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SUMMARY

Bayesian inference is, by far, the most well-known statistical method for updating beliefs

about a population feature of interest in light of new data. Current beliefs, characterized by a

probability distribution called a prior, are updated by combining with data, which is modeled

as a random draw from another probability distribution. The Bayesian framework, therefore,

depends heavily on the choices of model distributions for prior and data, and it is the latter

that is of particular concern in this dissertation. Often, as will be shown in various examples, it

is particularly difficult to make a good choice of data model: a bad choice may lead to misspec-

ification and inconsistency of the posterior distribution, or may introduce nuisance parameters,

increasing computational burden and complicating the choice of prior. Some particular statisti-

cal problems that may give Bayesians pause are classification and quantile regression. In these

two problems a mathematical function called a loss function serves as the natural connection

between the data and the population feature. Statistical inference based on loss functions can

avoid having to specify a probability model for the data and parameter, which may be incorrect.

Bayes’ Theorem cannot reconcile a posterior update using anything other than a probability

model for data, so alternative methods are needed, besides Bayes, in order to take advantage

of loss functions in these types of problems.

Gibbs posteriors, like Bayes posteriors, incorporate prior information and new data via an

updating formula. However, the Gibbs posterior does not require modeling the data with a

probability model as in Bayes; rather, data and parameter may be linked by a more general
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SUMMARY (Continued)

function, like the loss functions mentioned above. The Gibbs approach offers many potential

benefits including robustness when the data distribution is not known and a natural avoidance of

nuisance parameters, but Gibbs posteriors are not common throughout statistics literature. In

an effort to raise awareness of Gibbs posteriors, this dissertation both develops new theoretical

foundations and presents numerous examples highlighting the usefulness of Gibbs posteriors in

statistical applications.

Two new asymptotic results for Gibbs posteriors are contributed. The main conclusion of

the first result is that Gibbs posteriors have similar asymptotic behavior to a class of statistical

estimators called M-estimators in a wide range of problems. The main advantage of the Gibbs

posterior, then, is its ability to incorporate prior information. The second result extends results

for Bayesian posteriors to Gibbs posteriors in a statistics problems where the population feature

of interest is a set with a smooth boundary.

Additionally, two main applications are considered, one in medical statistics and one in

image analysis. The first application concerns the minimum clinically important difference

(MCID), a parameter designed to indicate whether the effect of a medical treatment is practi-

cally significant. Modeling for the purpose of inference on the MCID is non-trivial, and concerns

about bias from a misspecified parametric model or inefficiency from a nonparametric model

motivate using the alternative Gibbs approach, which balances robustness and efficiency. The

second application concerns the detection of an image boundary when the image pixels are

observed with noise. Likelihood-based methods for the image boundary require modeling the

pixel intensities inside and outside the image boundary, even though these are typically of no

xiii



SUMMARY (Continued)

practical interest. However, a Gibbs posterior can be defined directly on the image boundary

parameter, thereby avoiding this issue.

Finally, the Gibbs posterior comes with a scale parameter, also referred to as a learning

rate, which mainly affects its finite sample performance. Current research directions do not

agree on how to select the learning rate. This dissertation presents a new method, called Gibbs

posterior calibration (GPC), to select the learning rate so that Gibbs posterior credible regions

are approximately calibrated to their nominal frequency coverage probabilities. Simulation

results demonstrate that the proposed algorithm yields highly efficient credible regions in a

variety of applications when compared to existing methods.

xiv



CHAPTER 1

STATISTICAL PRELIMINARIES

This chapter reviews several fundamental topics in statistics. Besides setting the notations

to be used throughout this dissertation, this chapter will begin to relate Gibbs posteriors to

more traditional statistical methods.

1.1 Setup of a statistical inference problem

A statistical inference problem begins with a population of individuals under study and

research questions about one or more features of the population. A data analyst possesses

a sample of data from the population denoted by xn = (x1, x2, ..., xn) where each data point

xi ∈ X for i = 1, ..., n. The goal is to use the sampled data to learn about the population

and ultimately give informed answers to the research questions. As an example, imagine a

demographer studying the US population. The demographer wants to know the median age of

new parents in 2016. The population under study is all US persons who had their first child in

2016 and the population feature of interest is the median age.

Data will always be assumed to be sampled in some random manner from the population,

so the data can rightly be viewed as a realization from a probability distribution; i.e. the

data, prior to observation, is expressed as a random variable X n ∼ Pn where Pn is the joint

distribution of X n = (X1,X2, ...,Xn). In the case of a simple random sample, each Xi
i.i.d.
∼ P

1
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for i = 1, 2, ..., n where i.i.d. stands for independent and identically distributed, and Pn is the

n-fold convolution of P.

Broadly speaking, there are parametric and distribution-free (sometimes called nonpara-

metric) approaches to statistics. In parametric statistics, it is assumed that the data is sampled

from among a family of probability distributions {Pθ : θ ∈ Θ} indexed by the parameter θ.

Typically, this probability model is assumed to be correctly specified, meaning that there is a

unique point θ? ∈ Θ corresponding to the unknown true value of the population feature and

X ∼ Pθ? , so that the model holds for the unique, true parameter value. Continuing the above

example, suppose the demographer has a simple random sample of n individuals who became

new parents in 2016. One possible parametric model says Xi
i.i.d.
∼ Φ(θ, 4) where Φ(θ, σ) denotes

the normal distribution with mean θ and standard deviation σ. In this case, θ is also the me-

dian, so questions about the median age of new parents are equivalent to questions about the

mean of this normal model distribution. Distribution-free methods (see, for example, (104))

do not assume a particular form of the sampling distribution P. Sections 1.2 and 1.3 discuss

methods from both parametric and distribution-free statistics for the given example in more

detail.

Statistical inference, commonly, refers to estimation and hypothesis testing for the popula-

tion feature. Estimation encompasses data-dependent guesses, which may be a points or sets,

for the value of the population feature. Hypothesis tests evaluate the truthfulness of assertions

about the population feature, such as “the population median age lies between 26 and 31”.

Introductions to statistical inference can be found in (10), (49), and many other texts. In this
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dissertation, inference will most often mean point and set estimates. A point estimate will

be denoted θ̂n ∈ Θ when the population feature is represented by a parameter θ ∈ Θ. A set

estimate A(X n) ⊂ Θ will have a nominal coverage probability α ∈ (0, 1). A set estimate will be

called calibrated if Pn(θ? ∈ A(X n)) ≥ α, where Pn denotes the sampling distribution of data

X n and θ?, again, denotes the true value of the population feature.

1.2 Maximum likelihood estimation

Likelihood inference is an approach in parametric statistics. For a model {Pθ : θ ∈ Θ}, the

likelihood function is defined

L(θ|X n = (x1, ..., xn)) := f(x1, ..., xn|θ), (1.2.1)

which is just the joint density of Pθ, evaluated at the observed data, and viewed as a function of

the parameter θ varying over Θ. Often, the loglikelihood, l(θ|X n = (x1, ..., xn)) := log L(θ|X n =

(x1, ..., xn)) is of interest because it has the same maximum as the likelihood function and is

easier to compute for large data sets. When the data is a random sample from Pθ? , the

loglikelihood may be written l(θ|X n = (x1, ..., xn)) =
∑n
i=1 l(θ|xi) =

∑n
i=1 f(xi|θ). A well-

known result states that if the model is identifiable, meaning Pθ 6= Pθ? for all θ 6= θ?, then

the expectation of the loglikelihood function under the true distribution, Pθ? , is maximized

uniquely at θ?, i.e.

θ? = arg max
θ∈Θ

EPθ?

(
n∑
i=1

l(θ|xi)

)
;
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see, for example, Chapter 5 in (99). Denote the above expectation by R(θ) := EPθ? (
∑n
i=1 l(θ|xi))

and write its empirical analog as Rn(θ) =
1
n

∑n
i=1 l(θ|xi). The sequence of estimators maximiz-

ing functions Rn(θ) are called maximum likelihood estimators, and can be written mathemati-

cally as

θ̂n = arg max
θ∈Θ

1

n

n∑
i=1

l(θ|xi).

The following well-known result says that, under some conditions, the sequence of maximum

likelihood estimators is consistent for θ?. Consistency simply means that the sequence of esti-

mators converges in probability to the true parameter value, but in a statistical sense consis-

tency ensures that the data analyst learns more about the parameter as more data is collected

(eventually knowing the true parameter exactly, in the limit, as the number of sampled data

points grows to infinity). The following conditions are sufficient for consistency of maximum

likelihood estimators. Equation 1.2.2 stipulates uniform convergence of the functions Rn(θ) to

R(θ). Equation 1.2.3 says that the point of maximum of R(θ) is “well-separated”; that is, the

maximum is unique and there is no sequence of points with function values converging to the

maximum.

Proposition 1.2.1 Suppose that for some distance function d(·, ·) : Θ × Θ 7→ R+ and any

ε > 0

sup
θ∈Θ

|Rn(θ) − R(θ)|
i.p.→ 0, (1.2.2)

sup
θ:d(θ,θ?)≥ε

R(θ) < R(θ?). (1.2.3)
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Then, any sequence of estimators satisfying Rn(θ̂n) ≥ Rn(θ?)−oPθ? (1) converges in Pθ?−probability

to θ?.

For a proof of Proposition 1.2.1 see Theorem 5.7 in (99).

Consider using likelihood inferences to obtain a point estimate of the median age of new

parents as in the example discussed in Section 1.1. The analyst chooses the normal model

{Φ(θ, 4) : θ ∈ R}, the set of normal distributions with mean θ and standard deviation 4. The

mean and median are equal for the normal distribution, and the maximum likelihood estimator

is easily shown to be the sample mean X̄n = 1
n

∑n
i=1Xi, which, under Pθ? := Φ(θ?, 4) has

distribution Φ(θ?, 4√
n
). Since the asymptotic normal distribution is centered at θ? and its

variance vanishes, it is clear that the sequence of maximum likelihood estimators X̄n converges

in probability to θ?. In this case, consistency is easy to establish, but checking the conditions

of Proposition 1.2.2 is usually far from trivial and may require using concepts from empirical

processes; see Chapter 19 in (99).

Stronger asymptotic results are available for maximum likelihood estimators. Specifically,

it can be shown that the sequence of maximum likelihood estimators converge in distribution

to a normal distribution centered, at least approximately, at θ? and with standard deviation on

the order n−1/2; see, for instance, Theorem 5.23 in (99). From such results, it is straightforward

to produce asymptotically calibrated set estimators of θ?.

It may happen that the probability model is misspecified, i.e. X ∼ P for some distribution

P /∈ {Pθ : θ ∈ Θ}. Several authors have studied the properties of the so–called quasilikelihood

derived by using the model X ∼ Pθ when the model does not hold. The main idea is that, under
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some technical conditions, the quasi-maximum likelihood estimates converge asymptotically to

some θ minimizing the Kullback-Leibler divergence between Pθ and P, defined by

DKL(P,Q) =

∫
X

log(
dPθ
dP

)dPθ

where dPθ
dP is the Radon-Nikodym derivative of Pθ with respect to P. A good technical study

of these ideas is presented in (106). Some connections to misspecified models will be made in

Section 5.3.1 in regards to Gibbs posteriors.

1.3 M-estimation

In maximum likelihood estimation the probability model for the data determines the func-

tion to maximize for estimation purposes. Sometimes, a given statistics problem may suggest

an estimating function independently of the probability model. When the minimizer (or max-

imizer) of a data-dependent function other than a likelihood is used to estimate a parameter,

the estimator is called an M-estimator. Consider again the problem described in Section 1.1

which considers estimating the population median age of new parents from a random sam-

ple X n = (X1,X2, ...,Xn) (see also Example 5.11 in (99)). The function 1
n |
∑n
i=1 sign(Xi − θ)|,

where sign(x) is 1 for x ≥ 0 and −1 otherwise, is minimized at the sample median θ̂n. The func-

tion R(θ), as in Proposition 1.2.1, is EPθ? (|sign(X − θ)|) = |Pθ?(X > θ) − Pθ?(X < θ)|, which is

clearly minimized at the population median, θ?. The uniform convergence in Pθ?−probability of

|Rn(θ) − R(θ)| over Θ in Proposition 1.2.1 can be shown using the Glivenko-Cantelli Theorem;

see Theorem 19.1 in (99).
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Using Proposition 1.2.1, it can be shown that the sample median is consistent for the pop-

ulation median. Further results, like asymptotic normality, that apply to maximum likelihood

estimators can likewise be applied to M-estimators; see, for instance, Theorem 5.23 in (99).

Moreover, the consistency of the M-estimator is not dependent upon choosing a correctly-

specified probability model for the data.

M-estimation is an important concept in the context of Gibbs posteriors. As discussed

below in Sections 1.4 and 2.2, Bayesian posteriors depend on likelihood functions while Gibbs

posteriors depend analogously on functions like Rn(θ) used in M-estimation. Therefore, like

maximum likelihood estimators, Bayesian posteriors are sensitive to the specified probability

model for the data, while Gibbs posteriors, like M-estimators, are not.

1.4 Review of Bayesian statistics

This section provides a brief review of Bayesian statistics, its formulation, interpretation,

and advantages and potential shortcomings. An excellent overview of Bayesian statistics is

given in (26).

1.4.1 Formulation of Bayesian statistics

Given a statistical inference problem, likelihood inference or M-estimation methods typically

produce point and set estimates for θ?. Bayesian statistics, on the other hand, produces a

probability distribution characterizing θ?. A sort of axiom of Bayesian statistics states that

all unknown quantities are represented as random variables with a probability distribution.

So, before data is even collected, a Bayesian summarizes all available information about the

population feature with a probability distribution called the prior, denoted θ ∼ Π, with π
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denoting the density of Π provided it exists. Besides the prior, a Bayesian needs to specify

a probability model of the data {Pθ : θ ∈ Θ}, as in likelihood inference. Given these two

ingredients, Bayes Theorem states how to combine the information in the prior with that in

the data in order to produce a posterior distribution for θ? (see Equation 2.1 in (26)),

f(θ|x1, ..., xn) =
L(θ|X n = (x1, ..., xn))π(θ)∫

Θ L(θ
′|X n = (x1, ..., xn))π(θ ′)dθ ′

. (1.4.1)

A less restrictive definition of the Bayesian posterior probability of a Π−measurable set A when

the prior may not have a density can be written,

Πn(A|x1, x2, ..., xn) =

∫
A

L(θ ′|X n = (x1, ..., xn))Π(dθ
′)∫

Θ L(θ
′|X n = (x1, ..., xn))Π(dθ ′)

; (1.4.2)

see, for example, Section 1.3 in (27).

Consider a Bayesian approach to inference on the median age of new parents, as in Sec-

tions 1.1-1.3 above. The data analyst again uses the normal model {Φ(θ, σ = 4) : θ ∈ R}

as in Section 1.2, and chooses a normal prior distribution Π := Φ(µ0 = 27, σ0 = 2). From

Equation 1.4.1 it is easy to see the posterior distribution is normal with mean (σ2µ0/n +

σ20x̄n)/(σ
2/n + σ20) and variance σ2σ20/(σ

2 + nσ20), where x̄n denotes the mean of the observed

values x1, x2, ..., xn.
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1.4.2 Interpretation of the prior distribution

A point of frequent confusion (and sometimes contention) concerns the prior distribution;

particularly, “What is the interpretation of the prior/posterior distribution?” and “How is the

prior chosen?”.

The prior encompasses all available information about the population feature of interest be-

fore observing any new data. The process of choosing the prior is referred to as prior elicitation,

and the manner in which this is carried out affects both the interpretation of the prior and the

posterior. A so-called subjective prior is one chosen by the data analyst perhaps with input

from subject-matter experts, and examples of eliciting subjective priors are given in Section 5.4

of (26). The ability of Bayesian statistics to incorporate information about the population prior

to sampling data is a potential advantage. Estimation by maximum likelihood or M-estimation

offers no automatic way of incorporating such information. However, the notion of subjectivity

does impact the interpretation of probability statements obtained from the Bayesian posterior.

In short, these probability statements should be interpreted as “personal”, i.e. as belonging to

the data analyst who made the choice of prior, since another data analyst handling the same

problem may make a different choice of prior, equally reasonable, and thus arrive at a different

posterior distribution. This subjective, or personal view of probability stands in contrast to the

frequentist or objectivist view of probability, in which probabilities reflect long-run averages

like the number of tails in a sequence of coin tosses. A personal view of probability is discussed

in (81) and (18).
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On the other hand, the parameter may be too complicated to elicit a prior using real prior

information or, worse, in some cases no prior information exists. How, then, to determine the

prior distribution? Many authors have studied the concept of default priors (sometimes referred

to as objective, non-informative, or reference priors as in (5)), distributions meant to reflect

an absence of prior information; see also Chapter 5 in (26) and (29). Despite the potential

of default priors to alleviate the difficulties associated with prior elicitation, there are several

drawbacks to these types of priors. One serious problem is that most, if not all, default priors

are improper, that is, they are not probability distributions because they are not integrable. In

that case, it is not clear how to interpret posterior probabilities since the probability calculus

rests upon the prior distribution; recall Equation 1.4.1 above. A critical view of default priors

is taken in (23) where it is shown in some examples that the resulting posteriors have poor

asymptotic properties, which are explained briefly in the next section. Another objection to

default priors is that they cannot truly represent absence of prior information. There is no

totally non-informative prior; see (70) Section 2.4.

The prior distribution is a shared feature of Bayesian and Gibbs models. The issues men-

tioned here concerning prior elicitation and interpretation apply equally in the context of Gibbs

posteriors.

1.4.3 Evaluation of a Bayesian posterior

This section addresses the question “Is a particular Bayesian posterior ‘good’ for a particular

statistical inference problem?” The answer to this question depends heavily upon the level of

subjectivity of the analysis. Given the prior and likelihood, deriving the Bayesian posterior is
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simply a matter of applying the rules of probability, i.e. Bayes Theorem; see Equation 1.4.2

above. So, if the data analyst believes strongly in the chosen prior and probability model,

no further evaluation is needed to judge the appropriateness of the Bayesian posterior. When

there is a collection of posteriors under consideration (stemming from different models, different

priors, or both), data analysts may compare posteriors using Bayes factors, described in (46)

and (75), for example.

Besides comparing different Bayesian posteriors for a given data set, it can be helpful to

study the asymptotic properties of a Bayesian posterior with respect to a hypothetical sample,

as the sample size increases to infinity. A good introduction to Bayesian asymptotics is given

in (26), with a more advanced treatment in (27) and (99) Chapter 10. There are three main

types of results studied: consistency, convergence rates, and convergence in distribution. A

sequence of Bayesian posteriors Πn is said to be consistent for the true parameter θ? if for

every Π−measureable set A containing θ?, Πn(A)
i.p.→ 1 with respect to the distribution Pθ? .

This definition of consistency is similar to consistency of maximum likelihood estimators (and

M-estimators) discussed above, and says that a sequence of Bayesian posteriors learns the true

value of the population feature as data accumulates. But, consistency does not say anything

about how much data is needed for a given level of accuracy. To answer that question, a notion

of convergence (or concentration) rates is needed. Suppose d(·, ·) is a distance measure on Θ×Θ.

Let An be a sequence of Π−measureable sets such that An = {θ ∈ Θ : d(θ, θ?) ≤ δn} for a real-

number sequence δn → 0. If the sequence of posterior probabilities satisfies Πn(An)
i.p.→ 1 with

respect to the distribution Pθ? for any sequence An as above, then the sequence of posteriors is
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said to converge to θ? (or concentrate on neighborhoods of θ?) at rate δn with respect to the

distance d. In order to know the precise asymptotic variance of the posterior distribution and

construct tests and credible intervals with accurate coverage probabilities it is usually necessary

to determine the asymptotic distribution of the posterior. Posterior convergence to a normal

distribution can sometimes be shown, and this type of result is called a Bernstein-von Mises

Theorem; see, for instance, Section 10.2 in (99).

Recall the Bayesian posterior for the median in Section 1.1. Inspection of the posterior mean

and variance formulas reveals the posterior is consistent, converges at rate n−1/2, and that the

posterior credible intervals (Πn,α/2, Πn,1−α/2), where Πn,t is such that
∫Πn,t
−∞ d(Πn(s))ds = t, are

approximately 100α%−calibrated.

The same types of asymptotic analyses can be studied in the context of Gibbs posteriors,

although some of the proof techniques differ. Chapter 4 of this dissertation describes some

existing asymptotic results for Gibbs posteriors and presents two new convergence rate results.

1.5 Illustrative comparison of estimation methods

This section ties together many topics in Chapter 1 with a brief simulation example of in-

ference on the population median age of new parents discussed throughout the chapter. Two

simulations were conducted by taking 1000 i.i.d. samples of size 1000 from two different pop-

ulations. The first population is characterized by a normal distribution with mean 27 and

standard deviation 4 while the second population is characterized by a Gamma distribution

with shape parameter 36 and scale parameter 0.75. Both distributions have mean 27, but the

normal distribution has median 27 while the Gamma distribution has median approximately



13

26.75. For each simulated sample, the values of the maximum likelihood estimate, M-estimate,

and Bayesian posterior mean were recorded using the methods described in Sections 1.2-1.4.

The results of the simulation experiment are illustrated in Figure 1.5.1. In both sets of simu-

lations, the maximum likelihood estimates and the Bayesian posteriors are based on the same

normal model with mean 27 and standard deviation 4. However, that model is only correctly

specified in the first set of simulations; the model is misspecified in the second set due to the fact

that the data were generated by the Gamma distribution. The maximum likelihood estimates

agree with the M-estimates in the set of simulations with the correctly-specified normal model,

but the maximum likelihood estimates appear to be off target in the second set of simulations

where they are based on the wrong model. The M-estimates, however, are robust to the un-

derlying data distribution; they seem to have concentrated near the correct answer in both sets

of simulations. Since the Bayesian posterior is built from the likelihood, it inherits the bad

behavior of the maximum likelihood estimates when the model is wrong. It would be desirable

to combine the robustness of the M-estimation methods with the ability of Bayesian methods

to incorporate prior information. Gibbs posteriors, introduced in Chapter 2, accomplish just

that.
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Figure 1.5.1. Density estimates of the 1000 median estimates from each method: maximum
likelihood, M-estimation, and the Bayesian posterior mean. Left: simulation results from

normal distribution. Right: simulation results from Gamma distribution.



CHAPTER 2

INTRODUCTION TO GIBBS POSTERIORS

2.1 Motivating the Gibbs posterior distribution

This section is intended to persuade the reader that an alternative to standard, probability

model–centric Bayesian inference is needed and that Gibbs posteriors can provide that alterna-

tive. Many of the following ideas are present in (6) and (93), and these issues roughly categorize

into modeling, prior specification, and computation.

To provide a context for discussing these issues, consider a linear quantile regression model

where a conditional quantile is modeled as a function of covariates. In particular, for data

X = (Y, X) and fixed τ ∈ (0, 1), interest is in the τth quantile of the response Y ∈ R, given the

covariates X ∈ Rp+1, expressed as

Qτ(Y | X) = X>θ, (2.1.1)

where dimension p + 1 represents an intercept and p covariates. In this formula, the vector θ

depends on τ but, for notational simplicity, this dependence is omitted.

Model specification is difficult for quantile regression. The model setup in Equation 2.1.1

does not imply much of anything about the underlying probability model, and families of

probability distributions often used in modeling are not parametrized in terms of quantiles.

Moreover, as illustrated by the example of inference on a population median in Chapter 1,

using a misspecified model may lead to inconsistency of the resulting Bayesian posterior. The

15
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most common approach to quantile regression is to avoid specifying the conditional distribution

of Y given X and instead use M-estimation; see, for instance, (53). The loss function used in

M-estimation is

Rn(θ) =
1

n

n∑
i=1

|(Yi − X
>
i θ)(τ− IYi−X>

i θ<0
)| (2.1.2)

for observations Xi = (Yi, Xi), i = 1, . . . , n, and estimators minimizing Equation 2.1.2 are shown

to be consistent in (53) and Section 4.2.3. M-estimation provides a method for obtaining a con-

sistent estimator for θ, but does not account for prior information. If the data analyst hopes

to use prior information, they likely are only familiar with Bayesian methods for accomplish-

ing this, which require a probability model for the conditional distribution of Y given X. A

sort of default model that has been considered by several authors (e.g. (111; 90; 89)) is the

(misspecified) asymmetric Laplace likelihood. The form of this loglikelihood is equivalent to

Equation 2.1.2, and the consistency of M-estimators minimizing Equation 2.1.2 is the basis for

this choice of likelihood. As shown in Section 4.2.3, a Gibbs posterior can be constructed using

Equation 2.1.2.

Rather than using a “default” misspecified model, suppose the data analyst strongly believes

in a normal model. For example, Yi
ind.
∼ Φ(X>θ − zτσ, σ) where zτ is the τth quantile of the

standard normal distribution so that each Yi is independent with the same standard deviation

but a different mean. This model is over-parametrized; the interest parameter θ enters into

the mean of the normal model, but a nuisance parameter σ enters into both the mean and

standard deviation. Since σ is a nuisance parameter not appearing in the problem setup in

Equation 2.1.1, it is unlikely the data analyst has any prior information about σ. This is a
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common problem for Bayesian posteriors; it is necessary to introduce nuisance parameters in

order to write down a likelihood, but it may be difficult to translate prior information about

the parameter of interest into a higher dimension. More examples of this issue can be found

in Section 5.3 and (94) for the MCID problem and in (61) where a Bayesian posterior in an

imaging problem is over-parametrized.

Besides having to assign a prior distribution to each nuisance parameter, it is also necessary

to carry out posterior computations on a space of dimension often larger than the dimension

of the parameter of interest. This means Bayesian posteriors usually involve at least as much

computation as a Gibbs posterior for a given problem, and often more, since the Gibbs posterior

is defined on the parameter space of the interest parameter.

The growing body of work on Gibbs posteriors (see Chapter 3) suggests on its own that

an alternative to Bayesian posteriors has value. It is hoped that this dissertation will provide

a broad overview of the state of research on Gibbs models, contribute significantly to their

theoretical basis, and provide several examples highlighting their use.

2.2 Defining the Gibbs posterior

This dissertation considers statistical inference problems with the following ingredients:

data, which, prior to collection, is represented by a random variable X ∈ X; a data-generating

distribution denoted X ∼ P; a parameter of interest, about which inferences are to be made, is

denoted by θ with parameter space Θ; a prior distribution Π on Θ, usually with a density π;

and a function linking data to parameter, denoted by `(X , θ). In particular, the linking function

`(X , θ) is typically assumed to be consistent, i.e. the true parameter value θ? satisfies θ? =
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arg minθ∈Θ EP[`(X , θ)]. The expectation EP[`(X , θ)] is called the risk function and is denoted

R(θ); its empirical analogue is Rn(θ) =
1
n

∑n
i=1 `(Xi, θ) for an i.i.d. sample X n = (X1, ...,Xn).

Given the above ingredients, the posterior probability of a Π−measureable set A is denoted

Πn(A) and is calculated

Πn(A) =

∫
A exp(−ωRn(θ))Π(dθ)∫
Θ exp(−ωRn(θ))Π(dθ)

(2.2.1)

for a positive scale factor ω. This general definition includes many important special cases:

1. Bayesian posterior – when −Rn(θ) is a true loglikelihood and ω = 1 Equation 2.2.1 is

simply the usual Bayesian posterior.

2. Bayes with learning rate – when −Rn(θ) is a working loglikelihood and ω < 1 Equa-

tion 2.2.1 is a weighted Bayesian posterior, placing more faith in the prior and less in the

model than a default Bayesian posterior. The scale parameter ω is called the learning

rate, and ω < 1 is typically used when the posited probability model is in doubt; see (6)

and (38).

3. Gibbs posterior – when Rn(θ) is the empirical risk function for some loss function `(X , θ)

like those used in M-estimation, the general posterior in (Equation 2.2.1) is a Gibbs

posterior.

Remark 1. To make it more clear how `(X , θ) may represent a loss function, consider a

linear regression problem with response and predictor data X = (Y, X) ∈ R × Rp, and vector

parameter θ ∈ Rp. Then, a reasonable loss function linking data and parameter is squared-error

loss, `(X , θ) = (Y − X>θ)2, since the minimizer of the corresponding empirical risk Rn(θ) for
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an i.i.d. sample X n is the least squares estimator. Note that if one assumes Gaussian errors

for the regression model, the Bayes posterior with a learning rate is equivalent to the Gibbs

posterior based on the squared-error loss.

Remark 2. There are several available methods for selecting the learning rate ω, and a full

discussion of existing methods is provided in Section 3.3 with new contributions in Chapter 7. In

(38) selection of the learning rate is discussed in the context of Bayes posteriors, (34) introduce

a method for selecting the learning rate in order to improve prediction, and (93) (see also

Chapter 7) use a computational method that selects the learning rate in order to calibrate

posterior credible sets. In particular, for Gibbs posteriors, the learning rate ω controls the

variance of the posterior distribution and the volume of its credible sets.

2.3 Deriving the Gibbs posterior

Bayes Theorem provides justification for calculating Bayesian posterior probabilities using

Equation 2.2.1 when −Rn(θ) is a true loglikelihood, but why does this formula make sense

to define Gibbs posteriors when the linking function is a loss function? Several authors have

given derivations of the above definition for the Gibbs posterior. Below are two constructions

of Gibbs posteriors supporting this definition; the first is based on the idea of coherence, and

appears in (6).

The goal is to produce a posterior distribution, generally, a probability measure ν on the

space Θ, given data X n, empirical risk function Rn(θ), and prior distribution Π. A reasonable

strategy is to construct a loss function L(ν;Π,X n) on the space of probability distributions on Θ

and then minimize this loss in order to choose which posterior to use for inference. Arguing from



20

independence of data and prior, (6) identify the basic form L(ν;Π,X n) = h1(ν,X n)+h2(ν,Π) so

that the loss function decomposes into loss to data and loss to prior. Further, (6) show that the

loss to data must be the expected loss h1(ν,X n) =
∫
Rn(θ)ν(dθ) while the loss to prior must be

the Kullback-Leibler divergence h2(ν,Π) = DKL(ν, π) =
∫

log{ν(dθ)/Π(dθ)}ν(dθ). The choice

of Kullback-Leibler divergence requires some additional explanation, and (6) use a coherence

argument to justify this choice. Roughly, the idea is the following. First, divide the n data

points into the first 1 ≤ m < n and the remaining n −m. Using the first m data points, Xm,

choose the posterior ν̂m minimizing

L(ν;Π,Xm) =
m∑
i=1

h1(ν,Xi) + h2(ν,Π).

For the remaining data, X n−m, ν̂m serves as the updated prior distribution so that

L(ν;Π,X n) =
n∑

i=m+1

h1(ν,Xi) + h2(ν, ν̂m).

The coherence property states that the loss function L(ν;Π,X n) should remain the same no

matter the value of m. In other words, one should not arrive at different posterior distributions

by updating one’s beliefs using all the data at once compared to updating first using part of the

data and next using the remainder. For this property to hold, and the updating of beliefs to be

internally consistent, (6) show the only choice is to take the loss to prior to be the Kullback-

Leibler divergence. It follows that the minimizer of L(ν;π, x) is given by Equation 2.2.1.
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The above construction of the Gibbs posterior in (6) is motivated by the need for a coherent

method of updating beliefs in the absence of a probability model, P, for the data. Several other

authors have motivated the Gibbs posterior from the point of view of classification or prediction.

Probably approximately correct Bayes (often called PAC-Bayes) methods seek classifiers or

predictors minimizing a bound on the so-called the posterior averaged risk. Bounds of this

type are studied in (84), (72), (12), (113), and (114) and elsewhere with an extensive overview

given in (11). Although the motivation is substantially different, the posterior distribution

minimizing the PAC-Bayes bound is generally the Gibbs posterior; see Equations 4 and 5 in

(114) and Corollary 5.1 in (12). Below is a brief summary of the derivation of the Gibbs

posterior based on minimizing the posterior averaged risk.

Again, the goal is to produce a posterior distribution on Θ, call it Πn. Suppose the data ana-

lyst wants the best posterior distribution in terms of predicting the future observation, referred

to as X̃ , based on observations X n and linking function `(X , θ). One way to define the “best”

posterior, in terms of prediction, is to consider the posterior minimizing the posterior averaged

risk (or generalization error) EΠn(EX̃ `(X̃ , θ)). The posterior averaged risk is complicated and

deserves an explanation. When the linking function is a loss function, the inner expectation be-

comes the average loss for a new observation as a function of θ. The outer expectation averages

over θ according to the posterior distribution. Sometimes, a third expectation is taken, this

time with respect to the original data, X n, that the posterior is based upon. The idea is that

a posterior minimizing this quantity will fit new data well in addition to the data it is based
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upon, on average. It is straightforward to bound the posterior averaged risk using (reverse)

Jensens’s inequality,

EΠn(EX̃ `(X̃ , θ)) ≤ EΠn(lnEX̃ e
−`(X̃ ,θ)).

In (114) Theorem 2.1, the above quantity is bounded using the Kullback-Leibler divergence,

EΠn(lnEX̃ e
−`(X̃ ,θ)) ≤ EΠn(`(X n, θ)) +DKL(Πn, Π)

where Π denotes the prior. The posterior Πn minimizing this bound on the posterior averaged

risk is the Gibbs posterior given in Equation 2.2.1.

2.4 Contributions of this dissertation

This dissertation provides contributions to three areas of study concerning Gibbs posterior

distributions. First, Chapter 4 reviews asymptotic theory for Gibbs posteriors, including two

general theorems new in this dissertation, which are applied in later sections. Next, Chapters 5

and 6 present two detailed applications of Gibbs posteriors to problems in medical statistics and

image analysis. Finally, Chapter 7 contributes an algorithm for determining the scale factor, ω,

in the Gibbs posterior; see Equation 2.2.1. But, before presenting new contributions, Chapter 3

summarizes some previous work on applying Gibbs posteriors to statistics problems.



CHAPTER 3

GIBBS POSTERIORS IN PREVIOUS WORKS

3.1 Gibbs posteriors for econometric models

In (14), the authors investigate the use of Gibbs posteriors for several models used in eco-

nomics. The Gibbs posteriors they develop are attractive compared to existing methods for

three reasons: the asymptotic Gibbs posteriors are normal and admit approximately calibrated

set estimates, computation of the Gibbs posteriors using MCMC is often easier than compu-

tation of alternative estimators which rely on optimization, and the Gibbs posteriors do not

require full probability models of the data. A review of some of the author’s asymptotic results

is given in Section 4.4. In this section, one example application from (14) is described in detail.

Censored data is common in applications. Right censoring occurs when values cannot be

observed above a certain threshold. Maybe the most well-known example of right censoring is

in survival data where the survival time of an individual cannot be known past the end of the

experiment’s duration. Left censoring, when the value of an observation cannot be measured

under a certain threshold can also occur. In (14), the authors consider a median regression

model with left censoring similar to the following,

Y? = β0 + X
>β+ ε, (3.1.1)

X ∼ N(0, I3), ε ∼ X21N(0, 1), Y = max(0, Y?), (3.1.2)

23
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where I3 denotes the 3 × 3 identity matrix. The response variable Y? is left censored so that

only Y is observed. A Gibbs posterior may be constructed for this model using the empirical

risk function Rn(θ = (β0, β)) =
∑n
i=1|Yi − max(0, β0 + X

>β)|. In (14), this Gibbs posterior

is compared to an optimization approach using iterated linear programming due to (8). The

conclusion is that the Gibbs posterior performs better than the linear programming method in

this example in terms of bias and mean squared error of the parameter estimates. Moreover,

the linear programming converged to a local minimum away from the true parameter value

roughly 5− 10% of the time.

To complement this analysis, another simulation of the model in Equation 3.1.1 was con-

ducted to compare the Gibbs posterior with a Bayesian posterior. The Bayesian posterior is

based on a normal likelihood,

L(θ = (β0, β, σ) | (Y, X)) =

k∏
i=1

Φ

(
0− (β0 + X

>
i β)

σ

) n∏
i=(k+1)

φ

(
Yi − (β0 + X

>
i β)

σ

)

where the first k observations are left censored and the lastN−k observations are fully observed,

Φ(·) denotes the normal distribution function and φ(·) denotes the normal density function.

This Bayesian likelihood is misspecified for the model in Equation 3.1.1 because it does not

correctly model the heteroscedastic variance of the error term ε ∼ X21N(0, 1). So, in addition to

the model in Equation 3.1.1, a Gibbs posterior and a correctly specified Bayesian posterior are

compared using a modified model with ε ∼ N(0, 1), so that observations have homoscedastic

variances.
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In 3.1 below, results are given for 100 simulations of both the homoscedastic and het-

eroscedastic variance models, with sample sizes n = 400 and n = 1600 for (β0, β) = (1, 3, 3, 3),

and using 1000 posterior samples. This model results in about 40% of responses being censored.

The mean squared errors are compared for the Gibbs and Bayesian posteriors and the conclu-

sion is that the Gibbs posterior has lower mean squared error in both models. Not only does

the Gibbs posterior give apparently more accurate point estimates, it does so with a simpler

model. The Bayesian model includes an extra nuisance parameter, σ.

Mean Squared Errors
Sample Size Posterior Homoscedastic Heteroscedastic

400
Gibbs 0.10 0.11
Bayes 0.20 0.36

1600
Gibbs 0.08 0.09
Bayes 0.20 0.27

TABLE 3.1.1

MEAN SQUARED ERRORS FOR GIBBS AND BAYESIAN POSTERIORS FOR
CENSORED MEDIAN REGRESSION MODELS.

Other interesting applications covered in (14) include instrumental variables regression and

time series applications for stock prices.

3.2 Variable selection in binary regression models

In (44), the authors study Gibbs posteriors for variable selection in high-dimensional binary

regressions. The data is X n = ((Y1, X1), (Y2, X2), ..., (Yn, Xn)) where (Yi, Xi) is a response predic-
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tor pair. The responses Yi are binary, i.e. Yi ∈ {0, 1}, while the predictors are high dimensional

vectors Xi ∈ Rp where p may be much larger than n. The goal is to select a small subset of

predictors that are useful for predicting future responses.

To predict an unobserved response Y using predictors X, the authors of (44) consider linear

classifiers I(X>β > 0), where I(·) is the indicator function, with corresponding risk function

R(β) = P(Y 6= I(X>β > 0)).

Bayesian approaches to the variable selection problem require a probability model for the

data. One example model is logistic regression, where the likelihood has the form

L(β | X n) =
n∏
i=1

(
exp(X>i β)

1+ exp(X>i β)

)Yi (
1−

exp(X>i β)

1+ exp(X>i β)

)1−Yi
,

which is a Bernoulli likelihood with success probability expressed using the logistic function.

The prior distribution is typically chosen to enforce sparsity of the parameter vector β, by

putting high probability on coefficients having value exactly 0. Then, variable selection is

accomplished by removing all predictors with zero coefficients.

Recall from Section 2.2 that one motivation for deriving the Gibbs posterior is to define

the posterior distribution with the minimal risk, on average, with respect to a linking function;

in this case the linking function is `(X , β) := I(X>β > 0). The Bayesian posterior, on the

other hand, may have poor predictive performance with respect to this linking function and

corresponding risk function. The authors of (44) give the following example. Suppose that the

predictor is a scalar and that P(X = ±1) = λ and P(X = 0) = 1 − 2λ for some λ ∈ (0, 0.25).
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Also, let P(Y = 1 | x) = 1 − P(Y = 0 | x) = I(x 6= 0). The distribution P, so described, is

not a member of the logistic family defined above, so the logistic model is misspecified in this

case. As noted in (44), the asymptotic Bayesian posterior predictive probability Πn(Y = 1 |

x) = 2λ when based on the above logistic model. By construction, the resulting linear classifier

I(Πn(Y = 1 | x) > 0.5) = I(x>β > 0) = 0 always predicts zero. The misclassification error using

the Bayesian posterior is 2λ. However, the risk function R(β) has minimum λ, which can be

obtained, for example, by a logistic model with P(Y = 1 | x) = exp(x−0.7)/[1+exp(x−0.7)] with

corresponding linear classifier I(x − 0.7 > 0). So, interestingly enough, the optimal posterior

with respect to the misclassification error of predicting the next response corresponds to a

Bayesian posterior based on the logistic model even though this model is misspecified, but the

asymptotic Bayesian posterior does not converge to the risk-optimal posterior.

As argued in (44) this poor risk behavior of the Bayesian posterior, especially in misspecified

models, provides motivation to look for an alternative variable selection approach. Since the

Gibbs posterior can be constructed from the empirical risk function of interest, it is reasonable

to expect it should have good performance with respect to that risk function. The authors

suggest two different empirical risk functions for the Gibbs posterior

(i)Rn(β) :=
−1

n

n∑
i=1

log(I(x>i β > 0)e
yi−1 + [1− I(x>i β > 0)]e

−yi) (3.2.1)

(ii)Rn(β) :=
−1

n

n∑
i=1

log(Φie
yi−1 + [1−Φi]e

−yi), (3.2.2)
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where Φi = Φ(σ−1n x
>
i β) and Φ(·) denotes the standard normal distribution function. While

choice (i) is the sample version of the risk function R(β), (44) recommends using choice (ii)

because it is smooth in the parameter β and is close to choice (i) for small σn.

In addition to the empirical risk function, a prior distribution on β is needed to construct

a Gibbs posterior. Roughly, the prior distribution used in (44) is a hierarchical normal-binary

prior. A Bernoulli distribution models which indices of β correspond to non-zero coefficients,

while a normal distribution models the size of the non-zero coefficients. Based on the empirical

risk in Equation 3.2.2 and the normal-binary prior, the authors show that the Gibbs posterior

is consistent for the parameter β? := arg infβ R(β) for the risk of a linear classifer, R(β), under

certain conditions on the sparsity of β? and the parameter space.

3.3 Selecting the Gibbs posterior scale parameter ω

The purpose of this section is to review recently proposed methods for the determina-

tion of the scale parameter ω present in the Gibbs posterior; see Equation 2.2.1. Although

many authors, including references mentioned above, acknowledge the scale parameter in their

formulations and applications of Gibbs posteriors, few authors have provided systematic, non-

problem-specific approaches towards its determination.
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3.3.1 SafeBayes method

In (33), the authors propose choosing the scaling parameter ω in order to minimize a certain

loss function they deem the posterior-expected posterior-randomized log-loss, also called the

Gibbs loss. This Gibbs loss has the form

n∑
i=1

∫
− log `(Xi, θ)Πi(dθ), (3.3.1)

for a linking function log `(Xi, θ) and where Πi denotes the Gibbs posterior based on the first

i data, and implicitly depends on ω, as in Equation 2.2.1. Choosing the scaling parameter in

this way is referred to as SafeBayes by (33).

In several simulation experiments, (33) demonstrate their SafeBayes method results in lower

prediction errors than standard Bayesian models in a linear regression setting with a misspecified

model. When the model was correctly specified, the SafeBayes approach was not significantly

worse than standard Bayes. Here is an example demonstrating the SafeBayes method.

Consider the multiple linear regression model with heteroscedastic errors,

Yi = β0 + X
>
i β+ σεi (3.3.2)

for response and covariate pairs X n = ((Y1, X1), (Y2, X2), ..., (Yn, Xn)), where (Yi, Xi) ∈ R× Rp,

σ > 0 is an unknown nuisance parameter, and εi
ind.
∼ N(0, ‖Xi‖). One reason to consider a Gibbs

posterior for multiple linear regression is that the standard model assumes homoscedastic errors,
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i.e. εi
i.i.d.
∼ N(0, 1), but this assumption is often violated and the resulting set estimators of β

may not be calibrated; see Section 7.4.2.

A Gibbs posterior for β may be constructed using the empirical risk function Rn(β0, β) =

1
n

∑n
i=1(Yi − β0 − X

>
i β)

2 and, for example, a flat prior π(·) ∝ 1. The following algorithm can

be used to approximate the Gibbs loss in Equation 3.3.1,

1. Select a grid of values for the learning rate ω, i.e. 0 ≤ ω1 < ω2 < ... < ωk ≤ 1.

2. For i in 1, 2, ..., k and for j in 1, 2, ..., n sample M times from the Gibbs posterior Πj based

on the first j observations and using ωk. Denote the M posterior samples as β1i,j, ..., β
M
i,j .

3. Approximate the Gibbs loss in Equation 3.3.1 for each ωj by the Monte Carlo average

n∑
i=1

1

M

M∑
t=1

`((Yi, Xi), β
t
i,j)

=

n∑
i=1

1

M

M∑
t=1

(Yi − β
t
0,i,j − X

>
i β

t
i,j)

2.

4. Choose learning rate ωj with minimum approximate Gibbs loss.

See Section 7.4.2 for simulation results using SafeBayes in the above example along with a

comparison with other methods.

3.3.2 A method based on coherence

In (38), as in (6), the authors use a coherence argument to decide the value of the learning

rate parameter ω, and their idea meshes nicely with their derivation of the Gibbs posterior in

(6) and Section 1.4 above. Their method is somewhat limited, as described below, in that it
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only applies to the case Rn(θ) is an actual negative loglikelihood, not just an empirical version

of a loss function.

They begin by writing the posterior update in the following way

logΠn(θ) = −ωRn(θ) + logΠ(θ) + logZω,

where Zω is the normalizing constant. In this section, it is assumed both the posterior and

prior have densities and that the prior is proper. From this equation, it is apparent ω can be

interpreted as the learning rate, the relative amount by which the posterior depends upon the

data, through Rn(θ), versus the prior. The idea is that the model (here consider −Rn(θ) to be

a loglikelihood, so it is the model), may be uncertain, so it is reasonable to put less than full

weight, ω = 1, on the model, and instead less, ω < 1, in order to incorporate model uncertainty.

Then, (38) propose to choose ω such that the prior–to–posterior update results in the same

gain in information whether it is assumed the model is true or not. First, suppose the model is

true, i.e., the loglikelihood is −Rn(θ) and ω = 1. Denote the prior expected information gain

under this scenario as I1(X ). Next, suppose there is some doubt the data is generated from the

given model. Then, the loglikelihood is −ωRn(θ) for some value of ω not necessarily 1. Denote

the prior expected information gain to be Iω(X ). (38) set ω to solve

∫
Iω(x)P(dx) =

∫
I1(x) exp(−Rn(θ

?))dx.
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The information mentioned above takes the form of the Fisher relative information diver-

gence of posterior from prior,

F(Π(·), Πn(·)) =
∫
Π(θ)

(
∇Πn(·)
Πn(·)

−
∇Π(·)
Π(·)

)2
dθ,

with derivatives taken with respect to θ. Solving the above, (38) find

ω =

√∫
exp(−Rn(θ?))F(Π(·), Πn(·))dx∫

F(Π(·), Πn(·))P(dx)
.

Letting ∆(x) = F(Π(·), Πn(·)), and estimating θ? with the maximum likelihood estimator, θ̂,

and replacing P with the empirical distribution, an empirical solution is found to be

ω̂ =

√∫
exp(−Rn(θ̂))∆(x)dx

n−1
∑n
i=1∆(Xi)

.

A closed form expression for ω̂ is available for models in the exponential family. When the

probability density of the data can be written f(x; θ) = c(x) exp(xθ−b(θ)) for a one-dimensional

parameter θ, the learning rate is estimated by

ω̂ =
b ′′(θ̂) +

∫
(X̄− b ′(θ))2p(θ)dθ

S2 +
∫
(X̄− b ′(θ))2p(θ)dθ
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where X̄ and S2 denote the sample mean and sample variance of the data and f ′, f ′′ denote first

and second derivatives, respectively. For example, for the Poisson model,

ω̂ =
[x̄2 + x̄]

∫
θ>0 θ

−2p(θ)dθ− 2x̄
∫
θ>0 θ

−1p(θ)dθ+ 1

[x̄2 + S2]
∫
θ>0 θ

−2p(θ)dθ− 2x̄
∫
θ>0 θ

−1p(θ)dθ+ 1
.

3.3.3 Unit information loss method

In (6) the authors provide several methods for setting the scale parameter ω. The first

method, called unit information loss, is similar to the coherence-based method by two of these

authors described above in Section 3.3.2. In this case, before data is observed, there is only

prior information about θ, and, together with the linking function and scaling parameter, one

can form the loss function

L(ν, θ, π) = ω`(X , θ) + log
π(θ̂)

π(θ)
,

where π(θ) is the density of Π and π(θ̂) is the value of the density where θ̂ maximizes π(θ).

Then, (6) argue that since this is a sum of two loss functions with only one piece of information

(the prior), the expected losses should be balanced between the two. In other words, ω should

be chosen such that

ω =

∫
log π(θ̂)

π(θ)π(dθ)∫ ∫
`(X , θ)

m(dx, dθ),

where m(x, θ) is a joint distribution for X and θ, where π(θ) is the marginal density of θ. The

obvious drawback of this approach is that m(x, θ) must be specified, and has an impact on the

determination of ω. Additionally, Π must be a proper prior for the above expectation to be
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well-defined. However, (6) show an empirical version produces a reasonable solution in a simple

normal distribution example. Let `(X , θ) = (X − θ)2 and let π(θ) be a normal density with

mean zero and variance 1/τ. Then,

ω =
1

2
∑n
i=1(Xi − X̄−i)2

where X̄−i is the sample mean of the observations with Xi removed. Clearly, this choice of ω is

asymptotically equal to 1
2σ

−2, the correct scaling of the posterior, for instance, so that posterior

credible sets are calibrated.

3.4 Variational approximations to Gibbs posteriors

In (2), the authors extend the work of (114) to variational approximations of Gibbs pos-

teriors. Like Bayesian posteriors, Gibbs posteriors may be intractable in a given problem and

require a great deal of computational effort to sample. The solution studied by (2) is to approx-

imate the Gibbs posterior with a simpler distribution which is easier to sample. Often times,

one can sample from this variational posterior in closed form without the need for Markov

chain Monte Carlo (MCMC) or other algorithmic techniques. The challenge is to find a family

of distributions large enough to approximate the Gibbs posterior with fidelity while also having

computational advantages. The authors implement their work in the R package PACVB; see

(78).
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To choose a variational posterior it is necessary to define a family of distributions, say

F, defined on the parameter space Θ for consideration. Then, choose the posterior Π? which

satisfies

Π? = arg min
Π∈F

DKL(Π,Πn).

That is, choose the candidate distribution from F that comes closest to the Gibbs posterior in

terms of Kullback-Leibler divergence.

Three common families of variational posteriors are

F1 = {Φm,σ2 , m ∈ Rd, σ2 ∈ R+}

,F2 = {Φm,σ2 , m ∈ Rd, σ2 ∈ (R+)d}

,F3 = {Φm,Σ, m ∈ Rd, Σ ∈ Sd+},

where Sd+ denotes the set of d×d symmetric and positive definite matrices, and Φm,σ2 denotes

the multivariate normal distribution function with mean vector m and covariance σ2Id. The

set F2 is called the mean-field approximation and is one of the more common families used in

variational approximations.

One example considered in (2) is a classification problem. The data consists of response

predictor pairs X n = ((Y1, X1), (Y2, X2), ..., (Yn, Xn)) with Yi ∈ {−1, 1} and Xi ∈ Rd. The

empirical risk function used is the hinge loss function

Rn(θ) =
1

n

n∑
i=1

max(0, 1− YiX
>
i θ)
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for a parameter vector θ ∈ Rd. For the family F1, (2) show that the optimal variational

posterior has parameters m and σ maximizing

1

n

{
n∑
i=1

(1− XiYim)Φ

(
1− XiYi
σ‖XiYi‖2

)
+

n∑
i=1

σ‖XiYi‖2φ
(
1− XiYi
σ‖XiYi‖2

)}
−

√
d‖m‖22
2

+
d

2
(logσ2−

1

σ2
√
d
).

(3.4.1)

The rationale behind the expression in Equation 3.4.1 is that the normal distribution with

parameters m and σ maximizing this expression has the lowest posterior averaged risk (see

Section 2.3) among distributions in F1. As shown in (2), Equation 3.4.1 is a convex function

in the parameters, so can be maximized using standard methods. See Section 7.4.3 for another

application of variational posteriors.



CHAPTER 4

GIBBS POSTERIOR ASYMPTOTICS

As discussed in Section 1.4.3, asymptotic theory is useful for determining if a method can

be relied upon to give reasonable answers to research questions given substantial data. Such

theory serves to complement subjective analyses and expert opinions and may help data analysts

decide between competing methods, giving preference to one with a better convergence rate,

for instance. This chapter discusses results, both new in this dissertation and by other authors,

for consistency, convergence rates, and convergence in distribution of Gibbs posteriors.

4.1 Consistency

4.1.1 Consistency of Gibbs posteriors

Recall that a sequence of Bayesian posteriors Πn is said to be consistent for the true pa-

rameter θ? if for every Π−measureable set A containing θ?, Πn(A)
i.p.→ 1 with respect to the

distribution Pθ? . This same definition is applicable to Gibbs posteriors. One way to show con-

sistency of the Gibbs posterior is to start with a result on consistency of M-estimators, such as

the one given in Section 1.2, and try to extend it to the Gibbs posterior, since the Gibbs poste-

37
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rior is built from the empirical risk function used in M-estimation. Suppose the conditions from

Proposition 1.2.1 hold (with one inequality flipped due to minimization versus maximization),

sup
θ∈Θ

|Rn(θ) − R(θ)|
i.p.→ 0, (4.1.1)

sup
θ:d(θ,θ?)≥ε

R(θ) > R(θ?) (4.1.2)

for some distance measure d(·, ·) : Θ × Θ 7→ R+. Write the Gibbs posterior probability of the

complement of the set A = {θ ∈ Θ : d(θ, θ?) < ε},

Πn(A
c) =

∫
Ac exp(−ωRn(θ))dΠ(θ)∫
Θ exp(−ωRn(θ))dΠ(θ)

for some ε > 0. If it can be shown that Πn(A
c)
i.p.→ 0 in P−probability, then the Gibbs posterior

is consistent with respect to d(·, ·). One strategy is to treat the numerator and denominator of

Πn(A
c) separately and bound the numerator from above and the denominator from below.

First, consider bounding the denominator from below. Multiply the denominator, denoted

Dn, by en(ωR(θ
?)+α) for a positive constant α,

en(ωR(θ
?)+α)Dn = en(ωR(θ

?)+α)

∫
Θ

exp(−nωRn(θ))dΠ(θ).

Bound this product from below by restricting the domain of integration,

en(ωR(θ
?)+α)Dn ≥

∫
{θ:ωRnθ−ωR(θ?)≤α/2}

exp[−nω(Rn(θ) −ωR(θ
?) − α)]dΠ(θ)
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Add and subtract R(θ) in the exponent of the integrand, and apply the inequality in the domain

of integration to get

∫
{θ:ωR(θ)−ωR(θ?)≤α/2}

∗ exp(−n[ωRn(θ) −ωR(θ) +ωR(θ) −ωR(θ
?) − α])dΠ(θ)

≥ enα/2
∫
{θ:ωR(θ)−ωR(θ?)≤α/2}

exp(−n[ωRn(θ) −ωR(θ)])dΠ(θ).

Since the above integrand is non-negative, use Fatou’s Lemma to evaluate the limit

lim inf
n→∞

∫
{θ:ωR(θ)−ωR(θ?)|≤α/2}

exp(−n[ωRn(θ) −ωR(θ)])dΠ(θ)

≥
∫
{θ:ωR(θ)−ωR(θ?)|≤α/2}

lim inf
n→∞ exp(−n[ωRn(θ) −ωR(θ)])dΠ(θ)

≥
∫
{θ:ωR(θ)−ωR(θ?)|≤α/2}

exp(− lim sup
n→∞nω|Rn(θ) − R(θ)|)dΠ(θ)

With this limit the denominator may be bounded from below by

e−nωδΠ({θ : ωR(θ) −ωR(θ?)| ≤ α/2})

in P−probability. Since α > 0 is arbitrary and δ > 0 vanishes as n → ∞, en(ωR(θ
?)+α)Dn

diverges in P−probability as n→∞ as long as the prior distribution Π places positive mass on

the set {θ : ωR(θ) −ωR(θ?)| ≤ α/2}. Hence, Dn is bounded below by Ce−n(ωR(θ
?)+α) for some

C > 0 in P−probability.
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Next, bound the numerator from above. Write the numerator of Πn(A
c) as

Nn(A
c) =

∫
{θ:d(θ,θ?)>ε}

exp(−n[ωRn(θ)])dΠ(θ).

Add and subtract R(θ) from the exponent in the numerator to obtain

∫
{θ:d(θ,θ?)>ε}

exp(−nω[Rn(θ) − R(θ) + R(θ)])dΠ(θ).

By the conditions in Equation 4.1.1, Rn(θ) − R(θ) can be bounded uniformly over the set of

integration by δ > 0 in P−probability and R(θ) > R(θ?) + η for some η(ε) > 0. Then,

Nn(A
c) ≤ e−nω[−δ+R(θ?)+η].

Combining the bounds on numerator and denominator,

Πn(A
c) =

Nn(A
c)

Dn
.
e−nω[−δ+R(θ?)+η]

e−n(ωR(θ
?)+α)

= enωδ+nα−nωη

where x . y means x ≤ cy for some constant c > 0. As n → ∞, δ vanishes, but η > 0 is a

fixed value dependent on ε. So, if α is chosen as, for instance, α < ωη/2, the bound vanishes

in P−probability as n→∞.

The preceding calculations prove the following proposition.
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Proposition 4.1.1 Suppose that Equation 4.1.1 hold and that Π places positive probability on

sets {θ : ωR(θ)−ωR(θ?)| ≤ α/2} for any α > 0, then Πn({θ : d(θ, θ?) ≤ ε}) i.p.→ 1 in P−probability

and Πn is called consistent with respect to d(·, ·).

4.1.2 Application of consistency to inference on a median

Section 1.3 described a statistical inference problem for a population median and mentioned

that a consistent M-estimator for the median could be found. In particular, for a random sample

X n = (X1,X2, ...,Xn) drawn from a distribution P with median θ?, the estimator

θ̂n := arg min
θ∈R

1

n

∣∣∣∣∣
n∑
i=1

sign(Xi − θ)

∣∣∣∣∣
is consistent for θ?. Note that θ̂n is not a unique minimum but may be taken to be the

sample median for convenience. As noted in Section 1.3, the risk function is R(θ) = |P(X ≥

θ) − P(X < θ)|. Consistency may be shown by verifying the conditions of Equation 4.1.1;

see Proposition 1.2.1. The uniform convergence of Rn(θ) to R(θ) follows from the Glivenko-

Cantelli Theorem. Let 1(·) denote the indicator function and Fn(x) =
1
n

∑n
i=1 1(Xi ≤ x) denote

the empirical distribution function for i.i.d. random variables X1,X2, ...,Xn. The Glivenko-

Cantelli Theorem states for i.i.d. random variables X1,X2, ...,Xn with distribution function F,

supx∈X |Fn(x) − F(x)|→ 0 almost surely with respect to P. The empirical risk function may be
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written Rn(θ) = |
∑n
i=1

1
n1(Xi ≥ θ) −

1
n1(Xi < θ)|. Write the absolute difference between the

empirical risk and the risk function as

|Rn(θ) − R(θ)| =

∣∣∣∣∣|
n∑
i=1

1

n
1(Xi ≥ θ) −

1

n
1(Xi < θ)|− |P(X ≥ θ) − P(X < θ)|

∣∣∣∣∣
and use the reverse triangle inequality to bound the difference as

|Rn(θ) − R(θ)| ≤

∣∣∣∣∣
n∑
i=1

1

n
1(Xi ≥ θ) −

1

n
1(Xi < θ) − (P(X ≥ θ) − P(X < θ))

∣∣∣∣∣ .
Then, use the triangle inequality to obtain

|Rn(θ) − R(θ)| ≤

∣∣∣∣∣
n∑
i=1

1

n
1(Xi ≥ θ) − P(X ≥ θ)

∣∣∣∣∣+
∣∣∣∣∣P(X < θ) − 1

n

n∑
i=1

1(Xi < θ)

∣∣∣∣∣ .
Both of the terms on the right hand side of the above display converge uniformly to 0 almost

surely with respect to P by the Glivenko-Cantelli Theorem. Hence, the difference |Rn(θ)−R(θ)|

converges uniformly to 0. Since R(θ) = |P(X ≥ θ) − P(X < θ)| is clearly minimized uniquely

at the population median, both conditions in Equation 4.1.1 hold. Any prior with positive

support on the entire real line satisfies Proposition 4.1.1. For example, a Gibbs posterior using

a normal prior with mean 0 and standard deviation 1 is consistent for θ? by Proposition 4.1.1.

The main challenge to applying Proposition 4.1.1 is verifying the uniform convergence in

Equation 4.1.1. Since the linking function for the median boils down to a sum of indicator

functions, the argument is essentially provided by the Glivenko-Cantelli Theorem. In Chap-
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ter 5, the uniform convergence condition is verified in a classification problem, and again, it is

simplified by the fact that the empirical risk function can be expressed as a sum of indicators.

When the functions involved are more complicated than indicators, the consistency result is

still valid, but verifying the uniform convergence becomes more challenging.

4.2 Convergence rates of Gibbs posteriors

4.2.1 A result based on M-estimator convergence rates

In Section 1.3, M-estimation was introduced and the consistency of M-estimators was dis-

cussed. In Section 4.1, it was shown that sufficient conditions for consistency of M-estimators

are also sufficient for consistency of the Gibbs posterior with only the addition of a mild condi-

tion on the prior distribution. In this section, this idea of basing Gibbs posterior asymptotics

on M-estimator asymptotics will be pushed further, and it will be shown that Gibbs posteri-

ors not only inherit the consistency of M-estimators, but also their precise convergence rate.

Chapter 5 of (100) is a good resource on M-estimation, providing several results and examples

for calculating the convergence rates of M-estimators.

Let d(·, ·) be a distance measure defined on the parameter space d(·, ·) : Θ × Θ 7→ R+.

Define the empirical distribution Pn = n−1
∑n
i=1 I(Xi). Next, for P and Pn defined before,

let Gnf = n1/2(Pnf − Pf) be the empirical process. A good review of empirical processes is

given in (100), Chapter 19. The M-estimator convergence rate relies on two assumptions: a

well-separated property of the risk R(θ), and a bound on the expectation of the empirical

process Gn; see Equation 4.2.1 and Equation 4.2.2. The well-separated property states that

the minimizer θ? of R(θ) is sufficiently unique; for instance, there is no parameter sequence
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θn not converging to θ? with R(θn) → R(θ?). The bound on the empirical process sets the

speed at which Rn(θ) converges to R(θ?), in probability, for θ in a neighborhood of θ?. Given

these conditions, in order for the Gibbs posterior based on Rn(θ) to inherit the convergence

rate of the M-estimator, it is sufficient that the prior places sufficient mass on “risk function

neighborhoods”; see Equation 4.2.3. The following result is applied to quantile regression

in Section 4.2.3 and to a medical statistics application in Chapter 5. In the statement of

Theorem 4.2.1 below, note x . y, x & y means ∃C > 0 s.t. x ≤ Cy, x ≥ Cy.

Theorem 4.2.1 Assume that for fixed constants C0, C1, C2 > 0 and α ≥ 2β, for every n, and

for every sufficiently small δ > 0,

sup
d(θ,θ?)>δ

{R(θ?) − R(θ)} ≤ −C1δ
α, (4.2.1)

E sup
d(θ,θ?)<δ

|Gn(`(X , θ) − `(X − θ?))| ≤ C2δβ. (4.2.2)

For the prior distribution Π on Θ, assume that

Π({θ : R(θ) − R(θ?) < tn}) & exp(−C0ntn). (4.2.3)

where tn = n− ξ
2α+2β for some 0 < ξ < α. Let r = r(α,β) = (2α − 2β)−1. Then the Gibbs pos-

terior Πn in (Equation 2.2.1) satisfies Πn(An) = oP(1) as n→∞, where An = {θ : d(θ, θ?) >

ann
−r} for any diverging sequence an.
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For the proof of Theorem 4.2.1 it will be convenient to rewrite the posterior distribution in

Equation 2.2.1 as

Πn(An) =
Nn(An)

Dn
=

∫
An
e−n{Rn(θ)−Rn(θ

?)}Π(dθ)∫
Θ e

−n{Rn(θ)−Rn(θ?)}Π(dθ)
.

For simplicity, it is assumed ω = 1, but any constant ω > 0 or suitably vanishing ω = ωn will

do; see Proposition 4.2.1. Then the goal is to obtain appropriate bounds on the numerator and

denominator.

Equation 4.2.1 and Equation 4.2.2 provide control over the numerator of the Gibbs posterior,

which is described in the following Lemma.

Lemma 4.2.1 Let sn = ann
−r where r = r(α,β) = (2α − 2β)−1, and an is any diverging

sequence. Then, assuming Equation 4.2.1 and Equation 4.2.2 hold, there exists K > 0 such that

P
(

sup
d(θ,θ?)>sn

{Rn(θ
?) − Rn(θ)} > −Ksαn

)→ 0, as n→∞.
Proof of Lemma 4.2.1

Start with the identity

Rn(θ
?) − Rn(θ) = {R(θ?) − R(θ)}− n−1/2Gn(l(X , θ) − l(X , θ?)),
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where Gnf = n1/2(Pnf− Pf) is the empirical process. Next, since the supremum of a sum is no

more than the sum of the suprema, see that

sup
d(θ,θ?)>ε

{Rn(θ
?) − Rn(θ)} ≤ sup

d(θ,θ?)>ε
{R(θ?) − R(θ)}+ n−1/2 sup

d(θ,θ?)>ε
|Gn(`(X , θ) − `(X , θ?))|,

also taking the absolute value of the empirical process. From Equation 4.2.1, see that

sup
d(θ,θ?)>ε

{Rn(θ
?) − Rn(θ)} ≤ −C1ε

α + n−1/2 sup
d(θ,θ?)>ε

|Gn(`(X , θ) − `(X , θ?))|.

Now, following the proof of Theorem 5.52 from (100) or of Theorem 1 in (107), introduce

“shells” {θ : 2mε < d(θ, θ?) ≤ 2m+1ε} for integers m. On these shells, use both Equation 4.2.1

and Equation 4.2.2. That is,

sup
d(θ,θ?)>sn

{Rn(θ
?) − Rn(θ)} > −Ksαn

=⇒ sup
2msn<d(θ,θ?)≤2m+1sn

{Rn(θ
?) − Rn(θ)} > −Ksαn ∃ m ≥ 0

=⇒ n−1/2 sup
2msn<d(θ,θ?)<2m+1sn

|Gn(`(X , θ) − `(X , θ?))| ≥ C1(2msn)α − Ksαn

=⇒ n−1/2 sup
d(θ,θ?)≤2m+1sn

|Gn(`(X , θ) − `(X , θ?))| ≥ C1(2msn)α − Ksαn,
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If K ≤ C1/2, then C1(2
ms)α − Ksα ≥ C1(2ms)α/2 for all m ≥ 0.

P
(

sup
d(θ,θ?)>sn

{Rn(θ
?) − Rn(θ)} > −Ksαn

)
≤
∑
m≥0

P
(
n−1/2 sup

d(θ,θ?)<2m+1sn

|Gn(`(X , θ) − `(X , θ?))| ≥ C1(2msn)α/2
)

To the summands, apply Markov’s inequality and Equation 4.2.2 to get

P
(
n−1/2 sup

d(θ,θ?)<2m+1sn

|Gn(`(X , θ) − `(X , θ?))| ≥ C1(2msn)α/2
)
≤ C32m(β−α)a

(β−α)
n

for some C3 > 0 depending on C1 and C2. Since β− α < 0, the sum over m converges and the

upper bound vanishes since aβ−αn ↓ 0, completing the proof.

The following lemma yields a necessary lower bound on the denominator of the Gibbs

posterior distribution. The result is exactly Lemma 1 of (86). A simpler version, which is often

applicable, is presented in Corollary 4.2.1; if the variance of the difference in the linking functions

is bounded by a constant times the expectation of their difference, then the Sn neighborhoods

may be simplified.

Lemma 4.2.2 Let tn be a sequence of positive numbers such that ntn →∞ and set Sn = {θ :

max
{
R(θ)−R(θ?), V(`(X , θ)− `(X , θ?))

}
≤Mtn} for some M > 0. Then

∫
e−[Rn(θ)−Rn(θ?)] dΠ &

Π(Sn) exp(−2ntn) with Pθ?−probability converging to 1 as n→∞.

Corollary 4.2.1 Let tn be a sequence of positive numbers such that ntn → ∞. Suppose

V(`(X , θ) − `(X , θ?)) ≤ M1[R(θ) − R(θ?)] for some constant M1 > 1. A sufficient condi-
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tion is that `(X , θ) is bounded almost surely. Then, there exists a constant M2 > 0 such that∫
e−[Rn(θ)−Rn(θ?)] dΠ & Π(Gn) exp(−2ntn) with Pθ?−probability converging to 1 as n→∞ where

Gn = {θ : {R(θ) − R(θ?) ≤M2tn}.

Proof of Corollary 4.2.1

Choose M > 0 in Lemma 4.2.2. Set M2 =M/M1. Then, Gn ⊂ Sn and the bound holds by

Lemma 4.2.2.

Also, see that for a bounded linking function `(X , θ), there exists a constant M3 > 0 such

that

V(`(X , θ) − `(X , θ?)) ≤ EP{[`(X , θ) − `(X , θ?)]2}

=

∫
[`(x, θ) − `(x, θ?)]2P(dx)

≤M3

∫
`(x, θ) − `(x, θ?)P(dx)

=M3[R(θ) − R(θ
?)],

thereby providing a simple criterion for applying Corollary 4.2.1.

Proof of Theorem 4.2.1

For the denominator, for a suitable sequence tn specified below, it follows that Dn & e−3ntn

by Lemma 4.2.2.

For the numerator, Lemma 4.2.1 provides a uniform bound, namely,

P
(

sup
|θ−θ?|>sn

{Rn(θ
?) − Rn(θ)} > −Ksαn

)→ 0, as n→∞
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where sn = ann
− 1
2α−2β as in Theorem 4.2.1. Therefore, logNn(An) ≤ −Kaαnn

α−2β
2α−2β with

P−probability converging to 1.

Finally, put together the in-probability bounds on the numerator and denominator:

Πn(An) =
Nn(An)

Dn
. exp(−L(aαnn

α−2β
2α−2β − ntn))

for some L > 0. Choose tn = ãnn
−α/(2α−2β) such that ãn diverges and aαn−ãn also diverges. This

choice satisfies the requirement in Lemma 4.2.2. The numerator simplifies to −L(aαn − ãn) →
−∞, by construction. Hence, the bound vanishes, completing the proof.

When the conditions of Theorem 4.2.1 hold, the Gibbs posterior mean inherits the rate of

convergence of the posterior.

Corollary 4.2.2 Under the conditions of Theorem 4.2.1, if the prior mean for θ exists, then

the posterior mean θ̄n satisfies θ̄n − θ
? = OP(ann

−r) as n→∞, for any sequence an →∞.

Proof of Corollary 4.2.2

Set sn = ann
−r. Next, define śn = ánn

−r(γ), where án is such that án →∞ but án/an → 0.

Now partition R as {θ : |θ− θ?| ≤ śn} ∪ {θ : |θ− θ?| > śn}, and write

|θ̄n − θ
?| ≤
∫
|θ− θ?|Πn(dθ) ≤ śn +

∫
|θ−θ?|>śn

|θ− θ?|Πn(dθ), (4.2.4)
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where the first inequality is by Jensen. From the proof of Theorem 5.3.1, the posterior away

from θ? is bounded by the prior times some Zn = oP(1), uniformly in θ. That is,

∫
|θ−θ?|>śn

|θ− θ?|Πn(dθ) ≤ Zn
∫
|θ− θ?|Π(dθ).

In fact, one can bound Zn more precisely:

Zn . exp
{
−M

(
áαnn

α−2β
2α−2β − ãnn

α−2β
2α−2β

)}
,

for any divergent sequence ãn such that áαn − ãn →∞. Dividing through Equation 4.2.4 by sn

see that s−1n |θ̄n − θ
?| is bounded by a constant times

án/an + e
−ζn

∫
|θ− θ?|Π(dθ),

where ζn =Mn
α−2β
2α−2β [áαn− ãn]+ logan−

1
2α−2β logn. The first term in the upper bound goes to

zero by the choice of án. The second term goes to zero provided that the prior mean exists and

ζn → ∞ as n → ∞. The former condition was assumed, and the latter holds due to choosing

áαn − ãn →∞. Then, θ̃n − θ
? = oP(sn), as was to be proved.

4.2.2 Convergence rates and scaling of the Gibbs posterior

Proposition 4.2.1 For (α,β) satisfying the assumptions of Theorem 4.2.1, write r(α,β) =

(α− 2β)/(2α− 2β). Then the conclusion of Theorem 4.2.1 holds if the learning rate, ω = ωn,

appearing in Equation 2.2.1, vanishes no faster than n−r(α,β).
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The result follows from the proof of Theorem 4.2.1, so a detailed proof is omitted.

4.2.3 Application to quantile regression

In Section 2.1, quantile regression was introduced as an example motivating the need for

Gibbs posteriors. Recall the model for data X = (Y, X) ∈ R× Rn,

Qτ(Y | X) = X>θ, (4.2.5)

from Equation 2.1.1, where the τth conditional quantile of Y given X, denoted Qτ(Y | X), is

model as a linear combination of X.

In this section, quantile regression is used to provide an example of a model in which the

Gibbs posterior convergence rate can be computed using Theorem 4.2.1. It is well-known that

the M-estimator minimizing the quantile regression empirical risk in Equation 2.1.2 converges

to the true parameter at rate n−1/2. In order to show the n−1/2 convergence rate applies also

to the Gibbs posterior with linking function the empirical risk in Equation 2.1.2, it is necessary

to verify Equation 4.2.1 and Equation 4.2.2 from Theorem 4.2.1 with α = 2 and β = 1. These

conditions typically require significant effort to verify. Corollary 5.53 in (100) Chapter 5 helps

to identify α and β in Equation 4.2.1 and Equation 4.2.2 for linking functions `(X , θ) that are

Lipschitz and have corresponding risk functions R(θ) admitting a second-order Taylor expansion

at θ?. The following assumptions, 4.2.1 and 4.2.2 are sufficient for establishing the Lipschitz

condition and the Taylor expansion in quantile regression.
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Assumption 4.2.1 The marginal distribution G of X, which is free of unknown parameters,

is such that E(XX>) exists and is positive definite.

Assumption 4.2.2 The conditional distribution Y, given X = x, has at least one finite mo-

ment and admits a continuous density fx(y) such that fx(x
>θ?) is bounded away from zero for

G−almost all x.

Proposition 4.2.2 Consider i.i.d. data Xi = (Yi, Xi), i = 1, . . . , n, under the model given in

Equation 2.1.1, with fixed τ ∈ (0, 1), and suppose that Assumptions 4.2.1 and 4.2.2 hold. If

θ? = θ?(τ) is the true value, then the Gibbs posterior probability Πn(An) = oP(1) as n → ∞,

where An = {θ : ‖θ − θ?‖ > ann−1/2} and an is any diverging sequence, for any prior Π with

continuous density bounded away from zero on a neighborhood of θ?.

Proof of Proposition 4.2.2 Proposition 4.2.2 confirms that the Gibbs posterior shares the

same n−1/2 convergence rate of the M-estimator presented in (53), Theorem 4.1. This proof

is short and straightforward for the case of i.i.d. observations. A similar result for the case of

independent but not i.i.d. observations is given in (91).

We can use Corollary 5.53 in (100) to show that α = 2 and β = 1, yielding the n−1/2 rate

of convergence. Suppress the dependence on τ and refer to a generic parameter as θ and the

true parameter minimizing the risk R(θ) as θ?.

First, note that the linking function

`(X , θ) = |(y− x>θ)(τ− I{y<x>θ})|
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for the quantile regression problem satisfies a Lipschitz property, i.e., that

|`(X , θ) − `(X , θ ′)| ≤ (1+ τ)‖x‖ ‖θ− θ ′‖.

This follows from looking at each of the three cases—y > x>θ1 > x>θ2, x
>θ > y > x>θ ′,

and x>θ > x>θ ′ > y—and an application of the Cauchy–Schwartz inequality. The Lipschitz

constant, L(x) = (1 + τ)‖x‖, which depends only on x in this case, satisfies EP(L(x)2) < ∞
by Assumption 4.2.1. According to (100), Corollary 19.35, this implies that condition Equa-

tion 4.2.2 holds with β = 1.

Next, check that the risk function R(θ) admits a suitable second-order Taylor approximation

at θ?. Towards this, write

R(θ) =

∫
X

[
(τ− 1)

∫x>θ
−∞ (y− x>θ)fx(y)dy+ τ

∫∞
x>θ

(y− x>θ)fx(y)dy
]
G(dx),

where G is the marginal distribution of X, defined on the space X, and Fx is the conditional

distribution function of Y, given X = x, and fx is the corresponding density function. Differen-

tiation with respect to θ gives

Ṙ(θ) =

∫
x{Fx(x

>θ) − τ}G(dx) and R̈(θ) =

∫
xx>fx(x

>θ)G(dx).
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Differentiating under the integral is permissible by the continuity and moment conditions im-

posed. Therefore, since Ṙ(θ?) = 0, the following second-order Taylor approximation holds:

R(θ) = R(θ?) + 1
2(θ− θ

?)>R̈(θ?)(θ− θ?) + o(‖θ− θ?‖2).

Based on the given assumptions, see that R̈(θ?) exists and is positive definite which, according

to (100), page 76, implies Equation 4.2.1 with α = 2.

Finally, by Theorem 4.2.1, conclude that the rate of convergence for the Gibbs posterior is

n−r, where r = (2α − 2β)−1 = 1
2 . Therefore, the claimed n−1/2 rate holds as long as the prior

distribution for θ has a density function which is continuous and bounded away from 0 in a

neighborhood of θ?.

As a numerical illustration of Proposition 4.2.2, consider a small simulation experiment.

For τ = 0.5, consider the model

Yi = θ0 + θ1 Xi + ei, i = 1, . . . , n,

where θ0 = 2, θ1 = 1, ei
i.i.d.
∼ N(0, 4), and Xi

i.i.d.
∼ ChiSq(2) − 2. A total of 2000 sets of data

were simulated from this model with sample sizes ranging from n = 101 to n = 2100. A Gibbs

posterior was sampled on each data set using an improper prior, i.e. π(x) ∝ 1, and the posterior

mean of each parameter, denoted θ̃0 and θ̃1, was recorded. Since Proposition 4.2.2 determines

the convergence rate of the Gibbs posterior to be n−1/2, the posterior means should converge to

θ0 and θ1 roughly at this rate. In other words, log |θ̃i − θi| ≈ b− 1
2 logn for each i = 1, 2, since
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the Gibbs posterior convergence rate is proportional to n−1/2. Figure 4.2.1 shows precisely this

relationship for the simulated data.

Figure 4.2.1. Left: the logarithm of the absolute difference between the Gibbs posterior mean
values of the intercept for each data set and the true parameter value are regressed against

the logarithm of the sample size. Right: the same regression is repeated for the slope
parameter. The fitted least-squares line is shown in blue along with its equation.

4.3 Adaptive convergence rates for sets with smooth boundaries

4.3.1 Statistical estimation of infinite dimensional parameters

In previous sections the statistical inference problem has always concerned an interest pa-

rameter with a finite dimension, say a vector θ ∈ Rp for an integer p ≥ 1. However, there are

important problems in which the parameter of interest may actually have infinite dimension.

Some of these problems include probability density estimation, hazard function estimation in
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survival analysis, and regression. For concreteness, consider a regression problem with infinite

dimensional regression function

Y = θ(X) + ε

where data X = (Y, X) is a response and predictor pair, ε is a mean-zero random variable, and

θ(x) is an unknown function. It is typical to assume the predictor domain can be bounded,

i.e. X ∈ [c, d], and that the function θ(x) is bounded on this domain, i.e. Y ∈ [a, b] for real

numbers a, b, c, and d. The function θ(x) is said to be of infinite dimension because θ(x) can

only be fully characterized by knowing the infinite parameter values θ(x) for x ∈ [c, d]. While

some particular classes of functions, such as linear functions, can be characterized by a finite

number of parameters, like a slope and intercept, this requires making more assumptions about

θ(x) beyond boundedness on [a, b].

Two successful methods for estimating general regression functions are linear smoothers and

basis function expansions. An excellent introduction to these methods is presented in (104).

Linear smoothers estimate θ(x) by a linear combination θ̂(x) =
∑n
i=1 gi(x)Yi for functions

g1, g2, ..., gn such that
∑n
i=1 gi(x) = 1. An important special case of a linear smoother is the

Nadaraya-Watson kernel estimator

θ̂h(x) =

∑n
i=1 K(

x−Xi
h )Yi∑n

i=1 K(
x−Xi
h )

;

see (74) and (105). The parameter h > 0 is called the bandwidth and influences the smoothness

of θ̂h(x). When h is large, points far from x are given more weight than when h is small, which
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tends to smooth the estimate. For example, one type of kernel function is the Epanechnikov

kernel K(t) = 3
4(1 − t

2) for |t| < 1 and 0 otherwise. For the Epanechnikov kernel, only points

(Yi, Xi) with |x− Xi| ≤ h will be included in the estimate of θ̂h(x).

The second common approach to function estimation uses basis function expansions. The

Weierstrass Approximation Theorem from real analysis states than continuous, bounded func-

tions on closed intervals can be approximated arbitrarily well by polynomials. In other words,

there is real number sequence (β0, β1, ...) such that θ(x) =
∑∞
i=0 βix

i for all x ∈ [c, d]. This

result suggests the approximation θ̂(x) =
∑k
i=0 βix

i for some positive integer k, which is just

a truncation of the series at k. Extensions of the Weierstrass theorem apply to other bases of

functions rather than (1, x, x2, ...). Commonly used bases include trigonometric functions and

splines. An analogous result for a trigonometric basis says that there exist constants (a0, a1, ...)

and (b1, b2, ...) such that θ(x) = a0 +
∑∞
j=1 aj sin(jx) +

∑∞
j=1 bj cos(jx). One type of spline

function basis used in regression is the cubic b-spline basis, defined recursively as

Bi,1(x) = 1(x ∈ [ti, ti+1])

Bi,k(x) =
x− ti

ti+k−1 − ti
Bi,k−1(x) +

ti+k − x

ti+k − ti+1
Bi+1,k−1(x),

where t−2, t−1, t0 < c, and tD+1, tD+2, tD+3 > d are called outer knots, while t1, ..., tD ∈ [c, d]

are called inner knots. Then, θ(x) is approximated by θ̂D,β(x) =
∑D
j=1 βjBj,D(x) where β =

(β1, ..., βD) ∈ (R+)D is a vector of coefficients. Figure 4.3.1 shows an example of a linear
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smoother using an Epanechnikov kernel and a b-spline fit to data on the times between eruptions

and duration of eruptions from the Old Faithful geyser.

4.3.2 Gibbs posterior convergence rate for a set with a smooth boundary

Sets with smooth boundaries are studied in (55), (68), (61), and (92) and are widely applied

in image analysis. For example, the set of pixels depicting a tumor in a medical scan may be

assumed to have a smooth boundary; see Figure 4.3.2 reproduced from (13). Recovery of the set

from the background (or, equivalently, recovery of the boundary) could be helpful in diagnosis

and treatment. Although the context can deviate from that of images made up of pixels, this

analogy is fitting and simple to understand so will be carried on throughout this section.

Let Ω ⊂ R2 be a bounded region that represents the frame of the image; typically, Ω will

be a square, say, [− 1
2 ,
1
2 ]
2, but, generally, assume only that Ω is scaled to have unit Lebesgue

measure. Data consists of pairs Xi = (Xi, Yi), i = 1, . . . , n, where Xi is a pixel location in Ω

and Yi is an intensity measurement at that pixel. The range of Yi is context-dependent, and

applications with both binary and real-valued cases are considered in Chapter 6. The model

asserts that there is a region Γ ⊂ Ω such that the intensity distribution is different depending on

whether the pixel is inside or outside Γ . Consider the following model for the joint distribution

PΓ of pixel location and intensity, X = (X, Y):

X ∼ g(x),

Y | (X = x) ∼ fΓ (y) 1(x ∈ Γ) + fΓc(y) I(x ∈ Γ c), (4.3.1)
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Figure 4.3.1. Waiting time and duration data of Old Faithful eruptions with curves fitted
using a cubic b-spline (blue) and a Nadaraya-Watson kernel estimator using the Epanechnikov

kernel (red).
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Figure 4.3.2. MRI (left), F-FDG PET (middle), and F-FDOPA PET (right) of glioblastoma
(A) and grade II oligodendroglioma (B).
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where g is a density on Ω, fΓ and fΓc are densities on the intensity space, and I(·) denotes

an indicator function. That is, given the pixel location X = x, the distribution of the pixel

intensity Y depends only on whether x is in Γ or Γ c. Assume that there is a true, star-shaped

region, denoted by Γ?, with a known reference point in its interior. Any point in Γ? can be

connected to the reference point by a line segment fully contained in Γ?. The observations

{(Xi, Yi) : i = 1, . . . , n} are i.i.d. samples from PΓ? , and the goal is to make inference on Γ? or,

equivalently, its boundary γ? := ∂Γ?. The set Γ? is assumed to have a smooth boundary, as

described by Assumption 4.3.1. The ability of a statistical method to make inference on the

image boundary will depend on how smooth the true boundary is. In (61), γ? is interpreted

as a function from the unit circle to the positive real line, and the authors formulate a Hölder

smoothness condition for this function. Here, the boundary γ? is treated as a function from

the interval [0, 2π] to the positive reals, and the smoothness condition is formulated on this

arguably simpler version of the function. Since the reparametrization of the unit circle in terms

of polar coordinates is smooth, it is easy to check that the Hölder smoothness condition in

Assumption 4.3.1 is equivalent to that in (61).

Assumption 4.3.1 The true boundary function γ? : [0, 2π] → R+ is α-Hölder smooth, i.e.,

there exists a constant L = Lγ? > 0 such that

|(γ?)([α])(θ) − (γ?)([α])(θ ′)| ≤ L|θ− θ ′|α−[α], ∀ θ, θ ′ ∈ [0, 2π], (4.3.2)
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where (γ?)(k) denotes the kth derivative of γ? and [α] denotes the largest integer less than or

equal to α. Denote this set of α-Hölder functions by H(α). Following the description of Γ?

above, it is also assumed that the reference point is strictly interior to Γ? meaning that it is

contained in an open set itself wholly contained in Γ? so that γ? is uniformly bounded away

from zero. Moreover, the density g for X, as in Equation 4.3.1, is uniformly bounded above by

g := supx∈Ω g(x) and below by g := infx∈Ω g(x) ∈ (0, 1) on Ω.

This section concerns computation of the convergence rate for a Gibbs posterior for Γ?.

Models for the image boundary including the specific linking functions used along with several

numerical examples will be presented in Chapter 6. The optimal rate of convergence for estima-

tors of γ? is n−α/(α+1) where α ≥ 1 summarizes the smoothness of γ? as in Assumption 4.3.1;

see (68). Denote an estimator of Γ? by Γ̂ and let d(Γ̂ , Γ?) be a distance function. An estimator

is said to be minimax with respect to d(·, ·) if the supremum of the expected distance over all

Γ? with ∂Γ? ∈ H(α) between the estimated and true boundary functions is minimal over all

estimators. In (68) the asymptotic minimax risk is shown to decay at rate n−α/(α+1),

lim inf
n

inf
Γ̂

sup
∂Γ?∈H(α)

nα/(α+1)EP[d(Γ̂ , Γ
?)] > 0.

Moreover, (68) shows existence of an estimator Γ̂ obtaining this rate, i.e.

sup
∂Γ?∈H(α)

EP[d(Γ̂ , Γ
?)] . n−α/(α+1).
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The distance most often used to compute distance between sets in a subset of R2 is the Lebesgue

measure of the symmetric difference d(Γ, Γ?) = λ(Γ∆Γ?) where

λ(Γ4Γ?) :=
∫
{t∈Ω:(t∈Γ∩t/∈Γ?)

⋃
(t/∈Γ∩t∈Γ?)}

dt.

The rest of this section presents sufficient conditions for the Gibbs posterior to concentrate

on neighborhoods of Γ? at nearly the minimax rate. The linking function `(X , γ), and, in

particular, the difference `(X , γ) − `(X , γ?) must satisfy certain properties laid out in 4.3.2.

The first property says the exponential of this linking function difference can be bounded in

terms of the L1 difference ||γ− γ?||1 =
∫2π
0 |γ(x) − γ?(x)|g(x)dx. The second property says that

a sup-norm ball around γ?, denoted B∞(γ?; r) := {γ : supx∈[0,2π] |γ(x)−γ
?(x)| ≤ r}, is contained

in a neighborhood of γ? characterized by the linking function differences `(X , γ) − `(X , γ?).

As in the proof of Theorem 4.2.1, these linking function differences are important in bounding

posterior probabilities.

Assumption 4.3.2 The linking function `(X , γ) satisfies

0 < E(exp(`(X , γ) − `(X , γ?))) < 1− ρ‖γ− γ?‖1 < 1, and (4.3.3)

{θ : max [R(γ) − R(γ?), V(`(X , γ) − `(X , γ?))] ≥ Cδ} ⊇ B∞(γ?;C0δ) (4.3.4)

for some ρ ∈ (0, 1), some constants C,C0, δ > 0.
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Further, γ is parameterized as a linear combination of basis functions γ̂D,β(x) =
∑D
j=1 βjφj,D(x)

for a set of basis functions φ1,D, ..., φD,D which meet a certain approximation condition; see As-

sumption 4.3.3. General results are available on the error in approximating an α-Hölder smooth

function by basis functions. For example, Theorem 6.10 in (82) implies that if γ? satisfies As-

sumption 4.3.1, then the following approximation holds for b-splines.

Assumption 4.3.3 ∀ d > 0, ∃ β?
d ∈ (R+)d such that ‖θ? − θ̂d,β?

d
‖∞ . d−α.

Similar approximations hold for other function bases, and all provide bounds on the uni-

form convergence of truncated basis function expansions to the true function in terms of the

smoothness of γ?. Note that since γ?(x) > 0, one can consider all coefficients to be positive;

i.e. β?
d ∈ (R+)d, and see Lemma 1(b) in (85).

Using the basis function expansion as a parametrization of γ?, the prior distribution can be

specified on the coefficients, β = (β1, ..., βD), and number of basis functions, D. In problems

with a finite parameter dimension, it is typically straightforward to ensure the prior puts non-

negligible mass on neighborhoods of the true parameter, but this issue is more complicated for

infinite dimensional parameters. The prior must meet several conditions, outlined in Assump-

tion 4.3.4 below, in order to guarantee the prior is both sufficiently spread out yet puts enough

mass near values of β and D yielding good approximations to γ?.
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Assumption 4.3.4 Let β?
d, for d > 0, be as in Assumption 4.3.3. Then there exists C,m > 0

such that the prior Π for (D,β) satisfies, for all d > 0,

logΠ(D > d) . −d logd,

logΠ(D = d) & −d logd,

logΠ(‖β− β?
d‖1 ≤ kd−α | D = d) & −d log{1/(kd−α)},

logΠ(β 6∈ [−m,m]d | D = d) . logd− Cm.

There are simple prior distributions meeting the conditions of Assumption 4.3.4, such as Poisson

and exponential prior distributions; see Section 6.3.2.

The following lemma is a summary of various results derived in (61) towards proving their

Theorem 3.3, which yields a convergence rate for a Bayesian posterior in a similar statistical

problem. This result shows that priors meeting the conditions specified in 4.3.4 have two

important properties: first, they place significant prior mass on sets of boundary functions that

very closely approximate γ?, and second, they place almost all of their probability on a nice

set Σn called a sieve. This sieve is a subset of the parameter space and its complexity grows

with sample size n. As defined in Lemma 4.3.1, this sieve contains “nice” boundary functions,

whose number of basis functions and maximum coefficient do not grow too quickly.

Lemma 4.3.1 Let εn be as in Theorem 4.3.1 and let Dn = ( n
logn)

1
α+1 . Then, ‖θ?−θ̂Dn,β?‖∞ ≤

Cεn for some C > 0, β? = β?
Dn
∈ (R+)Dn from Assumption 4.3.3.
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1. Define the neighborhood B?
n = {(β, d) : β ∈ Rd, d = Dn, ‖θ? − θ̂d,β‖∞ ≤ Cεn}. Then

Π(B?
n) & exp(−anεn) for some a > 0 depending on C.

2. Define the sieve Σn = {θ : θ = θ̂d,β, β ∈ Rd, d ≤ Dn, ‖β‖∞ ≤ √n/K0}. Then Π(Σcn) .

exp(−Knεn) for some K, K0 > 0.

3. The bracketing number of Σn satisfies logN(εn, Σn, ‖ · ‖∞) . nεn.

Theorem 4.3.1 states that a Gibbs posterior with linking function and prior satisfying As-

sumptions 4.3.2 and 4.3.4 concentrates on neighborhoods of Γ? defined by the Lebesgue measure

of the symmetric difference at nearly the minimax rate (up to a logarithmic factor). The same

rate is given for a Bayesian posterior in (61).

Theorem 4.3.1 Under Assumptions 4.3.1–4.3.4, for any positive sequence Mn →∞
EP [Πn({Γ : λ(Γ∆Γ?) > Mnεn})]→ 0 as n→∞,

where εn = {(logn)/n}α/(α+1), and α is the smoothness coefficient in Assumption 4.3.1.

Proof of Theorem 4.3.1

Define the set

An = {γ : ‖γ? − γ‖1 > M0Mnεn} (4.3.5)

for some M0 > 0 to be specified. For the sieve Σn in Lemma 4.3.1, part 2, see that Πn(An) ≤

Πn(Σ
c
n)+Πn(An∩Σn). The goal is to show to show that both terms in the upper bound vanish,

in L1(P), as n→∞.
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It is helpful to start with a lower bound on In =
∫
e−n{Rn(γ)−Rn(γ

?)}Π(dγ), the denominator

in both of the terms discussed above. First, write

In ≥
∫
Sn

e−n{Rn(γ)−Rn(γ
?)}Π(dγ)

where Sn is defined in Lemma 4.2.2 with tn = εn and C > 0 as in Assumption 4.3.2. From

Lemma 4.2.2, see that In & Π(Sn)e
−2Cεn , with P probability converging to 1 and by Assump-

tion 4.3.2 Sn ⊇ B∞(γ?;C0εn), so it follows from Lemma 4.3.1, part 1,

In & Π{B∞(γ?;C0εn)}e
−2Cεn & e−C1nεn ,

with P probability converging to one, and where C1 > 0 is a constant depending on C0 and C.

The next step is to bound Πn(Σ
c
n). Write this quantity as

Πn(Σ
c
n) =

Nn(Σ
c
n)

In
=
1

In

∫
Σcn

e−n{Rn(γ)−Rn(γ
?}Π(dγ).
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It will suffice to bound the expectation of Nn(Σ
c
n). By Tonelli’s theorem, independence, and

Assumption 4.3.2, see that

EP[Nn(Σ
c
n)] =

∫
Σcn

EP

[
e−n{Rn(γ)−Rn(γ

?)}
]
Π(dγ)

=

∫
Σcn

{
EP

[
e−(`(X ,γ)−`(X ,γ?))

]}n
Π(dγ)

≤
∫
Σcn

{
1− ρ‖γ− γ?)‖1

}n
Π(dγ)

≤ Π(Σcn).

By Lemma 4.3.1, part 2, see that Π(Σcn) ≤ e−Knεn .

Next, bound Πn(An ∩ Σn). Again, it will suffice to bound the expectation of Nn(An ∩ Σn).

Choose a covering An ∩ Σn by sup-norm balls Bj = B∞(γj;ωM0Mnεn), j = 1, . . . , Jn, with

centers γj in An and radii ωM0Mnεn, where ω ∈ (0, 1ḡB). Also, from Lemma 4.3.1, part 3, see

that Jn is bounded by eK1nεn for some constant K1 > 0. For this covering, immediately get

EP[Nn(An ∩ Σn)] ≤
Jn∑
j=1

EP[Nn(Bj)].

For each j, using Tonelli, independence, and Assumption 4.3.2 again, write

EP[Nn(Bj)] =

∫
Bj

{
EP

[
e−(`(X ,γ)−`(X ,γ?)

]}n
Π(dγ) ≤

∫
Bj

{
1− ρ‖γ− γ?‖1

}n
Π(dγ).
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For γ in Bj, since the center γj is in An, it follows that ‖γ − γ?‖1 is lower bounded by η =

M0Mnεn(1−ωḡB). Therefore, from the bound on Jn,

EP[Nn(An ∩ Σn)] ≤
Jn∑
j=1

EP[Nn(Bj)] ≤ e−nhM0Mnεn Jn ≤ e−(ηM0Mn−K1)nεn .

Finally, it follows that

Πn(An) ≤ Πn(An ∩ Σn) + Πn(Σcn)

=
Nn(An ∩ Σn)

In
+
Nn(Σ

c
n)

In

≤ Nn(An ∩ Σn)
e−C1nεn

1(In > e
−C1nεn) +

Nn(Σ
c
n)

In
1(In ≤ e−C1nεn)

≤ Nn(An ∩ Σn)
e−C1nεn

+ 1(In ≤ e−C1nεn).

Taking P-expectation and plugging in the bounds derived above, see that

EP[Πn(An)] ≤ e−(ηM0Mn−K1−C1)nεn

and since Mn → ∞, for large enough n, M0Mn > (K1 + C1)/η, so the upper bound vanishes

as n→∞.
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The last step is to show that the set An contains the set {Γ : λ(Γ4Γ?) > Mnεn} for some

choice of M0. A simple conversion to polar coordinates gives

λ(Γ4Γ?) =
∫
Γ4Γ?

dλ

=

∫ 2π
0

∫γ(θ)∨γ?(θ)
γ(θ)∧γ?(θ)

r dr dθ

=
1

2

∫ 2π
0

{γ(θ)∧ γ(θ?)}2 − {γ(θ)∨ γ(θ?)}2 dθ

=
1

2

∫ 2π
0

|γ(θ) − γ?(θ)| |γ(θ) + γ?(θ)|dθ.

Let γ? = infθ γ
?(θ), then it is easy to verify that

γ? ≤ |γ(θ) + γ?(θ)| ≤ diam(Ω), ∀ θ ∈ [0, 2π].

Therefore,

1
2γ

?‖γ− γ?‖1 ≤ λ(Γ4Γ?) ≤ 1
2 diam(Ω)‖γ− γ?‖1. (4.3.6)

Hence, if M0 > ( 12γ
?)−1, then An ⊃ {Γ : λ(Γ∆Γ?) > Mnεn}, which implies

EP [Πn({Γ : λ(Γ∆Γ?) > Mnεn})]→ 0

as n→∞, as was to be shown.



71

4.4 Asymptotic normality of the Gibbs posterior

In (14), the authors present a series of asymptotic results on Gibbs posteriors for a vector

parameter. They provide conditions for the Gibbs posterior to converge at rate n−1/2, deter-

mine when credible intervals are asymptotically calibrated, and show that the Gibbs posterior

distribution converges to a normal distribution under certain conditions. They make use of the

following assumptions.

Assumption 4.4.1 The true parameter θ? belongs to the interior of a compact convex subset

of d-dimensional Euclidean space.

Assumption 4.4.2 For any δ > 0, there exists ε > 0, such that

P{ sup
|θ−θ?|≥δ

1

n
(Rn(θ

?) − Rn(θ)) > −ε}
i.p.→ 0 in P − probability.

Assumption 4.4.2 establishes uniform control on the numerator of the posterior probability

away from θ?. To see this, write the posterior probability of the set Ac := {θ : |θ− θ?| ≥ δ} as

Πn(A
c) =

Nn(A
c)

Dn
=

∫
Ac exp(−nωRn(θ))dΠ(θ)∫
Θ exp(−nωRn(θ))dΠ(θ)

,

and multiply and divide by exp(nωRn(θ
?)) to get

Nn(A
c)

Dn
=

∫
Ac exp(−nω[Rn(θ) − Rn(θ

?)])dΠ(θ)∫
Θ exp(−nω[Rn(θ) − Rn(θ?)])dΠ(θ)

.
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Then, using Assumption 4.4.2, the numerator can be bounded above by

Nn(A
c) ≤ e−ωn2ε.

This uniform convergence is a strong assumption and is not always simple to verify.

Assumption 4.4.3 For θ in an open neighborhood of θ?,

(i) Rn(θ) − Rn(θ
?) = (θ− θ?)∆n(θ

?) + 1
2(θ− θ

?) ′Jn(θ
?)(θ− θ?) +Mn(θ),

(ii) Ω
−1/2
n (θ?)∆n(θ

?)/
√
n

d→ N (0, I),

(iii) Jn(θ
?) = O(1) and Ωn(θ

?) = O(1) are uniformly in n positive-definite constant matrices,

(iv) for each ε > 0 there is a sufficiently small δ > 0 and large C > 0 such that

(a) lim supn→∞ P{supC/
√
n≤|θ−θ?|≤δ

|Mn(θ)|
n(θ−θ?)2

> ε} < ε,

(b) lim supn→∞ P{sup|θ−θ?|≤C/
√
n |Mn(θ)| > ε} = 0.

Assumption 4.4.3 imposes rather strict requirements on the empirical risk function. Part

(i) essentially requires a second-order Taylor expansion where ∆n acts like a gradient, Jn acts

like a second derivative matrix, and Mn is a remainder term. Part (iv) says that the remainder

termMn(θ) vanishes in n−1/2-sized neighborhoods of θ? and is bounded above by approximately

n|θ−θ?|2 outside of these neighborhoods. This very simple example of inference on a population

mean illustrates Assumption 4.4.3.

Suppose a data analyst can sample i.i.d. data X n from a distribution P with mean θ? ∈ R

fulfilling Assumption 4.4.1 above. One possible choice of empirical risk function for estimating
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the mean is squared error loss, i.e. Rn(θ) =
1
n

∑n
i=1(Xi − θ)2. The empirical risk difference can

be written

Rn(θ) − Rn(θ
?) =

1

n

n∑
i=1

2Xi(θ? − θ) + θ2 − (θ?)2.

Take ∆n(θ) =
1
n

∑n
i=1 2(θ− Xi) and Jn(θ) = 2. Then,

Rn(θ) − Rn(θ
?) = (θ− θ?)∆n(θ

?) +
1

2
(θ− θ?) ′Jn(θ

?)(θ− θ?)

exactly with remainder 0. Further, ∆n(θ
?) = 2(θ? − 1

n

∑n
i=1Xi) so Ω

−1/2
n (θ?)∆n(θ

?)/
√
n is

approximately standard normal for Ωn(θ
?) = 4.

Given the above assumptions, define the parameter h :=
√
n(θ− θ?) − Jn(θ

?)−1∆n(θ
?)/
√
n

and the corresponding Gibbs posterior on the h space, Πn,h. Proposition 4.4.1 below says that

under Assumptions 4.4.1-4.4.3, the Gibbs posterior concentrates on a n−1/2 neighborhood of

θ? with size measured by the total variation norm. That is, the convergence rate of the Gibbs

posterior is n−1/2 in this setting. Further, when n is large, the Gibbs posterior is approximately

normal with mean θ? + Jn(θ
?)−1∆n(θ

?)/n and covariance matrix Jn(θ
?)−1/n.

Proposition 4.4.1 Under Assumptions 4.4.1-4.4.3, and for any 0 ≤ α <∞,

||Πn,h(h) − Π∞,h(h)||TVM(α) :=

∫
Hn

|Πn,h(h) − Π∞,h(h)|dh i.p.→ 0,
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where Hn = {
√
n(θ− θ?) − Jn(θ

?)−1∆n(θ
?)/
√
n : θ ∈ Θ} and

Π∞,h(h) :=
√

det Jn(θ?)

(2π)d
exp(−

1

2
h ′Jn(θ

?)h).

The authors of (14) highlight several problems meeting their assumptions including re-

gression models, generalized method of moments models, quasi-likelihood models, and some

time-series models. However, as demonstrated in Chapters 5 and 6, empirical risk functions

failing Assumption 3 are common, such as those based upon misclassification error loss func-

tions. In those cases the results of Sections 4.2.1 4.3.2 and provided by this dissertation are

applicable.



CHAPTER 5

APPLICATION OF GIBBS MODELS TO THE MINIMUM CLINICALLY

IMPORTANT DIFFERENCE

Portions of this chapter are reprinted from Journal of Statistical Planning and Inference,

Vol 187, Syring, N. A. and Martin, R., “Gibbs posterior inference on the minimum clinically

important difference”, 67-77, Copyright (2017). See the statement of permission by Elsevier in

the appendix.

5.1 Introduction

In clinical trials, often the main objective is assessing the efficacy of a treatment. However,

experts have observed that statistical significance alone does not necessarily imply efficacy

(42). For instance, a study with high power can detect statistically significant differences,

but these may not translate to practical differences noticeable by the patients. As a result,

a cutoff value different than a statistical critical value is desired that can separate patients

with and without clinically significant responses. This cutoff is called the minimum clinically

important difference, or MCID for short (43). Accurate inference on the MCID is crucial for

clinicians and health policy-makers to make educated judgments about the effectiveness of

certain treatments. Indeed, the U. S. Food and Drug Administration held a special work-

shop in 2012 on methodological developments towards improved inference on the MCID; see

https : //federalregister.gov/a/2012− 27147.

75
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The basic setup is that, in addition to a scalar diagnostic measure for each patient, which

would be used to assess the statistical significance of a treatment, one also has access to a

“patient-reported outcome,” a binary indicator of whether or not the patient felt that the

treatment was beneficial. Then, roughly, the MCID is defined as the cutoff value such that,

if the diagnostic measure exceeds this cutoff, then the patient is likely to observe a benefit

from the treatment. A more precise description of the problem setup is given in Section 4.2.

The challenge in making inference on the MCID is in modeling the joint distribution for the

diagnostic measure and patient-reported outcome. Given a model, standard likelihood-based

methods—Bayesian or non-Bayesian—could be used, but specifying a sound model is difficult

because the MCID is a rather complicated functional thereof. To avoid the potential bias caused

by a misspecified parametric model and the inefficiencies that result from an overly-complex

nonparametric model, a model-free approach is an attractive alternative. Recently, (37) propose

a M-estimation framework for estimating the MCID, that does not require a model, but the

distribution theory needed to provide valid tests or confidence intervals for the MCID based on

their approach is apparently out of reach.

This chapter discusses how a Gibbs posterior can provide inference on the MCID without

requiring a likelihood, thus avoiding the modeling step and the risk of misspecification while

providing easy access to credible intervals, and shows that this new method compares favorably

to the existing M-estimation method in terms of both large-sample theory and finite-sample

performance. Construction of the Gibbs posterior takes advantage of the representation in (37)

of the MCID as the minimizer of an expected loss. The given Gibbs posterior distribution is
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easy to compute and, with a suitable scaling, is shown to provide valid and efficient credible

intervals for the MCID.

The focus in this paper is the MCID application, but some general comments about Gibbs

posteriors are worth mentioning. First, the problem is related to that of model misspecification,

and it is known ((9), (58), (101), (51), (17), and (77)) that, asymptotically, the posterior

distribution behaves reasonably under misspecification provided that it is Gibbs-like in the

sense that the negative log-likelihood used resembles a suitable loss function; a nice example of

this type is (91). Second, although misspecification is usually viewed as a bad thing, there might

be reasons to “misspecify on purpose.” For example, one may not wish to spend the resources

needed to flesh out a full model, including priors, and to compute the full posterior when,

ultimately, it will be marginalized to the parameter of interest. The Gibbs posterior described

here has the advantage of being defined directly on the parameter of interest, simplifying both

prior specifications and posterior computations.

The remainder of this chapter is organized as follows. Section 5.2 introduces notation for

the MCID problem and formulates its definition as a minimizer of an expected loss. This

leads naturally to the M-estimator proposed in (37) and this section highlights two important

improvements on their convergence rate result: first, the rate is improved and, second, the

relationship between the rate and the local properties of the function in Equation 5.2.3 have

been substantially clarified. In Section 5.3, after a motivating illustration, the Gibbs posterior

distribution for the MCID is defined, and it is shown that the posterior, and the corresponding

posterior mean, converge at the same rate as the M-estimator of (37). Simulation results are
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presented in Section 5.4, and the take away message is that the Gibbs posterior here presented,

or a suitably scaled version thereof, provides quality inference on MCID, in terms of estimation

accuracy and interval estimate coverage and length. Some concluding remarks are given in

Section 5.5, and technical details are given in Section 5.6.

5.2 Minimum clinically important difference

5.2.1 Notation and definitions

In clinical trials for drugs or medical devices, it is standard to judge the effectiveness of the

treatment based on statistical significance. However, it is possible that the treatment effect may

be significantly different from zero in a statistical context, but the effect size is so small that

the patients do not experience an improvement. To avoid the costs associated with bringing

to market a treatment that is not clinically effective, it is advantageous to bring the patients’

assessment of the treatment effect into the analysis. While the need for a measure of clinical

significance is well-documented (48), it seems there is no universal definition of MCID and,

consequently, there is no standard methodology to make inference on it. Recent efforts in this

direction were made by (87) and (98). (37) provide a mathematically convenient formulation,

described next, in which the MCID is expressed as a minimizer of a suitable loss function.

Let Y ∈ {−1, 1} denote the patient reported outcome with “Y = 1” meaning that the

treatment was effective and “Y = −1” meaning that the treatment was not effective. Let X be

a continuous diagnostic measure taken on each patient. Let P denote the joint distribution of
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X = (X, Y), and p the marginal density of X with respect to Lebesgue measure. Given θ ∈ R,

define the function l(X , θ) by

`(X , θ) = 1

2
{1− Y sign(X− θ)}, (X, Y) ∈ R× {−1, 1}, (5.2.1)

where sign(x) = 1 is x ≥ 0 and −1 otherwise, and write R(θ) = EP[`(X , θ)] for the risk function,

the expectation of `(X , θ) with respect to the joint distribution P. Then the MCID, denoted

by θ?, is defined as

θ? = arg min
θ
R(θ). (5.2.2)

That is, the MCID is the minimizer of the risk function R, and depends on the distribution P

in a rather complicated way.

The intuition behind this definition is the alternative expression for R(θ):

R(θ) = P{Y 6= sign(X− θ)},

i.e., θ? minimizes, over θ, the probability that sign(X − θ) disagrees with Y. In other words,

sign(X−θ?) is the best predictor of Y in terms of minimum misclassification probability. Another

representation of the MCID, as demonstrated by (37), that will be convenient below is as a

solution to the equation η(θ) = 1
2 , where

η(x) = P(Y = 1 | X = x) (5.2.3)
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is the conditional probability function. If η is continuous and strictly increasing, then θ? will

be the unique solution to the equation η(θ) = 1
2 . If η is only upper semi-continuous, then define

θ? as inf{x : η(x) ≥ 1
2 }, and an argument similar to that in Lemma 1 of (37) shows that this θ?

solves the optimization problem Equation 5.2.2.

5.2.2 M-estimator and its large-sample properties

(37) propose to estimate the MCID by minimizing an empirical risk. Let

Pn = n−1
∑n
i=1 δ(Xi,Yi) be the empirical measure, based on the observations Xi = {(Xi, Yi) :

i = 1, . . . , n}, where δ(x,y) is the point-mass measure at (x, y). Then the empirical risk is

Rn(θ) = Pnl(X , θ), and an M-estimator of MCID is obtained by minimizing Rn(θ), i.e.,

θ̂n = arg min
θ
Rn(θ). (5.2.4)

Computation of the estimator is straightforward since it takes only finitely many values de-

pending on the order statistics for the X -sample. Therefore, a simple grid search is guaranteed

to quickly identify the minimizer θ̂n.

A shortcoming of this approach is that, due to the discontinuity of the loss function, an

asymptotic normality result for the M-estimator does not seem possible; see Section 5.2.3.

Therefore, valid confidence intervals for the MCID based on the M-estimator are not currently

available. This provides motivation for a Bayesian approach, where credible intervals, etc, can

be easily obtained, but some non-standard ideas are needed to deal with the fact that θ is

defined by a loss function, not a likelihood; see Section 5.3. Bootstrap methods are available
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(see Section 5.4) but there is a general concern about their validity because the rate is not the

usual n−1/2.

Consistency and convergence rates for the M-estimator θ̂n have been studied by (37). The

rates rely on the local behavior of the function η and of the marginal distribution of X around

θ?. Theorem 5.2.1 clarifies and substantially improves upon the rate result given in (37). The

assumptions here are more efficient than theirs, and the differences are discussed below.

Assumption 5.2.1 The marginal density p of X is continuous and bounded away from 0 and

∞ on an interval containing θ?.

Assumption 5.2.2 The function η in Equation 5.2.3 is non-decreasing, upper semi-continuous,

and satisfies η(θ) > η(θ?) for all θ > θ?. Furthermore, there exists constants c > 0, and γ ≥ 0

such that

min |η(θ? ± ε) − η(θ?)| > cεγ, for all small ε > 0, (5.2.5)

where “min” is with respect to the two choices in “±.”

The γ parameter may be interpreted as an“ease of identification” index, where smaller γ

means that the η function is, in a certain sense, changing more rapidly near θ?, making the

MCID easier to identify. In particular, if η has a jump discontinuity at θ?, then γ = 0, and this

corresponds to the easiest case; if η is differentiable at θ?, then γ = 1, the most difficult case;

and if η is continuous but not differentiable at θ?, then γ ∈ (0, 1), an intermediate case. For

a quick example of the latter case, intermediate ease of identification, fix α,β ∈ (0, 1), α ≥ β,

and define η(x), x ∈ [−1, 1] as
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η(x) =


1
2(1− |x|α), if x ∈ [−1, 0),

1
2(1+ x

β), if x ∈ [0, 1].

.

Clearly, the MCID is θ? = 0, η is continuous but not differentiable there, and Equation 5.2.5

holds with γ = α. Although this “ease of identification” index is non-standard, it appears to be

the key determinant of the convergence rate. Indeed, the convergence rate of the M-estimator

in Theorem 5.2.1 below improves as γ decreases to 0, explaining why γ = 0 and γ = 1 are the

“easiest” and the “most difficult” cases, respectively.

Theorem 5.2.1 Under Assumptions 5.2.1–5.2.2, the M-estimator θ̂n in Equation 5.2.4 satis-

fies θ̂n − θ
? = OP(n

−r) as n→∞, where r = (1+ 2γ)−1, and γ is defined in Equation 5.2.5.

Proof 5.2.1 See Section 5.6.2.

The assumptions presented here are different than those in the M-estimator convergence rate

theorem of (37), so some comments are in order. In particular, they impose a Hölder continuity

condition on η, as well as a “low noise assumption,” in Equation (4) in their paper, which upper-

bounds the P-probability assigned to events of the form {|η(X)− 1
2 | ≤ ξ}. This implicitly requires

that η not be too flat near θ?, just like the condition (Equation 5.2.5), and together with their

Hölder condition, they derive a locally uniform lower bound on the risk difference R(θ)−R(θ?),

similar to the one derived in Lemma 5.6.1. However, the approach used here combined with

more-direct assumptions appear to be more efficient, because the lower bound on R(θ) − R(θ?)

has been improved and, consequently, a better convergence rate obtained. Indeed, in the case
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where η is differentiable at θ?, the rate is n−1/3 whereas (37) obtains n−1/5 (up to logarithmic

terms). Similarly, for the above example with powers α ≥ β, here the rate is seen to be n−r,

with r = (1 + 2α)−1 whereas (37) obtains n−r ′ , with r ′ = {2(1 + 2α) − β/α}−1. So, besides

showing how the rate depends critically on the “ease of identification” index γ, these examples

also highlight the significant improvements in the convergence rate calculations.

5.2.3 On smoothed versions of the problem

It was mentioned above that Rn(θ) not being smooth causes some problems in terms of

limit distribution theory, etc. It would, therefore, be tempting to replace that non-smooth loss

function by something smooth, and hope that the approximation error is negligible. One idea

would be to introduce a nice parametric model for this problem. For example, consider a binary

regression model, where η(x) = F(β0 + β1x) and F is some specified distribution function, such

as logistic or normal. Then the MCID corresponds to the median lethal dose (for instance, (50)

and (1)). Such a model is smooth so asymptotic normality holds. However, unless the true P has

the specified form, there will be non-zero bias that cannot be overcome, even asymptotically;

see Section 5.3.1. Since the bias is unknown, sampling distribution concentration around the

wrong point cannot be corrected, so is of little practical value.

A slightly less extreme smoothing of the problem is to make a minor adjustment to the

original loss function `(X , θ). As in (37), introduce a smoothing parameter τ > 0 and consider

`τθ(x, y) = min
{
1,
[
1− τ−1 y sign(x− θ)

]+}
,
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where u+ = max(u, 0) denotes the positive part. Write Rτ(θ) = EP[`(X , θ)τ]. Based on argu-

ments in (37), it can be shown that Rτ(θ) converges uniformly to R(θ) as τ→ 0, so, for small τ,

the minimizer of Rτ would be close to θ?. For fixed τ, one can define Rτn(θ) = Pn`(X , θ)τ just as

before and consider an M-estimator θ̂τn = arg minθ R
τ
n(θ). An asymptotic normality result for

θ̂τn is available, but the proper centering is not at θ? and the asymptotic variance is inversely

proportional to τ. So, one could take τ = τn vanishing with n in an effort to remove the bias,

but a price must be paid in terms of the variance. Again, having an asymptotic normality result

with either an unknown non-zero bias or a very large variance is of little practical value.

Based on these remarks, apparently there is no hope in trying to smooth out the problem to

make it a standard one with the usual asymptotic distribution theory. So, in order to construct

useful interval estimates, etc, one needs some different ideas.

5.3 A Gibbs posterior for MCID

5.3.1 Motivation

As discussed above, estimation of the MCID can be achieved without specifying a model,

but the distribution theory needed to develop valid interval estimates is lacking. A Bayesian

approach automatically provides uncertainty quantification, but it requires a model for the

joint distribution P. To motivate this probability model-free Gibbs posterior that follows,

the apparent sensitivity of some “standard” Bayesian posterior distributions—parametric and

nonparametric—to the underlying P is demonstrated by example. To be clear, the claim is not

that Bayesian methods, in general, are inappropriate for this MCID problem, only that the
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posterior can be particularly sensitive to the choice of model for P so a less-sensitive approach,

if one were available, would be attractive.

Suppose the analysis begins with a model for P given by a joint density/mass function

fβ(x, y), depending on some parameter β, possibly infinite-dimensional, which would typically

be different from θ. Given a prior for β, a posterior distribution for β can be readily obtained via

Bayes theorem, which can be marginalized to get a posterior distribution for θ. In particular,

logistic regression is a sort of black-box approach to study the relationship between a binary

response and a quantitative predictor, so consider a Bernoulli model for Y, given X = x, where

the success probability is F(β0+β1x), where F is the standard logistic distribution function. In

this case, the MCID is just the median lethal dose, i.e., θ = −β0/β1. The choice of the logit

link function F is quite rigid, but a more flexible nonparametric approach is available; see, e.g.

(15).

There are pros and cons to both of the approaches just described. Assuming that the logistic

regression model is well-specified, inference on the MCID ought to be efficient. However, if the

model is misspecified in some way, then there could be non-negligible bias that cannot be

overcome, even asymptotically. The model that treats the link function nonparametrically is

more flexible and, therefore, is less prone to bias, but at the cost of an increased computational

burden and lower efficiency, i.e., the posterior for the MCID is more diffuse. Old-fashioned

modeling would be a middle-ground between the extremes of a black-box logistic regression

and an overly complex nonparametric regression, but this certainly requires some investment

and, unfortunately, is not foolproof. The proposed Gibbs approach is an alternative middle-
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ground, one that avoids misspecification bias, computational and statistical inefficiency, and

modeling investment.

For clarity, here is an illustration of the points just raised. In particular, compare the Gibbs

posterior defined in Section 2.2 using the linking function in Equation 5.2.1 to both a standard

Bayesian logistic regression and a nonparametric binary regression, (15). For the Bayesian

logistic regression consider the vague priors for (β0, β1) given in (76), but note that the results

do not appear to be sensitive to this choice. Suppose that the true model generating data (X, Y)

has a distribution function F for X and, given X = x, Y is Bernoulli ±1 with success probability

F(x). Consider two different forms of F, both two-component normal mixtures:

X ∼ 0.7N(−1, 1) + 0.3N(1, 1) and X ∼ 0.7N(−1, 1) + 0.3N(3, 1).

The true MCID may be calculated by solving Equation 5.2.3; it is equal to the median of the

X distribution, specifically θ? = −0.514 in the first example and θ? = −0.434 in the second

example. Of course, the logistic regression model is misspecified, but the nonparametric model

should not be affected by this. But how will they perform in the two examples?

Plots of the marginal posterior density for θ are shown in Figure 5.3.1 for a simulated data

set of size n = 500 obtained from each of the three methods—Gibbs, logistic regression, and

nonparametric—one for each marginal distribution for X. In Panel (a) the posterior distri-

butions for all three models put their mass near the true MCID. However, in Panel (b) the

posterior distribution for the Bayesian logistic regression is clearly biased away from the true
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Figure 5.3.1. Plots of (kernel estimates of) the posterior density for MCID. “Nonpar.”
corresponds to the nonparametric binary regression model; “Logistic” corresponds to the

posterior based on the genuine Bayes logistic model; “Gibbs” is the proposed likelihood-free
Bayesian posterior; true MCID θ? marked with a dotted vertical line.

MCID. The nonparametric Bayesian posterior is very spread out, making it less informative

for inference on the MCID. The Gibbs approach, however, is right on the mark in both cases,

suggesting that it is neither sensitive to model misspecification nor does it suffer from the

inefficiency of the nonparametric approach.

5.3.2 Posterior convergence rates

The Gibbs posterior convergence rate describes, roughly, the size of the neighborhood around

θ? that it assigns nearly all its mass as n → ∞. An important consequence of a posterior
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convergence rate result is that typical posterior summaries also have nice convergence rate

properties; see Corollary 5.3.1.

It turns out that the posterior convergence rate result holds under virtually the same con-

ditions as Theorem 5.2.1 for the M-estimator. The only additional condition needed concerns

the prior, and it is very mild.

Assumption 5.3.1 The prior distribution Π for θ has a density π which is continuous and

bounded away from zero in a neighborhood of θ?.

Theorem 5.3.1 Under Assumptions 5.2.1–5.3.1, the Gibbs posterior distribution satisfies

Πn(An) = oP(1) as n → ∞, where An = {θ : |θ − θ?| > ann
−r}, r = (1 + 2γ)−1 for γ in

(Equation 5.2.5), and an is any diverging sequence.

Proof 5.3.1 See Section 5.6.

Corollary 5.3.1 Under the conditions of Theorem 5.3.1, if the prior mean for θ exists, then

the posterior mean θ̃n satisfies θ̃n − θ
? = OP(ann

−r) as n→∞.

Proof 5.3.2 See Section 5.6.

5.3.3 On scaling the loss function

In Lemma 5.3.1 below, it is shown that the Gibbs posterior may be scaled by a vanishing

sequence without sacrificing the convergence rate in Theorem 5.3.1.

Lemma 5.3.1 Under Assumptions 5.2.1–5.3.1, with r = (1+2γ)−1 and γ defined in (Equation 5.2.5),

the conclusion of Theorem 5.3.1 holds if the loss function `(X , θ) is scaled by a sequence ωn

that vanishes strictly more slowly than n−γr.
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Proof 5.3.3 Similar to the proof of Theorem 5.3.1 in Section 5.6.

By experimentation, with continuous η, it was found that a learning rate of approximately

ωn = cn−1/4, for c ∈ (1, 2), worked well in terms of credible interval calibration. To avoid

making an ad hoc choice of constant, the algorithm in (93) is used; see Chapter 7. This scaling

algorithm is applied to each simulated data set, producing a different, data-dependent value

of the scale parameter each time. Briefly, ωn is determined by solving the equation that sets

the Gibbs posterior credible interval coverage probability equal to the desired confidence level.

The algorithm utilizes standard techniques including stochastic approximation, MCMC, and

bootstrapping. In the following simulations, the algorithm succeeds in producing approximately

calibrated credible intervals. In the numerical examples that follow, the ωn selected by the

algorithm is, on average, roughly 1.5n−1/4, which is consistent with the result in Lemma 5.3.1.

5.4 Numerical examples

Consider four examples to illustrate the performance of the Gibbs posterior for the MCID.

Each example has a different marginal distribution for X:

Example 1. X ∼ 0.7N(−1, 1) + 0.3N(1, 1);

Example 2. X ∼ N(1, 1);

Example 3. X ∼ unif(−2, 4).

Example 4. X ∼ gam(2, 0.5).

These examples cover a variety of distributions: bimodal, normal, flat, and skewed. In each

example, n independent samples are taken from the respective marginal distributions, and
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then, given Xi = xi, take Yi as a ±1 Bernoulli with probability F(xi), i = 1, . . . , n, where

F is the distribution function of X and ber(p) denotes a Bernoulli distribution with success

probability p. The relevant summaries are the bias and standard deviation of the estimators,

and the coverage probability and length of the 90% interval estimates. Three sample sizes

were considered, namely, n = 250, 500, 1000, and the results in Table 5.4.1 and Table 5.4.2

are based on 1000 Monte Carlo samples. The performance of the Gibbs posterior, using the

scaling algorithm in (93) and a flat prior for θ, was compared to a baseline method, namely,

the M-estimator and the corresponding percentile bootstrap confidence intervals.

Table 5.4.1 shows the empirical bias and standard deviation for both the M-estimator and

the posterior mean while Table 5.4.2 shows the empirical coverage probability and length for

the 90% interval estimates based on bootstrapping the M-estimator and on the Gibbs posterior

sample. Here it can be seen that the additional flexibility of being able to choose the scaling

parameter/sequence provides approximately calibrated posterior credible intervals for each n.

Overall, the performance of the Gibbs posterior is comparable to the bootstrap, the take-away

message being that a Bayesian-like approach need not sacrifice desirable frequentist properties.

If reliable prior information is available, which is possible in medical applications where studies

are replicated, then this can be readily incorporated into the analysis, naturally providing some

improvements. For example, if an accurate, informative N(−0.5, 1) prior is used in Example 1

for n = 250, the bias is reduced to 0.01 and the credible interval length is reduced to 0.83

with 90% coverage, an improvement over bootstrap confidence intervals. Additionally, the

simulation examples demonstrate the robustness of the Gibbs model as it performs well in a
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Example Method n = 250 n = 500 n = 1000

1 M-estimator 0.03 (0.21) 0.01 (0.16) 0.01 (0.12)
Posterior mean 0.03 (0.22) 0.01 (0.17) 0.01 (0.13)

2 M-estimator 0.02 (0.16) 0.02 (0.12) 0.01 (0.10)
Posterior mean 0.00 (0.15) 0.01 (0.12) 0.00 (0.10)

3 M-estimator 0.01 (0.12) 0.01 (0.10) 0.01 (0.08)
Posterior mean 0.01 (0.12) 0.00 (0.10) 0.00 (0.07)

4 M-estimator 0.01 (0.12) 0.01 (0.09) 0.01 (0.07)
Posterior mean 0.03 (0.10) 0.02 (0.08) 0.01 (0.06)

TABLE 5.4.1

ABSOLUTE EMPIRICAL BIAS (AND STANDARD DEVIATION) FOR POINT
ESTIMATES.

variety of settings. On the other hand, standard models may not be robust. Bayesian logistic

regression, for instance, sometimes performs worse than the Gibbs model, with an average MSE

over 1000 simulations of 0.07 for Example 3 and 0.20 for Example 4.

5.5 Conclusion

In this chapter, motivated by a real application in medical statistics, a Gibbs model was de-

veloped and compared to existing techniques. In certain applications, like this MCID problem,

the statistician may be reluctant to use a likelihood-based model due to fear of misspecifica-

tion, computational difficulty, or for some other reason. The Gibbs model offers an alternative

Bayesian-like approach that does not require a probability model, thus avoiding some of these

potential challenges, and this advantage may make Gibbs models widely applicable. As demon-

strated, the proposed Gibbs posterior is theoretically justified and provides quality point and
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Example Method n = 250 n = 500 n = 1000

1 Bootstrap 0.91 (0.86) 0.91 (0.69) 0.93 (0.53)
Gibbs 0.89 (0.89) 0.89 (0.69) 0.91 (0.55)

2 Bootstrap 0.91 (0.60) 0.91 (0.48) 0.92 (0.38)
Gibbs 0.89 (0.61) 0.91 (0.50) 0.90 (0.38)

3 Bootstrap 0.90 (0.47) 0.90 (0.38) 0.91 (0.30)
Gibbs 0.91 (0.48) 0.90 (0.37) 0.90 (0.30)

4 Bootstrap 0.92 (0.39) 0.92 (0.31) 0.92 (0.25)
Gibbs 0.91 (0.41) 0.90 (0.31) 0.90 (0.24)

TABLE 5.4.2

EMPIRICAL COVERAGE PROBABILITY (AND MEAN LENGTH) OF 90% INTERVAL
ESTIMATES.

interval estimates in practice. So, in a certain sense, the Gibbs posterior provides the best

of both worlds: that is, one obtains a theoretically justifiable posterior distribution without

unnecessary modeling and computations and without worry of model misspecification.

The technical details in this chapter are kept relatively simple due to the fact that θ is a

scalar and `(X ; θ) is bounded, but the methods can be applied more generally; see Chapter 3.

For example, (37) proposed a generalization of the MCID problem in which θ is actually a

function of some other covariates, thereby making the MCID “personalized” in a certain sense.

Further work on extending both the theory and the computational methods presented here to

this more general case is ongoing. A recent paper (see (96) and Chapters 3 and 5) develops

a nonparametric Gibbs posterior for inference on a function and prove a smoothness-adaptive
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convergence rate theorem. The techniques developed therein may be able to be applied in the

personalized MCID problem.

5.6 Technical details and proofs

5.6.1 Preliminary results

Here, for the sake of completeness, some basic facts about the empirical risk Rn(θ) and the

risk R(θ) are summarized. Details will be given only for those results not taken directly from

(37).

First, consider properties of the expected loss difference, R(θ) − R(θ?). By definition of θ?,

and Assumption 4.2.2 about η, it is known the difference is strictly positive except at θ = θ?.

To see this, (37) show that

R(θ) − R(θ?) = 2

∫θ
θ?
{η(x) −

1

2
}p(x)dx. (5.6.1)

Moreover, by continuity of p in Assumption 5.2.1 and almost everywhere continuity of η derived

from Assumption 5.2.2, see that the derivative of R(θ)−R(θ?) could be zero only at θ = θ?, which

implies that the function is uniformly bounded away from zero outside an interval containing

θ?. This latter point is important because asymptotic results of, say, the M-estimator require

that the minimizer θ? be “well-separated” (e.g. (100) Theorem 5.7). The next goal is to find

a lower bound on the expected loss difference in Equation 5.6.1 for parameter values far from

the MCID. That is, calculate

inf
|θ−θ?|>δ

R(θ) − R(θ?). (5.6.2)
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The following result specifies the bound in Equation 4.2.1 by showing α = 1+γ for the MCID.

This result is new and improves the bound given in (37).

Lemma 5.6.1 Under Assumptions 5.2.1–5.2.2, there exists a constant c > 0 such that Equa-

tion 5.6.2 is lower-bounded by cδ1+γ for all sufficiently small δ > 0.

Proof of Lemma 5.6.1

Since η(x) is non-decreasing in x (Assumption 4.2.2) the infimum in Equation 5.6.2 occurs

at the boundary, either at θ? + δ or at θ? − δ. The two cases can be handled similarly, so it is

sufficient to consider the case that the infimum is attained at θ?+ δ. Monotonicity of η implies

that η(θ?+δ) > η(θ?+δ/2) > η(θ?). Also, according to Assumption 5.2.1, the marginal density

p is bounded away from zero on an interval containing θ?, so let b be the infimum over the

interval [θ?−δ, θ?+δ]. Using Equation 5.6.1, one can lower-bound R(θ?+δ)−R(θ?) as follows:

R(θ? + δ) − R(θ?) =

∫θ?+δ
θ?

{2η(x) − 1}p(x)dx

=
(∫θ?+δ/2
θ?

+

∫θ?+δ
θ?+δ/2

)
{2η(x) − 1}p(x)dx

> bδ {η(θ? + δ/2) − 1
2 }

≥ b δ {η(θ? + δ/2) − η(θ?)}.

By Assumption 5.2.2, in particular, Equation 5.2.5, see that the difference in the last display is

bounded below by c1(δ/2)
γ. Plugging this in at the end of the above display gives the advertised

lower bound, cδ1+γ, where c = bc1/2
γ.
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Second, some approximation properties are needed for the class of functions

Lδ := {`(X , θ) − `(X , θ?) : |θ− θ?| < δ}, δ > 0.

(37) shows, using the standard partition in the classical Glivenko–Cantelli theorem (e.g. (100),

Example 19.6), that the L1(P) ε-bracketing number N[ ](ε,L∞, L1(P)) is proportional to ε−1.

This is enough to show that the class L∞ is Glivenko–Cantelli, from which a uniform law of

large numbers follows. However, better rates can be obtained by using a local bracketing, i.e.,

of Lδ for finite δ, and Assumptions 5.2.1–5.2.2. Such considerations allow us to remove the

unnecessary logarithmic term on the rate presented in Theorem 1 of (37).

Lemma 5.6.2 N[ ](ε,Lδ, L1(P)) . δ/ε.

Proof of Lemma 5.6.2

For the standard Glivenko–Cantelli theorem partition, which is used in (37), one needs to

partition the interval [0, 1] into k intervals of length less than ε, so k must be greater than 1/ε,

but can be taken less than 2/ε. By Assumption 5.2.1, see that δ . P(|X − θ?| < δ) . δ. For

the local bracketing, this means one only needs partition an interval of length proportional to

δ into intervals of length less than ε. Therefore, the total number of intervals is . δ/ε, as was

to be shown.



96

From this and the fact that the brackets are pairs of indicator functions, one can get a

bound on the L2(P) bracket number, i.e., N[ ](ε,Lδ, L2(P)) . (δ/ε)2; see Example 19.6 in (100).

Then the bracketing integral is

J[ ](δ,Lδ, L2(P)) :=

∫ δ
0

{logN[ ](ε,Lδ, L2(P))}
1/2 dε . δ. (5.6.3)

Finally, a maximal inequality is needed for the empirical process Gn(`(X , θ) − `(X , θ?))

for θ near θ?. This result provides the value of the bound in Equation 4.2.2. Together,

Lemma 5.6.1 and Lemma 5.6.3 below provide the Gibbs posterior convergence rate. Towards

proving Lemma 5.6.3, (37) show that g(θ) = I{|θ−θ?|≤δ} is an envelop function for Lδ, with

‖g‖L2(P) . δ
1/2. Then, given the bound Equation 5.6.3 on the bracketing integral, the maximal

inequality in Corollary 19.35 of (100) provides the following.

Lemma 5.6.3 EP{sup|θ−θ?|<δ |Gn(l(X , θ) − l(X , θ?))|} . δ1/2.

5.6.2 Proofs from Section 5.2.2

Proof of Theorem 5.2.1

Similar to the proof of Theorem 2 in (107) and of Theorem 5.52 in (100). The M-estimator

θ̂n, the global minimizer of Rn, satisfies Rn(θ̂n) ≤ Rn(θ?) + ζn for any ζn. Let K > 0 be as in

Lemma 4.2.1 in Section 3.1, and take ζn = Ks
1+γ
n , where sn = ann

−r, r = (1 + 2γ)−1, and an

is any divergent sequence. Then see that

|θ̂n − θ
?| > sn =⇒ sup

|θ−θ?|>sn

{Rn(θ
?) − Rn(θ)} ≥ −Ks1+γn .



97

By Lemma 4.2.1, the latter event has vanishing P-probability, which implies that P(|θ̂ − θ?| >

sn)→ 0. Therefore, θ̂n − θ
? = oP(sn) or, since an is arbitrary, θ̂n − θ

? = OP(n
−r).

5.6.3 Proofs from Section 5.3.2

Proof of Theorem 5.3.1

From Lemma 4.2.1 and Lemma 5.6.1 one may get an exponential bound on the numerator

Nn(An), i.e., Nn(An) ≤ exp{−Kns1+γn } with P-probability approaching 1. For the denominator

Dn, by Corollary 4.2.1, for tn = ãnn
− 1+γ
1+2γ , where ãn is as in the proof of Theorem 4.2.1, see

that Dn & Π(Θn)e−2ntn , where Θn = {θ : R(θ) − R(θ?) ≤ tn}. The claim is that

Θn ⊇ {θ : |θ− θ?| ≤ Htn},

for some H > 0. To see this, first note that if θ is close to θ?, then by an argument similar to

that in the proof of Lemma 5.6.1 and using the boundedness of η,

R(θ) − R(θ?) .
∫θ
θ?
p(x)dx.

The remaining term in the upper bound is the marginal P-probability assigned to the small

interval around θ? which, by Assumption 4.2.1, can be bounded by a constant times |θ − θ?|.

Therefore, R(θ) − R(θ?) . |θ − θ?| so, if |θ − θ?| . tn, then R(θ) − R(θ?) . tn. Under

Assumption 5.3.1, one can bound Π(Θn) & tn. Thus,

Dn & exp(−2n
γ

1+2γ − logn
1+γ
1+2γ ) & exp(−C0n

γ
1+2γ ), with P-probability approaching 1,
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for some C0 > 0. Putting together the bounds on the numerator and denominator see that, for

some constant M > 0,

Nn(An)

Dn
. exp

{
−M

(
a1+γn n

γ
1+2γ − ãnn

γ
1+2γ

)}
,

and since a1+γn − ãn ↑ ∞ by construction, the upper bound vanishes, completing the proof.

Proof of Corollary 5.3.1

Set sn = ann
−r for an an arbitrary divergent sequence. Next, define s̃n = ãnn

−r(γ), where

ãn is such that ãn/an → 0, e.g., ãn = logan. Now partition R as {θ : |θ − θ?| ≤ s̃n} ∪ {θ :

|θ− θ?| > s̃n}, and write

|θ̃n − θ
?| ≤
∫
|θ− θ?|Πn(dθ) ≤ s̃n +

∫
|θ−θ?|>s̃n

|θ− θ?|Πn(dθ), (5.6.4)

where the first inequality is by Jensen. From the proof of Theorem 5.3.1, the posterior away

from θ? is bounded by the prior times some Zn = oP(1), uniformly in θ. That is,

∫
|θ−θ?|>s̃n

|θ− θ?|Πn(dθ) ≤ Zn
∫
|θ− θ?|Π(dθ).

In fact, one can bound Zn more precisely:

Zn . exp
{
−M

(
ã1+γn n

γ
1+2γ − nβ

)}
, sufficiently small β > 0.
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Dividing through Equation 4.2.4 by sn see that s−1n |θ̃n − θ
?| is bounded by a constant times

ãn/an + e
−ζn

∫
|θ− θ?|Π(dθ),

where ζn =Mã1+γn n
γ

1+2γ −Mnβ + logan − r logn. The first term in the upper bound goes to

zero by the choice of ãn. The second term goes to zero provided that the prior mean exists and

ζn →∞ as n→∞. The former condition was assumed, and the latter can be easily arranged

by choosing β sufficiently small, so θ̃n − θ
? = oP(sn).



CHAPTER 6

APPLICATION OF GIBBS MODELS TO INFERENCE ON THE

BOUNDARY OF A NOISY IMAGE

6.1 Introduction

In image analysis, the boundary or edge of the image is one of the most important features

of the image, and extraction of this boundary is a critical step. An image consists of pixel

locations and intensity values at each pixel, and the boundary can be thought of as a curve

separating pixels of higher intensity from those of lower intensity. Applications of boundary

detection are wide-ranging, e.g., (69) use boundary detection to identify important features in

pictures of natural settings, (60) identifies boundaries in medical images, and in (112) boundary

detection helps classify the type and severity of wear on machines. For images with noiseless

intensity, boundary detection has received considerable attention in the applied mathematics

and computer science literature; see, e.g., (115), (66), (60), and (3). However, these approaches

suffer from a number of difficulties. First, they can produce an estimate of the image boundary,

but do not quantify estimation uncertainty. Second, these methods use a two-stage approach

where the image is first smoothed to filter out noise and then a boundary is estimated based on

a calculated intensity gradient. This two-stage approach makes theoretical analysis challenging,

and no convergence results are available for these methods. Third, in the following examples,

these methods perform poorly on noisy data, and one reason for this is that the intensity

100
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gradient is less informative for the boundary when data are observed with noise. In the statistics

literature, (35) take a Bayesian approach to boundary detection and emphasize borrowing

information to recover boundaries of multiple, similar objects in an image. Boundary detection

using wombling is also a popular approach; see (62), with applications to geography (64),

public health (65), and ecology (22). However, these techniques are used with areal or spatially

aggregated data and are not suitable for the pixel data encountered in image analysis.

Section 6.2, describes the image boundary problem, following the setup in Section 4.3.2 and

(61). In (61), the authors take a fully Bayesian approach, modeling the probability distributions

of the pixel intensities both inside and outside the image. This approach is challenging because

it often introduces nuisance parameters in addition to the image boundary. Section 6.3 presents

a Gibbs model that avoids this issue.

The asymptotic convergence properties of the Gibbs posterior were investigated in Sec-

tion 4.3.2 where sufficient conditions were provided for the Gibbs posterior to converge at the

minimax optimal rate relative to neighborhoods of the true boundary measured by the Lebesgue

measure of a symmetric difference and adaptively to the unknown smoothness of the bound-

ary. In Section 6.4, specific linking functions and priors are chosen to meet the conditions of

Theorem 4.3.1. Further, since the Gibbs posterior concentrates at the optimal rate without

requiring a model for the pixel intensities, it can be claimed that the inference on the image

boundary is robust.

Computation of the Gibbs posterior is relatively straightforward and Section 6.5 presents a

reversible jump MCMC method; R code to implement to the proposed Gibbs posterior inference
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is available at https://github.com/nasyring/GibbsImage . A comparison of inference based

on the proposed Gibbs posterior to that based on the fully Bayes approach in (61) is shown

in Section 6.6. For smooth boundaries, the two methods perform similarly, providing very

accurate estimation. However, the Gibbs posterior is easier to compute, thanks to there being

no nuisance parameters, and is notably more accurate than the Bayes approach when the model

is misspecified or when the boundary is not everywhere smooth. The technical details needed

to verify the conditions of Theorem 4.3.1 are found in Section 6.7.

6.2 Problem formulation

The problem setup is given in Section 4.3.2 and is briefly reviewed here. The frame of an

image is denoted Ω ⊂ R2. Pixels Xi = (Xi, Yi), i = 1, . . . , n, where Xi is a pixel location in Ω

and Yi is an intensity measurement are sampled according to

X ∼ g(x),

Y | (X = x) ∼ fΓ (y) 1(x ∈ Γ) + fΓc(y) I(x ∈ Γ c),

where g is a density on Ω, fΓ and fΓc are densities on the intensity space, and I(·) denotes an

indicator function.

The density g for the pixel locations is of no interest and, as is common, it may be considered

known. So the question is how to handle the two conditional distributions, fΓ and fΓc . (61)

take a fully Bayesian approach, modeling both fΓ and fΓc . By specifying these parametric

models, they are obligated to introduce priors and carry out posterior computations for the
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corresponding parameters. Besides the efforts needed to specify models and priors and to carry

out posterior computations, there is also a concern that the models for the pixel intensities

might be incorrect, potentially biasing the inference on Γ?. Since the forms of fΓ and fΓc ,

as well as any associated parameters, are of no inferential interest in the boundary detection

problem, it is natural to ask if inference can be carried out robustly, without modeling the pixel

intensities.

This question is answered affirmatively, and a Gibbs model for Γ is presented in Section 6.3.

In the present context, suppose there is a linking function `(X , Γ) that measures how well an

observed pixel location–intensity pair (x, y) agrees with a particular region Γ . The defining

characteristic of `(X , Γ) is that Γ? should be the unique minimizer of Γ 7→ R(Γ), where R(Γ) =

EPΓ? (`(X , Γ)) is the risk. A main contribution here, in Section 6.3.1, is specification of a loss

function that meets this criterion. A necessary condition to construct such a loss function

is that the distribution functions FΓ and FΓc are stochastically ordered. Imagine a gray-scale

image; then, stochastic ordering means this image is lighter, on average, inside the boundary

than outside the boundary, or vice-versa. In the specific context of binary images, this means

that it is assumed, without loss of generality, fΓ? > fΓ?c , while for continuous images, again

without loss of generality, FΓ?(y) < FΓ?c(y) for all y ∈ R. The Gibbs posterior is defined as

usual, in Equation 2.2.1.

Proper scaling of the loss in the Gibbs model by a learning rate ω is important, and some

context-specific scaling is provided; see Sections 6.4 and 6.5.2. The choice of prior Π for Γ is
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discussed in Section 6.3.2. Together, the linking function `(X , Γ) and the prior for Γ define the

Gibbs model, no further modeling is required.

6.3 Gibbs model for the image boundary

6.3.1 Linking function

To start, consider inference on the image boundary when the pixel intensity is binary, i.e.,

Yi ∈ {−1,+1}. In this case, the conditional distributions, fΓ and fΓc , in Equation 4.3.1 must

be Bernoulli, so the likelihood is known. Even though the parametric form of the conditional

distributions is known, the Gibbs approach only requires prior specification and posterior com-

putation related to Γ , whereas the Bayes approach must also deal with the nuisance parameters

in these Bernoulli conditional distributions. More generally, this binary case is relatively sim-

ple and will provide insights into how to formulate a Gibbs model in the more challenging

continuous intensity problem.

For the binary case, a reasonable choice for the linking function `(X , Γ) is the following

weighted misclassification error loss, depending on a parameter h:

`(X , Γ) = `(X , Γ, | h) = h I(y = +1, x ∈ Γ c) + I(y = −1, x ∈ Γ). (6.3.1)

Note that putting h = 1 in Equation 6.3.1 gives the usual misclassification error loss. In order

for the Gibbs model to work the risk, or expected loss, must be minimized at the true Γ? for

some h. Picking h to ensure this property holds necessitates making a connection between

the probability model in Equation 4.3.1 and the loss in Equation 6.3.1. The condition in
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Equation 6.3.2 below is just the connection needed. With a slight abuse of notation, let fΓ?

and fΓ?c denote the conditional probabilities for the event Y = +1, given X ∈ Γ? and X ∈ Γ?c,

respectively. Recall the stochastic ordering assumption implies fΓ? > fΓ?c .

Proposition 6.3.1 Using the notation in the previous paragraph, if h is such that

fΓ? >
1

1+ h
> fΓ?c , (6.3.2)

then the risk function R(Γ) = EPΓ? (`(X , Γ)) is minimized at Γ?.

Proof 6.3.1 See Section 6.7.1.

Either one—but not both—of the above inequalities can be made inclusive and the result

still holds. The condition in Equation 6.3.2 deserves additional explanation. For example, if it

is known fΓ? ≥ 1
2 > fΓ?c , then take h = 1, which means that in Equation 6.3.1 there is a penalty

on both intensities of 1 outside Γ and intensities of −1 inside Γ by a loss of 1. If, however, it

is known the overall image brightness is higher so that fΓ? ≥ 4
5 > fΓ?c then take h = 1/4 in

Equation 6.3.1 and penalize bright pixels outside Γ by less than dull pixels inside Γ . To see

why this loss balancing is so crucial, suppose the second case above holds so that fΓ? = 4/5 and

fΓ?c = 3/4, but put h = 1 anyway. Then, in Equation 6.3.1, 1(y = +1, x ∈ Γ c) is very often

equal to 1 while 1(y = −1, x ∈ Γ) is very often 0. This will likely minimize the expected loss

then by incorrectly taking Γ to be all of Ω so that the first term in the loss vanishes. Knowing

a good choice of h corresponds to having some prior information about fΓ? and fΓ?c , but it
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is also possible to use the data to estimate a good value of h and this data-driven strategy is

described in Section 6.5.2.

In the continuous case it is assumed that the pixel intensity takes its value in R. The

proposed strategy is to modify the misclassification error loss Equation 6.3.1 by working with

a suitably discretized pixel intensity measurement. In particular, consider the following version

of the misclassification error, depending on parameters (c, k, z):

`(X , Γ) = `(X , Γ, | c, k, z) = k I(y > z, x ∈ Γ c) + c I(y ≤ z, x ∈ Γ). (6.3.3)

Again, it can be claimed that, for suitable (c, k, z), the risk function is minimized at Γ?. Let

FΓ and FΓc denote the distribution functions corresponding to the densities fΓ and fΓc in Equa-

tion 4.3.1, respectively. Recall the stochastic ordering assumption implies FΓ?(z) < FΓ?c(z).

Proposition 6.3.2 If (c, k, z) in Equation 6.3.3 satisfies

FΓ?(z) <
k

k+ c
< FΓ?c(z), (6.3.4)

then the risk function R(Γ) = EPΓ? (`(X , Γ)) is minimized at Γ?.

Proof 6.3.2 See Section 6.7.2.

Again, either one—but not both—of the above inequalities in Equation 6.3.4 can be made

inclusive and the result still holds. The parameters k and c in Equation 6.3.3 determine the

scale of the loss as mentioned in Section 6.1. This implies that the true image Γ? can be
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identified by working with a suitable version of the loss Equation 6.3.3. A similar condition to

Equation 6.3.4, see Assumption 6.4.1 in Section 6.4, says what scaling is needed in order for

the Gibbs posterior to concentrate at the optimal rate. Although the conditions on the scaling

all involve the unknown distribution PΓ? , a good choice of (c, k, z) can be made based on the

data alone, without prior information, and this strategy is discussed in Section 6.5.2.

6.3.2 Prior specification

A prior distribution for the boundary of the region Γ is specified by first expressing the

pixel locations x in terms of polar coordinates (θ, r), an angle and radius, where θ ∈ [0, 2π]

and r > 0. The specific reference point and angle in Ω used to define polar coordinates are

essentially arbitrary, subject to the requirement that any point in Γ? can be connected to the

reference point by a line segment contained in Γ?. In (61), the authors tested the influence of

the reference point in simulations and found it to have little influence on the results. Using

polar coordinates the boundary of Γ can be determined by the parametric curve (θ, γ(θ)).

Whether one is taking a Bayes or Gibbs approach, a natural strategy to model the im-

age boundary is to express γ as a linear combination of suitable basis functions, i.e., γ(θ) =

γ̂D,β(θ) =
∑D
j=1 βjBj,D(θ). In (61), the authors use the eigenfunctions of the squared expo-

nential periodic kernel as their basis functions. Here a model based on free knot b-splines is

considered, where the basis functions are defined recursively as in Section 4.3.1. Note that the

coefficient vector β is restricted to be positive because the function values γ(θ) measure the

radius of a curve from the origin. In the simulations in Section 6.6, the coefficients β2, ..., βD

are free parameters, while β1 is calculated deterministically to force the boundary to be closed,
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i.e. γ(0) = γ(2π), and it is required that t1 = 0 and tD = 2π; all other inner knots are free. The

model based on the b-spline representation seems to perform as well as the eigenfunctions used

in (61) for smooth boundaries, but a bit better for boundaries with corners; see the examples

in Section 6.6.

Therefore, the boundary curve is γ is parametrized by an integer D and a D-vector β. A

prior Π on (D,β) may be introduced hierarchically as follows: D has a Poisson distribution with

rate µD and, given D, the coordinates β1, . . . , βD of β are iid exponential with rate µβ. These

choices satisfy the technical conditions on Π detailed in Section 4.3.2 and Assumption 4.3.4. In

the numerical experiments in Section 6.6, the values µD = 12 and µβ = 10 are used.

6.4 Gibbs posterior convergence

The Gibbs model depends on two inputs, namely, the prior and the linking function. In

order to ensure that the Gibbs posterior enjoys desirable asymptotic properties, some conditions

on both of these inputs are required. The first assumption listed below concerns the linking

function, which functions like a misclassification loss function; the second concerns the true

image boundary γ? = ∂Γ?; and the third concerns the prior. Here the focus is on the continuous

intensity case, since the only difference between this and the binary case is that the latter

provides the discretization itself.

Assumption 6.4.1 Loss function parameters (c, k, z) in Equation 6.3.3 satisfy

FΓ?(z) <
ek − 1

ec+k − 1
and FΓ?c(z) >

ek − 1

ek − e−c
. (6.4.1)
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Compared to the Equation 6.3.4 that was enough to allow the linking function to identify

the true Γ?, Equation 6.4.1 in Assumption 6.4.1 is only slightly stronger. This can be seen from

the following inequality:

ek − 1

ek − e−c
>

k

k+ c
>

ek − 1

ec+k − 1
.

However, if (c, k) are small, then the three quantities in the above display are all approximately

equal, so Assumption 6.4.1 is not much stronger than what is needed to identify Γ?. Again,

these conditions on (c, k, z) can be understood as providing a meaningful scale to the linking

function. Intuitively, the scale of the linking function between observations receiving no loss

versus some loss, expressed by parameters k and c, should be related to the level of information

in the data. When FΓ?(z) and FΓ?c(z) are far apart, the data can more easily distinguish between

FΓ? and FΓ?c , so one may assign larger losses than when FΓ?(z) and FΓ?c(z) are close and the

data are relatively less informative.

The Gibbs posterior based on the particular linking functions given in Section 6.3.1 along

with Assumption 6.4.1 and the prior specified in Section 6.3.2 converges at the minimax rate as

described in Section 4.3.2. The main effort needed is to verify the conditions of Assumption 4.3.2

sufficient for Theorem 4.3.1.

Theorem 6.4.1 With a slight abuse of notation, let Π denote the prior for Γ , induced by that

on (D,β), and Πn the corresponding Gibbs posterior from Equation 2.2.1 using the linking
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function in Equation 6.3.3. Under Assumptions 6.4.1, 4.3.1, 4.3.3, and 4.3.4, for any positive

sequence Mn →∞
PΓ?Πn({Γ : λ(Γ?4Γ) > Mnεn})→ 0 as n→∞,

where εn = {(logn)/n}α/(α+1) and α is the smoothness coefficient in Assumption 4.3.1.

See Section 6.7 for a proof of Theorem 6.4.1.

6.5 Computation

6.5.1 Sampling algorithm

A reversible jump MCMC scheme is used, as in (32), to sample from the Gibbs posterior.

These methods have been used successfully in Bayesian free-knot spline regression problems;

see, e.g., (19) and (20). Although the sampling procedure is more complicated when allowing

the number and locations of knots to be random versus using fixed knots, the resulting spline

functions can do a better job fitting curves with low smoothness.

To summarize the algorithm, start with the prior distribution Π for (D,β) as discussed in

Section 6.3.2. Next, initialize values of D, the knot locations {t−2, ..., tD+3}, and the values of

β2, ..., βD. The value of β1 is then calculated numerically to force closure. In the examples

below, D = 12 with t−2 = −2, t−1 = −1, t0 = −0.5, t13 = 2π + 0.5, t14 = 2π + 1, t15 = 2π + 2

and t1, ..., t12 evenly spaced in [0, 2π]. Set inner knots t0 = 0 and tD = 2π while the other

inner knot locations remain free to change in birth, death, and relocation moves; also set

β2 = β3 = ... = β12 = 0.1. Then the following three steps constitute a single iteration of
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the reversible jump MCMC algorithm to be repeated until the desired number of samples are

obtained:

1. Use Metropolis-within-Gibbs steps to update the elements of the β vector, again solving

for β1 to force closure at the end. In the examples, a normal proposal distribution centered

at the current value of the element of the β vector, and with standard deviation 0.10 is

used.

2. Randomly choose to attempt either a birth, death, or relocation move to add a new inner

knot, delete an existing inner knot, or move an inner knot.

3. Attempt the jump move proposed in Step 2. The β vector must be appropriately modified

when adding or deleting a knot, and again β1 must be chosen to force closure. Details on

the calculation of acceptance probabilities for each move can be found in (19) and (20).

R code to implement this Gibbs posterior sampling scheme, along with the empirical loss scaling

method described in Section 6.5.2, is available at https://github.com/nasyring/GibbsImage

.

6.5.2 Loss scaling

It is not clear how to select (c, k, z) to satisfy Assumption 6.4.1 without knowledge of FΓ? and

FΓ?c . However, it is fairly straightforward to select values of (c, k, z) based on the data which

are likely to meet the required condition. First, some notion of optimal (c, k, z) values must

be defined. If FΓ? and FΓ?c were known, then z could be selected to maximize FΓ?c(z) − FΓ?(z)

because this choice of z gives the point at which FΓ? and FΓ?c are most easily distinguished. Then,
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(c, k) would be be chosen as the largest values such that Equation 6.4.1 holds. Intuitively, (c, k)

should be large so that the linking function in Equation 6.3.3 is more sensitive to departures

from γ?.

Since FΓ? and FΓ?c are not known, FΓ?(z) and FΓ?c(z) should be estimated from the data. In

order to do this, an estimate of γ? is needed in order to define the regions Γ? and Γ?c. For a grid

of z values z1, z2, ..., zg, minimize Equation 6.3.3 for each zj where (c, k) = (cj, kj) are taken to

satisfy
kj

kj+cj
= n−1|{i : yi ≤ zj}|. The resulting classifiers obtained from these minimizations are

used to estimate the regions Γ? and Γ?c and FΓ? and FΓ?c are estimated by their corresponding

empirical versions F̂Γ? and F̂Γ?c , respectively. Then, z is chosen from among the zj such that

z = arg maxzj F̂Γ?c(zj) − F̂Γ?(zj). Based on this choice of z, choose the final values of (c, k) to

satisfy Equation 6.4.1 replacing FΓ?(z) and FΓ?c(z) by their estimates F̂Γ?(z) and F̂Γ?c(z).

Based on the simulations in Section 6.6, this method produces values of (c, k, z) very close to

their optimal values. Importantly, the estimated (c, k) are more likely to be smaller than their

optimal values than larger, which makes the estimates more likely to satisfy Equation 6.4.1.

This is a consequence of the stochastic ordering of FΓ? and FΓ?c . Unless the classifier obtained

by minimizing Equation 6.3.3 is perfectly accurate, it will tend to mix together samples from

FΓ? and FΓ?c in the estimates. If the estimate of FΓ?(z) is contaminated with some observations

from FΓ?c , FΓ?(z) will tend to be overestimated, and vice versa FΓ?c(z) will tend to be underesti-

mated. These errors will cause (c, k) to be underestimated, and therefore more likely to satisfy

Equation 6.4.1.
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6.6 Numerical examples

The Gibbs model was tested on data from both binary and continuous images following

much the same setup as in (61). The pixel locations in Ω = [−1
2 ,
1
2 ]
2 are sampled by starting

with a fixed m ×m grid in Ω and making a small random uniform perturbation at each grid

point. Several different pixel intensity distributions are considered. Two types of shapes for Γ?

are considered: an ellipse with center (0.1, 0.1), rotated at an angle of 60 degrees, with major

axis length 0.35 and minor axis length 0.25; and a centered equilateral triangle of height 0.5.

The ellipse boundary will test the sensitivity of the model to boundaries which are off-center

while the triangle tests the model’s ability to identify non-smooth boundaries.

Four binary intensity images and four continuous intensity images are used as examples

and compared with the Bayesian method in (61). Codes for implementing their fully Bayesian

approach are available via CRAN in the BayesBD package; see (95).

B1. Ellipse image, m = 100, and FΓ? and FΓ?c are Bernoulli with parameters 0.5 and 0.2,

respectively.

B2. Same as B1 but with triangle image.

B3. Ellipse image, m = 500, and FΓ? and FΓ?c are Bernoulli with parameters 0.25 and 0.2,

respectively.

B4. Same as B3 but with triangle image.

C1. Ellipse image, m = 100, and FΓ? and FΓ?c are N(4, 1.52) and N(1, 1), respectively.

C2. Same as C1 but with triangle image.
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C3. Ellipse image, m = 100, and FΓ? and FΓ?c are 0.2N(2, 10)+ 0.8N(0, 1), a normal mixture,

and N(0, 5), respectively.

C4. Ellipse image, m = 100, and FΓ? and FΓ?c are t distributions with 3 degrees of freedom

and non-centrality parameters 1 and 0, respectively.

For binary images, the likelihood must be Bernoulli, so the Bayesian model is correctly

specified in cases B1–B4. For the continuous examples in C1–C4, a Gaussian likelihood is

assumed for the Bayesian model. Then, cases C1 and C2 will show whether or not the Gibbs

model can compete with the Bayesian model when the model is correctly specified, while cases

C3 and C4 will demonstrate the superiority of the Gibbs model over the Bayesian model when

there is model misspecification. Again, the Gibbs model has the added advantage of not having

to specify priors for or sample values of the mean and variance hyperparameters associated with

the normal conditional distributions.

Each example scenario was replicated 100 times for both the Gibbs and Bayesian models,

each time producing a posterior sample of size 4000 after a burn in of 1000 samples. The

errors—Lebesgue measure of the symmetric difference—were recorded for each run along with

the estimated linking function parameters for the Gibbs models for continuous images. The

results are summarized in Table 6.6.1 and Table 6.6.2. The Gibbs model is competitive with

the fully Bayesian model in Examples B1–B4, C1, and C2, when the likelihood is correctly

specified. When the likelihood is misspecified, there is a chance that the Bayesian model will

fail, as in Examples C3 and C4. However, the Gibbs model does not depend on a likelihood,

only the stochastic ordering of FΓ? and FΓ?c , and it continues to perform well in these non-
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TABLE 6.6.1

AVERAGE ERRORS (AND STANDARD DEVIATIONS) FOR EACH EXAMPLE.
Model B1 B2 B3 B4 C1 C2 C3 C4

Bayes
0.00

(0.00)
0.02

(0.00)
0.01

(0.00)
0.02

(0.01)
0.03

(0.03)
0.04

(0.03)
0.11

(0.06)
0.10

(0.05)

Gibbs
0.01

(0.00)
0.01

(0.00)
0.02

(0.01)
0.02

(0.01)
0.01

(0.00)
0.01

(0.00)
0.01

(0.01)
0.01

(0.01)

TABLE 6.6.2

AVERAGE (AND OPTIMAL) VALUES OF THE PARAMETERS (C,K, Z).
Parameter C1 C2 C3 C4

c
1.45

(1.86)
1.47

(1.86)
0.80

(1.27)
0.71

(0.80)

k
2.30

(2.36)
2.29

(2.36)
0.26

(0.34)
0.71

(0.75)

z
2.43

(2.40)
2.39

(2.40)
-1.83

(-1.76)
0.46

(0.46)

Gaussian examples. From Table 6.6.2, it can be seen that the empirical method described in

Section 6.5.2 is able to select parameters for the loss function in Equation 6.3.3 close to the

optimal values and meeting Assumption 6.4.1.

Figure 6.6.1 shows the results of the Bayesian and Gibbs models for one simulation run in

each of Examples B1–B2 and C1–C4. The 95% credible regions, as in (61), are highlighted in

gray around the posterior means. That is, let ui = supθ{|γi(θ) − γ̂(θ)|/s(θ)}, where γi(θ) is

the ith posterior boundary sample, γ̂(θ) is the pointwise posterior mean and s(θ) the pointwise
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standard deviation of the γ(θ) samples. If τ is the 95th percentile of the ui’s, then a 95% uniform

credible band is given by γ̂(θ)± τ s(θ). The results of cases B2 and C2 suggest that free-knot

b-splines may do a better job of approximating non-smooth boundaries than the kernel basis

functions used by (61).

6.7 Proofs

6.7.1 Proof of Proposition 6.3.1

By the definition of the loss function in Equation 6.3.1, for a fixed h and for any Γ ⊂ Ω, it

follows that

`(X , Γ) − `(X , Γ?) = h I(Y = +1, X ∈ Γ c) − h I(Y = +1, X ∈ Γ?c)

+ I(Y = −1, X ∈ Γ) − I(Y = −1, X ∈ Γ?)

= h I(Y = +1, X ∈ Γ? \ Γ) − I(Y = −1, X ∈ Γ? \ Γ)

+ I(Y = −1, X ∈ Γ \ Γ?) − hI(Y = +1, X ∈ Γ \ Γ?).

Then the expectation of the loss difference above is

Pg(X ∈ Γ? \ Γ) (hfΓ? + fΓ? − 1) + Pg(X ∈ Γ \ Γ?) (1− fΓ?c − hfΓ?c),

where Pg is the probability relative to the marginal distribution g of X. This quantity is zero if

and only if Γ = Γ?. It can also be lower bounded by

Pg(X ∈ Γ4Γ?) min{hfΓ? + fΓ? − 1, 1− fΓ?c − hfΓ?c}.
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Figure 6.6.1. From top, Examples B1–B2, C1–C4. In each row, the observed image is on the
left, the Bayesian posterior mean estimator is in the middle, and the Gibbs posterior mean
estimator is on the right. Solid lines show the true image boundary, dashed lines are the

estimates, and gray regions are 95% credible bands.
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Given the condition (Equation 6.3.2) in Proposition 6.3.1, both terms in the minimum are

positive. Therefore, R(Γ) ≥ R(Γ?) with equality if and only if Γ = Γ?, proving the claim.

6.7.2 Proof of Proposition 6.3.2

The proof here is very similar to that of Proposition 6.3.1. By the definition of the loss

function in Equation 6.3.3, for any fixed (c, k, z) and for any Γ ⊂ Ω, get

`(X , Γ) − `(X , Γ?) = k I(Y ≥ z, X ∈ Γ c) − k I(Y ≥ z, X ∈ Γ?c)

+ c I(Y < z, X ∈ Γ) − c I(Y < z, X ∈ Γ?)

= k I(Y ≥ z, X ∈ Γ? \ Γ) − c I(Y < z, X ∈ Γ? \ Γ)

+ c I(Y < 1, X ∈ Γ \ Γ?) − k I(Y ≥ z, X ∈ Γ \ Γ?).

Then, the expectation of the loss difference above is given by

Pg(X ∈ Γ? \ Γ) {k− kFΓ?(z) − cFΓ?(z)}+ Pg(X ∈ Γ \ Γ?) {cFΓ?c(z) − k+ kFΓ?c(z)},

where, again, Pg is the probability relative to the marginal distribution g of X. This quantity

is zero if and only if Γ = Γ?. It can also be lower bounded by

Pg(X ∈ Γ4Γ?) min
{
k− kFΓ?(z) − cFΓ?(z), cFΓ?c(z) − k+ kFΓ?c(z)

}
.

Given the condition (Equation 6.3.4) in Proposition 6.3.2, both terms in the minimum are

positive. Therefore, R(Γ) ≥ R(Γ?) with equality if and only if Γ = Γ?, proving the claim.
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6.7.3 Preliminary results

The following lemma draws a connection between the distance defined by the Lebesgue

measure of the symmetric difference and the sup-norm between the boundary functions.

Lemma 6.7.1 Suppose Γ?, with boundary γ? = ∂Γ?, satisfies Assumption 4.3.1, in particular,

γ? := infθ∈[0,2π] γ
?(θ) > 0. Take any Γ ⊂ Ω, with γ = ∂Γ , such that λ(Γ4Γ?) > δ, and any

Γ̃ ⊂ Ω such that γ̃ = ∂Γ̃ satisfies ‖γ̃− γ‖∞ < ωδ, where ω ∈ (0, 1). Then

λ(Γ̃4Γ?) > 4δ

γ?

( 1

diam(Ω)
− πω

)
,

where diam(Ω) = supx,x ′∈Ω ‖x − x ′‖ is the diameter of Ω. So, if ω < {π diam(Ω)}−1, then the

lower bound is a positive multiple of δ.

Proof 6.7.1 Recall the connection between the symmetric difference-based distance and the L1

distance between boundary functions from the proof of Theorem 4.3.1,

1
2γ

?‖γ− γ?‖1 ≤ λ(Γ4Γ?) ≤ 1
2 diam(Ω)‖γ− γ?‖1. (6.7.1)

Next, if λ(Γ4Γ?) > δ, which is positive by Assumption 4.3.1, then it follows from the right-most

inequality in Equation 4.3.6 that diam(Ω)‖γ− γ?‖1 > 2δ and, by the triangle inequality,

diam(Ω){‖γ− γ̃‖1 + ‖γ̃− γ?‖1} > 2δ.
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See that ‖γ− γ̃‖1 ≤ 2π‖γ− γ̃‖∞ which, by assumption, is less than 2πωδ. Consequently,

diam(Ω){2πωδ+ ‖γ̃− γ?‖1} > 2δ

and, hence,

‖γ̃− γ?‖1 >
2δ

diam(Ω)
− 2πωδ.

By the left-most inequality in Equation 4.3.6, see that

λ(Γ̃4Γ?) > 4δ

γ? diam(Ω)
−
4πωδ

γ?
=
4δ

γ?

( 1

diam(Ω)
− πω

)
,

which is the desired bound. It follows immediately that the lower bound is a positive multiple of

δ if ω < {π diam(Ω)}−1.

6.7.4 Proof of Theorem 6.4.1

Theorem 6.4.1 can be proven by verifying the conditions in Assumption 4.3.2 necessary for

Theorem 4.3.1.

First show that if Equation 6.4.1 holds, then EPΓ? exp{−(`(X , Γ)−`(X , Γ?))} < 1−ρλ(Γ?4Γ)

for a constant ρ ∈ (0, 1).

From the proof of Proposition 6.3.2, see that

`(X , Γ) − `(X , Γ?) = k I(y ≥ z, x ∈ Γ? \ Γ) − c I(y < z, x ∈ Γ? \ Γ)

+ c I(y < z, x ∈ Γ \ Γ?) − k I(y ≥ z, x ∈ Γ \ Γ?).
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The key observation is that, if x 6∈ Γ4Γ?, then the linking function difference is 0 and, therefore,

the exponential of the linking function difference is 1. Taking expectation with respect PΓ? , get

EPΓ? exp{−(`(X , Γ) − `(X , Γ?))} = Pg(X 6∈ Γ?4Γ)

+ [exp(−k)(1− FΓ?(z)) + exp(c)FΓ?(z)]Pg(X ∈ Γ? \ Γ)

+ [exp(−c)FΓ?c(z) + exp(k) − exp(k)FΓ?c(z)]Pg(X ∈ Γ \ Γ?).

From Equation 6.4.1, see that

κ := max{exp(−k)(1− FΓ?(z)) + exp(c)FΓ?(z), exp(−c)FΓ?c(z) + exp(k) − exp(k)FΓ?c(z)} < 1,

so that

PΓ? exp{−(`(X , Γ) − `(X , Γ?))} ≤ 1− Pg(X ∈ Γ4Γ?) + κPg(X ∈ Γ4Γ?)

= 1− (1− κ)Pg(X ∈ Γ4Γ?).

Then the claim follows, with ρ = (1− κ)g < 1, since Pg(X ∈ Γ4Γ?) ≥ gλ(Γ4Γ?).

Next, show that if Equation 6.4.1 holds, then

{θ : max [R(γ) − R(γ?), V(`(X , γ) − `(X , γ?))] ≥ Cδ} ⊇ B∞(γ?;C0δ)

for some constants C,C0, δ > 0.
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From Proposition 6.3.2 and Lemma 6.7.1

R(Γ) − R(Γ?) ≤ Pg(X ∈ Γ4Γ?)min{k− kFΓ?(z) − cFΓ?c(z), cFΓ?c(z) + kFΓ?c(z)}

≤ 1
2 V1 g diam(Ω) ‖γ− γ?‖1

where V1 = Vc,k,z is the min{· · · } term in the above display. Further

V(`(X , γ) − `(X , γ?)) ≤ Pg(X ∈ Γ4Γ?)max{k2(1− FΓ?(z)) + c
2FΓ?(z),

k2(1− FΓ?c(z)) + c
2FΓ?c(z)}

≤ V2 g diam(Ω) ‖γ− γ?‖1

where V2 = Vc,k,z is the max{· · · } term in the above display.

Let B∞(γ?; r) denote the set of regions Γ with boundary functions γ = ∂Γ that satisfy

‖γ− γ?‖∞ ≤ r. If Γ ∈ B∞(γ?;C0εn), then we have

‖γ− γ?‖1 ≤ 2πgC0εn

and, therefore, max{R(Γ) − R(Γ?), V(`(X , γ) − `(X , γ?))} ≤ Cεn, where

C = C0πmax{V1, V2}g
2 diam(Ω). With Assumption 4.3.2 verified, the claim follows.



CHAPTER 7

DETERMINING THE SCALE PARAMETER

7.1 Introduction

An advantage of Bayesian and other more general Bayesian-like methods that base their

inference on a suitable posterior distribution is that uncertainty quantification, in the form of

credible regions for the unknown parameters, is readily available. For this uncertainty quan-

tification to be meaningful, it is common to require that the specified credibility level agrees,

at least approximately, with the frequentist coverage probability, i.e., that the 95% credibility

regions read off from the posterior are approximately 95% confidence regions. In this case, it is

said that the posterior credible region is calibrated. For well-specified Bayesian models, one often

has a Bernstein–von Mises theorem available to justify a calibration claim, but when the model

is misspecified in at least one of several possible ways, calibration often fails. For example, (52)

derived a Bernstein–von Mises theorem for Bayesian posteriors under model misspecification,

and pointed out that, even if concentration target and rate are correct, misspecification can still

cause a lack of calibration; see page 362 in their paper and Section 7.2 below. Similarly, the

commonly used variational Bayes posteriors (e.g. (45; 41)) often lack the desired calibration

property, and correcting this is listed as one of the important open problems in (7).

To address this problem, a scalar tuning parameter (or learning rate) is introduced to

the posterior, intended to control the spread of the posterior distribution. Often times, the

123



124

resulting scaled posterior may be interpreted as a Gibbs posterior as in Equation 2.2.1, but the

setup in this chapter can be generalized to other situations not fitting this definition precisely;

see Section 7.4 below. Having introduced an extra parameter into the posterior, it is then

proposed to select this tuning parameter such that the corresponding posterior credible regions

are calibrated in the sense described above, and an algorithm is presented, based on bootstrap

and other Monte Carlo techniques, to implement this idea efficiently.

In Section 2.3, alternative methods to select this scale parameter are reviewed. These

proposals are reasonable, but they do not provide any guarantees that the uncertainty quan-

tification coming from the corresponding posterior distribution is meaningful. In contrast,

the proposal here is designed specifically to make the corresponding posterior credible regions

calibrated, at least approximately. The claimed calibration follows immediately from its con-

struction, and the simulations presented in Section 7.4, covering several different models and

types of posteriors, demonstrate the effectiveness of the proposed method.

The remainder of this chapeter is organized as follows. Section 7.2 explains the intuition

behind the proposed approach. The general posterior calibration algorithm is presented in Sec-

tion 7.3 and its basic properties are discussed. Section 7.4 contains several examples, including

a Gibbs posterior in quantile regression, a misspecified Bayes posterior in linear regression,

and a variational Bayes posterior in a mixture model, and Section 7.5 makes some concluding

remarks.
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7.2 Problem formulation

Suppose there is data X n = (X1, . . . , Xn) consisting of i.i.d. observations from a distribution

P; here, each Xi could be a vector or even a response–predictor variable pair, i.e., Xi = (Xi, Yi).

The quantity of interest is a parameter θ = θ(P), a feature of the underlying distribution P,

taking values in Θ. Consider the following general construction of a posterior distribution for

inference on θ.

• Connect data X to a full set of parameters η ∈ N through either a statistical model for P,

as in Bayes or other likelihood-based settings, or a suitable linking function, as in Gibbs

or M-estimation settings.

• Introduce a prior Π for the full parameter η, and a scale ω > 0 to weight the information

about η in the data with that in the prior.

• Combine the prior, scale, and likelihood/linking function to get a posterior distribution

for η.

• Integrate to get the corresponding marginal posterior for θ, denoted by Πn,ω.

This general recipe includes both the Bayesian and Gibbs posterior procedure, as well as varia-

tional Bayes, as demonstrated in Section 7.4.3. It also covers classical empirical Bayes or other

posteriors based on data-dependent priors (e.g. (24; 71; 36)). The one technical requirement

necessary is that the posterior Πn,ω be consistent in the sense that it concentrates, asymptot-

ically, on the actual value θ(P) for each fixed ω. Consistency must be verified case-by-case,

but this is standard; see Section 7.4. Given that the posterior Πn,ω is approximately centered

around θ?, the use of credible regions to quantify uncertainty is reasonable.



126

The proposed choice of scale is based on calibrating the posterior credible regions to be used

for uncertainty quantification. Fix a level α ∈ (0, 1) and, for concreteness, consider the highest

posterior density credible regions defined as

Cω,α(X n) = {θ : πn,ω(θ) ≥ cα}, (7.2.1)

where πn,ω is the density function corresponding to the posterior Πn,ω, and cα is a constant

chosen so that the Πn,ω-probability assigned to Cω,α(X n) is equal to 1−α. The scale parameter

ω controls the spread of the posterior and, thereby, the size of these credible regions. The

proposal here is to choose ω so that the credible regions are of the appropriate size to be

calibrated, i.e., so that their coverage probability, P{Cω,α(X n) 3 θ(P)}, is approximately equal

to 1− α; see Section 7.3.

To better understand this proposal, recall that, in the classical setting of a well-specified

Bayesian model with suitable regularity, the credible region will be calibrated, at least asymp-

totically, when ω = 1. There has been recent interest in the misspecified case and, in particular,

(52) showed that even if a Bernstein–von Mises theorem holds, the posterior credible regions

might not be calibrated. Roughly speaking, misspecification affects the shape of the posterior

contours, which may be the wrong shape compared to the sampling distribution of the corre-

sponding M-estimator. Varying the scale parameter can provide a conservative solution to this

problem: the posterior contours can be stretched enough that they contain a differently-shaped
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Figure 7.2.1. Contours of the asymptotic distribution of the M-estimator (solid) and those of
the asymptotic Gibbs posterior (dashed). Left: ω = 1; Right: ω = 1/4.

but suitably calibrated confidence region; see Figure 7.2.1 for an illustration and Remark 2

below.

7.3 Posterior calibration algorithm

As discussed previously, the goal is to select the scale parameter ω such that the corre-

sponding posterior credible region are calibrated in the sense that the credibility level agrees,

at least approximately, with the nominal coverage probability. To this end, for a desired signif-

icance level α ∈ (0, 1), and the preferred credible region Cω,α(X n) as in Equation 7.2.1, define

the coverage probability function

cα(ω | P) = P{Cω,α(X n) 3 θ(P)},
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i.e., the P-probability that the credible region Cω,α(X n) contains the target θ(P). Then cali-

bration requires that ω be such that

cα(ω | P) = 1− α, (7.3.1)

i.e., that the 100(1 − α)% posterior credible region is also a 100(1 − α)% confidence region.

Of course, in practice, this equation cannot be solved because P is not known. The approach

described below is designed to get around this practical roadblock. Before proceeding, note

that solving Equation 7.3.1 is a fixed-n exercise, so the aim is to get exact calibration in

finite samples. Asymptotic approximations come into play, however, because P is unknown in

real applications, but the numerical illustrations in Section 7.4 demonstrate that it is, in fact,

possible to achieve exact calibration, at least in some cases.

To build up the intuition, start by assuming that P is known; later the more realistic case

of unknown P is considered. Even in this unrealistic case, it is generally not possible to solve

for ω in Equation 7.3.1 explicitly, so numerical methods are required. It is possible to solve

Equation 7.3.1 via stochastic approximation (80; 56; 7) by iterating according to the rule

ω(t+1) = ω(t) + κt{ĉα(ω
(t) | P) − (1− α)}, t ≥ 0 (7.3.2)

where ĉα(ω | P) is a Monte Carlo approximation to the coverage probability, obtained by

simulating new copies of the data X n from P, and (κt) is a non-stochastic sequence such that∑
t κt = ∞ and

∑
t κ
2
t < ∞. For the numerical results in Section 7.4, κt = (t + 1)−3/4 is used.
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In this case, if cα(ω | P) is continuous and monotone decreasing in ω, both very reasonable

assumptions, then it follows from the almost supermartingale convergence theorem of (79), that

ω(t) → ω? P-almost surely, as t→∞, where ω? is the solution to Equation 7.3.1.

For the realistic case where P is unknown, the proposed approach changes in two ways.

First, since it is not possible to sample new copies of X n from P, replace simulation from P with

simulation from Pn, i.e., instead sample with replacement from the observed data X n. Second,

since θ(P) is also not known, there is no way to check if a given credible region Cω,α(X n) covers

it. Instead, use θ(Pn) in place of θ(P). This results in an empirical version of the coverage

probability cα(ω | P), namely,

cα(ω | Pn) = Pn{Cω,α(X n) 3 θ(Pn)}, (7.3.3)

and the proposal is to find ω such that

cα(ω | Pn) = 1− α. (7.3.4)

In practice, cα(ω | Pn) cannot be evaluated either, but bootstrap will provide a Monte Carlo

estimator, which is denoted by ĉα(ω | Pn). Then, proceed to solve Equation 7.3.1 by using

the same stochastic approximation procedure described above for the known-P case. Col-

lectively, these steps to solve this equation make up the general posterior calibration (GPC)

algorithm. An R code implementation for each of the examples in Section 7.4 is available at

https://github.com/nasyring/GPC.
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Algorithm 1 – General Posterior Calibration.

Fix a convergence tolerance ε > 0 and an initial guess ω(0) of the calibration parameter. Take
B bootstrap samples X̃ n1 , . . . , X̃ nB of size n. Set t = 0 and do:

1. Construct credible regions Cω(t),α(X̃ nb ) for each b = 1, . . . , B.

2. Evaluate the empirical coverage ĉα(ω
(t) | Pn) as in Equation 7.3.3.

3. If
∣∣ĉα(ω(t) | Pn)−(1−α)

∣∣ < ε, then stop and return ω(t) as the output; otherwise, update

ω(t) to ω(t+1) according to Equation 7.3.2, set t← t+ 1, and go back to Step 1.

Remark 1 In most applications, the credible regions Cω,α(X n) will not be available in closed

form, so posterior sampling will be needed in such cases. But despite having several mov-

ing parts—bootstrap, MCMC, and stochastic approximation—the proposed GPC algorithm is

relatively computationally inexpensive. For example, in the quantile regression problem in Sec-

tion 7.4.1, with a two-dimensional parameter, sample size n = 100, B = 200 bootstrap samples,

and M = 2000 posterior samples, the algorithm took less than 10 seconds to converge on a

Windows desktop computer with a 4.0 GHz Intel Core i7 processor. It seems reasonable that

minimal extra computational investment is a fair trade for calibrated posterior credible regions.

Remark 2 The workhorses of the GPC algorithm, namely, bootstrap, stochastic approxima-

tion, and MCMC, are widely used and, on their own, theoretically sound. But having them all

working together in tandem makes a general theoretical analysis of the GPC algorithm very

challenging. Here, some technical insight is provided as to why the algorithm works, leaving a

complete theoretical analysis for future research.
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Let the interest parameter be defined via a risk function R(θ) = EP(`(X , θ)), so that θ(P) =

arg minR(θ). In this case, a Gibbs posterior Πn,ω is defined as in Equation 2.2.1, where Rn(θ)

is the empirical risk. Under suitable regularity conditions, the Gibbs posterior will resemble

a normal distribution, centered at θ(Pn) = arg minRn(θ), with asymptotic covariance matrix

ω−1Σn, where Σn = (nVθ(Pn))
−1 and Vθ is the second derivative matrix of R(θ). So, the credible

region Cω,α(X n) will look roughly like

{θ : ω(θ− θ(Pn))>Σ−1
n (θ− θ(Pn)) ≤ ξα},

where ξα is the appropriate chi-square quantile. On the other hand, the asymptotic covariance

matrix of θ(Pn) is given by Ψn = n−1V−1
θ(P)MV

−1
θ(P), where M = EP( ˙̀(X , θ) ˙̀(X , θ)>) and ˙̀(X , θ)

is the derivative of θ 7→ `(X , θ), so an asymptotic confidence region is

{θ : (θ− θ(Pn))>Ψ−1
n (θ− θ(Pn)) ≤ ξα}.

In general, ωΣ−1
n and Ψ−1

n are different, so the credible region has a different shape than the

confidence region and, therefore, may not be calibrated. But the GPC algorithm will take ω

roughly equal to the smallest eigenvalue of Ψ
−1/2
n ΣnΨ

−1/2
n , so that the credible region contains the

aforementioned confidence region, making the latter conservatively calibrated; exact calibration

is possible only if Ψn = cΣn for some scalar c > 0. Since Ψ
−1/2
n ΣnΨ

−1/2
n has a limit as n→∞,

then it can be expected that the GPC solution to Equation 7.3.3 will converge to the smallest

eigenvalue of that limiting matrix, hence asymptotic calibration.
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For a quick proof-of-concept, suppose the data X n are iid P and the population mean

θ =
∫
t dP(t) is the quantity of interest. Here, take P = N(0, 1), so that θ = 0. Consider three

posterior distributions: a Bayes model using the correct normal likelihood; a Gibbs posterior

using Rn(θ) =
∑n
i=1(Xi − θ)2, and a misspecified Bayesian posterior with a Laplace likelihood.

For the well-specified Bayes and the Gibbs posteriors, it is expected that the GPC algorithm

will select ω ≈ 1 and ω ≈ 0.5, respectively; for the Laplace model, based on the Vθ and M

calculations in Remark 2, ω ≈ 0.64. Figure 7.3 plots the mean trajectories of the ω values

obtained from the GPC algorithm, with error bars, as a function of n, and the results largely

follow the above expectations.

7.4 Applications

7.4.1 Quantile regression

Recall the quantile regression model defined in Equation 2.1.1. In quantile regression, for

fixed τ ∈ (0, 1) and data X = (Y, X), the interest is in the τth quantile of the response Y ∈ R,

given the covariates X ∈ Rp+1, where dimension p+ 1 represents an intercept and p covariates.

In this formula, the vector θ depends on τ but, for notational simplicity, this dependence is

omitted. This model specifies no parametric form for the conditional distribution of Y given

X. Inference on the quantile regression coefficient θ may be carried out using asymptotic

approximations ((54), Theorem 4.1) or by using the bootstrap (39). A Bayesian approach

would also be attractive, but no distributional form for the conditional distribution is given

in (Equation 2.1.1), hence no likelihood. A workaround that has been considered by several

authors (e.g. (111; 90; 89)) is to use a (misspecified) asymmetric Laplace likelihood. This
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Figure 7.3.1. Mean choice of ω over 100 simulated standard normal data sets of sizes 100,
250, 500, and 1000 using the true likelihood, a Gibbs model, and a Laplace likelihood.

Vertical bars represent two standard deviations from the mean.
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corresponds to a Gibbs model Equation 2.2.1 using the empirical risk given in Equation 2.1.2

based on the usual check-loss function.

It follows from (52) that the Gibbs posterior based on Equation 2.1.2 satisfies a Bernstein–

von Mises theorem. Despite the desirable convergence result, the variance mismatch discussed

in Section 7.2 causes the credible regions to be too large and over-cover, a sign of inefficiency.

On the other hand, the GPC algorithm calibrates the intervals exactly, for all n, without loss

of efficiency in terms of interval lengths.

To demonstrate this, a simulation example presented in (110) is revisited for comparison.

For τ = 0.5, the model they consider is

Yi = θ0 + θ1 Xi + ei, i = 1, . . . , n,

where θ0 = 2, θ1 = 1, ei
i.i.d.
∼ N(0, 4), and Xi

i.i.d.
∼ ChiSq(2) − 2. For this model, the authors

showed numerically that their proposed Bayesian empirical likelihood approach (“BEL.s”) pro-

duced credible intervals with approximate coverage near the nominal 95% level. Moreover,

compared to the Bayesian method with misspecified asymmetric Laplace likelihood (“BDL”)

or, equivalently, the Gibbs posterior with ω chosen by averaging residuals, their method is

shown to be more efficient in terms of interval length. The results for these methods are pre-

sented in Table 7.4.1, along with the results from the posterior intervals scaled by the algorithm.

There are two key observations to be made. First, the GPC method calibrates the credible

intervals to have exact 95% coverage across the range of n, while the other methods tend to
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Coverage Probability Average Length
n BEL.s BDL Normal ω ≡ 0.8 GPC BEL.s BDL Normal ω ≡ 0.8 GPC

100 θ0 0.97 0.98 0.95 0.96 0.95 1.06 1.11 1.00 1.00 0.91
θ1 0.98 0.98 0.98 0.98 0.95 0.58 0.58 0.55 0.52 0.47

400 θ0 0.95 0.98 0.95 0.95 0.95 0.50 0.55 0.50 0.49 0.46
θ1 0.97 0.98 0.97 0.96 0.95 0.26 0.28 0.25 0.25 0.23

1600 θ0 0.96 0.97 0.96 0.95 0.95 0.25 0.28 0.25 0.24 0.23
θ1 0.96 0.98 0.96 0.96 0.95 0.13 0.14 0.12 0.12 0.11

TABLE 7.4.1

COMPARISON OF 95% POSTERIOR CREDIBLE INTERVALS OF THE MEDIAN
REGRESSION PARAMETERS FROM FIVE METHODS: BEL.S; BDL; NORMAL; THE

CONFIDENCE INTERVAL COMPUTED USING THE ASYMPTOTIC NORMALITY OF
THE M-ESTIMATOR; ω ≡ 0.8, THE SCALED POSTERIOR WITH ω FIXED EQUAL TO
0.8; AND GPC. COVERAGE PROBABILITY AND AVERAGE INTERVAL LENGTHS
ARE COMPUTED OVER 5000 SIMULATED DATA SETS FOR THE GPC METHOD,

NORMAL INTERVALS, AND FIXED-ω INTERVALS. RESULTS FOR BEL.S AND BDL
ARE TAKEN FROM (110) AND WERE CALCULATED FROM 1000 SIMULATED DATA

SETS.

over-cover. Second, GPC credible intervals tend to be shorter than those of the other methods,

especially for n = 100. All three methods have a n−1/2 convergence rate so, for large n, one

cannot expect to see substantial differences between the various methods. Therefore, the small-

n case should be the most important and, at least in this case, the credible intervals calibrated

using the GPC algorithm are clearly the best.

Finally, considering that in smooth modelsω should account for the difference in asymptotic

variance between the posterior and the M-estimator, it is reasonable to ask if a calibration

algorithm is needed at all, i.e., can approximate calibration be obtained with a fixed value of ω

based on these asymptotic variances? A comparison of the asymptotic variance of the posterior
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with that of the M-estimator shows that 0.80Σ−1
n ≈ Ψ−1

n ; therefore, take ω ≡ 0.80 in an attempt

to calibrate posterior credible intervals with a fixed scaling. Table 7.4.1 shows that the GPC

algorithm is still better than using a fixed scale based on asymptotic normality, especially at

smaller sample sizes where the normal approximation is less justifiable.

7.4.2 Linear regression

Consider the usual multiple linear regression model for data Xi = (Yi, Xi) ∈ R× Rp

Yi = β0 + X
>
i β+ σ ei, i = 1, . . . , n, (7.4.1)

where β ∈ Rp is the vector of slope coefficients, σ > 0 is an unknown scale parameter, and

e1, . . . , en are assumed to be i.i.d. N(0, 1). Suppose, however, that the constant error variance

assumption is violated, in particular, ei ∼ N(0, σ2‖Xi‖), i = 1, . . . , n, independent. This choice

of predictor-dependent variance is a less-stylized version of that in (34). The proposed model

is, therefore, misspecified, but the goal is still to obtain calibrated inference on θ = (β0, β).

The Jeffreys prior is a reasonable default choice with density π(η) ∝ (σ2)−3/2 (40) for the

full parameter η = (θ, σ2). Since this prior is probability-matching for the location-scale model

(e.g. (16)), it can be expected that the posterior credible intervals are approximately calibrated

for this linear regression. However, for a misspecified model, calibration might fail; in fact, as

shown in Table 7.4.2, the credible intervals are too narrow and tend to undercover.

To investigate the performance of the proposed GPC method compared to several others,

a simulation study was done. The simulated data sets have n = 50 observations. Each Xi ∈
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R3 is multivariate normal with zero mean and unit variance for each element, and pairwise

correlation 0.5 for Xi1 and Xi2 and zero otherwise. To sample Yi parameter values of β0 = 0,

β = (1, 2,−1)>, and σ = 1 were used. Although the error variance contains ‖Xi‖, the regular

tests for constant variance do not detect the heteroscedasticity. Table 7.4.2 shows the estimated

coverage probability and mean lengths of several posterior credible intervals for the components

of θ. Besides those scaled by the GPC algorithm, a misspecified Bayes approach that fixesω ≡ 1

was considered, and posteriors with scale ω chosen by the method in (38) and the SafeBayes

method in (34), Algorithm 1 were compared. The results in Table 7.4.2 show that for this

example SafeBayes performs similarly to GPC, while the method in (38) does not improve

upon the misspecified Bayesian model in terms of calibration.

Figure 7.4.1 shows a boxplot comparison of the scale parameters chosen by the three poste-

rior scaling methods for the misspecified Bayesian posterior. The GPC algorithm, along with

the SafeBayes method, tends to produce smaller values of ω than the method of Holmes and

Walker. Small values of ω mean higher posterior variance and wider credible intervals, which

explains these method’s improvement in calibration. While both GPC and SafeBayes pick

ω ≈ 0.8 on average, the distribution of ω is much more concentrated using the GPC algorithm.

7.4.3 Variational inference for a normal mixture model

Variational inference offers a competing method to MCMC for approximating the poste-

rior distribution. This approach specifies a family of distributions—often a normal family—as

candidate posteriors and then chooses the parameters of that family to minimize the Kullback–

Leibler divergence from the true posterior. The variational posterior is simple by construction
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β0 β1 β2 β3

Misspecified Bayes
coverage 0.94 0.89 0.88 0.87
length 0.99(0.15) 1.16(0.20) 1.16(0.20) 1.01(0.17)

GPC
coverage 0.98 0.94 0.94 0.93
length 1.17(0.18) 1.36(0.23) 1.36(0.24) 1.18(0.20)

SafeBayes
coverage 0.96 0.93 0.94 0.92
length 1.19(0.26) 1.40(0.31) 1.39(0.33) 1.21(0.28)

Holmes and Walker
coverage 0.91 0.84 0.80 0.82
length 0.87(0.18) 1.01(0.22) 1.01(0.22) 0.87(0.18)

TABLE 7.4.2

EMPIRICAL COVERAGE PROBABILITIES OF 95% CREDIBLE INTERVALS AND
AVERAGE INTERVAL LENGTHS (AND STANDARD DEVIATIONS) CALCULATED
USING 5000 SIMULATIONS FROM THE MODEL DESCRIBED IN SECTION 7.4.2.

and, if carefully chosen, will be consistent (e.g. (103)), but as noted in (7), misspecification

causes the variational posterior variance to be too small.

As an example, consider the normal mixture model presented in (7), i.e., Y1, . . . , Yn are iid

observations from the mixture model

K∑
k=1

πkN(µk, σ
2
k). (7.4.2)

The full parameter η consists of the mixture weights (π1, . . . , πK), means (µ1, . . . , µK), and

variances (σ21, . . . , σ
2
K), but in what follows consider inference only on the means. A variational

posterior can be constructed for η following Algorithm 2 in (7), which approximates the posterior

by a multivariate normal. The additional scale factor ω in the modified variational posterior

Πn,ω only adjusts the overall scale of this multivariate normal. Therefore, if m1, . . . ,mK and
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Figure 7.4.1. Boxplots of ω for the model described in Section 7.4.2 using GPC, SafeBayes
(34), and the method in (38) over 5000 simulated data sets.

v1, . . . , vK are the means and variances, respectively, of this variational posterior for the mixture

means µ1, . . . , µK, then the corresponding ω-scaled variational posterior 100(1 − α)% credible

intervals are of the form

µk ± z?α/2ωv
1/2
k , k = 1, . . . , K.

It is straightforward to incorporate this variational posterior setup into the GPC algorithm;

the computational investment is in carrying out the optimization needed for the variational

approximation at each bootstrap step, but then the credible intervals are available in closed-

form so no posterior sampling is needed.

The claim is that the GPC algorithm will properly scale the variational posterior, calibrat-

ing the corresponding credible intervals, correcting the under-estimation of variance noted in
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µ1 µ2

GPC
coverage 0.96 0.96
length 0.67 (0.08) 0.67 (0.08)

VI
coverage 0.92 0.92
length 0.55 (0.03) 0.55 (0.03)

TABLE 7.4.3

EMPIRICAL COVERAGE PROBABILITY AND AVERAGE LENGTH (AND STANDARD
DEVIATION) OF THE CREDIBLE INTERVALS FOR (µ1, µ2) BASED ON THE GPC

ALGORITHM AND THE VARIATIONAL POSTERIOR (VI) IN (7) OVER 5000
SIMULATED DATA SETS FROM THE MIXTURE MODEL IN Equation 7.4.2.

(7). To demonstrate this, a simple simulation study is carried out. Take K = 2, π1 = π2 = 1/2,

(µ1, µ2) = (−2, 2), and σ1 = σ2 = 1. Table 7.4.3 shows the empirical coverage probabilities

and mean lengths of the 95% credible intervals based on Algorithm 2 in (7) and the GPC algo-

rithm. Apparently, the GPC algorithm corrects the underestimated variance of the variational

posterior, producing credible intervals that are slightly conservative.

7.5 Discussion

The sensitivity of Bayesian credible sets to the posited probability model makes obtaining

calibrated inference a challenging problem. The linear regression example demonstrates this

sensitivity when the model is taken for granted. However, misspecification can happen in a

variety of settings, and not always unintentionally. In quantile regression, the model is deter-

mined by a risk function rather than a likelihood, making traditional Bayesian inference using

the true likelihood elusive. And, other times, computational considerations make variational

posteriors an attractive alternative to a fully Bayesian analysis. The GPC algorithm may pro-
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vide a solution in all of these settings by correcting model misspecification to produce, at least

approximately, calibrated inferences.

Although the focus in this paper is on misspecified models, it may still be desirable to

apply the GPC algorithm even when the true likelihood is used. The reason is that the GPC

algorithm can aid in producing calibrated inferences for the given sample size, regardless of the

prior distribution used. This facilitates the use of informative priors, if available, instead of

default priors, while still gaining the desired calibration property.

Finally, while it is clear that the GPC algorithm produces approximately calibrated credible

sets, a detailed theoretical study is needed. The techniques used herein—stochastic approxima-

tion, MCMC, and bootstrap—each are theoretically sound on their own, but very complicated

when used in tandem. Further work in this direction may help provide guidance, but the

lack of completely rigorous theory does not take away from the encouraging examples shown

throughout the paper.



CHAPTER 8

CONCLUSION

The literature on Gibbs models is still somewhat limited, but the motivation for alternative

methods for posterior inference both for robustness to the underlying probability model and for

good predictive properties is well-developed. This dissertation has sought to further the cause of

these techniques through convincing applications and new theoretical foundations. Two general

theorems, detailed in Chapter 4, provide techniques for calculating posterior convergence rates

for Gibbs models in a wide variety of settings, including infinite-dimensional problems. Two in-

depth applications, covered in Chapters 5 and 6, utilize these results and also provide examples

of the utility of Gibbs models.

Challenges remain in this field. Although Chapter 7 provides an algorithm for choosing

an advantageous scale for the Gibbs posterior, the technique is computationally demanding for

parameters with more than a few dimensions. It remains to be seen if an existing technique or a

new one can provide a method for selecting a meaningful scale for general models. A robustness

argument is made in Chapter 1 to motivate the Gibbs model and it is again evident in both

applications, but it is not clear how the data analyst should choose given multiple candidate

linking functions, one or more of which may be likelihoods. In some inference problems, like

the MCID problem, the parameter is defined via a loss function, which makes a Gibbs model a

natural choice. But, in other cases, like quantile regression and the image boundary problem,

even when the parameter can be understood to minimize a certain loss function, probability

142
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models are the default approach for most practitioners. One challenge to popularizing Gibbs

models is to convince data analysts to think in terms of linking data and parameter more

generally, not necessarily via a probability model.

There are several new and exciting applications for Gibbs posteriors to be considered, with

potential for new theoretical advances as well. The MCID problem has already been extended

in the M-estimation setting in (37). The more general approach consists of parametrizing the

MCID not as a scalar, but as a function of covariates. Then, each patient can possess their

own MCID depending on their own characteristics. The resulting MCID function is referred to

as the personalized MCID, and estimation of the personalized MCID using M-estimation has

already been studied. A Gibbs posterior approach could certainly be applied to the personalized

MCID, and many of the techniques used in Section 4.3 and Chapter 6 could be helpful. Another

potential new application of Gibbs posteriors is in modeling the Lévy density, which describes

a jump-diffusion Lévy process, with applications in finance. An M-estimation method for

estimating the Lévy density is described in (21).
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Figure .0.1. Elsevier grants permission to the author to reproduce previously published
material in this dissertation.
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