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SUMMARY

This thesis is devoted to the study of a multiple description framework for compressed

sensing, with particular focus on a distributed application of compressed sensing. Compressed

sensing is a novel theory for signal acquisition, that enables to directly acquire a compressed

representation of a sparse or compressible signal, regardless of what is the basis in which the

signal is actually sparse (compressible). The low complexity of an acquisition stage adopting

compressed sensing raised interests about adopting it in sensor networks. In this distributed

scenario compressed sensing is also able to exploit inter-correlation, in the form of joint sparsity,

among different signals to improve coding efficiency without demanding any complex operation.

Our work proposes the CS-SPLIT scheme to generate two or more descriptions from mea-

surements acquired through compressed sensing. This scheme proved experimentally superior

to another classic method of obtaining multiple descriptions, that is using a multiple description

scalar quantizer on the measurements (CS-MDSQ). An analytic treatment of the two methods

in terms of rate-distortion performance has also been given, using the current results in the

theory of compressed sensing.

CS-SPLIT can be readily used in sensor networks thanks to its extreme simplicity. We de-

veloped two new joint reconstruction algorithms (Difference and Texas Difference) that signifi-

cantly improve over existing algorithms for the JSM-1 model, when the number of measurements

is limited. This is relevant to multiple descriptions because it allows to get a better quality in

the reconstruction of the single descriptions of CS-SPLIT when joint decoding is not possible.

viii



CHAPTER 1

INTRODUCTION

The framework of compressed sensing (CS, also known as compressive sampling) has emerged

in recent years from the ground breaking work of Candès, Romberg, Tao and Donoho that set the

foundations of the theory and derived many of the fundamental results. In order to understand

why compressed sensing has attracted so much interest in areas of applied mathematics, electrical

engineering and computer science, we must realize how it goes past the traditional limits set by

the sampling theory.

Over the past decades, the Nyquist-Shannon sampling theorem enabled the digital revolution

by proving that a continuous-time band-limited signal could be perfectly reconstructed from

uniformly spaced samples taken at a rate greater than twice the maximum frequency in the

signal (the Nyquist rate). The implications of this result turned out to be immense since

processing signals, now vectors, in the digital domain rather than in their analog form allowed

the development of new and complex systems, not to mention that the digital counterpart of

already available analog systems are more robust, flexible and cheaper.

However the sampling theorem has a fundamental limitation in that the acquisition rate

required to satisfy the theorem may be so high for some applications that one finds himself with

far too many samples or unable to build a device that reaches that sampling rate. There are

applications in which the amount of data produced by acquisition must be reduced before being

able to do anything useful on them. As an example think of imaging systems: still images that

1
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can be used for medical purposes or, even more challenging, video are highly dimensional signals

that must resort to some kind of compression to make them more manageable. Compression

may be lossless, when it is possible to recover exactly the signal from its concise representation,

or lossy, when some pieces of information are discarded in order to achieve higher compression

ratios.

One of the most popular methods for signal compression is transform coding. Transform

coding relies on finding an equivalent representation of the signal under a different basis that

unveils some kind of hidden structure. It is known that many signals of interest (e.g. natural

images, music, ...) have a very compact representation under certain bases. This means that

it is possible to represent those signals with just few coefficients when you look at them under

the proper basis. A signal with n entries may have just k ≪ n coefficients that are significantly

nonzero when represented with the right basis, so transform coding just keeps those few nonzero

coefficients to obtain a good, compact approximation of the original signal.

This discovery of an hidden structure in many signals raises an interesting point, whether

it is really useful to acquire so many samples of a signal as dictated by the sampling theorem,

when the signal itself actually carries a more limited amount of information.

Beyond Shannon

Compressed sensing focuses on the particular set of signal that have a sparse or compressible

representation in some basis. In the literature we can find the terms sparse to indicate a signal

that has exactly k nonzero entries and compressible when it is well approximated by the k

largest nonzero entries. The core results of CS show that it is possible recover a signal from a
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small set of linear, non-adaptive measurements, a situation that would be regarded as a vastly

undersampled problem in the classical framework. Most notably, exact recovery is possible for

sparse signals under certain assumptions, while some guarantees on the recovery error have been

derived for compressible signals. Before going into further details about the theory of CS, it is

worth noticing how the framework of CS, that is explored by the majority of the literature on

the topic, slightly differs from the assumptions of classical sampling theory:

1. Sampling - Sensing

Classic: continuous-time, infinite-length signals

CS: vectors in R
n

2. Measurements

Classic: value of the signal at some point in time or space

CS: inner product between signal and test function

3. Recovery

Classic: sinc interpolation

CS: nonlinear methods

Despite the fact that the foundations of the theory focus on applying the concepts of compressed

sensing to discrete-time signals, i.e. vectors in R
n, there is a lot of research going on in the direc-

tion of directly sensing continuous signals in a compressed manner. This has clear advantages

in avoiding an intermediate step in which the signal is first sampled using the classical approach

and then compressed sensing measurements are produced. A notable early work on hardware

directly implementing CS acquisition is the single-pixel camera developed in [1].
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Quick review of linear algebra

As the theory of CS relies on concepts of linear algebra it is relevant to recall a few basic

notions. Most of the theory focuses on the R
n vector space and its subspaces.

• A normed vector space is a vector space endowed with a norm, i.e. a function g : Rn → R
+

such that:

– g(x) ≥ 0 and g(x) = 0 if and only if x = 0

– g(ax) = |a|g(x) with a ∈ R

– g(x+ y) ≤ g(x) + g(y) (triangle inequality)

• For R
n the lp norms are defined as follows:

‖x‖p =
(

n
∑

i=1

|xi|p
) 1

p

for p ≥ 1

‖x‖∞ = max
i=1,...,n

|xi|

• The concept can be extended to p < 1 obtaining a quasinorm.

• Important is the l0 norm that tells the cardinality of the support of x

‖x‖0 = |supp(x)|
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• Inner product. For x, z ∈ R
n

〈x, z〉 = xT z =
n
∑

i=1

xizi

•
{

ψi

}n

i=1
is a basis (dictionary) for R

n if it spans R
n and ψi are linearly independent.

Consequently any x ∈ R
n can be written as

x =
n
∑

i=1

ciψi = Ψc

where Ψ =
[

ψ1|ψ2| · · · |ψn

]

∈ R
nxn and c is a column vector of coefficients.

A basis is orthonormal if
〈

ψi, ψj

〉

= δij . Under this assumption the coefficients can be

computed as

c = ΨTx

•
{

ψi

}n

i=1
is a frame (overcomplete dictionary) made of vectors ψi ∈ R

d with d < n if for

all vectors x ∈ R
n :

α ‖x‖22 ≤
∥

∥ΨTx
∥

∥

2

2
≤ β ‖x‖ with 0 < α ≤ β <∞

If α is the largest possible and β the smallest possible we have the optimal frame bounds.

α is the largest eigenvalue of Ψ and β is the smallest eigenvalue of Ψ.

The dual frame Ψ̃ is such that Ψ̃ΨT = ΨΨ̃T = I. The canonical dual frame is the Moore-
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Penrose pseudoinverse Ψ̃ =
(

ΨTΨ
)−1

Ψ.

The coefficients can be obtained by

c = Ψ̃Tx

• spark(A) is the smallest number of linearly dependent columns of matrix A

1.1 Compressed Sensing

The framework of compressed sensing can be explained in the following manner. We have

a signal x that is k-sparse (or compressible). x may be sparse by itself or because it is the

representation of a signal f under some basis f = Ψx. We will call the set of k-sparse signals

Σk = {x : ‖x‖0 ≤ k}. We will call σk(x)p = min
x̂∈Σk

‖x− x̂‖p the best k-term approximation error,

i.e. the error, measured with an lp norm, that is made by approximating a compressible signal

with its k terms with largest magnitude.

The measurements y = R
m are obtained by taking the inner product between the signal

x ∈ R
n and a sensing matrix A ∈ R

m×n.

y = Ax

We have few measurements compared to the length of the signal (m ≪ n ), so we have a

reduction in the dimension of the data we have to deal with. However, there are some questions

that must be addressed for any of this to make sense. First, how should the sensing matrix

be designed in order to get meaningful measurements, i.e. measurements that preserve the
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information contained in x ? This problem is of primary concern for the success of the method

and it is addressed by examining some properties of the sensing matrix A. Second, we need a

procedure to stably recover the signal x from the measurements y , if such procedure exists at

all. It is interesting to note that the problem of recovering x from y = Ax requires solving an

underdetermined linear system. This problem cannot be solved exactly in general as there are

infinitely many valid solutions. However, compressed sensing exploits the underlying knowledge

that x is sparse, to make this problem solvable.

1.1.1 Properties of the sensing matrix

The first intuitive reason why we want the sensing matrix A to satisfy some properties is

that we want to obtain meaningful measurements in the sense that it is not possible that two

different signals return the same measurements. Assuming x, x
′ ∈ Σk and z = x − x′

, hence

z ∈ Σ2k, we want:

Ax 6= Ax
′

⇒ A
(

x− x′
)

6= 0

⇒ Az 6= 0

Therefore, we require that the null space of A contains no vector from the set of 2k-sparse

signals.

Theorem 1. For any vector y ∈ R
m there exists at most one signal x ∈ Σk such that y = Ax

if and only if spark(A) > 2k
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A proof of this theorem is given in [2]. A direct consequence of this theorem is that m ≥ 2k

since the maximum spark is equal to m− 1.

It must be remarked that, especially when dealing with compressible signals, we must require

that the null space of A does not contain vectors that are too sparse, i.e. we would like the zero

vector to be the only k-sparse vector in the null space of A. This is the meaning of the Null

Space Property.

Definition 2. (Null Space Property) A matrix A satisfies the NSP of order k if there exists

a constant C > 0 such that

‖hΛ‖2 ≤ C
‖hΛc‖1√

k

holds for all h ∈ N (A) and for all Λ such that |Λ| ≤ k.

The subscript Λ introduced with this notation is a set of indices and hΛ is the vector h whose

components not indexed by Λ have been set to zero.

The NSP is a sufficient and necessary condition to establish guarantees on signal reconstruc-

tion. Let’s denote by ∆(Ax) the reconstruction obtained through some algorithm of the original

signal.

Theorem 3. If the pair (A,∆) satisfies the guarantee on reconstruction

‖∆(Ax)− x‖2 ≤ C
σk (x)1√

k

then A satisfies the NSP of order 2k.
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A proof is given in [2].

It has also been shown that for the l1 minimization algorithm that will be later introduced,

satisfying the NSP establishes a guarantee of the kind reported in the previous theorem.

Theorem 4. Let A be a matrix satisfying the NSP of order k under this form ‖hΛ‖1 ≤ γ ‖hΛc‖1

with 0 < γ < 1. Let x̂ be the reconstruction obtained through the l1 minimization algorithm

(basis pursuit). Then

‖x̂− x‖1 ≤
2 (1 + γ)

1− γ σk (x)1

A proof is given in [3]

While the NSP is both necessary and sufficient condition to establish guarantees it doesn’t

consider noise. Another property is particularly desired when measurements may be contami-

nated with noise (it could be an error vector that sums to Ax or quantization noise, ...) and

it is the Restricted Isometry Property. The meaning of the Restricted Isometry Property is

that the matrix A approximately preserves the Euclidean distance between any pair of k-sparse

vectors. Many of the guarantees derived for different reconstruction methods use assumptions

on A satisfying the RIP with certain bounds on the RIP constant.

Definition 5. (Restricted Isometry Property) A matrix A satisfies the RIP of order k if

there exists a δk ∈ (0, 1) such that

(1− δk) ‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δk) ‖x‖22

holds for all x ∈ Σk
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RIP and NSP are related. In fact, it can be shown that the RIP implies the NSP [3].

However proving that the RIP or the NSP hold for a particular sensing matrix may be

computationally complex, so it is preferred to investigate another parameter, the coherence of

A. The coherence can be related to the RIP, the NSP and the spark of A.

Definition 6. (Coherence)

µ (A) = max
1≤i<j≤n

∣

∣

〈

ai, aj
〉∣

∣

‖ai‖2
∥

∥aj
∥

∥

2

The coherence basically tells the maximum value of the inner product between columns of the

sensing matrix. It can be shown [2] that spark (A) ≥ 1+ 1
µ(A) and this information can be used

together with the fact that spark (A) ≥ 2k to obtain the following theorem.

Theorem 7. If k < 1
2

(

1 + 1
µ(A)

)

then for each measurement vector y ∈ R
m there exist at most

one signal x ∈ Σk such that y = Ax .

This result immediately highlights the fact that we would like to have a sensing matrix with

low coherence in order to be able to recover more sparse vectors.

1.1.2 Signal recovery

We are now going to address the second problem that we posed when introducing compressed

sensing, that is whether a method to recover x from measurements y exists. The first intuition is

to cast the problem in the form of “ look for the sparsest vector that satisfies the measurements”
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and recalling that the l0 norm expresses the cardinality of the support of the signal, it is possible

to formally write it as

x̂ = argmin
z
‖z‖0 subject to z ∈ B

(

y
)

B
(

y
)

can have many forms itself, depending on the type of problem that we are solving. e.g.

B
(

y
)

=
{

z : Az = y
}

in case of a noise-free problem or B
(

y
)

=
{

z :
∥

∥Az − y
∥

∥

2
< ǫ
}

in case of

bounded noise, where ǫ is the expected norm of the noise. However, the problem of minimizing

the l0 norm is computationally complex because of its combinatorial nature (it requires an

exhaustive search). It has been discussed in [4] that l0-minimization contains the subset sum

problem that is known to be NP-complete1. The computational intractability of the previous

solution led to the study of alternative solutions. In particular, substituting the l0 norm with

the l1 norm, turned out to be a major breakthrough as it an extremely successful method with

limited complexity, being a convex optimization problem that can be solved by well known

techniques. Even before the results concerning reconstruction by l1 minimization were proven,

there were reasons to think that the l1 norm was a good candidate to replace the l0 norm.

A first intuition is related to the fact that lp norms with a low value of p seem to promote

sparse solutions to systems as hinted in [2]. Moreover the l1 norm was already a successful

tool in fields like seismology, dealing, in fact, with measurements of sparse signals [6] [7]. Some

1Quoting [5] “No polynomial-time algorithm has yet been discovered for an NP-complete problem, nor
has anyone yet been able to prove that no polynomial-time algorithm can exist for any of them. This so
called P 6= NP question [is] one of the deepest, most perplexing open research problems in theoretical
computer science”
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common names to the l1-minimization procedure can be found in the literature for different

constraints.

x̂ = argmin
z
‖z‖1 subject toAz = y (basis pursuit)

x̂ = argmin
z
‖z‖1 subject to

∥

∥Az − y
∥

∥

2
< ǫ (basis pursuit denoise)

x̂ = argmin
z
‖z‖1 subject to

∥

∥AT
(

Az − y
)∥

∥

∞ ≤ λ (Dantzig selector)

We are now reporting a few theorems establishing guarantees on signal reconstruction using

l1-minimization . Those theorems are formally proven in [2].

Theorem 8. (Noise-free basis pursuit) Let A satisfy the RIP of order 2k with δ2k <
√
2 − 1.

Let the measurements be y = Ax and x̂ = argmin
z
‖z‖1 subject to Az = y . Then

‖x̂− x‖2 ≤ c0
σk (x)1√

k

with c0 = 2
1−(1−

√
2)δ2k

1−(1+
√
2)δ2k

.

Theorem 9. (Bounded noise) Let A satisfy the RIP of order 2k with δ2k <
√
2 − 1. Let the

measurements be y = Ax + e with ‖e‖2 ≤ ǫ and x̂ = argmin
z
‖z‖1 subject to

∥

∥Az − y
∥

∥

2
< ǫ .

Then

‖x̂− x‖2 ≤ c0
σk (x)1√

k
+ c2ǫ
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with c0 = 2
1−(1−

√
2)δ2k

1−(1+
√
2)δ2k

and c2 = 4
√
1+δ2k

1−(1+
√
2)δ2k

.

Corollary 10. Under the previous assumptions on A and y = Ax + e with x ∈ Σk, let e have

i.i.d. N
(

0, σ2
)

entries and let x̂ = argmin
z
‖z‖1 subject to

∥

∥Az − y
∥

∥

2
< 2
√
mσ. Then

‖x̂− x‖2 ≤ c22
√
mσ

with probability at least 1− e−cam where ca is such that P (‖e‖ ≥ 2
√
mσ) ≤ e−cam.

Theorem 11. (Coherence-based bounded noise) Let A have coherence µ and x ∈ Σk with

k < 1
4

(

1
µ + 1

)

. Let y = Ax+ e and let

x̂ = argmin
z
‖z‖1 subject to

∥

∥Az − y
∥

∥

2
< ǫ. Then

‖x̂− x‖2 ≤
‖e‖2 + ǫ

√

1− µ (4k − 1)

Theorem 12. (Dantzig selector) Let A satisfy the RIP of order 2k with δ2k <
√
2− 1. Let the

measurements be y = Ax+e with
∥

∥AT e
∥

∥

∞ ≤ λ and x̂ = argmin
z
‖z‖1 subject to

∥

∥AT
(

Az − y
)∥

∥

∞ ≤

λ . Then

‖x̂− x‖2 ≤ c0
σk (x)1√

k
+ c3
√
kλ

with c0 = 2
1−(1−

√
2)δ2k

1−(1+
√
2)δ2k

and c3 =
4
√
2

1−(1+
√
2)δ2k

.
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Corollary 13. Under the previous assumptions on A and y = Ax + e with x ∈ Σk, let e have

i.i.d. N
(

0, σ2
)

entries and let x̂ = argmin
z
‖z‖1 subject to

∥

∥AT
(

Az − y
)∥

∥

∞ ≤ 2
√
log nσ . Then

‖x̂− x‖2 ≤ 4
√
2

√
1 + δ2k

1−
(

1 +
√
2
)

δ2k

√

k log nσ

with probability at least 1− 1
n .

Alternatives to the l1-minimization procedure exist. In particular, a popular greedy algo-

rithm, that has been proved successful in the recovery task, is Orthogonal Matching Pursuit

(OMP). In a nutshell, OMP works by estimating the sparsity support of the signal and then

solving a least squares problem to recover the amplitude of the coefficients. More in detail the

algorithm works as follows:

1. Initialize r0 = y, A(c0) = ∅, i = 1

2. Find the column Ati that maximizes |At
T ri−1| and add it to the set of columns ci =

ci−1 ∪ {ti}

3. Compute the residual from the projection onto the current space spanned by the set of

columns indexed by ci ri = (I −A(ci)[A(ci)TA(ci)]−1A(ci)
T )y

4. If stopping criterion is met then stop, else i = i+ 1, repeat from step 2

The stopping criterion plays an important role and should be tuned on the desired level of

accuracy or estimate of the noise level. In case of bounded noise [8] suggest some stopping

criteria. For example, in case of noise with bounded l2 norm ‖n‖2 < ǫ it is possible to use

‖ri‖2 ≤ ǫ as stopping condition.
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1.1.3 The problem of constructing the sensing matrix

So far we have introduced how it is possible to reconstruct the sparse signal x from the

linear measurements y thanks to the l1-minimization method, provided that the sensing matrix

is well constructed. In fact, we have seen that the quality of the construction of A in terms

of its RIP constant or coherence is crucial in establishing guarantees on the performance of

the reconstruction algorithm. Also, it is interesting from a practical point of view to investigate

how many measurements are actually needed to properly recover the original signal with a given

sensing matrix. The first problem that is encountered when trying to construct a sensing matrix

that satisfies the RIP, is that a deterministic matrix of size m × n requires m to be relatively

large. A first example in this sense is reported in [3] where it is claimed that A = [I|F ] with

Fx,y = ej2πxy/m√
m

has small coherence and one needs m ≥ const · k2. Another example is given by

the deterministic matrix investigated in [9] that needs m = O
(

kno(1)
)

measurements. In both

cases the number of measurements is often too large for any practical application.

It is possible to overcome this limitation by forgetting deterministic matrices and, instead,

using random sensing matrices. There are a number of random constructions that proved

themselves to be viable solutions. Among them Bernoulli, Gaussian, subgaussian, random

partial Fourier matrices are known to satisfy the RIP with overwhelming probability provided

enough measurements [2] [3] [4].

1. Bernoulli matrices: entries are realizations of i.i.d. Bernoulli random variables that can

take values ± 1√
m

with 0.5 probability. m = O
(

k log n
k

)
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2. Gaussian matrices: entries are i.i.d. Gaussian random variables with zero mean and

variance 1
m . m = O

(

k log n
k

)

3. Random partial Fourier : A is derived taking m rows uniformly at random from the DFT

matrix . m = O
(

k log4 n
)

Another advantage of random matrices is universality, that is they work well regardless of the

basis under which the original signal is sparse. For example, let Ψ be basis of choice and let A

be a Gaussian sensing matrix then AΨ is Gaussian as well and will satisfy the RIP with high

probability provided enough measurements.



CHAPTER 2

QUANTIZATION CONSISTENCY

Compressed sensing provides a way of obtaining a compressed representation of a sparse

signal by acquiring a limited number of linear measurements in the form of random projections.

Applications require these measurements to be quantized with a finite number of bits in order to

meet the specifications in terms of bitrate of the system in use. This procedure is inevitably lossy,

in the sense that some piece of information is lost during the quantization process. Therefore it

is not possible to achieve a perfect reconstruction of the original signal in presence of quantized

measurements.

A classic way of analysing the effects of quantization is to model the error introduced by the

quantizer as additive noise.

yq = y + n (2.1)

Models for n have been studied for different classes of quantizers. For instance, for the uniform

scalar quantizer it is common practice to use a high resolution approximation that claims that

the noise vector is made of independent and identically distributed entries having a uniform

distribution inside the quantization interval. It follows that

E[‖n‖22] =
∆2

12
m (2.2)

17
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where ∆ is the quantization step and m the length of vector n.

The reconstruction algorithm must consider the fact that exact reconstruction is impossi-

ble. A possible reconstruction method is to solve the basis pursuit denoising (BPDN) convex

optimization problem. Its formulation is

x̂ = argmin
z
‖z‖1 subject to

∥

∥Az − y
∥

∥

2
< ǫ (2.3)

We provide a bound on the average noise power by means of ǫ. e.g. ǫ =
√

∆2

12m. Another

solution is to use a greedy algorithm like Orthogonal Matching Pursuit (OMP). It is possible to

set its stopping condition, as showed in [8], to when the 2-norm of the residue falls below ǫ.

The presented reconstruction algorithms work well, but they raise an interesting theoretical

point: they only set a bound on the average noise. Measuring the reconstructed signal x̂

with the original sensing matrix we obtain a new set of measurements ŷ. The aforementioned

reconstruction algorithms do not guarantee that the new measurements fall inside the original

quantization intervals. Some experiments confirming this fact are shown in Figure 2.1 and

Figure 2.2. The figures report the percentage of new measurements that fall outside the original

quantization bins. Those numbers do not seem to be negligible, therefore it is interesting to

enforce this condition on the reconstructed signal in order to analyse if there a significant gain

in exploiting all the information at our disposal. This problem is often denoted as quantization

consistency or consistent reconstruction and it has been considered in [10], [11], [12].
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Figure 2.1. Percentage of measurements falling outside the quantization intervals. Original
signal has length n = 1024, sparsity k = 100 in the identity basis and m = 400 measurements
are taken with a Gaussian sensing matrix. SPGL1 [13] was used to solve the BPDN problem.



20

10
−4

10
−3

10
−2

10
−1

10
0

0

10

20

30

40

50

60

70

80

90

100

Quantization step ∆

P
er

ce
nt

ag
e 

of
 m

ea
su

re
m

et
ns

 o
ut

si
de

 th
e 

bi
ns

 

 

OMP

BPDN

Figure 2.2. Percentage of measurements falling outside the quantization intervals. Original
signal has length n = 1024, sparsity k = 100 in the DCT basis. i.i.d. Gaussian noise is added
in the identity domain and m = 400 measurements are taken with a Gaussian sensing matrix.



21

In [10] the authors analyse an improvement to BPDN, called Basis Pursuit DeQuantization

(BPDQ) by imposing a constraint on the noise using an lp norm instead of l2, and develop a

method to solve

x̂ = argmin
z
‖z‖1 subject to

∥

∥Az − y
∥

∥

p
< ǫ (2.4)

The analysis shows that there is a gain in using BPDQ over BPDN when the number of mea-

surements is large with respect to the sparsity of the signal. Also they claim that an optimal

value of the moment p exists and 2 < p < ∞. The procedure relates to quantization consis-

tency as the percentage of new measurements falling inside the original quantization intervals

is increasing. For a uniform quantizer p = ∞ achieves perfect quantization consistency, i.e. all

the measurements fall in the new bins, but this is not optimal in terms of reconstruction error.

[11] shows that imposing quantization consistency is a convex constraint, so the optimization

problem can be solved by standard methods in convex optimization. However, a problem posed

in the following form, where we call Ry the set of quantization regions for the entries of y,

x̂ = argmin
z
‖z‖1 subject to Ax̂ ∈ Ry (2.5)

is not optimal in terms of reconstruction error. The authors showed gains in the reconstruction

SNR, by exploiting quantization consistency, when the number of measurements is large with

respect to the sparsity of the signal. This result seems to be consistent with the experimental

findings using BPDQ.



22

We experimentally investigated whether quantization consistency could be advantageous in

a setting in which it is desirable to take as few measurements as possible, and the oversampling

rates considered in [10], [11] cannot be reached. A generic solver for convex optimization

problems (CVX [14]) was used to test different approaches.

x̂ = argmin
z
‖z‖1 subject to

∥

∥Az − y
∥

∥

∞ ≤
∆

2
(2.6)

x̂ = argmin
z
‖z‖1 subject to























∥

∥Az − y
∥

∥

∞ ≤
∆
2

∥

∥Az − y
∥

∥

2
≤
√

∆2

12m

(2.7)

A uniform scalar quantizer was used in the tests. Equation ( 2.6) imposes only the quantization

consistency constraint on the reconstruction, while ( 2.7) works as the BPDN algorithm but

enforcing consistent reconstruction. The outcome of the tests shows that there is no,

or very limited, practical gain in enforcing quantization consistency. In particular, Figure 2.3

shows that the performance of the reconstruction method that enforces both a constraint on

the average noise and the consistency performs as the standard BPDN method. It can be also

noticed that a reconstruction method that uses only the information on consistency is always

outperformed by the other methods. Figure 2.4 reports a more complex signal that is almost

sparse, i.e. it is sparse but corrupted by some additive noise. Moreover the signal is sparse in

the DCT basis. The results are the same as in the previous case.

A further test used the BPDQ program developed in [10]. Figure 2.5, Figure 2.6 and Fig-

ure 2.7 show the relative reconstruction error as a function of the number of measurements.
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basis and m = 400 measurements are taken with a Gaussian sensing matrix.
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28

They support the claim that quantization consistency (here in the form of a higher moment

p in the constraint of the reconstruction procedure) produces significant gains with respect to

BPDN only when the oversampling factor increases, i.e. a large number of measurements is

taken with respect to the sparsity level, many more than the minimum that is needed to ensure

reconstruction with high probability.



CHAPTER 3

MULTIPLE DESCRIPTION CODING

Multiple description coding [15] is a way of coding an information source, that is resilient

to transmission errors. Networks like the Internet may be unreliable due to their best-effort

routing policy, so packet losses may happen at any time. The multiple description technique

allows to create multiple correlated representations of the original set of data, each carrying

enough information to decode the data with a certain fidelity. Losing a description will not

make the data unusable since each description can be decoded separately, albeit with a limited

quality. However, the best decoding quality is obtained when all the descriptions are available.

Figure 3.1 shows a block diagram for a system working with two descriptions, that could be sent

over separate channels. The decoding stage provides side decoders that are able to recover a

low-quality version of the data when a single description is received, as well as a central decoder

that is able to exploit both the descriptions to achieve the best decoding quality. Since we always

speak of reduced or full quality, the multiple description paradigm makes sense only in a lossy

coding environment, when it is acceptable for the end user to enjoy a variable degree of fidelity

to the original source. Classic examples involve audio or speech signals, images, video, etc.

Side distortion is the term used to refer to the extent of distortion, according to some fidelity

criterion (e.g. mean square error), when a single description is available. Central distortion is

the distortion that can be achieved when all the descriptions are received.

29
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Figure 3.1. A two-description MD sytem

Resilience to description erasures is not for free and it comes at the price of a lower coding ef-

ficiency. There is an information-theoretic problem of determining the achievable rate-distortion

region of a multiple description coding of a given source, i.e. the set of points identified by the

rates of the descriptions and the corresponding side and central distortions that can be actually

achieved for that specific source. This is in general a complex problem, but for a memoryless

Gaussian source with variance σ2 and the mean squared distortion metric, it is known [16] that

the side distortions D1, D2 and the central distortion D0 follow:

Di ≥ σ22−2Ri i = 1, 2 (3.1)

D0 ≥ σ22−2(R1+R2) · γD(R1, R2,D1,D2) (3.2)
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with

γD(R1, R2,D1,D2) =
1

1−
(

√

(

1− D1

σ2

) (

1− D2

σ2

)

−
√

D1D2

σ4 − 2−2(R1+R2)

)2 (3.3)

The practical implementation of the multiple description paradigm requires to find a smart

way to generate the descriptions. In fact, one should try to get acceptable side distortions

but at the same time the gain provided by central decoding should be worth receiving all

the descriptions. If central decoding provides little improvement over the single descriptions,

then it is not worth receiving all the available ones. Multiple descriptions can be produced

in various stages of the transmission chain. Methods are known to generate descriptions by

preprocessing the source (e.g. a trivial method is to separate even and odd samples), by applying

a correlating transform, by using a special quantizer, or by applying unequal error protection

to the transmitted data.

In the following we draw the attention to the multiple description scalar quantizer (MDSQ)

outlined in [17], that is a way of producing the descriptions in the quantization process. Re-

stricting ourselves to the two-description case, the basic idea behind the MDSQ is quantizing

the data in such a way that each description can be coarsely dequantized, but a finer resolution

can be achieved when both the descriptions are available. More formally, for each input x ∈ R

two indices (i1, i2) are produced by a MDSQ with (M1,M2) levels, each of them representing a

description of the input. The side decoder receives just one index and outputs an estimate of x

based on the side codebook χ(i) =
{

x
(i)
k |k ∈ Ii

}

, i = 1, 2, where Ii = {1, 2, ...,Mi} for descrip-

tion i, and
{

x
(i)
k

}

is the set of possible output levels. The central decoder is able to use both
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Figure 3.2. Example of MDSQ. The index assignment matrix uses nested assignment. The
rate is R = 2 bits per description

descriptions to produce the estimate from the central codebook χ(0) =
{

x
(0)
ij |(i, j) ∈ I1 × I2

}

The encoder can be broken into two pieces: a standard quantizer defining the central partition

and central codebook, and an index assignment problem that associates the pair (i1, i2) to each

cell defined of the central partition. Optimal index assignment is a complex problem and no

explicit solution is known but [17] gives some heuristic constructions. They are based on plac-

ing the cell numbers of the central partition in the index assignment matrix according to some

heuristic criterion (e.g. nested assignment, or linear assignment). The row and column indices

in the index assignment matrix are i1 and i2. Figure 3.2 shows an example index assignment

matrix, filled using a procedure called nested assignment [17], and also shows how descriptions

can be generated. In a balanced system, the matrix has 2R rows and 2R columns, where
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R is the rate of the description, so at most 22R entries can be stored. However, there is a

trade-off between how densely we can fill up the matrix and the achievable side distortions so

one may want to fill just a few diagonals. The methods proposed by the author in [17] provide

a parameter to control this filling density. Finally, optimization of the MDSQ can be done

at various levels. The reference [17] proposes a procedure that is based on a Lagrangian cost

function accounting for central and side distortion to be minimized by alternatively optimizing

the central partition for given decoding functions and the decoders for a given central partition.

As this procedure may be computationally expensive, simpler schemes are also considered:

• The encoder uses a simple uniform scalar quantizer defining the central codebook. The side

decoders select, among the multiple cells, the one closest to the mean of the probability

distribution of the source and the dequantized value is provided by the entry in the central

codebook for that cell.

• For any encoder, the side decoders may recover an estimate of the original value by calcu-

lating the centroid of the support defined by the cells corresponding to the received row

or column index.
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3.1 CS and multiple descriptions

3.1.1 CS-SPLIT and CS-MDSQ

Our goal is to investigate a multiple description framework for compressed sensing. Besides

the traditional ways of implementing MDC, compressed sensing enables a new technique to

generate the descriptions that is inherited by the "democracy" of the measurements. It is

commonly meant, by democratic measurements, that each measurement carries a little piece

of information about the original signal and no measurement is better than the others. This

fact implies that any measurement can be lost and the quality of the reconstruction is expected

to degrade in the same manner. In our method, that we refer to as CS-SPLIT, descriptions

can be created by partitioning the set of measurements into subsets. For example, a balanced

two-descriptions system will have two descriptions containing m
2 measurements each, out of the

original m. The method can be summarized by the following description. The transmitter side

has to perform the following operations:

• Acquire the measurements

• Split the measurements into two groups. Due to the democracy of the measurements there

is no loss of generality if the splitting selects the first m
2 and the last m

2 to form the two

groups.

• Transmit the two groups separately

The receiver behaves differently whether it receives both descriptions or just a single one. If

both descriptions are available, the decoder juxtaposes the second part with the first one and
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runs the BPDN procedure (or any other recovery algorithm) with the original sensing matrix.

If only one description is received the steps are:

• Renormalize the problem by multiplying sensing matrix and measurements by a factor
√
2.

This improves performance because it yields a sensing matrix with unit norm columns.

Having unit norm columns is needed to satisfy the Restricted Isometry Property with

a better constant δ. Also see the Introduction chapter for the discussion on how the

properties of the sensing matrix matter to the success of compressed sensing.

• Run the recovery procedure using the correct submatrix.

Also, Figure 3.3 graphically explains the method.

Before going deeper into the analysis of this method and comparing it with other techniques

for MDC, we already state that CS-SPLIT requires a certain amount of oversampling to work

properly. In fact each description should be decodable by itself with high probability. However,

the method is so simple that it requires almost no processing capabilities, whereas traditional

MDC techniques may be computationally complex to apply. This is particularly interesting

for environments in which a small oversampling comes at low cost, while processing power is

expensive. We focus on the comparison between CS-SPLIT (Figure 3.4) and CS-MDSQ, that

uses a MDSQ applied to the measurements (Figure 3.5). Both the methods are used to produce

descriptions with the same weight in terms of total number of bits, to make the comparison fair.

We experimentally compare the relative reconstruction error of the methods as a function

of the number of bits per description. A first scenario supposes that we are free to choose
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how many CS measurements can be taken by the system. The best results for CS-SPLIT are

obtained by oversampling the source by a certain factor, that is not necessarily two. There is

a trade-off between the number of measurements and the resolution of the quantization process

to achieve a target bitrate. In general, there is a quantization-limited regime in which there

are enough measurements to potentially reach low error levels, but coarse quantization limits

performance. On the other hand there is a measurement-limited regime in which measurements

are too few to achieve good performance, no matter how many bits are spent on quantization.

Figure 3.6 shows the relative error when a single description is received. It can be immediately

noticed that CS-SPLIT failed with only 400 measurements, because 200 measurements per

description are not enough to ensure reconstruction from a single description. The other curves

show how a CS-SPLIT system that doubles the total number of measurements performs slightly

worse than the MDSQ system, but reducing the oversampling factor to 1.5, i.e. taking only

m = 600 measurements, performance significantly improve because it is possible to have a finer

quantization. Figure 3.7 shows the corresponding central distortions.

An alternative scenario that can be considered, is when the system enforces a constraint on

the total number of measurements. In this case we are not free to choose any oversampling

ratio for CS-SPLIT. The comparison reported in Figure 3.8 and Figure 3.9 shows how CS-

SPLIT typically performs better than MDSQ except in the region with few measurements,

where side side-decoding is measurement-limited. However, CS-SPLIT always performs better

if we consider the central distortion because the MDSQ machinery is not able to provide the

same quantization resolution.
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measurements, CS-SPLIT uses m
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the number of bits used for each entry in the description
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3.1.2 CS-SPLIT and MDSQ without CS

In this section we compare the reconstruction error achieved by a multiple-description system

that uses MDSQ but no compressed sensing and another system that uses CS-SPLIT. When

the input signal is sparse in some domain CS provides a very convenient sampling method, that,

most importantly, is blind to the domain in which the signal is actually sparse. However, at

least in the multiple description framework that we are considering, it may not always be the

best solution just in terms of reconstruction error. We have run some experiments to determine

which of the two systems provides a lower side and central distortion for the same number of bits

per description. CS has a natural advantage when dealing with sparse signals and this shows up

as a lower reconstruction error when the MDSQ system does not perform any entropy coding of

the data. However, the results change when we insert an entropy coding block in the systems.

The system without CS has a great benefit from entropy coding since the signal is mostly made

of null entries. Instead, applying entropy coding to the CS measurements provides a limited

gain due to their Gaussian distribution that makes their entropy relatively high. Figure 3.10

and Figure 3.11 show how the MDSQ with entropy coding always performs better than entropy-

coded CS-SPLIT, at least for the signals that we considered. Anyway, it should be remarked that

an entropy coder that is able to approach the entropy of the source adds significant complexity

to system and, for the case without CS, the coefficients in the sparsifying basis must be known.
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3.2 A mathematical description of CS-SPLIT and CS-MDSQ

In the following we focus on deriving a mathematical framework aimed at characterizing

the rate-distortion performance of the presented methods. We can anticipate that the analysis

is able to produce a lower and an upper bound to the region where the rate-distortion curve

sits with high probability, given the assumptions. The main issue that was encountered in the

analysis is characterizing the performance of the reconstruction stage of compressed sensing.

The current literature has showed some reconstruction guarantees for various algorithms, but,

typically, they are not very sharp and the assumptions they require on the structure of the

acquisition stage are somewhat uncommon in practice (e.g. the number of measurements and

the dimensionality of the signal may be required to be very high compared to the actual sparsity).

However, compressed sensing proved itself through applications to be much more reliable and

the guarantees overly pessimistic.

3.2.1 RD performance of CS-SPLIT

Theorem 14. Assume that the signal x ∈ R
n is k-sparse and that the amplitude of the nonzero

entries follows a distribution with zero mean and variance σ2x. Assume that measurements

y = Φx, y ∈ R
m are obtained using a sensing matrix Φ whose entries are i.i.d. Normal random

variables with Φij ∼ N (0, 1
m ) and such that m > 60 log n, k < 1

4(
1
µ+1), where µ is the coherence

of the matrix. Furthermore, assume that the BPDN algorithm is used for reconstruction. If the
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assumptions hold, then the distortion D = ‖x− x̂‖22 in the reconstructed signal as a function of

rate R is bounded as follows, with high probability:

2
k2

m
σ2x2

−2R ≤ Dside(R) ≤
4kσ2x2

−2R

1−
√

15 logn
m
2

(4k − 1)
(3.4)

k2

m
σ2x2

−2R ≤ Dcentral(R) ≤
4kσ2x2

−2R

1−
√

15 logn
m (4k − 1)

(3.5)

It can be noticed that the distribution of the measurements is Gaussian by the central limit

theorem. Also, the measurements are supposed to be approximately independent. The mean

value is

E
[

y
]

= E[Φx] = E[Φ]E[x] = 0 (3.6)

The variance for the central case is

σ2y,central = E
[

y2i
]

= E





(

n
∑

l=1

Φilxl

)2


 = E

[

n
∑

l=1

Φ2
ilx

2
l

]

+ 2E









n
∑

l,l′=1
l 6=l′

ΦilΦil′xlxl′









=

n
∑

l=1

E
[

Φ2
il

]

E
[

x2l
]

=
k

m
σ2x (3.7)

The side case requires a renormalization by
√
2, so the variance is doubled

σ2y,side = 2
k

m
σ2x (3.8)
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The distortion-rate curve, i.e. the minimum distortion that can be reached for a given rate, of

a memoryless Gaussian with the mean square error metric, is well know in literature. Hence we

can derive the distortion on the single measurement, due to quantization, to be

Dsm,central(R) =
k

m
σ2x2

−2R (3.9)

Dsm,side(R) = 2
k

m
σ2x2

−2R (3.10)

Dsm is the mean square error E

[

(yi − ȳi)2
]

. It is possible to compute the mean squared norm

of the whole error vector by

Dm,central(R) = Dm,side = kσ2x2
−2R (3.11)

with Dm = E

[

∥

∥y − ȳ
∥

∥

2

2

]

. We call ȳ the distorted version of y, e.g. due to quantization

ȳ = Q
(

y
)

.

The optimal reconstruction method, that can be used to establish an ultimate lower bound

on the reconstruction error, is the oracle-based recovery. It is based on the assumption that an

oracle tells us the sparsity support S of the signal, so that it does not have to be estimated

from the measurements. Once the support is known, the best reconstruction is obtained by

projecting the measurements onto the subspace spanned by the columns of the sensing matrix

corresponding to the entries in the support. Mathematically, let’s call ΦS the sensing matrix

restricted to the columns indexed by support S, i.e. with zeros in the other columns, then
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x̂ =
(

ΦT
SΦS

)−1
ΦT
S ȳ. It is known from [18] that the oracle-assisted recovery produces an error

bounded by

k

1 + δ
Dsm ≤ ‖x− x̂‖22 ≤

k

1− δDsm (3.12)

where δ is the RIP constant of matrix Φ. Computing the RIP constant of a matrix can be very

complex. However, the best value that could be ideally achieved is δ = 0, so we will consider

this limit case in the analysis.

BPDN is known to reconstruct a sparse signal from noisy measurements with an error that is

proportional to the noise power. The proportionality constant depends on the properties of the

sensing matrix, in terms of RIP constant or coherence parameter. Davenport et al. report in [2]

a reconstruction guarantee that explicitly expresses the constant as function of the coherence of

the sensing matrix. Calling ε2 = E

[

‖e‖22
]

the power of noise, and assuming that the constraint

in the BPDN optimization problem uses exactly ε, and that k < 1
4(

1
µ + 1), the reconstruction

error is bounded by

‖x− x̂‖2 ≤
2ε

√

1− µ(4k − 1)
(3.13)

where µ is the coherence of the sensing matrix.

We limit ourselves to the case in which the sensing matrix in made of Gaussian entries,

which is one of the most common cases in practical applications and among the most studied

from a theoretical standpoint. In fact Bajwa et al. have derived in [19] worst-case and average-

case expressions for the coherence of a Gaussian matrix that hold with high probability. The
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following worst-case bound is of particular interest to our analysis. Assume that Φij ∼ N (0, 1
m )

and that m > 60 log n, then

µ ≤
√

15 log n

m
(3.14)

with probability exceeding 1− 2
m . A proof of this result is given in [19].

Now we have all the building blocks to prove ( 3.4) and ( 3.5). The lower bound is provided

by the oracle inequality with δ = 0, while the upper bound is given by the performance guarantee

on BPDN. Concerning the lower bound it is immediate to derive

Doracle,side = 2
k2

m
σ2x2

−2R (3.15)

Doracle,central =
k2

m
σ2x2

−2R (3.16)

For the upper bound, it is sufficient to notice that equation ( 3.11) can be used as the expression

of the noise norm ε in ( 3.26), and substituting the worst case coherence reported in ( 3.27) we

can obtain

Dupper,side =
4kσ2x2

−2R

1−
√

15 logn
m
2

(4k − 1)
(3.17)

Dupper,central =
4kσ2x2

−2R

1−
√

15 logn
m (4k − 1)

(3.18)

Figure 3.12 reports graphically the lower and upper bounds for the side and central cases.
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Figure 3.13 reports an experimental check on the oracle lower bound. The theoretical curve

is the one reported above, obtained for δ = 0. The experimental curve is obtained from a large

number of simulations applying a uniform scalar quantization to the measurements and then

reconstruction knows the support perfectly. The figures report the norm of reconstruction error.

A penalty of
√

πe
6 (20 log10

√

πe
6 = 1.34dB) [20] is accounted because of the use of the uniform

scalar quantizer. The simulation seems to support the theoretical result. The slope of the two

curves coincides and after correcting for the quantizer penalty, the remaining offset is explained

by the fact that the RIP constant is in fact greater than zero. Also note that in the side case,

a lower number of measurements makes the RIP constant somewhat worse, hence the greater

offset.
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3.2.2 RD performance of CS-MDSQ

Theorem 15. Assume that the signal x ∈ R
n is k-sparse and that the amplitude of the nonzero

entries follows a distribution with zero mean and variance σ2x. Assume that measurements

y = Φx, y ∈ R
m are obtained using a sensing matrix Φ whose entries are i.i.d. Normal random

variables with Φij ∼ N (0, 1
m ) and such that m > 60 log n, k < 1

4(
1
µ+1), where µ is the coherence

of the matrix. Furthermore, assume that the BPDN algorithm is used for reconstruction. If the

assumptions hold, then the distortion D = ‖x− x̂‖22 in the reconstructed signal as a function of

rate R is bounded as follows, with high probability:

σ2x
m
k22−2R ≤ Dside(R) ≤

4σ2xk2
−2R

1−
√

15 logn
m (4k − 1)

(3.19)

σ2x
m
k22−4RγD ≤ Dcentral(R) ≤

4σ2xk2
−4RγD

1−
√

15 logn
m (4k − 1)

(3.20)

The rate-distortion analysis of the scheme that applies a multiple-description scalar quantizer

to the measurements considers the Ozarow bound [16] as starting point. We can state the Ozarow

bound for a balanced MDC case in which the rate is the same for both descriptions R1 = R2 = R

and the side distortion is also the same D1 = D2 = Dsm,side (we call Dsm the mean squared

error on the single measurement):

Dsm,side ≥
σ2x
m
k2−2R (3.21)

Dsm,central ≥
σ2x
m
k2−4RγD (3.22)
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with

γD =
1

1−
(

(

1− Dsm,side

σ2
x

m
k

)

−
√

D2

sm,side

σ4
x

m2
k2
− 2−4R

)2

Following the same reasoning used in the analysis of the CS-SPLIT method, the lower bound

on the performance after reconstruction is obtained for an oracle-assisted reconstruction. An

oracle tells us the support S of the signal and recovery is performed as x̂ =
(

ΦT
SΦS

)−1
ΦT
S ȳ,

being ΦS the sensing matrix restricted to the columns indexed by support S, i.e. with zeros

in the other columns. It is known from [18] that the oracle-assisted recovery produces an error

bounded by

k

1 + δ
Dsm ≤ ‖x− x̂‖22 ≤

k

1− δDsm (3.23)

where δ is the RIP constant of matrix Φ. Computing the RIP constant of a matrix can be very

complex. However, the best value that could be ideally achieved is δ = 0, so we will consider

this limit case in the analysis. It immediately follows that the lower bound for the side and

central cases are:

‖x− x̂‖22,side ≥
σ2x
m
k22−2R (3.24)

‖x− x̂‖22,central ≥
σ2x
m
k22−4RγD (3.25)

Notice that the performance of the central case is also affected by the performance of the side

case through the γD parameter.

The upper bound is established for the BPDN reconstruction algorithm. BPDN is known to

reconstruct a sparse signal from noisy measurements with an error that is proportional to the
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noise power. The proportionality constant depends on the properties of the sensing matrix, in

terms of RIP constant or coherence parameter. Davenport et al. report in [2] a reconstruction

guarantee that explicitly expresses the constant as function of the coherence of the sensing

matrix. Calling ε2 = E

[

‖e‖22
]

the power of noise, and assuming that the constraint in the

BPDN optimization problem uses exactly ε, and that k < 1
4(

1
µ + 1), the reconstruction error is

bounded by

‖x− x̂‖2 ≤
2ε

√

1− µ(4k − 1)
(3.26)

where µ is the coherence of the sensing matrix.

We limit ourselves to the case in which the sensing matrix in made of Gaussian entries,

which is one of the most common cases in practical applications and among the most studied

from a theoretical standpoint. In fact Bajwa et al. have derived in [19] worst-case and average-

case expressions for the coherence of a Gaussian matrix that hold with high probability. The

following worst-case bound is of particular interest to our analysis. Assume that Φij ∼ N (0, 1
m )

and that m > 60 log n, then

µ ≤
√

15 log n

m
(3.27)

with probability exceeding 1− 2
m . A proof of this result is given in [19]. The final bound on the

reconstruction error can be obtained by considering that the noise power is in fact the distortion

on the measurement vector ε2 = mDsm. Hence:

‖x− x̂‖22,side ≤
4σ2xk2

−2R

1−
√

15 logn
m (4k − 1)

(3.28)
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‖x− x̂‖22,central ≤
4σ2xk2

−4RγD

1−
√

15 logn
m (4k − 1)

(3.29)

We are now going to check if the results predicted by the theory are consistent with the out-

comes of some simulations. We will focus on the lower bound as the upper bound is somewhat

cumbersome to be checked due to the assumptions needed to make the guarantees hold. Due

to the dependency of the central distortion on the value of the side distortion, the theoretical

curve for central distortion is actually obtained as a hybrid of theory and simulation. Our im-

plementation of the MDSQ fixes a certain side distortion, that is not the minimal one, either

because it is difficult to achieve and because minimal side distortion would imply maximum

central distortion. This value of side distortion on the single measurement, before reconstruc-

tion, is evaluated experimentally, compared against the minimum achievable, and then plugged

in ( 3.25) to determine what is the minimum central distortion that can be achieved for that

side distortion. Figure 3.14 graphically shows the method. The first experiment is aimed at

checking the reconstruction distortion achieved by CS-MDSQ with a practical multiple descrip-

tion scalar quantizer, as function of the rate, i.e. the binary logarithm of the number of rows (or

columns) of the index assignment matrix. This would be the number of bits used to represent

each measurement in the descriptions. Figure 3.15 reports the results. The curves labeled as

’Theory ’ implement equations ( 3.24) and ( 3.25) by the procedure previously explained. It can

be seen that the experimental outcome follows the theoretical curve with the same slope and a

penalty that may be due by several factors such as the implementation of the MDSQ, that is

not able to work at the rate-distortion limit, and the oracle-assisted recovery that is penalized
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by a RIP constant that is actually greater than zero. Figure 3.16 shows the dependency of the

reconstruction error norm on the number of measurements. We can notice a weak reduction of

the error as the number of measurements is increased.
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Figure 3.15. Experimental vs. theoretical lower bounds. The theoretical curve for the side case
implements the minimum value of ( 3.24). The theoretical curve for the central case uses
( 3.25) using the experimental side MSE before reconstruction as Dsm,side. Simulations are

performed with k = 20, n = 256, σx = 1 and a Gaussian sensing matrix with m = 100.
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Figure 3.16. Experimental vs. theoretical lower bound. The theoretical curve for the side case
implements the minimum value of ( 3.24). The theoretical curve for the central case uses
( 3.25) using the experimental side MSE before reconstruction as Dsm,side. Simulations are

performed with k = 20, n = 256, σx = 1, R = 5 bps and a Gaussian sensing matrix.
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3.2.3 Theoretical comparison of CS-SPLIT and CS-MDSQ

The results previously outlined show that it is difficult to compare the performance of CS-

SPLIT and CS-MDSQ, using only a theoretical analysis. The bounds are, in fact, too loose

and subject to a number of limitations concerning the signal parameters, especially due to the

current results concerning the characterization of recovery procedures of compressed sensing.

However, it is possible to give some intuitions concerning the lower bounds, obtained by means

of oracle-assisted recovery. We stress that a fair comparison must not use the same parameters

(e.g. same number of measurements and same rate) for both systems because, otherwise, CS-

MDSQ would be transmitting twice the data with respect to CS-SPLIT. As already explained in

the section considering experimental results, CS-MDSQ uses m measurement, each represented

with R bits in each description, so 2mR bits overall. Instead, CS-SPLIT uses m
2 measurements,

quantized with R bits per description, so mR bits overall. Hence, a fair comparison would use,

for instance, twice as many measurements for CS-SPLIT and the same rate, or twice the rate

and the same number of measurements.

The following figures report the lower bounds for CS-SPLIT and CS-MDSQ in the central

distortion vs. side distortion plane. Those curves allow to define a region of the plane that is the

set of all achievable pairs (Dside,Dcentral). It is interesting to notice that CS-SPLIT requires no

tradeoff between central and side distortion, while, on the contrary, the use of a MDSQ requires

to have worse performance in the side decoders if we want to improve central decoding. It is

also interesting to notice from Figure 3.17 that, for those parameters, CS-SPLIT is, in principle,

able to achieve more advantageous (Dside,Dcentral).
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Figure 3.18. Lower bound tradeoff curves. k = 20, n = 256, σx = 1, R = 8 bps, Gaussian
sensing matrix with m = 60 for CS-MDSQ and m = 120 for CS-SPLIT.



CHAPTER 4

SENSOR NETWORKS

Sensor networks may be regarded as an evolution of the traditional paradigm of sensing

quantities. A sensor network is endowed with a possibly huge number of sensors that cooperate

to carry out some measurements. Cooperation is key to the success of the network because it

makes it fault-resilient as well as efficient. Applications for sensor networks have been proposed

in a various range of fields, among which medical, military, environment monitoring, home

automation and several others. Such flexibility is due to the characteristics of sensor networks.

Sensors are ideally tiny objects, equipped with wireless connectivity and some processing power,

that can be deployed on the site of interest without engineering their positions but rather in a

random way. The network must be able to self-assemble and rewire its structure dynamically

without any external intervention, as the conditions may change over time because of failures

(e.g. a sensor runs out of power) or because sensors have moved. One crucial constraint that

must be faced when dealing with sensor networks is the limited available power. Sensors are

battery-powered and may or may not be able to recharge depending on the availability of

solar cells. Energy efficiency is sought at all levels of design, from the physical layer in which

binary modulations are preferred to M-ary constellations, to the link and network layers that

use protocols specifically aimed at power conservation. The on-board processing power allows

to perform simple preprocessing operations on the collected data, but data are routed through

the network to a sink and then to the final user that has all the processing power needed to

64
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decode and process the data. Hence, to maintain the network cost-efficiency and meet the power

constraints, sensors must be kept simple and all the complex tasks must be performed at the

receiver.

4.1 Distributed Compressed Sensing and Joint Sparsity Models

The framework of sensor networks significantly differs from what we analysed in the previous

chapters because it involved a single signal. When dealing with networks, we have to consider

an ensemble of signals, that may be generated by multiple sensors monitoring the spatial distri-

bution of a variable (e.g. temperature). It is often the case that the observations made by the

sensors are both inter- and intra-correlated. By intra-correlation we mean that a certain amount

of redundancy within the signal itself is present and that there exists some basis Ψ that allows a

compact (sparse) representation of the signal. The term inter-correlation is instead referring to

the amount of redundancy among different signals in the ensemble. How much inter-correlation

can be found depends on the specific application but it is reasonable to think that whenever we

are sensing the distribution of a variable that varies smoothly over space, then the measurements

collected by the sensors will be very much similar to each other. Furthermore, sensor networks

are studied to be deployed in a dense fashion in the region of interest, so that it is reasonable to

assume that sensors that are close to each other collect similar measurements. Sensor networks

also have some strict requirements that make them a challenging topic to investigate. For ex-

ample, sensors are typically small-size, battery-powered devices, so there are strong limitations

to the complexity of tasks that can be performed by them. Hence, a coding scheme that has a

simple signal acquisition procedure and that moves all the complexity to the receiver is desirable
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for this kind of application. Compressed sensing clearly has this important feature, hence the

interest in investigating applications of compressed sensing to sensor networks.

The theory of Distributed Compressed Sensing, that has a pivotal reference in [21], focuses

on applying compressed sensing to a distributed scenario in which we want to leverage both

inter- and intra-correlation to achieve high coding efficiency while keeping low complexity on

the sensors side. It is interesting to notice that the use of Distributed Compressed Sensing

achieves a reduction in the number of measurements that have to be acquired and transmitted

by each sensor, thanks to the presence of many sensors collecting correlated measurements, but,

in principle, it requires no cooperation among the sensors. This is important because it limits

dramatically the complexity of the system if no cooperative scheme is needed to achieve the

desired performance.

Baron et al. introduce in [21] the notion of joint sparsity and provide three example models

of joint sparsity that have been referenced by the literature (e.g. [22] [23] [24]).

JSM-1 Sparse common component + sparse innovations. In this model each signal in the

ensemble is made by a sparse component xc that is common to all the J signals in the

ensemble and by a innovation component xI,i that is peculiar of sensor i.

xi = xc + xI,i i = 1, ..., J (4.1)

This model well represents measurements of quantities that are affected by some global

factors common to all measurement nodes, thus contributing to the common component,
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while the innovation signals may arise from local phenomena affecting each node in a

different manner. Smoother variations in time and space tend to make the signals sparser

(more intra-correlated) and each less innovative, respectively.

JSM-2 Common sparse support In this model all the signals share the same sparsity support

but the amplitudes may be different. The JSM-2 model is appropriate for acoustic sensor

arrays or MIMO communication devices where each node receives replicas of the same

signal, with some modifications due to different phase shifts or attenuations. Another

example is medical imaging, where recovery from a JSM-2 ensemble is often referred to as

the Multiple Measurement Vector (MMV) problem.

JSM-3 Nonsparse common component + sparse innovations This model is similar to JSM-

1 in the sense that there is a component that is common to all signals but it is not sparse.

The innovation component of each signal is sparse. This model well suits the case of

video sequences where each frame may not be sparse by itself, but it may have minor

modifications with respect to the previous frame, hence it has sparse innovations.
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4.2 Algorithms for joint reconstruction

In the following we are going to present a few algorithms that explicitly exploit models of

joint sparsity to improve reconstruction performance or to decrease the number of measurements

that is needed to achieve a desired quality in the reconstructed signal. It is interesting to notice

that no cooperation among sensors is required by these algorithms, which keeps complexity to

a minimum and does not require exchange of data inside the network. Finally, most of the

algorithms require the use of side information. By side information we mean that the signal

acquired by one of the sensors is fully known by the receiver. In practice, this just means that

one sensor acquires more measurements than the others and quantizes them in a fine manner,

so that reconstruction can be performed with very low error. If the number of sensors in the

network is large, the overhead due to side information tends to be small or negligible and, in fact,

we already discussed how sensor networks typically employ several sensor nodes. Since having

the side information at the receiver is critical, it may be interesting to devise protocols that take

care of replacing the node providing the side information in case of failure, but this is beyond

the scope of this work. We introduce joint reconstruction algorithms with a short literature

review. In particular, the Intersection and Sort algorithms have been proposed in [23], and the

Texas Hold ’Em in [22]. Let’s clarify some notation that is used throughout the explanation of

the algorithms.

xj : j-th signal in the domain in which sensing takes place

θj : j-th signal in the domain in which it is sparse

Ψ : sparsifying basis xj = Ψθj , θj = ΨTxj
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Φ : sensing matrix

y
j

: measurement vector of signal j y
j
= Φxj
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4.2.1 Intersection algorithm

This algorithm assumes the JSM-1 signal model. Its working principle can be summarised

in the idea that if we are able to subtract the measurements of the common component from

the measurements, then we are left just with the measurements of the innovation part, which is

sparser. After recovering the innovation component, it can be added to the common component

to get the full signal. Even in the general case with J sensor nodes, the algorithm works pairwise

considering the measurements from sensor j and the side information (without loss of generality

assume that sensor 1 provides the side information). The common component is recovered by

reconstructing the signal from sensor j separately in order to estimate its support Sj and, since

the common component is shared by 1 and j, its support Sc can be estimated by intersecting

Sj ∩ S1. Once the support is known it is enough to solve a least squares problem to get the

coefficients. Let θj = ΨTxj , θ1 = ΨTx1, yj = Φxj, y1 = Φx1

Algorithm 1 Intersection algorithm

Require: S1 = {i : (θ1)i 6= 0}, t, A = ΦΨ

Recover θ̂j from y
j

Ŝj ←
{

i :
∣

∣

∣

(

θj
)

i

∣

∣

∣ > t
}

Ŝc ← S1 ∩ Ŝj
(

θ̂c

)

Ŝc

= (AT
Ŝc
AŜc

)−1AT
Ŝc
y
j

y
I,j

= yj −Aθ̂c
Recover θ̂I,j from y

inn,j

return θj = θ̂c + θ̂I,j
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4.2.2 Sort algorithm

This algorithm is very similar to the Intersection algorithm except for the estimation of the

common component that is performed in a different fashion. The coefficients of the reconstructed

signal are sorted by decreasing magnitude and, proceeding in order, if the component also

belongs to the support of the side information then it is added to to the support of the common

component. The algorithm terminates when kc positions have been added to the support of the

common component (kc being the sparsity of the common component).

Algorithm 2 Sort algorithm

Require: S1 = {i : (θ1)i 6= 0}, kc, A = ΦΨ

Recover θ̂j from y
j

Ŝc ← ∅
for i = maxi

∣

∣

∣

(

θ̂j

)

i

∣

∣

∣ to mini

∣

∣

∣

(

θ̂j

)

i

∣

∣

∣ do

if i ∈ S1 then
Ŝc ← Ŝc ∪ i
if |θ̂c| = kc then

break
end if

end if
end for
(

θ̂c

)

Ŝc

= (AT
Ŝc
AŜc

)−1AT
Ŝc
y
j

y
I,j

= yj −Aθ̂c
Recover θ̂I,j from y

inn,j

return θj = θ̂c + θ̂I,j
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4.2.3 Texas Hold ’Em algorithm

The previous algorithms proceed essentially pairwise, so they may not fully exploit the

system properties when the system has a large number of sensors. Texas Hold ’Em relies on

sharing all or part of the measurements of all the J sensors in the network in the reconstruction

process. The idea is that the innovation components can be treated as noise, so averaging the

measurements from all the sensors we get something close to the measurements of the common

component. This is clearly unbiased since in the limit of a network with infinitely many sensors

we have that:

ŷ
c
= lim

J→∞
1

J

J
∑

j=1

y
j
= lim

J→∞



y
c
+

1

J

J
∑

j=1

y
I,j



 = y
c

(4.2)

Moreover, this algorithm does not require any side information. Once the common component

has been estimated by recovering from the averaged measurements, it can be subtracted from

the measurements of each signal to recover the innovation component.

Algorithm 3 Texas Hold ’Em algorithm

Require: J , kc, A = ΦΨ

ŷ
c
= 1

J

J
∑

j=1
y
j

Recover θc from ŷ
c

for j in 1 : J do
ŷ
I,j

= y
j
−Aθc

Recover θ̂I,j from ŷ
I,j

θ̂j = θc + θ̂I,j
end for
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Figure 4.1. Difference algorithm

4.2.4 Difference algorithm

This is the first new algorithm that we propose. The underlying idea is to exploit side

information to eliminate the need to recover the common component. Figure 4.1 presents a

schematic representation of the algorithm. Proceeding pairwise by using the side information

and one of the signals in the ensemble, it is possible to compute the difference between the

measurements of the side information and of signal j. This clearly removes any component that

is common to the two signals, so we are left with measurements of the difference of the innovation

components. It is then possible to recover the difference signal from these measurements using

any recovery procedure. Once the difference signal is recovered, it is then enough to add the

side information to fully recover signal j. Before going into further details, it is interesting to

notice that this algorithm does not introduce any error due to an incorrect estimation of the
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common component, simply because this is removed from any recovery procedure and only side

information is used to get it. A shortcoming of the algorithm is that the difference signal is

less sparse than the innovation component of a single signal, so it needs more measurements

to be recovered than if we were to recover just a single innovation component. However, this

procedure seems advantageous in a scenario in which the sparsity of the common component

is much larger than the sparsity of innovations. This is often the case when the signals in the

ensemble are highly correlated. If we call kI the sparsity of the innovation component of each

signal in the ensemble, then in the worst case, the difference signal has sparsity 2kI . As a

rule of thumb, if 2kI < kc then the difference algorithm may be favourable since it does not

have to estimate the common component. This is even more relevant if the overall number of

measurements is limited, and it does not allow to estimate the common component with great

accuracy, as it is required by the Intersection and Sort algorithms.

Algorithm 4 Difference algorithm

Require: A = ΦΨ
for j in 2:J do

Compute y
diff,j

= y
j
− y

1

Recover θdiff,j from y
diff,j

θ̂j = θ1 + θdiff,j

end for
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4.2.4.1 A performance bound

∥

∥

∥θ̂j − θj
∥

∥

∥

2
=

∥

∥θ1 + θdiff,j − θj
∥

∥

2
=
∥

∥θI,1 − θI,j + θdiff,j

∥

∥

2
= (4.3)

=
∥

∥θdiff,j −
(

θI,j − θI,1
)∥

∥

2
≤ Cǫ (4.4)

where ǫ =
∥

∥

∥y
diff,j
− Φ

(

xI,1 − xI,j
)

∥

∥

∥ is the norm of the noise affecting the measurements of the

difference signal and C is a constant that depends on the method used for reconstruction and

on the RIP constant of the sensing matrix. Ideally (no quantization, etc.) ǫ = 0 and provided

that there are enough measurements reconstruction is perfect. This means that the Difference

algorithm is exact. Perfect reconstruction is possible if there is no loss of information, unlike

Texas Hold ’Em which is limited by the residual noise in the averaging procedure.

4.2.4.2 Some distortion-rate bounds

We will follow a line of reasoning similar to the one used in the analysis of CS-SPLIT. This

allows to get some bounds for the distortion-rate performance of the algorithm under some

conditions that are essentially the same as the ones reported for CS-SPLIT. Let’s first introduce

some notation:

kj : total sparsity of signal j

kc: sparsity of the common component

k1∩j : sparsity of the intersection of the supports of signals 1 and j (note that if J = 2 this

is kc, but in the case with more sensors it may be greater because the common component
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is common to all signals, so it is possible that the innovation component of signal j partially

overlaps with the innovation component of signal 1)

kdiff,j: sparsity of the difference signal θI,j − θI,1

yij: measurement i of signal j

yij ∼ N
(

0,
kj
mσ

2
x

)

Theorem 16. Let an ensemble of J signals follow the JSM-1 joint sparsity model and the

Difference algorithm be used for recovery. The nonzero entries of each signal in the sparse basis

have variance σ2x and zero mean. Assume that m = O(k log n) measurements are obtained with

a Gaussian sensing matrix Φ as y = Φθ and that Φij
i.i.d.∼ N

(

0, 1
m

)

. Also assume that that

m > 60 log n, k < 1
4

(

1
µ + 1

)

where µ is the coherence of Φ. Furthermore, assume that the

BPDN method is used in the recovery steps inside the Difference algorithm. If the assumptions

hold, then the distortion Dj =
∥

∥

∥
θ − θ̂

∥

∥

∥

2

2
in the j-th reconstructed signal as a function of rate R

is bounded as follows, with high probability.

k1 + kj − 2k1∩j
m

kdiff,jσ
2
x2

−2R ≤ Dj(R) ≤
4 (k1 + kj − 2k1∩j) σ2x2

−2R

1−
√

15 logn
m (4kdiff,j − 1)

(4.5)

The proof will follow after stating a lemma considering the correlation of measurements of

different signals. This lemma will be useful in the proof of the theorem and it is actually more

general than what is needed, because it considers an arbitrary basis Ψ under which the signal

is sparse.
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Lemma 17. Let yij and yi1 be the i-th measurement of signals j and 1 respectively. Let those

signals be two signals in a JSM-1 ensemble. Measurements are obtained as y = ΦΨθ with

Φij
i.i.d.∼ N

(

0, 1
m

)

. Then:

E [yijyi1] =
k1∩j
m

σ2x (4.6)

Proof. Before the math it is useful to notice that

E [(θc)l (θc)l′ ] =























E

[

(θc)
2
l

]

= σ2x if l = l′

0 otherwise

E
[

(θc)l (θI,j)l′
]

= 0

E
[

(θI,j)l (θI,1)l′
]

=























σ2x if l = l′ and l, l′ ∈ S1∩j

0 otherwise
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We used the symbol S1∩j to denote the support resulting from the intersection of the supports

of signals 1 and j.

E [yijyi1] = E









∑

k,l

ΦikΨkl

(

(θc)l + (θI,j)l
)









∑

k′,l′

Φik′Ψk′l′
(

(θc)l′ + (θI,1)l′
)









= E





∑

k,k′,l,l′

ΦikΨkl (θc)l Φik′Ψk′l′ (θc)l′





+ E





∑

k,k′,l,l′

ΦikΨkl (θI,j)l Φik′Ψk′l′ (θc)l′





+ E





∑

k,k′,l,l′

ΦikΨkl (θc)l Φik′Ψk′l′ (θI,1)l′





+ E





∑

k,k′,l,l′

ΦikΨkl (θI,j)l Φik′Ψk′l′ (θI,1)l′





=
∑

k,k′,l,l′

E [ΦikΦi′k′ ]E [Ψkl (θc)l Ψk′l′ (θc)l′ ]

+
∑

k,k′,l,l′

E [ΦikΦi′k′ ]E
[

Ψkl (θI,j)l Ψk′l′ (θc)l′
]

+
∑

k,k′,l,l′

E [ΦikΦi′k′ ]E
[

Ψkl (θc)l Ψk′l′ (θI,1)l′
]

+
∑

k,k′,l,l′

E [ΦikΦi′k′ ]E
[

Ψkl (θI,j)l Ψk′l′ (θI,1)l′
]

=
1

m

∑

k,l

E [ΨklΨkl (θc)l (θc)l] + 0 + 0 +
1

m

∑

k,l

E
[

ΨklΨkl (θI,j)l (θI,1)l
]

=
kc

m
σ2x +

k{1∩j}/c
m

σ2x

=
k1∩j
m

σ2x
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We notice that the algorithm performs recovery from y
diff,j

, that can be seen as a memoryless

Gaussian source. Each component has zero mean and the variance can be readily computed by

exploiting the previous lemma and the result obtained in ( 3.7).

E
[

y2diff,ij

]

= E
[

y2i1 + y2ij − 2yi1yij

]

=
k1

m
σ2x +

kj

m
σ2x − 2E [yi1yij] =

k1 + kj

m
σ2x − 2

k1∩j
m

σ2x

=
k1 + kj − 2k1∩j

m
σ2x

Hence, defining distortion as the squared error norm, the distortion-rate curve on the mea-

surements is

Dsm =
k1 + kj − 2k1∩j

m
σ2x2

−2R

Now, we can recall the performance bounds presented in ( 3.23) and ( 3.26) concerning

CS recovery by means of an oracle and by means of the basis pursuit denoising algorithm

respectively. We also recall that we presented in ( 3.27) a result about the coherence of a

Gaussian sensing matrix. Putting all the results together, it follows that the reconstruction

error is bound as stated in theorem (16), where the lower bound assumes reconstruction by

solving a least squares problem when the support is told by an oracle and the upper bound is

given by the reconstruction performance of the BPDN algorithm.

4.2.5 Texas Difference algorithm

This is an improvement that we propose over the Texas Hold ’Em algorithm. Figure 4.2

presents a schematic representation of the algorithm. Albeit it maintains the original idea

of averaging the collected measurements, it is aimed at providing some performance gain by
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Figure 4.2. Texas Difference algorithm

avoiding any reconstruction of the common component and rather using it directly from the

measurements, in a fashion similar to the Difference algorithm. As it is conceptually close to

the Difference algorithm, it mainly targets situations in which the signals in the ensemble are

highly correlated, thus having innovations that are much sparser than the common component,

and few available measurements. It also differs from Texas Hold ’Em because it requires side

information, but since both this and Texas are well suited for networks with a large number of

sensors (so that the residual noise after averaging is small), the overhead due to side information

may be negligible or very small anyway.
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Algorithm 5 Texas Difference algorithm

Require: J ,A = ΦΨ, kI

ŷ
c
= 1

J

J
∑

j=1
y
j

ŷ
I,1

= y
1
− ŷ

c

Recover θ̂I,1 from ŷ
I,1

for j in 2:J do
y

diff,j
= y

j
− y

1

ŷ
I,j

= y
diff,j

+ ŷ
I,1

Recover θ̂I,j from ŷ
I,j

θ̂j = θ1 − θ̂I,1 + θ̂I,j
end for

4.2.5.1 A performance bound

Let’s derive a simple bound on the reconstruction performance of the algorithm to gain some

intuition about the conditions that make it effective, when compared to other algorithms.

∥

∥

∥
θ̂j − θj

∥

∥

∥

2
=

∥

∥

∥
θ1 − θ̂I,1 + θ̂I,j − θj

∥

∥

∥

2
=
∥

∥

∥
θI,1 − θ̂I,1 − θI,j + θ̂I,j

∥

∥

∥

2

=
∥

∥

∥

(

θI,1 − θ̂I,1
)

+
(

θ̂I,j − θI,j
)∥

∥

∥

2
≤
∥

∥

∥θI,1 − θ̂I,1
∥

∥

∥

2
+
∥

∥

∥θ̂I,j − θI,j
∥

∥

∥

2

Let’s analyse how the innovation components are recovered.

ŷ
I,1

= y
1
− ŷc = y

c
+ y

I,1
− y

c
− 1

J

J
∑

l=1

y
I,l

= y
I,1
− 1

J

J
∑

l=1

y
I,l
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ŷ
I,j

= y
j
− y

1
+ ŷ

I,1
= y

c
+ y

I,j
− y

c
− y

I,1
+ y

I,1
− 1

J

J
∑

l=1

y
I,l

= y
I,j
− 1

J

J
∑

l=1

y
I,l

Let’s call n = 1
J

J
∑

l=1

y
I,l

, i.e. the "noise" component in the measurements that is due to the

averaging procedure, which does not exactly cancel out the innovation components. Hence,

ŷ
I,j

= AθI,j − n for j ∈ [1, J ]. If we use a reconstruction procedure from noisy measurements

that has a performance guarantee of the type that the reconstruction error is proportional just

to the noise power, and we assume that
∥

∥θI,j
∥

∥

2
= η for all j ∈ [1, J ], we can write:

∥

∥

∥
θ̂I,j − θI,j

∥

∥

∥

2
≤ C · ‖n‖2 = C ·

∥

∥

∥

∥

1

J

∑

ΦθI,j

∥

∥

∥

∥

2

≤ C ·
√
1 + δ√
J

∥

∥θI,j
∥

∥

2
= C ·

√
1 + δ√
J

η

where δ is the RIP constant of matrix A = ΦΨ. Finally we can plug this result in the derivation

for the recovery error and we obtain

∥

∥

∥
θ̂j − θj

∥

∥

∥

2
≤
∥

∥

∥
θI,1 − θ̂I,1

∥

∥

∥

2
+
∥

∥

∥
θ̂I,j − θI,j

∥

∥

∥

2
≤ 2C ·

√
1 + δ√
J

η (4.7)

This analysis points out a few interesting facts about the algorithm. Even if quantization or

other sources of noise are not considered by the analysis, the algorithm is still bound to a certain

reconstruction error. This does not happen for other algorithms (e.g. Difference) that we have

seen to be exact. Here, the limiting factor is the averaging procedure that imposes a floor on

the reconstruction error, that cannot be overcome by adjustments on the rate. However, this
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error floor decreases as 1√
J
, so a network with a large number of sensors may indeed be limited

by the quantization rate or other phenomena rather than the averaging procedure.

We have seen how the Texas Difference algorithm borrows ideas from both the Texas Hold

’Em strategy and the Difference procedure, so one may wonder whether it really improves

over those methods and when it may be interesting to use it. Texas Difference inherits the

averaging procedure from Texas Hold ’Em, that makes it suitable when the number of sensors

is large as already discussed. However, it improves over Texas when the signals are highly

correlated and few measurements are available because Texas may have difficulties in recovering

the common component. The idea of computing some differences to use the common component

in an implicit way is derived from the Difference algorithm. Texas Difference is able to run the

compressed sensing recovery procedures only for the the innovation components themselves,

whereas Difference has to recover a difference between two innovation signals, which is typically

less sparse.
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4.3 Performance comparison

We are going to test the performance of the algorithms outlined in the previous section

by running some simulations, under different conditions. It can be seen that the experimental

results follow our intuition, concerning the performance of the methods with respect to each

other. We remark that the y-axis, labelled Mean Square Error, actually represents the mean

MSE over all the J signals in the ensemble.

Figure 4.3 shows a scenario in which a very limited number of measurements is taken from

each sensor but the number of sensors is relatively high (J = 100). This is the best case for

the Texas Difference algorithm, which, in fact, outperforms all the others by a great margin.

It is also interesting to remark how the plain Texas algorithm has very bad performance due

to the constraint on the number of measurements. The exact algorithms perform very close to

each other, and, in particular, Difference is not able to improve over Intersection because the

sparsity of the innovation component is quite high compared to the sparsity of the common

component. In particular, since kc = 15 and kI = 10, the rule of thumb 2kI < kc, that

we have given as an indicator of when Difference can be useful, does not hold. Figure 4.4 is

interesting because it highlights the error floor reached by the Texas Difference algorithm for

high values of rate R. As previously discussed this error floor is due to the averaging procedure:

no matter how fine measurements are quantized, the residual noise of averaging will prevent any

improvement of performance. This also happens for the Texas algorithm, albeit not evident in

that picture. Again, the poor performance of Difference is due to the strong contribution of

innovation components to signals. Figure 4.6 and Figure 4.5 are worth to be analysed together
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because they have very similar parameters and reveal some interesting phenomena. As first

comment, Texas performs poorly mainly because it needs more measurements to improve its

performance significantly. Then, it is interesting to notice how the increase in the number of

sensors from 10 to 100 significantly lowers the error floor for Texas Difference, which is also

the best method at low bitrates. At high bitrates the Difference algorithm is the best when

the number of measurements is limited (m = 60) and close to the other algorithms when more

measurements are available. Finally, Figure 4.7 shows a situation that is extremely unfavourable

to the Difference and Texas Difference algorithms because because of the high value of kI

compared to kc. However, this and the high number of sensors make Texas perform rather well.

Due to the fact that the various algorithms seem to perform differently depending on the

number of available measurements, we include a simulation of the reconstruction error as a

function of how many measurements are collected by each sensor. The result is reported in

Figure 4.8 and it confirms what we previously reported, i.e. Difference and Texas Difference

work are the best when few measurements are available, if the correct assumptions on the

signal are satisfied. However, they are outperformed by other algorithms when more and more

measurements are available. This fact should be regarded as an important point: thanks to

the improvements made possible by Difference and Texas Difference it is possible to reduce the

number of measurements that is needed to achieve a good reconstruction error. The benefits of

this fact are evident in terms of complexity of the system for measurement acquisition, as well

as in terms of data transmission.
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Figure 4.3. Reconstruction error. n = 256, kc = 15, kI = 10, m = 50, J = 100



87

2 3 4 5 6 7 8 9 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Rate

M
S

E

J = 100; kc = 15; ki = 15; n = 256; m = 100

 

 
Diff
Sort
Intersect
Texas
TexasDiff

Figure 4.4. Reconstruction error. n = 256, kc = 15, kI = 15, m = 100, J = 100
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Figure 4.5. Reconstruction error. n = 256, kc = 20, kI = 5, m = 60, J = 100
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Figure 4.6. Reconstruction error. n = 256, kc = 20, kI = 5, m = 70, J = 10
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Figure 4.7. Reconstruction error. n = 256, kc = 6, kI = 6, m = 70, J = 100
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CHAPTER 5

A COMPRESSED-SENSING, MULTIPLE-DESCRIPTION SCHEME

OVER A PACKET ERASURE CHANNEL

This chapter will draw concepts from all the previous chapters in order to analyse a sys-

tem (e.g. a sensor network) that collects measurements of some quantity of interest by means

of compressed sensing, bundles them in packets and transmits the packets over a packet era-

sure channel. The channel is unreliable, it may lose a packet with probability ploss and using

a connection-oriented protocol that takes care of retransmission is not applicable because of

efficiency constraints (with one exception that will be noted in the following). This is an inter-

esting scenario to apply a multiple-description coding technique, whose job is to make the system

more robust to the channel unreliability. However, the technique must also be simple enough

to be implemented in a sensor network, that has very tight complexity constraints. Hence, the

CS-SPLIT method developed in chapter 3 seems to be a good candidate to solve the problem

because it fits the compressed sensing frame and it moves all the complexity to the receiver.

Moreover, an assumption is made on the joint distribution of the sensor data. We assume that

they follow the JSM-1 model, that we thoroughly discussed in the previous chapter, along with

some joint recovery algorithms. Most of the algorithms that we analysed require the use of side

information, i.e. the perfect knowledge of one of the signals in the ensemble. From a practical

standpoint, requiring side information just means that one of the signals will be sensed taking

more measurements to ensure a high quality reconstruction. This method causes some overhead
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to be present if compared to a scheme without the need of side information. Let’s call J the

number of sensors, m1 the number of measurements for signal 1, that we suppose without loss

of generality, to be our side information, and m the number of measurements for each of the

other signals. Then, a relative measure of the overhead can be:

OHbase =
m1 −m
Jm

(5.1)

that is simply the ratio between how many extra measurements are taken for signal 1 and the

total number of measurements taken from the ensemble if no side information was needed. We

will refer to that quantity as base overhead because it is the minimum amount of overhead that

system may have. In fact, as side information is critical we may decide that retransmission

should be performed unless at least one description is received. Clearly, this scheme increases

the total overhead because of retransmissions and the increase is more and more significant as

ploss gets higher. We can easily compute the expected total overhead as a function of ploss by
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considering that every time a retransmission occurs we add m1

Jm to the current overhead, starting

from the base overhead.

P (k total retransmissions) = P

(

OHtot,retr = k
m1

Jm

)

=
(

p2loss
)k (

1− p2loss
)

E [OHtot,retr] =

∞
∑

k=0

k
m1

Jm

(

p2loss
)k (

1− p2loss
)

=
m1

Jm

(

1− p2loss
)

∞
∑

k=1

k
(

p2loss
)k

=
m1

Jm

(

1− p2loss
)

p2loss

∞
∑

k=1

d

d
(

p2loss
)

[

(

p2loss
)k
]

=
m1

Jm

(

1− p2loss
)

p2loss
d

d
(

p2loss
)

[

p2loss
1− p2loss

]

=
m1

Jm

p2loss
1− p2loss

E [OH] = OHbase + E [OHtot,retr] =
m1 −m
Jm

+
m1

Jm

p2loss
1− p2loss

(5.2)

The result agrees with the outcome of the simulations as shown in Figure 5.1. For clarity,

let us state explicitly how packets are formed and how CS-SPLIT is compared against a system

without any MDC strategy. When using CS-SPLIT, we collect m measurements from each

sensor and two packets of m
2 measurements are formed with the first half and second half of the

measurement vector. Each packet is called a description because it can be decoded separately

according to the method and the performance discussed when presenting CS-SPLIT. Notice that

CS-SPLIT could be easily generalized to a higher number of descriptions. If no MDC scheme is

used, all the m measurements are grouped in a single packet.
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It is now interesting to discuss the performance, in terms of reconstruction mean squared

error, to actually verify if our multiple-description coding strategy is beneficial to the system.

Also, various reconstruction algorithms are compared to evaluate their relative performance.

The first interesting result from the simulations is the poor performance of the Texas Difference

algorithm. This is essentially due to the fact that the algorithm does not fit well the packetization

model used by the system. One of the key steps in the algorithm is averaging all the available

measurements to produce an estimate of the measurements of the common component. However,

when CS-SPLIT is used and descriptions may be lost by the channel, the receiver finds itself

with some non-homogeneous data. It might have received both descriptions from a few sensors,

but, for some, it only has the first description and, for some others, the second description

only. This condition makes it difficult to perform averaging because it makes no sense to sum

measurements coming from different rows of the sensing matrix. Hence, the best strategy that

the algorithm can adopt is checking which description is the most available and average using

those data only. It is clear that there is a forced waste of data, that limits the quality of the

averaging procedure and, hence, compromises the performance of the whole algorithm. Albeit

not present in the simulation results that will be discussed in the following, the Texas Hold

’Em algorithm is expected to suffer from the same problem since it relies on averaging as well.

Another interesting phenomenon that is evident in all the figures concerns the performance

of the algorithms in the system without MDC. All the algorithms display almost identical

performance. This is mainly due to the packet losses in the channel. When a packet is lost and

there is no alternative description, all the information from that sensor is lost and the MSE is
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capped to the maximum for all the algorithms. The MSE displayed in the figures is an average

quantity obtained from the MSEs of all the sensors, so in the average all the algorithms appear

to have the same performance because their relative differences when correctly operating are

much smaller than difference between the MSE of a correct reconstruction and the maximum

MSE. This phenomenon is less evident in the case with multiple descriptions thanks to the fact

that it less probable to all the descriptions are lost. However, when ploss increases, the same

tendency to compaction appears. The results clearly show that the CS-SPLIT method is able

to provide a performance gain to the system in terms of average MSE. Since the method has

very low complexity, it is indeed recommended to adopt it in a packet-loss scenario like the

one described. Figure 5.2 also confirms that the Difference algorithm suits well the multiple

description scenario. In fact, we have seen how it was able to improve over existing algorithms

when the number of measurements is limited. This is interesting if we consider that, when a

description is lost and only a single one is received, it may contain barely enough measurements

to make the recovery procedure work correctly. Hence, using Difference is a way to improve the

quality of the reconstruction in such a case. The figures use the same algorithm for both side and

central decoding to have a fair comparison among the algorithms. However, it seems reasonable

to suggest that, in practice, different algorithms can be used. For example, Difference seems

naturally suited to side decoding while Intersect or Sort to central decoding.
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CHAPTER 6

CONCLUSIONS

Compressed sensing is a new technique to acquire a signal in a compressed fashion. It is able

to go beyond the traditional Shannon-Nyquist paradigm and reduce the number of measurements

that are needed in order to reconstruct the signal exactly, by exploiting the sparse nature of the

signal. Since many signals of interest (such as natural images or sensors data, etc.) are sparse

or compressible in some domain, the theory of compressed sensing has recently gathered much

attention. Many interesting results concerning the validity of the theory and useful applications

have already been established and intense research is focused on expanding the theory and

adopting it for real systems and applications.

In the previous chapters we tried to analyse techniques to improve the robustness of sys-

tems adopting compressed sensing to errors, or channel losses, by means of multiple description

coding. We also considered the case of a distributed application of compressed sensing, e.g. in

a sensor network, that is able to leverage what is known as joint sparsity to improve coding

efficiency and multiple description coding to improve its error resilience. Aiming at understand-

ing if compressed sensing reconstruction could benefit from it, we also considered the topic of

consistent reconstruction. Experiments showed what the theory suggested, that is enforcing the

recovered signal to have measurements consistent with the quantization intervals, improves the

quality of the reconstruction only in a limited number of cases, such as when having many more

measurements than what is needed to perform a good-quality reconstruction. We discussed
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that the benefits seem to be small and limited to few cases, so the increase in complexity that

consistent reconstruction requires may not be worth it.

CS-SPLIT is the multiple-description scheme that has been proposed to increase the re-

silience of compressed sensing to losses. Its main idea is creating two descriptions by identifying

two sets of measurements. Each description is decodable by itself, but if both descriptions are

available we are able to recover the signal from a greater number of measurements, thus improv-

ing the quality of the reconstruction. The scheme is extremely simple thanks to the democracy

of the measurements, which allows to simply form the descriptions by splitting the original vec-

tor of measurements into two halves. We have seen how it may be possible to packetize each

description in a separate packet and ensure that some reconstruction is always possible, unless

the network loses both the descriptions. It has been experimentally verified that this scheme of-

fers a gain of performance with respect to a scheme that doesn’t use multiple descriptions, when

the communication channel tends to be unreliable. In principle, many techniques have been

studied in the literature to create multiple descriptions, but before the advent of compressed

sensing. One of the most popular is the multiple description scalar quantizer (MDSQ) that cre-

ates two descriptions during the quantization process. We experimentally verified that applying

a MDSQ to the measurements (scheme that we referred to as CS-MDSQ) is less efficient than

using CS-SPLIT, that is able to leverage the democracy property of measurements. We also

characterized CS-SPLIT and CS-MDSQ from an analytic perspective by deriving bounds to the

rate-distortion function for both the methods. Although those bounds do not allow to explicitly

claim that one method is clearly better than the other, they do give some intuition on their
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possible performance. In particular, we noticed how CS-SPLIT may outperform CS-MDSQ

when oracle-assisted recovery from measurements is adopted. Finally, the complexity balance

is so much in favour of CS-SPLIT to make it much more interesting than CS-MDSQ.

Low complexity is one the key requirements of sensor networks, that operate on small, low-

cost, battery-powered devices. Compressed sensing is a promising technology in this field as it

well suits the low complexity constraint (on the sensor side) and the underlying sparsity of the

data to be sensed. When considering a distributed scenario with many sensors, measurements

can be both intra-correlated and inter-correlated. Joint sparsity models allow to exploit inter-

correlation to reduce the overall number of measurements to be taken. We proposed two new

algorithms for joint reconstruction from measurements of a JSM-1 ensemble: Difference and

Texas Difference. Those algorithms are able to improve the quality of the reconstruction when

few measurements are available with respect to other existing algorithms. It is observed that this

is of particular interest when CS-SPLIT is also used. In fact, each description must be decodable

by itself and this requires that m
2 measurements should be enough to perform recovery, but we

also don’t want to be forced to take too many measurements overall. Hence, it may happen that

m
2 measurements are barely enough to provide a decent quality for the side decoders. However,

our joint reconstruction algorithms can improve the quality in exactly that situation.



CITED LITERATURE

1. Duarte, M. F., Davenport, M. A., Takhar, D., Laska, J. N., Sun, T., Kelly, K. F., and Bara-
niuk, R. G.: Single-pixel imaging via compressive sampling. IEEE Signal Processing
Magazine , 25(2):83–91, March 2008.

2. Davenport, M. A., Duarte, M. F., Eldar, Y. C., and Kutyniok, G.: Introduction to com-
pressed sensing. In Compressed Sensing: Theory and Applications . Cambridge
University Press, 2012.

3. Fornasier, M. and Rauhut, H.: Compressive sensing. In Handbook of Mathematical Methods
in Imaging . Springer, 2011.

4. Candes, E. J. and Tao, T.: Decoding by linear programming. IEEE Trans. on Information
Theory , 51(12):4203–4215, December 2005.

5. Cormen, T. H., Leiserson, C. E., Riverst, R. L., and Stein, C.: Introduction to Algorithms
. MIT Press, 2001.

6. Claerbout, J. and Muir, F.: Robust modeling with erratic data. Geophysics Magazine ,
38(5):826–844, October 1973.

7. Santosa, F. and Symes, W.: Linear inversion of band-limited reflection seismograms. SIAM
J. Sci. Statist. Comput. , 7(4):1307–1330, 1986.

8. Cai, T. T. and Wang, L.: Orthogonal matching pursuit for sparse signal recovery. IEEE
Transactions on Information Theory , 57(7):4680–4688, July 2011.

9. Indyk, P.: Explicit constructions for compressed sensing of sparse signals. Symp. on Discrete
Algorithms , 2008.

10. Jacques, L., Hammond, D., and Fadili, M. J.: Dequantizing compressed sensing : When
oversampling and non-gaussian constraints combine. IEEE Transactions on Infor-
mation Theory , 57(1):559–571, January 2011.

106



107

CITED LITERATURE (continued)

11. Dai, W., Pham, H. V., , and Milenkovic, O.: Information theoretical and algorithmic
approaches to quantized compressive sensing. IEEE Transactions on Information
Theory , 59(7):1857–1866, July 2011.

12. Boufounos, P. and Baraniuk, R.: 1-bit compressive sensing. In Information Sciences and
Systems, 2008. CISS 2008. 42nd Annual Conference on , pages 16 –21, march 2008.

13. van den Berg, E. and Friedlander, M. P.: SPGL1: A solver for large-scale sparse recon-
struction, June 2007. http://www.cs.ubc.ca/labs/scl/spgl1.

14. Grant, M. and Boyd, S.: CVX: Matlab software for disciplined convex programming, version
1.21, April 2011. http://cvxr.com/cvx.

15. Goyal, V. K.: Multiple description coding: Compression meets the network. IEEE Signal
Processing Magazine , 18(5):74–93, September 2001.

16. Ozarow, L.: On a source coding problem with two channels and three receivers. Bell Syst.
Tech. J. , 59(10):1909–1921, December 1980.

17. Vaishampayan, V. A.: Design of multiple description scalar quantizers. IEEE Transactions
on Information Theory , 39(3):821–834, May 1993.

18. Davenport, M., Laska, J., Treichler, J., and Baraniuk, R.: The pros and cons of compressive
sensing for wideband signal acquisition: Noise folding vs. dynamic range. Arxiv
preprint arXiv:1104.4842 , 2011.

19. Bajwa, W. U., Calderbank, R., and Jafarpour, S.: Why gabor frames? two fundamental
measures of coherence and their role in model selection, 2010.

20. Proakis, J.: Digital Communications . McGraw-Hill Science/Engineering/Math, 2000.

21. Baron, D., Duarte, M. F., Wakin, M. B., Sarvotham, S., and Baraniuk, R. G.: Distributed
compressive sensing. Preprint , Jan. 2009.

22. Schnelle, S., Laska, J., Hegde, C., Duarte, M., Davenport, M., and Baraniuk, R.: Texas hold
’em algorithms for distributed compressive sensing. In IEEE International Confer-
ence on Acoustics Speech and Signal Processing (ICASSP), 2010, pages 2886 –2889,
march 2010.



108

CITED LITERATURE (continued)

23. Coluccia, G., Magli, E., Roumy, A., and Toto-Zarasoa, V.: Lossy compression of distributed
sparse sources: a practical scheme. In 2011 European Signal Processing Conference
(EUSIPCO-2011), Barcelona, Spain, September 2011.

24. Duarte, M., Wakin, M., Baron, D., and Baraniuk, R.: Universal distributed sensing via ran-
dom projections. In The Fifth International Conference on Information Processing
in Sensor Networks, 2006. IPSN 2006., pages 177 –185, 0-0 2006.



VITA

NAME: Diego Valsesia

EDUCATION: Laurea di I livello in Electronic and Computer Engineering,

Politecnico di Torino, 2010

Laurea Magistrale in Telecommunications Engineering,

Politecnico di Torino, 2012

Master of Science in Electrical and Computer Engineering,

University of Illinois at Chicago, 2013

109


