
Proving Correctness within an Access Control Evaluation

Framework

BY

DIEGO MARTINOIA
Laurea di Primo Livello in Engineering of Computing Systems,

Politecnico di Milano, Milan, Italy, September 2011

THESIS

Submitted as partial fulfillment of the requirements
for the degree of M.S. in Computer Science

in the Graduate College of the
University of Illinois at Chicago, 2013

Chicago, Illinois

Defense Committee:

Lenore D. Zuck, Chair and Advisor

Timothy L. Hinrichs

Pier Luca Lanzi, Politecnico di Milano

ACKNOWLEDGEMENTS

I would like to thank my thesis committee –Lenore Zuck, Tim Hinrichs and Pier Luca

Lanzi– for their help in this adventure. Lenore and Tim were a constant source of guidance

in developing this work while growing myself, and Pier Luca takes care of the program and

flies back and forth over the Atlantic to give his students this opportunity.

DM

ii

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1

2 ACEF THEORY . 5
2.1 Access Control Model . 6
2.2 Access Control System . 8
2.3 Workload . 9
2.4 Implementation . 11
2.5 Correctness . 12

3 PVS STRUCTURE . 15
3.1 PVS Overview . 15
3.2 Issues . 17
3.3 ACEF Data Structures . 19
3.4 ACEF Implementation . 21
3.4.1 Workload . 22
3.4.1.1 Workload States . 23
3.4.1.2 Workload Queries . 25
3.4.1.3 Workload Labels . 27
3.4.1.4 Workload Entailment and Theory 29
3.4.1.5 Workload Transition Function 29
3.4.2 ACS . 31
3.4.2.1 ACS State . 31
3.4.2.2 ACS Queries . 33
3.4.2.3 ACS Labels . 34
3.4.2.4 ACS Entailment and Theory . 35
3.4.2.5 ACS Transition Function . 35
3.4.2.6 ACS Path-traversing Function 35
3.4.3 Implementation . 37
3.4.3.1 State-Mapping . 38
3.4.3.2 Query-mapping . 39
3.4.3.3 Action-Mapping . 40

4 PROOFS . 43
4.1 Query-mapping Preservation . 44
4.1.1 Proof for Authorization Queries 45
4.1.2 Proof for Affiliation Queries . 48
4.2 Action-mapping Preservation 49

iii

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

4.2.1 Proof for joinCoalition Labels 50
4.2.1.1 Base Case . 51
4.2.1.2 Inductive Step . 53
4.2.2 Proof for leaveCoalition labels 61
4.2.2.1 Base Case . 61
4.2.2.2 Induction Step 1: Adding an Authorization Triplet 62
4.2.2.3 Induction Step 2: Adding an Affiliation Pair 66
4.3 Summary . 69

5 CONCLUSIONS . 70

APPENDICES . 73
Appendix A . 74
Appendix B . 76

CITED LITERATURE . 84

VITA . 86

iv

LIST OF FIGURES

FIGURE PAGE

1 ACEF data structure . 20
2 Hierarchy of string types . 22
3 Records syntax . 23
4 States of the workload . 26
5 Queries of the workload . 27
6 Labels of the workload . 28
7 Entailment of the workload . 30
8 States of the ACS . 32
9 Queries of the ACS . 33
10 Labels of the ACS . 34
11 Entailment and theory of the ACS . 36
12 Transition function of the ACS . 37
13 Path-traversing function of the ACS 38
14 Implementation: state-mapping function 39
15 Implementation: query-mapping function 41
16 Comparison of workload and ACS entailment 45
17 Query-mapping relevant functions . 46
18 Action-mapping preservation, base case for JC labels 51
19 Action-mapping preservation, induction step for JC labels 53
20 Action-mapping, helper for JC labels 56
21 Action-mapping preservation, helper for LC labels 64

v

SUMMARY

This thesis presents the proofs developed to demonstrate correctness of a case study

within the Access Control Evaluation Framework (ACEF).

ACEF is a theoretical framework developed at the University of Illinois at Chicago, aimed

at creating application-sensitive implementations of access control policies, using well-

known access control systems, while preserving some desirable properties.

As the formal proof of these properties, including correctness, is usually a tedious process

prone to error, a mixed approach was used, which relies on both human high-level ab-

straction and insight for the outlining of the proof sketches, and then verifies their formal

correctness using a formal prover system.

To achieve this, a generic template for ACEF for the Prototype Verification System for-

mal prover was developed. The process of generating the proofs for this specific case study

was also a benchmark for the validity of the template, as a first step towards the realization

of a more automated approach to ACEF.

In the conclusions, the validity of the approach is analyzed and possible future steps to

improve it are outlined.

vi

CHAPTER 1

INTRODUCTION

Access control, the act of determining who is allowed to do what in a system, is one of

the basic pillars of computer security. Due to its central role in this important discipline,

access control has been analyzed from a formal point of view by many. Most of the previ-

ous works focused on quantifying, in absolute or relative terms, the expressive power of

access control schemes [1–10], trying to answer the question “is scheme S more powerful

than scheme T?” rather than “is scheme S fit for my specific needs?”.

Starting from these considerations, a team of researchers at UIC have been investi-

gating the problem with a different perspective in mind: evaluating access control sys-

tems (ACS’s) not one against the other, but rather by comparing them against the re-

quirements of a specific application. To address this goal, they developed a theoretical

framework called ACEF (Access Control Evaluation Framework). ACEF starts by identi-

fying the specific needs of the application in analysis: once all the required functionality

are well-defined, they are represented as a workload, a self-contained representation of

the abstracted state of the application and of how this state changes during time. One can

say that a workload represents the idealized ACS for the application, together with all the

non authorization-related information. Then a similar process is carried out for the ACS

against which we are testing our application. Once we have both our workload and ACS ex-

1

2

pressed as finite state automata (FSAs), ACEF lets the user specify the implementation of

the workload in the given ACS, i.e. the pairing elements that describe how workload states

are represented by ACS states, how workload actions are executed using ACS actions and

how workload queries are answered using ACS queries. Finally, ACEF formally specifies a

(non-comprehensive) list of desirable properties that our implementation should satisfy, so

that the user can verify via theorem-proving if these properties hold.

Unfortunately, the formal verification of these properties is far from a trivial challenge:

given that ACEF can theoretically represent the pairing of any kind of workload with any

kind of ACS, the implementations can become complicated and hard to work with. There-

fore, relying on human hindsight and intuition in the proofs can lead to subtle mistakes

caused by the overlooking of details. The goal of this work is to show how theorem provers

can be used to represent the ACEF framework, with the aim of enforcing a much more

rigorous procedure during the development of the proofs, and easing the burden of the an-

alyst who can now sketch a “naive” proof outline by himself, and be assisted by the system

during the chewing of all the details, ensuring that nothing is left unchecked.

To achieve this, I developed a generic structure to study ACEF case studies within the

Prototype Verification System (PVS). PVS was chosen for its capability to work easily with

higher order logic, but as we’ll see the concepts can easily be translated into other sys-

tems. Within PVS I also formalized the intuitive notion of correctness by giving it a precise

3

mathematical definition, and went through the proof of correctness for a formalized ver-

sion of one of the well-known Access Matrix ACS’s and the so-called “dynamic coalitions”

scenario, described in the next chapter, which was one of the driving needs for the devel-

opment of ACEF.

As we’ll see, the component of correctness related to how workload and ACS states

relate to one another is easy to prove in the system, while the part related to how work-

load actions translate in ACS actions is harder to work with. Typically, this last part of the

proof requires to work by induction, as one workload actions translates into a list of ACS

actions, and inductions can be complicated as we usually induce over the state elements,

and therefore need a different sub-proof for each state element, as we could be “expand-

ing” each one of them.

Anticipating some of the results, I can state that using PVS, or another generic theorem

prover, to prove ACEF correctness can be challenging: as every implementation requires

an inductive proof whose hypothesis depend on the contents of the workload, completely

automating this process would probably require importing work from the field of inductive

theorem proving to automatically generate and refine inductive hypothesis. Nevertheless,

being constrained by the system allows to avoid ambiguity and subtle mistakes that come

natural if one was to prove things in a less formal way. This is, indeed, the burden of being

4

right.

In the remainder of the thesis I’ll first outline in more detail the ACEF theory, then move

on by introducing the specific application we’ll use as case study. After that, I’ll describe

the choices taken in the development of the PVS structure and their motivation, and finally

moving on to the actual proofs. As a final wrap-up, I’ll try to outline the lessons learned

from the development of this work, and point out the future works direction.

CHAPTER 2

ACEF THEORY

ACEF is a formal, mathematical framework aimed at giving analysts a tool for evalu-

ating ACS’s in an application-sensitive fashion. In this section I describe a subset of the

ACEF theory in order to give the reader the needed background to understand the thesis

work. For a complete description, refer to the full paper presenting ACEF [11].

In ACEF we represent both the idealized version of our application (the workload) and

the ACS in use as FSA’s, specify the pairing elements between them and then verify if this

implementation satisfies certain properties. The workload and the ACS representations

must be self-contained, i.e. they must represent all the required information within them-

selves, without relying on any outside element.

Consider an application that has a list of its users. The users are real-world entities,

peoples or accounts, but they will most likely be identified by a single ID, which in the

most general case will be a string over a language (“user1”, “user2”, etc.). Therefore, the

representation of our state becomes a tuple containing a number of sets, either over the

basic type string or over other sets, and a number of relations among elements of sets or,

possibly, other relations. This consideration strongly hints at the possibility to use higher

5

6

order logic theory, as well as related automated tools, to address ACEF.

Over the representation of a state, we have methods that expose information about the

state to the outside. We are going to refer to these methods as queries. Queries and states

are elements of any generic FSA. Since we are representing systems related to access

control, we must add some specificity to the representation. More specifically, the list of

queries of our FSA’s must include a list of special queries that are related to authoriza-

tions. As it’s customary in this field, we are going to consider authorization queries in the

typical subject-object-right fashion. Below are given some definition that will be useful in

explaining the rest of the theory.

2.1 Access Control Model

Definition 1 (Access Control Model).

An Access Control Model (ACM) M is a tuple 〈S,Q, |=〉 such that:

• S: a finite set of states

• Q: a finite set of queries, including the authorization ones. Queries can have argu-

ments

• R: a subset of Q that specifies the authorization queries

• |=: a subset of S ×Q (the entailment relation)

7

The |= relation specifies which queries are true in which states. There are some important

things to note here: first, the queries will always lead to boolean answers, that is to say I

can’t ask “which user(s) borrowed book X?”, but I’ll have to ask, for every user, “did user Y

borrow book X?”. Secondly, queries don’t store any semantics by itself, but their behavior

is entirely specified by the |= relation. Lastly, note that it’s only the presence of the R set

that differentiate an ACM from a general-purpose model. We also define accessors to the

fields of an ACM M = 〈S,Q, |=〉 as follows: States(M) denotes S, Queries(M) denotes Q,

Th(s) denotes the set of all the queries q ∈ Q true for a given s ∈ S (i.e. s |= q), and Auth(s)

is the set of all the authorization queries r ∈ R such that s |= r (note that Auth(s) ⊆ Th(s),

as R ⊆ Q).

Example 1 (Access Matrix type A Model).

Access Matrix type A (AMa) is the simplest type of access control scheme in the Access

Matrix (AM) family. It only consists of a matrix recording triplets that directly represent

the authorization policies. So, if we let U denote the set of all possible strings, one possible

representation in ACEF of the ACM for AMa would be:

• States: The states are composed only from the access matrix, which is a subset of

U3. Each s ∈ States(A) is a possible state of the access matrix. For brevity, I’ll refer

to the access matrix of state s using s.m

8

• Queries: The only available query is whether or not a triplet belongs to the matrix.

Note that the presence of a triplet in the matrix also means that the triplet represent

an authorization record, therefore this is one of those cases where R = Q

• Entailment: s |= q ⇐⇒ q ∈ s.m

An ACM is a specification of how to store and query information, but it doesn’t allow to

ways to change the current state in the desired one. An ACS is an extension of an ACM

that also allow the possibility to evolve the states. From a mathematical perspective, an

ACS transforms the set of states of an ACM into a labelled directed graph, adding labelled

edges that represent how actions affect the states.

2.2 Access Control System

Definition 2 (Access Control System).

An ACS Y is a tuple 〈M,L, next〉 such that:

• M : an ACM, as defined in the previous paragraph.

• L: a finite set of labels (also called commands or actions). Labels can have arguments

• NEXT : a total function States(M)× L→ States(M) (the transition function).

Also in this case, we have some accessors: Labels(Y) is L, Queries(Y) is Queries(M)

and States(Y) is States(M). Also, for a finite sequence of labels l1 • ... • ln we define

TERMINAL(s, l1 • ... • ln) as the state reached by applying one by one the labels start-

ing from state s.

9

Example 2 (Access Matrix type A System).

The only available commands in AMa are related to adding or removing triplets to or

from the authorization matrix. Therefore:

• addMatrix (〈s, o, r〉): adds the triplet 〈s, o, r〉 to the access matrix.

• removeMatrix (〈s, o, r〉): removes the triplet 〈s, o, r〉 to the access matrix.

The NEXT function has to take care of the subtle details. For addMatrix , the reached

state is different from the starting one only if the added triplet wasn’t present already.

For removeMatrix , the reached state is different only if the removed triplet was present in

the matrix. Remember that NEXT is a total function, and therefore there aren’t “illegal”

actions, just commands that will not modify the state in certain situations.

2.3 Workload

Now that ACSs are defined, let’s switch our attention to defining the workloads.

As stated earlier, a workload is an idealized, self-contained representation of the applica-

tion against which we want to test the ACS. In the original formulation of ACEF, a workload

differs from an ACS by adding a set of traces, i.e. the subset of sequences of commands,

starting from a given state, that are relevant to our needs. This is done to reduce the

amount of work required to prove the desired properties. Since we aim at having the ma-

chine deal with most of the proofs, we do not have to restrict the traces and can allow for

similar definitions of ACSs and workloads. This similarity is very important to facilitate the

10

analysis, however, in spite of the similarity in their structures, ACSs and workloads have

a very different meaning behind them: the workloads represent our idealized application,

something that we have envisioned as designers. The ACS is thought to be an off-the-shelf

system, something that we have to use as-is to meet the needs of our application.

For a running example, this work uses the case study of “dynamic coalitions”. This case

study was chosen due to a pair of report [12,13] that demonstrates how the U.S.A. system of

storing and managing sensitive information is inappropriate for those cases, always more

frequents, where coalitions of organizations, among which sensitive information must be

shared, are formed and disbanded often. In our terminology, a state of the workload is

given by:

• Subjects: a finite set of subjects ID (Alice, Bob, etc.)

• Objects: a finite set of objects ID (document1, document2, etc.)

• Rights: a finite set of rights ID (read, write, etc.)

• Organizations: a finite set of organizations ID (France, U.N., etc.)

• Auth : a finite set of 〈s, o, r〉 triplets (where s ∈ Subjects, o ∈ Objects, r ∈ Rights) that

specify the current authorization policy.

• Belongs: a function Subjects → (Organizations ∪ ⊥) that specifies the affiliation of

subjects to the different organizations. The definition of the function Belongs implies

11

that at any time subjects are either unaffiliated (hence the ⊥ symbol) or affiliated

with at most one organization.

The commands available in our case study are just two, which are given here together with

the informal description of their NEXT function. We’ll later see how this informality leads

to non-trivial issues during the proving steps.

• joinCoalition(org ,newAuth): for each 〈a, b, c〉 ∈ newAuth , (i) add Auth(a, b, c) and (ii)

change Belongs such that Belongs(s) = org

• leaveCoalition(org): for each subject s such that Belongs(s) = org , (i) revoke all the

authorizations of s and (ii) change Belongs such that Belongs(s) = ⊥

Note that we are assuming that newAuth is a finite set of triplets, while org is a single Or-

ganization ID. What we want to achieve is that the joinCoalition commands allow to specify

the entering of an organization into a coalition, together with their desired authorization

policy, while the leaveCoalition commands remove an organization from the coalition and

void all the rights of its members.

2.4 Implementation

The final piece of ACEF is given by the implementation. An implementation is a speci-

fication of three specific functions that define how workload and ACS are linked together.

Definition 3 (Implementation).

For a workload W and an ACS Y , an implementation is a triplet of functions 〈σ, α, π〉:

12

• σ : States(W)→ States(Y) (state-mapping)

• α : States(Y)× Labels(W)→ Labels(Y)∗ (action-mapping)

• π : Queries(W)× powerset(Queries(Y))→ booleans (query-mapping)

σ, the state-mapping, specifies how we can construct, starting from a workload state, the

ACS state that represent it. α, the action-mapping, specifies how a workload action is

translated in a finite sequence of ACS actions. Finally π, the query-mapping, specifies how

a workload query in a given workload state can be answered as true or false given the

theory of the mapped ACS state, i.e. the set of all queries true in that state. Note that, in

the general formulation of π the states do not appear. This is because, in ACEF, π is only

used for the formulation of the correctness property, which we’ll see in a bit, which already

includes the states information.

2.5 Correctness

ACEF comes together with a set of desirable properties already mathematically de-

fined. The most important of them is by far correctness. While the other properties may

guarantee case-specific interesting behaviours, correctness is the conditio sine qua non

an implementation is simply wrong. Correctness holds when the implementation elements

“play well” along with each other, i.e. state, action and query mapping are not inconsistent.

Definition 4 (Correctness).

13

For a given ACEF case instance composed by 〈W,Y, σ, α, π〉 where W is a Workload, Y is

an ACS, and σ, α, π an implementation, correctness holds iff:

(Query-mapping preservation)

∀(s ∈ States(W), q ∈ Queries(W)) :

q ∈ Th(s) ⇐⇒ π(q, Th(σ(s))

∧

(Action-mapping preservation)

∀(s ∈ States(W), l ∈ Labels(W) :

σ(NEXT (s, l)) = TERMINAL(σ(s), α(σ(s), l))

Correctness is the logical conjunction of two other properties. The first property, called

“query-mapping preservation”, guarantees that a workload query is true in a workload

state only if this truth can be derived just as well by looking at the theory of the mapped

ACS state. From a real-world point of view, this means that you can always derive the

truths of your idealized application by looking at the state of your data structures. The

second property, “action-mapping preservation”, is related to the pairing of states and

actions of the workload and the ACS. Formally, this properties states that applying a work-

load action l starting from a workload state s will lead you in a workload state NEXT (s, l)

which, when mapped to the ACS, will be the same you would reach by starting from the

state to which s is mapped and applying the actions chain that represent the translation of

14

l in the ACS labels. Informally, the properties states that the actions paths in the workload

and in the ACS are always consistent.

This exposition covers all the details of ACEF needed to understand this work. As

already stated, ACEF actually offers a wider number of formalized properties, as well as

reduction guarantees among implementations, but they go beyond the scope of this work.

If the reader is interested in further details, he can consult the original full paper on

ACEF [11].

CHAPTER 3

PVS STRUCTURE

In this chapter I’m going to outline the implementation of the ACEF theory in the Pro-

totype Verification System (PVS). First, I’ll give a brief overview of how PVS works, then

I’ll go through the details of the code, pointing out where necessary the inner represen-

tation mechanics of the system and the rationale behind the design decisions taken. This

chapter was written as a guide to understanding the code in the appendix. Albeit snippets

are provided wherever this is possible, it is therefore suggested to read the chapter with a

copy of the code at hand.

3.1 PVS Overview

PVS is a “verification system”, i.e. an integrated solution that comprehends a spec-

ification language and a theorem prover. It was developed by SRI International1 and is

now freely available on the web2. PVS comprehends a specification language, a number of

predefined theories and proved theorems (the “prelude”), a type checker and an interac-

tive prover, as well as some useful add-ons like “pretty-printing” of the code into portable

document format (.pdf) files. PVS was built summing up 25 years of experience in the

1http://www.sri.com/

2http://pvs.csl.sri.com/

15

16

field of specification and property verification, and is nowadays used in many sectors of

application, whenever it’s critical to prove system properties. For example, NASA itself

organizes yearly summer schools on their use of PVS and their huge custom library of the-

ories. PVS works by letting the user define a formal specification of the system in exam,

offering native support for various common data structures such as records, lists and sets,

as well as common mathematical concepts like quantifiers, types algebra and the like. PVS

operates in a higher order logic regime, where functions can take as argument and return

other functions. After the description of the system is specified, PVS lets the user specify

a number of lemmas that need to be proven, given the specification. Whatever the form of

the lemma, PVS converts it in and equivalent form:

A1 ∧A2 ∧ ... ∧An

⇒

B1 ∨B2 ∨ ... ∨Bm

Where the Ai atoms are called “antecedents” and the Bj atoms are called “succedents”.

Within the PVS prover, the user can then expand and manipulate definitions and formulas

to reach a trivial truth, i.e. where one of the following conditions is met:

• The conjunction of the antecedents is trivially false

• The disjunction of the succedents is trivially true

• One of the succedents is the same as one of the antecedents

17

All of PVS transformation guarantee to preserve the correctness of the process, and they

include some fairly powerful tools for the most common cases. For example, proving some-

thing via induction over the naturals is rather trivial and automated, while user effort is

required for the most “exotic” cases. As we’ll see, dynamic coalitions is one of the latter

kind.

3.2 Issues

The main issue found in using PVS for ACEF was related to the data structures. As I

mentioned already, PVS offers a number of default data structure. For the specific nature

of ACEF, the ones of interest are the finite versions of sets, lists and sequences. As we’ll

see, each of these has some some, but not all, of the properties relevant to ACEF, and

therefore the development of custom data structures was required, by taking something

from each of the native options.

In PVS, sets are equivalent to their characteristic function, i.e. a set of elements of type

T is nothing but a function f : T → booleans or, in PVS notation, f : [T → booleans]. Sets

have the interesting property of uniqueness, i.e. it’s impossible to store duplicates within

a set, This is something desirable to have for ACEF, as most of our collections represent

ID collections, where duplicates are not allowed. Unfortunately, sets lack ordered access,

i.e. there is nothing like a “first”, “second” or “last” member of a set1. Since ACEF works

1Actually, the choose command of PVS offers something similar to an ordering over a set, but it’s
not fully appropriate for our needs.

18

closely related to the path traversal of a graph, the ordering is of extreme importance.

Lists are right-recursive data structures, in the sense that a list of elements of type T can

be composed by pre-pending an element of type T to an existing list of elements of type

T , with the base case of an empty list. Lists offer a total ordering among their elements,

and their recursive structure matches perfectly the functional paradigm of the PVS pro-

gramming style. Unfortunately, lists can contain duplicates, and it’s impossible to access a

definite position without traversing the list.

Finally, sequences of type T are defined as records containing two fields: their current

length l, which is a natural number, and a function from the subset of naturals below l to

elements of type T , which is used for positional access. Sequences too define a total order-

ing among their elements, and allow positional access as well as knowledge of their length

without the need of traversing them. But they can store duplicates, and being records they

can’t be used recursively in a natural way.

Note that, to some, uniqueness may seem like an unnatural property to desire: it’s

easy to imagine that lists of commands may contain duplicates. Albeit this is true only

for the commands lists, as sets naturally offer uniqueness, I enforced it also on the col-

lections with in mind the possibility of expanding, in the future, this work towards other

ACEF properties. Among these, we find “safety”, which informally states that intermediate

states during the execution of sequences of commands do not remove/assign rights more

times than those strictly needed (for example, to remove a right, we have to remove it only

19

once and not issue sequences like remove/add/remove). Albeit it’s still possible to break

safety with a list of unique commands in certain special cases, the impossibility of having

duplicate commands in a single sequence is a strong deterrent for the analyst to try and

infringe safety. After all, it’s still possible to realize correct implementations that do not

need duplicate commands in a single sequence. If it was the case where this was partic-

ularly needed, the analyst might just specify the data structures of this unlikely case as a

native sequence or list.

Since all the native possibilities were not ideal, I decided to develop my custom data struc-

tures that would possess all the desirable properties required to make proofs easier.

3.3 ACEF Data Structures

First of all, let’s recap which properties our ideal structures might need:

• Uniqueness: the collections must not allow duplicate elements

• Ordering: a precise iteration order of the elements must be defined

• Composability: the operators of the collections must preserve both the ordering and

the uniqueness of the elements

• Flexibility: it is desirable that the collection allows for both recursive and positional

access and composition

Given these premises, I customized the native sequence structure, and its operators, in

such a way to preserve uniqueness of the contained elements and recursive composition

20

An ACEF data structure of elements of type T is a tuple 〈length, seq〉 where:

length ∈ N,
seq : (N ≤ length)→ T |
∀(n1, n2 ∈ (N ≤ length)) :

n1 6= n2 ⇐⇒ seq(n1) 6= seq(n2)

t_Seq : TYPE =
[#

length : nat ,
seq : {s : [below[length]−>T] |
(FORALL (n1: below[length] , n2: below[length]) :
n1 /= n2 IFF s (n1) /= s (n2))}

#]

Figure 1: ACEF data structure

and traversal. As reported in the appendixes, the operators were modified in order to only

accept collections and elements that respect constraints that guarantee the properties.

For example, the concatenation of two ACEF sequences impose that no element is shared

between the two collections, to guarantee uniqueness in the result.

The specification of the ACEF custom structure, without including all the specific prop-

erties and operators, is given in figure 1. Note how uniqueness is intrinsic in the defini-

tion. The development of these structures wasn’t the result of a waterfall-like process, but

rather the outcome of an iterative design refinement, where I had to go through all the

proofs from top to bottom multiple times, and see what I needed next to get to the final

demonstrations: PVS doesn’t make discounts, if something isn’t specified somewhere, you

21

can’t just take it for granted as we’d do using our human hindsight.

Since ACEF holds the possibility to analyse basically any kind of workload-ACS im-

plementation, it’s possible that future cases will require additional properties, lemmas or

operators, and therefore the specification of the data structures, as well as that of the

whole ACEF implementation, is not to be considered completed, but always expandable.

3.4 ACEF Implementation

In this section I dive in the implementation of ACEF in PVS. When non-intuitive, I’ll

point out the details in the syntax of the PVS language. For a much more comprehensive

reading on the matter, the reader can consult the PVS vast documentation1.

ACEF assumes that the ACS and workload alphabets are the same, and therefore ex-

ists a set U of all possible strings in common between the workload and the ACS. In the

specific case in analysis, I partitioned the set U into two disjoint sub-sets: the “usable”

strings, i.e. the set of all strings that can be used from the user to define his own ID’s,

instances, etc., and the set of “keywords”, i.e. reserved words that cannot appear in the

data. In our case, the keywords set is actually just a singleton composed of the so-called

“skolem” constant. Albeit specifying a set of reserved words is very likely to break some

1http://pvs.csl.sri.com/documentation.shtml

22

Let U the set of all strings.

Define over U two predicates, t_Strings_Pred and t_Skolems_Pred.

Disjointedness is achieved by adding the axiom:

∀(s ∈ U) :
t_Strings_Pred(s) ⇐⇒ ¬t_Skolems_Pred(s)

t_ALL_Strings : TYPE+

t_Strings_pred : [t_ALL_Strings −> bool]
t_Strings : TYPE+ = (t_Strings_pred)

t_Skolems_pred : [t_ALL_Strings −> bool]
t_Skolems : TYPE+ = (t_Skolems_pred)

Strings_Nature_Axiom: AXIOM
(

FORALL (s : t_ALL_Strings) : t_Strings_pred (s) IFF NOT t_Skolems_pred(s)
)

Figure 2: Hierarchy of string types

of the other ACEF properties, first of all the “homomorphism” property, our case-study

only cares about correctness and therefore our implementation using keywords is a valid

option. Disjointedness was achieved by specifying an axiom, a lemma that does not need

to be proven, that states that the predicates that characterize the two sub-types are one

the opposite of the other. This hierarchy can be found in figure 2.

3.4.1 Workload

We have seen in the previous chapter that, in general, to define a workload the spec-

ification of five main elements is required: states, queries, labels, entailment relation to-

gether with the theory of the states and, finally, the transition function. In this subsection

23

% DEFINITION
t_Record_Type =
[#

field_1 : t_Field_1 ,
field_2 : t_Field_2 ,
field_3 : t_Field_3

#]

% INSTANTIATION
my_record =
(#

field_1:= value_1 ,
field_2:= value_2 ,
field_3:= value_3

#)

% ACCESS. THIS IS TRUE:
my_record ‘ field_1 = value_1

Figure 3: Records syntax

I’m going to show, for each of these elements, how they can be represented in general, and

then refer to the specific implementation of the case in analysis.

3.4.1.1 Workload States

A state is nothing but a collection of other elements, usually sets or relations. There-

fore, the most appropriate data structure appears to be a record. Note that a tuple, i.e.

a record with positional access rather than named access, would work too, but the read-

ability of the code would deeply be negatively affected. The PVS syntax for records is a

bit peculiar. An example of record type definition, record instantiation and access is given

in figure 3. In general, as the workload should have its own authorization policy, we can

24

expect the presence of at least the subjects, objects and rights sets, as well as some form

of representation of the authorization policy.

In the previous chapter, we have seen that the dynamic coalitions workload stores two

main elements: the authorization policy, composed of 〈subject , object , right〉 triplets, and

the affiliation function, that specifies for each user at most one organization to which he’s

affiliated. In addition to that, the workload also specifies a number of finite sets of subjects,

objects, rights and organizations, which in our specific case are immutable, also because

the addition of the possibility for these sets to change with time only increase the amount

of proofs to be done by adding trivial lemmas that do not bring any hindsight with them.

For the affiliation function, we need to specify that a “special” organization exists that

represent the non-affiliation of a subject. Note that this is just one of the many ways to

achieve the representation of the non-affiliation: one could have decided to create a sub-set

of subjects containing only the affiliated subjects and defining the domain of the affiliation

function over that set rather than over all the subjects. Workload states store subjects,

objects, rights and organizations as disjoint finite sets over the strings. The authorization

policy is a finite set of subject-object-right triplets, while the affiliation (belongs) function

is a function from subjects to organizations. The organizations set contains the special

unaffiliated element. There are also some constraints that help during the proofs, such as

the disjointedness of subjects, objects, rights and organizations, and the fact that triplets

25

are S-O-R in the authorization policy and that affiliation pairs are indeed S-Org. The code

for the workload states is given in figure 4.

3.4.1.2 Workload Queries

In general, queries are elements that have arguments. They usually are of more than

onr type, and each type usually has a different signature. Given these characteristics,

the data structure that better seems to match them is that of a “DATATYPE”, i.e. a data

structure with different types of constructors, that represents the disjoint union of its con-

structors instances. In this way, we can define the super-set of all queries as the disjoint

union of different sub-types, each one with its own arguments, and be able for any query

to know its sub-type and access its arguments. Again, we expect in the general case to

have at least the authorization-related queries.

In our case, we only have two possible queries: “is this triplet part of the authorization

policy?” and “is this subject-organization pair part of my affiliation function?”. Remember

that queries should, in ACEF, return only boolean answers, and therefore the affiliation

queries cannot be of the form “to which organization is this subject affiliated?”. In gen-

eral, we might want to add also queries for the subjects, objects, rights and organizations

sets, but they are of scarce interest, especially in PVS where the sets coincide with their

characteristic functions. The specification of the workload queries is given in figure 5.

26

Let S the set of all usable strings.

Given two sets A and B, let disjoint(A,B) ⇐⇒ A ∩B = ∅
A workload state is a tuple 〈subjects, objects, rights, auth, organizations, belongs〉 where:

subjects ⊂ S,
objects ⊂ S | disjoint(objects, subjects)

rights ⊂ S | disjoint(rights, objects) ∧ disjoint(rights, subjects),

auth is a finite set of 〈e1, e2, e3〉 triplets ⊂ S3 | e1 ∈ subjects ∧ e2 ∈ objects ∧ e3 ∈ rights,

organizations ⊂ S |
disjoint(organizations, rights) ∧ disjoint(organizations, objects) ∧
disjoint(organizations, subjects) ∧ unaffiliated ∈ organizations,

belongs : subjects → organizations

t_States_w : TYPE =
[#

subjects : t_Subjects_w ,
objects : {obj : t_Objects_w | disjoint ?(obj , subjects)} ,
rights : {rig : t_Rights_w |

disjoint ?(rig , objects) AND
disjoint ?(rig , subjects)} ,

auth : {aut : t_Auth_w | (FORALL (a: t_TripleString) :
member(a , aut) IMPLIES
member(a ‘e1, subjects) AND
member(a ‘e2, objects) AND
member(a ‘e3, rights))} ,

organizations : {org : t_Organizations_w |
disjoint ?(org , rights) AND
disjoint ?(org , objects) AND
disjoint ?(org , subjects) AND
member(unaffiliated , org)} ,

belongs : {bel : t_Belongs_w | (FORALL (b: t_Strings) :
IF member(b, subjects) THEN
member(bel (b) , organizations)
ELSE

bel (b) = invalid
ENDIF)}

#]

Figure 4: States of the workload

27

Let S the set of all usable strings.

The type of workload queries is the disjoint union of two sub-types of workload queries.

Authorization queries take as argument a triplet of usable strings aut = 〈e1, e2, e3〉 | e1, e2, e3 ∈ S
Affiliation queries take as argument a couple of usable strings bel = 〈e1, e2〉 | e1, e2 ∈ S
workload queries = authorization_queries ∪̇ affiliation_queries

t_Queries_w : DATATYPE
BEGIN

authCons_w(
aut : t_TripleString

) : auth_w?

belongsCons_w(
bel : t_DoubleString

) : belongs_w?
END t_Queries_w

Figure 5: Queries of the workload

3.4.1.3 Workload Labels

Labels are the actions available in the workload. As queries, they can be of different

types with different arguments, and are therefore defined using again a DATATYPE con-

struct. In the general case, we expect the presence of some mechanism to at least be able

to add and remove authorization policy elements, albeit these mechanism may be indirect,

as in the case in analysis.

In the dynamic coalitions scenario we only have two possible workload actions: join-

Coalition(org, newAuth) and leaveCoalition(org). Again, it should be in general possible

also to modify all the elements of the state, and therefore labels like addSubject or re-

28

Let S the set of all usable strings.

The type of workload labels is the disjoint union of two sub-types of workload labels.

joinCoalition labels take as argument an usable string org ∈ S and an ACEF data structure

newAuth of triplets of usable strings.

leaveCoalition labels take as argument an usable string org ∈ S.
workload labels = joinCoalition_labels ∪̇ leaveCoalition_labels

t_Labels_w : DATATYPE
BEGIN

joinCoalitionCons_w(
org : t_Strings ,
newAuth : t_Seq [t_TripleString]

) : joinCoalition_w?

leaveCoalitionCons_w(
org : t_Strings

) : leaveCoalition_w?
END t_Labels_w

Figure 6: Labels of the workload

moveObject should be available, but they aren’t interesting here. Recall from the previous

chapter that joinCoalition(org, newAuth) represents the joining of the coalition from or-

ganization org and specifies its authorization policy via the newAuth argument. org is a

simple string element, while newAuth is an ACEF collection of triplets of strings. leave-

Coalition(org) instead removes an organization from the coalition, removing all its affilia-

tions and voiding the rights of its members. Here too, org is a string. The specification of

the workload labels is given in figure 6.

29

3.4.1.4 Workload Entailment and Theory

The entailment relation specifies the semantics of the queries. It is implemented as

a finite-set of state-query pairs, specified according to the semantics of the queries. The

theory operator instead is just an interface for the finite set of queries in entailment with

a state.

In this case, an authorization query is true in a state iff its triplet is part of the autho-

rization policy of the state, and an affiliation query is true in a state iff its couple represent

a pairing of the affiliation function of the state. The theory of a state is nothing but the

finite set of all the queries that are entailed with it. The definition of the entailment and

theory of the workload is given in figure 7.

3.4.1.5 Workload Transition Function

The NEXT transition function specifies the semantics of the labels, i.e. how a state is

modified by applying a command. For simplicity, the general structure returns the spec-

ification of a whole new instance of state, somehow related to the starting one. In other

words, states are considered immutable. In our scenario, the joinCoalition label modi-

fies the state by adding all the newAuth elements to the state’s authorization policy, and

changing the affiliation function so that all the subjects appearing in a newAuth element

are now affiliated with the joining organization, leaving the affiliation of the other subjects

unchanged. The leaveCoalition commands instead removes all the rights of the subjects

affiliated with the exiting organization, and then marks those subjects as unaffiliated, leav-

30

The |=w relation of a workload w is a finite set of tuples 〈state, query〉 where:

state ∈ States(w),

query ∈ Queries(w),

The theory of a workload state s is the finite set of workload queries q | 〈s, q〉 ∈ |=w

t_Entailments_w : TYPE =
[#

state : t_States_w ,
query : t_Queries_w

#]

ENTAILMENT_w : f inite_set [t_Entailments_w] =
(LAMBDA (e: t_Entailments_w) :

CASES e ‘query OF
authCons_w(aut) : member(aut , e ‘ state ‘ auth) ,
belongsCons_w(bel) : e ‘ state ‘ belongs(bel ‘e1) = bel ‘e2

ENDCASES
)

THEORY_w(state_w : t_States_w) : f inite_set [t_Queries_w] =
(LAMBDA (query_w : t_Queries_w) :

ENTAILMENT_w((# state:=state_w , query:=query_w #))
)

Figure 7: Entailment of the workload

31

ing the rights and affiliations of the other subjects unchanged. The related code is not

reported for space reasons and can be found in the appendix.

3.4.2 ACS

3.4.2.1 ACS State

Similarly to what happens with the workload state, a record structure is used to rep-

resent states. But in this case, for the generic version, we don’t expect the authorization

policy to be explicitly stored in the state, but rather it will be derived from the existing

information, via queries and the entailment relation.

In our case study, the proposed ACS is a version of Access Matrix type A (AMa). Recall

from the previous chapter the definition of AMa. The totality of the state is represented

just by a matrix, i.e. a finite collection of string triplets. In our case, the ACS state records

only contain one field, which is indeed a finite set of triplets. Note that, due to the PVS

strong types system, the third element of our triplets can be either of t_Strings type or

of t_Skolems type. This is because we are going to store both the workload authorization

policy and affiliation function in the matrix, and the presence of the skolem keyword will

be the element that allows us to distinguish among the two types of information. The

specification of ACS states is given in figure 8.

32

Let U the set of all strings.

Let S ⊂ U the set of all usable strings.

An AMa ACS state is a tuple 〈matrix〉 where:

matrix is a finite set of 〈e1, e2, e3〉 triplets |
e1, e2 ∈ S ∧ e3 ∈ U

t_Matrix_Triplet : TYPE =
[#

e1: t_Strings ,
e2: t_Strings ,
e3: t_ALL_Strings

#]

t_Matrix_y : TYPE = finite_set [t_Matrix_Triplet]

t_States_y : TYPE =
[#

matrix : t_Matrix_y
#]

Figure 8: States of the ACS

33

Let U the set of all strings.

Let S ⊂ U the set of all usable strings.

The type of the ACS queries is the disjoint union of two sub-types of ACS queries.

Authorization queries take as argument a triplet of usable strings aut = 〈e1, e2, e3〉 | e1, e2, e3 ∈ S
Matrix queries take as argument a triplet of strings mat = 〈e1, e2, e3〉 | e1, e2 ∈ S ∧ e3 ∈ U
ACS queries = authorization_queries ∪̇ matrix_queries

t_Queries_y : DATATYPE
BEGIN

authCons_y(
aut : t_TripleString

) : auth_y?

matrixCons_y(
mat : t_Matrix_Triplet

) : matrix_y?
END t_Queries_y

Figure 9: Queries of the ACS

3.4.2.2 ACS Queries

The queries of the ACS relates to the specific case. In general, we expect to have an

authorization-related query, but the specific ones depend on the ACS in use.

In our scenario, the available ACS queries are those related to the ACS authorization

policy, as well as those related to the ACS structure. In the special case of AMa, these two

elements collapse in the same one, but in the general framework they are two semantically

different things and are therefore differentiated. The definition of the ACS queries is

reported in figure 9.

34

Let U the set of all strings.

Let S ⊂ U the set of all usable strings.

The type of the ACS labels is the disjoint union of two sub-types of ACS labels.

addMatrix labels take as argument a triplet of strings mat = 〈e1, e2, e3〉 | e1, e2 ∈ S ∧ e3 ∈ U
removeMatrix labels take as argument a triplet of strings mat = 〈e1, e2, e3〉 | e1, e2 ∈ S ∧ e3 ∈ U
ACS labels = addMatrix_labels ∪̇ removeMatrix_labels

t_Labels_y : DATATYPE
BEGIN

addMatrixCons_y(
mat : t_Matrix_Triplet

) : addMatrix_y?

removeMatrixCons_y(
mat : t_Matrix_Triplet

) : removeCoalition_y?
END t_Labels_y

Figure 10: Labels of the ACS

3.4.2.3 ACS Labels

In the general case, we expect to have all the required commands needed to alter the

state, and therefore there are no generic elements, but all of the labels are case-specific.

Note that the authorization policy must be derived from the other structures, and therefore

there won’t be available commands to alter it directly.

In this case, the only two things that we can do in AMa are adding and removing triplets

from the matrix. The specification for the ACS labels can be seen in figure 10.

35

3.4.2.4 ACS Entailment and Theory

Similarly to what happens in the workload, entailment and theory are defined respec-

tively as a set of state-query pairs and a function from a state to a set of queries.

As mentioned already, in AMa the difference between authorization-related and matrix-

related is almost only syntactic. Authorization queries are true iff the authorization triplet

is present in the matrix, and matrix queries are true iff the matrix contains the argument

triplet. Nevertheless, note that those matrix triplets that represent affiliation information

do not affect the authorization queries, as the third element of affiliation triplets is always

the skolem keyword, which type is not of t_Strings but t_Skolems, and therefore authoriza-

tion queries cannot be asked regarding affiliation triplets. The code is reported in figure

11.

3.4.2.5 ACS Transition Function

The semantics of the ACS labels is quite intuitive: addMatrix adds a triplet to the

matrix, removeMatrix removes a triplet from the matrix. The code can be found in figure

12.

3.4.2.6 ACS Path-traversing Function

ACEF defines the existence of a TERMINAL function for ACS states, that specifies the

state reached starting from a given state and applying a sequence of commands in the

given order. TERMINALy is just the recursive specification of this concept. Note that,

according to the cases, it might be more useful to specify TERMINAL as a left-recursive or

36

The |=y relation of an ACS y is a finite set of tuples 〈state, query〉 where:

state ∈ States(y),

query ∈ Queries(y),

The theory of an ACS state s is the finite set of ACS queries q | 〈s, q〉 ∈ |=y

t_Entailments_y : TYPE = [# state : t_States_y , query : t_Queries_y #]

ENTAILMENT_y : f inite_set [t_Entailments_y] =
(LAMBDA (e: t_Entailments_y) :

CASES e ‘query OF
authCons_y(aut) :

member(aut , e ‘ state ‘ matrix) ,
matrixCons_y(mat) :

member(mat, e ‘ state ‘ matrix)
ENDCASES

)

THEORY_y(sy : t_States_y) : f ini te_set [t_Queries_y] =
(LAMBDA (qy : t_Queries_y) :

ENTAILMENT_y((# state:=sy , query:=qy #))
)

Figure 11: Entailment and theory of the ACS

37

The transition function of an ACS y is a function

NEXT : States(y)× Labels(y)→ States(y)

NEXT_y (state : t_States_y , label : t_Labels_y) : t_States_y =
CASES label OF

addMatrixCons_y(mat) :
(#

matrix := add(mat, state ‘ matrix)
#),

removeMatrixCons_y(mat) :
(#

matrix := remove(mat, state ‘ matrix)
#)

ENDCASES

Figure 12: Transition function of the ACS

right-recursive function, but it’s hard to foresee which is the best way before dealing with

the actual proofs. Also note that the path-traversing function is always the same, with the

exception of being left or right recursive, and doesn’t change w.r.t. the ACS in use. The

code is reported in figure 13.

3.4.3 Implementation

As mentioned already, an implementation for ACEF consists in the specification of the

three α, σ, π functions that specify how the ACS and the workload are linked together.

More specifically, α specifies how a workload action is translated in a sequence of ACS

commands, σ specifies how a workload state is translated in an ACS state and π defines

how workload queries can be answered looking at the truths of the ACS.

38

The path-traversing function of an ACS y is a function

TERMINAL : States(y)× Labels(y)
∗ → States(y) |

TERMINAL(s, empty_seq) = s ∧
TERMINAL(s, seq • l) = NEXT (TERMINAL(s, seq), l)

TERMINAL_y (sy : t_States_y , ly_star : t_Seq[t_Labels_y]) :
RECURSIVE t_States_y =

IF ly_star ‘ length = 0 THEN
sy

ELSE
NEXT_y(TERMINAL_y(sy , allButLast (ly_star)) , last (ly_star))

ENDIF
MEASURE ly_star ‘ length

Figure 13: Path-traversing function of the ACS

3.4.3.1 State-Mapping

Let’s start from σ. The state mapping for our case study is limited to the translation

of the authorization policy and of the affiliation function. Actually, one should define how

subjects, objects, rights and organizations are encoded in the ACS too, but these map-

pings are not of particular interest in our case study and were skipped for simplicity. The

state mapping simply states that the authorization policy triplets are put “as-is” within the

matrix, while the affiliation couples belongs(sub) = org are reported as 〈sub, org , skolem〉

for all the affiliated subjects. Non-affiliated subjects do not have an ACS affiliation tuple.

Recall that in our case the matrix is a finite set, and sets in PVS are the same as their

characteristic function, i.e. a predicate over their type. The LAMBDA notation used is the

39

Let U the set of all strings.

Let S ⊂ U the set of all usable strings.

The state-mapping function between a workload w and an ACS y is a function

σ : States(w)→ States(y) |
∀(〈e1, e2, e3〉) | e1 ∈ S ∧ e2 ∈ S ∧ e3 ∈ U :

〈e1, e2, e3〉 ∈ σ(s).matrix ⇐⇒
〈e1, e2, e3〉 ∈ s.auth ∨
s.belongs(e1) = e2 ∧ e2 6= unaffiliated ∧ e3 = skolem

sigma (sw: t_States_w) : t_States_y =
(#

matrix:= (LAMBDA (record : t_Matrix_Triplet) :
sw‘ auth(record) OR
sw‘ belongs(record ‘e1) =

record ‘e2 AND
record ‘e2 /= unaffi l iated AND
record ‘e3 = skolem

)
#)

Figure 14: Implementation: state-mapping function

usual operator that denotes the definition of an anonymous function, as it’s customary in

functional paradigm and λ-calculus systems. The code is in figure 14.

3.4.3.2 Query-mapping

π, the query-mapping, if basically defined as a case-switch construct: if the workload

query is an authorization one, it’s true iff the corresponding ACS authorization query is

part of the theory of the mapped state. If the workload query is an affiliation one, then it’s

true iff the matrix of the mapped ACS state contains the corresponding skolem triplet.

The use of π will probably be clearer to the reader by recalling the definition of correctness,

40

the only place where π actually becomes relevant to the properties of the system. The code

is in figure 15.

3.4.3.3 Action-Mapping

α is by far the most complicated element of the implementation. The action-mapping

is in this case realized using two helpers, one for each workload queries, in order to intro-

duce some segmentation and keep things easier to understand. The code is not reported

due to typographic reasons, please refer to the appendix. α simply calls upon the correct

helper by adding the ACS matrix to the list of arguments, as the helpers need to use just

that element of the ACS state (also because, in this particular case, the ACS state contains

nothing else).

The helper for the joinCoalition labels iterates over the newAuth argument of the label.

Note that, since we are working in a higher order logic specification system, it’s strongly

advised to define iterations as recursions, which is the meaning of the RECURSIVE key-

word. Recursive definition also need to specify the strictly decreasing MEASURE, a func-

tion with natural numbers as domain which decreases with each recursive call, used to

guarantee termination of the recursion, as prescribed by the Hoare method [14]. The base

case is when the newAuth elements is empty: the resulting action-mapping is nothing but

the empty sequence of ACS commands. Otherwise, for every newAuth element, we have

two options: either the subject of the triplet in exam was already affiliated in the previous

ACS state or not. In the case he was, we must first delete his previous affiliation by issuing

41

Let U the set of all strings.

Let S ⊂ U the set of all usable strings.

Let AUTH and MATRIX the constructors of authorization and matrix queries of the ACS.

The query-mapping function between a workload w and an ACS y is a function

π : Queries(w)× powerset(Queries(y))→ booleans |
∀(〈e1, e2, e3〉) | e1 ∈ S ∧ e2 ∈ S ∧ e3 ∈ U :

π(q,Q) ⇐⇒
q ∈ authorization_queries ∧AUTH (q.aut) ∈ Q ∨
q ∈ affiliation_queries ∧ (

bel.e2 6= unaffiliated ∧MATRIX (〈bel.e1, bel.e2, skolem〉) ∈ Q ∨
bel.e2 = unaffiliated ∧ ∀(org ∈ S) : MATRIX (〈bel.e1, org, skolem〉) /∈ Q

pi (qw: t_Queries_w , ty : f ini te_set [t_Queries_y]) : boolean =
CASES qw OF

authCons_w(auth) :
ty (authCons_y(auth)) ,

belongsCons_w(bel) :
IF (bel ‘e2 /= unaffi l iated) THEN

ty (matrixCons_y((# e1:=bel ‘e1, e2:=bel ‘e2, e3:=skolem #)))
ELSE

(FORALL (org : t_Strings) :
NOT ty (matrixCons_y(

(#
e1:=bel ‘e1,
e2:=org ,
e3:=skolem

#)))
)

ENDIF
ENDCASES

Figure 15: Implementation: query-mapping function

42

a removeMatrix command. In both cases, we then proceed to adding the triplet and the

new affiliation to the ACS matrix, and we move on to the next newAuth element.

The helper for the leaveCoalition labels is slightly more convoluted. First of all, it

iterates over the ACS matrix, and therefore it stores it twice in its arguments: the first,

original is the whole matrix, while matrix is just the part of it that hasn’t been iterated on

yet. For each matrix element, we check if this has to be removed. This is true in one of

two cases: either it’s an affiliation record for the organization that we are removing, or it’s

an authorization record whose subject is, in the whole matrix, affiliated with the removed

organization. Note that we have to look for affiliations in the whole matrix, as we might

have already passed the affiliation record that we are looking for in the matrix used for the

iteration. After this check is performed, we move on to the next record.

CHAPTER 4

PROOFS

In this chapter, I outline the proofs required for validating the correctness property.

All the steps reported, except when explicitly pointed out, were verified in PVS using the

internal prover system. Since the syntax of the prover is a bit complicated and out of the

interest of this work, the proofs are here reported in a more human-readable format.

Recall from previous chapters that correctness is given as the logical conjunction of

two sub-properties: query-mapping preservation and action-mapping preservation.

(Query-mapping preservation)

∀(s ∈ States(W), q ∈ Queries(W)) :

q ∈ Th(s) ⇐⇒ π(q, Th(σ(s))

∧

(Action-mapping preservation)

∀(s ∈ States(W), l ∈ Labels(W) :

σ(NEXT (s, l)) = TERMINAL(σ(s), α(σ(s), l))

43

44

To prove correctness, I am going to prove first query-mapping preservation, and then

action-mapping preservation. For the latter, I’ll need a different sub-proof for the two

workload label types, joinCoalition and leaveCoalition, due to their deeply different behav-

ior.

4.1 Query-mapping Preservation

∀(s ∈ States(W), q ∈ Queries(W)) :

q ∈ Th(s) ⇐⇒ π(q, Th(σ(s))

Query-mapping preservation must hold for all workload states and all workload queries.

In our case, we only have two types of workload queries: authorization and affiliation.

Recall that queries, both workload and ACS ones, take a tuple as argument and returns

true or false for a state according to the specification of the entailment relation, and the

subsequent theory function. The code version of the entailment functions is reported in

figure 16. We see that an authorization query is true in a workload state iff the argument

tuple is part of the authorization policy of that state, while an affiliation query is true iff

the tuple argument represents a pairing of the affiliation function. Recall the implemen-

tation elements σ and π (figure 17). We can see that σ fills the ACM matrix with all the

authorization triplets directly, and the affiliation pairs for affiliated subjects are included

appending the skolem constant, while unaffiliated subjects are not reported. For π, the

45

ENTAILMENT_w : f inite_set [t_Entailments_w] =
(LAMBDA (e: t_Entailments_w) :

CASES e ‘query OF
authCons_w(aut) :

member(aut , e ‘ state ‘ auth) ,
belongsCons_w(bel) :

e ‘ state ‘ belongs(bel ‘e1) = bel ‘e2
ENDCASES

)

ENTAILMENT_y : f inite_set [t_Entailments_y] =
(LAMBDA (e: t_Entailments_y) :

CASES e ‘query OF
authCons_y(aut) :

member(aut , e ‘ state ‘ matrix) ,
matrixCons_y(mat) :

member(mat, e ‘ state ‘ matrix)
ENDCASES

)

Figure 16: Comparison of workload and ACS entailment

queries are answered in a natural way, trying to resemble the definition of σ. The purpose

of query-mapping preservation is to verify if this resemblance is correct or not.

4.1.1 Proof for Authorization Queries

Let’s start to prove the property for the authorization queries. Expanding the various

definitions we see that a workload authorization query is part of the theory of the workload

state iff it’s contained in the sequence representing the authorization policy. That is:

q ∈ Theory(s) ⇐⇒ q.aut ∈ s.auth

46

sigma (sw: t_States_w) : t_States_y =
(#

matrix:= (LAMBDA (record : t_Matrix_Triplet) :
sw‘ auth(record) OR
sw‘ belongs(record ‘e1) = record ‘e2 AND
record ‘e2 /= unaffi l iated AND
record ‘e3 = skolem

)
#)

pi (qw: t_Queries_w , ty : f ini te_set [t_Queries_y]) : boolean =
CASES qw OF

authCons_w(auth) :
ty (authCons_y(auth)) ,

belongsCons_w(bel) :
IF (bel ‘e2 /= unaffi l iated) THEN

ty (matrixCons_y((# e1:=bel ‘e1, e2:=bel ‘e2, e3:=skolem #)))
ELSE

(FORALL (org : t_Strings) :
NOT ty (matrixCons_y(

(#
e1:=bel ‘e1,
e2:=org ,
e3:=skolem

#)))
)

ENDIF
ENDCASES

Figure 17: Query-mapping relevant functions

47

Where q.aut is the argument of the query. Now, after applying the definition of σ, we see

that the mapped ACS state matrix will contain all the authorization triplets of the workload

state, plus all the affiliation couples and their skolem identifiers. Applying also π to the

definition of query-mapping preservation, we get:

q.aut ∈ s.auth ⇐⇒

q.aut ∈ s.auth

∨

〈q.aut.e1, q.aut.e2〉 ∈ s.belongs ∧ q.aut.e3 = skolem

Which seems, apparently, false. This is where the types system comes in help. Recall

the code implementation of workload queries previously shown in figure 5. See that the

type of the aut argument is t_TripleString. Let’s look at both the definition of the strings

types and of the skolem constant. t_Strings and t_Skolems are two disjoint sub-types

of the t_ALL_Strings type. t_TripleString is made of three t_Strings elements, while

skolem has type t_Skolems. Therefore, since authorization queries can only be asked with

t_TripleString arguments, it will never be the case that q.aut.e3 = skolem, as the types of

q.aut.e3 and of skolem are disjoint for all q.aut. Therefore, the second element of the dis-

junction in the right-hand side of the equality of the thesis will be identically false, making

the proof trivial in the form A ⇐⇒ A.

48

4.1.2 Proof for Affiliation Queries

Let’s expand the various definitions. We see that a workload affiliation query is part

of the theory of the workload state iff it represents a 〈x, y〉 pair in the workload affiliation

function. That is:

q ∈ Theory(s) ⇐⇒ s.belongs(q.bel.e1) = q.bel.e2

Where q.bel is the argument of the query. Similarly as before, we apply the definitions

of the implementation elements. Now if we let affiliation_tuples the set of all triplets

〈sub, s.belongs(sub), skolem〉 where s.belongs(sub) 6= unaffiliated , we can rewrite the thesis

as:

s.belongs(q.bel.e1) = q.bel.e2 ⇐⇒

q.bel.e2 6= unaffiliated∧

〈q.bel.e1, q.bel.e2, skolem〉 ∈ (s.auth ∪ affiliation_tuples)

∨

q.bel.e2 = unaffiliated∧

∀(org : t_Strings) :

〈q.bel.e1, org, skolem〉 /∈ (s.auth ∪ affiliation_tuples)

Once again, the type of the skolem constant becomes extremely important. Since s.auth is

composed of t_TripleString elements, the fields of which cannot ever be the skolem con-

49

stant as discussed in the previous subjection, the only relevant elements of the (s.auth ∪

affiliation_tuples) set become the affiliation tuples. If the subject is affiliated with an orga-

nization, then his triplet will appear in the affiliation tuplets. If the subject is unaffiliated,

then by the definition his triplet will not be in the affiliation tuples set. In both cases, the

property holds.

This concludes the proof for query-mapping preservation. Notice how, even for such

a trivial and apparently intuitive sub-property, the proofs are completely non-trivial, and

actually unsolvable, without relying on strong typization and disjointedness of the generic

string type in usable strings and keywords. The exploration of the intrinsic complexity

given by strings is one of the core themes of ACEF, but their dissertation is beyond the

scope of this work.

4.2 Action-mapping Preservation

∀(s ∈ States(W), l ∈ Labels(W)) :

σ(next(s, l)) = TERMINAL(σ(s), α(σ(s), l))

Action-mapping preservation is the sub-property of correctness that assures that state-

mapping and action-mapping are coherent, i.e. that the path of ACS actions corresponding

to a workload action is “the right one”. Note that action-mapping preservation, and there-

50

fore correctness, only care about the terminal state reached by applying the sequence of

ACS actions (as ACEF impose this sequence to be finite in length, a terminal state is always

well-defined), but do not specify anything about the intermediate states crossed during the

path. This relates more to another ACEF property, safety, but its description is out of the

scope of interest of this work.

Action-mapping preservation must hold for all possible workload actions and states.

Since we only have two workload action types, joinCoalition and leaveCoalition, which

nature is deeply different, we are going to need two different proofs strategies. More

specifically, we are going to always use induction as proving strategy, but the elements

onto which we induct will be different.

4.2.1 Proof for joinCoalition Labels

The proof for joinCoalition labels is made by induction on the newAuth argument. The

base case operates on a generic workload state by applying a joinCoalition label with an

empty newAuth and a generic org . The inductive scheme is based on the fact that any

generic newAuth , and therefore any generic joinCoalition label, being finite in length,

can be reached by adding one authorization triplet at a time. Following the induction, we

can therefore proof the property for all cases. Since the code notation can become a bit

cumbersome in the proofs, we are going to use N as an alias for the transition function

of both workload and ACS, T for the TERMINALy function and, where clear from context,

states and labels will be identified simply by s and l, dropping the suffix that distinguish

between workload and ACS.

51

correctness_AM_JC_base : LEMMA
(FORALL (

sw: t_States_w ,
lw: t_Labels_w

) :
joinCoalition_w ?(lw) AND newAuth(lw) = empty_seq
IMPLIES
sigma(NEXT_w(sw, lw)) = TERMINAL_y(sigma(sw) , alpha(sigma(sw) , lw))

)

Figure 18: Action-mapping preservation, base case for JC labels

4.2.1.1 Base Case

The base case states that, for an empty newAuth and a generic org , the property holds:

∀(s : workload_states, l : workload_labels) :

l = joinCoalition(org, ∅)

⇒

σ(N(s, l)) = T (σ(s), α(σ(s), l)))

The code version of this property is given in figure 18 In order to proceed, we first expand

the definitions of the α function and of TERMINALy. Keeping in mind the premises and

52

removing them for ease of reading, we obtain σ(N(s, l)) = σ(s). By applying the transition

function, and dropping the σ from both sides, we obtain two sub-clauses:

s.auth = s.auth ∪ l.newAuth

∧

s.belongs =

λ(sub : t_Strings) :

IF ∃(x : t_TripleString) : (x‘e1 = sub ∧member?(newAuth, x)) THEN

org

ELSE

s‘belongs(sub)

ENDIF

Since newAuth is empty, the first part of the main conjunction is trivially true.

For the second part of the conjunction, we define that equality between functions hold

iff their domain and co-domains are the same and, for all elements of the domain the two

functions return the same element of the co-domain. Since newAuth is empty, the condition

of the IF is always false, and therefore the ELSE branch is taken for all cases. Therefore,

the second sub-clause is true. This concludes the proof for the base case.

53

correctness_AM_JC_step : LEMMA
(FORALL (

sw: t_States_w ,
lw2: t_Labels_w ,
lw1: t_Labels_w ,
na: t_TripleString

) :
joinCoalition_w ?(lw1) AND
joinCoalition_w ?(lw2) AND
org(lw1) = org(lw2) AND
newAuth(lw1) = allButLast (newAuth(lw2)) AND
newAuth(lw2) = concat (newAuth(lw1) , sequence(na)) AND

sigma (NEXT_w(sw, lw1)) = TERMINAL_y(sigma(sw) , alpha(sigma(sw) , lw1))
IMPLIES
sigma(NEXT_w(sw, lw2)) = TERMINAL_y(sigma(sw) , alpha(sigma(sw) , lw2))

)

Figure 19: Action-mapping preservation, induction step for JC labels

4.2.1.2 Inductive Step

The code for the inductive step is given in figure 19. Informally speaking, we want

to proof that if the property holds for a joinCoalition label with newAuth of length n, this

54

implies that it will hold for the same newAuth when we append to it an additional na triplet,

reaching length n+ 1. In other words:

l2.newAuth = l1.newAuth • na ∧

l2.org = l1.org ∧

σ(N(s, l1)) = T (σ(s), α(σ(s), l1))

⇒

σ(N(s, l2)) = T (σ(s), α(σ(s), l2))

To do this, consider the nature of the TERMINALy function. What it does is recursively

applying the first label of the sequence provided as argument starting from an initial state,

and eventually reaching a final state. It’s easy to see that if we define an operator sub that

extracts sub-sequences from a sequence, taking the 0-based indexes of the starting and

final elements of the sub-sequence, the following property holds:

∀k | 0 ≤ k < length(α(s, l)) :

T (s, α(s, l)) =

T (T (s, sub(α(s, l), 0, k), sub(α(s, l), k, length(α(s, l))))

55

Basically, we are saying that the terminal state reached is the same by walking the path all

in one go or by stopping in one of the intermediate states and then continuing. Applying

this property to the thesis equation, after some manipulation, we get:

σ(N(s, l1)) = T (σ(s), α(σ(s), l1))

⇒

σ(N(s, l2)) =

T (T (s, α(s, l1)), α(T (s, α(s, l1)), ld))

Where ld is a fictitious label with a newAuth composed only of the na triplet. This is a

consequence of the fact that α is made in such a way to iterate always in the same order

over the newAuth elements. Having appended na, the first part of the resulting ACS

actions sequence will be identical, and the remaining 3 elements, according to the specific

case of na, will be new.

According to this implementation of the α helper, if the subject was unaffiliated in the

previous state the two last elements will be the adding of the new affiliation and the adding

of the new authorization triplet, while if the subject was already affiliated an additional

removal of the old affiliation will be issued before the other two elements. If we now apply

the inductive hypothesis, we obtain:

σ(N(s, l2)) = T (σ(N(s, l1)), α(σ(N(s, l1)), ld)

56

alpha_helpJC (original : t_Matrix_y , org : t_Strings , newAuth: t_Seq[t_TripleString]) :
RECURSIVE {out : t_Seq[t_Labels_y] | out ‘ length = 3 * newAuth‘ length} =
IF newAuth‘ length=0 THEN

empty_seq
ELSEIF
(EXISTS (oldOrg : t_Strings) :
original ((# e1:= f i r s t (newAuth) ‘e1, e2:= oldOrg , e3:=skolem#))) THEN

append(append(append(alpha_helpJC(original , org , rest (newAuth)) ,
% Remove old a f f i l i a t ion
removeMatrixCons_y(
(#

e1:= f i r s t (newAuth) ‘e1,
e2:= choose({oldOrg : t_Strings |

original (
(#

e1:= f i r s t (newAuth) ‘e1,
e2:= oldOrg ,
e3:= skolem

#))}) ,
e3:= skolem

#))) ,

% Add new af f i l i a t ion
addMatrixCons_y(
(# e1:= f i r s t (newAuth) ‘e1, e2 := org , e3 := skolem #))) ,

% Add the new right
addMatrixCons_y(f i r s t (newAuth)))

ELSE
append(append(alpha_helpJC(original , org , rest (newAuth)) ,

% Add new af f i l i a t ion
addMatrixCons_y(
(#

e1:= f i r s t (newAuth) ‘e1,
e2 := org ,
e3 := skolem

#))) ,
% Add the new right

addMatrixCons_y(f i r s t (newAuth)))
ENDIF
MEASURE newAuth‘ length

Figure 20: Action-mapping, helper for JC labels

57

Expanding two or three times T and expanding the corresponding N we obtain

σ(N(s, l2)).matrix =

σ(N(s, l1)).matrix

\ 〈na.e1, oldOrg, skolem〉

∪ 〈na.e1, l1.org, skolem〉

∪ na

Where oldOrg is the organization to which the subject of na is affiliated in the state

σ(N(s, l1)), if such an organization exists. Note that the triplet 〈na.e1, oldOrg, skolem〉

might not be part of the state, as na.e1 may be unaffiliated. Nevertheless, the use of

sets difference is still valid. Proceeding in the expansion, we obtain an equality between

two finite sets, the matrices of the ACS states, i.e. of their matrices. Recall that sets are

equivalent to their characteristic functions, and therefore we have an equality between

58

boolean functions (predicates). Generalizing over the argument string, we obtain a logical

equality over the generic triplet r of the type:

s.auth(r) ∨

l2.newAuth(r) ∨

N(s, l2).belongs(sub) 6= unaffiliated ∧ r = 〈sub,N(s, l2).belongs(sub), skolem〉

⇐⇒

s.auth(r) ∨

l1.newAuth(r) ∨

N(s, l1).belongs(sub) 6= unaffiliated ∧ r = 〈sub,N(s, l1).belongs(sub), skolem〉 ∧ sub 6= na.e1 ∨

r = 〈na.e1, ld.org, skolem〉 ∨

r = na

59

After some further logical simplification, and using the same typing tricks used for proving

query-mapping preservation (skolem can’t be in authorization triplets), and changing the

order of the elements we obtain:

l2.newAuth(r) ∨

N(s, l2).belongs(sub) 6= unaffiliated ∧ r = 〈sub,N(s, l2).belongs(sub), skolem〉

⇐⇒

(l1.newAuth(r) ∨ r = na) ∨

N(s, l1).belongs(sub) 6= unaffiliated ∧ r = 〈sub,N(s, l1).belongs(sub), skolem〉 ∧ sub 6= na.e1 ∨

r = 〈na.e1, ld.org, skolem〉

We can see that, for what concerns the authorization part, the equality holds: being part of

l2.newAuth means either being part l1.newAuth or being na. For what concerns affiliation,

things are slightly less straight-forward: we need to separate the proof for the subject

in the na triplet from the others. The former will have its affiliation changed, possibly

with the same organization if he already appeared in one of the l1.newAuth triplets, in the

60

application of ld, while the others will keep the affiliation obtained by applying l1.

For these latter subjects. the property rewrites as:

N(s, l2).belongs(sub) 6= unaffiliated ∧ r = 〈sub,N(s, l2).belongs(sub), skolem〉

⇐⇒

N(s, l1).belongs(sub) 6= unaffiliated ∧ r = 〈sub,N(s, l1).belongs(sub), skolem〉

Which is true, as their affiliation doesn’t change during ld, and therefore their belongs

function is the same in both N(s, l1).belongs(sub) and N(s, l2).belongs(sub)

For the subject of na we know that his new affiliation is, no matter the previous one, ld.org,

as we remove his old affiliation and replace it. Since org is the same for all l2, l1 and ld,

and org cannot be the unaffiliated element, the re-writing becomes:

r = 〈sub, org, skolem〉

⇐⇒

r = 〈sub, org, skolem〉

Which is trivially true.

61

Having proved the base case and the induction step, we can now apply induction over

the length of the newAuth argument. This concludes the proof of action-mapping preser-

vation for joinCoalition labels.

4.2.2 Proof for leaveCoalition labels

leaveCoalition labels require a different approach. Since their argument is one single

org string, we cannot induct on their argument. Rather, we are going to induct on the ACS

state itself. It’s important to notice that an “empty” matrix of the ACS state represent a

workload state where nothing is allowed by the authorization policy and all the subjects

are unaffiliated. From this state, we can add, one at a time, triplets that either represent

one authorization triplet or change one subject-organization pair in the workload affiliation

function, until we reach the generic σ(s) state for which we want to prove our property.

Due to technique used, the sub-proof for leaveCoalition labels hasn’t been implemented

in PVS. The motivation behind this decision will be clearer after exposing the rationale

behind the base case.

4.2.2.1 Base Case

In the base case, σ(sw).matrix is an empty set.

The helper for α, being σ(sw).matrix empty, returns an empty list of ACS commands.

Therefore, TERMINALy leaves the state unchanged, and by expanding, manipulating and

recalling that for ACS states, being them composed only of the matrix, the equality of states

is the same as the equality between matrices, we obtain ∅ = ∅, which is trivially true. As

mentioned, we can expand this basic ACS state matrix via either adding an authorization

62

triplet, or via adding the triplet that represents an affiliation pair. Let’s analyze these two

induction steps separately.

4.2.2.2 Induction Step 1: Adding an Authorization Triplet

Let’s call s the generic workload state and s′ the generic workload state with authoriza-

tion policy given by na • s.auth, where na is an authorization triplet, and • is the concate-

nation operator. I decided to expand the sequence by pre-pending the element, but this

isn’t affecting the proof strategy, only the cumbersomeness of the notation. The thesis to

prove is:

σ(N(s, LC(org)) = T (σ(s), α(σ(s), LC(org)))

⇒

σ(N(s′, LC(org)) = T (σ(s′), α(σ(s′), LC(org)))

63

Since ACS state are composed only of the matrix, their equality is the same as the equal-

ity between their matrices. Given this consideration, recalling that matrices are set and

therefore predicates, we can rewrite σ(s′) as a predicate over a generic triplet r:

r = na ∨

r ∈ s.auth ∨

s′.belongs(r.e1) = r.e2 ∧

r.e2 6= unaffiliated ∧

r.e3 = skolem

and α(σ(s′), LC(org)) becomes α′ • α(σ(s), LC(org)) where α′ is different according to

whether we have expanded using a na triplet where the subject is affiliated with org (and

therefore we need to remove this newly assigned right) or if he’s affiliated with an organi-

zation different from org .

σ(N(s, LC(org)) = T (σ(s), α(σ(s), LC(org)))

⇒

σ(N(s′, LC(org)) = T (σ(s′), α′ • α(σ(s), LC(org)))

The elements in α(σ(s), LC(org)) are in the exact same order, as the action-mapping helper

is deterministic. As you can see, the helper checks the original ACS matrix only w.r.t. affil-

64

alpha_helpLC(original : t_Matrix_y , org : t_Strings , matrix : t_Matrix_y) :
RECURSIVE t_Seq[t_Labels_y] =

IF card(matrix) = 0 THEN
empty_seq

ELSIF choose(matrix) ‘e2 = org THEN
append(alpha_helpLC(original , org , rest (matrix)) ,

removeMatrixCons_y(choose(matrix)))
ELSIF original ((# e1:= choose(matrix) ‘e1, e2:= org , e3:= skolem #)) THEN

append(alpha_helpLC(original , org , rest (matrix)) ,
removeMatrixCons_y(choose(matrix)))

ELSE
alpha_helpLC(original , org , rest (matrix))

ENDIF
MEASURE card(matrix)

Figure 21: Action-mapping preservation, helper for LC labels

iation triplets, and therefore, having expanded the matrix adding an authorization triplet,

the result produced by α will be the same w.r.t. affiliation triplets and authorization triplets

different from na.

Sub-case 1: na.e1 is affiliated with org

In this case, when examining the na element, the helper will issue a removal of na, en-

tering the second ELSIF branch. Therefore, we are going to have α′ = removeMatrix(na).

Under this assumption, we obtain:

σ(N(s, LC(org)) = T (σ(s), α(σ(s), LC(org)))

⇒

σ(N(s′, LC(org)) = T (σ(s), α(σ(s), LC(org)))

65

This is because the only difference between σ(s) and σ(s′) is the presence of na, which

gets removed by the first action issued by the helper. This is coherent with the expected

behavior: since we are adding a na that we need to immediately void, the terminal state

will be the same as never having added na in the first place. Rewriting the succedent using

the antecedent and expanding σ and NEXT , we obtain:

s′.belongs(r.e1) 6= org ∧ (r = na ∨ r ∈ s.auth) ∨

s′.belongs(r.e1) 6= org ∧ (s′.belongs(r.e1) = r.e2 ∧ r.e2 6= unaffiliated ∧ r.e3 = skolem)

⇐⇒

s.belongs(r.e1) 6= org ∧ r ∈ s.auth ∨

s.belongs(r.e1) 6= org ∧ (s.belongs(r.e1) = r.e2 ∧ r.e2 6= unaffiliated ∧ r.e3 = skolem)

Note that s.belongs = s′.belongs as the only difference is the na authorization triplet. Since

we are under the assumption that s.belongs(na.e1) = org, if r = na then the first line is

identically false, guaranteeing the logical equivalence and proving the induction step.

Sub-case 2: na.e1 is not affiliated with org

In this case, when examining the na element, the helper will not generate any ACS

action, ending in the ELSE branch of the switch. Therefore, α′ = empty_seq. This is

coherent with the expected behaviour: since the helper for LC only issues removals, and

66

since na has to remain untouched by the application of LC as its subject isn’t affiliated to

org, no action must be taken w.r.t. na. Since α′ = empty_seq, we can rewrite our thesis in:

σ(N(s, LC(org)) = T (σ(s), α(σ(s), LC(org)))

⇒

σ(N(s′, LC(org)) = T (σ(s′), α(σ(s), LC(org)))

Since na isnt’t part of s, it won’t be part of σ(s) and therefore α(σ(s), LC(org)) will not

issue its removal. Therefore, na will still be there at the end of all the path traversal of T ,

and we can rewrite the whole succedent as:

σ(N(s′, LC(org)).matrix = T (σ(s), α(σ(s), LC(org))).matrix ∪ na

Which becomes, using the antecedent of the thesis

σ(N(s′, LC(org)).matrix = σ(N(s, LC(org)).matrix ∪ na

Which is then proven directly by expanding σ and N, or informally by noticing that s′ and s

only differ from na and that this is directly translated in the ACS matrix.

4.2.2.3 Induction Step 2: Adding an Affiliation Pair

First of all, recall that we are now expanding the state by modifying the affiliation of

one unaffiliated subject with an new subject-organization pair. Suppose now to have a

67

workload state s. We are now expanding to a state s′, almost identical to s but where the

affiliation function of a specific subject,

σ(N(s, LC(org)) = T (σ(s), α(σ(s), LC(org)))

⇒

σ(N(s′, LC(org)) = T (σ(s′), α(σ(s′), LC(org)))

For ease of reading, we are going to define Bx = 〈newSub, newOrg, skolem〉, i.e. the matrix

triplet corresponding to our changed affiliation. Note that, according to the definition of

σ, unaffiliated subjects do not have a corresponding triplet matrix. Therefore, our ACS

matrices of the two states will differ only by the presence of Bx. Similarly as before, we

have two different sub-cases, given by newOrg 6= org and newOrg = org.

Sub-case 1: newOrg <> org

In this sub-case, we get α(σ(s′), LC(org)) = α(σ(s), LC(org)). This is because the helper

is only affected by affiliation records of the removed organization, and Bx isn’t one. There-

fore, the removal of Bx will not be issued by the helper and we can rewrite the sequent of

the thesis, also by applying the inductive hypothesis, as:

σ(N(s′, LC(org)).matrix = σ(N(s, LC(org)).matrix ∪Bx

Which is then proven by expanding σ and N .

68

Sub-case 1: newOrg = org

This is the trickiest case. Recall that α, for LC labels, issues only removals, and it

issues the removal of all the rights of subjects affiliated with the removed organization, as

well as the removal of their affiliation (as non-affiliation is represented by the lack of an

affiliation triplet in the ACS matrix).

Therefore, α(σ(s′), LC(org)) will contain all the elements of α(σ(s), LC(org)), together with

the removals of all the rights of newSub. But we don’t know in which order these elements

will appear interleaved in the elements of α(σ(s), LC(org)). Nevertheless, we know from

transaction theory that since the terminal state reached after applying a sequence of com-

mands all with the same “polarity”, i.e. all removal or all addition, will be the same no

matter the order in which the commands are executed. Since all the elements are removal,

we can ignore the order, and rewrite into:

σ(N(s′, LC(org)) =

T (σ(s′), α(σ(s′), LC(org)) • α′ • removeMatrix (Bx))

as we also need to remove Bx. α′ is the sequence of removals of all the rights of newSub,

which might also be empty.

69

Utilizing the same property of graph-paths used already in the previous subsection, ex-

panding and rewriting, we obtain:

σ(N(s′, LC(org)) = T (σ(s), α′)

Which is coherent with the expected behavior: the reached state is such that all the rights

of newSub are voided, and newSub is back to be unaffiliated, as it was in state s. A more

formal proof can be obtained by expanding the definitions.

4.3 Summary

In this chapter we have seen how to prove correctness for the case study in analysis.

First, we have proven query-mapping preservation for all the possible queries. After that,

we have proven action-mapping preservation for the two possible labels, each one of which

needed two different sub-cases.

What is interesting to see is how strong typization and a precise hierarchy definition was

necessary to achieve the proof of query-mapping preservation, and how action-mapping

preservation strongly depends on some sort of induction to achieve its proof.

CHAPTER 5

CONCLUSIONS

This thesis presented a sub-set of the ACEF theoretical framework. ACEF is a novel tool

that allows to analyze the implementation of authorization policies of generic applications,

together with all the data required by the application, within a generic ACS. ACEF offers

the definition of some relevant properties of these implementations, the most important of

which is correctness. The formal proof of these properties is usually a convoluted process,

full of sub-cases, and prone to overlooking of the details. To assist the analysts in this task,

I developed a PVS structure to hold ACEF case studies. PVS is a formal prover system

that was chosen because of its higher order logic capabilities. The backing of a formal

prover system guarantees that no detail is overlooked by the analysts, and that the final

results are correct. To show the capabilities of this approach, I proved correctness for the

“dynamic coalitions” scenario, one of the case studies behind the birth of ACEF.

There are some major hindsight obtained from the specific case study analyzed. First of

all, a strong typing system helps a lot during the proof of the query-mapping preserva-

tion sub-property of correctness. This is, in my opinion, not a general result, but rather

due to the fact that the specific implementation in analysis relied on the existence of re-

served keywords, such as the skolem constants: if ACEF had been used to its full extent,

the implementation would also have had to take care of other relevant properties such as

homomorphism and compatibility of the implementation, properties that are based on the

70

71

concept that strings do not hold sub-types. Therefore, in that case, it’s hard to imagine that

type information becomes determinant in the proofs. Nevertheless, the implementation we

analyzed is a legitimate one, as most real-world system allow for the use and definition of

reserved keywords.

Another noticeable aspect is related to the fact that the proofs for action-mapping preser-

vation always depend on some sort of inductive strategy. This seems, in my opinion, a

result that is probably general: action-mapping works with sequences of commands, and

when working with these kinds of data structures induction usually seems the most fitting

strategy. Note that, albeit I developed the proofs by inducting on various elements of the

theory, I was actually always inducting on the length of the sequence returned from the

α function, and was just splitting down the possible causes of its expansion to maintain

clarity in the exposition of an intrinsically complicated and branching proof.

The final consideration is the fact that, even for a simple scenario like the one analyzed,

proofs can become quite complicated. They are never conceptually difficult to grasp, but

they present lots of sub-cases and an high level of detail and depth. This is why I believe

that the integration between ACEF and automated proving systems is a worthy effort: the

development of these proofs by hand leaves too many details on the shoulders of the ana-

lyst, and the human brain is much better at thinking of the big picture rather than taking

care of the details, a task much more suited for the machine. That being said, it’s hard to

imagine the development of a completely automated tool that could go beyond proving the

trivially simplest implementations. A computer-assisted proving system seems a far more

72

realistic final outcome of this development path.

For the future work on this topic, I plan on improving the current PVS place-holder in

order to be more flexible towards generic scenarios, and possibly verify if the hindsight

obtained from the case study really are general and if they can be integrated in the deduc-

tive process. Finally, if possible, it would be interesting to develop a library-like PVS file

that contains the most useful lemmas that seem to often “pop-up” during the proofs.

APPENDICES

73

Appendix A

CODE FOR ACEF DATA STRUCTURE

ACEF_data_structure[T: TYPE] : THEORY
BEGIN

t_Seq : TYPE =
[#

length : nat ,
seq : {s : [below[length]−>T] |
(FORALL (n1: below[length] , n2: below[length]) :
n1 /= n2 IFF s (n1) /= s (n2))}

#]

empty_seq: t_Seq =
(#

length := 0,
seq := (LAMBDA (x : below[0]) : epsilon ! (t :T) : true)

#)

f i r s t (a : {aa: t_Seq | aa ‘ length > 0}): T = a‘ seq(0)

rest (a : {aa: t_Seq | aa ‘ length>0}): t_Seq =
(#

length:= a ‘ length−1,
seq:= (LAMBDA (n:below[a ‘ length−1]): a ‘ seq(n+1))

#)

last (a : {aa: t_Seq | aa ‘ length > 0}): T = a‘ seq(a ‘ length−1)

member?(a : t_Seq , x : T) : bool =
(EXISTS (i : below[a ‘ length]) : a ‘ seq(i) = x)

disjoint ?(a : t_Seq , b: t_Seq) : bool =
(FORALL (i : below[b‘ length]) : NOT member?(a , b‘ seq(i)))

prepend(a : t_Seq , x : {xx : T | NOT member?(a , xx)}) : t_Seq =
(#

length:= a ‘ length+1,
seq:= (LAMBDA (i : below[a ‘ length+1]):

IF i=0 THEN
x

ELSE
a‘ seq(i−1)

74

75

Appendix A (Continued)

ENDIF)
#)

concat (a : t_Seq , b: {bb: t_Seq | disjoint ?(a , bb)}) : t_Seq =
(#

length:= a ‘ length + b‘ length ,
seq:= (LAMBDA (i : below[a ‘ length + b‘ length]) :

IF i<a ‘ length THEN
a‘ seq(i)

ELSE
b‘ seq(i − a ‘ length)

ENDIF)
#)

position (a : t_Seq , x : {xx : T | member?(a , xx)}) :
RECURSIVE below[a ‘ length] =

IF (f i r s t (a) = x) THEN
0

ELSE
1+position (rest (a) , x)

ENDIF
MEASURE a‘ length

remove(a : t_Seq , x : T) : t_Seq =
IF member?(a , x) THEN

(#
length:= a ‘ length −1,
seq:= (LAMBDA (i : below[a ‘ length −1]):

IF i < position (a , x) THEN
a‘ seq(i)

ELSE
a‘ seq(i+1)

ENDIF)
#)

ELSE
a

ENDIF

toFiniteSet (a : t_Seq) : f ini te_set [T] =
(LAMBDA(x : T) : member?(a , x))

END ACEF_data_structure

Appendix B

PVS CODE FOR THE CASE STUDY

coalition_AMa : THEORY
BEGIN
IMPORTING finite_sets
IMPORTING ACEF_data_structure

t_ALL_Strings : TYPE+
t_Strings_pred : [t_ALL_Strings −> bool]
t_Strings : TYPE+ = (t_Strings_pred)
t_Skolems_pred : [t_ALL_Strings −> bool]
t_Skolems : TYPE+ = (t_Skolems_pred)
Strings_Nature_Axiom: AXIOM
(

FORALL (s : t_ALL_Strings) : t_Strings_pred (s) IFF NOT t_Skolems_pred(s)
)

t_DoubleString : TYPE =
[#

e1 : t_Strings ,
e2 : t_Strings

#]

t_TripleString : TYPE =
[#

e1 : t_Strings ,
e2 : t_Strings ,
e3 : t_Strings

#]

t_Matrix_Triplet : TYPE =
[#

e1: t_Strings ,
e2: t_Strings ,
e3: t_ALL_Strings

#]

t_Subjects_w : TYPE = finite_set [t_Strings]
t_Objects_w : TYPE = finite_set [t_Strings]
t_Rights_w : TYPE = finite_set [t_Strings]
t_Auth_w : TYPE = finite_set [t_TripleString]
t_Organizations_w : TYPE = finite_set [t_Strings]
t_Belongs_w : TYPE = [t_Strings −> t_Strings]

76

77

Appendix B (Continued)

t_States_w : TYPE =
[#

subjects : t_Subjects_w ,
objects : {obj : t_Objects_w | disjoint ?(obj , subjects)} ,
rights : {rig : t_Rights_w |

disjoint ?(rig , objects) AND
disjoint ?(rig , subjects)} ,

auth : {aut : t_Auth_w | (FORALL (a: t_TripleString) :
member(a , aut) IMPLIES
member(a ‘e1, subjects) AND
member(a ‘e2, objects) AND
member(a ‘e3, rights))} ,

organizations : {org : t_Organizations_w |
disjoint ?(org , rights) AND
disjoint ?(org , objects) AND
disjoint ?(org , subjects) AND
member(unaffiliated , org)} ,

belongs : {bel : t_Belongs_w | (FORALL (b: t_Strings) :
IF member(b, subjects) THEN
member(bel (b) , organizations)
ELSE

bel (b) = invalid
ENDIF)}

#]

t_Queries_w : DATATYPE
BEGIN

authCons_w(
aut : t_TripleString

) : auth_w?

belongsCons_w(
bel : t_DoubleString

) : belongs_w?
END t_Queries_w

t_Labels_w : DATATYPE
BEGIN

joinCoalitionCons_w(
org : t_Strings ,
newAuth : t_Seq [t_TripleString]

) : joinCoalition_w?

leaveCoalitionCons_w(
org : t_Strings

) : leaveCoalition_w?

78

Appendix B (Continued)

END t_Labels_w

t_Entailments_w : TYPE =
[#

state : t_States_w ,
query : t_Queries_w

#]

ENTAILMENT_w : f inite_set [t_Entailments_w] =
(LAMBDA (e: t_Entailments_w) :

CASES e ‘query OF
authCons_w(aut) : member(aut , e ‘ state ‘ auth) ,
belongsCons_w(bel) : e ‘ state ‘ belongs(bel ‘e1) = bel ‘e2

ENDCASES
)

THEORY_w(state_w : t_States_w) : f inite_set [t_Queries_w] =
(LAMBDA (query_w : t_Queries_w) :

ENTAILMENT_w((# state:=state_w , query:=query_w #))
)

NEXT_w (state : t_States_w , label : t_Labels_w) : t_States_w =
CASES label OF

joinCoalitionCons_w(org ,newAuth) :
(#

subjects := state ‘ subjects ,
objects := state ‘ objects ,
rights := state ‘ rights ,
auth := union(state ‘ auth , toFiniteSet (newAuth)) ,
organizations := state ‘ organizations ,
belongs :=

(LAMBDA (s : t_Strings) :
IF (EXISTS (x : t_TripleString) : x ‘e1 = s AND
member?(newAuth, x)) THEN

org
ELSE

state ‘ belongs(s)
ENDIF)

#),
leaveCoalitionCons_w(org) :
(#

subjects := state ‘ subjects ,
objects := state ‘ objects ,
rights := state ‘ rights ,
auth :=

(LAMBDA (x : t_TripleString) :
state ‘ auth(x) AND state ‘ belongs(x ‘e1) /= org) ,

79

Appendix B (Continued)

organizations := state ‘ organizations ,
belongs :=

(LAMBDA (s : t_Strings) :
IF state ‘ belongs(s) = org THEN

unaffi l iated
ELSE

state ‘ belongs(s)
ENDIF)

#)
ENDCASES

%%

t_Matrix_Triplet : TYPE =
[#

e1: t_Strings ,
e2: t_Strings ,
e3: t_ALL_Strings

#]

t_Matrix_y : TYPE = finite_set [t_Matrix_Triplet]

t_States_y : TYPE =
[#

matrix : t_Matrix_y
#]

t_Queries_y : DATATYPE
BEGIN

authCons_y(
aut : t_TripleString

) : auth_y?

matrixCons_y(
mat : t_Matrix_Triplet

) : matrix_y?
END t_Queries_y

t_Labels_y : DATATYPE
BEGIN

addMatrixCons_y(
mat : t_Matrix_Triplet

) : addMatrix_y?

removeMatrixCons_y(
mat : t_Matrix_Triplet

) : removeCoalition_y?

80

Appendix B (Continued)

END t_Labels_y

t_Entailments_y : TYPE = [# state : t_States_y , query : t_Queries_y #]

ENTAILMENT_y : f inite_set [t_Entailments_y] =
(LAMBDA (e: t_Entailments_y) :

CASES e ‘query OF
authCons_y(aut) :

member(aut , e ‘ state ‘ matrix) ,
matrixCons_y(mat) :

member(mat, e ‘ state ‘ matrix)
ENDCASES

)

THEORY_y(sy : t_States_y) : f ini te_set [t_Queries_y] =
(LAMBDA (qy : t_Queries_y) :

ENTAILMENT_y((# state:=sy , query:=qy #))
)

NEXT_y (state : t_States_y , label : t_Labels_y) : t_States_y =
CASES label OF

addMatrixCons_y(mat) :
(#

matrix := add(mat, state ‘ matrix)
#),

removeMatrixCons_y(mat) :
(#

matrix := remove(mat, state ‘ matrix)
#)

ENDCASES

TERMINAL_y (sy : t_States_y , ly_star : t_Seq[t_Labels_y]) :
RECURSIVE t_States_y =

IF ly_star ‘ length = 0 THEN
sy

ELSE
NEXT_y(TERMINAL_y(sy , allButLast (ly_star)) , last (ly_star))

ENDIF
MEASURE ly_star ‘ length

%%

alpha_helpJC (original : t_Matrix_y , org : t_Strings , newAuth: t_Seq[t_TripleString]) :
RECURSIVE {out : t_Seq[t_Labels_y] | out ‘ length = 3 * newAuth‘ length} =
IF newAuth‘ length=0 THEN

empty_seq
ELSEIF

81

Appendix B (Continued)

(EXISTS (oldOrg : t_Strings) :
original ((# e1:= f i r s t (newAuth) ‘e1, e2:= oldOrg , e3:=skolem#))) THEN

append(append(append(alpha_helpJC(original , org , rest (newAuth)) ,
% Remove old a f f i l i a t ion
removeMatrixCons_y(
(#

e1:= f i r s t (newAuth) ‘e1,
e2:= choose({oldOrg : t_Strings |

original (
(#

e1:= f i r s t (newAuth) ‘e1,
e2:= oldOrg ,
e3:= skolem

#))}) ,
e3:= skolem

#))) ,

% Add new af f i l i a t ion
addMatrixCons_y(
(# e1:= f i r s t (newAuth) ‘e1, e2 := org , e3 := skolem #))) ,

% Add the new right
addMatrixCons_y(f i r s t (newAuth)))

ELSE
append(append(alpha_helpJC(original , org , rest (newAuth)) ,

% Add new af f i l i a t ion
addMatrixCons_y(
(#

e1:= f i r s t (newAuth) ‘e1,
e2 := org ,
e3 := skolem

#))) ,
% Add the new right

addMatrixCons_y(f i r s t (newAuth)))
ENDIF
MEASURE newAuth‘ length

alpha_helpLC(original : t_Matrix_y , org : t_Strings , matrix : t_Matrix_y) :
RECURSIVE t_Seq[t_Labels_y] =

IF card(matrix) = 0 THEN
empty_seq

ELSIF choose(matrix) ‘e2 = org THEN
append(alpha_helpLC(original , org , rest (matrix)) ,

removeMatrixCons_y(choose(matrix)))
ELSIF original ((# e1:= choose(matrix) ‘e1, e2:= org , e3:= skolem #)) THEN

append(alpha_helpLC(original , org , rest (matrix)) ,
removeMatrixCons_y(choose(matrix)))

82

Appendix B (Continued)

ELSE
alpha_helpLC(original , org , rest (matrix))

ENDIF
MEASURE card(matrix)

alfa (sy : t_States_y , lw : t_Labels_w) : t_Label_STAR_y =
CASES lw OF

joinCoalitionCons_w(org ,newAuth) : alfa_helper_joinCoalitionCons_w (org , newAuth)
leaveCoalitionCons_w(org) : alfa_helper_leaveCoalitionCons_w (org , sy ‘ matrix)

ENDCASES

sigma (sw: t_States_w) : t_States_y =
(#

matrix:= (LAMBDA (record : t_Matrix_Triplet) :
sw‘ auth(record) OR
sw‘ belongs(record ‘e1) =

record ‘e2 AND
record ‘e2 /= unaffi l iated AND
record ‘e3 = skolem

)
#)

pi (qw: t_Queries_w , ty : f ini te_set [t_Queries_y]) : boolean =
CASES qw OF

authCons_w(auth) :
ty (authCons_y(auth)) ,

belongsCons_w(bel) :
IF (bel ‘e2 /= unaffi l iated) THEN

ty (matrixCons_y((# e1:=bel ‘e1, e2:=bel ‘e2, e3:=skolem #)))
ELSE

(FORALL (org : t_Strings) :
NOT ty (matrixCons_y(

(#
e1:=bel ‘e1,
e2:=org ,
e3:=skolem

#)))
)

ENDIF
ENDCASES

%%

correctness_AM_JC_base : LEMMA
(FORALL (

sw: t_States_w ,
lw: t_Labels_w

83

Appendix B (Continued)

) :
joinCoalition_w ?(lw) AND newAuth(lw) = empty_seq
IMPLIES
sigma(NEXT_w(sw, lw)) = TERMINAL_y(sigma(sw) , alpha(sigma(sw) , lw))

)

correctness_AM_JC_step : LEMMA
(FORALL (

sw: t_States_w ,
lw2: t_Labels_w ,
lw1: t_Labels_w ,
na: t_TripleString

) :
joinCoalition_w ?(lw1) AND
joinCoalition_w ?(lw2) AND
org(lw1) = org(lw2) AND
newAuth(lw1) = allButLast (newAuth(lw2)) AND
newAuth(lw2) = concat (newAuth(lw1) , sequence(na)) AND

sigma (NEXT_w(sw, lw1)) = TERMINAL_y(sigma(sw) , alpha(sigma(sw) , lw1))
IMPLIES
sigma(NEXT_w(sw, lw2)) = TERMINAL_y(sigma(sw) , alpha(sigma(sw) , lw2))

)

correctness_AM: LEMMA
(FORALL (

sw: t_States_w ,
lw: t_Labels_w

) :
sigma (NEXT_w(sw, lw)) = TERMINAL_y(sigma(sw) , alfa (sy , lw))

)

correctness_QM: LEMMA
(FORALL (

sw: t_States_w ,
qw: t_Queries_w

) :
THEORY_w(sw) (qw) IFF pi (qw, THEORY_y(sigma(sw)))

)

END coalition_AMa

CITED LITERATURE

1. Ammann, P., Lipton, R. J., and Sandhu, R. S.: The expressive power of multi-parent cre-
ation in monotonic access control models. Journal of Computer Security, 4(2/3):149–
166, 1996.

2. Li, N., Mitchell, J. C., and Winsborough, W. H.: Beyond proof-of-compliance: security
analysis in trust management. Journal of the ACM, 52(3):474–514, 2005.

3. Sandhu, R.: Expressive power of the schematic protection model. Journal of Computer
Security, 1(1):59–98, 1992.

4. Bertino, E., Catania, B., Ferrari, E., and Perlasca, P.: A logical framework for reasoning
about access control models. ACM Transactions on Information and System Security,
6(1):71–127, 2003.

5. Harrison, M. A., Ruzzo, W. L., and Ullman, J. D.: Protection in operating systems.
Communications of the ACM, 19(8):461–471, 1976.

6. Lipton, R. J. and Snyder, L.: A linear time algorithm for deciding subject security.
Journal of the ACM, 24(3):455–464, 1977.

7. Chander, A., Mitchell, J. C., and Dean, D.: A state-transition model of trust management
and access control. In CSFW, pages 27–43, 2001.

8. Tripunitara, M. V. and Li, N.: A theory for comparing the expressive power of access
control models. Journal of Computer Security, 15(2):231–272, 2007.

9. Osborne, S., Sandhu, R., and Munawer, Q.: Configuring role-based access control to
enforce mandatory and discretionary access control policies. ACM Transactions on
Information and System Security, 3(2):85–106, May 2000.

10. Sandhu, R. and Ganta, S.: On testing for absence of rights in access control models.
In Proceedings of the Sixth Computer Security Foundations Workshop (CSFW), pages
109–118, June 1993.

11. Hinrichs, T. L., Martinoia, D., Garrison III, W. C., Lee, A. J., Panebianco, A., and Zuck,
L.: Application-sensitive access control evaluation using parameterized expressive-
ness. http://www.cs.uic.edu/~hinrichs/papers/hinrichs2013towards-full.pdf,
2013.

12. U.S. Air Force Scientific Advisory Board: Networking to enable coalition operations.
Technical report, MITRE Corporation, 2004.

13. Horizontal integration: Broader access models for realizing information dominance.
Technical Report JSR-04-13, MITRE Corporation JASON Program Office, December
2004.

84

http://www.cs.uic.edu/~hinrichs/papers/hinrichs2013towards-full.pdf

CITED LITERATURE (Continued) 85

14. Floyd, R. W.: Assigning meanings to programs. In Proceedings of the American
Mathematical Society Symposia on Applied Mathematics, volume 19, pages 19–31,
1967.

VITA

NAME: Diego Martinoia

EDUCATION: B.S., Engineering of Computing Systems, Politecnico di Milano, Milano,

Italy, 2011

M.S., Computer Science, University of Illinois at Chicago, Chicago, Illi-

nois, 2013

TEACHING: December 2011 - Present (with interruptions): High school laboratory

teacher of Computer Science, Computer Systems, Math and Statistics.

Various locations.

PUBLICATIONS: Martinoia, D.: “Questioning Hu’s Invariants - Bad or Good Enough?” in

VISAPP Volume 1: 311-316, 2012.

86

	1Introduction
	2ACEF Theory
	 Access Control Model
	 Access Control System
	 Workload
	 Implementation
	 Correctness

	3PVS Structure
	 PVS Overview
	 Issues
	 ACEF Data Structures
	 ACEF Implementation
	 Workload
	 Workload States
	 Workload Queries
	 Workload Labels
	 Workload Entailment and Theory
	 Workload Transition Function

	 ACS
	 ACS State
	 ACS Queries
	 ACS Labels
	 ACS Entailment and Theory
	 ACS Transition Function
	 ACS Path-traversing Function

	 Implementation
	 State-Mapping
	 Query-mapping
	 Action-Mapping

	4Proofs
	 Query-mapping Preservation
	 Proof for Authorization Queries
	 Proof for Affiliation Queries

	 Action-mapping Preservation
	 Proof for joinCoalition Labels
	 Base Case
	 Inductive Step

	 Proof for leaveCoalition labels
	 Base Case
	 Induction Step 1: Adding an Authorization Triplet
	 Induction Step 2: Adding an Affiliation Pair

	 Summary

	5Conclusions
	 APPENDICES
	 Appendix A
	 Appendix B
	 CITED LITERATURE
	 VITA

