
Adversarial Inverse Reinforcement Learning with Changing Dynamics

BY

ANDREA TIRINZONI
B.S, Politecnico di Milano, Milan, Italy, 2015

THESIS

Submitted as partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Chicago, 2017

Chicago, Illinois

Defense Committee:

Brian D. Ziebart, Chair and Advisor

Piotr J. Gmytrasiewicz

Marco D. Santambrogio, Politecnico di Milano

To my dear friend Pino

ii

ACKNOWLEDGMENTS

I want to thank my advisor, professor Brian Ziebart, for giving me the opportunity to work

on this project and supporting me during its development. Thanks to everyone working in the

Purposeful Prediction Lab for helping me and spending time with me during the last semester.

I also want to thank my Polimi advisor, professor Marcello Restelli, for providing his feedback

on this work.

I want to thank my parents, Tiziana and Stefano. Without their support, confidence, and

motivation, I would not be writing this document. Thanks to all my friends for sharing my

happiness when I was admitted at UIC and motivating me during this whole year in Chicago.

Thanks to the Polimi-UIC students of Fall 2016, Marco, Luca, Alessandro, Davide, Giacomo

and Eleonora, who shared with me this new experience and with whom I had an unforgettable

time.

Finally, I want to thank Eleonora for her continuous support during the last semester, for

her help in the review of this document and her precious suggestions.

AT

iii

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1
1.1 Problem Description . 2
1.2 Motivations . 3
1.3 Contributions . 5
1.4 Document Outline . 5
1.5 Mathematical Notation . 6

2 BACKGROUND . 7
2.1 Markov Decision Processes . 7
2.2 Partially Observable Markov Decision Processes 11
2.2.1 Point-based Value Iteration . 13
2.3 Directed Information Theory . 14
2.4 Imitation Learning . 16
2.4.1 Behavioral Cloning . 16
2.4.2 Inverse Reinforcement Learning 17

3 RELATED WORK . 21
3.1 Feature Matching . 21
3.2 Maximum Causal Entropy IRL 23
3.3 Maximum Margin Planning . 24
3.4 Adversarial Inverse Optimal Control 25

4 PROBLEM DEFINITION . 28
4.1 Domain Description . 28
4.2 Problem Formulation . 30

5 ADVERSARIAL FORMULATION . 31
5.1 Constrained Zero-Sum Game . 31
5.2 Unconstrained Zero-Sum Game 32
5.2.1 Weight Sharing Relaxation . 33
5.3 Learning Algorithm . 34
5.3.1 Double Oracle . 35
5.3.2 Gradient Descent . 37

6 MULTIPLE-MDP OPTIMIZATION 42
6.1 Problem Definition . 42
6.2 Approximate Dynamic Programming 43

iv

TABLE OF CONTENTS (continued)

CHAPTER PAGE

6.2.1 Dynamic Program Properties . 49
6.3 Modified Point-Based Value Iteration 53
6.3.1 Modified Value Backup . 55
6.3.2 Modified Belief Expansion . 56
6.3.3 Performance Analysis . 58
6.4 Application to Adversarial IRL 62

7 EXPERIMENTAL RESULTS . 64
7.1 Experiment Settings . 64
7.2 Random MDP . 66
7.2.1 Optimal Demonstrations . 67
7.2.2 Sub-optimal Demonstrations . 68
7.3 Grid World . 73
7.3.1 Task Definition . 73
7.3.2 Asymptotic Performance . 77
7.3.3 Single Optimal Trajectory . 79
7.3.4 Multiple Demonstrations . 80
7.3.5 Highly Sub-optimal Demonstrations 82
7.4 Discussion . 84

8 CONCLUSION AND FUTURE WORK 86

CITED LITERATURE . 88

VITA . 91

v

LIST OF TABLES

TABLE PAGE
I BATCH GRADIENT DESCENT FOR ADVERSARIAL IRL . . 41
II MODIFIED POINT-BASED VALUE ITERATION 54
III MODIFIED VALUE BACKUP . 56
IV MODIFIED BELIEF EXPANSION 57

vi

LIST OF FIGURES

FIGURE PAGE
1 a) The reinforcement learning problem, b) The IRL problem. 18
2 a) The true value function for state s and time step t, b) All hyper-

planes describing the true value function. 61
3 The 6 hyperplanes computed by modifiedPBVI. 61
4 Distribution of performances obtained by multiple runs on single-

dynamic optimal demonstrations. 68
5 Learner and demonstrator’s performance with weight sharing for dif-

ferent numbers of demonstrations. 69
6 Learner and demonstrator’s performance without weight sharing for

different numbers of demonstrations. 70
7 Learner and demonstrator’s performance with weight sharing for dif-

ferent numbers of features. 71
8 Learner and demonstrator’s performance without weight sharing for

different numbers of features. 72
9 Learner and demonstrator’s performance with weight sharing for dif-

ferent values of the noise standard deviation. 73
10 a) The Grid World environment, b) The reward the agent obtains

from each state, c) The optimal sequence of actions. 74
11 a) The first sub-optimal dynamics, b) The second sub-optimal dy-

namics, c) The optimal path for dynamics τ2. 77
12 Learner’s asymptotic performance on τ1 and τ2 for each run. The

orange line specifies the optimality threshold. 78
13 Learner’s performance on τ1 and τ2 given a single optimal trajectory. 79
14 Demonstrator and learner’s performance as the number of demon-

strations varies. 80
15 Cosine similarity between the true reward weights and the learned

weights. 82
16 a) The first highly sub-optimal dynamics, b) The second highly sub-

optimal dynamics. 83
17 Learner’s performance on highly sub-optimal dynamics. The orange

line shows the optimality threshold. 84
18 Cosine similarity between true and learned weights on highly sub-

optimal dynamics. 85

vii

LIST OF ABBREVIATIONS

IRL Inverse Reinforcement Learning

IOC Inverse Optimal Control

MDP Markov Decision Process

POMDP Partially Observable Markov Decision Process

PWLC Piece-Wise Linear and Convex

PBVI Point-Based Value Iteration

viii

SUMMARY

Most work on inverse reinforcement learning, the problem of recovering the unknown re-

ward function being optimized by a decision-making agent, has focused on cases where optimal

demonstrations are provided under single dynamics. We analyze the more general settings

where the learner has access to sub-optimal demonstrations under several different dynamics.

We argue that several problems, such as learning under covariate shift or risk aversion, can be

modeled in this way.

We propose an adversarial formulation where the learner tries to imitate a constrained,

worst-case estimate of the demonstrator’s control policy. We adopt the method of Lagrange

multipliers to remove the constraints and produce a convex optimization problem.

We prove that the constraints imposed by the multiple dynamics lead to an NP-Hard opti-

mization subproblem, the computation of a deterministic policy maximizing the total expected

reward from several different Markov decision processes. We propose a tractable approximation

by reducing the latter to the optimal control of partially observable Markov decision processes.

We show the performance of our algorithm on two synthetic data problems. In the first

one, we try to recover the reward function of a randomly generated Markov decision process,

while in the second we try to rationalize a robot navigating through a grid and demonstrating

goal-directed behavior.

ix

CHAPTER 1

INTRODUCTION

Inverse reinforcement learning (IRL) [1][2][3] is the problem of recovering the unknown re-

ward function being optimized by an agent in a decision-making context (modeled as a Markov

decision process) given demonstrated behavior. This has two main motivations. First, neuro-

science studies proved that reinforcement learning [4], the problem of learning the optimal way

to behave in order to maximize a long-term utility, naturally occurs in the human brain and in

certain animals [5] [6]. Although it is known that these subjects act to maximize some reward,

the latter is generally unknown. Thus, it seems wise to estimate the optimized utility by ob-

serving the agent’s behavior. For instance, reinforcement learning occurs in honey bees during

the process of nectar acquisition [7]. However, honey bees might weigh nectar intake with some

other factors, such as traveled distance or risk, in order to decide whether the acquisition is

worth. Since specifying such weights is definitely a complicated problem, it makes much more

sense to estimate them by observing the bees’ behavior.

The second motivation behind IRL is the difficulty in creating artificial decision-making

agents. The common approach is to design a reward function specifying the task to be solved

and train the agent to behave so as to maximize such reward. However, this constitutes a non-

trivial problem when the task to be specified is complicated. Consider for example the problem

of learning how to drive a car. The driver might take into consideration several variables in

order to decide what is the best thing to do, such as the speed limit on the current road, the

1

2

presence of other cars or pedestrians, and so on. Once again, weighing such variables so as to

obtain the desired behavior is very difficult, while it is much easier to learn from, e.g., human

driving demonstrations (this is called apprenticeship learning [3]).

In this document, we analyze and solve a particular IRL problem, which we describe in

section 1.1. The motivations and resulting contributions of this work are detailed in sections 1.2

and 1.3, respectively. Finally, the document is outlined in section 1.4, while the mathematical

notation we adopt is specified in section 1.5.

1.1 Problem Description

Most work on IRL has focused on problems where provided demonstrations are optimal

(or nearly optimal). Furthermore, it is common to assume that demonstrations are generated

under fixed dynamics. This allows efficient algorithms for recovering a reward function, not

necessarily the real one, that makes the learner achieve performances comparable to those of

the demonstrator, even when the former is acting under different dynamics. However, existing

algorithms do not support the case where demonstrations are provided under different dynamics,

and it is difficult to extend them to handle such situation.

We consider the more general settings where sub-optimal demonstrations are provided under

different dynamics. We suppose the demonstrator is acting according to some policy that is

optimal for a known environment (i.e., state transition dynamics) and that demonstrations are

provided under a set of different known environments. We suppose the existence of a single

reward function that can be represented as a linear combination of given features of the states.

Our goal is to estimate a reward function that allows the learner to imitate the demonstrator

3

under its dynamics (those from which we are not provided trajectories), and to improve the

expert’s sub-optimal performance in the observed environments.

We adapt the adversarial formulation described in [8] to efficiently solve our generalized

problem. Our formulation is still a zero-sum game where the learner tries to imitate a con-

strained, worst-case estimate of the demonstrator’s control policy. However, the addition of

more constraints, due to the demonstrations under different dynamics, leads to an NP-Hard

optimization problem, that is, the computation of a deterministic policy maximizing the total

expected reward from several processes. We propose a tractable approximation by reducing the

latter to the optimal control of partially observable Markov decision processes [9][10].

1.2 Motivations

The problem we are trying to solve has three main different motivations. We highlight them

in this section.

Imitation Learning under Covariate Shift

In machine learning, covariate shift [11] denotes a scenario where train data and test data

have different distributions, but the concept that is learned (typically the probability of the

target variable given the inputs) remains the same. When the distributions are known, a

simple solution is to re-weight the train data by adopting importance sampling [12]. Consider,

however, the case where an agent tries to imitate an expert (called imitation learning and better

introduced in 2), and suppose the latter provides demonstrations under different dynamics than

those for which it is optimal. If test data, used to evaluate the imitator, is provided under

the latter dynamics, we obtain a covariate shift problem where importance sampling is not

4

applicable (the demonstrator’s policy is unknown). We argue that our method can be used to

deal with such case without re-weighting the data.

IRL under Risk Aversion

Risk aversion in the context of Markov decision processes [13] is the idea that maximizing

the expected reward may not lead to the optimal behavior in many cases. Consider, for instance,

a robot that is moving towards a certain goal in an environment with several pitfalls where the

former could break. Maximizing the expectation could lead the robot to move very close to a

pitfall in order to reach the goal as soon as possible. However, this is not taking into account

the intrinsic variance in the environment, which, with very small probability, might bring the

robot to a pitfall, leading to disastrous consequences. On the other hand, a risk averse behavior

is such that the agent moves safely far away from the pitfalls.

The main idea to deal with risk aversion is to maximize different functions instead of the

expectation. We argue that another approach is to change the agent’s dynamics so that the

desired risk-averse behavior is learned and, successively, executed in the real environment.

Consider now the case when the demonstrator in our IRL settings is risk-averse. This

means that trajectories are generated in those environments where the risk-averse behavior is

employed, but the corresponding policy is only optimal for the changed dynamics used to learn

such behavior. Once again, our framework can be used to deal with such problem.

5

IRL under Robust Behavior

Robust control of Markov decision processes [14] is the problem of finding the best way to

behave when state-transition dynamics are uncertain. The typical solution is to compute the

optimal policy under the worst-case dynamics among those in certain uncertainty sets.

Suppose now the expert in our IRL settings is robust. This means it is executing such robust

policy under different instances of the uncertain dynamics. We argue that our framework can

be used to recover the reward function even in this situation.

1.3 Contributions

Our contribution is two-fold. First, we propose an approximate solution to the NP-Hard

problem of computing the optimal deterministic policy maximizing the total reward from dif-

ferent processes. This a general problem, not necessarily only related to IRL, whose solution

can be re-used in many contexts. To this end, we analyze and solve it from the most general

perspective possible, so as to ease its re-usability.

Our second contribution is specifically related to IRL. We propose a framework for dealing in

a principled way with the problem introduced in section 1.1 and motivated in section 1.2. Since

existing algorithm are not suitable for our particular settings, we believe our work constitute a

significant improvement.

1.4 Document Outline

The document is organized as follows. In chapter 2, we provide the mathematical back-

ground needed to understand this work. Focus is given to Markov decision processes (MDPs),

the mathematical model that specifies our decision-making settings, partially observable Markov

6

decision processes (POMDPs), which we adopt to approximate the NP-Hard sub-problem of our

formulation, and causally conditioned probability distributions, which compactly represent our

stochastic processes. Furthermore, we introduce the reader to imitation learning, behavioral

cloning and, most importantly, IRL. In chapter 3, we continue the description of IRL by provid-

ing an overview of the most important state-of-the-art algorithms (feature matching, maximum

entropy and maximum margin planning). We also detail the adversarial approach we extend

to define our formulation. Chapter 4 formally defines the problem we are trying to solve, while

Chapter 5 presents our adversarial formulation and derives our learning algorithm. In chapter

6, we reduce the NP-Hard sub-problem to planning in partially observable environments. We

propose a modified POMDP algorithm, analyze its performance and, finally, specify its appli-

cation to our IRL formulation. In Chapter 7, we demonstrate the performance of our algorithm

on two synthetic-data problems. In the first we randomly generate an MDP and try to recover

its reward function, while in the second we do the same for a robot navigating through a grid.

Finally, chapter 8 summarizes our work and describes some of the possible future extensions.

1.5 Mathematical Notation

In this document, we adopt the following mathematical notation:

• Variables are denoted as lower-case letters (x,y,...);

• Random variables are denoted as upper-case letters (X,Y,...);

• Vectors are denoted as lower-case bold letters (x,y,...);

• Random vectors are denoted as upper-case bold letters (X,Y,...).

CHAPTER 2

BACKGROUND

This chapter provides the necessary background to fully understand this work. Section

2.1 starts by describing MDPs, the mathematical tool to model environments where reinforce-

ment learning and inverse reinforcement learning are applied. Then, section 2.2 provides an

overview of POMDPs, which we employ in chapter 6 to solve an important sub-problem of

our formulation. Since these two topics are well known and well described in the literature,

we simply provide the mathematical foundations, while referring the reader to other sources

for more detailed explanations. Section 2.3 quickly introduces directed information theory and

causally conditioned probability distributions, which allow for a more concise representation of

our stochastic processes. Finally, Section 2.4 describes the problem of imitation learning, fo-

cusing on the two main methodologies to solve it: behavioral cloning and inverse reinforcement

learning.

2.1 Markov Decision Processes

This chapter provides a quick introduction to MDPs. Since in this document we restrict

ourselves to finite-state, finite-horizon MDPs, we focus on such case. A description of the more

general settings can be found in [15] and [4].

MDPs are discrete time stochastic control processes used to model complex decision-making

problems under uncertainty. At each time of the process, the agent is in some state, takes some

7

8

action and observes a reward for taking that action in that particular state. The agent’s task is

to find the sequence of actions so as to maximize the long-term total reward. Definition 2.1.1

formalizes this concept.

Definition 2.1.1. A Markov Decision Process (MDP) is a tuple < S,A, τ, R, p0 >, where:

• S is a finite set of states;

• A is a finite set of actions;

• τ are the state transition dynamics, where τ(st+1 | st, at) is the probability of the next

state being st+1 given that we execute action at from state st;

• R is a reward function, where R(st) specifies the reward that the agent receives for entering

state st
1;

• p0 is a distribution of probability over initial states, where p0(s) is the probability that s

is the state where the process starts.

A control policy π(at | st) is a probability distribution over actions given states. The process

starts at time t = 1, where the first state is drawn from the initial distribution p0. Then, the

agent selects the first action a1 according to its policy π(a1 | s1) and makes a transition to

another state as specified by the dynamics τ(s2 | s1, a1). The agent successively selects the

1Notice that the reward is usually specified as a function R(s, a) of state and action, but in this
document we consider it as a function of the state alone. The extension is trivial.

9

second action, and so on until the process ends in state sT . The goal is to find the policy π?

which maximizes the sum of expected rewards, that is:

π? = argmax
π

E[

T∑
t=1

R(St) | τ, π] (2.1)

It is possible to prove that the knowledge of the current state is sufficient for acting optimally

in the future; that is, knowing the past history of state-action sequences does not add any

further information. A process where this is the case is said to be Markovian. Furthermore, the

optimal policy in an MDP is always deterministic, i.e., it can be specified as a mapping π?(st)

from states to actions returning the best action at for each state st.

For a particular policy π, the state value function represents the total expected reward that

is achieved from each state st by following π:

V π(st) = R(st) + E[

T∑
i=t+1

R(Si)|τ, π] (2.2)

while the state-action value function represents the total expected reward that is achieved by

executing action at from state st and then following π:

Qπ(st, at) = R(st) + Est+1∼τ(·|st,at)[

T∑
i=t+1

R(Si)|τ, π] (2.3)

These two quantities are related by the so-called Bellman expectation equations [16], as specified

in Theorem 2.1.1.

10

Theorem 2.1.1. Let M = < S,A, τ, R, p0 > be an MDP and π(at | st) be a policy. Then we

can compute the state value function V π(st) and the state-action value function Qπ(st, at) for

π by solving the following dynamic program:

V π(sT) = R(sT) (2.4)

V π(st) =
∑
at

π(at | st)Qπ(st, at) ∀t = T − 1, ..., 1 (2.5)

Qπ(st, at) = R(st) +
∑
st+1

τ(st+1 | st, at)V π(st+1) ∀t = T − 1, ..., 1 (2.6)

The following theorem states Bellman’s optimality equations [16], which represent one of

the most important results in this field and allow the computation of the optimal policy π? by

means of dynamic programming.

Theorem 2.1.2. Let M = < S,A, τ, R, p0 > be an MDP. Then we can compute the optimal

policy π?(st) for M by solving the following dynamic program:

V π?
(sT) = R(sT) (2.7)

V π?
(st) = max

at
Qπ

?
(st, at) ∀t = T − 1, ..., 1 (2.8)

π?(st) = argmax
at

Qπ
?
(st, at) ∀t = T − 1, ..., 1 (2.9)

where Qπ
?

is computed as specified in Equation 2.6.

11

2.2 Partially Observable Markov Decision Processes

This section quickly introduces POMDPs, focusing on the properties we use in this work.

For a more detailed description, we refer the reader to [17].

POMDPs [9] [10] provide an extension of MDPs to partially observable environments, i.e.,

those where the agent cannot directly observe the state but only receives partial information

about it. Definition 2.2.1 formalizes this new model.

Definition 2.2.1. A partially observable Markov decision process (POMDP) is a tuple <

S,A,Ω, τ, O,R, b0, γ >,where:

• S is a finite set of states;

• A is a finite set of actions;

• Ω is a finite set of observations, where each observation gives partial information about

the state the agent is into;

• τ are the state transition dynamics, where τ(st+1 | st, at) is the probability of the next

state being st+1 given that we execute action at from state st;

• O are the conditional observation probabilities, where O(ot+1 | st+1, at) is the probability

of observing ot+1 after taking action at and transitioning to state st+1;

• R is the reward function, where R(st, at) specifies the utility the agent obtains after taking

action at from state st;

• b0 is the initial state probability distribution (also called initial belief state);

12

• γ ∈ [0, 1] is the discount factor and it is used to discount future rewards in infinite-horizon

processes.

The process starts at time t = 1, where the first state s1 is drawn from b0. However,

the agent cannot directly observe such state but receives an observation o1. Then, the agent

selects an action a1, transitions to the unobserved state s2 according to τ(s2 | s1, a1), receives

an observation o2 according to O(o2 | s2, a1) and finally obtains a reward R(s1, a1). Then,

the process is repeated (forever in case of infinite-horizon). The agent’s goal is to select the

sequence of action maximizing the total (discounted) reward over time.

In order to solve the problem, the agent keeps, at each time, a distribution over states S

called belief state. A belief state is an |S|-dimensional vector where each component represents

the probability that the agent is in that particular state. Then, the partially observable MDP

is reduced to a continuous fully observable MDP where the state space is B, the space of all

belief states (if we have |S| states, B is the (|S| − 1)-dimensional simplex). In such MDP, the

state-transition dynamics are:

τ(bt+1 | bt, at) =
∑
o∈Ω

Pr(bt+1 | bt, at, o)Pr(o | at, bt) (2.10)

and the reward function is:

R(bt, at) =
∑
s∈S

R(s, at)b(s) (2.11)

13

According to Bellman optimality equations, the value function for the optimal policy of the

fully observable MDP can be written as:

Vt(bt) = max
at∈A

R(bt, at) + γ
∑
bt+1∈B

τ(bt+1 | bt, at)Vt+1(bt+1)

 (2.12)

This is a function of a continuous variable and cannot be computed by standard value iteration

[4]. However, it turns out that such function is piece-wise linear and convex in b [9] and can be

written as:

Vt(bt) = max
α∈Vt

bᵀtα (2.13)

where Vt is a set of vectors representing the normal directions to the hyperplanes describing

the function (we call them alpha-vectors).

Such formulation allows for efficient algorithms to compute the value function (and the as-

sociated optimal policy). The most common approach, and the one we adopt in this document,

is point-based value iteration (PBVI), which we describe in the next section.

2.2.1 Point-based Value Iteration

Point-based value iteration [18] approximates the optimal value function of a POMDP by

considering only a restricted set of representative belief states B and computing one alpha-vector

for each of them. Then, the value function is represented as the set V containing all alpha-

vectors learned by the algorithm. The motivation behind PBVI is that most alpha-vectors in

the full set exactly describing V are dominated by some others. This means that, when taking

the maximum over actions, such vectors are never used and can be safely pruned. Since the

14

total number of alpha-vectors grows exponentially with the number of actions and observations,

pruning is necessary to make the problem tractable. In PBVI, this is done implicitly by com-

puting the dominating alpha-vector at each belief in B. Thus, no dominated alpha-vector is

ever added to V.

The algorithm proceeds iteratively by alternating two main procedures:

• value backup: given the current belief set B and the current value function V, computes

an update V ′ of V by applying some backup equations similar to the Bellman optimality

equations (a modified version of Equation 2.12);

• belief expansion: adds new belief states to the current belief set B. For each belief in B,

this is done by taking each action and simulating a step forward, thus leading to a new

belief state. Then, only the farthest belief from the current set B is retained.

These two procedures are then repeated for a specified number of iterations. The more iterations

are executed, the better is the value function approximation (i.e., the number of alpha-vectors

that are computed grows with the number of iterations).

2.3 Directed Information Theory

In this document, we make use of causally conditioned probability distributions to represent

our stochastic processes. Such distributions arise naturally from directed information theory

[19], which associates a direction to the flow of information in a system.

15

Given two random vectors Y1:T and X1:T , the causally conditioned probability distribution

of Y given X is:

p(Y1:T ||X1:T) =
T∏
t=1

p(Yt |X1:t,Y1:t−1) (2.14)

Notice the difference with respect to the conditional probability of Y given X in the limited

knowledge about the conditioning variable X available:

p(Y1:T |X1:T) =
T∏
t=1

p(Yt |X1:T ,Y1:t−1) (2.15)

Using this notation, we can compactly represent our processes as:

τ(S1:T || A1:T−1) =

T∏
t=1

p(St | S1:t−1,A1:t−1)
(M)
=

T∏
t=1

p(St | St−1, At−1) (2.16)

π(A1:T−1 || S1:T−1) =

T−1∏
t=1

p(At | S1:t,A1:t−1)
(M)
=

T∏
t=1

p(At | St) (2.17)

where the last equalities (M) hold only under the Markovian assumption. The product of these

two quantities represent the joint distribution of state-action sequences:

p(S1:T ,A1:T−1) = τ(S1:T || A1:T−1)π(A1:T−1 || S1:T−1) (2.18)

and can be used to concisely write the total expected reward as:

E[
T∑
t=1

R(st) | τ, π] =
∑

S1:T ,A1:T−1

p(S1:T ,A1:T−1)R(S1:T) (2.19)

16

where R(S1:T) is the sum of rewards received along the state sequence S1:T .

2.4 Imitation Learning

In imitation learning, an agent tries to replicate another agent’s behavior. The imitating

agent is usually called ”learner”, while the imitated one is referred to as ”expert” or ”demon-

strator”. The environment for this context is generally modeled as a set of states in which the

agents can be located, and a set of actions that they can take to perform state transitions. Then,

the problem of imitation learning reduces to finding a policy, that is, a mapping from states to

actions (or a distribution of probability over actions given states) that best approximates the

expert’s policy. The latter is known only through demonstrations, i.e., the expert shows how

to behave (by taking actions in different states) and the learner has to find the policy that best

reproduces the demonstrated state-action sequences.

The two most common approaches to imitation learning are behavioral cloning and inverse

reinforcement learning, which are described in the next two sections.

2.4.1 Behavioral Cloning

Behavioral cloning [20] is the most common approach to imitation learning. The main

problem is reduced to a supervised learning one, where a mapping from states, or features of

such states, to actions is learned by adopting classification techniques. Such method has been

successfully adopted in several different fields. Robotics is the most common, where excellent

results have been achieved in a wide variety of tasks. Among the notable examples, Pomerleau

[21] implemented an autonomous land vehicle that learns to follow a road given demonstrated

trajectories (from camera images) and using a neural network. LeCun et al. [22] proposed

17

a system for learning obstacle avoidance from human demonstrations (again in the form of

images) and using a convolutional neural network. Sammut et al. [23] designed an algorithm to

learn how to fly an aircraft given human demonstrations from a simulation software and using

decision trees.

Although behavioral cloning has proven to perform very well on some specific tasks, it

provides poor results when the goal is to maximize a long-term utility. The main issue with

behavioral cloning (and with the supervised techniques adopted) is that samples (typically state-

action couples) are supposed to be independent. This is clearly not the case when sequential

decision making is demonstrated. For example, the state the agent is into depends on the

previous state and action. Thus, when the demonstrator’s behavior aims at maximizing a long-

term reward, behavioral cloning algorithms tend to generalize poorly and fail at reproducing

the optimal performance.

2.4.2 Inverse Reinforcement Learning

The idea to tackle problems of imitation learning when the demonstrator is showing se-

quential decision-making behavior is to formalize them as MDPs. In this context, the expert

is supposed to be optimizing an unknown long-term reward function, and imitation learning

reduces to estimating such function. This problem is known as inverse reinforcement learning

(IRL) or inverse optimal control (IOC) [1][2][3].

In optimal control and reinforcement learning [4], the agent is given a model of the envi-

ronment and a reward function, and must generate optimal behavior by finding a policy that

18

(a) (b)

Figure 1: a) The reinforcement learning problem, b) The IRL problem.

maximizes the long-term reward1. This is shown in Figure 1(a). In IRL, on the other hand, the

agent is given trajectories showing the expert’s (optimal) policy together with a model of the

environment, and must recover the reward function being optimized. This is shown in Figure

1(b).

Differently from behavioral cloning, IRL attempts to rationalize demonstrated sequential

decisions by estimating the utility function that is being maximized by the expert. Since the

whole field of reinforcement learning [4] is based on the idea that ”the reward function is the

most succinct, robust, and transferable definition of the task” [2], its recovery seems wiser

than directly learning a mapping from states to actions. The estimated reward function can

be successively used to learn the best control policy via classic reinforcement learning. Thus,

the main advantage is that, once the reward function is recovered, it is easy to learn a policy

that maximizes the expected reward over a long-term horizon, even when demonstrations are

1To be precise, in reinforcement learning the agent is not explicitly given these two quantities but
has the ability to take actions in the environment and observe the resulting reward.

19

sub-optimal or the environment the learner is acting in is slightly different than that where the

expert is acting in.

We can formalize the IRL problem as follows [1]. Given:

• a model of the environment the expert is acting in (i.e., state-transition dynamics τ), and

• a set of trajectories ζi, where each trajectory is a sequence (s1, a1, s2, ..., aT−1, sT) of states

and actions generated by executing the expert’s (optimal) policy π? under τ ,

estimate the reward function R? being optimized by the expert. More specifically, the problem

is reduced to estimating a reward function that makes the demonstrated behavior optimal (i.e.,

rationalizes such behavior). Formally, the estimated reward function R must satisfy:

E

[
T∑
t=1

R(st) | τ, π?
]
≥ E

[
T∑
t=1

R(st) | τ, π

]
∀π (2.20)

However, this formulation has several challenges. First, it constitutes an ill-posed problem

since it is easy to prove that there exist many solutions (actually, infinitely many) [2]. As an

example, a constant reward (e.g., a reward that is always zero) makes every policy optimal.

Nevertheless, it is very unlikely that such function matches the one that is sought. Second, it is

not possible to explicitly compute the left-hand side since the expert’s policy π? is not given but

is demonstrated from sample trajectories. Furthermore, this formulation makes the assumption

that the expert is optimal (i.e., π? is optimal). When this is not the case, the problem becomes

infeasible. Last, we can solve the inequalities only by enumerating all possible policies, which

is computationally not practical.

20

Many algorithms have been proposed to tackle such difficulties. We defer the description of

the most important ones to the next chapter.

CHAPTER 3

RELATED WORK

In the previous chapter, we introduced and formally defined inverse reinforcement learning,

the problem of recovering the unknown reward function of an MDP, while describing its main

challenges. This chapter presents some of the state-of-the-art IRL algorithms, focusing on how

they tackle such complications. Section 3.1 describes feature matching, one of the first IRL

algorithms and whose underlying assumptions represent the foundations of many successive

works. Then, section 3.2 describes maximum entropy IRL, which provides a principled way

of estimating the demonstrated policy, while section 3.3 presents maximum margin planning,

which casts the main problem into a maximum margin one. Finally, section 3.4 introduces the

adversarial approach that we extend to build our framework.

3.1 Feature Matching

Abbeel and Ng [3] represent rewards as linear combinations of given features of the states:

R(s) = wᵀφ(s) (3.1)

Given a policy π, they define the feature expectations of π as:

µ(π) = E

[∞∑
t=0

γtφ(st) | π

]
(3.2)

21

22

Their main intuition is that, if the feature expectations of a policy π match those of the expert

policy π?:

‖µ(π)− µ(π?)‖ ≤ ε (3.3)

then π is guaranteed to perform as well as π? for all rewards with ‖w‖1 ≤ 1.

They propose an iterative procedure that looks for a policy satisfying the condition of

Equation 3.3. The algorithm keeps a set of policies π(i) together with the corresponding feature

expectations µ(i). At each iteration, the following quadratic program is solved to find the

weights w that maximally separates the expert’s feature expectations µE from the ones in the

above-mentioned set:

max
w:‖w‖2≤1

min
i
wᵀ(µE − µ(i)) (3.4)

Notice that this is equivalent to finding a maximum margin hyperplane separating µE from

all µ(i). Then, the optimal policy for the new weights is computed together with its feature

expectations, and the algorithm is iterated until the two sets are separated by a margin less

than ε. Finally, the output is one of the learned policies, if the demonstrator is optimal, or a

mixture of some of them, if the demonstrator is sub-optimal.

Although this algorithm always achieves the feature matching property (which provides a

way to solve the degeneracy problem of reward functions), it is not guaranteed to recover a

reward that is similar to the true one.

23

3.2 Maximum Causal Entropy IRL

While Abbeel and Ng’s algorithm [3] solves the degeneracy problem by matching the em-

pirical sum of features, which leads to a (mixture) policy that achieves performances very close

to those of the demonstrator even without recovering the true reward function, it introduces

another ambiguity: many policies, or mixtures of policies, that match the feature expectations

exist. No principled way to choose among them is proposed by the authors.

Ziebart et al. [24] [25] solve the above-mentioned ambiguity by employing the principle of

maximum causal entropy. Their formulation seeks a probability distribution over actions given

states that maximizes the causal entropy while matching the feature expectations:

argmax
π

H(A1:T || S1:T)

such that µ(π) = µE

(3.5)

where H(A1:T || S1:T) = E[− log π(A1:T || S1:T)] denotes the causal entropy of the distribution

π [26]. The authors prove that solving this optimization problem reduces to minimizing the

worst-case prediction log-loss and yields a stochastic policy of the form:

π(at | st) = eQ(st,at)−V (st) (3.6)

where:

Q(st, at) = wᵀφ(st) + Eτ(.|st,at) [V (St+1)] (3.7)

24

V (st) = softmax
at

Q(st, at) (3.8)

and the softmax function is defined as:

softmax
x

f(x) = log
∑
x

ef(x) (3.9)

Then, the reward weights achieving such probability distribution can be computed by adopting

a convex optimization procedure. The authors show how the resulting algorithm allows for

efficient inference and successfully apply it to the problem of modeling route preferences and

inferring the destination given partial trajectories.

3.3 Maximum Margin Planning

Ratliff et al. [27] propose a different approach to selecting a policy (and corresponding

reward weights) that makes the expert better than all alternatives. They cast the problem into

a maximum margin one, where the goal is to find a hyperplane separating the demonstrator’s

feature expectations from those of any other policy by a structured margin. The resulting

formulation is the quadratic program:

min
w

1

2
‖w‖2 + Cξ

s.t. wᵀµ(π?) ≥ wᵀµ(π) + L(π?, π)− ξ ∀π
(3.10)

where L denotes a loss function comparing two policies and ξ are slack variables used to soften

the margin (whose effect is controlled by constant C). The rationale behind the inclusion of a

loss function into the maximum margin is that the latter should be larger for policies that are

25

very different than the demonstrated one. The authors allow the usage of any loss function, as

far as it can be factored into state-action couples. Furthermore, they allow data from different

MDPs to be used simultaneously.

One drawback of the quadratic program of Equation 3.10 is that it has a very large number

of constraints. In order to make learning practical, the authors solve it using an approximate

algorithm based on subgradient methods.

Differently from feature matching and maximum causal entropy IRL, this algorithm does not

try to find a policy that achieves the same performance of the expert, but it directly estimates

reward weights w. The policy used for imitation can successively be computed by optimizing

over the learned reward function.

3.4 Adversarial Inverse Optimal Control

Chen et al. [8] propose an adversarial framework for a more general imitation learning

and IRL setting, that is, the case where learner and demonstrator are acting in different en-

vironments. They consider a demonstrator acting according to the (unknown) policy π under

(known) dynamics τ , and a learner acting under different (known) dynamics τ̂ . Then, the main

idea is to find a policy π̂ minimizing a loss function comparing learner and demonstrator’s state

sequences. Formally:

argmin
π̂

E

[
T∑
t=1

loss(St, Ŝt) | τ, π, τ̂ , π̂

]
(3.11)

However, the demonstrator policy π is not known and the expectation cannot explicitly be

computed. In order to provide an estimate of such policy, an adversary is introduced to find

the policy π̌ that maximizes such imitative loss. To prevent the adversary from choosing very

26

bad policies, they consider the set of all stochastic policies that match the empirical sum of

features of the demonstrated trajectories [3] and allow π̌ to be picked only from that set. Thus,

the idea to deal with the feature-matching ambiguity is, in this case, to choose the worst

case (i.e., loss maximizing) policy from the restricted set. The final formulation is a zero-sum

game between the learner, looking for the best (stochastic) policy to minimize the loss, and the

adversary, trying to maximize such loss by selecting another (stochastic) policy in a constrained

way:

min
π̂

max
π̌∈Θ

E

[
T∑
t=1

loss(Ŝt, Št) | τ, π̌, τ̂ , π̂

]
(3.12)

where Θ is the set of all policies matching the expert feature expectations:

π̌ ∈ Θ⇔ E

[
T∑
t=1

φ(Št) | τ, π̌

]
= µE (3.13)

In order to solve such problem, they reduce the constrained zero-sum game to one that is

parameterized by a vector of Lagrange multipliers and solve it using the double oracle method

[28], while optimizing over such parameters using a simple convex optimization procedure [29].

This algorithm provides several advantages over existing methods, which represent the rea-

son why we extend it to solve our generalized problem. First, any loss function can be used (as

far as it can be decomposed over states). Second, it provides another principled way to solve

the feature matching ambiguity: simply pick the worst case policy. This allows the algorithm to

generalize well to new situations. Finally, the algorithm is proven to be Fisher consistent, i.e.,

27

the learned policy minimizes the loss under the assumption that the feature set is sufficiently

rich.

CHAPTER 4

PROBLEM DEFINITION

This chapter formalizes the problem we are trying to solve. Section 4.1 describes the general

domain we consider, while section 4.2 formulates the problem we are trying to solve.

4.1 Domain Description

Consider a domain where we have a finite set of states S, a finite set of actions A that

we can take in each state, a probability distribution p0(s) over initial states, and an unknown

reward function R?(s) specifying the utility we get after visiting state s. We suppose R? can

be written as a linear combination of given state features φ [3]:

R?(s) = w? · φ(s) (4.1)

where φ and w? are K-dimensional vectors, and · denotes the inner product operator.

We consider only finite-horizon processes of length T time steps, thus our policies are non-

stationary (i.e., time-variant). The extension to infinite-horizon (discounted) processes is trivial.

Suppose we have a demonstrator acting optimally in the above-mentioned domain accord-

ing to some unknown deterministic policy π(A1:T−1 || S1:T−1) and under transition dynamics

τ(S1:T || A1:T−1). Here the optimality of π is measured according to the unknown reward

function R?. Furthermore, suppose there is a set of dynamics τ1, τ2, ..., τD for which we are

provided demonstrations of π. This means that the demonstrator executes its policy π under

28

29

each dynamics, thus generating a set of sample trajectories ζ = {ζi,j | i = 1, ..., N, j = 1, ..., D},

where each trajectory is the sequence:

ζi,j = (s1, a1, s2, ..., aT−1, sT | π, τj)i (4.2)

On each of these trajectories, the demonstrator obtains a sequence of rewards. Since we defined

the reward function as a linear combination of state features, such sequence can be easily derived

from the sequence of observed features:

ψi,j = (φ(s1),φ(s2), ...,φ(sT) | π, τj)i (4.3)

Of fundamental importance for our algorithm is the empirical sum of features observed on a

certain trajectory:

c̃i,j =
∑

φ(s)∈ψi,j

φ(s) (4.4)

which allows us to estimate the expert’s feature expectations under dynamics τj from data as:

c̃j =
1

N

N∑
i=1

c̃i,j (4.5)

Notice that, since the demonstrator is executing a policy that is optimal for τ under different

dynamics, its behavior is likely to be sub-optimal on each τj .

30

4.2 Problem Formulation

Considering the above-mentioned assumptions, our goal is to find a reward function R(s)

that ”explains” (or better, rationalizes) the demonstrator’s behavior. More specifically, we

would like the optimal policies that maximize the estimated reward R for each τj to perform

at least as well as the demonstrator’s control policy π when receiving the true reward R?.

Formally:

E[

T∑
t=1

R?(st) | τj , πj] ≥ E[

T∑
t=1

R?(st) | τj , π] ∀j = 1, ..., D (4.6)

where πj is the policy that maximizes the estimated reward R under dynamics τj . Further-

more, we would like the optimal policy that maximizes the estimated reward under τ to have

performance close to the demonstrator, so as to imitate the latter.

Notice that we do not require our algorithm to perfectly recover the true reward function R?

(recall that the IRL problem is intrinsically ill-posed), but we are satisfied with one that allows

us to perform as the demonstrator or, possibly, to improve its (sub-optimal) performance.

Since the reward function we consider in Equation 4.1 is represented as a linear combination

of given features, the problem reduces to finding the best coefficients w of such combination.

Again, we do not require that w = w?.

CHAPTER 5

ADVERSARIAL FORMULATION

This chapter describes the adversarial formulation we adopt to solve the problem defined in

the previous chapter. Section 5.1 shows that our formulation takes the form of a constrained

zero-sum game, while Section 5.2 employs results from convex optimization [29] to reduce the

latter to a solvable unconstrained problem. Finally, Section 5.3 describes our learning algorithm

in detail and analyzes its expected behavior.

5.1 Constrained Zero-Sum Game

We adapt the adversarial formulation described in [8] to handle our generalized case. The

learner is still looking for a policy that minimizes some loss with respect to the demonstrator’s

(unknown) optimal policy π, and the adversary is still providing a constrained worst-case es-

timate of π. Moreover, we keep the assumption that the loss is represented as a function of

the learner and adversary’s states. No further restriction is needed. The only fundamental

difference is that, since we now need to match features over multiple dynamics, we have more

than one constraint specifying the set from which the adversary is allowed to pick its policy.

The new formulation is formalized in Definition 5.1.1.

Definition 5.1.1. The adversarial inverse reinforcement learning with changing dy-

namics formulation is a constrained zero-sum game where the learner chooses a stochastic

31

32

policy π̂ that minimizes a given loss function, whereas the adversary chooses a stochastic policy

π̌ that maximizes such loss while matching the expected features on all demonstrated dynamics:

min
π̂

max
π̌∈Θ

E

[
T∑
t=1

loss(Ŝt, Št) | τ, π̂, π̌

]
(5.1)

where Θ is the set of all stochastic policies matching the empirical expected sum of features

(defined in Equation 4.5):

π̌ ∈ Θ⇔ E

[
T∑
t=1

φ(Št) | τj , π̌

]
= c̃j ∀j = 1, ..., D (5.2)

Another difference with respect to the previous formulation is that the expected loss is now

computed under the demonstrator’s ”optimal” dynamics τ for both players instead of having

the adversary acting under τ and the learner acting under its own dynamics. Notice that the

extension to the latter case is trivial and does not affect the solution we present. Thus, we

compute the expected loss only under τ for the sake of simplicity and conciseness.

5.2 Unconstrained Zero-Sum Game

As described in [8], we reduce the constrained zero-sum game of Definition 5.1.1 to an

unconstrained zero-sum game by introducing Lagrange multipliers. The main difference is

that, since we have multiple constraints, we need a different Lagrange multiplier vector for each

of them. Theorem 5.2.1 formulates our new game.

33

Theorem 5.2.1. The constrained zero-sum game of Definition 5.1.1 can be reduced to the

following optimization problem:

min
w1,w2,...,wD

min
π̂

max
π̌

E

[
T∑
t=1

loss(Ŝt, Št) | τ, π̂, π̌

]
+

D∑
j=1

wᵀ
j

(
E

[
T∑
t=1

φ(Št) | τj , π̌

]
− c̃j

)
(5.3)

Proof. The Lagrangian function [29] for the constrained maximization problem is:

L(π̂, π̌,w1,w2, ...,wD) = E

[
T∑
t=1

loss(Ŝt, Št) | τ, π̂, π̌

]
+

D∑
j=1

wᵀ
j

(
E

[
T∑
t=1

φ(Št) | τj , π̌

]
− c̃j

)

Thus, the game of Definition 5.1.1 can be rewritten as:

min
π̂

max
π̌∈Θ

E

[
T∑
t=1

loss(Ŝt, Št) | τ, π̂, π̌

]
= min

π̂
max
π̌

min
w1,w2,...,wD

L(π̂, π̌,w1,w2, ...,wD)

Since strong Lagrangian duality and minimax duality hold [30], we are able to consider the

innermost minimization as the outermost one, thus concluding the proof.

5.2.1 Weight Sharing Relaxation

When the optimization problem of Theorem 5.2.1 is solved, the optimal Lagrange multipliers

wj represent the estimated weights of the unknown reward function for dynamics τj . Thus,

our formulation recovers a possibly different reward function for each demonstrated dynamics.

Since our domain considers only one fixed reward for all dynamics, we propose a relaxation that

34

takes this into account by sharing the same weight between constraints. The new formulation

is:

min
w

min
π̂

max
π̌

E

[
T∑
t=1

loss(Ŝt, Št) | τ, π̂, π̌

]
+wᵀ

D∑
j=1

(
E

[
T∑
t=1

φ(Št) | τj , π̌

]
− c̃j

)
(5.4)

From now on, for the sake of simplicity, we consider only this relaxation. The mathematical

results we present are easily extensible to the formulation of Theorem 5.2.1. In chapter 7, we

compare the performances of the two.

5.3 Learning Algorithm

We now present the learning algorithm we employ to solve the optimization problem of

Equation 5.4. Notice that the same algorithm can be trivially modified to solve the unrelaxed

problem of Theorem 5.2.1.

We divide the optimization into two different parts: in the first one, we compute a Nash

equilibrium of the inner zero-sum game of Equation 5.4 using the double oracle algorithm [28],

while in the second one we optimize over Lagrange multipliers using a convex optimization

procedure. The two parts are then combined, in a way such that the first one is used as a

subroutine by the second, to solve the whole problem. The next two sections describe these

two algorithms in detail.

35

5.3.1 Double Oracle

We consider finding a Nash equilibrium for the inner zero-sum game of Equation 5.4, that

is, we want to solve the optimization problem:

min
π̂

max
π̌

E

[
T∑
t=1

loss(Ŝt, Št) | τ, π̂, π̌

]
+

D∑
j=1

E

[
T∑
t=1

wᵀφ(Št) | τj , π̌

]
(5.5)

Notice that we can remove the empirical sum of feature terms since they are constant values

and do not affect the equilibrium strategies.

As described in [8], we consider deterministic policies as the basic strategies of each player

and we denote them by letter δ. Then, we represent stochastic policies as mixtures of deter-

ministic ones. Since there are two different definitions of mixture policy, we specify the one we

consider in Definition 5.3.1.

Definition 5.3.1. Given a set P of N deterministic policies {δ1, δ2, ..., δN} and mixing coef-

ficients α1, α2, ..., αN , such that αi ≥ 0 and
∑N

i=1 αi = 1, the mixture policy π of P is the

stochastic policy where, at the first time step, one of the N deterministic policies in P is chosen

with probability given by αi and then deterministically used throughout the whole process.

Notice the difference between Definition 5.3.1 and the more general case where mixtures are

fully stochastic policies obtained by mixing the deterministic ones at each time step (and not

only at the beginning of the process). Although more restrictive, our definition is necessary

to allow the computation of expectations under the mixture policy as a linear combination of

the expectations under the deterministic policies (which is necessary when we want to use the

36

mixture policy to match the features). Notice also that there always exists a stochastic policy

that achieves the same expectation as our mixture policy, thus we are able to match the features

even when the demonstrator’s policy is stochastic.

Since the payoff matrix that would result from these assumptions is exponential in the

number of actions [8], we use the double oracle method to iteratively build the matrix and find

a Nash equilibrium. The algorithm we employ is exactly the one described in [8], thus we do not

specify it here. The only big difference is in the two subroutines to compute the best response

of each player. We now show how this can be achieved.

Learner’s Best Response

Given the adversary’s mixed strategy π̌, the learner’s best response is the deterministic

policy δ̂ given by:

BRmin(π̌) = argmin
δ̂

E

[
T∑
t=1

loss(Ŝt, Št) | τ, δ̂, π̌

]
(5.6)

This can be solved as a simple optimal control problem by considering an MDP with dynamics

τ and reward:

R(st) = E
[
−loss(st, Št) | τ, π̌

]
(5.7)

Notice that the minus sign in front of the loss function is necessary since we are minimizing.

Notice also that the feature-matching terms are not controlled by the learner’s strategy, thus

they are constant values and can be safely omitted. Value iteration can be used to efficiently

solve this problem, as it is proposed in [8].

37

Adversary’s Best Response

The computation of the adversary’s best response, on the other hand, represents the main

difficulty of this work. Given the learner’s mixed strategy π̂, the adversary’s best response is

the deterministic policy δ̌ given by:

BRmax(π̂) = argmax
δ̌

E

[
T∑
t=1

loss(Ŝt, Št) | τ, π̂, δ̌

]
+

D∑
j=1

E

[
T∑
t=1

wᵀφ(St) | τj , δ̌

]
(5.8)

This is the problem of finding the optimal deterministic policy that maximizes the total expected

reward over multiple MDPs (i.e., multiple different dynamics and reward functions) and is well-

known to be NP-Hard [31]. Since the solution of such problem is a big part of this work and

should be analyzed in a more general context, its description is deferred to the next chapter. At

this point, the reader should simply suppose the existence of a procedure to tractably compute

BRmax.

Given the two functions to compute best responses, the double oracle algorithm can be

easily run to find a Nash equilibrium, that is, mixture policies π̂ and π̌ solving the optimization

problem of Equation 5.5.

5.3.2 Gradient Descent

The second main part of our learning algorithms is used to minimize the inner function of

w in Equation 5.4. That is, we want to solve the optimization problem:

min
w

f(w) (5.9)

38

where the function f is defined as:

f(w) = min
π̂

max
π̌

E

[
T∑
t=1

loss(Ŝt, Št) | τ, π̂, π̌

]
+wᵀ

D∑
j=1

(
E

[
T∑
t=1

φ(Št) | τj , π̌

]
− c̃j

)
+
λ

2
‖w‖2

Notice that we add a regularization term to the objective function. This is motivated ex-

perimentally by the fact that our algorithm tends to recover weights that are much larger in

magnitude than the true ones. Thus, adding a small amount of regularization (controlled by

parameter λ) helps to keep the magnitude similar to the real one.

Theorem 5.3.1 states a fundamental property of function f that allows us to find a simple

algorithm to solve the problem of Equation 5.9.

Theorem 5.3.1. The function f(w) of Equation 5.9 is convex.

Proof. We start by rewriting f in the more concise form:

f(w) = min
π̂

max
π̌

L(π̂, π̌) +wᵀ
D∑
j=1

(F (π̌)− c̃j) +
λ

2
‖w‖2 (5.10)

where L and F are, respectively:

L(π̂, π̌) = E

[
T∑
t=1

loss(Ŝt, Št) | τ, π̂, π̌

]
(5.11)

F (π̌) = E

[
T∑
t=1

φ(Št) | τj , π̌

]
(5.12)

39

In order to prove that f is convex, we need to show that [29]:

f(θw1 + (1− θ)w2) ≤ θf(w1) + (1− θ)f(w2) ∀θ ∈ [0, 1], ∀w1, ∀w2 (5.13)

Since the regularization term is a well-known convex function, we prove the above-mentioned

property only for the remaining part of f . Then, convexity follows from the fact that the sum

of convex functions is also convex [29]. By expanding Equation 5.13 we obtain:

min
π̂

max
π̌

L(π̂, π̌) + (θw1 + (1− θ)w2)ᵀ
D∑
j=1

(F (π̌)− c̃j) =

min
π̂

max
π̌

L(π̂, π̌) + (θw1 + (1− θ)w2)ᵀ
D∑
j=1

F (π̌)

− (θw1 + (1− θ)w2)ᵀ
D∑
j=1

c̃j ≤

θ min
π̂

max
π̌

L(π̂, π̌) +wᵀ
1

D∑
j=1

(F (π̌)− c̃j) + (1− θ) min
π̂

max
π̌

L(π̂, π̌) +wᵀ
2

D∑
j=1

(F (π̌)− c̃j) =

min
π̂

max
π̌

θL(π̂, π̌) + θwᵀ
1

D∑
j=1

F (π̌)

− θwᵀ
1

D∑
j=1

c̃j+

min
π̂

max
π̌

(1− θ)L(π̂, π̌) + (1− θ)wᵀ
2

D∑
j=1

F (π̌)

− (1− θ)wᵀ
2

D∑
j=1

c̃j =

min
π̂

max
π̌

θL(π̂, π̌) + θwᵀ
1

D∑
j=1

F (π̌)

+min
π̂

max
π̌

(1− θ)L(π̂, π̌) + (1− θ)wᵀ
2

D∑
j=1

F (π̌)

−
(θw1 + (1− θ)w2)ᵀ

D∑
j=1

c̃j

40

Notice that the empirical sum of feature terms cancel out from both equations. By applying

the triangle inequality of the max function, we can now write:

min
π̂

max
π̌

L(π̂, π̌) + (θw1 + (1− θ)w2)ᵀ
D∑
j=1

F (π̌) =

min
π̂

max
π̌

θL(π̂, π̌) + (1− θ)L(π̂, π̌) + θwᵀ
1

D∑
j=1

F (π̌) + (1− θ)wᵀ
2

D∑
j=1

F (π̌) ≤

min
π̂

max
π̌

θL(π̂, π̌) + θwᵀ
1

D∑
j=1

F (π̌) +min
π̂

max
π̌

(1− θ)L(π̂, π̌) + (1− θ)wᵀ
2

D∑
j=1

F (π̌)

which concludes the proof.

Given the result of Theorem 5.3.1, we can minimize the function f(w) using a convex

optimization procedure similar to that described in [8]. We employ a batch gradient descent

algorithm that uses double oracle to compute the gradient of f with respect to w. This is shown

in more detail in Table I. Notice that batch gradient descent computes, at each iteration, the

average gradient over the whole dataset. In our case, the empirical feature term depends on

the data and does not depend on the current weight vector, thus it can be pre-computed to

speed up the algorithm. The expected feature term, on the other hand, depends on the current

weight vector (through the policy π̌ computed by double oracle) but does not depend on the

data, thus it can be computed only once at each iteration (and not once for every trajectory).

In case we want to use the unrelaxed formulation where we have D Lagrange multipliers,

we only need to consider an extended weight vector w = (w1,w2, ...,wD). Then, the gradient

of f with respect to the extended vector w is simply the vector containing the gradients with

41

TABLE I: BATCH GRADIENT DESCENT FOR ADVERSARIAL IRL

Batch Gradient Descent

Inputs: learning rate η, convergence threshold ε, regularization weight λ
Outputs: weights w

Initialize weights: w ← N (0, 1)
while 1

K ‖Owf(w)‖1 > ε
(π̂?, π̌?)← doubleOracle(w)

Owf(w)←
∑D

j=1 E
[∑T

t=1φ(St) | π̌?, τj
]
− 1

N

∑N
i=1

∑D
j=1 c̃i,j + λw

w ← w − ηOwf(w)
end while
return w

respect to the single Lagrange multipliers Owf(w) = (Ow1f(w1),Ow2f(w2), ...,OwDf(wD)).

Each single gradient Owjf in Owf(w) is computed as:

Owjf(wj) = E

[
T∑
t=1

φ(St) | π̌?, τj

]
− 1

N

N∑
i=1

c̃i,j + λwj (5.14)

No further modification is needed to solve the unrelaxed formulation of the problem.

CHAPTER 6

MULTIPLE-MDP OPTIMIZATION

This chapter presents the main theoretical result of this thesis. As mentioned in Section

5.3.1, a difficult sub-problem arising from our adversarial formulation is the computation of

a deterministic policy maximizing the total expected reward over multiple Markov decision

processes. Since the solution to such problem is not related to inverse reinforcement learning

and can be re-used in any context, we analyze it separately. We start by formally defining the

problem we are trying to solve in Section 6.1. Then, we present how we are able to reduce

its solution to the optimal control of a partially observable Markov decision process [9] in

Section 6.2, and we propose a modified version of point-based value iteration [18] that solves

such reduced problem in Section 6.3. Finally, Section 6.4 shows how we can use this result to

tractably find the adversary’s best response in our adversarial framework.

6.1 Problem Definition

Suppose we are given a set of D Markov decision processesM = {M1,M2, ...,MD}, all de-

fined over state space S and action space A. Each MDPMj ∈M is a tuple < S,A, τj , Rj , p0 >,

where τj(S1:T || A1:T−1) are the state-transition dynamics, Rj(St, At, St+1) is the reward func-

tion, and p0(S) is the initial state distribution. Our goal is to find a deterministic policy π that

42

43

maximizes the total expected reward from all MDPs in M. Formally, we want to solve the

optimization problem:

argmax
π

D∑
j=1

E

[
T−1∑
t=1

Rj(St, At, St+1) | τj , π

]
(6.1)

Unfortunately, such problem is NP-Hard [31]. It is easily possible to show that the policy

achieving the maximum is non-Markovian, i.e., it depends on the whole state-action sequence

and not only on the current state. The next section proposes a tractable approximation that

makes the policy Markovian by introducing a new continuous variable.

6.2 Approximate Dynamic Programming

The optimization problem of Equation 6.1 is not practical to solve using classic dynamic

programming since the optimal policy is non-Markovian. Therefore, we propose an approximate

dynamic program that makes the optimal policy Markovian by incorporating knowledge of the

state-action sequences into a new continuous variable. We call the latter ”belief state”, similarly

to POMDPs. Our main result is given in Theorem 6.2.1.

44

Theorem 6.2.1. The optimization problem of Equation 6.1 can be solved by considering the

following dynamic program. We define a ”belief state” vector b incorporating knowledge of the

transition probabilities from all MDPs in M as:

bt
def
=

1∑D
j=1 τj(s1:t || a1:t−1)

τ1(s1:t || a1:t−1)

τ2(s1:t || a1:t−1)

...

τD(s1:t || a1:t−1)

(6.2)

Then, the state-action value and state value functions are, respectively:

Q(st, at, bt) =
D∑
j=1

bt,j
∑
st+1

τj(st+1 | st, at) [Rj(st, at, st+1) + V (st+1, bt+1)] (6.3)

V (st, bt) = max
at

Q(st, at, bt) (6.4)

The next belief state bt+1 can be computed from bt, given st, at and st+1, as:

bt+1 =
bt∑D

j=1 bt,jτj(st+1 | st, at)
�

τ1(st+1 | st, at)

τ2(st+1 | st, at)

...

τD(st+1 | st, at)

(6.5)

45

where the symbol � denotes the point-wise (or element-wise) product of the two vectors. Finally,

the optimal deterministic policy is:

π?(st, bt) = argmax
at

Q(st, at, bt) (6.6)

Proof. Suppose we reach time step T − 1 after observing state sequence s1:T−1 and action

sequence a1:T−2. It only remains to pick the best last action aT−1, which leads to the final

state sT . The contribution of this last decision to the total expected reward is:

D∑
j=1

E [Rj(ST−1, AT−1, ST | τj , π] =

D∑
j=1

τj(s1:T−1 || a1:T−2)π(a1:T−2 || s1:T−2)

∑
aT−1

π(aT−1 | a1:T−2, s1:T−1)
∑
sT

τj(sT | sT−1, aT−1)Rj(sT−1, aT−1, sT) =

∑
aT−1

π(a1:T−1 || s1:T−1)
D∑
j=1

τj(s1:T−1 || a1:T−2)
∑
sT

τj(sT | sT−1, aT−1)Rj(sT−1, aT−1, sT)

We want to find the best action aT−1 which maximizes this expectation, namely:

argmax
aT−1

D∑
j=1

τj(s1:T−1 || a1:T−2)
∑
sT

τj(sT | sT−1, aT−1)Rj(sT−1, aT−1, sT) =

argmax
aT−1

∑D
j=1 τj(s1:T−1 || a1:T−2)

∑
sT
τj(sT | sT−1, aT−1)Rj(sT−1, aT−1, sT)∑D

j=1 τj(s1:T−1 || a1:T−2)
=

argmax
aT−1

D∑
j=1

bT−1,j

∑
sT

τj(sT | sT−1, aT−1)Rj(sT−1, aT−1, sT)

(6.7)

46

where we define the belief state bt as:

bt
def
=

1∑D
j=1 τj(s1:t || a1:t−1)

τ1(s1:t || a1:t−1)

τ2(s1:t || a1:t−1)

...

τD(s1:t || a1:t−1)

=

1∑D
j=1

∏t
i=1 τj(si | si−1, ai−1)

∏t
i=1 τ1(si | si−1, ai−1)∏t
i=1 τ2(si | si−1, ai−1)

...∏t
i=1 τD(si | si−1, ai−1)

(6.8)

Notice that the last equality holds since we are considering only Markovian dynamics. Fur-

thermore, the dependence on the whole state-action sequence has now been removed: the

maximization over actions depends only on the current state and belief state. We now de-

fine the state-action value function at time step T-1 as the part of Equation 6.7 that is being

maximized:

Q(sT−1, aT−1, bT−1) =

D∑
j=1

bT−1,j

∑
sT

τj(sT | sT−1, aT−1)Rj(sT−1, aT−1, sT) (6.9)

and the state value function at time step T-1 as:

V (sT−1, bT−1) = max
aT−1

Q(sT−1, aT−1, bT−1) (6.10)

47

Finally, the computation of the optimal action at time step T-1 can be reformulated in terms

of the state-action value function as:

π?(sT−1, bT−1) = argmax
aT−1

Q(sT−1, aT−1, bT−1) (6.11)

We now prove the update rule for the belief state. If the current belief state is bt, we take

action at from state st and we end up in state st+1, the i-th component of the next belief state

is:

bt+1,i =
bt,iτi(st+1 | st, at)∑D
j=1 bt,jτj(st+1 | st, at)

(6.12)

To see this, we substitute the definition of bt in Equation 6.12:

bt+1,i =

∏t
k=1 τi(sk|sk−1,ak−1)∑D

l=1

∏t
k=1 τl(sk|sk−1,ak−1)

τi(st+1 | st, at)∑D
j=1

∏t
k=1 τj(sk|sk−1,ak−1)∑D

l=1

∏t
k=1 τl(sk|sk−1,ak−1)

τj(st+1 | st, at)
=

∏t
k=1 τi(sk | sk−1, ak−1)τi(st+1 | st, at)∑D

j=1

∏t
k=1 τj(sk | sk−1, ak−1)τj(st+1 | st, at)

=∏t+1
k=1 τi(sk | sk−1, ak−1)∑D

j=1

∏t+1
k=1 τj(sk | sk−1, ak−1)

(6.13)

and we get that the last equation is exactly the i-th component of bt+1. We now move to time

step T-2. The state-action value function can be easily modified to account for the immediate

reward and the value of the next state:

Q(sT−2, aT−2, bT−2) =
∑D

j=1 bT−2,j
∑

sT−1
τj(sT−1 | sT−2, aT−2) [Rj(sT−2, aT−2, sT−1) + V (sT−1, bT−1)]

48

where the state value function is again:

V (sT−2, bT−2) = max
aT−2

Q(sT−2, aT−2, bT−2) (6.14)

and the optimal action is:

π?(sT−2, bT−2) = argmax
aT−2

Q(sT−2, aT−2, bT−2) (6.15)

We can now continue this procedure backward up to the first time step, thus concluding the

proof.

Theorem 6.2.1 defines a dynamic program that can be used to solve the optimization problem

of Equation 6.1. However, its solution is still not trivial. In order to make everything Markovian,

we introduce a continuous variable that prevents us from using any tabular representation of the

policy and value functions. The simplest solution is belief discretization: for a D-dimensional

belief state vector, we partition the space RD into a finite set of hypercubes and discretize the

belief over such partition. Then, we are able to solve the dynamic program of Theorem 6.2.1

using a tabular representation. However, the number of discretized belief states necessary to

get a satisfactory approximation grows exponentially with the belief dimension D. Thus, this

algorithm would be practical only for low-dimension beliefs (at most 3-dimensional). The next

section analyzes some properties of this formulation that allow a much more efficient solution.

49

6.2.1 Dynamic Program Properties

We analyze some properties of the dynamic program introduced in Theorem 6.2.1, focusing

on the relation to POMDPs.

Let us start by commenting on the meaning of the belief state. Although the name is derived

in analogy to POMDPs, there is no relation between the two definitions. In a POMDP, the

belief state is an |S|-dimensional vector whose i-th component represents the probability of the

process being in the i-th state. Thus, the belief state vector belongs to the (|S|−1)-dimensional

simplex. In our case, the belief state is a D-dimensional vector whose i-th component represents

the (normalized) probability of the state-action sequence observed up to the current time under

the i-th dynamics. Since our belief is normalized, it belongs to the (D-1)-dimensional simplex.

The other main difference with respect to POMDPs is in the value function V . In our case,

V is a function of both the state st and belief state bt, and represents the expected future reward

that we get starting from st, executing the optimal policy π? and given that the state-transition

probabilities are encoded into bt. This is possible since there is no relation between our state

and what we call a belief state. In a POMDP, V is a function of the belief state b alone, and

represents the expected future reward the agents obtains considering that the unknown current

state is distributed according to b.

Although many differences exist, our value function has a property that allows us to solve

the dynamic program of Theorem 6.2.1 using (modified) POMDP algorithms. Such property

is given in Theorem 6.2.2.

50

Theorem 6.2.2. The value function defined in Equation 6.4 is piece-wise linear and convex

(PWLC) in the belief state bt.

Proof. We prove the theorem by induction. By replacing Q with its definition, we can write

the value function at time step T-1 as:

V (sT−1, bT−1) = max
aT−1

D∑
j=1

bT−1,j

∑
sT

τj(sT | sT−1, aT−1)Rj(sT−1, aT−1, sT) =

max
aT−1

bᵀT−1

∑
sT
τ1(sT | sT−1, aT−1)R1(sT−1, aT−1, sT)∑

sT
τ2(sT | sT−1, aT−1)R2(sT−1, aT−1, sT)

...∑
sT
τD(sT | sT−1, aT−1)RD(sT−1, aT−1, sT)

(6.16)

The function that is maximized in Equation 6.16 is clearly linear in bT−1 for any choice of state

sT−1 and action aT−1. Thus, V (sT−1, bT−1) is the maximum over a set of linear functions, i.e.,

it is PWLC.

Suppose now the value function is PWLC at time step t+1. This means that it can be

written as a maximization over a set of hyperplanes:

V (st+1, bt+1) = max
k

bᵀt+1αk(st+1) (6.17)

51

where αk(st+1) are the normal directions to such hyperplanes (we call them alpha-vectors in

the remaining, again in analogy to POMDPs). We need to prove that this implies that the

state value function is PWLC at time step t. This can be written as:

V (st, bt) = max
at

bᵀt

∑
st+1

τ1(st+1 | st, at)
[
R1(st, at, st+1) + V (st+1, bt+1)

]
∑

st+1
τ2(st+1 | st, at)

[
R2(st, at, st+1) + V (st+1, bt+1)

]
...∑

st+1
τD(st+1 | st, at)

[
RD(st, at, st+1) + V (st+1, bt+1)

]

=

max
at

∑
st+1

bᵀt

τ1(st+1 | st, at)R1(st, at, st+1)

τ2(st+1 | st, at)R2(st, at, st+1)

...

τD(st+1 | st, at)RD(st, at, st+1)

+ V (st+1, bt+1)bᵀt

τ1(st+1 | st, at)

τ2(st+1 | st, at)

...

τD(st+1 | st, at)

(6.18)

By expanding the definition of bt+1 in the PWLC representation of V (st+1, bt+1) given in

Equation 6.17, we get:

V (st+1, bt+1) =
1∑D

j=1 bt,jτj(st+1 | st, at)
max
k

D∑
j=1

bt,jτj(st+1 | st, at)αk,j(st+1) (6.19)

52

If we now substitute this into Equation 6.18, we notice that the normalization term of

Equation 6.19 and the last term of Equation 6.18 cancel out. Thus, we have:

V (st, bt) = max
at

∑
st+1

bᵀt

τ1(st+1 | st, at)R1(st, at, st+1)

τ2(st+1 | st, at)R2(st, at, st+1)

...

τD(st+1 | st, at)RD(st, at, st+1)

+max

k
bᵀt

τ1(st+1 | st, at)αk,1(st+1)

τ2(st+1 | st, at)αk, 2(st+1)

...

τD(st+1 | st, at)αk,D(st+1)

=

max
at

bᵀt

∑
st+1

τ1(st+1 | st, at)R1(st, at, st+1)∑
st+1

τ2(st+1 | st, at)R2(st, at, st+1)

...∑
st+1

τD(st+1 | st, at)RD(st, at, st+1)

+
∑
st+1

max
k

bᵀt

τ1(st+1 | st, at)αk, 1(st+1)

τ2(st+1 | st, at)αk, 2(st+1)

...

τD(st+1 | st, at)αk,D(st+1)

(6.20)

We see that the function being maximized over actions is the sum of a linear term and a set of

|S| PWLC functions, i.e., it is again a PWLC function of bt. Thus, the maximum over a set of

PWLC functions is PWLC. This concludes the proof.

Theorem 6.2.2 proves a fundamental property: as for POMDPs, our value function is PWLC.

This means that the alpha-vectors, the normal directions to the hyperplanes describing the

function, are sufficient to fully represent it. Algorithms for solving POMDPs rely on this fact

to efficiently approximate the value function and, thus, the optimal policy. Since the PWLC

property of V is the only requirement we have to apply such algorithms, we have reduced the

solution of our problem to that of a partially observable domain.

Many algorithms have been proposed in the POMDP literature. In this work, we adopt

point-based procedures, which approximate the value function by storing a finite set of repre-

53

sentative belief states and computing one alpha-vector for each of them. Since, as we proved

at the beginning of this section, there are a few differences between our dynamic program and

that of a POMDP, we need to extend such algorithms to solve our case. The next section shows

how we can do this for point-based value iteration [18].

6.3 Modified Point-Based Value Iteration

In the previous section, we proved that the value function defined in our dynamic program

is piece-wise linear and convex. This allows the reduction of our problem to the optimal control

of a POMDP. We adopt point-based value iteration (PBVI) [18], one of the most common

and efficient algorithms for solving POMDPs. However, the differences with respect to our

formulation make the algorithm not suitable to be applied as it is. This section describes how

we can easily adapt it to our specific problem.

We show the skeleton of our modified algorithm, which is very similar to the original one, in

Table II, while we defer the description of the modified sub-routines to the next two sections.

54

TABLE II: MODIFIED POINT-BASED VALUE ITERATION

modifiedPBVI

Inputs: number of iterations N
Outputs: value function V = {V1,V2, ...,VT }

Initialize belief set: B = {b1}
for i = 1 to N
VT (sT) = ∅ ∀sT ∈ S
for t = T − 1 to 1
Vt = modifiedV alueBackup(Vt+1,B)

end
B = modifiedBeliefExpansion(B)

end
return V

Notice immediately two differences with respect to the original algorithms presented in

[18]. First, the initial belief state we use to initialize B is not a distribution over states (as in

POMDPs), but is defined as:

b1 =
1∑D

j=1 p0(s1)

p0(s1)

p0(s1)

...

p0(s1)

=

1/D

1/D

...

1/D

(6.21)

where the last equality holds since we consider all MDPs to have the same initial state distribu-

tion. The second main difference is that, since we are considering a finite-horizon problem, our

55

value function is represented by a different set of alpha-vectors at each time step. Thus, we write

V = {V1,V2, ...,VT } and we run T − 1 backups before we apply the modified belief expansion.

Furthermore, since our value function depends on the state, we have a different set of alpha-

vectors for each state and time step. Thus, we write each Vt as the set Vt = {Vt(st) | ∀st ∈ S}.

Notice that VT (sT) = ∅ ∀sT ∈ S since there is no action to take at the last time step.

6.3.1 Modified Value Backup

Value backup updates the current value function given the current belief set B by computing,

for each b ∈ B, the alpha-vector achieving the maximum over actions. Since our value function

is very different than that of a POMDP, we need to adapt the original procedure. We use

a notation similar to the one used in [18], so that the reader can easily understand the new

formulation.

Our goal is to compute the alpha-vectors describing V (st, b) for each b ∈ B. We denote the

set containing such vectors as Vt(st). Notice that, from now on, we drop the time subscript from

b since we are keeping a time-independent set of belief states. We consider the representation

of V (st, b) given in Equation 6.20, which most highlights the different terms forming the alpha-

vectors. Then, we define the following quantities, generalizing from the original algorithm [18],

for each state st ∈ S:

• Γat,?t : the vector multiplying b in the first linear term of V (st, b) for action at;

• Γ
at,st+1

t : a set of all vectors multiplying b in the inner maximization of V (st, b) for state

st+1 and action at;

56

TABLE III: MODIFIED VALUE BACKUP

modifiedValueBackup

Inputs: value function Vt+1, belief set B
Outputs: updated value function Vt = {Vt(st) | ∀st ∈ S}

foreach st ∈ S
Γat,?t =

∑
st+1

τ•(st+1 | st, at)�R•(st, at, st+1)

Γ
at,st+1

t =
{
τ•(st+1 | st, at)�α(st+1) | ∀α ∈ Vt+1(st+1)

}
Γat,bt = Γat,?t +

∑
st+1

argmax
α∈Γ

at,st+1
t

bᵀα

Vt(st) =
{
argmax
Γ
at,b
t ,∀at

bᵀΓat,bt | ∀b ∈ B
}

end
return Vt

• Γat,bt : the alpha-vector that is multiplied with b to compute the outer maximum of V (st, b)

for action at and belief b ∈ B.

In order to simplify the notation, we define τ•(st+1 | st, at) as the vector containing τj(st+1 |

st, at) for each j = 1, ...D. We do the same for the reward functions by defining R•(st, at, st+1).

Given such quantities, the modified algorithm is shown in Table III.

6.3.2 Modified Belief Expansion

Belief expansion updates the current belief set B by simulating every action and adding

only the resulting belief state that is the farthest from B (if not already present). This is done

for each b ∈ B, thus the current belief set is at most doubled at each expansion. However, our

definition of belief state is very different from that of a POMDP. We cannot simply take an

57

TABLE IV: MODIFIED BELIEF EXPANSION

modifiedBeliefExpansion

Inputs: belief set B
Outputs: expanded belief set B′

Initialize expanded belief set: B′ = B
foreach b ∈ B

foreach s ∈ S
foreach a ∈ A

Sample s′j according to τj(• | s, a) ∀j = 1, ..., D

for j = 1 to D
b′s,a,j = updateBelief(b, s, a, s′j)

dist(b′s,a,j) = min
b′′∈B

‖b′s,a,j − b′′‖1
end

end
end
if argmax

b′s,a,j

dist(b′s,a,j) 6∈ B′

B′ = B′ ∪
{
argmax
b′s,a,j

dist(b′s,a,j)
}

end
end
return B′

action from a certain belief since we also need to know the state. Thus, we modify the original

belief expansion to simulate every action from every state, compute the updated belief state

according to Equation 6.5, and finally add the new belief that has the maximum distance from

B. We define the latter as the minimum L1 norm from a belief in B. Our modified algorithm

is shown in Table IV. Notice that we write updateBelief(b, s, a, s′) to concisely represent the

belief update performed by Equation 6.5.

58

6.3.3 Performance Analysis

We analyze the performance of our modified algorithm by considering the effect of pruning

on the number of alpha-vectors that are computed by the algorithm. We start by computing

the total number of (unpruned) alpha-vectors describing the value function. This is given in

theorem 6.3.1.

Theorem 6.3.1. The total number of alpha-vectors in V describing the value function V is:

|S|
T−1∑
t=1

|A|
1−|S|T−t

1−|S| (6.22)

Proof. In order to prove the theorem, we generalize the procedure for computing the exact set

of alpha-vectors for a POMDP, described in [18], to do the same for our specific case. The

generalization is trivial: for every state, we compute the sets Γat,?t and Γ
at,st+1

t , as described in

the previous section, and we take their cross-sum for each action and time step.

At time step T − 1, for each state in S, we have exactly |A| alpha-vectors. To see this,

simply notice that that the set Γ
aT−1,sT
T−1 is empty for every state sT−1. Thus, the total number

of alpha-vectors at time T − 1 is |S||A|. At time step T − 2, Γ
aT−2,?
T−2 contains exactly |A|

vectors, while Γ
aT−2,sT−1

T−2 contains |A||S||A| vectors, since for every action and state we add

all the alpha-vectors at time T − 1 for that particular state. Thus, taking the cross-sum over

states for each action generates a total of |A||S|+1 vectors. Since we repeat this for each state,

we get a total number of alpha-vectors at time step T − 2 of |S||A||S|+1. At time step T − 3,

Γ
aT−3,?
T−3 contains again |A| vectors, while Γ

aT−3,sT−2

T−3 contains |A||S||A||S|+1. Thus, the cross-

59

sum generates |A||S|2+|S|+1 vectors, and the total number at time step T −3 is, again, |S| times

that quantity. By proceeding backward, it is easy to see that the number of alpha-vectors at

time t is:

|S||A|
∑T−1−t

i=0 |S|i = |S||A|
1−|S|T−t

1−|S| (6.23)

where we have applied the geometric series formula to reduce the exponent. Thus the total

number of alpha-vectors is the sum over time:

|S|
T−1∑
t=1

|A|
1−|S|T−t

1−|S| (6.24)

This concludes the proof.

As shown in Theorem 6.3.1, the number of alpha-vectors describing the value function is

exponential in the number of states. Theorem 6.3.2 shows how our algorithm limits this number.

Theorem 6.3.2. The number of alpha-vectors returned by modifiedPBVI after running for I

iterations is at most:

|S|(T − 1)2I−1 (6.25)

Proof. We start by noticing that, if the current belief set contains |B| beliefs, the number of

alpha-vectors computed by modifiedValueBackup is at most |B| for each state and time step.

It could be less than that since we prune existing vectors. Thus, the total number of alpha-

vectors computed by modifiedValueBackup when the belief set has cardinality |B| is at most

(T − 1)|S||B|. Since the belief set is initialized to contain only the initial belief state and at

60

most doubles at each expansion, its size after I iterations is at most 2I . Again, it can be less

than that since we do not add existing beliefs. At the I-th iteration we perform a value backup

on a belief set whose cardinality is, at most, 2I−1 (backups are executed before expansions).

Thus, the total number of alpha-vectors return cannot be larger than |S|(T − 1)2I−1.

As proven in Theorem 6.3.2, the number of alpha-vectors computed by our generalized

PBVI is no more exponential in the number of states. Although it is exponential in the number

of iterations, we can freely limit this number. Furthermore, after a good representation of the

value function has been found, pruning occurs very frequently, thus only a small number of

vectors is added.

We compare modifiedPBVI to the modified version of exact alpha-vector computation on

a toy problem with two randomly generated MDPs (i.e., the belief state belongs to the 1-

dimensional simplex and can be represented by a single scalar). Figure 2 shows the true value

function and the set of alpha-vectors composing it for a particular state s and time step t. These

were computed by adopting the modified exact procedure. Although the shape of V (st, b) is

very simple, there were about 16000 alpha-vectors describing it. Figure 3 shows the hyperplanes

computed by modifiedPBVI (the alpha vectors are their normal directions). We see that the

value function can be perfectly represented by only 6 different vectors. All of them are computed

by modifiedPBVI, without any dominated hyperplane being considered.

61

(a) (b)

Figure 2: a) The true value function for state s and time step t, b) All hyperplanes describing
the true value function.

Figure 3: The 6 hyperplanes computed by modifiedPBVI.

62

6.4 Application to Adversarial IRL

We finally show how we can apply the algorithm presented in this chapter to our adversarial

formulation. Recall that we need to compute the adversary’s best response as:

BRmax(π̂) = argmax
δ̌

E

[
T∑
t=1

loss(Ŝt, Št) | τ, π̂, δ̌

]
+

D∑
j=1

E

[
T∑
t=1

wᵀφ(Št) | τj , δ̌

]
(6.26)

It is easy to notice that this problem can be reduced to a multiple-MDP optimization. In fact,

we are looking for the optimal deterministic policy δ̌ that maximizes the total expected reward

from D + 1 MDPs. The first of such MDPs has dynamics τ and reward defined by:

R(st) = E
[
loss(Ŝt, st) | τ, π̂

]
(6.27)

The remaining D MDPs have dynamics τj and reward given by the Lagrangian potential terms:

R(st) = wᵀφ(st) (6.28)

The only thing we are missing is to generalize the reward from a function of the state alone

to a function of state,action and next state (as we adopt in this chapter). If we have reward

function R and dynamics τ , this is easily done by considering:

R(st, at, st+1) =

R(st) if t < T − 1

R(st) + τ(st+1 | st, at)R(st+1) if t = T − 1

(6.29)

63

All we need to do now is to convert our reward functions as specified in Equation 6.29 and apply

modifiedPBVI to get the optimal value function. Then, we can simply obtain the optimal policy

for each state st and belief b by taking the action associated with the hyperplane achieving the

maximum at b.

CHAPTER 7

EXPERIMENTAL RESULTS

This chapter shows the experimental results obtained by our adversarial formulation on

synthetic experiments where data is randomly generated. We start by specifying the settings

for all our experiments in section 7.1. In Section 7.2, we try to recover the reward function

of a randomly generated Markov decision process where demonstrations are provided under

perturbed dynamics, while in Section 7.3 we try to rationalize an agent navigating through

a grid and providing demonstrations from slightly different environments. We show that our

algorithm, even though we have no theoretical guarantee, very frequently satisfies the property

of Equation 4.6, that is, the learner is able to improve the demonstrator’s performance. We

discuss and summarize these results in section 7.4.

7.1 Experiment Settings

We start by specifying the parameters considered in our experiments. We generate demon-

strations under at most 3 different dynamics. Thus, we run from 7 to 10 PBVI iterations

(depending on the particular problem) to compute the adversary’s best response, which are

enough to well approximate the latter. We consider a decaying learning rate that allows the

gradient descent algorithm to converge, and we add a small amount of regularization in all our

experiments (from 10−4 to 10−2). Since double oracle is generally slow to converge, we consider

a threshold for adding strategies to the payoff matrix. Thus, a player’s best response is added

64

65

to its strategy set only if it provides an improvement to its expected utility greater than the

threshold. This allows the double oracle algorithm to converge faster. We adopt the zero-one

loss measure in the first experiment, while we adopt the squared loss in the second.

One of the challenges in the implementation is the computation of expectations under the

adversary’s policy π̌, which is a function of the belief state. This requires a sum over all possible

belief states, whose number is exponential in the number of time steps (it roughly corresponds

to the number of different trajectories). Thus, such expectations are not practical to compute

exactly. In order to provide an approximation, we use Monte Carlo sampling algorithms [32] to

estimate them from sample trajectories. In our experiments, we generate from 50000 to 100000

trajectories to approximate the probability p̌τj (S) of being in state S when acting according to

π̌ and under τj , which can successively be adopted to compute all expectations we need in our

formulation.

A consequence of the above-mentioned approximations is that our algorithm is no more

guaranteed to converge to the same solution when its inputs do not change. In fact, at each

iteration of gradient descent, the gradient and objective function are computed by means of the

double oracle algorithm, which is no more guaranteed to exactly achieve a Nash equilibrium,

due to the threshold we introduce, but only a close approximation. Furthermore, expectations

under the adversary’s policy π̌ are not computed exactly but only approximated from samples.

This motivates us to run our algorithm several times under the same conditions in order to be

able to draw conclusions regarding its performance.

66

7.2 Random MDP

In our first experiment, we randomly generate a Markov decision process and we try to re-

cover its reward function. We start by generating the optimal (Markovian) transition dynamics

τ(S1:T || A1:T−1) and the reward function in the form specified by Equation 4.1, where we draw

the weights w? from the K-dimensional Gaussian distribution

w? ∼ NK(0, I) (7.1)

and the features from the uniform distribution:

φ(s) ∼ UK(0, 1) ∀s ∈ S (7.2)

Furthermore, we consider a uniform distribution over initial states. Then, we generate D

dynamics by perturbing τ with Gaussian noise, that is, we consider:

τj(st+1 | st, at) = τ(st+1 | st, at) +N (0, σ2) ∀st+1, st, at ∀j = 1, ..., D (7.3)

where σ is the noise standard deviation. Notice that we have to normalize the perturbed

dynamics to obtain another probability distribution. Next, we compute the optimal policy

π(A1:T−1 || S1:T−1) for acting under τ and maximizing the generated reward function. We use

such policy to generate N demonstrations under each of the D dynamics, which our algorithm

takes as input to estimate the reward function.

67

We consider an MDP with 20 states, 5 actions and 10 time steps. We show the performance

of our algorithm for different number of demonstrations (N), number of features (K), and noise

standard deviation (σ). In all cases, we compare the relaxed formulation (weight sharing) of

Equation 5.4 to the unrelaxed one (Theorem 5.2.1).

In order to measure the performance of a policy π under certain dynamics τ , we consider

the interval [r̄, R̄], where r̄ is the worst-case expected reward (i.e., the expectation achieved by

a policy minimizing the reward) and R̄ is the best-case expected reward (i.e., that achieved by

a policy maximizing the reward). Since the expected reward achieved by any policy under τ lies

in this interval, we define the performance of π as the percentage of the latter that is achieved.

For instance, π achieves 0% performance when the expected reward is r̄, while it achieves 50%

when the expected reward is r̄+R̄
2 , and so on.

In order to measure the performance of our algorithm, we compute the policy maximizing the

estimated reward under each dynamics τj . Then, we compute the above-mentioned performance

measure to obtain the percentage of the true reward achieved by such policies.

7.2.1 Optimal Demonstrations

We start by analyzing the simplest case where demonstrations are provided only under the

optimal dynamics τ . This is the most common case in IRL, where the demonstrator is optimal

and generates trajectories under single dynamics. Notice that, in this case, there is no difference

between the relaxed and unrelaxed formulations since we have a single constraint (i.e., a single

Lagrange multiplier). We consider 5 features and 100 demonstrations (actually, a much lower

value is sufficient to obtain good performance, as it is shown next).

68

Figure 4: Distribution of performances obtained by multiple runs on single-dynamic optimal
demonstrations.

Figure 4 shows a histogram of the performances achieved by our algorithm on 100 different

datasets. We can see that every run obtains at least 90% of the maximum expected reward.

Furthermore, 70% of the runs obtain more that 99% performance, which constitutes an excellent

result. Notice that, in this case, we cannot improve the demonstrator performance since the

latter is optimal (i.e., it always achieves 100%). Thus, we are satisfied with performance close

to 100% (which our algorithm always obtains in this experiment).

7.2.2 Sub-optimal Demonstrations

We now consider the case where demonstrations are sub-optimal and under changing dy-

namics. We generate 3 sub-optimal dynamics by perturbing the optimal ones (as specified

69

Figure 5: Learner and demonstrator’s performance with weight sharing for different numbers
of demonstrations.

above) and run our algorithm several times by varying the number of demonstrations, the

number of features, and the noise standard deviation.

Number of demonstrations

Figure 5 compares the performances achieved by the learner on the 3 dynamics to those of

the demonstrator. We see that, when we have a small number of demonstrations (say less than

10), the performance of our algorithm are subject to a high variance (due to the poor estimate of

feature expectations) and are most likely worse that those of the demonstrator. As the number

of demonstrations increases, our algorithm is, in this case, always able to perform better that

the demonstrator on all sub-optimal dynamics. This means that the recovered reward function

70

Figure 6: Learner and demonstrator’s performance without weight sharing for different numbers
of demonstrations.

is really rationalizing the expert’s behavior and, when used to train the learner, allows us to

improve its sub-optimal performance.

Figure 6 shows the same experiment without weight sharing. We see that now the algorithm

is subject to higher variability and the learner’s performance is not always better than the

demonstrator’s as the number of samples increases. We know that the more sub-optimal is the

demonstrator, the more likely it is for the learner to achieve poor performance. Our intuition

is that weight sharing could ”average out” the sub-optimality of the different dynamics, thus

leading to better results. However, the fact that in this experiment we are considering different

71

Figure 7: Learner and demonstrator’s performance with weight sharing for different numbers
of features.

weights can be seen as if we were independently treating each dynamics. Thus, we intuitively

expect to get worse results on those dynamics that are more sub-optimal (e.g., τ1 in Figure 6).

Number of features

We repeat the experiment several times with 3 dynamics, 1000 demonstrations and different

numbers of features. Figure 7 shows the result. We see that, due to the high number of

demonstrations, the learner always improves the demonstrator’s performance. We also notice

that the number of features has no particular impact on the algorithm. This is again expected

since we are randomly generating the feature vector. Thus, adding one feature should not

provide any further information.

When we do not adopt weight sharing, the learner frequently performs worse than the

demonstrator, as can be noticed from Figure 8.

72

Figure 8: Learner and demonstrator’s performance without weight sharing for different numbers
of features.

Noise

Finally, we analyze the behavior of our algorithm as the demonstrations’ sub-optimality

changes. We consider, once again, 3 dynamics, 1000 demonstrations and 5 features. However,

we vary the standard deviation of the Gaussian noise in the sub-optimal dynamics. Figure 9

shows the result. We see that, when the noise is very small, the demonstrator remains optimal

and the learner achieves almost 100% reward. However, when the noise becomes larger, the

demonstrator becomes always more sub-optimal (not monotonically due to the stochasticity in

how we generate dynamics) and the learner is always achieving better performance. Again, this

is not the case when weight sharing is not adopted. We do not show a plot for the latter case.

73

Figure 9: Learner and demonstrator’s performance with weight sharing for different values of
the noise standard deviation.

7.3 Grid World

Our second experiment aims at showing how the algorithm works on a simple artificial

intelligence task. We start by specifying such task in section 7.3.1. Then, we presented the

results we obtain under different conditions in the last four sections.

7.3.1 Task Definition

Suppose we have an agent (e.g., a robot) that is moving through a 5x5 grid, as shown in

Figure 10(a). Each cell is a state of our environment, and the agent can take four possible

actions, namely UP, RIGHT, DOWN and LEFT. We suppose dynamics are stochastic: every

time the agent attempts to move to a certain cell, there is always a small probability (which we

call noise ε) that it falls into one of the adjacent cells instead. As an example, if the agent is

74

(a) (b) (c)

Figure 10: a) The Grid World environment, b) The reward the agent obtains from each state,
c) The optimal sequence of actions.

in state (3, 3)1 and takes action RIGHT, the next state is (3, 4) with probability 1− ε or either

of (2, 3), (4, 3), (3, 2), each with probability ε
3 . The robot starts in the cell denoted by START

and runs for 7 time step. The task is to reach one of the cells denoted by GOAL. However, the

problem is not simple for two reasons. First, the stochasticity in the dynamics could bring the

agent into a different cell than the target one, thus making it impossible to reach a goal state

in the allowed number of time steps. Second, there are two cells (those denoted by DANGER)

that the agent wants to avoid since they might have harmful consequences. Thus, not all paths

to the goal states should be considered equally.

1We adopt the standard matrix indexing.

75

In order to specify the above-mentioned task, we need to build a suitable reward function.

We start by defining a binary feature vector for each state s as:

φ(s) =

START

NORMAL

DANGER

GOAL

(7.4)

where each component is either one, if that state has the corresponding property, or zero in the

opposite case. For instance, state (1, 3) has feature vector [1 0 0 0]T , since it is the starting

state, while state (3, 3) has feature vector [0 1 0 0]T since it is a normal state. Next, we specify

the reward weight to be the vector:

w? =

−8

0.1

−5

10

(7.5)

The linear combination of the two leads to the reward function shown in Figure 10(b). We

can see that, as expected, the agent obtains the maximum reward from the goal state, while it

obtains a negative value from the dangerous zone. We associate a negative reward to the initial

state as well since we do not want the agent to go back to the beginning, while any other state

provides a small positive reward.

76

Now that we defined our environment, we specify the IRL settings. We first train our

demonstrator to be optimal under the above-mentioned dynamics (we call them τ). This

leads to a policy that applies the sequence of actions shown in Figure 10(c). Notice that

taking two times LEFT instead of RIGHT as the last two actions leads to the same expected

reward. Moreover, notice that the paths reaching the goals by moving through the rightmost

(or leftmost) cells have a slightly lower expected reward. This is because the path going through

the middle cell has a higher probability of reaching at least one of the two goal states (due to

the stochasticity of τ).

Next, we generate demonstrations on two slightly different environments, described by dy-

namics τ1 (Figure 11(a)) and τ2 (Figure 11(b)), respectively. The only difference between the

optimal and sub-optimal dynamics is the presence of a new kind of states, those denoted by a

cross. Every time the agent moves to one of such states, it is deterministically brought back

to the initial state. If this happens, it would be a disastrous situation: the agent will get the

negative reward for entering the starting state and it will not be able to reach any goal state

anymore (time steps are limited). Due to the stochasticity in the dynamics, the optimal path

for τ is now very risky since the agent could accidentally fall into one of those states even when

it does not intend to. Thus, the optimal policy for τ is no more optimal for τ1 and τ2. Figure

11(c) shows the new optimal path for τ2. We can see that the agent is now trying to stay as

far away from the cross states as possible.

Given demonstrations from the above-mentioned dynamics, our goal is two-fold. First, we

want to recover a reward function that sufficiently explains the demonstrator’s task, that is,

77

(a) (b) (c)

Figure 11: a) The first sub-optimal dynamics, b) The second sub-optimal dynamics, c) The
optimal path for dynamics τ2.

we want our estimated weights to be large for the GOAL feature component and small for

the DANGER feature component. In this way, we can rationalize the demonstrated behavior

as trying to reach a goal state by avoiding the dangerous states. Second, we want to use the

estimated reward function to learn how to behave optimally under the demonstrated dynamics.

This means that we want our agent to learn to avoid the cross states as much as possible, thus

improving the demonstrator’s policy.

7.3.2 Asymptotic Performance

We first analyze the asymptotic behavior of our algorithm, i.e., that achieved when infinite

many trajectories are shown. In such case, the empirical expected sum of features averaged

over the whole dataset converges to the true expected sum of features (the one computed under

the demonstrator’s unknown policy π). Thus, we consider the latter as the input and we run

78

Figure 12: Learner’s asymptotic performance on τ1 and τ2 for each run. The orange line specifies
the optimality threshold.

multiple times the algorithm. The performances achieved by each run are shown in Figure 12.

Notice that, due to the symmetry between τ1 and τ2, the learner achieves the same performance

under both dynamics, thus we show only one. We can see that, besides the five runs where

performances are low, the learner always obtains more that 99% of the maximum expected

reward. In this example, a score above that threshold is achieved when the policy that safely

stays as far away as possible from the cross states is learned. Since we motivate the occasional

low-score runs to the stochasticity of our algorithm, we conclude that the asymptotic behavior

is correct, that is, the unique global minimum of our objective function leads to a correct reward

function.

79

Figure 13: Learner’s performance on τ1 and τ2 given a single optimal trajectory.

7.3.3 Single Optimal Trajectory

We now focus on a simple case where our algorithm fails at computing the optimal solution.

Suppose a single demonstration is given showing the trajectory of Figure 10(c), i.e., the optimal

path under dynamics τ . This means that we consider the sum of features [1 5 0 1] as the only

input. Figure 13 shows the result of several runs under this condition. Although performances

are still high, no run achieves more than 99%, that is, no run converges to reward weights

leading to the desired safe policy. These is due to the fact that the feature sum of the optimal

path is very different than the true expected feature sum under the demonstrated dynamics

(that considered in the previous section). Thus, our algorithm estimates a reward function

80

Figure 14: Demonstrator and learner’s performance as the number of demonstrations varies.

that leads to a policy following such demonstrated path, which is sub-optimal under τ1 and

τ2. This example shows the importance of having enough trajectories to capture the expert’s

sub-optimality under the new environments.

7.3.4 Multiple Demonstrations

We now investigate the behavior of our algorithm as the number of demonstrations changes.

As already proved, the algorithm very frequently achieves perfect performance when infinite

many trajectories are provided (i.e., the empirical sum of features matches the true expected

sum of features).

Figure 14 compares the demonstrator and learner’s performance as the number of demon-

strations increases. Notice that there is only one curve for the learner since it always achieves

81

the same performance on both environments (due to their symmetry). Once again, we can

see that the final result is subject to high variance when the number of demonstrations is low.

However, the learner clearly outperforms the demonstrator when the latter is sufficiently in-

creased. As already mentioned, a score greater than 99 is achieved when the policy that safely

stays as far away as possible from the cross states is learned. In this example, this is often the

case. Overall, the learner’s performance is always very close to the demonstrator’s, and most

of the time even better.

We now take a look at the learned reward weights for the experiment under consideration and

compare them to the true ones. Intuitively, if the estimated reward leads to a nearly optimal

policy (where optimality is evaluated on the true reward function), the estimated weights’

components should be, at least, in an order similar to the true ones’. Thus, the true weight

vector and the estimated one should be almost parallel (i.e., they should have similar direction).

This motivates a comparison based on the cosine similarity, which computes the cosine of the

angle between two vectors. The result for the current experiment is shown in Figure 15. We

can see that the cosine similarity is always greater than 0.6, which means that the estimated

vectors are always in a direction similar to the true vector’s (when the similarity takes value

1, the vectors are exactly parallel). Thus, we conclude that, at least for this experiment, our

algorithm always provides a good estimate of the true reward function.

82

Figure 15: Cosine similarity between the true reward weights and the learned weights.

7.3.5 Highly Sub-optimal Demonstrations

Finally, we analyze a case where highly sub-optimal demonstrations are provided. We

consider trajectories under two different environments than those considered above. These are

shown in figure 16(a) and 16(b).

We can see that, in both environments, the optimal path followed by the expert, together

with one of the alternative paths, is now blocked by a cross state. This means that most of the

trajectories will not reach the goal state, which will be demonstrated in only a small number

of cases. Thus, we expect our algorithm to infer that such state provides a low reward, giving

a small weight to the corresponding feature. Figure 17 shows the performances achieved by 20

83

(a) (b)

Figure 16: a) The first highly sub-optimal dynamics, b) The second highly sub-optimal dynam-
ics.

different runs. We can see that in only 4 runs the algorithm learns an optimal reward function.

Notice however that the overall performances are rather high. This is due to the fact that the

estimated weights lead the agent to learn a policy that stays in the normal states as much as

possible, thus achieving a positive reward. Furthermore, the demonstrator achieves 88% of the

total reward in both environments, thus the learner is always able to improve its performance.

To verify that the estimated reward is indeed very different than the desired one, we plot

the cosine similarity between the true and learned weights for each run (Figure 18). We can see

that, in many cases, the cosine similarity is negative, i.e., the two vectors have an angle greater

than 90 degrees. In our case, this is due to the fact the fourth component of the estimated vector

(the goal feature weight) has a different sign than the true one. As expected, our algorithm

gives a negative reward to the goal state, and the learned policy tries to avoid such state as

84

Figure 17: Learner’s performance on highly sub-optimal dynamics. The orange line shows the
optimality threshold.

much as possible. However, we conclude that, even in this complicated task, our algorithm

behaves rather well.

7.4 Discussion

In both experiments, under the assumption that we have sufficient demonstrations, rich

features, and nearly-optimal trajectories, our algorithm is able to recover a reward function

that rationalizes the expert’s behavior. In particular, the optimal policy for maximizing the

estimated reward achieves performances very close to the demonstrator’s when the latter is

providing optimal trajectories. Furthermore, when only sub-optimal trajectories are observed,

the learner is generally able to improve the expert’s behavior.

85

Figure 18: Cosine similarity between true and learned weights on highly sub-optimal dynamics.

The main bottleneck of our algorithm is time complexity. This is mostly due to the un-

predictable behavior of double oracle. In fact, the latter iteratively builds the payoff matrix

to find a Nash equilibrium. However, there is no guarantee on the number of iterations until

convergence, and each iteration runs both point-based value iteration, to find the adversary’s

best response, and Monte Carlo sampling, to approximate the adversary’s state probabilities.

Furthermore, double oracle is executed once for each iteration of gradient descent. All these

factors combined lead to a very time-consuming procedure which allows the algorithm to solve

only rather small problems. Nevertheless, the parameters we adopt in our experiments are

much bigger than those needed to achieve good approximations, thus we can always limit their

values to solve larger problems.

CHAPTER 8

CONCLUSION AND FUTURE WORK

In this thesis, we analyzed inverse reinforcement learning with changing dynamics. This

is the case where sub-optimal trajectories are demonstrated under several dynamics, generally

different than those for which the expert is optimal. To our knowledge, no existing algorithm

is able to solve such problem. We motivated the need for an efficient solution by providing

examples of possible IRL scenarios, from learning under covariate shift to demonstrated risk-

averse or robust behavior.

Leveraging on existing methods, we formulated the problem in an adversarial manner; we

considered a zero-sum game between a learner attempting to minimize a loss with respect to the

unknown expert’s policy and an adversary attempting to provide a loss-maximizing estimate

of such policy. Furthermore, we constrained the adversary to pick only policies that match

the expert’s feature expectations under each dynamics. We reduced the constrained zero-sum

game to a free one by introducing Lagrange multipliers, and we solved it by employing a simple

convex optimization procedure.

We proved that, in order to solve our formulation, we need to compute the deterministic

policy maximizing the total reward from different MDPs, which is an NP-Hard problem. We

proposed a tractable approximation by reducing the latter to the optimal control of POMDPs.

We defined an approximate dynamic program by introducing a continuous variable incorporat-

ing knowledge of the state-transition probabilities from each MDP. We proved that the resulting

86

87

value function is piece-wise linear and convex and we proposed a modified version of point-based

value iteration to approximate it.

We showed the performance of our algorithm on two synthetic data experiments. In the first

one, we tried to recover the unknown reward function of a randomly generated MDP. We proved

that the algorithm is able to achieve a performance very close to that of the demonstrator when

the latter is generating optimal trajectories, and to improve the expert’s performance when the

latter is sub-optimal under the demonstrated dynamics. In the second experiment, we analyzed

an agent navigating through a grid and trying to reach certain goals while avoiding dangerous

zones. We provided demonstrations in environments with new dangerous zones and we proved

that the recovered reward function is such that, rather frequently, the inferred optimal policy

makes the learner avoid such new zones. We concluded that, in both experiments, the algorithm

is able to estimate a reward function that rationalizes the expert’s behavior. However, we

indicated that its temporal complexity allows only rather small problems to be solved.

As a future work, we intend to adopt our algorithm to solve real-world problems. In partic-

ular, we will first reduce the time requirements by implementing more efficient point-based and

Monte Carlo algorithms. Then, we will try to formulate the problem in such a way that double

oracle is not required to compute a solution. We argue that such new formulation would allevi-

ate the time complexity bottleneck, thus allowing our algorithm to solve large-scale problems.

Finally, we will focus on real-world tasks, especially on inverse reinforcement learning under

risk aversion.

CITED LITERATURE

1. Russell, S.: Learning agents for uncertain environments. In Proceedings of the eleventh
annual conference on Computational learning theory, pages 101–103. ACM, 1998.

2. Ng, A. Y. and Russell, S. J.: Algorithms for inverse reinforcement learning.
In Proceedings of the Seventeenth International Conference on Machine Learning,
ICML ’00, pages 663–670, San Francisco, CA, USA, 2000. Morgan Kaufmann Pub-
lishers Inc.

3. Abbeel, P. and Ng, A. Y.: Apprenticeship learning via inverse reinforcement learning.
In Proceedings of the Twenty-first International Conference on Machine Learning,
ICML ’04, pages 1–, New York, NY, USA, 2004. ACM.

4. Sutton, R. S. and Barto, A. G.: Introduction to Reinforcement Learning. Cambridge, MA,
USA, MIT Press, 1st edition, 1998.

5. Niv, Y.: Reinforcement learning in the brain. Journal of Mathematical Psychology,
53(3):139–154, 2009.

6. Watkins, C. J. C. H.: Learning from Delayed Rewards. Doctoral dissertation, King’s
College, Cambridge, UK, May 1989.

7. Montague, P. R., Dayan, P., Person, C., and Sejnowski, T. J.: Bee foraging in uncertain
environments using predictive hebbian learning. Nature, 377(6551):725, 1995.

8. Chen, X., Monfort, M., Ziebart, B. D., and Carr, P.: Adversarial inverse optimal control for
general imitation learning losses and embodiment transfer. In Proceedings of the
Thirty-Second Conference on Uncertainty in Artificial Intelligence, UAI’16, pages

102–111, Arlington, Virginia, United States, 2016. AUAI Press.

9. Sondik, E. J.: The optimal control of partially observable markov processes over the infinite
horizon: Discounted costs. Oper. Res., 26(2):282–304, April 1978.

10. Cassandra, A. R., Kaelbling, L. P., and Littman, M. L.: Acting optimally in partially
observable stochastic domains. 1994.

88

89

CITED LITERATURE (continued)

11. Zadrozny, B.: Learning and evaluating classifiers under sample selection bias. In
Proceedings of the twenty-first international conference on Machine learning, page
114. ACM, 2004.

12. Shimodaira, H.: Improving predictive inference under covariate shift by weighting the log-
likelihood function. Journal of statistical planning and inference, 90(2):227–244,
2000.

13. Ruszczyński, A.: Risk-averse dynamic programming for markov decision processes.
Mathematical programming, 125(2):235–261, 2010.

14. Wiesemann, W., Kuhn, D., and Rustem, B.: Robust markov decision processes.
Mathematics of Operations Research, 38(1):153–183, 2013.

15. Puterman, M. L.: Markov decision processes: discrete stochastic dynamic programming.
John Wiley & Sons, 2014.

16. Bellman, R.: Dynamic Programming. Princeton, NJ, USA, Princeton University Press, 1
edition, 1957.

17. Sigaud, O. and Buffet, O.: Markov Decision Processes in Artificial Intelligence. Wiley-
IEEE Press, 2010.

18. Pineau, J., Gordon, G., and Thrun, S.: Point-based value iteration: An anytime algorithm
for pomdps. In Proceedings of the 18th International Joint Conference on Artificial
Intelligence, IJCAI’03, pages 1025–1030, San Francisco, CA, USA, 2003. Morgan

Kaufmann Publishers Inc.

19. Massey, J.: Causality, feedback and directed information. Citeseer.

20. Bain, M. and Sammut, C.: A framework for behavioural cloning. 2001.

21. Pomerleau, D. A.: Alvinn, an autonomous land vehicle in a neural network. Technical
report.

22. LeCun, Y., Muller, U., Ben, J., Cosatto, E., and Flepp, B.: Off-road obstacle avoidance
through end-to-end learning.

90

CITED LITERATURE (continued)

23. Sammut, C., Hurst, S., Kedzier, D., and Michie, D.: Learning to fly. In In Proceedings of
the Ninth International Conference on Machine Learning, pages 385–393. Morgan

Kaufmann, 1992.

24. Ziebart, B. D., Maas, A. L., Bagnell, J. A., and Dey, A. K.: Maximum entropy inverse
reinforcement learning. 2008.

25. Ziebart, B. D., Bagnell, J. A., and Dey, A. K.: Modeling interaction via the principle of
maximum causal entropy. 2010.

26. Kramer, G.: Directed information for channels with feedback. Doctoral dissertation,
University of Manitoba, Canada, 1998.

27. Ratliff, N. D., Bagnell, J. A., and Zinkevich, M. A.: Maximum margin planning. In
Proceedings of the 23rd International Conference on Machine Learning, ICML ’06,
pages 729–736, New York, NY, USA, 2006. ACM.

28. McMahan, H. B., Gordon, G. J., and Blum, A.: Planning in the presence of cost func-
tions controlled by an adversary. In Proceedings of the Twentieth International
Conference on International Conference on Machine Learning, ICML’03, pages

536–543. AAAI Press, 2003.

29. Boyd, S. and Vandenberghe, L.: Convex Optimization. New York, NY, USA, Cambridge
University Press, 2004.

30. Asif, K., Xing, W., Behpour, S., and Ziebart, B. D.: Adversarial cost-sensitive classifi-
cation. In Proceedings of the Thirty-First Conference on Uncertainty in Artificial
Intelligence, UAI’15, pages 92–101, Arlington, Virginia, United States, 2015. AUAI
Press.

31. Vlassis, N., Littman, M. L., and Barber, D.: On the computational complexity of stochas-
tic controller optimization in pomdps. ACM Transactions on Computation Theory
(TOCT), 4(4):12, 2012.

32. Hastings, W. K.: Monte carlo sampling methods using markov chains and their applications.
Biometrika, 57(1):97–109, 1970.

33. Atkeson, C. G. and Schaal, S.: Robot learning from demonstration.

VITA

Andrea Tirinzoni

Personal Data

Address: 809 South Damen Avenue, 60612 IL, Chicago
Phone: +1 (312) 730 8322
email: andrea.tirinzoni@gmail.com

Date of Birth: July 18TH, 1993
Nationality: Italian

Education

Today Master of Science in Computer Science,
Mar 2016 University of Illinois at Chicago, Chicago

Gpa: 4.0/4

Today Master of Science in Computer Science and Engineering,
Oct 2015 Politecnico di Milano, Milan

Gpa: 29.88/30

Jul 2015 Bachelor’s Degree in Computer Engineering,
Politecnico di Milano, Milan
110/110 summa cum laude

Research Experience

Today Research Assistant
Jan 2017 Purposeful Prediction Laboratory, University of Illinois at Chicago

Master thesis research on Adversarial Inverse Reinforcement Learning.

Research on Robust Control of Markov Decision Processes.

Advisor: Prof. Brian Ziebart.

91

92

VITA (continued)

Projects

Sep 2016 Nanoscribe 3D Printer Advanced Alignment System
Dec 2016 Development of a computer vision application to automatically align the Nano-

scribe 3D Printer using camera snapshots.

Advisor: Prof. Daniela Radakovic.

Sep 2016 Analysis of software bugs using GitHub APIs
Dec 2016 Development of a machine learning tool to find patterns in bug corrections

using git patches and GitHub metadata files.

Advisor: Prof. Mark Grechanik.

June 2016 Apache Spark Monitoring
Mar 2016 Development of a module for extending Apache Spark’s monitoring capabili-

ties.

Advisor: Prof. Marco D. Santambrogio.

Scholarships

Aug 2016 Italian scholarship for the best UIC student in computer science
May 2016 Scholarship for engineering students with high GPA
Mar 2016 Exemption from tuition fees for high academic performance
Mar 2015 Exemption from tuition fees for high academic performance
May 2014 Scholarship for engineering students with high GPA
Mar 2014 Exemption from tuition fees for high academic performance

Languages

Italian: Mothertongue
English: Fluent (TOEFL - Score: 100/120)

Computer Skills

Basic Knowledge: ASP.NET,Processing,LUA,Lisp,Torch,VHDL
Intermediate Knowledge: C++,R,PHP,Python,Javascript,LATEX,Bash

Advanced Knowledge: Java,Scala,C#,C,Matlab,HTML,SQL

	to1 Introduction
	 Problem Description
	 Motivations
	 Contributions
	 Document Outline
	 Mathematical Notation

	to2 Background
	 Markov Decision Processes
	 Partially Observable Markov Decision Processes
	 Point-based Value Iteration

	 Directed Information Theory
	 Imitation Learning
	 Behavioral Cloning
	 Inverse Reinforcement Learning

	to3 Related Work
	 Feature Matching
	 Maximum Causal Entropy IRL
	 Maximum Margin Planning
	 Adversarial Inverse Optimal Control

	to4 Problem Definition
	 Domain Description
	 Problem Formulation

	to5 Adversarial Formulation
	 Constrained Zero-Sum Game
	 Unconstrained Zero-Sum Game
	 Weight Sharing Relaxation

	 Learning Algorithm
	 Double Oracle
	 Gradient Descent

	to6 Multiple-MDP Optimization
	 Problem Definition
	 Approximate Dynamic Programming
	 Dynamic Program Properties

	 Modified Point-Based Value Iteration
	 Modified Value Backup
	 Modified Belief Expansion
	 Performance Analysis

	 Application to Adversarial IRL

	to7 Experimental Results
	 Experiment Settings
	 Random MDP
	 Optimal Demonstrations
	 Sub-optimal Demonstrations

	 Grid World
	 Task Definition
	 Asymptotic Performance
	 Single Optimal Trajectory
	 Multiple Demonstrations
	 Highly Sub-optimal Demonstrations

	 Discussion

	to8 Conclusion and Future Work
	to CITED LITERATURE
	to VITA

