

Volume-based Graphics and Haptics Rendering Algorithms

for Immersive Surgical Simulation

BY

SILVIO RIZZI

B.S., Electronics Engineering, Universidad Tecnológica Nacional, Argentina, 2002

M.S., Electrical and Computer Engineering, University of Illinois at Chicago, 2006

THESIS

Submitted as partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Industrial Engineering and Operations Research

in the Graduate College of the

University of Illinois at Chicago, 2013

Chicago, Illinois

Defense Committee:

 P. Pat Banerjee, Chair and Advisor

 Cristian Luciano,

 David He,

 Ali Alaraj, Neurosurgery

 Ben Roitberg, University of Chicago

iii

To my wife, Ana,

for her unconditional support.

iv

ACKNOWLEDGEMENTS

I would like to thank my academic advisor, Prof. Pat Banerjee for his support,

guidance, and the freedom granted to pursue the ideas in this thesis. I would also like to

thank Prof. Cristian Luciano for these years of inestimable advice, sincere friendship, and

countless hours of solid work invested in helping me bring these ideas to fruition.

My gratitude is also extended to the other members of my thesis committee, Prof.

David He, Dr. Ali Alaraj and Dr. Ben Roitberg. They always managed to accommodate

my questions in their busy schedules, providing, with no exceptions, feedback of the

utmost quality.

I would also like to recognize Dr. Jaime Gasco for his tireless enthusiasm in

developing the discipline of surgical simulation to its full potential. My work has greatly

benefited from collaboration and insightful discussions with him.

Special thanks to my Director of Graduate Studies, Prof. Michael Scott, and to Iris,

Veronica, Evelyn, Alan and Monica at the UIC Department of Mechanical and Industrial

Engineering.

The funding provided by US Department of State-Fulbright, University of Illinois at

Chicago, and ImmersiveTouch, Inc is acknowledged with appreciation.

SR

v

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION ... 1

2. CREATING MODELS FOR THE IMMERSIVETOUCH................................. 4

2.1 The necessity of segmentation, model generation and additional processing ___________ 4

2.2 From MRI/CT scans to polygonal models______________________________________ 5

2.3 Research Problem: __ 5

2.4 Previous work ___ 6

2.5 Software tools ___ 8

2.6 Methodology __ 9

2.6.1 Segmentation with ITK-SNAP ___ 9

2.6.2 Generation and optimization of 3D models with VTK ______________________ 10

2.7 Results __ 11

2.8 Contribution__ 15

3. VOLUME GRAPHICS AND HAPTICS... 16

3.1 Research Problem: ___ 17

3.2 Overview __ 18

3.3 Algorithm Details ___ 19

3.4 Algorithm Parameters __ 21

3.5 Transfer Functions ___ 22

3.6 Implementation ___ 24

3.7 Contributions ___ 26

3.7.1 Elimination of inadequate haptic feedback _______________________________ 26

3.7.2 No fall-through for thin structures ______________________________________ 27

3.7.3 Haptic front/back face detection _______________________________________ 27

vi

3.7.4 Multiple shape detection ___ 27

3.7.5 Leveraging of existing libraries __ 28

4. COMPARISON OF HAPTICS RENDERING ALGORITHMS...................... 29

4.1 Research Problem: ___ 29

4.2 Overview __ 29

4.3 Literature Review ___ 30

4.3.1 Polygonal Mesh Haptics Rendering_____________________________________ 30

4.3.2 Volume Haptics Rendering ___ 32

4.3.3 Intermediate Representation methods ___________________________________ 33

4.3.4 Evaluation of haptic algorithms__ 34

4.4 Algorithms Evaluated __ 35

4.5 Experiments and results___ 37

4.5.1 Description of the Experiments __ 37

4.5.2 Experiment 1 - Servoloop Frame Rate___________________________________ 38

4.5.3 Experiment 2 - Force Rendering _______________________________________ 40

4.5.4 Experiment 3 - Client thread running time _______________________________ 46

4.6 Contributions ___ 49

5. A HAPTICS ALGORITHM FOR MULTIPOINT COLLISION DETECTION

... 51

5.1 Research Problem ___ 51

5.2 Overview __ 52

5.3 Algorithm Details ___ 54

5.4 Implementation ___ 54

5.5 Limitations___ 57

5.5.1 Locking the cursor to help prevent fall-through ___________________________ 58

5.5.2 Conditions to lock the cursor __ 59

5.5.3 Conditions to unlock the cursor __ 61

vii

5.6 Contributions ___ 62

6. VOLUME HAPTICS AND POLYGONAL GRAPHICS FOR SIMULATION

OF BONE REMOVAL PROCEDURES .. 63

6.1 Previous work __ 63

6.2 Research Problem ___ 64

6.3 A real-time algorithm for graphics polygonal surface regeneration _________________ 64

6.4 Integrating CUDA marching cubes with the ImmersiveTouch software______________ 68

6.4.1 Vertex Buffer Objects in Coin3D ______________________________________ 69

6.4.2 Rendering CUDA Marching Cubes data in Coin3D ________________________ 69

6.5 Burr-hole drilling simulation ___ 71

6.6 Skin incision for ventriculostomy simulation __________________________________ 73

6.7 Craniotome cutting __ 74

6.8 Contributions ___ 78

7. SIMULATION MODULES.. 79

7.1 Ventriculostomy with burr-hole drilling ______________________________________ 79

7.2 Percutaneous spine needle insertion with multipoint collision detection______________ 82

7.3 Subclavian central line placement with multipoint collision detection _______________ 84

8. VALIDATION EXPERIMENTS... 85

8.1 Ventriculostomy experiments __ 85

8.1.1 Experiment 1 __ 85

8.1.2 Experiment 2 __ 88

8.2 Pedicle screw experiments___ 92

8.2.1 Experiment 1 __ 92

8.2.2 Experiment 2 __ 95

9. FINAL CONCLUSIONS .. 97

CITED LITERATURE .. 99

viii

VITA ... 105

ix

LIST OF TABLES

TABLE PAGE

Table I 3D models and their properties.. 13

Table II Haptic algorithms evaluated... 35

Table III Obtaining the force anomaly coefficient .. 42

Table IV Observed issues .. 49

Table V Algorithm to lock cursor orientation... 60

Table VI Algorithm to unlock cursor orientation ... 62

Table VII Burr-hole drilling algorithm.. 71

Table VIII Craniotome cutting algorithm... 76

Table IX First ventriculostomy experiment... 85

Table X. Patient library for ventriculostomy .. 87

Table XI Second ventriculostomy experiment ... 88

Table XII Ventriculostomy library using voxel-based models....................................... 89

Table XIII Performance evaluation for simulated ventriculostomy 90

Table XIV First pedicle screw experiment ... 92

Table XV Second pedicle screw experiment .. 95

Table XVI Acceptable vs non-acceptable pedicle screws .. 96

x

LIST OF FIGURES

FIGURE PAGE

Figure 1. Block diagram of the system. .. 6

Figure 2. VTK pipeline. .. 10

Figure 3. Ventricle segmentation in ITK-SNAP... 12

Figure 4. Polygonal mesh of the brain. ... 12

Figure 5. Finalizing models in 3DS Max.. 14

Figure 6. Final models. ... 14

Figure 7. Problem geometry. .. 18

Figure 8. Flow diagram of the algorithm. ... 20

Figure 9. Graphics and Haptics transfer functions.. 23

Figure 10. Predefined trajectory for the experiments. .. 38

Figure 11. Servoloop average rendering time for polygonal-mesh methods.................... 39

Figure 12. Servoloop frame rendering time for volumetric methods. 40

Figure 13. Force anomalies in Chai3D for 265K visualized polygons............................. 43

Figure 14. Force anomalies in GodObject for 159K visualized polygons........................ 43

Figure 15. Force anomalies in FeedbackBuffer for 53K visualized polygons. 44

Figure 16. Force anomalies in VHTK for 238K visualized polygons. 44

Figure 17. Average force anomaly coefficient for all cases and its range of variation. ... 45

Figure 18. Run time for haptics rendering in client thread. .. 47

Figure 19. Combined run time for graphics and haptics in client thread.......................... 48

Figure 20. Problem geometry in single point collision detection algorithm..................... 52

Figure 21. Craniotome with multiple points for collision detection. 52

Figure 22. Multipoint problem geometry.. 53

xi

Figure 23. Multipoint collision detection algorithm. .. 55

Figure 24. Refined algorithm for multipoint collision detection. 56

Figure 25. Pure torque problem. ... 58

Figure 26. Algorithm to lock cursor. .. 60

Figure 27. Algorithm to unlock cursor. .. 61

Figure 28. Indexing convention for vertices and edges (Bourke, 1994)........................... 65

Figure 29. Example of triangle created by Marching Cubes (Bourke, 1994)................... 66

Figure 30. Marching Cubes fundamental cases (Geiss, 2007).. 67

Figure 31. Burr-hole drilling algorithm. ... 72

Figure 32. Drilling a temporal bone model with a virtual matchstick burr. 73

Figure 33. Skin incision. ... 74

Figure 34. Parameters of an elliptical cylinder. .. 75

Figure 35. Craniotome cutting algorithm.. 76

Figure 36. Modeling the cutting effect of a craniotome. .. 77

Figure 37. Using the marker tool (1). ... 79

Figure 38. Using the marker tool (2). ... 80

Figure 39. Creating an incision in the skin. .. 80

Figure 40. Drilling a burr-hole.. 81

Figure 41. Successful ventricular cannulation. ... 81

Figure 42. Cut-away plane showing final position of the catheter. 82

Figure 43. Percutaneous spine needle insertion. ... 83

Figure 44. Subclavian central line simulation module.. 84

Figure 45. Improvement over baseline in ventriculostomy (Schirmer et al., 2013). 91

Figure 46. Distribution of performance error. .. 93

Figure 47. Distribution of fluoroscopy exposure. ... 93

xii

Figure 48. Distribution of final scores. ... 94

xiii

LIST OF ABBREVIATIONS

3D Three dimensional

AANS American Association of Neurological Surgeons

AR Augmented Reality

CNS Congress of NeuroSurgeons

CT Computed Tomography

DICOM Digital Imaging and Communications in Medicine

DOF Degrees of Freedom

FOM Foramen of Monro

FPS Frames per Second

GPU Graphics Processing Unit

ITK Insight Segmentation and Registration ToolKit

MRI Magnetic Resonance Imaging

OR Operating Room

STL Stereo Litography

VHTK Volume Haptics ToolKit

VR Virtual Reality

VRML Virtual Reality Modeling Language

VTK Visualization ToolKit

X3D Extensible 3D Graphics

xiv

SUMMARY

This work shows the research and development involved in solving essential

problems in the emerging field of surgical simulation. It focuses on a haptics-based

Augmented Reality surgical simulation platform known as ImmersiveTouch
®

, which

implements technologies patented by the Board of Trustees of the University of Illinois.

Through the nine chapters of this thesis, a gradual transition to new paradigms in

surgical simulation is naturally developed, starting from methods to create patient-

specific 3D models for training and pre-operative planning, continuing with the

development of a voxel-based haptics algorithm, its performance evaluation, and

extensions for multipoint collision detection; followed by the introduction of graphics

and haptics techniques that are combined to simulate bone-removal procedures, and

culminating in the successful implementation of surgical simulation modules on the

ImmersiveTouch
®

Multiple validation experiments are also presented, where some of the contributions

in this thesis are used in simulation modules that are evaluated in surgical training

scenarios with promising and encouraging outcomes. Multi-disciplinary collaboration is

one of the highlights of this work, with scientifically sound results published in

prestigious peer-reviewed engineering and medical journals and conferences.

1

1. INTRODUCTION

ImmersiveTouch
®

, the surgical simulator platform used in this thesis (Luciano et al.,

2005; Banerjee et al., 2010), consists of multiple hardware and software components,

including collocated 3D graphics and haptics, head and hand tracking, and a Software

Development Kit (SDK) that integrates a number of software libraries, including:

• Coin3D, as an open implementation of OpenInventor for scene graph management

• FLTK, for graphical user interfaces

• OpenHaptics, to interact with Sensable haptic devices

• OpenAL, to provide 3D audio

• PhysX, for dynamics-based simulation

In terms of 3D graphics, there are two well-established paradigms for data

visualization: polygonal mesh rendering and volume rendering. Of these two, the

simulator originally supported only polygonal mesh models for simultaneous haptics and

graphics rendering. A crucial observation in the early stages of this research was that the

simulator could be greatly enhanced by also supporting volumetric datasets. This was

mainly motivated by the fact that CT, MRI, and other patient-specific datasets are

essentially delivered as a discrete grid representation in space of physical magnitudes

(magnetic field intensity, x-ray intensity, etc.). Therefore, by directly supporting these

voxel-based datasets, the necessity of converting patient data to polygonal meshes could

be minimized, or even entirely avoided.

In this way, graphics volume rendering was incorporated into the simulator SDK by

adding the SimVoleon volume rendering library to Coin3D. A voxel-based haptics library

was available (Lundin et al., 2006), but its combined performance with SimVoleon was

2

sub-optimal within the ImmersiveTouch framework. This fact pointed our research to

developing an alternative volume haptics algorithm. It was additionally found that the

combination of this novel volume haptics algorithm with polygonal mesh visualization

yielded the best performance on the ImmersiveTouch. The polygonal mesh models

necessary for graphics rendering could be obtained from voxel models by using a well-

known algorithm for polygonization of scalar fields (Marching Cubes). From that point,

additional breakthroughs followed, such as the implementation of material-removing

algorithms for simulation of bone surgery or the development of extensions to the haptics

algorithm for object-to-object collision detection.

This Ph.D. dissertation consists of nine chapters. Chapter 2 presents a method for

segmenting anatomies of interest from medical images preserving their spatial continuity

and coherence, resulting in high-quality polygonal meshes with a low number of

polygons that are optimal for simultaneous haptics and graphics simulation. Chapter 3

describes a haptic algorithm able to generate force-feedback from voxels, without the

need of generating polygonal mesh representations of the 3D models. In Chapter 4,

results of multiple experiments evaluating the performance of existing haptic algorithms

are presented, where it is demonstrated that the combination of polygonal mesh graphics

rendering with volume haptics rendering provides the best performance for surgical

simulation applications. Based on the haptics algorithm from Chapter 3, extensions for

multipoint collision detection are introduced in Chapter 5. With that, a fundamental

limitation in existing haptic libraries (i.e interaction with only a single point) is

overcome. Chapter 6 introduces yet more fundamental advances, in which the previously

discussed optimal combination of polygonal mesh graphics rendering with volume

3

haptics rendering is augmented with the capability of rapidly regenerating the graphics

polygonal mesh. Algorithms for simulation of burr-hole drilling, skin incisions, and

cutting of a craniotome are also presented in Chapter 6. Practical implementations of the

algorithms are shown in Chapter 7, where simulation modules for ventriculostomy with

burr-hole drilling, percutaneous spine needle insertion, and subclavian central line are

described. Chapter 8 presents the results of four experiments validating different

simulation modules in which the contributions of this thesis have been used. Finally,

Chapter 9 summarizes the major contributions of this work.

4

2. CREATING MODELS FOR THE IMMERSIVETOUCH

2.1 The necessity of segmentation, model generation and additional processing

The ImmersiveTouch simulator (Luciano et al., 2005; Banerjee et al., 2010) is the

latest generation of augmented Virtual Reality (VR) technology, which integrates a haptic

device with a head and hand tracking system, and a high-resolution and high-pixel-

density stereoscopic display. A haptic device collocated with 3D graphics is the key

factor to deliver extremely realistic simulations. Previously, the ImmersiveTouch

simulator has been successfully applied to the simulation of neurosurgical procedures and

training of neurosurgery residents (Luciano et al., 2006). It implements graphics and

haptics rendering in a multi-threaded environment. In order to satisfy the minimum

required graphic and haptic frame rates, it is essential to use efficient 3D models of the

anatomical parts to be simulated.

In the context of on-demand high fidelity simulations (Banerjee, Charbel, 2006),

automatic or semi-automatic techniques to generate 3D models from medical images are

highly desirable. Segmentation techniques are applied to Magnetic Resonance Imaging

(MRI) or Computed Tomography (CT) images to obtain 3D models from medical data.

These models have to be reduced and converted to polygonal surfaces for simultaneous

graphics and haptics rendering. Depending on the application, further processing may be

needed (e.g. drilling of burr holes for simulation of a neurosurgery procedure known as

ventriculostomy).

5

2.2 From MRI/CT scans to polygonal models

The ImmersiveTouch is capable of simultaneous haptics and graphics rendering of

3D models. As an important feature of its software design, several models representing

different organs or objects can be loaded at the same time. This requires implementing a

sophisticated collision detection mechanism and the assignment of different haptic

properties to each model. For medical applications, the models are extracted from MRI

and/or CT scans. Collections of segmented images are converted to 3D volumes, to be

further transformed into polygonal surfaces. It is important not only to obtain accurate 3D

models, but also to make them efficient for graphics and haptics rendering. A frame rate

of 60 Hz is used for stereoscopic graphics rendering, whereas a rate of 1000 Hz is used

for haptics rendering. Polygonal meshes obtained from segmentation must be carefully

decimated; otherwise the number of polygons would be excessively high, making it

impossible for the haptics library to perform adequately at the above frame rate. A block

diagram of the system is shown in Figure 1.

2.3 Research Problem:

Find an optimal way to implement the Pre-processing block in Figure 1 to extract

anatomies of interest from multiple 2D slices and convert them into 3D polygonal

meshes with a sufficiently low polygon count to allow interactive graphics and haptics

rendering

6

Figure 1. Block diagram of the system.

2.4 Previous work

Several systems and methods to address similar problems have been reported in the

literature. Cebral and Löhner (2001) proposed a method for construction of arterial

surface models from medical images. A region-growing algorithm was used to segment

the arteries. After isosurfacing, smoothing, and mesh optimization, a finite element mesh

suitable for computational fluid dynamics calculations was generated. User interaction

was required during the segmentation and geometry modeling stages. Even though some

algorithms and methods were discussed, and few examples where the method succeeds

were shown, specific software implementations were not presented. The time required to

perform the entire process was reported to be in the order of few hours for the examples

shown

7

Du et al. (2005) presented an integrated system based on ITK and VTK. Their focus

was on creating finite elements models from CT or MRI images, but specific applications

were not shown. Segmentation was done either manually or automatically. However, it is

not clear how the system determined the regions to be segmented when working in

automatic mode. Besides that, it was neither specified how much user interaction is

required nor the time needed to perform the entire process for common cases.

Ito et al. (2006) proposed a method for unstructured mesh generation for high-

fidelity numerical simulations. Their main goal was to obtain high quality surface

meshes. For that, two different approaches were used: direct advancing front method and

modified decimation method. ITK and VTK were used along with custom code.

Segmentation was done using threshold filters and transfer functions. The authors

remarked the importance of working closely with medical experts to validate the results

of segmentation.

Young et al. (2006) presented examples where 3D image data is automatically

converted into polygonal meshes. Since the approach used was outlined but not detailed,

it is difficult to evaluate the degree of automation achieved. Also, the degree of human

intervention required was not discussed.

Melonakos et al. (2005) presented an implementation in ITK of a segmentation

algorithm based on incorporating prior knowledge through Bayes' rule. The intensity

value of each voxel was considered a random variable. Additional assumptions on

intensity distributions and prior likelihoods were made. According to the authors, this

knowledge-based segmentation algorithm required minimal user interaction. Examples of

two different applications where the algorithm succeeds were shown.

8

Wolf et al. (2004) described The Medical Imaging Interaction Toolkit (MITK), an

object-oriented, cross-platform library extending VTK and ITK. According to the

authors, their goal was not to reinvent anything already existing, but to add new features

to the previous development. It was stressed the fact that software for clinical use in

image-guided procedures and image analysis required a high degree of interaction to

verify and correct results from automatic or semi-automatic algorithms.

2.5 Software tools

We have identified two software packages that are promising for the tasks of image

segmentation and model optimization required in Figure 1: ITK and VTK

ITK (The Insight Segmentation and Registration Toolkit) is an application

framework initially developed to support a U. S. National Library of Medicine's project

(The Visible Human Project). In addition, (ITK-SNAP) is an open-source software

package, built on top of ITK, oriented to the segmentation of 3D anatomical structures

from medical images. Using ITK-SNAP, it is possible to perform segmentation as a semi-

automated procedure. Though referred as snakes (Kass et al., 1997) within the software,

ITK-SNAP uses two 3D active contour segmentation methods (Yushkevich et al., 2005),

namely Geodesic Active Contours (Caselles et al., 1997) - driven by intensity edges - and

Region Competition (Zhu, Yuille, 1996) - driven by intensity regions. ITK-SNAP has

been validated as a highly reliable tool in the context of a child autism neuroimaging

study (Yushkevich et al., 2006).

VTK (The Visualization ToolKit) is an open-source software package for

visualization that supports a wide variety of advanced visualization and volume

9

processing algorithms. In VTK, it is possible to construct visualization pipelines

consisting of data and process objects (Schroeder et al., 2006).

In this context, we use ITK-SNAP for image segmentation and VTK for model

optimization.

2.6 Methodology

2.6.1 Segmentation with ITK-SNAP

ITK-SNAP provides a friendly user interface by which the user guides the

segmentation process in a semi-automatic manner. Its source code is freely available, it is

being actively developed, and it has a growing community of users.

Series of CT images in DICOM format are read by ITK-SNAP. Orthogonal axial,

coronal, and sagittal planes are displayed. The user can adjust the image histogram to

enhance the visualization and contrast of the anatomical part under study. As the first step

in segmentation, the volumetric region on which to perform the segmentation is selected.

Input images have to be preprocessed before being fed into the segmentation algorithm.

ITK-SNAP provides two methods for image preprocessing: Intensity Regions and Image

Edges. In our case, Intensity Regions is the method that gives best results. Essentially, the

method consists of applying a thresholding function to the input images. Two probability

fields are estimated: the probability that a pixel in the image belongs to the foreground

(structure of interest), and the probability that the pixel belongs to the background. The

active contour is attracted to the points where both probabilities are equal (Yushkevich et

al., 2005).

10

Initially, the user must place 3D spheres of variable radius - called "bubbles" - as

starting values for the algorithm. Afterwards, the active contour evolves continuously in

every iteration, eliminating great part of the original noise. The output of this process is a

subset of voxels from the original CT scan that are identified as part of the anatomies of

interest.

2.6.2 Generation and optimization of 3D models with VTK

VTK is used to construct an optimal 3D representation of the data. Figure 2

describes the VTK pipeline used. The first stage consists of a vtkPDataSetReader filter,

which reads the data segmented in ITK-SNAP and outputs volumetric data.

Figure 2. VTK pipeline.

The next filter is vtkContourFilter, which generates an isosurface from its input

data. This isosurface must be drastically decimated to reduce the number of polygons to

11

be rendered. For that, a vtkDecimatePro filter is used with the option "preserve topology"

activated.

Following decimation, a smoothing filter is applied using vtkSmoothPolyDataFilter.

The number of iterations required for each model was determined observing the

smoothness of the model. After that, a vtkPPolyDataNormals filter is applied to generate

normal vectors for each polygon. This step is essential for a correct rendering of the

resulting models. Finally, the polygonal mesh is saved in VTK file format to be further

converted into VRML or a different 3D representation (e.g. Stereo Lithography - STL)

should additional processing is needed.

2.7 Results

To test the tools previously described, we created a model of a challenging case of

ventriculostomy corresponding to a patient whose ventricles are notoriously shifted. For

this experiment, the input data consists of 192 CT images in DICOM format. Each image

contains intensity levels of 512 by 512 pixels. Intensity levels are given as 16-bit signed

integers.

For the existing ventriculostomy simulator (Luciano et al., 2006), there are four

models to be created from patient data: ventricles, brain, skull, and skin. ITK-SNAP was

used to segment these anatomies. An example of the shifted ventricles after segmentation

is shown in Figure 3:

12

Figure 3. Ventricle segmentation in ITK-SNAP.

Figure 4. Polygonal mesh of the brain.

13

After the segmentation process, meshes are generated from the segmented voxels.

Figure 4 shows an example of the brain polygonal mesh obtained as part of the 3D model

generation stage:

A significant reduction in the number of polygons was achieved as part of the

optimization stage. The following table shows the values obtained:

TABLE I

3D MODELS AND THEIR PROPERTIES

In ventriculostomy, burr holes must be drilled according to anthropometric

measures (Prabhu et al., 2004). We simulate the process creating cylinders and ellipsoid-

like shapes that are combined with the original model using Boolean operations in 3DS

Max. Using this tool, not only can the user easily find an optimum view of the model, but

also the proper placement and orientation of the cylinders and ellipsoid-like shapes are

facilitated (Figure 5)

Model
 Before

decimation

After

decimation

% reduction

Brain

Number of polygons

Number of vertices

Memory (MBytes)

495364

247748

13.872

22742

11437

0.822

95.4

95.4

94.0

Ventricles

Number of polygons

Number of vertices

Memory (MBytes)

93528

46782

2.621

23176

11606

0.837

75.2

75.2

68.0

Skin

Number of polygons

Number of vertices

Memory (MBytes)

916608

458306

25.666

83346

41675

3.003

90.9

90.9

88.3

Skull

Number of polygons

Number of vertices

Memory (MBytes)

1495636

747604

41.875

79810

39691

2.87

94.7

94.7

93.1

14

Figure 5. Finalizing models in 3DS Max.

A boolean(-) operation is performed between the skin model and the ellipsoid-like

shapes. Similarly, a boolean(-) operation is also performed between the skull model and

the cylinders. Before exporting the final models in VRML, 3DS Max is also used to edit

their color, lighting and texture mapping. Different views of the final models are shown

in the following figure:

Figure 6. Final models.

15

2.8 Contribution

The procedures outlined in this section allow to define repeatable sequences of

operations toward the automation of the 3D model creation process. Segmentation using

the snakes algorithm in ITK-Snap results in 3D models preserving the continuity of the

anatomies of interest, which is an essential feature for smooth simulation in the virtual

environment. Significant reduction in the number of polygons (up to 95%) without

affecting mesh quality is achieved with VTK.

The method has been successfully applied to the creation of a library of 15 cases for

ventriculostomy simulation, including models of patients with normal, hydrocephalic,

shifted and small ventricles. The library has been used as part of an experiment

conducted at the Dr. Allan L. and Mary L. Graham Clinical Performance Center (CPC) at

the University of Illinois-Chicago. Results have been reported in (Yudkowsky et al.,

2010) and (Yudkowsky et al., 2012) and are summarized in Chapter 9.

16

3. VOLUME GRAPHICS AND HAPTICS

Lately, volumetric data sets have acquired extraordinary significance in medical

simulation. Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are

examples of ubiquitous technologies from which 3-dimensional (3D) data sets are

obtained. 3D computer models are commonly generated for Virtual Reality and Haptics

simulation of medical and surgical procedures (Luciano et al., 2006; Banerjee, Charbel,

2006).

Traditionally, a combination of scene graph managers (Systems In Motion Coin3D;

H3D) and haptic libraries (SensAble Technologies OpenHaptics) is used in simulations

for simultaneous graphics and haptics rendering of 3D models. Those libraries commonly

require 3D objects to be represented as polygonal meshes, i.e. surfaces in 3D space

consisting of multiple triangles. These polygonal meshes are usually generated using an

isosurface extraction algorithm such as Marching Cubes (Lorensen, Cline, 1987). Further

processing may be required in order to reduce the number of triangles in each model

(decimation) and to obtain smooth surfaces. All these processing stages often demand

several hours -or even days- to complete, requiring the use of additional software tools

and a considerable amount of human intervention to generate high quality 3D models.

Although methods to accelerate and improve the degree of automation of the

segmentation process have been discussed in the literature (Rizzi et al., 2007), alternative

approaches must be explored in order to improve the simulations.

OpenHaptics (SensAble Technologies OpenHaptics) is one of the most popular

commercial haptic libraries supporting SensAble haptic devices (Massie, Salisbury, 1994;

SensAble Haptic Devices). It is extensively used in a number of systems for Haptics and

17

Virtual and Augmented Reality applications, including (H3D) and OpenHaptics-enabled

versions of the software described in (Luciano et al., 2005; Banerjee et al., 2010). It has,

however, serious limitations when it is required to haptically render highly complex

shapes. Its two modes (Feedback Buffer and Depth Buffer) impose their own constraints

on the model to be rendered. On one hand, Feedback Buffer delivers high quality haptic

rendering, however its performance is dependent on the number of polygons in the

model. On the other hand, Depth Buffer is insensitive to the number of polygons, but

there are some cases where it exhibits “noticeable discontinuities when feeling shapes

with deep, narrow grooves or tunnels” (SensAble OpenHaptics Toolkit Version 3.0

Programmer’s Guide [a]).

To overcome the limitations discussed above, a more natural and straightforward

approach would be to implement a direct volume haptics algorithm. Volumetric data

could then be used directly as delivered by imaging systems, reducing or even

eliminating the need of preprocessing stages to build models as polygonal meshes.

Furthermore, a robust direct volume haptics could be a viable alternative to address those

problems where OpenHaptics fails.

3.1 Research Problem:

Design and implement a Volume Haptics Algorithm that uses available haptics libraries

to overcome inefficiencies of currently existing solutions

18

3.2 Overview

A volume haptics algorithm based on proxy methods is presented. It essentially

consists of detecting collisions between the proxy point and one or more 3D shapes

representing objects of interest. Shapes are defined from a set of voxels using transfer

functions without the need to generate polygonal meshes.

The algorithm receives two points as parameters (Start and End) for each haptic

frame rendered by the servoloop at 1 KHz. The Start point is the proxy position

calculated in the previous haptic frame whereas the End point is the current position of

the haptic device.

The collision detection routine detects the intersection between a line segment

(determined by Start and End) and a shape surface (Figure 7). Shape surfaces are defined

in terms of voxel intensities, similar to isosurfaces. The algorithm returns the 3D

coordinates of the intersection point P, the normal vector N of the surface at the

intersection point, and the touched side (front or back) of the shape surface. It also returns

TRUE if there is a collision or FALSE otherwise. With this information, the underlying

haptic library computes the forces as in the case of polygonal mesh haptics, and positions

the proxy at the point P when a collision with the shape is detected.

Start

N

T

P

End

Figure 7. Problem geometry.

19

3.3 Algorithm Details

Figure 8 shows a flow diagram of the algorithm. If the haptic stylus has not moved

in two successive haptic frames and there was no collision in the previous frame, then the

Start and End points are exactly the same and therefore, the function returns FALSE.

Otherwise, it continues with a rough bounding-box comparison between the line and the

volume, quickly returning false if they are disjoint.

If the line is inside the volume bounding box, for each point P on the line segment

from the Start to the End points, the algorithm checks the intensity to the closest voxel V

by a set of window transfer functions defining the multiple shapes. If the voxel intensity

is outside the windows specified through the transfer functions, then the haptic device has

not yet collided with any shape and the loop continues with the next point. If none of the

points on the line segment collide with any shape, the function returns false.

In case the intersected voxel V lies within any of the transfer function windows, the

algorithm returns the 3D coordinates of the point P as the surface contact point. The

density of the voxel V is used to determine which of the shapes has been touched by the

haptic device by comparing it with the ranges defined by their transfer functions.

The normal vector N, which is perpendicular to the volumetric isosurface at the

contact point P, is determined by computing the gradient of the neighbor voxels using the

central differences method. The contact point P and the normal vector N define a plane T

(tangential to the shape) which serves as an intermediate representation of the isosurface.

This plane is useful to determine if the haptic device is touching either the front or back

side of the shape. If the Start point is in front of the plane T and the End point is behind

20

it, then the colliding face is front. Otherwise, the colliding face is back. In this case, the

algorithm inverts the direction of the previously computed normal vector N.

Intersect (Start point, End point, Intersection point, Intersection normal, Colliding face)

Start point =

End point?
No

Return false

Yes

No

Compute normal

vector N from

voxel gradients at

vicinity of voxel V

Define tangential

plane T

perpendicular to N

Is Start point in

front of T and is End

point behind T?

Colliding face = FRONT

Intersection

normal = N

Yes

No

End

Intersection

normal = -N

Colliding face = BACK

Intersection

point = P

Does line bounding

box collide with volume

bounding box?

For each point P

in the line

Yes

Is voxel V

transparent?

Find closest voxel

V to point P

No

Determine the

colliding isosurface

End loop

Yes

Handle collision

Handle collision

between line and

volume

Return true

Begin

Figure 8. Flow diagram of the algorithm.

21

EndStartP ⋅+⋅−= ii)1(

3.4 Algorithm Parameters

There are two essential design requirements for this algorithm. First of all, it must

be efficient enough to not affect the performance of the haptics rendering servo loop

sustaining a minimum 1 KHz haptic frame rate. In addition, it must be robust enough to

avoid undetected collisions. Both requirements are directly affected by the selection of

the step size with which successive discreet points along the line segment (shown in

Figure 7) are evaluated. If the step size is too big, a collision could be overlooked,

especially for thin structures. On the other hand, a finely grained step size could help

guarantee collisions are always detected, but it could also severely impact the haptic

frame rate, since the algorithm is executed in the servo loop thread.

If we parametrize the line segment from Start to End with parameter i, where i is in

the interval [0,1], then the following linear interpolation equation gives any point P in the

line segment as a function of i:

 (1)

The algorithm traverses the line segment by varying i from 0 to 1, incrementing it by a

value of delta in each successive iteration. Computations of P are done in continuous

space and further converted to discrete voxel coordinates for retrieving voxel values. No

sub-voxel resolution is needed.

Users can move the haptic stylus at various speeds, which is reflected in

corresponding variations of the line segment length from Start to End. Therefore, delta

must be carefully selected each time the algorithm is executed. A naïve approach would

22

StartEnd −
=

k
delta

be to divide the line segment into a constant number of steps, so the number of iterations

is constant for all moving speeds. However, this approach would fail to detect collisions

when the haptic device is moved at high speeds, especially when structures are thin. The

problem is solved using a variable step size as follows:

 (2)

where k is a constant that depends on the voxel size. In this way, for higher speeds, the

interval [0,1] representing the line segment is divided into a higher number of steps. As

shown in Figure 8, when the haptic device does not move in two successive haptic frames

(Start = End), the algorithm returns immediately, preventing division by zero in Equation

(2). Every time the algorithm is executed, the actual distance between successive points P

to be evaluated in a given line segment is constant, regardless of the velocity of the haptic

stylus. Thus, initializing k to be equal to or less than the minimum dimension of voxels is

a necessary condition to prevent undetected collisions.

3.5 Transfer Functions

The algorithm is able to simultaneously detect multiple shapes from volumetric

isosurfaces defined by their individual ranges of voxel intensities. A transfer function is

defined for each haptic shape whereby a binary output value is assigned to every possible

voxel intensity. In graphics volume rendering techniques, piece-wise linear transfer

functions are commonly used to specify color intensities and transparency. Similarly, in

23

our approach transfer functions are used to determine whether a voxel should be

touchable or not based on its intensity.

Non-

Touchable

Touchable

Voxel

Intensity

Voxel

Intensity

0

1

Graphics

(Volume Rendering)

Haptics

O
p

ac
it

y

I1 I2 I3 I4

I1 I4
0

All non-opaque

values are

touchable

Figure 9. Graphics and Haptics transfer functions.

Figure 9 presents a comparison between graphics volume rendering and haptic

transfer functions. The first transfer function exemplifies opacity as a function of voxel

intensities. Gradually increasing or decreasing values of opacity, represented by ramps,

are allowed and commonly used. On the other hand, in the haptics transfer functions only

discrete binary outputs are permitted. In this way, voxels with intensities within the

rectangular window defined by the transfer function will be regarded as belonging to the

shape and will, therefore, be touchable. In other words, when the collision detection

24

algorithm finds a voxel whose intensity is within the rectangular window, it will return

TRUE, indicating a collision with the shape was detected.

There are two advantages to using haptic transfer functions. First, since they are

similar to the ones commonly used in volume visualization techniques, a single transfer

function may simultaneously specify graphics and haptics properties for each shape. In

Figure 10 it is shown how a haptic transfer function can be obtained from its graphics

counterpart. As a result, all non-opaque values will be touchable and haptic parameters

such as stiffness, static friction, and dynamic friction will be assigned to the

corresponding voxels. The second advantage is that pre-processing steps such as

segmentation and construction of polygonal meshes for each shape are no longer needed.

In essence, the haptic transfer functions implemented resemble an operation of binary

thresholding, by which different subsets may be determined from the original dataset

according to their voxel intensities. Therefore, the specification of transfer functions

provides all the information needed to generate graphics and haptics visualization,

operating only with the original (unmodified) 3D dataset.

3.6 Implementation

The algorithm is intended to take advantage of the efficient force computation

implemented in existing haptic libraries (i.e. Open Haptics). Therefore, the algorithm

performs the collision detection and passes to the haptic library all the information

needed to compute the forces in the same way it does for polygonal meshes.

OpenHaptics allows users to define custom shapes by a callback function which is

called in each frame of the servoloop thread, before computing the forces to be sent to the

25

haptic device. The prototype of the intersect callback function for OpenHaptics

(SensAble OpenHaptics Toolkit Version 2.0 Programmer’s Guide [b]) is as follows:

bool intersectSurface(const HLdouble startPt[3],

 const HLdouble endPt[3],

 HLdouble intersectionPt[3],

 HLdouble intersectionNormal[3],

 HLenum *face,

 void *userdata);

The algorithm, implemented as a callback function responding to the

intersectSurface prototype, returns the coordinates of the contact point P, the

intersection normal vector N, and the touching face (as the third, fourth and fifth

parameters, respectively). OpenHaptics computes forces based on the haptic materials

associated with the haptic shape (spring, damper, static and dynamic friction), allowing

the user to feel the contact and friction between the proxy and the volumetric isosurfaces.

Similar to the case of polygonal meshes, by setting the haptic shape’s touchable face as

HL_FRONT, HL_BACK or HL_FRONT_AND_BACK, the algorithm allows the user to

feel only one or both sides of the haptic isosurface. If there is no collision, OpenHaptics

updates the proxy position with the current position of the haptic device. On the other

hand, if there is a collision, OpenHaptics fixes the proxy at the surface contact point P,

and computes the forces to be sent to the haptic device.

To detect collisions with multiple shapes, OpenHaptics calls the

intersectSurface callback function once for each haptic shape defined. Those

multiple calls are made within each individual servo frame at 1 KHz. If the

26

intersectSurface callback function returns TRUE, there is a collision with the

current shape. It returns FALSE, otherwise. However, the algorithm needs to be executed

only once per haptic frame since the goal is to find the first non-transparent voxel along

the line segment from Start to End. The sixth argument (*userdata) in the

intersectSurface prototype is used to pass the shape to be evaluated in each call.

The collision detection algorithm is executed only during the call corresponding to the

first shape in a servo frame. If a collision is detected, the algorithm will determine the

touched shape comparing the density value of the voxel against the value ranges of the

transfer function. After the first call within a servo frame, there is no need to execute the

collision detection algorithm again. However, based on the *userdata parameter, the

callback function will return TRUE when the call corresponds to a collided shape, and

FALSE for all the other shapes. In this way, OpenHaptics’ intersectSurface

callback function is called multiple times (once per existing shape) but the collision

detection algorithm is executed only once in each frame of the servo loop, obtaining a

constant runtime independent of the number of shapes.

3.7 Contributions

Comparing this algorithm with previous intermediate representation approaches, the

major contributions follow.

3.7.1 Elimination of inadequate haptic feedback

For previous algorithms, such as (Adachi et al., 1995), there is a limitation where a

lower update rate for the intermediate representation with respect to the servoloop rate

27

may cause irregularities in the force feedback. The problem is contemplated in the

recovery time approach (Mark et al., 1996), but not eliminated. In (Chen et al., 2000), the

update rate of the intermediate representation is 1/n of the force computation rate, and so

the problem in (Adachi et al., 1995) is also present whenever n > 1. In our approach,

collisions are detected at exactly the same rate in which the servoloop is updated, thus

each execution of the collision detection is guaranteed to precede the force computation.

Therefore, our algorithm eliminates this problem inherent in intermediate representations.

3.7.2 No fall-through for thin structures

The algorithm in (Chen et al., 2000) may fail to detect collisions with thin

structures. This problem is not present in our algorithm, where the speed at which the

haptic device is moved does not affect the robustness of the collision detection algorithm.

3.7.3 Haptic front/back face detection

Building our algorithm on top of an existing haptic library allows detection of

back/front faces and to assign different haptic properties to each one. This is not possible

in (Adachi et al., 1995) and (Chen et al., 2000).

3.7.4 Multiple shape detection

Our algorithm is implemented such that it is possible to efficiently detect multiple

shapes and assign different haptic properties to each of them. This feature is not

discussed in (Adachi et al., 1995) and (Chen et al., 2000).

28

3.7.5 Leveraging of existing libraries

Building our algorithm as part of an existing haptic library allows one to use

volumetric as well as polygonal mesh models at the same time. Moreover, there are

additional advantages from using the OpenHaptics library that come for free, such as

pop-through effects as well as touch/untouch callback functions.

29

4. COMPARISON OF HAPTICS RENDERING ALGORITHMS

Existing haptics libraries present serious limitations when the complexity of the

models is high. Specifically, OpenHaptics’ Feedback Buffer mode can not deliver an

adequate performance when 3D models are composed of a very high number of

polygons. In addition, its Depth Buffer mode becomes unstable in regions of high

curvature. Other volume haptics implementations, such as VHTK, suffer from fall-

through and incorrect force computation. In this chapter, we will prove that these

limitations are overcome by the algorithm presented in the previous chapter, which can

be easily implemented as an extension to existing haptics libraries

4.1 Research Problem:

4.2 Overview

In modern graphics cards, graphic pipelines are optimized for polygonal mesh

models. There is also a great majority of haptic algorithms based on polygonal meshes.

On the other hand, a voxel-based approach for both graphics and haptics allows one to

implement volume removal procedures with relative simplicity. However, graphics

volume rendering techniques are slower than polygonal mesh graphics. For this reason,

some researchers have opted for using voxel-based models for haptics and volume

Compare haptics rendering algorithms combined with polygonal graphics

rendering to assess the quality of haptic feedback provided, as well as identifying

the best combination in terms of rendering time.

30

removal procedures combined with polygonal meshes of the deformed models, which are

generated on-the-fly (Morris et al., 2006). Moreover, results in (Rizzi et al., 2010) also

suggest that the use of volume haptics with polygon-based graphics is a promising

combination in terms of efficiency. That is one of the motivations for the comparison

presented here. All haptics algorithms evaluated in this section, including voxel-based

algorithms, are combined with polygonal-mesh graphics rendering for visualization.

4.3 Literature Review

In the past, different techniques have been implemented to provide force feedback

with polygonal meshes, volumetric data, and intermediate representations. This section

describes some approaches found in the literature.

4.3.1 Polygonal Mesh Haptics Rendering

Polygonal mesh methods require 3D models to be represented as rigid polyhedra

obtained from the original dataset. Within these methods, an algorithm used for single-

point contacts was proposed in (Zilles, Salisbury, 1995). This method used a “god-

object” to constrain the haptic interface point to the mesh surface, avoiding penetration.

The tip of the haptic device was coupled to the proxy through a spring model. In each

haptic frame the force rendered was proportional to the distance between the probe and

the proxy. A virtual proxy point of finite size, to avoid fall-through due to numerical gaps

in polygonal meshes, was proposed in (Ruspini et al., 1997). This paper also proposed

HL, a haptic interface library based on a graphics library (GL) from Silicon Graphics.

The proxy method and the idea of a haptic library based on OpenGL were later

implemented in SensAble’s OpenHaptics (SensAble Technologies OpenHaptics; Itkowitz

31

et al., 2005). It offered two alternative haptics rendering modes: Feedback Buffer (based

on OpenGL 3D polygonal primitives) and Depth Buffer (based on the OpenGL depth-

buffer). Feedback Buffer delivered high quality collision detection and force feedback but

the number of polygons it could handle was limited. On the other hand, Depth Buffer was

relatively insensitive to the number of polygons because it was based on a 2D image

drawn on the Z-buffer. However, it exhibited “noticeable [force] discontinuities when

feeling shapes with deep, narrow grooves or tunnels” (SensAble OpenHaptics Toolkit

Version 3.0 Programmer’s Guide [a]).

In addition to point-based algorithms, there are also line-based approaches, such as

(Basdogan et al., 1997). The authors presented a ray-based method to detect collisions

between 3D polygonal objects and the haptic stylus, which was modeled as a line

segment. When a collision was detected, the distance between the collision point and the

tip of the stylus was computed, and the reaction force in the normal direction was made

proportional to that distance using a simple spring-damper model. Static and dynamic

frictional forces were also computed in the tangential direction.

As pointed out in (Basdogan et al., 2007) and (Lundin, 2007a), the fact that

polygonal meshes were generated from isosurfaces prevented the user from dynamically

modifying the model during the simulation, since it was computationally expensive to

regenerate the whole mesh in real-time. Having this ability is, though, an essential

requirement for modeling surgical procedures where volume removal is frequently

required, e.g. bone drilling.

32

4.3.2 Volume Haptics Rendering

Iwata and Noma (1993) presented an approach called Volume Haptization to

provide force feedback from volumetric datasets. For scalar data, they mapped either the

voxel values to torque vectors or the gradient of voxel values to force vectors. Avila and

Sobierajski (1996) described a gradient method where the normal and viscosity force

components at a given point depended on the material density and the gradient magnitude

at that point. The disadvantage of these methods is that they can produce instabilities or

undesired vibrations, especially in regions containing sharp transitions, where the

gradient magnitude and direction can vary abruptly.

Volume haptics has been systematically studied in a series of publications (Lundin

et al., 2002) (Lundin et al., March 2005) (Lundin et al., Nov. 2005) (Lundin et al., 2006)

(Lundin, 2007b) (Lundin et al., 2008). In (Lundin et al., 2002), a method to generate

surface and viscosity haptic feedback from volumes, along with simulation of material

properties was presented. The method evolved in (Lundin et al., March 2005), where

haptic primitives, such as directed force, point, line, and plane were used as building

blocks for their proxy-based method. Based on those haptic primitives, a number of

haptic modes were constructed, i.e. viscosity mode, gradient force mode, vector follow

mode, and surface and friction modes. The method was refined in (Lundin et al., Nov.

2005), where a numeric solver to compute the final forces was described. In (Lundin et

al., 2006), the Volume Haptics ToolKit (VHTK) was presented and implemented as an

extension to SenseGraphics H3D library (H3D). An analytical solver, which falls back

into their numerical solver when its requirements are not satisfied, was introduced in

33

(Lundin, 2007b). Finally, a method which contemplates time-varying volumetric data

was introduced in (Lundin et al., 2008).

4.3.3 Intermediate Representation methods

Intermediate representation methods were first proposed in (Adachi et al., 1996).

The idea consisted of representing touchable surfaces at a given point by a virtual plane

tangent to the surface at that point. The collision detection loop ran independently of the

servoloop and was updated at a lower rate, whereas the servoloop was updated at a higher

rate required to render stiff objects. Combining intermediate representations and lower

update rates allowed to simplify the collision detection problem and to quickly detect

collisions between the tip of the haptic device and the virtual plane. The method,

however, had a fundamental limitation. If the update rate for the virtual plane (computed

in the collision detection loop) was too low, the operator could perceive discontinuities as

the proxy “jumped” from one plane to another. This problem was addressed in (Mark et

al., 1996), where the recovery time method was presented. The method reduced the

magnitude of the force immediately after a new virtual plane is computed, allowing to

gradually and smoothly bring the tip of the haptic stylus to the new surface. A simple

algorithm using the intermediate representation method on volumetric data was presented

in (Chen et al., 2000). The algorithm extracted virtual planes from the volumetric data

without the need of precomputing isosurfaces. This algorithm, combined with a proxy-

based method, allowed generation of haptic feedback directly from the volumetric data.

Similarly, (Rizzi et al., 2010) presented a collision detection algorithm (introduced in

Chapter 3) based on determining where a line segment intersects an isosurface defined by

transfer functions that depend on voxel intensities. A line segment was created from the

34

position of the haptic interaction point in the previous haptic frame and its current

position. If a collision was detected, the point where it occured as well as the surface

normal at that point was computed. With that information the underlying haptics library

was able to compute feedback forces as if it was working with polygonal models. In

(Körner et al., 1999), an intermediate local representation which uses Marching Cubes to

generate isosurfaces from voxel data adjacent to the haptic stylus position was proposed.

Local isosurfaces from a 7x7x7 cube were passed to the servo loop in the haptics library

as an intermediate representation of the local volume data.

4.3.4 Evaluation of haptic algorithms

A number of evaluation methods for haptic algorithms have been proposed in the

literature. The dependency of haptic algorithms on the user’s input has been pointed out

in (Ruffaldi et al., 2006). The same paper described a methodology for evaluating haptic

algorithms based on recording actual forces and trajectories from a user interacting with a

real object. The recordings were used as inputs to the algorithm being tested and

compared with its output. Similarly, (Srimathveeravalli et al., 2009) presented a virtual

handwriting simulator where the position of the haptic device and its forces were

recorded. For validation purposes, the haptic device was coupled to a robotic arm

programmed to imitate typical inputs from a human user. In this way, the forces

generated by the haptic device in response to reproducible inputs were recorded and their

variations analyzed.

35

4.4 Algorithms Evaluated

Multiple algorithms for haptic interaction with isosurface models are evaluated in

this work. The selection of algorithms is based on the following criteria: (i) an

implementation must be available using OpenHaptics, consequently making use of

SensAble haptic devices; and (ii) the algorithm must provide haptic feedback from

isosurfaces. Seven algorithms satisfying the requirements were identified, as listed in

Table II.

TABLE II

HAPTIC ALGORITHMS EVALUATED

 Algorithm Rendering type API Nomen

clature

1 OpenHaptics’ Feedback Buffer

(Itkowitz et al., 2005)

Polygonal Mesh Rendering H3D FB

2 OpenHaptics’ Depth Buffer

(Itkowitz et al., 2005)

Polygonal Mesh Rendering H3D DB

3 VHTK’s ScalarSurfaceFriction

mode (Lundin et al., 2006)

Volume Haptics Rendering H3D VHTK

4 Intermediate representation

algorithm in (Rizzi et al., 2010)

Intermediate

Representation Methods

Immersive

Touch

IR

5 God Object (Zilles, Salisbury,

1995)

Polygonal Mesh Rendering H3D GodObj

ect

6 Ruspini method (Ruspini et al.,

1997)

Polygonal Mesh Rendering H3D Ruspini

7 Chai3D (CHAI3D) Polygonal Mesh Rendering H3D Chai3D

36

A fundamental idea in OpenHaptics HLAPI is to emulate the interface of OpenGL

(Itkowitz et al., 2005), getting the geometry to be haptically rendered from graphics

primitives. In Feedback Buffer, the first algorithm evaluated, OpenHaptics captures all

the geometric primitives that generate points, lines and polygons from OpenGL. One of

the limitations of this mode is that it is required a priori to tell the API the number of

vertices to be rendered for buffer allocation. In case of Depth Buffer, the second

algorithm, an image rendered on the OpenGL depth buffer by a haptic camera is used to

simplify computations and reduce buffering requirements. Its disadvantage is that, when

disabling the haptic camera view optimization provided by OpenHaptics, only part of the

geometry visible from the viewpoint used to render the shapes are touchable. Even

enabling the haptic camera view optimization, “noticeable force discontinuities are felt

when touching shapes with deep, narrow grooves and tunnels” (OpenHaptics Toolkit

Version 3.0 Programmer’s Guide [b]).

The third algorithm evaluated, ScalarSurfaceFriction in VHTK (Lundin et al.,

2006), uses a plane determined by the surface gradient to detect touchable surfaces from

volumetric data. Transfer functions are used to specify the strength of the surface and its

friction as a function of the voxel intensities. There is an additional parameter called

distinctness which is based on the magnitude of the gradient. This mode can be used from

the H3D environment using X3D and Python scripts.

The fourth algorithm (Rizzi et al., 2010), while based on voxels, preserves desirable

features from polygonal mesh models. Taking advantage of OpenHaptics’ custom shapes,

it creates isosurfaces on-the-fly from volumetric data which OpenHaptics uses exactly as

it does with polygonal meshes. This also means that models can use stiffness, damping,

37

dynamic and static friction parameters as well as event callback functions (touch,

untouch, motion) available to polygonal models in OpenHaptics. This algorithm runs in

the OpenHaptics servo loop.

GodObject (Zilles, Salisbury, 1995) and Ruspini (Ruspini et al., 1997) renderers are

implemented as part of HAPI, a low-level layer in the (H3D) API. H3D also includes an

option to render polygonal models using the (CHAI3D) library. Due to their availability,

these implementations in H3D are the ones used in this work.

4.5 Experiments and results

In our experiments, the running time for each servoloop frame is measured to

determine if a given algorithm is able to maintain the required rate of 1 KHz. In addition,

haptics quality of the algorithms is evaluated based on the continuity of forces generated

when performing a specific task. Finally, the performance of all algorithms is evaluated

in terms of rendering time in the client application thread.

4.5.1 Description of the Experiments

The common part to all our experiments consists of haptically exploring anatomical

models, maintaining contact with the smooth surface (skull shown in Figure 10) at all

times. In the interest of generating reproducible inputs to the algorithms, we considered

the approaches described in (Ruffaldi et al., 2006) and (Srimathveeravalli et al., 2009).

Using pre-recorded trajectories and injecting them into the algorithms (Ruffaldi et al.,

2006) was not possible, as OpenHaptics receives its input from the haptic device.

Similarly, using another device coupled to the haptic device to provide its input

38

(Srimathveeravalli et al., 2009) is not applicable, as we need to capture and evaluate the

intrinsic variability of human users interacting with the models in a closed loop.

Our solution consists of having the user follow a pre-recorded trajectory that has

been converted to animated VRML and X3D files. In the experiments, a red sphere

traverses the pre-recorded path continuously and at constant speed (Figure 10). The red

sphere is animated and moves following a straight-line trajectory on the 3D surface from

the green sphere (starting point) to the blue (end point) at constant velocity. The operator

is instructed to follow the red sphere while trying to maintain contact with the surface at

all times, starting from the green sphere and ending in the blue one. This simple

arrangement guarantees repeatability without the need to introduce haptic constraints to

the user movement, which could affect the force rendered by the algorithms.

Figure 10. Predefined trajectory for the experiments.

4.5.2 Experiment 1 - Servoloop Frame Rate

It is well known that a minimum frame rate of 1 KHz is required to haptically

display moderately stiff objects. The objective of this first experiment is assessing the

performance of the algorithms by measuring their servoloop frame rate.

39

For haptic algorithms based on polygonal meshes, the average servoloop execution

time is computed and presented in Figure 11 as a function of the number of polygons in

the model. DepthBuffer and FeedbackBuffer remain insensitive to the number of

polygons and their average frame rendering times are well below 1 msec. A dependence

on the number of polygons is clearly visible for Chai3D, Ruspini and GodObject

methods. The dependence is not significant for the GodObject algorithm, whereas it is

more pronounced for the Ruspini and Chai3D methods. Furthermore, for models of

approximately 185K polygons and up, Chai3D average frame rendering times are above

1 msec (represented by the bold red line in Figure 11), which means Chai3D is not able to

maintain a haptics frame rate of 1 KHz for moderately complex polygonal models.

Servoloop frame average rendering time

for polygonal mesh methods

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0 50000 100000 150000 200000 250000 300000

number of polygons

m
s
e
c

Chai3D DB FB Ruspini GodObject

Figure 11. Servoloop average rendering time for polygonal-mesh methods.

40

Volume-based haptic algorithms are independent of the number of polygons being

visualized; hence in this experiment the results for VHTK and IR are not presented as a

function of the number of polygons. Instead, a normalized histogram of the sampled

servoloop frame rendering time is shown in Figure 13. For the volumetric model

described in section 3.5.1, VHTK’s peak is at 0.08 msec, while IR’s peak is at 0.14 msec.

The distributions for both methods decay to zero well below the critical value of 1 msec,

shown also as a bold red line at the rightmost side of Figure 13.

Histogram of servoloop frame rendering time

for volumetric methods

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

msec

n
o

rm
a
li
z
e
d

 n
u

m
b

e
r

o
f

s
a
m

p
le

s

Vhtk IR

Figure 12. Servoloop frame rendering time for volumetric methods.

4.5.3 Experiment 2 - Force Rendering

Evaluation of force rendering is essential to determine the quality of force feedback

provided by a haptic algorithm. Force discontinuities and fall-through, where a collision

41

is not properly detected, are among the major causes of improper force feedback

perceived by the user. In order to quantify the quality of haptic feedback for each

algorithm we have defined a metric called force anomaly coefficient.

4.5.3.1 Force anomalies

Even though the volumetric dataset and its related polygonal models used in the

experiments are relatively smooth, they pose a challenge to the algorithms under study.

Some of the anomalies observed in the experiments include fall-through, force

irregularities and discontinuities, as well as the haptic device getting stuck into the

surface.

We are interested in quantifying the smoothness of forces rendered, and therefore,

the derivative of the recorded forces is used for this purpose. In our method, the

derivative of the force magnitude is computed for each case using the central differences

method. Once a vector containing force derivatives is calculated, the average force

magnitude and its standard deviation are computed. A force anomaly is detected for each

element of the force derivative vector whose value is outside the interval

[]σµσµ *10,*10 +− , where µ is the average of the force derivative vector and σ its

standard deviation. The number of values lying outside the interval divided by the total

number of force measurements for each case is what we call force anomaly coefficient.

It is important to mention that we have designed this metric specifically for smooth

surfaces, such as the test case shown in Figure 11. For other less frequent cases in

surgical simulation where non-smooth surfaces are required, this metric would not be

entirely appropriate as in those cases large derivatives in the force magnitude are

42

expected. For the most frequent cases, though, we have found this metric adequately

captures force discontinuities and fall-through occurrences.

The following table summarizes the process of obtaining the force anomaly

coefficient:

TABLE III

OBTAINING THE FORCE ANOMALY COEFFICIENT

1) Given a vector F containing recorded forces, compute |F| and calculate its

derivative using the central differences method. Store the result in vector |F|’

2) Compute the mean and standard deviation of vector |F|’

3) Find the values of |F|’ outside the interval []σµσµ *10,*10 +− . That is the

number of force anomalies

4) Normalize the number of force anomalies by the total number of samples

recorded

Figures 13-16 exemplify force anomalies detected in different experiments. Z

components of the recorded trajectory are shown in blue whereas the detected anomalies

are shown in red stars. The example shown in Figure 13 corresponds to Chai3D, where

the haptic stylus got stuck on the surface near the end of the trajectory (right of the

figure).

Although there is a deviation from the prescribed trajectory, there is no actual fall-

through in Figure 13. The irregularities in the trajectory correspond to the operator

pulling the haptic stylus trying to release it from the stuck position. The system reacts

with high-magnitude forces as the operator tries to pull out the stylus and return to the

predefined path. The peaks in red show anomalies detected in that particular region,

where a strong force discontinuity was sensed.

43

0 1000 2000 3000 4000 5000 6000 7000 8000
0

5

10

15

20

25

30

35

40

45

50

sample

Chai3D (265348 polygons)

z measured

anomalies

Figure 13. Force anomalies in Chai3D for 265K visualized polygons.

On the other hand, Figure 14 shows an actual occurrence of fall-through using the

GodObject renderer in H3D, for a model consisting of 159K polygons. Force

discontinuities are detected in the zone where fall-through occurs, as well as in another

two regions where minor deviations from the ideal trajectory are found. Both previously

discussed examples show that our evaluation method is able to identify deviations from

the ideal path.

0 2000 4000 6000 8000 10000 12000 14000 16000
0

10

20

30

40

50

60

sample

GodObject (159208 polygons)

z measured

anomalies

Figure 14. Force anomalies in GodObject for 159K visualized polygons.

44

0 2000 4000 6000 8000 10000 12000 14000 16000
0

5

10

15

20

25

30

35

40

45

50

sample

FB (53068 polygons)

z measured

anomalies

Figure 15. Force anomalies in FeedbackBuffer for 53K visualized polygons.

The method also detects irregularities of rendered forces. Figure 15 presents data

for the OpenHaptics renderer in H3D using FeedbackBuffer, for a model consisting of

53K polygons. The operator felt certain spots along the trajectory with sudden high-level

friction which are visible as small deviations from the trajectory and detected as force

anomalies.

0 5000 10000 15000
0

5

10

15

20

25

30

35

40

45

50

sample

VHTK (238812 polygons)

z measured

anomalies

Figure 16. Force anomalies in VHTK for 238K visualized polygons.

45

In a similar way, an experiment using VHTK is shown in Figure 16, combined with

surface graphics rendering of a model consisting of 238K polygons. Even though the

friction transfer function was set to zero, the operator felt a rough surface, which is

shown by small peaks in the trajectory and detected by large force variations.

From the examples shown it is clear that the force anomaly coefficient not only

detects anomalies in force rendering, but also it is able to detect deviations from the

trajectory through their associated force discontinuities. Thus, the method provides a

good metric for assessing haptics quality.

4.5.3.2 Force anomaly coefficient for experimental data

In the previous sub-section some specific cases were shown. Here we present

results obtained from the whole data collected in the experiment. Figure 17 shows the

average force anomaly coefficient for each algorithm analyzed, as well as their maximum

and minimum values.

Force Anomaly Coefficient

(average for all models, max and min)

-0.0500

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

average 0.1698 0.0411 0.0390 0.0347 0.0215 0.0000 0.0000

VHTK GodObject Chai3D FB Ruspini DB IR

Figure 17. Average force anomaly coefficient for all cases and its range of variation.

46

It can be seen in Figure 17 that DepthBuffer does not show any force discontinuity

or fall-through, in agreement with what the operator experienced. IR, the volume haptics

algorithm implemented in the ImmersiveTouch API also produced an absolutely smooth

force feedback in all cases. All other haptics rendering algorithms presented anomalies at

least once during the experiment, shown by non-zero values of their force anomaly

coefficient.

4.5.4 Experiment 3 - Client thread running time

Measuring the running time of the haptics rendering code in the client thread gives

us additional insight for evaluating the algorithms from a practical point of view. As

shown in Section 4.5.2, almost all algorithms are able to maintain the required 1 KHz

frame rate in the servo thread. However, there are substantial differences when measuring

the running time in the client thread, which is executed at graphics rendering rates (30-60

Hz). This metric directly determines the usability of each algorithm, since it affects the

effective interaction frame rate of the final application as perceived by the user.

Figure 18 shows the average running time of each algorithm as a function of the

number of polygons in the models. It is important to remark that the number of polygons

used as independent variable is common to all algorithms (even voxel-based haptic

methods), as it refers to the number of polygons used for graphics visualization.

For polygonal mesh methods, the independent variable is also the number of

polygons used for haptics, whereas for voxel-based haptics the model remains invariable

(only the associated polygonal graphics models change). Since we are comparing the

combined graphics and haptics execution times, it is still fair to compare polygon-based

and volume-based haptic algorithms in a single experiment and show the results as a

47

function of the number of polygons visualized. If a rigorous comparison among all

methods is desired, one should only account for the last set of measurements in Figure 18

(rightmost side). In that case, the polygonal mesh representing the model is directly

comparable to their voxel-based counterpart, as the polygonal mesh has been obtained by

the Marching Cubes from voxels and no decimation has been applied. All other points in

Figure 18 are presented to show dependence on polygon count for polygonal mesh-based

methods.

Haptics rendering time in client thread

0.1

1

10

100

0 50000 100000 150000 200000 250000 300000

polygons visualized

m
s

e
c

.
(l

o
g

 s
c

a
le

) Chai3D

DB

FB

Ruspini

GodObject

VHTK

IR

Figure 18. Run time for haptics rendering in client thread.

As expected, haptics algorithms based on polygons demand more time to process

the geometry as the number of polygons increase. It is also important to highlight that

both voxel-based approaches (VHTK, IR) are insensitive to the number of polygons

visualized, since once the volume model is loaded in memory it is not necessary to

regularly update model geometry in the client thread. Therefore, their client thread

execution time for haptics updates remains essentially invariant.

48

Since graphics and haptics rendering in the main application thread are intimately

related, we also measured the graphics rendering time for each case. As expected, the

overall application frame rate is directly dependent on the combined haptics and graphics

rendering time. Figure 19 shows the average combined haptics and graphics running

time.

Combined Haptics and Graphics rendering time in client thread

1

10

100

1000

0 50000 100000 150000 200000 250000 300000

polygons visualized

m
s

e
c

.
(l

o
g

 s
c

a
le

) Chai3D

DB

FB

Ruspini

GodObject

VHTK

IR

Figure 19. Combined run time for graphics and haptics in client thread.

Note that all algorithms implemented in H3D have the same graphics renderer,

which has a significant impact on the overall performance. Our graphics rendering took

an average of 3.5 msec independent of the number of polygons, the reason being a

number of optimizations (Vertex Buffer Objects or VBOs) present in Coin3D. In

contrast, the graphics rendering time in the H3D API increases significantly with the

number of polygons.

As a result, it can be seen that all combinations of haptics and graphics increase

their combined execution time with the number of polygons, except for our algorithm

49

(IR) combined with Coin3D, which maintains an almost constant execution time with 3D

models of up to 270K polygons.

4.6 Contributions

Based on the results reported above, the problems observed for each algorithm are

presented in Table IV. The algorithms have been arranged from top to bottom according

to their perceived usability (increasing downwards).

TABLE IV

OBSERVED ISSUES

Chai3D

Unacceptable servoloop frame rendering times combined with the

largest rendering time observed in client thread.

Ruspini

Servoloop frame rendering time markedly dependent on the

number of polygons and expected to become unacceptable for

more than 400K polygons. Moderate force anomaly coefficient.

VHTK Largest number of force anomalies.

Depth/Feedback

Buffer

Other than Chai3D, highest client thread rendering time. Larger

number of force anomalies in Feedback Buffer and higher client

thread rendering time in Depth Buffer.

GodObject

Moderate number of force anomalies, lower client thread

rendering time.

IR No issues observed.

50

Our novel haptics algorithm combined with polygonal mesh visualization appears

to be the most efficient method for medical simulation using highly complex models.

Among all the evaluated methods it provides the lowest total rendering time, it is

insensitive to model complexity, and it correctly generates haptic feedback in all cases.

.

51

5. A HAPTICS ALGORITHM FOR MULTIPOINT COLLISION DETECTION

One of the major limitations of point-based haptics algorithms, such as the ones

evaluated in the previous chapter, is that they can not simulate complex interactions

between virtual surgical instruments and virtual 3D models of patient anatomies. These

algorithms are only able to detect point-to-object collisions. This means that only the tip

point of the virtual instrument is considered for computing its interaction with other

virtual objects. This is a serious limitation when complex procedures involving object-to-

object interaction are required, as it is the case when all points in the surface of the virtual

instrument may collide with the simulated human anatomy, not only its tip.

The ventriculostomy module in (Luciano et al., 2006) used GHOST library and was

later ported to OpenHaptics, therefore only the tip of the virtual catheter was allowed to

interact with the virtual skin, skull, brain, or ventricles. If the surgeon moved the catheter

laterally once it had been inserted into the brain, it was not possible to feel the walls of

the burr-hole in the skull, drastically reducing the realism of the simulation. These

undesired effects were compensated using haptic effects (i.e. the instrument was

constrained to move in a straight line once the brain had been penetrated), yet a

multipoint collision detection algorithm would be a more robust solution.

5.1 Research Problem

Extend the volume haptics algorithm of Chapter 3 to detect object-to-object collisions

52

5.2 Overview

The voxel-based haptics algorithm in Chapter 3 can be extended to account for

multipoint collision detection. In its original single point implementation, a unique point,

usually located in the tip of the instrument, is evaluated for collisions with isosurfaces

representing virtual anatomies. The original problem geometry from Chapter 3 is

repeated in Figure 20 for convenience.

Start

N

T

P

End

Figure 20. Problem geometry in single point collision detection algorithm.

A simple way of extending this algorithm for multipoint collision detection consists

of defining the virtual instrument by multiple points, akin to the PointShells in the

Voxmap algorithm (McNeely et al., 1999). Figure 21 shows a virtual craniotome and

multiple points (in red) defining its effective contour for multipoint collision detection.

Figure 21. Craniotome with multiple points for collision detection.

53

As in the original algorithm in Chapter 3, the position and orientation of the virtual

instrument is known in the current and previous haptics frames, corresponding to the End

and Start points in figure 20, respectively. Similarly, the Start and End positions for every

point representing the virtual tool are also known in the current and previous haptics

frame. Therefore, by evaluating a line for each point and detecting their intersection

points with the isosurface, the initial algorithm can be extended to detect collisions using

multiple points.

The volume haptics algorithm can be extended in such a way that multiple lines are

evaluated simultaneously. This allows us to determine multiple potential contact points,

with which a resulting force, and the point where it should be applied, can be computed.

A single force and its point of application are sufficient to provide 3-degree-of-freedom

haptic feedback; therefore it should be possible to effectively extend OpenHaptics and

our volume haptics algorithm to detect object-to-object collisions.

N

End

Start

P

S1

S2

E1

E2

P1

P2

P’

Figure 22. Multipoint problem geometry.

54

5.3 Algorithm Details

The new problem geometry is shown in Figure 22 (compare with Figure 20). The

virtual instrument is represented in a simplified form by a blue bar. Also for simplicity,

the virtual instrument contains three points; Start is the tip of the instrument, and actually

the only point that OpenHaptics keeps track of. S1 and S2 are additional points along the

main axis of the virtual instrument that will be used for collision detection. In this way,

when the virtual instrument moves in space to the position shown in light blue, colliding

in its way with the object, the new positions for the reference points will be End, E1 and

E2. Correspondingly, the intersection points with the isosurface will be P, P1 and P2. In

order for the collision to be detected properly, P1 (the closest intersection point to the

original position of the instrument) should be the intersection point with the isosurface.

However, the haptics library expects to receive a point along the line determined by the

Start and End points. Therefore, the point P’ (the perpendicular projection of P1 to the

line defined by Start and End) is returned, together with the normal vector N at P1. In

such a way, the haptics library will adjust its proxy position to prevent fall-through as if a

single point collision had been detected in P’. As a result, the user will effectively

perceive the virtual instrument as if it were made of multiple points that can interact with

the virtual models.

5.4 Implementation

For a virtual instrument represented by N points, the first alternative to implement

the algorithm presented in the previous section is to traverse the N parallel lines

simultaneously and stop the iterations as soon as the first colliding point is detected (P1

55

in Figure 22). Figure 23 presents the algorithm as nested loops, where the outer loop

moves forward along the individual lines and the inner loop evaluates points in each

parallel line for a given step of the outer loop (compare with algorithm in Figure 8)

Start

Start point =

End point?

Do bounding

boxes collide?

Return FALSE

YES

NO

For each P in

Start-End line

NO

End Loop

For each of N

parallel lines

(tip to tail)

End Loop

Find P’ from P1

Find Normal

Return TRUE

Collision ?

YES

YES

NO

Figure 23. Multipoint collision detection algorithm.

Even though this implementation is straightforward, it suffers from a non-obvious

minor flaw. When the virtual instrument is being moved tangentially to the isosurface, as

it is usually the case when navigating the contour of spinal pedicles, the direction in

56

which the points composing the virtual instruments are evaluated for collisions may play

an important role in preventing fall-through effects.

Start

Start point =

End point?

Do bounding

boxes collide?

Return FALSE

YES

NO

For each P in

Start-End line

NO

End Loop

For each of N

parallel lines

(tip to tail)

End Loop

Collision ?

NO

Find P’ from P1 or P2

Find average Normal

Return TRUE

For each of N-k

parallel lines

(tail to tip)

End Loop

Collision ?

YES

YES

NO

YES

Figure 24. Refined algorithm for multipoint collision detection.

57

In the algorithm implementation of Figure 23 the virtual instruments points are

traversed from tip to tail. This is not a problem when moving along the isosurface

tangentially, as long as the virtual instrument moves in the forward direction. As soon as

it starts moving backwards, it would be preferable to evaluate the N points in the virtual

instrument from tail to tip, to avoid potential fall-throughs.

The problem is avoided by traversing the points in both directions and detecting two

simultaneous collision points. Figure 24 shows a refinement of the algorithm in Figure 23

where there are two searches for colliding points within a given step without increasing

the algorithm complexity. One of the loops searches for P1, the first colliding point from

tip to tail, whereas the other loop traverses the list of points from tail to tip to detect P2,

eventually stopping at k (the point detected by the tip to tail search). The actual contact

point P’ returned by the algorithm is the same for either P1 or P2 (since they both are at

the same distance from the virtual tool), whereas the normal vector returned is the

average from the normals found at P1 and P2.

5.5 Limitations

The original volume haptics algorithm was designed to provide 3-degree-of-

freedom force feedback, with the inherent drawback that it can not provide torque

feedback. Consequently, the extension in this chapter is unable to provide torque

feedback. Without torque, it is not possible to prevent the virtual instrument from

penetrating the 3D models in some specific cases. For example, when the virtual

instrument undergoes a pure rotation (i.e. the body rotates around an axis passing through

the tip, but the tip is not displaced) the multipoint algorithm detects the collision but the

58

resulting force applied in the tip of the instrument is not enough to prevent fall-through.

This particular scenario is illustrated in Figure 25, where the virtual instrument is under

pure rotation, as shown by the red arrow. In these conditions, and without a torque-

enabled haptic device, it is not possible to prevent undesired fall-through into the interior

of the virtual vertebral body. However, a workaround to this limitation is presented in the

following section.

Figure 25. Pure torque problem.

5.5.1 Locking the cursor to help prevent fall-through

In previous simulation modules, haptics effects have been extensively used to help

alleviate undesired effects of point-based haptics rendering. For example, line-locking

effects were activated when anatomies like brain or bone were penetrated by the virtual

instrument to compensate for the lack of side-wall collision detection. Similarly, to help

prevent the pure-torque problem in Figure 25, a cursor locking mechanism was

implemented. The effect consists of detecting a pure rotation along with a collision

between the virtual instrument and virtual anatomies that could potentially cause an

59

undesired fall-through. When those conditions are detected, the cursor tracking is

disabled, effectively locking its visual representation in the 3D workspace and freezing

the position of the N points used for collision detection, thus preventing the potential fall-

through.

5.5.2 Conditions to lock the cursor

Traversing the points in the virtual instrument from both ends, as in the algorithm

shown in Figure 24, may result in two different points (h and k) that collide with the

isosurface. If these points are detected to be at a distance larger than a predefined

constant D (in millimeters), it signals that the undesired effect shown in Figure 25 is

starting to occur. In that moment, it is necessary to activate the locking mechanism to

prevent the fall-through to happen. Therefore, the conditions to lock the cursor are:

> D

k

h

k-h

 tip) to(tail detectedcollision

 tail) to(tip detectedcollision

When the conditions to lock the cursor are satisfied, it is also necessary to establish

the geometric conditions under which the cursor will be unlocked. For that purpose, a

normal vector must exist at point h. The current dot product between the normal at h and

the orientation of the virtual instrument is stored in dotProd and will be used to check if

the cursor can be unlocked.

60

TABLE V

ALGORITHM TO LOCK CURSOR ORIENTATION

ALGORITHM: Lock cursor orientation

point h collision point from tip to tail

point k collision point from tail to tip

distance D distance constraint in millimeters

INPUT :

boolean Lock FALSE means that cursor is not locked

float dotProd dot product when cursor was last locked

vector Normal normal vector at h

OUTPUT :

boolean Lock TRUE means that cursor must be locked

Start

Cursor locked?

Condition to

lock met?

End

YES

NO

YES

Does normal

vector exist?
NO

YES

NO

Lock = TRUE

Compute

contactPlane

Compute

 dotProd

Figure 26. Algorithm to lock cursor.

61

5.5.3 Conditions to unlock the cursor

When the cursor is locked (Lock variable is TRUE), the conditions to unlock the

cursor must be checked. In other words, it is necessary to check the updated orientation

of the virtual instrument and compare it with its orientation when it was locked. This is

easily accomplished using the properties of the vector dot product. If the result of the

current dot product between the normal vector at the instant the cursor was locked and

the current orientation of the virtual instrument is larger than dotProd (the value of the

same dot product when the cursor was locked), that means that the virtual instrument has

been rotated in the opposite direction that caused the locking, and therefore it can be

unlocked.

Start

Cursor locked?

End

NO

YES

YES

Lock = FALSE

Compute

instrument

orientation vector I

currentDot = I (dot)

contactPlane

normal

currentDot >

dotProd?

NO

Figure 27. Algorithm to unlock cursor.

62

TABLE VI

ALGORITHM TO UNLOCK CURSOR ORIENTATION

ALGORITHM: Unlock cursor orientation

float dotProd dot product when cursor was last locked

vector Normal normal vector when cursor was last locked

INPUT :

boolean Lock TRUE means that cursor is locked

OUTPUT : boolean Lock FALSE means that cursor must be unlocked

5.6 Contributions

The multipoint extensions to the original algorithm presented in this chapter allow

us to simulate procedures in which the realistic modeling of the interactions between

surgical tools and complex anatomies is of utmost importance to the surgeon. Existing

modules to simulate central line needle placement and Jamshidi needle insertion for

pedicle screws were modified with these extensions to provide multiple point collision

detection. Examples and detailed descriptions of these modules are described in Chapter

8.

63

6. VOLUME HAPTICS AND POLYGONAL GRAPHICS FOR SIMULATION

OF BONE REMOVAL PROCEDURES

Volumetric datasets have become essential in Virtual Reality (VR) and Haptics

simulation for medical and surgical training. Technologies such as Computed

Tomography (CT) and Magnetic Resonance Imaging (MRI) provide 3D scans of patient

anatomy, from which 3D models can be generated to represent highly detailed and

complex anatomical structures such as bone, organs or muscle.

Combinations of scene graph managers and haptics libraries have been extensively

used in surgical simulations for graphics and haptics rendering of 3D models. The goals

of these simulations are simultaneous visualization of complex 3D models and tactile

interaction with anatomy at interactive frame rates. While frame rates in the order of 30-

60 Hz are acceptable for graphics rendering, the minimum required rate of 1 KHz for

haptics rendering makes it a non-trivial problem when dealing with complex and highly

detailed polygonal models. On the other hand, volume-based haptics techniques have

proven themselves capable of generating force feedback from complex anatomies at

interactive frame rates (Lundin, 2007; Rizzi et al., 2010).

The possibilities of our volume haptics algorithm in combination with a fast mesh

regeneration algorithm for graphics are investigated in this chapter.

6.1 Previous work

There are significant works focusing on bone surgery using volume haptics. Gibson

(1995) developed a prototype for haptic exploration of a 3D model of a human hip based

on voxels. Using occupancy maps, collisions were easily detected and haptic feedback

64

was generated to prevent penetration of virtual models. However, this method requires

the generation of occupancy maps, which is essentially a form of segmentation,

demanding some preprocessing work. Petersik et al. (2002) presented a haptics rendering

algorithm based on a multi-point collision detection approach. A ray-based algorithm was

used for graphics and haptics rendering. While static objects were represented by voxels,

the location of their surfaces was obtained by a ray-casting algorithm at sub-voxel

resolution. This approach was found to be limited in the effective stiffness of the

simulations (Morris et al., 2006). Also, this work presented a hybrid approach based on

voxels for haptics rendering and on polygonal meshes for graphics rendering. As portions

of the virtual bone are being removed, their algorithm modified the surface locally and

then recomputed the meshes in real time, solving the stiffness problem in (Petersik et al.,

2002). The remeshing process was performed locally, demanding a substantial increase

of complexity in their algorithms which also limited its usability to non-complex models.

6.2 Research Problem

6.3 A real-time algorithm for graphics polygonal surface regeneration

The Marching Cubes algorithm (Lorensen, Cline, 1987) is a well-known solution to

the problem of creating an isosurface from volumetric data. Obtaining an isosurface is a

simple way of constructing a polygonal mesh model from a volumetric dataset, such as a

CT scan, where the isosurface value represents the intensity of the anatomy to be

Combine the volume haptics algorithm with real-time graphics polygonal surface

regeneration to efficiently simulate burr-hole drilling and other bone removal operations

65

extracted. In other words, Marching Cubes can be used to extract anatomies of interest

from CT or MRI scans. The problem is that existing implementations of Marching Cubes

are not suitable for real-time interaction.

In 2007, Nvidia introduced its Compute Unified Device Architecture (CUDA) for

parallel computing using their Graphics Processing Units (GPU). As part of the CUDA

Software Development Kit (SDK), a parallel implementation of the Marching Cubes

algorithm was offered. A simplified description of the essential tasks to parallelize

Marching Cubes for CUDA follows:

1. Determine which voxels are going to contribute in the generation of polygons. Discard

non-contributing voxels

2. Generate triangles using one GPU thread per voxel. Each thread will access

information from neighbor voxels and create three vertices of a triangle and a

normal vector. Triangle information is written in GPU global memory

3. Render geometry from previous step using special functions to interact with OpenGL

provided by CUDA

Figure 28. Indexing convention for vertices and edges (Bourke, 1994).

66

An efficient implementation of the algorithm has been described in (Bourke, 1994).

Considering that a cube has eight vertices and twelve edges, where vertices take the

values of their corresponding voxel intensities, we can index them as in Figure 28

Following the example in (Bourke, 1994), if the intensity value of the voxel in

vertex 3 is below the chosen isosurface value and the other voxels are all above the

isosurface value, then Marching Cubes would create a triangle intersecting edges 2, 3,

and 11.

Figure 29. Example of triangle created by Marching Cubes (Bourke, 1994).

There are 2
8
 = 256 possible combinations of voxel intensities above or below the

desired isosurface value in a given marching cube. Therefore, there are 256 possible

configurations of triangles to be generated for every cube evaluated. By symmetry

considerations, these 256 cases can be reduced to 14 cases, as illustrated in Figure 30:

67

Figure 30. Marching Cubes fundamental cases (Geiss, 2007).

However, based on performance considerations, the reference implementation

uses a lookup table taking into account the 256 possible cases. In such a way, an 8-bit

index is computed, where each bit corresponds to a given voxel (Bourke, 1994):

 cubeindex = 0;

 if (voxel[0] < isolevel) cubeindex |= 1;

 if (voxel[1] < isolevel) cubeindex |= 2;

 if (voxel[2] < isolevel) cubeindex |= 4;

 if (voxel[3] < isolevel) cubeindex |= 8;

 if (voxel[4] < isolevel) cubeindex |= 16;

 if (voxel[5] < isolevel) cubeindex |= 32;

 if (voxel[6] < isolevel) cubeindex |= 64;

 if (voxel[7] < isolevel) cubeindex |= 128;

68

There are two lookup tables, edgeTable and triTable indexed by the value of

cubeindex; edgeTable contains 256 elements of 12 bits, where each bit corresponds to

one of the 12 edges in Figure 28. These bits take a value of zero if their corresponding

edge is not intersected by the isosurface and one otherwise. On the other hand, triTable

also contains 256 entries consisting of up to 16 numbers that indicate how the required

triangle facets are assigned to the triangle vertices.

In the previous example, only the third voxel is below the isosurface level. Thus,

cubeindex takes the binary value 00001000. The first lookup table, edgeTable, indexed

by the value of cubeindex (0000 1000 binary = 8 decimal) returns 1000 0000 1100.

That binary value means edges 2, 3, and 11 are intersected by the isosurface, in

agreement with Figure 28. The actual points where the edges are intersected are

computed by linear interpolation of their corresponding voxel intensities, as shown in

(Bourke, 1994). Now, the value of cubeindex is also used as an index to the second

lookup table called triTable. Its eight element returns {3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1,

-1, -1, -1, -1, -1}, meaning that there is only one triangle facet assigned to edges 3, 11,

and 2, again in agreement with Figure 28.

The procedure detailed above is executed by every CUDA thread, with one thread

per voxel.

6.4 Integrating CUDA marching cubes with the ImmersiveTouch software

For the purpose of interactively simulating the process of bone drilling, the CUDA

Marching Cubes algorithm in the previous section has been adapted and complemented

with the volume haptics algorithm described in Chapter 3. For graphics rendering, the

69

CUDA Marching Cubes implementation is able to recompute the modified bone surface

(to account for removed material) at interactive frame rates. On the other hand, the

volume haptics algorithm is able to operate correctly when voxels are modified or

eliminated in the original dataset. Therefore, the combination of Marching Cubes with the

volume haptics algorithm, both taking as their input the modifiable voxel dataset, makes

it possible to simulate bone removal operations at interactive frame rates.

6.4.1 Vertex Buffer Objects in Coin3D

Since version 2.5, Coin3D is able to use a standard mechanism in OpenGL known

as Vertex Buffer Objects, or VBOs (Vertex array and VBO rendering in Coin). In

essence, VBOs are used to store vertex coordinates and normal vectors in GPU memory,

avoiding successive transfers from CPU memory space to GPU memory. As a result,

significant performance gains are achieved in graphics rendering by eliminating those

memory transfers.

The Marching Cubes implementation in CUDA expects to find two existing VBOs

in memory to write its output. On one hand, the triangle vertex information generated by

every thread is written to a 4-coordinate vertex VBO that may receive multiple elements

per thread, as threads may generate vertex information for up to five triangle facets (see

Figure 30). On the other hand, there must also be a VBO containing normal vectors, in

which space is pre-allocated for one normal per vertex.

6.4.2 Rendering CUDA Marching Cubes data in Coin3D

Coin3D provides a class named SoIndexedFaceSet to handle generic indexed

facesets (Coin3d SoIndexedFaceSet). Triangular faces are specified using the coordIndex

70

field. A very simple example of this class to show a single triangle facet would be (in

OpenInventor .iv format):

#Inventor V2.1 ascii

 Coordinate3 {

 point [0 0 0, 1 0 0, 1 1 0]

 }

 IndexedFaceSet {

 coordIndex [0, 1, 2, -1]

 }

The Coordinate3 class contains three points in 3D space, defining a triangle. The

coordIndex field in IndexedFaceSet specifies that vertices number 1, 2, and 3 are used to

show the triangle. The fourth number (-1) is used as a special character to indicate the

end of sequence.

In order for Coin3D to graphically render the polygonal data created by Marching

Cubes, a derived class of its SoIndexedFaceSet class is used, along with SoCoordinate4

and SoNormal classes. The derived class is called SoCUDAIndexedFaceSet. As in the

example above, the .iv representation of the scene for a single triangle would be:

#Inventor V2.1 ascii

 Coordinate4 {

 point [

 0 0 0 1, # 0

 1 0 0 1, # 1

 2 0 0 1, # 2

]

 }

 Normal {

 vector [

 0 0 1, # 0

 0 0 1, # 1

 0 0 1, # 2

]

 }

 CUDAIndexedFaceSet {

 coordIndex [

 0, 1, 2, -1,

]

 }

71

A similar construction to the above is used in our implementation. The number of

points and normal vectors are initialized based on the maximum number of triangles

expected for a given virtual model. Accordingly, one line per expected triangle is added

in the coordIndex field.

As explained in the previous section, Coin3D will allocate VBOs to efficiently store

the point and vector elements in the example above. To take advantage of Coin3D’s

VBOs, a mechanism has been implemented in the SoCUDAMarchingCubes class to

catch at rendering time the internal pointers that Coin3D has allocated for its VBOs. In

this way, these pointers to pre-allocated GPU memory space are passed to the CUDA

Marching Cubes implementation, and therefore the triangle and normal vector

information can be written directly to GPU memory by the CUDA kernel.

6.5 Burr-hole drilling simulation

A flow diagram of the algorithm for burr-hole drilling is shown in Figure 31. In the

first blue box, the position of the haptic device in 3D space is determined and assigned to

the variable CENTER. This variable contains the center of a bounding box delimiting the

voxel to be evaluated by the algorithm.

TABLE VII

BURR-HOLE DRILLING ALGORITHM

ALGORITHM: Burr-hole drilling

float RADIUS radius of spherical region to drill INPUT :

vector devicePosition current position of the haptic

device

OUTPUT : array voxels modified voxels

72

Start

Must drill?

End

YES

For each voxel in

the neighborhood

of CENTER

End Loop

Decrement voxel

intensity according

to formula

DISTANCE <

RADIUS ?

YES

NO

CENTER = haptic

device position

Compute voxel

DISTANCE to

CENTER

Figure 31. Burr-hole drilling algorithm.

For every candidate voxel, its 3D coordinates are obtained and its Euclidean distance

to CENTER computed and stored in DISTANCE. With that, it is possible to determine

whether the voxel lies inside a sphere with parameters given by CENTER and RADIUS.

For all voxels inside that sphere, their intensities will be decremented according to the

following expression:

73

2

22

RADIUS

DISTANCERADIUS
ktyoldIntensitynewIntensi

−
⋅−=

where k is a constant used to adjust the cutting power of the drill. Figure 32 shows how

the implementation of the drilling algorithm is visualized in the simulator.

Figure 32. Drilling a temporal bone model with a virtual matchstick burr.

6.6 Skin incision for ventriculostomy simulation

In order to expose the surface of the skull for drilling, it is necessary to create an

incision in the virtual skin. If the virtual skin model is generated by the CUDA Marching

Cubes algorithm, the incision can be simulated simply by discarding polygons around a

given point. Therefore, with a simple modification to the original Marching Cubes kernel,

every GPU thread generating triangles checks its distance to the CENTER of the desired

incision, and in case their position lies inside a sphere of a given RADIUS, their

generated polygons are discarded. The skin voxels in the same region are also eliminated

to make the incision transparent to the haptic algorithm. The effect of this modification in

the Marching Cubes CUDA kernel is shown in Figure 33.

74

Figure 33. Skin incision.

6.7 Craniotome cutting

A good approximation of the cutting effect of a virtual craniotome (Figure 21) can

be modeled using an elliptical cylinder to describe the volume removed. An elliptical

cylinder may be described by three parameters (Figure 34):

height

ellipse of axisminor

ellipse of axismajor

h

b

a

75

Figure 34. Parameters of an elliptical cylinder.

Given a point P in a plane parallel to the xy plane, it is important to determine

whether P is contained in the ellipse defined by parameters a and b. From the definition

of the ellipse we know that the distance between foci is:

22
baf −=

The previous formula allows one to know the ellipse focal points F1 and F2 knowing

only the major axis a, and minor axis b. Also, knowing the distance between point P and

the focal points F1 and F2 , which we will denote PF1 and PF2 , a point P in the boundary

or inside the ellipse will satisfy:

aPFPF 221 ≤+

Therefore, specifying the ellipse only by its major axis a, and minor axis b, it is

possible to test if an arbitrary point P is inside the ellipse. The same reasoning can be

applied to voxels instead of points, where P now represents the voxel discrete coordinates

in space.

76

Start

Must cut?

End

YES For each voxel in

transformed

bounding box

End Loop

Decrement voxel

intensity according

to formula

Voxel contained in

transformed elliptical

cylinder?

YES

NO

Create bounding

box containing

elliptical cylinder

Compute

PF1 and PF2

Transform

bounding box and

elliptical cylinder

Get haptic device

translation and

orientation

Figure 35. Craniotome cutting algorithm.

TABLE VIII

CRANIOTOME CUTTING ALGORITHM

ALGORITHM: Craniotome cutting

float a,b,h parameters of elliptical cylinder

vector

devicePosition

current position of the haptic device

INPUT :

rotation

deviceOrientation

current orientation of the haptic device

OUTPUT : array voxels modified voxels

77

A flow diagram of the algorithm to model the cutting effect of a craniotome is

presented in Figure 35. An elliptical cylinder is specified by parameters a, b, and h

(Figure 34) to represent the region in space where voxel intensities will be modified to

simulate volume removal. In order to position this elliptical cylinder in the appropriate

region of 3D space, a bounding box containing the cylinder is created (first blue box in

Figure 35). This bounding box is transformed according to the position and orientation of

the haptic device to simulate the cut exactly where the virtual craniotome is located in 3D

space (third blue box in Figure 35). With that, all voxels contained within the transformed

bounding box can be evaluated to determine whether they lie inside the transformed

elliptical cylinder. Taking into account the transformed parameters of the elliptical

cylinder, those voxels that satisfy the condition aPFPF 221 ≤+ will have their voxel

intensities modified accordingly, achieving the material removal effect desired. An

example of the effect created by the algorithm is appears in Figure 36 where the virtual

craniotome is shown cutting a virtual model of the temporal bone region.

Figure 36. Modeling the cutting effect of a craniotome.

78

6.8 Contributions

One of the major contributions of the research presented in this chapter is that it

makes possible to develop surgical simulation modules where graphical and haptic

models are purely based on voxels. In addition, models with a modifiable voxel

representation allow the simulation of bone-removal procedures at interactive frame

rates, where the visuo-haptic representation of the removed voxels is recomputed on-the-

fly.

79

7. SIMULATION MODULES

7.1 Ventriculostomy with burr-hole drilling

In the previous-generation ventriculostomy simulator (Luciano et al., 2006), burr-

holes were pre-drilled in a location dictated by an experienced surgeon. The fact that it

was not possible for the trainees to determine their own burr-hole location can be

frustrating and, at the same time, might negatively affect their success rate in the

procedure.

Using the techniques presented in Chapter 6, the original ventriculostomy

simulation module has been extended in order to allow surgeons to determine the exact

place in the surface of the skin where an incision should be made to drill a burr-hole in

the skull.

Figure 37. Using the marker tool (1).

In Figures 37 and 38, a virtual marker is used to determine the location of the skin

incision, where the number in blue represents the length of the last trace in millimeters. In

the example shown, the first trace is 100 mm (10 cm) along the midline (Figure 37), and

80

the second trace is 25 mm (2.5 cm) to the right. In order for the marker to create a visible

trace, the surgeon needs to press a footpedal while touching the virtual skin with the

marker.

Figure 38. Using the marker tool (2).

The last point where the marker touched the skin is memorized by the computer.

Once the surgeon is satisfied with the marked position, the blue trace can be erased and

an incision can be created by pressing a key or using a remote control application on a

mobile device (Figure 39).

Figure 39. Creating an incision in the skin.

81

By pressing a second foot pedal, it is possible to switch the virtual instrument to a

burr, which will be activated by pressing the first foot pedal. The surgeon is now able to

progressively drill the burr-hole and feel the resistance of the bone, visualizing at the

same time how the material is removed by the operation. A vibration haptic effect is

activated when the drill foot pedal is pressed, increasing the realism of the drilling

procedure.

Figure 40. Drilling a burr-hole.

Figure 41. Successful ventricular cannulation.

82

Once the burr-hole is completed, the surface of the brain is visible and the next step

is to perform the actual ventriculostomy. Figure 41 shows a simulation after the catheter

has been successfully inserted into the virtual ventricles.

In some training scenarios, it is useful to allow the trainee to visualize the final

location of the catheter inside the brain. This can be done using a virtual scissors tool that

allows the interactive creation of a cut-away plane in the position and orientation desired

by the surgeon. Figure 42 shows that the tip of the catheter is inside the ventricles, and

therefore the procedure is considered successfully completed. A red sphere symbolizing

the ideal target in the Foramen of Monro is also shown.

Figure 42. Cut-away plane showing final position of the catheter.

7.2 Percutaneous spine needle insertion with multipoint collision detection

The simulation module for percutaneous needle insertion described in (Luciano et

al., 2013) was extended with the multipoint collision detection algorithm from Chapter 5.

In the original implementation, the spine consisted of a polygonal mesh extracted from

83

CT scans using the techniques described in Chapter 3. With the extensions described in

this thesis, the spine is now a volumetric model with CUDA Marching Cubes

visualization, and the virtual Jamshidi needle has a multipoint representation that allows

the surgeon to feel the contour of the pedicles and properly determine, by tactile

feedback, the optimal entry point into the spine.

Figure 43. Percutaneous spine needle insertion.

Figure 43 presents a snapshot of the percutaneous needle simulation module. The

virtual skin has been made transparent to show the virtual spine, though it is completely

opaque during the simulation of the procedure. The green dots represent the ideal entry

points into the pedicles. A virtual fluoroscopy simulation is also shown with which the

surgeon can determine the optimal orientation and placement of the needle.

84

7.3 Subclavian central line placement with multipoint collision detection

Subclavian central line is another important procedure that benefits from the

multipoint collision detection extensions. In this case, the needle must be advanced under

and along the inferior border of the clavicle, for which it is essential that the virtual

instrument supports multipoint collision detection.

A snapshot of the application is shown in Figure 44. Skin is a textured polygonal

mesh, whereas the clavicle and other bone structures are voxel-based models generated

by the CUDA Marching Cubes algorithm presented in Chapter 6. As in the percutaneous

needle insertion module, the virtual needle is a multipoint-enabled instrument.

The software detects when the needle is inserted in the subclavian vein, switching the

needle color to green to indicate success. On the other hand, if the trainee fails to reach

the subclavian vein, the needle will turn red indicating failure.

Figure 44. Subclavian central line simulation module.

85

8. VALIDATION EXPERIMENTS

In this chapter the results of validation experiments using some of the contributions

in this thesis are presented, along with a summary of the journal publications where they

have originally appeared.

8.1 Ventriculostomy experiments

8.1.1 Experiment 1

In this work, the impact of simulation-based practice of ventriculostomy with a

library of virtual patients was studied. Neurosurgery resident’s performance in simulated

and real patients was evaluated.

TABLE IX

FIRST VENTRICULOSTOMY EXPERIMENT

Title: Practice on an Augmented Reality/Haptic Simulator and Library of

Virtual Brains Improves Residents’ Ability to Perform a Ventriculostomy

Authors: Rachel Yudkowsky, Cristian Luciano, Pat Banerjee, Alan Schwartz, Ali

Alaraj, G Michael Lemole Jr, Fady Charbel, Kelly Smith, Silvio Rizzi,

Richard Byrne, Bernard Bendok, David Frim

Journal: Simulation in Healthcare 8 (1), Jan 2013, pp. 25-31

METHODS: CT scans of actual patients selected by Dr. Ali Alaraj at the Department of

Neurosurgery, University of Illinois-Chicago Medical Center, were used. The techniques

86

presented in Chapter 2 were applied to create a library of 15 virtual patients for the

ImmersiveTouch. Each patient model consisted of optimized polygonal meshes for skin,

skull, brain, and ventricles. The virtual models represent a range of anatomies including

normal, shifted, and compressed ventricles. Table X shows images of the patient library.

The ventriculostomy simulation application described in (Luciano et al., 2006) was

used. Neurosurgery residents from the University of Illinois at Chicago, University of

Chicago, Rush University Medical Center, and Northwestern University participated in

individual simulator practice using the library of virtual patients. The protocol followed

during the simulator experience has been described in detail in (Luciano, 2010).

Performance of participants on novel brains in the simulator and during actual surgery

(before and after intervention) was analyzed.

RESULTS: Simulator cannulation success rates increased after intervention, and live

procedure outcomes showed improvement in the rate of successful cannulation on the

first pass. However, the incidence of deeper, contralateral (simulator) and third-ventricle

(live) placements increased after intervention. Residents reported that simulations were

realistic and helpful in improving procedural skills such as aiming the probe, sensing the

pressure change when entering the ventricle, and estimating how far the catheter should

be advanced within the ventricle.

CONCLUSIONS: Simulator practice with a library of virtual brains representing a range

of anatomies and difficulty levels may improve performance, potentially decreasing

complications due to inexpert technique.

87

TABLE X.

PATIENT LIBRARY FOR VENTRICULOSTOMY

Normal and hydrocephalic Shifted Compressed

88

8.1.2 Experiment 2

The Congress of Neurological Surgeons (CNS) Simulation Committee developed a

simulation-based curriculum incorporating the ImmersiveTouch simulator with the

objective of enhancing resident training in ventriculostomy placement.

TABLE XI

SECOND VENTRICULOSTOMY EXPERIMENT

Title: Virtual Reality Based Simulation Training for Ventriculostomy: An

Evidence Based Approach

Authors: Clemens M Schirmer, J Bradley Elder, Ben Roitberg, Darlene Angela

Lobel

Journal: Neurosurgery. Manuscript accepted for publication, May 2013.

METHODS: A course based neurosurgical simulation curriculum was introduced at the

Neurosurgical Simulation Symposium at the 2011 and 2012 CNS annual meetings. A

trauma module was developed to teach ventriculostomy placement as one of the

neurosurgical procedures commonly performed in the management of traumatic brain

injury. The course offered both didactic and simulator-based instruction, incorporating

written and practical pre- and post-tests and questionnaires to assess improvement in skill

level and validate the simulators as teaching tools. The ventriculostomy simulation

module with burr-hole drilling, along with the voxel-based library of patients without

pre-existing burr-holes (TABLE XII), was used in this work.

89

TABLE XII

VENTRICULOSTOMY LIBRARY USING VOXEL-BASED MODELS

Normal and hydrocephalic Shifted Compressed

90

TABLE XIII

PERFORMANCE EVALUATION FOR SIMULATED VENTRICULOSTOMY

Ordinal scores between 1 and 5 were given for each performance measure, scores 2 and 4

were interpolated between the endpoints given in the table for score 1, 3 and 5 (Courtesy

Schirmer et al., 2013).

RESULTS: Seven participants completed the ventriculostomy simulation. Significant

improvements were observed in anatomy (p<0.04), burr hole placement (p<0.03), final

location of the catheter (p=0.05), and procedure completion time (p<0.004). Senior

residents planned a significantly better trajectory (p<0.01) and junior participants

91

improved most in terms of identifying the relevant anatomy (p<0.03) and the time

required to complete the procedure (p<0.04).

Figure 45. Improvement over baseline in ventriculostomy (Schirmer et al., 2013).

CONCLUSIONS: Virtual ventriculostomy placement as part of the CNS simulation

trauma module complements standard training techniques for residents in the

management of neurosurgical trauma. Improvement in didactic and hands-on knowledge

by course participants demonstrates the usefulness of the ImmersiveTouch as a training

tool.

92

8.2 Pedicle screw experiments

8.2.1 Experiment 1

The use of the ImmersiveTouch as a training tool for percutaneous spinal needle

placement was considered in this study. The objective was to evaluate the learning

effectiveness in terms of entry point/target point accuracy of percutaneous spinal needle

placement using a simulation module that allows the user to control the duration of

computer-simulated fluoroscopic exposure, thereby simulating the actual OR experience.

TABLE XIV

FIRST PEDICLE SCREW EXPERIMENT

Title: Percutaneous spinal fixation simulation with virtual reality and haptics

Authors: Cristian J Luciano, P Pat Banerjee, Jeffery M Sorenson, Kevin T Foley,

Sameer A Ansari, Silvio Rizzi, Anand V Germanwala, Leonard Kranzler,

Prashant Chittiboina, Ben Z Roitberg

Journal: Neurosurgery 72 (Supplement 1), January 2013, pp A89-A96

METHODS: Sixty-three fellows and residents performed needle placement on the

simulator during the 2010 American Association of Neurosurgical Surgeons (AANS)

annual meeting. A virtual needle was percutaneously inserted into a virtual patient's

thoracic spine derived from an actual patient CT data set.

RESULTS: Ten of 126 needle placement attempts by 63 participants ended in failure for

a failure rate of 7.93%. From all 126 needle insertions, the average error went from 15.69

93

in the first attempt to 13.91 in the second attempt. The following figure shows the

distribution of performance error in the first and second attempts:

Figure 46. Distribution of performance error.

Similarly, the average fluoroscopy exposure improved from 4.6 in the first attempt

to 3.92 in the second attempt. The next figure shows the distribution:

Figure 47. Distribution of fluoroscopy exposure.

94

Finally, the average individual performance score also improved from the first to

the second attempt (32.39 vs. 30.71)

Figure 48. Distribution of final scores.

Performance accuracy yielded P =.04 from a 2-sample t test in which the rejected

null hypothesis assumes no improvement in performance accuracy from the first to

second attempt in the test session.

CONCLUSION: The experiments showed evidence (P =.04) of performance accuracy

improvement from the first to the second percutaneous needle placement attempt. This

result, combined with previous learning retention and/or face validity results of using the

simulator for open thoracic pedicle screw placement and ventriculostomy catheter

placement, supports the efficacy of augmented reality and haptics simulation as a

learning tool.

95

8.2.2 Experiment 2

The ability of a pedicle screw simulation module on the ImmersiveTouch to

improve screw placement accuracy in sawbone models was explored in this work.

Participants were senior medical students with a single training session.

TABLE XV

SECOND PEDICLE SCREW EXPERIMENT

Title:
Computer-simulation training positively impacts the accuracy of pedicle

screw placement performed by aspiring neurosurgery residents in

sawbone models

Authors:
Jaime Gasco, Achal Patel, Juan Ortega-Barnett, Daniel Branch, Yong

Fan Kuo, Cristian Luciano, Silvio Rizzi, Patrick Kania, Martin

Matulyauskas, Pat Banerjee, Ben Z. Roitberg

Journal:
World Neurosurgery, Manuscript accepted for publication. May 2013

METHODS: Thirty-eight applicants to neurosurgery residency were offered anonymous

participation in the study, and randomized into 3 groups prior to the placement of two

lumbar pedicle screws in a sawbone model. The groups were: (A) Control – no prior

simulation; (B) Simulation of pedicle finder insertion in a 3-D vertebra; and (C) Lumbar

pedicle screw insertion within a surgical environment. The sawbone models then

underwent CT imaging and triplanar analysis to detect errors in screw coronal entry

point, axial and sagittal deviations, length error, and pedicle breach. The screw placement

was further classified into acceptable (≤ 2 errors) or not acceptable (≥ 3 errors) based on

the above variables. The overall performance in each group was based on the mean

96

number of errors per screw. The Kruskal-Wallis test was used to determine any

significance of difference using an adjusted threshold p-value of 0.0169 (Bonferroni

method).

RESULTS: A total of 76 pedicle screws were analyzed. Group B (pedicle finder

simulation), improved performance by 24.0% (p=0.1505) vs. group A (no simulation);

Group C (open pedicle screw simulation) improved by 53.8% (p = 0.0005) vs. group A

and 39.2% (p = 0.0078) vs. group B. Reductions in the number of unacceptable screws

was 17.9% and 26.9% for groups B and C respectively relative to group A, as shown in

the following table.

TABLE XVI

ACCEPTABLE VS NON-ACCEPTABLE PEDICLE SCREWS

 ACCEPTABLE

(N,%)

NOT

ACCEPTABLE

(N,%)

RELATIVE

CHANGE

ACCEPTABLE (%)

MEAN NO. OF

ERRORS

/SCREW

STANDARD

DEVIATION
N

GROUP A 17 (65.4%) 9 (34.6%) 0 2.08 1.23 26

GROUP B 20 (83.3%) 4 (16.7%) 17.9 1.58 0.88 24

GROUP C 24 (92.3%) 2 (7.7%) 26.9 0.96 0.96 26

CONCLUSIONS: Computer-simulation training positively impacts the accuracy of

pedicle screw placement performed by neurosurgery applicants in sawbone models with

only a single simulated practice compared to individuals with no prior simulation

exposure.

97

9. FINAL CONCLUSIONS

This thesis presents a careful balance of research, development, and rigorous

scientific methodology. Within the scope of surgical simulation, multiple contributions

have been presented, namely:

• A method to generate patient-specific polygonal mesh 3D models for haptics and

graphics representation, containing an optimal number of polygons, and obtained

by a well-specified sequence of operations applied to the original data. Results

were published in the 2007 IEEE International Conference on Automation,

Science and Engineering (Rizzi et al., 2007).

• An algorithm for voxel-based 3-DOF haptic feedback that extends the

OpenHaptics library, and overcomes the disadvantages of other similar

algorithms. Results were published in the 2010 IEEE Haptics Symposium (Rizzi

et al., 2010).

• A number of scientific experiments evaluating performance of haptics-graphics

combinations of algorithms, where it was proved that polygonal mesh graphics

rendering, along with the voxel-based haptics algorithm, exhibit the best

performance and stability in terms of combined rendering time. Results were

published in the ASME Journal of computer and Information Science in

Engineering (Rizzi et al., 2012).

• Extensions to the original volume haptics algorithm for object-to-object collision

detection.

98

• A fast implementation of the Marching Cubes in GPU integrated with the

ImmersiveTouch
®

 application framework for interactively recomputing a

polygonal mesh from its voxel representation.

• Multiple algorithms for bone-removal procedures, including burr-hole drilling and

craniotome cut.

• Implementation of surgical simulation modules using the previously described

algorithms. Modules include ventriculostomy with burr-hole drilling,

percutaneous spine needle insertion, and subclavian central line.

• Participation in validation experiments involving the outcome of the research and

development presented in this thesis. Promising and encouraging results were

obtained as a result of these experiments.

99

CITED LITERATURE

Adachi, Y., Kumano, T., Ogino, K.: Intermediate representation for stiff virtual objects.

Proceedings of Virtual Reality Annual International Symposium, 1995, pp.203-

210.

Avila, R.S., Sobierajski, L.M.: A haptic interaction method for volume visualization. In

Proceedings of the 7th Conference on Visualization '96 (San Francisco,

California, United States, October 28 - 29, 1996). R. Yagel and G. M. Nielson,

Eds. IEEE Visualization. IEEE Computer Society Press, Los Alamitos, CA, 197-

ff.

Banerjee, P., Charbel, F.: On-Demand High Fidelity Neurosurgical Procedure Simulator

Prototype at University of Illinois using Virtual Reality and Haptics.

Accreditation Council for Graduate Medical Education (ACGME) Bulletin,

September 2006; p. 20-21.

Banerjee, P., Luciano, C., Florea, L., Dawe, G., Steinberg, A., Drummond, J., Zefran, M.:

Compact Haptic and Augmented Virtual Reality System. Board of Trustees

University of Illinois, U.S. Patent 11/338434, 2010.

Basdogan, C., Ho, C., Srinivasan, M.A.: A Ray-Based Haptic Rendering Technique for

Displaying Shape and Texture of 3D Objects in Virtual Environments. The

Winter Annual Meeting of ASME’97, DSC-Vol. 61, pp. 77-84, Dallas, TX, Nov.

16-21, 1997.

Basdogan, C., Laycock, S.D., Day, A.M., Patoglu, V., Gillespie, R.B.: 3-Dof Haptic

Rendering. In Haptic Rendering, Eds: M.C. Lin and M. Otaduy, Publisher: A.K.

Peters, pp. 311-333, 2007.

Bourke, P.: Polygonising a Scalar Field, May 1994. Available:

http://paulbourke.net/geometry/polygonise/

Caselles,V., Kimmel, R., Sapiro, G.: Geodesic Active Contours. Int. J. Comput. Vis. 22,

61 - 79. 1997.

Cebral, J., Löhner, R.: From medical images to anatomically accurate finite element

grids. Int. J. Numer. Meth. in Engng, 2001; 51:985-1008.

CHAI3D, available: http://www.chai3d.org

Chen, K., Heng, P., Sun, H.: Direct haptic rendering of isosurface by intermediate

representation. In Proceedings of the ACM Symposium on Virtual Reality

Software and Technology (Seoul, Korea, October 22 - 25, 2000). VRST '00.

ACM, New York, NY, 188-194.

100

Du, J., Yang, X., Du, Y.: From Medical Images to Finite Grids System. Proceedings of

the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference,

Shanghai, China, Sept. 2005.

Geiss, R.:Generating Complex Procedural Terrains Using the GPU, GPU Gems 3,

NVIDIA Corporation, Addison-Wesley, 2007. Available:

http://http.developer.nvidia.com/GPUGems3/gpugems3_ch01.html

Gibson, S.F.: Beyond Volume Rendering: Visualization, Haptic Exploration, and

Physical Modeling of Voxel-based Objects, Mitsubishi Electric Research

Laboratories, Technical Report 95-04, 1995.

H3D, available: http://www.h3dapi.org/

Itkowitz, B., Handley, J., Zhu, W.: The OpenHaptics toolkit: a library for adding 3D

Touch navigation and haptics to graphics applications. Eurohaptics Conference,

2005 and Symposium on Haptic Interfaces for Virtual Environment and

Teleoperator Systems, 2005, pp. 590-591, 18-20 March 2005.

ITK-SNAP. Available: http://www.itksnap.org/

Ito, Y., Shum, P., Shih, A., Soni, B., Nakahashi, K.: Robust generation of high-quality

unstructured meshes on realistic biomedical geometry. Int. J. Numer. Meth. in

Engng, 2006; 65:943-973.

Iwata, H., Noma, H.: Volume haptization. Virtual Reality, 1993. Proceedings IEEE 1993

Symposium on Research Frontiers, pp.16-23, 25-26 Oct 1993.

Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International

Journal of Computer Vision, 1(4), 1987.

Körner, O., Schill, M., Wagner, C., Bender, H.J., Männer, R.: Haptic volume rendering

with an intermediate local representation. In Proceedings of the 1st International

Workshop on Haptic Devices in Medical Applications, 1999, pp. 79–84.

Lorensen, W., Cline, H.: Marching Cubes: A high resolution 3D surface construction

algorithm. Computer Graphics, Vol. 21, No. 4, July 1987.

Luciano, C., Banerjee, P., Florea, L., Dawe, G.: Design of the ImmersiveTouch™: A

High-Performance Haptic Augmented VR System. Proceedings of Human-

Computer Interaction (HCI) International Conf., Las Vegas, 2005.

Luciano, C., Banerjee, P., Lemole, G.M., Charbel, F.: Second Generation Haptic

Ventriculostomy Simulator Using the ImmersiveTouch™ System. Proceedings of

14th Medicine Meets Virtual Reality, J.D. Westwood et al. (Eds.), IOSPress, pp.

343-348, 2006.

101

Luciano, C. J.: Open Surgery Training Simulator Using Haptics and Augmented Reality

Technologies. Submitted as partial fulfillment of the requirements for the degree

of Doctor of Philosophy in Industrial Engineering and Operations Research,

Graduate College, University of Illinois at Chicago, August 2010.

Lundin, K., Cooper, M., Persson, A., Evestedt, D., Ynnerman, A.: Enabling design and

interactive selection of haptic modes. Virtual Reality, 2006.

Lundin, K., Cooper, M., Ynnerman, A.: The orthogonal constraints problem with the

constraint approach to proxy-based volume haptics and a solution. In Proceedings

of SIGRAD Conference, pp. 45-49, Lund, Sweden, Nov. 2005.

Lundin, K., Cooper, M., Ynnerman, A.:Haptic Rendering of Dynamic Volumetric Data.

IEEE Transactions on Visualization and Computer Graphics, vol.14, no.2,

pp.263-276, March-April 2008.

Lundin, K., Gudmundsson, B., Ynnerman, A.: General proxy-based haptics for volume

visualization. Eurohaptics Conference, 2005 and Symposium on Haptic Interfaces

for Virtual Environment and Teleoperator Systems, 2005, pp. 557-560, 18-20

March 2005.

Lundin, K., Ynnerman, A., Gudmundsson, B.: Proxy-based haptic feedback from

volumetric density data. In Proceedings of the Euro-haptic Conference, pp. 104-

109. University of Edinburgh, United Kingdom, 2002.

Lundin, K. : Direct Volume Haptics for Visualization. PhD thesis, Linköping University,

2007a.

Lundin, K.: Fast and High Precision Volume Haptics. EuroHaptics Conference, 2007 and

Symposium on Haptic Interfaces for Virtual Environment and Teleoperator

Systems. World Haptics 2007, pp.501-506, 22-24 March 2007b.

Mark, W.R., Randolph, S.C., Finch, M., Van Verth, J.M., Taylor, R.M.: Adding force

feedback to graphics systems: issues and solutions. In Proceedings of the 23rd

Annual Conference on Computer Graphics and interactive Techniques

SIGGRAPH '96. ACM, New York, NY, 447-452. 1996.

Massie, T.H., Salisbury, J.K.: The PHANTOM Haptic Interface: A Device for Probing

Virtual Objects. Symp. On Haptic Interfaces for Virtual Environments. Chicago,

IL, Nov. 1994.

McNeely, W.A., Puterbaugh, K.D., Troy, J.J.: Six Degree-of-Freedom Haptic Rendering

Using Voxel Sampling, SIGGRAPH '99 Proceedings of the 26th annual

conference on Computer graphics and interactive techniques, 1999, pp 401-408.

102

Melonakos, J., Al-Hakim, R., Fallon, J., Tannenbaum, A.: Knowledge-Based

Segmentation of Brain MRI Scans Using the Insight Toolkit. The Insight Journal -

ISC/NA-MIC/MICCAI Workshop on Open-Source Software, 2005.

Morris, D., Sewell, C., Barbagli, F., Salisbury, K., Blevins, N.H., Girod, S.: Visuohaptic

Simulation of Bone Surgery for Training and Evaluation. Computer Graphics and

Applications, IEEE , vol.26, no.6, pp. 48-57, Nov.-Dec. 2006.

OpenHaptics Toolkit Version 3.0 Programmer’s Guide [a], pp.7-6.

OpenHaptics Toolkit Version 3.0 Programmer’s Guide [b], pp. 7-33.

Petersik, A., Pflesser, B., Tiede, U., Hohn., K.H., Leuwer, R.: Haptic Volume Interaction

with Anatomic Models at Sub-Voxel Resolution, Proc IEEE VR, Orlando, FL,

Mar 2002.

Prabhu, S., Zauner, A., Bullock, M.: Surgical Management of Traumatic Brain Injury.

Youmans Neurological Surgery, 5th. edition, WB Saunders, Philadelphia, 2004,

pp. 5145-5180.

Rizzi, S., Luciano, C., Banerjee, P.: Haptic Interaction with Volumetric Datasets Using

Surface-Based Haptic Libraries. Haptics Symposium, 2010 IEEE , vol., no.,

pp.243-250, 25-26 March 2010.

Rizzi, S., Banerjee, P., Luciano, C.: Automating the Extraction of 3D Models from

Medical Images for Virtual Reality and Haptic Simulations. Automation Science

and Engineering, 2007. CASE 2007. IEEE International Conference on , pp.152-

157, Sept. 2007.

Ruffaldi, E., Morris, D., Edmunds, T., Barbagli, F., Pai, D.: Standardized Evaluation of

Haptic Rendering Systems. 14th Symposium on Haptic Interfaces for Virtual

Environment and Teleoperator Systems, 2006, pp. 225- 232, 25-26 March 2006.

Ruspini, D.C., Kolarov, K. , Khatib, O.: The haptic display of complex graphical

environments. In Proceedings of the 24th Annual Conference on Computer

Graphics and Interactive Techniques, International Conference on Computer

Graphics and Interactive Techniques. ACM Press/Addison-Wesley Publishing

Co., New York, NY, 345-352, 1997.

Schroeder, W., Martin, K., Lorensen, B.: The Visualization Toolkit, An Object-Oriented

Approach to 3D Graphics. Kitware, Inc., 2006.

SensAble Haptic Devices, available: http://www.sensable.com/products-haptic-

devices.htm

103

SensAble Technologies OpenHaptics, available at http://www.sensable.com/products-

openhaptics-toolkit.htm

Schirmer, C.M., Elder, J.B., Roitberg, B., Lobel, D.A.: Virtual Reality Based Simulation

Training for Ventriculostomy: An Evidence Based Approach. Neurosurgery,

manuscript accepted for publication, May 2013.

Srimathveeravalli, G., Gourishankar, V., Kumar, A., Kesavadas, T.: Experimental

Evaluation of Shared Control for Rehabilitation of Fine Motor Skills. J. Comput.

Inf. Sci. Eng. 9, 014503, 2009.

Systems In Motion Coin3D, available: http://www.coin3d.org/

The Insight Segmentation and Registration Toolkit. Available: http://www.itk.org/

The Visible Human Project. Available:

http://www.nlm.nih.gov/research/visible/visible_human.html

The Visualization Toolkit. Available: http://www.kitware.com

Vertex array and VBO rendering in Coin. Available:

http://doc.coin3d.org/Coin/vbo__rendering.html

Wolf, I., Vetter, M., Wegner, I., Nolden, M., Böttger, T., Hastenteufel, M., Schöbinger,

M., Kunert, T., Meinzer, H.: The Medical Imaging Interaction Toolkit (MITK) -

a toolkit facilitating the creation of interactive software by extending VTK and

ITK. Proc. SPIE Int. Soc. Opt. Eng. 5367, 16, 2004.

Young, P., Tabor, G., Collins, T., Richterova, J., Dejuniat, E., Beresford-West, T.:

Automating the generation of 3D finite element models based on medical imaging

data. Digital Human Modeling for Design and Engineering Conference, Lyon,

July 2006.

Yudkowsky, R., Luciano, C., Banerjee, P., Alaraj, A., Lemole, M., Schwartz, A., Charbel

F., Mlinarevich, N., Smith, K., Gandhi, S., Rizzi, S.: A library of virtual brains for

ventriculostomy practice on a VR/haptic simulator - initial validity evidence.

Simulation in Healthcare 2010; 5:43

Yudkowsky, R., Luciano, C., Banerjee, P., Alaraj, A., Lemole, M., Schwartz, A., Charbel

F., Smith, K., Rizzi, S.: Ventriculostomy Practice on a Library of Virtual Brains

using a VR/Haptic Simulator Improves Simulator and Surgical Outcomes. Poster

presented at the 12th Annual International Meeting on Simulation in Healthcare,

San Diego CA, January 2012.

Yushkevich, P., Piven, J., Cody, H., Ho, S., Gerig, G.: Geodesic Snakes for User-Guided

Segmentation of 3-D Anatomical Objects: Significantly Improved Efficiency and

104

Reliability. Jan. 2005. Available:

http://www.itksnap.org/~paul/files/docs/yushkevich05snap.pdf

Yushkevich, P., Piven, J., Hazlett, H., Smith, R., Ho, S., Gee, J., Gerig, G.: User-guided

3D active contour segmentation of anatomical structures: Significantly improved

efficiency and reliability. Neuroimage 31, 2006, pp.1116-1128.

Zhu, S., Yuille, A.: Region competition: unifying snakes, region growing, and

Bayes/MDL for multiband image segmentation. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, Vol.18, Iss.9, Sep 1996, 884-900.

Zilles, C.B., Salisbury, J.K.: A constraint-based god-object method for haptic display.

Intelligent Robots and Systems 95. IEEE/RSJ International Conference on

'Human Robot Interaction and Cooperative Robots'. 1995, pp.146-151 vol.3, 5-9

Aug 1995.

105

VITA

NAME: Silvio Rizzi

EDUCATION: Ph.D., Industrial Engineering and Operations Research

University of Illinois at Chicago (UIC), Illinois, 2013

Master of Science, Electrical and Computer Engineering

University of Illinois at Chicago (UIC), Illinois, 2006

Bachelor of Science, Electronics Engineering

Universidad Tecnológica Nacional (UTN), Mendoza, Argentina, 2002

RESEARCH

EXPERIENCE:

Summer 2006 – Summer 2013:

Research Assistant

Department of Mechanical and Industrial Engineering, UIC, IL

TEACHING

EXPERIENCE:

Fall 2012:

Lecturer – IE464 Virtual Automation

Department of Mechanical and Industrial Engineering, UIC, IL

Fall 2007, Spring 2008, Fall 2009, Spring 2010:

Teaching Assistant – IE201 Financial Engineering

Department of Mechanical and Industrial Engineering, UIC, IL

HONORS: First Place Research Abstract Award: R. Yudkowsky, C. Luciano, P. Banerjee, A.

Alaraj, M. Lemole, A. Schwarz, F. Charbel, K. Smith, S. Rizzi, “Ventriculostomy

Practice on a Library of Virtual Brains Using a VR/Haptic Simulator Improves

Simulator and Surgical Outcomes,” 12th Annual International Meeting on Simulation in

Healthcare, San Diego, CA, Jan 2012

Fulbright Scholarship (2004-2006)

CONFERENCE

PUBLICATIONS:

Cristian Federico Perez Monte, Fabiana Piccoli, Cristian Luciano, Silvio Rizzi, German

Bianchini, Paola Caymes Scutari, “Estimation of Volume Rendering Efficiency with

GPU in a Parallel Distributed Environment,” 6th Workshop on "Biomedical and

Bioinformatics Challenges for Computer Science" (BBC 2013), International

Conference on Computational Science, Barcelona, Spain, June 2013.

Silvio Rizzi, Cristian Luciano, Pat Banerjee, “Haptic interaction with volumetric

datasets using surface-based haptic libraries,” IEEE Haptics Symposium, 2010 IEEE,

243-250, 2010.

P Pat Banerjee, Shaojie Zhang, Cristian Luciano, Silvio Rizzi, “Remote Exercise and

Game Architecture Language (REGAL),” Proc. Rectech 2nd State of the Science

Conference, 53, 2010.

Silvio Rizzi, Pat Banerjee, Cristian Luciano, “Automating the extraction of 3d models

from medical images for virtual reality and haptic simulations,” CASE 2007, IEEE

International Conference on Automation Science and Engineering, 152-157, 2007.

Cristian Luciano, Pat Banerjee, Silvio Rizzi, “GPU-based elastic-object deformation

for enhancement of existing haptic applications,” CASE 2007, IEEE International

Conference on Automation Science and Engineering, 146-151, 2007.

106

JOURNAL

PUBLICATIONS:

Rachel Yudkowsky, Cristian Luciano, Pat Banerjee, Alan Schwartz, Ali Alaraj, G

Michael Lemole Jr, Fady Charbel, Kelly Smith, Silvio Rizzi, Richard Byrne, Bernard

Bendok, David Frim, “Practice on an Augmented Reality/Haptic Simulator and Library

of Virtual Brains Improves Residents' Ability to Perform a Ventriculostomy,”

Simulation in Healthcare 8 (1), 25-31, 2013.

Cristian J Luciano, P Pat Banerjee, Jeffrey M Sorenson, Kevin T Foley, Sameer A

Ansari, Silvio Rizzi, Anand V Germanwala, Leonard Kranzler, Prashant Chittiboina,

Ben Z Roitberg, “Percutaneous Spinal Fixation Simulation With Virtual Reality and

Haptics,” Neurosurgery 72 (Supplement 1), A89-A96, 2013.

Ali Alaraj, Fady T Charbel, Daniel Birk, Mathew Tobin, Cristian Luciano, Pat P

Banerjee, Silvio Rizzi, Jeff Sorenson, Kevin Foley, Konstantin Slavin, Ben Roitberg,

“Role of Cranial and Spinal Virtual and Augmented Reality Simulation Using

Immersive Touch Modules in Neurosurgical Training,” Neurosurgery 72 (Supplement

1), A115-A123, 2013.

Silvio Rizzi, Cristian Luciano, Pat Banerjee, “Comparison of Algorithms for Haptic

Interaction With Isosurfaces Extracted From Volumetric Datasets,” Journal of

Computing and Information Science in Engineering, 12 (2), 021004-1 -021004-10,

2012.

Arun Rakesh Yoganandan, Pat Banerjee, Cristian Luciano, Silvio Rizzi, “Prototyping

flexible touch screen devices using collocated haptic-graphic elastic-object deformation

on the GPU,” Virtual Reality-Research Development and Applications, 16 (1), 33,

2012.

Ali Alaraj, Michael G Lemole, Joshua H Finkle, Rachel Yudkowsky, Adam Wallace,

Cristian Luciano, Pat Banerjee, Silvio Rizzi, Fady T Charbel, “Virtual reality training

in neurosurgery: Review of current status and future applications,” Surgical Neurology

International, 2, 2011.

Pat Banerjee, Cristian Luciano, Silvio Rizzi, “Virtual reality simulations,”

Anesthesiology Clinics, 25 (2), 337-348, 2007

