
Sequential Spatio-Temporal Pattern Mining

with Time Lag

BY

PAVAN REDDY
B.E., Visvesvaraya Technological University, India, 2007

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Chicago, 2014

Chicago, Illinois

Defense Committee:

Isabel Cruz, Chair and Advisor
Stanley Sclove, Information & Decision Sciences
Brian Ziebart



To my parents,

thanks for your love and support

ii



ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor Prof. Isabel F. Cruz for the

continuous support, patience, motivation, and immense knowledge. Her guidance helped me in

my research and writing of this thesis.

I would like to thank the rest of my thesis committee: Prof. Stanley L. Sclove, and Prof. Brian

Ziebart for their encouragement and insightful comments.

I want to thank Claudio Caletti for his work on spatial resolution.

I thank everyone at the Advances in Data, Visual, and Information Science Research Laboratory

(ADVIS); especially Venkat R. Ganesh.

Finally, I thank my sister for her help during my stay in the United States.

PR

iii



TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Spatio-temporal pattern mining . . . . . . . . . . . . . . . . . . 4
2.1.1 Minimal Occurrences With Constraints and Time Lags . . . . 4
2.1.2 Co-location patterns . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.3 Mixed Drove spatio-temporal Co-occurrence Patterns . . . . . 5
2.1.4 Interval orientation patterns . . . . . . . . . . . . . . . . . . . . 5
2.2 Relationship between precipitation and shallow ground water 5

3 METHOD AND ALGORITHM . . . . . . . . . . . . . . . . . . . . . . 7
3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Spatial Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Temporal Resolution . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 Time Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.5 Spatio-temporal pattern mining . . . . . . . . . . . . . . . . . . 13
3.6 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 EVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.1 Support and confidence . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Root Mean Squared Error . . . . . . . . . . . . . . . . . . . . . 18

6 EXPERIMENTAL RESULTS . . . . . . . . . . . . . . . . . . . . . . . . 19
6.1 Spatio-temporal patterns . . . . . . . . . . . . . . . . . . . . . . 19
6.2 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.2.1 Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2.2 Analysis of Variance . . . . . . . . . . . . . . . . . . . . . . . . . 22

7 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

CITED LITERATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

iv



LIST OF TABLES

TABLE PAGE

I RAINFALL AND SURFACE WATER STAGE PATTERNS WITH
ASSOCIATION RULE SUPPORT AND CONFIDENCE . . . . . . 24

II THE ROOT MEAN SQUARED ERROR VALUES FOR BOTH
LINEAR AND SUPPORT VECTOR REGRESSION MODELS
FOR EACH SPATIO-TEMPORAL PATTERN . . . . . . . . . . . . 25

III ANALYSIS OF VARIANCE (ANOVA) TABLE FOR LINEAR RE-
GRESSION OF THE PATTERN RAIN(3,2) → WATERGAGE(3,6). 26

IV ANALYSIS OF VARIANCE (ANOVA) TABLE FOR LINEAR RE-
GRESSION OF THE PATTERN RAIN(6,6) → WATERGAGE(6,7). 26

v



LIST OF FIGURES

FIGURE PAGE

1 Representation of events and episodes on a time line . . . . . . . . . . . 1

2 Spatial resolution - Raw data points and tessellations of optimal spatial
resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Rainfall (mm) and Surface water stage (ft) for grid cells with co-ordinates
(41.323 N, -88.073 W), (40.597 N, -87.5 W) and (36.966 N, -88.647 W),
(37.692 N, -88.073 W) on the respective grids . . . . . . . . . . . . . . . . 10

4 Correlation of Rainfall (mm) and surface water stage (ft) having a max-
imum correlation of 0.691 after a time delay of 11 days . . . . . . . . . . 11

5 Rainfall (mm) and surface water stage (ft) for grid cells with co-ordinates
(42.05 N, -89.794 W), (41.323 N, -89.221 W) and (40.597 N, -88.647 W),
(41.323 N, -88.073 W) on the respective grids . . . . . . . . . . . . . . . . 12

6 Correlation of Rainfall (mm) and surface water stage (ft) having a max-
imum correlation after a time delay of 1 day . . . . . . . . . . . . . . . . 13

7 Histogram of the RMSE values for the support vector regression models
of all patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

8 Estimated surface water stage (ft) vs actual surface water stage value,
and flood stage margin of the water-gage station “Little Wabash river
below clay city IL” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

vi



LIST OF ABBREVIATIONS

GIS Geographic Information Systems.

MOWCATL Minimal Occurrences With Constraints and Time Lags.

MDCOP Mixed Drove spatio-temporal Co-occurrence Patterns.

GIVA Geospatial and Temporal Data Integration, Visualiza-
tion, and Analytics.

RMSE Root Mean Squared Error.

ANOVA Analysis Of Variance.

DF Degrees of Freedom.

SS Sum of Squares.

MS Mean Squares.

NASA National Aeronautics and Space Administration.

TRMM Tropical Rainfall Measuring Mission.

USGS United States Geological Survey.

vii



SUMMARY

Geographic Information Systems have a variety of applications. There are many large

spatio-temporal datasets available. Performing spatial and temporal data mining and

analysis on these datasets enable knowledge discovery, which help domain experts discover

unknown and interesting spatial and temporal insights in the data. This thesis investigates

spatial and temporal relationships between two different spatial datasets and proposes a

method to mine spatio-temporal patterns from the spatial datasets. Machine learning tech-

niques are used to make predictions using historical data based on the spatio-temporal patterns.
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CHAPTER 1

INTRODUCTION

An episode is a sequence of events occurring at different locations at different times, that

is occurrence of events at the same or different locations separated by a delay in time. For

example, an event e1 occurs at location A at time t1 and is succeeded by another event e2

at location B at time t2 where the events are separated by a time delay of (t2 - t1). Spatial

association rules and patterns are defined as frequently occurring episodes in spatial datasets.

Spatial patterns can be spatial association rules, co-location patterns and spatio-temporal

co-occurrence patterns.

Figure 1 displays a representation of events and episodes on a time line. Events are

occurrences in the dataset, for example, rainfall of r1 mm at location loc1 at time t2. Episode

Figure 1. Representation of events and episodes on a time line
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is a sequence of events, for example, E1 is an episode of rainfall occurring at t2 succeeded by

increase in the surface water stage at t4. Spatial features are discrete geographic objects at

a particular location, such as a library in a spatial dataset of a city. Boolean spatial features

describe the presence or absence of a geographic object at a location. Co-location patterns (1)

are patterns of boolean spatial features that occur frequently in proximity of other spatial

features, such as a library in close spatial proximity of a school frequently occurring in a dataset

of a city, where the library and school are spatial features. Mixed Drove spatio-temporal

Co-occurrence Patterns (MDCOPs) (2) are similar to co-location patterns but they also include

the temporal influence between the features. Discovering MDCOPs is a technique where the

dataset is mined for spatio-temporal features that are in close proximity to other features on

both the spatial and temporal scales.

Supervised learning (3) is a machine learning technique of inferring a relationship between

different variables using labeled training data. Training data is a set of examples that are

used to build a machine learning model. Regression (3) can be used as a supervised machine

learning technique that estimates the behavior of a dependent variable based on one or

more independent variables. Regression analysis can be used to analyze historical data and

infer a relationship between the dependent and independent variables, and use this inferred

relationship to make predictions about the behavior of the dependent variable in the future.

Predictive analysis is a data analysis technique of using historical facts to make predictions

about the future. Regression can be used for predictive analysis.
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In this thesis, we use hydro-metric spatial datasets of precipitation and surface water-gage for

mining spatio-temporal patterns of rainfall and surface water. Stage and flow are measures

of surface elevation and volumetric discharge of surface water. Spatial datasets are mined for

spatio-temporal patterns of rainfall and surface water stage and these patterns are used to

build regression models that estimate surface water stage based on rainfall data.

1.1 Problem Definition

Given two spatial datasets, the motivation is to establish a relationship between the

datasets and investigate if the datasets are correlated with or without a delay in time. If the

datasets are correlated then the time delay between the datasets is estimated. The datasets

are mined for spatio-temporal patterns that occur frequently in the data. Based on these

spatio-temporal pattens, regression models should be built that can be used to forecast the

dependent variable behavior.



CHAPTER 2

RELATED WORK

Discovering spatio-temporal patterns is a very important problem and there have been

various methods and approaches used in this field of research.

2.1 Spatio-temporal pattern mining

2.1.1 Minimal Occurrences With Constraints and Time Lags

Minimal Occurrences With Constraints and Time Lags (MOWCATL) (4) is an efficient

algorithm for mining frequent association rules in a dataset. Time lag is taken into account in

the association rules between occurrence of events in an episode. This approach uses a sliding

window on the time scale of a predefined size. The dataset is also converted to the finest

granularity on the time scale before discovering association rules. The dataset is discretized

by using a clustering algorithm to label clusters of events. Then given a target episode and a

time lag, patterns are discovered that contain episodes of a given maximum window width and

a maximum time lag.

2.1.2 Co-location patterns

Co-location patterns (1) are patterns of boolean spatial features/objects that are located

frequently in spatial neighborhood of other spatial features/objects. Co-location patterns

4
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use a threshold distance value between spatial objects. Co-location patterns are mined using

either a spatial statistical method or an association rule mining method. Spatial statistical

method makes use of Ripley’s K function and statistical correlation to identify spatial features

in proximity of other spatial features. Association rule mining method identifies occurrence

of events in a dataset and uses data mining algorithms such as apriori algorithm to discover

co-location patterns.

2.1.3 Mixed Drove spatio-temporal Co-occurrence Patterns

Mixed Drove spatio-temporal Co-occurrence Patterns (MDCOPs) (2) are spatio-temporal

patterns of spatial features that occur in proximity of other spatial features on both space and

time scale.

2.1.4 Interval orientation patterns

Interval orientation patterns (5) are patterns that consider the duration of the existence of

spatial features. This approach enables discovering patterns that involve spatial features which

occur for a finite duration of time at a particular location. This method is useful for finding

patterns of activity detection in spatial and temporal data.

2.2 Relationship between precipitation and shallow ground water

Relationship between precipitation and shallow ground water (6) has been studied by using

statistical time series analysis to establish a relationship between monthly precipitation and
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groundwater (water table) levels. This is used to investigate physical relationships between

precipitation, groundwater, geophysical conditions (topography, soil etc.) and drought analysis.

Similarly in this thesis, we establish a relationship between rainfall and surface water.



CHAPTER 3

METHOD AND ALGORITHM

3.1 Data

Spatial and temporal datasets of rainfall and surface water is used in this thesis. The

rainfall data, measured in millimeters (mm), is obtained from the NASA Tropical Rainfall

Measuring Mission (TRMM)1 and the surface water-gage data is obtained from the United

States Geological Survey (USGS)2.

The surface water data is collection at water-gage stations. Various attributes of surface water

are collected by the surface water-gages such as flow and stage. Flow or volumetric discharge

is the volume of water passing per second through a section of the water-gage station. Flow

is measured in cubic feet per second (cf/s). Stage or gage height is the elevation of the water

surface above the vertical datum. The vertical datum is a predefined ‘zero’ point that is

constant for a station. Since the vertical datum is different for each station, the stage values

are not comparable for different water-gage stations. Stage is measured in feet (ft). Flood

stage is the elevation at which the water overflows from the natural banks of the stream. Stage

margin is the difference between the stage and the flood stage of a station. Both, flood stage

and stage margin are measured in feet (ft).

1http://trmm.gsfc.nasa.gov/
2http://www.usgs.gov/

7
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Precipitation and surface water data used in this thesis are from the state of Illinois of the

United States of America.

3.2 Spatial Resolution

Based on the data acquisition method, heterogeneities are introduced in the datasets.

Rainfall data is recorded by NASA TRMM at specific locations on a 0.25 x 0.25 mile grid and

surface water data is recorded at water-gage stations.

This heterogeneity makes it necessary for data from different sources to be normalized to a

common spatial resolution. Spatial autocorrelation (7) is used to resolve the heterogeneity in the

spatial resolution of the two datasets (8). The data is normalized to rectangular tessellations to

form a grid as shown in Figure 2. Each cell in the grid acquires a value of the weighted average

of the data points within the cell. Spatial autocorrelation (9) is characterized by correlation

in the neighboring locations in space. Moran’s I index, ranging from -1 to +1, is the measure

used for spatial autocorrelation. A positive Moran’s I value indicates clustering of similar data

points. A negative Moran’s I value indicates dissimilarity of the value of a data point with its

neighbors and a Moran’s I value that is close to zero indicates randomness in the data. The

dimensions of a grid with rectangular tessellations is computed based on the value at which the

Moran’s I index is maximum. This method (9) was the work of Claudio Caletti.

In this thesis, the grid cells are defined by their row and column indices e.g., cell (2,3) represents

the cell in the 2nd row and 3rd column of the grid. A cell can also be represented by latitude
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Figure 2. Spatial resolution - Raw data points and tessellations of optimal spatial resolution

and longitude of the points defining its top-left and bottom-right co-ordinates e.g., (41.323 N,

-88.073 W), (40.597 N, -87.5 W).

3.3 Temporal Resolution

Data from different sources can be acquired at different frequencies of data collection, for

example, rainfall data is collected once a day whereas surface water data is collected twice

a day. It is necessary to normalize datasets of different temporal resolutions to a common

temporal resolution. The common temporal resolution is chosen to be equal to the resolution

of the dataset with the least frequent data collection method. The dataset with the higher

frequency data collection method is aggregated by computing the mean of the data points. For

example, if dataset D1 is recorded daily and dataset D2 is recorded twice a day, then the data

is normalized to the resolution of dataset D1, and the values for dataset D2 are aggregated by

computing the mean of data points aggregated by a day.
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Figure 3. Rainfall (mm) and Surface water stage (ft) for grid cells with co-ordinates (41.323
N, -88.073 W), (40.597 N, -87.5 W) and (36.966 N, -88.647 W), (37.692 N, -88.073 W) on the

respective grids

3.4 Time Delay

Statistical cross correlation (10) is used to estimate the time delay between two time series.

Cross correlation is employed to find if rainfall and water-gage data is correlated with each

other with or without a time delay. Cross correlation is a measure of similarity of two sets of

time series data while a time delay is applied to one of them.

rxy[τ ] =

∑
t(x[t]− µx])(y[t− τ ]− µy)√∑

t(x[t]− µx])2
√∑

t(y[t− τ ]− µy)2
(3.1)
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Figure 4. Correlation of Rainfall (mm) and surface water stage (ft) having a maximum
correlation of 0.691 after a time delay of 11 days

In Equation 3.1, rxy[τ ] is the cross correlation of x[t] and y[t], x[t] and y[t] are the time series

and τ is the time delay. µx and µy are the mean values of the time series x[t] and y[t]. Cross

correlation is computed for different values of τ and the delay with the maximum correlation is

used to compute the actual time delay between the two time series, as shown in Equation 3.2.

τ̂ = argmaxτ (rxy[τ ]) (3.2)

In Equation 3.2, τ̂ represents the time delay where the maximum correlation is achieved and

rxy[τ ] is the cross correlation of x[t] and y[t] computed at time delay τ .

The time delay for which the maximum value of correlation is obtained using cross correlation

signifies that the datasets tend to be similar at this time delay.
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Figure 5. Rainfall (mm) and surface water stage (ft) for grid cells with co-ordinates (42.05 N,
-89.794 W), (41.323 N, -89.221 W) and (40.597 N, -88.647 W), (41.323 N, -88.073 W) on the

respective grids

Figure 3 and Figure 4 show the correlation between rainfall and surface water stage is 0.691

with a time delay of 11 days at tessellation with top-left and bottom-right co-ordinates of the

cell (41.323 N, -88.073 W), (40.597 N, -87.5 W) and tessellation with top-left and bottom-right

co-ordinates (36.966 N, -88.647 W), (37.692 N, -88.073 W) on the respective grids. Figure 5

and Figure 6 display the relationship between rainfall and stage, the delay computed between

rainfall and stage is 1 day at the tessellation with top-left and bottom-right co-ordinates of the

cell (42.05 N, -89.794 W), (41.323 N, -89.221 W) and tessellation with top-left and bottom-right

co-ordinates (40.597 N, -88.647 W), (41.323 N, -88.073 W) on rainfall and surface water grids.
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Figure 6. Correlation of Rainfall (mm) and surface water stage (ft) having a maximum
correlation after a time delay of 1 day

3.5 Spatio-temporal pattern mining

A variant of the apriori algorithm (11) is used to discover frequently occurring spatio-

temporal patterns in the datasets. The apriori algorithm consists of two stages: candidate

generation and pattern pruning. In the candidate generation stage, candidate patterns are

generated for each pair of tessellations of both rainfall and water-gage grids. For each pair of

tessellations of the grids of both datasets, the time delay is computed using cross correlation.

The candidate patterns are then subject to pattern pruning. In the pattern pruning stage, the

support and confidence of each spatio-temporal pattern is computed. Candidates are pruned
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based on the minimum support and correlation coefficients. Support and confidence measures

are discussed in Section 5.1.

3.6 Regression

Regression (3) is used to model a relationship between an independent variables and one

or more dependent variables in a dataset. The surface water stage is used as the dependent

variable and rainfall, time delay and the locations are used as the independent variables.

yt = β0 + β1xt1 + β2xt2 + · · ·+ βpxtp + εt t = 1, . . . , n (3.3)

In Equation 3.3, p is the number of variables. An example for x is rainfall. The β values are

the learned parameters and ε is a disturbance term or error variable. This can be rewritten as

Equation 3.4:

yt = xTt β + εt, t = 1, . . . , n (3.4)

where xTt represents the transpose of the vector of independent variables and xTt β is the inner

product between vectors xTt and β. Using the spatio-temporal patterns and the time delay,

regression can be modeled to accommodate time delay on the dependent variables as shown

in Equation 3.5, that is, rainfall data can be used to build a regression model and by making

variations for time delay as show in Equation 3.5, the surface water stage variable can be

forecast.

yt+τ = xTt β + εt, t = 1, . . . , n (3.5)
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Regression algorithms such as linear regression and support vector regression (3) are used for

building regression models based on the spatio-temporal patterns. Support vector regression

models are further tuned to obtain the best performance by employing techniques such as a

kernel method. Kernel methods (3) enable the use of higher dimensional feature spaces.



CHAPTER 4

IMPLEMENTATION

Spatial datasets for both surface water and rainfall are obtained in flat files from the NASA

Tropical Rainfall Measuring Mission (TRMM) and the United States Geological Survey (USGS).

This data is transformed and imported to a spatial relational database. PostgreSQL1 is the

relational database used in this thesis. PostgreSQL is used with PostGIS2, a spatial database

extender for PostgreSQL. R (12) and Java are used for implementation of the data processing,

statistical and machine learning components. Spatial autocorrelation and Moran’s I index com-

putation modules are used from GIVA and the ape package (13) for R. The e1071 package (14)

for R is used for support vector regression.

1http://www.postgresql.org/
2http://postgis.net/

16



CHAPTER 5

EVALUATION

5.1 Support and confidence

Spatio-temporal patterns are evaluated using support and confidence values. Support (15)

is a measure of how frequently an event or a pattern occurs in the dataset. Confidence (15)

is a measure of the predictability of the pattern in the dataset, it can be defined as shown

in equation (6), where rainl1 represents rainfall at location l1, stagel2 represents the surface

water stage at location l2 and (rainl1 → stagel2) represents a spatio-temporal pattern.

conf(rainl1 → stagel2) =
supp(rainl1 → stagel2)

supp(rainl1)
(5.1)

For example, lets consider the pattern (rainl1 → stagel2). If 1% of all patterns in the

dataset are (rainl1 → stagel2) then the support of (rainl1 → stagel2) is 1%, that is equal to

0.01. If 3% of all the rainfall occurs at location l1 then support of (rainl1) is 3%, that is equal

to 0.03.

If it rains at location l1 then the confidence of the pattern (rainl1 → stagel2) is 0.01/0.03, that

is equal to 0.333.

17
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5.2 Root Mean Squared Error

Regression models are used to forecast the dependent variable based on the independent

variables. The regression model and predictions are evaluated using the Root Mean Squared

Error (RMSE) (3).

The Root Mean Squared Error (RMSE) is a measure of the square root of the mean of the

squared error between the predicted and actual values. A lower RMSE value indicates a better

model. RMSE can also be used as a measure of how well a model fits the data and if the model

is overfit or underfit. If the RMSE of the training set is significantly lower than the RMSE of

testing set then it indicates a model that is overfit, in which case methods like regularization

are used to tune the model. Regularization (3) is a method of reducing overfitting by imposing

a penalty for the complexity of the model

The rainfall data is split in 80:20 ratio for the training and testing set. For each spatio-temporal

pattern, a regression model is built encompassing its corresponding time lag.



CHAPTER 6

EXPERIMENTAL RESULTS

6.1 Spatio-temporal patterns

Table I displays the spatio-temporal patterns that are discovered. the corresponding

correlation, time lag, support and confidence values for rainfall and surface water stage data.

The minimum correlation co-efficient is chosen as 75% of the maximum correlation coefficient

and minimum support is chosen as 25% of the maximum support value. These values are user

defined input parameters to the apriori algorithm (11) and are chosen manually by trial and

error such that the patterns discovered provide interesting information and high confidence

values while keeping the number of patterns reasonably small (16).

6.2 Regression

Based on the spatio-temporal patterns extracted, linear regression and support vector

regression models are built using the data for all the patterns using a 80:20 training to testing

set bias. Each pattern shown in Table II is used to build a regression model incorporating

the corresponding time delay as described in Section 3.6. These models are used to predict

the surface water stage values based on the rainfall data and time lag for each pattern. These

model are evaluated using the Root Mean Square Error (RMSE) metric. Both linear regression

and support vector regression models are built for all patterns. The Root Mean Squared Error

19
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Figure 7. Histogram of the RMSE values for the support vector regression models of all
patterns

values for each pattern for both linear and support vector regression is shown in Table II. The

support vector regression models shown in Table II use a polynomial kernel of degree 2.

6.2 shows a histogram of the RMSE values for the regression models of all patterns us-

ing support vector regression. Low values of the Root Mean Square Error indicate that the

regression models perform well.

The watergage grid cell (3,6) with the top-left and the bottom-right co-ordinates (38.418

N, -88.647 W), (39.144 N, -88.073 W) contains one water-gage station, “Little Wabash river

below Clay city, IL”. The flood stage of this water-gage station is 16 feet (ft). 6.2 shows
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Figure 8. Estimated surface water stage (ft) vs actual surface water stage value, and flood
stage margin of the water-gage station “Little Wabash river below clay city IL”

the comparison of the predicted and the actual values of surface water stage (ft) based on

the patterns extracted and the corresponding time lag. The figure shows that the predicted

estimates of surface water stage are less than the flood stage of the water-gage station. In case

the regression model predicts that the surface water stage is greater than the flood stage, then

the model estimates a flood at the water-gage station.

6.2.1 Overfitting

As shown in Table I, the Root Mean Square Error (RMSE) values of linear regression

for a few patterns is very high for e.g., the pattern rain(2,4) → watergage(1,6) has a RMSE

value of 3456.16. The grid cell (1,6) with the top-left and bottom-right co-ordinates (36.966,
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-88.647),(37.692, -88.073) contains two water-gage stations - “Ohio river at old Shawneetown

IL-KY” and “Ohio river at dam 51 at Golconda IL” with flood stages 33 ft and 40 ft respectively.

The RMSE for linear regression for the training set is 936.225, which is significantly lower than

the RMSE for the testing set, which indicates the model is overfit. The surface water stage

data for the watergage cell (1,6) contains a very large outlier which causes the high RMSE

values for linear regression because linear regression is sensitive to outliers. To corroborate

this finding, the mean of the surface water stage values is computed and it is 464.014. Hence,

support vector regression is used and it provides a RMSE value of 11.47. Similarly, high val-

ues of RMSE for linear regression are obtained with patterns only involving watergage cell (1,6).

6.2.2 Analysis of Variance

Each cell in the water-gage grid can contain water-gage stations. Based on the flood stage

and the estimated stage values of each of these water-gage stations, we can estimate when and if

the stage of the water-gage station will be elevated to a value beyond the flood stage and cause

flooding of the natural banks of the water-gage station. If there is more than one pattern that

affects a grid cell on the water-gage grid, then the average of all the estimates from all regression

models is computed. For example, consider the pattern rain(3,2) → watergage(3,6) which has

a RMSE value 3.123 and 2.77 for linear regression and support vector regression respectively.

The Analysis Of Variance (ANOVA) (17) table for linear regression of this pattern is shown

in Table III. In Table III, the calculated Sum of Squares (SS) terms are provided in the

“Sum of Squares” column, the Mean Square (MS) terms are provided in the “Sum of Squares”
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column, and the p-value is provided in the “Pr(≤F-statistic)” column. “Pr(≤F-statistic)” is

the probability of observing a value greater than or equal to 17.909.

Similarly, the ANOVA table for linear regression of the pattern rain(6,6) → watergage(6,7) is

shown in Table IV. A null hypothesis is made that the observed effect in the linear regression

model occurs purely by chance. The F-statistic is a statistical test that is used to check if the

variances of both the datasets are equal. A high value of F-statistic indicates that the datasets

have different variances. A “Pr(≤F-statistic)” that is very low indicates that the observed effect

is highly unlikely to have occurred purely by chance. Thus, rejecting the null hypothesis.
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Grid cell (row,column)
Correlation Lag Support Confidence

Rainfall Stage

(6,1) (1,6) 0.580 14 0.0048 0.469

(2,7) (6,7) 0.405 1 0.0030 0.388

(5,7) (1,6) 0.532 11 0.0043 0.378

(6,7) (2,7) 0.681 51 0.0027 0.377

(1,7) (2,7) 0.495 59 0.0017 0.357

(1,6) (4,4) 0.414 6 0.0039 0.353

(2,4) (1,6) 0.559 19 0.0028 0.351

(7,3) (7,1) 0.399 10 0.0036 0.342

(7,3) (1,6) 0.660 33 0.0036 0.334

(7,6) (1,6) 0.563 11 0.0065 0.314

(7,7) (1,6) 0.691 11 0.0042 0.311

(3,1) (2,7) 0.556 58 0.0022 0.307

(6,1) (2,7) 0.566 54 0.0031 0.302

(7,1) (2,7) 0.742 73 0.0022 0.301

(3,2) (3,6) 0.402 1 0.0023 0.082

(6,3) (6,7) 0.482 1 0.0052 0.299

(6,6) (6,7) 0.477 1 0.0059 0.292

(4,3) (6,7) 0.511 6 0.0022 0.286

(7,2) (2,7) 0.766 73 0.0030 0.280

(1,2) (6,6) 0.422 19 0.0019 0.280

(7,6) (6,7) 0.450 1 0.0058 0.279

(5,7) (2,7) 0.515 51 0.0032 0.278

(4,3) (1,6) 0.584 19 0.0022 0.278

TABLE I

RAINFALL AND SURFACE WATER STAGE PATTERNS WITH ASSOCIATION RULE
SUPPORT AND CONFIDENCE
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Grid cell (row,column) Root Mean Squared Error (RMSE)

Rainfall Stage Linear Regression Support Vector Regression

(6,1) (1,6) 2169.68 3.89

(2,7) (6,7) 1.57 1.40

(5,7) (1,6) 679.02 3.55

(6,7) (2,7) 75.26 19.64

(1,7) (2,7) 75.88 3.30

(1,6) (4,4) 4.02 4.05

(2,4) (1,6) 3456.16 11.47

(7,3) (7,1) 2.95 2.81

(7,3) (1,6) 960.16 3.43

(7,6) (1,6) 1611.31 3.61

(7,7) (1,6) 936.22 5.08

(3,1) (2,7) 78.42 1.61

(6,1) (2,7) 87.02 4.52

(3,2) (3,6) 3.123 2.77

(7,1) (2,7) 76.68 6.25

(6,3) (6,7) 1.64 1.37

(6,6) (6,7) 1.85 1.46

(4,3) (6,7) 1.70 1.48

(7,2) (2,7) 76.04 4.29

(1,2) (6,6) 3.02 3.00

(7,6) (6,7) 1.97 1.55

(5,7) (2,7) 78.84 1.75

(4,3) (1,6) 1564.14 3.49

TABLE II

THE ROOT MEAN SQUARED ERROR VALUES FOR BOTH LINEAR AND SUPPORT
VECTOR REGRESSION MODELS FOR EACH SPATIO-TEMPORAL PATTERN
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Source Degrees of Freedom Sum of Squares Mean Squares F-statistic Pr(≤F-statistic)

Rainfall 1 100.70 100.699 17.909 6.73e-05

Residuals 72 404.85 5.623

TABLE III

ANALYSIS OF VARIANCE (ANOVA) TABLE FOR LINEAR REGRESSION OF THE
PATTERN RAIN(3,2) → WATERGAGE(3,6).

Source Degrees of Freedom Sum of Squares Mean Squares F-statistic Pr(≤F-statistic)

Rainfall 1 102.80 102.798 29.678 6.756e-07

Residuals 72 249.39 3.464

TABLE IV

ANALYSIS OF VARIANCE (ANOVA) TABLE FOR LINEAR REGRESSION OF THE
PATTERN RAIN(6,6) → WATERGAGE(6,7).



CHAPTER 7

CONCLUSION

In this thesis, a relationship is established between the rainfall and the surface water

datasets. The datasets are mined and frequently occurring spatio-temporal patterns are dis-

covered. This includes estimating the time delay between the occurrence of rainfall and the

corresponding change in the surface water stage for each spatio-temporal patterns. The corre-

lation, time lag, support and confidence of these patterns is show in Table I. These patterns

are used to build regression models that are in turn used to predict the surface water stage

based on the spatio-temporal pattern, the time delay and historical data. These predictions are

verified by evaluating them with the corresponding actual surface water stage values using the

Root Mean Squared Error (RMSE) metric as shown in Table II. Hence, there is a relationship

established between rainfall and surface water and rainfall data can be used to estimate the

surface water stage values.
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