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SUMMARY

Interactions of electrons with longitudinal optical phonons (LO phonons) are the most dominant
scattering mechanism in polar semiconductors. This interaction in polar semiconductors is known
as the Frohlich interaction and is the primary interaction determining the limiting electron
mobility. In heterostructures, the confinement effects cause the LO phonons undergo significant
modifications in terms of spectrum and the macroscopic fields produced by them; this leads to

emergence of new modes.

This research introduces in-depth details about interface phonons (IF phonons) in two-interface
wurtzite heterostructures and then advances the mathematical treatment to find the Frohlich
potential profile and spectrum for multi-interface wurtzite heterostructures. The knowledge of the
electron interaction potential and the spectrum are fundamental to understand the electron

scattering mechanism.

In the last part of this research, the profile of the potential is determined for 1-mono layer of

molybdenum disulphide which is an emerging 2D material.

X



CHAPTER 1 INTRODUCTION
1.1 What are Phonons
The active materials finding application in the electronics industry are crystalline in nature. The
constituent atoms of crystalline material are arranged periodically in three-dimensional arrays.
However, in reality the atoms are not rigidly fixed in space inside the crystal, these atoms vibrate
causing the interatomic spacing to vary periodically in time and space. The frequency of vibration
increases with temperature. The systematic and collective vibration of atoms possesses energy

which is quantized; The quantum of energy is known as Phonons.
In a bulk material there are the following types of phonons:

1. Optical Phonons: The constituent atoms of the crystals vibrate out-of-phase with respect to each
other. The figure below shows vibration pattern of atoms for optical phonon modes for a crystal

with diatomic basis:
~ @ o
@ <«

Figure 1 The vibration pattern of atoms for Longitudinal Optical phonon modes.



In the above figure the atoms vibrate along the same direction as that of the wave propagation;
hence, these are termed as Longitudinally Optical Phonons abbreviated as LO Phonons. If the
atoms vibrate perpendicular to the direction of the wave propagation, then they are referred to as
transverse optical phonons abbreviated as TO phonons. It is to be noted that in polar
semiconductors the two atoms as shown above are oppositely charged hence they produce

macroscopic polarization field due to presence of phonons.
2. Acoustic Phonons: The constituent atoms of the crystals vibrate in-phase with respect to each

other. The figure below shows vibration pattern of atoms for acoustic phonon modes for a crystal

with diatomic basis:

Figure 2 The vibration pattern of atoms for longitudinal acoustic phonon modes.

In the above figure the atoms vibrate along the same direction as that of the wave propagation; hence, these
are referred to as longitudinally acoustic phonons abbreviated as LA phonons. If the atoms vibrate

perpendicular to the direction of wave propagation, then they are termed as transverse acoustic phonons



abbreviated as TA phonons. It is to be noted that since the atoms vibrate in-phase with each other thus they

do not produce polarization field unlike the optical phonon modes.

The relation between phonon the wavevector and the frequency is referred to as the dispersion relation.
For bulk material this is derived using linear chain atomic model for a given dimension. It is frequently
assumed that the two immediate atoms are tightly coupled to each other and the interaction between them
is modelled using Hooke’s law (This assumes that the restoring force between the atoms is directly
proportional to the displacement over and above the equilibrium position). For a linear chain comprising of

periodic placement of atoms as in Fig. 1 and 2, the dispersion relation for the longitudinal modes is given

by [1]:
1
, (1+1)+ (1+1>2 4 sin?qa] /2

M T Ty mM

The upper + sign is taken the case of the LO modes and the lower — sign is taken in the case of LA

mode. The symbols in the above equations are:

m = mass of lighter atom in diatomic basis
M = mass of heavier atom in diatomic basis
a = interatomic spring constant
q = phonon wavevector
w = phonon frequency
a = interatomic equillibrium spacing
The figure below shows the plot in the first Brillouin zone for frequency vs. wavevector relation

for a diatomic basis crystal:
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Figure 3 Dispersion relation of bulk phonons in a linear crystal with diatomic basis

The high frequency solution of Eq.1 yields the optical phonon modes whereas the low frequency

solution yields the acoustic phonon modes.



The group velocity (v,) is defined as the instantaneous slope of the curve in the dispersion
. . dw . . -
relation, which is equal to, @ The group velocity represents the velocity of energy transmission

in the material. It is evident that the acoustic modes have higher group velocity than the optical

phonons near zone center (I'-point ) of the Brillouin zone.

1.2 Why are phonons important: Phonons give rise to numerous effects in semiconductors which
significantly affect their electronic and optical properties; below are three significant phonon

mediated effects in semiconductors which are essential for a thorough understanding of phonons:

1. Dominant electron scattering mechanism: The electron-phonon interaction is one of the
fundamental interaction processes in solids that frequently provides the dominant
scattering mechanism with exception being at low temperatures [3]. As pointed out earlier,
the LO phonons in a polar semiconductor give rise to macroscopic polarization field which
couples with the electron and results in energy exchange between the electron and LO
phonon. An external electric field causes an electron to gain energy and hence accelerates
it; however, when the electron energy reaches a threshold level (36 meV in GaAs and 91
meV in GaN), then the electron rapidly emits an LO phonon causing it to loose energy.
Under steady state conditions, the energy gained from the external electric field is balanced
by the energy lost by phonon emission, this eventually causes electron to move with a
constant velocity also known as saturation velocity. This saturation velocity is the upper
equilibrium limit on velocity of electron which it can attain inside a material. The acoustic
phonon on the other hand causes the inter atomic distance between the atoms to fluctuate

causing the conduction band energy levels to fluctuate accordingly, thus giving rise to a
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deformation potential in the conduction band which interacts with the electron causing the

loss of momentum and energy.

Non-vertical transitions in indirect band gap semiconductors: The density of electrons
and holes in conduction and valence band respectively are maximum near the minima and
maxima of conduction band and valence band as depicted in a typical E-K diagram. In an
indirect band gap semiconductor the minima and maxima of conduction and valence band
do not coincide. A photon when interacting with an electron can cause vertical transition
to-from valence-conduction band transition, because the photon has very low momentum
due low magnitude of wavevector since its wavelength is of the order of few hundreds of
nanometers. Thus, the transitions caused by photon approximately preserves the
momentum of electrons from its initial and final state, hence in an indirect semiconductor
the probability of photon assisted transitions is very low. On the contrary, a phonon has
energy much less than a photon but very high magnitude of wavevector (for example at the
end of first Brillouin zone k = n/2a where a = lattice constant and is of the order of few
angstroms). Thus, emission-absorption of phonons can lead to phonon assisted transitions

in indirect bandgap semiconductors.

Exciton production-annihilation [2]: Excitons are a hydrogen-atom like quasi-particle
formed in semiconductors in which bound electron-hole pairs are present due to Coulomb
interactions.

The exciton energy levels are present inside the bandgap. A phonon with a high wavevector
can produce an exciton; to conserve the momentum, the excitons, after formation, have

high kinetic energies and can roam freely inside the crystal. Similarly, the phonons can
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interact with excitons to annihilate by causing electron and hole to recombine.
Understanding of exciton dynamics is very important for performance characterization of

optoelectronic devices.

1.3 Emergence of new phonon modes in semiconductor quantum well

Komirenko et. al (1999) in landmark work applies Loudon’s dielectric continuum model to
uniaxial crystals study to various optical phonon modes in wurtzite-material-based quantum wells
(QW). Uniaxial crystals have completely different electrical, optical and mechanical properties
along a particular axis (c-axis), whereas the properties along the other two mutually perpendicular
directions are the same. Because of this anisotropy, various effects such as lack of complete
confinement of phonons in wurtzite quantum wells and the formation of finite energy intervals for
confined modes occur in wurtzite QWs. Various new modes such as interface modes, half space
modes and propagating modes appear in wurtzite QWs. The above modes have completely

different frequency spectra than the bulk modes described earlier in the chapter.

1.4 Outline of Research Work:

The organization of research work presented in this thesis is as under: In Chapter 2, the first part
we present the evaluation of analytical expressions and plots of graphs for dispersion relation and
electron-phonon interaction potentials (also known as Frohlich potential) for interface modes in
various two-interface wurtzite heterostructure terminated with semi-infinite layers. The second
part deals with two heterostructures - (a) Ali_y1Gay N/Al_x,Ga,; N/ Ali_y3Gas N (b)

GaN/In,Ga,_,N/GaN, in both of the heterostructures the range of x is found for which the
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interface modes can exist as well as the corresponding range of frequency for which interface
modes exist.

Chapter 3 presents the evaluation of analytical expressions for dispersion relations and interaction
potentials for a two-interface metal-terminated wurtzite heterostructure. These heterostructures
find application in dual gate MOSFETS. It is further discussed as to how metal terminations leads

to reduced scattering of electrons by interface modes.

Chapter 4, presents a general theory based on the transfer matrix method for wurtzite
heterostructure. This work is inspired by the work of Yu et al. (1997) which was developed for
isotropic crystals. The theory so developed in Chapter 4 enables one to find dispersion relation and
Frohlich potential for interface modes in any heterostructure consisting of an arbitrary number of
layers. Further, the theory is applied to a 2-layer (AIN/GaN) 4-period superlattice to find the

dipersion relation of interface modes.

Chapter 5, Analytical expressions are derived and graphs plotted for out-of-plane vibrations in 1-
monolayer (1-ML) thick MoS,. The recent available literature has treated only the in-plane

vibration modes.



CHAPTER 2 Interface-Phonon — Electron Interaction Potentials and Dispersions
Relations in III-Nitride-Based Structures

2.1. Introduction

The study of electron-optical-phonon interactions in semiconductor structures has been active for
a variety of semiconductor heterostructures with particular emphasis on semiconductors based on
cubic crystals [1]. In particular, the optical modes in such structures are known to facilitate fast
phonon-assisted transitions for the case where the phonons are interface modes [4]. The Frohlich
potentials and dispersion relations of joint optical phonon modes, known as interface optical
phonons, have been shown to be derivable using transfer matrix techniques introduced by Yu et
al. [5]. These techniques have been applied extensively for heterostructures based on cubic crystals
as exemplified by Teng et al. [6]. Moreover, confined and interface modes on such
heterostructures have been shown to be critical in the performance of semiconductor lasers [7,8].
Of special importance, such confined and interface phonon-assisted transitions have been shown
to be important in the operation of quantum cascade lasers and it was shown that interface-
phonon—assisted transitions can greatly enhance population inversions [9-11]. Of special interest
to the present study of Ill-nitride structures with ternary layers, the dielectric continuum models
of Lee et al. [12-13] and Komirenko et al. [14-15] provided formulations of models treating the
confined and interface phonons in uniaxial crystals with wurtzite structures based on IlI-nitride
materials being a representative material system. By extending out previous work [14-15], the
work of Glieze et al. [16] provided an illuminating account of the interface phonon modes in

special case of superlattices based on wurtzite superlattices. Other works on Ill-nitride structures,
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Lin et al. [17] considered the mobility enhancements in AlGaN/GaN/SiC with stair-step and
graded heterostructures and Gaska et al. [18] considered the high temperature performance of
AlGaN/GaN high-electron-mobility field-effect transistors on SiC substrates. Subsequent works
formulated the interface phonon modes for GaN-ZnO heterstructures [19] as well as the electron-
phonon scattering rates in wurtzite structures [20]. Zhang et al. considered interface optical
phonons in wurtzite quantum heterostructures with particular emphasis on SiC/GaN/vacuum and
GaN/AlIN/vacuum heterostructues. In the present work, we provide a generalized treatment of the
formulation in Ref. 20, model the Frohlich interactions in more complex IlI-nitride based
heterosctructures, and point out errors. Interface phonon modes of dual-gate metal-oxide-
semiconductor field-effect transistors have been formulated in Ref. 22. Park et al. [23, 24] have
recently investigated heat transport via interface modes that propagate before decaying into heat
carrying acoustic phonons, electron mobility and saturation velocity limits in GaN-based structures
with binary layers using the dielectric continuum model for uniaxial materials [3, 5, 20]; the
generalization to interface modes in ternary-containing layers portends such application for an
expanded class of nitride heterostructures. Herein, we derive expressions for the phonon-electron
Frohlich interactions as well as the dispersion relations for these joint modes for the
technologically important case of IlI-nitride ternary materials for a general value of the so-called
“x-value” describing the composition of each ternary layer, such as InxGaixN, where x can have

any specified value between 0 and 1.

There are four Sections in this chapter. In the following section, Section 2.2., we provide a
generalize formulation of the Frohlich potentials and the dispersion relations of interface phonon
modes in multi-layer heterostructures. Results and a discussion are presented in Section 2.3.

Finally, Section 2.4. summarizes the conclusions of this paper.
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2.2. Theory

The wurtzite structures considered in the paper have 4 atoms per unit cell and it follows that there are
three acoustic modes and nine optical modes. Among the optical modes there are only two modes
which couple strongly to electrons, so-called infrared active modes. The dielectric constants along the

z-axis and perpendicular to the z-axis are given by:

2 2
w” — wJ_L (1)
.}
e (w) = e 02 — w2 w?
2 2
w” —w
_ © zL
SZ(O)) - SZ (1)2 _ wzz (2)

where ®ir and o, represents the optical phonon frequencies of longitudinal modes along
perpendicular to and parallel to z-axis and along z-direction, whereas, ®, and wr are the optical
frequencies of transverse modes. In the notation of the macroscopic dielectric continuum model,
the classical electrostatic equations which are satistied by the polar optical phonon fields [3, 12-

15] are,

L . 3)
E(r) = =V ()
- . 4)
D) = E(#) +4nP(7) = e, (w)E,(F)p + &,(w)E, ()2

(5)

V.D(# =0
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where O is the potential introduced by the optical phonon modes, E represents electric field, D
represents displacement field and P represents polarization field. Where, p and Z represent the
unit vectors perpendicular to and parallel to z- axis (which is also c-axis) respectively.
Substituting the equation for the electrostatic phonon potential ®(r) = d(2)eldP
into Eq. 3, one finds

- 02
V.D = <gz(w)ﬁ - SJ_((‘))q2> P =0 (6)

=0

z—>*0

D(2)

Taking into account boundary conditions at z = +oo,

It follows that for wurzite heterstructures as depicted in Fig. 4, that the phonon potential is:

d
(ceki(=+3) z< —d/2
- i d
®(r) = e'% { A cosh(k,z) + B sinh(k,z) —3 <z <d/2 ()
d
peks(2-3) z>d/2

where A, B, C, and D are potential amplitudes in the various material regions and the wavevectors
in the three regions are denoted by k;, k, and k.

The intermediate layer has a thickness, d.

Applying the boundary conditions:

(®)

(9)
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D,(z) = ®iyq(2)

0d; 0Piyq
ST, T T,

which express the facts that the normal component of D, and the tangential component of E, are

continuous at the interfaces. After eliminating the constants we get the secular equation of the

system:
Slzk1+822k2 tanh(kzd/Z) _ 832k3+822k2 tanh(kzd/Z)
822k2+812k1 tanh(kzd/Z) - 822k2+83zk3 tanh(kzd/Z) (10)

where k = (k, q) is the phonon wave vector, such that

(11)

ke
I
| N
=
<

Nm
N

with gileiz > 0 and i =1, 2, 3 for the three regions of the heterostructure.
From the above dispersion relation the condition for symmetric and anti-symmetric Frohlich
potentials can be derived separately. It is observed that for symmetric solution the dispersion

relation will be:

(e12ky + €25k, tanh(k,d/2))(es ks + &35k, tanh(k,d/2)) =0 (12)



Similarly, the condition for anti-symmetric potential will be:

14

(e27kz + €1,k tanh(k,d/2))(e2,k, + €5,k3 tanh(k,d/2)) = 0 (13)

Now, we can define the expression of potential separately as symmetric and anti-symmetric shown

below:

‘

¢+ek1(z+g)
¢+

Xaa
cosh 5

D(r) = eldh ) cosh(k,z)

\ ¢)+e_k3 (Z_%)

;2 < —d/2

izl < d/2 (14)

;Z2>d/2

The above is the expression for symmetric solution inside the quantum well. The anti-symmetric

solutions will have the form shown below:

(_¢_ek1(z+%)

sinh(k,z)

r) = eldP
¢(r) sinh %

\ ¢_e —ks (Z_%)

Using the normalization condition for wurtzite material [3, 12-15]

;2 < —d/2
izl < d/2 (15)

;Z2>d/f2



|®:(q, 2)1? +

ho 11 dz<q2 dg; 1 (w)

N1t 0¢; ,(w) [0®;(q,2)
2wl? At 2w dw
R;

and imposing the boundary conditions of Eqs.8 and Egs. 9, it follows that:

The expression for symmetric solution

de 1 e, K? ds 1 d si (kyd)

2 O&11 O&1z K3 208&21 2

q) _) + q Tod (_ + ) +
80 w 2k1 ow 2kq w COShZ(T) 2 2k,

1

2
deay k2 sinh(k,d) d ,0g; 1 de, k3
o0 \co 22\ 2k, 2) | T\ 502 e 2k
co - 2 3 3

2

and the expression for anti-symmetric solution is

aeu 1 6612 k?
dw 2k1 Jw 2k,

, 06, 1 ( sinh(k,d) d)\

sinh? (%) 2 /

2k, 2

N 0€,, / k> sinh(k,d) N d \
a(l) \ . 2 (kzd 2k2 2 /
sinh T)

|
N[~

,0€3, 1 N des, k2
ow 2k, ow 2k,

15

2
) (16

(17

(18
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2.3. Results and Discussion

The dispersion relations and Frohlich potential for the structure of Fig. 4 are depicted in Fig. 5 and
Figs. 6 and 7, respectively. In GaN/Ino 15Gao ssN/GaN case the frequencies 720 cm™ < o < 735 cm’
I are the allowed rage of frequencies for IF phonon to exist in the entire heterostructure. The
dispersion relations are based on Eq. 10 and the Frohlich potentials are based on Egs. 20 and 21.
In this example we illustrate the functional forms of the dispersion relations and the symmetric
and anti-symmetric Frohlich potentials for the wurtzite heterostructure can be determined from
Eq. 10 for the IF optical phonon modes.

For the heterostructure, with material and 2, two cases are considered: SiC (6H)/GaN and

GaN/AIN, respectively (as in Fig.5). Herein, the material 3 is taken as vacuum so we have €3, =

€31 = 1. Table 1 details parameters of every materials used in heterostructures under consideration.

For both SiC/GaN/Vacuum as well as GaN/AIN/Vacuum, we get four interface phonon modes-
out of which two modes are symmetric and the other two modes are anti-symmetric in nature. For
SiC/GaN/Vacuum heterostructure the allowed range of frequencies for Interface Phonon to exist
in the structure is as below:

561 cm!'< @ <735 cm’!
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The dispersion curve for SiC/GaN/Vacuum heterostructure is shown in Fig. 9, whereas the
symmetric Frohlich potential graph is shown in Fig.10 and the anti-symmetric potential graph is

shown in Fig.11. The Frohlich potential graphs are drawn for qd = 3.

For GaN/AIN/Vacuum, the allowed range of frequencies is: 743 cm™ < ®» < 893 cm’!
The dispersion curve for GaN/AIN/Vacuum heterostructure is shown in Fig. 12, whereas the
symmetric Frohlich potential graph is shown in Fig.13 and the anti-symmetric potential graph is

shown in Fig.14. The Frohlich potential graphs are drawn for qd = 3.

Importantly, the allowed interface modes must obey restrictive conditions on frequency which
depend on the frequencies of the phonon modes in the layers composing the heterostructures.

These frequency conditions are:

£12(w)&3,(w) <0 & &5,(w)ez,(w) <0 & €iz€i,1 =123 >0 (19

The above simultaneous condition leads to the conclusion that the heterostructure with

compositions Alo.15Gag.gsN/Alp.3Ga0o.7N/Alo22Gag.7sN does not have an allowed solution.

The following two sub-sections outlines detailed analysis for determining the range of composition
labelled by x for existence of Interface modes in Alj_y1GayqN/Al;_x>Gay, N /Al;_43Gag 3N and

GaN/In,Ga;_4N/GaN heterostructures

1. Range of x for existence of Interface modes in Al;_,;GayqN/Al;_4,Gay, N /Al;_3Gayq 3N

heterostructure
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The procedure for determining the allowed frequency range of interface phonon modes in a three-
layer heterostructure is illustrated for several different cases. The heterostructure under
consideration comprises of a middle layer of Al,_,,Ga,,N flanked by semi-infinite layers of

Al_y1Ga,,N and Al;_,3Ga,; N on left and right side respectively as shown in Fig. 15

Any heterostructure comprising wurtzite materials must obey the following two conditions

simultaneously for the existence of interface phonon modes:

1. €,€,.> 0: In each individual layer, the product of dielectric constant along the c-axis or

z-axis (which is the || direction here) and the dielectric constant along the direction

perpendicular to c-axis (which is the L direction here) must be greater than zero.

2. €i€|i+1 < 0: The product of dielectric constant along c-axis of two adjacent layers must

be less than zero.

Table 3 shows optical phonon frequencies of Al;_,Ga,N as a function of x.

Based on the data of Table 3, Fig.16 illustrates the range of frequencies for which €,€,> 0 and the
sign of € which is true for all values of x. The shaded portion in Fig. 16 represents frequency range

for which €,€,> 0
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Similarly, the shaded portion in Figure 17 shows the range of frequency for which ¢ is positive

and the unshaded portion shows the range for which it is negative.

Based on the two essential conditions for interface phonons and the above two figures showing

the ranges for the dielectric constant expressions, the categories of heterostructures supporting

interface phonon modes in all three Alix Gax N layers follow:

Type A: In this heterostructure the €, of individual layers will alternate as: -/+/-

Type B: In this heterostructure the €, of individual layers will alternate as: +/-/+

For the Type A heterostructure the following two structures exist:

First Case: It is noted that €y < 0 for w, < w < w,;, thus for simplicity we will omit the

diagrams of € ”(as in Fig. 17) and use the frequency range diagrams for €;e, (as in Fig. 16) for

Layerl , 2 & 3 in that order for better understanding as shown in Fig. 18.

The condition depicted in Fig. 18 is possible only when w,, > w,; and w,, > w, 3, whereas, the
range of interface phonon frequency is w,, - w1 or w,, - w3 depending on w4 is greater than

w | 3 or lesser than w | 3 respectively. Fig. 18 shows an example where w1 < w 3.

For example, this is achieved if 0 < x; < 0.2 then 0.78 < x, < I; this opens the window : w,, -

w1, also, from Table. 3 data it is observed that an increase in x causes increase in w , thus the
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choice of x3 depends on how much narrower the range of allowed frequency is required for
phonons, if x3 is chosen such that x3 > x; then it will further restrict the range of allowed
frequency to w,, - w 3. Since a further increase in x; would constrict more the w,, - @, 3 window,

so the maximum value of x3 should be identified based on the desired frequency range.

If x1 is increased beyond 0.2 then the range of x, is shown in Table 4.

If x3 < x4 then w,3; < w,; the range of interface modes is: w,, - w,1 and if x3 > x; then the
range is: w,, - W 3 in this case the care must be taken to not to increase x3 so much so that w,; >

Wyo.

Second Case:

Fig. 19 depicts the case of Type A heterostructure for the Second Case. In this case, the interface

modes can exist in the heterostructure if w,;, < W, and w1, < W3-

The range of interface mode is: w,; - w,;, Or W, - w,;, depending on whether w,; 5 is greater

or less than w,;4. Fig. 19 shows the case for w,; < w, 1.

Table 3 shows variation of optical phonon frequencies with x it can be concluded that, if, 0 < x; <
0.37 then 0.5< x,< 1. The choice of x3 depends on the range of interface modes required, if w,;
- w1, 1s the required range then x5 < x;, whereas if w,; - w,;, is the required range then x3> x;

but in this case the upper limit on increase of x5 should be such that w,;, < w,; .
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For all x;in the range, 0.37 < x;< 0.7 then x, > x; +0.13, the choice of x5 should be done as in the

preceding paragraph.

For all x;in the range, 0.7 < x;< 0.85 then x, > x; +0.08, the choice of x5 should be done as in the

preceding paragraph.

For all x;in the range, 0.85 < x;< 1 then x, > x;, the choice of x3 should be made as in the

preceding paragraph.

For the Type B heterostructure the following two structures exist:

First case:

Fig. 20 depicts the case of Type B heterostructure for the First Case. In this case, the Interface
modes can exist in the heterostructure if: w,,< w,3 < w,; in this case the range of Interface
modes will be: w,3 — w,, , this corresponds to x3 >x;. The second case for existence is w,<
w,1 < W,3 in this case the range of Interface modes will be: w,; — w, , this corresponds to x; <

X1

This case is similar to the First case of Type A heterostructure with layer 1 and 2 interchanged, so
the same limitations on x; and x, will apply as in Type A case. The choice of x5 as indicated

above can be made depending on the range of required frequency range.
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Second Case:

Fig. 20 depicts the case of Type B heterostructure for the First Case. In this case, the Interface
modes can exist in the heterostructure if : ;1 < w3 < Wy, in this case the range of Interface
modes will be: w,;, — w, 3, this corresponds to the case for x3 < x;. The second case for
existence of interface mode is: w, ;3 < w1 < W, in this case the range of interface modes will

be: w,;, — w, 4, this case corresponds to the case of x5 > x;.

This case is similar to the Type A second case, thus, the restriction on x; and x, will be same as
in Type A second case. The choice of x; as indicated previously can be made depending on the

range of desired frequency range.

2 . Range of x for existence of Interface modes in GaN/In,Ga;_yN/GaN heterostructure

Consider the case of the heterostructure with a middle In,Ga;_¢N layer flanked by GaN layer on
both the sides. The shaded region in the below graphs show the range of frequencies for which
€€. = 0and € > 0in GaN respectively: The shaded portion in Fig.22 represents frequency range

for which €,€,> 0 for GaN

Similarly, the shaded portion in Fig. 23 shows the range of frequency for which ¢ is positive and

the unshaded portion shows the range for which it is negative for GaN.
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The variation of optical phonon frequencies for Inx GajxN with respect to x is shown in Table. 5.

Let us explore the possibility of existence of four different possible heterostructure for a 3- layer
case of GaN/ Inx GaixN /GaN. This case corresponds to x; = x3 = 0. The following paragraphs

discuss all four heterostructures:

Type A First Case: This case requires condition w, (GaN) < w,(In,Ga,_,N) < w,;(GaN)as

shown in Fig. 24.

From the Table 5, on phonon frequencies for Iny Ga; <N vs. x, it is observed that, for no value of x w, >
559 cm ™1, rather w, decreases with increase in x. The highest value of w, = 531 cm™? for x = 0.

Thus, it is concluded that this possible combination of heterostructure cannot exist.

Type A Second Case: This case requires condition w, (GaN) < w,;(In,Ga,_N) < w,,(GaN) as

shown in Fig. 25

From the Table 5, on phonon frequencies for In, GaixN vs. x, it is observed that, for 0.07 < x < 1,
w,, <734 cm™1. As evident from the figure above the range of interface mode will be

sz(GaN) - (‘)J_L(InxGal—xN)-

Type B First Case: For GaN, the w, = 531 cm™1; thus, for the interface modes to exist in this

type of heterostructure only those value of x for Iny Gai«N layer are allowed such that: w, (Iny Ga;N) <
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w,(GaN). And the range of allowed frequency for interface mode is: w,(GaN) —w  (InyGaixN), Fig. 26

shows the present case and the relevant frequency for interface mode existence.

From the Table 5, on phonon frequencies for Inx GaixN vs. x, it is observed that if 0.35 <x <1

then the above condition is satisfied. Hence, the allowed frequency range for interface modes is

531 cm™ — w, (In, Ga,_,N).

Type B Second Case: Fig. 27 shows the range of frequencies for existence of interface modes.

For this combination the constraint imposed is w,, (In,Ga,_,N) > 741 cm™1. The table of
phonon frequencies for Inx Gai«\N Vs x shows that w,;(In,Ga;_,N) is never greater than
741 cm™? for any value of x. Thus, it can be concluded that no interface modes can exist in this
heterostructure for frequencies greater than 741 cm ™1,

The Table 6 summarizes the maximum possible range vis-a-vis the range of x for all four

combinations of heterostructures for GaN/In,Ga,_, N /GaN.

2.4. Conclusion

This chapter derives general expressions for the dispersion relations and interface potentials for
the joint interface optical phonon modes in uni-axial crystals exemplifies by ternary-based nitride
heterostructures such as those illustrated for the specific cases of the symmetric heterostructure:
GaN/Ino.15Gao.ssN/GaN heterostructure (as a representative case of a ternary layer), as well as two
asymmetric heterostructures: SiC/GaN/Vacuum and AIN/GaN/Vacuum. Interestingly, the

allowed interface modes must obey restrictive conditions on frequency which depend on the
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frequencies of the phonon modes in the layers composing the heterostructures. For example,
application of the frequency conditions discussed in Section III. indicate that the heterostructure
with compositions Alo.15Gag.ssN/Alo3Ga00.7N/Alp.22Gag.7sN does not have an allowed solution.
Although it is beyond the scope of the present paper, it is worth pointing out the potential
application of our formalism to structures containing van der Waals layers. Consider the case of
MoS, grown on GaN; this case is equivalent to a two-interface heterostructure with layers:
MoS,/Vacuum/GaN. The vacuum layer in the middle is due to van der Waals gap. For MoS» it is
observed that A,; (w,) =A,r (w,) =473 cm™~! due to which the dielectric constant along the
z direction (perpendicular to interface), €, > 0 at all frequencies. Also, the middle vacuum layer,
which is isotropic medium, the dielectric constant in all directions is equal to 1. From above,
€lvac(w) = 1 and € yo52(w) > 0, thus, it is concluded that €| ,4.€) mos2 % 0 for any frequency
which makes existence of joint interface phonon impossible. Of course, there can be evanescent
tails of the Frohlich potentials on the vacuum region from the two layers surrounding the vacuum
layer, but the evanescent potentials do not form joint interface modes for the entire material

structure.

This Paper has been submitted to Journal of Applied Physics and is currently under review,
the above work with all the following figures and tables have been incorporated in the thesis

after taking permission from the Journal of Applied Physics.

This portion of the research was supported, in part, under AFOSR FA9550-16-1-0227; the
aspects of this research motivated by potential applications to 2D van der Waals structures
were supported under the Richard and Loan Hill Professorship as part of ARL JWSH# 18-

028-002.



Tables
o(cm™) oL (cm™) o (cm™) oi(cm™) e
Ino.15Gao.ssN 715 720 525 550 5.76
GaN?® 734 743 531 559 5.29
AINY 893 916 660 673 4.68
SiC 964 970 788 797 6.61
Table I Material parameters of AIN, SiC , GaN and In0.15Ga0.85N.
Frequencies O+ L . L
SiC/GaN/Vac 590.05 (Symmetric) 8.92 -
(for qd =1) 694 (Symmetric) 21.61 -
629 (anti-symmetric) - 11.43
721.66 (anti-symmetric) - 14.65
GaN/AIN/Vac 836.6 (Symmetric) 17.32 -
(for qd =3) 864.9 (Symmetric) 19.81 -
840 (anti-symmetric) - 16.62
866.7 (anti-symmetric) - 18.95
GaN/Ing.15Gag.gsN/GaN 731.8 (Symmetric) 27.84 -
(for qd =1) 722.8 (anti-symmetric) - 20.42

Table II Coefficients of Frohlich potential in various Heterostructures
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X Wz W, Wzy, (07}
0.05 607.72 667.01 883.51 905.41
0.1 604.89 662.87 875.48 898.71
0.15 602.05 660.05 872.69 892.01
0.2 600.51 657.21 864.65 886.59
0.25 597.67 653.08 860.58 879.89
0.3 594.84 648.96 853.88 873.18
0.35 592.01 644.84 847.16 866.48
0.4 589.16 639.43 840.46 858.49
0.45 586.34 636.59 833.76 850.51
0.5 583.49 631.18 825.78 842.52
0.55 580.66 627.06 820.37 835.82
0.6 579.11 622.93 812.38 827.83
0.65 573.71 617.52 804.39 818.55
0.7 569.58 612.11 796.4 809.27
0.75 565.45 605.4 787.12 800

0.8 561.34 599.99 777.83 789.42
0.85 555.92 592 768.56 777.57
0.9 550.51 584.01 757.98 767

0.95 542.52 573.45 747.43 753.86

Table III Optical phonon frequencies of Al;_,Ga,N vs. X
data based on Fig. 1 of SeGi Yu et al, PRB, 58, 15,283 (1998) [Ref 34]



X1 X
0.2-0.3 0.83 -1
0.3-0.4 0.86 -1
0.4-0.5 0.88 -1
0.5-0.6 0.97-1

Table IV Range of x, when x;> 0.2
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0.05 529.58 | 554.93 | 726.76 | 735.21

0.1 523.94 | 550.7 | 721.13 | 726.76

0.15 519.72 | 546.48 | 714.08 | 719.72

0.2 515.49 | 543.66 | 707.04 | 712.68

0.25 511.27 |539.44 | 700 705.63

0.3 505.63 | 535.21 | 692.96 | 698.59

0.35 502.82 | 532.39 | 685.92 |690.14

0.4 497.18 | 52535 | 678.87 | 682.39

0.45 492.96 |522.54 |670.42 | 676.06

0.5 488.73 | 51831 | 663.38 | 669.01

0.55 484.51 | 514.08 | 653.52 | 660.56

0.6 478.87 | 508.45 | 646.48 | 653.52

0.65 476.06 | 505.63 | 638.03 | 643.66

0.7 471.13 |501.41 | 630.99 | 635.21

0.75 467.61 | 498.59 | 623.94 | 626.76

0.8 463.38 |492.96 | 612.68 | 615.49

0.85 457.75 | 488.73 | 604.23 | 605.63

0.9 454.93 | 483.1 594.37 | 597.18

0.95 449.3 |1 480.28 | 583.1 585.92

Table V Optical phonon frequencies for In,Ga;_, N Vs x
data based on Fig. 1 of SeGi Yu et al, PRB, 58, 15,283 (1998) [Ref 34]
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Heterostructure Type

Range of x

Allowed frequency range

Type A First Case No Solution Cannot exist
Type A Second Case 0.07 -1 574 - 734
Type B First Case 0.37-1 475 - 531

Type B Second Case

No Solution

Cannot Exist

Table VI Summary of the maximum possible range vis-a-vis the range of x for all four combinations of

heterostructures for GaN/In,Ga;_, N /GaN.
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Figures
Heterostructure
GaN Ino.15Gag.85N GaN
Exterior | Material1 | Material 2 Material 3 Exterior

Figure 4 GaN-InGaN-GaN heterostructure used an example of applying the generalized Frohlich potentials
and dispersion relations derived herein.
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Frequency (cm™)
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qd (scaled wavevector)

Figure 5 Dispersion curves interface modes of GaN/In0.15Ga0.85 N/GaN structure.
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z/d
Figure 6 Anti-symmetric Frohlich potential for GaN/In0.15Ga0.85 N/GaN structure; qd = 1.

z/d
Figure 7 Symmetric Frohlich potential for GaN/In0.15Ga0.85 N/GaN structure; qd = 1.
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Figure 8 The two-interface heterostructure
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Figure 9 Dispersion curve for SiC/GaN/Vacuum
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Symmetric Frohlich Potential for SiC/GaN/Vacuum Heterostructure for gd =1

694 cm!

-2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0 2.5
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Figure 10 Symmetric Frohlich potential graph for qd =1, SiC/GaN/Vac

Anti ic Frohlich ial for SiC/GaN/Vacuum Heterostructure for gd =1

721.66 cm™!
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Figure 11 Anti-symmetric Frohlich potential graph for qd =1, SiC/GaN/Vac
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Figure 12 Dispersion curve for GaN/AIN/Vacuum

Figure 13 Symmetric Frohlich potential graph for qd =3, GaN/AIN/Vacuum
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Figure 14 Anti-symmetric Frohlich potential graph for qd =3, GaN/AIN/Vacuum

Alj_1Gay N Aly_,,Ga,;N

Al;_x3Gay3N

Figure 15 Two-interface heterostructure with semi-infinite end layers.
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0

Frequency

Figure 16 Shaded region showing the range of frequencies for which g;&, > 0.

Figure 17 Shaded region showing the range of frequencies for which g; > 0.

0 Wz w1 Wz W11

1 1
0 Wz3z  dy3 Wyr3 w3
' 1
<«
Range: w,; — w3

Figure 18 Type A: First Case.

The arrangement of 3 layers of a heterostructure for Type A First case with w,; < w3 < w,; ;
the region of allowed frequencies is shown by the bar with double arrows.
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Range = w,;3 — w1,

Figure 19 Type A: Second Case

The arrangement of 3 layers of heterostructure for Type A Second case with w,, < w,;1 <
w,3. Itis to be noted that w,; < w,;3 0r W, > wy, , these relationships only affect the
range of allowed frequency; the region of allowed frequencies is shown by the bar with double

0 -Wzq wW)q Wz Wip1

0

@z3 w3 Wy3 W3

Range: w,3 — w,,

Figure 20 Type B: First Case

The arrangement of 3 layers of heterostructure for Type B First case with w,, < w,3 <
w,1. The relation between w,; and w3 only affects the range of allowed frequency t; the
region of allowed frequencies is shown by the bar with double arrows.
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Figure 21 Type B: Second Case

143
<>
Range: w1, — w3

The arrangement of 3 layers of a heterostructure for Type B Second case with w,;1 < w,3 <
w,1. The relation between w , ;; and w,;, only affects the range of allowed frequency; the region
of allowed frequencies is shown by the bar with double arrows.

(e}

W, w; Wy, NORNS

»
>

531cm™t 559 cm™! 734 cm™t 741 cm™?

Frequency

Figure 22 Shaded region showing the range of frequencies for which g;&; > 0in GaN.



40

0 W, W) Wy,

W,y

531 em™ 1559 cm™? 734 em™t 741 em™?

Figure 23 Shaded region showing the range of frequencies for which & >0 in GaN

However, it i1s emphasized here that the above relations between €,6,> 0 and ® as well as ;> 0
and o hold for every wurtzite material.

w; =559 cm™! w, =734 cm™t
wz
w; =559 cm™! w, =734 cm™t

Figure 24 Arrangement of three layers for Type A: First Case.
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w,; =559 cm™t w,, =734 cm”

1

w,; =559 crr%‘1 w,y =734 cm™!

«

Range: 734 - w,; (In,Ga,_,N)

Figure 25 Arrangement of three layers for Type A: Second Case

The region of allowed frequencies is shown by the bar with double arrows.

w, =531 cm™?!

'_
g
N

w, =531cm™!
«—»

1

Range=531cm™ — w,

Figure 26 Arrangement of three layers for Type B: First Case

The region of allowed frequencies is shown by the bar with double arrows.
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Figure 27 Arrangement of three layers for Type B: Second Case

The region of allowed frequencies is shown by the bar with double arrows.



43

CHAPTER 3 INTERFACE PHONONS IN METAL TERMINATED TWO INTERFACE

3.1 INTRODUCTION

WURTZITE HETEROSTRUCTURE

In this chapter a metal-terminated two-interface wurtzite heterostructure as shown in Fig.
28 is considered and analytical expressions for dispersion relations for interface modes will
be derived and after that Frohlich potential expressions will be derived. The mathematical
analysis in this chapter is described in detail; however, the steps are same as that in Chapter

2.

3.2 ANALYSIS

Metal Material 1

Material 2

Material 3

Metal

2

d
L+5

Figure 28 Metal-terminated two-interface heterostructure with reference coordinate axes.

In the notation of the macroscopic dielectric continuum model, the classical electrostatic equations

which are satisfied by the polar optical phonon fields [1, 10-13] are,

E@®) = —Vo ()

D#) =E@) +4nP(#) = e, (WEL(F)p + &,(w)E, ()2

V.D(#) =0

(20)

21)

(22)
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where O is the potential introduced by the optical phonon modes, E represents electric field, D
represents displacement field and P represents polarization field. Where, p and Z represent the

unit vectors perpendicular to and parallel to z- axis (which is also c-axis) respectively.

Substituting the equation for the electrostatic phonon potential ®(r) = d(2)eldP
into Eq. 20, one finds

62
az2

V.D = <sz(a)) — SL(a))q2> O(#) =0 (23)

=0

z—>*0

D(2)

Taking into account boundary conditions at z = +oo,

It follows that for wurzite heterstructures as depicted in Fig. 28, that the phonon potential is:

( d ) d
C cosh (kl (z + E)) + D sinh (kl (z + E)) z< —=d/2 (24)
— i d
&(7) = €' { A cosh(k,z) + B sinh(k,z) -5 <z <dJ2
d d
E cosh (k3 (z — E)) + F sinh <k3 (Z — E)) z>d/2
\

where A, B, C, D, E and F are potential amplitudes in the various material regions and the
wavevectors in the three regions are denoted by k4, k, and k5.

The intermediate layer has a thickness, d. It should be noted that the metal regions are assumed
to be perfect conductors; hence, the potential is zero in the volume enclosed by metal region and
metal surface.

Applying the boundary conditions:
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Di(2) = Pi14(2) (25)

€5, = fiv1,,

which express the facts that the normal component of D, and the tangential component of E1 are
continuous at the interfaces. In continuation of above, applying boundary conditions at the

following interfaces:

d
z=-1; -

Continuity electric field:

C cosh(k,l;) — D sinh(k,l,) =0

= € =D tanh(k,l,) (27)
It is to be noted that the normal component of the displacement field Dz is not continuous at

metal-dielectric interface, because of the polarization field P inside the dielectric we have a

surface charge density o = P.7 at the metal-dielectric boundary. A represents unit vector

normal to the metal surface directed from metal to dielectric.
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continuity of electric field:

d d
C = Acosh (kz E) — B sinh (kz E) (28)

From the continuity of the normal component of displacement field:

(29)
) d d
&1.k1D = &y,k,| —A sinh <k2 E) + B cosh <k2 E)

Substituting for D from Eq. 27 in Eq. 29 and then equating Eq.28 and Eq. 29, we get:

E17k1

Ey,k> _ d d d d
—A sinh <k2 E) + B cosh <k2 E) tanh(kqly) = A cosh (kz E) — B sinh <k2 E)

(30)
(elzkl + &5, kytanh (k2 %) tanh(k1l1)>
B=A

(ezzkztanh(klll) + &1, kytanh (k2 %))
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applying continuity of electric field:

(31
d d
E = Acosh <k2 —) + B sinh (kz —)
2 2
Applying continuity of normal component of displacement field:
d d (32)
&,k | A sinh (kz E) + B cosh (kz E) = g3,k3F
d
zZ = lz + E
applying continuity of electric field parallel to interface:
E cosh(ksly) + F sinh(ksl,) =0
= E = —F tanh(ksl,) (33)

Substituting for F from Eq. 33 in Eq. 32 and then equating Eq. 31 and Eq. 32, we get:
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&7k
£32ks3

d d
<A sinh (kz E) + B cosh (kz E)) tanh(ksly)

d d
= A cosh (k2 E) + B sinh (kz E)

B4 (£zzk2 tanh (kz %) tanh(ksly) + g3zk3) (34)

(ezzkz tanh(ksly) + £3,k5 tanh (k; %))

Equating Eq. 30 and Eq. 34, we get:

d
<£12k1 + EZZkztanh (kz 7) tanh(k1l1)> (SZZkZ tanh (k2 %) tanh(k3lz) + €3zk3)

<£22k2 tanh(k;Ly) + &1k tanh (k, %)) <£22k2 tanh(ksly) + 3,ks tanh (k, %))

(35)
The above expression is the dispersion relation of a metal-terminated two-interface
heterostructure.
Obviously, the above dispersion relation must reduce to the dispersion relation of two-
interface heterostructure terminated with semi-infinite layers (as obtained in Eq. 10) in the

limits as [; = oo and [, = oo. Applying these limits:

(Slzkl+€2Zk2tanh(kzg)tanh(k1ll)>

im (220kz tanh(k,S ) tanh(ksly) +e35ks )

— = lim — -
EZZkztanh(kll1)+£12k1tanh(k25)) lz—)OO <£sz2 tan (k3lz)+£3zk3 tanh(kzg))

ll—>oo
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Since, we know that: lim tanh(x) = 1, the above equation reduces to:

X—00

(£1zk1 + &3,k tanh (kZ %)) ~ (Szzkz tanh (kz %) + €3zk3)

(ezzkz + &1,k tanh (kz %)) <£22k2 + &3,k3 tanh (kz %))

The above equation is same as case without metal case (as in Eq. 10)

To simplify the expression for the Frohlich potential, the potential in the middle layer, as
in Equation 24, can be broken down in symmetric and anti-symmetric components. The
symmetric component corresponds to B = 0 whereas the anti-symmetric component

corresponds to A =0.

3.2.1 Symmetric Modes
To obtain the expressions for the symmetric modes the boundary conditions are satisfied

at every interface, as shown below:

Continuity of electric field parallel to interface: &, = C = A cosh (kz g)

@,
A= —— (36)

cosh (kz %)
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Continuity of normal component of displacement field:

d
ngle = _EZZkZ A Slnh (kz E)

D= _ezzkz d, tanh (k g) o7
e kgt )
z=-l —g
Continuity of electric field parallel to interface:
®, = C = D tanh(k,l,)
(38)

D = CD+ COth(klll)

zZ=+-

Continuity of electric field parallel to interface:
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d
A cosh (kz E) =F

Substituting for A from Eq. 36, we obtain:

37
E=C=9d, 37
Continuity of normal component of displacement field:
d
EZZkZ A Slnh (kz E) = €3Zk3F
Substituting for A from Eq. 18, we find:
(38)

_ Ex,ko ( d)
F=0o, ks tanh | k, >

Continuity of electric field parallel to interface:

E cosh(ksly) + F sinh(ksl,) =0



52

39)
F = _E Coth(kglz) = —CD+ Coth(k3l2)
Now, the equation for symmetric modes can be written as:
(7)
( d ) d
®, cosh| kq (z + E) + @, coth(k,ly) sinh| ky (Z + E) z< —d/2
— ldp ] — ¢ cosh(k,z) -3 <z <d/2
cosh (kz >
d ) d
®, cosh| ks (Z - E) — @, coth(ksl,) sinh| ks (Z - E) z>d/2
\

The expression for @, can be obtained after substituting the above expression in the

normalization equation, which is:

|®:(q,2)I?

o 11 p , 0g 1 (w)
2wl2 42w Z\4 dw

4

+ agi,Z(a)) aCDL(CI; Z)
Jw 0z

2) (40)

To solve for @,, we will evaluate the respective integrals in each region of the

heterostructure as in Fig. 28 as shown below:



Region I:

d

2
j B, (2)[2dz =
—ll—d

2

0 0

sinh?(k,x) dx + CDf sinh(2k,x) dx

_11

0
sz cosh?(k,x) dx + sz
-1

_11

0 /cosh(2k,x) + 1 0 /cosh(2k.x) — 1 CcD
:sz < (2ky2) >dx+D2f < (2ky %) >dx+ﬁcosh(2k1x)]9

2 2

I - 1

C? (sinh(2k41 D? (sinh(2k,1
——<¥+ll>+—<ﬁ—

L) =2 sinn? () 41
~ 72 2k, 2 2k, 1) 7, ST A (41)

1

Substituting @, = C and D = @, coth(k,l;) in the above equation, we obtain:
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2
f |4 (2)|?dz =
—11—d

2

(1 (sinh(Zklll) >+coth2(k1l1)<sinh(2klll) ) coth(kyly)
S(Emmeat) S o b E)

. 2 2
2\ 2k, 2 2k, K Sk (klll)> @3

(42)

P4 (2)|*

dz

d
2
. d

-5

0 0 0
k3 lCz f sinh?(k,x) dx + D? f cosh?(k.x) dx + CDf sinh(2k,x) dx
-1 -l

_ll

_ 2 [C? (sinh(kyly) D? (sinh(2k,ly) _CD . .o
= ki 2 ( 2k, ll) T3 ( 2k, t ll) Ky sinh (klll)]

1 (sinh(2kly) coth?(kyly) (sinh(2k.l;)
2 1,2 - 1t1 _ 1t1 141
T A

_ COth(klll)

2
kl sinh (klll)]

(43)
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2 4 .
2 2 sinh(k,d) d
[Lj@@rdz= a2 [ 7 coshthyz) daz = a2 (# + _>
d L : :
2 /2
(D+2 (Sinh(kzd) n d)
B 2 44
cosh? (k2 %) 2 2 (44)

2 2
2

d 2 d

2 [0D,(z /2 sinh(k,d d
f 2(2) dz = Azkﬁf sinhz(kzz) dz = Azk% # _
_% dz _d/

27,2 -
_ D, k2 _ (smh(kzd) B E) (45)
cosh? (k2 7) 2 2
Region 111
Izt I, 1) I
fd |®3(2)|%dz = Ezfo coshz(kgx)dx+F2f0 sinhz(kgx)dx+EFf0 sinh(ks;x) dx
2
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E? [(sinh(2k,l F? (sinh(2k-l
__<M+lz> + <M_

T2 2k; 2 2k;

EF
2 lz +k—3$lnh (kglz)

_ (1 (sinh(2ksly) coth?(ksly) (sinh(2k;l,) coth(ksly) . 5
_<§<2—k3+12 = )T sinhaly) | @
(46)
L2 |dds(2)|? 2 L, L
f = k3 Ezf sinh?(ksx) dx+F2f cosh?(k3x) dx+EFf sinh(2k;x) dx
0 0z 0 0 0
E? (sinh(2ksl,) F? (sinh(2ksl,) EF
_ 1,2 - _ _ —_cinh?
= k3<2 < 2K, lz>+ > < 2K, +lz>+ k sinh®(k3l;)
1 (sinh(2k3l,) coth?(ksl,) [sinh(2ksly)
=¢ik§<E<T32—lz>+ Gty (sinhChaly)
th(ksl
_ %j”sinhZ(/«lzz))
(47)
From Equation 40:
h 11 e (w de;,(0) [0d:(q, 2)|*
N [ 25 0500 004t
2wl? AT 20 ow dw 0z

4
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where:

sinh?(k.l,)

1 (sinh(2k,l,) coth?(kyly) (sinh(2k,l,) coth(k,1;)
=o 4 )+ — ) -—Y
2\ 2k, 2 2k, K,

sinh?(k.l,)

I = 2 1 (sinh(2k,ly) l +coth2(klll) sinh(2k1l1)+l coth(k,1;)
L 2k, 1 2 2k, 1 ky

1 (sinh(kzd) N d>
d 2k 2
cosh? (kz 7) 2

. ——

/o k2 (sinh(kzd) d>
! =
cosh? (kz 7) 2kez 2

1 (sinh(2k;l,) coth?(ksly) [sinh(2ksly) coth(ksly) .
13_§<2—kg+z2 + el )~ sinh®(kala)
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3\2 2k 2 2k 5

1 (sinh(2k3l th?(ksl inh(2ksl th(ksl
I§=k2<—<sm ( 32)_ 2>+C0 (k3 2)<sm (2ks 2)+ 2>_C0 (k3 Z)Sinhz(k3l2)>

3.2.2 Anti-symmetric modes:

The anti-symmetric modes corresponds to A=0 in Equation 24 . After setting A = 0 for
potential in the middle layer and applying electrostatic boundary conditions as in the

previous paragraph we obtain the following relations:

C=-d_ (49)

D = —®&_coth(k,l) (50)

B= — 2= (51)
sinh (k; )

E= d_ (52)

F = —®_coth(ksly) (53)

Thus, the phonon potential for anti-symmetric mode can be expressed as:
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P(7)
( d _ d
—®_ cosh| ky (Z + E) — ®_ coth(k,ly) sinh| ky (Z + E) z< —d/2
- _ d
= elP ] —— % sinh(k,z) -3 <z <d/2
sinh (kz >
d _ d
®_ cosh| ks (Z - E) — @_ coth(ksl,) sinh| ks (Z - E) z>d/2
\
When subjected to the normalization condition, we obtain:
2h de de de de
_ |2 29€1,1 Ye1z 20¢€2,1 2,2 1
®-L= &o [(q dw ' dw 11) ( w Iz + w 12)
d d 2
€31 €3, 2
2 ’ Z gy
* (q w Is + ow 13)] (54)
where:
1 (sinh(2k,l,) coth?(kyly) [sinh(2kq1,) coth(k,1;)
L =z|l—F7""+1 — 1 | ————= sinh?(k,l
1 ( 2k, +i )+ 5 2k, 1 k, sinh® (k1)
1 (sinh(2k,l,) coth?(k,ly) [sinh(2k,1,) coth(k,1;)
L =k¥|z|——————=—1 l; | ————=sinh?(k,l
1 1 I2< 2k, 1]+ 5 2k, + 4 k, sinh® (k1)
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/ 1 (sinh(kzd) d)
2= )
sinh? (kz %) 2k, 2

[ k> (sinh(kzd) N d)
s = ol
sinh? (kz %) 2k, 2

sinh?(ksl,)

1 (sinh(2k;l,) coth?(ksly) [sinh(2ksly) coth(ksly)
L=-(——241,)+ — 1) - ——=2
2\ 2k, 2 2k, ks

, 2(1 (sinh(2k3lz) ) coth?(ksly) (sinh(2k3l2) ) coth(ksly)
L=ki|z(——-L |+ +l )| ———=

b2
5|5 2K > 2K sinh (k3l2)>

3

3.3 Dispersion relation for symmetric and anti-symmetric mode:

The dispersion relation for the symmetric and anti-symmetric modes can be derived directly from
the secular equation and the same can be verified from the Frohlich potential equations of the

respective modes. The derivation of the dispersion relation for each mode is shown below:

e Symmetric mode: As stated in the preceding paragraph, the condition for
symmetric mode is obtained by setting B =0 in Frohlich potential equation of the

middle layer. From Equation (12) and (16) it is observed that:
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d d
(slzkl + &,k tanh (kz E) tanh(k1l1)> (szzkz tanh (kz E) tanh(ksly) + s3zk3) =0

(55)

The above result is also obtained from the Frohlich potential equations for the symmetric mode,
as follows:

Eliminating D from Eq. 37 and Eq. 38:
d
_SZZkztanh (k2 E) = Slklcoth(klll)

D e1ky + exhytanh (ky 5) tanh(es ;) = 0
Eliminating F from Eq. 38 and Eq. 39:

d
EZZkztanh (kz E) = _£3Zk3C0th(k3l2)

= €3Zk3 + EZZkztanh (kz %) tanh(kglz) = 0

We see that the above two equations must simultaneously vanish (equate to zero) for

existence of symmetric modes thus their product must also vanish simultaneously, thus:

> (ersks + exkotanh (ky 3) tanh(ialy) ) (scks + exskstank (i, 3) tanh(esly) ) = 0
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e Anti-symmetric mode: As stated in preceding paragraph, the condition for anti-
symmetric mode is obtained by setting A =0 in Frohlich potential equation of the

middle layer. From equation (30) and (34) it is observed that:

d d
<£22k2tanh(k1l1) + Elzkltanh (kz E)) (EZZRZ tanh(k3l2) + E3Zk3 tanh <k2 E)) = 0

The above result is also obtained from the Frohlich potential equations of the anti-symmetric mode.
However, the derivation steps of anti-symmetric modes are similar to those of the symmetric
modes; hence, those steps have not been shown. Similar to the case of the symmetric mode, the

anti-symmetric mode case results in two simultaneous equations:
d d
(ezzkztanh(klll) + & kytanh (k, 5)) =0 and (ezzkz tanh(ksly) + £3,k5 tanh (k; E)) =0

From which can be argued (under simultaneous agreement) that:

d d
<£22k2tanh(k1l1) + Elzkltanh (kz E)) (EZZRZ tanh(k3l2) + E3Zk3 tanh <k2 E)) = 0

3.4 Application
The above equations for dispersion relations and the associated Frohlich potentials are hereby
applied to a heterostructure with following parameters:

Layer 1 = Ino.15Gao.gsN
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Layer 2 = GaN
Layer3 = Ino.15Gao.gsN
L1=10nm
L2 =12 nm
The dispersion relation and the plot of symmetric and anti-symmetric modes for qd = 0.7 are

plotted in the figure below:

734 T T T

732 \ -

~
w
(=]

T

|

~
n
©
T
|

Frequency (per cm)
N
(7]
I
|

Y]
B
T
1

~
N
N
I
|

720 | 1 | 1 1 | 1
0 1 2 3 4 5 6 7 8

scaled wavevector (qd)

Figure 29 Dispersion relation for Metal/In0.15Ga0.5N/GaN/ In0.15Ga0.5N/Metal structure.

The blue line corresponds to the anti-symmetric mode and the green line corresponds to the
symmetric mode
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Figure 30 Symmetric potential in Metal/In0.15Ga0.5N/GaN/ In0.15Ga0.5N/Metal structure for qd=0.7
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Figure 31 Anti-symmetric potential in Metal/In0.15Ga0.5N/GaN/ In0.15Ga0.5N/Metal structure for
qd=0.7

3.5 Conditions for existence of interface phonons

64
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It is observed from the expressions for the amplitudes of the symmetric and the anti-Symmetric
potential that the interface phonon can exist in the metal terminated GaN/In0.15Ga0.85N/GaN
only for those pairs of w and q - as obtained from the dispersion relation - for which the
amplitude of the Frohlich potential is a real number. Imposing this condition (amplitude must be

real number) we get the following inequality:

A1 (sinh(2kq1,) N sinh(2ksl,)
2 K, ks

: 2
B At (smh(Zklll) | coth (k.1y)

. ll 2
- k. 2K, smh(Zklll)> — Zuklcosech (kq1y)

Ayes (sinh(2k3lz) .\ coth?(ksly)

. lZ 2
> K, 2k, smh(2k3l2)> — Zuklcosech (ksly)

where,
aSJ_i agzt
A; 2 .

=9 %0 T B
1= g2 0&y 'zaez,l-
ki ow ' w
2 Oer; 2 0&z;
Ugi dw i dw

If the above inequality is violated, then the interface modes cease to exist in this heterostructure.

However, it is observed from the dispersion relation that since the phonon frequencies for the



anti-symmetric mode is always less than the corresponding symmetric mode, the above

inequality is never violated by anti-symmetric mode for any combination of [; and L,.
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CHAPTER 4 Transfer Matrix Theory for Wurtzite Multi-Interface Heterostructures

4.1 Introduction
In this chapter a general theory is developed which can be applied to any wurtzite heterostructure
of any arbitrary number of ‘n’ layers to obtain the secular equation. Further, the equations will be

applied to a 4-period AIN/GaN superlattice.

4.2 Analysis
Consider a superlattice consisting of n layers and let the reference co-ordinate axis be fixed to the
first interface of the superlattice. Let the z-axis coincide with the c-axis of the wurtzite materials

in the superlattice.

v

0 71 7> Zi Zi Zi+1 Zn-1 Zn

Figure 32 n-layer superlattice of wurtzite material with reference coordinate axes

Let R; represents the region enclosed by z = zi+1 and z;.
Let the thickness of the i*" layer is d; = z;,1 - 2;

Let ®; represents the phonon potential in the it" layer.
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We know that, the phonon potential has the form: ®(r) = ®(2)elP for any region confined in z

direction, thus we can write the phonon potential for the it layer as: ®;(r) = ®;(z)e'P.

4.2.1 Observation:

B To find ®;(z) , we need to solve Poisson’s equation V2®; = 0 in the region R; .

B We must consider the fact that mathematically R;is defined as:

Rie{x,y,zi1<z<z}

= For region R;. V= 2 p+

- ,
— Z ,where z' =z — z;
ap az' L

When @;(r) is substituted in the, we have:

62
(Ez,i(w) 377 EJ_,i(w)q2> ®;(z) =0

2 .
N (a _kiz)q)i(zl)z(),Wherekiz = Zhig2

2 - .
az! £z

= q)i(Z,) = Ai exp(kiz') + Bi eXp(—kiZ,)

= ®;(z) = A;exp(k;(z—z)) + Byexp(—k;(z — z;))

(55)
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Applying electrostatic boundary conditions at z = z; 4 :

(a) Continuity of electric field parallel to interface:

D;(zi41) = Pi11(Zi11)

A;exp(ki(zip1 — z;)) + Biexp(—ki(ziy1 — 2))) = Ajy1 + Bigs
A;exp(k;d;) + Byexp(—k;d;) = Ajyq + Biyq
(b) Continuity of normal component of displacement field:

gik; Ajexp(k;d;) — €k;B;exp(—k;d;) = €iy1kiv14it1 — €iv1Kiv1 Biya

The above two equations can be expressed in matrix form as below:

exp(k;d;) exp(—k;d;) ][Ai]z[ 1 1 HAi+1]
gikiexp(k;d;) —ek;exp(k;d;)]1B; Eivikivs —€iy1kiz1]1Biye

[Ai+1]=[ 1 1 ]1[ exp(kid;)  exp(—k;dy) HAi]
Biy1 Eir1kiz1  —Eiv1kina gikiexp(k;d;) —eik;exp(k;d;)]LB;
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[ z+1] _ [z+1k1+1 1” exp(k;d;) exp(—k;d;) HAi]
Bitq 2€l+1kl+1 Eiv1kizn —1llekiexp(k;d;) —ek;exp(k;d;)] B

[ i+1 1 [(€i+1ki+1 + &k;) exp(kid;) (g41kiv1 — €ik;) eXP(—kidi)] [Ai]
B; (ei41kiv1 — gikdexp(k;dy)  (g41kipq + &k;) exp(=k;d;)] B

i+1 2"fi+1ki+1

(56)

4.2.2 Derivation of secular equation:

Let,
[0,] = 1 (ivakivs + &k) explh;dy)  (€r41kiva — ki) exp(—k;d;)
l 2€ 1k L(giakivr — gik)exp(kidy)  (gi41kivr + &ik;) exp(—k;d;)
_ [A
6= |5
Thus,

[Ci+1] = [Ql] [Ci]

= [Cn] = [Qn—l] [Qn—2][Qn—3] [Q1] [Qo][Co] (57)
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where, [C,] and [C,,] represents the Frohlich potential coefficient matrices of the

end bulk regions on the extreme left and extreme right regions, respectively.

Since, ®,(z) = Ay exp(k;z) + Byexp(—k;z) where z < 0, to ensure a finite
potential of the phonon mode the above expression must converge to a finite limit when z

— —oo which leads to By = 0. Similarly, 4,, = 0.

We can write: [Qn1][Qn-21[0ns] - [Q:1100] = [ 5 212]

Thus,
0 Qun @
5. =lo ol
= B, = Q1 Agand Q,, A = 0. (58)

For non-trivial solution of equation Q;; A, = 0, |Q1] = 0.

Thus, the dispersion relation is given by:

@11/ =0 (39)
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After obtaining the dispersion relation we can further extend our calculation to find the Frohlich
amplitude. The following steps illustrates the method:

The interface modes must obey the normalization condition given below:

h 11 dz(qz dg; 1 (w)
R;

|®:(q,2)I?

_ -~ + agi,Z(a)) aCDL(CI; Z)
2wl? 412w dw Jw 0z

)

We proceed by evaluating the above integral for the it" layer bounded between z = z;,; & z;

Zi+1 Zi+1 2
f |®;|%dz = f (Ai exp(kl-(z — Zl-)) + B; exp(—kl-(z — Zl-))) dz
Z Z

i i

Zit1 sinh(k;d;
f |(Di|2dZ = %(Alz exp(kl-dl-) + Bl2 exp(—kidl-)) + ZAiBidi
Zi l

Similarly,

]Zi+1 aq)i(z)
Zi

| dz= K fz - (Al- exp(ki(z — z;)) — B; exp(—ki(z—zi)))zdz (60)

i

2

dz = ksinh(kid;) (A? exp(k;d;) + B exp(—k;dy)) — 2A;B;d; (61)

0z

fZi+1 aq)i(z)

From Eq. 57 we know that:

[Ci] = [Qi—1] [Qi—z][Qi—a] [Q1][Qo][co]

Let [Q,-1110i-:1[01] . 10:110s] = [0 = [0 2

Thus,

) =[] = teartea =[2G I%]

Thus,

A; = Qi,11A0 and B; = Qi,21A0
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Substituting the above values of A; and B; in eq 60 and eq 61, obtain:

Zi+1 sinh(k;d;)
f |®;|?dz = Af <k— (Qiz,ll exp(kid;) + Qfy; exp(_kidi)) + ZQi,llQi,Zldi>
Zi 2

0D, (2)|”
0z

dz = A3 (kisinh(kid;) (QF exp(kidy) + Qo exp(—kidy) ) = 2Qi11 Q121 )

fzi+1
7

4

On substituting the above expression in the normalization equation we obtain the expression for

&, aiz aq)i ’ ?
o f 3. o 24 2 P

ad h(k;d
= E ( Sll(w) <sm Ckid,) (Q%, ek + Q%Zle_kidi)+ZQi,llQi,21di>
0

AO:

_1/2

k;

dg; ,(w) -1,
+ :,);(k ;sinh(k;d;)(QF1,€"% + QFy e idi) —2Q;11Q;21d;)

(62)

If we perform the above summation over the number of layers, we can find the amplitude of the
Frohlich potential of the interface mode, since the constants A; and B; can be expressed in terms
of Ay.
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4.3 Application of above equations on a superlattice:
The result so obtained above is applied to a heterostructure consisting of 4-periods of a 2-layer

superlattice of AIN/GaN which is sandwiched between Air and AlysGaysN :

Air |AIN GaN | AIN | GaN |AIN |[GaN AIN [GaN |AlysGagsN

Figure 33 A 4-period superlattice consisting of repeating layers of AIN/GaN

The thickness of the individual layers in the above heterostructure is 3-monolayers (0.75 nm)

[Co] = [Qs][Q7] [Q61[Q5][Q41[Q31[Q211Q11[Q0]11Co]

In the above case:

_ _ _ _ 1 a exp(kad) —p exp(=k,d)
1011 = [05] = 1051 = [07] = = | b ue) P o ey
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_ _ _ 1 a exp(kpd) —p exp(—kpd)
[Q:2] = [Qu] = [Q6] = a1 B —f explkyd) @ exp(—kpd)

where, @ = g4ky + egkp; B = egky — egkp; & = (kg + kp)d; & = (kg — kp)d

The subscript “A” is used for AIN and “B” used for GaN

[Qz][Q1] = [Q]

_ 1 a? exp(é;) + Bexp(&,)  —aP exp(=&,) — af exp(—¢;)
a? —p?l-ap exp(§y) —af exp(&)  a® exp(=&;) + BPexp(=¢,)

_ a?exp(§1)+B%exp(§2) ) _ —aBexp(=§)—a exp(=§1)
Let q = ey ety : b= foe emph

_ —apexp()-a exp(&). d = a? exp(—=&1)+ pZexp(=&;)
B az-p2 > - a?-pB2

Since, matrix multiplication is associative, we can write:

[Col = [Q&][Q71[QT°[Q0][Co]

X11(a®b + b%*c + abd + bd?) + X, (abc + 2bcd + d®) gk, +q 63)
X11(a3 + 2abc + bed) + X3(a%c + acd + be? + d%c) g4k, —q

The above is the final dispersion relation, where:
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_ (epkp + g4ky) (eoko + epkp)exp((kp + ky)d) + (egkp — eak ) (eoko — epkp)exp((ky — k,)d)
- 4egkgepky

_ (epkp + g4ky) (eokg — epkp)exp((ka — kp)d) + (egkp — eaka) (eoko + epkp)exp(—(kp + ky)d)
12 4egkgepky

In the present thesis the analysis has been restricted to finding the dispersion relation only for
AIN/GaN superlattice; however nothing restricts one from applying Eq. 62 to get the amplitude of

the Frohlich potential for the interface mode in the allowed frequency range.
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CHAPTER 5 Determination of Frohlich Potential In MOS:

5.1 Introduction

Graphene - a one atom thick two-dimensional material which is an allotrope of carbon - has some
unique electrical properties such as zero electron effective mass, mobility as high as 15000 cm?/V-
s and zero band gap [27]. The principal factor limiting its application in electronic devices is its
zero band gap which does not allow it to be used in logic circuits for low power switching
applications [28]. Also, attempts to open a bandgap in graphene results in fabrication complexity
and can lead to reduced mobility comparable to strained silicon films [29]. Due to these limitations
of graphene, recent researches has been shifted to explore transition metal-dichalcogenide
materials. TMDCs, whose generalized formula is MX2 (M = Transition metal (Pt, Pd, Ni, Ir, Rh,
Co, Re, Tc, W, Mo, Ta, Nb, V, Hf, Zr and Ti1), X = Chalcogen (Te, Se and S))[30]. These materials
are also two-dimensional like graphene with a non-zero bandgap. The individual layers of these
materials may be stacked one over the other to form the “bulk” material; every layer is separated
from the adjacent layer by a van der Waals gap. MoS: belongs to transition metal-dichalcogenide

group. One monolayer of MoS» has a band gap of 1.8 eV and is a direct gap semiconductor [30]

Phonons in Mo$S; exist in both in-plane and out-of-plane direction. The A (out-plane) mode and
E’ (in-plane) mode are infra-red active [31]. In this chapter we will derive the analytical expression
for the Frohlich potential inside the 1-monolayer thick MoS. due to A, (out-plane) mode vibration

inspired by the results of Kaasbjerg et al. [32]and Sohier et al. [33]



78

5.2 Crystal Structure and Phonon Modes

The figure below shows 1-monolayer thick MoS,.

O Mo
Q@ s

Figure 34 One-monolayer thick MoS, crystal structure

As can be seen above that a 1-monolayer of MoS> has a sheet of Mo atoms sandwiched between
two S atom sheets. MoS; has a honeycomb lattice structure.

Various phonon modes are shown in figure below for a 1-monolayer thick MoS»:
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A2” mode A1 mode E’ mode E” mode

Figure 35 Various phonon modes in 1-monoLayer MoS2.
A and E’ mode are IR active. Reference: Phy Rev B Vol 89, 035438 (2014)

5.3 A2’ mode Analysis

Consider for example a 3-layer MoS; as shown in Fig. 36, here it is observed that the vertical mode
vibration as in A, mode propagates in the z-direction as wave due to which the individual atomic
displacement is function of z and wavevector. But for a single monolayer case there is no z-
dependence of the atoms in the vertical direction. In A2  mode the Mo and S atoms vibrate out-of
phase with respect to each other. Our main objective is to find the polarization created per unit
volume due to this out-of-phase vibration and then evaluating the resulting potential due to this

polarization.



80

Tz1
/. |

®
\
| .) T Zl
4 72 " T 72
//
l 72
T 73
Ve
o
¥ 7'3 \\\
%,

\ TB
o

Figure 36 A2’ mode in a 3-layer MoS2.

The big circles depict Mo atoms and the small ones depict S atoms. The thick lines between
S atoms represents the van der Waals bonds
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For 1-mono layer of MoS» the A2 mode of optical phonon is shown as under:

t=0 t=T/4 t=T/2

Figure 37 The vibration pattern of Mo and S in the unit cell of 1-monolayer thick MoS2 at different time
instances

The Magenta colored atoms represent sulphur atoms while the blue color atom is molybdenum
atom. Both atoms vibrate out of phase with respect to each other along the z-axis. For 1-monolayer
of material the displacement of atoms has only sinusoidal dependence on time whereas there is no

z-dependence because no wave is propagating for one monolayer.

The above figure shows the atomic positions for one-half cycle of vibration. As shown in the figure
above, it will be assumed that at time t = 0 both Mo and S atoms are at their extrema positions and

further continue their motion as per the Fig. 37.
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Polarization calculation due to A2’ mode vibration pattern:

Let the amplitude of vibration of Mo and S atoms be A, so the displacement of atom at any
instant of time is: Ae~*“t. Thus the net dipole moment can be written as : Z* (4A). The figure

below clarifies the net dipole moment expression so obtained:

t/2 +2A

i

Mo and S atoms at one extremum of their Vibration

Figure 38 The initial position of Mo and S atoms starting from their extremum

Net dipole moment: Z* (t/2 -2A)- Z* (t/2+2A) = Z*(4A)

(N.B.: The time dependence have been suppressed in all of the expressions.)



Z*4A f(z) A~
Polarization: Net dipole moment per unit volume = e—f() e, (64)
S

In the above expression S represents the area

Now by Poisson’s equation, we have:

p V.pP

V2 = ——= ———
¢(2) - e (65)
nce V= Lo +2 8 = _Z44 9@ 66
Since, V = 2a eq+az e,=> V.P= s 02 (66)

Now, f(z) represents the profile of polarization in the z-direction given below in the figure
a [(@

2/t

Z=-12

-2/t

Figure 39 Polarisation profile in 1-Monolayer thick MoS;



Taking the Fourier transform of the poisons equation we have:

*

Z 9]
@+ KDpyh) = - 219

e s (4A)F (

9 f(2)

Here, F ( T) denotes the fourier transform of 2£&

0z

The Fourier transform of 2 giZ) =ik F(f(z)) =ik (% e Sir;(ka) — 27T6(k)>

= %(2 — 2i sin (k %) - 27Tik5(k)>

Note: §(k) = unit impulse function

Substituting the above expression in the Fourier transform equation of Poisson’s equation:

7°44 (2 — 2isin (k %) _ zmka(k)) (67)

€0S(q* + k?)

Pq (k) =

84
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Now, we will take inverse Fourier transform of the above expression to get ¢4(z), as shown

below:
+
@q(2) = j dk e'*% @, (k) (68)
Thus,

7442 + o . (2 2i sin (k 2) 2n1k6(k))
@q(2) = dk e

€S t (g% + k?)
_ Z'8A [+ o ikz _ 24 Z'8A4 +oo ik(z+§) 2q
€St f— dk (q%+ k2) 2Q€xSt f— dk e (q%+ k2) t

7784 f+°°dk eik(z—%) 2q

2q€qoSt Y — (q%+ k2)

784 o—dlzl _ Z*8A —q|Z+—| n Z*8A e—q|z—%|
€St 2q€xSt 2q€xnSt

Thus,

0. (2) = FBA g-aizl _ FAA —aloaz] | 744 —qlz—] (69)
q q€xoSt q€xoSt q€xoSt

The above is the expression for the Frohlich potential as a function of z-direction for A2 Mode
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Note: For simplicity of expression, let 2 =a

The region of 1-mono layer MoS; can be classified as below:

Figure 40 1-ML thick MoS2 with region markings used in determination of potential

The region wise breakup of expression of interaction potential so obtained as above can be written

as:

(Z*(84) 1
I e(St) 7 e % + e71%sinh(qz)), z>0
Pq(2) = 4 Z-(84) 1
2 (e9% 4 99 gj
l p—e .q.(e +e 9% sinh(qz)), z<0

In the above analysis t = 2a = 0.441 nm [32] (70)



Figure 41 Potential inside 1-ML MoS2 as function of z for = 0.1
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Figure 42 Potential inside 1-ML MoS2 as function of z for q =1
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Figure 43 Potential inside 1-ML MoS2 as function of z for q = 10
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Figure 44 Potential inside 1-ML MoS2 as function of z for q = 50
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The following conclusions can be drawn from the above graphs:

1. The Frohlich potential inside the MoS; layer depends on the in-plane phonon wavevector q

2. The potential has 1/q dependence — As q — 0 the potential becomes very high (3.5 eV near middle
of the layer). The short wavelength in-plane phonon, for example. q = 50 have very low (7meV)
potential in the middle of the layer.

3. For short wavelength (large q) in-plane phonons the potential inside the layer decreases at a very
steep rate and the difference between the potential at the middle of the layer to the potential at the
edge of the layer is very high as compared to long wavelength (q = 0) in-plane phonons.

Evaluation of Coupling Function g;,

The phonon-electron coupling function, g;, is defined as :

1o = f dz x*(2) 9, (D (2) a1

In the above expression y(z) is the electron envelope function

1
. _ 1 elhwig (1 _ 1 /2
For bulk material g;, = . /_2501/ (—8 S (0))

The expression of y(z) is taken as double bell gaussian shape curve for MoS;. The two bells are

centered around z= -a and z = +a

1 _(z—a)? _(z+a)?
x(2) = 1 e 262 + e 202 (72)

/o




Fig 45 shows the plot of electron envelope function:

Evaluation of g, for 0< z< +a:

€St 'q o

90

Z' (84 1 1 a _(z—-a)? _(z+a)? _(z%+a?)
84) f dz (e™7 + e™9% sinh(qz)) (e /az + e /az +2e /az >
0

2

Z;iii)-z(e“T"(erf(%—w(%—%)) (e
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Evaluation of g, for -a<z<0:

Z'(84A) 1 1 f"d (e% + e~ sinh( ))< _(z—a)2/2+ _(z+a)2/2+2 _(z2+a2)/2>
. Z e e sin Z e 4 e a e 4
€St q \no)_, 9

Substituting z= - x in the above expression we have:

—m2 2 (x2+a2)
Z®A) 1 1 (a —-qx _ p—qa i ¢ a)/z ‘(x+a)/z - /z
— 'q'\/ﬁafo dz (e e % sinh(qx)) (e o2+ e 2+2e o

It is observed that the above expression is same as that for 0<z< +a case except for “minus” sign

before sinh (qx)



Consequently, the above integral is evaluated as below:

2

7*(84) 1 e"ZT" (erf (%) —erf (% . g)) (e—qa _ %) n 94T (erf (g + %) —erf (qz

€St q

Amplitude

Figure 45 Electron envelope function in MoS2

For the above “double-bell” electron envelope function ¢ = a/2 has been assumed.
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5.4 Conclusions

In this chapter we have presented a detailed mathematical analysis to find the electron-
interaction potential due to out-of-plane (A2’ mode phonon) vibration of Mo and S atoms. Also,
we extended the calculation to find the coupling function for 1-monolayer MoS», the coupling
function is an important determinant in finding the scattering rate of electrons by phonons. The
major conclusions drawn can be summarized as:

1. For 1-monolayer MoS», the potential induced by out-of-plane vibration has no dependence on
spatial co-ordinate (z-direction in the present case).

2. The potential as obtained above (A2’ phonon mode) depends on the in-plane phonon
wavevector.

3. The A2’ phonon mode potential has very high amplitude at the middle of the layer and then
exponentially decreases on either sides.

4. Only for a long wavelength in-plane phonon wavevector do we observe very high potential,
e.g., 3.5 eV for q=0.1 at the middle of the layer, whereas for short wavelength in-plane
phonons we get 7 meV for q = 50.

5. It can be concluded that the long wavelength phonons play the most significant role in electron
scattering.
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