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SUMMARY 

 

According to the United States Department of Energy (DOE), wind energy is the most rapidly 

advancing source of energy worldwide.  United States wind power produces as much clean electricity as 

nearly 10 nuclear power plants without environmental pollution and consumes virtually no water.  

However, to increase wind energy production rate, there is an urging need to improve the wind turbine 

availability and reduce the operational and maintenance costs.  The safety and reliability of a functioning 

wind turbine depend largely on the protective properties of the lubrication oil for its drive train 

subassemblies such as gearbox and means for lubrication oil condition monitoring and degradation 

detection.  In comparison with current vibration based machine health monitoring, online lubrication oil 

diagnostic solutions provide over 10 times earlier warning of possible machine failure.  The purpose of 

lubrication oil condition monitoring and degradation detection is to determine whether the oil has 

deteriorated to such a degree that it no longer fulfills its function in real time.   

In this dissertation, lubrication oil degradation basic degradation features have been investigated. 

Lubrication oil degradation is classified into three categories: particle contamination, water contamination 

and oxidation which are defined as three basic degradation features. A comprehensive review of current 

state of the art lubrication oil condition monitoring techniques and solution has been conducted. Viscosity 

and dielectric constant are selected as the performance parameters to model the degradation of lubricant 

based on the result of the literature review. Physics models have been developed to quantify the 

relationship between lubricant degradation level and the performance parameters. Commercially available 

viscosity and dielectric sensors have been acquired and installed in a temperature controlled chamber to 

validate the developed performance parameter based lubrication oil deterioration physics models.  Water 

and particle contamination are the most common oil deterioration features. Therefore, it is essential to 

keep monitoring the water and particle content of the lubricant. Particle filtering techniques are 

introduced and adapted to predict the remaining useful life of lubrication oil based on the developed 



 

xii 

 

physics models. In the particle filtering algorithm, state transition function was constructed to estimate the 

fault progression. Observation function was assembled based on the output of the sensors (physics model 

based on state transition function) which are viscosity and dielectric constant, respectively.  

The developed prognostic methodology has been implemented into two case studies to test the 

effectiveness and the robustness of the developed remaining useful life (RUL) prediction algorithm. The 

first study is an industrial scenario simulation with progressing water contamination. The second case 

study is an industrial simulation with progressing iron contamination. Temperature compensation module 

has been integrated to smooth the prediction result. The impact of the number of observations (number of 

sensors implemented), particle populations have been investigated and compared.  

The contributions of the research described in this dissertation are summarized as following: 

1) A comprehensive investigation and evaluation on current state of the art oil condition monitoring 

techniques and solutions has been conducted. The results of the investigation have showed that 

viscosity and dielectric constant sensors are capable of performing online oil condition analysis. 

This investigation is the first publication that systematically summarized and evaluated current oil 

condition monitoring solutions in the industry and academia, commercially available and under 

development. 

2) Physics based models for lubrication oil performance degradation evaluations have been 

developed. The two most common basic degradation features: water contamination and particle 

contamination have been both successfully modeled and validated. Commercial available 

dielectric constant sensor and viscometer have been acquired and utilized in lab based simulation 

tests to validate the developed physics models. Most oil degradation models reported are data 

driven, this research is the first one that developed physics based models to describe the 

degradation of the lubricant and also the first one to use physics based model to perform 

lubrication oil remaining useful life prediction. 

3) With the help of particle filtering technique, the remaining useful life prediction of lubrication oil 

has been successfully performed. The developed physics models have been integrated into the 
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particle filtering framework as observation functions. The state transition function can be 

correlated based on previous experience and data of the system dynamics. Also within the particle 

filtering algorithm, an l-step ahead state parameter prediction and RUL estimator have been 

developed to enable this technique to perform l-step ahead prediction while  most of other papers 

published just show one-step prediction. Therefore the developed RUL prediction technique is 

capable of providing practical and feasible solution to the current condition based maintenance 

systems. This is the first time particle filtering technique was successfully implemented to predict 

the remaining useful life of the lubrication oil. 

4) The developed lubrication oil condition monitoring and RUL prediction technique has been 

validated using two simulation case studies, water contamination case study and particle 

contamination case study. Within the industrial simulation model, a temperature compensation 

module has been integrated into the physics model and RUL prediction algorithm. This module 

enhances the lubrication oil condition monitoring and RUL prediction algorithm so the developed 

technique can handle highly fluctuating operating temperature conditions with reliable and 

consistent RUL prediction result. 



 

1 

CHAPTER 1 

INTRODUCTION 

 

1.1. Background and Motivation 

 

According to the United States Department of Energy (DOE), wind energy is the most rapidly 

advancing source of energy worldwide.  United States wind power produces as much clean electricity as 

nearly 10 nuclear power plants without environmental pollution and consumes virtually no water 

However, to increase wind energy production rate, there is an urging need to improve the wind turbine 

availability and reduce the operational and maintenance costs. The reliability and availability of a 

functioning wind turbine depend largely on the protective properties of the lubrication oil for its drive 

train subassemblies such as the gearbox and means for lubrication oil condition monitoring and 

degradation detection. The wind industry currently uses lubrication oil analysis for detecting gearbox and 

bearing wear but cannot detect the functional failures of the lubrication oils. The main purpose of 

lubrication oil condition monitoring and degradation detection is to determine whether the oils have 

deteriorated to such a degree that they no longer fulfill their functions. This thesis describes a research on 

developing online lubrication oil condition monitoring and remaining useful life prediction using particle 

filtering technique and commercially available online sensors. It first introduces the lubrication oil 

condition monitoring and degradation detection for wind turbines. Viscosity and dielectric constant are 

selected as the performance parameters to model the degradation of lubricants. In particular, the lubricant 

performance evaluation and remaining useful life prediction of degraded lubrication oil with viscosity and 

dielectric constant data using particle filtering are presented. A simulation study based on lab verified 

models is provided to demonstrate the effectiveness of the developed technique. 

Lubrication oil is an important information source for early machine failure detection just like the 

role of the human blood sample testing in order to perform disease detection. In modern industries, 

lubrication oil plays a critical part in condition maintenance of complicated machineries such as wind 
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turbines. In recent years, health condition monitoring and prognostics of lubrication oil have become 

significant topics among academia and industry. Significant effort has been put into oil diagnostic and 

prognostic system development and research. In comparison with vibration based machine health 

monitoring techniques, lubrication oil condition monitoring provides approximately 10 times earlier 

warnings for machine malfunction and failure as stated by Poley [57].  The purpose of most research is, 

by means of monitoring the oil degradation process in real time, to provide early warning of machine 

failure, extend the operational duration of lubrication oil in order to reduce the frequency of oil changes 

and most importantly to optimize the maintenance schedule therefore reduce maintenance costs. 

Based on current industry standard, there are 3 tiers of oil analysis [57]. Tier 3 is offsite oil 

analysis. For tier 3, lubrication oil are sampled and sent to remote laboratories for the result of analysis 

and proper maintenance suggestion. The sampling and analysis delay is from a couple of weeks to a 

month which makes it impossible to know the actual condition of the lubricant. Tier 2 is onsite oil 

analysis with portable testing kit while tier 1 is online oil analysis. For this method, engineers will need to 

climb up the tower and sample the oil. The testing kit will be brought onsite for instant data acquisition. 

However, these testing kit are usually in portable size and have limited functions. For online lubrication 

oil analysis, oil health condition information is gathered by sensors that are integrated in the oil 

circulation system and transferred to remote diagnostics centers. The gathered data is analyzed by special 

developed algorithms and the result and proper maintenance suggestion is presented in real time.  

Currently, wind energy industry mostly uses tier 3 offsite lubrication oil analysis. The lubrication 

oil in the wind turbine is normally sampled every 6 months and sent to oil analysis labs for feedback on 

the condition of the oil. The online health monitoring of functional failures of lubrication oil has been an 

issue that remains to be unsolved.  The purpose of lubrication oil online condition monitoring and 

degradation detection is to determine whether the oil has deteriorated to such a degree that it no longer 

fulfills its protective function and to provide early warning of the possibility of total failure in real time. 

The capability of online oil health condition monitoring will leads to better remaining useful life 

prediction which will results in a much optimized maintenance schedule and less unscheduled 
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maintenance events. Unexpected gearbox or drivetrain repairs often associate with large bills. The cost of 

wind turbine maintenance crane mobilization costs over $150,000. As one can imagine if many 

unexpected failure occurs, financial lost will be considerable. The implementation of online lubrication 

oil health monitoring will also reduce the unnecessary oil change cost. In the current schedule based 

maintenance, most of the oil was dumped well before it reaches its end of life. According to Machinery 

Lubrication Magazine [46], the actual cost to change the oil in a rather small system at a power plant 

requiring 5-gallons of oil (5 dollars per gallon) is $988.70 which is 40 times the price of the new oil. For 

wind turbines, the oil capacity is normally from 55 to 85 gallons, 45 to 55 dollars per gallon and it takes 

150,000 dollars to mobilize the crane. The actual cost of one oil change is enormous. Wind energy 

industry right now needs the tax incentives from federal government in order to survive. And it also faces 

the challenge from natural gas industry. The high cost of wind turbines maintenance is emerging as the 

warranties from the turbine manufactures expires. A great portion of the maintenance bill is from 

unscheduled maintenance. However, with effective online oil condition based maintenance, the life of oil 

can extend to close to maximum and unnecessary or unscheduled oil change will be greatly reduced. 

As stated by Sharman and Gandhi [66], and many other researchers, the primary function of 

lubrication oil is to provide a continuous layer of film between surfaces in relative motion to reduce 

friction and prevent wear, and thereby, prevent seizure of the mating parts. The secondary function is to 

cool the working parts, protect metal surfaces against corrosion, flush away or prevent ingress of 

contaminants and keep the mating component reasonably free of deposits. In a lubricated system, 

variation in lubrication oil physical, chemical, electrical (magnetic) and optical properties change the 

characteristics of the lubrication oil and lead to its protective property degradation.  The main causes of 

turbine lubricant deterioration are oxidation, particle contamination, and water contamination. These three 

causes are defined in this thesis as lubrication oil basic degradation features. The parameters that describe 

the lubrication oil performance or level of degradation are called performance parameters. These 

parameters include viscosity, water content, total acid number (TAN), total base number (TBN), particle 

counting, pH value and so forth. Each performance parameter can be measured by certain sensing 
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techniques. The relationship among the basic degradation features, performance parameters, and available 

oil condition sensors is shown in Figure 1.1. Also, Table 1.1 [62] [1] [2] [66] shows the performance 

parameters for different kinds of applications and their benchmark for lubrication oil degradation. For 

example, for water content, it measures the water contamination percentage of the lubrication oil. This 

performance parameter is necessary and crucial to gearbox, hydraulic system, engine, compressor, and 

turbine applications. Water content can be measured by a capacitance sensor, viscosity sensor, and water 

in oil sensor. 

 

 

Figure 1.1 The relationship among the basic degradation features, performance parameters, and available 

oil condition sensors 
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To find a feasible solution for online lubrication oil health condition monitoring and remaining 

useful life (RUL) prediction, it is necessary to conduct a comprehensive review of the current oil health 

monitoring techniques. Over the years, scientists and experts have developed sensors and systems to 

monitor one or more of the lubrication oil performance parameters in order to monitor the oil condition 

effectively. These sensors and systems can be summarized into four categories including electrical 

(magnetic), physical, chemical, and optical techniques. For example, the most effective electrical 

technique for oil health monitoring is detecting the dielectric constant change of the lubrication oil.  

According to recent studies, the capacitance or permittivity change can be used to monitor the oxidation, 

water contamination, and wear particle concentration.  On the other hand, for physical techniques, 

viscosity is most commonly discussed. The lubrication oil oxidation, water contamination, particle 

concentration, and some other property changes all have certain degree of impact on oil viscosity.  

Therefore, viscosity measurement is considered an objective mean of oil degradation detection. The final 

goal of all above mentioned systems is to achieve lubrication oil online health monitoring and remaining 

useful life prediction in industrial machineries.  Note, that most sensing systems are only capable of off-

line monitoring in which oil samples are collected from the machinery by specialists and sent to 

laboratories for oil condition analysis. In this way, the actual condition of the lubrication oil cannot be 

determined online because of the sampling and analysis delay.  

In this thesis, based on the results of a comprehensive investigation of oil condition monitoring 

techniques, the two most effective online lubrication oil sensors, kinematic viscometer and dielectric 

constant sensors, were selected to develop an online lubrication oil health monitoring and remaining 

useful life prediction tool.  Kinematic viscosity is the absolute viscosity with respect to liquid density 

while dielectric constant is the relative permittivity between the lubrication oil and air.   

The purpose of this thesis is to present the development of an online lubrication oil condition 

monitoring and remaining useful life prediction technique based on a particle filtering algorithm and 

commercially available online sensors. This technique was developed by integrating lubrication oil 

degradation physics models with the particle filtering algorithm.   The physics models were used to 
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simulate the deterioration process of the lubrication oil due to basic degradation features in terms of the 

kinematic viscosity and dielectric constant. Two simulation case studies based on lab verified models 

were used to demonstrate the effectiveness of the technique.   

 

Table 1.1 Performance parameters, applications and their benchmark for lubrication oil degradation 

Performance 

Parameters 

Measurement 

Function 
Unit 

Benchmark 
of 

Degradation 

Applications 

Available Measurement 

Approach Gear 

box 

Hydraulic 

system 
Engine Compressor Turbine 

Viscosity (40 

 ) Contamination 

of lubricant by 

some other oil, 
oxidation 

Cst 

(mm2/s) 

    

    
yes yes yes yes yes 

Kinetic Viscometer 

Viscosity (100 

 ) 

    

   

Micro-acoustic 

Viscometer 

Water Content 
Presence of 

water 
     yes yes yes yes yes 

Capacitance sensor 

(Dielectric constant) 

Kinetic Viscometer 

Water in oil sensor 

TAN/TBN 

Acidity/alkalini

ty of lubricant 

(oxidation 

level) 

mgKOH/

gm 

     

      
yes yes yes yes yes 

Capacitance sensor 

(Dielectric constant) 

Kinetic Viscometer 

Conductivity Sensor 

Flash point 

Presence of 
dissolved 

solvents or 

gases in the 
lubricant 

  
     

     
no yes yes no no Thermometer 

Wear Particle 

Count 

Wear particles 

in parts per 
million 

ppm     yes yes yes yes yes Capacitance sensor 

(Dielectric constant), 
Kinetic Viscometer, 

Conductivity Sensor, 

Inductive Sensor 
Particle 

Counting 

Detect number 

of particles for 

sample size of 
100cc 

mg/L      no yes no no yes 

 

Also in this thesis, a particle filtering algorithm was utilized as RUL prediction tool. For oil 

condition monitoring, an effective and accurate state estimation tool will be beneficial to reduce machine 

downtime.  An on-line RUL estimator includes two stages: state estimation and RUL prediction. First, in 

the state estimation stage, even though there are many state estimation techniques, Kalman filter and 

particle filter are the most utilized ones. However, Kalman filter requires many assumptions such as: 1) 
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zero-mean Gaussian process noise, 2) zero-mean Gaussian observation noise, 3) Gaussian posterior 

probability density function (pdf), etc. Because nonlinear Kalman filter is linearization based technique, if 

the system nonlinearity grows, any of linearization (either local or statistical linearization) methods breaks 

down as reported by Merwe et al. [51]. Second, in RUL estimation stage, particle filtering can handle 

statistic prediction data unlike the other methods (parameter estimation). As a result, particle filtering 

algorithm provides feasible solutions for a wide range of RUL predication applications. A particle 

filtering algorithm integrated with physics based oil degradation models will provide a basis to develop 

practically feasible tools for accurate RUL prediction of lubrication oil. 

 

1.2.  Literature Review 

 

1.2.1. Principles of Lubrication Oil Monitoring Techniques 

 

To understand the principles of lubrication oil monitoring techniques, one has to review the 3 

lubrication oil basic degradation features. The Principles of lubrication oil condition monitoring is by 

means of various sensing techniques to directly or indirectly monitor the lubricant basic degradation 

features. The basic degradation feature includes oil oxidation, water contamination, and particle 

contamination. The variation of these features can be detected by a set of oil performance parameters.  

 

Water Contamination and Its Impact on Lubrication Oil Performance 

 

The water contamination source may include the followings as reported by Kittiwake 

Developments Ltd. [35] and Benner et al. [8]:  

1) Leakage from oil coolers, charge air coolers and steam heating coils, condensation of atmospheric 

humidity. 

2) Blow-by gases from diesel engine combustion spaces or past compressor ring packs. 
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3) Leakage at tank vents (especially those exposed to weather). 

4) Coolant jacket leaks through cracks or seals. 

5) Contamination from top-up oil (especially in systems with a low tolerance to water). 

6) Water is a normal product of combustion in gasoline and diesel engines and the normal expansion 

and contraction of air in the sump will condense water out of the air. 

7) The lip seals around rotating shafts may allow water ingression. 

When operating in high speed and temperature, the oil and water mixture will form an emulsion 

which prevents the oil from forming an effective lubrication film between the contact components.  

Generally speaking, excessive water content leads to insufficient lubrication and subsequently to abrasive 

wear and corrosion as reported by Kuntner et al. [38]. Typical acceptable levels for the water content in 

engine and transmission oils are in the order of 1 to 2 percent as reported by Jakoby and Vellekoop in 

2004 [29]. The water contamination can have the following influence upon oil degradation: 

1) Normally, as the lubrication oil ages, the viscosity changes. However, if there is water 

contamination, the lubricant's viscosity variation rate increases dramatically which will 

undermine the lubrication oil performance. 

2) Water can displace the oil at contacting surfaces, reducing the amount of lubrication and 

activating surfaces which may themselves act as catalysts for degradation of the oil.  

3) Water is an important contaminant in many lubricant oil systems because of its potential to cause 

failure via a number of mechanisms.  

4) Water contamination within lubricating/lube oil storage tanks can lead to microbiological growth, 

forming yeast, mold and bacteria that will clog filters and very rapidly corrode fuel systems 

(Kittiwake Developments  Ltd., 2011 [35]). 

5) Water contamination of motor oils during storage and use in low-temperature conditions cause 

formation of deposits. These deposits, which consist of asphaltenes and additives, characterize the 

colloidal stability of the oils. A decrease in the concentration of additives worsens the 

performance properties of the motor oils as reported by Korneev et al. in 2006. 
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As an example, in terms of permittivity, the capacitance of oil is normally between 2 to 3 while 

that of water is around 80. The mixture's permittivity can be expressed as: 

     (   )           where subscripts ‘m’, ‘o’, and ‘w’ are the (relative) permittivity of the 

mixture, oil, and water, respectively, and  f  is the water fraction by volume.  One can see that small 

fractions of water would yield comparatively large changes in the total (effective) permittivity of the 

mixture as stated by Jakoby and Vellekoop [29] 

 

Oxidization and Its Impact on Lubrication Oil Performance 

 

Oils consist of long-chain oxidizable hydrocarbons.  In an operating engine they are exposed to 

high temperatures, and this makes them more vulnerable to attack from free radicals.  This means that 

hydroxyl groups may be introduced at random locations along the long-chain oil molecule.  Hydroxyl 

groups damage the lubricating properties of the oils. So to prevent this happening antioxidants are added 

which scavenge any radicals before they can do damage to the oil.  Nevertheless, some oxidation does 

always take place, and it appears that as a consequence colloidal carbon is formed giving rise to black 

coloration and solid deposits.  A second degradation mechanism has also been found to occur by the 

Chemistry Department at Reading University by Turner and Austin [71].  For example, at a bearing 

surface very high shear forces exist, and this can have the effect of physically pulling a long-chain 

molecule apart and forming two radicals.  These may then react either with oxygen to form hydroxyl 

groups, or with the antioxidants added to the oil. In either case the reaction leads to lower molecular 

weight components being created in the oils as stated by Turner and Austin [71]. 

The chemical degradation process is very complicated including many reactants.  Reaction 

families and prototypical reactions for lubricant degradation can be generally described as following 

stages in terms of chemical reaction equations as stated by Diaby et al. in 2010 [16] [17]. 

Initial Reactions:  

1) Primary initiation:               
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2) Bond fission:             

3) Hydroperoxide decomposition:                     

Propagation Reactions: 

1) Oxygen addition:            

2) Alkoxy  -Scission:        ( )       

3)  -Scission:              

4) Hydrogen Transfer:                   

Termination Reactions: 

1) Disproportionation: A.                 ; B.                

2) Recombination:        

Other Reactions:                    

The effects of oxidation due to chemical reaction as well as the by-products of combustion 

produce very acidic compounds inside an engine.  These acidic compounds cause corrosion of internal 

engine components, deposits, change in oil viscosity, varnish, sludge and other insoluble oxidation 

products that can cause a performance and durability degradation of the engine over a period of time.  The 

products of oxidation are less stable than the original base hydrocarbon molecular structure and as they 

continue to be attacked by these acidic compounds can produce varnish and sludge.  As an engine goes 

through multiple heating and cooling cycles this sludge can harden and cause other problems such as 

restricted passageways and decreased component tolerances.  Varnish can cause such things as piston ring 

and valve sticking.  The deposits can also affect heat transfer from pistons to cylinder and in extreme 

cases can cause seizure of the piston in the cylinder.  Pistons also have oil return slots machined into them 

that can become plugged and result in increased oil consumption and additional deposits created on top of 

the deposits that are already there.  Deposits also form on the tops of pistons which over a period of time 

can cause pre-ignition, increased fuel octane requirements, detonation/pinging and increased exhaust 

hydrocarbon emissions and an overall destructive effect on the engines internal parts.  Deposits also form 



 

11 

inside valve covers, timing gear covers, oil pump pickup screens, oil filters and oil passageways as stated 

by Mann [48]. 

 

Particle Contamination and Its Impact on Oil performance 

 

The lubrication oil performance stay stable if the oil temperature is maintained within the 

manufacture recommended range.  In case it is not operating in the required condition, the oil 

deterioration starts and it reflects the degradation of lubricating oil.  As a general thumb rule, 10   rise in 

temperature doubles the oxidation rate and so is formation of oxidation products. Initially these oxidation 

particles are soft and gummy products.  When these particles come in contact with high-temperature 

zones these lead to formation of hard and abrasive particles.  These on contact with the components cause 

generation of wear particles causing further reduced system performance.  Therefore, to control wear and 

for increased performance, viscosity and contaminants (insoluble) are the contributing performance 

parameters as reported by Sharma and Gandhi [66]. 

During operation of a lubricated system, wear particles are generated.  These particles can clog 

the filter, which may even rupture the filter and thus causing contamination level rise to an alarming level, 

with possibility of reduced performance or a catastrophic failure. In addition, these can block oil holes, 

causing the oil starvation at the mating contact and it may even lead its seizure, causing a catastrophic 

failure.  The high contamination level (generated, and oxidation and gummy products), particularly in, 

lubricated systems causes their improper operation due to malfunctioning of the valves.  This may also 

cause internal leakage in the system and if not taken care, lead to external leakage.  Particle counting can 

be used to determine the level present in the system. Spectrometric oil analysis program (SOAP), i.e. 

spectroscopic technique can be used to identify the metallic element constituting and their level to relate 

with their source. Environment contamination is also added during maintenance actions, e.g. oil topping 

up or oil change, due to improper actions and inadequate care and handling. In addition, this may be due 

to improper care of oil drum in storage.  A defective seal due to improper fitting, use of 
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degraded/damaged seal during storage and incompatibility of it with the oil may also allow these.  

Defective seals/gasket/orings, e.g. in internal combustion engines can allow mixing of fuel or coolant 

with oil and this causes viscosity decrease. In case this value falls down the recommended value, this may 

lead to oil leakage or the metal to metal contact causing high friction and wear.  This may also cause 

increase in the water content and for system it may be very critical as mentioned by Sharma and Gandhi, 

in 2008 [66]. 

The following subsections illustrate different lubrication oil monitoring techniques in four 

categories. Most electric (magnetic) and optical approaches are indirect techniques of oil health 

monitoring. They usually monitor the specific property and correlate the data with that acquired by direct 

oil degradation feature monitoring approaches while most of the physical and chemical techniques are 

direct degradation feature monitoring techniques. 

 

1.2.2. Electrical (Magnetic) Techniques 

 

Dielectric Constant 

 

Several researches have been reported using special designed capacitors to measure the dielectric 

constant variation of the target lubrication oil in order to monitoring the oil degradation. It has been 

proved by Schmitigal and Moyer in 2005 [65] that capacitance sensor is capable of lubrication oil 

oxidation, water contamination and wears particle contamination detection. Raadnui and Kleesuwan [62] 

used a grid capacitance sensor (Figure 1.2) to measure the dielectric constant with artificial oil 

contamination then used statistical method to evaluate the performance parameter importance and 

interaction. The capacitance of the sensor can be expressed as follows: C=(    A)/ , where    is the 

dielectric constant in the vacuum;    is the dielectric constant of the oil between two poles; A is the 

available area of poles; σ is the distance between two poles; For a fixed sensor,   , A and   are constant, 
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the capacitance of the sensors is determined by    while the voltage is loaded between the emission pole 

and the detecting circuit is proportional to the capacitance of the sensor. 

 

 

Figure 1.2 Grid capacitance sensor 

 

In this paper, the programmable automatic RCL meter is used and the capacitance readout from 

the measuring apparatus is directly related to the input frequency which is explained in the following 

Equation (1.1).  

C=0.5 fXc                                                                        (1.1) 

In Equation (1.1), C is the overall capacitance; f  is the input frequency; Xc is an inductive of 

components; Based on the preliminary measurements of dielectric constant of engine oils, the authors find 

the value of dielectric constant varied from 6.5 to 10 pF in relation to the input frequency (electric current 

change rate between the poles).Turner and Austin [71] measured the dielectric constant and magnetic 

susceptibility then correlate it with viscosity of the lubricant with an interleaved-disc capacitor. The 

sensor structure is shown in Figure 1.3. 
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Figure 1.3 Interleaved-disc capacitor for measurement of dielectric constant 

 

The authors first measured the capacitance of the air which was around 170 pF. Then, at 19  

room temperature, the sensor was dipped into the test oil to measure the capacitance of the oil. The 

dielectric constant was then calculated as: 

D=Coil/Cair                                                                          (1.2) 

Moreover, Cho and Park [14] designed a wireless sending system which transmits lubrication oil 

capacitance information and energy between sensor and reader for automobiles with a capacitive IDT 

sensor. The sensor is shown in Figure 1.4. 

 

 

Figure 1.4 Capacitive IDT sensor 
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For the relationship between the field strength E applied to the dielectric substance and the 

polarization P, the polarization is getting bigger when the field strength increases as shown in Equation 

(1.3). 

                                                                          (1.3) 

                                                                    (1.4) 

And the relationship, which is indicated in Equation (1.4), is established between the relative 

permittivity   , and the electric susceptibility   , which presents the degree of polarization caused by the 

electric field that is applied to a certain substance. The deteriorated oil with polar molecules appear to 

have a bigger electric susceptibility than the non-deteriorated engine oil with non-polarization, and it is 

greatly affected the metallic particles and metallic ions that increased due to corrosion and abrasion. 

Accordingly, it can be identified that the more the engine oil is deteriorated, the more the permittivity of 

the engine oil is increased. Jakoby and Vellekoop [29] combined permittivity (capacitance) sensor with 

micro acoustic viscometers in order to detect water-in-oil emulsions. MG (Maxwell-Garnett) rule has 

been identified as a proper tool to predict the size of the effect. Because of the relative permittivity of oil 

(    = 2 - 3) is quite different from water (    = 80). The effect of water contamination on the permittivity 

of the mixture can be expressed as: 

      (   )                                                           (1.5) 

Where     stands for the relative permittivity of the mixture. They proved that permittivity 

sensors yield a clear indication of the water content in the oil being moreover to first order independent of 

the exact permittivity of the contaminating water. Also, the output signal of micro acoustic viscometer is 

hardly influenced by the water content compared to traditional rotational viscometer. Another paper by 

Guan et al. [21] combined dielectric constant with an analytical method called dielectric spectroscopy to 

measure the oxidation rate of the lubrication oil. Dielectric spectroscopy (DS) is an analytical technique 

on the interaction between dielectric material and electromagnetic energy in the radio frequency and 

microwave range, which is a powerful structural detection technique for dielectric material. This 
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technique is capable of detecting oxidation duration (OD), total acid number (TAN) and insoluble content 

(IC). The paper proved that DS was the most effective method to extract the dielectric characteristic from 

dielectric material and could be developed into an efficient oil degradation monitoring technique. The 

authors believed that the remaining useful life of engine lubricating oil could be predicted based on online 

or in situ DS data. 

Several commercially available sensors developed by Kittiwake Developments Ltd are also 

capable of online oil quality detection by way of interpreting lubrication oil dielectric property. For 

example, the Kittiwake on-line oil condition sensor (Figure 1.5) uses a combination of proven Tan Delta 

dielectric sensing and smart interpretation algorithms to detect lubrication oil oxidation. As mentioned 

above, TAN is a commonly used performance parameter to describe lubrication oil oxidation. So, by 

mean of correlating lubrication oil oxidation and the dielectric property variation, online oil oxidation 

monitoring is achieved. Also, based on similar dielectric property monitoring theoretical base, the Oil 

Quality Sensor (Figure 1.6) developed by Tan Delta Systems Ltd is capable of water contamination and 

oxidation online detection. Moreover, a specialized Moisture Sensor (Figure 1.7) developed by Kittiwake 

Developments Ltd is also commercially available. This sensor uses a combination of proven think film 

capacitance sensor and special developed algorithm to perform relative humidity detection. 

 

Figure 1.5 On-line oil condition sensor (Kittiwake Developments Ltd) 
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Figure 1.6 Oil quality sensor (Tan Delta Systems Ltd) 

 

 

Figure 1.7 Moisture sensor (Kittiwake Developments Ltd) 

 

Since many previous oil conditions diagnostic techniques focus on monitoring the basic 

degradation features like oxidation and soot concentration. They are not capable of performing online 

data acquisition. By means of correlating dielectric constant variation data with basic degradation data 

acquired from traditional lubrication oil condition monitoring sensors, one can achieve online lubrication 

oil deterioration detection. The advantages of dielectric constant include: all degradation feature coverage, 

online health monitoring capability, and low data processing complexity and maintenance cost.  The 

disadvantage is that most of them need special design and fabrication. 

 

Conductivity 
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Like capacitor, special fabricated lubrication oil electrical conductivity sensor is another direction 

scientists have been working on. Moon, et al. [52] reported that by measuring the oil conductivity with a 

carbon nano tube (CNT) sensor (Figure 1.8), lubrication oil oxidation rate can be monitored. They 

correlated the CNT conductivity data with TAN of the test oil and the results shows that CNT sensor is 

effective regarding to the oil oxidation deterioration. Since many sensors with chemical based techniques 

has relatively short life span problems and not capable on online diagnostics. This CNT sensor reduced 

the maintenance cost and provided an instant data collection solution. Basu et al.[7] and Lee et al. [39] 

both found that conductivity changes due to chemical and physical changes in the additives commonly 

used in commercial lubricant. However, their methods required prior knowledge of the oil formulation 

and they only tested on gasoline engines, also no thermal effects were made. While conductivity sensors 

are capable of online diagnostic and the result is well correlated with oxidation rate of the oil degradation, 

more hardware are needed to cover other oil basic degradation features. 

 

 

Figure 1.8 CNT oil sensor 

 

Hedges et al. [25] developed Polymeric Bead Matrix (PBM) technology for on-board condition 

based monitoring of fluid-lubricated aircraft components (Figure 1.9). This technique utilized the 

electrical properties of an insoluble polymeric bead matric to measure oil degradation. Charged ion 

groups were covalently bound to the matrix. By measuring the impact of solvating effect on the electrical 

characteristic (conductivity and polarity) of the matrix, lubrication oil deterioration monitoring was 
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achieved. This sensing technique can monitor water and particle contamination along with oxidation. 

However, the sensor does need to be replaced along with the replacement of the oil. 

 

 

Figure 1.9 CNT oil sensor 

 

Magnetic Susceptibility 

 

Monitoring the magnetic properties changes when oil degrades was the earliest developed system 

for lubrication oil diagnostic. Halderman [22] used a magnetic plug placing in the flow of oil. The plug 

has to be removed and ferromagnetic fragments were collected. The fragments were then inspected for 

condition analysis. Ferromagnetic fragments analysis usually calls for complicated micro scopes and is 

time consuming. Turner and Austin [71] used a magnetic susceptibility balance trying to investigate links 

between magnetic properties of lubrication oil and its usage, measured by viscosity variation. Figure 1.10 

shows a typical commercial magnetic balance. 
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Figure 1.10 Commercial magnetic balance (Sherwood Scientific. Ltd) 

 

The result shows that the magnetic characteristics of lubricating oil do change as the oil degrades, 

but the measurement were poorly correlated with viscosity and do not seem to offer much promise as the 

basis of an oil monitoring system. Even though magnetic susceptibility balance and magnetic plug 

provides the simplest solution for oil deterioration sensors, they have poor correlation with viscosity, not 

sensitive or calls for complicated further data processing. 

Currently, most magnetic based oil condition monitoring techniques are used for oil bourn 

metallic particle detection like ferrous particle which is one of the most common results of component 

wear. Typical systems includes Patrol-DM™ wear debris monitor developed by Poseidon Systems, LLC 

as shown in Figure 1.11 and On-Line Metallic Wear Debris Sensor along with On-Line Ferrous Wear 

Debris Sensor developed by Kittiwake Developments Ltd as shown in Figure 1.12 and Figure 1.13 

respectively. These systems are sensitive with metallic particle contamination. However, particle 

contamination is only one of the 3 basic degradation features of the lubricant. 
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Figure 1.11 Patrol-DM™ wear debris monitor (Poseidon Systems, LLC) 

 

 

Figure 1.12 On-line metallic wear debris sensor (Kittiwake Developments Ltd) 

 

Figure 1.13 On-line ferrous wear debris sensor (Kittiwake Developments Ltd) 
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Electrochemical impedance spectroscopy (EIS) is another electrical technique that can provide 

valuable insights into the condition of lubricating oils and their additive packages as stated by Byington et 

al. [12][13]. This sensor has been proved to detect chemical and mechanical property variation of 

lubrication oil including TAN/TBN, soot content, viscosity and degree of nitration. Byington et al 

[12][13] correlated EIS sensor output with different performance parameters, then by means of symbolic 

regression, several data driven models were developed to describe the lubricant deterioration behavior. At 

last, Sequential Mont Carlo (SMC) technique was used as a remaining useful life prediction tool for oil 

prognostics. 

Typical commercially available EIS sensor is SmartMon-Oil™ developed by Poseidon Systems, 

LLC as shown in Figure 1.14. They developed a technique called “Broadband AC Electrochemical 

Impedance Spectroscopy”. By means of injecting complex voltage signal into the fluid at one electrode, 

and received by another electrode, the impedances are measured at different frequencies. The measured 

impedances are then correlated to the chemical and physical properties of the oils. This EIS sensor is 

capable of measuring water and soot contamination level as well as general oil quality. 

 

 

Figure 1.14 SmartMon-Oil™ (Poseidon Systems, LLC) 

 

Micro Acoustic Viscosity 

 

Viscosity variation beyond or below operating limits is commonly considered that lubrication oil 

is degrading. Because all the basic oil degradation features can be detected by a viscometer including 
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oxidation, water/particle contamination and fuel dilution. Also, the mileage of an engine or operating 

duration of a gearbox cannot be considered equal to lubricant deterioration reference (operating 

conditions, individual operating habits, ambient condition and fuel quality). Viscosity is usually 

considered lubricant degradation comparison standard for its independence on various operating 

conditions. Agoston et al. [1] used a micro acoustic sensor to measure the viscosity electrically for 

automotive applications. This sensor, whose structure is shown in Figure 1.15, is small and has a long life 

span and can be deployed in aggressive industrial environments. The indirect data provided by the engine 

management and its relation to the oil wear will depend on the actual engine platform used whereas the 

data provided by the sensors are directly linked to the oil condition and are thus platform-independent. 

The micro acoustic viscometer can measure all the basic oil degradation features online with space 

efficient design. However, lack of practical tests from industry and problems with oil contain viscosity 

modifiers may limit its application is the industry. 

 

 

Figure 1.15 Structure of a sensor assisted algorithm for a lubrication monitoring system 

 

1.2.3. Physical Techniques 

 

Kinematic (Electromagnetic) Viscosity 
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As it is mentioned in the micro acoustic viscosity sub section, all the basic oil degradation 

features have influence on the viscosity. Kinematic viscosity can be acquired by a traditional kinematic 

viscometer which is also called electromagnetic viscometer as shown in Figure 1.16. 

 

 

Figure 1.16 Typical kinematic viscometer structure (Cambridge Viscosity. Ltd) 

 

This kind of viscometer usually involves a piston that dipped into the test lubricant and the coils 

inside the sensor body magnetically force the piston back and forth a predetermined distance. By 

alternatively powering the coils with a constant force, the piston’s round trip travel time is measured. An 

increase in viscosity is sensed as a slowed piston travel time. The time required for the piston to complete 

a two way cycle is an accurate measure of viscosity. The deflecting fence acts to continuously deflect 

fresh sample into the measurement chamber. Since measurement of the piston motion is in two directions, 

variations due to gravity or flow forces are annulled. Also, because the piston has very little mass, 

magnetic forces greatly exceed any disturbances due to vibration. The investigation of Schmitigal and 

Moyer [65] on diesel engines proved that the kinematic viscometer is capable of lubricant soot particle, 

water contamination and oxidation deterioration detection. The kinematic viscometers are capable of 
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monitoring all the oil basic degradation features online with low data processing complexity and 

maintenance cost. However, the commercially available kinematic viscometers have a relatively high 

manufacture cost. 

 

Ultra Sound 

 

Sound and vibration are used for many health monitoring applications. In the case of oil condition 

monitoring, early research using ultrasound was published in 1980s [10] [71]. BHRA [10] developed a 

system with a sensor and receiver. They are placed on opposite sides of an oil flow. The receiver is 

oriented so that it will only detect ultrasound scattered by oil-borne solid particles in clean hydraulic fluid. 

This technique is capable of online health monitoring. However, no record using this technique to monitor 

heavy lubrication oil like engine or transmission oil has been reported. 

 

Thermo Conductivity 

 

Another physical approach of lubricant deterioration detection is thermal conductivity. Kuntner et 

al. [38] reported that water contamination and degradation processes in mineral oil leads to an increased 

thermal conductivity, indicating that the potential of thermal conductivity sensors in the field of oil 

condition monitoring. A special designed hot film micro sensor, as shown in Figure 1.17, using a resistive 

thin-film molybdenum structure on a glass substrate was fabricated with the technique of transient hot-

wire method. 
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Figure 1.17 Miniaturized thermal conductivity sensor 

 

The authors considered a hot film micro-sensor, which is operated using an adapted transient 

method. Considering the small dimensions of the sensor compared to the used sample volumes (15ml) of 

the investigated liquids, the corresponding temperature field at some distance from the sensor can be 

approximate calculated by solving the heat diffusion equation for a thermal point source switched on at t 

= 0, as:  

      (   )  
 

    
erfc (

 

√   
)                                                             (1.6) 

where   is the heating power, λ the thermal conductivity, a the thermal diffusivity, and r the 

radial distance from the point source. Note that for small r, this approximation becomes inaccurate and 

even yields a non-physical singularity for r = 0. The diffusivity is related to the heat capacity Cp and can 

be computed as: 

a = 
 

    
                                                                             (1.7) 
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where ρ is the mass density. For      the complementary error function erfc in Equation (1.6) 

approaches unity such that in the steady state, the temperature distribution depends only on the thermal 

conductivity and the heating power shown as: 

ς(r)=
 

    
 when                                                                    (1.8) 

It was also proved that this kind of sensor is capable of real time health monitoring and may have 

potential in oil oxidation degradation monitoring. The robustness and sensitivity balance of the sensor 

structure may need more tests in order to improve its durability and effectiveness in aggressive industrial 

environment. 

 

Ferrography 

 

As mentioned in the magnetic susceptibility subsection ferromagnetic fragments are collected and 

send to a laboratory for further ferrography analysis. Ferrography is a typical traditional oil diagnostic 

technique for analyzing particles present in lubricants [63]. It uses microscopic examination and was 

developed in the 1970s for predictive maintenance, initially analyzing ferrous particles in lubricating oils. 

Levi and Eliaz [40] conducted ferrography, atomic emission spectroscopy, scanning electron microscopy 

and quantitative image analysis for the purpose of detecting a variety of wear particles in open-loop oil. 

The technique is field tested with a Wankel engine. However, this technique is not capable of online 

health monitoring, requires high level of data processing and costly test equipment. 

 

1.2.4. Chemical Techniques 

 

pH Measurement 
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Lubrication oils contain long-chain oxidizable hydrocarbons. In an operating engine, these 

hydrocarbons are exposed to high temperatures, which make them more vulnerable to be attacked from 

free radicals, reported by Turner and Austin [71]. Mann [48] mentioned that the effects of oxidation due 

to chemical reaction as well as the by-products of combustion generate relatively high acidic compounds 

inside an engine. These compounds cause corrosion of internal engine components, deposits, and changes 

in oil viscosity, varnish, sludge and other insoluble oxidation products that can cause a performance and 

durability degradation of the engine over a period of time. Wang et al. [74] [75] [76] [77] designed a 

microprocessor-controlled total acid number sensor. Their sensing technique calls for a high degree of 

signal processing filtering in order to obtain useful data. Others tried pH-based measurement of different 

lubrication oil condition. However the test result seems unreliable and has repeatability problems 

questioned by Turner and Austin [71]. 

 

Thin-film Contaminant Monitor 

 

The lubrication oil performance stay stable if the oil temperature is maintained within the 

manufacture recommended range. In case it is not operating in the required condition, the oil deterioration 

starts and it reflects the degradation of lubricating oil. As a general thumb rule, a 10  rise in temperature 

doubles the oxidation rate and so is formation of oxidation products. Initially these oxidation particles are 

soft and gummy products. When these particles come in contact with high-temperature zones these lead to 

formation of hard and abrasive particles. These on contact with the components cause generation of wear 

particles causing further reduced system performance as reported by Sharma and Gandhi [66]. The thin-

film contaminant monitor approach used a thin metallic film which forms part of an electric circuit to 

monitor the particle contamination in lubrication oil flow as stated by Halderman [22]. The film is 

exposed to the oil flow and continuous eroded by oil-borne solid particles as oil degrades. As a result, the 

resistance rises. This technique is dependent on the particle size and concentration which needs frequent 
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maintenance. Overall, thin film contaminator is good for online diagnostics but only capable of particle 

contamination monitoring and the measurement may not be well correlated with viscosity. 

 

1.2.5. Optical Techniques 

 

Optical Transparency or Reflectometry 

 

With the goal of achieving online oil deterioration analysis, optical oil condition monitoring 

techniques was born. This technique usually correlates oil optical transparency or reflection rate with oil 

general degradation basic features. Tomita [70] built a lubrication deterioration sensor based on optical 

reflectometry in laboratory condition. However, the device is not yet field tested in harsh industrial 

environments. Zhang [82] also designed an optical sensor and tested on an internal combustion engine. 

Kumar and Mukherjee [37] fabricated an optical sensor with light dependent resistor (LDR) to record the 

oil transparency and then convert it to resistance. The sensing system is shown in Figure 1.18. 

 

Figure 1.18 Optical transparency sensor 
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The sensor was tested on a six cylinder gasoline engine. The authors correlated the resistance data 

with working hours, viscosity and oxidation (scaled by pH measurement) and prove the effectiveness of 

the designed sensor. According to the paper, this optical sensor has full basic degradation feature 

coverage and online diagnostic and prognostic capability. However, this sensor do has a complicated 

structure which may cause reliability issues. Also, some paper reported that optical changes do not 

correlate well with oil degradation process. 

 

IR Absorption 

 

When oil deteriorates, nitrate compound is generated. This compound absorbs infrared (IR) 

radiation with a wave length of 6.13 μm. This effect was used in a sensor that measured the IR absorption 

along a fix path length and attempted to correlate the measurement with oil condition reported by Agoston 

et al. [3] [4] and Turner and Austin [71]. Even though it is capable of online oil degradation monitoring, 

this sensing system may need some future improvement to overcome repeatability problems and reduce 

the manufacturing cost. 

 

1.2.6. Performance Evaluation of Lubrication Oil Monitoring Systems and Techniques 

 

Defined Evaluation Properties 

 

Data Acquisition Instantaneity: Lubrication oil condition monitoring techniques are evolving from off-

line sampling to online instant diagnostic data acquisition. In the past, off-line monitoring is the only 

solution available. Lubricant samples were collected from machineries and sent to laboratories or 

companies specialize in oil condition monitoring. A report with raw data was then prepared. The data was 

then analyzed and several necessary action options were provided thereafter. This process normally takes 
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more than 24 hours and is time and cost consuming as reported by Kumar and Mukherjee [37]. When 

lubrication oil analysis is done somewhere else and results turns up sometime later, it is hard to relate the 

data with the machine's health status at the time of sampling. The burden of collecting representative 

samples virtually relegates oil analysis to a secondary status in a condition monitoring program. Also, 

actual condition of the oil cannot be determined as the samples are collected when the machine is not in 

the running condition. With more and more attention drew into oil condition monitoring field, on-line, 

onboard diagnostic techniques started to merge which significantly reduced the oil deterioration data 

acquisition delay. Therefore, whether the oil condition monitoring technique is capable of instant data 

acquisition is considered a key evaluation property. 

 

Prognostic Capability: Among all the lubrication oil health monitoring techniques and solutions, many of 

them was developed with the purpose of extend the life of the lubricant. This purpose cannot be achieved 

without both real time condition monitoring and remaining useful life prediction. In industrial 

applications, one needs advance notice or early warning of oil replacement. Otherwise sudden diagnose of 

failure which needs immediate action will have influence on the production rate because the equipment 

needs to be shut down in order to prevent unnecessary wear or damage. Also, in large applications like 

wind turbines, knowing the exact time of lubricant change can optimize the maintenance schedule 

therefore reduce the cost. Hence, the capability of lubrication oil prognostics is another crucial evaluation 

property that needs to be taking into account.   

 

Basic Degradation Feature Coverage: As mentioned above, the basic lubrication degradation features are 

oxidation degradation, particle (soot) contamination and water contamination. Some oil health monitoring 

techniques covers one or more of these features. In practical applications, for the diagnostic system 

robustness and effectiveness concern, all the basic deterioration features have to be considered. Focusing 

on one specific feature will not provide a sufficient or objective result regarding to the status of oil 

degradation or health condition. The more features a technique covers, the more objective the results will 
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be. Basic degradation feature coverage is an important property that has to be evaluated during different 

approach comparison. 

 

Data Processing Complexity: Some of the diagnostic approaches require certain level of data processing. 

The complexity of the data analyzing have direct impact on processing time and data acquisition delay. 

Moreover, for on-board instant oil condition monitoring complicated data analyzing algorithm may 

requires extra processing device which will add certain manufacturing cost. Also, developing sensing 

technique with complicated algorithm for mobile engineering systems will continuously occupy CPU 

resources of onboard computer which may slow the system down and cause data jam. When it comes to 

practical industrial applications, simple and effective are always the basic design principles. Therefore, 

the data processing complexity should always be considered and evaluated. 

 

Sensitivity: The sensor's reaction amplitude upon basic degradation features' variation is defined as 

sensitivity of the technique. In order to achieve real-time lubrication oil health monitoring, the sensing 

systems have to exhibit a quick reaction time regarding to the degradation and amplitude that can be 

scaled by a device that come with the system. Low sensitivity will result in either an unnecessary need for 

demanding measurement equipment or a delay between the output and the real degradation status of the 

lubrication oil. For every sensing technique, sensitivity is always an evaluation property that cannot be 

ignored. 

 

Field Tested: The ultimate way to evaluate the effectiveness and robustness of a sensing technique's is to 

perform field tests in actual industry environment. An oil condition monitoring solution that is not 

capable of industrial deployment is not reliable. Given the aggressive operating condition the lubrication 

oil condition monitoring sensors will be in, one must present high tolerance of dust, high temperature, 

sudden temperature change and many other ambient conditions. A solution that only works in the 

laboratory has no real world contributions and ought to be improved. 
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Manufacture Cost: Manufacture cost is another property that has to be evaluated. The cost of a lubrication 

oil sensing technique depends on several factors. Sensor fabrication cost takes a large proportion of the 

total cost. A complicated sensor or sensing technique need to be well designed and precise manufactured. 

This issue may affect the deployment in civilian applications like automotive and limit the wide spread of 

the technology. The development of data processing algorithm will also increase the cost because it takes 

time and investment. Moreover, certain sensing techniques focus on only one application, if another 

application come up, new sensors or algorithms have to be developed. This is also considered not cost 

efficient. 

 

Maintenance Cost: The life time of the designed oil deterioration sensor determines the sensing system 

maintenance cost. As addressed in the former sections, lubrication oil condition monitoring sensors 

should exhibit a long life time in aggressive operating conditions. The sensors should be able to perform 

continuous condition monitoring without frequent maintenance. The pH measurement and chemical 

corrosion monitoring techniques need frequent replacement of critical components which will increases 

the maintenance cost. Sensor component change needs to be performed while the machine is not in the 

running condition which may also reduce the production rate. The evaluation of oil condition monitoring 

solutions will not do if this unavoidable issue is not considered. 

 

 

 

 

 

 

 

 



 

34 

Performance Evaluation and Comparison 

 

In this sub-section, the characteristic of each lubrication oil health monitoring solution or sensing 

technique is evaluated and compared in Table 1.2 with the seven properties defined in the previous 

section. Three evaluation properties, data processing complexity, manufacture cost and maintenance cost 

is scaled as low, medium and high. All the techniques are classified and profiled into its evaluation 

categories 

 

Table 1.2 Performance evaluation and comparison of lubrication oil health condition monitoring systems 

and techniques 

Oil Monitoring 

Techniques Classification 

Specific 

Monitoring 

Technique 

Data 

Acquisition 

Instantaneity 

 

Prognostic 

Capability 

Basic 

Degradation 

Feature 

Coverage 

 

Sensitivity 

Data 

Processing 

Complexity 

 

Field 

Tested 

 

Manufactur

e Cost 

 

Maintenanc

e Cost 

 

Electrical  

 (Magnetic) 

Techniques 

Dielectric 

Constant 

Grid 

capacitance 

sensor 

Online 

No 

Oil oxidation, 

wear particle 

concentration, 

water 

contamination 

High 

Low No Low Low 

Inter-leveled 

disk capacitor 
Online Low No Low Low 

Capacitive 

IDT (Inter-

Digit Type) 

sensor 

Online Low Tested High Low 

CSI oil view 

model 5500 
Online Low Tested High Low 

Permittivity 

sensor 
Online 

Water 

contamination 
Low No Low Low 

Dielectric 

spectroscopy 

analyzer for 

Petroleum 

(DSAP) 

Online 

Yes 

Oxidation and 

particle 

contamination 

Medium No Medium Low 

Tan Delta 

dielectric 

sensing 

Online 

Water 

Contamination

, Oxidation 

Low Yes Medium Medium 

thin film 

capacitance 

sensors 

Online No 
Water 

Contamination 
Low Yes Medium Medium 
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Table 1.2 Performance evaluation and comparison of lubrication oil health condition monitoring systems 

and techniques (continued) 

Oil Monitoring Techniques 

Classification 

Specific 

Monitoring 

Technique 

Data 

Acquisition 

Instantaneity 

 

Prognostic 

Capability 

Basic 

Degradation 

Feature 

Coverage 

 

Sensitivity 

Data 

Processing 

Complexity 

 

Field 

Tested 

 

Manufac

ture 

Cost 

 

Maintena

nce Cost 

 

Electrical  

(Magnetic)  

Techniques 

Conductivity 

Multiwall 

carbon nano 

tube 

conductivity 

sensor 

Online 

No 

Oxidation and 

wear particle 

contamination 

High Low No High High 

Conductivity 

sensor 
Online 

Particle 

contamination 
Medium Low No Medium Medium 

Diesel oil 

condition and 

level sensor 

Online 
Particle 

contamination 
High Low Tested Medium Medium 

Polymeric 

Bead Matrix 

(PBM) 

Online 

Particle and 

water 

contamination 

and Oxidation 

High Medium Yes Medium High 

Magnetic 

Susceptibility 

 

Magnetic 

susceptibility 

balance 

Offline None Low Low No Low Low 

Magnetic Plug Offline 
Particle 

contamination 
Low Low No Low Low 

magnetometry Online 
Particle 

contamination 
High Medium Yes Medium Medium 

Micro 

Acoustic 

Viscosity 

Micro acoustic 

viscometer 
Online 

Oil oxidation, 

wear particle 

concentration, 

water 

contamination 

High Low No Medium Low 

Electro-

chemical 

Impedance 

Spectroscopy 

(EIS) 

Broadband AC 

Electrochemic

al Impedance 

Spectroscopy 

Online Yes 

Oil oxidation, 

wear particle 

concentration, 

water 

contamination 

High Low Yes Medium Low 
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Table 1.2 Performance evaluation and comparison of lubrication oil health condition monitoring systems 

and techniques (continued) 

Oil Monitoring Techniques 
Classification 

Specific 
Monitoring 
Technique 

Data 
Acquisition 

Instantaneity 
 

Prognostic 
Capability 

Basic 
Degradation 

Feature 
Coverage 

 

Sensitiv
ity 

Data 
Processing 
Complexity 

 

Field 
Tested 

 

Manufa
cture 
Cost 

 

Mainten
ance 
Cost 

 

Physical 
Technique

s 

Kinematic 
Viscosity 

Kinematic 
viscometer 

Online 

No 

Oil oxidation, 
wear particle 

concentration, 
water 

contamination 

High Low Tested Medium Medium 

Ultra sound 
Ultra sound 
sensor and 

receiver 
Online 

Particle 
contamination 

Medium Medium No Medium Medium 

Thermal 
conductivity 

Thermal 
conductivity 

sensor 
Online 

Water 
contamination 
and oxidation 

High Medium No Medium Low 

Ferrography Micro scopes Offline 

Particle 
contamination 

and oil 
oxidation 

High High Tested High High 

Chemical 
Technique

s 

pH 
measurement 

Micro 
processor 
controlled 

TAN sensor 

Offline 

No 

Oil oxidation 

Medium 

High No High High 

Thin film 
contaminant 

monitor 

Thin metallic 
film 

connected to 
a electric 

circuit 

Online 
Particle 

contamination 
Low No Medium High 

Optical 
Technique

s 

Optical 
transparency 

or 
reflectometry 

Optical color 
sensor 

Online Yes 

Particle 
contamination 

and oil 
oxidation 

 

High Low Tested High Medium 

Optical 
reflectometry 

sensor 
Online No High Low No High Medium 

Optical sensor 
for internal 
combustion 

engines 

Online No High Low Tested High Medium 

IR absorption 

A sensor 
measures IR 
absorption 

along a fixed 
path length 

Offline No Medium Low No High High 
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From the summarized information in Table 1.2, one can conclude that viscosity and capacitance 

sensor have the best lubrication oil basic degradation feature coverage and the lowest maintenance cost. 

Moreover, kinematic viscosity and dielectric constant are two performance parameters that are able to 

perform lubrication oil deterioration online monitoring with the lowest data processing complexity. 

However, most techniques do not offer integrated lubrication oil remaining useful life prediction solution. 

Some reported papers used analytical or statistical method to perform lubrication oil prognostic or 

evaluate basic degradation features' impact on oil protective property degradation. Sharma and Gandhi 

[66] developed a parameter profile approach with multiple performance parameters data. The data were 

collected and tested on an internal combustion engine with a promising result. In general, if combined 

with proper data analysis techniques, online oil degradation monitoring with capacitance and viscosity 

sensors has great potential and will probably be the future of online onboard lubricant deterioration 

monitoring, diagnostic and prognostic. 

 

1.3.  Research Objective 

 

The research objective of this thesis is to develop a feasible online lubrication oil condition 

monitoring and remaining useful life prediction solution based on commercially available sensors and 

particle filtering algorithm. In order to achieve online remaining useful life prediction, lubrication oil 

degradation physics models were developed and integrated into the particle filtering algorithm. To 

achieve the goal of this research, the following steps were conducted. 

1) Comprehensive investigation of current state of the art lubrication oil condition monitoring 

techniques. 

2) Based on the investigation result, select the feasible performance parameters and commercially 

available sensors for online oil condition monitoring and RUL prediction. 
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3) Develop lubrication oil degradation physics models based on the selected performance 

parameters for different basic degradation features. 

4) Validate the developed oil degradation physics models with commercially available sensors. 

5) Integrate the developed physics models into special designed particle filtering algorithm for 

lubrication oil remaining useful life prediction. 

6) Validate the effectiveness of the remaining useful life prediction algorithm by integrating the 

developed physics model and particle filtering techniques into an industrial scenario simulation 

model. 

The above mentioned research steps are key components of the advancement of the condition 

based maintenance technology, which ultimately will significantly reduce the maintenance cost of large 

assets like wind turbines. Combined with vibration analysis and current analysis, online lubrication oil 

analysis can be easily integrated into the current condition based maintenance system to provide reliable 

condition indication of the lubricant and the mechanical system which will optimize the maintenance 

schedule, reduce unscheduled maintenance therefore reduce the maintenance cost. 

 

1.4.  Dissertation Overview 

 

The background, motivation and research objectives of this dissertation are presented in Chapter 

1. The comprehensive investigation and review of current state of the art lubrication oil condition 

monitoring solutions are also reviewed in Chapter 1. Chapter 2 focuses on the lubrication oil degradation 

physics model development and validation. Viscosity and dielectric constant are selected as performance 

parameters to model the degradation of lubrication oil. Then in Chapter 3, the particle filtering technique 

is explained in two sections, state estimation and RUL prediction.  In Chapter 4, the developed physics 

models and particle filtering algorithm are integrated into an industrial scenario simulation model to 

validate the effectiveness of the developed lubrication oil condition monitoring and remaining useful life 
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prediction solution. Chapter 5 summarizes the accomplishments of this dissertation and presents the 

topics for future research.  
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CHAPTER 2 

PHYSICS MODEL DEVELOPMENT AND VALIDATION FOR LUBRICATION OIL 

DEGRADATION 

 

2.1.  Introduction 

            

In this chapter, based on the result of the comprehensive investigation on current lubrication oil 

condition monitoring techniques from literature review section, viscosity and dielectric constant were 

selected as the performance parameters to provide feasible solution to perform online oil condition 

analysis. Lubrication oil physics models that describe oil deterioration due to water and particle 

contamination in terms of viscosity and dielectric constant were developed and validated.  The goal of the 

physics model derivation is to find a mathematical relationship between lubrication oil degradation and 

contamination level of different basic degradation features. 

There are two ways of modeling condition degradation of machineries, data driven modeling and 

physics based modeling. When it comes to lubrication oil degradation modeling, limited literature has 

been reported. Most of the modeling techniques used to model oil degradation was data driven modeling. 

Under various temperatures, the sensor output and oil condition are correlated with field and/or lab based 

data to form a correlation model. For example, Byington [11] [12] correlated viscosity, Nitration, soot 

contamination and oxidation with electrochemical impedance spectroscopy (EIS) output. The EIS sensors 

were installed on diesel truck fleets. The lubrication oil was sampled and sent to an offsite lab for 

analysis. The oil degradation models were constructed using symbolic regression based on the report from 

the lab and the EIS sensor output. This was a very typical method for data driven modeling. Data driven 

modeling has many advantages, among which system dynamic information independent is the most 

important attractive feature. That is to say, one don’t necessarily have to understand the physics of the 

systems for model construction .Compared with data driven modeling, physics based modeling has many 

advantages including short training time and case independent. As one can understand, when trying to 
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perform data driven modeling, great amount of data is needed to construct an accurate model. The time 

required to collect these data are so called training time. For physics based model, the training time can be 

eliminated to a maximum extend. Therefore, physics based models are quick to implement.  Another issue 

for data driven modeling is that it is case dependent. For lubrication oil analysis, it means the developed 

model can only be used on the specific oil and sensor combination. If either the sensor type or the oil type 

changed, the data driven model has to be reconstructed which again will require a long training time. This 

remains an issue and concern for industrial applications. However, physics based models do not share this 

shortcoming. They can be adapted into any specific systems of the same type with little initial adjustment. 

In case of lubrication oil degradation physics models, given any healthy base oil information, the 

developed models can be immediately implemented. Healthy oil information refers to the relationship 

between dielectric constant (or viscosity) and the specific kind of healthy oil across certain range of 

operating temperature. This information can be obtained by heating healthy oil inside a temperature 

controlled chamber and record the dielectric and viscosity property of the oil. With the utilization of the 

derived physics model, given any water/particle contamination level at any temperature, one could 

simulate the viscosity and the dielectric sensor output of the degraded oil mixture with maximum 

accuracy. 

This chapter is arranged as following. Section 2.2 presents the process of lubrication oil 

degradation model development which is divided into 4 subsections, viscosity model for water 

contamination, dielectric constant model for water contamination, viscosity model for particle 

contamination, dielectric constant for particle contamination, respectively. Section 2.3 presents the 

validation process of the developed physics models which includes experimental setup, model validation 

for water contaminated lubrication oil, and model validation for particle contaminated oil, respectively. 

Finally, Section 2.4 summarized Chapter 2. 

    

2.2.  Lubrication Oil Degradation Physics Model Development 
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2.2.1. Viscosity Model for Water Contamination 

 

Not only does water have a direct harmful effect on machine components, but it also plays a 

direct role in the aging rate of lubricating oils. The presence of water in lubricating oil can cause the 

progress of oxidation to increase tenfold, resulting in premature aging of the oil, particularly in the 

presence of catalytic metals such as copper, lead and tin. In addition, certain types of synthetic oils such 

as phosphate esters and dibasic esters are known to react with water, resulting in the destruction of the 

base stock and the formation of acids [34]. Therefore, water contamination is a key basic degradation 

feature to monitor for lubrication oil condition based maintenance. 

In industrial practice, to determine the viscosity of a mixture, one can simply using American 

Society for Testing and Materials (ASTM) viscosity paper with linear abscissa representing percentage 

quantities of each of the fluids. This paper offers simplified solutions for volume fraction based viscosity 

calculation for mixtures from two liquids. Others approach for mixture viscosity calculation includes 

Refuta’s Equation. However, Refuta’s Equation is a mass fraction based viscosity calculation which may 

not be ideal for industrial standard of oil water contamination. The industrial standard to describe water 

contamination is parts per million or ppm which is a volume fraction based unit. For example, 1000 parts 

per million means volume fraction of 0.1%.  

The viscosity of a fluid is a measure of its resistance to gradual deformation by shear stress or 

tensile stress. For liquids, it corresponds to the informal notion of "thickness". For example, honey has a 

higher viscosity than water [43]. Viscosity is due to friction between neighboring parcels of the fluid that 

are moving at different velocities. When fluid is forced through a tube, the fluid generally moves faster 

near the axis and very slowly near the walls, therefore some stress (such as a pressure difference between 

the two ends of the tube) is needed to overcome the friction between layers and keep the fluid moving. 

For the same velocity pattern, the stress required is proportional to the fluid's viscosity. A liquid's 

viscosity depends on the size and shape of its particles and the attractions between the particles. There are 

two kinds of viscosity expressions. They are dynamic viscosity and kinematic viscosity. Kinematic 
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viscosity is dynamic viscosity divided by the fluid density. The viscosity mentioned in this dissertation is 

kinematic viscosity which unit is Cst. 

Define: 

T = temperature, in Celsius 

       = viscosity of the healthy oil at temperature T, in Cst 

         = viscosity of the water at temperature T, in Cst 

P = water volume percentage  

According to Stachowiak and Batchelor [42], water and oil mixture viscosity at a certain 

temperature      can be computed as: 

              (               )  (   )                                                  (2.1) 

where: 

                                                                                         (2.2) 

Note that in Equation (2.1),        is defined as the healthy lubrication oil information and is 

extracted from our initial test while          is defined as the water physical attribute which can be 

considered known factors.  Based on Equation (2.1), we can compute the degree of oil degradation as the 

result of water contamination in terms of viscosity as: DDviscosity =
    

      
. 

Equation (2.1) represents the kinematic viscosity of the degraded oil as a function of temperature 

and water contamination level. 

 

2.2.2.  Dielectric Constant Model for Water Contamination 

 

Maxwell Garnett dielectric formula is the most widely used mixing rules to calculate the average 

dielectric constant of the mixture consist of multiple components. The original Maxwell-Garnett equation 

[14] reads: 
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(
       

         
)     (

     

       
)                                                           (2.3) 

Where: 

     is the effective dielectric constant of the medium 

   is the one of the inclusion 

   is the one of the matrix 

   is the volume fraction of the inclusions 

In general terms, the Maxwell Garnett EMA is expected to be valid at low volume fractions     

since it is assumed that the domains are spatially separated. The simplified equation was developed by 

Sihvola in [41] and was applied to lubrication oil situation by Jakoby and Vellekoop [27]. 

Define: 

       = dielectric constant of healthy oil at temperature T 

         = dielectric constant of water at temperature T 

According to Jakoby and Vellekoop [27], the dielectric constant of water and oil mixture at a 

certain temperature      can be computed as: 

            (      
                

                     (                )
)                                 (2.4) 

where: 

                             ((     )     )                                                 (2.5) 

Note that in Equation (2.4),        is defined as the healthy lubrication oil information and is 

extracted from our initial test while           is defined as the water physical attribute which can be 

considered known factors.  Based on Equation (2.4), we can compute the degree of oil degradation as the 

result of water contamination in terms of dielectric constant as: DDdielectric constant =
    

      
. 

Equation (2.4) represents the dielectric constant of the degraded oil as a function of temperature 

and water contamination level. 
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The simulation application of the lubrication oil deterioration model due to water contamination 

in terms of viscosity and dielectric constant can be summarized in Figure 2.1.  The simulation input is the 

temperature and water contamination ratio. The simulation output is the degraded oil kinematic viscosity 

and dielectric constant. Using the simulation application, one could generate a series of viscosity and 

dielectric constant values accordingly to reflect the true status of the lubrication oil 

. 

 

Figure 2.1 Lubrication oil water contamination simulation model for viscosity and dielectric constant 

 

2.2.3. Viscosity Models for Particle Contamination  

 

Particle contamination is one of the three most common encountered basic lubrication oil 

degradation features including water contamination, oil oxidation and particle contamination as stated in 

[48].  It is well-known that particle contaminants have a great impact on oil physical, electrical and 

magnetic properties which may leads to excessive mechanical wear and failure.    Since over 80% of the 
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machine wear is induced by particle contamination as stated in [33]. Lubrication oil particle 

contamination plays a significant role in machine failure prevention. 

Lubrication oil particle contamination can be classified into two categories: iron and soot.  For 

iron contamination, the source of contamination normally is the metal debris coming out of machine 

components because of frequent friction and wear.  The main chemical component of the metal debris is 

ferrous which creates impact on oil electric and magnetic properties.  These conductive metal particles 

lead to oil deterioration by means of increasing the permittivity of the lubrication oil, weaken the oil 

insulation characteristics and also induce oxidation. 

For soot contaminations, the source of contamination mainly comes from oil borne insoluble 

particle resulting from oxidation and dust from outside the mechanical system.  Soot particles mainly 

consist of silicon dioxide which has influence on lubricant physical property.  High concentration of soot 

particles increase lubricant viscosity and may lead to engine cold start oil starvation, sever mechanical 

components wear and failure. 

In this dissertation, physics models were derived in order to establish the mathematical 

relationship between lubrication oil degradation and particle contamination level.  Experiments awerere 

performed to validate the developed model by comparing viscosity and dielectric constant sensors output 

of different particle concentration levels with those simulated by the lubricant deterioration physics 

models.  These models were further applied to particle filter as the observation functions. And the particle 

contamination level template is generalized and used to form the state transition function. 

 Einstein (1906) in [18] [19] developed an equation to calculate the viscosity of solid particle and 

liquid mixture, assuming the mixture retains fluidity.  The viscosity of the mixture can be described as 

relative to the viscosity of the liquid phase.  In the case of extremely low concentration of fine particles 

the relative viscosity (dimensionless) can be expressed as a function of volume fraction   of solid 

particles as follow. 

                        
  

  
                                                                        (2.6) 
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Where, in the case of lubrication oil particle contamination 

   : The relative viscosity (dimensionless). 

  : The dynamic viscosity of the mixture (degraded oil mixture). 

  : The dynamic viscosity of the oil. 

 :  The volume fraction of the particles. 

Later, in [23], Guth and Simha modified and improved Einstein’s equation, as Equation (2.6), by 

taking into account the interaction between the solid particles.  The equation they proposed can handle 

higher particle concentration and is shown below. 

                 
  

  
                                                         (2.7) 

Therefore, from Equation (2.7), the dynamic viscosity of the oil and particle mixture (  ) can be 

expressed as: 

                (               )                                               (2.8) 

With reference to the former developed physics model for lubrication oil water contamination and 

the experimental setup for the particle contamination tests, the following notations are defined. 

T: a given temperature. 

      : the viscosity of the healthy oil at temperature T. 

    : the viscosity of the oil and particle mixture which is the degraded oil viscosity at 

temperature T. 

  : the mass or mass flow of solids in the oil sample. 

  : the mass or mass flow of liquid in the oil sample. 

   : the specific gravity of the oil sample. 

   : the specific gravity of the contamination particle. 

P: the contamination percentage used while conducting the experiments which unit is mg/L. 

Substitute the above defined notation into Equation (2.8), one can have the equation for particle 

contamination physics model as shown in Equation (2.9) 
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     (               )                                           (2.9) 

The volume fraction of the contaminant can be calculated by Equation (2.10) as stated in [46], as 

follow: 

  
      

             
                                                               (2.10) 

Note that in Equation (2.9),        is defined as the healthy lubrication oil information and can be 

extracted from initial tests.   Based on Equation (2.9), one can compute the degree of oil degradation as 

the result of particle contamination in terms of viscosity as: DDviscosity =
    

      
. 

Equation (4) represents the kinematic viscosity of the degraded oil as a function of temperature T 

and particle contamination volume fraction  . 

 

2.2.4. Dielectric Constant Models for Particle Contamination 

            

 Theoretical mixing rules for spherical inclusions in a host medium have been established by 

Maxwell Garnett [20].  Compared with other effective medium theories used for modeling 

electromagnetic properties of composites, Maxwell Garnet model is simple and convenient for modeling 

due to its linearity.  The simplified equation was developed by Sihvola in [41].  The simplified result, 

applied to the case of particle contamination in lubrication oil can be expressed as: 

              (      
                  

                       (                  )
)                        (2.11) 

where 

    : The dielectric constant of the mixture which is the degraded oil viscosity. 

      : The dielectric constant of healthy oil at temperature T 

           : The dielectric constant of the particle at temperature T 

In the case of iron contamination, according to material in [13] by Carey (1998), the dielectric 

constant of conductive metals are considered infinity at all temperatures.  As mentioned in section 2.2.3, 
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the chemical component of iron contaminant is mainly Ferrous which is a typical conductive metal.  

Hence, for iron contamination, the             in (2.11) is set to be infinity. After substitution, one can 

derive the following equation. 

                                (  
  

   
)                                                          (2.12) 

Equation (2.12) represents the dielectric constant of the degraded oil because of iron 

contamination as a function of temperature T and particle contamination volume fraction  . 

 In the case of soot contamination, reported by Gray et al in [21], the main chemical component is 

silicon dioxide. The dielectric constant of silicon dioxide is 3.9 regardless of the temperature variation.  

Therefore, for soot contamination, the             in Equation (2.11) is set to be 3.9.  After substitution, 

one can derive the following equation. 

                       (
(    )                 

(   )                 
)                                                     (2.13) 

Equation (2.13) represents the dielectric constant of the degraded oil because of soot 

contamination as a function of temperature T and particle contamination volume fraction   . 

 Note that in Equation (2.12) and (2.13),        is defined as the healthy lubrication oil information 

and is extracted from the initial test.   Based on Equation (2.12) and (2.13), one can compute the degree of 

oil degradation as the result of particle contamination in terms of dielectric constant as: DDdielectric cosntant 

=
    

      
. 

 The simulation application of the lubrication oil deterioration model due to particle contamination 

in terms of viscosity and dielectric constant can be summarized in Figure 2.2.   The simulation input is the 

temperature and particle contamination volume fraction.  The simulation output is the degraded oil 

kinematic viscosity and dielectric constant. Using the simulation application, one could generate a series 

of viscosity and dielectric constant values accordingly to reflect the true status of the lubrication oil. 
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Figure 2.2 Lubrication oil particle contamination simulation model for viscosity and dielectric constant 

 

2.3. Lubrication Oil Degradation Physics Model Validation 

 

2.3.1. Experimental Setup 

 

In this section, the experiment setup using both capacitance and viscosity sensors are presented. 

In order to obtain the viscosity and the dielectric constant data, VISCOpro2000 from Cambridge 

Viscosity Inc. and Oil quality sensor from GILL Sensor were used.  For the kinematic viscometer, the 

sensor output data with a RS232 port and was connected to Window PC through a RS232 and USB 

converter.  The software interface on the PC was HyperTerminal that comes with Microsoft Windows 

XP.  The viscometer involves a piston that dipped into the test lubricant and the coils inside the sensor 

body magnetically force the piston back and forth a predetermined distance.  By alternatively powering 

the coils with a constant force, the round trip travel time of piston is measured. An increase in viscosity is 
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sensed as a slowed piston travel time. The time required for the piston to complete a two way cycle is an 

accurate measure of viscosity. The practical unit of viscosity is centipoises (Cp), which is identical to the 

MKS unit mPa s (The viscosity of water is approximately 1 Cp).  The viscosity sensor and its data 

acquisition system are shown in Figure 2.3. As we programmed according to the user manual that comes 

with the sensor. The sensor will send out analogue output including absolute viscosity, temperature 

compensated viscosity and the according temperature along with the date and time. 

 

Figure 2.3 Viscometer and its data acquisition system 

 

The dielectric constant sensor from Gill Sensor Inc. measures the capacitance of the test liquid 

then calculate the dielectric constant by the equation D=Coil/Cair, which is the capacitance of the test 

liquid divided by the capacitance of air, then output a voltage accordingly.  The output analog signal was 

captured by LabJack U12 which was the data acquisition unit for the sensor and the voltage signal was 

recorded with Logger and Scope, software that comes with the U12. The dielectric constant sensor and its 

data acquisition system along with the entire experiment setup are shown in Figure 2.4 and 2.5. 
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Figure 2.4 Dielectric constant sensor and the LabJack U12 data acquisition system 

 

 

Figure 2.5 Experimental setup 
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Also needed for the tests were temperature control units.  For the dielectric constant test, we used 

a temperature controlled hotplate from Thermo Scientific.  It was a ceramic hotplate with temperature 

control and digital indication of temperature on the contact surface. However, since the viscometer had to 

be installed with sensor side facing up, we installed the sensor on a steel container and heated the oil 

inside with a liquid heater. In both situations, the test oils were preserved in a temperature controlled 

container and heated from around 25 to approximately 60 degrees Celsius.  Instant temperatures were 

recorded along with the according viscosity and dielectric constant.  

 Several measuring cups for lubrication oil samples were used for the particle contamination tests.  

The volume of oil sample for each separated test is 1200mL.  The weight of the particles was measured 

by a milligram scale from American Weigh GPR-20 Gemini-PRO Digital Milligram Scale.  Particle 

powders are purchased from SIGMA-ALDRICH.  The size of the silicon dioxide powders is less than 230 

mesh and the size of the iron particles is -325 mesh as shown in Figure 2.6 and 2.7. 

Also needed for the tests were temperature measurement and control units.  For the dielectric 

constant test, EI1034 Temperature Probe from LabJack was used and the probe was attached to the same 

DAQ as dielectric sensor in order to synchronize the data.  Viscosity sensor has an integrated temperature 

sensor for data synchronization.  Both sensors were installed in the same container along with the 

temperature probe mounted close to the dielectric sensor.  The test lubrication oil samples are preserved 

in the container and heated by an electrical liquid heater from around 25 to approximately 70 degrees 

Celsius.  Instant temperatures are recorded along with the according viscosity and dielectric constant.  
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Figure 2.6 Iron powder from SIGMA-ALDRICH 

 

 

Figure 2.7 Silicon dioxide powder from SIGMA-ALDRICH 
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2.3.2. Model Validation for Water Contaminated Lubrication Oil 

 

In order to validate the physics models, viscometer and dielectric constant sensor readings under 

different water contamination levels with varying temperatures were compared with those computed from 

the physics models under the same conditions. 

During the experiment, Castrol SAE 15W-20 lubrication oil was selected to perform the physics 

model validation. The healthy SAE 15W-20 lubrication oil kinematic viscosity in relation with 

temperature was obtained from the experimental tests as following: 

                                                                                                (2.14) 

Also, the healthy SAE 15W-20 lubrication oil dielectric constant in relationship with temperature 

was obtained from the experimental tests as following: 

                                                                                                        (2.15) 

Figure 2.8, 2.9, 2.10, and 2.11 show the plots of the kinematic viscosity obtained from the 

experiments and the physics models at water contamination level of 0.5%, 1%, 2%, and 3%, respectively. 

40 data points were used to validate the viscosity physics model. Judging from the kinematic viscosity 

curves, the experiment result validated the simulation result. For a fixed water contamination level, as 

temperature increases the viscosity drops, the measured viscosity variation follows the pattern of the 

simulated kinematic viscosity curves.  
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Figure 2.8 Kinematic viscosity comparison between simulated 0.5% water contaminated oil and measured 

0.5% water contaminated oil 

 

Figure 2.9 Kinematic viscosity comparison between simulated 1% water contaminated oil and measured 

1% water contaminated oil 
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Figure 2.10 Kinematic viscosity comparison between simulated 2% water contaminated oil and measured 

2% water contaminated oil. 

 

Figure 2.11 Kinematic viscosity comparison between simulated 3% water contaminated oil and measured 

3% water contaminated oil 
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Figure 2.12 shows the plots of the dielectric constant obtained from the experiments and the 

physics models at water contamination level of 0.5%.  40 data points were used to validate the dielectric 

constant physics model. Similar to the case of kinematic viscosity, the experiment result validated the 

simulation result.  For a fixed water contamination level, as temperature increases the dielectric constant 

increases, the dielectric constant variation follows the pattern of the simulated dielectric constant curves. 

The dielectric constant physics model has been validated by Jakoby and Vellekoop [27] for lubrication oil 

applications. 

 

 

Figure 2.12 Dielectric constant comparison between simulated 0.5% water contaminated oil and measured 

0.5% water contamination oil 

 

2.3.3. Model Validation for Particle Contaminated Lubrication Oil 
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In order to validate the derived physics models, viscometer and dielectric constant sensor 

readings under different particle contamination levels were compared with those computed from the 

physics models under the same conditions. 

Castrol SAE 15W-20 lubrication oil was again selected to perform the physics model validation.  

The healthy SAE 15W-20 lubrication oil absolute viscosity and temperature relationship (      ) was 

obtained from initial experimental tests along with the healthy SAE 15W-20 lubrication oil dielectric 

constant and temperature relationship (      ) as shown in Equation (2.14) and (2.15).  

 

Viscosity Model Validation for Iron Contamination 

  

For iron contamination viscosity model, Figure 2.13 shows the plots of the absolute viscosity 

obtained from the experiments and the physics models at iron contamination level of 50mg/L, 100mg/L, 

150mg/L and 200mg/L respectively.  Judging from the absolute viscosity trend line, the experiment result 

validated the simulation result from the physics models.  For a fixed temperature of 65 degree Celsius, as 

the iron particle contamination level increases the viscosity increases along with it.  The experiment 

measured viscosity variation follows the pattern of the simulated absolute viscosity curves.  
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Figure 2.13 Viscosity comparison between sensor measured absolute viscosity and simulated viscosity at 

65  (particle contamination, iron contamination) 

 

Viscosity Model Validation for Soot Contamination 

 

Again, for soot contamination viscosity model, Figure 2.14 presents the plots of the absolute 

viscosity obtained from the experiments and the physics models at soot contamination level of 50mg/L, 

100mg/L, 150mg/L and 200mg/L respectively.  By comparing the absolute viscosity variation against 

increasing particle contamination level, the experiment result validated the simulation result from the 

physics model.  For a fixed temperature of 65 degree Celsius, as soot particle contamination level 

increases the viscosity increases accordingly.  The measured viscosity variation follows the pattern of the 

simulated kinematic viscosity curves.  
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Figure 2.14 Viscosity comparison between sensor measured absolute viscosity and simulated viscosity at 

65  (particle contamination, soot contamination) 

 

Dielectric Constant Model for Iron Contamination 

 

For iron contamination dielectric model, Figure 2.15 shows the plots of the dielectric constant 

obtained from the experiments and the physics models at iron contamination level of 50mg/L, 100mg/L, 

150mg/L and 200 mg/L respectively.  Similar to the case of absolute viscosity, the experiment result 

validated the simulation result.  For a fixed temperature of 65 degree Celsius, as particle contamination 

level increases the dielectric constant increases along with it.  The dielectric constant variation follows the 

pattern of the simulated dielectric constant curves. 
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Figure 2.15 Dielectric constant comparison between sensor measured dielectric constant and simulated 

dielectric constant at 65  (particle contamination, iron contamination) 

 

Dielectric Constant Model for Soot Contamination  

 

For soot contamination dielectric model, Figure 2.16 shows the plots of the dielectric constant 

obtained from the experiments and the physics models at soot contamination level of 50mg/L, 100mg/L, 

150mg/L and 200mg/L respectively.  Similar to the case of absolute viscosity, the experiment result 

validated the simulation result.  For a fixed temperature of 65 degree Celsius, as particle contamination 

level increases the dielectric constant increases accordingly.  The dielectric constant variation follows the 

pattern of the simulated dielectric constant curves. 
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Figure 2.16 Dielectric constant comparison between sensor measured dielectric constant and simulated 

dielectric constant at 65  (particle contamination, soot contamination) 

 

2.4.  Summary and Discussions 

 

In this chapter, based on the result of the comprehensive investigation on current lubrication oil 

condition monitoring techniques from literature review section, viscosity and dielectric constant were 

selected as the performance parameters to provide feasible solution to perform online oil condition 

analysis. Lubrication oil physics models that describe oil deterioration due to water and particle 

contamination in terms of viscosity and dielectric constant were developed and validated.  Due to the 

complexity and lack of proper test kit to quantify the oxidation process, oxidation as one of the basics 

degradation features were not modeled and validated. However, certain solution has been looked into and 

will be implemented in the future. The result of the validation simulation experiments showed that the 

developed models are effective to describe the oil deterioration process caused by water or particle 
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contamination. Compared with soot contamination, iron contamination which is a part of the particle 

contamination can indicate both lubrication oil condition and machine components health condition. 

Some condition monitoring techniques analyze the metallic components that are dissolved in the 

lubrication and trace back to certain group or specific component of the mechanical system. Therefore, 

iron contamination is relativity more attractive to scientists and researchers. The goal of the physics 

model derivation is to find a mathematical relationship between lubrication oil degradation and 

contamination level of different basic degradation features. Also, in order to perform remaining useful life 

prediction, system dynamic models are required. With the successful development and validation of the 

lubrication oil degradation physics models, one can select the appropriate RUL prediction algorithm. 

Most common statistical methods to perform state estimation are Kalman filter and Particle filtering. 

Depends on the model dynamics, if it is a linear system with Gaussian noise, one can select Kalman 

Filter. If it is linear systems with non-Gaussian noise, one can use Extended or Unscented Kalman Filter. 

When dealing with nonlinear system with non-Gaussian noise, particle filtering technique is ideal because 

nonlinear Kalman filter is linearization based technique. If the system nonlinearity grows, any of 

linearization (either local or statistical linearization) methods breaks down. In the RUL stage, particle 

filtering can handle statistical data unlike many parameter estimation techniques. In the next chapter, 

detail discussion of particle filtering techniques and how it is applied to our case which is lubrication oil 

RUL prediction is illustrated. 

 

2.5.  References 

 

1. Agoston, A., Otsch, C., and Jakoby, B., 2005, “Viscosity Sensors For Engine Oil Condition 

Monitoring-Application and Interpretation of Results”, Sensors and Actuators A, Vol. 121, pp. 327 - 

332. 



 

72 

2. Agoston, A., Dorr, N., and Jakoby, B., 2006, “Online Application of Sensors Monitoring Lubricating 

Oil Properties In Biogas Engines”, IEEE Sensors 2006, EXCO, Daegu, Korea, October 22 - 25, 2006 

3. Agoston, A., Otsch, C., Zhuravleva, J., and Jakoby, B., 2004, “An IR-absorption Sensor System for 

the Determination of Engine Oil Deterioration”, Proceeding of IEEE, sensors, Vienna, Austria, Otc. 

24 – 27, 2004, Vol. 1, pp. 463 – 466. 

4. Agoston, A., Schneidhofer, C., Dorr, N., and Jakoby, B., 2008, “A Concept of An Infrared Sensor 

System for Oil Condition Monitoring”, Elekrotechnik & Informationstechnik., Vol. 125/3, pp. 71 - 75.  

5. Arulampalam, S.M., Maskell, S., Gordon, N., and Clapp, T., 2002, “A Tutorial on Particle Filters for 

Online Nonlinear/Non-Gaussian Bayesian Tracking”, IEEE Transactions on Signal Processing, Vol. 

50, No. 2, pp. 174 – 188. 

6. Benner, J.J., Sadeghi, F., Hoeprich, M.R., and Frank. M.C., 2006, “Lubricating Properties of Water 

Oil Emulsions”, Journal of Tribology, Transaction of ASME, April 2006. Vol. 128, pp. 296 - 311. 

7. Beran, E., Los M. and Kmiecik, A., 2008, “Influence of Thermo-Oxidative Degradation on the 

Biodegradability of Lubricant Base Oils”, Journal of Synthetic Lubrication, Vol. 28, pp. 75 - 83.  

8. BHRA, 1988, Condition Monitoring Supplement, Cranfield, Bedfordshire: BHRA. 

9. Bozchalooi, I.S. and Liang, M., 2009, “Oil Debris Signal Analysis Based on Empirical Mode 

Decomposition for Machinery Condition Monitoring”, Proceedings of 2009 American Control 

Conference, St. Louis, MO, USA, June 10 - 12 

10. Butler, S. and Ringwood, J., 2010, “Particle Filters for Remaining Useful Life Estimation of 

Abatement Equipment Used in Semiconductor Manufacturing”, Proceedings of the First Conference 

on Control and Fault-Tolerant Systems, Nice, France, pp. 436 - 441. 

11. Byington C., Palmer C., Argenna G., and Mackos N., 2010, “An Integrated, Real-Time Oil Quality 

Monitor and Debris Measurement Capability for Drive Train and Engine Systems”, Proceedings of 

American Helicopter Society 66th Annual Forum and Technology Display, Pheonix, Arizona, May 11 

– 13, 2010 



 

73 

12. Byington, C., Mackos, N., Argenna, G., Palladino, A., Reimann, J., and Schmitigal, J., 2012, 

“Application of Symbolic Regression to Electrochemical Impedance Spectroscopy Data for 

Lubricating Oil Health Evaluation”, Proceedings of Annual Conference of Prognostics and Health 

Management Society 2012, Minneapolis, Minnesota, September 23 – 27, 2012. 

13. Carey, A.A., “The Dielectric Constant of Lubrication Oils”, Computational Systems Incorporated, 

Knoxville, 1998, TN 37932. 

14. Choy, T.C., 1999,” Effective medium theory”, Oxford: Clarendon Press. ISBN 978-0-19-851892-1 

15. Doucet, A., Godsill, S., and Andrieu, C., 2000, “On Sequential Monte Carlo Sampling Methods for 

Bayesian Filtering”, Statistics and Computing, Vol. 10, pp. 197 – 208. 

16. Doucet, A., Godsill, S., and Andrieu, C., 2000, “On Sequential Monte Carlo Sampling Methods for 

Bayesian Filtering”, Statistics and Computing, Vol. 10, pp. 197 – 208. 

17. Durdag, K., 2008, “Solid State Acoustic Wave Sensors for Real-Time Inline Measurement of Oil 

Viscosity”, Sensor Review, Vol. 28/1, pp.68 – 73. 

18. Einstein, A., “On the Theory of the Brownian Movement”, Ann.d. Physik. Vol. 19, pp. 371 – 381, 

1906. 

19. Einstein, A., “A New Determination of Molecular Dimensions”, Ann.d. Physik. Vol. 19, pp. 289 – 

306, 1906. 

20. Garnett, M., “Colors in Metal Glass and Metal Films”, Philosophical Transaction of the Royal 

Society of London, Series A, Vol. 3, pp. 385 – 420, 1904. 

21. Gray, P.R., Hurst, P.J., Lewis, S.H., and Meyer, R.G., “Analysis and Design of Analog Integrated 

Circuits (Fifth ed.)”, New York: Wiley. pp. 40. ISBN 978-0-470-24599-6, 2009. 

22. Guan, L., Feng, X.L., Xiong G., and Xie, J.A., 2011, “Application of Dielectric Spectroscopy for 

Engine Lubricating Oil Degradation”, Sensors and Actuators A, Vol. 168, pp. 22 – 29 

23. Guth, E., and Simha, R., 1936, “Untersuchungen über die Viskosität von Suspensionen und 

Lösungen. 3. Über die Viskosität von Kugelsuspensionen”, Kolloid Z., Vol. 74, No.3, pp. 266, 1936. 

24. Halderman, J. D., 1996, Automotive Technology, New York: McGraw-Hill. 



 

74 

25. He, D., Bechhoefer, E., Dempsey,
 
P., and Ma, J., 2012, “An Integrated Approach for Gear Health 

Prognostics”, Proceedings of the 2012 AHS Forum, Fort Worth, TX, April 30 – May 3, 2012. 

26. Jakoby, B., Buskies, M., Scherer, M., Henzler, S., Eisenschmid, H., and Schatz, O., 2001, “Advanced 

Microsystems for Automotive Applications”, Springer, Berlin/Heidelberg/New York, 2001, pp. 157 – 

165. 

27. Jakoby B. and Vellekoop, M.J., 2004, “Physical Sensors for Water-In-Oil Emulsions”, Sensors and 

Actuators A, Vol. 110, pp. 28 - 32. 

28. Jakoby, B., Scherer, M., Buskies, M., and Eisenschmid, H., 2002, “Micro Viscosity Sensor for 

Automobile Applications”, IEEE Sensors, Vol. 2, pp. 1587 - 1590. 

29. Jakoby, B., Scherer, M., Buskies, M., and Eisenschmid, H., 2003, “An automotive Engine Oil 

Viscosity Sensor”, IEEE Sensors. J, Vol. 3, pp. 562 – 568. 

30. Kittiwake Developments Ltd. 2011, “Monitoring water In Lubricant Oil - Maintain Equipment & 

Reduce Downtime”, Critical Things to Monitor, Water in Lube Oil. 

31. Kumar, S., Mukherjee, P. S., and Mishra, N. M., 2005, “Online Condition Monitoring of Engine Oil”, 

Industrial Lubrication and Tribology, Vol. 57, No. 6, pp. 260 - 267. 

32. Merwe, R., Doucet, A., Freitas, N., and Wan E., 2000, “Unscented Particle Filter”, Cambridge 

University Engineering Department Technical Report cued/f-infeng/TR 380. 

33. Moon, M., 2009, “Lubricant Contaminants Limit Gear Life”, Gear Solutions Magazine, June, pp. 26 

– 33. 

34. Noria Coperation, Machinery Lubrication, http://www.machinerylubrication.com/Read/192/water-

contaminant-oil. 

35. Orchard M.E., and Vachtsevanos, G.J., 2011, “A Particle-filtering Approach for Online Fault 

Diagnosis and Failure Prognosis”, Transactions of the Institute of Measurement and Control, Vol. 31, 

pp. 221 – 246. 

36. Poley,J., 2012, “The Metamorphosis of Oil Analysis”, Proceedings of the 2012 Conference of the 

Society for Machinery Failure Prevention Technology (MFPT), Dayton, Ohio, April 24 – 26. 

http://www.machinerylubrication.com/Read/192/water-contaminant-oil
http://www.machinerylubrication.com/Read/192/water-contaminant-oil


 

75 

37. Raadnui, S., and Kleesuwan, S., 2005, “Low-cost Condition Monitoring Sensor for Used Oil 

Analysis”, Wear, Vol. 259, pp. 1502 - 1506. 

38. Saha, B., Goebel, K., Poll, S., and Christophersen, J., 2009, “Prognostics Methods for Battery Health 

Monitoring Using a Bayesian Framework”, IEEE Transactions on Instrumentation and Measurement, 

Vol. 58, No. 2, pp. 291-296. 

39. Schmitigal, J. and Moyer, S., 2005, “Evaluation of Sensors for On-Board Diesel Oil Condition 

Monitoring of U.S. Army Ground Equipment”, TACOM/TARDEC, Report No. 14113. 

40. Sharma, B.C. and Gandhi, O.P., 2008, “Performance Evaluation and Analysis of lubricating Oil 

Using Parameter Profile Approach”, Industrial Lubrication and Tribology, Vol. 60, No. 3, pp. 131 - 

137. 

41. Sihvola, A., 1999, “Electromagnetic Mixing Formulas and Applications”, electromagnetic wave 

series, IEE Publishing, London, ISBN 0-85296-772-1, 1999. 

42. Stachowiak, G.W. and Batchelor, A.W., 2005, “Physical Property of Lubricants”, Engineering 

Tribology, 3
rd

 edition, pp. 3, ISBN-13: 978-0-7506-7836-0, ISBN-10: 0-7506-7836-4. 

43. Symon, K., 1971, Mechanics 3
rd

 edition, Addison-Wesley, ISBN 0-201-07392-7 

44. Turner, J.D. and Austin, L., 2003, “Electrical Techniques for Monitoring the Condition of Lubrication 

Oil”, Measurement Science and Technology, Vol. 14, pp. 1794 - 1800. 

45. Yoon, J., 2012, “A Comparative Study of Adaptive MCMC Based Particle Filtering Methods”, M.S. 

Thesis, University of Florida. 

46. Wills, B.A., and Napier-Munn, T.J., 2006, Wills' mineral processing technology: an introduction to 

the practical aspects of ore treatment and mineral recovery, ISBN 978-0-7506-4450-1, Seventh 

Edition, Elsevier, Great Britain, 2006. 

47. Zio, E. and Peloni, G., 2011, “Particle Filtering Prognostic Estimation of the Remaining Useful Life 

of Nonlinear Components”, Reliability Engineering and System Safety, Vol. 96, pp. 403 - 409. 



 

76 

48. Zhu, J, He, D., and Bechhoefer, E, 2012, “Survey of Lubrication Oil Condition Monitoring, 

Diagnostics, and Prognostics Techniques and Systems”, Proceedings of the 2012 Conference of the 

Society for Machine Failure Prevention Technology (MFPT), Dayton, Ohio, April 24 – 26, 2012. 

49. Zhu, J, He, D., and Bechhoefer, E, 2013, “Survey of Lubrication Oil Condition Monitoring, 

Diagnostics, and Prognostics Techniques and Systems”, Journal of Chemical Science and Technology 

(JCST), Vol. 2, No. 3, pp. 100 – 115. 

50. Zhu, J., He, D., Qu, Y., and Bechhoefer, E., 2012, “Lubrication Oil Condition Monitoring and 

Remaining Useful Life Prediction with Particle Filtering”, Proceedings of 2012 American Wind 

Energy Association (AWEA), WINDPOWER Conference, Atlanta, Georgia, June 2 – 6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

77 

CHAPTER 3 

PARTICLE FILTERING TECHNIQUE FOR LUBRICATION OIL REMAINING USEFUL LIFE 

PREDICTION 

 

3.1.  Introduction 

 

Most common statistical methods to perform state estimation are Kalman filter and Particle 

filtering (or sequential Monte Carlo method). Ever since its inception, Kalman filter (KF) [24] has been 

the most widely used estimation strategy due to its elegant recursive form, computational efficiency and 

ease of implementation. Therefore, even though KF only tracks the first two moments of the state (mean 

and covariance), it is extremely powerful. However, KF is only optimal if the following assumptions hold 

[40].  

1) The dynamic system model is a linear function of the state and process noise. 

2) The measurement model is also linear function of the state and measurement noise. 

3) The process noise and the measurement noise are mutually independent and zero-mean Wiener 

process with known covariance. 

4) The posterior density is Gaussian. 

Unfortunately, most real life situations do not uphold all of the above assumptions. As a result, a 

nonlinear version of KF was required. The local linearized version of KF, known as the Extended Kalman 

Filter (EKF) [22] was proposed. In the EKF, the nonlinear system is replaced with a first order 

perturbation model obtained via Taylor Series expansion about a reference trajectory. While EKF extends 

the applicability of the Kalman filter to nonlinear dynamic systems and measurement models, it performs 

poorly when the higher order terms start to dominate (e.g. when perturbation grows in magnitude over 

time due to nonlinear effects). To overcome this weakness, higher-order EKF [29] algorithms using the 

second or even higher order terms in the Taylor series expansion were introduced. However, the 
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fundamental problem remains the same, i.e. divergence due to nonlinear effects can only be delayed but 

not avoided. Overall, the class of EKF algorithms has the following general shortcomings. 

1) Linearization or high order system approximations are prone to divergence dependent on degree 

of system nonlinearity. 

2) Linearized transformation sometimes cannot be obtained through Jacobian matrix, e.g. if the 

system contains a discontinuity, the Jacobian does not exist. 

3) Computing the Jacobian matrix can be tedious, often involving excessive and complex algebraic 

manipulations. Also, the computation process is prone to human error.  

4) In the higher-order EKF algorithms, these problems can become more serious. 

Recently, Julier and Uhlmann proposed another filtering strategy based on the so called unscented 

transformation (UT) sampling and the Kalman filter framework. This filter is known as the unscented 

Kalman filter (UKF) [23]. As opposed to EKF, which performs local linearization, the UKF is based on 

the principle of statistical linearization. By virtue of statistical linearization, the first two moments of the 

system derived from the sample points match exactly with the first two moments of the actual system. To 

perform the unscented transformation, a minimal set of sample points (called sigma points) are 

deterministically selected around the currently known mean of the state. The sigma points are then 

propagated through the nonlinear system dynamics (i.e. without analytic local linearization). As a 

consequence, the UKF algorithm is applicable to systems with discontinuities. However, if nonlinear 

effects are strong, the UKF strategy may not be adequate to describe state uncertainty. 

The other popular filtering strategy is the sequential Monte Carlo (SMC) method (also known as 

particle filter (PF)) [1] [10] [25] [34]. The basic idea behind the SMC is to characterize state uncertainty 

in terms of a finite number of particles. As opposed to the UKF, the SMC methods can capture higher 

order statistical information of the system state (e.g. the mean, variance, skewness, kurtosis etc.), by 

analysis of the particle statistics. 

Even though the first versions of the SMC methods can be found in papers dating back to the 

1950s [16], they could not become popular immediately due to the following drawbacks: 
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1) The SMC methods generally require high computing power, which have only recently became 

readily available. 

2) The early SMC methods were based on the sequential importance sampling (SIS) technique, 

which suffers from a serious problem called “sample degeneracy (a.k.a. particle depletion)”. 

In 1993, Gordon, Salmond and Smith proposed the sequential importance resampling (SIR) [13] 

algorithm to overcome sample degeneracy. Since introduction of the SIR filter, research in the SMC 

methods has grown vigorously and resulted significant theoretical progress. In addition, thanks to the 

recent computer revolution, the SMC methods became increasingly amenable to the online demands of 

the filtering problem. After the SIR filter was introduced many other resampling ideas were proposed and 

implemented to improve the SIR filter. For example, multinomial resampling [13], residual resampling 

[28], strarified resampling [25], and systematic resampling [25] algorithms have been proposed by many 

authors. Following several years of implementation, the general consensus appears to be that owing to its 

simple implementation, low computation complexity and low sample variance, the systematic resampling 

algorithm is the most widely used resampling technique.  

As comparison made above, depends on the nature of systems dynamics and noise source, if it is 

linear systems with Gaussian noise, one can select Kalman Filter. If it is non-linear systems with 

Gaussian noise, one can use Extended or unscented Kalman Filter. When dealing with non-linear system 

with non-Gaussian noise, particle filtering technique is ideal. 

Using particle filter for RUL prediction is a recent development in combining both physics based 

and data driven approaches for prognostics as state by He et al. [17].  Applications of particle filters to 

prognostics have been reported in the literature, for example, remaining useful life predication of a 

mechanical component subject to fatigue crack growth reported by Zio and Peloni [41], online failure 

prognosis of UH-60 planetary carrier plate subject to axial crack growth [31], degradation prediction of a 

thermal processing unit in semiconductor manufacturing [6], and prediction of lithium-ion battery 

capacity depletion as stated by Saha et al. [35].  The reported application results have shown that particle 

filters represent a potentially powerful prognostics tool due to its capability in handling nonlinear 
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dynamic systems and non-Gaussian noises using efficient sequential importance sampling to approximate 

the future state probability distributions.  Particle filters were developed as an effective online state 

estimation tool reported by Doucet [11] and Arulampalam et al. [1].  

In this dissertation, an integrated approach using particle filters for lubrication oil RUL prediction 

is presented. In this dissertation, a particle filtering algorithm is utilized as RUL prediction tool. For oil 

condition monitoring, an effective and accurate state estimation tool will be beneficial to reduce machine 

downtime.  An on-line RUL estimator includes two stages: state estimation and RUL prediction. First, in 

the state estimation stage, even though there are many state estimation techniques, Kalman filter and 

particle filter are the most utilized ones. However, Kalman filter requires many assumptions such as: 1) 

zero-mean Gaussian process noise, 2) zero-mean Gaussian observation noise, 3) Gaussian posterior 

probability density function (pdf), etc. Because nonlinear Kalman filter is linearization based technique, if 

the system nonlinearity grows, any of linearization (either local or statistical linearization) methods breaks 

down as stated by Merwe et al. [30]. Second, in RUL estimation stage, particle filtering can handle 

statistic prediction data unlike the other methods (parameter estimation). As a result, particle filtering 

algorithm provides feasible solutions for a wide range of RUL predication applications. A particle 

filtering algorithm integrated with physics based oil degradation models will provide a basis to develop 

practically feasible tools for accurate RUL prediction of lubrication oil. 

 

3.2. Particle Filtering for State Estimation 

 

Applying particle filters to state estimation will be discussed first in this section.  Particle filters 

are used to estimate the state of a dynamic system using state and observation parameters. The state 

transition function represents the degradation in time of the lubrication oil.  The observation or 

measurement represents the relationship between the degradation state of the lubrication oil and the health 

monitoring sensor outputs. 
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To apply particle filtering method, state estimation problem should be formulated first as stated 

by Yoon [40]. The problem of state estimation (a.k.a. filtering) is to estimate the dynamic state in terms of 

the posterior probability density function (pdf), based on all available information, including  the 

sequence of measurements up to the current time step k. Let us introduce                  which 

represent system state vector and observation (or measurement) vector at the current time k respectively, 

where    and    are the dimension of the corresponding state vector and observation vector;   is a set of 

real numbers;     is the time index; and   is the set of natural numbers. Consider the following 

discrete-time hidden Markov model (a.k.a state transition and observation model): 

                                                             (         )   (       )     (3.1) 

                                                                    (     )   (     ) (3.2) 

where                 is the sequence of the system state up to time    , and    

             is the sequence of observation that is available up to current time k. Note that the above 

notation    is sometimes represented as     . Also, the state transition and the state observation models 

can be rewritten in functional form as follows: 

                                                                          (         ) (3.3) 

                                                                               (     ) (3.4) 

where                   denote the process noise and measurement noise at time k 

respectively;           are white noise; the initial state distribution  (  )   (     )  is assumed 

known. Note that the state transition function is a mathematical representation of the lubrication oil 

degradation in time. Also, the observation model represents the health monitoring sensor outputs 

indicating the degradation state of the lubrication oil.  

Then, the marginal pdf of the state can be recursively obtained in two steps: prediction and 

update. In the prediction step, suppose the state estimate at the time      (         ) is known. Then 
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the prediction (or prior) pdf of the state is obtained involving the system model via the Chapman-

Kolmogorov equation as: 

                                                  (       )  ∫ (       ) (         )      (3.5) 

In the update step, the new measurement    becomes available and the posterior pdf can be 

obtained via the Bayes rule as follows: 

                                                                   (     )  
 (     ) (       )

 (       )
 (3.6) 

where the normalizing constant is: 

                                                              (       )  ∫ (       )  (     )    (3.7) 

The above obtained recursive propagation of the posterior pdf is a conceptual solution; it cannot 

analytically determined.  

In any state estimation problem, based on the desired accuracy and processing time, a wide 

variety of tracking algorithms can be utilized. Especially, particle filter (a kind of suboptimal filter) 

increases accuracy while minimizing assumptions on the dynamic and measurement models. Due to its 

general disposition, particle filter became widely used in various filed. In the particle filter process, the 

marginal posterior density at time k can be approximated as follows: 

                                                                       (     )  ∑   
  (     

 ) 
    (3.8) 

where {  
    

 }
   

 
 represents the random measure of the posterior pdf  (     ) ;    

    

       is a set of support points with associated weights    
             ( )  is a Dirac delta 

function; and sum of weights ∑   
 

   . Since we are not able to directly sample from the posterior 

 (     )  itself, associated weights   
  are computed by introducing importance density  (     )  which 

is chosen easily sample from (normally transitional prior is used): 

                                                                           
  

 (  
    )

 (  
    )

 (3.9) 

Thus, the desired posterior and weight update can be factorized in recursive forms as: 
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                                               (     )   (     ) (       ) (         ) (3.10) 

                                                             
      

 
 (  |  

 ) (  
      

 )

 (  
      

    )
 

(3.11) 

Note that, after the weights are obtained via Equation (3.11), weight normalization is required 

(∑   
 

   ) to satisfy the nature of probability density function (∑   
 

   ) as follows: 

                                                                          
  

  
 

∑   
 

 

 (3.12) 

It can be shown that       {  
    

 }
   

 
  (     ) . 

 

3.3.  Particle Filter for RUL Prediction 

 

In order to apply particle filter to estimate the remaining useful life (RUL), an l-step ahead 

estimator is required.  An l-step ahead estimator will provide a long term prediction of the state pdf  

 (       )              , where T is the time horizon of interest (i.e. time of failure).  In making 

an l-step ahead prediction, it is necessary to assume that no information is available for estimating the 

likelihood of the state following the future l-step path         , that is, future measurements 

                   cannot be used for updating the prediction.  In other word, the desired state pdf 

of particular future time  (       ) can be factorized with the current posterior pdf  (     ) to desired 

 (       ) and the state transition function  (       ) as  ∏  (       )
   
     . By combining Equation 

(3.1) and (3.4), an unbiased l-step ahead estimator can be obtained as stated by Zio and Peloni [41], as 

well as Orchard and Vachtsevanos [31]. 

                                     (       )  ∫ ∫∏  (  |    )
   
      (     )∏    

     
    (3.13) 
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Despite the fact that an unbiased estimator provides the minimum variance estimation, solving equation 

(3.7) can be either difficult or computationally expensive.  Thus, a sampling based approximation 

procedure of the l-step-ahead estimator is provided by Zio and Peloni [41].  

Assume that the state      represents the particle contamination level at the current time k, the 

particle contamination level increases by time and     is the object’s remaining usable time before it 

fails (or needs maintenances). If an l-step-ahead state from the time k (i.e.       ) goes across a pre-

specified critical value   (i.e.         ), the object’s RUL at the time k can be computed as      

(   )     . At each time step before its failure (i.e.      ), the state        would be projected 

up to the future time of failure      . In this manner, estimating       is equivalent to 

estimating       , rewriting as:  

                                                      ̂(        )    ̂(         ) (3.14) 

When RUL (l-step-ahead prediction) is implemented using particle filter as stated by He, et al. 

[17] corresponding weights are computed by introducing an estimated measurement      ̂ according to 

Equation (3.4) (i.e. measurement model) as:  

                                                                          ̂     (     )̂  (3.15) 

where n is a future time step      . Then, the updating process is accomplished by Equation 

(3.6) and (3.7). While RUL is computed, no measurement errors for the estimated measurements     ̂ are 

considered. Note that the actual system has not been altered. Zero measurement errors are only applied in 

order to predict l-step-ahead state   ̂(         )  because the future observation values are never 

accessible. In this thesis, an integrated prognostic technique using the l-step-ahead RUL estimating 

particle filter is exploited.  

 

3.4.  Implementation of Particle Filtering 
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In order to implement particle filtering, state transition function and observation function is 

required. In the case of lubrication oil remaining useful life prediction, the state of interest is the 

contamination level of water or particle. The observation function is the developed physics model. Since 

for each state of interest, two observation functions regarding to two sensors output exists.  The two 

sensor outputs are kinematic viscosity and dielectric constant. In order to combine the two sensors into a 

particle filter based RUL prediction, a multivariable Gaussian distribution is used: 

  (       )  
 

(  )
 
    

 
 

    ( 
 

 
(   )    (   ))                                (3.16) 

where   is the covariance matrix of observations,     is the determinant of  .  Note that yk in 

Equation (30) represents the sensor output data   . 

By applying the probability density function, each particle will be assigned a weight according to 

its observation and updated similarly. 

 

 

 

Figure 3.1 Conceptual illustrations of particle filtering techniques 
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As shown above, Figure 3.1 showed a conceptual illustration of particle filtering techniques. The 

x axis represents the time step. For example, if the sample rate is 1 point every 20 minutes, the time steps 

represents the 1
st
 20 minutes, 2

nd
 20 minutes and 3

rd
 20 minutes and so on. The y axis represents the state 

of interest, in our case for example, water contamination level. The upper dash line represents the point of 

breakage or the failure threshold, for example, 1000 ppm water contamination. The normal distributions 

around the upper dash line are failure criterion distribution. The distributions in the lower part are the 

real-time performance parameter distributions which consist of a selection of particles. The “particle” is 

defined as random measurement of the system. The black dots and dash line in the middle are prediction 

mean value by particle filtering while the side dash lines are the 90% confidence interval of every 

parameter distribution. We can see there are three intersection points of the failure criterion mean value 

and the state parameter predictions.  If we map these three points to the time axis, we can get the RUL 

distribution like the bottom part shows. At each time step, state estimation and RUL prediction are 

performed. State estimation or so called filtering is by estimating the best state of the system (of interest) 

with two major information sources, systems dynamics and observation model. The initial state is also 

required. At the RUL prediction stage, the particle filtering algorithm propagates particles in particle filter 

up to the point of breakage or failure threshold. The propagation time estimation is recorded. Some of the 

particle may hit the failure threshold early and some may hit it late. As time goes by, the prediction result 

gets more and more accurate. The reason behind that is, as time progresses, the algorithm is performing 

less and less steps ahead prediction and more and more observation are flown into the system.  

 

3.5.  Discussions 

 

In this chapter, the explanation of the particle filtering algorithm is presented along with the 

implementation of the algorithm in the lubrication oil remaining useful life prediction case. The 

background of particle filtering was presented as well as a comparison with other state estimation 
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technique including Kalman Filter. There are many cases that particle filtering technique was 

implemented in the industry including bearing or gear crack growth prediction, battery depletion 

prediction. In this dissertation, particle filtering technique was utilized to predict the RUL of lubrication 

oil. The contamination level of water and particle are treated as system state of interest. The physics 

models developed in Chapter 2 are treated as the observation. Since two sensors are installed to monitor 1 

state, multivariate Gaussian distribution was applied to distribution the weight of the particle. The detail 

implementation of particle filtering in the case of lubrication oil RUL prediction was discussed at the end 

of the chapter. 

In the next chapter, the developed lubrication degradation model and particle filtering technique 

for remaining useful life prediction of lubrication oil are simulated under industrial conditions to validate 

the effectiveness and robustness of the developed solution for oil condition monitoring and RUL 

prediction.  
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CHAPTER 4 

SIMULATION CASE STUDIES 

 

4.1. Introduction 

 

In this chapter, in order to validate and demonstrate the effectiveness of the particle filter 

technique based lubrication oil RUL prediction approach, a simulation case study was conducted. With 

the help of the developed physics models, practical industrial scenario simulation framework was 

constructed for either water contaminated or particle contaminated lubrication oil. The framework 

simulates a wind turbine under extreme weather conditions on daily bases. Normally, the operating 

temperature inside the oil circulation systems is rather stable at around 50 to55 . However, this case 

study simulated the temperature variation inside the turbine oil circulation system to be relatively unstable 

against the ambient temperature in order to test the effectiveness and the robustness of the RUL predicting 

algorithm. A temperature compensation algorithm was integrated into the simulation model to overcome 

this problem. With the integration of temperature compensation module, the RUL prediction 95% 

confidence interval region had been greatly narrowed. Therefore the prediction accuracy was improved 

and false alarm rate was much reduced. As comparison, single observation RUL prediction result based 

on either dielectric constant or viscosity data was compared with dual observation RUL prediction result 

based on both sensor observations. Also, comparison between different particle population RUL result 

and their impact on algorithm processing time is conducted. Hence, based on the need of the maintenance, 

wind farm operators can decide and balance how many sensors are needed, how large the predicting 

population should be, what is the accuracy required, and how soon can they acquire one prediction. The 

developed lubrication oil condition monitoring and remaining useful techniques can provide feasible 

solution for practical implementation on current condition based maintenance systems. The physics model 

can be integrated into the firmware of the oil quality sensors to provide condition monitoring for any kind 
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of lubricant with minimum training time. The general processing flowchart of the case study simulation 

model is shown in Figure 4.1. 

 

Figure 4.1 General simulation case study flowcharts. 

 

4.2. Water Contamination Simulation Case Study 

 

4.2.1. Simulation Model Construction  

 

In this simulation case study, a scenario of lubrication oil deterioration due to water 

contamination was simulated with the physics models presented in Sections 2.2.1 and 2.2.2.  In this 

scenario, a temperature template was used to simulate a daily temperature variation of the wind turbine as 

shown in Figure 4.2.  The other aspects of the simulation were defined as follows: 

1) The deterioration state of the lubrication oil was defined as the water contamination level P. 

2) The viscometer and dielectric constant sensor outputs were defined as observation data. 

3) The lubrication oil deterioration process was simulated for 30 days (720 hours). 
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4) At the end of the simulation, the water contamination level P reached at 5%. 

5) The sampling time interval was set to be every hour. 

6) The failure threshold was set as 3% which was defined as the industry water contamination level 

limit. 

7) At approximately the 525
th
 hour, the water contamination level reached 3%. 

Figure 4.3 shows the water contamination propagation over 720 hours during the simulation with 

the given temperature.  

 

 

Figure 4.2 Temperature variation template 
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Figure 4.3 Water contamination propagation template 

 

4.2.2. Particle Filtering Implementation for RUL Prediction 

 

To implement a particle filter for the RUL prediction of the lubrication oil in the simulation case 

study, the state transition function was defined as Equation (4.1). It is generated as progression of the state 

of interest which in our case is the water contamination. 

                      (   )                                                (4.1) 

Two observation functions could be established using kinematic viscosity and dielectric constant 

physics models as Equation (4.2) and (4.3). 

Note that Equation (4.2) is the observation function expressed in terms of kinematic viscosity and 

Equation (4.3) the observation function expressed in terms of dielectric constant.   

Generalized observation function could be established by combining kinematic viscosity and 

dielectric constant as Equation (4.4). 
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In the implementation of the particle filter, number of particles was fixed as 50 and the prediction 

started at time point 425
th
 hour during the simulation with l being 100 time steps. The reason for selecting 

50 particle populations is to balance accuracy and processing time. The particle population impact will be 

discussed in the Section 4.2.3. 

In order to reduce observation data fluctuation and RUL prediction variation, a temperature 

compensation module was integrated into the physics models. With a reference to 30 degree Celsius, 

which was the median temperature of the operating condition over a 24 hours cycle, the observation data 

was adjusted according to viscosity or dielectric constant functions with respect to the temperature. For 

example, at a certain temperature, the temperature compensated viscosity was the true value of the 

viscosity plus the theoretical viscosity difference between 30   and current temperature. The 

compensated value can be obtained from the following equations: 

                 (   
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Figure 4.4 and Figure 4.5 present the observation variation before the temperature compensation. 

 

 

 

Figure 4.4 Observation data (kinematic VISCOSITY) fluctuation before temperature compensation 

 

 

Figure 4.5 Observation data (dielectric constant) fluctuation before temperature compensation 

 

Figure 4.6 and Figure 4.7 present the observation data variation after the temperature 

compensation. 
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Figure 4.6 Observation data (kinematic viscosity) fluctuation after temperature compensation 

 

 

Figure 4.7 Observation data (dielectric constant) fluctuation after temperature compensation 

 

In comparison of Figure 4.4 with Figure 4.6, and Figure 4.5 with Figure 4.7, it is obvious that the 

observation data fluctuation is greatly reduced after the temperature compensation and the data are ready 

for RUL prediction. Figure 4.8 summarizes the implementation of particle filter technique for lubrication 

oil RUL prediction. 
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Figure 4.8 Particle filtering technique implementation. 

 

4.2.3. RUL Prediction Results Using One Sensor Observation 

 

Using the particle filter technique, RUL of the lubrication oil was predicted with either the 

viscosity or dielectric constant sensor observation.  The prediction results are provided in Figure 18 and 

Figure 19, respectively. The x axis represents the true simulation time step.  The y axis represents the time 

steps until failure. The blue line is the true remaining useful life and the red dots are our prediction mean 

while the vertical red bars are the 90% confidence intervals. From Figure 4.9 and Figure 4.10, one can see 

that with a certain degree of fluctuation at the beginning, the prediction becomes more and more accurate 

towards the end for both predictions. For a comparison purpose, the RUL prediction results with 200 

particles are provided in Figure 4.11.  As one can observe, using the same dielectric constant sensor 

observation under the same condition, a larger particle population provide better accuracy. However, 



 

100 

larger particle population requires more processing times. The relationship between particle population 

and processing times is shown in Table 4.1. 

 

Figure 4.9 RUL prediction with only kinematic viscosity observation data (particle population=50) 

 

Figure 4.10 RUL prediction with only dielectric constant observation data (particle population=50) 
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Figure 4.11 RUL prediction with only dielectric constant observation data (particle population=200) 

 

Table 4.1 Particle population and prediction time relationship with only dielectric constant observation 

data 

Particle Population (N) Prediction Time 

50 3 minutes 49 seconds 

75 4 minutes 40 seconds 

100 5 minutes 47 seconds 

150 7 minutes 59 seconds 

200 10 minutes 16 seconds 

 

 

4.2.4. RUL Prediction Result Using Multiple Sensor Observation 
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The RUL prediction results presented in previous section were obtained using only one sensor.  In 

order to combine the two sensors into a particle filter based RUL prediction, a multivariable Gaussian 

distribution is used: 

  (       )  
 

(  )
 
    

 
 

    ( 
 

 
(   )    (   ))                                          (4.9) 

where   is the covariance matrix of observations,     is the determinant of  .  Note that yk in 

Equation (4.9) represents the sensor output data   . 

By applying the probability density function, each particle will be assigned a weight according to 

its observation and updated similarly.  The RUL prediction results of combining two sensors are provided 

in Figure 4.12.  As one can see from Figure 4.9, Figure 4.10, and Figure 4.12, in comparison with the 

RUL prediction results using only one sensor, the RUL prediction variation in combining two sensors has 

been reduced from the beginning until the end. Moreover, the accuracy of the prediction has also been 

improved significantly. The shortcoming of utilizing particle filtering algorithm is that it is considered a 

computational expensive algorithm.  However, using particle filtering algorithm in combination with 

viscosity and dielectric constant based physics models would provide a feasible and effective solution for 

RUL predication of lubrication oil.  
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Figure 4.12 RUL prediction with both kinematic viscosity and dielectric constant observation data 

(particle population=50) 

 

4.3.  Particle Commination Simulation Case Study 

 

4.3.1. Simulation Model Construction 

 

In order to implement particle filter technique, a field scenario needs to be simulated with the 

developed physics models. A temperature template was used to simulate a daily temperature variation of 

the wind turbine (Figure 4.13).  The simulation was designed as following: 

1) The particle contamination propagation was assigned as the state. 

2) The viscometer and dielectric constant sensor output were assigned as observations. 

3) Iron contamination is selected as the specific particle contamination case. 

4) The simulation model was run for a month (30 days, 720 hours). 
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5) By the end of the month, the particle contamination (state) reached at 200mg/L. 

6) The sampling time interval was set to every 20 minutes (total 2160 time steps). 

7) The failure threshold is set as 150 mg/L which is the industry particle contamination acceptable 

limit. 

8) At approximately the 2077th time step, the particle contamination ratio reached 150mg/L. 

9) The particle population was set variously from 50 to 10000. 

10) The l–step-ahead prediction started approximately 150 time step before the particle contamination 

(  ) crosses the failure threshold. 

11) RUL would be displayed for the last 100 time steps only. 

Figure 4.14 shows the true trajectory of the particle contamination (  ). Under specific 

circumstances (i.e. a fixed temperature), the state change is observed for 720 hours. 

 

 

Figure 4.13 Temperature variation template 
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Figure 4.14 Particle contamination propagation template 

 

4.3.2. Particle Filtering Implementation for RUL Prediction 

 

In order to meet the requirement addressed above, the state transition function was constructed as: 

                   (4.10) 

where the process noise covariance is given as     (       ). After combining the equations 

in the physics simulation models, the observation models for kinematic viscosity and dielectric constant 

can be expressed in mathematical forms as following: 
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Also, the vector form (2
nd

 dimensional) of the observation model can be written as: 
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And the observation noise covariance term was factorized as:  
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where each observation noise covariance terms were computed based on the compensated 

observation data sets and derived as   
         

  (      ) and   
    (            ). 

Also, with the purpose of reducing observation data fluctuation and improving RUL prediction 

stability, a temperature compensate module had to be integrated into the physics model. With reference to 

30 degree Celsius, which was the median temperature of the operating condition in 24 hours cycle, the 

observation data was adjusted according to viscosity or dielectric constant functions with respect to 

temperature. The true viscosity or dielectric constant can be calculated by the physics models as the 

simulation output. For example, at a certain temperature, the temperature compensated viscosity is the 

true value of the viscosity plus the theoretical viscosity difference between 30  and current temperature. 

The theoretical viscosity was obtained by correlating the true viscosity or dielectric constant 

output with the according temperature in the simulation model. This correlation procedure utilized the 

symbolic regression analysis tool which is free and available to developers through Eureqa, software 

developed by researchers at Cornell University. The symbolic regression algorithm was used to construct 

general and potential complex relationships, in this case between the true dielectric constant (or viscosity) 

and temperature. The algorithm relies on genetic programming to search for the best functional/algebraic 

map between groups of parameters. The symbolic regression algorithm is a generalization to the standard 

regression problem formulation in that is requires very few assumptions regarding the underlying 

regression model and the output of the algorithm is a closed form that can easily be implemented on an 

embedded platform [8].  The symbolic regression technique is very efficient and accuracy to handle 

complex relationship between parameters with limited system dynamic information. Also, the application 

of the algorithm effectively automates the process of feature adding or subtracting (or any other 

manipulation) when compared with the application of linear regression. When it comes to embedded 

system deployment, the symbolic regression has significant advantages over traditional linear regression. 

The temperature compensation calculation can be obtained from the following equations: 
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where 

  : the true dielectric constant under temperature T 

  
 : the theoretical dielectric constant under temperature T 

  : the true viscosity under temperature T 

  
 : the theoretical viscosity under temperature T 

The two following figures (Figure 4.15 and Figure 4.16) present the observation variation before 

the temperature compensation: 

 

 

Figure 4.15 Observation data (kinematic viscosity) fluctuation before temperature compensation 
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Figure 4.16 Observation data (dielectric constant) fluctuation before temperature compensation 

 

And the two following figures (Figure 4.17 and Figure 4.18) present the observation data 

variation after the temperature compensation. 
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Figure 4.17 Observation data (kinematic viscosity) fluctuation after temperature compensation 

 

 

Figure 4.18 Observation data (dielectric constant) fluctuation after temperature compensation 

 

It is quite obvious that the observation data fluctuation was greatly reduced after the temperature 

compensation. Now the model is ready for RUL prediction. 

 

4.3.3. RUL Prediction Result Comparison 

 

In this subsection, remaining useful life (RUL) was numerically computed by changing 

observations data (viscosity, dielectric constant or both). As described in Chapter 2, Section 2.2 

Lubrication Oil Degradation Physics Model Development, two independent observation models were 

developed, viscosity and dielectric constant, which depict the particle contamination level of lubrication 

oil. In order to utilize the both observation models in 2
nd

 dimensional form, the multivariate Gaussian 

probability density function were utilized. The probability density function has the following form: 
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Equation (4.19) was used to compute the likelihood in the updating stage. Note that   is the 

covariance matrix of observations noise;   is the mean; y is a random vector; k is the dimension of the 

random vector; and     ( ) is the determinant of  . In this experiment, 50, 100, 1000 and 10000 particle 

populations were tested. Thus, comparative results along with combinatorial analysis of the observation 

models and the number of particles are presented. 

In the Figure 4.19, RUL prediction for the DC is presented. When N=50 particles (top-left) were 

used, prediction result was burst widely and seems not reliable. But as the particle population N increased 

to N=100 and N=1000 (top-right and bottom-left), the particle bursting become smaller and smaller. As a 

result, one can observe that prediction accuracy becomes more reliable if N=10000 particles are 

propagated. From here on, the estimated RUL result of the viscosity and the dual observation cases with 

N=10000 particles are considered in this dissertation. 
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Figure 4.19 Remaining useful life (RUL) l-step prediction with dielectric constant (DC) only observation 

and varying particle population N=50(top-left), N=100(top-right), N=1000(bottom-left) and 

N=10000(bottom-right) 

 

In the Figure 4.20, RUL l-step prediction result of the viscosity only (left) and dual observation 

(right) cases are presented. Note that particle population was set to N=10000 for better reliability results. 

From the left side, one can easily confirm that the DC only case outperforms the viscosity only case. Also, 

it is obvious that dual observation case displays slightly better prediction performance.  
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Figure 4.20 Remaining useful life (RUL) l-step prediction with the viscosity observation (left) and RUL 

with dual observation (right) with N=10000 particles 

 

In the Figure 4.21, compare the RUL distribution of N=50 and N=10000. When N=50 particles 

were used. RUL distribution shows more chaotic and likely not following any distribution form. However, 

when N=10000 particles were propagated with dual observation, RUL distribution displays almost perfect 

Gaussian (normal) distribution. 
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Figure 4.21 RUL propagation with dielectric constant (DC) observation and N=50 (top-left), RUL 

distribution at time step k=2081(top-right), RUL Propagation with dual observation and 

N=10000(bottom-left) and RUL distribution at time step k=2082 (bottom-left) 

 

In the Table 4.2, root mean square error (RMSE) and standard deviation ( ) of the RUL prediction 

are provided. One can confirm that the accuracy of the RUL prediction increases as the number of particle 

(N) increases. But notable point is that the highest accuracy was obtained when single DC observation was 

used. On the other hand, the highest reliability was obtained when dual observation were used (higher 

reliability was also predictable from the Figure 4.20). Combining DC and viscosity observation 

compromised the accuracy because viscosity observation was highly fluctuating (compare the Figure 4.17 

and 4.18). But it raises the reliability because more information was available. 
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Table 4.2 RMSE of RUL prediction by varying observations and particle populations 

 

 

In the Table 4.3, one can also recognize that more processing time is required as more particles are 

used. Especially in dual observation case, approximately 15~20% more processing time was consumed due 

to dimensional increment.  

 

Table 4.3 Processing time of varying observations and particle populations 
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4.4.  Discussions 

 

In this chapter, the physics models developed in Chapter 2 and the particle filtering techniques 

presented in Chapter 3 were utilized and integrated into several simulation case studies to validate the 

proposed online lubrication oil condition monitoring and remaining useful life prediction algorithm. The 

simulation case study only discussed the water or particle contaminated lubricant. In the future, if 

lubrication oil oxidation degradation can be successfully modeled either by physics based method or data 

driven modeling method, it would be interesting to test the models in simulation case studies designed in 

this chapter. At the moment, some ideas were proposed to quantify the oxidation experimental simulation 

test. Stable radical are needed and total acid number or total base number test kits are needed.  

The simulation case study result showed that the developed lubrication oil RUL prediction tool 

was effective and can be integrated into the current industry condition based maintenance expert systems 

like Supervisory Control and Data Acquisition (SCADA) system. Also, the RUL prediction results of the 

simulation case study showed that when only one sensor was utilized (single observation), the RUL 

prediction with particle filtering had a slight fluctuation around the true RUL at the beginning of the 

prediction process. When both viscosity and dielectric sensors were used, the prediction fluctuation at the 

beginning was reduced and the RUL prediction accuracy was greatly improved throughout the entire 

prediction process. Also, larger particle population increased prediction accuracy. However, as particle 

population increased, the computational time for RUL prediction increased along with it. Therefore, for 

condition monitoring and RUL prediction to provide feasible solution for maintenance management, one 

have to balance between, number of observations, particle populations, RUL prediction processing time, 

prediction accuracy and so forth. Instead of providing only prediction result, the developed oil RUL 

prediction algorithm is very flexible and can adaptively meet the need of different practitioners and 

industries.  
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CHAPTER 5 

SUMMARY AND PERSPECTIVES 

 

5.1 Summary 

 

In this dissertation, lubrication oil degradation basic degradation features have been investigated. 

Lubrication oil degradation is classified into three categories: particle contamination, water contamination 

and oxidation which are defined as three basic degradation features. A comprehensive review of current 

state of the art lubrication oil condition monitoring techniques and solution has been conducted. Viscosity 

and dielectric constant are selected as the performance parameters to model the degradation of lubricant 

based on the result of the literature review. Physics models have been developed to quantify the 

relationship between lubricant degradation level and the performance parameters. Commercially available 

viscosity and dielectric sensors have been acquired and installed in a temperature controlled chamber to 

validate the developed performance parameter based lubrication oil deterioration physics models.  Water 

and particle contamination are the most common oil deterioration features. Therefore, it is essential to 

keep monitoring the water and particle content of the lubricant. Particle filtering techniques are 

introduced and adapted to predict the remaining useful life of lubrication oil based on the developed 

physics models. In the particle filtering algorithm, state transition function was constructed to estimate the 

fault progression. Observation function was assembled based on the output of the sensors (physics model 

based on state transition function) which are viscosity and dielectric constant, respectively.  

The developed prognostic methodology has been implemented into two case studies to test the 

effectiveness and the robustness of the developed RUL prediction algorithm. The first study is an 

industrial scenario simulation with progressing water contamination. The second case study is an 

industrial simulation with progressing iron contamination. Temperature compensation module has been 

integrated to smooth the prediction result. The impact of the number of observations (number of sensors 

implemented), particle populations have been investigated and compared.  
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The contributions of the research described in this dissertation are summarized as follows: 

1) A comprehensive investigation and evaluation on current state of the art oil condition monitoring 

techniques and solutions have been conducted. The results of the investigation have showed that 

viscosity and dielectric constant sensors are capable of performing online oil condition analysis. 

This investigation is the first publication that systematically summarized and evaluated current oil 

condition monitoring solutions in the industry and academia, commercially available and under 

development. 

2) Physics based models for lubrication oil performance degradation evaluation have been 

developed. The two most common basic degradation features: water contamination and particle 

contamination have been both successfully modeled and validated. Commercial available 

dielectric constant sensor and viscometer have been acquired and utilized in lab based simulation 

tests to validate the developed physics models. Most oil degradation models reported are data 

driven, this research is the first one that developed physics based models to describe the 

degradation of the lubricant and also the first one to use physics based model to perform 

lubrication oil remaining useful life prediction. 

3) With the help of particle filtering technique, the remaining useful life prediction of lubrication oil 

has been successfully performed. The developed physics models have been integrated into the 

particle filtering framework as observation functions. The state transition function can be 

correlated based on previous experience and data of the system dynamics. Also within the particle 

filtering algorithm, an l-step ahead state parameter prediction and RUL estimator have been 

developed to enable this technique to perform l-step ahead prediction while  most of other papers 

published just show one-step prediction. Therefore the developed RUL prediction technique is 

capable of providing practical and feasible solution to the current condition based maintenance 

systems. This is the first time particle filtering technique was successfully implemented to predict 

the remaining useful life of the lubrication oil. 
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4) The developed lubrication oil condition monitoring and RUL prediction technique has been 

validated using two simulation case studies, water contamination case study and particle 

contamination case study. Within the industrial simulation model, a temperature compensation 

module has been integrated into the physics model and RUL prediction algorithm. This module 

enhances the lubrication oil condition monitoring and RUL prediction algorithm so the developed 

technique can handle highly fluctuating operating temperature conditions with reliable and 

consistent RUL prediction result. 

 

5.2 Topics for Future Research  

 

After the successful development and validation of the physics models for water and particle 

contamination, there are still many topics that need to be covered in the future. Since only two of the three 

basic degradation features are covered. Lubrication oxidation degradation remains to be unsolved. The 

reason is that the lubrication oxidation is a very complicated process and is very hard to quantify. 

Therefore lab based oxidation simulation experiment is hard to perform. However, based on our 

preliminary research, some feasible ideas have been proposed. Based on recent literature and product 

simulation tests from other companies, the author suggests using a stable free radical named DPPH. The 

most common performance parameter to describe the oxidation degradation of lubrication oil are total 

acid number (TAN) and total base number (TBN). It is very likely that oxidation process will have a data 

driven model as system dynamic model. In order to be able to validate the oxidation model, one needs to 

design experiments and be able to quantify the relationship between DPPH concentration level and the 

TAN level. However, the relationship between the level of DPPH and TAN calls for further investigation. 

Therefore, a much longer time period is required for the research. Oil samples that have TAN labeled on 

them will definitely help. Additional time is needed to investigate the relationship between TAN and the 

amount of DPPH. In order to evaluate the level of oxidation simulated by DPPH, TAN test kit is needed 

for comparison. Total Acid Number test kit can be purchased from Kittiwake. The order information is 
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FG-K24743-KW, ECON TAN drop test kit. The product catalog is available online. This kit can perform 

the test 25 times. Two or more of these kits may be needed for future tests. DPPH can be purchased from 

Sigma Aldrich for $273.00 (5g). Currently, the amount needed for the oxidation test is uncertain. There is 

always a possibility that more DPPH may be needed in the future. Because the DPPH has human health 

impact categorized as Health Hazard GHS08, laboratory protection equipment is also needed including 

rubber gloves, cloth towels, goggles and respirators with spare filters. 

Once the lubrication oil oxidation model is developed and validate, there are still many things in 

the future that needs to be considered. Under practical industrial operating condition, there is usually 

more than one kind of basic degradation feature exists in the circulation system. Also, oxidation, water 

contamination, particle contamination are not mutually exclusive. Water contamination causes oxidation. 

Oxidation normally leads to water contamination and particle contamination. Most of the mechanical 

systems do offer high levels of filtering to get rid of the contaminated particle as much as they could. 

However, most oil circulation systems, except from at the point of the oil breather, are designed to be 

perfectly sealed from the ambient environment. Hence, once water gets into the circulation system, it is 

very hard to get out. In the future, one needs to develop physics or data driven models for coexisting basic 

degradation features. Due to the complex nature of the coexisting contamination degradation, it seems 

more likely that data driven model is the way to go. Once the model that can hand multiple contamination 

coexisting oil degradation, one can always try to use particle filtering technique to predict the remaining 

useful life of the lubricant. 
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