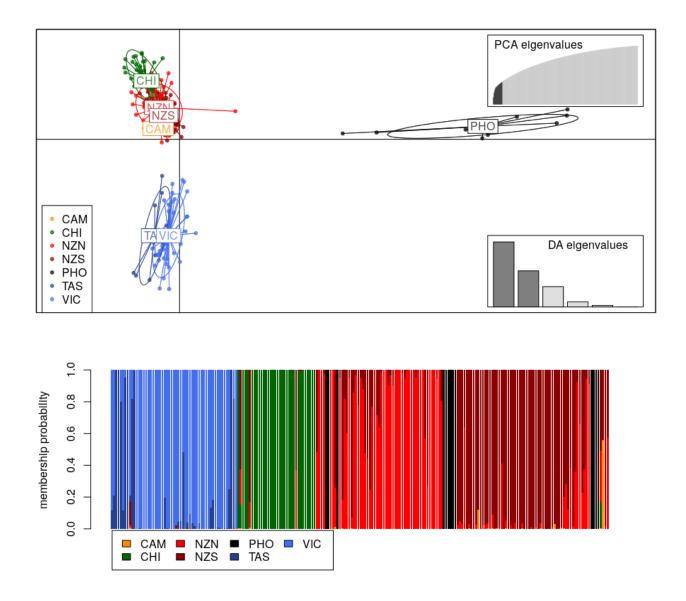


Figure 23. Genomic variation by non-parametric DAPC. (A) DAPC scatter plot of the densities of the populations of *P. glabra* (TAS=dark blue, VIC=light blue, CHI=green, NZN=dark red, NZS=light red, CAM=orange, PHO=black) estimated with 14 PCA and six DA eigenvalues (B) Bar plot of group membership probabilities.

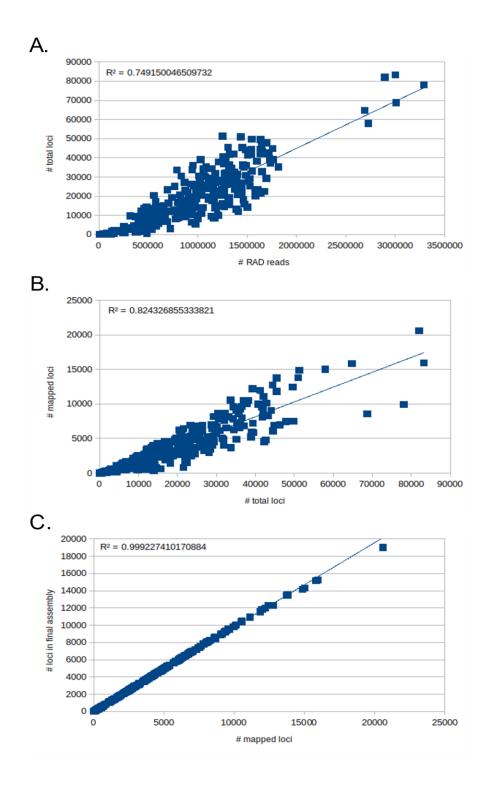


Figure 24. Reference-based RADseq assembly statistics. (A) The strong, positive, linear association between the number of RADseq reads and total RAD loci assembled. (B) The strong, positive, linear association between the number of total RAD loci assembled and those mapped to the reference genome. (C) The very strong, positive, linear association between the number of loci in the final assembly.

TABLE XXII. STATISTICS ON THE NUMBER OF RADESQ READS, TOTAL UNMAPPED LOCI ASSEMBLED IN PYRAD, LOCI MAPPED TO THE REFERENCE GENOME WITH BOWTIE2, AND LOCI IN THE 1000MIN DATASET.

14682_TAS 1305804 17934 3813 21.26% 3756 3756 14687_TAS 1473828 15724 2682 17.06% 2661 2661 14689_TAS 831600 30502 7830 25.67% 7828 7828 14690_TAS 984352 23891 6072 25.42% 6045 6045 14696_TAS 976359 5333 824 15.45% 793 14702_TAS 878723 9286 2267 24.41% 2230 2230 14706_TAS 385699 1124 181 16.10% 177 14706_TAS 385699 1124 181 16.10% 177 14709_TAS 1605770 23280 5390 23.15% 5357 5357 14711_TAS 1651796 32714 8091 24.73% 8062 8062 14712_TAS 859785 17657 4577 25.92% 4560 4560 14712_TAS 850811 64767 15843 24.46% 15173	sample_name	n_reads	n_total_loci	n_mapped_loci	% loci mapped	n_assembled_loci	1000min_dataset
14689_TAS83168030502783025.67%7828782814690_TAS98435223891607225.42%6045604514693_TAS129386515579354122.73%3483348314696_TAS976359533382415.45%793230223014702_TAS8787239286226724.41%2230223023014706_TAS385699112418116.10%17717714708_TAS484668663253.77%275357535714711_TAS160577023280539023.15%53575357535714711_TAS160577023280539023.15%8062806214712_TAS8978517657457725.92%4560456014712_TAS85978517657457325.92%4560456014712_TAS2600816647671584324.46%151731517314720_TAS2600816647671584324.46%151731517314720_TAS26008166443.62%5914729_VIC72329131321775.65%17314720_VIC69143867965437.99%534164164414739_VIC7828215288163.79%77714747_VIC145640835938660818.39%6554655414743_VIC1560485215288163.79%	14682_TAS	1305804	17934	3813	21.26%	3756	3756
1469 1469 1469 1469 1469 1489 1470 1471<	14687_TAS	1473828	15724	2682	17.06%	2661	2661
14693_TAS129386515579354122.73%3483348314696_TAS976359533382415.45%79314702_TAS8787239286226724.41%2230223014706_TAS385699112418116.10%17714708_TAS484668663253.77%2714709_TAS160577023280539023.15%5357535714711_TAS165179632714809124.73%8062806214712_TAS85978517657457725.92%4560456014718_TAS1506181412561198529.05%118091180914720_TAS2690816647671584324.46%151731517314725_VIC78249812226188915.45%1849184914722_VIC69143867965437.99%534142514722_VIC72329131321775.65%1731517314732_VIC4638141769643.62%59142214732_VIC8555642441914.50%182144314743_VIC1580485215288163.79%77714747_VIC145404835938660818.39%6554655414743_VIC14540835938660818.39%6554655414745_VIC145640835938660818.39%6554655414745_VIC <td>14689_TAS</td> <td>831680</td> <td>30502</td> <td>7830</td> <td>25.67%</td> <td>7828</td> <td>7828</td>	14689_TAS	831680	30502	7830	25.67%	7828	7828
14696_TAS976359533382415.45%79314702_TAS8787239286226724.41%2230223014706_TAS385699112418116.10%17714708_TAS484668663253.77%2714709_TAS160577023280539023.15%5357535714711_TAS165179632714809124.73%8062806214712_TAS85978517657457725.92%4560456014712_TAS506181412561198529.05%118091180914720_TAS2690816647671584324.46%15173151731472_TVIC78249812226188915.45%1849184914722_VIC78249812226188915.45%1849149914722_VIC69143867965437.99%534-14732_VIC4638141769643.62%59-14732_VIC7335642441914.50%182-14732_VIC87672137364343.16%416-14743_VIC158485215288163.79%77714747_VIC14560835938660818.39%6554655414749_VIC124501920448436721.36%4371437114755_VIC117661731872486015.25%4852485214755_VIC1176617 <td>14690_TAS</td> <td>984352</td> <td>23891</td> <td>6072</td> <td>25.42%</td> <td>6045</td> <td>6045</td>	14690_TAS	984352	23891	6072	25.42%	6045	6045
14702_TAS8787239286226724.41%2230223014706_TAS385699112418116.10%17714708_TAS484668663253.77%2714709_TAS160577023280539023.15%5357535714711_TAS165179632714809124.73%8062806214712_TAS85978517657457725.92%4560456014718_TAS1506181412561198529.05%118091180914720_TAS2690816647671584324.46%151731517314725_VIC78249812226188915.45%1849184914722_VIC69143867965437.99%534-14728_VIC4638141769643.62%59-14732_VIC58355642441914.50%182-14732_VIC877672137364343.16%416-14743_VIC1580485215288163.79%777-14747_VIC145640835938660818.39%6554655414749_VIC124501920448436721.36%4371437114755_VIC117661731872486015.25%4852485214756_VIC104926825409371914.64%37023702	14693_TAS	1293865	15579	3541	22.73%	3483	3483
14706_TAS385699112418116.10%17714708_TAS484668663253.77%2714709_TAS160577023280539023.15%5357535714711_TAS165179632714809124.73%8062806214712_TAS85978517657457725.92%4560456014718_TAS1506181412561198529.05%118091180914720_TAS2690816647671584324.46%151731517314725_VIC78249812226188915.45%1849184914727_VIC69143867965437.99%534-14729_VIC72329131321775.65%173-14731_VIC58355642441914.50%182-14732_VIC817672137364343.16%416-14743_VIC1580485215288163.79%777-14747_VIC14560835938660818.39%6554655414749_VIC124501920448436721.36%4371437114755_VIC117661731872486015.25%4852485214756_VIC104926825409371914.64%37023702	14696_TAS	976359	5333	824	15.45%	793	
14708_TAS484668663253.77%2714709_TAS160577023280539023.15%5357535714711_TAS165179632714809124.73%8062806214712_TAS85978517657457725.92%4560456014718_TAS1506181412561198529.05%118091180914720_TAS2690816647671584324.46%151731517314725_VIC78249812226188915.45%1849184914727_VIC69143867965437.99%534-14728_VIC4638141769643.62%59-14729_VIC72329131321775.65%173-14731_VIC58355642441914.50%182-14732_VIC877672137364343.16%416-14743_VIC1580485215288163.79%777-14743_VIC14560835938660818.39%6554655414749_VIC124501920448436721.36%4371437114755_VIC117661731872486015.25%4852485214755_VIC104926825409371914.64%37023702	14702_TAS	878723	9286	2267	24.41%	2230	2230
14709_TAS160577023280539023.15%5357535714711_TAS165179632714809124.73%8062806214712_TAS85978517657457725.92%4560456014718_TAS1506181412561198529.05%118091180914720_TAS2690816647671584324.46%151731517314725_VIC78249812226188915.45%1849184914727_VIC69143867965437.99%53414728_VIC4638141769643.62%5914729_VIC72329131321775.65%17314731_VIC58355642441914.50%18214732_VIC877672137364343.16%41614735_VIC14172362189116747.65%1644164414743_VIC1580485215288163.79%77714747_VIC145640835938660818.39%6554655414749_VIC124501920448436721.36%4371437114755_VIC117661731872486015.25%4852485214755_VIC117661731872486015.25%4852485214756_VIC104926825409371914.64%37023702	14706_TAS	385699	1124	181	16.10%	177	
14711_TAS165179632714809124.73%8062806214712_TAS85978517657457725.92%4560456014718_TAS1506181412561198529.05%118091180914720_TAS2690816647671584324.46%151731517314725_VIC78249812226188915.45%1849184914727_VIC69143867965437.99%534-14728_VIC4638141769643.62%59-14729_VIC72329131321775.65%173-14731_VIC58355642441914.50%182-14732_VIC877672137364343.16%416-14743_VIC1580485215288163.79%777-14747_VIC145640835938660818.39%6554655414749_VIC124501920448436721.36%4371437114755_VIC117661731872486015.25%8584858414755_VIC117661731872486015.25%4852485214756_VIC104926825409371914.64%37023702	14708_TAS	484668	663	25	3.77%	27	
14712_TAS85978517657457725.92%4560456014718_TAS1506181412561198529.05%118091180914720_TAS2690816647671584324.46%151731517314725_VIC78249812226188915.45%1849184914727_VIC69143867965437.99%53414728_VIC4638141769643.62%5914729_VIC72329131321775.65%17314731_VIC58355642441914.50%18214732_VIC877672137364343.16%41614735_VIC14172362189116747.65%1644164414747_VIC145640835938660818.39%6554655414749_VIC124501920448436721.36%4371437114755_VIC11761731872486015.25%4852485214755_VIC11761731872486015.25%4852485214756_VIC104926825409371914.64%37023702	14709_TAS	1605770	23280	5390	23.15%	5357	5357
14712_TAS85978517657457725.92%4560456014718_TAS1506181412561198529.05%118091180914720_TAS2690816647671584324.46%151731517314725_VIC78249812226188915.45%1849184914727_VIC69143867965437.99%53414728_VIC4638141769643.62%5914729_VIC72329131321775.65%17314731_VIC58355642441914.50%18214732_VIC877672137364343.16%41614735_VIC14172362189116747.65%1644164414747_VIC145640835938660818.39%6554655414749_VIC124501920448436721.36%4371437114755_VIC11761731872486015.25%4852485214755_VIC11761731872486015.25%4852485214756_VIC104926825409371914.64%37023702			32714	8091	24.73%	8062	8062
14718_TAS1506181412561198529.05%118091180914720_TAS2690816647671584324.46%151731517314725_VIC78249812226188915.45%1849184914727_VIC69143867965437.99%534-14728_VIC4638141769643.62%59-14729_VIC72329131321775.65%173-14731_VIC58355642441914.50%182-14732_VIC877672137364343.16%416-14735_VIC1472362189116747.65%1644164414743_VIC1580485215288163.79%777-14747_VIC145640835938660818.39%6554655414749_VIC124501920448436721.36%4371437114755_VIC117661731872486015.25%4852485214756_VIC104926825409371914.64%37023702		859785	17657	4577	25.92%	4560	4560
14720_TAS2690816647671584324.46%151731517314725_VIC78249812226188915.45%1849184914727_VIC69143867965437.99%53414728_VIC4638141769643.62%5914729_VIC72329131321775.65%17314731_VIC58355642441914.50%18214732_VIC877672137364343.16%41614735_VIC14172362189116747.65%164414743_VIC1580485215288163.79%77714747_VIC145640835938660818.39%6554655414753_VIC124501920448436721.36%4371437114755_VIC117661731872486015.25%4852485214756_VIC104926825409371914.64%37023702	_		41256	11985		11809	11809
14725_VIC78249812226188915.45%1849184914727_VIC69143867965437.99%53414728_VIC4638141769643.62%5914729_VIC72329131321775.65%17314731_VIC58355642441914.50%18214732_VIC877672137364343.16%41614735_VIC14172362189116747.65%1644164414743_VIC1580485215288163.79%77714747_VIC145640835938660818.39%6554655414749_VIC124501920448436721.36%4371437114753_VIC300680868705860212.52%8584858414755_VIC117661731872486015.25%4852485214756_VIC104926825409371914.64%37023702							
14727_VIC69143867965437.99%53414728_VIC4638141769643.62%5914729_VIC72329131321775.65%17314731_VIC58355642441914.50%18214732_VIC877672137364343.16%41614735_VIC14172362189116747.65%1644164414743_VIC1580485215288163.79%77714747_VIC145640835938660818.39%6554655414749_VIC124501920448436721.36%4371437114753_VIC300680868705860212.52%8584858414755_VIC117661731872486015.25%4852485214756_VIC104926825409371914.64%37023702			12226	1889			
14728_VIC4638141769643.62%5914729_VIC72329131321775.65%17314731_VIC58355642441914.50%18214732_VIC877672137364343.16%41614735_VIC14172362189116747.65%1644164414743_VIC1580485215288163.79%77714747_VIC145640835938660818.39%6554655414749_VIC124501920448436721.36%4371437114753_VIC300680868705860212.52%8584858414755_VIC117661731872486015.25%4852485214756_VIC104926825409371914.64%37023702	_						
14729_VIC72329131321775.65%17314731_VIC58355642441914.50%18214732_VIC877672137364343.16%41614735_VIC14172362189116747.65%1644164414743_VIC1580485215288163.79%77714747_VIC145640835938660818.39%6554655414749_VIC124501920448436721.36%4371437114753_VIC300680868705860212.52%8584858414755_VIC117661731872486015.25%4852485214756_VIC104926825409371914.64%37023702							
14731_VIC58355642441914.50%18214732_VIC877672137364343.16%41614735_VIC14172362189116747.65%1644164414743_VIC1580485215288163.79%77714747_VIC145640835938660818.39%6554655414749_VIC124501920448436721.36%4371437114753_VIC300680868705860212.52%8584858414755_VIC117661731872486015.25%4852485214756_VIC104926825409371914.64%37023702							
14732_VIC877672137364343.16%41614732_VIC14172362189116747.65%1644164414743_VIC1580485215288163.79%77714747_VIC145640835938660818.39%6554655414749_VIC124501920448436721.36%4371437114753_VIC300680868705860212.52%8584858414755_VIC117661731872486015.25%4852485214756_VIC104926825409371914.64%37023702	_						
14735_VIC14172362189116747.65%1644164414743_VIC1580485215288163.79%77714747_VIC145640835938660818.39%6554655414749_VIC124501920448436721.36%4371437114753_VIC300680868705860212.52%8584858414755_VIC117661731872486015.25%4852485214756_VIC104926825409371914.64%37023702							
14743_VIC 1580485 21528 816 3.79% 777 14743_VIC 1456408 35938 6608 18.39% 6554 6554 14749_VIC 1245019 20448 4367 21.36% 4371 4371 14753_VIC 3006808 68705 8602 12.52% 8584 8584 14755_VIC 1176617 31872 4860 15.25% 4852 4852 14756_VIC 1049268 25409 3719 14.64% 3702 3702							1644
14747_VIC145640835938660818.39%6554655414749_VIC124501920448436721.36%4371437114753_VIC300680868705860212.52%8584858414755_VIC117661731872486015.25%4852485214756_VIC104926825409371914.64%37023702	_						
14749_VIC124501920448436721.36%4371437114753_VIC300680868705860212.52%8584858414755_VIC117661731872486015.25%4852485214756_VIC104926825409371914.64%37023702							6554
14753_VIC300680868705860212.52%8584858414755_VIC117661731872486015.25%4852485214756_VIC104926825409371914.64%37023702	_						
14755_VIC 1176617 31872 4860 15.25% 4852 4852 14756_VIC 1049268 25409 3719 14.64% 3702 3702	_						
14756_VIC 1049268 25409 3719 14.64% 3702 3702							
14757_VIC 1178418 27097 3463 12.78% 3448 3448	14757_VIC	1178418	27097	3463	12.78%	3448	3448
14758_VIC 447083 10385 2421 23.31% 2387 2387	14758_VIC	447083	10385	2421	23.31%	2387	2387
14759_VIC 798059 16876 3603 21.35% 3531 3531	14759_VIC	798059	16876	3603	21.35%	3531	3531
14761_VIC 1488375 36168 7328 20.26% 7170 7170		1488375					
14762_VIC 1164755 21570 6441 29.86% 6401 6401	14762_VIC	1164755	21570	6441	29.86%	6401	6401
14763_VIC 2728019 57949 15025 25.93% 14326 14326							
14764_VIC 1518728 41717 9600 23.01% 9550 9550							
14766_VIC 1402244 31376 8077 25.74% 8094 8094 14767_VIC 450000 12044 2274 2250 2250 2250							
14767_VIC 458809 12044 3274 27.18% 3250 3250 14769_VIC 1340400 26368 6000 26178 6862 6862							
14768_VIC 1349460 26368 6900 26.17% 6862 6862 14769_VIC 562702 5777 1416 24.51% 1386 1386							
14709_VIC 562702 5777 1410 24.5176 1580 1580 14770_VIC 963716 10313 2459 23.84% 2438 2438							
14770_VIC 1216447 14913 2330 15.62% 2281 2281	—						
14772_VIC 383453 1383 253 18.29% 223	_						-
							5118
14777_VIC 795078 8573 2145 25.02% 2104 2104		795078	8573	2145	25.02%	2104	2104

sample_name	n_reads	n_total_loci	n_mapped_loci	% loci mapped	n_assembled_loci	1000min_datase
14778_VIC	604752	5914	1461	24.70%	1440	1440
14779_VIC	1549084	33159	8153	24.59%	8107	8107
14780_VIC	365582	1177	181	15.38%	170	
14781_VIC	1161929	8518	1723	20.23%	1693	1693
14783_VIC	802292	16746	4618	27.58%	4605	4605
14784_VIC	1527992	25286	6826	27.00%	6810	6810
14785_VIC	1109095	19606	5090	25.96%	5052	5052
14786_VIC	1042293	20486	4992	24.37%	4968	4968
14787_VIC	665833	9746	2285	23.45%	2273	2273
14789_VIC	983316	14044	3925	27.95%	3878	3878
14790_VIC	1374252	23513	5330	22.67%	5300	5300
14791_VIC	1735343	37061	6854	18.49%	6800	6800
14792_VIC	1543533	41771	8084	19.35%	8057	8057
14793_VIC	1345674	28918	6458	22.33%	6423	6423
14796_VIC	1195161	22177	3679	16.59%	3682	3682
14798_VIC	1285540	32046	7616	23.77%	7541	7541
14799_VIC	1394096	29572	6298	21.30%	6264	6264
14800_VIC	1404040	20973	4110	19.60%	4077	4077
14810_VIC	1393288	13204	3243	24.56%	3238	3238
14811_VIC	71160	209	20	9.57%	18	
14812_VIC	1716669	42597	4780	11.22%	4758	4758
14814_VIC	931884	26345	6021	22.85%	5990	5990
14815_VIC	589474	14318	2785	19.45%	2779	2779
14816_VIC	1034601	11649	783	6.72%	776	
14818_VIC	955999	18801	2450	13.03%	2394	2394
15514_CHI	1204098	10006	528	5.28%	519	
15516_CHI	765990	25113	6231	24.81%	6160	6160
15517_CHI	173875	2140	318	14.86%	310	
15518_CHI	317169	9700	2507	25.85%	2476	2476
15520_CHI	483821	14498	3691	25.46%	3692	3692
15521_CHI	1141522	9498	721	7.59%	691	
15522_CHI	43524	209	27	12.92%	23	
15523_CHI	152937	1946	299	15.36%	286	
15524_CHI	54075	297	33	11.11%	23	
15526_CHI	95698	857	144	16.80%	132	
15527_CHI	153019	453	8	1.77%	8	
15528_CHI	6901	9	0	0.00%	0	
15529_CHI	429485	12268	3484	28.40%	3440	3440
15530_CHI	44377	30	1	3.33%	1	
15535_CHI	371991	9315	2361	25.35%	2332	2332
15537_CHI	251979	4323	1100	25.45%	1079	1079
15538_CHI	1251984	51242	14880	29.04%	14143	14143
15539_CHI	147206	1595	353	22.13%	340	
15540_CHI	135844	1662	343	20.64%	323	
15541_CHI	458031	13616	4008	29.44%	3994	3994
15542_CHI	24906	59	4	6.78%	1	
15543_CHI	81484	591	74	12.52%	68	

sample_name	n_reads	n_total_loci	n_mapped_loci	% loci mapped	n_assembled_loci	1000min_datase
15544_CHI	129692	1351	223	16.51%	211	
15545_CHI	790120	33595	10564	31.45%	10336	10336
15546_CHI	1059953	34323	9580	27.91%	9489	9489
15547_CHI	1636141	42036	11129	26.47%	10943	10943
15550_CHI	692966	23332	6930	29.70%	6895	6895
15551_CHI	2891795	82044	20591	25.10%	19017	19017
15552_CHI	820990	20668	6021	29.13%	5988	5988
15556_CHI	555083	20411	6235	30.55%	6227	6227
15557_CHI	165175	1798	288	16.02%	275	
15559_CHI	1597329	38205	10535	27.57%	10397	10397
15560_CHI	1060689	32225	8612	26.72%	8591	8591
15562_CHI	1543762	44439	12759	28.71%	12291	12291
15563_CHI	1306708	45440	13754	30.27%	13449	13449
15565_CHI	1029363	39231	12214	31.13%	11968	11968
15567_CHI	1264822	37019	10542	28.48%	10471	10471
15571_CHI	576311	17258	4366	25.30%	4366	4366
15575_CHI	1253619	40729	9975	24.49%	9807	9807
15578_CHI	1436944	50989	13810	27.08%	13513	13513
15579_CHI	890797	14829	4327	29.18%	4328	4328
15581_CHI	1175460	8673	1210	13.95%	1194	1194
5586_CHI	1443125	21977	2489	11.33%	2497	2497
5587_CHI	1270923	14482	811	5.60%	777	
15588_CHI	1677445	22496	1504	6.69%	1465	1465
15589_CHI	1318664	15657	615	3.93%	591	
15590_CHI	999579	8087	625	7.73%	615	
15591_CHI	1210293	9839	414	4.21%	388	
15592_CHI	1178245	13923	387	2.78%	361	
15593_CHI	437925	4418	211	4.78%	192	
15594_CHI	1409637	12068	534	4.42%	518	
15595_CHI	1241913	23498	2541	10.81%	2514	2514
15603_CHI	1635832	49574	12445	25.10%	12301	12301
15605_CHI	739692	19384	4905	25.30%	4877	4877
15606_CHI	1083965	35151	9111	25.92%	8991	8991
15609_CHI	953819	36157	9319	25.77%	9216	9216
15611_CHI	1010247	25628	5855	22.85%	5856	5856
15905_NZN	635453	14629	2562	17.51%	2534	2534
15906_NZN	1647253	46240	6988	15.11%	6939	6939
15907_NZN	1072907	30070	6734	22.39%	6671	6671
15909_NZN	1182530	28846	6469	22.43%	6441	6441
15910_PHO	1362241	42008	8643	20.57%	8551	8551
15911_PHO	1322625	41899	9660	23.06%	9548	9548
15912_NZN	827881	19984	3869	19.36%	3807	3807
15913_NZN	1652612	43228	8281	19.16%	8237	8237
15914_NZN	511931	5214	452	8.67%	445	
15915_NZN	946410	10463	1314	12.56%	1293	1293
	1159461	25674	4442	17.30%	4443	4443
15917_NZN	550604	13306	3753	28.21%	3726	3726

				••		1000min_datase
15918_NZN	616738	12402	2205	17.78%	2213	2213
15919_NZN	392997	4041	268	6.63%	265	
15920_NZN	1423653	25984	4663	17.95%	4634	4634
15921_NZN	1319506	18156	1387	7.64%	1374	1374
15923_NZN	1270438	28077	2951	10.51%	2932	2932
15924_NZN	909372	12369	1047	8.46%	1034	1034
15926_NZN	1164119	22685	2861	12.61%	2831	2831
15927_NZN	930918	16610	2933	17.66%	2898	2898
15928_NZN	1665311	42267	4534	10.73%	4521	4521
15929_NZN	1253352	28363	3461	12.20%	3435	3435
	1275234	31885	4038	12.66%	4004	4004
	1001044	22164	3590	16.20%	3562	3562
	1402105	20747	2672	12.88%	2672	2672
_ 15934_NZN	1582775	20043	2691	13.43%	2638	2638
	1144809	17565	2974	16.93%	2931	2931
15938_NZN	1469036	35255	6867	19.48%	6821	6821
	1042169	10960	881	8.04%	858	
15940 NZN	974044	17740	2487	14.02%	2469	2469
15942_NZN	779188	8095	1161	14.34%	1156	1156
15943_NZN	1108641	28911	4070	14.08%	4031	4031
15944_NZN	1759768	44805	6956	15.53%	6912	6912
15946_NZN	1765626	39051	5952	15.24%	5866	5866
15947_NZN	447493	6582	415	6.31%	405	2000
15948_NZN	1446135	24441	2763	11.30%	2734	2734
15949_NZN	831614	16906	1875	11.09%	1850	1850
15950_NZN	705615	12033	1850	15.37%	1830	1830
15951_NZN	3002039	83290	15965	19.17%	15236	15236
15952_NZN	1360447	31473	5060	16.08%	5036	5036
15953_NZN	3286909	78041	9951	12.75%	9827	9827
15954_NZN	1323095	19215	4529	23.57%	4484	4484
15955_NZN	1313325	27695	5226	18.87%	5204	5204
15955_NZN	1426632	26321	4200	15.96%	4162	4162
15958_NZN	986805	20312	4241	20.88%	4195	4195
15959 NZN	1726385	39353	7238	18.39%	7174	7174
15960_NZN	216205	1679	24	1.43%	12	/1/4
15963_NZN	1009462	30470	8652	28.40%	8412	8412
15965_NZN	383041	2786	566	20.32%	562	0712
15969_NZN	119492	343	21	6.12%	23	
15909_NZN 15971_NZN	300588	3566	628	17.61%	614	
15971_NZN 15972_NZN		772	75	9.72%	71	
_	114420 629056	12309	75 2966		2927	2927
15975_NZN	629056 439530	2568	363	24.10%	355	L7L1
15978_NZN	439530			14.14% 21.04%		7970
15980_NZN	1317839	36520	8011	21.94% 25.65%	7970 6425	
15981_NZN	957736	25333	6497 7852	25.65%	6425	6425 7778
15982_NZN	1140007	34290	7852	22.90%	7778	7778
15984_NZN	396622	6727	1650	24.53%	1628	1628
15986_NZN	850060	11357	2710	23.86%	2685	2685

sample_name	n_reads	n_total_loci	n_mapped_loci	% loci mapped	n_assembled_loci	1000min_datase
15987_NZN	1209196	37763	10094	26.73%	9944	9944
15988_NZN	1454547	35682	8575	24.03%	8481	8481
15991_NZN	1482568	44076	9047	20.53%	8921	8921
15993_NZN	1025297	26874	4224	15.72%	4188	4188
15995_NZN	1291444	26186	4797	18.32%	4712	4712
15996_NZN	31968	105	5	4.76%	4	
15997_NZN	740794	11890	1796	15.11%	1759	1759
15999_NZS	484988	4552	448	9.84%	437	
16000_PHO	919747	17850	2878	16.12%	2823	2823
16002_PHO	1449485	45402	11853	26.11%	11555	11555
16003_PHO	1077454	25893	6043	23.34%	5941	5941
16009_PHO	1266737	24619	5268	21.40%	5253	5253
16010_PHO	760345	12550	1705	13.59%	1669	1669
16011_NZS	79766	154	2	1.30%	2	
16012_PHO	1118812	25542	5700	22.32%	5636	5636
	446577	4520	805	17.81%	782	
16017_NZS	332318	3194	595	18.63%	577	
16019_NZS	243762	994	142	14.29%	137	
16021_NZS	940094	6454	564	8.74%	553	
16022_NZS	1518607	27826	3520	12.65%	3499	3499
16024_NZS	413290	1732	129	7.45%	117	
16025_NZS	1270669	20963	3232	15.42%	3174	3174
16026_NZS	534657	2564	184	7.18%	180	
16027_NZS	151004	536	43	8.02%	43	
16034_NZS	988880	18539	2738	14.77%	2676	2676
16035_NZS	439725	3071	327	10.65%	307	
16036_NZS	251664	1731	154	8.90%	137	
16037_NZS	1422823	22805	4133	18.12%	4094	4094
16039_NZS	1296703	29275	8215	28.06%	8160	8160
16040_NZS	702807	16367	3476	21.24%	3423	3423
16042_NZS	1458468	36432	9626	26.42%	9533	9533
16043_NZS	1641151	42791	10127	23.67%	10031	10031
16045_NZS	408694	5469	1158	21.17%	1128	1128
16046_NZS	1315574	35372	9423	26.64%	9336	9336
16050_NZS	131056	1049	136	12.96%	113	
16056_NZS	1170807	21067	5892	27.97%	5844	5844
	502248	6625	1487	22.45%	1445	1445
16067_NZS	925207	16783	2645	15.76%	2605	2605
16068_NZS	1545634	49722	7511	15.11%	7418	7418
16069_NZS	717712	12164	2088	17.17%	2045	2045
16070_NZS	691421	12231	1485	12.14%	1448	1448
16072_NZS	527922	5657	435	7.69%	413	
	1163050	18696	2469	13.21%	2431	2431
	1117320	26201	4303	16.42%	4242	4242
	1129674	24156	3744	15.50%	3687	3687
	633782	10053	1443	14.35%	1428	1428
	1080014	23765	4863	20.46%	4796	4796

sample_name	n_reads	n_total_loci	n_mapped_loci	% loci mapped	n_assembled_loci	1000min_dataset
16078_NZS	1050421	14151	1180	8.34%	1184	1184
16079_NZS	1637419	44502	6123	13.76%	6052	6052
16080_NZS	838323	11896	2558	21.50%	2521	2521
16081_NZS	1462655	18096	2365	13.07%	2310	2310
16082_NZS	376360	2885	449	15.56%	436	
16084_NZS	1819134	35140	4909	13.97%	4885	4885
16089_NZS	1343610	34509	6277	18.19%	6250	6250
16091_NZS	1372859	32511	6539	20.11%	6497	6497
16092_NZS	1441475	26800	3258	12.16%	3225	3225
16093_NZS	1695182	29326	4538	15.47%	4517	4517
16094_NZS	1257733	27705	4816	17.38%	4794	4794
16096_NZS	1527435	29165	5376	18.43%	5322	5322
16097_NZS	487029	9009	1300	14.43%	1263	1263
16099 NZS	1136123	29528	7046	23.86%	6959	6959
	562435	11522	1900	16.49%	1874	1874
	1489631	30918	6157	19.91%	6103	6103
	597913	9643	520	5.39%	401	
	554532	6523	815	12.49%	806	
	1189517	13903	1396	10.04%	1360	1360
16106_NZS	1305004	28606	7003	24.48%	6920	6920
	892152	16390	2546	15.53%	2518	2518
	916286	15213	2990	19.65%	2972	2972
16111_NZS	969153	26163	4039	15.44%	4010	4010
16112_NZS	873571	17989	2927	16.27%	2932	2932
	819249	14448	2374	16.43%	2338	2338
	1251298	27278	4495	16.48%	4465	4465
	526740	13500	1976	14.64%	1950	1950
	1192267	21068	3301	15.67%	3269	3269
	656004	14990	2507	16.72%	2478	2478
	906322	19575	3162	16.15%	3088	3088
	355744	4654	476	10.23%	463	
16121 NZS	260353	870	39	4.48%	40	
	506995	12022	2113	17.58%	2064	2064
	809748	8917	1098	12.31%	1057	1057
	872816	23206	4717	20.33%	4649	4649
	364959	2484	225	9.06%	211	
16126_NZS	568246	8175	1154	14.12%	1128	1128
16127_NZS	350201	2775	256	9.23%	237	
16128_NZS	901233	22162	4132	18.64%	4092	4092
16129_NZS	461994	3559	370	10.40%	357	
16130_NZS	837556	10140	1320	13.02%	1269	1269
16131_NZS	1246214	16131	2525	15.65%	2509	2509
16131_NZS	548384	8779	1406	16.02%	1365	1365
16133_NZS	292028	2470	426	17.25%	426	
16134_NZS	1109089	18442	2882	15.63%	2847	2847
16135_NZS	1441725	23782	3081	12.96%	3033	3033
10122 102.0						

sample_name	n_reads	n_total_loci	n_mapped_loci	% loci mapped	n_assembled_loci	1000min_dataset
16139_PHO	1029367	38850	5235	13.47%	5175	5175
16140_PHO	1281728	39505	5842	14.79%	5801	5801
16141_PHO	945414	33745	3675	10.89%	3645	3645
16142_CHI	792246	11055	1530	13.84%	1501	1501
17204_CAM	1020705	29943	5668	18.93%	5598	5598
17205_NZN	660624	6753	827	12.25%	794	
17206_NZS	1699635	47798	7451	15.59%	7419	7419
17208_NZS	1503607	14241	1028	7.22%	1012	1012
AVE	994,295.95	20,357.12	3,966.98	17.27%	3,910.36	5,073.16
STDEV	535,452.64	15,128.82	3,584.49	7.17%	3,498.41	3,263.88

VITA

NAME:

Todd J. Widhelm

EDUCATION:

- B.S. 2005 Environmental Studies, University of Nebraska at Omaha, Omaha, NE
- M.S. 2008 Biology, University of Nebraska at Omaha, Omaha, NE
- Ph.D. 2019 Biological Sciences, University of Illinois at Chicago, Chicago, IL

PUBLICATIONS:

- Egan, Robert S, Robert Harms, and Todd Widhelm. 2005. "Studies on the Lichen *Parmotrema rigidum* s. Lat. from North and South America." *The Bryologist* 108 (3).
- Fey, Paul D, Jennifer L Endres, Vijaya Kumar Yajjala, Todd J Widhelm, Robert J Boissy, Jeffrey L Bose, and Kenneth W Bayles. 2013. "A Genetic Resource for Rapid and Comprehensive Phenotype Screening of Nonessential *Staphylococcus aureus* Genes." *MBio* 4 (1).
- Laabei, Maisem, Mario Recker, Justine K Rudkin, Mona Aldeljawi, Zeynep Gulay, Tim J Sloan, Paul Williams, et al. 2014. "Predicting the Virulence of MRSA from Its Genome Sequence." *Genome Research* 24 (5).
- Leavitt, Steven D., Felix Grewe, Todd Widhelm, Lucia Muggia, Brian Wray, and H. Thorsten Lumbsch. 2016. "Resolving Evolutionary Relationships in Lichen-Forming Fungi Using Diverse Phylogenomic Datasets and Analytical Approaches." Scientific Reports 6.
- Sadykov, Marat R, Jong-Sam Ahn, Todd J Widhelm, Valerie M Eckrich, Jennifer L Endres, Adam Driks, Gregory E Rutkowski, Kevin L Wingerd, and Kenneth W Bayles. 2017. "Poly (3-hydroxybutyrate) Fuels the Tricarboxylic Acid Cycle and de Novo Lipid Biosynthesis during *Bacillus anthracis* Sporulation." *Molecular Microbiology* 104 (5): 793–803.
- Sadykov, Marat R, Vinai C Thomas, Darrell D Marshall, Christopher J Wenstrom, Derek E Moormeier, Todd J Widhelm, Austin S Nuxoll, Robert Powers, and Kenneth W Bayles.
 2013. "Inactivation of the Pta-AckA Pathway Causes Cell Death in *Staphylococcus aureus*." *Journal of Bacteriology* 195 (13).
- Schmitt, I., A. Crespo, P.K. Divakar, J.D. Fankhauser, E. Herman-Sackett, K. Kalb, M.P. Nelsen, et al. 2009. "New Primers for Promising Single-Copy Genes in Fungal Phylogenetics and Systematics." *Persoonia - Molecular Phylogeny and Evolution of Fungi* 23 (1): 35–40.
- Thomas, Vinai Chittezham, Marat R Sadykov, Sujata S Chaudhari, Joselyn Jones, Jennifer L Endres, Todd J Widhelm, Jong-Sam Ahn, Randeep S Jawa, Matthew C Zimmerman, and Kenneth W Bayles. 2014. "A Central Role for Carbon-Overflow Pathways in the

Modulation of Bacterial Cell Death." PLoS Pathog 10 (6).

- Widhelm, Todd J., Francesca R. Bertoletti, Matt J. Asztalos, Joel A. Mercado-Díaz, Jen-Pan Huang, Bibiana Moncada, Robert Lücking, et al. 2018. "Oligocene Origin and Drivers of Diversification in the Genus *Sticta* (Lobariaceae, Ascomycota)." *Molecular Phylogenetics* and Evolution 126. 58–73.
- Widhelm, Todd J, Robert S Egan, Francesca R Bertoletti, Matt J Asztalos, Ekaphan Kraichak, Steven D Leavitt, and H Thorsten Lumbsch. 2016. "Picking Holes in Traditional Species Delimitations: An Integrative Taxonomic Reassessment of the *Parmotrema perforatum* Group (Parmeliaceae, Ascomycota)." *Botanical Journal of the Linnean Society* 182 (4).
- Widhelm, Todd J, Vijay Kumar Yajjala, Jennifer L Endres, Paul D Fey, and Kenneth W Bayles.
 2014. "Methods to Generate a Sequence-Defined Transposon Mutant Library in Staphylococcus epidermidis Strain 1457." In Methods in Molecular Biology (Clifton, N.J.), 1106:135–42.
- Widhelm, Todd, and H. Thorsten Lumbsch. 2011. "The Phylogenetic Placement of Miltideaceae Inferred from Ribosomal DNA Sequence Data." *Bibl Lichenologica*, no. 106: 365–73.
- Yajjala, Vijaya Kumar, Todd J Widhelm, Jennifer L Endres, Paul D Fey, and Kenneth W Bayles. 2016. "Generation of a Transposon Mutant Library in *Staphylococcus aureus* and *Staphylococcus epidermidis* Using *bursa aurealis.*" *The Genetic Manipulation of Staphylococci* 1353: 103–10.

CONFERENCE PRESENTATIONS:

- Assessing evolutionary relationships in Lobariaceae using target capture; American Bryological and Lichenological Society meeting, Nederland, Colorado, August 2018
- Miocene radiation and the effect of photobiont association on diversification in the genus *Sticta* (Lobariaceae); Botany Conference, Fort Worth, Texas, June 2017
- Picking holes in traditional species delimitations: an integrative taxonomic reassessment of *Parmotrema perforatum* group (Parmeliaceae, Ascomycota); International Association for Lichenology, Helsinki, Finland, August 2016
- A Defined Transposon-Mutant Library for the *Staphylococcus aureus* Research Community; Wind River Conference on Prokaryotic Biology, Estes Park, Colorado; 2011 Jun
- A Defined Transposon-Mutant Library for the *Staphylococcus aureus* Research Community; American Society for Microbiology Annual Meeting of the Missouri Valley Branch, Lincoln, Nebraska; March 2011
- Testing Species Delimitations in the *Parmotrema peforatum* group (Parmeliaceae, Ascomycota) in Eastern North America; Botany and Mycology 2009, Snowbird, Utah; July 2009
- Testing Species Delimitations in the Parmotrema perforatum Group in Eastern North America;

International Association on Lichenology/American Bryological and Lichenological Society joint meeting, Asilomar Conference grounds, Monterey California; July 2008

- Phylogenetic Relationships in the *Parmotrema perforatum* Group in North America based on the glyceraldehyde-3-phosphate dehydrogenase (*GPD*) gene; American Bryological and Lichenological Society meeting, Xalapa, Veracruz, Mexico; August 2007
- The *Parmotrema perforatum* group: A New Look at an Old Problem in Lichen Taxonomy; Nebraska Academy of Sciences Annual Meeting, Lincoln, NE; April 2007

GRANTS AND AWARDS:

Armour Fellowship, Field Museum American Bryological and Lichenological Society student travel award Culberson & Hale Award, American Bryological and Lichenological Society UIC LAS Student Travel Award UIC BIOS Student Travel Award **UIC Student Presenter Award** UIC Graduate Student Council travel award British Lichen Society Travel Grant for IAL8 UIC Liberal Arts and Sciences travel funds NSF and the Society for Systematic Biology Travel Award, Phylogenetics Symposium UIC Bodmer Award for International Travel UIC Elmer Hadley Award A. J. Sharp Award, American Brylogical and Lichenological Society University of Nebraska at Omaha, University Committee on Research Travel Award American Bryological and Lichenological Society Thelotremataceae Lichen Workshop Travel Award, Thailand American Bryological and Lichenological Society **UNO Summer Graduate Scholarship** NASA Nebraska Space Grant Program Philadelphia Botanical Club Bayard Long Award University of Nebraska at Omaha Biology Department Grant Outstanding Undergraduate in Environmental Studies Seasonal Employee of the Year, US Fish and Wildlife Service, Crescent Lake NWR

TEACHING EXPERIENCE:

Computational Biology at the Field Museum Workshop (assisted teaching) General Microbiology Laboratory (Bios 351), University of Illinois at Chicago Biology of Cell and Organisms Laboratory (Bios 100), University of Illinois at Chicago SERTs Tutorial at the Field Museum, Northwestern University Lichenology Laboratory, University of Nebraska at Omaha Microbial Physiology Laboratory, University of Nebraska at Omaha Biology of Fungi Laboratory, University of Nebraska at Omaha Flora of the Great Plains, University of Nebraska at Omaha Biology 1450, Biology I Laboratory, University of Nebraska at Omaha

ACADEMIC SERVICE:

University of Nebraska at Omaha, Graduate Student Representative, Graduate Program Committee Article peer reviewer for Evolution

PROFESSIONAL AFFILIATIONS:

American Bryological and Lichenological Society British Lichen Society

SCIENTIFIC OUTREACH:

Field Museum Dozin with The Dinos Field Museum Talk to a Scientist Field Museum This is How We Science Field Museum Members' Night

PERMISSION TO REPRINT

Please note that, as the author of this Elsevier article, you retain the right to include it in a thesis or dissertation, provided it is not published commercially. Permission is not required, but please ensure that you reference the journal as the original source. For more information on this and on your other retained rights, please visit: https://www.elsevier.com/about/our-business/policies/copyright#Author-rights

Copyright © 2019 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and Conditions. Comments? We would like to hear from you. E-mail us at customercare@copyright.com

OXFORD UNIVERSITY PRESS LICENSE TERMS AND CONDITIONS

Jan 19, 2019

This Agreement between Todd J Widhelm ("You") and Oxford University Press ("Oxford University Press") consists of your license details and the terms and conditions provided by Oxford University Press and Copyright Clearance Center.

License Number	4512550098133
License date	Jan 19, 2019
Licensed content publisher	Oxford University Press
Licensed content publication	Botanical Journal of the Linnean Sociey
Licensed content title	Picking holes in traditional species delimitations: an integrative taxonomic reassessment of the <i>Parmotrema perforatum</i> group (Parmeliaceae, Ascomycota)
Licensed content author	Widhelm, Todd J.; Egan, Robert S.
Licensed content date	Nov 14, 2016
Type of Use	Thesis/Dissertation
Institution name	
Title of your work	Systematics of lichenized fungi from families to populations
Publisher of your work	University of Illinois at Chicago
Expected publication date	Mar 2019
Permissions cost	0.00 USD
Value added tax	0.00 USD
Total	0.00 USD
Title	Systematics of lichenized fungi from families to populations
Institution name	University of Illinois at Chicago
Expected presentation date	Mar 2019
Requestor Location	Todd J Widhelm Field Museum 1400 S Lake Shore Dr
	CHICAGO, IL 60605 United States Attn: Todd J Widhelm
Publisher Tax ID	GB125506730
Billing Type	Invoice
Billing Address	Todd J Widhelm Field Museum 1400 S Lake Shore Dr
	CHICAGO, IL 60605 United States Attn: Todd J Widhelm
Total	0.00 USD
-	

Terms and Conditions

STANDARD TERMS AND CONDITIONS FOR REPRODUCTION OF MATERIAL FROM AN OXFORD UNIVERSITY PRESS JOURNAL

Use of the material is restricted to the type of use specified in your order details.
 This permission covers the use of the material in the English language in the following territory: world. If you have requested additional permission to translate this material, the terms and conditions of this reuse will be set out in clause 12.

3. This permission is limited to the particular use authorized in (1) above and does not allow you to sanction its use elsewhere in any other format other than specified above, nor does it apply to quotations, images, artistic works etc that have been reproduced from other sources which may be part of the material to be used.

4. No alteration, omission or addition is made to the material without our written consent. Permission must be re-cleared with Oxford University Press if/when you decide to reprint. 5. The following credit line appears wherever the material is used: author, title, journal, year, volume, issue number, pagination, by permission of Oxford University Press or the sponsoring society if the journal is a society journal. Where a journal is being published on behalf of a learned society, the details of that society must be included in the credit line.
6. For the reproduction of a full article from an Oxford University Press journal for whatever purpose, the corresponding author of the material concerned should be informed of the proposed use. Contact details for the corresponding authors of all Oxford University Press journal contact can be found alongside either the abstract or full text of the article concerned, accessible from www.oxfordjournals.org Should there be a problem clearing these rights, please contact journals.permissions@oup.com

7. If the credit line or acknowledgement in our publication indicates that any of the figures, images or photos was reproduced, drawn or modified from an earlier source it will be necessary for you to clear this permission with the original publisher as well. If this permission has not been obtained, please note that this material cannot be included in your publication/photocopies.

8. While you may exercise the rights licensed immediately upon issuance of the license at the end of the licensing process for the transaction, provided that you have disclosed complete and accurate details of your proposed use, no license is finally effective unless and until full payment is received from you (either by Oxford University Press or by Copyright Clearance Center (CCC)) as provided in CCC's Billing and Payment terms and conditions. If full payment is not received on a timely basis, then any license preliminarily granted shall be deemed automatically revoked and shall be void as if never granted. Further, in the event that you breach any of these terms and conditions or any of CCC's Billing and Payment terms and conditions, the license is automatically revoked and shall be void as if never granted. Use of materials as described in a revoked license, as well as any use of the materials beyond the scope of an unrevoked license, may constitute copyright infringement and Oxford University Press reserves the right to take any and all action to protect its copyright in the materials.

9. This license is personal to you and may not be sublicensed, assigned or transferred by you to any other person without Oxford University Press's written permission.

10. Oxford University Press reserves all rights not specifically granted in the combination of (i) the license details provided by you and accepted in the course of this licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment terms and conditions.

11. You hereby indemnify and agree to hold harmless Oxford University Press and CCC, and their respective officers, directors, employs and agents, from and against any and all claims arising out of your use of the licensed material other than as specifically authorized pursuant to this license.

12. Other Terms and Conditions:

v1.4

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or +1-978-646-2777.