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SUMMARY 
 

Interactions of electrons with longitudinal optical phonons (LO phonons) are the most dominant 

scattering mechanism in polar semiconductors. This interaction in polar semiconductors is known 

as the Fröhlich interaction and is the primary interaction determining the limiting electron 

mobility. In heterostructures, the confinement effects cause the LO phonons undergo significant 

modifications in terms of spectrum and the macroscopic fields produced by them; this leads to 

emergence of new modes.   

 

This research introduces in-depth details about interface phonons (IF phonons) in two-interface 

wurtzite heterostructures and then advances the mathematical treatment to find the Fröhlich 

potential profile and spectrum for multi-interface wurtzite heterostructures. The knowledge of the 

electron interaction potential and the spectrum are fundamental to understand the electron 

scattering mechanism. 

 

In the last part of this research, the profile of the potential is determined for 1-mono layer of 

molybdenum disulphide which is an emerging 2D material. 
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CHAPTER 1 INTRODUCTION 
1.1 What are Phonons 
 

The active materials finding application in the electronics industry are crystalline in nature. The 

constituent atoms of crystalline material are arranged periodically in three-dimensional arrays. 

However, in reality the atoms are not rigidly fixed in space inside the crystal, these atoms vibrate 

causing the interatomic spacing to vary periodically in time and space. The frequency of vibration 

increases with temperature. The systematic and collective vibration of atoms possesses energy 

which is quantized; The quantum of energy is known as Phonons. 

 

In a bulk material there are the following types of phonons: 

 

1. Optical Phonons: The constituent atoms of the crystals vibrate out-of-phase with respect to each 

other. The figure below shows vibration pattern of atoms for optical phonon modes for a crystal 

with diatomic basis: 

 

 

Figure 1 The vibration pattern of atoms for Longitudinal Optical phonon modes. 
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In the above figure the atoms vibrate along the same direction as that of the wave propagation; 

hence, these are termed as Longitudinally Optical Phonons abbreviated as LO Phonons. If the 

atoms vibrate perpendicular to the direction of the wave propagation, then they are referred to as 

transverse optical phonons abbreviated as TO phonons. It is to be noted that in polar 

semiconductors the two atoms as shown above are oppositely charged hence they produce 

macroscopic polarization field due to presence of phonons. 

 

2. Acoustic Phonons: The constituent atoms of the crystals vibrate in-phase with respect to each 

other. The figure below shows vibration pattern of atoms for acoustic phonon modes for a crystal 

with diatomic basis: 

 

 

 

                       Figure 2 The vibration pattern of atoms for longitudinal acoustic phonon modes. 

 

 

 

In the above figure the atoms vibrate along the same direction as that of the wave propagation; hence, these 

are referred to as longitudinally acoustic phonons abbreviated as LA phonons. If the atoms vibrate 

perpendicular to the direction of wave propagation, then they are termed as transverse acoustic phonons 
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abbreviated as TA phonons. It is to be noted that since the atoms vibrate in-phase with each other thus they 

do not produce polarization field unlike the optical phonon modes. 

 

The relation between phonon the wavevector and the frequency is referred to as the dispersion relation. 

For bulk material this is derived using linear chain atomic model for a given dimension. It is frequently 

assumed that the two immediate atoms are tightly coupled to each other and the interaction between them 

is modelled using Hooke’s law (This assumes that the restoring force between the atoms is directly 

proportional to the displacement over and above the equilibrium position). For a linear chain comprising of 

periodic placement of atoms as in Fig. 1 and 2, the dispersion relation for the longitudinal modes is given 

by [1]: 

 

𝜔 =  𝛼
1

𝑚
+

1

𝑀
± 𝛼

1

𝑚
+

1

𝑀
−

4 𝑠𝑖𝑛 𝑞𝑎

𝑚𝑀
 

 

The upper + sign is taken the case of the LO modes and the lower – sign is taken in the case of LA 

mode. The symbols in the above equations are: 

 

𝑚 = 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑙𝑖𝑔ℎ𝑡𝑒𝑟 𝑎𝑡𝑜𝑚 𝑖𝑛 𝑑𝑖𝑎𝑡𝑜𝑚𝑖𝑐 𝑏𝑎𝑠𝑖𝑠 

𝑀 = 𝑚𝑎𝑠𝑠 𝑜𝑓 ℎ𝑒𝑎𝑣𝑖𝑒𝑟 𝑎𝑡𝑜𝑚 𝑖𝑛 𝑑𝑖𝑎𝑡𝑜𝑚𝑖𝑐 𝑏𝑎𝑠𝑖𝑠 

  𝛼 = 𝑖𝑛𝑡𝑒𝑟𝑎𝑡𝑜𝑚𝑖𝑐 𝑠𝑝𝑟𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

                                           𝑞 = 𝑝ℎ𝑜𝑛𝑜𝑛 𝑤𝑎𝑣𝑒𝑣𝑒𝑐𝑡𝑜𝑟 

                          𝜔 = 𝑝ℎ𝑜𝑛𝑜𝑛 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 

                                      𝑎 = 𝑖𝑛𝑡𝑒𝑟𝑎𝑡𝑜𝑚𝑖𝑐 𝑒𝑞𝑢𝑖𝑙𝑙𝑖𝑏𝑟𝑖𝑢𝑚 𝑠𝑝𝑎𝑐𝑖𝑛𝑔 

The figure below shows the plot in the first Brillouin zone for frequency vs. wavevector relation  

for a diatomic basis crystal: 
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The high frequency solution of Eq.1 yields the optical phonon modes whereas the low frequency 

solution yields the acoustic phonon modes. 
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Figure 3 Dispersion relation of bulk phonons in a linear crystal with diatomic basis 
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The group velocity (𝒗𝒈) is defined as the instantaneous slope of the curve in the dispersion 

relation, which is equal to, . The group velocity represents the velocity of energy transmission 

in the material. It is evident that the acoustic modes have higher group velocity than the optical 

phonons near zone center (Г-point ) of the Brillouin zone. 

 

1.2 Why are phonons important: Phonons give rise to numerous effects in semiconductors which 

significantly affect their electronic and optical properties; below are three significant phonon 

mediated effects in semiconductors which are essential for a thorough understanding of phonons: 

 

1. Dominant electron scattering mechanism: The electron-phonon interaction is one of the 

fundamental interaction processes in solids that frequently provides the dominant 

scattering mechanism with exception being at low temperatures [3]. As pointed out earlier, 

the LO phonons in a polar semiconductor give rise to macroscopic polarization field which 

couples with the electron and results in energy exchange between the electron and LO 

phonon. An external electric field causes an electron to gain energy and hence accelerates 

it; however, when the electron energy reaches a threshold level (36 meV in GaAs and 91 

meV in GaN), then the electron rapidly emits an LO phonon causing it to loose energy. 

Under steady state conditions, the energy gained from the external electric field is balanced 

by the energy lost by phonon emission, this eventually causes electron to move with a 

constant velocity also known as saturation velocity. This saturation velocity is the upper 

equilibrium limit on velocity of electron which it can attain inside a material. The acoustic 

phonon on the other hand causes the inter atomic distance between the atoms to fluctuate 

causing the conduction band energy levels to fluctuate accordingly, thus giving rise to a 
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deformation potential in the conduction band which interacts with the electron causing the 

loss of momentum and energy. 

 

2. Non-vertical transitions in indirect band gap semiconductors: The density of electrons 

and holes in conduction and valence band respectively are maximum near the minima and 

maxima of conduction band and valence band as depicted in a typical E-K diagram. In an 

indirect band gap semiconductor the minima and maxima of conduction and valence band 

do not coincide. A photon when interacting with an electron can cause vertical transition 

to-from valence-conduction band transition, because the photon has very low momentum 

due low magnitude of wavevector since its wavelength is of the order of few hundreds of 

nanometers. Thus, the transitions caused by photon approximately preserves the 

momentum of electrons from its initial and final state, hence in an indirect semiconductor 

the probability of photon assisted transitions is very low. On the contrary, a phonon has 

energy much less than a photon but very high magnitude of wavevector (for example at the 

end of first Brillouin zone k = п/2a where a = lattice constant and is of the order of few 

angstroms). Thus, emission-absorption of phonons can lead to phonon assisted transitions 

in indirect bandgap semiconductors. 

 

3. Exciton production-annihilation [2]: Excitons are a hydrogen-atom like quasi-particle 

formed in semiconductors in which bound electron-hole pairs are present due to Coulomb 

interactions. 

The exciton energy levels are present inside the bandgap. A phonon with a high wavevector 

can produce an exciton; to conserve the momentum, the excitons, after formation, have 

high kinetic energies and can roam freely inside the crystal. Similarly, the phonons can 
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interact with excitons to annihilate by causing electron and hole to recombine. 

Understanding of exciton dynamics is very important for performance characterization of 

optoelectronic devices. 

1.3 Emergence of new phonon modes in semiconductor quantum well 
 

Komirenko et. al (1999) in landmark work applies Loudon’s dielectric continuum model to 

uniaxial crystals study to various optical phonon modes in wurtzite-material-based quantum wells 

(QW). Uniaxial crystals have completely different electrical, optical and mechanical properties 

along a particular axis (c-axis), whereas the properties along the other two mutually perpendicular 

directions are the same. Because of this anisotropy, various effects such as lack of complete 

confinement of phonons in wurtzite quantum wells and the formation of finite energy intervals for 

confined modes occur in wurtzite QWs. Various new modes such as interface modes, half space 

modes and propagating modes appear in wurtzite QWs. The above modes have completely 

different frequency spectra than the bulk modes described earlier in the chapter. 

 

 

1.4 Outline of Research Work: 
 

The organization of research work presented in this thesis is as under: In Chapter 2, the first part 

we present the evaluation of analytical expressions and plots of graphs for dispersion relation and 

electron-phonon interaction potentials (also known as Frohlich potential) for interface modes in 

various two-interface wurtzite heterostructure terminated with semi-infinite layers. The second 

part deals with two heterostructures - (a) 𝐴𝑙 𝐺𝑎 𝑁/𝐴𝑙 𝐺𝑎 𝑁/ 𝐴𝑙 𝐺𝑎 𝑁  (b) 

GaN/𝐼𝑛 𝐺𝑎 𝑁/𝐺𝑎𝑁, in both of the heterostructures the range of x is found for which the 
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interface modes can exist as well as the corresponding range of frequency for which interface 

modes exist. 

Chapter 3 presents the evaluation of analytical expressions for dispersion relations and interaction 

potentials for a two-interface metal-terminated wurtzite heterostructure. These heterostructures 

find application in dual gate MOSFETS. It is further discussed as to how metal terminations leads 

to reduced scattering of electrons by interface modes. 

 

Chapter 4, presents a general theory based on the transfer matrix method for wurtzite 

heterostructure. This work is inspired by the work of Yu et al. (1997) which was developed for 

isotropic crystals. The theory so developed in Chapter 4 enables one to find dispersion relation and 

Frohlich potential for interface modes in any heterostructure consisting of an arbitrary number of 

layers. Further, the theory is applied to a 2-layer (AlN/GaN) 4-period superlattice to find the 

dipersion relation of interface modes. 

 

Chapter 5, Analytical expressions are derived and graphs plotted for out-of-plane vibrations in 1-

monolayer (1-ML) thick MoS2. The recent available literature has treated only the in-plane 

vibration modes. 
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CHAPTER 2 Interface-Phonon — Electron Interaction Potentials and Dispersions 
Relations in III-Nitride-Based Structures 

 
2.1. Introduction 
 

The study of electron-optical-phonon interactions in semiconductor structures has been active for 

a variety of semiconductor heterostructures with particular emphasis on semiconductors based on 

cubic crystals [1]. In particular, the optical modes in such structures are known to facilitate fast 

phonon-assisted transitions for the case where the phonons are interface modes [4].  The Frohlich 

potentials and dispersion relations of joint optical phonon modes, known as interface optical 

phonons, have been shown to be derivable using transfer matrix techniques introduced by Yu et 

al. [5].  These techniques have been applied extensively for heterostructures based on cubic crystals 

as exemplified by Teng et al. [6].  Moreover, confined and interface modes on such 

heterostructures have been shown to be critical in the performance of semiconductor lasers [7,8]. 

Of special importance, such confined and interface phonon-assisted transitions have been shown 

to be important in the operation of quantum cascade lasers and it was shown that interface-

phonon—assisted transitions can greatly enhance population inversions [9-11]. Of special interest 

to the present study of III-nitride structures with ternary layers, the dielectric continuum models 

of Lee et al. [12-13] and Komirenko et al. [14-15] provided formulations of models treating the 

confined and interface phonons in uniaxial crystals with wurtzite structures based on III-nitride 

materials being a representative material system. By extending out previous work [14-15], the 

work of Glieze et al. [16] provided an illuminating account of the interface phonon modes in 

special case of superlattices based on wurtzite superlattices. Other works on III-nitride structures, 
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Lin et al. [17] considered the mobility enhancements in AlGaN/GaN/SiC with stair-step and 

graded heterostructures and Gaska et al. [18] considered the high temperature performance of 

AlGaN/GaN high-electron-mobility field-effect transistors on SiC substrates. Subsequent works 

formulated the interface phonon modes for GaN-ZnO heterstructures [19] as well as the electron-

phonon scattering rates in wurtzite structures [20].  Zhang et al. considered interface optical 

phonons in wurtzite quantum heterostructures with particular emphasis on SiC/GaN/vacuum and 

GaN/AlN/vacuum heterostructues.  In the present work, we provide a generalized treatment of the 

formulation in Ref. 20, model the Frohlich interactions in more complex III-nitride based 

heterosctructures, and point out errors.  Interface phonon modes of dual-gate metal-oxide-

semiconductor field-effect transistors have been formulated in Ref. 22.  Park et al. [23, 24] have 

recently investigated heat transport via interface modes that propagate before decaying into heat 

carrying acoustic phonons, electron mobility and saturation velocity limits in GaN-based structures 

with binary layers using the dielectric continuum model for uniaxial materials [3, 5, 20]; the 

generalization to interface modes in ternary-containing layers portends such application for an 

expanded class of nitride heterostructures.   Herein, we derive expressions for the phonon-electron 

Frohlich interactions as well as the dispersion relations for these joint modes for the 

technologically important case of III-nitride ternary materials for a general value of the so-called 

“x-value” describing the composition of each ternary layer, such as InxGa1-xN, where x can have 

any specified value between 0 and 1. 

 

There are four Sections in this chapter. In the following section, Section 2.2., we provide a 

generalize formulation of the Frohlich potentials and the dispersion relations of interface phonon 

modes in multi-layer heterostructures. Results and a discussion are presented in Section 2.3.  

Finally, Section 2.4. summarizes the conclusions of this paper. 
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2.2. Theory   
 

 

The wurtzite structures considered in the paper have 4 atoms per unit cell and it follows that there are 

three acoustic modes and nine optical modes.  Among the optical modes  there are only two modes 

which couple strongly to electrons, so-called infrared active modes.  The dielectric constants along the 

z-axis and perpendicular to the z-axis are given by:       

𝜀 (𝜔) = 𝜀
𝜔 − 𝜔

𝜔 − 𝜔
 

𝜀 (𝜔) = 𝜀
𝜔 − 𝜔

𝜔 − 𝜔
 

  

where ω⊥L and ωzL represents the optical phonon frequencies of longitudinal modes along 

perpendicular to and parallel to z-axis and along z-direction, whereas, ωz and ωL are the optical 

frequencies of transverse modes. In the notation of the macroscopic dielectric continuum model, 

the classical electrostatic equations which are satisfied by the polar optical phonon fields [3, 12-

15] are, 

 

�⃗�(𝑟) =  −∇Φ(𝑟)                                                       

𝐷(𝑟) = �⃗�(𝑟) + 4𝜋𝑃(𝑟) = 𝜀 (𝜔)𝐸 (𝑟)𝜌 +  𝜀 (𝜔)𝐸 (𝑟)�̂�  

∇. 𝐷(𝑟) = 0 

 

(3) 
 
(4) 
 
(5) 

(1) 
 
 
 
(2) 
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where Φ is the potential introduced by the optical phonon modes, E represents electric field, D 

represents displacement field and P represents polarization field. Where, 𝜌 and �̂� represent the 

unit vectors  perpendicular to and parallel to z- axis (which is also c-axis) respectively.  

Substituting the equation for the electrostatic phonon potential Φ(𝑟) =  Φ(𝑧)𝑒 𝒒.𝝆 

into Eq. 3, one finds  

∇. 𝐷 = 𝜀 (𝜔)
𝜕

𝜕𝑧
− 𝜀 (𝜔)𝑞 Φ(𝑟) = 0 

 

Taking into account boundary conditions at z = ±∞,  

 

It follows that for wurzite heterstructures as depicted in Fig. 4, that the phonon potential is: 

 

Φ(𝑟) = 𝑒 𝒒.𝝆

⎩
⎪
⎨

⎪
⎧ 𝐶𝑒

 
                                                           𝑧 <  −𝑑/2

𝐴 𝑐𝑜𝑠ℎ(𝑘 𝑧) + 𝐵 𝑠𝑖𝑛ℎ(𝑘 𝑧)                  −
𝑑

2
 ≤ 𝑧 ≤ 𝑑/2 

𝐷𝑒                                                              𝑧 > 𝑑/2 

 

 

 

where A, B, C, and D are potential amplitudes in the various material regions and the wavevectors 

in the three regions are denoted by 𝑘 , 𝑘  and 𝑘 . 

The intermediate layer has a thickness, d.  

 

Applying the boundary conditions:  

 

( ) 0
z

z


 

(6) 
 

(7) 
 

(8) 
 
 
 
(9) 
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 Φ (𝑧) =  Φ (𝑧) 

 

𝜀
𝜕Φ

𝜕𝑧
=  𝜀

𝜕Φ

𝜕𝑧
 

 

which express the facts that the normal component of Dz and the tangential component of E⊥ are 

continuous at the interfaces.  After eliminating the constants we get the secular equation of the 

system: 

 
 ( / )

 ( / )
=  − 

 ( / )

 ( / )
 

 

 

 

where k = (kz, q) is the phonon wave vector, such that 

 

𝑘 =  
𝜀 ,

𝜀 ,
 𝑞 

 

with εi⊥εiz > 0 and i = 1, 2, 3 for the three regions of the heterostructure.  

From the above dispersion relation the condition for symmetric and anti-symmetric Frohlich 

potentials can be derived separately. It is observed that for symmetric solution the dispersion 

relation will be: 

 

𝜀 𝑘 + 𝜀 𝑘  𝑡𝑎𝑛ℎ(𝑘 𝑑/2) 𝜀 𝑘 + 𝜀 𝑘  𝑡𝑎𝑛ℎ(𝑘 𝑑/2)  = 0 

 
(10) 
 

(11) 
 

 

(12) 
 



14 
 

 
 

 

Similarly, the condition for anti-symmetric potential will be:  

𝜀 𝑘 + 𝜀 𝑘  𝑡𝑎𝑛ℎ(𝑘 𝑑/2) 𝜀 𝑘 + 𝜀 𝑘  𝑡𝑎𝑛ℎ(𝑘 𝑑/2) = 0 

 

Now, we can define the expression of potential separately as symmetric and anti-symmetric shown 

below:       

 

 

 

 

 

𝜙(𝑟) = 𝑒 𝒒.𝝆

⎩
⎪
⎨

⎪
⎧𝜙 𝑒                                                   ; 𝑧 <  −𝑑/2

𝜙

𝑐𝑜𝑠ℎ
𝑘 𝑑

2

 𝑐𝑜𝑠ℎ(𝑘 𝑧)                           ; |𝑧| < 𝑑/2

𝜙 𝑒                                              ; 𝑧 > 𝑑/2

 

 

The above is the expression for symmetric solution inside the quantum well. The anti-symmetric 

solutions will have the form shown below: 

 

𝜙(𝑟) = 𝑒 𝒒.𝝆

⎩
⎪
⎨

⎪
⎧−𝜙 𝑒                                                 ; 𝑧 <  −𝑑/2

𝜙

𝑠𝑖𝑛ℎ
𝑘 𝑑

2

 𝑠𝑖𝑛ℎ(𝑘 𝑧)                           ; |𝑧| < 𝑑/2

𝜙 𝑒                                              ; 𝑧 > 𝑑/2

 

Using the normalization condition for wurtzite material [3, 12-15]  

(13) 
 

(14) 
 

(15) 
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ℏ

2𝜔𝐿
=

1

4𝜋

1

2𝜔
𝑑𝑧 𝑞  

𝜕𝜀 , (𝜔)

𝜕𝜔
|Φ (𝑞, 𝑧)| +

𝜕𝜀 , (𝜔)

𝜕𝜔

𝜕Φ (𝑞, 𝑧)

𝜕𝑧

 

 

and imposing the boundary conditions of Eqs.8 and Eqs. 9, it follows that: 

The expression for symmetric solution  

ϕ = 𝑞 +  + 𝑞 +
( )

+

( )
− + 𝑞 +   

 

and the expression for anti-symmetric solution is 

 

𝜙 =
2ℎ

ℰ
𝑞

𝜕𝜖

𝜕𝜔

1

2𝑘
+  

𝜕𝜖

𝜕𝜔
 

𝑘

2𝑘

+

⎝

⎛𝑞
𝜕𝜖

𝜕𝜔
 

1

𝑠𝑖𝑛ℎ
𝑘 𝑑

2

  
𝑠𝑖𝑛ℎ(𝑘 𝑑)

2𝑘
−

𝑑

2

⎠

⎞

+ 
𝜕𝜖

𝜕𝜔

⎝

⎛
𝑘

𝑠𝑖𝑛ℎ
𝑘 𝑑

2

  
𝑠𝑖𝑛ℎ(𝑘 𝑑)

2𝑘
+

𝑑

2

⎠

⎞

+ 𝑞
𝜕𝜖

𝜕𝜔

1

2𝑘
+  

𝜕𝜖

𝜕𝜔
 

𝑘

2𝑘

 

 

 

 

(16

(17

(18
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2.3. Results and Discussion  
 

The dispersion relations and Frohlich potential for the structure of Fig. 4 are depicted in Fig. 5 and 

Figs. 6 and 7, respectively. In GaN/In0.15Ga0.85N/GaN case the frequencies 720 cm-1 < ω < 735 cm-

1 are the allowed rage of frequencies for IF phonon to exist in the entire heterostructure. The 

dispersion relations are based on Eq. 10 and the Frohlich potentials are based on Eqs. 20 and 21.  

In this example we illustrate the functional forms of the dispersion relations and the symmetric 

and anti-symmetric Frohlich potentials for the wurtzite heterostructure can be determined from 

Eq. 10 for the IF optical phonon modes.  

For the heterostructure, with materia1 and 2, two cases are considered: SiC (6H)/GaN and 

GaN/AlN, respectively (as in Fig.5). Herein, the material 3 is taken as vacuum so we have ε3z = 

ε3⊥ = 1. Table 1 details parameters of every materials used in heterostructures under consideration. 

 

For both SiC/GaN/Vacuum as well as GaN/AlN/Vacuum, we get four interface phonon modes- 

out of which  two modes are symmetric and the other two modes are anti-symmetric in nature. For 

SiC/GaN/Vacuum heterostructure the allowed range of frequencies for Interface Phonon to exist 

in the structure is as below:  

561 cm-1 < ω < 735 cm-1 

 



17 
 

 
 

The dispersion curve for SiC/GaN/Vacuum heterostructure is shown in Fig. 9, whereas the 

symmetric Fröhlich potential graph is shown in Fig.10 and the anti-symmetric potential graph is 

shown in Fig.11. The Fröhlich potential graphs are drawn for qd = 3. 

 

For GaN/AlN/Vacuum, the allowed range of frequencies is: 743 cm-1 < ω < 893 cm-1 

The dispersion curve for GaN/AlN/Vacuum heterostructure is shown in Fig. 12, whereas the 

symmetric Fröhlich potential graph is shown in Fig.13 and the anti-symmetric potential graph is 

shown in Fig.14. The Fröhlich potential graphs are drawn for qd = 3. 

 

Importantly, the allowed interface modes must obey restrictive conditions on frequency which 

depend on the frequencies of the phonon modes in the layers composing the heterostructures. 

These frequency conditions are: 

𝜀 (𝜔)𝜀 (𝜔) < 0  &  𝜀 (𝜔)𝜀 (𝜔) < 0 & 𝜀 , 𝜀 , , ,
> 0         

The above simultaneous condition leads to the conclusion that the heterostructure with 

compositions Al0.15Ga0.85N/Al0.3Ga00.7N/Al0.22Ga0.78N does not have an allowed solution.   

 

The following two sub-sections outlines detailed analysis for determining the range of composition 

labelled by x for existence of Interface modes in  𝐀𝐥𝟏 𝐱𝟏𝐆𝐚𝐱𝟏𝐍/𝐀𝐥𝟏 𝐱𝟐𝐆𝐚𝐱𝟐𝐍 /𝐀𝐥𝟏 𝐱𝟑𝐆𝐚𝐱𝟏𝟑𝐍 and 

GaN/𝐈𝐧𝐱𝐆𝐚𝟏 𝐱𝐍/GaN heterostructures 

 

1. Range of x for existence of Interface modes in 𝐀𝐥𝟏 𝐱𝟏𝐆𝐚𝐱𝟏𝐍/𝐀𝐥𝟏 𝐱𝟐𝐆𝐚𝐱𝟐𝐍 /𝐀𝐥𝟏 𝐱𝟑𝐆𝐚𝐱𝟏𝟑𝐍 

heterostructure 

(19
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The procedure for determining the allowed frequency range of interface phonon modes in a three-

layer heterostructure is illustrated for several different cases. The heterostructure under 

consideration comprises of a middle layer of 𝐴𝑙 𝐺𝑎 𝑁 flanked by semi-infinite layers of 

𝐴𝑙 𝐺𝑎 𝑁 and 𝐴𝑙 𝐺𝑎 𝑁 on left and right side respectively as shown in Fig. 15 

 

 

Any heterostructure comprising wurtzite materials must obey the following two conditions 

simultaneously for the existence of interface phonon modes: 

 

1.  𝝐∥𝝐 > 0: In each individual layer, the product of dielectric constant along the c-axis or 

z-axis (which is the ∥ direction here) and the dielectric constant along the direction 

perpendicular to c-axis (which is the ⊥ direction here) must be greater than zero. 

2. 𝝐||,𝒊𝝐||,𝒊 𝟏 < 0: The product of dielectric constant along c-axis of two adjacent layers must 

be less than zero. 

 

 Table 3 shows optical phonon frequencies of  𝐴𝑙 𝐺𝑎 𝑁 as a function of x. 

 

Based on the data of Table 3, Fig.16 illustrates the range of frequencies for which  𝜖∥𝜖 > 0 and the 

sign of 𝜖∥ which is true for all values of x. The shaded portion in Fig. 16 represents frequency range 

for which 𝜖∥𝜖 > 0 
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Similarly, the shaded portion in Figure 17 shows the range of frequency for which 𝜖∥ is positive 

and the unshaded portion shows the range for which it is negative. 

 

Based on the two essential conditions for interface phonons and the above two figures showing 

the ranges for the dielectric constant expressions, the categories of heterostructures supporting 

interface phonon modes in all three Al1-x Gax N layers follow: 

 

Type A: In this heterostructure the 𝜖∥ of individual layers will alternate as:  -/+/- 

 

Type B: In this heterostructure the 𝜖∥ of individual layers will alternate as:  +/-/+ 

 

For the Type A heterostructure the following two structures exist: 

 

First Case: It is noted that 𝜖∥ < 0 for 𝜔 <  𝜔 < 𝜔 , thus for simplicity we will omit the 

diagrams of 𝜖∥(as in Fig. 17) and use the frequency range diagrams for 𝜖∥𝜖  (as in Fig. 16) for 

Layer1 , 2 & 3 in that order for  better understanding as shown in Fig. 18. 

 

The condition depicted in Fig. 18 is possible only when 𝜔  > 𝜔  and 𝜔  > 𝜔 , whereas, the 

range of interface phonon frequency is 𝜔  - 𝜔  or 𝜔  - 𝜔   depending on 𝜔  is greater than 

𝜔  or lesser than 𝜔  respectively. Fig. 18 shows an example where 𝜔 < 𝜔 . 

 

For example, this is achieved if 0 < 𝑥  < 0.2 then 0.78 < 𝑥  < 1; this opens the window : 𝜔  - 

𝜔 , also, from Table. 3 data it is observed that an increase in x causes increase in 𝜔  , thus the 
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choice of 𝑥  depends on how much narrower the range of allowed frequency is required for 

phonons, if 𝑥  is chosen such that 𝑥  ≥ 𝑥  then it will further restrict the range of allowed 

frequency to 𝜔  - 𝜔 . Since a further increase in 𝑥  would constrict more the 𝜔  - 𝜔  window, 

so the maximum value of 𝑥  should be identified based on the desired frequency range. 

 

If x1 is increased beyond 0.2 then the range of 𝑥  is shown in Table 4. 

 

If 𝑥  ≤ 𝑥  then 𝜔 ≤ 𝜔  the range of interface modes is: 𝜔  - 𝜔   and if 𝑥  > 𝑥  then the 

range is: 𝜔  - 𝜔  in this case the care must be taken to not to increase 𝑥  so much so that  𝜔 ≥ 

𝜔 . 

Second Case: 

 

Fig. 19 depicts the case of Type A heterostructure for the Second Case. In this case, the interface 

modes can exist in the heterostructure if 𝜔 < 𝜔  and 𝜔 < 𝜔 . 

 

The range of interface mode is: 𝜔  - 𝜔  or 𝜔  - 𝜔  depending on whether 𝜔  is greater 

or less than  𝜔 . Fig. 19 shows the case for 𝜔 <  𝜔 . 

 

Table 3 shows variation of optical phonon frequencies with x it can be concluded that, if, 0 < 𝑥  < 

0.37 then 0.5< 𝑥 < 1. The choice of 𝑥  depends on the range of interface modes required, if 𝜔  

- 𝜔  is the required range then 𝑥  ≤ 𝑥 , whereas if 𝜔  - 𝜔  is the required range then 𝑥 > 𝑥  

but in this case the upper limit on increase of 𝑥  should be such that 𝜔 < 𝜔 . 
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For all 𝑥 in the range, 0.37 < 𝑥 < 0.7 then 𝑥  ≥ 𝑥  +0.13, the choice of 𝑥  should be done as in the 

preceding paragraph.  

 

For all 𝑥 in the range, 0.7 < 𝑥 < 0.85 then 𝑥  ≥ 𝑥  +0.08, the choice of 𝑥  should be done as in the 

preceding paragraph.  

 

For all 𝑥 in the range, 0.85 < 𝑥 < 1 then 𝑥  > 𝑥 , the choice of 𝑥  should be made as in the 

preceding paragraph.  

 

For the Type B heterostructure the following two structures exist: 

 

 

First case: 

Fig. 20 depicts the case of Type B heterostructure for the First Case. In this case, the Interface 

modes can exist in the heterostructure if:  𝜔 < 𝜔 < 𝜔  in this case the range of Interface 

modes will be: 𝜔 − 𝜔  , this corresponds to 𝑥  >𝑥 . The second case for existence is 𝜔 < 

𝜔 < 𝜔  in this case the range of Interface modes will be: 𝜔 − 𝜔  , this corresponds to 𝑥  < 

𝑥 . 

 

This case is similar to the First case of Type A heterostructure with layer 1 and 2 interchanged, so 

the same limitations on 𝑥  and 𝑥  will apply as in Type A case. The choice of 𝑥  as indicated 

above can be made depending on the range of required frequency range.  
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Second Case: 

Fig. 20 depicts the case of Type B heterostructure for the First Case. In this case, the Interface 

modes can exist in the heterostructure if : 𝜔 < 𝜔 <  𝜔  in this case the range of Interface 

modes will be: 𝜔 − 𝜔 , this corresponds to the case for  𝑥  < 𝑥 . The second case for 

existence of interface mode is: 𝜔 < 𝜔 < 𝜔 in this case the range of interface modes will 

be: 𝜔 − 𝜔 , this case corresponds to the case of    𝑥  > 𝑥 . 

 

This case is similar to the Type A second case, thus, the restriction on 𝑥  and 𝑥  will be same as 

in Type A second case. The choice of 𝑥  as indicated previously can be made depending on the 

range of desired frequency range. 

 

2 . Range of x for existence of Interface modes in GaN/𝐈𝐧𝐱𝐆𝐚𝟏 𝐱𝐍/GaN heterostructure 

 

Consider the case of the heterostructure with a middle In Ga N layer flanked by GaN layer on 

both the sides. The shaded region in the below graphs show the range of frequencies for which 

𝜖∥𝜖 ≥ 0 and 𝜖∥ > 0 in GaN respectively: The shaded portion in Fig.22 represents frequency range 

for which 𝜖∥𝜖 > 0 for GaN 

 

 

Similarly, the shaded portion in Fig. 23 shows the range of frequency for which 𝜖∥ is positive and 

the unshaded portion shows the range for which it is negative for GaN. 
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The variation of optical phonon frequencies for Inx Ga1-xN with respect to x is shown in Table. 5.  

 

Let us explore the possibility of existence of four different possible heterostructure for a 3- layer 

case of GaN/ Inx Ga1-xN /GaN. This case corresponds to 𝑥 =  𝑥 = 0. The following paragraphs 

discuss all four heterostructures: 

 

Type A First Case:  This case requires condition 𝜔 (𝐺𝑎𝑁) < 𝜔 (𝐼𝑛 𝐺𝑎 𝑁) < 𝜔 (𝐺𝑎𝑁)as 

shown in Fig. 24. 

 

From the Table 5, on phonon frequencies for Inx Ga1-xN vs. x, it is observed that, for no value of x  𝜔 >

559 𝑐𝑚 , rather 𝜔  decreases with increase in x. The highest value of 𝜔 = 531 𝑐𝑚  for x = 0. 

Thus, it is concluded that this possible combination of heterostructure cannot exist.  

 

Type A Second Case: This case requires condition 𝜔 (𝐺𝑎𝑁) < 𝜔 (𝐼𝑛 𝐺𝑎 𝑁) < 𝜔 (𝐺𝑎𝑁) as 

shown in Fig. 25 

 

From the Table 5, on phonon frequencies for Inx Ga1-xN vs. x, it is observed that, for 0.07 ≤ 𝑥 < 1, 

𝜔 ≤ 734 𝑐𝑚 . As evident from the figure above the range of interface mode will be  

𝜔 (𝐺𝑎𝑁) −  𝜔 (𝐼𝑛 𝐺𝑎 𝑁). 

 

Type B First Case:  For GaN, the 𝜔 = 531 𝑐𝑚 ; thus, for the interface modes to exist in this 

type of heterostructure only those value of x for Inx Ga1-xN layer are allowed such that: 𝜔 (Inx Ga1-xN) ≤ 
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𝜔 (GaN). And the range of allowed frequency for interface mode is: 𝜔 (GaN) −𝜔 (Inx Ga1-xN), Fig. 26 

shows the present case and the relevant frequency for interface mode existence. 

 

From the Table 5, on phonon frequencies for Inx Ga1-xN vs. x, it is observed that if 0.35 ≤ x < 1 

then the above condition is satisfied. Hence, the allowed frequency range for interface modes is 

531 𝑐𝑚 − 𝜔 (𝐼𝑛 𝐺𝑎 𝑁). 

 

 

 

Type B Second Case: Fig. 27 shows the range of frequencies for existence of interface modes. 

For this combination the constraint imposed is  𝜔 (𝐼𝑛 𝐺𝑎 𝑁) > 741 𝑐𝑚 . The table of 

phonon frequencies for Inx Ga1-xN Vs x shows that  𝜔 (𝐼𝑛 𝐺𝑎 𝑁) is never greater than 

741 𝑐𝑚  for any value of x. Thus, it can be concluded that no interface modes can exist in this 

heterostructure for frequencies greater than 741 𝑐𝑚 . 

The Table 6 summarizes the maximum possible range vis-à-vis the range of x for all four 

combinations of heterostructures for GaN/𝐼𝑛 𝐺𝑎 𝑁/GaN. 

2.4. Conclusion  
 

This chapter derives general expressions for the dispersion relations and interface potentials for 

the joint interface optical phonon modes in uni-axial crystals exemplifies by ternary-based nitride 

heterostructures such as those illustrated for the specific cases of the symmetric heterostructure: 

GaN/In0.15Ga0.85N/GaN heterostructure (as a representative case of a ternary layer), as well as two 

asymmetric heterostructures: SiC/GaN/Vacuum and AlN/GaN/Vacuum.  Interestingly, the 

allowed interface modes must obey restrictive conditions on frequency which depend on the 
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frequencies of the phonon modes in the layers composing the heterostructures. For example, 

application of the frequency conditions discussed in Section III. indicate that the heterostructure 

with compositions Al0.15Ga0.85N/Al0.3Ga00.7N/Al0.22Ga0.78N  does not have an allowed solution.   

Although it is beyond the scope of the present paper, it is worth pointing out the potential 

application of our formalism to structures containing van der Waals layers.  Consider the case of  

MoS2 grown on GaN; this case is equivalent to a two-interface heterostructure with layers: 

MoS2/Vacuum/GaN. The vacuum layer in the middle is due to van der Waals gap.   For MoS2 it is 

observed that 𝐴"  (𝜔 ) = 𝐴"  (𝜔 ) = 473 𝑐𝑚  due to which the dielectric constant along the 

z direction (perpendicular to interface), 𝜖∥ > 0 at all frequencies. Also, the middle vacuum layer, 

which is isotropic medium, the dielectric constant in all directions is equal to 1. From above, 

𝜖∥, (𝜔) = 1 and 𝜖∥, (𝜔) > 0, thus, it is concluded that  𝜖∥, 𝜖∥, ≮ 0 for any frequency 

which makes existence of joint interface phonon impossible. Of course, there can be evanescent 

tails of the Frohlich potentials on the vacuum region from the two layers surrounding the vacuum 

layer, but the evanescent potentials do not form joint interface modes for the entire material 

structure. 

 

This Paper has been submitted to Journal of Applied Physics and is currently under review, 

the above work with all the following figures and tables have been incorporated in the thesis 

after taking permission from the Journal of Applied Physics. 

This portion of the research was supported, in part, under AFOSR FA9550-16-1-0227; the 

aspects of this research motivated by potential applications to 2D van der Waals structures 

were supported under the Richard and Loan Hill Professorship as part of ARL JWSH# 18-

028-002. 
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Tables    

 ωzL(cm-1) ω⊥L(cm-1) ωz(cm-1) ω⊥(cm-1) ε∞  

In0.15Ga0.85N 715 720 525 550 5.76 

GaN26 734 743 531 559 5.29 

AlN27 893 916 660 673 4.68 

SiC 964 970 788 797 6.61 

 

Table I Material parameters of AlN, SiC , GaN and In0.15Ga0.85N. 

 Frequencies Φ+ L Φ- L 

SiC/GaN/Vac 

(for qd =1) 

590.05 (Symmetric) 8.92 - 

694 (Symmetric) 21.61 - 

629 (anti-symmetric) - 11.43 

721.66 (anti-symmetric) - 14.65 

GaN/AlN/Vac 

(for qd =3) 

836.6 (Symmetric) 17.32 - 

864.9 (Symmetric) 19.81 - 

840 (anti-symmetric) - 16.62 

866.7 (anti-symmetric) - 18.95 

GaN/In0.15Ga0.85N/GaN 

(for qd =1) 

731.8 (Symmetric) 27.84 - 

722.8 (anti-symmetric) - 20.42 

 

Table II Coefficients of Frohlich potential in various Heterostructures 
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X 𝝎𝒁 𝝎  𝝎𝒁𝑳 𝝎 𝑳 

0.05 607.72 667.01 883.51 905.41 

0.1 604.89 662.87 875.48 898.71 

0.15 602.05 660.05 872.69 892.01 

0.2 600.51 657.21 864.65 886.59 

0.25 597.67 653.08 860.58 879.89 

0.3 594.84 648.96 853.88 873.18 

0.35 592.01 644.84 847.16 866.48 

0.4 589.16 639.43 840.46 858.49 

0.45 586.34 636.59 833.76 850.51 

0.5 583.49 631.18 825.78 842.52 

0.55 580.66 627.06 820.37 835.82 

0.6 579.11 622.93 812.38 827.83 

0.65 573.71 617.52 804.39 818.55 

0.7 569.58 612.11 796.4 809.27 

0.75 565.45 605.4 787.12 800 

0.8 561.34 599.99 777.83 789.42 

0.85 555.92 592 768.56 777.57 

0.9 550.51 584.01 757.98 767 

0.95 542.52 573.45 747.43 753.86 

 

Table III Optical phonon frequencies of 𝐴𝑙 𝐺𝑎 𝑁 vs. x 

data based on Fig. 1 of SeGi Yu et al, PRB, 58, 15,283 (1998) [Ref 34] 
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𝒙𝟏 𝒙𝟐 

0.2 – 0.3 0.83 - 1 

0.3- 0.4 0.86 - 1 

0.4 – 0.5 0.88 -1 

0.5 -0.6 0.97-1 

Table IV Range of 𝑥  when 𝑥 > 0.2 
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X 𝝎𝒁 𝝎  𝝎𝒁𝑳 𝝎 𝑳 

0.05 529.58 554.93 726.76 735.21 

0.1 523.94 550.7 721.13 726.76 

0.15 519.72 546.48 714.08 719.72 

0.2 515.49 543.66 707.04 712.68 

0.25 511.27 539.44 700 705.63 

0.3 505.63 535.21 692.96 698.59 

0.35 502.82 532.39 685.92 690.14 

0.4 497.18 525.35 678.87 682.39 

0.45 492.96 522.54 670.42 676.06 

0.5 488.73 518.31 663.38 669.01 

0.55 484.51 514.08 653.52 660.56 

0.6 478.87 508.45 646.48 653.52 

0.65 476.06 505.63 638.03 643.66 

0.7 471.13 501.41 630.99 635.21 

0.75 467.61 498.59 623.94 626.76 

0.8 463.38 492.96 612.68 615.49 

0.85 457.75 488.73 604.23 605.63 

0.9 454.93 483.1 594.37 597.18 

0.95 449.3 480.28 583.1 585.92 

 

Table V Optical phonon frequencies for 𝐼𝑛 𝐺𝑎  𝑁 Vs x 

data based on Fig. 1 of SeGi Yu et al, PRB, 58, 15,283 (1998) [Ref 34] 
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Heterostructure Type Range of x Allowed frequency range 

Type A First Case No Solution Cannot exist 

Type A Second Case 0.07 -1 574 - 734 

Type B First Case 0.37 - 1 475 - 531 

Type B Second Case No Solution Cannot Exist 

 

Table VI Summary of the maximum possible range vis-à-vis the range of x for all four combinations of 
heterostructures for GaN/𝐼𝑛 𝐺𝑎  𝑁 /GaN. 
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Figures 

 

 

Figure 4 GaN-InGaN-GaN heterostructure used an example of applying the generalized Frohlich potentials 
and dispersion relations derived herein. 

 
 
 
 
 
 

 

 

Figure 5  Dispersion curves interface modes of GaN/In0.15Ga0.85 N/GaN structure. 
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Figure 6 Anti-symmetric Frohlich potential for GaN/In0.15Ga0.85 N/GaN structure; qd = 1. 

                                                             

 

 

 

 

Figure 7 Symmetric Frohlich potential for GaN/In0.15Ga0.85 N/GaN structure; qd = 1. 
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qd (scaled wavevector) 

Figure 9 Dispersion curve for SiC/GaN/Vacuum 
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Figure 8 The two-interface heterostructure 
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z/d 

Figure 10 Symmetric Frohlich potential graph for qd =1, SiC/GaN/Vac 

 
 
 

        

 

z/d 

Figure 11  Anti-symmetric Frohlich potential graph for qd =1, SiC/GaN/Vac 

     

 

 

P
ot

en
ti

al
 (

m
eV

-c
m

) 

P
ot

en
ti

al
 (

m
eV

-c
m

) 

590.05 cm-1 

694 cm-1 

721.66 cm-1 

629 cm-1 



35 
 

 
 

 

Figure 12 Dispersion curve for GaN/AlN/Vacuum 
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Figure 13 Symmetric Frohlich potential graph for qd =3, GaN/AlN/Vacuum 
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Figure 14  Anti-symmetric Frohlich potential graph for qd =3, GaN/AlN/Vacuum 

 

 

 

 

 

 

Figure 15  Two-interface heterostructure with semi-infinite end layers. 

 

 

 

 

P
ot

en
ti

al
 (

m
eV

-c
m

) 

z/d 

840 cm-1 

866.7 cm-1 

𝐀𝐥𝟏 𝐱𝟏𝐆𝐚𝐱𝟏𝐍 𝐀𝐥𝟏 𝐱𝟐𝐆𝐚𝐱𝟐𝐍 𝐀𝐥𝟏 𝐱𝟑𝐆𝐚𝐱𝟑𝐍 



37 
 

 
 

    

0………………………𝜔 … … 𝜔  ……………………………….𝜔 … … … . 𝜔       

Frequency 

Figure 16  Shaded region showing the range of frequencies for which 𝜀∥𝜀  > 0. 

 
 
 

    

0………………………𝜔 … . . 𝜔 … … … … … … … … … … … … … 𝜔 … … … 𝜔             

Figure 17  Shaded region showing the range of frequencies for which 𝜀∥ > 0. 

 
 
 

    

0………………….𝜔 … . . 𝜔 … … … … … … … … … … … … 𝜔 … … … … … 𝜔    

    

0…………………………………….𝜔 … . . 𝜔 … … … … … … … … . 𝜔 … … … . . 𝜔  

    

0……………………...𝜔 … . 𝜔 … … … … … … … … … … … … . . 𝜔 … … … 𝜔                          

                                Range: 𝜔 − 𝜔  

Figure 18 Type A: First Case. 

The arrangement of 3 layers of a heterostructure for Type A First case with  𝜔 <  𝜔 <  𝜔  ; 
the region of allowed frequencies is shown by the bar with double arrows. 
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0……………………….𝜔 … … … … . 𝜔 … … … … … … … … … … . 𝜔 … . . 𝜔                        

   

0………………...𝜔 … . . 𝜔 … … … … … … … … … . 𝜔 … 𝜔                                                   

    

0…………………..𝜔 … … … … … … … . 𝜔 … … … … … … … … … … . . 𝜔 … 𝜔                      

        Range = 𝜔 − 𝜔  

Figure 19 Type A: Second Case 

The arrangement of 3 layers of heterostructure for Type A Second case with  𝜔 <  𝜔 <
 𝜔 . It is to be noted that 𝜔 <  𝜔  𝑜𝑟 𝜔 >  𝜔 , these relationships only affect the 
range of allowed frequency; the region of allowed frequencies is shown by the bar with double 
arrows. 
 
 

    

0…………………………………..𝜔 … … 𝜔 … … … … … … … … … … 𝜔 … 𝜔                   

     

0……………….𝜔 … … . . 𝜔 … … … … … … … … … … … . 𝜔 … … … … … 𝜔                         

    

0…………………………………𝜔 … . . 𝜔 … … … … … … … … … … . . 𝜔 … . . 𝜔                 

 

                      Range: 𝜔 − 𝜔  

Figure 20 Type B: First Case 

 The arrangement of 3 layers of heterostructure for Type B First case with    𝜔 <  𝜔 <
 𝜔 .  The relation between 𝜔  and 𝜔  only affects the range of allowed frequency t; the 
region of allowed frequencies is shown by the bar with double arrows. 
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0………………..𝜔 ………𝜔 ……………………𝜔    𝜔                                               

    

0………………………𝜔 ……………… 𝜔 ………………..……….𝜔    𝜔                   

    

0………………….𝜔 …………𝜔 …………………..…𝜔 …….𝜔                                      

                    Range: 𝜔 − 𝜔  

Figure 21 Type B: Second Case 

The arrangement of 3 layers of a heterostructure for Type B Second case with    𝜔 <  𝜔 <
 𝜔 . The relation between 𝜔  and 𝜔  only affects the range of allowed frequency; the region 
of allowed frequencies is shown by the bar with double arrows. 
 

 

 

    

0………………………𝜔 ..……𝜔 ..…………………………….𝜔 ……….𝜔                          

                                 531 𝑐𝑚    559 𝑐𝑚                                   734 𝑐𝑚      741 𝑐𝑚  

Frequency 

Figure 22  Shaded region showing the range of frequencies for which 𝜀∥𝜀  > 0in GaN. 
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0………………………𝜔 … . . 𝜔 … … … … … … … … … … … … … 𝜔 … … … . . 𝜔                          

                     531 𝑐𝑚  559 𝑐𝑚                                     734 𝑐𝑚     741 𝑐𝑚  

Figure 23  Shaded region showing the range of frequencies for which 𝜀∥ >0 in GaN 

 
However, it is emphasized here that the above relations between 𝜖∥𝜖 > 0 and ω as well as 𝜖∥> 0 
and ω hold for every wurtzite material. 

 

 

 

   

                                                  𝜔 = 559 𝑐𝑚              𝜔 = 734 𝑐𝑚  

 

  

                                                                       𝜔   

 

   

                                                  𝜔 = 559 𝑐𝑚           𝜔 = 734 𝑐𝑚  

Figure 24  Arrangement of three layers for Type A: First Case. 
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                                                  𝜔 = 559 𝑐𝑚          𝜔 = 734 𝑐𝑚  

  

                                      𝜔   

   

                                                    𝜔 = 559 𝑐𝑚             𝜔 = 734 𝑐𝑚  

 

                             Range: 734 - 𝜔 (𝐼𝑛 𝐺𝑎 𝑁) 

Figure 25  Arrangement of three layers for Type A: Second Case 

The region of allowed frequencies is shown by the bar with double arrows. 
 
 
 

 

  

                                                       𝜔 = 531 𝑐𝑚   

   

                             𝜔                                         𝜔  

  

𝜔 = 531 𝑐𝑚  

             

                  Range = 531 𝑐𝑚 − 𝜔  

Figure 26  Arrangement of three layers for Type B: First Case 

The region of allowed frequencies is shown by the bar with double arrows. 



42 
 

 
 

 

 

 

  

                            𝜔 = 741 𝑐𝑚   

   

                                                    𝜔                                    𝜔  

  

𝜔 = 741 𝑐𝑚  

             

                             Range = 𝜔 − 741 𝑐𝑚  

Figure 27  Arrangement of three layers for Type B: Second Case 

The region of allowed frequencies is shown by the bar with double arrows. 
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CHAPTER 3 INTERFACE PHONONS IN METAL TERMINATED TWO INTERFACE 
WURTZITE HETEROSTRUCTURE 

 
3.1 INTRODUCTION 

 
In this chapter a metal-terminated two-interface wurtzite heterostructure as shown in Fig. 
28 is considered and analytical expressions for dispersion relations for interface modes will 
be derived and after that Frohlich potential expressions will be derived. The mathematical 
analysis in this chapter is described in detail; however, the steps are same as that in Chapter 
2. 
 

3.2 ANALYSIS  
 

             

             

 Material 1                  Material 2         Material 3      Metal        

             

 −𝒍𝟏 −
𝒅

𝟐
     −

𝒅

𝟐
        0                 

𝒅

𝟐
            𝒍𝟐 +

𝒅

𝟐
 

 

 

 

In the notation of the macroscopic dielectric continuum model, the classical electrostatic equations 

which are satisfied by the polar optical phonon fields [1, 10-13] are, 

 

�⃗�(𝑟) =  −∇Φ(𝑟)                                                       

𝐷(𝑟) = �⃗�(𝑟) + 4𝜋𝑃(𝑟) = 𝜀 (𝜔)𝐸 (𝑟)𝜌 +  𝜀 (𝜔)𝐸 (𝑟)�̂�  

∇. 𝐷(𝑟) = 0 

Metal 

(20) 
 
(21) 
 
(22) 

Figure 28  Metal-terminated two-interface heterostructure with reference coordinate axes. 
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where Φ is the potential introduced by the optical phonon modes, E represents electric field, D 

represents displacement field and P represents polarization field. Where, 𝜌 and �̂� represent the 

unit vectors  perpendicular to and parallel to z- axis (which is also c-axis) respectively.  

Substituting the equation for the electrostatic phonon potential Φ(𝑟) =  Φ(𝑧)𝑒 𝒒.𝝆 

into Eq. 20, one finds  

∇. 𝐷 = 𝜀 (𝜔)
𝜕

𝜕𝑧
− 𝜀 (𝜔)𝑞 Φ(𝑟) = 0 

 

Taking into account boundary conditions at z = ±∞,  

 

It follows that for wurzite heterstructures as depicted in Fig. 28, that the phonon potential is: 

 

Φ(𝑟) = 𝑒 𝒒.𝝆

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 𝐶 𝑐𝑜𝑠ℎ 𝑘 𝑧 +

𝑑

2
+ 𝐷 𝑠𝑖𝑛ℎ 𝑘 𝑧 +

𝑑

2
                      𝑧 <  −𝑑/2

𝐴 𝑐𝑜𝑠ℎ(𝑘 𝑧) + 𝐵 𝑠𝑖𝑛ℎ(𝑘 𝑧)                                            −
𝑑

2
 ≤ 𝑧 ≤ 𝑑/2 

𝐸 𝑐𝑜𝑠ℎ 𝑘 𝑧 −
𝑑

2
+ 𝐹 𝑠𝑖𝑛ℎ 𝑘 𝑧 −

𝑑

2
                          𝑧 > 𝑑/2 

 

where A, B, C, D, E and F are potential amplitudes in the various material regions and the 

wavevectors in the three regions are denoted by 𝑘 , 𝑘  and 𝑘 . 

The intermediate layer has a thickness, d. It should be noted that the metal regions are assumed 

to be perfect conductors; hence, the potential is zero in the volume enclosed by metal region and 

metal surface. 

Applying the boundary conditions:  

( ) 0
z

z


 

(23) 
 

(24) 
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    Φ (𝑧) =  Φ (𝑧) 

 

  𝜀 =  𝜀  

 

which express the facts that the normal component of Dz and the tangential component of E⊥ are 

continuous at the interfaces.  In continuation of above, applying boundary conditions at the 

following interfaces:  

 

 𝒛 = −𝒍𝟏 −
𝒅

𝟐
 

Continuity electric field: 

 

𝐶 𝑐𝑜𝑠ℎ(𝑘 𝑙 ) − 𝐷 𝑠𝑖𝑛ℎ(𝑘 𝑙 ) = 0 

 𝐶 = 𝐷 𝑡𝑎𝑛ℎ(𝑘 𝑙 )  

It is to be noted that the normal component of the displacement field DZ is not continuous at 

metal-dielectric interface, because of the polarization field �⃗� inside the dielectric we have a 

surface charge density 𝜎 =  �⃗�. 𝑛 at the metal-dielectric boundary. 𝑛 represents unit vector 

normal to the metal surface directed from metal to dielectric. 

 

 

 

(25) 
 
 
 
(26) 

(27) 
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 𝒛 = −
𝒅

𝟐
 

continuity of electric field: 

 

𝐶 = 𝐴 𝑐𝑜𝑠ℎ 𝑘
𝑑

2
− 𝐵 𝑠𝑖𝑛ℎ 𝑘

𝑑

2
 

  

 

From the continuity of the normal component of displacement field: 

 

𝜀 𝑘 𝐷 =  𝜀 𝑘 −𝐴 𝑠𝑖𝑛ℎ 𝑘
𝑑

2
+ 𝐵 𝑐𝑜𝑠ℎ 𝑘

𝑑

2
 

                 

Substituting for D from Eq. 27 in Eq. 29 and then equating Eq.28 and Eq. 29, we get: 

 

𝜀 𝑘

𝜀 𝑘
−𝐴 𝑠𝑖𝑛ℎ 𝑘

𝑑

2
+ 𝐵 𝑐𝑜𝑠ℎ 𝑘

𝑑

2
 𝑡𝑎𝑛ℎ(𝑘1𝑙1) = 𝐴 𝑐𝑜𝑠ℎ 𝑘2

𝑑

2
− 𝐵 𝑠𝑖𝑛ℎ 𝑘2

𝑑

2
 

 

𝐵 = 𝐴

𝜀 𝑘 + 𝜀 𝑘 𝑡𝑎𝑛ℎ 𝑘
𝑑
2

𝑡𝑎𝑛ℎ(𝑘 𝑙 )

𝜀 𝑘 𝑡𝑎𝑛ℎ(𝑘 𝑙 ) + 𝜀 𝑘 𝑡𝑎𝑛ℎ 𝑘
𝑑
2

 

 

 

 

(28) 
 

(29) 
 

(30) 
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 𝒛 = +
𝒅

𝟐
  

applying continuity of electric field: 

 

 

𝐸 = 𝐴 𝑐𝑜𝑠ℎ 𝑘2

𝑑

2
+ 𝐵 𝑠𝑖𝑛ℎ 𝑘2

𝑑

2
  

 

 

 

 

Applying continuity of normal component of displacement field: 

 

 

𝜀 𝑘 𝐴 𝑠𝑖𝑛ℎ 𝑘
𝑑

2
+ 𝐵 𝑐𝑜𝑠ℎ 𝑘

𝑑

2
=  𝜀 𝑘 𝐹 

 𝒛 = 𝒍𝟐 +
𝒅

𝟐
  

applying continuity of electric field parallel to interface: 

 

𝐸 𝑐𝑜𝑠ℎ(𝑘 𝑙 ) + 𝐹 𝑠𝑖𝑛ℎ(𝑘 𝑙 ) = 0 

 𝐸 =  −𝐹 𝑡𝑎𝑛ℎ(𝑘 𝑙 )  

 

Substituting for F from Eq. 33 in Eq. 32 and then equating Eq. 31 and Eq. 32, we get: 

 

(31) 
 

(32) 
 

(33) 
 



48 
 

 
 

−
𝜀 𝑘

𝜀 𝑘
𝐴 𝑠𝑖𝑛ℎ 𝑘

𝑑

2
+ 𝐵 𝑐𝑜𝑠ℎ 𝑘

𝑑

2
𝑡𝑎𝑛ℎ(𝑘 𝑙 )

= 𝐴 𝑐𝑜𝑠ℎ 𝑘
𝑑

2
+ 𝐵 𝑠𝑖𝑛ℎ 𝑘

𝑑

2
 

 

 

𝐵 = −𝐴
𝜀 𝑘  𝑡𝑎𝑛ℎ 𝑘

𝑑
2

𝑡𝑎𝑛ℎ(𝑘 𝑙 ) + 𝜀 𝑘

𝜀 𝑘  𝑡𝑎𝑛ℎ(𝑘 𝑙 ) + 𝜀 𝑘  𝑡𝑎𝑛ℎ 𝑘
𝑑
2

 

  

 

Equating Eq. 30 and Eq. 34, we get: 

 

𝜀 𝑘 + 𝜀 𝑘 𝑡𝑎𝑛ℎ 𝑘
𝑑
2

𝑡𝑎𝑛ℎ(𝑘 𝑙 )

𝜀 𝑘 𝑡𝑎𝑛ℎ(𝑘 𝑙 ) + 𝜀 𝑘 𝑡𝑎𝑛ℎ 𝑘
𝑑
2

= −
𝜀 𝑘  𝑡𝑎𝑛ℎ 𝑘

𝑑
2

𝑡𝑎𝑛ℎ(𝑘 𝑙 ) + 𝜀 𝑘

𝜀 𝑘  𝑡𝑎𝑛ℎ(𝑘 𝑙 ) + 𝜀 𝑘  𝑡𝑎𝑛ℎ 𝑘
𝑑
2

 

 

The above expression is the dispersion relation of a metal-terminated two-interface 

heterostructure. 

Obviously, the above dispersion relation must reduce to the dispersion relation of two-

interface heterostructure terminated with semi-infinite layers (as obtained in Eq. 10) in the 

limits as 𝑙 → ∞ and 𝑙 → ∞. Applying these limits: 

 

lim
→

( )

( )
= lim

→
−

 ( )

 ( )  
  

(34) 
 

(35) 
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Since, we know that: lim
→

𝑡𝑎𝑛ℎ(𝑥) = 1, the above equation reduces to: 

 

 

𝜀 𝑘 + 𝜀 𝑘 𝑡𝑎𝑛ℎ 𝑘
𝑑
2

𝜀 𝑘 + 𝜀 𝑘 𝑡𝑎𝑛ℎ 𝑘
𝑑
2

= −
𝜀 𝑘  𝑡𝑎𝑛ℎ 𝑘

𝑑
2

+ 𝜀 𝑘

𝜀 𝑘  + 𝜀 𝑘  𝑡𝑎𝑛ℎ 𝑘
𝑑
2

 

 

The above equation is same as case without metal case (as in Eq. 10) 

 

To simplify the expression for the Frohlich potential, the potential in the middle layer, as 

in Equation 24, can be broken down in symmetric and anti-symmetric components. The 

symmetric component corresponds to B = 0 whereas the anti-symmetric component 

corresponds to A =0. 

3.2.1 Symmetric Modes 
 

To obtain the expressions for the symmetric modes the boundary conditions are satisfied 

at every interface, as shown below: 

 

 𝒛 = −
𝒅

𝟐
 

Continuity of electric field parallel to interface: Φ = 𝐶 = 𝐴 cosh 𝑘  

𝐴 =  
Φ

𝑐𝑜𝑠ℎ 𝑘
𝑑
2

 

 

(36) 
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Continuity of normal component of displacement field: 

 

𝜀 𝑘 𝐷 =  −𝜀 𝑘  𝐴 𝑠𝑖𝑛ℎ 𝑘
𝑑

2
 

 

𝐷 =  −
𝜀 𝑘

𝜀 𝑘
 Φ  𝑡𝑎𝑛ℎ 𝑘

𝑑

2
 

 

 

 

 𝒛 = −𝒍𝟏 −
𝒅

𝟐
 

 

Continuity of electric field parallel to interface: 

 

Φ = 𝐶 = 𝐷 tanh(𝑘 𝑙 ) 

 

𝐷 = Φ coth(𝑘 𝑙 ) 

 

 

 𝒛 = +
𝒅

𝟐
 

 

Continuity of electric field parallel to interface: 

 

(37) 
 

(38) 
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𝐴 𝑐𝑜𝑠ℎ 𝑘
𝑑

2
= 𝐸 

 

Substituting for A from Eq. 36, we obtain: 

 

 

𝐸 = 𝐶 = Φ  

 

 

Continuity of normal component of displacement field: 

 

𝜀 𝑘  𝐴 𝑠𝑖𝑛ℎ 𝑘
𝑑

2
=  𝜀 𝑘 𝐹 

Substituting for A from Eq. 18, we find: 

 

𝐹 = Φ
𝜀 𝑘

𝜀 𝑘
𝑡𝑎𝑛ℎ 𝑘

𝑑

2
 

 

 

 𝒛 = 𝒍𝟐 +
𝒅

𝟐
 

 

 

Continuity of electric field parallel to interface: 

 

𝐸 𝑐𝑜𝑠ℎ(𝑘 𝑙 ) + 𝐹 𝑠𝑖𝑛ℎ(𝑘 𝑙 ) = 0 

(37) 
 

(38) 
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𝐹 = −𝐸 𝑐𝑜𝑡ℎ(𝑘 𝑙 ) = −Φ  𝑐𝑜𝑡ℎ(𝑘 𝑙 ) 

 

 

Now, the equation for symmetric modes can be written as: 

 

Φ(𝑟)

= 𝑒 𝒒.𝝆

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧  Φ  𝑐𝑜𝑠ℎ 𝑘 𝑧 +

𝑑

2
+ Φ coth(𝑘 𝑙 )  𝑠𝑖𝑛ℎ 𝑘 𝑧 +

𝑑

2
                      𝑧 <  −𝑑/2

Φ

𝑐𝑜𝑠ℎ 𝑘
𝑑
2

 𝑐𝑜𝑠ℎ(𝑘 𝑧)                                                                                   −
𝑑

2
 ≤ 𝑧 ≤ 𝑑/2 

Φ  𝑐𝑜𝑠ℎ 𝑘 𝑧 −
𝑑

2
− Φ  𝑐𝑜𝑡ℎ(𝑘 𝑙 ) 𝑠𝑖𝑛ℎ 𝑘 𝑧 −

𝑑

2
                          𝑧 > 𝑑/2 

 

 

The expression for Φ  can be obtained after substituting the above expression in the 

normalization equation, which is: 

 

ℏ

2𝜔𝐿
=

1

4𝜋

1

2𝜔
𝑑𝑧 𝑞  

𝜕𝜀 , (𝜔)

𝜕𝜔
|Φ (𝑞, 𝑧)| +

𝜕𝜀 , (𝜔)

𝜕𝜔

𝜕Φ (𝑞, 𝑧)

𝜕𝑧

 

 

 

 

 

To solve for Φ , we will evaluate the respective integrals in each region of the 

heterostructure as in Fig. 28 as shown below: 

(39) 
 

(40) 
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Region I:  

 

 

|𝚽𝟏(𝒛)|𝟐𝒅𝒛

𝒅
𝟐

𝒍𝟏
𝒅
𝟐

= 

 

𝐶𝟐 𝒄𝒐𝒔𝒉𝟐(𝒌𝟏𝒙) 𝒅𝒙
𝟎

𝒍𝟏

+ 𝐷𝟐 𝒔𝒊𝒏𝒉𝟐(𝒌𝟏𝒙)
𝟎

𝒍𝟏

𝒅𝒙 +  𝑪𝑫 𝒔𝒊𝒏𝒉(𝟐𝒌𝟏𝒙)
𝟎

𝒍𝟏

𝒅𝒙 

  

= 𝐶
𝒄𝒐𝒔𝒉(𝟐𝒌𝟏𝒙) + 𝟏

𝟐
 𝒅𝒙

𝟎

𝒍𝟏

+  𝐷𝟐
𝒄𝒐𝒔𝒉(𝟐𝒌𝟏𝒙) − 𝟏

𝟐

𝟎

𝒍𝟏

𝒅𝒙 +  
𝑪𝑫

𝟐𝒌𝟏
 𝒄𝒐𝒔𝒉(𝟐𝒌𝟏𝒙)] 𝒍𝟏

𝟎  

 

 

=
𝐶

2

𝑠𝑖𝑛ℎ(2𝑘 𝑙 )

2𝑘
+ 𝑙 +

𝐷

2

𝑠𝑖𝑛ℎ(2𝑘 𝑙 )

2𝑘
− 𝑙 −

𝐶𝐷

𝑘
 𝑠𝑖𝑛ℎ (𝑘 𝑙 ) 

 

Substituting Φ = 𝐶 and 𝐷 = Φ coth(𝑘 𝑙 ) in the above equation, we obtain: 

 

(41) 
 



54 
 

 
 

|𝚽𝟏(𝒛)|𝟐𝒅𝒛

𝒅
𝟐

𝒍𝟏
𝒅
𝟐

= 

 

1

2

𝑠𝑖𝑛ℎ(2𝑘 𝑙 )

2𝑘
+ 𝑙 +

𝑐𝑜𝑡ℎ (𝑘 𝑙 )

2

𝑠𝑖𝑛ℎ(2𝑘 𝑙 )

2𝑘
− 𝑙 −

coth(𝑘1𝑙1)

𝑘
 𝑠𝑖𝑛ℎ (𝑘 𝑙 ) Φ  

 

 

 

 

𝝏𝚽𝟏(𝒛)

𝝏𝒛

𝟐

𝒅𝒛

𝒅
𝟐

𝒍𝟏
𝒅
𝟐

= 

 

𝒌𝟏
𝟐 𝐶𝟐 𝒔𝒊𝒏𝒉𝟐(𝒌𝟏𝒙) 𝒅𝒙

𝟎

𝒍𝟏

+  𝐷𝟐 𝒄𝒐𝒔𝒉𝟐(𝒌𝟏𝒙)
𝟎

𝒍𝟏

𝒅𝒙 +  𝑪𝑫 𝒔𝒊𝒏𝒉(𝟐𝒌𝟏𝒙)
𝟎

𝒍𝟏

𝒅𝒙  

 

 

= 𝑘
( )

− 𝑙 +
( )

+ 𝑙 − 𝑠𝑖𝑛ℎ (𝑘 𝑙 )  

 

 

Φ  𝑘1
2 1

2

𝑠𝑖𝑛ℎ(2𝑘1𝑙1)

2𝑘1
− 𝑙1 +

𝑐𝑜𝑡ℎ2
(𝑘1𝑙1)

2

𝑠𝑖𝑛ℎ(2𝑘1𝑙1)

2𝑘1
+ 𝑙1

−
coth(𝑘1𝑙1)

𝑘1
𝑠𝑖𝑛ℎ

2

(𝑘1𝑙1)  

 

 

(42) 
 

(43) 
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Region II 

 

 

|𝚽𝟐(𝒛)|𝟐𝒅𝒛

𝒅
𝟐

𝒅
𝟐

=  𝑨𝟐 𝒄𝒐𝒔𝒉𝟐(𝒌𝟐𝒛) 𝒅𝒛

𝒅
𝟐

𝒅
𝟐

= 𝑨𝟐
𝒔𝒊𝒏𝒉(𝒌𝟐𝒅)

𝟐
+

𝒅

𝟐
 

 

          

=
Φ

𝑐𝑜𝑠ℎ 𝑘
𝑑
2

𝒔𝒊𝒏𝒉(𝒌𝟐𝒅)

𝟐
+

𝒅

𝟐
 

 

 

𝝏𝚽𝟐(𝒛)

𝝏𝒛

𝟐

𝒅𝒛

𝒅
𝟐

𝒅
𝟐

= 𝑨𝟐𝒌𝟐
𝟐 𝒔𝒊𝒏𝒉𝟐(𝒌𝟐𝒛) 𝒅𝒛

𝒅
𝟐

𝒅
𝟐

= 𝑨𝟐𝒌𝟐
𝟐

𝒔𝒊𝒏𝒉(𝒌𝟐𝒅)

𝟐
−

𝒅

𝟐
 

 

 

=
Φ 𝑘

𝑐𝑜𝑠ℎ 𝑘
𝑑
2

𝑠𝑖𝑛ℎ(𝑘 𝑑)

2
−

𝑑

2
 

 

Region III 

 

 

|𝚽𝟑(𝒛)|𝟐𝒅𝒛
𝒍𝟐

𝒅
𝟐

𝒅
𝟐

=  𝑬𝟐 𝒄𝒐𝒔𝒉𝟐(𝒌𝟑𝒙)𝒅𝒙 + 𝑭𝟐 𝒔𝒊𝒏𝒉𝟐(𝒌𝟑𝒙)𝒅𝒙 + 𝑬𝑭 𝒔𝒊𝒏𝒉(𝒌𝟑𝒙) 𝒅𝒙
𝒍𝟐

𝟎

𝒍𝟐

𝟎

𝒍𝟐

𝟎

 

 

(44) 
 

(45) 
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=
𝑬𝟐

𝟐

𝒔𝒊𝒏𝒉(𝟐𝒌𝟑𝒍𝟐)

𝟐𝒌𝟑
+ 𝒍𝟐 +

𝑭𝟐

𝟐

𝒔𝒊𝒏𝒉(𝟐𝒌𝟑𝒍𝟐)

𝟐𝒌𝟑
− 𝒍𝟐 +

𝑬𝑭

𝒌𝟑
𝒔𝒊𝒏𝒉𝟐(𝒌𝟑𝒍𝟐) 

 

=
1

2

𝑠𝑖𝑛ℎ(2𝑘 𝑙 )

2𝑘
+ 𝑙 +

𝑐𝑜𝑡ℎ (𝑘 𝑙 )

2

𝑠𝑖𝑛ℎ(2𝑘 𝑙 )

2𝑘
− 𝑙 −

coth(𝑘3𝑙2)

𝑘
 𝑠𝑖𝑛ℎ (𝑘 𝑙 ) Φ  

 

 

𝝏𝚽𝟑(𝒛)

𝝏𝒛

𝟐

= 𝑘 𝐸 𝑠𝑖𝑛ℎ (𝑘 𝑥) 𝑑𝑥 + 𝐹 𝑐𝑜𝑠ℎ (𝑘 𝑥) 𝑑𝑥 + 𝐸𝐹 𝑠𝑖𝑛ℎ(2𝑘 𝑥) 𝑑𝑥
𝒍𝟐

𝟎

 

 

= 𝑘
𝐸

2

𝑠𝑖𝑛ℎ(2𝑘 𝑙 )

2𝑘
− 𝑙 +

𝐹

2

𝑠𝑖𝑛ℎ(2𝑘 𝑙 )

2𝑘
+ 𝑙 +

𝐸𝐹

𝑘
𝑠𝑖𝑛ℎ (𝑘 𝑙 )  

= Φ 𝑘
1

2

𝑠𝑖𝑛ℎ(2𝑘 𝑙 )

2
− 𝑙 +

𝑐𝑜𝑡ℎ (𝑘 𝑙 )

2

𝑠𝑖𝑛ℎ(2𝑘 𝑙 )

2
+ 𝑙

−
𝑐𝑜𝑡ℎ(𝑘 𝑙 )

𝑘
𝑠𝑖𝑛ℎ (𝑘 𝑙 )  

 

 

 

From Equation 40: 

ℏ

2𝜔𝐿
=

1

4𝜋

1

2𝜔
𝑑𝑧 𝑞  

𝜕𝜀 , (𝜔)

𝜕𝜔
|Φ (𝑞, 𝑧)| +

𝜕𝜀 , (𝜔)

𝜕𝜔

𝜕Φ (𝑞, 𝑧)

𝜕𝑧

 

 

 

 

(46) 
 

(47) 
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𝚽 𝑳 =
𝟐𝒉

𝜺𝟎
𝒒𝟐

𝝏𝜺𝟏,

𝝏𝝎
𝑰𝟏 +

𝝏𝜺𝟏,𝒛

𝝏𝝎
𝑰𝟏 + 𝒒𝟐

𝝏𝜺𝟐,

𝝏𝝎
𝑰𝟐 +

𝝏𝜺𝟐,𝒛

𝝏𝝎
𝑰𝟐

+ 𝒒𝟐
𝝏𝜺𝟑,

𝝏𝝎
𝑰𝟑 +

𝝏𝜺𝟑,𝒛

𝝏𝝎
𝑰𝟑

𝟏
𝟐
 

 

 

 

where: 

𝐼 =
1

2

𝑠𝑖𝑛ℎ(2𝑘 𝑙 )

2𝑘
+ 𝑙 +

𝑐𝑜𝑡ℎ (𝑘 𝑙 )

2

𝑠𝑖𝑛ℎ(2𝑘 𝑙 )

2𝑘
− 𝑙 −

coth(𝑘 𝑙 )

𝑘
 𝑠𝑖𝑛ℎ (𝑘 𝑙 ) 

 

𝐼 = 𝑘
1

2

𝑠𝑖𝑛ℎ(2𝑘 𝑙 )

2𝑘
− 𝑙 +

𝑐𝑜𝑡ℎ (𝑘 𝑙 )

2

𝑠𝑖𝑛ℎ(2𝑘 𝑙 )

2𝑘
+ 𝑙 −

coth(𝑘 𝑙 )

𝑘
𝑠𝑖𝑛ℎ (𝑘 𝑙 )  

 

𝐼 =
1

𝑐𝑜𝑠ℎ 𝑘
𝑑
2

𝑠𝑖𝑛ℎ(𝑘 𝑑)

2𝑘
+

𝑑

2
 

 

𝐼 =
𝑘

𝑐𝑜𝑠ℎ 𝑘
𝑑
2

𝑠𝑖𝑛ℎ(𝑘 𝑑)

2𝑘
−

𝑑

2
 

 

 

𝐼 =
1

2

𝑠𝑖𝑛ℎ(2𝑘 𝑙 )

2𝑘
+ 𝑙 +

𝑐𝑜𝑡ℎ (𝑘 𝑙 )

2

𝑠𝑖𝑛ℎ(2𝑘 𝑙 )

2𝑘
− 𝑙 −

coth(𝑘3𝑙2)

𝑘
 𝑠𝑖𝑛ℎ (𝑘 𝑙 ) 
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𝐼 = 𝑘
1

2

𝑠𝑖𝑛ℎ(2𝑘 𝑙 )

2𝑘
− 𝑙 +

𝑐𝑜𝑡ℎ (𝑘 𝑙 )

2

𝑠𝑖𝑛ℎ(2𝑘 𝑙 )

2𝑘
+ 𝑙 −

𝑐𝑜𝑡ℎ(𝑘 𝑙 )

𝑘
𝑠𝑖𝑛ℎ (𝑘 𝑙 )  

 

3.2.2 Anti-symmetric modes: 

 

The anti-symmetric modes corresponds to A=0 in Equation 24 . After setting A = 0 for 

potential in the middle layer and applying electrostatic boundary conditions as in the 

previous paragraph we obtain the following relations: 

 

 

 

𝐶 = −Φ  

 

𝐷 =  −Φ 𝑐𝑜𝑡ℎ(𝑘 𝑙 ) 

 

𝐵 =  
Φ

𝑠𝑖𝑛ℎ 𝑘
𝑑
2

 

 

𝐸 =  Φ  

 

𝐹 =  −Φ 𝑐𝑜𝑡ℎ(𝑘 𝑙 ) 

 

 

Thus, the phonon potential for anti-symmetric mode can be expressed as:  

(49) 
 

(50) 
 

(51) 
 

(52) 
 

(53) 
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Φ(𝑟)

= 𝑒 𝒒.𝝆

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ −Φ  𝑐𝑜𝑠ℎ 𝑘 𝑧 +

𝑑

2
− Φ coth(𝑘 𝑙 )  𝑠𝑖𝑛ℎ 𝑘 𝑧 +

𝑑

2
                      𝑧 <  −𝑑/2

Φ

𝑠𝑖𝑛ℎ 𝑘
𝑑
2

 𝑠𝑖𝑛ℎ(𝑘 𝑧)                                                                                   −
𝑑

2
 ≤ 𝑧 ≤ 𝑑/2 

Φ  𝑐𝑜𝑠ℎ 𝑘 𝑧 −
𝑑

2
− Φ  𝑐𝑜𝑡ℎ(𝑘 𝑙 ) 𝑠𝑖𝑛ℎ 𝑘 𝑧 −

𝑑

2
                          𝑧 > 𝑑/2 

 

 

When subjected to the normalization condition, we obtain: 

 

 

𝚽 𝑳 =
𝟐𝒉

𝜺𝟎
𝒒𝟐

𝝏𝜺𝟏,

𝝏𝝎
𝑰𝟏 +

𝝏𝜺𝟏,𝒛

𝝏𝝎
𝑰𝟏 + 𝒒𝟐

𝝏𝜺𝟐,

𝝏𝝎
𝑰𝟐 +

𝝏𝜺𝟐,𝒛

𝝏𝝎
𝑰𝟐

+ 𝒒𝟐
𝝏𝜺𝟑,

𝝏𝝎
𝑰𝟑 +

𝝏𝜺𝟑,𝒛

𝝏𝝎
𝑰𝟑

𝟏
𝟐
 

 

where: 

𝐼 =
1

2

𝑠𝑖𝑛ℎ(2𝑘 𝑙 )

2𝑘
+ 𝑙 +

𝑐𝑜𝑡ℎ (𝑘 𝑙 )

2

𝑠𝑖𝑛ℎ(2𝑘 𝑙 )

2𝑘
− 𝑙 −

coth(𝑘 𝑙 )

𝑘
 𝑠𝑖𝑛ℎ (𝑘 𝑙 ) 

 

𝐼 = 𝑘
1

2

𝑠𝑖𝑛ℎ(2𝑘 𝑙 )

2𝑘
− 𝑙 +

𝑐𝑜𝑡ℎ (𝑘 𝑙 )

2

𝑠𝑖𝑛ℎ(2𝑘 𝑙 )

2𝑘
+ 𝑙 −

coth(𝑘 𝑙 )

𝑘
𝑠𝑖𝑛ℎ (𝑘 𝑙 )  

 

(54) 
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𝐼 =
1

𝑠𝑖𝑛ℎ 𝑘
𝑑
2

𝑠𝑖𝑛ℎ(𝑘 𝑑)

2𝑘
−

𝑑

2
 

 

𝐼 =
𝑘

𝑠𝑖𝑛ℎ 𝑘
𝑑
2

𝑠𝑖𝑛ℎ(𝑘 𝑑)

2𝑘
+

𝑑

2
 

 

 

𝐼 =
1

2

𝑠𝑖𝑛ℎ(2𝑘 𝑙 )

2𝑘
+ 𝑙 +

𝑐𝑜𝑡ℎ (𝑘 𝑙 )

2

𝑠𝑖𝑛ℎ(2𝑘 𝑙 )

2𝑘
− 𝑙 −

coth(𝑘3𝑙2)

𝑘
 𝑠𝑖𝑛ℎ (𝑘 𝑙 ) 

 

 

𝐼 = 𝑘
1

2

𝑠𝑖𝑛ℎ(2𝑘 𝑙 )

2𝑘
− 𝑙 +

𝑐𝑜𝑡ℎ (𝑘 𝑙 )

2

𝑠𝑖𝑛ℎ(2𝑘 𝑙 )

2𝑘
+ 𝑙 −

𝑐𝑜𝑡ℎ(𝑘 𝑙 )

𝑘
𝑠𝑖𝑛ℎ (𝑘 𝑙 )  

 

3.3 Dispersion relation for symmetric and anti-symmetric mode: 
 

The dispersion relation for the symmetric and anti-symmetric modes can be derived directly from 

the secular equation and the same can be verified from the Frohlich potential equations of the 

respective modes. The derivation of the dispersion relation for each mode is shown below: 

 

 Symmetric mode: As stated in the preceding paragraph, the condition for 

symmetric mode is obtained by setting B =0 in Frohlich potential equation of the 

middle layer. From Equation (12) and (16) it is observed that: 
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𝜀 𝑘 + 𝜀 𝑘 𝑡𝑎𝑛ℎ 𝑘
𝑑

2
𝑡𝑎𝑛ℎ(𝑘 𝑙 ) 𝜀 𝑘  𝑡𝑎𝑛ℎ 𝑘

𝑑

2
𝑡𝑎𝑛ℎ(𝑘 𝑙 ) + 𝜀 𝑘 = 0 

 

The above result is also obtained from the Frohlich potential equations for the symmetric mode, 

as follows: 

Eliminating D from Eq. 37 and Eq. 38:  

−𝜀 𝑘 𝑡𝑎𝑛ℎ 𝑘
𝑑

2
= 𝜀 𝑘 𝑐𝑜𝑡ℎ(𝑘 𝑙 ) 

 𝜀 𝑘 + 𝜀 𝑘 𝑡𝑎𝑛ℎ 𝑘 𝑡𝑎𝑛ℎ(𝑘 𝑙 ) = 0 

 

Eliminating F from Eq. 38 and Eq. 39: 

  

𝜀 𝑘 𝑡𝑎𝑛ℎ 𝑘
𝑑

2
= −𝜀 𝑘 𝑐𝑜𝑡ℎ(𝑘 𝑙 ) 

 𝜀 𝑘 + 𝜀 𝑘 𝑡𝑎𝑛ℎ 𝑘 𝑡𝑎𝑛ℎ(𝑘 𝑙 ) = 0 

 

We see that the above two equations must simultaneously vanish (equate to zero) for 

existence of symmetric modes thus their product must also vanish simultaneously, thus: 

 

 𝜀 𝑘 + 𝜀 𝑘 𝑡𝑎𝑛ℎ 𝑘 𝑡𝑎𝑛ℎ(𝑘 𝑙 ) 𝜀 𝑘 + 𝜀 𝑘 𝑡𝑎𝑛ℎ 𝑘 𝑡𝑎𝑛ℎ(𝑘 𝑙 ) = 0 

 

 

(55) 
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 Anti-symmetric mode: As stated in preceding paragraph, the condition for anti-

symmetric mode is obtained by setting A =0 in Frohlich potential equation of the 

middle layer. From equation (30) and (34) it is observed that: 

 

𝜀 𝑘 𝑡𝑎𝑛ℎ(𝑘 𝑙 ) + 𝜀 𝑘 𝑡𝑎𝑛ℎ 𝑘
𝑑

2
𝜀 𝑘  𝑡𝑎𝑛ℎ(𝑘 𝑙 ) + 𝜀 𝑘  𝑡𝑎𝑛ℎ 𝑘

𝑑

2
= 0 

 

 

The above result is also obtained from the Frohlich potential equations of the anti-symmetric mode. 

However, the derivation steps of anti-symmetric modes are similar to those of the symmetric 

modes; hence, those steps have not been shown. Similar to the case of the symmetric mode, the 

anti-symmetric mode case results in two simultaneous equations: 

  

𝜀 𝑘 𝑡𝑎𝑛ℎ(𝑘 𝑙 ) + 𝜀 𝑘 𝑡𝑎𝑛ℎ 𝑘 = 0 and 𝜀 𝑘  𝑡𝑎𝑛ℎ(𝑘 𝑙 ) + 𝜀 𝑘  𝑡𝑎𝑛ℎ 𝑘 = 0 

 

From which can be argued (under simultaneous agreement) that: 

 

𝜀 𝑘 𝑡𝑎𝑛ℎ(𝑘 𝑙 ) + 𝜀 𝑘 𝑡𝑎𝑛ℎ 𝑘
𝑑

2
𝜀 𝑘  𝑡𝑎𝑛ℎ(𝑘 𝑙 ) + 𝜀 𝑘  𝑡𝑎𝑛ℎ 𝑘

𝑑

2
= 0 

 
3.4 Application  
 
The above equations for dispersion relations and the associated Frohlich potentials are hereby 

applied to a heterostructure with following parameters: 

Layer 1 = In0.15Ga0.85N 
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Layer 2 = GaN 

Layer3 = In0.15Ga0.85N 

L1 = 10 nm 

L2 =12 nm 

The dispersion relation and the plot of symmetric and anti-symmetric modes for qd = 0.7 are 

plotted in the figure below: 

 

 

 

 

 

Figure 29 Dispersion relation for Metal/In0.15Ga0.5N/GaN/ In0.15Ga0.5N/Metal structure. 

The blue line corresponds to the anti-symmetric mode and the green line corresponds to the 
symmetric mode 
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Figure 30 Symmetric potential in Metal/In0.15Ga0.5N/GaN/ In0.15Ga0.5N/Metal structure for qd=0.7 

 

 

Figure 31 Anti-symmetric potential in Metal/In0.15Ga0.5N/GaN/ In0.15Ga0.5N/Metal structure for 
qd=0.7 

 
 
 
 
3.5 Conditions for existence of interface phonons 
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It is observed from the expressions for the amplitudes of the symmetric and the anti-Symmetric 

potential that the interface phonon can exist in the metal terminated GaN/In0.15Ga0.85N/GaN 

only for those pairs of 𝜔 𝑎𝑛𝑑 𝑞 - as obtained from the dispersion relation - for which the 

amplitude of the Frohlich potential is a real number. Imposing this condition (amplitude must be 

real number) we get the following inequality: 

 

𝜆

2

𝑠𝑖𝑛ℎ(2𝑘 𝑙 )

𝑘
+

𝑠𝑖𝑛ℎ(2𝑘 𝑙 )

𝑘

≤
𝜆

2

𝑠𝑖𝑛ℎ(2𝑘 𝑙 )

𝑘
+

𝑐𝑜𝑡ℎ (𝑘 𝑙 )

2𝑘
𝑠𝑖𝑛ℎ(2𝑘 𝑙 ) −

𝑙

4
𝜇 𝑐𝑜𝑠𝑒𝑐ℎ (𝑘 𝑙 )

+
𝜆

2

𝑠𝑖𝑛ℎ(2𝑘 𝑙 )

𝑘
+

𝑐𝑜𝑡ℎ (𝑘 𝑙 )

2𝑘
𝑠𝑖𝑛ℎ(2𝑘 𝑙 ) −

𝑙

4
𝜇 𝑐𝑜𝑠𝑒𝑐ℎ (𝑘 𝑙 ) 

 

 

 

where,  

𝜆 = 𝑞
𝜕𝜀 ,

𝜕𝜔
+

𝜕𝜀 ,

𝜕𝜔
 

𝜆 = 𝑞
𝜕𝜀 ,

𝜕𝜔
+ 𝑘

𝜕𝜀 ,

𝜕𝜔
 

 

𝜇 = 𝑞
𝜕𝜀 ,

𝜕𝜔
− 𝑘

𝜕𝜀 ,

𝜕𝜔
 

If the above inequality is violated, then the interface modes cease to exist in this heterostructure. 

However, it is observed from the dispersion relation that since the phonon frequencies for the 
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anti-symmetric mode is always less than the corresponding symmetric mode, the above 

inequality is never violated by anti-symmetric mode for any combination of  𝑙  and 𝑙 . 
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CHAPTER 4 Transfer Matrix Theory for Wurtzite Multi-Interface Heterostructures 
 

4.1 Introduction 
 
In this chapter a general theory is developed which can be applied to any wurtzite heterostructure 

of any arbitrary number of ‘n’ layers to obtain the secular equation. Further, the equations will be 

applied to a 4-period AlN/GaN superlattice. 

 

4.2 Analysis 
 
Consider a superlattice consisting of n layers and let the reference co-ordinate axis be fixed to the 

first interface of the superlattice. Let the z-axis coincide with the c-axis of the wurtzite materials 

in the superlattice. 

 

 

            

                     

 

 

 

 

  

Let Ri represents the region enclosed by z = zi+1 and zi. 

Let the thickness of the 𝑖  layer is 𝒅𝒊 =  𝒛𝒊 𝟏 - 𝒛𝒊 

Let Φ  represents the phonon potential in the 𝑖  layer. 

 

Φ              Φ           Φ                                     Φ        Φ                             Φ        Φ  
      
 
 
 
              0           Z1           Z2                 Zi-1         Zi          Zi+1               Zn-1        Zn 
 
 

Figure 32  n-layer superlattice of wurtzite material with reference coordinate axes 



68 
 

 
 

We know that, the phonon potential has the form: Φ(𝑟) =  Φ(𝑧)𝑒 𝒒.𝝆 for any region confined in z 

direction, thus we can write the phonon potential for the 𝑖  layer as: Φ (𝑟) =  Φ (𝑧)𝑒 ⃗. ⃗. 

 

4.2.1 Observation:  

 

 To find Φ (𝑧) , we need to solve Poisson’s equation ∇ Φ = 0 in the region Ri . 

 We must consider the fact that mathematically Ri is defined as: 

𝑅 ∈ {𝑥 , 𝑦, 𝑧 ≤ 𝑧 ≤ 𝑧 } 

 For region Ri:   ∇≡  𝝆 +   𝒛′ , where  𝑧 = 𝑧 − 𝑧  

When Φ (𝑟) is substituted in the, we have: 

 

𝜀 , (𝜔)
𝜕

𝜕𝑧′
− 𝜀 , (𝜔)𝑞 Φ (𝑧) = 0 

 

 − 𝑘 Φ (𝑧′) = 0, where 𝑘 = ,

,
𝑞  

 

 Φ (𝑧′) =  𝐴 exp(𝑘 𝑧 ) +  𝐵 exp(−𝑘 𝑧 )  

 

 𝚽𝒊(𝒛) =  𝑨𝒊 𝐞𝐱𝐩 𝒌𝒊(𝒛 − 𝒛𝒊) +  𝑩𝒊 𝐞𝐱𝐩 −𝒌𝒊(𝒛 − 𝒛𝒊)  

 

 

(55) 
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Applying electrostatic boundary conditions at 𝑧 = 𝑧  : 

 

(a) Continuity of electric field parallel to interface: 

𝚽𝒊(𝒛𝒊 𝟏) = 𝚽𝒊 𝟏(𝒛𝒊 𝟏) 

 

 

𝐴 exp 𝑘 (𝑧 − 𝑧 ) +  𝐵 exp −𝑘 (𝑧 − 𝑧 ) =  𝐴 +  𝐵  

 

𝐴 exp(𝑘 𝑑 ) +  𝐵 exp(−𝑘 𝑑 ) =  𝐴 +  𝐵  

 

(b) Continuity of normal component of displacement field: 

 

𝜀 𝑘  𝐴 exp(𝑘 𝑑 ) −  𝜀 𝑘 𝐵 exp(−𝑘 𝑑 ) =  𝜀 𝑘 𝐴 − 𝜀 𝑘  𝐵  

The above two equations can be expressed in matrix form as below: 

 

exp(𝑘 𝑑 ) exp(−𝑘 𝑑 )

𝜀 𝑘 exp(𝑘 𝑑 ) −𝜀 𝑘 exp(𝑘 𝑑 )
𝐴
𝐵

=  
1 1

𝜀 𝑘 −𝜀 𝑘
𝐴
𝐵

 

 

 

𝐴
𝐵

=
1 1

𝜀 𝑘 −𝜀 𝑘
exp(𝑘 𝑑 ) exp(−𝑘 𝑑 )

𝜀 𝑘 exp(𝑘 𝑑 ) −𝜀 𝑘 exp(𝑘 𝑑 )
𝐴
𝐵
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𝐴
𝐵

=
1

2𝜀 𝑘

𝜀 𝑘 1
𝜀 𝑘 −1

exp(𝑘 𝑑 ) exp(−𝑘 𝑑 )

𝜀 𝑘 exp(𝑘 𝑑 ) −𝜀 𝑘 exp(𝑘 𝑑 )
𝐴
𝐵

 

 

𝐴
𝐵

=
1

2𝜀 𝑘

(𝜀 𝑘 +  𝜀 𝑘 ) exp(𝑘 𝑑 ) (𝜀 𝑘 −  𝜀 𝑘 ) exp(−𝑘 𝑑 )

(𝜀 𝑘 − 𝜀 𝑘 )exp(𝑘 𝑑 ) (𝜀 𝑘 +  𝜀 𝑘 ) exp(−𝑘 𝑑 )
𝐴
𝐵

 

 

4.2.2 Derivation of secular equation: 

 

Let,  

[𝑄 ] =
1

2𝜀 𝑘

(𝜀 𝑘 +  𝜀 𝑘 ) exp(𝑘 𝑑 ) (𝜀 𝑘 −  𝜀 𝑘 ) exp(−𝑘 𝑑 )

(𝜀 𝑘 −  𝜀 𝑘 )exp(𝑘 𝑑 ) (𝜀 𝑘 +  𝜀 𝑘 ) exp(−𝑘 𝑑 )
 

 

[𝐶 ] =
𝐴
𝐵

 

 

 

Thus, 

[𝐶 ] = [𝑄 ][𝐶 ] 

 

 [𝐶 ] = [𝑄 ][𝑄 ][𝑄 ] … [𝑄 ][𝑄 ][𝐶 ] 

 

(56) 
 

(57) 
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where, [𝐶 ] 𝑎𝑛𝑑 [𝐶 ] represents the Frohlich potential coefficient matrices of the 

end bulk regions on the extreme left and extreme right regions, respectively. 

 

 

Since, Φ (𝑧) =  𝐴 exp(𝑘 𝑧) +  𝐵 exp(−𝑘 𝑧) where z < 0, to ensure a finite 

potential of the phonon mode the above expression must converge to a finite limit when z 

→ −∞ which leads to 𝐵 = 0. Similarly, 𝐴 = 0. 

 

We can write: [𝑄 ][𝑄 ][𝑄 ] … [𝑄 ][𝑄 ] =
𝑄 𝑄
𝑄 𝑄

 

 

Thus, 

0
𝐵

=
𝑄 𝑄
𝑄 𝑄

𝐴
0

 

 

 𝐵 =  𝑄  𝐴  𝑎𝑛𝑑 𝑄
11

 𝐴0 = 0.   

 

For non-trivial solution of equation 𝑄  𝐴 = 0, |𝑄 | = 0. 

 

Thus, the dispersion relation is given by: 

|𝑸𝟏𝟏| = 𝟎 

(58) 
 

(59) 
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After obtaining the dispersion relation we can further extend our calculation to find the Frohlich 
amplitude. The following steps illustrates the method: 

 

The interface modes must obey the normalization condition given below: 

ℏ

2𝜔𝐿
=

1

4𝜋

1

2𝜔
𝑑𝑧 𝑞  

𝜕𝜀 , (𝜔)

𝜕𝜔
|Φ (𝑞, 𝑧)| +

𝜕𝜀 , (𝜔)

𝜕𝜔

𝜕Φ (𝑞, 𝑧)

𝜕𝑧

 

 

We proceed by evaluating the above integral for the  𝑖  layer bounded between 𝑧 =  𝑧  & 𝑧  

 

|Φ | 𝑑𝑧 =  𝐴  𝑒𝑥𝑝 𝑘 (𝑧 − 𝑧 ) +  𝐵  𝑒𝑥𝑝 −𝑘 (𝑧 − 𝑧 ) 𝑑𝑧 

|Φ | 𝑑𝑧 =
𝑠𝑖𝑛ℎ(𝑘 𝑑 )

𝑘
𝐴  𝑒𝑥𝑝(𝑘 𝑑 ) + 𝐵  𝑒𝑥𝑝(−𝑘 𝑑 ) + 2𝐴 𝐵 𝑑  

Similarly, 

𝜕Φ (𝑧)

𝜕𝑧
𝑑𝑧 =  𝑘 𝐴  𝑒𝑥𝑝 𝑘 (𝑧 − 𝑧 ) −  𝐵  𝑒𝑥𝑝 −𝑘 (𝑧 − 𝑧 ) 𝑑𝑧 

𝜕Φ (𝑧)

𝜕𝑧
𝑑𝑧 =  𝑘 𝑠𝑖𝑛ℎ(𝑘 𝑑 ) 𝐴  𝑒𝑥𝑝(𝑘 𝑑 ) + 𝐵  𝑒𝑥𝑝(−𝑘 𝑑 ) − 2𝐴 𝐵 𝑑  

From Eq. 57 we know that: 

[𝐶 ] = [𝑄 ][𝑄 ][𝑄 ] … [𝑄 ][𝑄 ][𝐶 ] 

Let, [𝑄 ][𝑄 ][𝑄 ] … [𝑄 ][𝑄 ] =  [𝑄 ]  =  
𝑄 , 𝑄 ,

𝑄 , 𝑄 ,
 

Thus, 

[𝐶 ] =
𝐴
𝐵

= [𝑄 ] [𝐶 ] =
𝑄 , 𝑄 ,

𝑄 , 𝑄 ,

𝐴
0

 

Thus, 

𝐴 = 𝑄 , 𝐴  and 𝐵 = 𝑄 , 𝐴  

(60) 
 

(61) 
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Substituting the above values of 𝐴  and 𝐵  in eq 60 and eq 61, obtain: 

|Φ | 𝑑𝑧 = 𝐴
𝑠𝑖𝑛ℎ(𝑘 𝑑 )

𝑘
𝑄 ,  𝑒𝑥𝑝(𝑘 𝑑 ) + 𝑄 ,  𝑒𝑥𝑝(−𝑘 𝑑 ) + 2𝑄 , 𝑄 , 𝑑  

 

𝜕Φ (𝑧)

𝜕𝑧
𝑑𝑧 = 𝐴 𝑘 𝑠𝑖𝑛ℎ(𝑘 𝑑 ) 𝑄 ,  𝑒𝑥𝑝(𝑘 𝑑 ) + 𝑄 ,  𝑒𝑥𝑝(−𝑘 𝑑 ) − 2𝑄 , 𝑄 , 𝑑  

 

On substituting the above expression in the normalization equation we obtain the expression for 

𝐴 : 

𝐴 =
2ℎ

𝜀
𝑑𝑧 𝑞  

𝜕𝜀 , (𝜔)

𝜕𝜔
|Φ (𝑞, 𝑧)| +

𝜕𝜀 , (𝜔)

𝜕𝜔

𝜕Φ (𝑞, 𝑧)

𝜕𝑧

 

 

𝑨𝟎 =
𝟐𝒉

𝜺𝟎
𝒒𝟐  

𝝏𝜺𝒊, (𝝎)

𝝏𝝎

𝒔𝒊𝒏𝒉(𝒌𝒊𝒅𝒊)

𝒌𝒊
𝑸𝒊,𝟏𝟏

𝟐 𝒆𝒌𝒊𝒅𝒊  + 𝑸𝒊,𝟐𝟏
𝟐 𝒆 𝒌𝒊𝒅𝒊 + 𝟐𝑸𝒊,𝟏𝟏𝑸𝒊,𝟐𝟏𝒅𝒊

𝒏

𝒊 𝟏

+
𝝏𝜺𝒊,𝒛(𝝎)

𝝏𝝎
𝒌𝒊𝒔𝒊𝒏𝒉(𝒌𝒊𝒅𝒊) 𝑸𝒊,𝟏𝟏

𝟐 𝒆𝒌𝒊𝒅𝒊  + 𝑸𝒊,𝟐𝟏
𝟐 𝒆 𝒌𝒊𝒅𝒊 − 𝟐𝑸𝒊,𝟏𝟏𝑸𝒊,𝟐𝟏𝒅𝒊

𝟏
𝟐

 

 

If we perform the above summation over the number of layers, we can find the amplitude of the 
Frohlich potential of the interface mode, since the constants 𝐴  and 𝐵  can be expressed in terms 
of 𝐴 . 

 

 

 

 

 

 

(62) 
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4.3 Application of above equations on a superlattice: 

The result so obtained above is applied to a heterostructure consisting of 4-periods of a 2-layer 

superlattice of AlN/GaN which is sandwiched between 𝐴𝑖𝑟 𝑎𝑛𝑑 𝐴𝑙 . 𝐺𝑎 . 𝑁 : 

 

 

 

          

 

Figure 33  A 4-period superlattice consisting of repeating layers of AlN/GaN 

 

 

 

The thickness of the individual layers in the above heterostructure is 3-monolayers (0.75 nm) 

 

 [𝐶 ] = [𝑄 ][𝑄 ] [𝑄 ][𝑄 ][𝑄 ][𝑄 ][𝑄 ][𝑄 ][𝑄 ][𝐶 ] 

 

In the above case:  

[𝑄 ] = [𝑄 ] = [𝑄 ] = [𝑄 ] =
1

𝛼 − 𝛽

𝛼 𝑒𝑥𝑝(𝑘 𝑑) −𝛽 𝑒𝑥𝑝(−𝑘 𝑑)

−𝛽 𝑒𝑥𝑝(𝑘 𝑑) 𝛼 𝑒𝑥𝑝(−𝑘 𝑑)
  

 

Air AlN      GaN        AlN GaN   AlN       GaN AlN GaN     𝑨𝒍𝟎.𝟓𝑮𝒂𝟎.𝟓𝑵
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[𝑄 ] = [𝑄 ] = [𝑄 ] =
1

𝛼 + 𝛽

𝛼 𝑒𝑥𝑝(𝑘 𝑑) −𝛽 𝑒𝑥𝑝(−𝑘 𝑑)

−𝛽 𝑒𝑥𝑝(𝑘 𝑑) 𝛼 𝑒𝑥𝑝(−𝑘 𝑑)
 

 

where, 𝛼 = 𝜀 𝑘 +  𝜀 𝑘 ; 𝛽 = 𝜀 𝑘 −  𝜀 𝑘 ; 𝜉 = (𝑘 + 𝑘 )𝑑; 𝜉 = (𝑘 − 𝑘 )𝑑 

The subscript “A” is used for AlN and “B” used for GaN 

 

[𝑄 ][𝑄 ] = [𝑄]

=
1

𝛼 − 𝛽

𝛼  𝑒𝑥𝑝(𝜉 ) + 𝛽 𝑒𝑥𝑝(𝜉 ) −𝛼𝛽 𝑒𝑥𝑝(−𝜉 ) − 𝛼𝛽 𝑒𝑥𝑝(−𝜉 )

−𝛼𝛽 𝑒𝑥𝑝(𝜉 ) − 𝛼𝛽 𝑒𝑥𝑝(𝜉 ) 𝛼  𝑒𝑥𝑝(−𝜉 ) + 𝛽 𝑒𝑥𝑝(−𝜉 )
 

 

 

Let, 𝑎 =
 ( ) ( )

 ; 𝑏 =
 ( )  ( )

                                                                                                       

𝑐 =
 ( )  ( )

;    𝑑 =
 ( )  ( )

 

 

Since, matrix multiplication is associative, we can write: 

 

[𝐶 ] = [𝑄 ][𝑄 ][𝑄] [𝑄 ][𝐶 ] 

 

𝑿𝟏𝟏(𝒂𝟐𝒃 + 𝒃𝟐𝒄 + 𝒂𝒃𝒅 + 𝒃𝒅𝟐) + 𝑿𝟏𝟐(𝒂𝒃𝒄 + 𝟐𝒃𝒄𝒅 + 𝒅𝟑)

𝑿𝟏𝟏(𝒂𝟑 + 𝟐𝒂𝒃𝒄 + 𝒃𝒄𝒅) + 𝑿𝟏𝟐(𝒂𝟐𝒄 + 𝒂𝒄𝒅 + 𝒃𝒄𝟐 + 𝒅𝟐𝒄)
= −

𝜺𝑨𝒌𝑨 + 𝒒

𝜺𝑨𝒌𝑨 − 𝒒
 

 

The above is the final dispersion relation, where: 

 

(63) 
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𝑋 =  
(𝜀 𝑘 + 𝜀 𝑘 )(𝜀 𝑘 + 𝜀 𝑘 )𝑒𝑥𝑝 (𝑘 + 𝑘 )𝑑 + (𝜀 𝑘 − 𝜀 𝑘 )(𝜀 𝑘 − 𝜀 𝑘 )𝑒𝑥𝑝 (𝑘 − 𝑘 )𝑑

4𝜀 𝑘 𝜀 𝑘
 

 

𝑋 =  
(𝜀 𝑘 + 𝜀 𝑘 )(𝜀 𝑘 − 𝜀 𝑘 )𝑒𝑥𝑝 (𝑘 − 𝑘 )𝑑 + (𝜀 𝑘 − 𝜀 𝑘 )(𝜀 𝑘 + 𝜀 𝑘 )𝑒𝑥𝑝(−(𝑘 + 𝑘 )𝑑)

4𝜀 𝑘 𝜀 𝑘
 

 

In the present thesis the analysis has been restricted to finding the dispersion relation only for 

AlN/GaN superlattice; however nothing restricts one from applying Eq. 62 to get the amplitude of 

the Frohlich potential for the interface mode in the allowed frequency range. 
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CHAPTER 5 Determination of Frohlich Potential In MOS2 

 

 
5.1 Introduction 
 
Graphene - a one atom thick two-dimensional material which is an allotrope of carbon -  has some 

unique electrical properties such as zero electron effective mass, mobility as high as 15000 cm2/V-

s and zero band gap [27]. The principal factor limiting its application in electronic devices is its 

zero band gap which does not allow it to be used in logic circuits for low power switching 

applications [28]. Also, attempts to open a bandgap in graphene results in fabrication complexity 

and can lead to reduced mobility comparable to strained silicon films [29]. Due to these limitations 

of graphene, recent researches has been shifted to explore transition metal-dichalcogenide 

materials. TMDCs, whose generalized formula is MX2 (M = Transition metal (Pt, Pd, Ni, Ir, Rh, 

Co, Re, Tc, W, Mo, Ta, Nb, V, Hf, Zr and Ti), X = Chalcogen (Te, Se and S))[30]. These materials 

are also two-dimensional like graphene with a non-zero bandgap. The individual layers of these 

materials may be stacked one over the other to form the “bulk” material; every layer is separated 

from the adjacent layer by a van der Waals gap. MoS2 belongs to transition metal-dichalcogenide 

group. One monolayer of MoS2 has a band gap of 1.8 eV and is a direct gap semiconductor [30]  

 

Phonons in MoS2 exist in both in-plane and out-of-plane direction. The A2
’ (out-plane) mode and 

E’ (in-plane) mode are infra-red active [31]. In this chapter we will derive the analytical expression 

for the Frohlich potential inside the 1-monolayer thick MoS2 due to A2
’ (out-plane) mode vibration 

inspired by the results of Kaasbjerg et al. [32]and Sohier et al. [33] 
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5.2 Crystal Structure and Phonon Modes 
 

The figure below shows 1-monolayer thick MoS2.  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 34  One-monolayer thick MoS2 crystal structure 

  

 

As can be seen above that a 1-monolayer of MoS2 has a sheet of Mo atoms sandwiched between 

two S atom sheets. MoS2 has a honeycomb lattice structure. 

 Various phonon modes are shown in figure below for a 1-monolayer thick MoS2: 

 

𝑴𝒐 

𝑺 
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A2
” and E’ mode are IR active. Reference: Phy Rev B Vol 89, 035438 (2014) 

 

 

 
5.3 A2’ mode Analysis 
 

Consider for example a 3-layer MoS2 as shown in Fig. 36, here it is observed that the vertical mode 

vibration as in A2
”
 mode propagates in the z-direction as wave due to which the individual atomic 

displacement is function of z and wavevector. But for a single monolayer case there is no z-

dependence of the atoms in the vertical direction. In A2
”
 mode the Mo and S atoms vibrate out-of 

phase with respect to each other. Our main objective is to find the polarization created per unit 

volume due to this out-of-phase vibration and then evaluating the resulting potential due to this 

polarization.  

A2’’ mode                               A1’ mode                         E’ mode                       E” mode 

Figure 35 Various phonon modes in 1-monoLayer MoS2. 
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Figure 36  A2’ mode in a 3-layer MoS2. 

 
The big circles depict Mo atoms and the small ones depict S atoms. The thick lines between 
S atoms represents the van der Waals bonds 
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For 1-mono layer of MoS2 the A2 mode of optical phonon is shown as under: 

 

 

 

 

 

 

 

The Magenta colored atoms represent sulphur atoms while the blue color atom is molybdenum 

atom. Both atoms vibrate out of phase with respect to each other along the z-axis. For 1-monolayer 

of material the displacement of atoms has only sinusoidal dependence on time whereas there is no 

z-dependence because no wave is propagating for one monolayer.  

 

The above figure shows the atomic positions for one-half cycle of vibration. As shown in the figure 

above, it will be assumed that at time t = 0 both Mo and S atoms are at their extrema positions and 

further continue their motion as per the Fig. 37.  

t = 0                                              t = T/4    t = T/2 

Figure 37  The vibration pattern of Mo and S in the unit cell of 1-monolayer thick MoS2 at different time 
instances 
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Polarization calculation due to A2’ mode vibration pattern: 

Let the amplitude of vibration of Mo and S atoms be A, so the displacement of atom at any 

instant of time is: A𝒆 𝒊𝝎𝒕. Thus the net dipole moment can be written as : Z* (4A). The figure 

below clarifies the net dipole moment expression so obtained: 

 

 

Figure 38  The initial position of Mo and S atoms starting from their extremum 

 

 

 

Net dipole moment: Z* (t/2 -2A)- Z* (t/2+2A) = Z*(4A) 

(N.B.: The time dependence have been suppressed in all of the expressions.) 
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Polarization: Net dipole moment per unit volume = 
∗  ( )

 
 𝒆𝒛   

 

In the above expression S represents the area 

Now by Poisson’s equation, we have: 

 

∇ 𝜑(𝑧) =  −
𝜌

𝜖
=  −

∇. 𝑃

𝜖
 

 

Since, ∇ ≡   𝒆𝒒 +  𝒆𝒛 =>  ∇. 𝑃 =
𝑍

∗
4𝐴 

𝜖∞ 𝑆
 
𝜕 𝑓(𝑧)

𝜕𝑧
   

 

Now, f(z) represents the profile of polarization in the z-direction given below in the figure 

 

Figure 39  Polarisation profile in 1-Monolayer thick MoS2 

(64) 
 

(65) 
 

(66) 
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Taking the Fourier transform of the poisons equation we have: 

 

(𝑞 +  𝑘 )𝜑 (𝑘) =  −
𝑍∗

𝜖 𝑆
 (4𝐴)𝓕  

𝜕 𝑓(𝑧)

𝜕𝑧
 

   

 

Here, 𝓕  
 ( )

 denotes the fourier transform of  𝜕 𝑓(𝑧)

𝜕𝑧
  

 

The Fourier transform of 
 ( )

 = 𝑖𝑘 𝓕( 𝑓(𝑧)) = 𝑖𝑘 −
 ( )

 − 2𝜋𝛿(𝑘)  

 

 

= 2 − 2𝑖 𝑠𝑖𝑛 𝑘 −  2𝜋𝑖𝑘𝛿(𝑘)  

Note: 𝛿(𝑘) = 𝑢𝑛𝑖𝑡 𝑖𝑚𝑝𝑢𝑙𝑠𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

Substituting the above expression in the Fourier transform equation of Poisson’s equation: 

 

𝜑 (𝑘) =  
𝑍∗4𝐴 2 − 2𝑖 𝑠𝑖𝑛 𝑘

𝑡
2

−  2𝜋𝑖𝑘𝛿(𝑘)

𝜖 𝑆(𝑞 +  𝑘 )
 

 

 

(67) 
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Now, we will take inverse Fourier transform of the above expression to get  𝝋𝒒(𝒛), as shown 

below: 

𝜑 (𝑧) =   𝑑𝑘 𝑒

 

 𝜑 (𝑘) 

 

Thus, 

𝜑 (𝑧) =   
𝑍∗4𝐴

𝜖 𝑆

2

𝑡
𝑑𝑘 𝑒

 

  
2 − 2𝑖 𝑠𝑖𝑛 𝑘

𝑡
2

−  2𝜋𝑖𝑘𝛿(𝑘)

(𝑞 + 𝑘 )
 

 

= 
∗

∫ 𝑑𝑘 𝑒
 

  
(  )

−  
∗

∫ 𝑑𝑘 𝑒
 

  
(  )

+

∗

∫ 𝑑𝑘 𝑒
 

  
(  )

  

 

= 
∗

 𝑒 | | −  
∗

 𝑒   + 
∗

 𝑒    

 

Thus, 

𝝋𝒒(𝒛) =  
𝒁∗𝟖𝑨

𝒒𝝐 𝑺𝒕
 𝒆 𝒒|𝒛| −  

𝒁∗𝟒𝑨

𝒒𝝐 𝑺𝒕
 𝒆 𝒒 𝒛

𝒕

𝟐   + 
𝒁∗𝟒𝑨

𝒒𝝐 𝑺𝒕
 𝒆 𝒒 𝒛

𝒕

𝟐    

 

The above is the expression for the Frohlich potential as a function of z-direction for A2
’ Mode 

(68) 
 

(69) 
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Note: For simplicity of expression, let 
𝒕

𝟐
= 𝒂  

 

The region of 1-mono layer MoS2 can be classified as below: 

 

 

 

 

 

 

 

 

Figure 40  1-ML thick MoS2 with region markings used in determination of potential 

 

The region wise breakup of expression of interaction potential so obtained as above can be written 

as: 

 

 

𝝋𝒒(𝒛) =

⎩
⎪
⎨

⎪
⎧ 

𝒁∗(𝟖𝑨)

𝝐 𝑺𝒕
.
𝟏

𝒒
. 𝒆 𝒒𝒛 + 𝒆 𝒒𝒂 𝒔𝒊𝒏𝒉(𝒒𝒛) , 𝒛 > 𝟎

𝒁∗(𝟖𝑨)

𝝐 𝑺𝒕
.
𝟏

𝒒
. 𝒆𝒒𝒛 + 𝒆 𝒒𝒂 𝒔𝒊𝒏𝒉(𝒒𝒛) , 𝒛 < 𝟎

 

In the above analysis t = 2a = 0.441 nm [32]  

 

(70) 
 

 

 

 

 

 

 𝑴𝒐 

 𝑺 

0 ≤ 𝑧 ≤  +𝑎 

−𝑎 ≤ 𝑧 ≤  0 
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Figure 41  Potential inside 1-ML MoS2 as function of z for q = 0.1 

 
 
   

 

Figure 42 Potential inside 1-ML MoS2 as function of z for q = 1 
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Figure 43  Potential inside 1-ML MoS2 as function of z for q = 10 

 

 

 

 

Figure 44  Potential inside 1-ML MoS2 as function of z for q = 50 

 

 

 



89 
 

 
 

 

 

The following conclusions can be drawn from the above graphs: 

1. The Frohlich potential inside the MoS2 layer depends on the in-plane phonon wavevector q 

2. The potential has 1/q dependence – As q → 0 the potential becomes very high (3.5 eV near middle 

of the layer). The short wavelength in-plane phonon, for example. q = 50 have very low (7meV) 

potential in the middle of the layer. 

3.  For short wavelength (large q) in-plane phonons the potential inside the layer decreases at a very 

steep rate and the difference between the potential at the middle of the layer to the potential at the 

edge of the layer is very high as compared to long wavelength (q → 0) in-plane phonons.  

Evaluation of Coupling Function 𝒈𝑳𝑶 

The phonon-electron coupling function, 𝒈𝑳𝑶, is defined as : 

 

𝒈𝑳𝑶 =  𝒅𝒛 𝝌∗(𝒛) 𝝋𝒒(𝒛)𝝌(𝒛) 

 

In the above expression 𝝌(𝒛) is the electron envelope function 

For bulk material 𝑔 =   
ℏ

( )
−

( )
 

The expression of 𝝌(𝒛) is taken as double bell gaussian shape curve for MoS2. The two bells are 

centered around z= -a and z = +a 

 

𝝌(𝒛) =
𝟏

𝝅
𝟏
𝟒√𝝈

𝒆
(𝒛 𝒂)𝟐

𝟐𝝈𝟐 +  𝒆
(𝒛 𝒂)𝟐

𝟐𝝈𝟐  

 

(71) 
 

(72) 
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Fig 45 shows the plot of electron envelope function: 

Evaluation of 𝒈𝑳𝑶 for 0< z< +a: 

= 

𝒁∗(𝟖𝑨)

𝝐 𝑺𝒕
.
𝟏

𝒒
.

𝟏

√𝝅𝝈
𝒅𝒛 

𝒂

𝟎

𝒆 𝒒𝒛 + 𝒆 𝒒𝒂 𝒔𝒊𝒏𝒉(𝒒𝒛) 𝒆
(𝒛 𝒂)𝟐

𝝈𝟐 +  𝒆
(𝒛 𝒂)𝟐

𝝈𝟐 + 𝟐 𝒆
𝒛𝟐 𝒂𝟐

𝝈𝟐   

 

 = 

𝒁∗(𝟖𝑨)

𝝐 𝑺𝒕
.
𝟏

𝒒

⎝

⎛𝒆
𝒒𝟐𝝈𝟐

𝟒 𝒆𝒓𝒇
𝒒𝝈

𝟐
− 𝒆𝒓𝒇

𝒒𝝈

𝟐
−

𝒂

𝝈
𝒆 𝒒𝒂 −

𝟏

𝟐

+  
𝒆

𝒒𝟐𝝈𝟐

𝟒

𝟒
𝒆𝒓𝒇

𝒂

𝝈
+

𝒒𝝈

𝟐
− 𝒆𝒓𝒇

𝒒𝝈

𝟐
 

+  
𝒆

𝒒𝟐𝝈𝟐

𝟒
𝒒𝒂

𝟐
𝒆𝒓𝒇

𝟐𝒂

𝝈
+

𝒒𝝈

𝟐
− 𝒆𝒓𝒇

𝒂

𝝈
+

𝒒𝝈

𝟐

+  
𝒆

𝒒𝟐𝝈𝟐

𝟒
 𝟐𝒒𝒂

𝟒
𝒆𝒓𝒇

𝟐𝒂

𝝈
−

𝒒𝝈

𝟐
− 𝒆𝒓𝒇

𝒂

𝝈
−

𝒒𝝈

𝟐

−  
𝒆

𝒒𝟐𝝈𝟐

𝟒

𝟒
𝒆𝒓𝒇

𝟐𝒂

𝝈
+

𝒒𝝈

𝟐
− 𝒆𝒓𝒇

𝒂

𝝈
+

𝒒𝝈

𝟐
 

+  𝒆

𝒒𝟐𝝈𝟐

𝟒
𝒂𝟐

𝝈𝟐
𝒆𝒓𝒇

𝒂

𝝈
+

𝒒𝝈

𝟐
− 𝒆𝒓𝒇

𝒒𝝈

𝟐

+  𝒆

𝒒𝟐𝝈𝟐

𝟒
𝒂𝟐

𝝈𝟐 𝒒𝒂
𝒆𝒓𝒇

𝒂

𝝈
−

𝒒𝝈

𝟐
+ 𝒆𝒓𝒇

𝒒𝝈

𝟐

−  𝒆

𝒒𝟐𝝈𝟐

𝟒
𝒂𝟐

𝝈𝟐 𝒒𝒂
𝒆𝒓𝒇

𝒂

𝝈
+

𝒒𝝈

𝟐
+ 𝒆𝒓𝒇

𝒒𝝈

𝟐

⎠

⎞ (73) 
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Evaluation of 𝒈𝑳𝑶 for -a< z< 0: 

 

= 

𝒁∗(𝟖𝑨)

𝝐 𝑺𝒕
.
𝟏

𝒒
.

𝟏

√𝝅𝝈
𝒅𝒛 

𝟎

𝒂

𝒆𝒒𝒛 + 𝒆 𝒒𝒂 𝒔𝒊𝒏𝒉(𝒒𝒛) 𝒆
(𝒛 𝒂)𝟐

𝝈𝟐 +  𝒆
(𝒛 𝒂)𝟐

𝝈𝟐 + 𝟐 𝒆
𝒛𝟐 𝒂𝟐

𝝈𝟐   

 

Substituting z= - x in the above expression we have: 

 

𝒁∗(𝟖𝑨)

𝝐 𝑺𝒕
.

𝟏

𝒒
.

𝟏

√𝝅𝝈
∫ 𝒅𝒛 

𝒂

𝟎
𝒆 𝒒𝒙 − 𝒆 𝒒𝒂 𝒔𝒊𝒏𝒉(𝒒𝒙) 𝒆

(𝒙 𝒂)𝟐

𝝈𝟐 +  𝒆
(𝒙 𝒂)𝟐

𝝈𝟐 + 𝟐 𝒆
𝒙𝟐 𝒂𝟐

𝝈𝟐    

 

It is observed that the above expression is same as that for 0<z< +a case except for “minus” sign 

before sinh (qx) 

 

 

 

 

 

 

 

 



92 
 

 
 

 

Consequently, the above integral is evaluated as below: 

 𝒁∗(𝟖𝑨)

𝝐 𝑺𝒕
.

𝟏

𝒒
𝒆

𝒒𝟐𝝈𝟐

𝟒 𝒆𝒓𝒇
𝒒𝝈

𝟐
− 𝒆𝒓𝒇

𝒒𝝈

𝟐
−

𝒂

𝝈
𝒆 𝒒𝒂 −

𝟏

𝟐
+  

𝒆
𝒒𝟐𝝈𝟐

𝟒

𝟒
𝒆𝒓𝒇

𝒂

𝝈
+

𝒒𝝈

𝟐
− 𝒆𝒓𝒇

𝒒𝝈

𝟐
−

 
𝒆

𝒒𝟐𝝈𝟐

𝟒
𝒒𝒂

𝟐
𝒆𝒓𝒇

𝟐𝒂

𝝈
+

𝒒𝝈

𝟐
− 𝒆𝒓𝒇

𝒂

𝝈
+

𝒒𝝈

𝟐
−  

𝒆
𝒒𝟐𝝈𝟐

𝟒
 𝟐𝒒𝒂

𝟒
𝒆𝒓𝒇

𝟐𝒂

𝝈
−

𝒒𝝈

𝟐
− 𝒆𝒓𝒇

𝒂

𝝈
−

𝒒𝝈

𝟐
+

 
𝒆

𝒒𝟐𝝈𝟐

𝟒

𝟒
𝒆𝒓𝒇

𝟐𝒂

𝝈
+

𝒒𝝈

𝟐
− 𝒆𝒓𝒇

𝒂

𝝈
+

𝒒𝝈

𝟐
−  𝒆

𝒒𝟐𝝈𝟐

𝟒

𝒂𝟐

𝝈𝟐 𝒆𝒓𝒇
𝒂

𝝈
+

𝒒𝝈

𝟐
− 𝒆𝒓𝒇

𝒒𝝈

𝟐
−

 𝒆
𝒒𝟐𝝈𝟐

𝟒

𝒂𝟐

𝝈𝟐 𝒒𝒂
𝒆𝒓𝒇

𝒂

𝝈
−

𝒒𝝈

𝟐
+ 𝒆𝒓𝒇

𝒒𝝈

𝟐
+ 𝒆

𝒒𝟐𝝈𝟐

𝟒

𝒂𝟐

𝝈𝟐 𝒒𝒂
𝒆𝒓𝒇

𝒂

𝝈
+

𝒒𝝈

𝟐
+ 𝒆𝒓𝒇

𝒒𝝈

𝟐
 

 

 

 

Figure 45  Electron envelope function in MoS2 

 

For the above “double-bell” electron envelope function σ = a/2 has been assumed. 

  

(74) 
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5.4 Conclusions 
 
In this chapter we have presented a detailed mathematical analysis to find the electron-
interaction potential due to out-of-plane (A2’ mode phonon) vibration of Mo and S atoms. Also, 
we extended the calculation to find the coupling function for 1-monolayer MoS2, the coupling 
function is an important determinant in finding the scattering rate of electrons by phonons. The 
major conclusions drawn can be summarized as: 
 
1. For 1-monolayer MoS2, the potential induced by out-of-plane vibration has no dependence on  
    spatial co-ordinate (z-direction in the present case). 
 
2. The potential as obtained above (A2’ phonon mode) depends on the in-plane phonon  
    wavevector. 
 
3. The A2’ phonon mode potential has very high amplitude at the middle of the layer and then  
     exponentially decreases on either sides. 
 
4. Only for a long wavelength in-plane phonon wavevector do we observe very high potential,  
    e.g., 3.5 eV for q = 0.1 at the middle of the layer, whereas for short wavelength in-plane   
    phonons we get 7 meV for q = 50. 
 
5. It can be concluded that the long wavelength phonons play the most significant role in electron  
    scattering.   
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