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SUMMARY

Lattice codes are known to achieve capacity in the Gaussian point-to-point channel, thereby

achieving the same rates as random Gaussian codebooks. Lattice codes are also known to

outperform random codes for certain channel models that are able to exploit their linearity.

In this thesis, we first show that lattice codes may be used to achieve the same performance

as known Gaussian random coding techniques for the Gaussian relay channel. Then several

examples are given to show how this may be combined with the linearity of lattices codes

in multi-source relay networks. Finally we show that lattice codes’s advantages in the two-

way multi-hop Channel. In particular, we present a nested lattice list decoding technique, by

which, lattice codes are shown to achieve the Decode-and-Forward (DF) rate of single source,

single destination Gaussian relay channels with one or more relays. We next present a few

examples of how this DF scheme may be combined with the linearity of lattice codes to achieve

rates which may outperform analogous Gaussian random coding techniques in multi-source

relay channels such as the two-way relay channel with direct links and the multiple access

relay channel. We furthermore present a lattice Compress-and-Forward (CF) scheme which

exploits a lattice Wyner-Ziv binning scheme for the Gaussian relay channel which achieves the

same rate as the Cover-El Gamal CF rate using Gaussian random codes. Finally, the linearity

of lattice codes is further utilized in two-way multi-hop channels where the “Redistribution

Transform” is proposed to fully exploit the transmit power of relays for both directions. These

vii



SUMMARY (Continued)

results suggest that structured/lattice codes may be used to mimic, and sometimes outperform,

random Gaussian codes in general Gaussian networks.
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CHAPTER 1

INTRODUCTION

The derivation of achievable rate regions for general networks including relays has classically

used codewords and codebooks consisting of independent, identically generated symbols (i.i.d.

random coding). Only in recent years have codes which possess additional structural properties,

which we term structured codes, been used in networks with relays (1; 2; 3; 4; 5; 6; 7). The

benefit of using structured codes in networks lies not only in a somewhat more constructive

achievability scheme and possibly computationally more efficient decoding than i.i.d. random

codes, but also in actual rate gains which exploit the structure of the codes – their linearity

in Gaussian channels – to decode combinations of codewords rather than individual codewords

/ messages. While past work has focussed mainly on specific scenarios in which structured or

lattice codes are particularly beneficial, missing is the demonstration that lattice codes may

be used to achieve the same rate as known i.i.d. random coding based schemes in Gaussian

relay networks, in addition to going above and beyond i.i.d. random codes in certain scenar-

ios. In the first part of this work we demonstrate generic nested lattice code based schemes

with computationally more efficient lattice decoding for achieving the Decode-and-Forward and

Compress-and-Forward rates in Gaussian relay networks which achieve at least the same rate

regions as the corresponding rates achieved using Gaussian random codes.

In the longer term, these strategies may be combined with ones which exploit the linear

structure of lattice codes to obtain structured coding schemes for arbitrary Gaussian relay

1
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networks.Towards this goal, we illustrate how the DF based lattice scheme may be combined

with strategies which exploit the linearity of lattice codes in two examples: the two-way relay

channel with direct links and the multiple-access relay channel.

Another example of utilizing linearity of lattice codes in the multi-source scenarios is the

lattice coding for the Two-way Two-relay Channel 1 ↔ 2 ↔ 3 ↔ 4 where Node 1 and 4

simultaneously communicate with each other through two relay nodes 2 and 3. Each node

only communicates with its neighboring nodes. This lattice coding scheme can be seen as a

generalization of lattice coding scheme for Two-way Relay Channel (3; 2). Similarly, gains stem

from the ability to decode the sum of codewords (or messages) using lattice codes at higher

rates than possible with i.i.d. random codes. The key technical contribution is the lattice-based

achievability strategy, where each relay is able to remove the noise while decoding the sum of

several signals in a Block Markov strategy and then re-encode the signal into another lattice

codeword using the so-called “Re-distribution Transform”. This allows nodes further down the

line to again decode sums of lattice codewords. This transform is central to improving the

achievable rates, and ensures that the messages traveling in each of the two directions fully

utilize the relay’s power, even under asymmetric channel conditions. All decoders are lattice

decoders and only a single nested lattice codebook pair is needed. The symmetric rate achieved

by the proposed lattice coding scheme is within 1
2 log 3 bit/Hz/s of the symmetric rate capacity.

1.1 Motivation and background

In relay networks, as opposed to single-hop networks, multiple links or routes exist between

a given source and destination. Of key importance in such networks is how to best jointly uti-



3

lize these links, which – in a single source scenario – all carry the same message and effectively

cooperate with each other to maximize the number of messages that may be distinguished.

The three node relay channel with one source with one message for one destination aided by

one relay is the simplest relay network where pure cooperation between the links is manifested.

Information may flow along the direct link or along the relayed link; how to manage or have

these links cooperate to best transmit this message is key to approaching capacity for this

channel. Despite this network’s simplicity, its capacity remains unknown in general. However,

the following two “cooperative” achievability schemes may approach capacity under specific

channel conditions: “Decode-and-Forward” (DF) and “Compress-and-Forward” (CF) strate-

gies described in (8; 9; 10; 11). In the DF scheme, the receiver does not obtain the entire

message from the direct link nor the relayed link. Rather, cooperation between the direct and

relayed links may be implemented by having the receiver decode a list of possible messages (or

codewords) from the direct link, another independent list from the coherent combination of the

direct link and the relayed link, which it then intersects to obtain the message sent1. In the CF

scheme of (8), cooperation is implemented by a two-step decoding procedure combined with

Wyner-Ziv binning.

Generalizations of these i.i.d. random-coding based DF and CF schemes have been proposed

for general multi-terminal relay networks (9; 12; 13). However, in recent years lattice codes have

been shown to outperform random codes in several Gaussian multi-source network scenarios

1There are alternative schemes for implementing DF, but the main intuition about combining infor-
mation along two paths remains the same.
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due to their linearity property (1; 14; 15; 2; 3; 4). As such, one may hope to derive a coding

scheme which combines the best of both worlds, i.e. incorporate lattice codes with their linearity

property into coding schemes for general Gaussian networks. At the moment we cannot simply

replace i.i.d. random codes with lattice codes. That is, while nested lattice codes have been

shown to be capacity achieving in the point-to-point Gaussian channel, in relay networks with

multiple links/paths and the possibility of cooperation, technical issues need to be solved before

one may replace random codes with lattice codes.

In this thesis, we make progress in this direction by demonstrating lattice-based cooperative

techniques for a number of relay channels. One of the key new technical ingredients in the DF

schemes is the usage of a lattice list decoding scheme to decode a list of lattice points (using

lattice decoding) rather than a single lattice point. We then extend this lattice-list-based

cooperative technique and combine it with the linearity of lattice codes to provide gains for

some channel conditions over i.i.d. random codes in scenarios with multiple cooperating links.

Finally, the Re-distribution Transform is utilized to fully exploit the transmit power of relay

nodes in the Two-way Two-relay Channel.

1.2 Related work

In showing that lattice codes may be used to replace i.i.d. random codes in Gaussian relay

networks and introducing the novel lattice coding scheme for Two-way Two-relay Channel, we

build upon work on relay channels, on the existence of “good” nested lattice codes for Gaussian

source and channel coding, and on recent advancements in using lattices in multiple-relay and

multiple-node scenarios. We outline the most relevant related work.
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Relay channels. Two of our main results are the demonstration that nested lattice codes

may be used to achieve the DF and CF rates achieved by random Gaussian codes (8). For

the DF scheme, we mimic the Regular encoding/Sliding window decoding DF strategy (9; 10)

in which the relay decodes the message of the source, re-encodes it, and then forwards it.

The destination combines the information from the source and the relay by intersecting two

independent lists of messages obtained from the source and relayed links respectively, over two

transmission blocks. We will re-derive the DF rate, but with lattice codes replacing the random

i.i.d. Gaussian codes. Of particular importance is constructing and utilizing a lattice version

of the list decoder. It is worth mentioning that the concurrent work (6) uses a different lattice

coding scheme to achieve the DF rate in the three-node relay channel which does not rely on

list decoding but rather on a careful nesting structure of the lattice codes.

The DF scheme of (8) restricts the rate by requiring the relay to decode the message. The

Compress-and-Forward (CF) achievability scheme of (8) for the relay channel places no such

restriction, as the . relay compresses its received signal and forwards the compression index. In

Cover and El Gamal’s original CF scheme, the relay’s compression technique utilizes a form of

binning related to the Wyner-Ziv rate-distortion problem with decoder side-information (16).

In (17; 18) the authors describe a lattice version of the noiseless quadratic Gaussian Wyner-

Ziv coding scheme, where lattice codes quantize/compress the continuous signal; this will form

the basis for our lattice-based CF strategy. Another simple structured approach to the relay

channel is considered in (19; 20) where one-dimensional structured quantizers are used in the

relay channel subject to instantaneous (or symbol-by-symbol) relaying.
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Our extension of the single relay DF rate to a multiple relay DF rate is based on the DF

multi-level relay channel scheme presented in (12; 9). These papers essentially extend the DF

rate of (8); the central idea behind mimicking the scheme of (9; 12) is the repeated usage of the

lattice list decoder, enabling the message to again be decoded from the intersection of multiple

independent lists formed at the destination from the different relay - destination links.

This work also considers the Two-way Two-relay Channel: 1 ↔ 2 ↔ 3 ↔ 4 where two

user Nodes 1 and 4 exchange information with each other through the relay nodes 2 and 3.

This is related to the work of (21), which considers the throughput of i.i.d. random code-based

Amplify-and-Forward and Decode-and-Forward approaches for this channel model, or the i.i.d.

random coding based schemes of (22) and (23) where there are furthermore links between all

nodes. This model is also different from that in (24) where a two-way relay channel with two

parallel (rather than sequential as in this work) relays are considered.

Lattice codes for single-hop channels. Lattice codes are known to be “good” for almost

everything in Gaussian point-to-point, single-hop channels (25; 26; 27), from both source and

channel coding perspectives. In particular, nested lattice codes have been shown to be capacity

achieving for the AWGN channel, the AWGN broadcast channel (18) and the AWGN multiple

access channel (1). Lattice codes may further be used in achieving the capacity of Gaussian

channels with interference or state known at the transmitter (but not receiver) (28) using a

lattice equivalent (18) of dirty-paper coding (DPC) (29). The nested lattice approach of (18)

for the dirty-paper channel is extended to dirty-paper networks in (30), where in some scenarios

lattice codes are interestingly shown to outperform random codes. In K ≥ 3-user interference
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channels, their structure has enabled the decoding of (portions of) “sums of interference” terms

(14; 15; 31; 32), allowing receivers to subtract off this sum rather than try to decode individual

interference terms in order to remove them. From a source coding perspective, lattices have

been useful in distributed Gaussian source coding when reconstructing a linear function (33; 34).

Lattice codes in multi-hop channels. The linearity property of lattice codes have been

exploited in the Compute-and-Forward framework (1) for Gaussian multi-hop wireless relay

networks (2; 3; 4). There, intermediate relay nodes decode a linear combination, or equation, of

the transmitted codewords or equivalently messages by exploiting the noisy linear combinations

provided by the channel. Through the use of nested lattice codes, it was shown that decoding

linear combinations may be done at higher rates than decoding the individual codewords – one

of the key benefits of using structured rather than i.i.d. random codewords (35). Recently,

progress has been made in characterizing the capacity of a single source, single destination,

multiple relay network to within a constant gap for arbitrary network topologies (36). Capacity

was initially shown to be approximately achieved via an i.i.d. random quantize-map-and-

forward based coding scheme (36) and alternatively, using an extension of CF based techniques

termed “noisy network coding” (13). Recently, relay network capacity was also shown to be

achievable using nested lattice codes for quantization and transmission (5). Alternatively, using

a new “computation alignment” scheme which couples lattice codes in a compute-and-forward-

like framework (1) together with a signal-alignment scheme reminiscent of ergodic interference

alignment (37), the work (38) was able to show a capacity approximation for multi-layer wireless

relay networks with an approximation gap that is independent of the network depth. While
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lattices have been used in relay networks, the goals so far have mainly been to demonstrate

their utility in specific networks in which decode linear combinations of messages is beneficial,

or to achieve finite-gap results.

As a first example of the use of lattices in multi-hop scenarios, we will consider the Gaussian

two-way relay channel (3; 2). The two-way relay channel consists of three nodes: two terminal

nodes 1 and 2 that wish to exchange their two independent messages through the help of one

relay node R. When the terminal nodes employ nested lattice codes, the sum of their signals

is again a lattice point and may be decoded at the relay. Having the relay send this sum

(possibly re-encoded) allows the terminal nodes to exploit their own message side-information

to recover the other user’s message (2; 3). Gains over DF schemes where both terminals transmit

simultaneously to the relay stem from the fact that, if using random Gaussian codebooks, the

relay will see a multiple-access channel and require the decoding of both individual messages,

even though the sum is sufficient. In contrast, no multiple-access (or sum-rate) constraint is

imposed by the lattice decoding of the sum. An alternative non-DF (hence no rate constraints

at relay) yet still structured approach to the two-way relay channel is explored in (39; 40),

where simple one dimensional structured quantizers are used for a symbol-by-symbol Amplify-

and-Forward based scheme. In the two-way relay channel, models with and without direct links

between the transmitters have been considered. While random coding techniques have been able

to exploit both the direct link and relayed links, lattice codes have only been used in channels

without direct links. Here, we will present a lattice coding scheme which will combine the
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linearity properties, leading to less restrictive decoding constraints at the relay, with direct-link

information, allowing for a form of lattice-enabled two-way cooperation.

A second example in which we will combine the linearity property with direct-link coop-

eration is the Gaussian multiple-access relay channel (41; 10; 42). In this model, two sources

wish to communicate independent messages to a common destination with the help of a single

relay. As in the Gaussian two-way relay channel, the relay may choose to decode the sum of

the codewords using lattice codes, rather than the individual codewords (as in random coding

based DF schemes), which it would forward to the destination. The destination would combine

this sum with direct-link information (cooperation). As in the two-way relay channel, decoding

the sum at the relay eliminates the multiple access sum-rate constraint.

Finally, the linearity of lattice codes is extended to Two-way Two-relay Channel where

two sources communicate with each other through two tops (two relays). As in the previous

examples, the relays will decode the sum of two codewords and forward this appropriately

scaled and transformed sum. The difference is that the relay nodes need to forward (broadcast)

the decoded sum using lattice codes in order to again “decode the sum” down the line. A

specially designed lattice coding strategy is used in this example to enable broadcasting with

lattice codes while at the same time dealing with power asymmetry of the two received signals,

something which had previously not been tackled.

1.3 Contribution

The contributions center around demonstrating the lattice coding scheme in the wireless

relay networks. We aim to show that lattices may achieve the same rates as currently known
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Gaussian i.i.d. random coding-based achievability schemes for relay networks. While we do not

prove this sweeping statement in general, we make progress towards this goal along the following

lines. The linearity is also combined with cooperation strategies we developed in multi-source

scenarios. Moreover, we extend the linearity to Two-way Two-relay Channel, in which the key

technique “Redistribution Transform” is proposed.

• Preliminaries: In Chapter 3 we briefly outline lattice coding preliminaries and notation

before outlining key technical lemmas that will be needed.

• Lattice list decoding and Decode-and-Forward, single source: One of the central

contributions, the proposed Lattice List Decoding technique in Theorem 3 is proved in

Chapter 4.1. This Lattice List Decoding technique is used to show that nested lattice

codes may achieve the Decode-and-Forward rate for the Gaussian relay channel achieved

by i.i.d. random Gaussian codes (8) in Chapter 4.2, Theorem 7. We furthermore extend

this result to the general single source, multiple relay Gaussian channel in Theorem 8.

• Decode-and-Forward, multiple source including two-way relay and multiple

access relay channels: In Chapter 4.4 and 4.5, relays decode and forward combinations

of messages as in the Compute-and-Forward framework, which is combined with direct

link side-information at the destination. In particular, we present lattice-based achievable

rate regions for the Gaussian two-way relay channel with direct links in Theorem 9, and

the Gaussian multiple-access relay channel in Theorem 10.

• Compress-and-Forward, single source: In Chapter 5, we revisit our goal of showing

that lattice codes may mimic the performance of i.i.d. Gaussian codes in the relay chan-
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nel by demonstrating a lattice code-based Compress-and-Forward scheme which achieves

the same rate as the CF scheme in (8) evaluated for i.i.d. Gaussian codebooks. The

proposed lattice CF scheme is based on a variation of the lattice-based Wyner-Ziv scheme

of (17; 18), as outlined in Theorem 13. We note that lattices have been shown to achieve

the Quantize-Map-and-Forward rates for general relay channels using Quantize-and-Map

scheme (similar to the CF scheme) which simply quantizes the received signal at the relay

and re-encodes it without any form of binning / hashing in (5); the contribution is to show

an alternative lattice-coding based achievability scheme which employs computationally

more efficient lattice decoding.

• Two-way Two-relay Channel: In Chapter 6, a novel lattice coding scheme is proposed

for the Two-way Two-relay Channel. The key technical contribution is the lattice-based

achievability strategy, where each relay is able to remove the noise while decoding the

sum of several signals in a Block Markov strategy and then re-encode the signal into

another lattice codeword using the so-called “Re-distribution Transform”. This allows

nodes further down the line to again decode sums of lattice codewords. This transform

is central to improving the achievable rates, and ensures that the messages traveling in

each of the two directions fully utilize the relay’s power, even under asymmetric channel

conditions. All decoders are lattice decoders and only a single nested lattice codebook

pair is needed. The achievability scheme is proved in Theorem 19 and 21. The symmetric

rate achieved by the proposed lattice coding scheme is within 1
2 log 3 bit/Hz/s of the

symmetric rate capacity.



CHAPTER 2

MOTIVATIONAL EXAMPLES

This chapter outlines and motivates our work with several examples, in order to develop an

initial intuitive understanding of this work. We first explain the three key topics/ideas explored

in this thesis: cooperative strategies, structured codes, and wireless relay networks.

2.1 Information theory and network information theory

Information theory originates from Shannon’s seminal paper (43), which proposed a math-

ematical model for point-to-point communication channel and defined the maximum reliable

transmission rate as that channel’s “capacity”. The capacity of a point-to-point channel is

determined as C = maxp(x) I(X;Y ) = maxp(x)H(X) − H(X|Y ), where H(X) represents the

“uncertainty” before transmission and H(X|Y ) represents the “uncertainty” after transmis-

sion. Intuitively, maxp(x) I(X;Y ) = H(X) −H(X|Y ) can be understood as the “uncertainty”

resolved in the channel. The capacity of the additive white Gaussian noise (AWGN) channel is

C = 1
2 log(1 + SNR) bits/transmission where SNR is the signal to noise ratio.

While Shannon determined the capacity of the point-to-point channel, there are many other

open problems in the network information theory where the communications models are more

than just point-to-point channel. Progress has been made in obtaining the capacity region

for several simpler network models. The multiple access channel (MAC) describes a scenario

where multiple users send messages to one receiver at the same time. The capacity region of

12
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this model is completely known, giving information theorists hopes of generalizing Shannon’s

model to arbitrary networks. In a broadcast channel (BC), a single transmitter sends multiple

messages to multiple receivers at the same time. The capacity of the BC is generally unknown

but the AWGN broadcast channel’s capacity was recently solved. The interference channel (IC)

describes a scenario where two pairs of transmitters and receivers communicate at the same

time and interfere with each other. The capacity of the IC has remained open for decades,

even for the AWGN channel. The two-way channel (TWC) represents a scenario where two

users communicate with each other simultaneously. The capacity is generally unknown but

the AWGN case is simple since the two-way AWGN channel may be shown to decompose into

two independent point-to-point channels, whose capacities are known. A relay channel (RC)

describes the cooperation phenomenon in wireless networks, where the same message may be

transmitted along various paths, and will be explained in the next section. An elegant introduc-

tion and more detailed explanations can be found at (44; 11). These channel models not only

characterize the specific model they describe, but also correspond to communication phenome-

na in the real world, e.g. the MAC may correspond to the uplink of a wireless communication

system, the BC the downlink.

2.2 Cooperative strategies

We use “cooperative strategies” to mean wireless cooperative strategies in relay networks

where there are multiple wireless links between the source and destination. How to cooperatively

utilize these links to approach the capacity are called cooperative strategies. This section

introduces two popular cooperative strategies: Decode-and-Forward(DF) and Compress-and-
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Source

User1

Destination

Relay

Relay

User2

Three-node relay channel Two-way relay channel without direct links

Figure 1. Three-node relay channel and Two-way relay channel

Forward(CF) with the simplest relay channel: three-node relay channel, where the transmitter

communicates with the destination with a help of relay as shown in Figure 1. The broadcast

and interference nature of the wireless channel are shown in this example: both the relay and

the destination observe the same signal sent by the source, and the signals sent by the relay and

source interfere with each other at the destination. The capacity of this channel has remained

open for decades and hence the optimal cooperative strategy remains unknown. Two popular

strategies are:

Decode-and-Forward: As the name indicates that, the relay is required to decode the

message and cooperatively forwards the message to the destination. Thus, after the relay

decodes the message, the model becomes a cooperative multiple access channel: both relay and

source send the same message to the destination cooperatively. Specifically, the destination

can decode two lists from the source-destination link and relay-destination link respectively
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and intersects these two lists to obtain the desired unique codeword. The problem with this

strategy is that the relay must decode the message, which is not necessary intuitively. However,

when the source-relay link is very strong , decoding the message is a reasonable thing for the

relay to do. Specifically, there are three different achievability schemes which achieves the same

DF rate region, which are described in (10). But they all have the same intuition described

above.

Compress-and-Forward: In this scheme, the relay does not have to decode the message.

Instead, it treats its received signal as randomly generated and quantizes it. It then forwards

the a function of the quantization index to the destination and the destination decodes the

message from direct link and quantization index cooperatively. In its current form, the relay

does not utilize codebook structure and so intuitively CF may be able to be improved upon

through exploiting codebook structure.

To summarize, DF exploits the codebook structure at the relay but has to decode the

message while CF does not have to decode the message but ignore the codebook structure.

Intuition suggests that the optimal strategy may utilize the codebook structure but does not

necessarily decode the message. However, no such schemes currently exist.

2.3 Structured codes

“Structured codes” may refer to codes with some form of structural property (often alge-

braic), but in this thesis we use it synonymously with lattice codes, which are structured codes

well suited to the practically motivated AWGN channels. An excellent example to demonstrate

the advantages of such structured lattice codes is the AWGN two-way relay channel, where two
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sources exchange information through a relay as shown in figure Figure 1. The channel model

between transmitters and the relay can be expressed as

YR = X1 + X2 + ZR

Y1 = XR + Z1

Y2 = XR + Z2

where X1, X2 and XR represent the transmitted signals sent by two users and the relay

respectively, Y1,Y2) and YR represent the received signals by two users and the relay respec-

tively, and Z1,Z2) and ZR are i.i.d. Gaussian noise. This model is full-duplex, which means

both users and the relay are transmitting and receiving at the same time.

On possible transmission scheme is the following: the relay decodes both messages as in

the multiple access channel (MAC) and subsequently broadcasts the two messages as in the

broadcast channel (BC). However, we notice that it is not necessary for the relay to decode

both messages individually since both users can decode the desired information from the sum

of the codewords X1 +X2 with their own message as side information. It is intuitive to observe

that decoding X1 +X2 should be “easier” than decoding (X1,X2) since knowledge of (X1,X2)

allows one to obtain X1 + X2 but not vice-versa (there is more information in the pair of

codewords than in their sum). However, it turns out that decoding X1 + X2 is equivalent to

decoding (X1,X2) if random codes are used as shown in Figure 2. However, this is not true for

structured, or linear codes, where the space between codewords sums X1 + X2 is much larger
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(than that with random codes), which means we can pack in more codewords for higher rate

given the same noise. In other words, decoding X1 + X2 with linear codes is less constraining,

in terms of rate, or number of pairs that may be resolved, than with random codes.

2.4 Wireless relay networks

To determine the capacity of an arbitrary wireless network is the ultimate goal of network

information theory. Because of the broadcast and interference nature of the wireless channel,

this problem turns out to be extremely difficult. Cooperative strategies and interference man-

agement (or exploitation) are two of the most important aspects of wireless networks. This

thesis focuses on the cooperative strategies achievable using lattice codes. The advantage of

lattice codes over random codes is shown above, in decoding the “sums” of codewords. However,

whether lattice codes can replace random codes in AWGN relay networks in general to achieve

a better rate region remains unclear. To replace random codes with lattice codes, lattice codes

need to be shown to at least achieve the same performance as random codes. In some cases

then, one may further exploit their linearity to outperform current known random coding based

achievability schemes.
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Decoding the sum with structure codes

Decoding the sum with random codes

Figure 2. Decoding the sum of codewords



CHAPTER 3

PRELIMINARIES ON LATTICE CODES

We introduce our notation for lattice codes, nested lattice codes, and nested lattice chains

and present several existing lemmas.

3.1 Lattice codes

Our notation for (nested) lattice codes for transmission over AWGN channels follows that

of (18; 4); comprehensive treatments may be found in (45; 18; 25) and in particular (27). An

n-dimensional lattice Λ is a discrete subgroup of Euclidean space Rn with Euclidean norm || · ||

under vector addition and may be expressed as all integral combinations of basis vectors gi ∈ Rn

Λ = {λ = G i : i ∈ Zn},

for Z the set of integers, n ∈ Z+, and G := [g1|g2| · · ·gn] the n × n generator matrix corre-

sponding to the lattice Λ. We use bold x to denote column vectors, xT to denote the transpose

of the vector x. All vectors are generally in Rn unless otherwise stated, and all logarithms are

base 2. Let 0 denote the all zeros vector of length n, I denote the n × n identity matrix, and

N (µ, σ2) denote a Gaussian random variable (or vector) of mean µ and variance σ2. Define

C(x) := 1
2 log2 (1 + x). Further define

19
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Figure 3. A lattice chain Λ ⊆ Λs ⊆ Λc with corresponding fundamental regions V ⊇ Vs ⊇ Vc of
volumes V ≥ Vs ≥ Vc. Color is useful.

• The nearest neighbor lattice quantizer of Λ as

Q(x) = arg min
λ∈Λ
||x− λ||;

• The mod Λ operation as x mod Λ := x−Q(x);

• The fundamental Voronoi region of Λ as the points closer to the origin than to any other

lattice point

V := {x : Q(x) = 0},

which is of volume V := Vol(V) (also sometimes denoted by V (Λ) or Vi for lattice Λi);



21

• The second moment per dimension of a uniform distribution over V as

σ2(Λ) :=
1

V
· 1

n

∫

V
||x||2 dx;

• The normalized second moment of a lattice Λ of dimension n as

G(Λ) :=
σ2(Λ)

V 2/n
;

• A sequence of n-dimensional lattices Λ(n) is said to be Poltyrev good (46; 25; 4) (in terms

of channel coding over the AWGN channel) if, for Z ∼ N (0, σ2I) and n-dimensional vector, we

have

Pr{Z /∈ V(n)} ≤ e−n(EP (µ)−on(1)),

which upper bounds the error probability of nearest lattice point decoding when using lattice

points as codewords in the AWGN channel. Here Ep(µ) is the Poltyrev exponent (25; 47) which

is given as

Ep(µ) =





1
2 [(µ− 1)− logµ], 1 < µ ≤ 2

1
2 log eµ

4 2 ≤ µ ≤ 4,

µ
8 µ ≥ 4.

and µ is volume-to-noise ratio (VNR) defined as (26)

µ :=
(Vol(V))2/n

2πeσ2 + on(1).
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Since Ep(µ) > 0 for µ > 1, a necessary condition for the reliable decoding of a single point is

µ > 1, thereby relating the size of the fundamental Voronoi region (and ultimately how many

points one can transmit reliably) to the noise power, aligning well with our intuition about

Gaussian channels.

• A sequence of n-dimensional lattices Λ(n) is said to be Rogers good (48) if

lim
n→∞

r
(n)
cov

r
(n)
eff

= 1,

where the covering radius r
(n)
cov is the radius of the smallest sphere which contains the funda-

mental Voronoi region of Λ(n), and the effective radius r
(n)
eff is the radius of a sphere of the same

volume as the fundamental Voronoi region of Λ(n).

• A sequence of n-dimensional lattices Λ(n) is said to be good for mean-squared error quan-

tization if

lim
n→∞

G(Λ(n)) =
1

2πe
;

It may be shown that if a sequence of lattices is Rogers good, that it is also good for mean-

squared error quantization (49). Furthermore, for a Rogers’ good lattice Λ, it may be shown

that σ2(Λ) and V = Vol(V) are in one-to-one correspondence (up to a constant) as in (4,

Appendix A); hence for a Rogers good lattice we may define either its second moment per

dimension or its volume. This will be used in generating nested lattice chains.
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• For any s ∈ Rn ,

(α(s mod Λ)) mod Λ = (αs) mod Λ, α ∈ Z. (3.1)

β(s mod Λ) = (βs) mod βΛ, β ∈ R. (3.2)

Finally, we include a statement of the useful “Crypto lemma” for completeness.

Lemma 1 Crypto lemma (25; 50). For any random variable x distributed over the fundamental

region V and statistically independent of U, which is uniformly distributed over V, (x + U)

mod Λ is independent of x and uniformly distributed over V.

3.2 Nested lattice codes

Consider two lattices Λ and Λc such that Λ ⊆ Λc with fundamental regions V,Vc of volumes

V, Vc respectively. Here Λ is termed the coarse lattice which is a sublattice of Λc, the fine

lattice, and hence V ≥ Vc. When transmitting over the AWGN channel, one may use the set

CΛc,V = {Λc ∩ V} as the codebook. The coding rate R of this nested (Λ,Λc) lattice pair is

defined as

R =
1

n
log |CΛc,V | =

1

n
log

V

Vc
,

where ρ = |CΛc,V |
1
n =

(
V
Vc

) 1
n

is the nesting ratio of the nested lattice pair. It was shown that

there exist nested lattice pairs which achieve the capacity of the AWGN channel (25).
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3.3 Nested lattice chains

In the following, we will use an extension of nested lattice codes termed nested lattice

chains as in (4; 3), and shown in Figure 3 (chain of length 3). We first re-state a slightly

modified version of (4, Theorem 2) on the existence of good nested lattice chains, of use in our

achievability proofs.

Theorem 2 Existence of “good” nested lattice chains (adapted from Theorem 2 of (4)). For

any P1 ≥ P2 ≥ · · · ≥ PK > 0 and γ > 0, there exists a sequence of n-dimensional lattice

Λ1 ⊆ Λ2 ⊆ · · · ⊆ ΛK ⊆ ΛC (V1 ⊇ V2 ⊇ · · · ⊇ VK ⊇ VC) satisfying:

a) Λ1, Λ2, . . . , ΛK are simultaneously Rogers-good and and Poltyrev-good while ΛC is Poltyrev-

good.

b) For any δ > 0, Pi − δ ≤ σ2(Λi) ≤ Pi, 1 ≤ i ≤ K for sufficiently large n.

c) The coding rate associated with the nested lattice pair ΛK ⊆ ΛC is RK,C = 1
n log VK

VC
=

γ + on(1) where on(1) → 0 as n → ∞. Moreover, for 1 ≤ i < j ≤ K, the coding rate of the

nested lattice pair Λi ⊆ Λj is Ri,j := 1
n log Vi

Vj
= 1

2 log Pi
Pj

+ on(1) and Ri,C = Ri,K + RK,C =

1
2 log Pi

PK
+ γ + on(1) (1 ≤ i ≤ K − 1).

Proof: From Theorem 2 of (4) there exists a nested lattice chain which satisfies the proper-

ties a) and b) and for which RK,C = γ+ on(1), and Ri,C = 1
n log Vi

VC
= RK,C + 1

2 log Pi
PK

+ on(1).

Now notice that Ri,j = 1
n log Vi

Vj
= 1

n log Vi
VC
− 1

n log VC
Vj

= Ri,C −Rj,C = 1
2 log Pi

Pj
+ on(1).



CHAPTER 4

LATTICE CODING FOR DECODE-AND-FORWARD

In this section, lattice codes are shown to achieve Decode-and-Forward performance in relay

networks. To demonstrate a lattice Decode-and-Forward strategy, we introduce a lattice list

decoding technique which enables the decoder to decode a list of possible codewords rather a

single one. In relay channels, there are multiple links between source and destinations through

multiple relays. The decoder decodes a list of codewords for each link and intersect them to

obtain the single one. This strategy is shown in both single-relay and multiple-relay cases, and

further combined with linearity of lattice codes in several presented multi-source scenarios.

4.1 Lattice list decoding

List decoding here refers to a decoding procedure in which, instead of outputting a single

codeword corresponding to a single message, the decoder outputs a list of possible codewords

which includes the correct (transmitted) one with high probability. Such a decoding scheme

is useful in cooperative scenarios when a message is transmitted above the capacity of a given

link (and hence the decoder would not be able to correctly distinguish the true transmitted

codeword from that given link), and is combined with additional information at the receiver

to decode a single message point from within the list. We present our key theorem next which

bounds the list size for a lattice list decoder which will decode a list which contains the correct

message with high probability.

25
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Theorem 3 Lattice list decoding in mixed noise. Consider the channel Y = X + Z, subject to

input power constraint 1
nE[XTX] ≤ P , where Z = ZG +

∑L
i=1 Zi is noise which is a mixture

of Gaussian noise ZG ∼ N (0, σ2
GI) and independent noises Zi which are uniformly distributed

over fundamental Voronoi regions of Rogers-good lattices with second moments Pi. Thus, Z is

of equivalent total variance N = 1
nE(ZTZ) = σ2

G+
∑L

i=1 Pi. For any |L| > 2n(R−C(P/N)), δ > 0,

R > C(P/N), and n large enough, there exists a chain of nested lattices such that the lattice

list decoder can produce a list of size |L|, which does not contain the correct codeword with

probability smaller than δ.

Proof: Encoding: We consider a good nested lattice chain Λ ⊆ Λs ⊆ Λc as in Figure 3 and

Theorem 2, in which Λ and Λs are both Rogers good and Poltyrev good while Λc is Poltyrev

good. We define the coding rate R = 1
n log V

Vc
and the nesting rate R1 = 1

2 log V
Vs

. Each message

w ∈ {1, . . . , 2nR} is one-to-one mapped to the lattice point t(w) ∈ CΛc,V = {Λc ∩ V}, and the

transmitter sends X = (t(w)−U) mod Λ, where U is an n-dimensional dither signal (known

to the encoder and decoder) uniformly distributed over V.

Decoding: Upon receiving Y, the receiver computes

Y′ = (αY + U) mod Λ

= (t(w)− (1− α)X + αZ) mod Λ

= (t(w) + (−(1− α)X + αZ) mod Λ) mod Λ

= (t(w) + Z′) mod Λ, (4.1)
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for α ∈ R. We choose α to be the MMSE coefficient α = P
P+N and note that the equivalent

noise Z′ = (−(1− α)X + αZ) mod Λ is independent of t(w). The receiver decodes the list of

messages

LwS−D(Y) := {w| t(w) ∈ SVs,Λc(Y′) mod Λ}, (4.2)

where

SVs,Λc(Y
′) :=

⋃

λc∈Λc

{λc|λc ∈ (Y′ + Vs)},

is the set of lattice points λc ∈ Λc inside Vs centered at the point Y′ as shown in Figure 4.

Remark 1 The notation used for the list of messages, i.e. LwS−D(Y) should be understood

as follows: the S − D subscript is meant to denote the transmitter S and the receiver D, the

dependence on Y (rather than Y′) is included, though in all cases we will make the analogous

transformation from Y to Y′ as in (Equation 4.1) (but for brevity do not include this in future

schemes), and the superscript w is used to recall what messages are in the list, useful in multi-

source and Block Markov schemes.

Probability of error for list decoding: Pick δ > 0. In decoding a list, we require that

the correct, transmitted codeword t(w) lies in the list with high probability as n → ∞, i.e.

the probability of error is (for n the blocklength or dimension of the lattices) Pn,e := Pr{w /∈

LwS−D(Y)|w sent}, which should be made less than δ as n→∞. This is easy to do with large

list sizes; we bound the list size next. The following Lemma allows us to more easily bound the

probability of list decoding error.
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=

SVs,Λc
(Y�) :=

�

λc∈Λc

{λc|λc ∈ (Y� + Vs)} QVs,Λc
(Y�) :=

�

λc∈Λc

{λc|Y� ∈ (λc + Vs)}

Figure 4. The two equivalent lists, in this example consisting of the four points encircled in
red. The correct message lattice point is the center. Color is useful.

Lemma 4 Equivalent decoding list. For the nested lattices Λs ⊆ Λc and given Y′ ∈ Rn, define

QVs,Λc(Y
′) :=

⋃

λc∈Λc

{λc|Y′ ∈ (λc + Vs)}. (4.3)

and

SVs,Λc(Y
′) :=

⋃

λc∈Λc

{λc|λc ∈ (Y′ + Vs)},

Then the sets SVs,Λc(Y
′) mod Λ and QVs,Λc(Y

′) mod Λ are equal.

Proof: QVs,Λc(Y
′) is the set of λc ∈ Λc points satisfying Y′ ∈ (λc + Vs). Also note that

the fundamental Voronoi region V of any lattice Λ is centro-symmetric (∀x ∈ V, we have that
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−x ∈ V) by definition of a lattice and fundamental Voronoi region (alternatively, see (51)).

Hence, for any two points x and x′, and a centro-symmetric region V, x′ ∈ x+V ⇔ x ∈ x′+V.

Applying this to SVs,Λc(Y
′) and QVs,Λc(Y

′) yields the lemma.

We continue with the proof of Theorem 3. We first use Lemma 4 to see that the lists

SVs,Λc(Y
′) mod Λ and QVs,Λc(Y

′) mod Λ are equal. Next notice that the probability of error

may be bounded as follows:

Pn,e = Pr{w /∈ LwS−D(Y)| w sent} (4.4)

= Pr{t(w) 6∈ SVs,Λc(Y′) mod Λ| w sent} (4.5)

= Pr{t(w) 6∈ QVs,Λc(Y′) mod Λ| w sent} (4.6)

= Pr{Y′ 6∈ (t(w) + Vs)| w sent} (4.7)

= Pr{(t(w) + Z′) mod Λ 6∈ (t(w) + Vs)| w sent} (4.8)

= Pr{Z′ 6∈ Vs| w sent} (4.9)

≤ Pr{Z′′ 6∈ Vs| w sent} (4.10)

where Z′ = (−(1 − α)X + αZ) mod Λ and Z′′ = −(1 − α)X + αZ. We now use Lemma 5 to

show that the pdf of Z′′ can be upper bounded by the pdf of a Gaussian random vector of not

much larger variance, which in turn is used to bound the above probability of error.

Lemma 5 Let ZG ∼ N (0, σ2
GI), X be uniform over the fundamental Voronoi region of the

Rogers good Λ, of effective and covering radii reff and rcov and second moment P , and Zi be
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uniform over the fundamental Voronoi region of the Rogers good Λi of effective and covering

radii reff,i and rcov,i and second moments Pi, i = 1, · · ·L. Let Z′′ := −(1 − α)X + αZG +

α
∑L

i=1 Zi. Then there exists an i.i.d. Gaussian vector

Z? = −(1− α)Z?X + αZG + α
L∑

i=1

Z?i

with variance σ2 satisfying

σ2 ≤ (1− α)2

(
rcov
reff

)2

P + α2σ2
G + α2

L∑

i=1

(
rcov,i
reff,i

)2

Pi

such that the density of Z′′ is upper bounded as:

fZ′′(z) ≤ e(c(n)+
∑L
i=1 ci(n))nfZ?(z) (4.11)

where c(n) = ln
(
rcov
reff

)
+ 1

2 ln 2πeG
(n)
B + 1

n and ci(n) = ln
(
rcov,i
reff,i

)
+ 1

2 ln 2πeG
(n)
B + 1

n , and G
(n)
B

is the normalized second moment of an n-dimensional ball.

Proof: The proof follows (1, Appendix A) and (25, Lemma 6 and 11) almost exactly, where

the central difference with (1, Appendix A) is that we need to bound the pdf of a sum of random

variables uniformly distributed over different Rogers good lattices rather than identical ones.

This leads to the summation in the exponent of (Equation 4.11) but note that we will still have

c(n), ci(n)→ 0 as n→∞.
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Continuing the proof of Theorem 3, according to Lemma 5,

Pn,e ≤ Pr{Z′′ 6∈ Vs} ≤ e(c(n)+
∑L
i=1 ci(n))n Pr{Z? 6∈ Vs}. (4.12)

To bound Pr{Z? 6∈ Vs}, we first need to show that the VNR of Λs relative to Z?, µ, is greater

than one:

µ =
(V (Λs))

2/n

2πeσ2
+ on(1) ≥ (V (Λ))2/n/22R1

2πe PN
P+N

+ on(1) (4.13)

=
1

22R1

1

2πeG(Λ)

P
PN
P+N

+ on(1) (4.14)

=
1

22R1

(
1 +

P

N

)
+ on(1) (4.15)

= 22(C(P/N)−R1) + on(1) (4.16)

where (Equation 6.12) follows from Lemma 5, the fact that Λ and Λi (1 ≤ i ≤ L) are all

Rogers good, and recalling that α = P
P+N , where N = σ2

G +
∑L

i=1 Pi. Then (Equation 6.13)

follows from the definition of G(Λ) and (Equation 4.15) follows as Λ is Rogers good. Combining

(Equation 4.12), (Equation 6.14), and the fact that Λs is Poltyrev good, by definition

Pn,e ≤ e(c(n)+
∑L
i=1 ci(n))n Pr{Z? 6∈ Vs} (4.17)

≤ e(c(n)+
∑L
i=1 ci(n))ne−n(Ep(µ)−on(1)) (4.18)

≤ e−n(Ep(22(C(P/N)−R1))−on(1)) (4.19)
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where (Equation 4.19) follows as Λ,Λ1, · · ·ΛL are Rogers good and hence c(n), ci(n) all tend to

0 as n→∞.

To ensure Pn,e < δ as n → ∞ we need C(P/N) − R1 > 0, where R1 = 1
n log( VVs ) =

1
2 log( PPs )+on(1), and n sufficiently large. By choosing an appropriate Ps according to Theorem

2, we may set R1 = 1
n log( VVs ) = C(P/N)− εn for any εn > 0. Combining these, we obtain

Vs =

(
N

P +N

)n/2
2nεnV. (4.20)

The cardinality of the decoded list LwS−D(Y), in which the true codeword lies with high

probability as n→∞, may be bounded as

|LwS−D(Y)| = Vs
Vc

=

Nn/2V
(P+N)n/2

2nεn

V
2nR

= 2n(R−C(P/N))2nεn ,

since R = 1
n log( VVc ). Setting εn = 1

n2 , 2nεn → 1, and so |LwS−D(Y)| → 2n(R−C(P/N)) as n→∞.

Remark 2 Note that in our Theorem statement we have assumed R > C(P/N); when R <

C(P/N), the decoder can decode an unique codeword with high probability, as stated in Lemma

6.

Lemma 6 Lattice unique decoding in mixed noise. Consider the channel Y = X + Z, subject

to input power constraint 1
nE[XTX] ≤ P , where Z = ZG +

∑L
i=1 Zi is noise which is a mixture

of Gaussian noise ZG ∼ N (0, σ2
GI) and independent noises Zi which are uniformly distributed

over fundamental Voronoi regions of Rogers-good lattices with second moments Pi. Thus, Z is
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of equivalent variance N = 1
nE(ZTZ) = σ2

G +
∑L

i=1 Pi. For any δ > 0, R < C(P/N), and n

large enough, there exist lattice codebooks such that the decoder can decode an unique codeword

with probability of error smaller than δ. Proof: This lemma can be derived as a special case

of Compute-and-Forward (1, Theorem 1); in particular this is found in (1, Example 2), where

the decoder is interested in one of the messages and treats all other messages as noise. We

may view Zi in this lemma as the signals from other (lattice-codeword based) transmitters in

(1, Example 2).

4.2 Decode-and-Forward for the AWGN single relay channel

We first show that nested lattice codes may be used to achieve the Decode-and-Forward

(DF) rate of (8, Theorem 5) for the Gaussian relay channel using nested lattice codes at the

source and relay, and a lattice list decoder at the destination. We then extend this result to

show that the generalized DF rate for a Gaussian relay network with a single source, a single

destination and multiple DF relays may also be achieved using an extension of the single relay

lattice-based achievability scheme.

Consider a relay channel in which the source node S, with channel input XS transmits a

message w ∈ {1, 2, · · · , 2nR} to destination node D which has access to the channel output YD

and is aided by a relay node R with channel input and output XR and YR. Input and output

random variables lie in R. At each channel use, the channel inputs and outputs are related

as YD = XS + XR + ZD, YR = XS + ZR, where ZR, ZD are independent Gaussian random

variables of zero mean and variance NR and ND respectively. Let XS denote a sequence of n
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channel inputs (a row vector), and similarly, let XR,YR,YD all denote the length n sequences

of channel inputs and outputs. Then the channel may be described by

YD = XS + XR + ZD, YR = XS + ZR, (4.21)

where ZD ∼ N (0, NDI) and ZR ∼ N (0, NRI), and inputs are subject to the power constraints

1
nE[XS

TXS ] ≤ P and 1
nE[XR

TXR] ≤ PR.

An (2nR, n) code for the relay channel consists of the set of messages w uniformly distributed

over M := {1, 2, · · · 2nR}, an encoding function Xn
S :M→ Rn satisfying the power constraint,

a set of relay functions {fi}ni=1 such that the relay channel input at time i is a function of the

previously received relay channel outputs from channel uses 1 to i−1, XR,i = fi(YR,1, · · ·YR,i−1),

and finally a decoding function g : YnD →M which yields the message estimate ŵ := g(Y n
D). We

define the average probability of error of the code to be Pn,e := 1
2nR

∑
w∈M Pr{ŵ 6= w|w sent}.

The rate R is then said to be achievable by a relay channel if, for any ε > 0 and for sufficiently

large n, there exists an (2nR, n) code such that Pn,e < ε. The capacity C of the relay channel

is the supremum of the set of achievable rates.

We are first interested in showing that the DF rate achieved by Gaussian random codebooks

of (8, Theorem 5) may be achieved using lattice codes. As outlined in (10), this DF rate may

be achieved using irregular encoding / successive decoding as in (8), regular encoding / sliding-

window decoding as first shown in (52), and using regular encoding / backwards decoding as

in (53).
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Y3 = X1 + X2 + Z3, Z3 ∼ N (0, N3)

YD =XS + XR + ZD,

ZD ∼ N (0, ND)

YR = XS + ZR, ZR ∼ N (0, NR)

AWGN relay channel AWGN multiple relay channel

S
1

D

2
R

4

3

Y2 = X1 + Z2, Z2 ∼ N (0, N2)

Y4 = X1 + X2 + X3 + Z4, Z4 ∼ N (0, N4)

L1−3

L2−3

L1−4

L3−4L2−4

LS−D

LR−D

Figure 5. The two Gaussian relay channels under consideration in Section 4.2 and Section 4.4.
For the AWGN relay channel we have assumed a particular relay order (2,3) for our

achievability scheme and shown the equivalent channel model used in deriving the achievable
rate rather than the general channel model.

We will mimic the regular encoding/sliding-window decoding scheme of (12), which includes:

(1) random coding, (2) list decoding, (3) two joint typicality decoding steps, (4) coding for the

cooperative multiple-access channel, (5) superposition coding and (6) block Markov encoding.

We re-derive the DF rate, following the achievability scheme of (12), but with lattice codes

replacing the random Gaussian coding techniques. Of particular importance is the usage of

two lattice list decoders to replace two joint typicality decoding steps in the random coding

achievability scheme.
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Figure 6. Lattice Decode-and-Forward scheme for the AWGN relay channel.

Theorem 7 Lattices achieve the DF rate achieved by random Gaussian codebooks for the relay

channel. The following Decode-and-Forward rates can be achieved using nested lattice codes for

the Gaussian relay channel described by (Equation 4.21):

R < max
α∈[0,1]

min

{
1

2
log

(
1 +

αP

NR

)
,
1

2
log

(
1 +

P + PR + 2
√
ᾱPPR

ND

)}
, ᾱ = 1− α. (4.22)

Proof:

Codebook construction: We consider two nested lattice chains of length three Λ1 ⊆ Λs1 ⊆

Λc1, and Λ2 ⊆ Λs2 ⊆ Λc2 whose existence is guaranteed by Theorem 2, and whose parameters

Pi, γ we still need to specify. The nested lattice pairs (Λ1,Λc1) and (Λ2,Λc2) are used to

construct lattice codebooks of coding rate R with σ2(Λ1) = αP and σ2(Λ2) = ᾱP for given

α ∈ [0, 1]. Since Λ1 and Λ2 will not be the finest lattice in the chain, they will be Rogers
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good, and hence σ2(Λ1) = αP will define the volume of Λ1, V1, and σ2(Λ2) = ᾱP will define

the volume of Λ2, V2. Since (Λ1,Λc1) and (Λ2,Λc2) are used to construct lattice codebooks of

coding rate

R =
1

n
log

(
V1

Vc1

)
=

1

n
log

(
V2

Vc2

)
,

this will in turn define Vc1 in terms of V1 and rate R; similarly for Vc2 in terms of V2 and rate

R. Since Λc1 and Λc2 are only Poltyrev good, we may obtain the needed Vc1, Vc2 by appropriate

selection of γ in Theorem 2. Finally, the lattices Λs1 and Λs2 (whose second moments we may

still specify arbitrarily, and which will be used for lattice list decoding at the destination node)

will also be Rogers good and their volumes, or equivalently, second moments, will be selected

in the course of the proof.

Randomly map the messages w ∈ {1, 2, . . . , 2nR} to codewords t1(w) ∈ C1 = {Λc1∩V1} and

t2(w) ∈ C2 = {Λc2 ∩ V2}. Let these two mappings be independent and known to all nodes.

We use block Markov coding and define wb as the new message index to be sent in block b

(b = 1, 2, · · · , B); define w0 = 1. At the end of block b−1, the receiver knows (w1, . . . , wb−2) and

the relay knows (w1, . . . , wb−1). We let YR(b),YD(b) denote the vectors of length n of received

signals at the relay and the destination, respectively, during the b-th block, and U1(b),U2(b)

denote dithers during block b known to all nodes which are i.i.d., change from block to block,

and are uniformly distributed over V1 and V2 respectively. The encoding and decoding steps

are outlined in Figure 6.
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Encoding: During the b-th block, the transmitter sends the superposition (sum) XS(wb, wb−1) =

X′1(wb) + X′2(wb−1), and the relay sends XR(wb−1), where

X′1(wb) = (t1(wb)−U1(b)) mod Λ1,

X′2(wb−1) = (t2(wb−1)−U2(b− 1)) mod Λ2

XR(wb−1) =

√
PR
ᾱP

X′2(wb−1) =

(√
PR
ᾱP

t2(wb−1)−
√
PR
ᾱP

U2(b− 1)

)
mod

√
PR
ᾱP

Λ2.

By the Crypto lemma X′1(wb) and X′2(wb−1) are uniformly distributed over V1 and V2 and

independent of all else.

Decoding:

1. At the b-th block, the relay knows wb−1 and consequently X′2(wb−1), and so may decode

the message wb from the received signal YR(b) − X′2(wb−1) = X′1(wb) + ZR(b) as long as

R < C(αP/NR), since (Λ1,Λc1) may achieve the capacity of the point-to-point channel (25) or

Lemma 6.

2. The receiver first decodes a list of messages wb−1, L
wb−1

R−D(YD(b)), defined according to

(Equation 4.2) as

L
wb−1

R−D(YD(b)) = {wb−1| t2(wb−1) ∈ SκVs2,κΛc2(Y′D(b)) mod κΛ2}, (4.23)
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of asymptotic size 2n(R−RR) from the signal

YD(b) = XS(wb, wb−1) + XR(wb−1) + ZD(b) (4.24)

= X′1(wb) + κX′2(wb−1) + ZD(b) (4.25)

for κ =

(
1 +

√
PR
ᾱP

)
using the lattice list decoding scheme of Theorem 3. Notice that Theorem

3 is applicable as the “noise” in decoding a list of wb−1 from YD(b) is composed of the sum

of a Gaussian signal ZD(b) and X′1(wb) which is uniformly distributed over the fundamental

Voronoi region of the Rogers good lattice of second moment αP . The equivalent noise variance

in Theorem 3 is thus αP +ND, and the capacity of the channel is (25) C(κ2ᾱP/(αP +ND)) =

C((
√
ᾱP +

√
PR)2/(αP +ND)). We may thus obtain a list of size 2n(R−RR) as long as

RR <
1

2
log


 κ2ᾱP

κ2ᾱP (αP+ND)
κ2ᾱP+αP+ND


 =

1

2
log

(
1 +

(
√
ᾱP +

√
PR)2

αP +ND

)
. (4.26)

One may directly apply Theorem 3; for additional details on this step, please see Appendix .1.

3. A second list of messages wb−1 was obtained at the end of block b − 1 from the direct

link between the transmitter node S and the destination node D, denoted as L
wb−1

S−D(YD(b −

1) − κX′2(wb−2)) defined according to (Equation 4.2) and analogous to (Equation 4.23) using

a lattice list decoder. We now describe the formation of the list LwbS−D(YD(b) − κX′2(wb−1))

in block b which will be used in block b + 1. Assuming that the receiver has decoded wb−1

successfully, it subtracts κX′2(wb−1) from YD(b): YD(b)− κX′2(wb−1) = X′1(wb) + ZD(b), and

then decodes another list of possible messages wb of asymptotic size 2n(R−C(αP/(ND))) using
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Theorem 3. This is done using the nested lattice chain Λ1 ⊆ Λs1 ⊆ Λc1. Again, Theorem 3 is

applicable as we have a channel X′1(wb)+ZD(b) of capacity C(P/ND) where the noise is purely

Gaussian of second moment ND. Here, choose the list decoding lattice Λs1 to have a fundamen-

tal Voronoi region of volume approaching Vs1 =
(

ND
αP+ND

)n/2
V1 asymptotically (analogous to

(Equation 4.20)) so that the size of the decoded list approaches 2n(R−C(αP/(ND))). Notice that

this choice of Vs1 < V1 and hence is permissible by Theorem 2 (as P1 > Ps1). For the inter-

esting case when R approaches 1
2 log

(
1 + P+PR+2

√
ᾱPPR

ND

)
(and hence list decoding is needed

/ relevant), Vc1 =
(

ND
P+PR+2

√
ᾱPPR+ND

)n/2
V1 asymptotically in the sense of (Equation 4.20).

Thus Vc1 < Vs1 < V1 as needed.

4. The receiver now decodes wb−1 by intersecting two independent lists L
wb−1

R−D(YD(b))

and L
wb−1

S−D(YD(b − 1) − κX′2(wb−2)) and declares a success if there is a unique wb−1 in this

intersection. Errors are declared if there is no, or multiple messages in this intersection. We are

guaranteed by Theorem 3 that the correct message will lie in each list, and hence also in their

intersection, with high probability by appropriate choice Vs1 and Vs2. To see that no more than

one message will lie in the list, notice that the two lists are independent due to the random

and independent mappings between the message and two codeword sets. Thus, following the

arguments surrounding (8, Eq. (27) and Lemma 3), or alternatively by independence of the lists

and applying (54, Packing Lemma), with high probability, there is no more than one correct

message in this intersection if R− C(αP/(N2))−RR < 0, or

R <
1

2
log

(
1 +

αP

ND

)
+RR <

1

2
log

(
1 +

P + PR + 2
√
ᾱPPR

ND

)
.
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Remark 3 While we have mimicked the regular encoding / sliding window decoding method

to achieve the DF rate, lattice list decoding may equally be used in the irregular encoding and

backwards decoding schemes. The intuition we want to reinforce is that one may obtain similar

results to random-coding based DF schemes using lattice codes by intersecting multiple indepen-

dent lists to decode a unique message. Furthermore, as the lattice list decoder is a Euclidean

lattice decoder, it does not increase the complexity at the decoder. We note that using lists is

not necessary – other novel lattice-based schemes can be used instead of lattice list decoding such

as (6) to achieve the same DF rate region.

4.3 Decode-and-Forward for the AWGN multi-relay channel

We now show that nested lattice codes may also be used to achieve the DF rates of the

single source, single destination multi-level relay channel (9; 12; 10). Here, all definitions remain

the same as in Section 4.2; changing the channel model to account for an arbitrary number of

full-duplex relays. For the 2 relay scenario we show the input/output relations used in deriving

achievable rates in Figure 5. In general we would for example have Y2 = X1 + X2 + X3 + Z2,

but that, for our achievability scheme we assume a relay order (e.g. 2 then 3) which results in

the equivalent input/output equation Y2 = X1 + Z2 at node 2. This is equivalent due to the

achievability scheme we will propose combined with the assumed relaying order, in which node

2 will be able to cancel out all signals transmitted by itself as well as node 3 (more generally,

node i may cancel out all relay transmissions “further” in the relay order than itself).

The central idea remains the same – we cooperate via a series of lattice list decoders and

replace multiple joint typicality checks with the intersection of multiple independent lists ob-
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tained via the lattice list decoder. For clarity, we focus on the two-relay case as in Figure 5, but

the results may be extended to the N -relay case in a straightforward manner. Let π(·) denote

a permutation (or ordering) of the relays. In the N = 2 case as shown in Figure 5 we have two

possible permutations: the first the identity permutation π(2) = 2, π(3) = 3 and the second

π(2) = 3, π(3) = 2.

The channel model is expressed as (a node’s own signal is omitted as it may subtract it off)

Y2 = X1 + X3 + Z2

Y3 = X1 + X2 + Z3

Y4 = X1 + X2 + X3 + Z4,

where Z2 ∼ N (0, N2I), Z3 ∼ N (0, N3I) and Z4 ∼ N (0, N4I), and nodes are subject to input

power constraints 1
nE[X1

TX1] ≤ P1 , 1
nE[X2

TX2] ≤ P2, and 1
nE[X3

TX3] ≤ P3.

Theorem 8 Lattices achieve the DF rate achieved by Gaussian random codebooks for the multi-

relay channel. The following rate R is achievable using nested lattice codes for the Gaussian

two relay channel described by (9):

R <max
π(·)

max
0≤α1,β1,α2≤1

min

{
C

(
α1P1

Nπ(2)

)
, C

(
α1P1 + (

√
β1P1 +

√
α2Pπ(2))

2

Nπ(3)

)
,

C



α1P1 +

(√
β1P1 +

√
α2Pπ(2)

)2
+
(√

(1− α1 − β1P1) +
√

(1− α2)Pπ(2) +
√
Pπ(3)

)2

N4







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The proof of Theorem 8 may be found in Appendix .2, and follows along the same lines as

Theorem 7.

4.4 The AWGN two-way relay channel with direct links

We now illustrate how list decoding may be combined with the linearity of lattice codes in

more general networks by considering two examples. In particular, we consider relay networks in

which two messages are communicated, along relayed and direct links, as opposed to the single

message case previously considered. The relay channel may be viewed as strictly cooperative in

the sense that all nodes aid in the transmission of the same message and the only impairment is

noise; the presence of multiple messages leads to the notion of interference and the possibility

of decoding combinations of messages.

We again focus on demonstrating the utility of lattices in DF-based achievability schemes.

In the previous section it was demonstrated that lattices may achieve the same rates as Gaussian

random coding based schemes. Here, the presence of multiple messages/sources gives lattices a

potential rate benefit over random coding-based schemes, as encoders and decoders may exploit

the linearity of the lattice codes to better decode a linear combination of messages. Often, such a

linear combination is sufficient to extract the desired messages if combined with the appropriate

side-information, and may enlarge the achievable rate region for certain channel conditions. In

this section, we demonstrate two examples of combining Compute-and-Forward based decoding

of the sum of signals at relays with direct link side-information in: 1) the two-way relay channel

with direct links and 2) the multiple-access relay channel. To the best of our knowledge, these

are the first lattice-coding based achievable rate regions for these channels.
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Figure 7. The AWGN two-way relay channel with direct links and the AWGN multiple-access
relay channel. We illustrate the lists Lwi−j of messages w carried by the codewords at node i

and list decoded according to Theorem 3 at node j.

The two-way relay channel is the logical extension of the classical relay channel for one-way

point-to-point communication aided by a relay to allow for two-way communication. While

the capacity region is in general unknown, it is known for half-duplex channel models under

the 2-phase MABC protocol (55), to within 1/2 bit for the full-duplex Gaussian channel model

with no direct links (3; 2), and to within 2 bits for the same model with direct links in certain

cases (56).

Random coding techniques employing DF, CF, and AF relays have been the most common

in deriving achievable rate regions for the two-way relay channel, but a handful of work (57;

3; 2; 58) has considered lattice-based schemes which, in a DF-like setting, effectively exploit

the additive nature of the Gaussian noise channel in allowing the sum of the two transmitted

lattice points to be decoded at the relay. The intuitive gains of decoding the sum of the messages
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rather than the individual messages stem from the absence of the classical multiple-access sum

constraints. This sum-rate point is forwarded to the terminal which utilizes its own-message

side-information to subtract off its own message from the decoded sum. While random coding

schemes have been used in deriving achievable rate regions in the presence of direct links, lattice

codes – of interest in order to exploit the ability to decode the sum of messages at the relay –

have so far not been used. We present such a lattice-based scheme next.

The two-way Gaussian relay channel with direct links consists of two terminal nodes with

inputs X1, X2 with power constraints P1, P2 (without loss of generality, it is assumed P1 ≥

P2) and outputs Y1, Y2 which wish to exchange messages w1 ∈ {1, 2, · · · , 2nR1} and w2 ∈

{1, 2, · · · , 2nR2} with the help of the relay with input XR of power PR and output YR. We

assume, without loss of generality (WLOG), the channel:

Y1 = XR + h21X2 + Z1, Z1 ∼ N (0, N1I)

Y2 = XR + h12X1 + Z2, Z2 ∼ N (0, N2I)

YR = X1 + X2 + ZR, ZR ∼ N (0, NRI),

subject to input power constraints 1
nE[X1

TX1] ≤ P1,
1
nE[X2

TX2] ≤ P2,
1
nE[XR

TXR] ≤ PR

and real constants h12, h21. The channel model is shown in Figure 7, and all input and output

alphabets are R.

An (2nR1 , 2nR2 , n) code for the two-relay channel consists of the two sets of messages

wi, i = 1, 2 uniformly distributed over Mi := {1, 2, · · · , 2nRi}, and two encoding functions
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Xn
i : Mi → Rn (shortened to Xi) satisfying the power constraints Pi, a set of relay func-

tions {fj}nj=1 such that the relay channel input at time j is a function of the previously

received relay channel outputs from channel uses 1 to j − 1, XR,j = fj(YR,1, · · · , YR,j−1),

and finally two decoding functions gi : Yni ×Mi → Mī which yields the message estimates

ŵī := gi(Y
n
i , wi) for ī = {1, 2} \ i. We define the average probability of error of the code to be

Pn,e := 1
2n(R1+R2)

∑
w1∈M1,w2∈M2

Pr{(ŵ1, ŵ2) 6= (w1, w2)|(w1, w2) sent}. The rate pair (R1, R2)

is then said to be achievable by the two-relay channel if, for any ε > 0 and for sufficiently large

n, there exists an (2nR1 , 2nR2 , n) code such that Pn,e < ε. The capacity region C of the two-way

relay channel is the supremum of the set of achievable rate pairs.

Theorem 9 Lattices in two-way relay channels with direct links. The following rates are

achievable for the two-way AWGN relay channel with direct links

R1 ≤ min

([
1

2
log

(
P1

P1 + P2
+
P1

NR

)]+

,
1

2
log

(
1 +

h2
12P1 + PR
N2

))
(4.27)

R2 ≤ min

([
1

2
log

(
P2

P1 + P2
+
P2

NR

)]+

,
1

2
log

(
1 +

h2
21P2 + PR
N1

))
. (4.28)

Proof: The achievability proof combines a lattice version of regular encoding/sliding win-

dow decoding scheme (to take advantage of the direct link), decoding of the sum of transmitted

signals at the relay using nested coarse lattices to take care of the asymmetric powers, as in

(3), a lattice binning technique equivalent to the random binning technique developed by (59),

and lattice list decoding at the terminal nodes to combine direct and relayed information.
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Figure 8. Lattice Decode-and-Forward scheme for the AWGN two-way relay channel with
direct links.

Codebook construction: Assume WLOG that P1 > P2. We construct two nested lattice

chains according to Theorem 2. The first consists of the lattices Λ1,Λ2,Λs1,Λs2,Λc1,Λc2 all

nested such that:

• Λ1 ⊆ Λs1 ⊆ Λc1 and Λ2 ⊆ Λs2 ⊆ Λc2.; the coarsest lattice is Λ1 or Λ2 and the finest is Λc1

or Λc2.

• σ2(Λ1) = P1, σ
2(Λ2) = P2

• the coding rate of (Λ1,Λc1) is R1 = 1
n log

(
V1
Vc1

)
= 1

2 log
(
P1
Pc1

)
+on(1), and that of (Λ2,Λc2)

is R2 = 1
n log

(
V2
Vc2

)
= 1

2 log
(
P2
Pc2

)
+ on(1). Associate each message w1 ∈ {1, . . . , 2nR1}
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with t1(w1) ∈ C1 = {Λc1 ∩ V1} and each message w2 ∈ {1, . . . , 2nR2} with t2(w2) ∈ C2 =

{Λc2 ∩ V2}.

• if Vc1 > Vc2 (determined by relative values of R1, P1 and R2, P2 in the above), then

Λc1 ⊆ Λc2, implying Λc1 may be Rogers good and hence we may guarantee the desired

Vc1 by proper selection of Pc1 in Theorem 2
(

as R1 = 1
2 log

(
P1
Pc1

)
+ on(1) = 1

n log
(
V1
Vc1

))
;

otherwise by proper selection of γ in Theorem 2 (and likewise for Λc2).

• the lattices Λs1 and Λs2 which will be used for lattice list decoding at node 2 and 1

respectively are both Rogers good and hence may be specified by the volumes of their

fundamental Voronoi regions Vs1 and Vs2 (under the constraints V1 ≥ Vs1 ≥ Vc1 and

V2 ≥ Vs2 ≥ Vc2), or the corresponding Pc1, Pc2. These will be chosen in the course of the

proof.

• Then final relative ordering of the six lattices will then depend on the relative sizes of

their fundamental region volumes.

We also construct a nested lattice chain of ΛR,ΛsR1,ΛsR2,ΛcR according to Theorem 2 such

that:

• ΛR ⊆ ΛsR1 ⊆ ΛsR2 ⊆ ΛcR or ΛR ⊆ ΛsR2 ⊆ ΛsR1 ⊆ ΛcR

• σ2(ΛR) = PR

• the relay uses the codebook CR = {ΛcR ∩VR} consisting of codewords tR. This codebook

is of rate RR = 1
n log

(
VR
VcR

)
= 1

n log
(
V1
Vc1

)
if Λc2 ⊆ Λc1 and of rate RR = 1

n log
(
VR
VcR

)
=

1
n log

(
V1
Vc2

)
if Λc1 ⊆ Λc2. This rate RR in turn fixes the choice of γ in Theorem 2.
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• ΛsR1 and ΛsR2 are used to decode lists at the two destinations, and their relative nesting

depends on VsR1 and VsR2 (or equivalently PsR1 and PsR2 as both are Rogers good) subject

to VR ≥ VsR1 ≥ VcR and VcR ≥ VsR2 ≥ VR which will be specified in the course of the

proof.

Encoding: We use Block Markov encoding. Messages w1b ∈ {1, 2 · · · 2nR1} and w2b ∈ {1, 2, · · · 2nR2}

are the messages the two terminals wish to send in block b. Nodes 1 and 2 send X1(w1b) and

X2(w2b):

X1(w1b) = (t1(w1b)−U1(b)) mod Λ1

X2(w2b) = (t2(w2b)−U2(b)) mod Λ2,

for dithers U1(b),U2(b) known to all nodes which are i.i.d. uniformly distributed over V1 and

V2 and vary from block to block. At the relay, we assume that it has obtained

T(b− 1) = (t1(w1(b−1)) + t2(w2(b−1))−Q2(t2(w2(b−1)) + U2(b− 1))) mod Λ1 (4.29)

in block b− 1. Note that T(b− 1) lies in {Λc2 ∩V1} if Λc1 ⊆ Λc2 and in {Λc1 ∩V1} if Λc2 ⊆ Λc1,

and is furthermore uniformly distributed over this set consisting of 2nRR points. We may thus

associate each T(b−1) with an index say i(T(b−1)), which the relay then uses as index for the

codeword tR(i(T(b− 1))) in CR (also of rate RR). To simplify notation and with some abuse of
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notation we write tR(T(b− 1)) instead of the indexed version tR(i(T(b− 1))). The relay then

sends

XR(T(b− 1)) = (tR(T(b− 1)) + UR(b− 1)) mod ΛR, (4.30)

for UR(b− 1) a dither known to all nodes which is uniformly distributed over VR.

Decoding: During block b, the following messages / signals are known / decoded at each node:

• Node 1: knows w11, · · ·w1b, w21, w22, · · ·w2(b−2), decodes w2(b−1)

• Node 2: knows w21, · · ·w2b, w11, w12, · · ·w1(b−2), decodes w1(b−1)

• Node R: knows T(1),T(2), · · ·T(b− 1), decodes T(b)

Relay decoding: The relay terminal receives YR(b) = X1(w1b)+X2(w2b)+ZR(b), and, following

the arguments of (1; 3; 2) can decode T(b) = (t1(w1b)+t2(w2b)−Q2(t2(w2b)+U2(b))) mod Λ1

if

R1 ≤
[

1

2
log

(
P1

P1 + P2
+
P1

NR

)]+

, R2 ≤
[

1

2
log

(
P2

P1 + P2
+
P2

NR

)]+

.

Terminal 2 decoding: Terminal 2 decodes w1(b−1) after block b from the received signals

Y2(b− 1) = XR(T(b− 2)) + h12X1(w1(b−1)) + Z2(b− 1)

Y2(b) = XR(T(b− 1)) + h12X1(w1b) + Z2(b).

This will generally follow the lattice version of regular encoding/sliding-window decoding scheme

as described in Section 4.2. That is, after block b−1, terminal 2 first forms Y∗2(b−1) = Y2(b−



51

1)−XR(T(b− 2)) since it has decoded w1(b−2) and knows its own w2(b−2) and hence may form

XR(T(b−2)). Then it uses the list decoder of Theorem 3 to produce a list of messages w1(b−1),

denoted by L
w1(b−1)

1−2 (Y∗2(b − 1)), of size 2n(R1−C(h212P1/N2)) using the lattice Λs1, whose funda-

mental Voronoi region volume is selected to asymptotically approach Vs1 =
(

N2

h212P1+N2

)n/2
V1

(in the sense of (Equation 4.20)). For R approaching 1
2 log

(
1 +

h212P1+PR
N2

)
, where list decoding

is relevant, Vc1 =
(

N2

h212P1+PR+N2

)n/2
V1 asymptotically, and thus Vc1 < Vs1 < V1 as needed. To

resolve which codeword was actually sent, it intersects this list with another list L
w1(b−1)

R−2 (Y2(b))

of w1(b−1) obtained in this block b. This list L
w1(b−1)

R−2 (Y2(b)) of messages w1(b−1) is obtained

from Y2(b) using lattice list decoding with the lattice ΛsR2 whose fundamental Voronoi re-

gion volume is taken to asymptotically approach VsR2 =
(

h212P1+N2

PR+h212P1+N2

)n/2
VR. For R ap-

proaching 1
2 log

(
1 +

h212P1+PR
N2

)
, where list decoding is relevant, VcR =

(
N2

h212P1+PR+N2

)n/2
VR

asymptotically, and thus VcR < VsR2 < VR as needed. One may verify that by construction of

the nested lattice chains, all conditions of Theorem 3 are met. This list of messages w1(b−1)

is actually obtained from decoding a list of tR(T(b − 1)), and using knowledge of its own

t2(w2(b−1)) to obtain a list of t1(w1(b−1)) (and hence w1(b−1) by one-to-one mapping) of size

approximately 2
n(R1−C(

PR
h212P1+N2

))
. To see this, notice that each tR is associated with a single

T = (t1 + t2 − Q2(t2 + U2) mod Λ1. Then, given T and t2, one may obtain a single t1 as

follows:
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(T− t2 +Q2(t2 + U2)) mod Λ1

= ((t1 + t2 −Q2(t2 + U2))− t2 +Q2(t2 + U2)) mod Λ1

= t1 mod Λ1 = t1. (4.31)

Similarly, given a T and t1 one may obtain a single t2 as

(T mod Λ2 − t1) mod Λ2 (4.32)

= ((t1 + t2 −Q2(t2 + U2)) mod Λ1 mod Λ2 − t1) mod Λ2

(a)
= ((t1 + t2 −Q2(t2 + U2)) mod Λ2 − t1) mod Λ2

= t2 mod Λ2 = t2, (4.33)

where (a) follows from X mod Λ1 mod Λ2 = X mod Λ2 when Λ1 ⊆ Λ2. Hence, the list of

decoded codewords tR may be transformed into a list of t1 at Terminal node 2, which may in

turn be associated with a list of w1(b−1). The two decoded lists of w1(b−1) are independent due

to the independent mapping relationships between w1 and t1 at Node 1 and between T and
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tR at the relay. List decoding ensures that at least the correct message lies in the intersection

with high probability. To ensure no more than one in the intersection,

R1 < C(PR/(h
2
12P1 +N2)) + C(h2

12P1/N2)

= C((h2
12P1 + PR)/N2).

Analogous steps apply to rate R2.

4.4.1 Comparison to existing rate regions

We briefly compare the new achievable rate region of Theorem 9 with three other existing

Decode-and-Forward based rate regions for the two-way relay channel with direct links, and to

the cut-set outer bound. In particular, in Figure 9, the region “Rankov-DF” (60, Proposition 2),

the blue “Xie” (59, Theorem 3.1 under Gaussian inputs) and our orange “This work” (Theorem

9) are compared to the green cut-set outer bound under three different choices of noise and

power constraints for h12 = h21 = 1. The “Rankov-DF” and “Xie” schemes use a multiple access

channel model to decode the two messages at the relay, while we use lattice codes to decode

their sum, which avoids the sum rate constraint. In the broadcast phase, the “Rankov-DF”

scheme broadcasts the superposition of the two codewords, while the “Xie” and our scheme use

a random binning technique to broadcast the bin index. The advantage of the “Rankov-DF”

scheme is its ability of obtain a coherent gain at the receiver from the source and relay at the

cost of a reduced power for each message (power split αP and (1− α)P ). On the other hand,

the “Xie” and Theorem 9 schemes both broadcast the bin index using all of the relay power,
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but are unable to obtain coherent gains. We note that our current scheme does not allow for a

coherent gain between the direct and relayed links as 1) we decode the sum of codewords and

re-encode that, and 2) we use the full relay power to transmit this sum. Whether simultaneous

coherent gains are possible to the two receivers while using a lattice-based scheme to decode

the sum of codewords is an interesting open question which may possibly be addressed along

the lines of (61).

At low SNR, the rate-gain seen by decoding the sum and eliminating the sum-rate constraint

is outweighed by 1) the loss seen in the rates 1
2 log

(
Pi

P1+P2
+ SNR

)
compared to 1

2 log(1+SNR),

or 2) the coherent gain present in the “Rankov-DF” scheme. At high SNR, our scheme performs

well, and at least in some cases, is able to guarantee an improved finite-gap result to the outer

bound, as further elaborated upon in (62). Further note that, compared with the two-way relay

channel without direct links (2; 3), the direct links may provide additional information which

translate to rate gains – direct comparison shows that the rate region in (3, Theorem 1) is

always contained in that of Theorem 9.

4.5 The AWGN multiple-access relay channel

We now consider a second example of a relay network with two messages and cooperative

relay links: the multiple-access relay channel (MARC). The MARC was proposed and studied

in (10; 41; 42), and describes a multi-user communication scenario in which two users transmit

different messages to the same destination with the help of a relay. As in the TWRC, the
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Figure 9. Comparison of decode-and-forward achievable rate regions of various two-way relay
channel rate regions.

MARC can be seen as another example of an extension of the three-node relay channel. The

channel model is described by

YR = X1 + X2 + ZR, ZR ∼ N (0, NRI)

YD = X1 + X2 + XD + ZD, ZD ∼ N (0, NDI).

where X1, X2 and XR have power constraints P1, P2 and PR.

An (2nR1 , 2nR2 , n) code for the multiple access relay channel consists of the two sets of mes-

sages wi, i = 1, 2 uniformly distributed over Mi := {1, 2, · · · 2nRi}, and two encoding functions

Xn
i : Mi → Rn (shortened to Xi) satisfying the power constraints Pi, a set of relay functions

{fj}nj=1 such that the relay channel input at time j is a function of the previously received relay

channel outputs from channel uses 1 to j−1, XR,j = fj(YR,1, · · ·YR,j−1), and one decoding func-

tions g : Yn →M1×M2 which yields the message estimates (ŵ1, ŵ2) := g(Y n). We define the
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average probability of error of the code to be Pn,e := 1
2n(R1+R2)

∑
w1∈M1,w2∈M2

Pr{(ŵ1, ŵ2) 6=

(w1, w2)|(w1, w2) sent}. The rate pair (R1, R2) is then said to be achievable by the multiple

access relay channel if, for any ε > 0 and for sufficiently large n, there exists an (2nR1 , 2nR2 , n)

code such that Pn,e < ε. The capacity region C of the multiple access relay channel is the

supremum of the set of achievable rate pairs.

We derive a new achievable rate region whose achievability scheme combines the previously

derived lattice DF scheme, and the linearity of lattice codes using lattice list decoding. In

particular, we demonstrate how we may decode the sum of two lattice codewords at the relay

rather than decoding the individual messages, eliminating the sum-rate constraint seen in i.i.d.

random coding schemes. The relay then forwards a re-encoded version of this which may be

combined with lattice list decoding at the destination to obtain a new rate region.

Theorem 10 Lattices in the AWGN multiple access relay channel. For any α ∈ [0, 1], the

following rates are achievable for the AWGN multiple access relay channel:

R1 < αmin

([
1

2
log

(
P1

P1 + P2
+
P1

NR

)]+

,
1

2
log

(
1 +

P1

P2 + PR +ND

))

+ (1− α) min

([
1

2
log

(
P1

P1 + P2
+
P1

NR

)]+

,
1

2
log

(
1 +

P1 + PR
ND

))
,

R2 < (1− α) min

([
1

2
log

(
P2

P1 + P2
+
P2

NR

)]+

,
1

2
log

(
1 +

P2

P1 + PR +ND

))

+αmin

([
1

2
log

(
P2

P1 + P2
+
P2

NR

)]+

,
1

2
log

(
1 +

P2 + PR
ND

))
.
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Block 3Block 1 Block 4Block 2

X1(w11)

XR(T (1))

X1(w12) X1(w13) X1(1)

X2(w22) X2(w23) X2(1)

XR(1) XR(T (2)) XR(T (3))

Encoding:

T (1) T (2) T (3)

w11

Lw21

2−D

X2(w21)

w12

Lw21

R−D
Lw22

2−D Lw23

2−D

w13

Lw22

R−D Lw23

R−D

Decoding:
R

D

R

1

2

Figure 10. Lattice Decode-and-Forward scheme for the AWGN multiple access relay channel.

Proof:

Codebook construction: We construct two nested lattice chains according to Theorem

2, Λ1,Λ2,Λs1,Λs2,Λc1,Λc2 and ΛR,ΛsR1,ΛsR2,ΛcR, nested in the exact same way as in the

codebook construction of Theorem 9. Encoding: We again use block Markov encoding. At

the b-th block, terminal 1 and 2 send X1(w1b) and X2(w2b), where

X1(w1b) = (t1(w1b)−U1(b)) mod Λ1

X2(w2b) = (t2(w2b)−U2(b)) mod Λ2.
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At the relay, we assume that it has decoded

T(b− 1) = (t1(w1(b−1)) + t2(w2(b−1))−Q2(t2(w2(b−1)) + U2(b− 1)) mod Λ1

in block b−1. Following the exact same steps as in between (Equation 4.29) and (Equation 4.30),

the relay sends

XR(T(b− 1)) = (tR(T(b− 1))−UR(b− 1)) mod ΛR.

The dithers U1(b),U2(b), and UR(b) are known to all nodes and are i.i.d. and uniformly

distributed over V1, V2, and VR and vary from block to block. In the first block 1, terminal 1

and terminal 2 send X1(w11) and X2(w21) respectively, while the relay sends a known XR(1).

Decoding: At the end of each block b, the relay terminal receives YR(b) = X1(w1b) +

X2(w2b) +ZR(b) and decodes T(b) = (t1(w1b) + t2(w2b)−Q2(t2(w2b) +U2(b)) mod Λ1 as long

as

R1 ≤
[

1

2
log

(
P1

P1 + P2
+
P1

NR

)]+

, R2 ≤
[

1

2
log

(
P2

P1 + P2
+
P2

NR

)]+

following arguments similar to those in (3).

The destination receives YD(b) = X1(w1b) + X2(w2b) + XR(T(b − 1)) + ZD(b) and either

decodes the messages in the order w1b and then w2(b−1) or the reverse w2b and then w1(b−1). We

describe the former; the latter follows analogously and we time-share between the two decoding
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orders. The destination first decodes w1b from YD(b), treating X2(w2b)+XR(T(b−1))+ZD(b)

as noise. This equivalent noise is the sum of signals uniformly distributed over fundamental

Voronoi regions of Rogers good lattices and Gaussian noise. Hence, according to Lemma 6, the

probability of error in decoding the correct (unique) w1b will decay exponentially as long as

R1 < C

(
P1

P2 + PR +ND

)
.

It then subtracts X1(w1b) from the signal YD(b) to obtain Y∗D(b) = X2(w2b) + XR(T(b −

1)) + ZD(b) and decodes a list of w2(b−1) denoted by L
w2(b−1)

R−D (Y∗D(b)) of size 2
n
(
R2−C

(
PR

P2+ND

))

assuming side information w1(b−1), and treating X2(w2b) + ZD(b) as noise. This list of w2(b−1)

is obtained from a lattice list decoder based on tR(T(b− 1)) and noting the one-to-one corre-

spondence between tR(T(b− 1)) and t2(w2(b−1)) and hence w2(b−1) given t1(w1(b−1), using the

arguments of (Equation 4.31) and (Equation 4.33).

The destination then intersects the list L
w2(b−1)

R−D (Y∗D(b)) with another list L
w2(b−1)

2−D (Y∗D(b−1))

of size 2
n
(
R2−C

(
P2
ND

))
obtained in the block b− 1 (described next for block b) to determine the

unique w2(b−1). Once the destination has decoded w1b, w2(b−1) and w1(b−1), it is also able to

reconstruct XR(T(b− 1)).

At last, the destination decodes a list Lw2b
2−D(Y∗D(b)) of possible w2b of size 2

n
(
R2−C

(
P2
ND

))

from the signal Y∗D(b) = YD(b) −X1(w1b) −XR(T(b − 1)) = X2(w2b) + ZD(b) which is used
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to determine w2b in the next block b + 1. To ensure that there is an unique codeword w2(b−1)

in the intersection of the two lists L
w2(b−1)

R−D (Y∗D(b)) and L
w2(b−1)

2−D (Y∗D(b− 1)), we need

R2 < C

(
PR

P2 +ND

)
+ C

(
P2

ND

)
=

1

2
log

(
1 +

P2 + PR
ND

)
.

We presented the decoding order w1b, w2(b−1). Alternatively, one may decode in the order w2b

and w1(b−1) at the analogous rates.

Time sharing with parameter 0 ≤ α ≤ 1 between the orders yields the theorem.

Remark 4 Note that the above region is derived using time-sharing between two decoding orders

at the destination. This results as we employ successive decoding at the destination in order to

allow for the use of lower complexity Euclidean lattice decoding, rather than a more complex form

of “joint” decoding for lattices proposed for example in (5; 63). Further note that this region

does not always outperform or even attain the same rates as random coding based schemes – in

fact, as in the two-way relay channel, there is a trade off between rate gains from decoding the

sum at the relay node, and coherent gains and joint decoding at the destination.

4.6 Lattice Dirty-Paper Coding in Simple Relay Channel

This section considers a toy example where a lattice Dirty-Paper Coding technique can

be used in a simple relaying scenario. A two-hop S-R-D Gaussian network is considered with

a source (S), a relay (R) and a destination (D) where there is no direct link between S and

D. The destination node experiences additive interference which is known to the source node.

This noise renders the channel state-dependent. In this case, one would hope to exploit this
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knowledge of the channel state at the source node to obtain a “clean” or interference-free

channel, just as Costa’s dirty-paper coding does for one-hop channels with state non-causally

known to the transmitter. We demonstrate a scheme which achieves to within 1
2 bit of a “clean”

channel. This novel scheme is based on a nested-lattice code and a Decode-and-Forward (DF)

relay. Intuitively, this strategy uses the structure provided by nested lattice codes to cancel the

“integer” (or lattice quantized) part of the interference and treats the “residual” (or quantization

noise) as noise. This result can be seen as a straight-forward extension of lattice Dirty-Paper

Coding in (18) where the source pre-codes the known interference so that the interference may

be cancelled at the destination.

4.6.1 Channel Model

We consider an AWGN two-hop channel model with interference, as shown on the right hand

side of Figure 14. In particular, the model consists of three nodes, the “source” or Tx, node 1;

the “relay” node 2, and the “destination” or Rx, node 3. The channel inputs of nodes 1 and

2 are denoted by X1 and X2, taking on values x1 ∈ X1 and x2 ∈ X2 subject to average power

constraints E[|X1|2] ≤ P1 and E[|X2|2] ≤ P2. The received signals at node 2 and 3 respectively

are Y2 and Y3, taking on values y2 ∈ Y2 and y3 ∈ Y3. We will communicate over n channel uses

and we let Xn
1 := (X1(1), X1(2), · · ·X1(n)) where X1(k) denotes the input at channel use k (and
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1 2 3 

S 

Figure 11. Interference S is experienced at the destination but only known at the source.

similarly for Xn
2 , Y

n
2 , Y

n
3 . We consider two-hop AWGN networks with arbitrary interference Sn,

where, at channel use k, the inputs and outputs of the channels are related as

Y2(k) = X1(k) + Z2(k), Tx 1 knows S(k)

Y3(k) = X2(k) + S(k) + Z3(k),

where for notational convenience, it is assumed that power constraints of the source and relay

are 1, i.e. P1 = P2 = 1, and the noise is AWGN with Z2(k) ∼ N (0, 1
S1

) and Z3(k) ∼ N (0, 1
S2

)

respectively. This ensures that, in the absence of interference S, the link 1 → 2 has capacity
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1
2 log(1+S1) and the link 2→ 3 has capacity 1

2 log(1+S2). In this channel, we wish to transmit

a message w ∈ {1, 2, · · · , 2nR} at rate R > 0 from node 1 to node 3 (which forms as estimate

ŵ of w from its received signal Y n
3 ) such that Pr{ŵ 6= w} → 0 as the number of channel uses,

n → ∞. From now on, to simplify notation, we will abuse notation slightly and drop the

superscript n, using X1 to denote Xn
1 for the remainder, as we will always be dealing with n

channel uses.

4.6.2 Lattice Achievability

Theorem 11 The following rate may be achieved using a structured nested-lattice coding based

DF schemeP

R <

[
1

2
log

(
1

1
1+S1

+ 1
1+S2

)]+

(4.34)

=

[
1

2
log

(
S1S2 + S1 + S2 + 1

S1 + S2 + 2

)]+

, (4.35)

where S1 and S2 are the signal-to-noise ratio for the two links: 1 → 2 and 2 → 3 respectively.

For the special case S1 = S2 = S, this reduces to R < 1
2 log

(
1
2 + S

2

)
.
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: t

: −QΛq
(α2S + Uq) mod Λ

: −(α2S + Uq) mod Λ

(a) (b)

: S

: Z3

: Y3 = T + S + Z3

: α2Y3 mod Λ

: QΛc
(α2Y3 mod Λ)

⊆Λ Λc ⊆ Λq

: �T = (t−QΛq (α2S + Uq)) mod Λ

: �T = (t−QΛq (α2S + Uq)) mod Λ

Figure 12. Illustration of key achievability steps: (a) interference “pre-cancellation” is
performed at the transmitter Node 1 who knows the interference S, (b) the receiver Node 3

experiences interference S, and suffers from a quantization noise “residual”.

Remark: We note that the rate achieved in Theorem 11 achieves to within at most 1
2 bit of the

clean channel capacity which forms an outer bound for our channel model, as

1

2
log

(
1

1
1+S1

+ 1
1+S2

)
+

1

2
=

1

2
log

(
1

1
2(1+S1) + 1

2(1+S2)

)

≥ 1

2
log

(
1

2 ∗ 1
2(1+min(S1,S2))

)

=
1

2
log (1 + min(S1, S2)) .
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Proof: We now prove Theorem 11. We consider a good nested lattice chain Λ ⊆ Λc ⊆ Λq,

where we will specify the second moment / power constraints in the following. We need Λ and

Λq to be both Rogers good and Poltyrev good , and Λc to be Poltyrev good. The existence of

such a good lattice chain is provided in Section 3.3. The message coding rate is

R =
1

n
log

(
V (Λ)

V (Λc)

)
=

1

2
log

(
1

σ2(Λc)

)
.

The coding rate of QΛq() mod Λ is

Rq =
1

n
log

(
V (Λ)

V (Λq)

)
=

1

2
log

(
1

σ2(Λq)

)
.

Encoding at the source (Node 1): message w ∈ W = {1, 2, . . . , 2nR} is one-to-one

mapped to the lattice codeword t ∈ {Λc ∩ V(Λ)} (w ↔ t). The transmitter chooses the t

associated with transmitted message and sends

X1 = (T + U1) mod Λ

where T = (t − QΛq(α2S + Uq)) mod Λ. Uq is the quantization dither which is uniformly

distributed over V(Λq) and also known by the destination. Here U1 is the channel coding dither

which is uniformly distributed over V(Λ) and is known at the relay. The second moment of

Λ is limited by the transmit power, which is assumed to be 1 in this case. This encoding
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step is illustrated in Fig 4.6.2(a), where we see the pre-subtraction of the scaled and quantized

interference S, all mod Λ.

Decoding at the relay (Node 2): the relay receives

Y2 = X1 + Z2

and forms the following signal

Y ′2 = (α1X1 + α1Z2 − U1) mod Λ

= (t−QΛq(α2S + Uq)− (1− α1)X1 + α1Z2) mod Λ.

Choosing α1 = α1opt = S1
S1+1 , the relay can decode T̂ = (t − QΛq(α2S + Uq)) mod Λ with

constraints:

R <
1

2
log(1 + S1), (4.36)

Rq <
1

2
log(1 + S1). (4.37)

according to Lemma 6. This implies that

Rq =
1

2
log

(
1

σ2(Λq)

)
<

1

2
log(1 + S1)
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which results again in a lower bound on the quantization lattice’s second moment

σ2(Λq) >
1

1 + S1
.

Encoding at the relay and decoding at the destination: the relay sends X2 = (T+U2)

mod Λ and the destination receives

Y3 = X2 + S + Z3,

and uses an MMSE estimator to decode t by computing

Y ′3 = (α2Y3 + Uq − U2) mod Λ

= (t−QΛq(α2S + Uq) + U2 − (1− α2)X2

+ α2S + α2Z3 + Uq − U2) mod Λ

= (t− (α2S − Uq) mod Λq − (1− α2)X2 + α2Z3) mod Λ

where (α2S − Uq) mod Λq is a random variable independent of all others which is uniformly

distributed over V(Λq). Thus, −(α2S−Uq) mod Λq, −(1−α2)X2, and α2Z3 may be regarded

as three independent noise terms with variances σ2(Λq), (1−α2)2 and α2
2

1
S2

, and approximated

as Gaussian noise as in (25) when n → ∞. In this last decoding step we see the effect of the

interference“pre-cancellation” at Node 1, as illustrated in Figure 4.6.2(b). In the Figure, the
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effect of the dithers is dropped for clarity and illustration purposes only, and is technically still

required. Choosing α2 = α2opt = S2
S2+1 , the destination can decode t when

R <
1

2
log

(
1

1
1+S2

+ σ2(Λq)

)
(4.38)

<
1

2
log

(
1

1
1+S2

+ 1
1+S1

)
(4.39)

=
1

2
log

(
S1S2 + S1 + S2 + 1

S1 + S2 + 2

)
. (4.40)

Observe that the constraint (Equation 4.36) is always looser than the constraint (Equation 4.38).



CHAPTER 5

LATTICE CODING FOR COMPRESS-AND-FORWARD IN SINGLE

RELAY CHANNEL

We have shown several lattice based Decode-and-Forward schemes for relay networks. Forc-

ing the relay(s) to decode the message(s) they do not need imposes a rate constraint; Compress-

and-Forward (CF) is an alternative type of forwarding which alleviates this constraint. Cover

and El Gamal first proposed a CF scheme for the relay channel in (8) in which the relay does not

decode the message but instead compresses its received signal and forwards the compression in-

dex. The destination first recovers the compressed signal, using its direct-link side-information

(the Wyner-Ziv problem of lossy source coding with correlated side-information at the receiv-

er), and then proceeds to decode the message from the recovered compressed signal and the

received signal.

It is natural to wonder whether lattice codes may be used in the original Cover and El Gamal

CF scheme for the relay channel. We answer this in the positive. We note that lattices have

recently been shown to achieve the Quantize-Map-and-Forward rates for general relay channels

using Quantize-and-Map scheme (similar to the CF scheme) which quantizes the received signal

at the relay and re-encodes it without any form of binning / hashing in (5). The contribution in

this section is to show an alternative achievability scheme which achieves the same rate in the

three node relay channel, demonstrating that lattices may be used to achieve CF-based rates

69
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in a number of fashions. We note that our decoder employs a lattice decoder rather than the

more complex joint typicality, or “consistency check” decoding of (5).

In the CF scheme of (8), Wyner-Ziv coding – which exploits binning – is used at the

relay to exploit receiver side-information obtained from the direct link between the source and

destination. The usage of lattices and structured codes for binning (as opposed to their random

binning counterparts) was considered in a comprehensive fashion in (18). Of particular interest

to the problem considered here is the nested lattice-coding approach of (18) to the Gaussian

Wyner-Ziv coding problem.

5.1 Lattice codes for the Wyner-Ziv model in Compress-and-Forward

We consider the lossy compression of the Gaussian source Y = X+Z1 , with Gaussian side-

information X + Z2 available at the reconstruction node, where X,Z1 and Z2 are independent

vectors of length n which are independent and each generated in an i.i.d. fashion according to

a Gaussian of zero mean and variance P,N1, and N2, respectively. We use the same definitions

for the channel model and for achievability as in Section 4.2. The rate-distortion function for

the source X+Z1 taking on values in X n1 = Rn with side-information X+Z2 taking on values

in X n2 = Rn is the infimum of rates R such that there exist maps in : X n1 → {1, 2, · · · , 2nR} and

gn : X n2 ×{1, 2, · · · , 2nR} → X n1 such that lim supn→∞E[d(X+Z1, gn(X+Z2, in(X+Z1))] ≤ D

for some distortion measure d(·, ·). If the distortion measure d(·, ·) is the squared error distortion,
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d(X, X̂) = 1
nE[||X−X̂||2], then, by (64), the rate distortion function R(D) for the source X+Z1

given the side-information X + Z2 is given by

R(D) =
1

2
log

(
σ2
X+Z1|X+Z2

D

)
, 0 ≤ D ≤ σ2

X+Z1|X+Z2

=
1

2
log

(
N1 + PN2

P+N2

D

)
, 0 ≤ D ≤ N1 +

PN2

P +N2
,

and 0 otherwise, where σ2
X+Z1|X+Z2

is the conditional variance of X + Z1 given X + Z2.

A general lattice code implementation of the Wyner-Ziv scheme is considered in (18). In

order to mimic the CF scheme achieved by Gaussian random codes of (8), we need a slightly

sub-optimal version of the optimal scheme described in (18). That is, in the context of CF, and

to mimic the rate achieved by independent Gaussian random codes used for compression in the

CF rate of (8), the quantization noise after compression should be independent of the signal to

be compressed to allow for two independent views of the source, i.e. to express the compressed

signal as Ŷ = Y−Eq = X+Z1−Eq where Eq is independent of X+Z1. This may be achieved

by selecting α1 = 1 in a modified version of the lattice-coding Wyner-Ziv scheme of (18) rather

than the optimal MMSE scaling coefficient α1 =
√

1− D

N1+
PN2
P+N2

. This roughly allows one to

view Ŷ = X + N1 − Eq as an equivalent AWGN channel, and is the form generally used in

Gaussian CF as in (11). Whether this is optimal is unknown. The second difference from direct

application of (18) is that, in our lattice CF scheme, the signal X is no longer Gaussian but

uniformly distributed over the fundamental Voronoi region of a Rogers good lattice. We modify

the scheme of (18) to incorporate these two changes next.
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Qq( )
�

mod Λ
� �

mod Λ
�Y = X + Z1

α1

U −U

−α1α2(X + Z2)

α1

α2(X + Z2)

Ŷ

Figure 13. Lattice coding for the (X + Z1,X + Z2) Wyner-Ziv problem.

Corollary 12 Lattices for the (X + Z1,X + Z2) Wyner-Ziv problem used in the lattice CF

scheme based on (18). Let X be uniformly distributed over the fundamental Voronoi region

of a Rogers good lattice with second moment P , while Z1 ∼ N (0, N1I) and Z2 ∼ N (0, N2I).

The following rate-distortion function for the lossy compression of the source X + Z1 to be

reconstructed as X+Z1−Eq (where Eq is independent of X+Z1 and has variance D) may be

achieved using lattice codes:

R(D) =
1

2
log

(
1 +

N1 + PN2
P+N2

D

)
, 0 ≤ D ≤ ∞.

Proof: Consider a pair of nested lattice codes Λ ⊆ Λq, where Λq is Rogers-good with second

moment D, and Λ is Poltyrev-good with second moment N1 + PN2
P+N2

+D. The existence of such

a nested lattice pair good for quantization is guaranteed as in (18). We consider the encoding

and decoding schemes of Figure Figure 13, similar to that of (18). We let U be a quantization
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dither signal which is uniformly distributed over Vq and introduce the following coefficients

(choices justified later):

α1 = 1, α2 =
P

P +N2
. (5.1)

Encoding: The encoder quantizes the scaled and dithered signal α1(X + Z1) + U to the

nearest fine lattice point, which is then modulo-ed back to the coarse lattice fundamental

Voronoi region as

I := Qq(α1(X + Z1) + U) mod Λ

= (X + Z1 + U−Eq) mod Λ.

where Eq := (X + Z1 + U) mod Λq is independent of X + Z1 and uniformly distributed over

Vq according to the Crypto lemma (50). The encoder sends index i of I at the source coding

rate

R =
1

n
log

(
V (Λ)

V (Λq)

)
=

1

2
log

(
1 +

N1 + PN2
P+N2

D

)
.
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Decoding: The decoder receives the index i of I and reconstructs Ŷ as

Ŷ = α1((I−U− α1α2(X + Z2)) mod Λ) + α2(X + Z2)

= α1((α1((1− α2)X− α2Z2 + Z1)−Eq) mod Λ) + α2(X + Z2)

(a)≡ α1(α1((1− α2)X− α2Z2 + Z1)−Eq) + α2(X + Z2)

= X + Z1 −Eq

where equivalence (a) denotes asymptotic equivalence (as n → ∞), since, as in (18, Proof of

(4.19))

Pr{(α1((1− α2)X− α2Z2 + Z1)−Eq) mod Λ 6= α1((1− α2)X− α2Z2 + Z1)−Eq} → 0

(5.2)

for a sequence of a good nested lattice codes since

1

n
E||α1((1− α2)X− α2Z2 + Z1)−Eq||2 =

PN2

P +N2
+N1 +D = σ2(Λ). (5.3)

Note that there is a slight difference from (18, Proof of (4.19)) since X is uniformly distributed

over the fundamental Voronoi region of a Rogers good lattice rather than Gaussian distributed.

However, according to Lemma 5, α1((1−α2)X1−α2Z2+Z1)−Eq = (1−α2)X1−α2Z2+Z1−Eq

may be upper bounded by the pdf of an i.i.d. Gaussian random vector (times a constant) with

variance approaching (Equation 5.3) since X1 is uniformly distributed over the Rogers good
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V1, Eq is uniformly distributed over the Rogers good Vq of second moment D, and −α2Z2 +Z1

is Gaussian. Then because Λ is Poltyrev good, (Equation 5.2) can be made arbitrary small as

n→∞. This guarantees a distortion of D as Vq is of second moment D.

5.2 Lattice coding for Compress-and-Forward

Armed with a lattice Wyner-Ziv scheme, we mimic every step of the CF scheme for the

AWGN relay channel of Figure 5 and CF scheme described in (8) using lattice codes and will

show that the same rate as that achieved using random Gaussian codebooks may be achieved

in a structured manner.

Theorem 13 Lattices achieve the CF rate for the relay channel. The following rate may be

achieved for the AWGN relay channel using lattice codes in a lattice Compress-and-Forward

fashion:

R <
1

2
log

(
1 +

P

ND
+

PPR
PNR + PND + PRNR +NRND

)
.

Proof:

Lattice codebook construction: We employ three nested lattice pairs of dimension n satis-

fying:

• Channel codebook for Node S: codewords t1 ∈ C1 = {Λc1 ∩ V1} where Λ1 ⊆ Λc1, and Λ1 is

both Rogers-good and Poltyrev-good and Λc1 is Poltyrev-good. We set σ2(Λ1) = P to satisfy

the transmitter power constraint. We associate each message w ∈ {1, 2, · · · 2nR} with a code-
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word t1(w) in one-to-one fashion and send a dithered version of t1(w). Note that Λc1 is chosen

such that |C1| = 2nR.

• Channel codebook for the relay: codewords tR ∈ CR = {ΛcR ∩ VR} where ΛR ⊆ ΛcR, and

ΛR is both Rogers-good and Poltyrev-good and ΛcR is Poltyrev-good. We set σ2(ΛR) = PR

to satisfy the relay power constraint. We associate each compression index i ∈ {1, 2, · · · , 2nR′}

with the codeword tR(i) in a one-to-one fashion and send a dithered version of tR(i). Note that

ΛcR is chosen such that |CR| = 2nR
′
.

• Quantization/Compression codebook: tq ∈ Cq = {Λq ∩ V} and Λ ⊆ Λq, where Λ is Poltyrev-

good and Λq is Rogers-good. We set σ2(Λq) = D, σ2(Λ) = NR + P1N2
P1+N2

+ D, such that the

source coding rate is R̂ = 1
n log

(
V (Λ)
V (Λq)

)
= 1

2 log

(
1 +

NR+
PND
P+ND
D

)
.

Encoding: We use block Markov encoding as (8). In block b, Node 1 transmits

XS(wb) = (t1(wb) + U1(b)) mod Λ1,

where U1(b) is the dither uniformly distributed over V1. The relay quantizes the received signal

in the previous block b− 1,

YR(b− 1) = XS(wb−1) + ZR(b− 1)

to I(wb−1) = Qq (XS(wb−1) + ZR(b− 1) + Uq −Eq) mod Λ (with index i(wb−1)) by using the

quantization lattice code pair (Λq,Λ) as described in the encoding part of Theorem 12, for Uq

a quantization dither uniformly distributed over Vq and Eq := (XS(wb−1) + ZR(b− 1) + Uq)
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mod Λq. Node 2 chooses the codeword tR(i(wb−1)) associated with the index i(wb−1) of I(wb−1)

and sends

XR(wb−1) = (tR(i(wb−1)) + UR(b− 1)) mod Λ

with UR(b− 1) the dither signal uniformly distributed over VR and independent across blocks.

Decoding: In block b, Node D receives

YD(b) = XS(wb) + XR(wb−1) + ZD(b).

It first decodes wb−1 using lattice decoding as in (25) or Lemma 6 as long as

R′ <
1

2
log

(
1 +

PR
P +ND

)
.

We note that the source coding rate of I, R̂ must be less than the channel coding rate R′, i.e.

1

2
log

(
1 +

NR + PND
P+ND

D

)
<

1

2
log

(
1 +

PR
P +ND

)
, (5.4)

which sets a lower bound on the achievable distortion D. Node D then may obtain

Y′D(b) = YD(b)−XR(wb−1) = XS(wb) + ZD(b)

which is used as direct-link side-information in the next block b+1. In the previous block, Node

D had also obtained Y′D(b− 1) = XS(wb−1) + ZD(b− 1). Combining this with I(wb−1), Node
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D uses Y′D(b − 1) as side-information to reconstruct ŶD(b − 1) as in the decoder of Theorem

12.

Thus, we see that the CF scheme employs the (X+Z1,X+Z2) Wyner-Ziv coding scheme of

Section 5.1 where the source to be compressed at the relay is XS +ZR and the side-information

at the receiver (from the previous block) is XS + ZD.

The compressed YR(b− 1) may now be expressed as

ŶR(b− 1) = (α2
1 − α2

1α2 + α2)XS(wb−1) + α2(1− α2
1)ZD + α2

1ZR − α1Eq(b− 1)

= XS(wb−1) + ZR(b− 1)−Eq(b− 1)

where Eq(b− 1) := (YD(b− 1) + Uq(b− 1)) mod Λq (with Uq(b− 1) the quantization dither

which is uniformly distributed over Vq) is independent and uniformly distributed over Vq with

second moment D. The destination may decode t1(wb−1) from Y′D(b − 1) and ŶR(b − 1) by

coherently combining them as

√
P

ND
Y′D(b− 1) +

√
P

NR +D
ŶR(b− 1)

=

(√
P

ND
+

√
P

NR +D

)
XS(wb−1) +

√
P

ND
ZD(b− 1) +

√
P

NR +D
(ZR(b− 1)−Eq(b− 1)) . (5.5)

Now we wish to decode wb−1 from (Equation 5.5) which is the sum of the desired codeword

which is uniformly distributed over a Rogers good lattice, and noise composed of Gaussian noise
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and Eq uniformly distributed over a fundamental Voronoi region of a Rogers good lattice. This

scenario may be handled by Lemma 6, and we may thus uniquely decode wb−1 as long as

R <
1

2
log

(
1 +

P

ND
+

P

NR +D

)
.

Combining this with the constraint (Equation 5.4), we obtain

R <
1

2
log

(
1 +

P

ND
+

PPR
PNR + PND + PRNR +NRND

)
,

which is the CF rate achieved by the usual choice of Gaussian random codes (in which the relay

quantizes the received signal YR as ŶR = YR + Eq in which Eq is independent of YR) (11,

pg. 17–48).



CHAPTER 6

LATTICE CODING FOR TWO-WAY TWO-RELAY CHANNEL

The Two-way Two-relay Channel 1↔ 2↔ 3↔ 4 is a generalization of the Two-way Relay

channel 1 ↔ 2 ↔ 3 to multiple relays, where Node 1 and 4 simultaneously communicate with

each other through two relay nodes 2 and 3. Each node only communicates with its neighboring

nodes. As lattice codes proved useful in the Two-way Relay channel in decoding the sum at the

relay, it is natural to expect lattice codes to again perform well for the considered channel. We

propose, for the first time, a lattice based scheme for this two-way line network, where all nodes

transmit lattice codewords and each relay node decodes a sum of these codewords. This scheme

may be seen as a generalization of the lattice based scheme of (3; 2) for the Two-way Relay

Channel. However, this generalization is not straightforward due to the presence of multiple

relays and hence the need to repeatedly be able to decode the sum of codewords. One way

to enable this is to have the relays employ lattice codewords as well – something not required

in the Two-way Relay channel. In the Two-way Relay channel achievability schemes consists

of two phases – the multiple access and the broadcast phase. The scheme includes multiple

Block Markov phases, where during each phase, the end users send new messages encoded

by lattice codewords and the relays decode a combination of lattice codewords. The relays

then perform a “Re-distribution Transform” on the decoded lattice codeword combinations,

and broadcasts the resulting lattice codewords. The novelty of our scheme lies in this “Re-

distribution Transform” which enables the messages traveling in both directions to fully utilize

80
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the relay transmit power. Furthermore, all decoders are lattice decoders (more computationally

efficient than joint typicality decoders) and only a single nested lattice codebook pair is needed.

We first outline a simple but specially constructed nested lattice codes needed in our scheme

and technical lemmas in Section 6.1. We outline the channel model in Section 6.2. We then

describe a lattice based strategy for the broadcast phase of the Two-way (single) Relay channel

with asymmetric uplinks in Section 6.3, which includes the key technical novelty – the “Re-

distribution Transform” which allows relays to intuitively spread the signals traveling in both

directions to utilize the relay’s entire transmit power. We present the main achievable rate

regions for the Two-way Two-relay channel in Section 6.4 before outlining extensions to half-

duplex nodes and more than two relays in Section 6.5.

6.1 Simple but Special Lattice Codes for the Two-way Two-relay Channel

6.1.1 Construction

We consider a simple but specially constructed lattice codes designed for our scheme in Two-

way Two-relay Channel. Consider two lattices Λ and Λc such that Λ ⊆ Λc with fundamental

regions V,Vc of volumes V, Vc respectively. Here Λ is termed the coarse lattice which is a

sublattice of Λc, the fine lattice, and hence V ≥ Vc. When transmitting over the AWGN

channel, one may use the set CΛc,V = {Λc ∩ V(Λ)} as the codebook. The coding rate R of this

nested (Λ,Λc) lattice pair is defined as

R =
1

n
log |CΛc,V | =

1

n
log

V

Vc
.
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Nested lattice pairs were shown to be capacity achieving for the AWGN channel (25).

In this work, we only need one “good” nested lattice pair Λ ⊆ Λc, in which Λ is both Rogers

good and Poltyrev good and Λc is Poltyrev good (see definitions of these in (65)). This lattice

pair is used throughout this section. The existence of such a pair of nested lattices may be

guaranteed by (25); we now describe the construction procedure of such a good nested lattice

pair. Suppose the coarse lattice Λ = BZn is both Rogers good and Poltyrev good with second

moment σ2(Λ) = 1. With respect to this coarse lattice Λ, the fine lattice Λc is generated by

Construction A (25; 1), which maps a codebook of a linear block code over a finite field into

real lattice points. The generation procedure is:

• Consider the vector G ∈ FnPprime with every element drawn from an i.i.d. uniform dis-

tribution from the finite field of order Pprime (a prime number) which we take to be

FPprime = {0, 1, 2, . . . , Pprime − 1} under addition and multiplication modulo Pprime.

• The codebook C̄ of the linear block code induced by G is C̄ = {c̄ = Gw : w ∈ FPprime}.

• Embed this codebook into the unit cube by scaling down by a factor of Pprime and then

place a copy at every integer vector: Λ̄c = P−1
primeC̄ + Zn.

• Rotate Λ̄c by the generator matrix of the coarse lattice to obtain the desired fine lattice:

Λc = BΛ̄c.

Now let φ(·) denote the one-to-one mapping between one element in the one dimensional finite

field w ∈ FPprime to a point in n-dimension real space t ∈ CΛc,V :

t = φ(w) = (BP−1
primeGw) mod Λ, (6.1)
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with inverse mapping w = φ−1(t) = (GTG)−1GT (Ppirme(B
−1t mod Zn)) (see (1, Lemma 5

and 6)). The mapping operation φ(·) defined here is used in the following lemmas.

6.1.2 Technical lemmas

We first state several lemmas needed in the proposed two-way lattice based scheme. In the

following, tai and tbi ∈ CΛc,V are generated from wai and wbi ∈ FPprime as tai = φ(wai), tbi =

φ(wbi). Furthermore, let α, αi, βi ∈ Z such that α
Pprime

, αi
Pprime

, βi
Pprime

/∈ Z and θ ∈ R. We use

⊕, ⊗ and 	 to denote modulo Pprime addition, multiplication, and subtraction over the finite

field FPprime .

Lemma 14 There exists an one-to-one mapping between v = (
∑

i αiθtai+
∑

i βiθtbi) mod θΛ

and u =
⊕

i αiwai ⊕
⊕

i βiwbi.

Proof: The proof follows from (1, Lemma 6), where it is shown that there is an one-to-one

mapping between θ−1v = (
∑

i αitai +
∑

i βitbi) mod Λ and u′ =
⊕

i α
′
iwai ⊕

⊕
i β
′
iwbi , where

α′i = αi mod Pprime and β′i = βi mod Pprime. This one-to-one mapping is given by θ−1v =

φ−1(u′) and u′ = φ(θ−1v). Then observe that
⊕

i αiwai ⊕
⊕

i βiwbi =
⊕

i α
′
iwai ⊕

⊕
i β
′
iwbi by

the properties of modulo addition and multiplication. Thus, the one-to-one mapping between

v and u is given by v = θφ−1(u) and u = φ(θ−1v).

Lemma 15 There exists an one-to-one mapping between α⊗ w and w.

Proof: Recall that α
Pprime

/∈ Z. Suppose α⊗ w1 = α⊗ w2. Then α(w1 − w2) = κPprime for

some integer κ. Re-writing this, we have α
Pprime

(w1 − w2) = κ for some integer κ. This implies
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1 2 43
Y1 = X2 + Z1 Y2 = X1 + X3 + Z2 Y3 = X2 + X4 + Z3 Y4 = X3 + Z4

1

n
E(XT

i Xi) ≤ Pi Zi ∼ N (0, NiI)

Figure 14. The Gaussian Two-way Two-relay Channel Model.

that either α
Pprime

∈ Z or w1−w2
Pprime

∈ Z. Since α
Pprime

/∈ Z, w1−w2
Pprime

∈ Z. Thus w1 − w2 = 0 since

−(Pprime − 1) ≤ w1 − w2 ≤ Pprime − 1. Hence w1 = w2.

Lemma 16 If wai and wbi are uniformly distributed over FPprime, then (
∑

i αiθtai +
∑

i βiθtbi)

mod θΛ is uniformly distributed over {θΛc ∩ V(θΛ)}.

Proof: As in the proof of Lemma 14, (
∑

i αiθtai +
∑

i βiθtbi) mod θΛ = θ((
∑

i αitai +

∑
i βitbi) mod Λ) = θφ(

⊕
i αiwai ⊕

⊕
i βiwbi). Since wai and wbi are uniformly distributed

over FPprime , αiwai and βiwbi are uniformly distributed over FPprime by Lemma 15. Then,

⊕
i αiwai ⊕

⊕
i βiwbi is uniformly distributed over FPprime , and φ(

⊕
i αiwai ⊕

⊕
i βiwbi) is uni-

formly distributed over {Λc∩V(Λ)}, and finally θφ(
⊕

i αiwai⊕
⊕

i βiwbi) is uniformly distributed

over {θΛc ∩ V(θΛ)}.

6.2 Channel Model

The Gaussian Two-way Two-relay Channel describes a wireless communication scenario

where two source nodes (Node 1 and 4) simultaneously communicate with each other through

multiple full-duplex relays (Node 2 and 3) and multiple hops as shown in Figure 14. Each node
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can only communicate with its neighboring nodes. The channel model may be expressed as (all

bold symbols are n dimensional)

Y1 = X2 + Z1

Y2 = X1 + X3 + Z2

Y3 = X2 + X4 + Z3

Y4 = X3 + Z4

where Zi (i ∈ {1, 2, 3, 4}) is an i.i.d. Gaussian noise vector with variance Ni: Zi ∼ N (0, NiI),

and the input Xi is subject to the transmit power constraint Pi:
1
nE(XT

i Xi) ≤ Pi. Note that

since we can always subtract the signal transmitted by the node itself, they are omitted in the

channel model expression. Also note the arbitrary power constraints and noise variances but

unit channel gains.

An (2nRa , 2nRb , n) code for the Gaussian Two-way Two-relay channel consists of the t-

wo sets of messages wa, wb uniformly distributed over Ma := {1, 2, · · · , 2nRa} and Mb :=

{1, 2, · · · , 2nRb} respectively, and two encoding functions Xn
1 : Ma → Rn (shortened to X1)

and Xn
4 : Mb → Rn (shortened to X4), satisfying the power constraints P1 and P4 respec-

tively, two sets of relay functions {fk,j}nj=1 (k = 2, 3) such that the relay channel input at

time j is a function of the previously received relay channel outputs from channel uses 1

to j − 1, Xk,j = fk,j(Yk,1, · · · , Yk,j−1), and finally two decoding functions g1 : Yn1 ×Ma →

Mb and g4 : Yn4 × Mb → Ma which yield the message estimates ŵb := g1(Y n
1 , wa) and
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ŵa := g2(Y n
4 , wb) respectively. We define the average probability of error of the code to be

Pn,e := 1
2n(Ra+Rb)

∑
wa∈Ma,wb∈Mb

Pr{(ŵa, ŵb) 6= (wa, wb)|(wa, wb) sent}. The rate pair (Ra, Rb)

is then said to be achievable by the two-relay channel if, for any ε > 0 and for sufficiently large

n, there exists an (2nRa , 2nRb , n) code such that Pn,e < ε. The capacity region of the Gaussian

Two-way Two-relay channel is the supremum of the set of achievable rate pairs.

6.3 Lattice Codes in the BC Phase of the Two-way Relay Channel

The work (3; 2) introduces a two-phase lattice scheme for the Gaussian Two-way Relay

Channel 1↔ 2↔ 3, where two user nodes 1 and 3 exchange information through a single relay

node 2 (all definitions are analogous to the previous section): the Multiple-access Channel

(MAC) phase and the Broadcast Channel (BC) phase. In the MAC phase, the relay receives a

noisy version of the sum of two signals from both users as in a multiple access channel (MAC).

If the codewords are from nested lattice codebooks, the relay may decode the sum of the two

codewords directly without decoding them individually. This is sufficient for this channel, as

then, in the BC phase, the relay may broadcast the sum of the codewords to both users who

may determine the other message using knowledge of their own transmitted message. In the

scheme of (3), the relay re-encodes the decoded sum of the codewords into a codeword from an

i.i.d. random codebook while (2) uses a lattice codebook in the downlink.

In extending the schemes of (3; 2) to multiple relays we would want to use lattice codebooks

in the BC phase, as in (2). This would, for example, allow the signal sent by Node 2 to be

aligned with Node 4’s transmitted signal (aligned is used to mean that the two codebooks are

nested) in the Two-way Two-relay Channel: 1 ↔ 2 ↔ 3 ↔ 4 and hence enable the decoding
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of the sum of codewords again at Node 3. However, the scheme of (2) is only applicable to

channels in which the SNR from the users to the relay are symmetric, i.e. P1
N2

= P3
N2

. In this

case the relay can simply broadcast the decoded (and possibly scaled) sum of codewords sum

without re-encoding it. Thus, before tackling the Two-way Two-relay channel, we first devise

a lattice-coding scheme for the BC phase in the Two-way Relay Channel with arbitrary uplink

SNRs P1
N2
6= P3

N2
.

In this section, we design a lattice coding scheme for the BC phase of the Gaussian Two-way

(single-relay) Channel with arbitrary uplink SNR – i.e. not restricted to symmetric SNRs as

in (2). A similar technique will be utilized in the lattice coding scheme for Two-way Two-relay

Channel in Section 6.4.

The channel model is the same as in (3): two users Node 1 and 3 communicate with each

other through the relay Node 2. The channel model is expressed as

Y1 = X2 + Z1

Y2 = X1 + X3 + Z2

Y3 = X2 + Z3

where Zi (i ∈ {1, 2, 3}) is an i.i.d. Gaussian noise vector with variance Ni: Zi ∼ N (0, NiI),

and the input Xi is subject to the transmitting power constraint Pi:
1
nE(XT

i Xi) ≤ Pi. Similar

definitions of codes and achievability as in Section 6.2 are assumed.
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We will devise an achievability scheme which uses lattice codes in both the MAC phase and

BC phase. For simplicity, to demonstrate the central idea of a lattice-based BC phase which is

going to be used in the Two-way Two-relay Channel, we do not use dithers nor MMSE scaling

as in (25; 3; 2)1.

We assume that P1 = N2p2 and P3 = p2 where p ∈ R and N ∈ Z. This assumption will

be generalized to arbitrary power constraints in the next section. We focus on the symmetric

rate for the Two-way Two-relay Channel, i.e. when the coding rates of the two messages are

identical.

Codebook generation: Consider the messages wa, wb ∈ FPprime = {0, 1, 2, . . . , Pprime − 1}.

Pprime is a large prime number such that Pprime = [2nRsym ], where Rsym is the symmetric

coding rate and [ ] denotes rounding to the nearest prime (Pprime = [2nRsym ] → ∞ as n → ∞

since there are infinitely many primes). The two users Node 1 and 2 send the codewords

X1 = Npta = Npφ(wa) and X2 = ptb = pφ(wb) where φ(·) is defined in (Equation 6.1) in

Section 6.1.1 with the nested lattices Λ ⊆ Λc. Notice that their codebooks are scaled versions

of the codebook CΛc,V . The symmetric coding rate is then Rsym := 1
n log V (Λ)

V (Λc)
.

1Dithers and MMSE scaling allows one to go from achieving rates proportional to log(SNR) to
log(1 + SNR). However, we initially forgo the “1+” term for simplicity and so as not to clutter the
main idea with additional dithers and MMSE scaling.
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In the MAC phase, the relay receives Y2 = X1 + X3 + Z2 and decodes (Npta + ptb)

mod NpΛ with arbitrarily low probability of error as n→∞ with rate constraints

Rsym <

[
1

2
log

(
P1

N2

)]+

Rsym <

[
1

2
log

(
P3

N2

)]+

according to Lemma 17.

Lemma 17 Let Xa = αθta = αθφ(wa) ∈ {αθΛc ∩ V(αθΛ)} and Xb = θtb = θφ(wb) ∈ {θΛc ∩

V(θΛ)} where wa, wb ∈ FPprime, α ∈ Z+, θ ∈ R+ and φ(·),Λ ⊆ Λc are defined as in Section

6.1.1 with R := 1
n log V (Λ)

V (Λc)
. From the received signal Y = Xa + Xb + Z where Z ∼ N (0, σ2

zI)

one may decode (αθta + θtb) mod αθΛ with arbitrary low probability of error as n → ∞ at

rates

R <

[
1

2
log

σ2(αθΛ)

σ2
z

]+

R <

[
1

2
log

σ2(θΛ)

σ2
z

]+

.



90

Proof: The proof generally follows (3), except that for simplicity, we do not use dithers or

MMSE scaling of the received signal in our scheme. The receiver processes the received signal

as

Y mod αθΛ = Xa + Xb + Z mod αθΛ

= αθta + θtb + Z mod αθΛ

To decode (αθta + θtb) mod αθΛ, the effective noise is given by Z with variance σ2
z rather

than the equivalent noise after MMSE scaling as in (3). All other steps remain identical. The

effective signal-to-noise ratios are SNRa = σ2(αθΛa)
σ2
z

and SNRb = σ2(θΛb)
σ2
z

, resulting in the given

rate constraints.

In the BC phase, if, mimicking the steps of (2) the relay simply broadcasts the scaled version

of (Npta + ptb) mod NpΛ

√
P2

Np
((Npta + ptb) mod NpΛ) =

(√
P2ta +

√
P2

N
tb

)
mod

√
P2Λ,

we would achieve the rate Rsym < [1
2 log P2

N3
]+ for the direction 2 → 3 and the rate Rsym <

[1
2 log P2

NN1
]+ for the 1 ← 2 direction. While the rate constraint for the direction 2 → 3 is as

large as expected, the rate constraint for the direction 1← 2 does not fully utilize the power at

the relay, i.e. the codeword tb appears to use only the power P2/N rather than the full power

P2. One would thus want to somehow transform the decoded sum (Npta+ptb) mod NpΛ such

that both ta and tb of the transformed signal would be uniformly distributed over V(
√
P2Λ).
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Notice that the relay can only operate on (Npta + ptb) mod NpΛ rather than Npta and ptb

individually.

Re-distribution Transform: To alleviate this problem we propose the following “Re-

distribution Transform” operation which consists of three steps:

1. multiply the decoded signal by N to obtain N((Npta + ptb) mod NpΛ),

2. then take mod Λ to obtain

N((Npta + ptb) mod NpΛ) mod Λ = (N2pta +Nptb) mod NpΛ

according to the operation rule in (Equation 3.1), and finally

3. re-scale the signal to be of second moment P2 as

√
P2

Np
((N2pta +Nptb) mod NpΛ) = (N

√
P2ta +

√
P2tb) mod

√
P2Λ

according to the operation rule in (Equation 3.2). Notice that (N
√
P2ta+

√
P2tb) mod

√
P2Λ

is uniformly distributed over {√P2Λc ∩ V(
√
P2Λ)} by Lemma 16.

The three steps of the Re-distribution Transform procedure are illustrated in Figure 15 for a

simple one-dimensional lattice in order to gain some intuition and insight (though we operate in

n-dimensions in our achievability proof). In this simple example, Node 1 sends 2pta ∈ {2pΛc ∩
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-2 -1 0 1 2

-1 -1/2 0 1/2 1

-2 -1 0 1 2-3/2 -1/2 1/2 3/2 5/2

-2 -1 0 1 2

2pta ∈ {2pΛc ∩ V(2pΛ)}

ptb ∈ {pΛc ∩ V(pΛ)}

(2pta + ptb) mod 2pΛ ∈ {pΛc ∩ V(2pΛ)}

√
P2

2p
((4pta + 2ptb) mod 2pΛ) = (2

�
P2ta +

�
P2tb) mod

�
P2Λ

Node 1 sends:

Node 3 sends:

Relay decodes:

Re-distribution Transform (1):

-2 -1 0 1 2-3 43 5-4

2((2pta + ptb) mod 2pΛ) = (4pta + 2ptb) mod 4pΛ

(4pta + 2ptb) mod 4pΛ mod 2pΛ = (4pta + 2ptb) mod 2pΛ (2):

 (3):

Figure 15. Re-distribution Transform illustration for a one-dimensional lattice.

V(2pΛ)} = {−2,−1, 0, 1, 2} and Node 3 sends ptb ∈ {pΛc∩V(pΛ)} = {−1,−1/2, 0, 1/2, 1}. The

relay decodes

(2pta + ptb) mod 2pΛ ∈ {pΛc ∩ V(2pΛ)} = {−2,−3/2,−1,−1/2, 0, 1/2, 1, 3/2, 2, 5/2}

and transforms it into (4pta+2ptb) mod 2pΛ ∈ {2pΛc∩V(2pΛ)} = {−2,−1, 0, 1, 2} according to

the three steps in the Re-distribution Transform. Notice |{2pΛc∩V(2pΛ)}| < |{pΛc∩V(2pΛ)}|,

and hence the transformed signal is thus easier to forward.
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The relay broadcasts X2 = (N
√
P2ta+

√
P2tb) mod

√
P2Λ. Notice that (N

√
P2ta+

√
P2tb)

mod
√
P2Λ is uniformly distributed over {√P2Λc ∩ V(

√
P2Λ)}, and so its coding rate is Rsym.

Node 1 and Node 3 receive Y1 = X2 + Z1 and Y3 = X2 + Z3 respectively and, according to

Lemma 18, may decode (N
√
P2ta +

√
P2tb) mod

√
P2Λ at rate

Rsym <

[
1

2
log

P2

N1

]+

Rsym <

[
1

2
log

P2

N3

]+

.

Lemma 18 Let X = θt = θφ(w) ∈ {θΛc∩V(θΛ)} where θ ∈ R+, w ∈ FPprime and φ(·),Λ ⊆ Λc

are defined as in Section 6.1.1, with R = 1
n log V (Λ)

V (Λc)
. From the received signal Y = X + Z

where Z ∼ N (0, σ2
zI), one may decode θt with arbitrary low probability of error as n → ∞ at

rate

R <
1

2
log

σ2(θΛ)

σ2
z

.

Proof: The proof generally follows (25, Theorem 5), except that we do not use dithers nor

MMSE scaling in our scheme. The receiver processes the received signal as

Y mod Λ = X + Z mod Λ

= t + Z mod Λ
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To decode t, the effective noise is Z with variance σ2
z rather than an equivalent noise after

MMSE as in (25, Theorem 5). All other steps are identical. The effective signal-to-noise ratio

is thus SNR = σ2(θΛ)
σ2
z

, and we obtain the rate constraints as in the lemma statement.

Nodes 1 and 2 then map the decoded (NPRta + PRtb) mod PRΛ to Nwa ⊕ wb by Lemma

14. With side information wa, Node 1 may then determine wb; likewise with side information

wb, Node 2 can obtain Nwa and then determine wa by Lemma 15.

6.4 The proposed protocol and achievable rates for the Two-way Two-relay channel

We first consider the full-duplex Two-way Two-relay channel where every node transmits

and receives at the same time. For this channel model we first obtain an achievable rate region

for special relationships between the power constraints at the four nodes in Theorem 19, and

the related Lemma 20. We then use these results to obtain an achievable rate region for the

general (arbitrary powers) Gaussian Two-way Two-relay channel, which we show is to within

1
2 log(3) bits/s/Hz per user of the symmetric rate capacity in Theorem 21.

Theorem 19 For the channel model described in Section 6.2, if P1 = p2, P2 = M2q2, P3 =

N2p2 and P4 = q2, where p, q ∈ R+ and M,N ∈ Z+ the following rate region

Ra, Rb < min

([
1

2
log

(
P1

N2

)]+

,

[
1

2
log

(
P2

N3

)]+

,

[
1

2
log

(
P3

N4

)]+

,

[
1

2
log

(
P4

N3

)]+

,

[
1

2
log

(
P3

N2

)]+

,

[
1

2
log

(
P2

N1

)]+
)

(6.2)

is achievable using lattice codes.
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Proof: Codebook generation: We consider the good nested lattice pair Λ ⊆ Λc

with corresponding codebook CΛc,V = {Λc ∩ V(Λ)}, and two messages wa, wb ∈ FPprime =

{0, 1, 2, . . . , Pprime − 1} in which Pprime is a large prime number such that Pprime = [2nRsym ]

(Rsym is the coding rate). The codewords associated with the messages wa and wb are ta =

φ(wa) and tb = φ(wb), where the mapping φ(·) from FPprime to CΛc,V ∈ Rn is defined in

(Equation 6.1) in Section 6.1.1.

Encoding and decoding steps: We use a Block Markov Encoding/Decoding scheme where

Node 1 and 4 transmit a new message wai and wbi, respectively, at the beginning of block i. To

satisfy the transmit power constraints, Node 1 and 4 send the scaled codewords X1i = ptai =

pφ(wai) ∈ {pΛc ∩ V(pΛ)} and X4i = qtbi = qφ(wbi) ∈ {qΛc ∩ V(qΛ)} respectively in block

i. Node 2 and 3 send X2i and X3i, and Node j (j = {1, 2, 3, 4}) receives Yji in block i. The

procedure of the first few blocks (the initialization steps) are described and then a generalization

is made. We note that in general the coding rates Ra for wa and Rb for wb may be different,

as long as Rsym = max(Ra, Rb), since we may always send dummy messages to make the two

coding rates equal.

Block 1: Node 1 and 4 send new codewords X11 = pta1 and X41 = qtb1 to Node 2 and 3

respectively. Node 2 and 3 can decode the transmitted codeword with vanishing probability of

error if

Rsym <

[
1

2
log

(
P1

N2

)]+

(6.3)

Rsym <

[
1

2
log

(
P4

N3

)]+

(6.4)
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P1 = p2 P2 = M2q2 P3 = N2p2 P4 = q2

Send:

Decode:

pta1

pta1 qtb1

qtb1

Send:

Block 2:

Decode:

Block 1:

pta2 Mqta1 Nptb1 qtb2

(pta2 + Nptb1) mod NpΛ (qtb2 + Mqta1) mod MqΛ

Send:

Decode:

Block 3:

pta3 (Mqta2 + NMqtb1) mod MqΛ (Nptb2 + MNpta1) mod NpΛ qtb3

wb1 (pta3 + Nptb2 + MNpta1) mod NpΛ (qtb3 + Mqta2 + NMqtb1) mod MqΛ wa1

Send:

Decode:

Block 4:

pta4
(Mqta3 + NMqtb2+

NM2qta1) mod MqΛ

(Nptb3 + MNpta2+

MN2ptb1) mod NpΛ

qtb4

wb2 (pta4 + Nptb3 + MNpta2

+MN2ptb1) mod NpΛ

(qtb4 + Mqta3 + NMqtb2+

NM2qta1) mod MqΛ

wa2

Send:

Decode:

Block 5:

pta5 (Mqta4 + NMqtb3 + NM2qta2

+N2M2qtb1) mod MqΛ

(Nptb4 + MNpta3 + MN2ptb2

+M2N2pta1) mod NpΛ

qtb5

wb3 (pta5 + Nptb4 + MNpta3 + MN2ptb2

+M2N2pta1) mod NpΛ

(qtb5 + Mqta4 + NMqtb3 + NM2qta2

+N2M2qtb1) mod MqΛ

wa3

.

.

.

Send:

Decode:

Block i:

ptai
(Mqta(i−1) + NMqtb(i−2) + NM2qta(i−3)

+ · · · + N (i−1)/2M (i−1)/2qtb1) mod MqΛ

(Nptb(i−1) + MNpta(i−2) + MN2ptb(i−3)

+ · · · + M (i−1)/2N (i−1)/2pta1) mod NpΛ

wb(i−2) (ptai + Nptb(i−1) + MNpta(i−2) + . . .

+M (i−1)/2N (i−1)/2pta1) mod NpΛ

qtbi

(qtbi + Mqta(i−1) + NMqtb(i−2) + . . .

+N (i−1)/2M (i−1)/2qtb1) mod MqΛ

wa(i−2)

1 2 43

Figure 16. Multi-phase Block Markov achievability strategy for Theorem 19.
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according to Lemma 18.

Block 2: Node 1 and 4 send their respective new codewords X12 = pta2 and X42 = qtb2,

while Node 2 and 3 broadcast X22 = Mqta1 and X32 = Nptb1 received in the last block. Note

they are scaled to fully utilize the transmit power P2 = M2q2 and P3 = N2p2. Node 2 receives

Y22 = X12 +X32 +Z22 and decodes (pta2 +Nptb1) mod NpΛ with arbitrarily low probability

of error if R satisfies (Equation 6.3) and

Rsym <

[
1

2
log

(
P3

N2

)]+

. (6.5)

Similarly, Node 3 can decode (qtb2 +Mqta1) mod MqΛ subject to (Equation 6.4) and

Rsym <

[
1

2
log

(
P2

N3

)]+

. (6.6)

Block 3:

• Encoding: Node 1 and 4 send new codewords as in the previous blocks. Node 2 further

processes its decoded codewords combination according to the three steps of the Re-

distribution Transform from previous block as

(N((pta2 +Nptb1) mod NpΛ)) mod NpΛ = (Npta2 +N2ptb1) mod N2pΛ mod NpΛ

= (Npta2 +N2ptb1) mod NpΛ
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including scaling to fully utilize the transmit power P2 = M2q2 as

Mq

Np
(Npta2 +N2ptb1) mod NpΛ = (Mqta2 +NMqtb1) mod MqΛ.

It then broadcasts X23 = (Mqta2 +NMqtb1) mod MqΛ. Notice that since

(Mqta2 +NMqtb1) mod MqΛ ∈ {MqΛc ∩ V(MqΛ)}

according to Lemma 16, its coding rate is Rsym. Similarly, Node 3 broadcasts X33 =

(Nptb2 +MNpta1) mod NpΛ again at coding rate Rsym.

• Decoding: At the end of this block, Node 2 is able to decode (pta3 + Nptb2 + MNpta1)

mod NpΛ with rate constraints (Equation 6.3) and (Equation 6.5) according to Lemma 17,

and Node 3 decodes (qtb3 +Mqta2 +NMqtb1) mod MqΛ with constraints (Equation 6.6)

and (Equation 6.4). Node 1 decodes (Mqta2 +NMqtb1) mod MqΛ sent by Node 2 as in

the point-to-point channel with rate constraint

Rsym <

[
1

2
log

(
P2

N1

)]+

(6.7)

according to Lemma 18. From the decoded (Mqta2 + NMqtb1) mod MqΛ, it obtains

wa2⊕Nwb1 (Lemma 14). With its own information wa2, Node 1 can then obtain N⊗wb1 =

wa2⊕Nwb1	wa2, which may be mapped to wb1 since Pprime is a prime number (Lemma
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15). Notice Pprime = [2nRsym ] → ∞ as n → ∞, so N � Pprime = [2nR] and N
Pprime

/∈ Z.

Similarly, Node 4 can decode wa1 with rate constraint

Rsym <

[
1

2
log

(
P2

N3

)]+

. (6.8)

Block 4 and 5 proceed in a similar manner, as shown in Figure 16.

Block i: To generalize, in Block i (assume i is odd)1,

• Encoding: Node 1 and 4 send new messages X1i = ptai and X4i = qtbi respectively. Node

2 and 3 broadcast

X2i = (Mqta(i−1) + NMqtb(i−2) + NM2qta(i−3) + N2M2qtb(i−4) + · · · + N (i−1)/2M (i−1)/2qtb1) mod MqΛ

X3i = (Nptb(i−1) + MNpta(i−2) + MN2ptb(i−3) + M2N2pta(i−4) + · · · + M (i−1)/2N (i−1)/2pta1) mod NpΛ.

• Decoding: Node 1 decodes the codeword from Node 2 with rate constraint (Equation 6.7)

(Lemma 18) and maps it to wa(i−1) ⊕ Nwb(i−2) ⊕ NMwa(i−3) ⊕ N2Mwb(i−4) ⊕ · · · ⊕

N (i−1)/2M (i−1)/2−1wb1 (Lemma 14). With its own messages wai (∀i) and the messages it

decoded previously {wb1, wb2, . . . , wb(i−3)}, Node 1 can obtain N ⊗wb(i−2) and determine

wb(i−2) accordingly (Lemma 15). Similarly, Node 4 can decode wa(i−2) subject to rate

constraint (Equation 6.8).

1For i even we have analogous steps with slightly different indices as may be extrapolated from the
difference between Block 4 and 5 in Figure 16, which result in the same rate constraints.
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• Re-distribution Transform: In this block i, Node 2 also decodes

(ptai+Nptb(i−1)+MNpta(i−2)+MN2ptb(i−3)+M
2N2pta(i−4)+· · ·+M (i−1)/2N (i−1)/2pta1) mod NpΛ

from its received signal Y2i = X1i + X3i + Z2i subject to rate constraints (Equation 6.3)

and (Equation 6.5) (Lemma 17). It then uses the Re-distribution Transform to process

the codeword combination as

(N(ptai +Nptb(i−1) +MNpta(i−2) + · · ·+M (i−1)/2N (i−1)/2pta1 mod NpΛ)) mod NpΛ

=(Nptai +N2ptb(i−1) +MN2pta(i−2) + · · ·+M (i−1)/2N (i−1)/2+1pta1 mod N2pΛ) mod NpΛ

=Nptai +N2ptb(i−1) +MN2pta(i−2) + · · ·+M (i−1)/2N (i−1)/2+1pta1 mod NpΛ

and scales it to fully utilize the transmit power:

Mq

Np
(Nptai +N2ptb(i−1) +MN2pta(i−2) + · · ·+M (i−1)/2N (i−1)/2+1pta1 mod NpΛ)

=Mqtai +NMqtb(i−1) +NM2qta(i−2) + · · ·+N (i−1)/2M (i−1)/2+1qta1 mod MqΛ.

This signal will be transmitted in the next block i + 1. Node 3 performs similar opera-

tions, decoding qtbi + Mqta(i−1) + NMqtb(i−2) + · · · + N (i−1)/2M (i−1)/2qtb1 mod MqΛ

subject to constraints (Equation 6.6) and (Equation 6.4), and transforms it into Nptbi +

MNpta(i−1) +MN2ptb(i−2) + · · ·+M (i−1)/2N (i−1)/2+1ptb1 mod MqΛ, which is transmit-

ted in the next block.
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Combining all rate constraints, we obtain

Rsym < min

([
1

2
log

(
P1

N2

)]+

,

[
1

2
log

(
P2

N3

)]+

,

[
1

2
log

(
P3

N4

)]+

,

[
1

2
log

(
P4

N3

)]+

,

[
1

2
log

(
P3

N2

)]+

,

[
1

2
log

(
P2

N1

)]+
)

Assuming there are I blocks in total, the final achievable rate is I−2
I Rsym, which, as I → ∞,

approaches Rsym and we obtain (Equation 6.2).

In the above we had assumed power constraints of the form P1 = p2, P2 = M2q2, P3 = N2p2

and P4 = q2, where p, q ∈ R+ and M,N ∈ Z+. Analogously, we may permute some of these

power constraints to achieve the same region as follows:

Lemma 20 The rates achieved in Theorem 19 may also be achieved when P1 = N2p2, P3 = p2

and/or P2 = q2, P4 = M2q2.

Proof: The proof follows the same lines as that of Theorem 19, and consists of the steps

outlined in in Figure 19 in Appendix .3. In particular, since the nodes have different power

constraints the scaling of the codewords is different. However, as in the previous Theorem, we

only need X1 and X3 to be aligned (nested codebooks), and X2 and X4 to be aligned. As in

Theorem 19, the relay nodes again decode the sum of codewords, perform the Re-distribution

Transform, with a new power scaling to fully utilize their transmit power, and broadcast the

re-distributed sum of codewords.

Theorem 19 and Lemma 20 both hold for powers for which P1/P3 and/or P2/P4 are either

the squares of integers or the reciprocal of the squares of integers. However, these scenarios do
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not cover general power constraints with arbitrary ratios. We next present an achievable rate

region for arbitrary powers, obtained by appropriately clipping the power of the nodes such

that the new, lower powers are indeed either the squares or the reciprocals of the squares of

integers. We then show that this clipping of the power at the nodes does not result in more

than a 1
2 log(3) bits/s/Hz loss in the symmetric rate.

Theorem 21 For the Two-way Two-relay Channel with arbitrary transmit power constraints,

any rates satisfying

Ra, Rb < Rachievable = max
P ′i≤Pi,

P ′1
P ′3

=N2 or 1
N2 ,

P ′2
P ′4

=M2 or 1
M2

min

([
1

2
log

(
P ′1
N2

)]+

,

[
1

2
log

(
P ′2
N3

)]+

,

[
1

2
log

(
P ′3
N4

)]+

,

[
1

2
log

(
P ′4
N3

)]+

,

[
1

2
log

(
P ′3
N2

)]
,

[
1

2
log

(
P ′2
N1

)]+
)

(6.9)

for some N,M ∈ Z+ and i ∈ {1, 2, 3, 4}, are achievable. This rate region is within 1
2 log 3

bit/Hz/s per user from the symmetric rate capacity.

Proof: Since P1/P3 and/or P2/P4 are in general neither the squares or the reciprocals of

the squares of integers, we cannot directly apply Theorem 19. Instead, we first truncate the

transmit powers Pi to P ′i such that P ′i satisfy either the constraints of Theorem 19 or Lemma

20. The achievable rate region then follows immediately for the reduced power constraints

P ′i . For example, if P1 = 1 and P3 = 3.6, we may choose P ′1 = 0.9 and P ′3 = 3.6 , so that

P ′3/P
′
1 = 22. Optimizing over the truncated or clipped powers yields the achievable rate region

stated in Theorem 21.
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An outer bound to the symmetric capacity of the AWGN Two-way Two-relay Channel is

given by the minimum of the all the point-to-point links, i.e.

Ra, Rb < Router = min

(
C

(
P1

N2

)
, C

(
P2

N3

)
, C

(
P3

N4

)
, C

(
P4

N3

)
, C

(
P3

N2

)
, C

(
P2

N1

))
.

(6.10)

To evaluate the gap between (Equation 6.9) and (Equation 6.10):

Rachievable +
1

2
log 3 (6.11)

(a)
= max

P ′1≤P1,P ′3≤P3,
P ′1
P ′3

=N2 or 1
N2

min

([
1

2
log

(
P ′1
N2

)]+

,

[
1

2
log

(
P ′3
N4

)]+

,

[
1

2
log

(
P ′3
N2

)]+
)

+
1

2
log 3

(6.12)

= max
P ′1≤P1,P ′3≤P3,

P ′1
P ′3

=N2 or 1
N2

max

(
min

(
1

2
log

(
3P ′1
N2

)
,
1

2
log

(
3P ′3
N4

)
,
1

2
log

(
3P ′3
N2

))
,
1

2
log 3

)

(6.13)

(b)

≥max

(
min

(
1

2
log

(
3P ?1
N2

)
,
1

2
log

(
3P ?3
N4

)
,
1

2
log

(
3P ?3
N2

))
,
1

2
log 3

)
(6.14)

(c)

≥min

(
1

2
log

(
1 +

P1

N2

)
,
1

2
log

(
1 +

P3

N4

)
,
1

2
log

(
1 +

P3

N2

))
(6.15)

≥Router. (6.16)

The first equality (a) follows from an assumption that WLOG, one of
[

1
2 log

(
P ′1
N2

)]+
,
[

1
2 log

(
P ′3
N4

)]+
,

or
[

1
2 log

(
P ′3
N2

)]+
is the tightest constraint. The first inequality (b) follows since the rates

achieved by the optimized powers must be larger than those achieved by one particular strate-

gy that meets the constraints – in this case the strategy that yields the P ?i which we construct in
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Appendix .4. Inequality (c) follows from the fact that 2P ?i ≥ Pi, as also shown in Appendix .4.

Finally, we bound 1
2 log

(
3P ?1
N2

)
with 1

2 log
(

1 + P1
N2

)
as follows: If P1

N2
≥ 2, it follows that

P ?1
N2
≥ 1,

and hence 1
2 log

(
3P ?1
N2

)
≥ 1

2 log
(

1 + P1
N2

)
. Otherwise, 1

2 log
(

1 + P1
N2

)
< 1

2 log 3. Similarly, we

may bound 1
2 log

(
3P ?3
N4

)
and 1

2 log
(

3P ?3
N2

)
with 1

2 log
(

1 + P3
N4

)
and 1

2 log
(

1 + P3
N2

)
respectively.

Remark 5 We achieve a constant gap to capacity for the symmetric rate of 1
2 log(3) bit/s/Hz.

The only other scheme we are aware of that has been shown to achieve a constant gap is

noisy network coding (13) which achieves a larger gap of 1.26 bits/s/Hz to the capacity. The

improvement in rates of the proposed scheme may be attributed to the removal of the noise

at intermediate relays (it is a lattice based Decode and Forward scheme) without the sum-rate

constraints that would be needed in i.i.d. random coding based Decode-and-Forward schemes.

6.5 Extensions to half-duplex channels and more than two relays

We now extend our results to half-duplex channels and to two-way relay channels with more

than two relays.

6.5.1 Half-duplex

The proposed lattice coding scheme may be generalized to channels with half-duplex nodes,

i.e. in which a node may either transmit or receive at a given time but not both. The scheme

is illustrated in Figure 17, where we see that the proof generally mimics the full-duplex case

(Theorem 19, Lemma 20 and Theorem 21), but that each phase (or block) in the full-duplex
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case is divided into two phases / blocks in the half-duplex case, as nodes may not transmit and

receive at the same time. Thus, one may achieve half the rates as in the full duplex case, i.e.

Ra, Rb < Rhalf−duplex =
1

2
Rachievable,

where Rachievable is expressed in Theorem 21.

6.5.2 More than two relays

This lattice coding scheme may also be generalized to more than two relays. For example,

for the Two-way Three-relay Channel with five nodes: 1 ↔ 2 ↔ 3 ↔ 4 ↔ 5, we may apply

the same strategy by aligning the codewords between 1 and 3, 3 and 5, and 2 and 4 (i.e. nest

the corresponding codebooks). To align or nest the codebooks, one may truncate the transmit

powers so that
P ′1
P ′3

,
P ′3
P ′5

and
P ′2
P ′4

are either squares, or the reciprocals of squares of integers. By

extending our Block Markov strategy, the final achievable rate region would be:

Ra, Rb < max
P ′
i ≤ Pi,

P ′
1

P ′
3

= N2 or 1
N2 ,

P ′
2

P ′
4

= M2 or 1
M2 ,

P ′
3

P ′
5

= K2 or 1
K2

min
k = {1, 2, 3, 4},

j = {2, 3, 4, 5}

([
1

2
log

(
P ′k
Nk+1

)]+

,

[
1

2
log

(
P ′j
Nj−1

)]+
)
.

where M,N,K ∈ Z+ and i = {1, 2, 3, 4, 5}.
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pta1 pta1 qtb1qtb1

pta2 Nptb1(pta2 + Nptb1) mod NpΛ

Mqta1 qtb2(qtb2 + Mqta1) mod MqΛ

(Mqta2 + NMqtb1) mod MqΛwb1
(qtb3 + Mqta2+

NMqtb1) mod MqΛ
qtb3

pta3 (Nptb2 + MNpta1) mod NpΛ(pta3 + Nptb2+

MNpta1) mod NpΛ

wa1

(Mqta3 + NMqtb2+

NM2qta1) mod MqΛ

wb2 (qtb4 + Mqta3 + NMqtb2+

NM2qta1) mod MqΛ

qtb4

1 2 43

ptai

(ptai + Nptb(i−1) + MNpta(i−2) + . . .

+M (i−1)/2N (i−1)/2pta1) mod NpΛ

(Nptb(i−1) + MNpta(i−2) + MN2ptb(i−3)

+ · · · + M (i−1)/2N (i−1)/2pta1) mod NpΛ

wa(i−2)

1 2 43
(Mqta(i−1) + NMqtb(i−2) + NM2qta(i−3)

+ · · · + N (i−1)/2M (i−1)/2qtb1) mod MqΛ
qtbi

(qtbi + Mqta(i−1) + NMqtb(i−2) + . . .

+N (i−1)/2M (i−1)/2qtb1) mod MqΛ

wb(i−2)

.

.

.

Figure 17. Half-duplex case.



CHAPTER 7

CONCLUSION

We have demonstrated that lattice codes may mimic random Gaussian codes in the context

of the Gaussian relay channel, achieving the same Decode-and-Forward and Compress-and-

Forward rates as those using random Gaussian codes. One of the central technical tools needed

for Decode-and-Forward was a new lattice list decoder, which proved useful in networks with co-

operation where various links to a destination carry different encodings of a given message. The

DF scheme is further extended to multiple relay scenario. In Compress-and-Forward scheme,

we incorporate lattice Wyner-Ziv scheme to achieve the CF rate.

For the scenarios with multiple sources, we have further demonstrated a technique for com-

bining the linearity of lattice codes with classical Block Markov cooperation techniques in a DF

fashion in the multiple-access relay channel and the two-way relay channel with direct links.

These achievability schemes outperform known i.i.d. random coding based schemes for certain

channel conditions. Moreover, we proposed a lattice coding scheme for the AWGN Two-way

Two-relay Channel (1↔ 2↔ 3↔ 4) which achieves within 1
2 log 3 bit/Hz/s from the symmet-

ric rate capacity. This scheme may be generalized to half-duplex nodes, and two-way channels

with more than two relays. In our scheme, each relay decodes a sum of codewords as all trans-

mitted signals are properly chosen lattice codewords, performs the “Re-distribution Transform”

which maps the decoded lattice point to another so as to fully utilize its transmit power, and

107
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broadcasts this transformed, scaled, lattice codeword. All decoders are lattice decoders and

only a single nested lattice codebook pair is needed in our scheme.

In summary, lattice codes have been considered and proved to be a promising coding scheme

for the wireless Gaussian networks, especially for the complex network structure involving

relay nodes. The thesis shows that lattice codes can perform as well as, and even outperform

currently known achievability based schemes based on i.i.d. random codes in many Gaussian

relay networks from a theoretical point of view. An interesting open problem is how to exploit

some of these beneficial properties of lattice codes in real communications systems. Practical

lattice codes are being developed in (66; 67) and related physical-layer network coding ideas are

presented in (68; 69) for relay networks, which provide a good start to this interesting question.
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.1 Details in Decoding step 2. of Theorem 7.

In applying the Lattice List Decoder of Theorem 3 to the steps between (Equation 4.23) –

(Equation 4.26), we form the list

L
wb−1

R−D(YD(b)) = {wb−1| t2(wb−1) ∈ SκVs2,κΛc2(Y′D(b)) mod κΛ2},

where

Y′D(b) = (βYD(b) + κU2(b− 1)) mod κΛ2

= (κt2(wb−1)− (1− β)κX′2(wb−1) + β(X′1(wb) + ZD(b))) mod κΛ2.

As in Section 6.1.1, choose β to be the MMSE coefficient βMMSE = κ2ᾱP
κ2ᾱP+αP+ND

, resulting in

self-noise Zeq := ((1− β)κX′2(wb−1) + β(X′1(wb) + ZD(b))) mod κΛ2 of variance

Neq =
κ2ᾱP (αP +ND)

κ2ᾱP + αP +ND
.

Select Λs2 in the lattice chain Λ2 ⊆ Λs2 ⊆ Λc2 to have a fundamental Voronoi region of volume

Vs2 =
(

αP+ND
αP+ND+(

√
ᾱP+

√
PR)2

)n/2
V2 asymptotically (notice Vs2 < V2 as needed). This will

ensure a list of the desired size 2n(R−RR) as long as RR < C((
√
ᾱP +

√
PR)2/(αP + ND)).

For rates R approaching 1
2 log

(
1 + P+PR+2

√
ᾱPPR

ND

)
(where list decoding is needed / relevant),

Vc2 =
(

ND
P+PR+2

√
ᾱPPR+ND

)n/2
V2 asymptotically. Thus Vc2 < Vs2 < V2 as needed.
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Figure 18. Lattice Decode-and-Forward scheme for the AWGN multi-relay channel.

.2 Proof of Theorem 8

Proof: Here we demonstrate achievability for the permutation π(2) = 2, π(3) = 3, and thus

drop π(·) to simplify notation. The other permutation may be analogously achieved. Source

Node 1 transmits a message to the destination Node 4 with the help of two relays: Node 2 and

Node 3. The achievability scheme follows a generalization of the lattice regular encoding/sliding

window decoding DF scheme of Theorem 7. The only difference is the addition of one relay

and thus one coding level.

Codebook construction: We construct three nested lattice chains according to Theorem 2:
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• Λ1 ⊆ Λs(1−3) ⊆ Λs(1−4) ⊆ Λc1, or Λ1 ⊆ Λs(1−4) ⊆ Λs(1−3) ⊆ Λc1 (relative nesting order

depends on the system parameters and will be discussed in the following paragraph)

• Λ2 ⊆ Λs(2−3) ⊆ Λs(2−4) ⊆ Λc2, or Λ2 ⊆ Λs(2−4) ⊆ Λs(2−3) ⊆ Λc2

• Λ3 ⊆ Λs(3−4) ⊆ Λc3

How these are ordered depends on the relative values of the power split parameters α1, β1, α2 ∈

[0, 1], the power constraints P1, P2, P3 and the noise variances N2, N3, N4. In particular, the

second moments of coarse lattices are selected as: σ2(Λ1) = α1P1, σ2(Λ2) = β1P1, and σ2(Λ3) =

(1−α1− β1)P1. The message set w ∈ {1, 2, · · · 2nR} is mapped in a one-to-one fashion to three

codebooks t1(w) ∈ C1 = {Λc1 ∩ V1}, t2(w) ∈ C2 = {Λc2 ∩ V2}, and t3(w) ∈ C3 = {Λc3 ∩ V3}.

These mappings are independent. The fine lattices Λc1,Λc2,Λc3 may be chosen to satisfy the

needed rate constraint R by proper selection of the corresponding γ in Theorem 2. The lattices

Λs(1−3),Λs(2−3) will be used for lattice list decoding at relay 3, while Λs(1−4), Λs(2−4), and

Λs(3−4) will be used for lattice list decoding at the destination node 4. They will all be Rogers

good, with fundamental Voronoi region volume specified by the desired lattice list decoding

constraints; we are able to select this volume (or equivalently second moment) arbitrarily as

long as they are smaller than their corresponding nested coarse lattices, by Theorem 2. In

which order they are nested will depend on the relative volumes, which in turn depends on the

systems parameters α1, β1, α2 ∈ [0, 1], the power constraints P1, P2, P3 and the noise variances

N2, N3, N4.
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Define the following signals (which will be superposed as described in the Encoding):

X′1(wb) = (t1(wb) + U1(b)) mod Λ1

X′2(wb) = (t2(wb) + U2(b)) mod Λ2

X′3(wb) = (t3(wb) + U3(b)) mod Λ3,

where U1, U2 and U3 are the dithers which are uniformly distributed over V1, V2 and V3,

respectively, independent from block to block, and independent of each other. The encoding

and decoding steps are outlined in Figure 18. We make a small remark on our notation: X′i

should not be thought of as the signal being transmitted by Node i (which would be Xi but we

do not use this, opting instead to write out the transmit signals in terms of X′i). Rather, Node

i will send a superposition of the signals X′i,X
′
i+1, · · · . Thus, multiple nodes may transmit the

same (scaled) codeword X′i which will coherently combine.

Encoding: We again use block Markov encoding: the message is divided into B blocks of nR

bits each. In block b, suppose Node 2 knows {w1, . . . , wb−1} and Node 3 knows {w1, . . . , wb−2}.

Node 1 sends the superposition/sum of X′1(wb), X′2(wb−1) and X′3(wb−2) with power α1P1,

β1P1, and (1−α1−β1)P1 respectively. Node 2 sends the superposition/sum of
√

α2P2
β1P1

X′2(wb−1)

and
√

(1−α2)P2

(1−α1−β1)P1
X′3(wb−2) with power α2P2, and (1 − α2)P2 respectively. Node 3 sends

√
P3

(1−α1−β1)P1
X′3(wb−2) with power P3.

Decoding:



114

Node 2 decodes wb: In block b, since Node 2 knows wb−1 and wb−2 and thus X′2(wb−1) and

X′3(wb−2), it can subtract these terms from its received signal

Y2(b) = X′1(wb) + X′2(wb−1) + X′3(wb−2) +

√
P3

(1− α1 − β1)P1
X′3(wb−2) + Z2(b)

and obtains a noisy observation of X′1(wb) only. Node 2 is able to then uniquely decode wb as

long as (see (25) or Lemma 6)

R <
1

2
log

(
1 +

α1P1

N2

)
.

Node 3 decodes wb−1: Since Node 3 knows wb−2 and thus X′3(wb−2), it subtracts these from

Y3(b):

Y3(b) = X′1(wb)+X′2(wb−1)+X′3(wb−2)+

√
α2P2

β1P1
X′2(wb−1)+

√
(1− α2)P2

(1− α1 − β1)P1
X′3(wb−2)+Z3(b)

and obtains a noisy observation of X′1(wb) and X′2(wb−1),

Y∗3(b) = X′1(wb) +

(
1 +

√
α2P2

β1P1

)
X′2(wb−1) + Z3(b).

It then uses Λs(2−3) to decode a list L
wb−1

2−3 (Y∗3(b)) of possible wb−1 of size 2
n

(
R−C

(
(
√
β1P1+

√
α2P2)2

α1P1+N3

))

in the presence of interference X′1(wb) (uniformly distributed over the fundamental Voronoi re-

gion of a Rogers good lattice code) and Gaussian noise Z3(b) (hence we may apply Theorem

3). It then intersects this list L
wb−1

2−3 (Y∗3(b)) with the list L
wb−1

1−3 (Y∗∗3 (b − 1)) of asymptotic
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size 2
n
(
R−C

(
α1P1
N3

))
obtained in block b − 1 by subtracting off the known signals dependent

on wb−2, wb−3 to obtain Y∗∗3 (b − 1) = X′1(wb−1) + Z3(b − 1). To ensure a unique wb−1 in the

intersection, by independence of the lists (based on the independent mappings of the messages

to the codebooks C1 and C2), we need

R < C

((√
β1P1 +

√
α2P2

)2

α1P1 +N3

)
+ C

(
α1P1

N3

)

= C

(
α1P1 +

(√
β1P1 +

√
α2P2

)2

N3

)
.

After Node 3 decodes wb−1, it further subtracts X′2(wb−1) from its received signal and obtains

a noisy observation of X′1(wb). It again uses the lattice list decoder using Λs(1−3) to output a

list Lwb1−3(Y∗∗3 (b)) of wb of size 2
n
(
R−C

(
α1P1
N3

))
which is used in block b+ 1 to determine wb.

Node 4 decodes wb−2: Finally, Node 4 intersects three lists to determine wb−2. These three

lists are again independent by the independent mapping of the messages to the codebooks C1,

C2, C3, where each corresponds to one of the three links (between node 1-4, 2-4, and 3-4). The

first list L
wb−2

3−4 (Y4(b)) of wb−2 messages is obtained by list decoding using Λs(3−4) on its received

signal

Y4(b) =X′1(wb) + X′2(wb−1) + X′3(wb−2) +

√
α2P2

β1P1
X′2(wb−1)

+

√
(1− α2)P2

(1− α1 − β1)P1
X′3(wb−2) +

√
P3

(1− α1 − β1)P1
X′3(wb−2) + Z4(b)
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which is a combination of scaled signals X′1(wb) and X′2(wb−1) which are uniform over the

fundamental Voronoi regions of Rogers good lattices and additive Gaussian noise Z4(b), and is

of size

|Lwb−2

3−4 (Y4(b))| = 2
n

(
R−C

(
(
√

(1−α1−β1P1)+
√

(1−α2)P2+
√
P3)

2

α1P1+(
√
β1P1+

√
α2P2)2+N4

))
.

The second list L
wb−2

2−4 (Y∗4(b−1)) is obtained in block b−1 and is of size 2
n

(
R−C

(
(
√
β1P1+

√
α2P2)2

α1P1+N4

))
,

while the third list L
wb−2

1−4 (Y∗∗4 (b − 2)) is obtained in block b − 2 and is of size 2
n
(
R−C

(
α1P1
N4

))
.

The formation of these lists is described next (they are formed analogously in blocks b− 1 and

b− 2).

After the successful decoding of wb−2 in block b, node 4 decodes two more lists which

are used in the blocks b + 1 and b + 2 to determine wb−1 and wb respectively. Node 4 first

subtracts the X′3(wb−2) terms from its received signal Y4(b) to obtain Y∗4(b) and decodes a list

of possible wb−1 from the terms X′2(wb−1) using Λs(2−4) in the presence of interference terms

X′1(wb) which are uniformly distributed over Rogers good lattices and Gaussian noise (hence

Theorem 3 applies). This list is denoted as L
wb−1

2−4 (Y∗4(b)) and is used in the block b + 1 to

determine wb−1.

After Node 4 decodes wb−1 in the block b+ 1, it further subtracts the X′2(wb−1) terms from

Y∗4(b) to obtain Y∗∗4 (b) = X′1(wb) + Z4(b). It then uses Λs(1−4) to decode a list of wb, denoted

as Lwb1−4(Y∗∗4 (b)), which is used in block b+ 2 to determine wb.
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In block b, to ensure a unique message wb−2 in the intersection of the three independent

lists, we need

R < C




(√
(1− α1 − β1P1) +

√
(1− α2)P2 +

√
P3

)2

α1P1 +
(√
β1P1 +

√
α2P2

)2
+N4


+ C

((√
β1P1 +

√
α2P2

)2

α1P1 +N4

)
+ C

(
α1P1

N4

)

= C



α1P1 +

(√
β1P1 +

√
α2P2

)2
+
(√

(1− α1 − β1P1) +
√

(1− α2)P2 +
√
P3

)2

N4


 .

.3 Multi-phase Block Markov achievability strategy for Lemma 20

The achievable rate region for Lemma 20 is the same as that for Theorem 19; the achievabil-

ity strategy is essentially the same, with slight variations on the re-scaling to meet the different

power constraints. The details of who transmits and decodes what in each phase is outlined in

Figure 19.

.4 A particular choice of P ?i and proof that 2P ?i ≥ Pi (i ∈ {1, 3}) in Theorem 21

WLOG, we assume P3 ≥ P1. Then, m2 ≤ P3
P1
≤ (m+1)2 for some integer m ∈ Z+. Consider

the following strategy for choosing P ?i such that
P ?3
P ?1

is a non-zero integer squared or the inverse

of an integer squared: If m2 ≤ P3
P1
≤ m(m + 1), we choose P ?3 = m2P1 and P ?1 = P1. Then

P ?3
P3

= m2P1
P3
≥ m2P1

m(m+1)P1
≥ 1

2 . Thus, 2P ?3 ≥ P3 and P ?1 = P1. Otherwise if m(m + 1) ≤ P3
P1
≤

(m+ 1)2, we choose P ?1 = 1
(m+1)2

P 3 and P ?3 = P3. Then
P ?1
P1

= P3
(m+1)2P1

≥ m(m+1)P1

(m+1)2P1
≥ 1

2 . Thus

2P ?1 ≥ P1 and P ?3 = P3. In general, this strategy ensures that 2P ?i ≥ Pi.
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P3 = p2P2 = M2q2P1 = N2p2 P4 = q2

Send:

Decode:

Npta1

Npta1 qtb1

qtb1

Send:

Block 2:

Decode:

Block 1:

Npta2 Mqta1 ptb1 qtb2

(Npta2 + ptb1) mod NpΛ (qtb2 + Mqta1) mod MqΛ

Send:

Decode:

Block 3:

Npta3 (NMqta2 + Mqtb1) mod MqΛ (ptb2 + Mpta1) mod pΛ qtb3

wb1 (Npta3 + ptb2 + Mpta1) mod NpΛ (qtb3 + NMqta2 + Mqtb1) mod MqΛ wa1

Send:

Decode:

Block 4:

Npta4
(NMqta3 + Mqtb2+

M2qta1) mod MqΛ

(ptb3 + NMpta2+

Mptb1) mod pΛ

qtb4

wb2 (Npta4 + ptb3 + NMpta2

+Mptb1) mod NpΛ

(qtb4 + NMqta3 + Mqtb2+

M2qta1) mod MqΛ

wa2

Send:

Decode:

Block 5:

Npta5 (NMqta4 + Mqtb3 + NM2qta2

+M2qtb1) mod MqΛ

(ptb4 + NMpta3 + Mptb2

+M2pta1) mod pΛ

qtb5

wb3 (Npta5 + ptb4 + NMpta3 + Mptb2

+M2pta1) mod NpΛ

(qtb5 + NMqta4 + Mqtb3 + NM2qta2

+M2qtb1) mod MqΛ

wa3

.

.

.

1 2 43

Figure 19. Multi-phase Block Markov achievability strategy for Lemma 20.
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