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ABSTRACT 

 

Recent successes in decoding speech from cortical signals provide hope for restoring 

function to those who have lost the ability to speak normally. Despite these successes, the exact 

cortical representation and functional dynamics of speech production remain unknown. 

Prominent theoretical models of speech production in the literature differ in their hypothesized 

functional organization of speech motor cortex. Using electrocorticography, with its fine spatial 

and temporal resolution, we can analyze the exact spatial and temporal cortical dynamics related 

to complex speech mechanisms.  

This dissertation addresses various unknowns in the current speech brain-computer interface 

literature and recommends a methodology for successful speech classification from 

electrocorticographic electrodes. Addressing the current limitations and barriers to widespread 

BCI adoption, I here seek to add to the engineering merit of the communicative BCI field with 

the mechanistic analysis and results of three separate studies. In the first study, I seek to 

determine what factors contribute to successful phonemic decoding of an ECoG signal. In the 

second study, I seek to determine cortical representation of phonemic categorization in speech 

production. In the third study, I leverage classification results to address the structure of cortical 

correlates of speech production. The result of these studies outlines a set of guidelines for future 

speech-BCI research that will work towards useful speech-BCI neuroprothetics. 
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I. INTRODUCTION 

1. Communicative Brain Computer Interface 

1.1. Defining Communicative Brain-Computer Interface 

Brain-computer interface (BCI) technology, in which brain signals are recorded and 

connected to control computers, electronics, machines or other external devices, was originally 

developed with the long-term goal of assisting patients in communication (Farwell and Donchin 

1988; Kübler et al. 1999).  Researchers who had studied human biosignals that demonstrated 

voluntary changes by the individual then applied these signals to control external devices. An 

obvious and useful application of this technology, then, was to provide voluntary control of 

communicative devices for individuals who were no longer able to communicate by traditional 

means. Individuals with amyotrophic lateral sclerosis (ALS) or other motor neuron diseases who 

had lost typical innervation of their speech motor faculties therefore became some of the first 

target populations for BCI technology (Rowland and Shneider 2001; Bach JR. 1994). 

Because there are many methods for ascertaining a neurally-controlled signal from the 

human body, a wide variety of BCIs exists. A BCI, at its most basic level, is comprised of a 

sensor or electrode that records a neurally-controlled signal and an algorithm that interprets the 

recorded signal. Sensors can be electric, sensing a change in the electric potential of the brain, 

magnetic, sensing the changes in the dipoles or magnetic potentials of the brain, or optical, 

sensing a change in the color spectrum through the skin of blood flow to the brain.  They can be 

synchronous, in which an individual must rely on the timing of an external process to control an 

interface, or asynchronous, in which volitional biosignal control directly executes external 

commands.  BCIs can be invasive, in which electrodes may directly penetrate neural tissue, or 

non-invasive, in which sensors sit on top of the body and do not penetrate tissue.  They can be 
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closed-loop, in which an individual’s neural feedback is immediately reported to the person, or 

open-loop, in which an individual does not get to observe the execution of the process. 

 

Figure 1. Generalized block-diagram of Brain-Computer Interface 

Despite these differences in modality of recording neural signal, here I define communicative 

brain-computer interface as a BCI specifically used for communication purposes.  This 

categorization therefore applies to the specific application of the BCI and includes all 

aforementioned BCI modalities, which are surveyed in the next section. 

1.2.Survey of Communicative BCI in the Literature 

Although much of the electrophysiology research of the past 50 years focuses on neural 

recordings from primates, cats, and other animal models, research into communicative BCI 

requires human subjects, and with that distinction, specific constraints. The majority of the 

human research performed to date has been primarily non-invasive, which then dictates the type 

of neural control system that can be used. Here, I detail BCI systems that have isolated neural 

control of communication by means of cognitive selection of presented stimuli, which comprises 

the vast majority of communicative BCI in the literature. 
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Electroencephalography (EEG), which measures the change in electric potential at the scalp, 

was employed as the sensor technology in some of the first communicative BCI tasks. These 

tasks primarily used the “slow cortical potential” (SCP), essentially comprised of a slow drift in 

the DC voltage recorded at a single electrode. The SCP is thought to be related to abstract, 

higher-level cognition (Kübler et al. 2001). In SCP-controlled closed-loop BCIs, individuals can 

achieve better performance after several sessions of training, suggesting some changes in cortical 

dynamics related to SCP control are elicited from routine use.  The presence or absence of the 

SCP is the principle variable in selection control, so communicative responses are limited to 

either yes/no paradigms or a system of other binary formulae (Blankertz et al. 2003). Such 

signals can be used in conjunction with a binary forced-choice basket paradigm to select 

characters for typing messages (Bensch et al. 2007; Mellinger et al. 2003; Kübler et al. 2001). 

Contrastingly, other EEG-recorded synchronous paradigms can be designed to elicit “event-

related potentials” or ERPs as a control signal.  The most common ERP approach utilizes an 

easily identifiable neural response to stimuli that are different from the norm. This response to 

so-called “oddball” stimuli is robust and easily reproducible in comparison with other ERPs.  

The prominent variant of this technique utilizes the “P300” signal, in which 300 milliseconds 

following presentation of an oddball stimulus, a robust control signal is elicited (Pritchard 1981; 

Polich and Kok 1995). Creative applications of this P300 ERP have been developed for 

communicative applications, most notably the P300 Speller approach (Farwell and Donchin 

1988). The P300 speller organization provides a fixed set of characters and flashes them in order 

to elicit an oddball response for the intended character.  This organization has since been widely 

optimized and adapted to a variety of communicative applications (Emily M Mugler et al. 2010; 
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E. Mugler et al. 2008; Sellers et al. 2006; Hoffmann et al. 2008; Sellers and Donchin 2006; 

Nijboer et al. 2008; Furdea et al. 2009). 

Another technique that employs EEG electrodes, typically those over the scalp above visual 

cortex, is the steady-state visual evoked potential (SSVEP). This synchronous paradigm relies on 

various visual stimuli flashing on a screen at different prime frequencies (Cheng et al. 2002). The 

selected stimuli can then be deduced from harmonic frequencies present in the EEG signal. In 

this manner, an individual can effectively select and type letters or commands from presented 

options in an efficient paradigm (Bin et al. 2011). This signal is so robust that it can require 

fewer electrodes on the scalp to get a reliable response (Y. Wang et al. 2004).  For SSVEP and 

P300 techniques, visual attention is required, so some residual eye movement must still be 

present in the BCI user for sufficient control. 

EEG paradigms targeting changes in sensorimotor rhythms related to motor imagery can aid 

potential BCI users lacking voluntary eye movement.  For individuals with late-stage ALS, who 

become functionally “locked-in” and are no longer able to move, even simple eye movement can 

degrade or altogether vanish.  This is termed completely locked-in syndrome (CLIS), and these 

individuals cannot reliably control BCIs that incorporate even minimal eye movement. For these 

individuals, who are arguably the intended target population of communicative BCI, BCIs 

employing motor imagery remain a viable BCI paradigm.  In motor imagery BCIs, an individual 

imagines moving some part of his or her body.  When this occurs, there is a decrease in a 

specific frequency power band (8-13 Hz, termed the mu rhythm) in EEG channels over the motor 

cortex, which can then be used as a binary control signal to external communicative devices 

(Kübler, Nijboer, and Mellinger 2005; Birbaumer and Cohen 2007; Wolpaw et al. 2003). 
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Another non-invasive measure of recording brain activity is functional magnetic resonance 

imaging (fMRI), in which a person is stationary in a large magnetic field, and with brief pulses to 

disturb the magnetic field, changes of blood flow to specific parts of the brain over time can be 

tracked. This changing signal, called the blood-oxygen-level-dependent (BOLD) contrast signal, 

has a very slow time-course, often with peak reaction time occurring 7 to 8 seconds behind the 

selected stimulus, but it can reveal volitional changes in attention. There have been few attempts 

at creating a communication interface using this technology (Sorger et al. 2012), perhaps this 

BCI technology can only be used in a stationary, hospital setting and is therefore harder to test 

with locked-in individuals. 

Functional Near-Infrared Spectroscopy (fNIRS or NIRS), considered the portable version of 

the fMRI, measures the BOLD contrast signal, but it does this through the surface of the scalp 

where hair is not present. Much like pulse oxymetery, changes in the oxygenation reveal where 

metabolic activity occurs near the surface of the cortex.  This enables asynchronous binary 

command control (Coyle, Ward, and Markham 2007; Jackson et al. 2013; Herff et al. 2013). 

Each BCI recording paradigm or technology has its own advantages and disadvantages. I 

highlight the disadvantages that hinder widespread communicative BCI adoption in the 

following section. 

1.3. Barriers to wide adoption of BCI technology 

The need for communication in the target population of CLIS individuals is crucial. For 

people with ALS, they rate their Quality of Life (QoL) as high if communication can be 

preserved (Kübler, Nijboer, and Mellinger 2005). This factor drives a need for sufficient 

communication. Even a slow communication channel, if reliable, can improve quality of life.  

However, a minimum requirement for reliability, when tested in BCI users, was 70% (Kübler et 
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al. 2001; Kübler and Neumann 2004).  For the BCI paradigms that satisfy the requirement of 

67% or better correct performance, further issues of longevity of control may impede adoption. 

Many BCI paradigms require intense focus and concentration on the presented stimuli. These 

paradigms require vigilance of attention that can be exhausting for BCI users, although it is 

important to note that not all patients with ALS may consider this vigilance to be tiresome and 

tedious (Blain-Moraes et al. 2012). 

Potential imposition for caregivers is another reason impeding BCI adoption for some 

patients.  For EEG and fNIRS recording devices, the experimental set-up of securing electrodes 

to the scalp, which must be performed by an aide, can take as long as 15 minutes and can be 

taxing to the individual. Further, the majority of EEG systems require gel to be inserted through 

electrodes on to the scalp, which must be cleaned at the conclusion of the experiment, which may 

add to the imposition of the BCI user or patient caregiver.  Most critically, although roughly two-

thirds of surveyed ALS patients would not want to receive an implanted BCI device, 41% of 

surveyed ALS patients would appreciate a wireless, implanted neural interface to reduce burden 

and overhead to their caretakers (Huggins, Wren, and Gruis 2011; Blain-Moraes et al. 2012).  

This suggests that an automated, implantable device could reduce the day-to-day overhead for 

BCI users despite the risk and temporary hardships associated with medical device implantation. 

 BCI adoption by healthy individuals for control of external devices or silent communication 

is only beginning to reach the commercial market. This is likely due to the tediousness of 

applying many of these sensors or electrodes to the body to ascertain a reliable signal, and some 

research groups are only now developing “dry” electrode systems that do not require this labor-

intensive set-up (Popescu et al. 2007; Zander et al. 2011; Grozea, Voinescu, and Fazli 2011)). 

Communicating silently carries the novelty of communicating “just by thinking,” but also may 
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have practical applications for covert military operations or when privacy is paramount (Denby 

et al. 2009). Such devices could also supplement normal human communication in environments 

with high ambient noise (B. J. Betts, Binsted, and Jorgensen 2006).  If these silent 

communication devices can sufficiently augment healthy communication, there could be more 

widespread adoption among healthy individuals.  Furthermore, there seem to be some subsets of 

roughly 20% of the healthy population that cannot seem to develop control over BCIs, a 

phenomenon that remains poorly understood (Vidaurre and Blankertz 2010). 

Finally, another issue that impedes widespread BCI use is the inefficiency of many devices. 

Most late-stage ALS patients have at least some communication or volitional switch they can 

control (L. J. Ball, Beukelman, and Pattee 2004). Others may have small joysticks or sip-and-

puff devices that can control external communication tools. Most eye-tracking software used for 

communication purposes can function at a speed of 10 to 20 words per minute (Ward, Blackwell, 

and MacKay 2000). If a person maintains reliable control of eye movement, BCI technology – in 

which typical speeds are an average of one-third as efficient – presents no clear advantages to the 

user. This efficiency issue ultimately contributes to a lack of communicative BCI adoption. 

I thus assert two criteria for BCI technology to be adopted by target populations: 

(1) Progress can only be made in typing or communication when successful communication 

is 67% or higher. This refinement of the Kübler criterion results logically from the fact that in 

order to make progress when typing, there must be at least 2 correct character selections for each 

incorrect character to achieve progress.   

(2) A BCI must perform at or better than the speed and efficiency of alternative technologies 

available to the individual.   
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Because such a variety of BCIs exists, there have been many efforts to quantify the 

differences between differing systems and algorithms. In the following section I will discuss the 

most prominent comparative measure of BCI efficiency: the rate of information transfer. This 

comparative metric will enable speed and efficiency comparisons between communicative 

modalities that will help identify BCI success.   

2. Information Transfer Rate of Communication 

2.1. ITR in the communicative BCI literature 

Information Transfer Rate, or ITR, is a common metric used to determine the speed and 

efficiency of communication between two parties in a single channel. First developed by Claude 

Shannon in the late 1940s and early 1950s in an effort to identify the precise quantity of 

information lost over a noisy telephone line (Shannon 2001; Shannon 1961), this formula has 

since been applied to countless scientific and computational fields to determine the mutual 

information shared by two parties, primarily in the presence of noise.  In brain-computer 

interface literature, this metric has been applied to ascertain the degree of efficiency and 

accuracy of a BCI system (Wolpaw et al. 2002a; Nykopp 2001; Kronegg, Voloshynovskiy, and 

Pun 2005). The utility of this measure is in its application to a wide variety of options, and that it 

can calculate the exact amount of information that is being sent over these differing BCI 

paradigms. 

Typically calculated in bits per second in information technology, this measure can be 

converted to characters per second by establishing the bits of information inherent in characters 

of the English language (Shannon 1951).  Further, assuming the average length of an English 

word at 5 letters per word, we can convert to the more common standard of words per minute 
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(wpm), either including or excluding a space between words (MacKenzie and Soukoreff 2003; 

Bochkarev, Shevlyakova, and Solovyev 2012; Mathematica). 

Table 1. Highest Reported Information Transfer Rate for Communicative BCI Modalities 

BCI Paradigm Highest Reported Information Transfer Rate 

 Bits / min Characters / sec Words / min * 

SSVEP, EEG 123 0.41 4.9 

SSVEP, ECoG 113 0.36 4.4 

P300 ERP, EEG 37.8 0.12 1.5 

SCP, EEG ~15 0.05 0.6 

fMRI ~5 0.02 0.2 
* not including spaces or autocomplete algorithms 

Although ITR calculations may differ based upon the quantity of presented options within 

each BCI paradigm, the quantitative measure remains largely consistent.  With this metric, BCI 

efficiency speeds can be compared to other human-to-human communication modalities, as well 

as computer and internet speed channels.  Each formula can analyze a BCI in full as a system 

involving an information source (the neural-controlled signal), transmitter (the electrode or 

sensor), channel (the interpreting algorithm), receiver (the computer), and a destination (the 

action). 

2.2. Survey of human-to-human communication speeds 

Human-to-human communication speeds can serve as a target for optimal BCI performance 

(Figure 2).  By surveying speeds of traditional human communication media, the most efficient 

methods for transmission of communicative signal are revealed, which can then be goals for 

more efficient communicative BCI. Thus I briefly review a history of human-to-human 

communication modalities and their average and maximum rates here (Reed and Durlach 1998), 

with the stated goal of determining best practices for BCI communication
1
. 

                                                 
1
 For the purposes of a fair evaluation, language is standardized across modality. In this case, English is being 

compared. 
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The oldest form of human communication is speech – more specifically, the combination of 

speech production and speech comprehension. In this modality, the speaker and the listener must 

both understand the language or media at hand.   If the speaker speaks too quickly or if there is 

significant ambient noise, and the listener does not understand the speaker, then the mutual 

information along this channel is lost. Typical rate of human speech in the English language is 

150 wpm, though auctioneers are known to speak at 250 wpm and one individual can recite 

memorized text at over 500 wpm (“Talk About a Fast Show: Londoner Rattles Off Raglan in 25 

Seconds” 2011). Thus speech articulation may be the fastest communication modality between 

humans. 

With the advent of the written word over 5000 years ago, human writing and reading became 

efficient methods for communication in literate peoples. Functional limits to human writing or 

typing speed as well as reading and comprehension speed exist. A typical person reads at a rate 

of 250 wpm and cannot read much faster than 500 wpm (Hardcastle and Matthews 1991). A 

notable exception is skimming or “speed reading,” which can purportedly reach speeds of 1000 

words per minute. The rate-limiting factor of written communication, then, is not the speed at 

which an individual can read or comprehend, but the speed of the individual to produce text
2
. 

Alphanumeric handwriting occurs at an average rate of 20 to 50 wpm (Hardcastle and Matthews 

1991). The ensuing section further documents non-handwritten writing technology ITR. 

Telegraphy, the transmission of a message via binary electromagnetic commands and 

therefore more similar to current BCI modalities, was originally developed by Samuel Morse in 

1844, with Morse code being the primary encoding language across this medium (Morse 1849).  

In 2013, two operators with knowledge of Morse code still maintain a higher ITR than the fastest 

text-messaging writers. Text-messaging, the modern-day equivalent to telegraphy, also involves 

                                                 
2
 Rates vary with pictographic or other non-alphanumeric written languages. 
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sending short transmissions to another by typing out messages on cellular phones. Texting is 

often performed by selecting letters with thumbs, either on interactive capacitive displays (93.5 

wpm), small keyboards (56 wpm), or phone keys (55 wpm) (Glenday 2013). Many user interface 

improvements, such as automatic completion of the word that is being typed or optimization of 

presented stimuli, can be applied to greatly improve overall typing speed. Swype and other 

graphical path analyzing short-cuts are an example of one such user interface improvement 

(Kushler and Marsden 2006). 

The incorporation to more digits of manual control can yield higher typing speeds. Use of the 

traditional QWERTY keyboard, introduced in the 1870s, can elicit an average of 40 wpm for a 

typical person and a top speed of approximately 120 wpm (Ostrach 2005). Varying organizations 

of the keyboard layout can result in faster typing speeds, such as a maximum rate of 212 wpm 

using the Dvorak layout (McWhirter 1985). However, the highest typing rates are performed by 

court stenographers with a maximum speed of 360 wpm, who use a phoneme-based keyboard 

(Glenday 2013). The stenograph, which uses combinations of alphanumeric characters to 

simulate phonemes, is therefore capable of producing the highest ITRs of any human-to-human 

writing modality. 

Since the 1980s and 1990s with development of automatic speech recognition algorithms, 

speech-to-text dictation software has also produced high information transfer rates, often as an 

alternative to typing or text messaging. Advancements in machine-learning algorithms, such as 

neural networks and Hidden Markov Models, and the development of huge databases of speech 

information contribute to high ITR for speech recognition in non-noisy channels.  The upper 

bound for speed in this modality is intrinsically related to the rate of speech dictation, which can 
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reach as high as 200 wpm at maximum speed but is typically 50-70 wpm. This communication 

modality typically performs poorly in the presence of ambient noise. 

Logically, an upper bound for human-to-human communication must exist. One can analyze 

and compare ITR across all modalities of a specified language to ascertain this upper bound.  In 

this analysis of human-to-human communication rates, illustrated in Figure 2, a trend emerges in 

which phonemic information entry surpassing its alphanumeric information entry equivalent. 

The International Phonetic Association has categorized phonemes, the smallest discriminable 

sounds of speech, for all human languages and identified corresponding mutually exclusive vocal 

tract positions for each given phoneme (Ladefoged 1990; Brown 2013). Phonemes, when 

combined, produce speech, which has been tied to human evolution for rapid communication 

(Long and Berke 2010). It is with this in mind that we here investigate speech as a modality to be 

utilized for communicative BCI control. 
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Figure 2. Speed of Media in the English Language. Human-to-human communication speeds reported in words per 

minute and characters per second, using the assumption as 5 characters per word standard in the literature. Green 

text indicates alphanumeric input, blue text indicates phonemic input, and the highest reported BCI speed is 

highlighted in red text. Standard technologies for communication are separated from assistive technologies primarily 

employed in rehabilitation science. 

2.3. Advantages of Speech for BCI 

There exists a need for a more reliable, more efficient modality in BCI research. A survey of 

current BCI users revealed a majority would only be satisfied by over 90% accuracy and by 

performance of at least 3 times faster than current standard speeds (Huggins, Wren, and Gruis 

2011). If speech signal – particularly as it corresponds to phonemic information – could be 

reliably and successfully ascertained from neural recordings, the potential increase in ITR could 

yield a BCI that drastically outperforms traditional alphanumeric approaches. Further, if the 

neural signal for speech motor control could be reliably determined and recorded, it could yield a 

more intuitive interface for potential BCI users in comparison with more cognitive operations in 

the Section 1.2.  Current users of neuroprosthetic devices that access such motor signals report 

that use of such prosthetic feels intuitive (Collinger et al. 2013; L. Hochberg and Taylor 2007; L. 

R. Hochberg et al. 2012; L. R. Hochberg et al. 2006; Scheme, Hudgins, and Parker 2007).  Thus 

there may be untold advantages in recording and interpreting existing neural processes related to 

speech for use with brain-computer interface. 
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3. Speech decoding in BCI 

3.1. A Comprehensive Survey of the Literature 

Speech BCI, a subset of communicative BCI, began in search of a reliable speech-related 

signal that could be used to control a communicative BCI. Unlike the communicative BCIs 

described in Section 1.2, which primarily access higher-level or more cognitively-controlled 

signals for neural control, these BCIs attempt to access the neural signal of speech production. 

Though there have been a few non-invasive measures to acquire changes in neural signal due 

to gross speech activity non-invasively (Herff et al. 2013; DaSalla et al. 2009), these forays have 

primarily only determined if a person is actively speaking or imagining speaking, and cannot  

necessarily determine the actual content of the speech.  It remains unclear whether any neural 

signal corresponding to speech content is accessible from non-invasive electrophysiological 

approaches at the scalp. Therefore it follows that a more direct method of recording cortical 

speech production signal would be more successful. Most successful approaches for determining 

content of speech production signal to date have been invasive and are detailed in the remainder 

of this section. 

The cortical speech areas were first discovered by pioneering neurosurgeons Otfrid Foerster 

and Wilder Penfield during craniotomies, when they stimulated the cortex with current and 

observed subsequent movements in speech articulator organs (Foerster 1931; W. Penfield and 

Boldrey 1937). Over the course of a decade of surgical work, Penfield outlined a “somatotopic” 

motor map of a cortex, in which a large area of motor and sensory areas are dedicated to speech 

articulation, lip movement, and gustatory activity (Wilder Penfield and Roberts 1959). With the 

development of fMRI technology in the early 1990s, the findings of Penfield could be further 

confirmed, showing articulator organ representation throughout the primary motor cortex during 
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speech articulation (Bohland and Guenther 2006).  Although the 7 to 8 second time delay related 

to metabolic activity impeded the ability to identify contextual information related to speech, 

some studies document the differences in cortical activation between simple motor movement of 

speech organs and speech articulation (Terumitsu et al. 2006). Further fMRI studies also suggest 

the left ventral premotor area may have syllable-specific processing in addition to traditional 

primary motor cortex (M1) areas bilaterally (Guenther, Ghosh, and Tourville 2006). Therefore, 

sensors that record neural signal related to speech content for BCI applications require a fine 

spatial resolution to discriminate variations of activity within these areas. 

One issue that has impeded speech BCI research is that speech is a complex, dynamic, and 

mathematically non-stationary process that varies rapidly in time
3
. This uniquely human process 

(speech) requires measurement with an electrode or sensor capable of recording its fine temporal 

resolution, or there may be a loss of information that could be useful in interpreting the signal. 

Although the neural activity associated with speech likely has a dynamic range separate from 

speech itself, the sensors needed to record such activity must be able to analyze changes on a 

rapidly-changing time scale. The need for temporal and aforementioned spatial resolution can 

now be uniquely met by developments in electrocorticographic technology (Schalk 2010). 

Electrocorticography (ECoG), sometimes referred to in the literature as intracranial EEG, is 

the recording of electrical field potentials on the surface of the cortex (Leuthardt et al. 2004).  

ECoG electrodes can be inserted below the dura (subdural) or just above the dura (epidural); 

although the difference in signal quality and robustness may be marginal (Slutzky et al. 2010).  

ECoG electrode arrays were originally intended for direct current stimulation and corresponding 

functional mapping, primarily useful in precautionary determination of so-called “eloquent 

cortex” or functional speech cortex during neurosurgery (G. A. Ojemann 1991; G. A. Ojemann 

                                                 
3
 In contrast, slow cortical potentials and fMRI signals are two neural signals that demonstrate a slow time course.  
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1979; G. Ojemann et al. 1989). When used to record changes in electrical potential rather than 

stimulate, ECoG has the spatial resolution necessary to record over a wide area of cortex related 

to speech production and articulation with standard medical spacing of 1 cm intra-electrode 

distance. Unlike fMRI, ECoG has the fine temporal resolution to map the brain’s responses to 

rapid processes such as speech. The primary electrophysiological determinant of activity 

recorded with ECoG, the increase in the high-gamma power band (70-200 Hz), has also been 

shown to correlate with the BOLD signal of fMRI (Hermes et al. 2012).  With the advent of this 

technology, typically used for recording and detecting seizure activity in epilepsy patients, the 

ability to record the unique neural dynamics related to speech production become possible. 

The first scientific foray with ECoG into speech production investigated differences in one 

patient during word production and during sign language, indicating differences between 

language representation and overt speech (Crone et al. 2001). Differences in overt speech were 

primarily noted in the tongue motor area of M1. Other early studies investigated the difference 

between receptive and expressive speech areas (Towle et al. 2008), which largely identified two 

separate areas for producing speech in what is thought of as Broca’s area and what is thought of 

as M1. 

The first study investigating discernible content of speech attempted to isolate four separate 

phonemes and demonstrated that distinct cortical regions could be identified that corresponded 

with specific phonemic production, loosely suggesting a “phonetotopic” map similar to the 

somatotopy discovered by Penfield (Blakely et al. 2008). Their results led to the inference that 

spacing smaller than 1cm may be necessary to discern these separate phoneme-elicited regions 

with ECoG. This initial phonetotopic map has since been substantiated and further detailed 
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according to speech articulator organs via fine-grid ECoG recordings (Bouchard et al. 2013). 

This phonetotopy can serve as a guideline for designing viable speech BCI.  

Another issue that impedes the progress of speech BCI research is the confusion between 

speech production, speech reception, and language areas in the cortex.  Kellis and colleagues 

investigated cortical changes during speech in two separate neural areas: facial motor cortex 

(Brodmann Area 4), which elicits movements in the face when stimulated, and Wernicke’s area 

(superior temporal gyrus (STG), Brodmann Areas 22 and 40), which is thought to be the area 

where words take on semantic meaning (Kellis et al. 2010b; Kellis et al. 2010a; Wernicke 1874). 

Discrimination between words that were phonetically similar performed better using information 

from facial motor cortex electrodes in comparison with Wernicke’s area electrodes, 

demonstrating that recording speech-motor-signal approach may be to discern the content of 

speech for BCI. 

A further issue in speech BCI is determining whether to target cortical activity related to 

actual overt speech as compared with cortical activity related to imagined or covert speech. Both 

closed-loop and open loop approaches have attempted to infer phonemic content of covert 

speech from neural signal (Pei et al. 2010; Pei et al. 2011; Leuthardt et al. 2011). These studies 

reveal that covert speech activates a much broader cortical area than overt speech alone, but they 

also demonstrate that it is possible to discriminate phonemes in real-time with signals from 

ECoG arrays despite nontraditional cortical areas of control. This covert, inner narrative was 

further investigated using ECoG arrays over auditory areas, showing a more “top-down” inner 

voice categorization (Perrone-Bertolotti et al. 2012).  Although it is unclear whether covert 

speech has more to do with imagined speech production or imagined speech reception, one can 

assume that overt speech may be a closer approximant of intended speech in a CLIS individual 
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as compared to covert speech. Investigations with a patient with LIS prove that attempted overt 

speech may be sufficient for accessing motor speech signal  for partial classification of intended 

speech signal (Guenther et al. 2009; Brumberg et al. 2011). This suggests that overt speech may 

serve as a basis for communicative BCI for individuals with LIS and CLIS. 

The ECoG electrode paradigms detailed here have performed better than any other modality 

at ascertaining speech signal from the cortex, though other invasive measures have been studied 

as well with varying success.  One implanted device, the neurotrophic or Kennedy electrode, 

implanted directly into speech motor cortex with a total area of about 1.5 mm and a resolution of 

600 microns (Bartels et al. 2008; Kennedy and Bakay 1998), achieved discrimination of three 

imagined vowels in an individual with locked-in syndrome (LIS) with a success rate of up to 

70% (Guenther et al. 2009). Further investigations of phonemes including consonants yielded a 

best performance of 21% (Brumberg et al. 2011). This was the first study to perform an invasive 

procedure with the goal of speech-motor-communication through BCI use, and the study 

highlights the difficulty in terms of unknowns that are involved in imagined speech and neural 

interfaces. Nevertheless, this study notably confirms abilities of individuals with LIS to produce 

volitional cortical activity related to intended speech motor output independent of actual motor 

activity. Despite neuroplastic changes that can occur with loss of sensorimotor activity, Shoham 

and colleagues have demonstrated that cortical surface activity can remain typical in 

quadriplegics with intended motor movement at least 5 years post-injury (Shoham et al. 2001). 

Although the neurotrophic electrode records from deeper cortical structures, it demonstrates 

potential for success by studies of intended speech motor activity at the cortical surface. 

Implanted microelectrode arrays (MEAs), which record field potentials and single-unit 

activity of neurons in cortex, typically cover a maximum area of 3x3mm, which may be too 
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small of an area to access most speech articulator activity. Although typing interfaces have 

demonstrated 2-d mouse control via imagined motor movement (L. R. Hochberg et al. 2006), 

MEA use in humans has been exclusively for motor neuroprosthetic control and has not yet 

explicitly designed to access speech motor areas in the literature. 

An alternative approach to speech-BCI exists in placing electromyographic (EMG) 

electrodes on the articulatory organs themselves. Although this would presumably provide little 

assistance to those with CLIS, they could be used by otherwise healthy speakers to improve the 

fidelity of standard speech in high noise environments (B. Betts and Jorgensen 2005; B. J. Betts, 

Binsted, and Jorgensen 2006) or even enable silent or whispered speech to be successfully 

communicated (Metze et al. 2005; Maier-Hein 2005; Jou, Schultz, and Waibel 2005; Chan et al. 

2001; Walliczek et al. 2006; Wand et al.; Denby et al. 2009).  These processing methods are 

enabled by direct contact to muscle activity, without the skull and cerebrospinal fluid acting as 

bandpass filters to impede electrophysiological fidelity as in EEG recording. Although the EMG 

signal is not typically considered a neural signal, it is controlled by volitional neural processes in 

healthy individuals and can therefore augment understanding of motor movement and 

subsequent neural activation involved in speech. 

Further analysis of communication interfaces is discussed by Brumberg and colleagues 

(Brumberg et al. 2010). 

3.2 Speech production as a neural process 

Speech production is a complex human behavior comprised of rapid transitions between 

positions of the vocal tract (Simonyan and Horwitz 2011).  Speech production involves exact 
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coordination of 68 different muscles
4
 (Epstein, Hacopian, and Ladefoged 2002). The 

corresponding neural process involves increases in activity in several regions of cortex from the 

original spontaneous generation of the word concept and its articulation. Therefore many factors 

confound the isolation of speech production for neuroscience investigations, including the 

phonemic context of speech, the simultaneous production of auditory stimuli, speech perception, 

and the semantic value of speech. These confounds leave lingering questions as to the exact 

mechanics of neural activity during speech production and are discussed here. 

One complication to studying phonemes in cortex is the existence of co-articulation. Co-

articulation, which describes when vocal tract position for one phoneme is altered in the presence 

of an adjacent phoneme, increases the difficulty in analysis of a single phoneme and its neural 

correlates. A common example is that the pronunciation of the \n\ in “tenth” places the tongue tip 

at the upper teeth in preparation for the adjacent \θ\, in comparison to the standard tongue tip 

position at the alveolar ridge (e.g. \n\ in “ten”). Whereas both phonemes are intelligible as an \n\ 

to listeners, this difference in position of the articulator organs may increase the difficulty of 

isolating single phonemes for scientific research. Cortical activity related to phoneme production 

may therefore incorporate a specific state space or alternatively be intrinsically inseparable 

within the phonemic context of speech. 

Further, speech perception can influence neural activity in areas traditionally considered 

speech production areas. ECoG processing of signals recorded at the superior temporal gyrus has 

demonstrated that speech frequency information can be roughly reconstructed (Pasley et al. 

2012). Speech production may also suppress activity in auditory cortex (Flinker et al. 2010). 

Some phonemic information may exist within the temporal lobe (Turkeltaub and Coslett 2010), 

                                                 
4
 This includes 9 separate muscles for respiration, 8 muscles to control the mandible, 8 muscles for tongue 

movement, 15 muscles for lip movement, 6 muscles of the soft palate, 3 muscles of the pharynx, 12 extrinsic 

laryngeal muscles, and 7 intrinsic laryngeal muscles. 
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but it may also be not physically separated with areas that process whole word information 

(Flinker et al. 2011). Auditory processing has been investigated during self-vocalization (i.e. 

when a person hears their own voice during speech) as it compares to the same speech being 

played back via headphones, highlighting differences in how a person listens to their own voice 

(Greenlee et al. 2011).  This process is even more complex when a voice cannot completely be 

muted, as audio frequencies can travel to the ear via bone conduction. Controlling for a subject’s 

own speech, then, is a potential confound if not fully considered. 

Another confounding factor for studying speech sensorimotor cortex is that speech 

perception influences areas associated specifically with speech production. The so-called 

McGurk effect reveals an increase in speech perception with when a visual stimulus of that 

speech is present, but also confusion when speech and visual stimuli conflict in terms of content  

(McGurk and MacDonald 1976). This effect has also been studied with fMRI, revealing areas of 

traditional motor cortex contain generalized representation of phonemes in speech perception. 

(Wilson et al. 2004; Pulvermüller et al. 2006; D’Ausilio et al. 2009)  One possible explanation 

for this activity is that “mirror neurons” aid in comprehension. Thus the organization of 

functional speech production in cortex appears more nuanced, activating regions traditionally 

considered exclusive areas for speech perception, motor activity, and articulation. 

A final confound is the inherent correlation of speech and language. An analysis of ECoG 

patterns subjects using free recall to generate words revealed patterns that correlated with 

semantic clustering of words in the English language (Manning et al. 2012b). Activation of 

Broca’s area may occur during naming, and activation of Wernicke’s area may occur during 

semantic interpretation of word stimuli. 
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Finally, although speech production is primarily a motor process, speech cannot easily be 

separated into motor and sensory activation. These distinctions matter greatly in phonetics 

research, as the “place of articulation” and thus the capability for sensory feedback dictates 

constriction location and thus phoneme designation. A somatotopic map for speech articulator 

organs exists in both sensory and motor cortex, but Penfield’s cortical stimulation only ever 

elicited movements of articulator organs and never actually elicited speech (W Penfield and 

Rasmussen 1949). Despite the most recent ECoG studies of speech production (Bouchard et al. 

2013), it remains unclear to what extent the changes in neural activity in motor cortex predict 

subsequent speech movements. 

These issues lead to questions about how speech production is functionally organized in 

cortex. Several theoretical models of speech exist, each with differing views on the exact 

structure of speech directly prior to articulation, when such motor commands sent along cranial 

nerves.  One computational model of speech from Hickok hypothesizes that a hierarchical state 

feedback control outputs phonemic information directly to articulators (Hickok 2012).  The 

direction into velocities of articulators (DIVA) model hypothesizes that velocity and position 

maps comprise the structure directly preceding motor execution (Guenther 2006).   An older 

model, classifying speech perception as highly correlated with motor movement, is the 

aforementioned motor theory of speech (Liberman and Mattingly 1985; D’Ausilio et al. 2009). 

These models differ in how speech production is represented cortically. 

Further, cortical representation could primarily be based upon the movement of articulators, 

similar to force-specific of motor movement (Fagg et al. 2009). Cortical representation may be 

primarily structured by place of articulation of a particular speech sound (perhaps related to 

sensory encoding (Hatsopoulos and Suminski 2011)), or structured by location or position of 
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motor activity (Georgopoulos, Schwartz, and Kettner 1986). It could also be based primarily on 

the force of articulator movements (SH Scott and Kalaska 1997). Functional organization of 

speech in cortex may therefore be determined by degree of success in classification of content of 

speech. A study of the speech production using ECoG could leverage the use of BCI 

classification to answer questions as to the functional organization of cortex.  

3.3. Description of the thesis 

The work herein seeks to address the various unknowns in the current speech BCI literature. 

Having already addressed the current limitations and barriers to widespread BCI adoption, I here 

seek to add to the engineering merit of the communicative BCI field with the analysis and results 

of three separate studies. These studies, outlined in the following three chapters, have either been 

submitted or are pending submission to academic journals for publication. In the first study, I 

seek to determine what factors contribute to successful phonemic decoding of an ECoG signal 

(Journal of Neural Engineering). In the second study, I seek to determine cortical representation 

of phonemic categorization in speech production (Journal of Neuroscience). In the third study, I 

leverage classification results to address the structure of cortical correlates of speech production 

(Nature Neuroscience). The result of these studies outlines a set of guidelines for future speech-

BCI research that will work towards useful speech-BCI neuroprothetics. 
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II. CLASSIFICATION OF ELECTROCORTICOGRAPHIC INFORMATION DURING 

SPEECH ARTICULATION 

 

Emily M. Mugler, James L. Patton, Robert D. Flint, Zachary A. Wright, Stephan U. Schuele, 

Joshua Rosenow, Jerry J. Shih, Dean J. Krusienski and Marc W. Slutzky 

 

1. Introduction 

Although brain-computer interfaces (BCI) can be used in several different ways to restore 

communication (see (Birbaumer and Cohen 2007; Wolpaw et al. 2002a) for review), 

communicative BCI has not approached the rate or success of natural human communication 

(Leuthardt, Cunningham, and Barbour 2013). One particular BCI approach is to classify and 

decode neural signals related to speech production, introduced by Kennedy and Bakay with 

invasive cortical electrodes (Kennedy and Bakay 1998), but research in this field has failed to 

approach the efficiency of speech. Advances in electrocorticographic (ECoG) technology, in 

which electrical field potentials are recorded directly from the surface of the cortex, may be able 

to address these limitations by recording from cortical speech areas. ECoG has been used to 

decode movement kinematics and kinetics (Schalk et al. 2008; W. Wang et al. 2013) and classify 

rapid cognitive processes (Manning et al. 2012a). ECoG recordings have precise temporal and 

spatial resolution (Slutzky et al. 2010) and enable recording of rapid processes over a wide area 

of cortex (Schalk 2010). ECoG can therefore facilitate mapping of the rapid neural changes 

related to speech production (Bouchard et al. 2013), which involves concurrent activation in a 

wide area of cortex.  

Most studies of speech production using ECoG to date have been intentionally limited in 

scope for simplification. Studies that employ a whole-word approach, classifying cortical 

activation patterns primarily based upon the differences between full words, initially identified 

the cortical areas that are active during speech articulation (Pei et al. 2010). Classification of 
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articulated words with micro-ECoG electrodes over facial motor cortex successfully identified at 

best less than half of 10 words in one patient (Kellis et al. 2010b). Another study classified 

pairings of initial and final consonants by comparing the ECoG activation relative to word onset, 

and achieved up to 45% classification of a single consonant pairing in one out of 8 subjects (Pei 

et al. 2011). These whole-word studies outline preliminary success in speech decoding, but 

ultimately such success rates cannot be extrapolated to more complex speech and fall short of 

performance levels necessary for speech communication efficiency. 

An approach that specifically decodes the smallest isolated segments of speech, called 

phonemes, may yield higher results. Intracortical speech BCIs employing a phoneme approach 

have achieved up to 21% classification success of all phonemes (Brumberg et al. 2011), and 

demonstrated up to 70% classification success of discrimination of 3 imagined vowels in an 

individual with locked-in syndrome (Guenther et al. 2009). Similar studies with ECoG succeeded 

in classifying limited subsets of phonemes, isolated from the context of words (Blakely et al. 

2008; Leuthardt et al. 2011). ECoG studies have demonstrated the ability to rapidly classify 

phoneme production, yielding an average 83.5% discrimination of 2 vowels for 2 subjects in 

real-time (Leuthardt et al. 2011). One recent study detailed an approximate “phonemotopic” map 

of the areas to target within motor cortex using intermediate-density ECoG, updating traditional 

somatotopic maps for motor cortex (W. Penfield and Boldrey 1937). These approaches 

demonstrate the potential to decode phonemes from cortical signals. 

To our knowledge, no ECoG study has specifically investigated phonemes with respect to 

their onset within word production. Approaches classifying the event-related potentials of 

phoneme onset, precise to the millisecond level, have not been applied using ECoG. Further, no 

ECoG study has investigated classification of a comprehensive set of phonemes for a language. 
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Finally, the position of phonemes within a word may influence neural signals, and these signals 

may differ when producing isolated phonemes. If phonemes are consistent in their neural 

representation, words with rhyming structure could potentially reveal properties of individual 

phoneme production and leverage phoneme identification. 

In this study, we investigated production of words using the entire set of phonemes in the 

General American accent of English using ECoG. The rationale for this study was that once 

speech articulation is related to corresponding cortical signals, the first critical step toward 

motor-based speech prosthetics would be established. We attempted to identify specific sources 

of failure in the classification process, as a detailed explanation of sources of failure could guide 

for future approaches. Furthermore, we hypothesized that precisely synchronizing analysis to 

each individual phoneme event is crucial for accurately discerning event-related cortical activity. 

This reveals speech production dynamics in cortex, enabling decoding of articulation patterns. 

Finally, we explored leveraging the structure of similar sounding (i.e. rhyming) words to enhance 

phoneme identification. 

2. Methodology 

2.1. Subject Pool 

Four subjects (mean age 42, 2 female) who required extraoperative ECoG monitoring for 

treatment of their intractable seizures gave informed consent to participate in this study (Table 

2).  Electrode coverage of cortex, determined by medical necessity, included some frontal and 

temporal areas in all subjects, although the degree of frontal coverage varied widely. This study 

was approved by the Institutional Review Boards at Northwestern and Old Dominion universities 

and at the Mayo Clinic.  
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Prior to explantation of the ECoG electrode grids, a functional map of cortical structures was 

determined using stimulation of electrode pairs by an epileptologist. Areas that, when stimulated, 

produced reading arrest were designated as being associated with language, and areas that 

produced motor movements of the tongue and articulators were designated as functional speech 

motor areas. This clinical mapping of eloquent cortex provided a priori knowledge of 

functionality of cortex and provided a “gold standard” for our analysis.   

Three-dimensional reconstruction of ECoG electrode placement was determined using co-

registration of pre-surgical structural magnetic resonance images and post-operational computed 

tomography scans (Miller et al. 2010; Hermes et al. 2010). 
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Table 2. Subject information and ECoG electrode locations. Electrode coverage varied due to each patient’s clinical 

needs. Electrodes denoted in black contribute to improved classification performance. 

Subject ID Grid location Gender Age Trials Completed 

NU1 

 

F 30 320 

NU2 

 

M 50 480 

NU3 

 

M 49 480 

MC1 

 

F 39 320 
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2.2. Data Acquisition 

We simultaneously collected speech audio signal (sampled at 44.1 kHz) from a USB 

microphone (MXL) and 3 channels of EMG from the right masseter and both pharyngeal 

muscles (over the carotid triangle, Delsys Bagnoli-8). Speech and audio signals were collected 

using customized BCI2000 software (Schalk et al. 2004) and a Tucker-Davis Bioamp system, 

which was synchronized with ECoG signals recorded on a clinical system (Nihon Kohden for 

NU subjects and Natus XLTEK for the MC subject).  ECoG signals were bandpass filtered from 

0.5-300 Hz and sampled at 500 Hz for subject NU1, 1 kHz for subjects NU2 and NU3, and 9.6 

kHz for MC1 (Figure 3). Differential cortical recordings compared to a reference ECoG 

electrode were exported for analysis with an applied bandpass filter (0.53 - 300 Hz) with a 

sensitivity of 75 µV. 

2.3. Experimental Protocol 

Prior to the start of the experiment, the subject was asked questions regarding accent and 

exposure to other accents. A survey comprised of four questions regarding accent, mother 

tongue, and foreign accent exposure was presented to the subject to ascertain subject accent and 

exposure. Accent was confirmed post-hoc. 

The subject was presented with words on a The Modified Rhyme Test (MRT), consisting of 

300 monosyllabic words, primarily with consonant-vowel-consonant structure (House et al. 

1963). This stimulus set was chosen for its simplicity and the prevalence of rhyming structures 

and its frequency and variety of American English phonemes. The frequency of phonemes within 

the MRT set roughly approximates the phonemic frequency found in the English language 

(Mines, Hanson, and Shoup 1978), though there is unequal incidence of phonemes within the 

data set. Because the MRT did not include all phonemes present in the General American accent 
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of English, 20 additional words, which included 4 phonemes excluded from the MRT (\ʒ\,\ j\, \ə\, 

and \aɪ\), were added to the stimulus set to create a comprehensive collection of General 

American phonemes in full words. 

Using BCI2000, we presented words on a screen for 3 s, followed by a blank screen for 1 s. 

Subjects read each word aloud as soon as it appeared. Due to restrictions on time spent with the 

subjects, each recording block took 10.5 minutes to display 160 trials, in which a trial is one 

word stimulus.  Total trials per subject varied from 320 words (Subjects NU1 and MC1) to 480 

words (in which the first 160 words of the stimulus set were repeated) (Subjects NU2 and NU3). 

2.4. Data Preprocessing 

In order to enable classification by reducing the massive size of the data set for each trial, 

data was reduced to time-frequency features for each trial and further separated by phoneme 

(Figure 3). We used visual and auditory inspection of auditory spectral changes to manually label 

the onset of each phoneme in the speech signal (APPENDIX B. Graphical User Interface for 

Phoneme Labeling). Phoneme assignment was determined using the CMU Pronouncing 

Dictionary, which assumes General American pronunciation.  

ECoG signals were common-average referenced. Data was aligned across recording platform 

using a TDT pulse signal (TTL), and the onset times of phoneme in speech signal were 

extrapolated and marked to the clinical ECoG recordings. Signals were split into 4-s trials 

centered around word onset. Each trial therefore included records of onset of each phoneme and 

its IPA distinction of each word. A 1-second of baseline rest activity was identified at the start of 

each trial and ending 1 second prior to word utterance. Thus trial duration ranged from 4.15 to 

4.50 seconds, with word onset occurring immediately prior to the midpoint of each trial. We 

computed short-time Fast Fourier Transforms (FFTs) via the Goertzel algorithm (Rabiner and 
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Schafer 1978). in 50 ms windows of ECoG relative to baseline activity (Matlab). A 2 Hz 

frequency step size was used to create the frequency bins of the FFT. 

To enable classification and reduce the massive quantity of data for each trial, 

spectrotemporal features were created for each phoneme using 7 frequency bands and 16 time 

bins per electrode. To create features in the frequency domain, we isolated and summed power 

changes in specific frequency bands from the FFT data to create frequency features. The high-

gamma band, most commonly used in ECoG research due to its proven correlation with 

neuromotor activity, has definitions that vary widely in the literature. The frequency band 

methodology employed successfully by Flint and colleagues to determine motor movement from 

cortical activity served as a starting point, in which the high-gamma band was defined as 70 to 

200 Hz (Flint, Ethier, et al. 2012), though 3 separate portions of the high-gamma band that 

avoided the 60 Hz noise harmonics  with a 10 Hz span (65-115 Hz, 125-175 Hz, and 185-250 

Hz) were analyzed for full investigation of high-gamma band changes. Additional frequency 

bands standard in EEG research for their correlation with cortical function, including the delta 

(0-4 Hz), mu (7-13 Hz), beta (15-30 Hz) spectra, as well as the local motor potential, were 

analyzed. The band from 250-300 Hz was also investigated when sampling frequency exceeded 

500 Hz.  To create features in the time domain, we summed 50 ms segments of the FFT from 

300 ms prior to and 300 ms after phoneme onset. This created separate time bins that 

summarized the neural signal directly preceding and throughout pronunciation of each phoneme. 

The time-frequency power features were then sorted by phoneme. For the full 320 word 

stimulus set, we analyzed 981 phonemes; for subjects who completed 480 words, we analyzed 

1470 phonemes. To reduce input space dimensionality, features were ranked according to p-

values from an ANOVA across phonemes, and the top 140 features were selected for 
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classification. Therefore if   ECoG channels were recorded and converted to   frequency bands 

features and   time bins features, there would then be       features for each analyzed 

phoneme. These features could then be used for classification and analysis. 

 

 
Figure 3. Overview of Preprocessing Methodology. Speech signal is recorded simultaneously with ECoG signal 

(apparatus inset). These signals are marked according to onset of phoneme time and aligned with to the ECoG 

signal. An short-time Fourier Transform is performed on the ECoG signal, and converted into features according to 

frequency band and time relative to phoneme onset time. 

2.5. Classification 

The 140 features with the lowest p-values between classification sets were selected to 

classify phonemes using linear discriminant analysis (LDA) (Slutzky et al. 2011; Flint, Lindberg, 

et al. 2012). LDA was selected primarily because it allowed us to identify the features that led to 

successful categorization. We used 10-fold cross-validation (with randomly-selected test sets) to 

compute success rates. The classifier was therefore trained on 90% of the phonemic data and 

tested on the remaining 10%; this process was repeated 10 times. A result was successfully 
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classified if it had determined the correct phonemic label applied to the test set of data. Chance 

classification percentages were determined by randomizing phoneme labels and re-classifying; 

and computing the mean result of 100 repeats. 

2.6. Rhyme Reduction 

We hypothesized that the structure of words could be used to leverage a more fine-tuned 

analysis of each phoneme. By comparing similar words to isolate a single phonemic difference, 

we predicted that we could further isolate the changes in neural signal that elicited that particular 

phoneme. If ECoG signal were singularly robust and repeatable for each phoneme, words with 

similar structure (e.g. “cup” (\kəp\) and “cut” (\kət\)) could be analyzed together, and the 

elements related to the differing signal could be compared and isolated (\p\ and \t\, respectively). 

Assuming a similar time course for words of similar structure, this phonemic isolation could lead 

to better identification of neural correlates of phonemes. 

Our stimulus set, which included combinations of similar-sounding consonant-vowel-

consonant structure words, uniquely enabled investigation of this process. Words either belonged 

to one of 25 sets which shared a rhyme, defined as a final vowel-consonant pair, or a body, 

defined as the initial consonant-vowel pair. In this process, which we termed rhyme reduction, 

we compared differences in neural activation by aligning similar words to the onset of rhyme or 

body. This approach was attempted in two separate techniques: first with subtraction of an 

average signal, the second with a comparison of z-scores to an average signal. The subtractive 

rhyme reduction approach can be described by: 

         
 

 
∑   

 
           (1) 

          
 

 
∑       

 
        (2) 
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where n is the phoneme of interest at the beginning for a rhyming word or at the end of the body 

word; m is a phoneme that partially comprises the rhyme or body of the word, k is the number of 

phonemes that exist in the word excluding n, and p is the number of words that correspond to 

this rhyme or body. 

An underlying assumption of this technique is that a robust response is elicited by the rhyme 

or body of the word, and that “white noise” of neural signal can be approximated by: 

noise  
 

 
∑    

 
         (3) 

The rhyme reduction approach was also evaluated using z-scores of features to ascertain if 

differences in phoneme utterance were proportional (instead of subtractive) relative to baseline 

utterance. We executed this approach, building off of the subtractive rhyme reduction process, by 

creating a template of the rhyme or the body of the word.  The difference in frequency 

bandpower features of a word were then compared to the features of the template. Instead of 

assuming typical signal to be “white noise”, the z-score methodology compares the features of a 

word to the features of average activity for a given rhyming structure. 

       
       ̅        

          
     (4) 

where n is the isolated phoneme of interest, zword is the z-score for a particular word as compared 

to its template components, xword is a feature of the word of interest,  ̅template is a mean of feature 

values for that rhyming set and CItemplate is the confidence interval of the mean of the template.  

The isolated phoneme of each word is then a comparison of the z-scores of the word to the z-

scores of the template. These zword features were then fed into the LDA classifier.  

We converted these signals to features, used ANOVA for feature selection, and classified 

using LDA. Features were aligned to the onset of the rhyme or the body of each word prior to the 

execution of the rhyme reduction. If performance revealed no increase with isolated phonemes, it 
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could indicate either that the rhymes or bodies are not typical in their time course of articulation 

or that phoneme representation in cortex could be susceptible to effects of neighboring 

“coarticulated” phonemes. 

2.7. Estimation of Information Transfer Rate 

The goal for this technology is to decode phonemic information during speech production, 

but phonemes exist in combinations within words. We therefore analyzed how phonemic 

decoding of combinations of consonants could be applied to identify words of the data set. We 

further investigated this performance when constraining predictions of phoneme combinations to 

those existing in the stimulus set in the order of posterior probability. To calculate information 

transfer rate (ITR) from these results, we first calculated average word duration (520 ms) and 

phoneme duration (176 ms). ITR was then determined by multiplying the information capacity 

(in bits/phoneme) by classification success and rate of speech production (Wolpaw et al. 2002b). 

This procedure was extrapolated on other results reported in the literature using speech duration 

times from our results. Conversion to words per minute from bits per second was estimated using 

bit rates for syllable production of speech (Reed and Durlach 1998). 

3. Results 

3.1. Classification performance 

Vowels and consonants were analyzed separately. Results varied widely over subjects, 

largely due to the wide variation in coverage of face motor areas (Figure 4). Subject NU2 had the 

highest overall performance, in which 36.10% of consonant phonemes were correctly classified. 

The maximum performance for classifying any one phoneme was 63% (\k\ for Subject NU2). 

Averaged across all subjects, 20.42 (±9.8)% of all phonemes were classified correctly, 

significantly greater than chance decoding (7.4%, p<0.001, t-test).  Average classification 

performance for vowels across all subjects was 19.24 (±3.7)% also significantly greater than 
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chance (12.9%, p<0.01, t-test), with the best performance in NU2 of 23.91%. Vowels that were 

most successfully classified were primarily those produced by the same articulatory structure that 

produced the consonants which were best classified for that particular subject.  For example, 

with Subject NU2, the classifications of highest accuracy were the vowel \i\, which involves a 

high back tongue, and \k\, which has a constriction location close to where the \i\ is articulated.  

  
Figure 4. Classification results for phonemes for each subject. Chance percentage for each category is highlighted by 

a dotted line. Shaded bars indicate best performance of a single phoneme for that subject.  

Interestingly, when a phoneme was misclassified, it was typically classified as its nearest 

neighbor within the International Phonetic Alphabet (IPA) chart of pulmonic consonants (Brown 

2013), the authority for phonology research. Confusion matrices of results can demonstrate the 

exact misclassification of a classification algorithm, as variation from the diagonal reveals 

misclassification. In Figure 5, color denotes the percentage of successful classification of a given 

category of phoneme. In these confusion matrices, greater error in classification occurred within 

the thick black lines demarcating the place of articulation of phonemes.  This classification 

failure therefore reveals properties of speech production that the International Phonetic 

Association has independently categorized. Further, notable exceptions to this rule reveal other 

properties of IPA organization. Phonemes that do not exist on the chart of pulmonic consonants, 
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which include affricates (\ʧ\ in chip, \ʤ\ in jump) as well as approximants (w in win), had 

greater confusion with areas that would be considered their closest relatives within the IPA 

organization. Thus \w\, a labialized velar approximant, was confused with both labial phonemes 

and velar phonemes. Finally, results were most often distorted with phonemes that were not 

represented frequently within this data set, suggesting increasing the frequency of occurrence of 

these phonemes within the stimulus sets could improve classification results. 

 
Figure 5. Confusion matrices of decoding results of consonant phonemes for the (a) best performing subject (NU2) 

and (b) an average across all subjects. Phonemes are sorted along the IPA pulmonic consonants place of articulation 

axis with thick black lines dividing place of articulation segments. Erroneous classification of phonemes often 

classified them as nearby phonemes according to IPA designation. 

We further analyzed how performance varied due to the number of phonemes, the number of 

phoneme samples, and the accuracy of phoneme onset (Figure 6). To investigate the degree to 

which the quantity of data has affects results, classification was restricted to a subset of 

phonemes included in order of the frequency of their occurrence in the data set. This process 

yielded a maximum performance of 72.38% using 4 phonemes for Subject NU2. For all subjects, 

performance decreased until approximately 15 phonemes were included, when each additional 

phoneme had less than 10 samples. To investigate how classification varied due to quantity of 

phoneme samples, we restricted classification to subsets increasing in proportion of samples of 



38 

 

 

 

the data set. Performance correlated with number of samples for all subjects, suggesting results 

could improve had there been more data. To evaluate classification dependence on the alignment 

to phonemic onset, we repeatedly reanalyzed the data after altering the onset time by random 

quantities drawn from a normal distribution. Performance sharply decreased with 100ms 

standard deviation of noise, which is less than the 176 ms average length of a phoneme in time 

(ranging from 75 ms for \b\ to 282 ms for \s\). These results demonstrate the critical need for 

precision in phonemic analysis, as performance sharply decreases as timing offset noise 

increases.  

 
Figure 6. Dependence of classification performance on (a) quantity of phonemes, (b) quantity of phoneme samples, 

and (c) accuracy of altered phoneme onset. Traces correspond to classification results for each subject, plotting the 

mean and 1 standard deviation for 5 repetitions of randomized classification.  

3.2. Analysis of Feature Contribution 

To determine the factors that most influenced performance, we investigated the effects of the 

frequency bands, time bins, and quantity of electrodes used as features.  Feature selection 

demonstrated high-gamma bandpower throughout the 65 – 250 frequency band strongly 

contributed to successful decoding. For Subject NU2, performance actually decreases with 

inclusion of frequency bandpower features outside of the high-gamma range. For Subject NU1, 

successful classification reached a maximum when limited to features in the 65 – 115 Hz 

frequency band; inclusion of the full range of high-gamma may therefore demonstrate 
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overfitting.  Further, other frequency bands – notably the mu and beta bands – are not critical to 

decoding performance. 

A further investigation of what time bins most contributed to successful decoding indicated 

variability in importance of time among the subjects. Each time bin is 50 ms, and a minimum of 

200ms (4 time bins) was necessary to classify phonemes for all subjects. Particularly, there range 

from 200 ms prior to phoneme onset to 200ms post-onset seemed most critical to decoding 

success, with causal features (prior to phoneme onset) being most critical. No evidence of a 

decrease in improvement of performance was noticeable with the inclusion of more time bins, 

suggesting that overfitting to time bins doesn’t exist within our time boundary limits. Finally, 

because the time bin analysis is constrained to the relationship to phoneme onset, these results 

are normalized despite the range of phoneme length (75 ms average for \b\, 282 ms average for 

\s\), these results ignore differences in phoneme length. This process therefore evaluates 

phoneme onset classification fairly by not using information of phoneme length to improve 

classification results. 

Primarily, performance was best when only incorporating data from the electrodes located 

over primary sensorimotor cortex. Although we discovered atypical functional organization for 

decoding phonemes for subject NU3, these subtemporal areas also responded to facial sensation 

and facial motor activity when directly stimulated. Although unique functional categorization 

may be related to epilepsy (G. A. Ojemann 1979; Springer et al. 1999), electrode contribution 

from all subjects supported facial motor activation. Finally, exploration of electrode dropping 

identified channels with casual activity related to speech production. All subjects had at least 5 or 

6 electrodes that corresponded to speech articulation, and features were primarily selected from 

these channels for each subject (Table 1).  Due to the widely varying placement of electrode 
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grids in cortex, averaging results across subjects does not supplement data analysis but instead 

dilutes potential findings. Despite the standardized algorithmic process of classification, these 

subject-to-subject differences highlight best possible performance and factors that may have 

attributed that performance, particularly pertaining to electrode placement. Thus results are 

reported for each subject here separately. 

 

Figure 7. Feature Sensitivity for NU subjects. Successful classification results for (a) quantity of features used, (b) 

quantity of electrodes used, (c) quantity of frequency bands used, and (d) quantity of time bins used. Traces 

correspond to classification results for each subject, plotting the mean and 1 standard deviation for randomized 

classification. 

3.3. Rhyme Reduction 

The process of rhyme reduction did not improve decoding results, in both its subtractive 

(mean classification: 17.7%) and z-score (mean classification: 13.5%) formulations. The z-score 
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approach was able to more accurately determine the features that contributed only when features 

were in the extremes and far from median activation values. 

3.4. Information Transfer Rate 

We calculated the classification success of all consonant combinations in our stimulus set 

with our best performing subject (NU2). We successfully identified 14.8% of these combinations 

without having ever trained our algorithm to decode words (chance = 0.83%, p < 0.0001, t-test). 

This investigation of phonemes within words notably outperforms simple joint probability of 

phoneme classification. When we constrained the predictions of phonemes for a whole word to 

only words used in the stimulus set, results improved to 18.8%. This rate equates to a gross 

information transfer rate of 3.0 bits/sec (equivalent to 33.6 words per minute) for a hypothetical 

BCI system. 

 
Figure 8. A comparison of gross information transfer rate for whole words and for phonemes compared with the 

relevant ECoG speech production literature.  

4. Discussion 

To our knowledge, this study is the first to decode the entire set of phonemes from American 

English using ECoG. It is also the first to successfully analyze and classify individual phonemes 

within word production. We found that that an event-related methodology enabled us to decode 
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phonemes within words by aligning to the onset of each speech sound. Although other ECoG 

studies have classified phoneme production by comparing words with similar phonemes, by 

analyzing phonemes directly in context, we reveal properties of speech production that 

corroborate decades of phonetics research and can decode speech information efficiently. 

To analyze neural activity during phoneme production, phonemes need to be precisely 

identified as events (Figure 6c). The high temporal precision required to accurately decode 

phonemes using this method suggests that there will be challenges for translating these 

algorithms to a real-time BCI for locked-in patients.  Other methods may be necessary to detect 

onset of attempted speech production. This finding is further supported by the lack of 

improvement in classification with rhyme reduction. This negative result may indicate that the 

nature of phonemes changes in the context of position within words, and changes in word 

duration may affect decoding performance. 

Our results suggest specific spatiotemporal guidelines for future endeavors into speech 

decoding using ECoG, advancing the science behind speech BCI development. Recording with 

higher electrode density over or neighboring sensorimotor cortices likely would improve 

decoding performance substantially. Although Kellis and colleagues showed that 5 electrodes 

over facial motor cortex with 1 mm spacing yielded best results for their 10-word stimulus set 

(Kellis et al. 2010b), our results demonstrate the likelihood that at least a 4 cm mediolateral span 

of speech sensorimotor cortex is necessary to decode phonemes articulated by separate 

articulator muscles.  Thus, a high-density (1-2 mm) electrode array over an area of at least 4 cm 

of speech motor cortex may be optimal for decoding speech. Investigation of frequency content 

showed the high-gamma band provided the most information about speech motor activity. This is 

consistent with prior studies on hand and arm movements (Stark and Abeles 2007; T. Ball et al. 
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2008; Flint, Lindberg, et al. 2012; Flint, Ethier, et al. 2012). Finally, although speech production 

and speech reception are strongly related (e.g. McGurk effect (McGurk and MacDonald 1976)), 

the presented results are unlikely to be related to speech reception. Phonemes were primarily 

classified using causal features according to IPA designations for articulation, not auditory 

factors or frequency components of speech. 

Comparisons with other speech ECoG studies are difficult due to limited data, differing 

analyses and electrode coverage, we can approximate comparisons by computing the efficiency 

(ITR) of our system (Figure 8). Our results compare favorably with those of Kellis et al. (Kellis 

et al. 2010b), which identified 10 words with 48% success using their 5 best micro-ECoG 

electrodes, and Pei et al (Pei et al. 2011), which identified 4 vowels and 9 consonant pairs at 

40.7% (Figure 8). Although we did not directly train our decoders on whole words, we 

successfully identified phonemes of 14.8% of our 320 word set on a first attempt. Our best-

performance volitional control of a single /k/ channel for Subject NU2, computed similarly, 

could yield a theoretical ITR of 32 words per minute, which is higher than many current BCI 

communication systems. Finally, speech recognition algorithms could be applied to phonemic 

results to leverage the frequency of phonemes within words in the English language to exclude 

impossible scenarios (e.g. words starting with \ŋ\). 

Although word identification was not sufficient for communication purposes at a mere 

18.8%, it is notable that words can be identified from phonemic analysis alone. This result 

outperforms joint probability of isolated phoneme prediction and indicates that classification 

across some words is better than others. It is important to note that we are not strictly decoding 

words, as we have prior information as to where phonemic onset occurs. However, the correct 

identification of phonemes within a word is a concrete step toward whole word decoding. 
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Despite these limitations, this study proves that decoding phonemic information from spoken 

words is not only possible, but follows guidelines of the phonetics research, confirming that 

ECoG is capable of decoding the fine motor components of speech production. While 

performance is good, we anticipate substantial improvement in classification with more phoneme 

repetitions, often limited due to clinical constraints. With further investigation and refinements in 

techniques, phonemic decoding using an ECoG-based BMI may provide efficient and intuitive 

communication. Similar to the ways in which a keyboard can provide a higher information 

transfer rate than a mouse, such interfaces may prove useful in areas of neuropathology and 

convert communication, and build toward implementable technology for individuals with 

locked-in syndrome and other communication disorders. 
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III. CORTICAL REPRESENTATION OF PHONEMIC CATEGORIZATION IN 

SPEECH PRODUCTION 

 

Emily M. Mugler, James L. Patton, Felix Huang and Marc W. Slutzky 

 

1. Introduction 

Although investigators have proposed several different neural mechanisms of speech 

production, scientific inquiry has been unable to exactly identify these neural correlates. 

Attempts to determine such correlates using functional magnetic resonance imaging (fMRI) 

cannot record the rapid components and wide spatial area of activation of speech in cortex. 

Exploration of speech articulation with recent development in electrocorticographic (ECoG) 

recording have elucidated spatiotemporal neural mechanisms. One successful study 

demonstrated that speech production maintains some organization related to articulating 

musculature and can approximate categoric information of phonemes, the smallest separable 

parts of speech sounds (Bouchard et al. 2013). Although such phoneme distinctions can be 

roughly identified, the extent to which they can be incorporated and utilized in real-world 

applications remains unknown.  Such a potential neural-speech interface application, if it could 

accurately decode the neural information related to speech production, could be used to facilitate 

speech communication in functionally “locked-in” individuals with advanced neuromuscular 

disorders. A deeper investigation therefore is required to analyze which properties of speech are 

robust in cortical organization and can further be leveraged to recognition ECoG speech of 

control. 

Investigations decoding speech with ECoG have demonstrated some success at identifying 

sample groups of words (Kellis et al. 2010b), pairs of consonants of words (Pei et al. 2011), 

vowels (Leuthardt et al. 2011; Tankus, Fried, and Shoham 2012), and phonemes from within 
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words (Chapter II).  Phoneme decoding may surpass whole word decoding in terms of resulting 

efficiency of a speech application, represented by the information transfer rate of speech 

production. Moreover, we believe decoding phonemes would have the advantage of enabling 

transcription of any word instead of a limited set of words in a perfect decoding scenario. One 

potential confound to successful classification, however, is the existence of 39 separate 

phonemes in American English, which may overwhelm machine learning classification 

technqiues. Moreover, many phonemes are homoganic, sharing  active articulator organs during 

speech production, potentially distracting the classifier and clouding results.  

Linguistics and phonology have provided us with descriptions of exact mechanics of speech 

production, and have described separable, articulated phonemes in the Interational Phonetic 

Alphabet (IPA) (Ladefoged 1990; Brown 2013). We argue that a better approach would be to 

leverage the categorical designations of the IPA, potentially simplifying classification algorithms 

often confused by phonemes with similar designations. We investigated this mechanism in a 

broader approach that attempted to discern these categorical designations of phonemes to 

identify the phonemes themselves. In simpler terms, we sought to classify a phoneme by first 

classifying its descriptive IPA designations. 

The IPA designations for consonants essentially define a state-space for each phoneme that is 

mutually exclusive according to three separate categories, which we can approximately consider 

as three dimensions of activation. The first dimension corresponds to the place of articulation. 

This refers to the point of primary constriction along the vocal tract, from the lips to the layrnx. 

The second degree is that of manner of articulation, related to the degree of constriction along 

the vocal tract from a plosives (complete constriction) to liquids (close to vowels).  A final 
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dimension for vocalization determines degree of phonation or voicing. This essentially acts as a 

binary indicator of one of two states, vocalized or not vocalized. 

In this study, we evaluate how consideration of phonemic dimensions (place, manner, and 

voicing) might affect classification results and how these dimensions relate to the spatial and 

temporal aspects of corresponding cortical signals. We expand on previous efforts to identify 

specific phoneme by identifying phonemes using the distinctions of the IPA in order to leverage 

properties of phonation to identify exact articulation. Further, we identify which spectrotemporal 

features most contribute to successful decoding of phonemic classes. Finally, we compare these 

results to methodology used in automatic speech recognition technology.  

2. Methodology 

Four subjects (mean age = 42, 2 female), undergoing treatment for drug-resistant epilepsy, 

required extraoperative ECoG monitoring for epileptogenesis. These individuals volunteered for 

our study during their hospital stay and provided informed consent to participate in our study.  

Electrode coverage of cortex, determined by medical necessity, included frontal and temporal 

areas in all subjects. 

This experiment involved protocol of visual presentation of words to be read aloud by the 

subject and data acquisition to align simultaneously recorded speech and ECoG signal. 

Experimental protocol consisted of presentation of words on a screen with a 4s inter-stimulus 

interval. The 300 words of the Modified Rhyme Test (House et al. 1963) were supplemented by 

20 additional words to incorporate all General American English phonemes to the stimulus set. 

Subjects read each word immediately after visual presentation. Data collection was performed 

using BCI2000 software to present visual stimuli of words on a screen. 
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Speech was recorded with a MXL USB microphone at 44.1 kHz and synched to the RZ2; a 

randomized pulse was sent from the TDT system to the clinical system throughout the duration 

of each recording block in order to synch the data recording with the clinical Nihon-Kohden 

software. Sampling frequency was 500 Hz to 1 kHz to 9.6 kHz. Differential cortical recordings 

compared to a reference ECoG electrode were exported for analysis with an applied bandpass 

filter (0.53 - 300 Hz) with a sensitivity of 75 µV. Apparatus, and experimental set-up, and 

processing outline are depicted in Figure 9. 

 

Figure 9. Experimental protocol and labeling for analysis. Subject reads words presented on a screen. Aligned 

microphone and ECoG Short-time Fourier Transform are labeled according to onset of phoneme articulation. 

Categorical descriptions, such as those depicted here, are assigned to the labeled data. 

Data analysis primarily included alignment to phoneme onset, reduction to spectrotemporal 

features, and linear discriminant analysis on those features. Data was organized according to 

phoneme onset and converted to spectrotemporal features from 300 ms before phoneme onset to 

300 ms post-onset. Conversion of data from Short Time Fourier Transforms (STFT) to simplified 

features consisted of summation over 50 ms time STFT segments relative to phoneme onset, as 

well as summation of bandpower changes in specific bandpower frequencies.  Samples of 

features were organized according to their phonemic distinctions and classified using linear 

discriminant analysis (LDA). Features and data from the phonemic classification were relabeled, 
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and multiple classifiers were simultaneously trained and tested on different dimensional labels 

within the phonemic test set. Thus for each 10-fold test set, the training labels on the data were 

categorized to fit either the manner of articulation or the place or articulation of each consonant. 

At the end of each 10-fold test set, for each phonemic consonant, one classifier predicted its 

manner of articulation and the other predicted its place of articulation. Classification of either 

categorical dimension was considered successful if it correctly identified the phonemic IPA 

designation of the given consonant.   

In this study, two types of LDA classifier were used.  Multi-class classification consisted of 

analyzing multiple phoneme classes in a single classification process to identify a single 

phoneme class as the likely category for a phoneme sample. In one-versus-rest classification 

(sometimes also referred to as one-versus-the-rest in the literature), one phoneme class is 

specified, and phonemes not in that class are combined into a “rest” group. In this scenario, 

specific features that lead to successful classification of any given phoneme distinction can then 

be specifically identified. 

Bayesian statistics, in which conditional probabilities (dependence of one event upon the 

occurance or condition of another) are combined to predict events, have been used to describe 

many neural processes (Pouget et al. 2013). We applied Bayesian statistics to investigate whether 

categorizing IPA distinctions attributed to improved results for individual phoneme 

identification. The posterior probability for each phoneme dimension was therefore extracted 

during classification and used to evaluate the certainty with which the classifier could identify 

each given class. Posterior probability vectors for IPA dimensions were multiplied for each 

phoneme sample, and the combined probability of greatest certainty was considered to be the 

correct phonemic selection by the classifier and compared with the actual phoneme label. If the 
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most probable pairing of predicted manner and predicted place of articulation could not possibly 

be combined to form an IPA consonant in American English consonant, an algorithmic 

constraint was applied to prevent such phonemically impossible results. In simpler terms, if the 

best guess resulting from the Bayesian simultaneous LDA classifier algorithm was not an 

American English phoneme, the classification with the next-best combined probability that 

satisfied the rule was the resulting predicted class. 

For further elaboration on methodology, refer to Chapter II (see also Mugler et al, 2013). 

3. Results 

3.1. Classification of IPA Designations 

Classification by phonemic distinction significantly outperforms chance classification across 

subject for manner and place of articulation (p < 0.001, t-test) (Figure 10). A maximum of 

62.75% of phonemes were correctly classified by place of articulation for Subject NU2, with an 

ultimate high performance of 76.45% of categorized for any single constriction location (velar 

for Subject NU2). Identification of place of articulation had higher accuracy across all subjects. 

When classification results of place of articulation were combined across subjects, 41.18% 

(±13.0%) of phonemes were classified correctly, also a significant result (p<0.05, t-test). 
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Figure 10. Classification results for phonemic distinction (place of articulation, manner of articulation, and voicing 

of articulation) for each subject. Chance percentage for each category is highlighted by a dotted line (place = 26.5%, 

manner = 24.3%, voicing  = 56.0%). Shaded bars indicate best performance of a single class for each subject where 

applicable. 

The best-performing place of articulation varied across subject – bilabial for Subjects NU3 

and MC1, alveolar for Subject NU1, and velar for subject NU3. Interestingly, the fricative class 

of manner of aritculation performed best for all subjects, reaching a maximum performance of 

identifying at least half of all fricatives in Subject NU2. Potential contributing factors for this 

result include the fact that fricatives have the highest functional frequency in the data set, and 

therefore influence the LDA classifier more during classifier training. Further, these results also 

significantly outperform subjects’ simple phoneme decoding performance (p < 0.01, t-test). 

These results reveal that wide inter-subject variability in phoneme category classification may 

exist. 

For each of the two significantly performing classification categories, results represent a 

continuum of phoneme distinction represented in the data (Figure 11). If phoneme distinction 

was incorrectly identified for our best performing subject (Subject NU2), the nearest place of 
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articulation or manner of articulation was typically the confused party. This confusion also 

suggests that the organization of the International Phonetic Alphabet can be independently 

substantiated using data from neural activity.  

 

Figure 11. Phonemic classification based on IPA designations for Subject NU2. (A) Place of articulation and (B) 

manner of articulation for each phoneme are successfully classified along a continuum of phoneme distinction. 

3.2. Bayesian classification 

We investigated utilizing IPA categorical distinctions to improve results for individual 

phoneme identification. In 47.96% of our initial results, the LDA process originally misclassified 

one analyzed dimension (e.g. the manner of phoneme articulation) but classified the other 

dimension correctly (e.g. the place of phoneme articulation). In many instances, the most 

probable pairing of predicted manner and predicted place of articulation could not possibly be 

combined to form an IPA consonant in American English consonant. Our algorithmic constraint 

prevented phonemically impossible results, which initially occurred in 34.7% of phoneme 

samples.  
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Figure 12. Bayesian phoneme classification with IPA constraints for manner and place of articulation - results for 

best-performing Subject NU2. 

Multi-class LDA results using only manner and place demonstrate performance on par with 

previously reported LDA results identified by phoneme alone (overall success rate: 35.20%, 

peak: 54.39% at “s/z”) (Figure 12). The existence of most of the data categorization occuring 

along the diagonal indicates successful classification with confusion occuring in the direction of 

neighboring phonemes that share similarities of place of articulation. Further, the high values for 

confusion of “ʧ/ʤ” with “t/d” (> 40%) demonstrates that the first phoneme of an affricate may 

be more influential to the neural production of that phoneme. 

These aforementioned Bayesian multi-class LDA results neglect the voicing dimension of 

consonants, the third dimension of pulmonic consonants as designated by the IPA. An example 

of the difference along this dimension is the activation of the larynx in articulation of the 

phoneme \b\ and the supression of laryngeal activity during utterance of \p\. Incorporating this 

dimension could further enable differentiation between such phonemes, which cannot be 
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completed from the current organization. When all three dimensions (manner, place and 

vocalization) of phonemes are classified, performance of phoneme prediction decreases to a best-

performance 25.51% and average 15.77% (±7.6%) across subjects (Figure 13). This result still 

performs significantly better than chance (7.7%, p < 0.05, t-test), despite the large decrease in 

phoneme prediction compared with manner-and-place classification. In comparision to 

previously work decoding by phoneme label (Chapter II), classification along IPA dimensions 

decreases in performance when vocalization was included in the Bayesian computation.  

However, the performance of mutli-class LDA classification on phonemes succeeds without the 

vocalization stipulation and can leverage the categorical dimensionality of LDA designations. 

 

Figure 13. Confusion matrices for Bayesian-classified phonemes for (A) Subject NU2 and (B) all subjects. 

Classification confusion is predominant along place of articulation designations.  

3.3. Phonemotopic Organization of Sensorimotor Cortex 

By using linear discriminant analysis to compare one categorical group to the rest, we 

isolated and determined features that contribute to successful classification. By employing a one-

versus-rest LDA classification process, we highlighted such features and find a general 
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somatotopic pattern of cortical recordings. Here, we depict the features used on the expanded 

channels over sensorimotor cortex, and a time-frequency map of the features that contribute to 

successful one-versus-rest decoding (Figure 14). The intensity of the color correlates with the 

significance of that feature in discriminating an isolated group compared to the rest of the data 

(one-way ANOVA). Specific electrodes often contributed to specific group decoding, and these 

electrodes are highlighted in this figure.  These results depict a continuum of utterances 

represented along what is traditionally thought of as the Penfield speech sensorimotor cortex. 

The continuum of phonemic decoding previously reported for multi-class decoding (Figure 11) is 

therefore also represented along the physiology of the cortex. These results therefore support in 

part a validation of the Penfield motor map as it relates to active speech. It thus reveals a 

“phonemotopic” map in which position in sensorimotor cortex designates correspondence with 

phoneme category. 

Although there are some channels which involve activation during articulation of any 

phoneme, activation recorded by channels can still reveal isolated differences between IPA 

classes. For example, for Subject NU2, one electrode’s features exclusively decoded bilabial 

consonants, yet the channel was activated indiscriminantly during phonation (noted in red in 

Figure 14). Indeed, most phonemes involve lip movement in some way. However, the amplitude 

of the activation on this channel indicated the degree of involvement of that feature. Also 

important to note is the existence of multiple channels contributing to successful decoding of 

specific categories. Notably, the labiodental and alveolar distinctions feature activation on 2 

neighboring channels in Subject NU2.  

Because cortical activation for speech production correlates with the place of articulation, we 

further investigated electrode placement. In this study, subjects’ coverage spanned an 
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approximate total area of 46 (±8) cm
2
, but electrode coverage contributing to best performance 

specifically included 4 cm frontotemporal span, likely covering sensorimotor cortex. Results 

indicate that to decode all parts of speech, electrode coverage must include cortical areas 

spanning lip motor to glottal motor areas. Because coverage varies so greatly from subject to 

subject and corresponding neural signals are so distinct in their location, we can conclude that 

electrode coverage uniquely contributes to successful classification of phonemic group. 
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Figure 14. Phonemotopic organization of cortex. (a) Z-score increases in 50 ms frequency bands for each phonemic 

group in comparison with other phonemics groups of features for each highlighted channel. Each of the four small 

boxes is a mini-FFT of a given channel (b) Chart of pulmonic consonants adapted from International Phonetic 

Alphabet (Brown 2013; Ladefoged 1990). Only pulmonic consonants in the General American accent of English are 

represented and highlighted in colors corresponding with location of articulation in (c). Non-pulmonic consonants 

(approximants and affricates) are denoted with an asterisk in location of nearest pulmonic relation (c) Anatomically 

accurate tracing of Subject NU2 with superimposed 3D reconstruction of the brain (Hermes et al. 2010). Electrodes 

with features significant to decoding corresponding articulatory movements highlighted; some channels share 

dominance on a specific channel. High-gamma band activity increases during pronunciation for these channels, 

supporting a somatotopic hypothesis.  

 

3.4. Computation of Information Transfer Rate 

The ultimate goal of this technology is to not only reveal mechanisms of speech production, 

but also to enable classification of speech sounds during articulation. To leverage the 

classification of IPA categorical definitions during speech articulation, we predicted the actual 
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phoneme according to Bayesian statistics of predicted phonemic categories. This two-step 

process of predicting categorical designations and then leveraging statistics to investigate 

probable phoneme was then used to calculate the efficiency of the speech articulation 

classification in terms of rate of information transfer. 

In order to investigate the actual word decoding rates, phonemic predictions were re-sorted 

according to their original placement within a stimulus word. This enabled some identification of 

complete words based upon the combinations of resulting LDA predicted categories. 9.2% of 

words were able to be decoded by this methodology (chance = 0.83%, p < 0.001, t-test).  This 

result, converted into gross information transfer rate of the system, is 0.37 bits per second, 

roughly equivalent to 2.5 words per minute. 

4. Discussion 

This study demonstrated the extent to which phonemes could be accurately classified by their 

linguistic properties from ECoG recordings during speech articulation. Our results indicate that 

the organization of the International Phonetic Alphabet is paralleled in patterns of neural 

activation. Classification by IPA category outperforms traditional phoneme decoding (Figure 

10), likely because the existence of fewer phoneme categories simplifies performance of the 

LDA classifier. Place of articulation is the strongest predictor of classification success, followed 

by manner of articulation, and then followed by voicing of a phoneme. This indicates that our 

methods more accurately specify the place of articulation of phonemes during speech production, 

but it may also imply that the neural activation based upon where constriction occurs in the 

physiology of the vocal tract is more predominant in cortical representation. 

Phonemic categories were combined using Bayesian conditional probability to predict 

phoneme (Figure 13), but results do not differ greatly from previously reported LDA 
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classification results simply trained on phonemic consonants (36.1% best performance) (see 

Chapter II). This lack of improvement suggests that rarer categories (e.g. post-alveolar, lateral 

approximant) are more frequently neglected in broader categorical classification, possibly due to 

less frequent incidence within the data set, and may combine to further neglect the less-common 

phonemes. The similarity in classification confirms that Bayesian combination of IPA category 

can be leveraged to identify phoneme and builds toward decoding words from training on 

phonetic designations. These results confirm that using phonetic training for a classifier can lead 

to full word identification. 

Phonemotopic organization was revealed by utilizing LDA in a one-versus-rest classification 

paragdigm (Figure 14). Identification of phonemes based on places of articulation showed 

activation on channels spanning speech sensorimotor cortex. This result confirms the Penfield 

motor map during speech articulation of full words, which to the best of our knowledge is the 

first study of its kind to achieve. These results expand on the ECoG-speech literature depicting 

an organ-based map during phoneme articulation (Bouchard et al. 2013). While their work 

indicated there may be atypical maps for vocalization components, we found no such atypical 

organization as it applied to laryngeal activation during vocalization. This also demonstrates the 

application of LDA to enable isolation of specific spatial areas of activation, which could 

potentially be used to design a better speech interface. Finally, these results confirm the utility of 

ECoG electrodes to access and identify neural signal related to phoneme production during 

speech articulation. 

Placement of electrodes strongly impacted classification success, elucidating how critical 

electrode placement is to phoneme class prediction. Epileptologists selected grid locations 

specifically for medical observation of onset of epileptic seizures, and location of implantation 
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therefore varied for each patient (see Figure 14). With our one-versus-rest classification 

paradigm, it is therefore possible to infer that classification differences in place and manner of 

phoneme articulation are indicative of areas of coverage. An apt analogy for decoding speech 

sounds without full speech sensorimotor coverage would therefore be typing with a keyboard 

with only a small selection of a subset of working keys. Accordingly, classification results from 

Subject NU2 showcase proper grid placement and set the benchmark for future work in speech-

BCI decoding. We therefore emphasize results of our best subject to show what is possible, and 

not the average across all subjects, though it is important to note that both results are 

significantly better than chance. The methodology of pre-processing and classifying the data can 

therefore adequately discern properties of speech during production despite non-ideal electrode 

placement. Further, this methodology also confirms that electrode placement critical for future 

endeavors to decode speech information from ECoG. 

The information transfer rate (ITR) of our Bayesian speech decoding paradigm is comparable 

to previously reported results (see Chapter II), and could be modified to further increase 

communication efficiency. Bayesian phoneme prediction using phonemic dimensions requires a 

multi-step process, as a BCI that uses only IPA designations of speech would not be capable of 

directly transcribing speech. A greater ITR could be achieved by including additional speech-

specific channels for subjects where electrodes did not cover active areas (e.g. bilabial or velar 

channel). For example, a place-of-articulation brain-computer interface might not be able to 

successfully decode active speech, but it could still serve as a multi-channel interface, potentially 

more efficient than many current/conventional communicative BCI paradigms. Despite these 

issues, the ITR of our Bayesian multi-step process achieved 2.5 words per minute. Outside of 

previously-reported ITR of phoneme decoding 3.0 bits/sec (33.6 words per minute) (Chapter II), 
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this ITR surpasses traditional BCI paradigms and approaches the fastest previously-reported 

communicative BCI that employ visual evoked potentials (Chapter I.2, Table 1). Full word 

prediction of words within the test set can be achieved with some success with both phoneme 

and phoneme category approaches. 

Finally, the aforementioned results achieve comparable success to traditional automatic 

speech recognition (ASR) mechanisms. ASR algorithms typically analyze a single microphone 

channel to infer the phonemic information. Current models succeed when trained on a massive 

quantity of speech data. However, these formulae perform poorly when trained on small data 

sets. Accordingly, our results are roughly equate with those reported in ASR research produced 

in the 1990s, prior to creation of massive audio databases, or those reported in the ASR literature 

on specifically reduced data set sizes (34.7% success for 12 minutes of speech data) (Moore 

2003). More study is therefore needed to evaluate whether database use would similarly improve 

ECoG classification results. Further, the methods here leverage classic ASR techniques of 

training a classifier phonemically to allow for whole word prediction. 

The implications of this work, identifying neural correlates of speech production, affect 

neuroscience and brain-computer interface research in addition to linguistics. Application of one-

versus-rest LDA classification enables spatial isolation of features that contribute to speech 

production and point to sources of failure in classification.  Despite conditional properties of 

many neural processes, Bayesian application of linguistic principles to decoding phoneme 

production does not improve results of phoneme investigation on their own. Nevertheless, the 

results of this study rule out certain possible approaches, advancing communicative brain-

computer interface research and raise new issues in decoding the nature of speech production in 

cortex. 
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IV. STRUCTURE OF CORTICAL CORRELATES OF SPEECH PRODUCTION 

 

Emily M. Mugler, James L. Patton, Matt Goldrick and Marc W. Slutzky 

 

1. Introduction 

Speech is a complex human activity, involving synchronization of neural processes in a wide 

array of cortical regions. Current models of speech production have been created using data from 

several sources, including results of functional magnetic resonance imaging (fMRI) studies 

revealing areas of activation, diffusion tensor imaging studies depicting pathways of activation, 

and natural speech errors such as slips of the tongue. Despite such advances in classification of 

neural signal of speech, the functional architecture of speech processing during production 

remains poorly understood. Electrocorticography (ECoG) has recently enabled identification of 

neural activity during the speech process (E M Mugler et al. 2013; Bouchard et al. 2013; Kellis 

et al. 2010b; Pei et al. 2011; Blakely et al. 2008; Roland et al. 2010; Leuthardt et al. 2011). 

Bouchard and colleagues, for example, demonstrated that functional activity in speech motor 

cortex generally follows the classic somatotopic motor map of organs of articulation (W. 

Penfield and Boldrey 1937). ECoG technology is capable of recording from vast areas of cortex 

on a fine time scale compared to other technologies (Slutzky et al. 2010), which we argue will be 

crucial for understanding rapid fine motor processes such as articulation. While these recent 

studies have described cortical activity during speech production, the data from these 

investigations have not yet been leveraged to scientifically evaluate the validity of models of 

speech production.  

We sought to compare and contrast three leading models to uncover the nature of 

organization of speech sound in cortex. New modalities of neural signal analysis, such as ECoG, 

enable comparison and evaluation of theoretical models of cortical activity. For our purposes, we 
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consider models which describe functional neural mechanisms and demonstrate predictive power 

of cortical function. These models all differ in the hypothesized structures of speech directly 

preceding production. The first hypothesis, identified by Bouchard and colleagues, is that organs 

of articulation are most indicative of organization in cortex (Bouchard et al. 2013).  

Contrastingly, the second model hypothesizes that phonemes are the predominant representation 

of cortical organization (Hickok 2012). Finally, a third model hypothesizes that activity in 

speech motor cortex would be most identifiable by a gestural model (Browman and Goldstein 

1992). Though such models have been described in theoretical and simulated models, they have 

not been used to evaluate or verify in fine electrophysiological recordings of cortical signal. 

Models of neural function can be quantitatively compared with data to confirm or reject their 

related hypotheses. Such neurophyiological signals have long been used to identify cortical 

correlates of human activity. For example, in decoding directional tuning from neurons, it is 

unclear whether motor cortical representation is correlated primarily with force (SH Scott and 

Kalaska 1997) or with position of movement (Georgopoulos, Schwartz, and Kettner 1986). This 

uncertainty is due in part to the fact that force and motion share many common features, 

increasing the difficulty in distinguishing differences in functional organization of the data. 

Moreover, the scientific hypotheses about force versus position dominance in motor cortex have 

been evaluated by the extent to which each paradigm or model can predict and identify cortical 

signal. More simply, competing hypotheses can be substantiated or rejected by specifically 

looking for and comparing degree of representation within the neural recordings. 

We propose to extrapolate the aforementioned idea to the domain of speech, another 

neuromotor process.  In fact, because the models described above intend to be comprehensive in 

their descriptions of how speech production is represented in the cortex (e.g. all phonemes, all 
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articulatory gestures, all motor organs of articulation), they can be directly compared by how 

well they can be decoded from the data. We can evaluate whether speech motor cortex has a 

predominantly phoneme-based (Hickok), gesture- or articulatory-action-based (Browman & 

Goldstein), or organ-based functional representation. This investigation of competing hypotheses 

parallels methodology used to identify the nature of directional tuning found in cortex. We seek 

to deconstruct neural correlates of the cortical signal controls the complex mechanisms of speech 

production. 

In this study, we used classification of electrophysiological signal during speech production 

as a tool to investigate to what extent to which electrocorticographic signals parallel the findings 

of the literature from linguistics and phonology (Table 3). Using linear discriminant analysis 

(LDA) with a simple exclusive decoding paradigm (e.g. {b} or {not b}), we evaluated the degree 

to which categorical designations within each model could be discriminated. ECoG signal and 

speech were recorded simultaneously during speech articulation by 4 subjects of simplistic words 

from the Modified Rhyme Test. Data analysis was precisely aligned to onset of each phoneme, 

as our results from previous studies (see Chapters II and III) have demonstrated the need for 

exact phoneme onset times for successful classification of ECoG signal. The International 

Phonetic Alphabet distinctions was used identify phonemes used in speech production. The Task 

Dynamic model of inter-articulator coordination was used as a basis for the gestural model and 

to identify organ distinctions (Saltzman and Munhall 1989). Each model’s categorical 

designations were classified and cross-validated on spectrotemporal features of phoneme-

segmented samples relative to rest activity, and this process was repeated 5 times to bootstrap 

data. Z-scores were calculated for each category by comparing classification results to mean and 

standard deviation of chance results. To calculate chance values, labels were randomized for 
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each exclusive category and classified on the data set 10 times. Results, when compared across 

comprehensive models, would determine the extent to which a model was successful in 

describing functional organization by performance across all model categories. 

Table 3. Comparison of speech production models and how they represent production of the word “kit”. 

Abbreviations include tongue body (TB), tongue tip (TT) and glottis (G). 

 Representation of “kit” 

Phoneme Model        

Bayesian Phoneme 

Model 

(     |       )  (          |          )
 (        |       ) 

Articulator organ 

model 

(  )  (      )  (  ) 

Gestural Model ((       )                            )  ((   )       )

 ((       )                               ) 
 

2. Results 

2.1. Gestural model best identifies cortical organization  

Model evaluation and comparison was executed by calculating the extent to which each 

distinguishing speech category could be exclusively decoded from the data set. Quantitative 

comparison of each model was calculated by determining the percentage each category could be 

exclusively classified from the whole of the speech data. Thus, the more a category was included 

in the data set, the greater representation it had in the evaluation. In this way, an entire model, 

and how well it maps out each of its categorical designations from the data, can be represented as 

a circle. The percentage of the circle (i.e. θ for each segment) correlates with the relative 

frequency of that category within the data set. This novel twist on a traditional plotting method 

enables visualization and comparison of model success in classification. 



 

 

 

 

6
6 

 

Figure 15. Results for three competing hypotheses for the subject with most complete electrode coverage of speech sensorimotor cortex. Top row indicates 

success of exclusive classification ({b} versus {not b}) of each category of each model; (a) 40.04% for articulation organ model, (b) 13.07% total coverage for 

phoneme model, and (c) for ultimate best 49.51% gestural model. Percentage of the whole (θ for each segment) represents relative frequency of a given category 

within the data set.  Bottom row indicates statistical significance for classification of each category; the extent of each radius represents the z-score for exclusive 

classification of each category. Statistical significance is identified on these plots for each plots in the this row by a white circle (p < 0.01) At right, color-

coordinated map of vocal tract constriction locations and electrodes determined to have correlation with those constriction locations. 
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Results are depicted for each model using data from one subject in Figure 15 for each model. 

The gestural model demonstrated the most total representation within the cortical signal analysis, 

explaining a total of 49.51% of the information in cortex. Contrastingly, total proportional area 

for organs of articulation was 40.04%, and a phonemic model could only classify 13.07% of the 

data.  The second row of figures demonstrates the z-scores (and significance) of each model. 

Note that for all categories of the gestural model, classification results are statistically 

significant. Although data classification results may vary slightly across subjects, the gestural 

model surpasses classification success for other models (33.2%, compared to 29.8% and 7.0%), 

(Figure 16) though comparative model success to articulator organ model is not statistically 

significant. 

 

Figure 16. Percent successful description of each model for all subjects. Mean performance of gestural model 

outperforms both articulator organ model and the phoneme model. 

2.2. Specificity of models affect performance  

LDA classification can relatively penalize classification when large quantities of classes are 

compared. To investigate the degree to which the methodology may have unfairly evaluated less 
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specific models, we investigated the phoneme model to a greater extent with broader categories. 

We specifically investigated the degree to which the manner of articulation of phonemes and the 

place of articulation of phonemes could be exclusively decoded from the data set. We 

investigated this broader categorization, because previously reported results have indicated that 

these designations, outlined by the International Phonetic Association, can be decoded from 

ECoG signal during speech (see Chapter 3). Results demonstrate that even with the broader 

categorization (Figure 17), the phonemic model still does not surpass the gestural model. Total 

proportional area for each model in this broad paradigm was 33.37% for place of articulation 

representation and 33.80% for manner of phoneme articulation. 
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Figure 17. Broad representation of the phonemic model in cortex. The representation in cortex for Subject NU2 that 

encapsulates the exclusive decoding of the manner and the place of articulation as identified by the International 

Phonetic Alphabet. 33.37% of the data was explained by the place of articulation of phonemes and 33.80% of the 

data was explained by manner of phoneme articulation. 

 

2.3. Prediction of speech works best with gestural model 

A true test of the degree to which the data can be explained by a specific model is the degree 

to which we can predict patterns of neural activation. We investigated the degree to which we 

could predict speech based upon our best-performing model. Just as phoneme was extrapolated 

to infer gestures or articulator organ, we combined classification results of articulatory properties 

to predict actual phoneme during our recordings. Phoneme predictions were then used to predict 

what word was used in our stimulus word set. Using this strict method, only 1% of original 

articulated words were correctly identified by their analyzed categorical components (chance = 
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0.83%). This non-significant result implies that a more rigorous multi-step Bayesian process 

using categorical distinctions for the gestural model is needed to predict original phonemes 

(Chapter III). Word prediction methodology could not be similarly extrapolated to the 

articulatory organ model with any certainty. 

3. Discussion 

To our knowledge, this study is the first of its kind to utilize electrocorticographic signal to 

investigate the categorical organization of cortical representation during speech production. Our 

novel exclusive classification approach enabled evaluation of contrasting models of speech 

production developed over decades of interdisciplinary research. Our results indicate that 

gestural models, such as the task dynamic model of inter-articulator coordination (TADA) and 

the directions-into-velocities of articulators (DIVA model) (Guenther, Ghosh, and Tourville 

2006), best describe the activation and functional organization in speech sensory motor cortex. 

Although phonemic (13.0% of data explained) and organ-of-articulation (40.0%) models are 

capable of identifying specific groups (p<0.01), the gestural model accounts for a greater 

percentage of classification success in comparison (49.5% of data explained) (Figure 15).  This 

strongly indicates that a gesture-based model dominates cortical activity during phonation. This 

conclusion holds even when more specific models are analyzed according to broader categorical 

designations (mean: 33.5% of data explained) (Figure 17). Analyzing broader classification of a 

phoneme model does not improve model performance beyond that of competing hypotheses. In 

fact, the best-performing model has 3.25 times the quantity of categories of the articulator organ 

model. The speech sensorimotor cortex is considered to be the final cortical area in the speech 

production pathway, and these results point to gestures as the format of its final execution. 
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By analyzing the extent to which contrasting models can account for the percentage of rapid 

ECoG data recorded from cortex during speech production, we answer questions as to the nature 

and fundamental organization of speech as it is produced. The prominence of the gestural model 

in cortical representation may suggest why some speech errors, such as phonemic confusion, 

tongue twisters (e.g. “proper copper coffee pot”) and spoonerisms (e.g. “fight a liar”, “light a 

fire”), are confused in speech production. We suggest that such errors arise because they may 

require more processing in cortex to execute, or alternatively, that cortical processing of similar 

actions is already active and cannot easily initiate new activation patterns. In fact, this result may 

mirror other models of human performance, such as the motor selection interference concept in 

human motor control research, in which confusion is more likely to occur in areas of similar 

activation than in areas with great distance between activation. (Ivry et al. 2004). More concrete 

work in future ECoG investigations of speech therefore could therefore specifically test tongue 

twisters or alliterative samples of speech to determine activity on channels associated with 

specific gestures. Our work suggests that this result could further apply outside of the speech 

domain with other repetitive fine motor gestures in close proximity, such as with 

neurophysiological correlates of typographical errors. 

This gestural hypothesis result may also supplement related research in cortical motor 

prostheses for fine motor control, as gestures may explain more cortical information than 

position and direction of movement. In speech, exact postures and gestures are honed for a 

specific language for many years of an individual’s life, augmented by auditory, somatosensory, 

and listener feedback (SK Scott, McGettigan, and Eisner 2009). If similar gestures are also 

performed with grasp, it may be possible that neural representation of hand motor areas would 

better align with gestural classification algorithms. Thus, study of hand force or velocity may 
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perform better in an ECoG classification paradigm than hand position or posture (Flint, 

Lindberg, et al. 2012). Finally, relating back to the analogy of force versus position in motor 

cortex (Georgopoulos, Schwartz, and Kettner 1986; SH Scott and Kalaska 1997), we can 

consider a gestural model closer to a force or velocity model in speech cortex (Guenther 2006). 

Phonemes, contrastingly, could be better envisioned by position models in cortex, as their place 

and manner of articulation correlate more with locations along the vocal tract, and not with 

velocities or forces. 

Neural interfaces, which provide hope for “locked-in” individuals unable to communicate by 

normal means, could leverage gestural representation to create efficient cortical speech 

prostheses. Our approach enabled exploration of limitations of the phoneme model, which has 

thus far been predominant in speech brain-computer interface literature. Results of this 

investigation would require modification for true practical implementation in communicative 

brain-computer interface. One long-term goal of such work is to decode the intended speech of 

individuals and reproduce words, not limited to parts of words or phonemes. The information 

transfer rate of our gestural system applied to our speech stimulus set could impact speech 

decoding in a potential BCI. Such an increase in communication efficiency could dramatically 

improve quality of life in locked-in individuals. Identification of word production from ECoG 

recordings is possible using phonemic (Chapter II) models, but the combination of gestural 

classifications could outperform such results.  Although the phonemic models can produce an 

ITR of 33.6 words per minute, we predict a similar gestural BCI would surpass the fastest 

reported BCI communication speed by a factor 6, similar to the average speed of compositional 

typing. Word prediction becomes more complex when analyzing broadest categories of 

articulator organ. In a small, closed set of words, a system that identifies speech by jaw 
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movement could potentially enable identification of words, but in a wider range of complex 

words, or words with similar activation patterns, the classifier would likely require extensive 

training on word production. Contrastingly, neurophysiological signals directly related to the 

motor gestural components of speech production enabled decoding of the physical components 

of speech sounds, which could enable decoding beyond small, closed sets of words. The 

methodology employed here could therefore further impact the field of automatic speech 

recognition. Accurate classifications of the multi-model gestures of speech, instead of audio 

recordings of speech alone, may improve automatic speech transcription in dictation systems. An 

automatic speech that could access and classify gestural components, perhaps using computer 

vision or other optical methods, might supplement classification algorithms, particularly when 

speech data contains significant ambient noise. These results therefore guide future 

investigations into the next critical step in development of communicative brain-computer 

interfaces. 

4. Methodology 

For further elaboration on general methodology, refer to Chapter II. For elaboration on 

methodological constraints to our stimulus set, refer to Chapter III. 

Four subjects (mean age = 42, 2 female), undergoing treatment for drug-resistant epilepsy, 

required extraoperative ECoG monitoring for epileptogenesis. These individuals volunteered for 

our study during their hospital stay and provided informed consent to participate in our study.  

Electrode coverage of cortex, determined by medical necessity, included frontal and temporal 

areas in all subjects. 

Experimental protocol consisted of presentation of words on a screen with a 4s inter-stimulus 

interval. The 300 words of the Modified Rhyme Test (House et al. 1963) were supplemented by 
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20 additional words to incorporate all General American English phonemes to the stimulus set. 

Subjects read each word immediately when presented. Data collection was performed using 

BCI2000 software to present visual stimuli of words on a screen. 

Speech was recorded with a MXL USB microphone at 44.1 kHz and synched to the RZ2; a 

randomized pulse was sent from the TDT system to the clinical system throughout the duration 

of each recording block in order to synch the data recording with the clinical Nihon-Kohden 

software. Sampling frequency was 500 Hz to 1 kHz to 9.6 kHz. Differential cortical recordings 

compared to a reference ECoG electrode were exported for analysis with an applied bandpass 

filter (0.53 - 300 Hz) with a sensitivity of 75 µV. Apparatus, and experimental set-up, and 

processing outline are depicted in Figure 9. 

Data analysis primarily included alignment to phoneme onset, reduction to spectrotemporal 

features, and linear discriminant analysis on those features (Chapter II, Chapter III). Data was 

organized according to precise, manually-denoted phoneme onset and converted to 

spectrotemporal features from 300 ms before phoneme onset to 300 ms post-onset. Conversion 

of data to simplified features consisted of summation over 50 ms time segments relative to 

phoneme onset, as well as summation of bandpower changes in specific bandpower frequencies.  

Samples of features were organized according to their phonemic distinctions, and features were 

selected based on significance to categorical designations (ANOVA). Samples were 

subsequently classified using linear discriminant analysis (LDA) and 10-fold cross-validation 

(shuffled data, 90% training set, 10% testing set).  

To evaluate contrasting models, features and data from the phonemic classification were 

relabeled according to respectively differing categorical designations. For articulatory organ 

model labeling, methods established by Bouchard and colleagues were extended to the data used 
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in our data set (Bouchard et al. 2013). For the gestural model, the designations specified by the 

task dynamic model (Browman and Goldstein 1992). Notably, although phonemic model 

categories are mutually exclusive, gestural and articulator organ models’ categories often occur 

in combination. Therefore for the gestural model, data is labelled by multiple categories that 

exclusively describe each phoneme in conjunction (e.g. \b\ becomes the combination of three 

states {lip closure},{lip release}, {velum close}). For each model, multiple classifiers were 

simultaneously trained and tested on different dimensional labels within the phonemic test set. 

The posterior probability for each classification was extracted and used to evaluate the certainty 

with which the classifier could identify each given category within a model. 
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V. GENERAL DISCUSSION AND CONCLUSIONS 

The body of work in this dissertation described the electrocortical signal of speech 

production and the ways in which that signal can be classified as a step towards a communicative 

brain-computer interface (BCI).  This project not only solves practical problems of speech 

decoding for BCI, but develops neural engineering methodology to enable reproduction of this in 

the future. Moreover, this project increases the scientific understanding of a complex and 

uniquely human neural process of speech production. 

1. Contributions to Neural Engineering 

Prior to the work contributed here, speech sounds had not successfully been isolated in 

speech production of full words for use in brain-computer interface. Outlined in this section are 

the specific contributions framed in the context of the science of BCI. 

1.1. Information transfer rate 

This dissertation has mapped out rates of human communication and outlined strategies for 

improving neural interface methodology to parallel natural human communication levels. 

Moreover, the work presented here is the first of its kind to predict information transfer rate 

(ITR) using speech of whole words. We have demonstrated that use of speech to control BCI has 

the dramatic potential to improve speed of communication for locked-in users. This potential 

improvement might be akin to the use of a typewriter in comparison to a joystick to type out a 

message. Although decoding performance was clearly imperfect, our results surpass previously 

documented BCI methods (much like a keyboard with some percentage of working keys still 

would outperform a joystick). The advancement of phonemic decoding is depicted in Figure 18, 

literally raising the bar for communicative BCI performance. 
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Figure 18. Speed of media in the English language, revisited. An updated version of Figure 2 depicting the 

contribution of this work in advancing brain-computer interface information transfer. Our highest calculated 

information transfer rates result from methods performed in Chapter II, in which we used consonant predictions of 

phoneme to identify word. 

Although this work is not the first to investigate modalities of human communication to 

apply to BCI speeds (Schalk 2008), we use human communication speeds here as a model for 

ideal performance. Information transfer rate (ITR) is a widely reported metric in the BCI 

literature for comparison of non-equivalent systems. Here, we suggest that ITR of human 

performance should be the benchmark for BCI use. Ideally, with the advent of new technologies 

and BCI techniques, we could surpass this benchmark. We believe such advancements, like 

previously asserted (Section 1.3, Chapter I) would lead to wider adoption of BCI technology.  

1.2. Failure-mode analysis 

We assert that the first step in making prostheses for speech communication accessible is to 

determine what leads to success and failure in classification during healthy speech. This “failure-

mode” approach elucidated some surprising dependencies in engineering factors, including 

phoneme onset, data recording time, number of phonemes analyzed, electrode utility, frequency 

band utility, and time bin utility.  
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We identified the degree to which precision to phoneme onset time affects classification 

results. This has important implications for future work with neural speech interface end-users, 

who would not likely be able to naturally produce phonemes. This finding therefore highlights a 

newly determined difficulty in future decoding speech sounds from such individuals with ECoG. 

Although this timing reliance may have been somewhat addressed by more invasive systems in 

locked-in individuals with ALS in the past (Brumberg et al. 2011), this issue of timing can now 

speak to how crucial it is.  Inaccuracies in phonemic onset of 100 ms would perform 

dramatically poorly in comparison with a more precise phoneme onset analysis. 

We identified the degree to which length of recording sessions may influence results. This 

suggests that more time with patients during recording sessions could improve classification 

results, and presents data to argue for longer recording sessions with the patient. Another 

approach would be to reduce the amount of rest time in between word trials, allowing more 

speech in our data collection sections and potentially also improving classification. Until this 

post-hoc power analysis on the data was performed, the recording session duration was not 

considered so critical for success. 

Work presented here also identified that at least a span of 4 cm of speech sensorimotor cortex 

may be needed to identify all phonemes or types of phonemes. This highlights the advantage that 

may exist from a large EcoG electrode grid, in sharp contrast to depth electrodes inserted into 

deeper cortical structures that may not access all critical cortical areas (Guenther et al. 2009). 

Moreover, this contrasts with other BCI approaches demonstrated the usefulness of micro-ECoG 

electrodes or “mini-grids” with small inter-electrode differences to decode some differences in 

word production.  Together with the results in the literature, we  suggests specific guidelines of 4 

cm length, 2 cm width, ≤4 mm spacing (“high density” spacing) for future electrode 
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development to better address speech decoding.  With such spacing, the estimated 3.1cm
2
 of 

mouth sensorimotor cortex could be covered by as many as 20 separate ECoG electrodes  (Fox et 

al. 2001). In relation to neuroanatomical structures, such an ECoG grid could additionally record 

from neighboring premotor and sensory areas. Our results indicate that recording with an 

electrode with these physical properties may dramatically improve speech-ECoG classification 

outcomes.  

2. Contributions to Neuroscience 

Only with the advent of technology that can specifically analyze signal with fine temporal 

and spatial resolution – like ECoG – does it become possible to classify and describe neural 

signal in such rapid fine motor processes like speech. We evaluated theoretical models of speech 

production based upon the degree they could explain representation of our ECoG speech data. 

Such methodology has been substantially used in the neuroscience literature with penetrating 

electrodes in cortex (Hubel and Wiesel 1962). Also, methodology refined here used for speech 

and neural engineering can be applied in the future with other technological development in 

accessing neural signal.  

In fact, our data not only enables evaluation of current models, but our results may suggest 

new models and creates an experimental testbed for new models. With electrode grids with wider 

coverage and careful experimental design, ECoG could be used to investigate decoding of 

syllables, syntax, tone, and countless other properties of speech. This can significantly support 

research in cognitive neurolinguistics, which typically gets insight into neural processing 

mechanisms through speech errors, speech disorders, or fMRI results. Although these models 

have broader cortical scope beyond speech motor cortex and its organization, this area of cortex 

is one that we could directly evaluate using our experimental protocol. 
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3. Implications of this work 

3.1. Clinical Implications 

Although findings support high quality of life ratings in functionally locked-in patients when 

communication is retained, not all people may opt for implantable BCI technology. With such 

technology comes associated surgical risk, and for individuals that suddenly become locked-in 

(e.g. brainstem stroke), potential loss of remaining function may contribute to reluctance to 

undergo neurosurgery. In a recent study of long-term implantable ECoG grids in people with 

epilepsy, the majority of patients did not have serious device-related issues, and complication 

rates were on par with that of deep brain simulation implants (Cook et al. 2013). Only 4 of 15 

patients experienced serious device-related adverse events (infection, seroma and device 

migration) in response to implanted ECoG electrodes.  Nevertheless, a similar communicative 

BCI system must demonstrate utility and success at speech decoding past the point where 

benefits outweigh the risks before such a system would be adopted. 

Notably, significant proportions (41%) of BCI users with ALS specifically report in surveys 

that they would prefer an implantable neural interface for communication (Huggins, Wren, and 

Gruis 2011; Blain-Moraes et al. 2012). One stated reason stemmed from belief that it would be 

less hassle for patient caregivers. Such surveys of the ultimate end-user are important to 

engineers designing the process, and the end-user must be kept in mind during development of 

neural interface technology in terms of long-term building toward a neural speech prosthetic 

device. 

3.2. Research Implications 

This work establishes successful methods for extracting speech from cortical signal, but 

moreover enables future methods which might be able to classify speech in real-time.  The first 

steps of discrimination between simple phonemes in has already been used to control a 1-D 
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cursor in real-time (Leuthardt et al. 2011). Whereas we are not yet decoding real-time speech, we 

have executed the critical steps to determine what methodology may be useful in accessing 

speech information from ECoG signal.  

Moreover, this technology translates advances in intuitive control from neuromotor 

prosthetic development to speech communication. Such motor development has cleverly utilized 

motor imagery to reportedly provide a more direct and intuitive neural input for the user. 

Communication prostheses have been limited in their efficiency or intuitive use while motor 

prostheses have achieved decoding of multiple degrees of freedom for mechanical arm 

applications. By classifying signals associated with actual speech, use of a neural speech 

interface will likely feel more intuitive for end-users. 

In the process of researching speech for communicative BCI, we have developed an 

algorithmic suite of Matlab code to enable synchronization of speech and cortical signal, rapid 

spectrotemporal signal processing and subsequent speech classification analysis.  

3.3. Commercial Implications 

The results here indicate that recording speech signal from sensorimotor cortex requires 

specific electrode placement. We assert that commercial BCI systems lacking fine spatial 

resolution, such as non-invasive EEG systems (Quasar, Neuralynx, Emotiv, Muse), may not 

succeed in their similar pursuits of speech signal. Functional Near-Infrared Spectroscopy 

(fNIRS) systems, which can access changes in the blood oxygenation levels through the skull, 

would also lack the ability to reproduce results presented in this work. Notably, this process is far 

removed from “mind-reading”, often claimed by BCI companies, and results reported here 

currently necessitate active speech. Similarly, although an early BCI paradigm was referred to as 

a “thought translation device” (Kübler et al. 1999), “thought” is a simplistic term for a broad 

group of higher-level cognitive process. Imagined speech may be adjacent to or included in the 
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traditional definition of thought, but we here refrain from claiming that speech-ECoG BCI is 

decoding thoughts. Instead, we state that we are decoding motor-related neural activity of 

intended, overt speech.  

4. Limitations of this work 

4.1. Subject population 

One of the biggest hindrances to completion of this research is the rarity of ECoG subjects 

with frontotemporal electrode coverage. Subjects are extremely rare even when placement of 

electrodes could cover speech sensorimotor cortex, though as stated earlier, placement of 

electrodes depends entirely on medical necessity. Moreover, even when patients are eager to 

participate, they may be feeling ill, tired, or not want to complete the full experimental protocol. 

In the 3 years of working with patients, only 6 patients participated in this study and only 4 

subjects completed the minimum experimental protocol at Northwestern Memorial Hospital. 

Over the course of this period, we have expanded to collaborate with a scientist at Old Dominion 

University (Norfolk, VA) and a neurosurgeon at the Mayo Clinic (Jacksonville, Florida). The 

code we developed for BCI2000 software works with other hardware systems.  Collaboration 

with other hospitals and research groups is therefore a strategy for dealing with such a limited 

subject pool, so that each subject is not functionally a case study. 

Another more general limitation to this research is potential atypical functional organization 

in this patient population (G. A. Ojemann 1979; Springer et al. 1999). Atypical activation 

patterns were evident in results from Subject NU3, in which subtemporal areas (sometimes 

associated with object naming in healthy individuals) correlated with functional facial motor and 

sensory activity when stimulated. Excluding this subject, electrode contribution from subjects 

supported traditional definitions of speech motor areas. If atypical functional organization exists, 

it would be difficult to ascertain whether it was caused by the epilepsy or whether epilepsy 
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created the strange functional patterns. It was therefore an assumption of our experiment that 

association with speech sensorimotor cortex, determined by cortical stimulation mapping, was 

indicative of functional speech areas for each subject. 

Moreover, the subjects all had non-disordered speech that we could synchronize with neural 

signal. This enables conclusions about the nature and functional organization of speech, but may 

hinder development of techniques for the ultimate end-user of a speech BCI, would have some 

issue impacting natural speech production. 

4.2. Speech 

Pronunciation varied across subject and slightly within subject. In this research, a 2 of our 4 

subjects were bilingual and had an accent that was not the General American English accent. 

Moreover, one subject originally spoke Dutch and English was not the first language. For all 

subjects, pronunciation was sometimes inconsistent within each trial, particularly during vocal 

stops (i.e. not annunciating the \t\ at the end of \pit\). Despite this variability in pronunciation, 

slight differences - predominantly manifested during phonation of vowels - were assumed to be 

consistent across the phonemes that comprised our stimulus set.  

Moreover, properties of speech make it difficult to determine the extent to which one 

phoneme influences another in our data set. Vowel classification was influenced by the 

consonants that occurred coincidently. This could be improved by increase in data collection 

duration and by increasing the variety and complexity of words used in the data set to diversify 

the coincident combinations of phonemes. 

4.3. Hardware 

The ECoG electrode grids used in this research had a 1 cm inter-electrode spacing (Ad-Tech 

Corp). Micro-ECoG grids (≤4 mm inter-electrode spacing) may provide more utility in localizing 

neural signal indicative of speech-related function in cortex (see Chapter V, Section 1.2). 
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Electrocorticographic grid density is rapidly increasing with advancements in sensor 

development and implantable circuit technology, reaching inter-electrode distances of 500-μm 

(Viventi et al. 2011). As electrode grids get denser, it may be possible to investigate activity in 

cortex on a finer functional level, an exciting future direction for ECoG research. Other potential 

advancements in electrode conduit material, such as silk, polyimide, and other flexible materials, 

provide an increase in biocompatibility and therefore a potentially longer-lasting neural interface. 

Finally, fully implantable devices using wireless transmission technology can reduce risk of 

transcutaneous infection. Although the work presented here was limited in spacing and long-term 

implantation, potential improvements in hardware introduce a suite of new possibilities to 

increase practicality of BCI implementation.  

Sampling frequencies for recording ECoG signal varied for different data collection sessions. 

Due to human error, sampling frequency was set as low as 500 Hz, which needed to be specified 

prior to experimental start by medical technicians in the Epilepsy Monitoring Unit. This 

prevented off-line analysis of frequency bandpower changes related to articulation in frequencies 

greater than 250 Hz for 2 patients. However, these frequency features did not improve successful 

classification results in patients recorded on the same system at a 1 kHz sampling rate, so this is 

not considered a detriment to our conclusions. 

Finally, the ECoG signal, recorded on the clinical monitoring system of the hospital, was not 

recorded on the same computer with the speech signal, primarily because speech – which 

contains higher frequencies – needed to be sampled at a higher sampling frequency. An 

electronic pulse was emitted between computing systems to synchronize signals offline for 3 

patients. We therefore assumed a minimal or negligible difference in time courses along these 
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two signals, but recording both signals on a single system would prevent uncertainty in signal 

synchronization. 

4.4. Biology 

Electrodes used in this study were designed for and approved for temporary use (less than 29 

days) by the Food and Drug Administration in the United States. ECoG research has made 

enormous strides in decoding cortical activity related to function in this short-term status, 

especially when it comes to robotic arm control (W. Wang et al. 2013). However, in order to 

extrapolate our results for a long-term implanted speech BCI, the longevity of such systems must 

be evaluated for patient safety. New studies in Australia explored the extent of long-term 

implantation of ECoG grids in humans for epileptic monitoring and seizure prediction, but sadly 

the clinical trial was halted due to lack of funding (Cook et al. 2013). In this study, 11 patients 

out of 15 had device-related adverse events during the clinical trial, and 2 serious adverse events 

occurred within 1 year of implantation. Adverse events were primarily related to immunological 

response to the implanted device. Two patients, however, refused explantation of the devices and 

still have a functioning ECoG implant predicting seizures (>2 years). If the utility of such a 

surgical process was validated for individuals with locked-in disorders, benefits may exceed 

risks for a potential ECoG speech interface.  In this case, the work of this dissertation provides 

the groundwork for design of an ideal system.  

There is no guarantee that individuals with complete locked-in syndrome will have typical 

motor cortex representation for speech motor areas. Metabolic activation in motor cortex appears 

equivalent in quadriplegics who cannot execute peripheral motor activity as compared to healthy 

controls (Shoham et al. 2001), and this may also hold for individuals with locked-in syndrome. It 

is possible that cortical deterioration develops in late-stage ALS, but this is poorly understood 
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due to the rapid progression of the disease (Bach JR. 1994). A recently approved study in the 

European Union (the Netherlands) will investigate long-term implantation of ECoG grids in a 

locked-in subject with the intent of classifying and transcribing intended speech. Results of this 

clinical trial will indicate feasibility of a speech-BCI using ECoG in the target population. Even 

if speech motor cortex demonstrates normal “healthy” neural activity in locked-in individuals, 

extra scientific steps are likely necessary to enable neural speech communication. In the work 

presented in this dissertation, our formulas require training an algorithm on overt speech. 

Therefore overt speech is the most direct and most possible BCI application of this research.  

Finally, as epilepsy drugs improve, drive for electrocorticographic monitoring for seizure 

onset decreases, diminishing the rare opportunities to use ECoG to study functional activation of 

cortex. It is therefore vital to properly design experimental protocol for these studies so that off-

line analysis can continue should a ready subject pool of individuals with implanted electrodes 

disappear.  

4.5. Signal processing 

Many methods exist for converting signal to frequency bandpower features, and many 

choices exist in application of signal processing choices to ECoG signal. In this work, we used a 

Goertzel algorithm version of the Short-Time Fourier Transform. We acknowledge that other 

methods exist for reduction to features (e.g. Hilbert Huang Transforms, Synchrosqueezing, 

Discrete Hermite Transforms), and we did not exhaustively investigate each process. We used 

the STFT as a starting point for feature reduction. We used duration of audio signal of phonemes 

to guide our choices for window size for our STFT.  For frequency analysis, we investigated all 

ranges or bands that were reported in the BCI literature. Improvements in signal processing 



87 

 

 

methods that can precisely determine changes in frequency bandpower over 50 ms windows of 

time would likely improve classification results. 

4.6. Software 

The process of segmenting time data into phoneme onset times is still manual, and is the rate-

limiting process on data analysis. This time-stamping process is performed manually 

(APPENDIX B. Graphical User Interface for Phoneme Labeling), as current methods of 

automation lack the specificity needed for accurate labeling of phonemes. The required 

specificity to phoneme onset time therefore highlights the degree to which manual labeling of the 

data is crucial prior to LDA classification. 

The limitations preventing real-time processing are the biggest hindrance to our conclusions 

on information transfer rate. An assumption of our ITR calculations was that no pauses exist 

between words. We therefore state that the calculated ITR is the gross information transfer, and a 

more precise version could be calculated in future iterations of this work, in which words are 

decoded in succession. 

Finally, computational processing is limited by the massive quantity of data collected during 

each experiment.  With the current dramatic increases in rapid access memory and computational 

power, data could be converted to finer spatiotemporal features. If data did not have to be 

reduced to features in order to run classification algorithms, it would further enable more 

complex, real-time processing of signals.  However, feature reduction will be required as long as 

the quantity of data features outnumbers the number of speech samples analyzed. 

4.7. Speech Recognition and Identification 

In this dissertation, we estimate the degree to which we can predict words from our word 

stimulus set by the categorical results computed during LDA classification.  However, in this 

process, we intentionally limit our word identification algorithms used in this work to simplify 
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the mechanisms. These mechanisms are meant to serve as a starting point for later speech 

classification algorithms. Moreover, we restricted this prediction mechanism to the consonants 

used during decoding, which limits full identification of words that share similar consonant pairs 

but have a differing vowel. However, there is more identifying information in consonants than in 

vowels (Shannon 1951), so this actually may serve the purposes of word identification in a fair 

yet beneficial manner. 

5. Potential Improvements and Future Directions 

Many areas for expansion and investigation – even by simply restructuring analysis using the 

current data set – could answer neuroscience questions and advance communicative brain-

computer interface. Coarticulation – the blending of separate speech sounds in context – and the 

contextual dependence of speech sounds have huge implications for application in an ECoG-

speech BCI.  Moreover, we can investigate the effects of coarticulation during quicker speech in 

the context of sentences. For 2 subjects, full, phonetically-balanced sentences were recorded in 

addition to whole words. We have further established collaboration with another research group 

that has recorded long sections (paragraphs) of overt reading in over 10 subjects.  Analysis of the 

ways in which speech sound categorical designations are altered by contextual information of 

surrounding text could answer questions of neural processing. 

Algorithmic detection of a “go signal” for speech using this data set would enable an 

effective on-off switch for a neurally-controlled speech prosthesis. Classification between speech 

and rest periods could help identify phoneme onset. Until our methods uncovered the degree to 

which phoneme onset time was required for accurate speech analysis, it was unclear that this was 

an area that would augment speech communication through BCI. 



89 

 

 

Electromyographic signal was collected throughout all data collection, bilaterally at the 

carotid triangle and over the right masseter muscle, to determine motor movement associated 

with speech. This data was collected simultaneously with ECoG and microphone signal.  Ideally, 

this data modality could be further synched with 3D video imaging, such as that created with a 

Microsoft Kinect device. Results from such 3D and EMG motor analysis could lead to 

developments of life-like active speech models that expand on the task dynamic application 

(TADA) model.  This could particularly aid speech therapies and perhaps also in digital 

simulations of speech, an area where current simulations noticeably fall along the “uncanny 

valley” and typically triggers discomfort in users. 

Classification of this EMG signal recorded during speech could also potentially provide new 

aides in communication to individuals with healthy speech communicating in adverse 

environments. Building on the success of previous EMG–speech decoding paradigms (B. Betts 

and Jorgensen 2005; Lee 2008; Schultz and Waibel 1998; Jou and Schultz 2008; Jou, Schultz, 

and Waibel 2007; Schultz and Wand 2010; Arjunan et al. 2006), we can apply methodology and 

tools developed in this dissertation to other speech-biosignal interfaces. In conjunction with 

high-density EMG grids, we can then mechanistically investigate factors that contribute to 

speech classification success. Moreover, results could indicate the potential benefit over ECoG 

BCI and identify the degree of muscular control needed to control an EMG interface.  This could 

therefore identify the point at which a surgical procedure would be necessary to enable a speech 

interface for individuals with severe speech motor impairments.  

The most dramatic advancement would result from converting our cortical signal processing 

software suite into a real-time process. Real-time speech decoding would reveal the extent to 

which we can predict words as they are phonated. Even pseudo-real-time, in which the word 
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would be decoded shortly after utterance, could be useful for those who currently lack natural 

means of communication. Real-time decoding of speech would also build toward closed-loop 

BCI paradigms of this work, the results of which would indicate potential success in individuals 

with LIS.  Speech recognition algorithms can and should be further developed to work in 

conjunction with cortical signal classification results to predict actual speech. In a real-time 

decoding scenario, the functional frequencies of phonetic information in language could be used 

to better identify speech.  Important to note is that listeners may be capable of understanding 

speech despite some errors in transcription. A type of Turing test for interpretation of output 

could be used to determine successful classification of speech (Turing 1950); the benchmark for 

success of such a system would be human understanding of speech-BCI output. 

We could optimize the language of the speech-ECoG to improve classification results.  For 

example, we could apply speech classification algorithms other human languages, with relative 

frequencies of gestures, to optimize what a classification decoder can successfully select. 

Languages with more sparse phonemes, such as Hawaiian (with 8 pulmonic consonant 

phonemes), would likely improve the success of the classifier. An “Esperanto” for speech-ECoG 

could also be created, optimized for the neurophysiology of each user. Alternatively, the speech 

interface could potentially limit the set of the full scope of words to improve accuracy. With 

extended use, users could potentially adapt their neural signals to better facilitate speech 

interface output. Alterations to the language of the speech interface could therefore potentially 

improve decoding, 

Finally, investigation of neural motivation behind dynamic learning of a speech motor task, 

such as pronunciation of foreign phonemes or beatboxing (Proctor et al. 2013), could reveal 

further mechanisms of cortical dynamics. Speech is a fine motor movement process, and how 
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cortical signal changes and adapts to learn a foreign language or a new task such as beatboxing 

could have wider implications for motor control research. 

6. Summary 

This investigation of speech for communicative brain-computer interface approaches 

supports the use of speech for future development in neural interface design for communication. 

The work of this dissertation advances the efficiency of communicative brain-computer interface 

approaches, establishes a methodological testbed for evaluation of neuroscience models and 

hypotheses, and demonstrates predominance of gestures in a functional model of speech 

production in cortex. Although classification of speech using ECoG signal demonstrated 

statistically significant performance, perfect speech identification from cortex remains a distant 

but worthy goal. In any case, methods developed here should guide future approaches to speech 

brain-computer interface design, development, and clinical application. 
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APPENDIX A. Word Stimulus Set 
The Modified Rhyme Test (House et al. 1963) 

 
went  

hold  

pat  

lane  

kit  

must  

teak  

din  

bed  

pin  

dug  

sum  

seep  

not  

vest  

pig  

back  

way  

pig  

pale  

cane  

shop  

coil  

tan  

fit  

same  

peel  

hark  

heave  

cup  

thaw  

pen  

puff  

bean  

heat  

dip  

kill  

hang  

took  

mass  

ray  

save  

fill  

sill  

bale  

wick  

peace  

bun  

sag  

fun 

sent  

cold  

pad  

lay  

bit  

bust  

team  

dill  

led  

sin  

dung  

sun  

seen  

tot  

test  

pill  

bath  

may  

big  

pace  

case  

mop  

oil  

tang  

fib  

name  

reel  

dark  

hear  

cut  

law  

hen  

puck  

beach  

neat  

sip  

kin  

sang  

cook  

math  

raze  

same  

kill  

sick  

gale  

sick  

peas  

bus  

sat  

sun 

bent  

told  

pan  

late  

fit  

gust  

teal  

dim  

fed  

tin  

duck  

sung  

seethe  

got  

rest  

pin  

bad  

say  

dig  

page  

cape  

cop  

soil  

tap  

fizz  

game  

feel  

mark  

heat  

cud  

raw  

men  

pub  

beat  

feat  

hip  

kit  

bang  

look  

map  

rate  

sale  

will  

sip  

sale  

kick  

peak  

but  

sass  

bun 

dent  

fold  

path  

lake  

hit  

rust  

teach  

dig  

red  

fin  

dud  

sup  

seek  

pot  

best  

pip  

bass  

pay  

wig  

pane  

cake  

top  

toil  

tack  

fill  

tame  

eel  

bark  

heal  

cuff  

paw  

then  

pus  

beak  

seat  

tip  

kick  

rang  

hook  

mat  

rave  

sane  

hill  

sing  

tale  

lick  

peach  

bug  

sack  

gun 

tent  

sold  

pack  

lace  

wit  

dust  

tear  

dip  

wed  

din  

dub  

sub  

seem  

hot  

west  

pit  

bat  

day  

rig  

pay  

came  

hop  

boil  

tam  

fig  

came  

keel  

park  

heap  

cuss  

jaw  

den  

pup  

bead  

meat  

lip  

king  

fang  

shook  

man  

rake  

sake  

till  

sit  

pale  

pick  

peat  

buck  

sad  

run 

rent  

gold  

pass  

lame  

sit  

just  

tease  

did  

shed  

win  

dun  

sud  

seed  

lot  

nest  

pick  

ban  

gay  

fig  

pave  

cave  
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APPENDIX B. Graphical User Interface for Phoneme Labeling 

 

 

Axis above with speech microphone waveform outlined with specific phoneme labels applied. Timestamps are 

marked in red. Axis below indicative of corresponding spectrogram of above signal.  
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positive reward feedback systems; prepared written reports for publication and oral 

presentations for the Pratt Board of Trustees; trained animal subjects following U.S. 

Government regulations. (Advisor: Patrick Wolf, PhD) 

 

2004  

 
Research Intern McGovern Institute for Brain Research, Moore Lab, Massachusetts Institute 

of Technology 

Designed somatosensory experiments and apparatus for animal subjects; trained animal 

subjects using a manual positive reward feedback system; analyzed and documented 

somatosensory data for publication. (Advisor: Christopher I. Moore, PhD) 

 

2002  

 
Research Intern Walter A. Hoyt, Jr. Musculoskeletal Research Laboratory Summa Medical 

Center 

Collected load-cell data on bones of rats; presented data and documented results in written 

reports; self-taught statistical analysis. (Advisor: Michael J. Askew, MD) 
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PUBLICATIONS 

 

Peer-Reviewed Journal Articles 

 

2013 E. M. Mugler, J. L. Patton, M. W. Slutzky, “Cortical organization and decoding of phonetic 

structure in speech motor cortex,” in prep. 

 
2010 E. M. Mugler, C.A. Ruf, S. Halder, M. Bensch, A. Kübler, "Design and Implementation of a 

P300-Based Brain-Computer Interface for Controlling an Internet Browser," IEEE Trans. on 

Neural Sys. & Rehab. Eng., Vol.18, No.6, pp.599-609, Dec. 2010 

 
2008 E. M. Mugler, M. Bensch, S. Halder, W. Rosenstiel, M. Bogdan, N. Birbaumer, A. Kübler, 

“Control of an Internet Browser Using the P300 Event-Related Potential,” International 

Journal of Bioelectromagnetism. Vol. 10, No. 1, pp. 56 - 63, 2008. 

 

Abstracts 

 2013 E. M. Mugler, R. D. Flint, Z. A. Wright, S. U. Schuele, J. Rosenow, J. L. Patton, M. W. 

Slutzky, "Decoding Articulatory Properties of Overt Speech from Electrocorticography," 

Proceedings of the Fifth International Brain-Computer Interface Meeting 2013, Pacific Grove, 

CA, June 3-7, 2013. 

 
2013 E. M. Mugler, J. L. Patton, M. Goldrick, M. W. Slutzky.  Functional categorization and 

contextual independence of cortical representation of speech. Society for Neuroscience 43rd 

Annual Meeting San Diego, CA. 

 
2012 E. M. Mugler, M. W. Slutzky, J. L. Patton. Phonemic differences in cortical representation of 

overt speech. Society for Neuroscience 42nd Annual Meeting, New Orleans, LA. 

 

2011 E. M. Mugler, M. W. Slutzky, J. L. Patton. Electromyographic-speech decoding with 

electrocorticographic correlations: Toward utilization of phoneme production for brain-

computer interface. Society for Neuroscience 41st Annual Meeting, Washington, DC. 

 
2010 E. M. Mugler, P. J. Rousche. Development of a laryngeal surface electromyographic 

biofeedback system for an efficient neurally-controlled communication interface. Fourth 

International Brain-Computer Interface Meeting 2010, Pacific Grove, CA. 

 

2009 E. M. Mugler, C. Ruf, S. Halder, M. Bensch, A. Kübler. The P300-Brain-Computer Interface 

Browser: Development and Criteria for Evaluation. Berlin Brain-Computer-Interface 2009, 

Berlin, Germany. 

 
2009 E. M. Mugler, P. J. Rousche. Speech rehabilitation using laryngeal electromyography 

feedback. Biomedical Engineering Society Annual Meeting, Pittsburgh, PA, October 7-10. 

 
2003 M. J. Askew, GB. Schneider, K. J. Grecco, J. Hsu, E. M. Mugler, D. A. Noe, “Effect of 

Pharmaceutical Bone Growth Stimulation with Novel Anabolic Peptides: Biomechanical and 

Bone Density Measurements in a Rat Model,” Proceedings of IMECE ’03, 2003 ASME 

International Mechanical Engineering Congress & Exposition, Washington, D.C., November 

16-21, 2003, IMECE2003-43044. 

 

2003 J. A. Edwards, K. A. Greene, R. S. Davis, M. W. Kovacik, E. M. Mugler, D. A. Noe, 

“Measurement of Maximum Knee Flexion Following Total Knee Arthroplasty,” Mid-

American Orthopaedic Association conference presentation, April 23-27, 2003. 
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HONORS AND AWARDS 
 

2009–present Grant from the NSF’s Integrative Graduate Education and Research Traineeship for thesis 

research 

2011 Graduate Student Representative selected to represent the University of Illinois at Chicago - 

Computational Transportation Science IGERT in the National IGERT Trainee Poster 

Competition. (Chicago, IL, USA). 

2010 Winner, Award for Innovation in the Student Poster Competition at the Fourth International 

BCI Meeting in Pacific Grove, CA. 

2009 Graduate Student Representative selected to accompany UIC delegates to NSF-funded 

international intellectual exchange on “Nanoneuronics” at Trinity College Dublin (Dublin, 

Ireland) and University of Ulster (Ulster, Northern Ireland). 

2008 - 2011 Graduate Student Representative of Biomedical Engineering Society (BMES) 

Appointed to position by undergraduates; assisted in reviving UIC chapter 

2008 Conference Travel Scholarship, 4th International Summer School on Emerging Technologies 

in Biomedicine, “Advanced Methods for the Estimation of Human Brain Activity and 

Connectivity, Applications to Rehabilitation Engineering,” University of Patras (Patras, 

Greece). 

2007 - 2009 Teaching Assistantship, 50% Appointment and Tuition Waiver 

2006 - 2007 Fulbright Grant to Germany, Institute of International Education 

2006 Dean’s List, Pratt School of Engineering, Duke University (Durham, NC, USA). 

2005 - 2006 Pratt Undergraduate Research Fellowship, Duke University (Durham, NC, USA). 

2002 Dean’s List, Pratt School of Engineering, Duke University (Durham, NC, USA). 

2002 Emily and Donald Barlow Scholarship (Hudson, OH, USA). 

2002 Hudson Bicentennial Scholarship (Hudson, OH, USA). 

 

 

INVITED TALKS 

 

February 19 2013 Invited Speaker (Host: Cara Stepp, PhD) “Advances for Efficient Communication in Brain-

Computer Interface,” Department of Speech, Language & Hearing Sciences, Sargent College 

of Health and Rehabilitation Sciences, Boston University (Boston, MA, USA). 
 

October 3 2012 Keynote Speaker (Host: Bonnie Williams, PhD) “From Student to Researcher:  My Journey 

as an Integrated BioScientist,” STEM Speaker Series at The University of Akron (Akron, OH, 

USA). 
 

October 4 2012 Invited Speaker (Host: Greg Smith, PhD) “Design and Implementation of a P-300-Based 

Brain-Computer Interface for Controlling an Internet Browser,” Integrated Biosciences 

Colloquia, Biology Department, The University of Akron (Akron, OH, USA). 
 

August 12 2011 Graduate Student Speaker (Host: W. Zev Rymer, MD, PhD) “EMG and ECoG Interfaces 

for Speech and Spoken Communication” Sensory Motor Performance Program Seminar, 

Rehabilitation Institute of Chicago (Chicago, IL, USA). 
  

TEACHING EXPERIENCE 

 
April 4 2013 Guest lecturer (Host: James L. Patton, PhD) "Poor signals and BMI prospects" Biocontrol, 

Bioengineering Department, University of Illinois at Chicago (Chicago, IL, USA). 
 

August 31 2012 Guest lecturer (Host: James L. Patton, PhD) “How to get the most out of the BioE Seminar 

course”, Bioengineering Department, University of Illinois at Chicago (Chicago, IL, USA). 
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TEACHING EXPERIENCE (cont’d) 

 
February 16 2010 Guest lecturer (Host: John Hetling, PhD) “Fourier Transforms and Frequency Analysis”, 

Bioengineering Department, University of Illinois at Chicago (Chicago, IL, USA). 
 

Spring 2010 Teaching Assistant Bioinstrumentation and Measurements I, Department of Bioengineering, 

University of Illinois at Chicago (Chicago, IL, USA). 
 

Spring 2009, 

Spring 2008 
Teaching Assistant Introduction to Cell and Tissue Engineering, Department of 

Bioengineering, University of Illinois at Chicago (Chicago, IL, USA). 
 

 Fall 2009 Teaching Assistant Modeling Physiological Data and Systems, Department of 

Bioengineering, University of Illinois at Chicago (Chicago, IL, USA). 
 

Fall 2008, 

Fall 2007 
Teaching Assistant Introduction to Bioengineering, Department of Bioengineering, 

University of Illinois at Chicago (Chicago, IL, USA). 
  
 ACADEMIC SERVICE  

 
2012-present Reviewer IEEE Engineering in Medicine and Biology Conference  

 

April 2013 Volunteer judge Next Generation Innovators Challenge, Midwest Research Competition: 

Positive Impact, Wheeling High School, Wheeling, Illinois, USA. 
 

August 2012 Grant consultant SBIR, Ensis Scientific Consulting 

 

RELEVANT GRADUATE COURSEWORK 

 

Neural Engineering I and II, Biological Signal Analysis, Brain Machine Interfaces: Theory and Practice, Models of 

the Nervous System, Biorobotics, Neural Networks, Sensory Prostheses, Materials in Bioengineering, 

Bioinstrumentation and Measurement, Machine Learning 

 

OTHER TRAINING 

 

Fluent in MatLab (Signal Processing Toolbox, Statistics Toolbox, Graphical User Interfaces), Macromedia, Adobe 

Illustrator, BCI2000 and Microsoft Office 

Proficient in LabView, Simulink, JavaScript, Unix, Latex, Flash, Neuron, Google SketchUp and HTML 

Fluent in German 

 

PROFESSIONAL AFFILIATIONS 

 

Society of Women Engineers - member 

IEEE - Graduate Student Member 

Chicago Acoustic Underground - Singer/Songwriter 

Delta Gamma Fraternity - President of Beta Theta chapter, Duke University, 2005; alumna member 

U.S. Lacrosse - Coach at high school level, member 

 

SCHOLARLY INTERESTS 
 

Brain-computer interface design and application; increasing information transfer rate of brain-computer interfaces; 

rehabilitation engineering; error augmentation and biofeedback; neuroscience of speech production 

 

LONG-TERM GOAL 

 

Establishing innovative brain-computer interface paradigms for communication to improve the quality of life for 

individuals with communication disorders as well as the general population 


