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SUMMARY

In this dissertation, a new model selection algorithm based on maximizing penalized

likelihood function with the smoothly clipped absolute deviation (SCAD) (Fan and Li,

2001) penalty function was developed for missing data problems. Current model selection

method in missing data problems iteratively optimizes the penalized Q-function in Expectation

Maximization (EM) algorithm which is a computationally expensive process. We proposed a

new model selection algorithm that utilized an approximation based on information identity to

the observed data log-likelihood to obtain the maximum penalized likelihood estimate (MPLE).

A modified tuning parameter criterion based on BIC (Schwarz, 1978) for missing data problems

was proposed to select the optimal tuning parameter for the penalty function. Furthermore,

we proposed a new model selection scheme that not only selects covariates for the outcome

variable but also selects covariate models, which are important in high dimensional covariates

subject to missing values.

Following Fan and Li (2001), we proved the existence and consistency of the proposed

maximum penalized likelihood estimators. The current method for selecting the optimal tuning

parameter is based on Q-function in place of the observed data log-likelihood, which may cause

an over-fit effect. By using Taylor expansion, we can rewrite the observed data log-likelihood

asymptotically in a least square form so that a good approximation to the BIC criteria can be

obtained and the efficient path finding algorithm least angle regression (LARS) can be applied

to find the sparse MPLE, using local linear approximation proposed in Zou and Li (2008).

We have implemented the proposed model selection algorithm in linear regression and logistic

regression models. Monte Carlo simulation with rejection sampling was used to approximate the

intractable integrals in computing the expected full-data log-likelihood function conditional on
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SUMMARY (Continued)

the observed data (Q-function) in EM algorithm for logistic regression models. Three computer

programs are developed for model selection in logistic regression with missing continuous, binary

and mixed continuous and binary covariates data, respectively.

Several simulations were carried out to examine the performance of the proposed

algorithm. Results show that the proposed method can dramatically reduce the model error

and consistently identify the true model with large sample sizes. Our proposed algorithm

outperforms other model selection methods for missing data problems in the simulation studies

in identifying a larger proportion of correct-fits as sample size increases.

Data from a case-control study to investigate the potential risk factors of hip fracture

among male veterans were used to illustrate the application of the proposed method in model

selection. We ran several selection processes on the data with the proposed and imputation

methods. Results show that only 4 out of 27 covariates are selected as significant risk factors

to predict the presence of hip fracture, while 15 are selected by traditional step-wise selection

on a complete-case analysis.

xiii



CHAPTER 1

A MOTIVATING EXAMPLE WITH INCOMPLETE DATA

The hip fracture data were from a case-control study conducted at the University of

Illinois at Chicago (Barengolts et al., 2001), to investigate potential risk factors of hip fracture

among male veterans. There are 218 cases and 218 controls with each case matched with a

control on age and race. In total, there are 27 risk factors recorded. Among the 27 covariates,

10 of them are continuous. The rest are binary. Arithmetic mean and standard deviation (S.D)

stratified by case-control status for continuous variables are listed in Table I. From Table I, we

can see mean and s.d for the matching variables are very similar, suggesting the matching was

well executed. Table II lists the frequencies of the binary variables. We can see from Table II

that, for most variables, cases are more likely subject to missing values than controls.

To analyze the data, a logistic regression model with hip fracture status as the binary

outcome and potential risk factors as predictors is used. To see which of the 27 potential

risk factors contribute to the risk of hip fracture, model selection is essential. Traditionally,

variable selection methods, such as forward, backward, and stepwise selections are usually used

to select a subset of covariates by some selection criteria, such as residual sum of squares (RSS),

Akaike information criterion (AIC) or Bayesian information criterion (BIC). One disadvantage

of the traditional model selection methods (Breiman, 1996) is that they separate selection and

estimation processes. As a result, the estimator suffers from uncertainty or instability. Many

new variable selection approaches that perform selection and estimation simultaneously have

since been proposed. Among them, Tibshirani (1996) proposed the least absolute shrinkage and

selection operator (LASSO) in linear regression to minimize the RSS subject to the constraint

that the sum of the absolute value of the coefficients is less than a constant. The constraint

1
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TABLE I

ARITHMETIC MEAN OF ALL CONTINUOUS VARIABLES

Variable Group Observed Missing Mean s.d P-value

Age Case 218 0 69.9 11.2
Control 218 0 69.6 10.5 0.76

Weight Case 190 28 68.8 14.5
Control 204 14 82.3 18.7 < 0.0001

Height Case 191 27 148.5 62.9
Control 204 14 149.1 60.7 0.95

BMI Case 189 29 22.6 4.7
Control 203 15 27.2 6.1 < 0.0001

Albumin Case 170 48 3.4 0.7
Control 163 55 3.8 0.6 < 0.0001

Cholesterol Case 170 48 167.6 47.5
Control 181 37 193.5 40.7 < 0.0001

hgb Case 190 28 12.0 2.1
Control 193 25 13.6 1.8 < 0.0001

hct Case 191 27 35.7 6.5
Control 203 15 40.2 5.5 < 0.0001

BUN Case 190 28 23.3 17.7
Control 205 13 18.0 8.3 0.0002

Cr Case 190 28 1.8 2.9
Control 206 12 1.4 1.5 0.09
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TABLE II

ARITHMETIC MEAN OF ALL BINARY VARIABLES

Variable Group Observed Missing Exposed(Unexposed) P-value

Race Case 218 0 137 (81)
Control 218 0 137 (81) 1

Etoh Case 179 39 109 (70)
Control 213 5 67 (146) < 0.0001

Smoke Case 172 46 118 (54)
Control 210 8 79 (131) < 0.0001

CVA Case 205 13 40 (165)
Control 215 3 26 (189) 0.04

Dementia Case 204 14 45 (159)
Control 218 0 10 (208) < 0.001

Parkinson Case 204 14 11 (193)
Control 218 0 4 (214) 0.05

Seizure Case 200 18 25 (175)
Control 217 1 6 (211) 0.0002

Sedat Case 198 20 30 (168)
Control 216 2 23 (193) 0.17

NSAIDS Case 198 20 56 (142)
Control 216 2 113 (103) < 0.0001

Steroids Case 195 23 6 (189)
Control 210 8 3 (207) 0.26

Lasix Case 197 21 32 (165)
Control 216 2 47 (169) 0.15

HCTZ Case 197 21 20 (177)
Control 216 2 45 (171) 0.003

Antiseiz Case 197 21 33 (164)
Control 216 2 5 (211) < 0.0001

CaCO3 Case 197 21 16 (181)
Control 216 2 10 (206) 0.14

LevoT4 Case 186 32 11 (175)
Control 210 8 11 (199) 0.77

AntiChol Case 186 32 10 (176)
Control 203 15 41 (162) < 0.0001

COPD Case 201 17 42 (159)
Control 211 7 28 (183) 0.04
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TABLE III

MISSING PATTER FOR SELECTED VARIABLES (PARTIAL)

Total BMI Hgb Albumin Etoh Smoke Dementia Antiseiz . . . Cholesterol

232 1 1 1 1 1 1 1 . . . 1
17 0 1 1 1 1 1 1 . . . 1
12 1 0 1 1 1 1 1 . . . 1
21 1 1 0 1 1 1 1 . . . 1
1 0 1 0 1 1 1 1 . . . 1
7 1 1 1 1 0 1 1 . . . 1
1 0 1 1 1 0 1 1 . . . 1
17 1 1 1 0 0 1 1 . . . 1
2 0 1 1 0 0 1 1 . . . 1
1 1 0 1 0 0 1 1 . . . 1
1 1 1 0 0 0 1 1 . . . 1
5 1 1 1 1 1 1 1 . . . 1
1 0 1 1 1 1 1 1 . . . 1
1 1 1 0 1 1 1 1 . . . 1
15 1 1 1 1 1 1 1 . . . 1
1 1 1 1 0 0 1 1 . . . 1
2 1 0 1 1 1 1 1 . . . 1
1 1 1 1 1 0 1 1 . . . 1
1 1 1 1 1 1 0 0 . . . 1
1 1 1 1 1 0 1 0 . . . 1
1 0 1 1 1 0 1 0 . . . 1
1 1 1 1 0 0 1 0 . . . 1
1 1 1 1 0 0 0 0 . . . 1
1 1 1 1 1 1 1 1 . . . 1
4 1 0 1 1 1 1 1 . . . 1
1 1 1 0 1 1 1 1 . . . 1
1 1 1 0 1 1 1 1 . . . 1
1 1 0 1 1 1 1 0 . . . 1

· · ·
1 0 0 0 0 0 1 1 . . . 0
1 1 0 0 1 1 1 1 . . . 0
1 1 0 0 1 1 1 0 . . . 0
1 0 0 0 0 1 1 0 . . . 0
3 0 0 0 0 0 1 0 . . . 0
1 1 0 0 0 0 0 0 . . . 0
1 1 0 0 1 1 0 0 . . . 0
1 1 0 0 0 1 0 0 . . . 0
7 1 0 0 0 0 0 0 . . . 0
2 0 0 0 0 0 0 0 . . . 0
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defined by L1 Euclidean norm leads to the exact zero estimation for some coefficients so that it

selects variables and estimate regression coefficients simultaneously. Fan and Li (2001) studied

LASSO carefully and concluded that L1 penalty is the only convex penalty function that can

generate a continuous sparse solution within the Lp function family. It further proposed a new

penalty function called SCAD (Smoothly Clipped Absolute Deviation Penalty) and showed

it can select the correct sparse model with a suitable choice of the tuning parameter for the

penalty function as sample size increases. To apply these variable selection approaches to

the hip fracture data, one major challenge is the presence of missing values in many of the

potential risk factors. All 27 variables, except the matching variables age and race, are subject

to missing values. Only 227 out of 436 subjects (52.1%) have complete records for all the

27 covariates. Altogether, there are 74 missing-data patterns, 63 of them have fewer than

5 observations. Table III summarizes the missing data patterns. In the presence of missing

covariates, conventional model selection approaches can only apply to the complete cases, which

may yield biased estimator and significantly reduce the power. Most newly developed variable

selection approaches in the literature cannot satisfactorily solve the problem of variable selection

with missing data.

We did a preliminary analysis of the data using the step-wise selection for completely

observed cases. The selection picks a set of 15 covariates as potential risk factors for hip

fracture: body mass index (BMI), hgb, albumin, etoh, smoke, dementia, Antiseiz, LevoT4,

AntiChol, CVA, Lasix, HCTZ, BUN, cholesterol and height (HT).

In this dissertation, we will extend the penalized likelihood approach to generalized

linear models with missing covariates, particularly to multiple linear and logistic regression

models. We will extend model selection to all covariates models that are specified in missing

covariate problems. Several issues need to be addressed. The first is how to maximize the
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observed data log-likelihood along with SCAD penalty function to select important variables

and to estimate parameters since the observed data log-likelihood often involves intractable

integration and is not in a closed form. The second is to select the appropriate tuning parameters

to produce a consistent sparse coefficient estimator. Ibrahim et al. (2008), proposed to optimize

a selection criterion, called ICQ statistics, which is an approximation to the observed data

log-likelihood by the expectation of complete data log-likelihood conditional on observed data

at the maximum likelihood estimator (MLE): the Q-function in the EM algorithm. It has been

showed in Ibrahim et al. (2008), that a model selection criterion based on the Q-function alone

can overstate the amount of information in the missing data compared with the observed data

log-likelihood function. Thus, in modeling multivariate linear regression on data with missing

covariates, we will directly use observed data log-likelihood in the BIC, which has been showed

in Wang et al. (2007), that it can consistently identify the true model. For logistic regression,

we will replace ICQ criterion by a better approximation to the observed data information matrix

in BIC.



CHAPTER 2

VARIABLE SELECTION FOR FULLY OBSERVED DATA

2.1 Regression Models and Their Estimation

Let Y denote the outcome variable of interest and (X1, · · · , Xp) be a p-dimension

covariate vector. To answer research questions such as whether (X1, · · · , Xp) is useful for

predicting Y or whether a subset of of (X1, · · · , Xp) is associated with Y , a commonly used

regression model has the form:

Y = m(X1, · · · , Xp) + ε,

where m(X1, · · · , Xp) is the regression function, usually the conditional expectation of Y given

(X1, · · · , Xp), E(Y |X1, · · · , Xp), and ε is a random error with mean 0 and finite variance. In

linear regression,

m(X1, · · · , Xp) = β0 + β1X1 + · · ·+ βpXp.

Other examples of regression models include the generalized linear model (Nelder, 1972) such

as the logistic regression and Poisson regression. These models are flexible generalizations of

the linear regression models and can be applied to different kinds of data, such as the logistic

regression models for binary responses, Poisson models for counts.

Suppose that the observed data (Xi1, · · · , Xip, Yi), i = 1 . . . n are independent identically

distributed copies of (X1, · · · , Xp, Y ). Let Y = (Y1, · · · , Yn)t, Xi = (Xi1, · · · ,Xip), and

7
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X = (Xt
1, · · · ,Xt

n)t. For linear regression models, the least squares estimate is obtained via

minimizing

n∑
i=1

(Yi −Xiβ)2 = ‖Y −Xβ‖2

= ‖Y −Xβ̂‖2 + ‖X(β̂ − β)‖2,

where β̂ = (XTX)−1XTY is the ordinary least squares estimate and ‖ · ‖ is the L2 Euclidean

norm. The problem is equivalent to minimizing with respect to β,

(β̂ − β)T (X′X)(β̂ − β).

For generalized linear models, if f(Y ; θ) is the density function for the observation Y given

the parameter θ, then the log-likelihood function, expressed as a function of the mean-value

parameter E(Y |X1, · · · , Xp) = µ(θ) = g−1(xβ) is

l{µ(β); Y} =
n∑
i=1

log f(Yi; θi), (2.1)

where g(µ) is the link function. The maximum likelihood estimator for β may be obtained

through maximizing l{µ(β); Y} with respect to β.

In many biological and medical studies, a large number of covariates are collected. One

of the important tasks is to determine which covariates are truly associated with the outcome

and which variables are not. It has been demonstrated that including a very large number of

covariates in the regression model not only significantly increase the difficulties in interpreting

the data (Breiman, 1996), but also decrease the accuracy in prediction (Roecker, 1991). Hence,
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variable selection is very important in regression analysis for better interpreting the data and for

achieving a smaller prediction error, especially, when a large number of covariates are involved.

2.2 Traditional Variable Selection Approaches

The traditional variable selection approaches for linear and nonlinear regression models

select a subset of covariates that fit the data well in the sense of minimizing measures of

goodness-of-fit. Those measurements include but are not limited to the least-squares, the

coefficient of determination R2, the AIC or a log-likelihood. The most commonly used

procedures of variable selection include forward selection, backward elimination, stepwise

selection and best subset selection. In the following, we give a description for these selection

procedures in linear models. Similar logic can be applied to nonlinear models or with other

selection criteria. Forward selection begins by selecting a single predictor variable that produces

the best fit with regard to an inclusion criterion, e.g., the smallest residual sum of squares. The

process of forward selection can be implemented in details as follows. For a given variable Xj ,

we minimize

S(bj) =
n∑
i=1

(Yi − bjXij)
2

with respect to bj . It is easy to see that the minimizer is given by

b̂j =
n∑
i=1

XijYj/
n∑
i=1

X2
ij .

Subsititute the estimator back into previous equation, we have

S(b̂) =
n∑
i=1

Y 2
i − (

n∑
i=1

XijYj)
2/

n∑
i=1

X2
ij .
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The first variable we select is the one which minimizes the second term of above equation:

(
n∑
i=1

XijYj)
2/

n∑
i=1

X2
ij .

Let the variable selected be Xj1 . We then perform simple linear regression of y on Xj1 . Next

consider the residual vector as the response and project the other predictors orthogonal to

Xj1 and repeat the selection process. After k steps, a set of predictors Xj1 ,Xj2 ,. . . ,Xjk are

selected. A stop criterion can be set up. For example, in some statistical programs, a F test is

performed in each step. When the calculated P -value is smaller than the pre-specified cut-point

the selection is stopped. Breiman (1996) showed that the search may not find the best model.

In addition, a drawback of the forward selection is its instability: a relatively small change in

the data might cause one variable to be selected instead of another, after which subsequent

choices may be completely different.

Similarly, backward elimination starts with all p variables in the model and sequentially

removes variables that contribute least to the fit. Let RSSp be the corresponding residual

sum of squares for the model have all variables. The variable that yields the smallest value of

RSSp−1 is deleted from the model. The process continues until there is no variable left or, until

the stopping criterion is satisfied.

Stepwise selection (Efroymson, 1960) is a variation of the forward selection. Its first

step is the same as the forward selection. After the first step, it adds the covariate that has the

smallest RSS with corresponding F-test significant to the specified cut-off value. Then backward

selection is performed until no variable can be removed based on the exclusion criterion. Hence,

it incorporates criteria for addition and deletion of variables. Implement details can be seen

in Miller (1990). Stepwise selection has the advantage of computation convenience and easy
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to interpret since it results in a sparse model. This method may not find the best model. In

addition, one major drawbacks is its instability, i.e., “A small change in data would result in

a very different model being selected so that lower the prediction accuracy” (Tibshirani, 1996,

p267).

Subset selection performs an exhaustive search over all possible subsets of covariates.

One or a small number of the more promising models may be selected on some criteria. This

approach is better in that it performs an exhaustive search to locate the best model. However,

the exhaustive search can be costly. The number of possible subsets of one or more variables

out of p is 2p− 1. Thus, the computational cost roughly doubles with each additional variable.

Besides it is expensive in computation, it also suffers from extremely instability, i.e., a small

change in the data would largely change the variable selection result, according to Breiman

(1996).

In summary, classical variable selection that are computationally feasible may not yield

consistent model. For those selections yielding consistent selection, such as the subset selection,

computation can be prohibitive.

Much progress have been made in the past decades to variable selection techniques.

First, a more general penalized least squares regression, bridge regression, was introduced in

Frank and Friedman (1993), by using penalty functions
∑
|βj |γ , when γ > 0. This is an

improvement from the ridge regression previously proposed by Hoerl and Kennard (1970a,

1970b), which sets γ = 2. Tibshirani (1996) proposed the LASSO with γ = 1 or the L1

norm. The LASSO penalty enjoys the properties of continuity and sparsity, i.e., its solutions is

continuous with respect to tuning parameter value and it can estimate the regression coefficients

by exact zeros.
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2.3 Variable Selection via Least Absolute Shrinkage and Selection Operator

2.3.1 Ridge Regression

To overcome the ad-hoc and instability nature of classical variable selection methods,

ridge regression was suggested as a strong competitor to subset regression in terms of variance

reduction (Hoerl and Kennard 1970a, 1970b). It minimizes a penalized sum of squares

‖y −Xβ‖22 + λ
p∑
j=1

β2
j ,

where λ is a shrinkage parameter. It reduces to the ordinary least-squares regression when

λ = 0. Increasing λ shrinks the coefficient estimates, but none are set equal to zero. Since it

does not set any coefficients to 0, its solution has the same complexity as the ordinary least

square (OLS) estimator and may not be easily interpretable. In contrast, LASSO that uses of

an L1 penalty instead of an L2 penalty can yield exact zero regression coefficient estimates.

2.3.2 Variable Selection in Linear Regression Models

To solve aforementioned problems, alternative methods were sought. Breiman(1995)

proposed non-negative garotte (NN-Garotte) method which minimizes

n∑
i=1

Yi − p∑
j=1

cj β̃
0
jXij

2

with constraints cj ≥ 0 and
∑p
j=1 cj ≤ s, where β̃0

j are ordinary least square estimates. The

nn-garotte selection is a more stable procedure which in general shrinks more coefficients to zeros

than classical subset selection. A drawback of nn-garotte method is its use of the OLS estimator

in its objective function because the garotte estimates may suffer when the OLS estimator

performs poorly, which usually happens with data having collinearity problems. When the
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number of predictor variables is comparable to the sample size, the OLS estimators may not

be even unique.

Motivated by Breiman’s NN-Garotte method, Tibshirani (1996) proposed the LASSO.

It minimizes the sum of squared errors subject to a constraint on the L1 norm of the regression

coefficients. The LASSO estimates β̂ = (β̂1, . . . , β̂p) is defined by

β̂ = arg minβ


n∑
i=1

Yi − p∑
j=1

βjXij

2
 (2.2)

subject to
∑p
j=1 |βj | ≤ t. The LASSO approach is a special case of the more general “bridge

regression” approach proposed by Frank and Friedman (1993) which minimizes the squared

errors subject to the constraint
∑
j |βj |q ≤ t for a given q ≥ 0. The LASSO penalty function

corresponds to q = 1. Two other prominent special cases are ridge regression where q = 2 and

the best subset selection where q = 0.

Consider the special case where xi1, . . . , xip, i = 1, . . . , n are standardized and

orthogonal. That is,
∑n
i=1 xij = 0,

∑n
i=1 xijxik = 0, j 6= k and

∑n
i=1 x

2
ij = 1. Assume also

that
∑n
j=1 yj = 0, then

n∑
i=1

(yi − β1xi1 − . . .− βpxip)2 =
n∑
i=1

(yi − β̂1xi1 − . . .− β̂pxip)2 +

n∑
i=1

{
(β̂1 − β1)xi1 + . . .+ (β̂p − βp)xip

}2
, (2.3)

where β̂j = (
∑n
i=1 x

2
ij)
−1∑n

i=1 xijyi. Thus, minimizing a least square with a LASSO type

penalty as follows

n∑
i=1

(yi − β1xi1 − . . .− βpxip)2 + λ
p∑
j=1

|βj |
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is equivalent to minimizing

n∑
i=1

{
(β̂1 − β1)xi1 + . . .+ (β̂p − βp)xip

}
+ λ

p∑
j=1

|βj |. (2.4)

Note that

n∑
i=1

{
(β̂1 − β1)xi1 + . . .+ (β̂p − βp)xip

}
=

p∑
j=1

(βj − β̂j)2.

Therefore the original LASSO problem becomes

arg minβ


p∑
j=1

(βj − β̂j)2 + λ
p∑
j=1

|βj |

 (2.5)

which is equivalent to minimizing
{

(βj − β̂j)2 + λ|βj |
}

for each j = 1, . . . , p.

Let us consider the penalized least square problem given by

1

2
(z − θ)2 + λ|θ|. (2.6)

Its solution is given by the threshold rule as

θ̂ = sgn(z)(|z| − λ)+ (2.7)

from Donoho and Johnstone (1994). Figure 1 plots the above least square problem with different

z values when λ = 2. We can see that L1 penalty function shrinks the minimum value of θ

obtained at which θ is close to zero. Plotting the thresholding rule in Equation 2.7 gives us a

visual insight that LASSO automatically sets small estimated coefficients in the least square

estimator to zeros. Further, Fan and Li (2000) gave a sufficient condition for resulting estimator
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to be a sparse one, that is “the minimum of the function |θ|+p′λ(|θ|) is positive.” We can easily

verify that LASSO satisfies this requirement but not for the other bridge regression with q > 1.

Fan and Li (2000) pointed out that the solution of bridge regression is continuous only

when q ≥ 1. On the other hand, only when q ≤ 1 can yield exact zero regression coefficient.

When q > 1, shrinkage does not lead zero regression coefficient. Hence, the only continuous

solution with a thresholding rule is the L1 penalty.

To find the bridge regression coefficients, Fu (1998) designed a modified

Newton-Raphson algorithm for the case q > 1 and the shooting algorithm for the LASSO

estimates. The shooting algorithm is very attractive in computation speed and memory since it

has a convergence rate of p log p, in contrast with the convergence speed of 2p for the quadratic

programming method proposed by Tibshirani (1996).

2.3.3 Least Angle Regression

Efron et al. (2004), proposed a new model selection algorithm: LARS, which can be

used to get LASSO solutions. It is highly computationally efficient because it requires the

same order of magnitude of computational effort as the ordinary least squares applied to the

full set of covariates (Efron et al., 2004). It provides a convenient way to efficiently calculate

adaptive LASSO and an approximation algorithm for non-concave penalized likelihood selection

methods.

The idea of LARS algorithm is as follows. In the first step, the variable with the largest

correlation with the outcome is selected. However, the regression coefficient of the first selected

variable is not set as high as in the traditional regression model so that the residual is no

longer correlated with the first selected variable. Instead, the regression coefficient for the first

selected variable is chosen such that the residual correlation with the first selected variable is

reduced to the level of the maximum of the correlations of the residual with all other unselected
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Figure 1. Plot of least square function with LASSO penalty function when λ = 2
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Figure 2. Plot of LASSO thresholding function with λ = 2

variables. This determines both the regression coefficient for the first selected variable and the

next variable to be entered. After that, LARS will go in a direction “equiangular” with the

current active set until a third variable has the same correlation with current residual as the

current active set. The process continues until all covariates enter into the active set.

Least angle regression algorithm does not directly give LASSO solutions since LASSO

solutions has a restriction that any non-zero coefficient must have the same sign as the

corresponding current correlation with the residual. But a minor modification of LARS

algorithm can produce LASSO estimates. As described in Efron et al. (2004), the detailed

modified LARS algorithm for LASSO solutions can be summarized as follows: Suppose covariate
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vectors x1,x2, . . . ,xp are linearly independent. For A a subset of indices {1, 2, . . . , p}, define

the matrix

XA = (. . . sjxj . . .)j∈A

where the signs sj equal ±1. Let gA = X ′AXA and AA = (1′Ag
−1
A 1A)−1/2, where 1A is a vector

of 1’s of length equaling |A|, the size of A. Let uA = XAwA where wA = AAg
−1
A 1A.

Algorithm of LASSO

1. Let µA is the current LARS estimate. Begin with µ̂0 = 0. Let ĉ = X ′(y − µ̂A) and

Ĉ = maxj{|ĉj |}. Add j into A, where j = arg min{|ĉj | = Ĉ}.

2. Letting sj = sign{ĉj}, we update XA, AA and uA and calculate a = X ′uA.

3. Calculate

γ̂ =
+

min
j∈Ac

{
Ĉ − ĉj
AA − aj

,
Ĉ + ĉj
AA + aj

}

where ĵ is the minimizing index and min+ means the minimum is taken over only

positive components within each choice of j. Calculate β̂j = β̂k−1
j + γ̂d̂j for j ∈ A.

4. Let

d̂ =


sj(wA)j when j ∈ A

0 elsewhere.

If γ̃ ≡ min+{ β̂j
d̂j
} < γ̂, update A+ = A − j̃, β̂j = β̂k−1

j − γ̃d̂j for j ∈ A and µ̂A+ = xβ̂

where j̃ = arg min+{βj
d̂j
} then goes to step 1; otherwise continue to step 5.
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5. Updates µ̂A to

µ̂A+ = µ̂A + γ̂uA

and A+ = A ∪ {ĵ}. Go to step 1.

Repeating this iteration procedure will produce a total r sets of coefficient estimates,

where r represents total steps of thresholding value of t in LASSO when there is new covariate

enter into regression or remove from it. One of the most remarkable contributions of LARS is

its speed. From Efron et al. (2004, P.443), “The entire sequence of LARS steps with p < n

variables requires O(p3+np2) computations the cost of a least squares fit on p variables.” Least

angle regression provides an efficient and simple way to do variable selection through LASSO.

2.3.4 Selection of Tuning Parameter

The modified LARS algorithm can be used to obtain the complete solution path for

LASSO in the previous section. As a result, a LASSO solution can be determined once the

bound t is given. In practice, however, one often needs to determine the tuning parameter

t based on the data. Here we describe three commonly used methods to estimate the

LASSO tuning parameter t for linear regression models: five-fold cross-validation, generalized

cross-validation and BIC-type selection criterion (Schwarz,1978). In LASSO, the optimization

problem (Equation 2.2) can be rewritten as a Lagrangian problem below

β̂p = arg minβ


n∑
i=1

Yi −∑
j=1

βjXij

2

+ λ
p∑
j=1

|βj |

 , (2.8)

where λ ≥ 0 and has an one-to-one relationship with L1 constraint parameter t. From

Osborne et al. (2000), for a given LASSO solution β̂ that minimizes Equation 2.8, λ can

be calculated as λ = ‖XT(y −Xβ̂)‖∞, where ‖ · ‖∞ is defined the maximum Lp norm as

‖x‖∞ = max {|x1|, . . . , |xn|}.
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Let θ be the tuning parameter to be estimated. In LASSO problems, θ = λ or t.

Fivefold cross-validation procedure for linear regression is as follows. Split the full dataset into

5 parts. For kth part (k = 1, . . . , 5), fit the model to the other 4 parts of data and calculate

the prediction error of the fitted model using the kth part of the data. For linear regression,

prediction error is usually defined as follow

E(Y −Xβ̂)2 = (β̂ − β)TE(XTX)(β̂ − β) + σ2I,

where σ2 is the residual variance. Find λ that minimizes the prediction error. The criterion

for generalized cross-validation is the average of weighted residual sum of square for linear

regression given by

GCV (θ) =
1

n

‖Y −Xβ(θ)‖2

{1− p(θ)/n}2
,

where p(θ) is the approximation of number of effective parameters in the constrained solution

of LASSO given by

p(θ) = tr{X(XTX + λW−)−1XT },

where W = diag(|β̂j |) . In Fu (1998), the effective number of parameters of the model is

computed as (p(θ)−n0), where n0 is the number of zero components in β’s and W = diag(2|β̂j |).

And we find a θ̂ that minimizes GCV (θ).

The third method based on BIC is easily constructed by functions defined above. The

criterion is to select the optimal θ by minimizing

BIC(θ) = ‖Y −Xβ(θ)‖2 + p(θ) log(n)/n.
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Wang et al. (2007), showed that the commonly used generalized cross-validation has an

over-fitting effect in the resulting model for the SCAD variable selection procedure. Instead,

they proposed that BIC is able to identify the true model consistently.

2.3.5 Asymptotic Properties

For the widespread use of LASSO in practice, it is important to know whether the

LASSO selection is consistent. Here, consistent means that it correctly identify the variables

for inclusion and exclusion from the model with probability increase to 1 as the sample size

increases to infinite.

Meinshausen and Buhlmann (2004) showed that LASSO gives inconsistent variable

selection results even with optimal tuning parameter from prediction criterion. Zou (2006) gave

a necessary condition the underlying model must satisfy for the LASSO variable selection to be

consistent. It can be concluded from those results that there are scenarios in which the LASSO

selection cannot be consistent. Fan and Li (2000) studied a class of penalty functions including

LASSO from a different perspective. They concluded that a penalty function satisfying both

the conditions for sparsity and continuity must be singular at origin. We know that LASSO

has these properties because L1 penalty function is singular at the origin. But they suspect

LASSO produces biased estimates because it shifts the resulting estimator by a constant t.

Zou(2006) proposed an improved version of LASSO: adaptive LASSO. Its estimates

enjoy consistency, continuity and sparsity providing a proper choice of selection tuning

parameter. The adaptive LASSO is defined as follows: Suppose that the ordinary least square

estimate β̂ exists. Define the weight vector ŵ = 1
|β̂|γ

, where tuning parameter γ > 0. The

adaptive LASSO estimates β̂∗(n) are given by

β̂∗(n) = arg minβ{‖Y −
p∑
j=1

Xjβj‖2 + λn

p∑
j=1

ŵj |βj |}.
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With the efficient path algorithm for LASSO, LARS (Efron et al., 2004) or the shooting

algorithm from Fu (1998), we can solve adaptive LASSO without extra loads in computations.

Following Zou (2006), an adaptive LASSO solution can be found by the following algorithm.

Algorithm of Adaptive LASSO

1. Define x∗∗j = xj/ŵj , j = 1, 2, . . . , p.

2. Solve the LASSO solutions for all λn,

β̂∗∗ = arg minβ{‖y −
p∑
j=1

x∗∗j βj‖2 + λn

p∑
j=1

|βj |}.

3. Output β̂∗(n) = β̂∗∗/ŵj , j = 1, 2, . . . , p.

2.4 Variable Selection in Non-linear Regression Models

Least Angle Regression is an efficient algorithm to solve LASSO problems in linear

regression models. To solve variable selection problems in generalized linear models, Wang

and Leng (2007) proposed a unified LASSO estimation process using the Least Square

Approximation (LSA) so that objective functions for generalized linear models with LASSO

type penalty can be transformed into their asymptotically equivalent least squares problems.

The idea can be simply described as follows. Suppose the observed data (Xi, Yi), i = 1 . . . n

are independent and identically distributed. Assume β is a parameter of interest and Ln(β)

is observed data log-likelihood function. Let β̃ be the maximum likelihood estimator (MLE).

Hence, our objective function with LASSO penalty is given by

1

n
Ln(β)− λn

p∑
j=1

|βj |. (2.9)



23

Using standard Taylor expansion for Ln(β) at β̃, we have

1

n
Ln(β) ≈ 1

n
Ln(β̃) +

1

n
L̇n(β̃)T (β − β̃)

+
1

2
(β − β̃)T

L
′′
n(β̃)

n
(β − β̃)

=
1

n
Ln(β̃) +

1

2
(β − β̃)T

L
′′
n(β̃)

n
(β − β̃).

Since L
′
n(β̃) = 0, the variable selection approximately minimizes

arg min

1

2
(β − β̃)T

{
−L

′′
n(β̃)

n

}
(β − β̃) + λn

p∑
j=1

|βj |

 .

Hence, the LARS algorithm can be easily applied. The adaptive LASSO may also be applied

to the nonlinear regression.

Besides the method of unifying variable selection in generalized linear models with

LARS algorithm using least square approximations, Park and Hastie (2007) introduced a path

following algorithm for L1 regularized generalized linear models. To solve (Equation 2.1) above,

they proposed to use the predictor-corrector method to give the entire path of the coefficient

estimates as tuning parameter λ changes. It starts with a maximum threshold of λ beyond

which the only non-zero coefficient will be the intercept. As λ decreases, other variables enter

into the active set. In each iteration of a potential factor joins the active set, it consists three

steps: first determine the decrement in λ; then linearly approximate the corresponding change

in the coefficients (predict step); and generate a new solution based on estimates from the

predictor step (corrector step). After these steps, a test is perform for each variables outside

the active set to check if it should join in. Repeat the corrector step until no more covariates

are qualified to get in the active set.
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The predictor-corrector algorithm gives the entire solution path for the coefficients β’s

with a varying λ and ensures the solutions are exact at the locations of λ where active set

changes. It provides an alternative to using LARS algorithm to solve variable selection problems

in generalized linear models.

2.5 Variable Selection via Smoothly Clipped Absolute Deviation Penalty

Fan and Li (2001) generalized the L1 penalty to arbitrary function of L penalty functions

and summarized three properties that a good penalty function should have in order for an

estimator to be unbiasedness, sparsity and continuity. A new penalty function, SCAD, was

proposed. The continuous differentiable penalty function is defined as follows.

p′λ(θ) = λ

{
I(θ ≤ λ) +

(aλ− θ)+

(a− 1)λ
I(θ > λ)

}

for some a > 2 and θ > 0. For the simple penalized least square problem Equation 2.6 with

SCAD penalty, the solution is given by Fan (1997) as follows.

θ̂ =



sign(z)(|z| − λ)+, when |z| ≤ 2λ,

{(a− 1)z − sign(z)aλ}/(a− 2), when 2λ < |z| ≤ aλ,

z when |z| > aλ.

We plot the thresholding rule for SCAD in Figure 3, from which we can see the solution

for least square problem with SCAD penalty is unbiased for large estimated coefficients. With

this penalty function, a form of penalized least squares for classical linear regression model is

1

2
(Y −Xβ)T (Y −Xβ) + n

p∑
j=1

pλ(|βj |). (2.10)
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Figure 3. Plot of SCAD thresholding function with λ = 2 and a = 3.7

Since SCAD penalty functions are singular at the origin, they do not have continuous second

order derivatives. A new local quadratic approximation algorithm was proposed in Fan and

Li (2001). Suppose that we are given an initial value β0 that is close to the minimizer

of (Equation 2.10) and βj0 is not very close to 0, we can use quadratic function to locally

approximate SCAD function. That is

pλ(|βj |) ≈ pλ(|βj0|) +
1

2

{
p′λ(|βj0|)
|βj0|

}
(β2
j − β2

j0)
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for βj ≈ βj0. Now, (Equation 2.10) is reduced to a quadratic minimization problem and the

Newton-Raphson algorithm can be used. Specifically, the solution can be found by iteratively

computing by

β1 =
{
XTX + nΣλ(β0)

}−1
XTY

where Σλ(β0) = diag
{
p′λ(|β10|)
|β10| , . . . ,

p′λ(|βp0|)
|βp0|

}
.

The weakness of this algorithm is its numerical instability. Fan and Li (2001) suggested

that if any coefficient in a step of iteration is less than a prespecified value, i.e., very close to 0,

then set it to zero and delete from the iteration. This extra process is adding another tuning

parameter to estimate so it increases the computation load. To eliminate this weakness, Zou

and Li (2008) proposed a new unified algorithm based on local linear approximation(LLA) to

the penalty function:

pλ(|βj |) ≈ pλ(|βj0|) + p′λ(|βj0|)(|βj | − |βj0|)

for βj ≈ βj0. From Fan and Chen (1999) and Cai, Fan and Li (2001), the one-step method

is as efficient as the fully iterative method, provided that the initial estimators are reasonably

good. Thus, one-step LLA estimator was proposed. The one-step LLA estimator possesses

oracle properties. Furthermore, the LLA algorithm inherits the good features of LASSO in

terms of computational efficiency. Therefore the one-step estimator can be solved by efficient

algorithm for LASSO, such as the least angle regression(LARS) algorithm, described in Efron

et al. (2004). For generalized linear models, denote l(β) =
∑n
i=1 li(β) the model log-likelihood

function. A SCAD penalized estimate can be obtained via solving

β̂ = arg maxβ


n∑
i=1

li(β)− n
p∑
j=1

pλ(|βj |)


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= arg minβ

−
n∑
i=1

li(β) + n
p∑
j=1

pλ(|βj |)

 .

Suppose that the log-likelihood function is smooth and has the first two derivative with respect

to β. For a given initial value β(0), the log-likelihood function can be locally approximated by

l(β) ≈ l(β(0)) +∇l(β(0))T (β − β(0)) +
1

2
(β − β(0))T∇2l(β(0))(β − β(0)).

If we take β(0) = β̂(mle), then ∇l(β(0)) = 0 by the definition of MLE. Thus, one-step estimate

β(1) is given by

β(1) = arg minβ

1

2
(β − β(0))T [−∇2l(β(0))](β − β(0)) + n

p∑
j=1

p′λ(|β(0)
j |)|βj |

 . (2.11)



CHAPTER 3

VARIABLE SELECTION IN MISSING DATA PROBLEMS

3.1 Missing Data Problems

The problem of missing data is common in practice. Rubin (1976) and Little and Rubin

(1987) classified missing data into three categories based on the missing data mechanisms.

They are: missing completely at random (MCAR), where missingness does not depend on

either observed or missing data; missing at random (MAR), where missingness only depends

on observed data but not on missing data; and non-ignorable missing (NI), where missingness

depends on unobserved data. There are three major categories of methods for missing data

problems. The first one is the inverse missing data probability weighted approach. Since

complete cases can not be regarded as a random sample from the population when the missing

data mechanism is MAR, it is natural to use inverses of the missing data probability to weight

the sample to correct bias when missing mechanism is MAR. This method is simple to apply

but requires us to know the missing data probability.

The second method is the maximum likelihood (ML) approach. From Rubin (1976),

when missing data is MAR and the conditional distribution of the missing data indicator

given full data does not depend on parameters of interest, estimation and inference based

on the observed data likelihood can be carried out without explicitly modeling the missing data

mechanism when a parametric model is assumed for the complete data. But often maximizing

the incompletely observed data likelihood is still a challenging task. Because maximizing

the complete data likelihood is usually a much easier task than maximizing the incomplete

data likelihood, Dempster, Laird, and Rubin (1977) formally introduced the EM algorithm

28
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for maximizing the incomplete data likelihood through iteratively maximizing the expected

complete data likelihood under the current estimated model. The general framework is as

follows. Suppose (Y1, . . . , Yp) ∼ f(Y1, . . . , Yp, θ) and the observed data are {Ri, Ri(Yi)}. The

complete data likelihood is

n∏
i=1

f(Yi1, . . . , Yip, θ).

Details of the EM algorithm are as follow.

EM Algorithm

1. Denote the initial value of parameter θ(0).

2. E-step: Compute

Q(θ|θ(0)) =
n∑
i=1

∑
r

E
{

log f(Yi1, . . . , Yip, θ)|r1(Yi1), . . . , rp(Yip), θ
(0)
}

3. M-step: Maximize Q(θ|θ(0)) with respect to θ. Denote the maximizer by θ(1).

4. Update θ(0) by θ(1) then repeat the process from step 2 until the current estimate is nearly

unchanged from the previous estimate.

The advantage of EM algorithm is its computational convenience and easiness to

implement for various missing data problems. The drawback of EM algorithm is that it

in general converges slower than Newton-Raphson method. In addition, the E-step in EM

algorithm may be hard to compute in nonlinear models. Thus, Monte Carlo and other numeric

methods were proposed to solve these problems in the E-step.

The third method of handling missing data is imputation. Loosely speaking, the appeal

of proper imputation is that we can somewhat treat imputed dataset as if they were fully

observed when we perform data analysis (Schafer, 1999). In practice, most of the difficulties
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lie in the creation of proper imputed values. Once imputed data set is obtained, inference may

not be that difficult (Rubin, 1987; Rubin, 1996). Proper imputation often involves generating

samples from a complex distribution for missing covariates conditional on observed covariates.

Markov Chain Monte Carlo (MCMC) methods (Gelfand and Smith 1990) can be used to

generate a draw from a distribution that approximates the complex distribution. One advantage

of MCMC in computation is that increasing dimensionality usually does not slow convergence,

which is an attractive feature in dealing with high dimension missing data problems. One

of the common methods in MCMC is Gibbs sampler (Casella and George, 1992). A general

illustration of Gibbs sampler in Bayesian imputation is as follows. Suppose that we want to

generate missing values from the predictive distribution as

Y mis
1 , . . . , Y mis

n ∼ p(ymis1 , . . . , ymisn |Y obs
1 , . . . , Y obs

n ).

Given initial value θ(0), the first step is to impute the missing values based on

Y mis
i ∼ f(ymisi |Y obs

i , θ(0)).

Once Y mis
i , i = 1, . . . , n are imputed, θ is updated by

θ(1) ∝
n∏
i=1

f(ymisi |Y obs
i , θ)p(θ),

where p(θ) is the prior distribution. The above process is continued until convergence. In

practice, Gibbs sampler may be paired with other sampling methods to generate a random

draw from a targeted distribution.
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3.2 Numerical Integration

In missing-data problems, we often need to compute complex integrations that usually

do not have closed forms. Gaussian Quadrature (GQ) approximation is a powerful tool for

evaluating these integrations. It improve the basic idea of numerical integrations that use

equally spaced points as abscissas by choosing locations of these abscissas where functions can

be exactly evaluated. With proper choices of abscissas and weights, GQ approximation is exact

for a class of integrands which can be expressed as polynomials times some known function

(Press et al., 2007). For an example, given a function W (x) and an integer N , choosing a set

of weights wj and abscissas xj , j = 0, 1, . . . , N − 1, we have following approximation

∫ b

a
W (x)× f(x)dx ≈

N−1∑
j=0

wj × f(xj). (3.1)

Furthermore, if f(x) is a polynomial, the above approximation is exact. To find appropriate

abscissas, we first need to find a set of normalized and mutually orthogonal polynomials (also

called orthonormal). The abscissas we need in formula (Equation 3.1) with weighted function

W (x) are exactly the roots of these found orthonormal polynomials with respect for the same

interval and weighting function. Hence, GQ procedure consists of three steps: 1) find a set

of orthonormal polynomials with respect to weighting function; 2) solve these polynomials for

their roots as abscissas, and 3) find the weights wj . Though a GQ procedure sounds clear

and easy to implement, computations of it can be quite difficult, depending on the weighting

function. However, Press et al. (2007), provides individual subroutine programs that calculate

the abscissas and weight for the most commonly used weight functions for their corresponding

GQ formulas. Many GQ abscissas and weights involving classic weighting functions are also

tabulated in books, such as Abramowitz and Stegun (1964) or Stroud and Secrest (1966). In
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missing-data problems, the usual kind of integration we need is called Gauss-Hermite, in which

weighting function is standard normal W (x) = e−x
2
,−∞ < x <∞. It can be used to evaluate

any integrands involving a function times a normal density. For an example, if x ∼ N(µ, σ),

the expectation of any known function f(x) can be evaluated as follows.

E[f(x)] =
1

σ
√

2π

∫ ∞
−∞

f(x)e−
(x−µ)2

2σ2 dx

=
1√
2π

∫ ∞
−∞

f(µ+ σy)e−
y2

2 dx

=
1√
π

∫ ∞
−∞

f(µ+
√

2σz)e−z
2
dx

≈ 1√
π

N−1∑
i=0

f(µ+
√

2σxi)wi,

where xi, wi, i = 1, . . . , N − 1 are the abscissas and weights of the N -point Gauss-Hermite

quadrature, respectively.

One disadvantage of GQ is that its complexity increases exponentially for multiple

integrations. An alternative to GQ is Monte Carlo simulations, which in general are not as

accurate as GQ but can be more efficient for high dimensional integrals. The basic idea of

Monte Carlo is easy. We can rewrite the desired integrations as follows.

I ≡
∫ b

a
g(x)f(x)dx.

Let f(x) be the density function of X, then the right side of above equation is E[g(x)].

If we draw an i.i.d random sample X1, . . . , Xn from f(x), we can approximate I by the sample

average and by law of large numbers:

1

n

n∑
i=1

g(Xi)→p I
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as n→∞.

Compared with GQ, Monte Carlo simulation is easier to implement, but it converges

slower at a speed of Op(n
−1/2) (Givens and Hoeting, 2005). As dimension increases,

computation remains almost the same in using the Monte Carlo approximation. On the other

hand, GQ performs the best when dimension is small (Evans and Swartz, 2000). Hence, one

needs to make a wise choice between these two numerical integration methods in practice to

balance efficiency and accuracy, when computation load is acceptable.

3.3 Variable Selection with Missing Covariates

Variable selection is very challenging in missing data problems because the observed

data likelihood often involves evaluation of multiple integrations that are not available in closed

forms. Thus, Equation 2.11 is not directly available to use in implementing variable selection

with SCAD penalty. Besides computational difficulties for the observed data log-likelihood,

selecting appropriate penalty parameters to produce efficient estimates with suitable asymptotic

properties such as sparsity and asymptotic normality is also challenging. The primary method

of selecting penalty parameters use the five-fold cross validation method and generalized

cross-validation (GCV) method. Wang and Leng (2007) and Wang, Li, and Tsai (2007) showed

that in linear models, the GCV cannot identify the true model consistently but the BIC can.

3.3.1 Variable Selection Via Expectation-Maximization Algorithm

The EM algorithm (Dempster et al., 1977) maximizes the expected full data

log-likelihood conditional on observed data (Q-function), reducing complexity of directly

calculating the observed data likelihood. Ibrahim et al. (2008), proposed to maximize the

penalized likelihood function, given by

l(β)− n
p∑
j=1

φλj (|βj |) =
n∑
i=1

li(β)− n
p∑
j=1

φλj (|βj |) (3.2)
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where λj is the penalty parameter corresponding to the jth regression coefficients. The penalty

function φλj (·) either takes the form of adaptive LASSO (Zou, 2006) or SCAD (Fan and

Li, 2001). But because the observed-data log-likelihood function usually involves intractable

integrations, they developed a Monte Carlo EM algorithm to compute the MPLE of β. Its E

step is to evaluate the penalized Q-function

Qτ (β|β(s)) = Q(β|β(s))− n
p∑
j=1

φλj (|βj |). (3.3)

Since Q-function involves intractable integration, we can approximates it by taking a sequence

of samples from Gibbs Sampler (Geman and Geman 1984) along with the adaptive rejection

algorithm of Gilks and Wild (1992); then uses the Monte Carlo version of the EM algorithm

given by Wei and Tanner (1990). Implement details are described in Ibrahim et al. (2008).

In general, usual criteria for selection of penalty parameters for missing-data problems

including the five-fold cross validation, GCV and BIC cannot be easily computed. Ibrahim et

al. (2008), proposed two methods to select penalty parameter: an ICQ criterion that selects

optimal λ by minimizing

ICQ(λ) = −2Q(β̂λ|β̂0) + dim(β)× log(n);

and an ICH,Q that only uses observed data likelihood

ICH,Q(λ) = −2 log f(xobs|β̂0) + dim(β)× log(n).
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where β̂0 is the unpenalized estimator from EM algorithm. They showed in their paper under

certain regularity conditions, the maximized penalized likelihood estimator has the Oracle

properties based on the ICH,Q selection criterion.

3.3.2 Variable Selection via Imputation

Since computation in likelihood approach can be difficult in variable selection with

missing covariates, alternative approaches are explored. Yang et al. (2005), proposed to

use a Bayesian stochastic search approach combined with multiple imputation. It considers

a multivariate normal case with p independent variables, X1,X2, . . . ,Xp and a dependent

variable Y. The model they used for variable selection is

Y = α1 +
p∑
j=1

γiXjβj + ε, ε ∼ Nn(0, σ2I)

where the indicator γj = 1 or γj = 0 corresponds to the inclusion or exclusion of Xj, respectively.

Two approaches are proposed. One is called “impute, then select” (ITS). It adopts the following

hierarchical prior distribution from George and McCulloch (1993):

βj |γj ∼ (1− γj)N(0, τ2
j ) + γjN(0, c2

jτ
2
j )

σ2|γ ∼ IG(
v

2
,
vλv
2

)

and

p(γ) ∼
p∏
j=1

w
γj
j (1− wj)1−γj

where wj = p(γj = 1) and cj , τj , v and λγ are constants. George and McCulloch (1993)

gives details of specific choices of them. To implement ITS, we first impute m data sets,

D(1),D(2), . . . ,D(m). Then perform data analysis for each imputed data set to obtain parameter
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estimates (β
(l)
γ , σ(l)) and their variance estimates. Multiple imputation combining rules (Rubin

1987) can be applied to synthesize these m sets of results into a final summary.

The second method is called “Simultaneously Impute and Select”. It uses the linkage

between Schafer’s imputation algorithm (Schafer, 1997) and George and McCulloch’s variable

selection algorithm and a one-to-one relationship between parameters of joint model and

parameters in the partitioned representation: i.e., suppose we have X ∼ N(µx,Σx), Y|X ∼

N(α1 + Xβ, σ2I) and partition(µ,Σ) into

(

 µy

µx

 ,
 σ2

y Σyx

Σxy Σx

)

then we have

µy = α+ µxβ

Σxy = Σxβ

σ2
y = σ2 + ΣxyΣ

−1
x Σyx.

It implements in the following steps: first impute the missing data; then generate parameters

µx,Σx from the complete covariate matrix; using Bayesian variable selection to draw model

parameters θ(t+1) = (γ(t+1), α(t+1), σ2(t+1), β(t+1)), see George and McCulloch (1993); lastly

derive ϕ(t+1) = (γ, µy, σ
2
y ,Σxy, µx,Σx) from θ(t+1) above. The disadvantage of imputation

method in variable selection is though it is easy to implement, its asymptotic properties are

unclear.

3.4 Problems with Existing Variable Selection Approaches

Fan and Li (2001) established the asymptotic theory for the non-concave penalized

likelihood estimator for linear regression models and generalized linear models, but it is hard
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to apply it to the missing data problems due to complicated second derivatives in missing data

likelihood. Ibrahim et al. (2008), proposed a unified model selection and estimation procedure

based on iteratively maximizing the penalized Q-function of an EM algorithm. The Q-function

is not a good approximation to the observed data log-likelihood; in addition, they only consider

model selection for the regression model for dependent variable but not for any covariates.

Yang et al. (2005), used Bayesian framework with MCMC sampling and multiple

imputation into linear regression models but its asymptotic properties are unknown. For tuning

parameter selection, Ibrahim et al. (2008), proposed two model selection criteria for general

missing data problems. One is the ICQ based only on conditional expectation with respect to

observed data, and the other is based on the observed data log-likelihood, more like BIC for

model selection for complete data problems but it is computationally expensive to implement.

Furthermore, current models for variable selection for data with missing data all focus

on selecting covariates for the dependent variables. When we have many covariates subject

to missing value, we need to fit a more comprehensive model to the data so that selection of

variables for the covariate models becomes necessary.



CHAPTER 4

VARIABLE SELECTION USING EXPECTATION-MAXIMIZATION

ALGORITHM

4.1 Expectation-Maximization Algorithm for Unpenalized Log-Likelihood

Let Y = (y1, · · · , yp) denote the full data vector from a subject. Suppose that the fully

observed data are Y1, · · · , Yn which are independent and identically distributed. Let f(y | θ)

denote the joint density function for Y . The likelihood for the fully observed data is

LF (θ | Y1, · · · , Yn) =
n∏
i

f(Yi | θ). (4.1)

Suppose further that Y is subject to missing value and the missing values are missing at

random in Rubin’s (1976) sense. Let Y mis and Y obs respectively denote the missing part and

the observed part of Y . The likelihood for the observed data is

L(θ | Y obs
1 , · · · , Y obs

n ) =
n∏
i

g(Y obs
i | θ), (4.2)

where

g(Y obs | θ) =

∫
f(Y mis, Y obs | θ)dY mis.

The observed data likelihood is usually intractable to work with and the full data likelihood is

often much easier to handle. The EM algorithm (Dempster et al., 1977; Little and Rubin, 2002)

was introduced to maximize the observed data log-likelihood through iteratively maximizing

the expected full data log-likelihood given the observed data.

38
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Define the expected full data log-likelihood given the observed data under the current

estimated model by

Q(θ | θ∗) = E
{

log f(Y mis, Y obs | θ) | Y obs, θ∗
}
, (4.3)

where the expectation E is taken under the current model

h(Y mis | Y obs, θ∗) =
f(Y | θ∗)
g(Y obs | θ∗)

.

Following Ibrahim et al. (2008), define

H(θ | θ∗) = E
{

log h(Y mis | Y obs, θ) | Y obs, θ∗
}
.

It is now well-known that

l(θ | Y obs
1 , · · · , Y obs

n ) = Q(θ | θ∗)−H(θ | θ∗), (4.4)

where l(θ | Y obs
1 , · · · , Y obs

n ) = logL(θ | Y obs
1 , · · · , Y obs

n ). By Jensen’s inequality for convex

function,

H(θ | θ∗) ≤ H(θ∗ | θ∗). (4.5)

When there exists an θ∗∗ such that

Q(θ∗∗ | θ∗) ≥ Q(θ∗ | θ∗), (4.6)
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it follows that

l(θ∗∗ | Y obs
1 , · · · , Y obs

n ) ≥ l(θ∗ | Y obs
1 , · · · , Y obs

n ).

The EM algorithm uses this idea to maximize the observed data log-likelihood l(θ |

Y obs
1 , · · · , Y obs

n ) by iteratively maximizing Q(θ | θ∗) with θ∗ being updated to the current

estimate of θ in each iteration.

4.2 Expectation-Maximization Algorithm for Penalized Likelihood

The model selection with incompletely observed data usually maximizes the penalized

observed data likelihood as

lλ(θ | Y obs
1 , · · · , Y obs

n ) = l(θ | Y obs
1 , · · · , Y obs

n )− n
K∑
j=1

pjλ(|θj |), (4.7)

where θ is a vector with individual elements θ1, · · · , θK . As in the case of maximizing

the unpenalized observed data likelihood, we still face the problem that the observed data

log-likelihood can be intractable and difficult to work with in the maximization. Analogue

to the EM algorithm for the unpenalized log-likelihood, an EM algorithm for the penalized

likelihood can be carried out as follows. Define a penalized analogue to the Q-function in the

EM algorithm as

Qλ(θ | θ∗) = Q(θ | θ∗)− n
K∑
j=1

pjλ(|θj |). (4.8)

The penalized log-likelihood for the incompletely observed data can be expressed as

lλ(θ | Y obs
1 , · · · , Y obs

n ) = Qλ(θ | θ∗)−H(θ | θ∗). (4.9)

By following the same arguments in designing the EM algorithm for the unpenalized likelihood,

an EM algorithm can be carried out by maximizing the penalized Qλ(θ | θ∗) repeatedly. The
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E-step for the EM algorithm for the penalized likelihood is the same as that for the unpenalized

likelihood. The M-step of the EM algorithm for the penalized likelihood maximizes Qλ(θ | θ∗).

If there exists a θ∗∗ such that

Qλ(θ∗∗ | θ∗) ≥ Qλ(θ∗ | θ∗), (4.10)

then it follows that

lλ(θ∗∗ | Y obs
1 , · · · , Y obs

n ) ≥ lλ(θ∗ | Y obs
1 , · · · , Y obs

n ). (4.11)

This means that the EM algorithm for the penalized log-likelihood also increases the

log-likelihood in each iteration.

4.3 Algorithm for Maximizing Qλ(θ | θ∗)

The Q-function in the EM algorithm can be approximated by the following quadratic

form

Q(θ | θ∗) ≈ Q(θ∗ | θ∗) + (θ − θ∗)T Q̇(θ∗ | θ∗) +
1

2
(θ − θ∗)T Q̈(θ∗ | θ∗)(θ − θ∗)

= Q(θ∗ | θ∗) +
1

2
Q̇T (θ∗ | θ∗){Q̈(θ∗ | θ∗)}−1Q̇(θ∗ | θ∗)

+
1

2
(θ − θ∗ − d∗)T Q̈(θ∗ | θ∗)(θ − θ∗ − d∗),

where d∗ = −{Q̈(θ∗ | θ∗)}−1Q̇(θ∗ | θ∗). Maximizing the penalized Q-function can be

approximately performed by maximizing

−1

2
(θ − θ∗ − d∗)T {−Q̈(θ∗ | θ∗)}(θ − θ∗ − d∗)− n

K∑
j=1

pjλ(|θj |). (4.12)
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When pjλ(|θj |) = λ|θj |, the foregoing maximization problem becomes the penalized least square

with L1-penality when {−Q̈(θ∗ | θ∗)} is non-negative definite. The LARS algorithm or the

coordinate descent algorithm can be applied. For a general penalty function such as SCAD,

linear approximation may be applied to reduce the problem into a problem with an L1 penalty.

In many applications, θ can be split into two parts. One part denoted by η is subject to

penalty and the other part denoted by γ is not subject to penalty. The penalized Q-function

becomes

Qλ(η, γ | η∗, γ∗) = Q(η, γ | η∗, γ∗)− n
k∑
j=1

pjλ(|ηj |), (4.13)

where k is the number of element in η. By a similar quadratic expansion, the maximization

problem is equivalent to the least square minimization problem as

1

2
(η − η∗ − d∗η, γ − γ∗ − d∗γ)T {−Q̈(θ∗ | θ∗)}(η − η∗ − d∗η, γ − γ∗ − d∗γ) + n

k∑
j=1

pjλ(|ηj |), (4.14)

where d∗ = (d∗η, d
∗
γ). The coordinate descent algorithm can be applied directly. For the

application of the LARS algorithm, the M-step of the EM algorithm can be further divided

into two steps, one maximizes the penalized Q-function with respect to η with γ fixed and

the other maximizes Q with respect to γ with η fixed. The former can be done using LARS

algorithm and the latter can be done simply using the Newton-Raphson algorithm or in some

cases, a closed-form solution.

4.4 One Step Algorithm for Maximizing the Penalized Likelihood

When the number of the variables is much smaller than the sample size, the unpenalized

maximum likelihood estimator θ̂ is consistent and symptotically normally distributed. The

penalized log-likelihood can be carried out starting from the maximum unpenalized likelihood
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estimator. In this case, the maximum penalized likelihood approach is asymptotically equivalent

to minimizing

1

2
(θ − θ̂)T {−l̈(θ̂)}(θ − θ̂) + n

K∑
j=1

pjλ(|θj |). (4.15)

Note from the Fisher’s information identity that

−l̈(θ̂) ≈
n∑
i=1

l̇Ti (θ̂)l̇i(θ̂), (4.16)

where li = log g(Y obs
i | θ̂). As a by-product of the EM algorithm, it can be seen that

l̇i(θ̂) = Q̇i(θ̂ | θ̂), (4.17)

where Qi(θ | θ∗) = E{log f(Yi | θ) | Y obs
i , θ∗}. The penalized maximum likelihood estimator

can be obtained by minimizing

1

2
(θ − θ̂)T

{
n∑
i=1

Q̇Ti (θ̂ | θ̂)Q̇i(θ̂ | θ̂)
}

(θ − θ̂) + n
K∑
j=1

pjλ(|θj |). (4.18)

4.5 Selection of the Tuning Parameter

Suppose that, for each fixed λ, we find a maximum penalized likelihood estimator,

denoted by θλ. Many approaches for selecting the tuning parameter λ are based on the observed

data likelihood which may not be readily available. For example, in the BIC selection of tuning

parameter, the following function

2l(θλ)−K log(n) (4.19)

is minimized with respect to λ, where K is the number of parameters in the model and n is

the sample size. Note that l(θ) = Q(θ | θ∗)−H(θ | θ∗). In the EM algorithm, Q-function is a
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by product of the algorithm. However, H function is unavailable to use. Ibrahim et al. (2008),

proposed a fairly complicated approximation based on mixture of normals to approximate the

conditional distribution of the missing data given the observed data and relied on Monte Carlo

sample to approximate the H function. To alleviate the computational problem, Ibrahim et al.

(2008), also proposed a criterion called ICQ that uses Q-function in place of the log-likelihood

function in the selection of the tuning parameter. Although Garcia et al. (2010), and Ibrahim et

al. (2011), showed that the their ICQ criterion can consistently select the important covariates.

Nevertheless, such a tuning parameter selection approach asymptotically selects more variables

then necessary into the model. As a result, false positive or over-fit often occurs.

This problem can be resolved in the following way. Note that

l(θλ) ≈ l(θ̂) + (θλ − θ̂)T l̇(θ̂) +
1

2
(θλ − θ̂)T l̈(θ̂)(θλ − θ̂), (4.20)

where θ̂ is the maximum likelihood estimator. Since l̇(θ̂) = 0, it follows that

l(θλ)− l(θ̂) ≈ 1

2
(θλ − θ̂)T l̈(θ̂)(θλ − θ̂), (4.21)

By the same arguments as in finding the penalized maximum likelihood estimator, the tuning

parameter can be selected using the approximation to the observed data log-likelihood as

1

2
(θλ − θ̂)T

{
n∑
i=1

Q̇Ti (θ̂ | θ̂)Q̇i(θ̂ | θ̂)
}

(θλ − θ̂) + c(n,K), (4.22)

where c(n,K) is a penalty term. In the BIC selection criterion, c(n,K) = K log n. One

advantage of the proposed approximation approach over the approximation by Q-function

proposed in Ibrahim et al (2008) is that the proposed approach is asymptotically equivalent to
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the use of the observed data log-likelihood. In contrast, the ICQ approach proposed in Ibrahim

et al. (2008), and used in Garcia et al. (2010), and Ibrahim et al. (2011), is not.

To carry out the proposed approximation, we need to run several EM algorithms. One

is for the unpenalized log-likelihood and the others are for the penalized log-likelihood with

different λ. The maximum likelihood estimators are respectively denoted by θ̂ and θλ for

different λ.

4.6 Some Theoretical Results

Suppose we have data Y1, . . . ,Yn ∼iid N(µ,Σ). We can write the model in a

consecutive regression models format as follows.

Y1|Y2, . . . , Yp ∼ N(η1, σ
2
1)

Y2|Y3, . . . , Yp ∼ N(η2, σ
2
2)

. . .

Yp−1|Yp ∼ N(ηp−1, σ
2
p−1)

Yp ∼ N(ηp, σ
2
p),

where ηj = βj0 + βj,(j+1)Yj+1 + . . . + βj,pYp, j = 1, . . . , (p − 1). Let θ = (γ, η), where

γ = (β10, . . . , β(p−1)0, σ
2
1, . . . , σ

2
p−1) and η = (β1,2, . . . , β1,p, β2,3, . . . , β(p−1)p). There is then a

one-to-one relationship between parameters in (µ,Σ) and parameters γ and η. The objective

penalized function for the model selection problem is

lλ(η) =
n∑
i=1

log g(Yobs, γ, η)− n
p′∑
j=1

pλn(|ηj |)

= l(Yobs, η, γ)− n
p′∑
j=1

pλn(|ηj |) (4.23)

where p′ = p(p−1)
2 is the number of consecutive regression coefficients and g(Yobs, θ) is the

marginal likelihood for the observed data. Following Fan and Li (2001), we prove the existence
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and consistency of maximum penalized likelihood estimator.

Theorem 1. Let Y1, . . . ,Yn be independent and identically distributed with density f(X, η, γ)

that is multivariate normal N(µ,Σ). If max {|p′′λn(|ηj0|)| : ηj0 6= 0} → 0, then there exists a local

maximizer η̂ of lλ(η) such that ‖η̂−η0‖ = Op(n
−1/2 +an) where an = max {p′λn(|ηj0|) : ηj0 6= 0}.

Proof: Let αn = n−1/2 + an. We want to show that for any given ε > 0, there exists a large

constant C such that

P{ sup
‖u‖=C

lλn(η0 + αnu) < lλn(η)} ≥ 1− ε. (4.24)

It implies probability goes to 1 as n → ∞ that there exists a local maximum in the ball

{η0 + αnu : ‖u‖ ≤ C} and this maximum has the property ‖η̂ − η0‖ = Op(αn).

Dn(u) ≡ Q(η0 + αnu)−Q(η0)

= L(Yobs, η0 + αnu)− L(Yobs, η0)

− n
p′∑
j=1

{pλn(|ηj0 + αnuj |)− pλn(|ηj0|)}

≤ L(Yobs, η0 + αnu)− L(Yobs, η0)

− n
s∑
j=1

{pλn(|ηj0 + αnuj |)− pλn(|ηj0|)}

= αnL
′
(Yobs, η0)Tu− 1

2
nα2

nu
T I(Yobs, η0)u{1 + op(1)} −

n
s∑
j=1

[αnp
′
λn(|ηj0|)sgn(ηj0)uj + α2

np
′′
λn(|ηj0|)u2

j{1 + op(1)}] (4.25)

where s is the number of non-zero components of η and the second inequality comes from that

pλn(0) = 0 for SCAD penalty function. Since n−1/2L
′
(Yobs, η0) = Op(1) , the first term from
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last equality is of the order Op(n
1/2αn) = Op(nα

2
n). Thus, the second term dominates the first

term by picking a sufficient large C. And the third term is bounded by

snαnan‖u‖+ nα2
n max {|p′′λn(|ηj0|)| : ηj0 6= 0}‖u‖2

that is also dominated by the second term. Thus, by choosing a large enough constant C,

equation (Equation 4.24) holds.

To see n−1/2L
′
(Yobs, η0) = Op(1), we show that n−1/2L

′
(Yobs, η0) ∼ N(0, I−1(η0)).

First, we write

∂

∂η
log f(Y obs

i , η0) =
∑
k

1(Ri=rk)
∂

∂η
log f(rk(Yi), η0).

We have

Eη

[
∂

∂η
log f(Y obs

i , η0)

]
= E

[∑
k

1(Ri=rk)
∂

∂η
log f(rk(Yi), η0)

]

=
∑
k

E

[
∂

∂η
log f(rk(Yi), η0)P (Ri = rk|rk(Yi))

]
=

∑
k

∫
R

∂

∂η
log f(rk(Yi), η0)P (Ri = rk|rk(Yi))f(rk(Yi), η0)drk(Yi)

=
∑
k

∫
R

∂

∂η
f(rk(Yi), η0)P (Ri = rk|rk(Yi))drk(Yi)

=
∂

∂η

∑
k

∫
R
f(rk(Yi), η0)P (Ri = rk|rk(Yi))drk(Yi)

=
∂

∂η

∑
k

P (Ri = rk|η0)

= 0. (4.26)

And by Louis’ formula, the observed information matrix for incompletely observed data is given

by

I(Yobs, η0) = Eη

[
− ∂2

∂η2
log f(Y |η)|r(Y), η0

]
+ Eη

[
(
∂

∂η
log f(Y |η))2|r(Y), η0

]
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Hence from central limit theorem (CLT), we have

√
n

1

n

n∑
i=1

∂

∂η
log f(Y obs

i , η0) = n−1/2L
′
(Yobs, η0) ∼ N(0, I−1(η0))

and n−1/2L
′
(Yobs, η0) = Op(1), where I(η0) = E

[
I(Yobs, η0)

]
.

Theorem 2. Let Y1, . . . ,Yn be independent and identically distributed with density

f(Y, η) that is multivariate normal N(µ,Σ). Assume that

lim inf
n→∞

lim inf
θ→0+

p
′
λn

(θ)

λn
> 0.

If λn → 0 and
√
nλn → ∞ as n → ∞, then with probability tending to 1, for any given η1

satisfying ‖η1 − η10‖ = Op(n
−1/2) and any constant C,

Q

 η1

0

 = max
‖η2‖≤Cn−1/2

Q

 η1

η2

 (4.27)

Proof: To show (Equation 4.27), it is sufficient to show that with probability tending

to 1 as n → ∞, for any η1 satisfying ‖η1 − η10‖ = Op(n
−1/2) and for some small εn = Cn−1/2

and j = s+ 1, . . . , p
′
,

∂Q(η)

∂ηj
=


< 0 for 0 < ηj < εn,

> 0 for −ε < ηj < 0.

(4.28)

Using Taylor’s expansion, we have

∂Q(η)

∂ηj
=

∂L(Yobs, η)

∂ηj
− np′λn(|ηj |)sgn(ηj)
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=
∂L(Yobs, η0)

∂ηj
+

p′∑
l=1

∂2L(Yobs, η0)

∂ηj∂ηl
(ηl − ηl0)

+
p′∑
l=1

p′∑
k=1

∂3L(Yobs, η∗)

∂ηj∂ηl∂ηk
(ηl − ηl0)(ηk − ηk0)

− np′λn(|ηj |)sgn(ηj)

where η∗ lies between η and η0. From previous statements, we know n−1/2L
′
(Yobs, η0) = Op(1).

So L
′
(Yobs, η0) = Op(n

1/2). Since the observe information matrix valued at η0 is finite,

1

n

∂2L(Yobs, η0)

∂ηj∂ηl
= E

[
∂2L(Yobs, η0)

∂ηj∂ηl

]
+ op(1),

and the third derivatives are bounded in normality assumption, the first three terms above are

all Op(n
1/2). Thus, we have

∂Q(η)

∂ηj
= Op(n

1/2)− np′λn(|ηj |)sgn(ηj)

= nλn{Op(n−1/2/λn)− λ−1
n p

′
λn(|ηj |)sgn(ηj)}.

When n−1/2λn → 0 and lim infn→∞ lim infθ→0+

p
′
λn

(θ)

λn
> 0, the sign of this derivative is

completely determined by sign of ηj . Hence, Equation 4.28 follows.



CHAPTER 5

VARIABLE SELECTION IN LINEAR REGRESSION WITH

MISSING COVARIATES

5.1 Problem Description: A Simple Case

In this section, we show that the complexity of deriving the maximum observed data

log-likelihood, even for a simple case where there is only one covariate, is subject to missing

values. Therefore, we will instead use EM algorithm in the following section to maximize the

observed data log-likelihood. Suppose we have a linear regression model

Y = β0 + β1X1 + ...+ βpXp + ε, (5.1)

where ε ∼ N(0, σ2) and X ∼ N(0,Σ) is an n× p matrix. For simplicity of description, we first

consider the case where only X1 is subject to missing and the missing values are MAR. We can

write the likelihood as follows.

L =
n∏
i=1

{f(yi, xi1|xi2, ..., xip)}Ri {g(yi|xi2, . . . , xip)}1−Ri

=
n∏
i=1

{f1(yi|xi2, . . . , xip)f2(xi1|xi2, ..., xip)}Ri{∫
f1(yi|x1, ..., xpi) · f2(x1|x2i, ..., xpi)dx1

}1−Ri
. (5.2)

Assume that x1|x2, . . . , xp ∼ N(α0 +
∑p
j=2 αjxj , τ

2) . The conditional densities are

f1(yi|xi1, · · · , xip) =
1√
2πσ

exp

{
− 1

2σ2
(yi − β0 − β1xi1 − · · · − βpxip)2

}
, (5.3)

50
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and

f2(xi1|xi2, · · · , xip) =
1√
2πτ

exp

{
− 1

2τ2
(xi1 − α0 − α1x2i − · · · − αp−1xip)

2
}
. (5.4)

Because (y, x1|x2, ..., xp) is bivariate normal, y|x2, ..., xp is normally distributed with

mean and variance as follows.

E(y|x2, ..., xp) = E [E(y|x1, ..., xp)|x2, ..., xp]

= E (β0 + β1x1 + ...+ βpxp|x2, .., xp)

= β0 + β1E(x1|x2, ..., xp) + β2x2 + ...+ βpxp

= β0 + β1(α0 + α1x2 + ...+ αpxp) + β2x2 + ...+ βpxp

= (β0 + β1α0) + (β1α1 + β2)x2 + ...+ (β1αp−1 + βp)xp

= (β0 + β1α0) +
p∑
j=2

(β1αj−1 + βj)xj (5.5)

V (y|x2, ..., xp) = V [E(y|x1, ..., xp)|x2, ..., xp] + E[V (y|x1, ..., xp)|x2, ..., xp]

= V (β0 + β1x1 + ...+ βpxp|x2, .., xp) + σ2

= β2
1τ

2 + σ2. (5.6)

By substituting Equation 5.3, Equation 5.4, Equation 5.5 and Equation 5.6 into Equation 5.2,

the observed data likelihood is

L =
n∏
i=1

[
1√
2πσ

exp

{
− 1

2σ2
(yi − β0 − β1x1i − ...− βpxpi)2

}
1√
2πτ

exp

{
− 1

2τ2
(x1i − α0 − α1x2i − ...− αp−1xpi)

2
}]Ri
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(
1√

2π(β2
1τ

2 + σ2)
exp

[
− 1

2(β2
1τ

2 + σ2)
{yi − (β0 + β1α0)

−
p∑
j=2

(β1αj−1 + βj)xji}2
])1−Ri

. (5.7)

Thus, the observed data log-likelihood is

logL =
n∑
i=1

li(β, α, σ, τ)

=
n∑
i=1

Ri

{
− 1

2
log 2πσ2 − 1

2σ2
(yi − β0 − β1x1i − ...− βpxpi)2

− 1

2
log 2πτ2 − 1

2τ2
(x1i − α0 − α1x2i − ...− αp−1xpi)

2
}

+ (1−Ri)
{
− 1

2
log 2π(β2

1τ
2 + σ2)

− 1

2(β2
1τ

2 + σ2)

yi − (β0 + β1α0)−
p∑
j=2

(β1αj−1 + βj)xji

2 }
. (5.8)

To perform variable selection and estimation simultaneously, our goal is to optimize the

SCAD type penalized likelihood function as follows.

max
β,α,σ,τ


n∑
i=1

li(β, α, σ, τ)− n
p∑
j=1

pλ(|βj |)− n
p−1∑
j=1

pµ(|αj |)

 . (5.9)

Because of the singularity property of SCAD function at the origin, the optimization

function in Equation 5.9 is not differentiable with respect with β and α. Using the LLA

described in 2.5, we can rewrite the optimization problem Equation 5.9 through the iterative

process as follow,

arg max
β,α,σ,τ


n∑
i=1

li(β, α, σ, τ)− n
p∑
j=1

p
′
λ(|β(k)

j |)|βj | − n
p−1∑
j=1

p
′
µ(|α(k)

j |)|αj |

 , (5.10)

where β
(k)
j and α

(k)
j is the current step estimates.
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Now the penalized likelihood function in Equation 5.11 becomes differentiable except

for the origin. As demonstrated both empirically and theoretically in Zou and Li (2008), the

one-step method is as efficient as the fully iterative method, provided that the initial estimators

are reasonably good. If we set the initial estimate to be (β(0), α(0), σ(0), τ (0)) the unpenalized

maximum likelihood estimator and let θ = β, α, σ, τ be the vector for model parameters, the

one-step MPLE can be obtained by

θ(1) = arg max
β,α,σ,τ


n∑
i=1

li(θ)− n
p∑
j=1

p
′
λ(|β(0)

j |)|βj | −
p−1∑
j=1

p
′
µ(|α(0)

j |)|αj |

 . (5.11)

Because the objective function on the right hand side of Equation 5.11 now has continuous

second order derivatives except for the orgin, we can use the modified Newton-Raphson

algorithm described in Fan and Li (2001) to solve the problem. Let

G(β, α, σ, τ) =
n∑
i=1

li(β, α, σ, τ)− n
p∑
j=1

p
′
λ(|β(0)

j |)|βj | − n
p−1∑
j=1

p
′
µ(|α(0)

j |)|αj |.

The partial derivatives of G with respect to β’s and α’s are as follows.

∂G

∂βv
=

n∑
i=1

[
∂li(β, α, σ, τ)

∂βv
− np′λ(|β(0)

v |)sgn(βv)

]
(5.12)

and

∂G

∂αv
=

n∑
i=1

[
∂li(β, α, σ, τ)

∂αv
− np′µ(|α(0)

v |)sgn(αv)

]
, (5.13)

where v = 1, · · · , p in Equation 5.12 and v = 1, · · · , (p− 1) in Equation 5.13.
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In above two equations, we write out the first derivative of the log-likelihood in the

following three equations.

∂li
∂β1

= Ri

{
x1i

σ2
(yi − β0 − β1x1i − ...− βpxpi)

}
+ (1−Ri)

{
− τ2β1

β2
1τ

2 + σ2
− A

4(β2
1τ

2 + σ2)2

}
, (5.14)

where

A = 2

yi − (β0 + β1α0)−
p∑
j=2

(β1αj−1 + βj)xji

 ·
−α0 −

p∑
j=2

αj−1xji

 · 2(β2
1τ

2 + σ2)

−

yi − (β0 + β1α0)−
p∑
j=2

(β1αj−1 + βj)xji


2

· (4τ2β1)

=

{
yi − (β0 + β1α0)−

p∑
j=2

(β1αj−1 + βj)xji

}
·
{

4(β2
1τ

2 + σ2)(−α0 −
p∑
j=2

αj−1xji)− 4τ2β1 ·

yi − (β0 + β1α0)−
p∑
j=2

(β1αj−1 + βj)xji

} (5.15)

∂li
∂βv

= Ri

{
xvi
σ2

(yi − β0 − β1x1i − ...− βpxpi)
}

+ (1−Ri) ·− xvi
β2

1τ
2 + σ2

yi − (β0 + β1α0)−
p∑
j=2

(β1αj−1 + βj)xji

 (5.16)

∂li
∂αv

= Ri

{
x(v+1)i

τ2
(x1i − α0 − α1x2i − ...− αp−1xpi)

}
+ (1−Ri) ·{

−
[yi − (β0 + β1α0)−

∑p
j=2(β1αj−1 + βj)xji] · (β1x(v+1)i)

(β2
1τ

2 + σ2)

}
, (5.17)

where v = 2, ..., p in Equation 5.16 and v = 1, ..., (p − 1) in Equation 5.17. We did not write

out the other first order derivatives and the second order derivatives because they are tedious
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and difficult to extend to more general cases with arbitrary missing patterns in covariates. We

will use EM algorithm in the following section rather than directly maximize the observed data

log-likelihood.

5.2 Variable Selection via Expectation-Maximization in A Simple Case

From the description in the previous section, directly solving Equation 5.11 is difficult

and hard to be generalized. We apply the EM algorithm to solve the problem. The complete

data likelihood for the problem described in section 5.1 is

L =
n∏
i=1

Li(Θ)

=
n∏
i=1

1√
2πσ

· exp

[
− 1

2σ2
(yi − β0 − β1x1i − ...− βpxpi)2

]
· 1√

2πτ
· exp

[
− 1

2τ2
(x1i − α0 − α1x2i − ...− αp−1xpi)

2
]
, (5.18)

where Θ = (γ, η) with γ = (σ2, τ2, α0, β0) and η = (β1, ..., βp, α1, ..., αp−1).

In the EM algorithm, the E-step involves evaluating the Q-function defined as follows.

The conditional expectation is taken with respect to the missing data given the observed data

and the current estimated parameters, for which we denote γ(0) and η(0).

Q
{

(γ, η)|(γ(0), η(0))
}

= E
[
logL|y,R(x1), x2, ..., xp, γ

(0), η(0)
]

=
n∑
i=1

{
Ri logLi + (1−Ri)E[logLi|y, x2, ..., xp, γ

(0), η(0)]
}

(5.19)

where, from Equation 5.18,

logLi = −1

2
log 2πσ2 − 1

2σ2
(yi − β0 − β1x1i − ...− βpxpi)2

− 1

2
log 2πτ2 − 1

2τ2
(x1i − α0 − α1x2i − ...− αp−1xpi)

2
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= −1

2
log 2πσ2 − 1

2σ2
(ỹi − β1x1i)

2

− 1

2
log 2πτ2 − 1

2τ2
(x1i − µi)2, (5.20)

with ỹi = yi − β0 − β2x2i − ...− βpxpi and µi = α0 + α1x2i + ...+ αp−1xpi.

Taking the conditional expectation with respect to the density of

(x1|y, x2, ..., xp, γ
(0), η(0)), we have

E
[
logLi|y, x2, ..., xp, γ

(0), η(0)
]

= −1

2
log 2πσ2 − 1

2
log 2πτ2

− 1

2σ2

{
ỹi

2 − 2ỹiβ1E[x1|y, x2, ..., xp, γ
(0), η(0)]

+ β2
1E[x2

1|y, x2, ..., xp, γ
(0), η(0)]

}
− 1

2τ2

{
µ2
i − 2µiE[x1|y, x2, ..., xp, γ

(0), η(0)]

+ E[x2
1|y, x2, ..., xp, γ

(0), η(0)]

}
(5.21)

The joint distribution (y, x1|x2, ..., xp, γ
(0), η(0)) is normal with mean

µ(0)
y (x2, ..., xp, γ

(0), η(0)) = (β
(0)
0 + β

(0)
1 α

(0)
0 ) +

p∑
j=2

(β
(0)
1 α

(0)
j−1 + β

(0)
j )xj ,

µ(0)
x1

(x2, ..., xp, γ
(0), η(0)) = α

(0)
0 + α

(0)
1 x2i + ...+ α

(0)
p−1xpi

and variance matrix

Σ =

 β
2(0)
1 τ2(0) + σ2(0) σ12

σ12 τ2(0)

 ,
where

σ12 = Cov(y, x1|x2, ..., xp, γ
(0), η(0))



57

= E(yx1|x2, ..., xp, γ
(0), η(0))− E(y|x2, ..., xp, γ

(0), η(0)) · E(x1|x2, ..., xp, γ
(0), η(0))

= β
(0)
0 (α

(0)
0 + α

(0)
1 x2i + ...+ α

(0)
p−1xpi)

+ β
(0)
1 [τ2(0) + (α

(0)
0 + α

(0)
1 x2i + ...+ α

(0)
p−1xpi)

2]

+ (β
(0)
2 x2i + ...+ β(0)

p xpi) · (α(0)
0 + α

(0)
1 x2i + ...+ α

(0)
p−1xpi)

− [β
(0)
0 + β

(0)
1 α

(0)
0 +

p∑
j=2

(β
(0)
1 α

(0)
j−1 + β

(0)
j )xj ] · [α(0)

0 + α
(0)
1 x2i + ...+ α

(0)
p−1xpi]

= β
(0)
1 [τ2(0) + (α

(0)
0 + α

(0)
1 x2i + ...+ α

(0)
p−1xpi)

2]

+ (β
(0)
2 x2i + ...+ β(0)

p xpi) · (α(0)
0 + α

(0)
1 x2i + ...+ α

(0)
p−1xpi)

− [β
(0)
1 α

(0)
0 +

p∑
j=2

(β
(0)
1 α

(0)
j−1 + β

(0)
j )xj ] · [α(0)

0 + α
(0)
1 x2i + ...+ α

(0)
p−1xpi]

= β
(0)
1 τ2(0).

Substitute σ12 with this quantity, we can write out the variance matrix as

Σ =

 β
2(0)
1 τ2(0) + σ2(0) β

(0)
1 τ2(0)

β
(0)
1 τ2(0) τ2(0)

 .

The mean and variance of X1 given y, x2, . . . , xp can be calculated as follows,

E[X1|y, x2, ..., xp, γ
(0), η(0)] = E[x1|x2, ..., xp, γ

(0), η(0)] + cov(y, x1|x2, ..., xp, γ
(0), η(0)) ·

var−1(y|x2, ..., xp, γ
(0), η(0)) · (y − E[y|x2, ..., xp, γ

(0), η(0)])

= (α
(0)
0 + α

(0)
1 x2i + ...+ α

(0)
p−1xpi) + β

(0)
1 τ2(0) · (β2(0)

1 τ2(0) + σ2(0))−1

· [y − ((β
(0)
0 + β

(0)
1 α

(0)
0 ) +

p∑
j=2

(β
(0)
1 α

(0)
j−1 + β

(0)
j )xj)]

= µ(0)
x1

+
β

(0)
1 τ2(0)

β
2(0)
1 τ2(0) + σ2(0)

· (y − µ(0)
y ),
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and

V [X1|y, x2, ..., xp, γ
(0), η(0)] = τ2(0) − (β

(0)
1 τ2(0))2

β
2(0)
1 τ2(0) + σ2(0)

= τ2(0) · σ2(0)

β
2(0)
1 τ2(0) + σ2(0)

≡ v0.

The second order conditional expectation of X1 is given by

E
(
x2

1|y, x2, ..., xp, γ
(0), η(0)

)
= V

[
x1|y, x2, ..., xp, γ

(0), η(0)
]

+ E2
(
x1|y, x2, ..., xp, γ

(0), η(0)
)

= τ2(0) · σ2(0)

β
2(0)
1 τ2(0) + σ2(0)

+

[
µ(0)
x1

+
β

(0)
1 τ2(0)

β
2(0)
1 τ2(0) + σ2(0)

· (y − µ(0)
y )

]2

.

From above calculation, Equation 5.21 can be written as

E
(
logLi|y, x2, ..., xp, γ

(0), η(0)
)

= −1

2
log 2πσ2 − 1

2
log 2πτ2

− 1

2σ2

{
ỹi

2 − 2ỹiβ1E[x1|y, x2, ..., xp, γ
(0), η(0)] + β2

1E[x2
1|y, x2, ..., xp, γ

(0), η(0)]
}

− 1

2τ2

{
µ2
i − 2µiE[x1|y, x2, ..., xp, γ

(0), η(0)] + E[x2
1|y, x2, ..., xp, γ

(0), η(0)]
}

= −1

2
log 2πσ2 − 1

2σ2

(
ỹi

2 − 2ỹiβ1 · c1 + β2
1 · c2

)
− 1

2
log 2πτ2 − 1

2τ2

(
µ2
i − 2µi · c1 + c2

)
= −1

2
log 2πσ2 − 1

2σ2

{
(ỹi − β1c1)2 + β2

1(c2 − c2
1)
}

− 1

2
log 2πτ2 − 1

2τ2

{
(µi − c1)2 + (c2 − c2

1)
}

= −1

2
log 2πσ2 − 1

2σ2

{
(ỹi − β1c1)2 + β2

1v0

}
− 1

2
log 2πτ2 − 1

2τ2

{
(µi − c1)2 + v0

}
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where c1 and c2 are constants, representing E
(
x1|y, x2, ..., xp, γ

(0), η(0)
)

and

E
(
x2

1|y, x2, ..., xp, γ
(0), η(0)

)
, respectively. Plug Equation 5.22 in Equation 5.19, the Q-function

becomes

Q((γ, η)|(γ(0), η(0))) = E[logL|y,R(x1), x2, ..., xp, γ
(0), η(0)]

=
n∑
i=1

{Ri logLi + (1−Ri)E[logLi|y, x2, ..., xp, γ
(0), η(0)]}

=
n∑
i=1

{Ri · [−
1

2
log 2πσ2 − 1

2σ2
(ỹi − β1x1i)

2 − 1

2
log 2πτ2 − 1

2τ2
(x1i − µi)2]

+ (1−Ri) · E[logLi|y, x2, ..., xp, γ
(0), η(0)]

=
n∑
i=1

{Ri · [−
1

2
log 2πσ2 − 1

2σ2
(ỹi − β1x1i)

2 − 1

2
log 2πτ2 − 1

2τ2
(x1i − µi)2]

+ (1−Ri) · {−
1

2
log 2πσ2 − 1

2
log 2πτ2 − 1

2σ2
[(ỹi − β1c1)2 + β2

1v0]

− 1

2τ2
[(µi − c1)2 + v0]}}

=
n∑
i=1

{Ri · [−
1

2
log 2πσ2 − 1

2
log 2πτ2]− Ri

2σ2
(ỹi − β1x1i)

2 − Ri
2τ2

(x1i − µi)2

+ (1−Ri) · [−
1

2
log 2πσ2 − 1

2
log 2πτ2]− 1−Ri

2σ2
[(ỹi − β1c1)2 + β2

1v0]

− 1−Ri
2τ2

[(µi − c1)2 + v0]}

=
n∑
i=1

{
Ri ·

(
−1

2
log 2πσ2 − 1

2
log 2πτ2

)
− Ri

2σ2
(yi − β0 − β2x2i − ...− βpxpi − β1x1i)

2

− Ri
2τ2

(x1i − α0 − α1x2i − ...− αp−1xpi)
2

+ (1−Ri) ·
(
−1

2
log 2πσ2 − 1

2
log 2πτ2

)
− 1−Ri

2σ2
[(yi − β0 − β2x2i − ...− βpxpi − β1c1)2 + β2

1v0]

− 1−Ri
2τ2

[(α0 + α1x2i + ...+ αp−1xpi − c1)2 + v0]

}
. (5.22)

In M-step, we maximize Q((γ, η)|(γ(0), η(0))) to obtain (γ(1), η(1)). Since γ contains the

intercepts and variances of random error, they are estimated separately in linear regression
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models. We first calculate the first and second derivatives of above objective function with

respect to

η = (β1, ..., βp, α1, ..., αp−1) .

The first and second partial derivatives of the Q-function defined in Equation 5.22 with

respect to η can be written as follow.

∂Q

∂β1
=

n∑
i=1

{
Rix1i

σ2
(yi − β0 − β2x2i − ...− βpxpi − β1x1i)−

1−Ri
σ2

[
(yi − β0 − β2x2i − ...− βpxpi − β1c1)(−c1) + β1(c2 − c2

1)
]}

∂2Q

∂β2
1

=
n∑
i=1

{
−Rix

2
1i

σ2
− (1−Ri)c2

σ2

}
(5.23)

∂Q

∂βk
=

n∑
i=1

{
Rixki
σ2

(yi − β0 − β2x2i − ...− βpxpi − β1x1i)−

1−Ri
σ2

(yi − β0 − β2x2i − ...− βpxpi − β1c1)(−xki)
}

∂2Q

∂β2
k

=
n∑
i=1

{
−x

2
ki

σ2

}
, (5.24)

where k = 2, ..., p.

∂Q

∂αk
=

n∑
i=1

{
Rix(k+1)i

τ2
(x1i − α0 − α1x2i − ...− αp−1xpi)−

(1−Ri)x(k+1)i

τ2
(x1i + α0 + α1x2i + ...+ αp−1xpi − c1)

}
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∂2Q

∂α2
k

=
n∑
i=1

{
−
x2

(k+1)i

τ2

}
, (5.25)

where k = 1, ..., (p− 1). The remaining second mixed derivatives are as follow.

∂2Q

∂β1∂βk
=

n∑
i=1

{−Rix1ixki − (1−Ri)c1xki
σ2

}
, (5.26)

where k = 2, ..., p;

∂2Q

∂βk∂βj
=

n∑
i=1

{−xkixji
σ2

}
, (5.27)

where k, j = 2, ..., p; k 6= j;

∂2Q

∂αk∂αj
=

n∑
i=1

{−x(k+1)ix(j+1)i

τ2

}
, (5.28)

where k, j = 1, ..., (p− 1); k 6= j and

∂2Q

∂βj∂αk
= 0, (5.29)

where j = 1, ..., p and k = 1, ..., (p− 1).

Compute η(1) using Newton-Raphson algorithm as follow

η(1) = η(0) − Q̇η((η, γ
(0))|θ(0))

Q̈ηη((η, γ(0)|θ(0))
. (5.30)

Once we get η(1), we can update γ(1) as follows.

β
(1)
0 = ȳ − β(1)

1 E(x1|y, x2, · · · , xp, η(1), γ(0))− · · · − β(1)
p x̄p, (5.31)
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α
(1)
0 = E(x1|y, x2, · · · , xp, η(1), γ(0))− α(1)

1 x̄2 − · · · − α(1)
p−1x̄p, (5.32)

σ2(1) =

∑n
i=1(yi − β(1)

1 E(x1i|y, x2, · · · , xp, η(1), γ(0))− · · · − β(1)
p xpi)

2

n− 1
, (5.33)

and

τ2(1) =

∑n
i=1(E(x1i|y, x2, · · · , xp, η(1), γ(0))− α(1)

1 x2i − · · · − α(1)
p−1xpi)

2

n− 1
. (5.34)

We iteratively repeat the process from Equation 5.30 to Equation 5.34 until the change

from θk to θk+1 is small enough. Let θ̃ be the unpenalized estimator obtained by iteratively

maximizing Q(θ|θ(0)), where θ = (β, α, γ). The variable selection problem is to maximize the

following penalized pseudo likelihood function

Q(θ|θ̃)− n
2p−1∑
j=1

pλ(|ηj |). (5.35)

Following section 4.3, a Taylor series expansion at θ̃ gives

n−1Q(θ|θ̃) ≈ n−1Q(θ̃|θ̃) + n−1Q̇θ(θ̃|θ̃)(θ − θ̃)

+
1

2
(θ − θ̃)T Q̈(θ̃|θ̃)(θ − θ̃)

= n−1Q(θ̃|θ̃) +
1

2
(θ − θ̃)T Q̈(θ̃|θ̃)

n
(θ − θ̃). (5.36)

The last equation from Equation 5.36 is true because Q
′
θ(θ̃|θ̃) = 0. Therefore, the original

optimization problem in Equation 5.35 is reformulated to maximize

(θ − θ̃)T Q̈(θ̃|θ̃)(θ − θ̃)− n
2p−1∑
j=1

pλ(|ηj |), (5.37)
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which is the same as

(
η − η̃, γ − γ̃

) Q̈ηη(θ̃|θ̃) Q̈ηγ(θ̃|θ̃)

Q̈γη(θ̃|θ̃) Q̈γγ(θ̃|θ̃)


 η − η̃

γ − γ̃

− n
2p−1∑
j=1

pλ(|ηj |), (5.38)

Because our interest of parameter is η for variable selection, we try to maximize Equation 5.38

with fixed value of γ to get the one step maximum penalized pseudo likelihood estimator. In

this case, maximize Equation 5.38 is then equivalent to maximize

(
η − η̃ + Q̈−1

ηη (θ̃|θ̃)Q̈ηγ(θ̃|θ̃)(γ − γ̃)
)T

Q̈ηη(θ̃|θ̃)
(
η − η̃ + Q̈−1

ηη (θ̃|θ̃)Q̈ηγ(θ̃|θ̃)(γ − γ̃)
)
−n

2p−1∑
j=1

pλ(|ηj |),

(5.39)

with respect to η for a fixed γ. Notice that when we take the fixed value of γ to be

the unpenalized maximum likelihood estimate γ̃, maximizing Equation 5.39 is equivalent to

minimize

(η − η̃)T
−Q̈ηη(θ̃|θ̃)

n
(η − η̃) +

2p−1∑
j=1

pλ(|ηj |), (5.40)
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which is the penalized least square with penalty function pλ(·) when −Q̈ηη(θ̃|θ̃) is

positive-definite. Specifically, when Q̈ηη(θ̃|θ̃) is positive definite, it can be decomposed as

Q̈ηη(θ̃|θ̃) as
−Q̈ηη(θ̃|θ̃)

n = DTD as below,

DTD = − 1

n



∂2Q
∂β2

1

∂2Q
∂β1∂β2

∂2Q
∂β1∂β3

. . . ∂2Q
∂β1∂α1

. . . ∂2Q
∂β1∂αp−1

∂2Q
∂β1∂β2

∂2Q
∂β2

2

∂2Q
∂β2∂β3

. . . ∂2Q
∂β2∂α1

. . . ∂2Q
∂β2∂αp−1

. . . . . . . . . . . . . . . . . . . . .

∂2Q
∂βp∂β1

∂2Q
∂βp∂β2

∂2Q
∂βp∂β3

. . . ∂2Q
∂βp∂α1

. . . ∂2Q
∂βp∂αp−1

∂2Q
∂α1∂β1

∂2Q
∂α1∂β2

∂2Q
∂α1∂β3

. . . ∂2Q
∂α2

1
. . . ∂2Q

∂α1∂αp−1

. . . . . . . . . . . . . . . . . . . . .

∂2Q
∂αp−1∂β1

∂2Q
∂αp−1∂β2

∂2Q
∂αp−1∂β3

. . . ∂2Q
αp−1∂α1

. . . ∂2Q
∂α2

p−1



=



∂2Q
∂β2

1

∂2Q
∂β1∂β2

∂2Q
∂β1∂β3

. . . 0 . . . 0

∂2Q
∂β1∂β2

∂2Q
∂β2

2

∂2Q
∂β2∂β3

. . . 0 . . . 0

. . . . . . . . . . . . . . . . . . . . .

∂2Q
∂βp∂β1

∂2Q
∂βp∂β2

∂2Q
∂βp∂β3

. . . 0 . . . 0

0 0 0 . . . ∂2Q
∂α2

1
. . . ∂2Q

∂α1∂αp−1

. . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . ∂2Q
αp−1∂α1

. . . ∂2Q
∂α2

p−1



.

Therefore, Equation 5.37 can be reformulated as follows.

(43) = arg min
η

(η − η̃)T
−Q̈ηη(θ̃|θ̃)

n
(η − η̃) +

2p−1∑
j=1

pλ(|ηj |)


= arg min

η

(η − η̃)TDTD(η − η̃) +
2p−1∑
j=1

pλ(|ηj |)


= arg min

η

(Dη −Dη̃)T (Dη −Dη̃) +
2p−1∑
j=1

pλ(|ηj |)


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= arg min
η

(y∗ − x∗η)T (y∗ − x∗η) +
2p−1∑
j=1

pλ(|ηj |)

 , (5.41)

where y∗ = −Dη̃ and x∗ = −D. Therefore, it is the same as solving a variable selection problem

with SCAD penalty under the linear regression model with fully observed pseudo-data.

For the algorithm described in 4.4, since it does not involve second order derivatives of

the Q-function, the one step penalized maximum likelihood estimator can be computed directly

on η by minimizing

1

2
(η − η̃)T

{
n∑
i=1

Q̇Ti(η)(θ̃ | θ̃)Q̇i(η)(θ̃ | θ̃)
}

(η − η̃) + n
2p−1∑
j=1

pjλ(|ηj |), (5.42)

5.3 Expectation Maximization Algorithm for Multivariate Normal

In this section, we combine the outcome and covariates into a single vector for the

illustration of EM algorithm for multivariate normal. Let y = (x1, . . . , xp)
T ∼ N(µ,Σ) and

y1, . . . , yn ∼i.i.d N(µ,Σ). The full likelihood of the problem is

L =
n∏
i=1

Li(Θ)

=
n∏
i=1

1

(
√

2π)p|Σ|
1
2

· exp
{
−1

2
(yi − µ)TΣ−1(yi − µ)

}
, (5.43)

where Θ = (µ,Σ). The log-likelihood is

l(µ,Σ) = logL

= −pn
2

log 2π − n

2
log |Σ| − 1

2

n∑
i=1

(yi − µ)TΣ−1(yi − µ)

= −pn
2

log 2π − n

2
log |Σ| − 1

2
tr

{
Σ−1

n∑
i=1

(yi − µ)(yi − µ)T
}
. (5.44)
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In E-step of EM algorithm, the conditional expectation of the complete-data likelihood

is

Q(µ,Σ|µ(0),Σ(0)) = −pn
2

log 2π − n

2
log |Σ|

− 1

2
tr

{
Σ−1

n∑
i=1

E[(yi − µ)(yi − µ)T ]

∣∣∣∣yobsi , µ(0),Σ(0)

}
, (5.45)

where yobsi is observed part of the vector yi = (xi1, . . . , xip).

Thus, to estimate Q(µ,Σ|µ(0),Σ(0)), we first need to get the following two items.

1. E(x2
ij |yobsi , µ(0),Σ(0))

2. E(xijxik|yobsi , µ(0),Σ(0))

Suppose that y is a p × 1 random vector distributed as N(µ,Σ). We partition as

yT = (zT1 , z
T
2 ), where z1 and z2 are sub-vectors of lengths p1 and p2 = p− p1, respectively. It is

well known that their marginal distributions are partitions of the µ and Σ, i.e., µT = (µT1 , µ
T
2 )

and

Σ =

 Σ11 Σ12

Σ21 Σ22

 .
Further, the conditional distributions are also normal; for example, the distribution of

z2 given z1 in normal with mean

E(z2|z1) = (α2.1) +B2.1 ∗ z1

= (µ2 − Σ21Σ−1
11 µ1) + (Σ21Σ−1

11 ) ∗ z1

and covariance

Σ22.1 = Σ22 − Σ21Σ−1
11 Σ12.
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By Sweep Operator, we can conveniently calculate the above values. We arrange the

parameters θ = (µ,Σ) as a (p+ 1)× (p+ 1) matrix in the following manner,

θ =

 1 µ

µ Σ



=


1 µT1 µT2

µ1 Σ11 Σ12

µ2 Σ21 Σ22


.

If we sweep this θ matrix on positions 1, 2, . . . , p1; the resulting matrix is

SWP [1, . . . , p1]θ =


1− µT1 Σ−1

11 µ1 µT1 Σ−1
11 µT2 − µT1 Σ−1

11 Σ12

Σ−1
11 µ1 −Σ−1

11 Σ−1
11 Σ12

µ2 − Σ21Σ−1
11 µ1 Σ21Σ−1

11 Σ22 − Σ21Σ−1
11 Σ12



=


1− µT1 Σ−1

11 µ1 µT1 Σ−1
11 αT2.1

Σ−1
11 µ1 −Σ−1

11 BT
2.1

α2.1 B2.1 Σ22.1


.

It is easy to see that the information used to calculate conditional expectation is in

sweeped columns and unsweeped rows; and the covariance is in unsweeped column and rows.

For our multivariate normal problem with missing data, if row i is in missingness pattern s, let

O(s) and M(s) denote observed and missing columns, respectively. And denote A the swept

parameter matrix

A = SWP [O(s)]θ,
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and ajk the (j, k)th element of A, j, k = 0, 1, . . . , p. The first two moments of ymisi with respect

to P (ymis|yobs, θ) are given by:

E(xij |yobsi , µ(0),Σ(0)) = a0j +
∑

k∈O(s)

akjxik

cov(xijxik|yobsi , µ(0),Σ(0)) = ajk

for each each j, k ∈M(s). For any j ∈ O(s), the moments are

E(xij |yobsi , µ(0),Σ(0)) = xij

cov(xijxik|yobsi , µ(0),Σ(0)) = 0.

By applying the relation

E(xijxik|yobsi , µ(0),Σ(0)) = cov(xijxik|yobsi , µ(0),Σ(0)) +

E(xij |yobsi , µ(0),Σ(0))E(xik|yobsi , µ(0),Σ(0))

it follows that

E(xij |yobsi , µ(0),Σ(0)) =


xij for j ∈ O(s),

x∗ij for j ∈M(s).

and

E(xijxik|yobsi , µ(0),Σ(0)) =



xijxik for j, k ∈ O(s),

x∗ijxik for j ∈M(s), k ∈ O(s),

ajk + x∗ijx
∗
ik for j, k ∈M(s).
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where

x∗ij = a0j +
∑

k∈O(s)

akjxik.

5.4 Alternative Parameterization in Variable Selection

We can write the multivariate normal model in the form of p successive linear regression

models as follow.

x1|x2, . . . , xp ∼ N(η1, σ
2
1)

x2|x3, . . . , xp ∼ N(η2, σ
2
2)

. . .

xp−1|xp ∼ N(ηp−1, σ
2
p−1)

xp ∼ N(ηp, σ
2
p),

where ηj = βj0 + βj,(j+1)xj+1 + . . .+ βj,pxp, j = 1, . . . , (p− 1).

The log-likelihood can be rewritten as a function of (β, σ) as follows.

l(β, σ) =
n∑
i=1

{−1

2
log(2πσ2

1)− 1

2σ2
1

(xi1 − η1)2

− 1

2
log(2πσ2

2)− 1

2σ2
2

(xi2 − η2)2

. . . . . .

− 1

2
log(2πσ2

p−1)− 1

2σ2
p−1

(xi(p−1) − ηp−1)2

− 1

2
log(2πσ2

p)−
1

2σ2
p

(xip − ηp)2}

=
n∑
i=1

{−1

2
log(2πσ2

1)− 1

2σ2
1

(xi1 − (β10 + β12xi2 + . . .+ β1pxip))
2

− 1

2
log(2πσ2

2)− 1

2σ2
2

(xi2 − (β20 + β23xi3 + . . .+ β2pxip))
2

. . . . . .
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− 1

2
log(2πσ2

p−1)− 1

2σ2
p−1

(xi(p−1) − (β(p−1)0 + β(p−1)pxpi))
2

− 1

2
log(2πσ2

p)−
1

2σ2
p

(xip − µp)2}, (5.46)

where β = (βjk, j = 1, · · · , p− 1; k = j, · · · , p) and σ = (σ1, · · · , σp).

The Q-function is the expected full data log-likelihood conditional on the observed data

under the currently estimated model as follows.

Q(θ|(xobs, θ(0))) =
n∑
i=1

{−1

2
log(2πσ2

1)− 1

2σ2
1

E[(xi1 − (β10 + β12xi2 + . . .+ β1pxip))
2|(xobs, θ(0))]

− 1

2
log(2πσ2

2)− 1

2σ2
2

E[(xi2 − (β20 + β23xi3 + . . .+ β2pxip))
2|(xobs, θ(0))]

. . . . . .

− 1

2
log(2πσ2

p−1)− 1

2σ2
p−1

E[(xi(p−1) − (β(p−1)0 + β(p−1)pxip))
2|(xobs, θ(0))]

− 1

2
log(2πσ2

p)−
1

2σ2
p

E[(xip − µp)2|(xobs, θ(0))]}, (5.47)

where θ = (η, γ) and η = (βjk, j = 1, . . . , p − 1; k = j, . . . , p), γ = (σj , j = 1, . . . , p). The first

and second derivatives of Q with respect to regression model coefficients are as follow,

∂Q

∂βjk
= − 1

σ2
j

n∑
i=1

{
βjkE[x2

ik|(xobs, θ(0))]

− E[xik(xij − βj0 − βj2xi2 − . . .− βj(k−1)xi(k−1) − βj(k+1)xi(k+1)

− . . .− βjpxip)|(xobs, θ(0))]

}
(5.48)

The second derivatives appear as

∂2Q

∂β2
jk

= − 1

σ2
j

n∑
i=1

{
E

[
x2
ik

∣∣∣∣(xobs, θ(0))

]}
, (5.49)
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and

∂2Q

∂βjk∂βjl
= − 1

σ2
j

n∑
i=1

{
E

[
xikxil

∣∣∣∣(xobs, θ(0))

]}
, (5.50)

where j = 1 ∼ (p− 1); l, k = j ∼ p; l 6= k and

∂2Q

∂βjk∂βj′l
= 0 (5.51)

when j 6= j′. Then, η(1) can be computed by the following Newton-Raphson iteration

η(1) = η(0) − Q̇η((η, γ
(0))|θ(0))

Q̈ηη((η, γ(0)|θ(0))
. (5.52)

γ(1) then can be updated similarly as in Equation 5.30 to Equation 5.34 for each regression

models described in Equation 5.46. Once the unpenalized maximum likelihood estimator θ̂ is

obtained, with fixed γ̂ values, the one step penalized maximum likelihood estimator can be

computed by minimizing

1

2
(η − η̂)T

{
n∑
i=1

Q̇Ti(η)(θ̂ | θ̂)Q̇i(η)(θ̂ | θ̂)
}

(η − η̂) + n
K∑
j=1

pjλ(|ηj |), (5.53)

where K = p(p−1)
2 is the number of coefficients in p− 1 regression models.

5.5 A Simulation Study

In this section, we conduct a simulation study to demonstrate the performance of

our algorithm. In the simulation we considered a multivariate normal data with a sparse

inverse covariance structure with different sample size. Since we pre-specified the covariance

structure, the consecutive regression coefficients are determined as well so that we can evaluate

the performance of our algorithm to see if it can capture the true model. We used the
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LLA algorithm of (56) with LARS algorithm to compute the maximum penalized likelihood

estimates with SCAD penalty as in the objective function Equation 5.41. For each iteration,

we select the tuning parameter by BIC criteria, described in 4.5.

Model 1a (Multivariate Normal) We let x ∼ N(0,Σ) be a n × p matrix. We will

simulate three different sample size n = 200, 400 and 800. Let p = 10. The covariance

matrix Σ10×10 is constructed as follows. Set A be a correlation matrix with pairwise correlation

0.5|j1−j2| between xj1 and xj2 for j1, j2 ≤ 5; otherwise set to 0. The choice is to make sure

the true coefficients are sparse. Let Σ = ATA, to guarantee the positive definite of covariance

matrix. Since we have 10 variables here, the number of consecutive regression coefficients except

intercept is p(p−1)
2 = 45. Once the mean and covariance structure is fixed for a multivariate

normal data, the true value of coefficients in the regression models are known to us. Under

the covariance structure just described, the number of non-zero coefficients is 10. They are

β1,2, β1,3, β1,4, β1,5, β2,3, β2,4, β2,5, β3,4, β3,5 and β4,5. Their true values and estimates are listed

in Table V. To impose missing at random mechanism into simulation, the following selection

procedure is assumed. Covariates x5 ∼ x10 are set to be fully observed, for x1 to x4, the

probability of an observed value in xj is

p(Rxj = 1) =
exp(αj + αTx5∼10))

1 + exp(αj + αTx5∼10))
,

where x5∼10 = (x5, x6, x7, x8, x9, x10)T , α1 = 1.7, α2 = 1.6, α3 = 1.4, α4 = 1.5 and α =

(0.8,−0.3, 0.5,−0.05, 0.8, 0.6)T . The average missing proportions for xj , j = 1 ∼ 4 are 20%,

24%, 28% and 26%, respectively. We repeated the simulation for 1000 times for both methods

described in section 4.3 (Q-method) and section 4.4 (L-method).
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TABLE IV

SIMULATION RESULT FOR MULTIVARITE NORMAL DATA (MAR)

No. of Zeros/Non-zeros Proportion of
Method Sample Size MRME C (sd) IC (sd) Under-fit Correct-fit Over-fit

Q-func
n=200 0.59 9.60 (0.64) 0.04 (0.22) 0.33 0.64 0.04
n=400 0.65 9.67 (0.61) 0.00 (0.00) 0.25 0.75 0.00
n=800 0.73 9.76 (0.51) 0.00 (0.00) 0.21 0.79 0.00

L-func
n=200 0.53 9.71 (0.63) 0.11 (0.34) 0.21 0.69 0.01
n=400 0.56 9.75 (0.59) 0.01 (0.10) 0.19 0.80 0.01
n=800 0.65 9.82 (0.52) 0.00 (0.00) 0.13 0.87 0.00

For linear models, model error for µ̂ = xTβ is (β̂ − β)TE(xTx)(β̂ − β). Simulation

results are summarized in Table IV, in which MRME stands for median of ratio of model error

of a selected model to that of the unpenalized estimates under the full model. Columns “C”

and “IC” measures models’ complexity. Column “C” calculates the average number of non-zero

coefficients correctly estimated to be non-zeros and column “IC” calculates the average number

of zero coefficients incorrectly estimated to be non-zero. In an ideal case, “C” should equal

to 10 (identify all non-zero coefficients) and “IC” should equal to 0. In the column labeled

“Under-fit”, we presented the proportion of excluding any non-zero efficients in one thousand

replications. Similarly, we reported the probability of selecting the exact subset model and

the probability of including all 10 significant variables and some noise variables in the columns

“Correct-fit” and “Over-fit”, respectively.

As it can be seen from Table IV, the sparse estimates from both methods dramatically

reduce model error and have a greater chance to identify the true model as sample size increases.

When sample size is small (n = 200), the method described in section 4.3 using second

derivatives of the Q-function (Q-func) in the objective function with BIC selection criteria



74

TABLE V

PART I: MEAN OF REGRESSION COEFFICIENTS FOR PENALIZED METHOD USING
THE Q-FUNCTION

Coefficient n=200 n=400 n=800 true value

β1 1.52 (0.14) 1.53 (0.12) 1.56 (0.09) 1.45
β2 -1.48 (0.31) -1.49 (0.27) -1.54 (0.21) -1.47
β3 1.10 (0.39) 1.11 (0.35) 1.19 (0.27) 1.16
β4 -0.54 (0.27) -0.55 (0.23) -0.59 (0.16) -0.64
β5 1.20 (0.20) 1.21 (0.19) 1.24 (0.17) 1.33
β6 -0.91 (0.39) -0.93 (0.37) -1.00 (0.33) -1.17
β7 0.40 (0.33) 0.42 (0.31) 0.47 (0.27) 0.67
β8 1.09 (0.17) 1.11 (0.13) 1.13 (0.08) 1.14
β9 -0.58 (0.23) -0.61 (0.18) -0.64 (0.11) -0.71
β10 0.73 (0.04) 0.73 (0.03) 0.73 (0.02) 0.80

on average under-fit the model by excluding 0.4(= 10 − 9.6) non-zero variables from the final

model. This inaccuracy is improved with the method in section 4.4, which uses first derivatives

of Q-function to approximate the second derivative of the observed data log-likelihood. When

sample size doubles to 400, the proposed algorithm on average identify 11% more in the correct

fit, in comparison, Q-method increases 9%. When sample size increases to n=800, chance of a

correct fit increases from 80% to 87% and more accurate coefficient estimates are obtained. See

Table V for the details. For the Q-Method, the rate of correct fit increases from 75% to 79%.

Model 1b (Simulation of Adaptation to Data with Binary Variable) Using the same

mean and covariance structure to generate a multivariate normal data as in Model 1a: that is

x ∼ N(0,Σ) is a n × p matrix, where n = 400, 800 and p = 10. Adding a binary variable y

into x so that the dimension of new dataset is n by p + 1. Then, the number of consecutive

regression coefficients is (p+1)p)
2 = 55. We simulated three scenarios of dependence. In the first
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TABLE VI

PART II: MEAN OF REGRESSION COEFFICIENTS FOR PENALIZED METHOD USING
THE L-FUNCTION

Coefficient n=200 n=400 n=800 true value

β1 1.59 (0.10) 1.59 (0.06) 1.59 (0.05) 1.45
β2 -1.62 (0.21) -1.60 (0.15) -1.60 (0.12) -1.47
β3 1.26 (0.28) 1.23 (0.37) 1.24 (0.21) 1.16
β4 -0.61 (0.26) -0.58 (0.26) -0.59 (0.22) -0.64
β5 1.36 (0.34) 1.36 (0.27) 1.36 (0.24) 1.33
β6 -1.21 (0.49) -1.21 (0.46) -1.19 (0.44) -1.17
β7 0.63 (0.48) 0.64 (0.50) 0.62 (0.48) 0.67
β8 1.11 (0.36) 1.12 (0.27) 1.13 (0.24) 1.14
β9 -0.62 (0.40) -0.63 (0.34) 0.62 (0.32) -0.71
β10 0.72 (0.25) 0.72 (0.19) 0.73 (0.16) 0.80

case, y is distributed as Bernoulli and depends on none of the covariates. In the second case,

y depends on 1 covariate in x as y|x ∼ Bernoulli{p(2x3)} where p(u) = eu

1+eu . In the third

case, y depends on x1 and the model is y|x ∼ Bernoulli{p(2x1)} . Missing mechanism was

simulated in the same way as in model 1a. Simulation results are shown in Table Table VII.

The column “Prop-Log” denotes the proportion of correctly identification of regression model

for the outcome variable.

From Table VII, we can see our algorithm for variable selection using a multivariate

normal does not perform well when the assumption of multivariate normal is incorrect. In

the first scenario when the binary outcome variable is independent with other covariates, our

simulation shows the proposed algorithm can still identify the true model with more than

80%. In the second case when the outcome variable depends on x3 with a large coefficient, the

algorithm yields a biased estimate for the outcome regression model but identify more than

70% of the true model. In the last case when the outcome depends on the covariates subject
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TABLE VII

RESULTS FOR SIMULATION OF ADAPTATION TO DATA WITH BINARY VARIABLE

No. of Zeros/Non-zeros Proportion of
Size Model Prop-Log C (sd) IC (sd) Under-fit Correct-fit Over-fit

n=400
Case1 0.95 9.75 (0.62) 0.14 (0.62) 0.16 0.79 0.05
Case2 0.72 10.67 (0.61) 0.12 (0.41) 0.26 0.70 0.03
Case3 0.27 10.83 (0.88) 0.13 (0.39) 0.68 0.27 0.05

n=800
Case1 0.99 9.78 (0.55) 0.01 (0.13) 0.16 0.83 0.01
Case2 0.76 10.71 (0.55) 0.04 (0.24) 0.24 0.75 0.01
Case3 0.39 11.03 (0.87) 0.00 (0.00) 0.61 0.39 0.00

to missing values, the proposed algorithm for multivariate normal data fail to identify the

correct logistic regression model, though it can identify most non-zero coefficients in the linear

regression models for continuous variables. The simulation shows that though the algorithm

under multivariate normal model assumption appears for some cases to be able to identify the

models for the logistic regression model, the estimates appears to be biased. The performance

of the misspecified model becomes much worse when missing covariates are involved.



CHAPTER 6

VARIABLE SELECTION FOR NON-LINEAR REGRESSION WITH

MISSING COVARIATES

6.1 Logistic Regression with Missing Continuous Covariates

Suppose we have a binary outcome y and covariates x1, . . . ,xn ∼ N(µ,Σ). Using the

consecutive conditional model of section 4.3, the full data likelihood is

l(β, σ) =
n∑
i=1

{yi log pi + (1− yi) log(1− pi)

− 1

2
log(2πσ2

1)− 1

2σ2
1

(xi1 − ηi1)2

− 1

2
log(2πσ2

2)− 1

2σ2
2

(xi2 − ηi2)2

. . . . . .

− 1

2
log(2πσ2

p−1)− 1

2σ2
p−1

(xi(p−1) − ηi(p−1))
2

− 1

2
log(2πσ2

p)−
1

2σ2
p

(xip − ηip)2}, (6.1)

where pi =
exp(xiβy)

1+exp(xiβy) , xiβy = βy0 + βy1xi1 + . . .+ βypxip and ηij = βj0 + βj,(j+1)xi(j+1) + . . .+

βj,pxip, j = 1, . . . , p− 1.

6.1.1 Logistic Regression with One Missing Covariate

Consider first the simple case where only x1 is subject to missing. Let θ = (γ, η),

where η = (βjk, j = 1, . . . , p − 1; k = j, . . . , p) and γ = (σ2
j′ , βy0, βj′0, j

′ = 1, . . . , p − 1). Then

77
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the expected full data log-likelihood conditional on the observed data and current parameter

estimates θ(0) is

Q
{
θ|(y, xobs, θ(0))

}
=

n∑
i=1

[
yi{βy0 + βy1E(xi1|yi, xobsi , θ(0)) + . . .+ βypxip}

− E{log(1 + eβy0+βy1xi1+...+βypxip)|yi, xobsi , θ(0)}

− 1

2
log(2πσ2

1)− 1

2σ2
1

E{(xi1 − (β10 + β12xi2 + . . .+ β1pxip))
2|yi, xobsi , θ(0)}

− 1

2
log(2πσ2

2)− 1

2σ2
2

E{(xi2 − (β20 + β23xi3 + . . .+ β2pxip))
2|yi, xobsi , θ(0)}

. . . . . .

− 1

2
log(2πσ2

p−1)− 1

2σ2
p−1

E{(xi(p−1) − (β(p−1)0 + β(p−1)pxip))
2|yi, xobsi , θ(0)}

− 1

2
log(2πσ2

p)−
1

2σ2
p

E[(xip − µp)2|yi, xobsi , θ(0)
]
, (6.2)

where xobsi = (xi2, . . . , xip) if xi1 is missing and xobsi = (xi1, . . . , xip) if xi1 is observed.

The first derivatives of above expected full-data log-likelihood conditional on the

observed data are

1. For βyl,

∂Q

∂βyl
=

n∑
i=1

{
yiE

[
xil|y, xobs, θ(0)

]
− E

[
xil

1 + e−(βy0+βy1xi1+...+βypxip)

∣∣∣∣yi, xobsi , θ(0)
]}

, (6.3)

where l = 1, . . . , p. When l 6= 1, the first term on the right side becomes yixil.

2. For βjk,

∂Q

∂βjk
= − 1

σ2
j

n∑
i=1

{
βjkE

[
x2
ik|yi, xobsi , θ(0)

]
− E[xik(xij − βj0 − βj2xi2 − . . .− βj(k−1)xi(k−1) − βj(k+1)xi(k+1)
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− . . .− βjpxip)|yi, xobsi , θ(0)]

}
, (6.4)

where j = 1, . . . , p− 1; k = j, . . . , p.

The second derivatives are as follows.

1. For βyl,

∂2Q

∂β2
yl

= −
n∑
i=1

{
E

[
x2
il

exiβ

(1 + exiβ)2

∣∣∣∣yi, xobsi , θ(0)

]}
(6.5)

and

∂2Q

∂βyl∂βyl′
= −

n∑
i=1

{
E

[
xilxil′

exiβ

(1 + exiβ)2

∣∣∣∣yi, xobsi , θ(0)

]}
, (6.6)

where l = 1, . . . , p, l 6= l′.

2. For βjk,

∂2Q

∂β2
jk

= − 1

σ2
j

n∑
i=1

{
E

[
x2
ik

∣∣∣∣yi, xobsi , θ(0)
]}

(6.7)

∂2Q

∂βjk∂βjl
= − 1

σ2
j

n∑
i=1

{
E

[
xikxil

∣∣∣∣yi, xobsi , θ(0)
]}

, (6.8)

where j = 1, . . . , p− 1; l, k = j, . . . , p; l 6= k and

∂2Q

∂βjk∂βj′l
= 0 (6.9)

when j 6= j′. They are the same as those from Equation 5.49 and Equation 5.51 in Chapter 4.
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To compute above expectations, we propose to use GQ approximation methods because

intractable integrations are involved. In the simple case with one covariate missing, we first

write out the conditional density function p(x1|x1, . . . , y) as

p(x1|x2, . . . , y) =
p(y|x1, . . . , xp)p(x1|x2, . . . , xp)∫
p(y|x1, . . . , xp)p(x1|x2, . . . , xp)dx1

.

And the denominator can be calculated as follows.

a0 =

∫
p(y|x1, . . . , xp)p(x1|x2, . . . , xp)dx1

=
1√
2πσ

∫
1

1 + exp(−xβ)
e−

(x1−µ)2

2σ2 dx1

=
1√
2π

∫
1

1 + exp(−βy0 − βy1(µ+ wσ)− . . .− βypxp)
e−

w2

2 dw

=
1√
π

∫
1

1 + exp(−βy0 − βy1(µ+
√

2σz)− . . .− βypxp)
e−z

2
dz

≈
N−1∑
i=0

1√
π

e−x
2
i

1 + exp(−βy0 − βy1(µ+
√

2σxi)− . . .− βypxp)
.

For xobs = (x2, . . . , xp), the conditional expectations can be computed by the

Gaussian-Hermite quadratures as

E[f(x1)|xobs, θ(0)] =

∫
f(x1)p(x1|x2, . . . , y)dx1

=
1

a0

∫
f(x1)p(y|x1, . . . , xp)p(x1|x2, . . . , xp)dx1

=
1

a0

√
2πσ

∫
f(x1)

1 + exp(−xβ)
e−

(x1−µ)2

2σ2 dx1

=
1

a0

√
2π

∫
f(µ+ wσ)e−

w2

2 dw

1 + exp(−βy0 − βy1(µ+ wσ)− . . .− βypxp)

=
1

a0
√
π

∫
f(µ+

√
2σz)e−z

2
dz

1 + exp(−βy0 − βy1(µ+
√

2σz)− . . .− βypxp)

≈
N−1∑
i=0

wi
a0
√
π

f(µ+
√

2σxi)e
−x2

i

1 + exp(−βy0 − βy1(µ+
√

2σxi)− . . .− βypxp)
, (6.10)
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where xi, wi, i = 1, . . . , N − 1 are the abscissas and weights of the N -point Gaussian-Hermite

quadrature, respectively. Once we have ∂Q
∂β and ∂2Q

∂β2 , we use Newton-Raphson to update η by

η(k+1) = η(k) − ∂Q(θ(k))/∂β

∂2Q(θ(k))/∂β2
. (6.11)

The intercept term β̂y0 can be updated iteratively using Newton-Raphson

algorithm, in which its first and second derivatives can be obtained from Equation 6.3,

Equation 6.5 and Equation 6.6 by plugging xil = 1 when l = 0. Denote x̄j′ =

(

∑n

i=1
E(xi(j′+1)|yi,xobsi ,θ(0))

n , . . . ,

∑n

i=1
E(xip|yi,xobsi ,θ(0))

n ) and β̂j′ = (β̂j′(j′+1), . . . , β̂j′p). We can

update other components of γ = (σ2
j′ , βy0, βj′0), j′ = 1, . . . , p− 1 from η(k+1) as follows.

β̂j′0 =
1

n

n∑
i=1

E{xij′ |yi, xobsi , θ(0)} − β̂j′ x̄j′ (6.12)

and

σ̂2
j′ =

∑n
i=1{E(xij |yi, xobsi , θ(0))− β̂j′0 − β̂j′0E(xi|yi, xobsi , θ(0))}2

n
. (6.13)

Iteratively solving Equation 6.11 to until it converges, we can obtain the unpenalized maximum

likelihood estimator (η̂, γ̂), where η is the interest of parameter and subject to penalty. Following

similar arguments in Equation 5.35 to Equation 5.37, we know that the penalized pseudo

likelihood utilizing Q-function is to maximize

Q(θ|θ̂)− n
p−1∑
j=1

p∑
k=1

pλ(|βjk|). (6.14)
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From Equation 5.39, we know that when we take the fixed value of γ to be the unpenalized

maximum likelihood estimate γ̃, maximizing Equation 6.14 is equivalent to minimize

(η − η̃)T
−Q̈ηη(θ̃|θ̃)

n
(η − η̃) +

p−1∑
j=1

p∑
k=1

pλ(|βjk|). (6.15)

When −Q̈ηη(θ̃|θ̃) is positive-definite, solving Equation 6.15 is the same as to solve the penalized

least square with SCAD penalty function, which can be solved by the LLA algorithm (Zou and

Li, 2008) using LARS. To perform the one step algorithm to maximum penalized likelihood in

section 4.4, we only need to minimize

1

2
(η − η̂)T

{
n∑
i=1

Q̇Ti (θ̂ | θ̂)Q̇i(θ̂ | θ̂)
}

(η − η̂) +
p−1∑
j=1

p∑
k=1

pλ(|βjk|) (6.16)

with respect to η, where θ̂ = (η̂, γ̂) is the unpenalized maximum likelihood estimator.

6.1.2 Logistic Regression with Two Missing Covariates

The only difference in the case when there are two covariates missing from the case with

one covariate missing is that 2-dimension GQ summations are used to compute the conditional

expectations. Specifically, when an observation has both covariates missing, we can calculate

a0 as follows.

a0 =

∫ ∫
p(y|x1, . . . , xp)p(x1|x2, . . . , xp)dx1 dx2

=
1

2π

∫ ∫
p(y|x1, . . . , xp)

1
|Σ|1/2 e

− 1
2

(x−µ)TΣ−1(x−µ)

e−x
2
1/2e−x

2
2/2

e−x
2
1/2e−x

2
2/2dx1 dx2

=
1

2π|Σ|1/2
∫ ∫ p(y|x1,...,xp)e−

1
2 (x−µ)TΣ−1(x−µ)

e
−x2

1
/2

e−x
2
1/2dx1

e−x
2
2/2

e−x
2
2/2dx2.
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As a result, above expression can be approximately by the 2-dimension Gauss-Hermite

quadrature. And we can compute the conditional expectations for the first and second

derivatives in a similar way.

6.1.3 A Simulation Study

In the following example, we compare the proposed variable selection method for logistic

regression based on likelihood of incomplete data to the variable selection method based on

imputed data. Two imputation methods are compared. One is the normal model of Schafer

(1998). The other is the fully conditional specification of Burren et al. (2006). Both of

the imputation methods are implemented to generate one imputed data set and maximizing

penalized full data likelihood method for variable selection is applied afterwards. In generating

the data, we used the same specification for the continuous covariates in the previous section

of multivariate normal and add a binary dependent variable. Details are as follows.

Model 2 (Logistic Regression) We chose x ∼ N(0,Σ) a n × p matrix and y a binary

response. We set n = 200, 400 and 800 and p = 10. Σ10×10 is constructed the same way

in model 1a. Since we have 11 variables here, the number of coefficients in the consecutive

regression models is p(p−1)
2 = 55. For the coefficients in the logistic regression log p

1−p = xβ,

we only set two of them non-zeros: βy1 = 1 and βy3 = 3. Thus, the total number of non-zero

coefficients is 12. They are βy1, βy3, β11, β12, β13, β14, β20, β21, β22, β28, β29 and β35. Missing

Complete At Random mechanism is implemented as follows: for each variable, randomly select

20% of subjects to have missing values. We repeated the simulation for 500 times.

The simulation results are given in Table V III. From Table V III, it can be seen

that our proposed method for model selection outperforms the two imputation methods with

respect to reducing the model error and identifying the correct model. All three methods on

average can identify at least 11 of 12 non-zero coefficients out of a total 55 regression coefficients.
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TABLE VIII

SIMULATION RESULT FOR LOGISTIC REGRESSION WITH TWO MISSING
COVARIATES

No. of Zeros/Non-zeros Proportion of
Method Sample Size MRME C (sd) IC (sd) Under-fit Correct-fit Over-fit

L-func
n=200 0.534 11.7 (0.54) 1.85 (1.31) 0.29 0.17 0.54
n=400 0.438 11.8 (0.37) 0.88 (1.13) 0.17 0.54 0.29
n=800 0.354 11.9 (0.29) 0.40 (0.83) 0.09 0.76 0.15

norm
n=200 0.861 11.7 (0.46) 2.39 (1.44) 0.23 0.12 0.66
n=400 0.746 11.8 (0.37) 1.26 (1.19) 0.17 0.37 0.46
n=800 0.616 11.9 (0.24) 0.83 (1.06) 0.09 0.55 0.36

mice
n=200 0.715 11.7 (0.54) 2.21 (1.46) 0.21 0.16 0.63
n=400 0.678 11.8 (0.35) 1.33 (1.21) 0.20 0.36 0.44
n=800 0.593 11.9 (0.27) 0.68 (1.03) 0.09 0.63 0.28

Their performances are getting better with smaller MRME and larger correct-fit proportions

when sample size n increases. When sample size is small (n = 200) with relative large missing

proportions in covariates (20%), both likelihood approach and imputation method tend to

over-fit the true model. As sample size increases, likelihood approach outperforms the other

methods with less overfits and more correct fits.

6.2 Logistic Regression with Arbitrary Missing Continuous Covariates

6.2.1 Monte Carlo Simulation

In practice, we often have more than one covariate subject to missing. In the following

three sections, we will extend the current methods to model selection in logistic regression

with arbitrary number of missingness in continuous covariates, binary covariates and in mixed

covariates including both continuous and binary covariates, respectively.

When continuous covariates are subject to missing, one challenge is to evaluate

intractable integrations in the first and second derivatives from Equation 6.3 to Equation 6.8.
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Gauss Quadrature approximation will become less efficient in this case since it involves

multiple-level summations. For example, in a logistic regression with p covariates, for a given

observation i, suppose covariates x1, x3 and x5 are subject to missing, to evaluate the conditional

expectation of a general function g for the missing covariates given observed covariates

and estimated parameters, three layers of summation are needed in GQ approximation.

One alternative is to use Monte Carlo simulation method to approximate the conditional

expectations in evaluating the Q-function in the EM algorithm. Specifically in our case, since

the density function f(xmis|y, xobs, θ(0)) involves a logistic density and a multivariate normal

density, we can use rejection sampling method along with Monte Carlo simulations in performing

EM algorithm.

Let xi = (xTi,m, x
T
i,o) . By taking a Monte Carlo sample of size K from rejection

sampler from the density f(xmis|y, xobs, θ(0)): x
(k)
i,m, k = 1, . . . ,K. Then the expectation

E[g(xi,m)|y, xobs, θ(0)] can be approximated as

E[g(xi,m)|y, xobs, θ(0)] ≈ 1

K

K∑
k=1

g(x
(s,k)
i,m ),

where x
(s,k)
i,m is the kth simulated value at the sth iteration in EM algorithm.

Monte Carlo sampling with rejection method can be implemented as follows. For each

i = 1, . . . , n, we can write the conditional density f(xi,m|y, xi,o, θ(0)) as

f(xi,m|y, xi,o, θ(0)) ∝ f1(y|xi,m, xi,o, θ(0)) ∗ f2(xi,m|xi,o, θ(0)),

where the first term on the right side is the logistic density and the second is a multivariate

normal density. First, we sample x
(1)
i,m from a multivariate normal distribution, whose mean and

covariance structure can be obtained through sweep operator with xi,o and initial parameters
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θ(0). Using the sampled values of x
(1)
i,m with xi,o , we can compute f1. Then, generate a

uniformly distributed random variable on [0, 1] and compare it with f1. If the random number

is greater than f1, reject x
(1)
i,m and repeat the step in generating xi,m. Otherwise accept it and

thus generated a random sample following the distribution of f(xi,m|y, xi,o, θ(0)). Repeat the

above steps until we get K samplers x
(k)
i,m, k = 1, . . . ,K. Once we get the approximations to the

conditional expectations in the Q-function Q(θ|θ(0)) defined in Equation 6.2, we can perform

EM algorithm to get the maximum likelihood estimate θ̃ and following section 4.4, the one-step

maximum penalized likelihood estimate can be obtained by minimizing

1

2
(θ − θ̃)T

{
1

n

n∑
i=1

Q̇(xobsi , θ̃)T Q̇(xobsi , θ̃)

}
(θ − θ̃) +

p′∑
j=1

pλn(|θj |). (6.17)

Simulation can be conducted similarly as the structure set up for model 2 in which missingness

can be extended to more than two continuous covariates.

6.2.2 A Simulation Study

In the following example, we compare our proposed variable selection method for logistic

regression with missing covariates with the variable selection method proposed in Ibrahim et

al. (2008), and the variable selection based on imputed fully data with imputation by the fully

conditional specification of Burren et al. (2006) . Simulation details are as follows.

Model 2a (Continuous Covariates) We generate x ∼ N(0,Σ) and y a binary response,

following a logistic regression model. The sample size is set to be n=300 and 600. There are

p=6 covariates. The covariance matrix Σ6×6 is constructed as follows. Let A be a correlation

matrix with pairwise correlation 0.5|j1−j2| between xj1 and xj2 for j1, j2 ≤ 3; otherwise set to 0.

Then let Σ = ATA. Under this variance-covariance matrix, the non-zero covariate regression

model coefficients are β12 = 1.14, β13 = −0.71 and β23 = 0.80. For the coefficients in the logistic
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TABLE IX

SIMULATION RESULT FOR LOGISTIC REGRESSION WITH CONTINUOUS DATA
(MAR)

No. of Zeros/Non-zeros Proportion of
Method Sample Size MRME C (sd) IC (sd) Under-fit Correct-fit Over-fit

L-func
n=300 0.73 4.93 (0.26) 0.43 (0.73) 0.08 0.70 0.22
n=600 0.63 5.00 (0.07) 0.12 (0.36) 0.01 0.90 0.09

Q-func
n=300 0.79 4.94 (0.24) 0.48 (0.81) 0.06 0.70 0.24
n=600 0.67 4.99 (0.10) 0.18 (0.50) 0.02 0.85 0.13

mice
n=300 0.78 4.92 (0.27) 0.81 (1.02) 0.08 0.54 0.38
n=600 0.68 4.97 (0.16) 0.58 (0.89) 0.03 0.64 0.33

regression log P (y=1)
1−P (y=1) = xβ, we only set two of them to be non-zeros: βy1 = 1 and βy3 = 3.

Since we have 7 variables, the number of consecutive regression coefficients is p(p−1)
2 = 21.

And the total number of non-zero coefficients is 5. They are βy1, βy3, β12, β13 and β23. Missing

At Random mechanism is implemented as follows. Covariates x1 and x6 are complete. The

probabilities that covariates xw, w = 2, 3, 4, 5 are subject to missing are set to be

expit(αw + γ1xi1 + γ2xi6),

where expit(u) = exp(u)
1+exp(u) , α2 = 1.7, α3 = 1.6, α4 = 1.5, α5 = 1.5, γ1 = 0.8 and γ2 = −0.3.

The average missing proportions for xw, w = 2, 3, 4, 5 are 12.0%, 15.1%, 13.0% and 16.7%,

respectively. The simulation were repeated for 200 times.

Table IX shows the simulation results. It can be seen that the proposed model selection

method identifies 90% of the correct model, compared with 85% and 64% identified by the

penalized EM algorithm proposed in Ibrahim et al. (2008), and the imputation algorithm

in Burren et al. (2006), respectively. The proposed penalized likelihood approach has the
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TABLE X

MEANS OF REGRESSION COEFFICIENTS IN LOGISTIC REGRESSION WITH
CONTINUOUS DATA

Method Coefficient n=300 n=600 true value

L-func

β1 0.86 (0.26) 0.89 (0.13) 1.00

β2 2.87 (0.18) 2.86 (0.14) 3.00
β3 1.13 (0.06) 1.14 (0.03) 1.14
β4 -0.66 (0.05) -0.71 (0.03) -0.71
β5 0.80 (0.04) 0.80 (0.03) 0.80

Q-func

β1 0.85 (0.24) 0.88 (0.13) 1.00
β2 2.91 (0.19) 2.87 (0.13) 3.00
β3 1.14 (0.04) 1.14 (0.03) 1.14
β4 -0.71 (0.04) -0.71 (0.03) -0.71
β5 0.80 (0.04) 0.80 (0.03) 0.80

mice

β1 0.94 (0.46) 0.98 (0.28) 1.00
β2 2.86 (0.42) 2.91 (0.28) 3.00
β3 1.11 (0.09) 1.09 (0.07) 1.14
β4 -0.68 (0.18) -0.62 (0.31) -0.71
β5 0.78 (0.05) 0.80 (0.04) 0.80

smallest model error among the other competitors and has the highest probability to identity

true model. When sample size n = 300, all three algorithms misclassify rates of 0.43, 0.48,

and 0.81 zero coefficient to non-zero coefficient respectively, causing the over-fit. As sample

size increases, the proposed algorithm reduces this error by the most to 0.12. For the column

“C,” the proposed method based on observed likelihood improves its performance the most in

selecting all 5 non-zero coefficients to be non-zeros when sample size increases from 300 to 600,

compared with the other two selection algorithms. As we see, the proposed penalized likelihood

approach improves significant as the sample size increases. Table X lists the means of all the

non-zero regression coefficients. It can be seen that all three methods give pretty close estimates

to their corresponding truth values.
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6.3 Logistic Regression with Arbitrary Missing Binary Covariates

6.3.1 Computation in Expectation-Maximization Algorithm

In this section, we extend our methodology of variable selection to the logistic regression

with arbitrary missingness to the case where all covariates are binary. Suppose the outcome

variable y and p covariates are all binary. The observations are (yi, xi1, . . . , xip), i = 1, . . . , n.

We model the outcome variable and covariates as follows.

y|x1, x2, . . . , xp ∼ Bernoulli{p(βy0 + βy1x1 + . . .+ βypxp)}

x1|x2, . . . , xp ∼ Bernoulli{p(β10 + β1,2x2 + . . .+ β1,pxp)}

x2|x3, . . . , xp ∼ Bernoulli{p(β20 + β2,3x3 + . . .+ β2,pxp)}

. . .

xp−1|xp ∼ Bernoulli{p(β(p−1)0 + βp−1,pxp)},

where p(u) = eu

1+eu .

Thus, the full data log-likelihood is

l(β) =
n∑
i=1

{yi(βy,0 + βy,1xi1 + . . .+ βy,pxip)

− log[1 + eβy,0+βy,1xi1+...+βy,pxip ]

+ xi1(β1,0 + β1,2xi2 + . . .+ β1,pxip)

− log[1 + eβ1,0+β1,2xi2+...+β1,pxip ]

+ xi2(β2,0 + β2,3xi3 + . . .+ β2,pxip)

− log[1 + eβ2,0+β2,3xi3+...+β2,pxip ]

. . . . . .

+ xi(p−1)(βp−1,0 + βp−1,pxip)

− log[1 + eβp−1,0+βp−1,pxip ]}. (6.18)
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We then write the Q-function in EM algorithm as,

Q(θ|(y, xobs, θ(0))) =
n∑
i=1

{yi(βy,0 + βy,1E[xi1|y, xobs, θ(0)] + . . .+ βy,pE[xip|y, xobs, θ(0)])

− E{log[1 + eβy,0+βy,1xi1+...+βy,pxip ]|y, xobs, θ(0)}

+ (β1,0E[xi1|y, xobs, θ(0)] + β1,2E[xi1xi2|y, xobs, θ(0)]

+ . . .+ β1,pE[xi1xip|y, x(obs), θ(0)])

− E{log[1 + eβ1,0+β1,2xi2+...+β1,pxip ]|y, xobs, θ(0)}

+ (β2,0E[xi2|y, xobs, θ(0)] + β2,3E[xi2xi3|y, xobs, θ(0)]

+ . . .+ β2,pE[xi2xip|y, x(obs), θ(0)])

− E{log[1 + eβ2,0+β2,3xi3+...+β2,pxip ]|y, xobs, θ(0)}

. . . . . .

+ (βp−1,0E[xi(p−1)|y, xobs, θ(0)] + βp−1,pE[xi(p−1)xip|y, xobs, θ(0)])

− E{log[1 + eβp−1,0+βp−1,pxip ]|y, xobs, θ(0)}}, (6.19)

where θ = (βy,k, βj,k, βy,0, βj,0), j = 1, . . . , p− 1; k = j, . . . , p.

The first and second derivatives with respect to the non-intercept coefficients in θ are

as follow.

1. For βyk,

∂Q

∂βyk
=

n∑
i=1

{
yiE

[
xik

∣∣∣∣y, xobs, θ(0)
]

− E
[

xik

1 + e−(βy0+βy1xi1+...+βypxip)

∣∣∣∣y, xobs, θ(0)
]}

, (6.20)

where k=1, . . . , p.
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2. For βjk,

∂Q

∂βjk
=

n∑
i=1

{
E

[
xijxik

∣∣∣∣y, xobs, θ(0)
]

− E
[

xik

1 + e−(βj0+βj(j+1)xi(j+1)+...+βjpxip)

∣∣∣∣y, xobs, θ(0)
]}

, (6.21)

where j = 1, . . . , p− 1; k = j + 1, . . . , p.

Second derivatives are written as follows.

1. For βyk,

∂2Q

∂β2
yk

= −
n∑
i=1

E

[
x2
ik

e(βy0+βy1xi1+...+βypxip)

(1 + e(βy0+βy1xi1+...+βypxip))2

∣∣∣∣yi, xobsi , θ(0)

]
. (6.22)

∂2Q

∂βyk∂βyl
= −

n∑
i=1

E

[
xikxil

e(βy0+βy1xi1+...+βypxip)

(1 + e(βy0+βy1xi1+...+βypxip))2

∣∣∣∣yi, xobsi , θ(0)

]
, (6.23)

where k = 1, . . . , p.

2. For βjk,

∂2Q

∂β2
jk

= −
n∑
i=1

E

[
x2
ik

e(βj0+βj(j+1)xi(j+1)+...+βjpxip)

(1 + e(βj0+βj(j+1)xi(j+1)+...+βjpxip))2

∣∣∣∣yi, xobsi , θ(0)

]
. (6.24)

∂2Q

∂βjk∂βjl
= −

n∑
i=1

E

[
xikxil

e(βj0+βj(j+1)xi(j+1)+...+βjpxip)

(1 + e(βj0+βj(j+1)xi(j+1)+...+βjpxip))2

∣∣∣∣yi, xobsi , θ(0)

]
,(6.25)

∂2Q

∂βjk∂βj′l
= 0, (6.26)
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where j = 1, . . . , p− 1; k = j + 1, . . . , p, l = j + 1, . . . , p; l 6= k and j 6= j′.

Since all covariates are binary, we can use summation over missing patterns to compute

the expectation terms in the above calculated derivatives. Specifically,

E[xik|y, xobs, θ(0)] = P (xik = 1|y, xobs, θ(0)]

=

∑
xmis P (y|x1, . . . , xp, xk = 1, θ(0))P (x1|x2, . . . , xp, xk = 1, θ(0)) . . . P (xp−1|xp, xk = 1, θ(0))∑

xmis P (y|x1, . . . , xp, θ(0))P (x1|x2, . . . , xp, θ(0)) . . . P (xp−1|xp, θ(0))
,

where each term in numerator and denominator is a logistic regression and the summation

∑
xmis is over all possible values of xmis. To compute the expectation of a general function g(·)

of xmis given y, xobs and previous model parameter θ(0), we have

E[g(xmis)|y, xobs, θ(0)] =
S∑

xmis

g(xmis = s)P (xmis = s|y, xobs, θ(0)),

where s is one of the patterns of xmis and S is the number of all patterns. For an observation

xi1, xi2, . . . , xip, if q variables are subject to missing, then S = 2q. Similarly,

P (xmis = s|y, xobs, θ(0)) =
P (y, xobs, xmis = s|θ(0))

P (y, xobs|θ(0))
,

where the denominator can be computed through summation over all possible values of xmis

on the join distribution of (y, x|θ(0)), which is written as the product of consecutive condition

density functions.

6.3.2 A Simulation Study

In this section, comparison is made between the proposed variable selection algorithm

in logistic regression with missing binary covariates data and the method proposed in Ibrahim
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et al. (2008), with the selection criterion described in Ibrahim et al. (2008). Simulation details

are as follow.

Model 2b (Binary Covariates) Let x be a n × p matrix and y a binary response. The

sample size is set to be n=300 and 600. There are p=6 covariates. We set the consecutive

regression models for covariates and outcome variable as follows. Let x6 ∼ Bernoulli(0.6);

x5|x6 ∼ Bernoulli(p(−0.8x6)); x4|x5, x6 ∼ Bernoulli(p(2x5)); x3|x4, x5, x6 ∼ Bernoulli(0.5));

x2|x3, x4, x5, x6 ∼ Bernoulli(p(1.2x4)); x1|x2, x3, x4, x5, x6 ∼ Bernoulli(p(x6)) and

y|x1, x2, x3, x4, x5, x6 ∼ Bernoulli(p(2x4)). Total number of consecutive regression coefficients

is p(p+1)
2 = 21. And the number of non-zero coefficients is 5. They are βy4 = 2.0, β16 =

1.0, β24 = 1.2, β45 = 2.0 and β56 = −0.8. Missing At Random(MAR) mechanism is implemented

as follows. Only covariate x6 is set to be complete. The probability that covariates xw, w =

1, 2, 3, 4, 5 are subject to missing is set to be

expit(αw + γ1yi + γ2xi6),

where expit(u) = exp(u)
1+exp(u) , α1 = 1.2, α2 = 1.3, α3 = 1.1, α4 = 1.0, α5 = 0.9, γ1 = 0.8 and γ2 =

−0.3. The average missing proportions for xw, w = 1, 2, 3, 4, 5 are 17.0%, 13.3%, 16.8%, 18.8%

and 21.5%, respectively. We run the simulation for replicates of 200.

For the case with all binary covariates, it can be seen from Table XI that the proposed

method identifies 71% of the correct model, compared with 60% and 55% for the penalized

EM algorithm proposed in Garcia et al. (2010), and the imputation algorithm based on fully

conditional specifications in Burrent et al. (2006), respectively. On average, three algorithms

correctly select 4.54, 4.61, and 4.66 non-zero coefficients to be non-zeros, respectively and

mis-classify 1.10, 1.74, and 1.04 zero coefficients as non-zero, respectively. The column “C”
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TABLE XI

SIMULATION RESULT FOR LOGISTIC REGRESSION WITH BINARY COVARIATES
(MAR)

No. of Zeros/Non-zeros Proportion of
Method Sample Size MRME C (sd) IC (sd) Under-fit Correct-fit Over-fit

L-func
n=300 0.59 4.54 (0.63) 1.10 (1.11) 0.29 0.40 0.31
n=600 0.44 4.86 (0.36) 0.29 (0.57) 0.08 0.71 0.21

Q-func
n=300 0.76 4.61 (0.54) 1.74 (1.38) 0.33 0.34 0.33
n=600 0.56 4.78 (0.50) 0.59 (0.79) 0.14 0.60 0.26

mice
n=300 0.76 4.66 (0.55) 1.04 (0.92) 0.30 0.33 0.37
n=600 0.47 4.69 (0.58) 0.27 (0.49) 0.20 0.55 0.25

TABLE XII

MEANS OF REGRESSION COEFFICIENTS IN LOGISTIC REGRESSION WITH
BINARY COVARIATES

Method Coefficient n=300 n=600 true value

L-func

β1 1.96 (0.46) 2.02 (0.31) 2.00

β2 0.87 (0.49) 0.92 (0.33) 1.00
β3 1.18 (0.55) 1.21 (0.32) 1.20
β4 2.03 (0.52) 1.97 (0.33) 2.00
β5 -0.86 (0.39) -0.76 (0.37) -0.80

Q-func

β1 2.07 (0.45) 2.00 (0.29) 2.00
β2 0.94 (0.45) 0.95 (0.33) 1.00
β3 1.12 (0.47) 1.22 (0.28) 1.20
β4 1.96 (0.41) 1.95 (0.34) 2.00
β5 -0.86 (0.37) -0.80 (0.27) -0.80

mice

β1 2.02 (0.48) 1.98 (0.34) 2.00
β2 0.97 (0.45) 0.87 (0.42) 1.00
β3 1.12 (0.45) 1.17 (0.27) 1.20
β4 2.02 (0.54) 1.96 (0.35) 2.00
β5 -0.82 (0.36) -0.77 (0.34) -0.80
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refers to under-fit effect and column “IC” refers to over-fit effect in the model selection process.

Simulation result shows that our proposed penalized likelihood approach has the smallest model

error among the other competitors and has the highest probability to identity true model.

As can be seen, the probability to identify the correct model is much lower compared with

the case with all continuous covariates due to more covariates are subject to missing with

larger missing proportions. But as sample size increases, performance of model selection with

penalized likelihood increases significantly (71%) in proportions of the correct fits, compared

with 60% and 55% for the other two methods. Thus, the proposed model selection algorithm

outperforms the other two competitive algorithms with a reasonable large sample size.

Table XII lists the means of all the non-zero regression coefficients. It can be seen that

all three methods give estimates very close to their corresponding truth values.

6.4 Logistic Regression with Arbitrary Missing Mixed Continuous and Binary

Covariates

6.4.1 Computation Issue in Expectation-Maximization Algorithm

When both continuous and binary covariates are subject to missing, let the outcome

variable y and the first p1 covariates be all binary, the rest p2 = p− p1 covariates be continuous

and have a normal distribution N(µ,Σ). The full data are (yi, xi1, . . . , xip1 , xi(p1+1), . . . , xip) ,

i = 1, . . . , n. We model the outcome variable and covariates as follows.

y|x1, x2, . . . , xp ∼ Bernoulli{p(βy0 + βy1x1 + . . .+ βypxp)}

x1|x2, . . . , xp ∼ Bernoulli{p(β10 + β1,2x2 + . . .+ β1,pxp)}

. . .

xp1 |xp1+1, . . . , xp ∼ Bernoulli{p(β(p−1)0 + . . .+ βp−1,pxp)}

xp1+1|xp1+2, . . . , xp ∼ N(η1, σ
2
1)

xp1+2|xp1+3, . . . , xp ∼ N(η2, σ
2
2)
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. . .

xp−1|xp ∼ N(ηp2 , σ
2
p2

),

where p(u) = eu

1+eu and ηk = βk0 + βk,(k+1)xk+1 + . . .+ βk,pxp, k = p1 + 1, . . . , p− 1.

Thus, the full data log-likelihood is

l(β, σ) =
n∑
i=1

{yi(βy,0 + βy,1xi1 + . . .+ βy,pxip)

− log[1 + eβy,0+βy,1xi1+...+βy,pxip ]

+ xi1(β1,0 + β1,2xi2 + . . .+ β1,pxip)

− log[1 + eβ1,0+β1,2xi2+...+β1,pxip ]

. . . . . .

+ xip1(βp1,0 + βp1,p1+1xi(p1+1) + . . .+ βp1,pxip)

− log[1 + eβp1,0+βp1,p1+1xi(p1+1)+...+βp1,pxip ]}

− 1

2
log(2πσ2

1)− 1

2σ2
1

(xi(p1+1) − (β(p1+1),0 + β(p1+1),(p1+2)xi(p1+2) + . . .+ β(p1+1),pxip))
2

− 1

2
log(2πσ2

2)− 1

2σ2
2

(xi(p1+2) − (β(p1+2),0 + β(p1+2),(p1+3)xi(p1+3) + . . .+ β(p1+2),pxip))
2

. . . . . .

− 1

2
log(2πσ2

p2−1)− 1

2σ2
p2−1

(xi(p−1) − (β(p−1)0 + β(p−1)pxpi))
2

− 1

2
log(2πσ2

p2
)− 1

2σ2
p2

(xip − ηp2)2} (6.27)

The corresponding Q-function in EM algorithm is as follows.

Q(θ|(y, xobs, θ(0))) =
n∑
i=1

{yi(βy,0 + βy,1E[xi1|yi, xobsi , θ(0)] + . . .+ βy,pE[xip|yi, xobsi , θ(0)])

− E{log[1 + eβy,0+βy,1xi1+...+βy,pxip ]|yi, xobsi , θ(0)}

+ (β1,0E[xi1|y, xobs, θ(0)] + β1,2E[xi1xi2|yi, xobsi , θ(0)]
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+ . . .+ β1,pE[xi1xip|yi, xobsi , θ(0)])

− E{log[1 + eβ1,0+β1,2xi2+...+β1,pxip ]|yi, xobsi , θ(0)}

. . . . . .

+ (βp1,0E[xip1 |y, xobs, θ(0)] + βp1,(p1+1)E[xip1xi(p1+1)|yi, xobsi , θ(0)])

+ . . .+ βp1,pE[xip1xip|yi, xobsi , θ(0)])

− E{log[1 + eβp−1,0+βp−1,pxip ]|yi, xobsi , θ(0)}

−
E[(xi(p1+1) − β(p1+1),0 − . . .− β(p1+1),pxip)

2|yi, xobsi , θ(0)]

2σ2
1

. . . . . .

−
E[(xi(p−1) − (β(p−1)0 + β(p−1)pxpi))

2|yi, xobsi , θ(0)]

2σ2
p2−1

− E[(xip − ηp2)2|yi, xobsi , θ(0)]

2σ2
p2

}, (6.28)

where θ = (βy,k, βj,k, βy,0, βj,0, j = 1, . . . , p− 1; k = j, . . . , p, σ1, . . . , σp2).

The first and second derivatives with respect to the non-intercept coefficients in θ are

as follows.

1. For βyk,

∂Q

∂βyk
=

n∑
i=1

{
yiE

[
xik

∣∣∣∣yi, xobsi , θ(0)
]

− E
[

xik

1 + e−(βy0+βy1xi1+...+βypxip)

∣∣∣∣yi, xobsi , θ(0)
]}

, (6.29)

where k = 1, . . . , p.

2. For the coefficients βjk in logistic regression models of first p1 covariates,

∂Q

∂βjk
=

n∑
i=1

{
E

[
xijxik

∣∣∣∣yi, xobsi , θ(0)
]
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− E
[

xik

1 + e−(βj0+βj(j+1)xi(j+1)+...+βjpxip)

∣∣∣∣yi, xobsi , θ(0)
]}

, (6.30)

where j = 1, . . . , p1; k = j + 1, . . . , p

3. For the coefficients βjk in linear regression models of p− p1 covariates,

∂Q

∂βjk
=

1

σ2
j−p1

n∑
i=1

{
E

[
xikxij

∣∣∣∣yi, xobsi , θ(0)
]

− E
[
xik(βj0 + βj,(j+1)xi(j+1) + . . .+ βj,pxip)

∣∣∣∣yi, xobsi , θ(0)
]}

, (6.31)

where j = p1 + 1, . . . , p− 1; k = j + 1, . . . , p

Second derivatives are written as follows.

1. For βyk,

∂2Q

∂β2
yk

= −
n∑
i=1

E

[
x2
ik

e(βy0+βy1xi1+...+βypxip)

(1 + e(βy0+βy1xi1+...+βypxip))2

∣∣∣∣yi, xobsi , θ(0)

]
. (6.32)

∂2Q

∂βyk∂βyl
= −

n∑
i=1

E

[
xikxil

e(βy0+βy1xi1+...+βypxip)

(1 + e(βy0+βy1xi1+...+βypxip))2

∣∣∣∣yi, xobsi , θ(0)

]
, (6.33)

where k, l = 1, . . . , p, k 6= l.

2. For the coefficients βjk in logistic regression models of first p1 covariates,

∂2Q

∂β2
jk

= −
n∑
i=1

E

[
x2
ik

e(βj0+βj(j+1)xi(j+1)+...+βjpxip)

(1 + e(βj0+βj(j+1)xi(j+1)+...+βjpxip))2

∣∣∣∣yi, xobsi , θ(0)

]
. (6.34)

∂2Q

∂βjk∂βjl
= −

n∑
i=1

E

[
xikxil

e(βj0+βj(j+1)xi(j+1)+...+βjpxip)

(1 + e(βj0+βj(j+1)xi(j+1)+...+βjpxip))2

∣∣∣∣yi, xobsi , θ(0)

]
,(6.35)
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∂2Q

∂βjk∂βj′l
= 0, (6.36)

where j = 1, . . . , p1; k = j + 1, . . . , p, l = j + 1, . . . , p, l 6= k and j 6= j′.

3. For the coefficients βjk in linear regression models of p− p1 covariates,

∂2Q

∂β2
jk

= − 1

σ2
j−p1

n∑
i=1

E

[
x2
ik

∣∣∣∣y, xobs, θ(0)
]

(6.37)

∂2Q

∂βjk∂βjl
= − 1

σ2
j−p1

n∑
i=1

E

[
xikxil

∣∣∣∣y, xobs, θ(0)
]

(6.38)

∂2Q

∂βjk∂βj′l
= 0, (6.39)

where j = p1 + 1, . . . , p− 1; k = j + 1, . . . , p, l = j + 1, . . . , p, l 6= k and j 6= j′.

In order to compute the expectation terms of the first and second derivatives in the

EM algorithm, we use Monte Carlo simulations along with rejection sampling method. Details

are described as follow. For each observation i, i = 1, . . . , n, if only the binary covariates

are subject to missing, then we can use the same technique in section 6.3. Otherwise,

we will first draw a sample of missing continuous covariates then compute the expectations

conditional on each of the sample values and other observed covariates. Suppose we have data

y, x1, . . . , xp1, xp1+1, . . . , xp, where y and first p1 variables are binary and the rest are continuous.
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Let xmisc and xmisb denote the missing continuous and binary covariates, respectively and xobsc

and xobsb denote the observed continuous and binary covariates, respectively. Then we have

f(xmisc |y, xobs, θ(0)) ∝
∑
xmis
b

f1(y, xobs, xmisc , xmisb |θ(0))

=
∑
xmis
b

f1(y, xobsb , xmisb |xmisc , xobsc , θ(0)) ∗ f2(xobsc , xmisc |θ(0))

= f2(xobsc , xmisc |θ(0)) ∗
∑
xmis
b

f1(y, xobsb , xmisb |xmisc , xobsc , θ(0)),

where the second term is a summation of products of a sequential logistic regression

probabilities. Thus, we can perform the rejection sampling similar to the case with

all continuous covariates. We first sample xmisc from a multivariate normal distribution

f2(xobsc , xmisc |θ(0)). Utilizing the sampled values of xmisc to compute f1. Then, generate a

uniformly distributed random variable on [0, 1] and compare it with f1. If the random number

is greater than f1, reject xmisc and repeat the step in generating xmisc . Otherwise accept it and

thus generated a random sample following the distribution of f(xmisc |y, xobs, θ(0)). Repeat the

above steps until we get the K number of rejection samplers x
mis(k)
c , k = 1, . . . ,K.

6.4.2 A Simulation Study

Similar to the previous two sections of simulation studies, in this section, the proposed

variable selection method for logistic regression with missing covariates data in both continuous

and binary variables is compared with the method proposed in Ibrahim et al. (2008), with the

selection criterion described in Ibrahim et al. (2008), and the imputation algorithm of fully

conditional specification (FCS) in Buuren et al. (2006). For method of imputation by FCS

implemented under the Multivariate Imputation by Chained Equations (MICE) package in

R, the dataset with missing covariates is imputed for one time then applied to model selection
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method of maximizing penalized likelihood with SCAD for complete dataset. Simulation details

are as follows.

Model 2c (Mixed Covariates) Let x be a n×p matrix and y is a binary response. There

are p=6 covariates. First four variables in x are binary and the rest are continuous with normal

distribution with mean zero and covariance Σ, where

Σ =

 1 −0.8

−0.8 1

 .

The sample size is set to be n=300 and 600. The binary covariates are modeled as

follows. Let x4|x5, x6 ∼ Bernoulli(2x5); x3|x4, x5, x6 ∼ Bernoulli(0.5); x2|x3, x4, x5, x6 ∼

Bernoulli(p(1.2x4)); x1|x2, x3, x4, x5, x6 ∼ Bernoulli(p(x6)) and y|x1, x2, x3, x4, x5, x6 ∼

Bernoulli(p(2x4)). Total number of consecutive regression model coefficients is p(p+1)
2 = 21.

Total number of non-zero coefficients is 5. They are βy4 = 2, β16 = 1, β24 = 1.2, β45 = 2 and

β56 = −0.8. Missing At Random mechanism is implemented as follows. Covariate x1 and x6

are set to be completely observed. The probability that covariates xw, w = 2, 3, 4, 5 are subject

to missing is set to be

expit(αw + γ1yi + γ2xi6),

where expit(u) = exp(u)
1+exp(u) , α2 = 1.7, α3 = 1.6, α4 = 1.5, α5 = 1.5, γ1 = 0.8 and γ2 = −0.3. The

average missing proportions for xw, w = 2, 3, 4, 5 are 11.5%, 12.8%, 13.8%, and 15%, respectively.

We run the simulation with of 200 replicates.

Table XIII lists simulation results. From the table, we see that the proposed method

identifies 91% of the correct model, compared with 88% and 76% for penalized EM algorithm
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TABLE XIII

SIMULATION RESULT FOR LOGISTIC REGRESSION WITH MIXED BINARY AND
CONTINUOUS COVARIATES

No. of Zeros/Non-zeros Proportion of
Method Sample Size MRME C (sd) IC (sd) Under-fit Correct-fit Over-fit

L-func
n=300 0.48 4.94 (0.24) 0.47 (0.74) 0.06 0.61 0.33
n=600 0.27 4.97 (0.17) 0.07 (0.25) 0.03 0.91 0.06

Q-func
n=300 0.45 4.86 (0.37) 0.44 (0.67) 0.14 0.55 0.31
n=600 0.31 4.98 (0.16) 0.10 (0.32) 0.03 0.88 0.09

mice
n=300 0.49 4.90 (0.30) 0.62 (0.76) 0.10 0.48 0.42
n=600 0.28 4.96 (0.21) 0.17 (0.31) 0.03 0.76 0.21

TABLE XIV

MEANS OF REGRESSION COEFFICIENTS IN LOGISTIC REGRESSION WITH MIXED
BINARY AND CONTINUOUS COVARIATES

Method Coefficient n=300 n=600 true value

L-func

β1 2.03 (0.46) 2.03 (0.30) 2.00

β2 0.96 (0.27) 0.99 (0.17) 1.00
β3 1.22 (0.38) 1.18 (0.29) 1.20
β4 1.95 (0.33) 1.95 (0.23) 2.00
β5 -0.80 (0.04) -0.80 (0.03) -0.80

Q-func

β1 2.06 (0.48) 2.00 (0.29) 2.00
β2 0.97 (0.30) 0.97 (0.15) 1.00
β3 1.16 (0.46) 1.14 (0.29) 1.20
β4 2.02 (0.30) 1.97 (0.22) 2.00
β5 -0.79 (0.07) -0.80 (0.03) -0.80

mice

β1 1.95 (0.45) 1.96 (0.33) 2.00
β2 0.98 (0.29) 0.96 (0.14) 1.00
β3 1.17 (0.45) 1.14 (0.32) 1.20
β4 1.99 (0.35) 1.97 (0.22) 2.00
β5 -0.79 (0.06) -0.80 (0.03) -0.80
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proposed in Garcia et al. (2010), and select approach based on MICE imputed full data when

sample size is 600. When sample size is n=300, proportions of identifying the true model

are 61%, 55%, and 48%, respectively for the three methods described. Over-fitting effect is

obvious in this case as well, as can be seen from the 0.47, 0.44, and 0.62 zero coefficients being

mis-classified as non-zeros (column “IC” ) in the three algorithms, respectively. Our proposed

penalized likelihood approach has the smallest model error, followed by imputation algorithm

by FCS and the iterative penalized EM algorithm. The proposed approach on average correctly

identifies 4.97 non-zero coefficients and incorrectly identifies 0.07 zero coefficients as non-zeros

with the sample size n=600. As sample size increases, all three model selection approaches

significantly improve their performance.

Table XIV lists the means of all the non-zero regression coefficients. All three methods

yield very good estimates with reasonably good standard deviations.



CHAPTER 7

ANALYSIS OF THE DATA EXAMPLE

In this chapter, we apply the proposed model selection algorithm for logistic regression

models with missing values in continuous and binary covariates to the hip fracture data

described in chapter 1. We assume that the missing data are MAR. Since the data involve

multiple continuous and categorical missing covariates, Monte Carlo simulation along with

rejection sampling is used in the E-step of EM algorithm. Once the unpenalized maximum

likelihood estimator is obtained, the penalized observed likelihood function with SCAD penalty

function can be constructed as in Equation 4.15 and its least square approximation can be

obtained. Bayesian Information Criterion is used for selection of the penalty tuning parameter.

Since the BIC criteria in the presence of missing data involves observed data log-likelihood as

well, the observed data likelihood is approximated by the quadratic expansion, which in turn is

approximated by the sum of squares of the first derivatives of Q-function over all observations

described in 4.5.

We will compare performance of our proposed method with the model selection method

based on imputed full data with missing values imputed by the fully conditional specification

approach (Burren et al (2006)). Estimated coefficients will be presented. In addition, we will

explore possible interactions of covariates in the variable selection.

The hip fracture data has a total n=436 observations with 17 binary covariates and 10

continuous covariates, along with the outcome variable indicating the presence or absence of hip

fracture among male veterans. Since bmi is a perfect function of wt (weight) and ht (height),

we remove these two variables. Except the outcome variable and two matching variable race

and age are completely observed, all other 23 covariates are subject to missing. We first remove

104
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23 observations that have more than 10 binary variables missing. Among them, 8 observations

have missing values in all binary covariates. Then, we standardize the continuous covariates so

that it has mean 0 and variance 1.

The reduced hip fracture data consists of p=25 covariates of which 17 are binary and 8

are continuous. The consecutive regression models have a total of p(p+1)
2 = 325 non-intercept

coefficients. Applying the proposed SCAD-type penalized likelihood model selection method

with BIC criterion described in 4.5, with selected tuning parameter λ = 0.16, the algorithm

yields a logistic regression for outcome variable as

logit(P (y = 1|x)) = −0.68 + 1.28 ∗ xetoh + 1.98 ∗ xdementia

+ 2.34 ∗ xAntiseiz − 2.53 ∗ xAntichol. (7.1)

Recall that the complete-case analysis selects 15 non-zeros coefficients. The model fit for the

selected model is summarized in Table XV, where a consecutive regression model is applied

to each of the variable in a format that each one is regressed on the rest of the covariates.

Regressors with non-zero coefficients are listed in the “Regressors” columns from which it can

be seen that at most 5 regressors being selected for each of the covariates’ model. From the

table, it can be seen that in total 27 coefficients out of 325 are selected to be non-zeros.

To fully utilize the original data, we apply Burren’s imputation method to those 23

observations with more than 10 missing values in binary covariates. Since time for calculating

conditional expectations in Q-function increases significantly when missing values in binary

variable is more than 10, we imputed these observations to reduce their missing values in

binary variables so that the number of missing values in binary variables are less than 10. Then

we apply the partially imputed data to our proposed method of model selection in maximizing
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TABLE XV

SELECTED COVARIATE REGRESSION MODELS BY PROPOSED LIKELIHOOD
METHOD WITH N=413

Regressors
Variable 1 2 3 4 5

etoh smoke - - - -
smoke Steroids COPD - - -
CVA seizure LevoT4 - - -
dementia seizure Sedat - - -
Parkinson Antiseiz bmi - - -
seizure Sedat Antiseiz CaCO3 LevoT4 -
sedat HCTZ Antiseiz LevoT4 - -
NSAIDS - - - - -
Steroids Lasix CaCo3 LevoT4 - -
Lasix LevoT4 - - - -
HCTZ - - - - -
Antiseiz COPD - - - -
CaCo3 - - - - -
LevoT4 Antichol - - - -
Antichol - - - - -
COPD - - - - -
age - - - - -
bmi - - - - -
hgb hct - - - -
hct - - - - -
BUN - - - - -
Cr - - - - -
albumin - - - - -
cholesterol - - - - -
age - - - - -
race - - - - -
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the SCAD-type penalized likelihood described in 4.4 with BIC selection of tuning parameter

described in 4.5. The fitted logistic regression model for outcome variable is

logit(P (y = 1|x)) = −0.48 + 1.03 ∗ xetoh + 1.92 ∗ xdementia

+ 1.33 ∗ xAntiseiz − 1.98 ∗ xAntichol. (7.2)

We see that the same covariates are selected as Equation 7.1.

The fitted covariates’ model is summarized in Table XVI with similar format as

Table XV. For this data set, 36 coefficients are selected to be non-zeros in 325 of them.

We see the model selection algorithm greatly reduces the model dimension and gives a

much simpler dependence structure for the covariates. For comparison, we first apply Burren’s

method (Burren et al., 2006) to impute the missing values and apply the penalized likelihood

method to the imputed full data to select variables. To remove the uncertainty of imputation,

we repeat the imputation-selection process for 100 times and summarize the frequencies of the

regression model for outcome variable in Table XVII.

From Table XVII, we can see that only variables etoh, dementia, Antiseiz and AntiChol

have more than 50% frequencies to be selected. It confirms with previous results obtained

from proposed model selection in maximizing penalized likelihood. By averaging its regression

coefficients, the resulting logistic regression model for the outcome is

logit(P (y = 1|x)) = −0.53 + 0.98 ∗ xetoh + 1.60 ∗ xdementia

+ 1.82 ∗ xAntiseiz − 1.35 ∗ xAntichol. (7.3)
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TABLE XVI

SELECTED COVARIATE REGRESSION MODELS BY PROPOSED LIKELIHOOD
METHOD WITH N=436

Regressors
Variable 1 2 3 4 5 6

etoh smoke - - - - -
smoke Parkinson Steroids COPD - - -
CVA seizure LevoT4 - - - -
dementia seizure Sedat - - - -
Parkinson seizure Lasix CaCO3 LevoT4 COPD bmi
seizure Sedat HCTZ Antiseiz LevoT4 - -
sedat HCTZ Antiseiz LevoT4 - - -
NSAIDS - - - - - -
Steroids Lasix CaCo3 LevoT4 COPD - -
Lasix HCTZ LevoT4 - - - -
HCTZ - - - - - -
Antiseiz COPD - - - - -
CaCo3 hgb hct - - - -
LevoT4 Antichol - - - - -
Antichol - - - - - -
COPD - - - - - -
bmi - - - - - -
hgb hct - - - - -
hct - - - - - -
BUN - - - - - -
Cr - - - - - -
albumin - - - - - -
cholesterol - - - - - -
age - - - - - -
race - - - - - -
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TABLE XVII

COVARIATE SELECTED FREQUENCY FOR THE OUTCOME REGRESSION MODEL
BY BURREN’S IMPUTATION METHOD (BURREN ET AL., (2006))

Covariate Frequency

etoh 0.94
smoke 0.22
CVA 0.00
dementia 0.99
parkinson 0.00
seizure 0.00
Sedat 0.00
NSAIDs 0.00
Steroids 0.01
Lasix 0.02
HCTZ 0.00
Antiseiz 0.99
CaCO3 0.00
LevoT4 0.42
AntiChol 0.86
COPD 0.00
bmi 0.00
hgb 0.21
hct 0.03
BUN 0.00
Cr 0.00
albumin 0.00
cholesterol 0.00
age 0.00
race 0.00
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To check the stability of the proposed method in model selection, we permute the original

order of the covariates and re-ran the analysis. By reversing the order within binary variables

and continuous variables, the fitted SCAD sparse estimate gives the following regression model

logit(P (y = 1|x)) = −0.54 + 1.01 ∗ xetoh + 1.21 ∗ xdementia

+ 1.51 ∗ xAntiseiz − 1.18 ∗ xAntiChol. (7.4)

This model also indicates that etoh, dementia, Antiseiz, and Antichol, which are included in

the previous three selection results, are significant.

From the model selection results given in Equation 7.1, Equation 7.2, Equation 7.3, and

Equation 7.4, we can see that only four covariates are significant in predicting the presence of

hip fracture: etoh, dementia, Antiseiz, and Antichol. Three other covariates, smoke, LevoT4,

hgb, are possibly selected. Next, we include these four significant variables, smoke, LevoT4,

hgb, and their iterations into the model. In order to maintain the validity of the covariates

models, we only consider those interaction terms for the regression model of the outcome

variable. We use the imputed data set by FCS method without interaction then perform

model selection with interactions. Repeat this process for each interaction term for 100 times

and we check the frequencies for any selected interaction. We summarize results of this process

in Table XVIII. From the proportion of interaction terms are being selected, we know that

three interaction terms have significant effects for the presence of hip fracture: etoh-dementia,

dementia-smoke, and Antiseiz-smoke. The other possible significant interaction terms are

etoh-Antiseiz, etoh-AntiChol, and AntiChol-smoke. Last analysis, we use the imputed data

set by FCS and put all potential 6 interaction terms into the data for model selection. The

frequencies of being selected are summarized in Table XIX. From Table XIX, interaction terms
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TABLE XVIII

INTERACTION SELECTED FREQUENCIES FOR THE OUTCOME REGRESSION
MODEL BY BURREN’S IMPUTATION METHOD (BURREN ET AL., (2006))

Interaction Terms Frequency

etoh-dementia 0.79
etoh-Antiseiz 0.31
etoh-AntiChol 0.47
etoh-smoke 0.07
etoh-LevoT4 0.00
etoh-hgb 0.00
dementia-Antiseiz 0.05
dementia-AntiChol 0.00
dementia-smoke 0.87
dementia-LevoT4 0.00
dementia-hgb 0.00
Antiseiz-AntiChol 0.00
Antiseiz-smoke 0.85
Antiseiz-LevoT4 0.00
Antiseiz-hgb 0.00
AntiChol-smoke 0.34
AntiChol-LevoT4 0.40
AntiChol-hgb 0.00
smoke-LevoT4 0.00
smoke-hgb 0.00
LevoT4-hgb 0.00

etoh-dementia, dementia-smoke, and Antiseiz-smoke are confirmed to have an significant effect

on the outcome. Including them with the four significant variables identified earlier yields the

following one-step fit

logit(P (y = 1|x))

= −0.97 + 0.96 ∗ xetoh + 0.79 ∗ xsmoke + 1.98 ∗ xdementia + 1.67 ∗ xAntiseiz − 1.52 ∗ xAntiChol

−1.86 ∗ xetoh−dementia + 1.87 ∗ xdementia−smoke + 1.59 ∗ xAntiseiz−smoke. (7.5)
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TABLE XIX

SIX INTERACTION TERMS SELECTED FREQUENCIES FOR THE OUTCOME
REGRESSION MODEL BY BURREN’S IMPUTATION METHOD (BURREN ET AL.,

(2006))

Interaction Terms Frequency

etoh-dementia 0.96
etoh-Antiseiz 0.28
etoh-AntiChol 0.48
dementia-smoke 0.96
Antiseiz-smoke 0.86
AntiChol-smoke 0.45



CHAPTER 8

CONCLUSION

The problem of variable selection is common in regression models. The presence of

missing values in data increases the difficulty of applying model selection methods of maximizing

penalized likelihood with LASSO or SCAD penalty. The method of maximizing SCAD type

penalized likelihood was proposed in the previous work by Fan and Li (2001). It was showed

that it can give consistent sparse estimator of the coefficients for the underlying true model.

By iteratively maximizing the penalized Q-function, Garcia et al. (2010), applied the model

selection to Cox regression models with missing data with an ICQ criteria suggested in Ibrahim

et al. (2008). However, the model selection algorithm mentioned above did not utilize the

observed data log-likelihood so that the MPLE may not have the good properties obtained

in Fan and Li (2001) on model selection. Therefore, how to apply the maximizing penalized

likelihood method to generalized linear models, including multiple linear regression and logistic

regression, remains a challenge for methodology development. For such a purpose, in this

dissertation, we proposed a new method of maximizing penalized observed data log-likelihood

with SCAD penalty in linear regression models with missing data and extend it to logistic

regression models.

We propose not only select covariates for the outcome regression model, but also extend

traditional model selection process to the whole data structure, allowing model selections

within covariate models. By doing so, scientific researchers will have a better understanding

in covariates dependency relationships. For variable selection with missing covariates in

high-dimension data with p�n, only applying model selection for the primary outcome variable

may be problematic because of the high dimensionality of covariate models. However, extending
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model selection to covariates’ models in the proposed method can potentially help tackle this

problem.

We proposed to use the BIC criterion (Schwarz, 1978) for selecting optimal tuning

parameter in penalized likelihood with SCAD penalty. For implementing our proposed

algorithm in logistic regression models, three R programs are developed to fit the model with

arbitrary missing patterns in continuous, binary and mixed continuous and binary covariates,

respectively.

We perform simulation studies in linear regression with missing covariates to

demonstrate the performance of the proposed algorithm, comparing with the method proposed

in Ibrahim et al. (2008), and Garcia et al. (2010). We create the mean and covariance structure

such that the true coefficients in the outcome and covariates regression model have a sparse

format. The MRME of the selected model to that of the unpenalized estimators indicates that

the sparse estimates from both algorithms dramatically reduce model error and the ability

of correctly identifying the truth is increased when sample size increases. Our proposed

algorithm of maximizing the penalized observed likelihood with BIC criterion outperforms

the one proposed by Garcia et al. (2010), with ICQ suggested in Ibrahim et al. (2008),

in identifying more correct-fit in model selection process.

We extend our proposed algorithm to logistic regression models with missing covariates,

in which the expected full data log-likelihood conditional on the observed data does not have

a closed form. Gauss-Hermite Quadrature is used to compute the intractable integrations in

the EM algorithm when at most two covariates are subject to missing. When more continuous

covariates are subject to missing, Gauss-Hermite Quadrature becomes less and less inefficient

in computations. We therefore use Monte Carlo simulation along with rejection sampling in

computing the Q-function in the EM algorithm. We run simulation with 200 replications of data
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sets with missing covariates with different sample size and compare the performance with the

method proposed in Garcia et al. (2010), and the imputation-selection method based on FCS

by Burren et al. (2006). Our simulation shows that our proposed algorithm outperforms the

other alternative methods with respect to proportion of correct-fit of the data with moderate

sample size (n=600).

In the section of data analysis, we apply the proposed model selection algorithm to the

hip fracture data to illustrate the application of the method. The data is from a case-control

study to investigate potential risk factors of hip fracture among male veterans. Since the data

have many covariates missing patterns, we reshape the data by removing some observations

with more than 10 missingness in binary covariates and apply the proposed model selection

algorithm to it. We also use Burren’s FCS imputation algorithm to partially impute those

observations so that we can apply our algorithm to the full data with 436 observations. The

model selection results for these two data sets show that only four covariates out of 27 are

significant predictors of the outcome. They give similar coefficient values but the first case

with less subjects gives larger estimated coefficients. We also implement the model selection

by repeatedly imputed data set using Burren’s FCS method and apply our proposed model

selection method to the permuted data to validate our conclusion about important covariates.

Last, we consider more potential risk factors and their interaction effects in the regression model

for outcome variable based on the imputed data set.
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