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SUMMARY

The novelty in this project lies in the cross-pollination of distinct disciplines in physics,

information theory, and bioengineering to provide new insight about biological tissue struc-

ture. MRI is an ideal tool to non-invasively probe biological tissue and is flexible to allow

for measurements at a wide range of temporal and spatial resolutions. By utilizing a gener-

alized mathematical model to interpret the diffusion dynamics, the data is free of statistical

assumptions and is allowed to ‘talk’, such that the continuous time random walk model ‘listens’

as it converges to a fit that describes a class of diffusion, whether it is normal, sub-, or even

super-. Furthermore, this approach is firmly cast in the probabilistic regime with the con-

tinuous time random walk so that diffusion decay signal is simply the characteristic function

(i.e., Fourier transform) of the probability density function. Consequently, we can integrate

information theory via entropy measurements of the characteristic function to formulate the

problem of anomalous diffusion as one of statistical ‘uncertainty’ or ‘information’, inspired by

C. E. Shannon (1). Most importantly, this project has been designed with a scope intended to

demonstrate these methods are not only viable research tools, but also translatable to a clinical

setting that poses additional hardware and scan time constraints. With these pilot studies, we

intend to present a pipeline of new ‘information’ starting with ex vivo healthy adolescent and

adult neural tissue in animals and ending with new ‘information’ in in vivo neural anatomy in

humans.

xv



CHAPTER 1

INTRODUCTION

The diagnostic capability of magnetic resonance imaging (MRI) is principally dependent

on the performance of both system hardware (RF coil arrays, increased gradient strength, and

high magnetic fields) and software (parallel processing, compressed sensing, and reconstruction

methodology). Another source of contrast lies in the underlying mathematical models of MRI

phenomena (2). While the fundamental processes of precession and relaxation encoded in the

Bloch equation are the basis for imaging, there is additional contrast available through modu-

lating factors such as chemical exchange, local magnetic field inhomogeneity, and diffusion (3).

In the case of diffusion, where the simplest model predicts a single exponential signal decay,

exp[−(bD)], (where D is the diffusion coefficient (mm2/s) and b is a pulse sequence controlled

parameter), the restrictions introduced by cell membranes, extracellular matrix and tissue het-

erogeneity provide a rich mix of phenomena that are both anisotropic and heterogeneous (4).

DTI, for example, provides new biomarkers (mean diffusivity and fractional anisotropy) that

capture additional anatomical features in the brain (e.g., white matter connectivity and fiber

density) (5). Here, we extend classical DTI through fractional order modeling of anomalous

diffusion to describe underlying tissue complexity through measurements of signal attenuation

at high b-values.

We consider a probabilistic approach to modeling diffusion attenuation in neural tissue

by generalizing the underlying random walk statistics (6; 7). The generalization relaxes the

1
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constraint that the diffusing particle must take equal length jumps at regular intervals, by

allowing variable increments in both the jump distance and the waiting times between jumps.

We allow the statistical properties of the physics to separately fall off with jump length and

waiting time probability distributions as inverse power laws (|x|−(1+β), t−(1+α)) (8; 9). This

generalization is formally incorporated into the analysis of MRI diffusion data as the CTRW

model (10).

The central feature of Brownian motion is that the mean squared displacement (MSD)

grows linearly with time, 〈x2(t)〉 ∼ t. However, three conditions must be satisfied: 1) the

increments are normally distributed with zero mean, 2) the increments are independent (i.e.,

no memory), and 3) the process is continuous with an initial starting value set to zero (11).

When any of these conditions are not met, the diffusion process is called anomalous and the

MSD grows as a power law, 〈x2(t)〉 ∼ tC (12). When C > 1, the diffusion process is ‘super-

diffusive’ and when 0 < C < 1, the diffusion process is ‘sub-diffusive’. For Brownian motion, the

characteristic function is represented by a mono-exponential decay process with respect to time.

In diffusion MRI studies, this is modeled as exp[−(bD)], where D is the diffusion coefficient

(mm2/s) and b is a pulse sequence controlled parameter (13). However, numerous research

groups have reported diffusion decay processes which deviate from the mono-exponential model

(14; 15; 16; 17; 18; 19; 20; 21).

The RW model is a practical approach to derive the features of Brownian motion. In the

RW model, the random walker’s motion is governed by two stochastic processes: jump length

distance, ∆x, and waiting time (between jump lengths), ∆t. When these incremental processes
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are governed by a finite characteristic waiting time and jump length variance, in the continuum

limit as ∆x → 0 and ∆t → 0, the diffusion equation naturally arises (i.e., Fick’s 2nd law) (6).

A generalization to the RW model is the CTRW model in which the incremental processes

are no longer constrained by a Gaussian or Poissonian probability distribution function (pdf).

Rather, the jump lengths and waiting times are governed by arbitrary and independent pdfs

(6; 7). In the most general case, the random walker’s motion is represented with fractional

powers α and β on the waiting time and jump length intervals, respectively, such that the MSD

can be represented as a power law,

〈x2(t)〉 ∼ t2α/β, (1.1)

where 0 < α ≤ 1, 0 < β ≤ 2, and 2α/β = C. When 2α/β = 1, the process is normal diffusion.

When 2α/β > 1, the process is ‘super-diffusion’. When 0 < 2α/β < 1, the process is ‘sub-

diffusion’. Solving the CTRW in the continuum limit yields a characteristic decay process that

is represented by the Mittag-Leffler function (22). The MLF is attractive in that it relaxes a

priori assumptions about the governing statistics of the diffusion process.

In this report, we describe diffusion using the MLF (via α and β) and quantify the un-

certainty of the CTRW using entropy for diffusion weighted MRI studies on healthy, fixed rat

brains using an imaging spectrometer (Chapters 4 & 5). Furthermore, we investigate the effects

of weighting either q (i.e., gradient strength spatial resolution) and ∆ (i.e., mixing time) on

the data collected in diffusion MRI experiments. To interpret the value of anomalous diffusion

features, we measure the amount of ‘information’ gained about biological tissue features when

the diffusion decay process is modeled with a decay function that is not mono-exponential.



4

Finally, we translate these methods and analyses to a clinical MRI system for anomalous diffu-

sion measurements on healthy human volunteers (Chapter 6). However, before presentation of

the experimental results, we first establish the theoretical treatment of the CTRW and entropy

(Chapter 2) and motivation for fractional order modeling (Chapter 3).



CHAPTER 2

THEORY

2.1 From random walks to continuous time random walks

In the context of RW theory in which the jump length variances and characteristic wait-

ing times are finite, the one-dimensional Brownian motion of a diffusing particle, P (x, t), in

homogeneous and isotropic geometries can be described according to the second order partial

differential equation,

∂P (x, t)

∂t
= D

∂2P (x, t)

∂|x|2
, (2.1)

where D is the diffusion coefficient. The solution to (Equation 2.1) follows as the familiar

Gaussian form,

P (x, t) =
1√

4πDt
exp
(
− x2

4Dt

)
. (2.2)

However, in the context of CTRW theory in which the jump length variances and character-

istic waiting times follow asymptotic power law distributions, the one dimensional anomalous

motion of a diffusing particle, P (x, t), in heterogeneous biological tissues characterized by tor-

tuous and porous geometries, can be described with a fractional partial differential equation of

the form,

C
0 Dαt

(
P (x, t)

)
= Dα,β

∂βP (x, t)

∂|x|β
, (2.3)

5
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where C
0 Dαt is the αth (0 < α ≤ 1) fractional order time derivative in the Caputo form, ∂β/∂|x|β

is the βth (1 < β ≤ 2) fractional order space derivative in the Reisz form, and Dα,β is the

effective diffusion coefficient (e.g. mmβ/sα) (23; 24; 25; 26; 27). The closed form solution of

(Equation 2.3) can be given in the Fox’s H function,

P (x, t) =
1

β|x|
H2,1

3,3

[ −|x|
D

1
β

α,βt
α
β

∣∣∣ (1, 1
β ) (α, αβ ) (1, 1

2)

(1, 1) (1, 1
β ) (1, 1

2)

]
. (2.4)

When α = 1 and β = 2, (Equation 2.4) collapses to the Gaussian form in (Equation 2.2)

(for proof see (28)). However, the solution to (Equation 2.3) can be more succinctly written by

performing a Fourier transform in space (P (x, t)→ p(k, t)) to obtain the characteristic function,

p(k, t) = Eα
(
−Dα,β|k|βtα

)
, (2.5)

where Eα is the single-parameter Mittag-Leffler function. The MLF is a well-behaved function

defined as a power series expansion,

f(z) = Eα(z) =
∞∑
k=0

(z)k

Γ(αk + 1)
, (2.6)
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where the Γ function is the generalized form of the factorial function, defined for real numbers

(29; 30; 31; 32). When α = 1 and β = 2, (Equation 2.5) collapses to an exponential function

in the Gaussian form with respect to k,

p(k, t) = exp
(
−D1,2|k|2t

)
. (2.7)

When α = 1 and 1 < β < 2, (Equation 2.5) returns a stretched exponential function with

respect to k,

p(k, t) = exp
(
−D1,β|k|βt

)
. (2.8)

When 0 < α < 1 and β = 2, (Equation 2.5) returns a stretched Mittag-Leffler function with

respect to t,

p(k, t) = Eα
(
−Dα,2|k|2tα

)
. (2.9)

In the most general case of the solution to the diffusion equation shown in (Equation 2.5),

the effective diffusion coefficient, Dα,β, has units of spaceβ/timeα. In order to formulate

(Equation 2.5) such that the diffusion coefficient can be written asD1,2 with units of space2/time,

we insert parameters µ (space) and τ (time) to give,

p(k, t) = Eα
(
−D1,2

τ1−α

µ2−β |k|
βtα
)
, (2.10)

such that,

Dα,β = D1,2
τ1−α

µ2−β . (2.11)
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As α→ 1 and β → 2, the term (τ1−α/µ2−β)→ 1, and, that is to show (Equation 2.10) returns

the Gaussian form in (Equation 2.7). The parameters, µ and τ , are needed as an empirical

solution to preserve the units for the diffusion coefficient, however, others have derived analogs

to these parameters (i.e., ∆x, ∆t) in conservation of mass problems and heavy tailed limit

convergence of fractal and fractional dynamics (22; 33; 34; 35).

Figure 1. Anomalous diffusion phase diagram with respect to the order of the fractional
derivative in space, β, and the order of the fractional derivative in time, α.

A phase diagram of α and β can be constructed to visualize the regions of sub-, super-, and

normal diffusion processes as shown in Figure 1. Moving leftward from the point of Gaussian
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diffusion (α = 1, β = 2) by fixing α = 1 and decreasing β, the characteristic form of super-

diffusion is given by (Equation 2.8) as a stretched exponential function. Moving downward

from the point of Gaussian diffusion (α = 1, β = 2) by fixing β = 2 and decreasing α, the

characteristic form of sub-diffusion is given by (Equation 2.9) as a stretched Mittag-Leffler

function. For all other points inside the area bounded by the α = 1 horizontal and β = 2

vertical lines, the characteristic form of anomalous diffusion is given by (Equation 2.10). The

2α/β = 1 diagonal represents effective normal diffusion in which the 〈x2(t)〉 ∼ t, however α and

β are fractional and the non-Gaussian waiting time and jump length pdfs vie for competition

of the mean-squared trajectory (10).

2.2 From CTRW to diffusion weighted MRI

In spin-echo diffusion MRI experiments, the signal decay, S, is modeled with a mono-

exponential as,

S/S0 = exp(−bD), (2.12)

where b is the product of the q-space and diffusion time terms, b = q2(∆−δ/3) (13). For brevity,

we will define ∆̄ = ∆− δ/3. As such, a diffusion weighted experiment can be constructed with

a set of b-values, with arbitrary weighting on the q and ∆̄ components, so that a choice can be

made to fix ∆̄ and vary q in an array, or to fix q and vary ∆̄ in an array.

In (36), a stretched exponential was fit to data obtained in fixed ∆, varying q experiments

with a µ exponent and in fixed q, varying ∆ experiments with an α exponent as an approach to

independently interrogate fractional space and fractional time diffusion features described in (6),

respectively. Additionally, in (21) temporal scaling effects were investigated in variable q and ∆
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experiments of a rat hippocampus by utilizing higher moment analysis of the propagator to find

parameters, dw and ds, as fractal dimensions of the diffusion process and spectra, respectively.

We expand upon this previous work by using the generalized solution to the diffusion equation

from CTRW theory in (Equation 2.5) and (Equation 2.10) to model anomalous diffusion in

MRI as,

p(q, ∆̄) = Eα
(
−D1,2

τ1−α

µ2−β |q|
β∆̄α

)
, (2.13)

where β absorbs the square of the q term to operate as 1 < β ≤ 2. With the perspective of

the diffusion weighted decay as the characteristic decay function, we also consider an entropy

measure as a method to compare and contrast diffusion processes.

2.3 From diffusion weighted MRI to entropy in b-space

In information theory, the amount of uncertainty in a discrete probability density function,

P (x) can be measured with,

H(x) = −
N∑
i=1

P (xi)logs
(
P (xi)

)
, (2.14)

where H(x) is the Shannon information entropy and s is the base of the logarithm (1). With

the consideration of information formulated in the context of statistical uncertainty, we have a

tool to compare systems governed by differing stochastic processes. For example, when com-

paring two α-stable distributions, the Gaussian and the Cauchy, normalized with the same

full-width, half maximum values, the Cauchy distribution can be shown to have greater infor-

mation entropy. Non-Gaussian, or anomalous, diffusion phenomena have been correlated to
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regions of increased tissue complexity, like the white matter in the brain, which is relatively

more anisotropic, heterogeneous, and tortuous compared to gray matter regions. From the

information theory perspective, the white matter regions can be considered to have greater

entropy than the gray matter regions as they are governed by more uncertain diffusion pdfs.

Another approach to measure the uncertainty in a system is to analyze the characteristic

function in terms of the Fourier transform in space (P (x)→ p(k)) with spectral entropy,

Hk = −
N∑
i=1

p̂(ki)ln(p̂(ki))

ln(N)
, (2.15)

where p̂(ki) = p(ki)p
∗(ki) reflects the individual wavenumber’s contribution to a normalized

power spectrum of the Fourier transform, pk, and the term, ln(N) (i.e., discrete uniform dis-

tribution of N samples), is a normalization factor applied so that the spectral entropy, Hk, is

between 0 and 1 (37; 38).

Furthermore, as (Equation 2.15) is generally defined to measure the uncertainty of a char-

acteristic function, we can adapt this formalism for b-value diffusion decay signals as a function

of q and ∆̄,

H(q, ∆̄) = −
N∑
i=1

p̂(q, ∆̄)iln(p̂(q, ∆̄)i
ln(N)

. (2.16)

By inserting the characteristic function in (Equation 2.13) (or, any definition of the character-

istic function) into (Equation 2.16), the entropy in the diffusion process can be measured.
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2.4 From anomalous DWI to anomalous DTI

To estimate the directional anisotropy of the MLF and entropy parameters, we utilize Gaus-

sian ellipsoids and use a fitting technique previously used to probe diffusion anisotropy in

stretched exponential representations of diffusion weighted MRI signal decay to obtain sym-

metric 3 × 3 tensors (19). Necessarily, such a fitting procedure requires each MLF parameter

to be defined in n ≥ 6 radial lines through b-space. If the diffusion gradient directions are

considered to be unit vectors, x̂ = g
|g| = (gx gy gz) , then the ellipsoid representing, for

example, α is given by the tensor, α as follows,

α =

(
gx gy gz

)


αxx αxy αxz

αxy αyy αyz

αxz αxz αzz




gx

gy

gz


= αxxgx

2 + αyygy
2 + αzzgz

2 + 2αxygxgy + 2αxzgxgz + 2αyzgygz. (2.17)

To determine (Equation 2.17), a set of n simultaneous equations are solved using the general

linear model following the methodology in (19). The tensor maps obtained from the MLF

parameters, represent the diffusion coefficient, D computed from D1,2, the waiting time expo-

nent, α computed from α, the step length exponent, β computed from β, the composite MSD

exponent, C = 2α/β computed from C = 2α/β, and the entropy, H computed from H. As in

classical DTI, after diagonalization, each tensor has 3 positive real eigenvalues, λ1, λ2 and λ3,

with corresponding eigenvectors, v1, v2 and v3 oriented along mutually orthogonal principal

directions. This formalism allows for familiar scalar invariant maps of isotropy, such as (Tr)
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and fractional anisotropy (FA). Since these may be applied to any parameter tensor, we adopt

the notation, for example, Tr(α) and FA(α).



CHAPTER 3

INFORMATION IN TIME- AND SPACE-FRACTIONAL DIFFUSION

3.1 Background

To offer a new way of viewing the utility of fractional order models, we consider fractional

calculus from the perspective of information theory (39). The fundamental idea is that fractional

order models are better able to represent multi-scale systems because the fractional derivative

provides a heuristic tool that includes in its very definition a distribution of time and space

constants. Thus, we expect fractional order models to convey more information about the

underlying structure and dynamics of complex systems. We apply (Equation 2.15) to diffusion

phenomena as expressed by a fractional order random walk model of Brownian motion. In

addition to normal, or Gaussian diffusion, this model predicts sub- and super-diffusion regimes,

where the underlying dynamics do not follow Gaussian statistics (40; 41). In these regions, the

pdf is not always simply expressed analytically in space and time, and we can not directly use

(Equation 2.14) to estimate the entropy. In addition, for some cases, the second-moment of the

pdf in space (variance), and the first-moment of the pdf in time (mean) will not exist. However,

in these cases, the Fourier transform of the pdf, i.e., its characteristic function, can be concisely

expressed as a mono-exponential, a stretched-exponential decay, or in general, by the Mittag-

Leffler function (24). Hence, we shall be able to use (Equation 2.15) as an information-based

tool to measure the entropic content of fractional order diffusion models.

14
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Figure 2 shows three Gaussian probability density functions (pdf) with increasing variances

as well as the Cauchy pdf (42). Using (Equation 2.14) with logarithm base s = e, the entropy of

the Gaussian distribution is shown to have larger entropy values (in units of Nats) as the variance

increases (i.e., the distribution spreads out). In order to compare the entropy of the Cauchy

pdf with the Gaussian pdf (σ2 = 1), we have scaled the two pdfs such that both distributions

have equivalent half-width, half-maximum values. Under this condition, the Cauchy pdf has

greater entropy than the Gaussian pdf. In general as the tails of the distribution extend, the

entropy will increase, as there is an increased uncertainty in the likely location of a randomly

selected member of the population.

In order to demonstrate the basics of information theory, we consider two simple stochastic

systems: tossing an unbiased coin and tossing an unbiased dice, each with uniform probability

distributions of 1/2 and 1/6, respectively. We can estimate the amount of information required

to describe each system by applying (Equation 2.14) with logarithm base s = 2 (for units of

bits) to the probability distributions. The dice system is described by log2(6) (∼ 2.58) bits of

information, whereas the coin system is described by log2(2), or one bit of information. As such,

we argue the dice system has more information compared to the coin system because there are

more possible states and, therefore, the uncertainty in the probability distribution is greater.

3.2 Results and Discussion

We calculated the entropy for the CTRW model of diffusion by substitution of (Equation 2.5)

into (Equation 2.15) and evaluated for permutations of 0 < α ≤ 2 and 0 < β ≤ 4. The calcula-

tions were performed in Matlab (Mathworks, Natick, MA) using the Mittag-Leffler algorithm
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Figure 2. Plot of Gaussian and Cauchy pdfs with associated increasing entropy values.

published in (43), The results are presented in Figure 3 as a three-dimensional entropy surface

drawn above a plane defined by the positive values of α and β. The floor of the plot is essen-

tially the phase diagram shown in Figure 1. The overall shape of the surface resembles a small

canyon with a stream of low entropy (near α = 1) that flows in the direction of increasing β.

The Gaussian, or normal distribution (α = 1 and β = 2) appears near the bottom. The cross-
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sectional shape of the canyon changes with time and with the assumed value of the diffusion

constant.

Figure 3. Spectral entropy surface plot for the Mittag-Leffler spatial frequency distribution
function (Equation 2.5) with respect to the order of the fractional space derivative, β, and the

order of the fractional time derivative, α (Dα,β = 1, t = 1).
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Figure 4. Spectral entropy for (Equation 2.5) with respect to the order of the fractional space
derivative, β, with diffusion time cases where t = 0.5, 1, 1.5, 2 for α = 1 and D1,β = 1.

Figure 4 is a slice of the spectral entropy surface (for α = 1 and four values of time) from the

β = 0 rim out to the distance of β = 4. Selecting one case of the argument, say D1,β = 1, t = 1,

and starting at β = 2, we observe that the entropy increases as β gets smaller, with ∼ 20%

increase in the normalized spectral entropy when β = 1 (the Cauchy distribution); whereas

travel in the direction of increasing β is mostly flat by this measure of entropy. From the

Gaussian location, β = 2, the entropy appears to converge to a value near 0.5 for increasing β,
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while for decreasing β the entropy increases in a monotonic manner at short times. For longer

times, as β decreases below 2, the entropy first falls to a minimum and then rises sharply, but

overall the effect of increasing time (or larger values of the diffusion coefficients) is to narrow

the peak in normalized entropy and to move it closer to the rim. This area of the phase

diagram (Figure 1: α = 1 and 0 < β < 2) is one of super-diffusion, and it is encouraging that

this perspective portrays the region is one of higher entropy (in comparison with the Gaussian

diffusion case).

Figure 5 is a slice of the spectral entropy surface (for β = 2 and four values of time) from the

α = 0 rim out to the distance of α = 2. Selecting one case of the argument, say Dα,2 = 1, t = 1,

and starting at α = 1, we observe the entropy increasing in both directions, overall. Again, the

depth of minimum grows for longer times, but in this cross sectional view, the location is in the

direction of higher values of α. As is shown in the phase digram (Figure 1) when β = 2, values

of α > 1 are in a region of super-diffusion, and values of α < 1, are in a region of sub-diffusion.

Also, in Figure 5 we observe that for a specific value of time (and diffusion coefficient constant)

the entropy generally increases (from the Gaussian diffusion case of α = 1) as the value of α

increases (super-diffusion), and as it decreases (sub-diffusion). Thus, both higher and lower

values of the order of the fractional derivative α (relative to α = 1) give higher entropy values.

In both Figure 4 and Figure 5, it is interesting to note that as the product of the diffu-

sion coefficient and the time increases, the spectral entropy decreases. Mathematically, this

behavior is consistent with the Fourier-transform duality between the space and the spatial

frequency domains, in which the diffusion coefficient and time, Dα,βt, change position from the
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Figure 5. Spectral entropy for (Equation 2.9) with respect to the order of the fractional time
derivative, α, for four diffusion time cases where t = 0.5, 1, 1.5, 2 for β = 2 and Dα,2 = 1.

denominator to the numerator of the argument (see (Equation 2.2) and (Equation 2.7) for the

case of a Gaussian pdf). Thus, as diffusion time increases – in the framework of the space

domain – we expect the distribution to widen and the entropy to increase (increasing variance

for the Gaussian). Conversely, as the diffusion time increases – in the framework of the spatial

frequency domain – we expect the distribution to narrow and the entropy to decrease. From

a CTRW physical model perspective, as the diffusion time increases in the spatial domain, we
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argue that the distribution widens and the entropy increases as a dynamic measure by which

the uncertainty in predicting the location of the diffusing particle increases. As such, more

information is required to specify the spatial location of the particle as the diffusion time in-

creases. Conversely, as the diffusion time increases in the spatial frequency domain, we argue

that the distribution narrows and the entropy decreases as a dynamic measure by which the

amount of information to be gained about the diffusion environment decreases. Therefore, as

the CTRW process progresses in time, the environment becomes completely explored and no

new information can be captured about the system, albeit at the cost of maximum uncertainty

about the particle’s location in space.

In order to examine further the factors that are summed in (Equation 2.15) we plot (for

a fixed diffusion coefficient and time) a single spectral entropy term as a function of spectral

frequency for a series of β values in Figure 6 (stretched exponential function) and a series of α

values in Figure 7 (stretched Mittag-Leffler function). Each curve shown in Figure 6 is a plot of

the distribution of spectral entropy. Here for β = 2 we view the characteristic Gaussian shape,

and as β decreases into the domain of super-diffusion, the spectrum appears to narrow, but in

fact, due to the long power law tail, it actually spreads out, expanding the number and the range

of higher spatial frequency components. The sum of many of these terms can be interpreted

as adding information to the corresponding spatial distribution, increasing its variance and its

entropy (as illustrated in Figure 2). Also, in this figure, we note that the Cauchy distribution

(β = 1) has, in comparison with the Gaussian distribution, a wider spectral distribution, with

a corresponding increase in spatial complexity and entropy (also noted in Figure 2).
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Figure 6. Plot of the individual frequency contributions to the spectral entropy of
(Equation 2.5) when the order of the fractional space derivative β = 0.5, 0.75, 1, 2, 4 for α = 1,

D1,β = 1, and t = 1.

The spectral entropy plotted in Figure 7 has similar features. For α = 1 we have the

expected Gaussian distribution of spectral entropy. When α is reduced to 0.5, the spectra

expands (higher uncertainty, higher entropy), and when α is increased to 1.5 and to 2 an

oscillation appears in the spectra due to the behavior of the Mittag-Leffler function that again

pushes more spatial frequency components into the higher range. Such components would be
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Figure 7. Plot of the individual frequency contributions to the spectral entropy of
(Equation 2.9) when order of the fractional time derivative α = 0.5, 1, 1.5, 2 for β = 2,

Dα,2 = 1, and t = 1.

expected to add uncertainty and entropy to the spatial distribution. In the case of α = 2 we

have a cosine function in spatial frequency, which corresponds to a single very small spatial

feature (a Dirac Delta function) in space.
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3.3 Conclusions

The primary conclusion of this study is that the total spectral entropy can be used as a

measure of the information content in a fractional order model of anomalous diffusion. In this

paper both the space (β) and the time (α) fractional order dependence are expressed separately

via generalized fractional order space- and time-derivatives. The classical, Gaussian case of

normal diffusion (α = 1; β = 2) falls near the global minimum of a 3D plot of the spectral

entropy for the selected range of α and β. In all directions from the minimum on this surface

the entropy increases, both for increasing and for decreasing values of the orders of fractional

differentiation. The specific increase in entropy is uniquely characterized by a single parameter

stretched Mittag-Leffler function where α gives the overall functional dependence, and β is a

power-law weighting of the spectral frequency in the argument of the Mittag-Leffler function.

When either α or β diverge from the Gaussian case, (α = 1; β = 2) the spectra for each

component of the total entropy expands or contracts in a manner that captures greater overall

information about the system. Finally, there is an overall reduction in the total spectral entropy

as time (or the diffusion coefficient) increases, corresponding to a wider spatial distribution of

the individual diffusing components, which is consistent with the noted contraction of spectral

frequencies in the Fourier spectral domain.



CHAPTER 4

DIFFUSION WEIGHTED IMAGING OF RANDOM WALKS AND

ENTROPY IN NEURAL TISSUE

4.1 Methods

To evaluate the MLF parameters in (Equation 2.13) and the entropy, H(q, ∆̄), defined in

(Equation 2.16) as potential biomarkers for biological tissue features, we performed diffusion

weighted MRI measurements to investigate the effects of arraying q vs. arraying ∆ on one

healthy fixed 90 day old rat brain. The outcomes of this pilot study will inform the experimental

setup of an inter-subject study on samples of healthy 25 day old and 90 day old fixed rat brains.

As the scope of this study is to investigate the effects of experimental setup on observed diffusion

processes within the same biological tissue, one diffusion weighted gradient direction was used.

The y-axis diffusion weighting direction was chosen to evaluate the possibility of anomalous

diffusion dynamics along the principal fiber direction of the CC, whereas other studies have

reported anomalous diffusion in directions orthogonal to the principal fiber tracts (17; 19).

The effects of the diffusion weighting direction on the parameter values will be investigated

in future studies to evaluate correlations to tensor metrics (e.g., first eigenvalue and fractional

anisotropy).

The animal was prepared according to University of Florida’s UF IACUC protocol D710

(44). Overnight, prior to imaging experiments, the rat brain was soaked in phosphate buffered

25
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saline. For the imaging experiment, the rat brain was placed in a 20 mm imaging tube, and

the tube was filled with Fluorinert and secured with a magnetic susceptibility-matched plug

to minimize vibrational movement due to the pulsed gradients. The rat brain was oriented

in the spectrometer such that the anterior-posterior aligned with the main B0 field (z-axis),

the superior-inferior with x-axis, and the lateral with the y-axis. At the AMRIS Facility

(Gainesville, Florida), PGSTE diffusion weighted experiments were performed on a Bruker

spectrometer at 750 MHz (17.6 Tesla, 89 mm bore) with the following parameters: TR=2 s,

TE=28 ms, b-values up to 25,000 s/mm2, δ = 3.5 ms, NA = 2, y-axis diffusion weighting,

1 central slice in the y − z plane, slice thickness = 1 mm, FOV = 27x18 mm, matrix size of

142x94 pixels, in-plane resolution of 190 µm. It should be highlighted that in all experiments,

δ << ∆ to ensure the short-pulse approximation remained valid. Variable TR data (TE = 12.5

ms, TR = 300–3600 ms, increments of 300 ms) were collected to correct the PGSTE data for

T1 relaxation effects. Additionally, the PGSTE data was Rician noise corrected. See Appendix

for data processing details.

Two fixed ∆, variable q experiments were performed with ∆ fixed at 17.5 and 50 ms.

Two fixed q, variable ∆ experiments were performed with gradient strengths (gy) at 350 and

525 mT/m to achieve q-values of 52 and 78 mm−1, respectively. For the fixed ∆ = 17.5ms

experiment, q was arrayed at 0, 39.7, 55.5, 67.7, 95.4, 116.7, 134.7, 150.5, 164.9, 178.1, and 190.3

mm−1. For the fixed ∆ = 50ms experiment, q was arrayed at 0, 24.9, 33.8, 40.9, 57.0, 69.4,

79.9, 89.2, 97.7, 105.4, 112.4 mm−1. For the fixed q = 78mm−1 experiment, ∆ was arrayed
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at 17.5, 31.5, 45.5, 59.5, 73.5, 87.5, 101.5, 108.5, and 115 ms. For the fixed q = 52mm−1

experiment, ∆ was arrayed at 17.5, 51.5, 85.5, 119.5, 153.5, 187.5, 221.5, 238.5, and 250 ms.

Because the generalized diffusion model in (Equation 2.13) specifies D1,2, µ, and τ as a

ratio, any number of parameter value combinations can satisfy successful fitting results. To

constrain these parameters, D1,2, µ, and τ were first estimated using intermediate fits. To

estimate the diffusion coefficient, a mono-exponential function was fit to the first 3 low b-value

samples, referred to as, Dm. After Dm estimation, two analogous stretched exponential fitting

procedures were used to fit the fixed ∆̄ and fixed q experimental data in order to find estimates

of µ and τ , denoted as µ̄ and τ̄ . The form of these stretched exponential functions utilize

the diffusion experiment pulse sequence parameters in order to independently constrain the

magnitudes of µ̄ and τ̄ . The stretching parameters in these intermediate fits, ᾱ and β̄, were

each placed over the entire b-value (Eqs. (Equation A.3), (Equation A.6), (Equation A.9)),

(Equation A.12)) which differs from the stretching form of ∆̄α and qβ in (Equation 2.13). See

Appendix A for fitting details.

Following the intermediate parameter estimations, Dm, µ̄, τ̄ , α = 1, β = 2 were used as

starting values in the non-linear least squared fit of the Mittag-Leffler function (43) in order to

converge upon D1,2, µ, τ , α, and β values. D1,2, µ, τ were allowed to float ±50% from their

initial estimates. The value for α was bounded between 0 and 1.1 and β between 0 and 2.2.

All fits were performed with a non-linear least squares fitting algorithm in Matlab (Mathworks,

Natick, MA) in which the convergence criteria for the estimated coefficients was 10−6.
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To challenge the robustness of the fitting routine to identify the diffusion regimes delineated

on the phase diagram in Figure 1 via the MLF parameters, simulations were performed for

known permutations of α and β in the presence of random noise added to decay signals. Signals

were created for: space- and time-fractional Brownian motion (α = 0.5, β = 1) of the form in

(Equation 2.5), Brownian motion (α = 1, β = 2) of the form in (Equation 2.7), space-fractional

super-diffusion (α = 1, β = 1) of the form in (Equation 2.8), and time-fractional sub-diffusion

(α = 0.5, β = 2) of the form in (Equation 2.9). The simulated random noise was modeled using

the Rician noise profile measured from the diffusion experiments and gradually increased until

either α or β diverged more than ±0.1 from their given values. For all simulated permutations

of α and β, the estimated values were swithin ±0.1 from their given values (p < 0.05) when

random noise was added up to three standard deviations larger than the experimental noise

profile.

After the MLF parameters were determined, the characteristic decay curve for p(q, ∆̄) was

constructed using N=1,500 increments arrayed over variable q or variable ∆̄ for b-values between

0 and 25,000 s/mm2. Then, the entropy (defined in (Equation 2.16)) in the diffusion process,

as modeled by the MLF, was computed as H(q, ∆̄)MLF . For comparison, using the mono-

exponential model (Dm) in (Equation 2.12), a characteristic decay curve of N = 1,500 incre-

ments arrayed over b-values between 0 and 25,000 s/mm2 was constructed. The entropy in the

diffusion process, as modeled by the mono-exponential function, was computed as H(q, ∆̄)mono.
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Figure 8. T2-weighted image of an axial slice in a fixed rat brain with ROIs: left (1) and right
(2) cerebral cortex; left (3), central (4), and right (5) corpus callosum; left (6) and right (7)

striatum.

4.2 Results and Discussion

Figure 8 shows a T2-weighted image of an axial slice through a whole, healthy fixed rat

brain with 7 ROIs in the cerebral Cor, Str, and CC. These ROIs were selected in order to

analyze tissue compositions ranging from gray matter (cerebral cortex), to a mixture of gray

and white matter (striatum), and to white matter (corpus callosum). Furthermore, the y-axis

diffusion weighting direction was selected to coincide with the principal fiber orientation of the

CCC (ROI 4).

Figure 9 - Figure 12 show the parameter maps for the MLF in (Equation 2.13) and the

entropy in (Equation 2.16) in the four fixed ∆1 = 17.5ms, ∆2 = 50ms, q1 = 78mm−1 ,
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Figure 9. MLF and entropy parameter maps for fixed ∆1 = 17.5ms experiment (y-axis
diffusion weighting).

q2 = 52mm−1 experiments. For the 7 ROIs, all numerical values for the MLF parameters in

the four experiments are available in the Table XVIII. The results for the MLF parameter

maps are reported as the mean and standard deviation values for each ROI. In all experiments,

α separated the cerebral cortex (ROIs 1, 2), the CCC (ROI 4), and the striatum (ROIs 6, 7).

In the q1 ( Figure 11) and q2 ( Figure 12) experiments, α distinguished the CCC (ROI 4) from
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Figure 10. MLF and entropy parameter maps for fixed ∆2 = 50ms experiment (y-axis
diffusion weighting).

the lateral corpus callosum (ROIs 3, 5). In all of the experiments, β showed less contrast than

α and for the regions containing gray matter, β → 2, indicating Gaussian statistics on the

jump length distributions. However, in the ∆1 ( Figure 9) and ∆2 ( Figure 10) experiments, β

separated the CCC from the regions containing gray matter (ROIs 1, 2, 6, 7). In the ∆1 and ∆2

experiments, the diffusion coefficient, D1,2, separated the CCC from the striatum (ROIs 6, 7).

In the q1 experiment, µ separated the CCC from the regions containing gray matter (ROIs 1,
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Figure 11. MLF and entropy parameter maps for fixed q1 = 78mm−1 experiment (y-axis
diffusion weighting).

2, 6, 7). In the ∆1, ∆2, and q1 experiments, τ separated the CCC from the regions containing

gray matter (ROIs 1, 2, 6, 7). It should also be noted the mean values across the ROIs for µ and

τ had significant change when fixing ∆ and fixing q to the different values in the experiments.

From the ∆1 to the ∆2 experiment, the mean µ scaled from ∼ 2.3µm to ∼ 3.6µm and the
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Figure 12. MLF and entropy parameter maps for fixed q2 = 52mm−1 experiment (y-axis
diffusion weighting).

mean τ scaled from ∼ 19.2ms to ∼ 57.1ms. From the q1 to the q2 experiment, the mean µ

scaled from ∼ 2.1µm to ∼ 3.3µm and the mean τ scaled from ∼ 24.1ms to ∼ 36.8ms.

Table I.a reports the entropy of the characteristic function as represented by the MLF. In

the ∆1, ∆2, and q1 experiments, H(q, ∆̄)MLF distinguished the CCC (ROI 4) from the lateral



34

Figure 13. Entropy parameter maps for the MLF (left) and mono-exponential (right) fits of
the characteristic function in the ∆1 = 17.5ms (row 1), ∆2 = 50ms (row 2), q1 = 78mm−1

(row 3), q2 = 52mm−1 (row 4) experiments (y-axis diffusion weighting).

white matter (ROIs 3, 5). In the ∆1, ∆2, and q1 experiments, H(q, ∆̄)MLF separated the

cerebral cortex (ROIs 1, 2), the CCC (ROI 4), and the striatum (ROIs 6, 7).

Table II shows the ratio, 2α/β as the composite exponent in the context of the trajectory of

the MSD as defined in (Equation 1.1). In the ∆1 experiment, all ROIs reported sub-diffusion

(2α/β < 1), with the lateral corpus callosum regions growing slowest with respect to time.
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Figure 14. Signal decay plots and MLF fits for the cerebral cortex (ROI 1, circles), striatum
(ROI 6, squares), and corpus callosum (ROI 4, triangles) in the ∆ = 17.5ms experiment

(y-axis diffusion weighting).

In the ∆2 experiment, the corpus callosum ROIs are most sub-diffusive, whereas the cortex

and striatum show slight sub-diffusion and effective normal diffusion (2α/β → 1). In the q1

experiment, the CCC ROI is most sub-diffusive, whereas the cortex and striatum show slight

sub-diffusion and effective normal diffusion. In the q2 experiment, the ROIs report a diminished

range of slight sub-diffusion and effective normal diffusion.

In the classical mono-exponential model when α is fixed at 1 and β at 2 in (Equation 2.7),

the characteristic function is concisely written as (Equation 2.12), (i.e., exp(−bD)). Using

entropy, it is possible to measure the amount of ‘information’ contained in an ROI as the char-

acteristic function deviates from a mono-exponential decay. Table I.b reports the entropy of the
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TABLE I

ENTROPY VALUES FOR THE ROIS IN THE FIXED ∆1 = 17.5MS, ∆2 = 50MS,
Q1 = 78MM−1, Q2 = 52MM−1 EXPERIMENTS.

parameter ROI ∆1 ∆2 q1 q2

(1) Cor, l 0.82 ± 0.01 0.78 ± 0.01 0.78 ± 0.01 0.76 ± 0.01
(2) Cor, r 0.83 ± 0.01 0.81 ± 0.01 0.79 ± 0.01 0.78 ± 0.01
(3) CC, l 0.88 ± 0.02 0.85 ± 0.03 0.83 ± 0.02 0.80 ± 0.02

a. H(q,∆)MLF (4) CC, c 0.93 ± 0.01 0.91 ± 0.01 0.88 ± 0.02 0.83 ± 0.01
(5) CC, r 0.88 ± 0.02 0.86 ± 0.03 0.83 ± 0.02 0.81 ± 0.02
(6) Str, l 0.86 ± 0.01 0.83 ± 0.01 0.82 ± 0.01 0.81 ± 0.01
(7) Str, r 0.86 ± 0.01 0.83 ± 0.01 0.82 ± 0.01 0.81 ± 0.01

(1) Cor, l 0.76 ± 0.01 0.75 ± 0.01 0.78 ± 0.01 0.77 ± 0.01
(2) Cor, r 0.77 ± 0.01 0.80 ± 0.01 0.79 ± 0.01 0.78 ± 0.01
(3) CC, l 0.76 ± 0.02 0.76 ± 0.04 0.80 ± 0.02 0.78 ± 0.02

b. H(q,∆)mono (4) CC, c 0.74 ± 0.01 0.75 ± 0.02 0.81 ± 0.01 0.78 ± 0.01
(5) CC, r 0.76 ± 0.01 0.79 ± 0.02 0.80 ± 0.01 0.78 ± 0.01
(6) Str, l 0.78 ± 0.01 0.78 ± 0.01 0.80 ± 0.01 0.79 ± 0.01
(7) Str, r 0.78 ± 0.01 0.81 ± 0.01 0.80 ± 0.01 0.80 ± 0.01

characteristic function as represented by the mono-exponential. Across all of the experiments,

H(q, ∆̄)mono is unable to distinguish between the ROIs. However, a comparison can be made

to Table I.a in which the MLF model is used to model the diffusion process. In the ∆1 experi-

ment, for example, the most information was learned about the diffusion process in the corpus

callosum ROIs, followed by Str, and cortex ROIs, respectively. It is interesting to note that the

amount of information learned diminishes as the fixed diffusion time increases (i.e., from ∆1 to

∆2 experiment) and, inversely, as the fixed diffusion gradient strength decreases (i.e., from q1 to

q2 experiment). Figure 13 shows the entropy maps for the MLF and mono-exponential models

with each experiment demonstrating the improved image contrast in H(q, ∆̄)MLF compared to



37

TABLE II

2α/β COMPOSITE EXPONENT FOR THE ROIS IN THE FIXED ∆1 = 17.5MS,
∆2 = 50MS, Q1 = 78MM−1 , Q2 = 52MM−1 EXPERIMENTS.
ROI ∆1 ∆2 q1 q2

(1) Cor, l 0.76 ± 0.08 0.98 ± 0.09 0.98 ± 0.02 1.00 ± 0.03
(2) Cor, r 0.76 ± 0.08 0.92 ± 0.02 0.98 ± 0.03 0.99 ± 0.02
(3) CC, l 0.45 ± 0.12 0.57 ± 0.30 0.86 ± 0.04 0.91 ± 0.03
(4) CC, c 0.74 ± 0.12 0.54 ± 0.05 0.75 ± 0.05 0.84 ± 0.03
(5) CC, r 0.37 ± 0.16 0.56 ± 0.17 0.87 ± 0.05 0.87 ± 0.04
(6) Str, l 0.62 ± 0.08 0.90 ± 0.13 0.90 ± 0.01 0.95 ± 0.03
(7) Str, r 0.58 ± 0.06 0.83 ± 0.03 0.91 ± 0.02 0.94 ± 0.03

H(q, ∆̄)mono. It should also be noted that Dm and D1,2 were statistically indistinguishable (see

Table XVII for comparison), which indicates the diffusion coefficient units were preserved in

the MLF fitting routine. Another way to visualize ‘information’ contained in the characteristic

function is simply to look at the diffusion decay signals in log-linear plots, for example, as

shown on Figure 14. On this scale, a mono-exponential decay would appear as a straight line,

however, the Cor, Str, and CC all deviate as the b−values increase. As the corpus callosum data

is more anomalous than the Str, and the striatum more anomalous than the Cor, corresponding

information is added at high b−values to distinguish the ROIs. Figure 14 also shows the MLF

curves to demonstrate the small mean squared error of the fits, which is representative for all

data analyzed in this study.

In the context of CTRW theory, it is interesting to break down the composite exponent on

the MSD trajectory, 2α/β, in the context of waiting time, jump length distributions and entropy.
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In the continuum limit, the waiting time (∆t→ 0) and jump length (∆x→ 0) increments can

be represented, in the most general case, as fractional time and space derivatives of arbitrary

orders, α and β, respectively. As the order of the fractional derivatives move away from the

special case of Brownian motion (α = 1, β = 2), the waiting times and jump lengths are

governed by heavy tailed distributions in which the diffusing particle has a greater probability

of waiting longer and jumping further. So, the composite exponent on the MSD trajectory can

take on a particular value to indicate sub-diffusive growth, but can be comprised of different

combinations of fractional values for α and β. For example, in the ∆1 experiment, the composite

exponents are similar for the right cerebral cortex (∼ 0.76) and the CCC (∼ 0.74), indicating

sub-diffusive growth. However, the individual values of α and β are clearly different for the

right cerebral cortex (α ∼ 0.74, β ∼ 1.95) and the CCC (α ∼ 0.42, β ∼ 1.15). Therefore, the

characteristic function representation for the waiting time and jump length distributions is more

uncertain (anomalous) in the CCC compared to the right cerebral cortex. And, this difference

is clearly encoded in the entropy with the corpus callosum (H(q, ∆̄) ∼ 0.93) and the cerebral

cortex (H(q, ∆̄) ∼ 0.83). Increasing the diffusion time from the ∆1 to the ∆2 experiment, the

composite exponent increased for all ROIs, except the CCC where 2α/β decreased from ∼ 0.74

to ∼ 0.54. Between these two experiments, there was no significant change in α, however β

increased from ∼ 1.15 to ∼ 1.42 reflecting the smaller range of q-values sampled in the ∆2

experiment to resolve the spatial component of the anomalous diffusion in this heterogenous

and tortuous ROI.
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The probabilistic framework of the CTRW models diffusion in any environment that has

heterogeneous, tortuous, and multi-scale properties (12, 13, 28–31). In this study, we have

applied this abstract approach to the realm of biological tissues and MRI physics. However,

work remains to correlate these new parameters to anatomical features as has been done to

validate DTI parameters with histology (32–34). It is encouraging to consider the results of

this study in the context of high resolution electron micrograph images of fixed mouse neural

tissue reported in (45). These images show that although there is a principal fiber direction in

the CC, within the resolution of one imaging voxel (∼ 200um), there are also clearly visible

populations of heterogeneous, tortuous, and crossing fibers, particularly in the central region.

So, it is a reasonable hypothesis to propose the tissue microstructure is reflected in α as the

likelihood for water to be ‘trapped’ within a hindrance and β as the likelihood for water to

‘jump’ along a less-hindered environment.

As the images in Figure 9-Figure 13 show, there is new contrast that is different from

the diffusion coefficient map. Even where contrast is not as apparent (i.e., β, µ, τ), there is

information in the ROI and the experiment. When β → 2, the spatial component (i.e. jump

length) of the diffusion dynamics approaches the form of a normal distribution. When raising

the arguments, q and ∆̄ to fractional powers, µ and τ are required to preserve the units of

the diffusion coefficient, and the scale of their values are initially dependent on the diffusion

experiment’s fixed component (q or ∆) in the b-value array, as described in the Appendix. As

the fits for the signal decay data converge to fractional values for α and β, mathematically,

the values for µ and τ are affected, and this was observed in the CCC for the ∆1, ∆2, and
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q1 experiments, mentioned above. By dissecting and weighting a b-value with its controllable

pulse sequence variables, µ and τ are reflective of both the experimental setup and the decay

curve. The values for µ are scaled on the order of microns and, perhaps, are indicative of the

sub-voxel resolution in the diffusion experiment. Whereas the values for τ are scaled on the

order of milliseconds and, perhaps, are indicative of the non-Markovity (i.e., memory) of the

diffusion process as the longest times were observed in the central CC, along the principal fiber

orientation.

It is difficult to compare the outcomes of this study with respect to other reports of anoma-

lous diffusion modeled with a stretched exponential function. In (7-9), the stretching exponent

is raised over the entire b−value (i.e., (q2∆̄)). In (15; 16), the q2 term is raised by a β pa-

rameter, however there is no stretching term on ∆̄ (i.e., α = 1) as the Bloch-Torrey equation

was generalized solely with a fractional space derivative to arrive at the stretched exponential

form. However, it is encouraging to note that the values (i.e., microns) estimated for µ in

our study are similar to those reported in (15; 16). In (36), stretching exponents were placed

each on q2 and ∆̄, but were done so with individual fits in which one of the exponents was

fixed at a time, whereas our approach ultimately produces a simultaneous estimation of the

stretching exponents on q2 and ∆̄. In (21), numerous diffusion experiments were performed by

manipulating the weightings of q and ∆̄ to investigate temporal scaling of fractal measures by

applying a q−space analysis in a rat hippocampus where sub-diffusive power-law growth of the

propagator is also reported.
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Finally, it is apparent that how the experiment’s parameters are designed, by either arraying

the gradient strength or the mixing time, and the weightings therein, affect the diffusion dy-

namics observed within an ROI. In the context of entropy (Table I and Figure 13) as a measure

of ‘uncertainty’ in the diffusion decay signal, our study suggests that fixing ∆ at the shortest

time and arraying across a large range of q values produced the most ‘information’ about the

probed neural tissue in comparison to the three other experiments. That is to say, the exper-

iment should minimize the diffusion time such that the water still has enough time to explore

the environment, while the gradient strength is maximized to resolve the tissue microstructure

within the imaging voxel. From this perspective, it is important that the diffusion experiment

is tuned to match the neural tissue under study to observe dynamics, which may not be as

clearly resolved if the mixing time or the diffusion gradient strength is not optimal.

4.3 Conclusions

In this study, we approached the diffusion decay signal in the probabilistic regime as a

representation of the characteristic function – the Fourier transform of the pdf (46; 47). In

the context of CTRW theory, we examined the diffusion dynamics in terms of the waiting

time and jump length distributions. For ROIs that are heterogenous and tortuous, like the

CC, the representative parameters, α and β, showed deviations away from the Gaussian case of

Brownian motion (α = 1, β = 2). To quantify these deviations, we applied entropy as an overall

measure of the anomalous nature of the diffusion process. At high b-values, new ‘information’

was learned by using a model (MLF) that is able to capture heavy-tailed diffusion signal decays

which are not mono-exponential. As such, the MLF and entropy parameters are potential
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biomarkers for degeneration, plasticity, therapeutic response in neural tissue. It is important to

emphasize that the choice of q and ∆ impacts the observed outcomes as demonstrated in each

of the fixed q and fixed ∆ experiments. Future studies will focus on control vs. disease models

and histological correlation to these parameters as well as tensor constructs. Additionally,

the methods presented in this report will be adapted for human clinical systems (Chapter 6),

which have a smaller range of diffusion gradient strengths and mixing times. Finally, we will

investigate the directional dependence of the CTRW parameters, and of the entropy, which can

in principle – just as the diffusion coefficient – be described with tensor constructs in Chapter

4.



CHAPTER 5

DIFFUSION TENSOR IMAGING OF RANDOM WALKS AND

ENTROPY IN HEALTHY AGING OF NEURAL TISSUE

5.1 Methods

To evaluate the MLF parameters in (Equation 2.13) and the entropy, H, defined in (Equation 2.16)

as potential biomarkers for biological tissue features, we performed diffusion weighted MRI mea-

surements to investigate the effects of arraying q vs. arraying ∆ on three samples of healthy

25 day old and three samples of 90 day old fixed rat brains. Additionally, the scope of this

study is to investigate the effects of experimental setup on observed diffusion processes and the

directional anisotropy, six diffusion weighted gradient direction were used in order to describe

the MLF and entropy parameters in tensor constructs.

The animals were prepared according to University of Florida’s UF IACUC protocol D710

(44). Overnight, prior to imaging experiments, the rat brain was soaked in phosphate buffered

saline. For the imaging experiment, the rat brain was placed in a 20 mm imaging tube, and

the tube was filled with Fluorinert and secured with a magnetic susceptibility-matched plug

to minimize vibrational movement due to the pulsed gradients. The rat brain was oriented

in the spectrometer such that the anterior-posterior aligned with the main B0 field (z-axis),

the superior-inferior with x-axis, and the lateral with the y-axis. At the AMRIS Facility

(Gainesville, Florida), PGSTE diffusion weighted experiments were performed on a Bruker

43
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spectrometer at 750 MHz (17.6 Tesla, 89 mm bore) with the following parameters: TR=2

s, TE=28 ms, b-values up to 25,000 s/mm2, δ = 3.5 ms, NA = 2, 4 central slice in the

y − z plane, slice thickness = 1 mm, FOV = 27x18 mm, matrix size of 142x94 pixels, in-

plane resolution of 190 µm. The six diffusion weighted gradient directions were [x, y, z] [0

0 1; 0.894429 0 0.44721; 0.276391 0.850653 0.447211; -0.723607 -0.525731 0.447213; 0.276382

-0.850666 0.447193; -0.723607 0.525731 0.447213]. It should be highlighted that in all experi-

ments, δ << ∆ to ensure the short-pulse approximation remained valid. Variable TR data (TE

= 12.5 ms, TR = 300–3600 ms, increments of 300 ms) were collected to correct the PGSTE

data for T1 relaxation effects. Additionally, the PGSTE data was Rician noise corrected. See

Appendix Afor data processing details.

Based on the experimental outcomes found in Chapter 4, one fixed ∆, variable q experiment

was performed with ∆ fixed at 17.5 and one fixed q, variable ∆ experiment was performed with

gradient strengths (g) 525 mT/m to achieve a q of 78 mm−1. For the fixed ∆ = 17.5ms

experiment, q was arrayed at 0, 39.7, 55.5, 67.7, 95.4, 116.7, 134.7, 150.5, 164.9, 178.1, and

190.3 mm−1. For the fixed q = 78mm−1 experiment, ∆ was arrayed at 17.5, 31.5, 45.5, 59.5,

73.5, 87.5, 101.5, 108.5, and 115 ms.

For each diffusion weighted gradient experiment, the data were fit to the 1D MLF and en-

tropy parameters as described in (Equation 2.13) and (Equation 2.16). The MLF parameters

were estimated using the same methodology described in Chapter 4 and Appendix A. After the

MLF parameters were determined, the characteristic decay curve for p(q, ∆̄) was constructed

using N=1,500 increments arrayed over variable q or variable ∆̄ for b-values between 0 and
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25,000 s/mm2. Then, the entropy (defined in (Equation 2.16)) in the diffusion process, as

modeled by the MLF, was computed as HMLF . For comparison, using the mono-exponential

model (Dm) in (Equation 2.12), a characteristic decay curve of N = 1,500 increments arrayed

over b-values between 0 and 25,000 s/mm2 was constructed. The entropy in the diffusion

process, as modeled by the mono-exponential function, was computed as Hmono. Then, using

(Equation 2.17), Gaussian ellipsoids were fitted to obtain tensor maps for each parameter (i.e.

D, α, β, τ , µ, H and C) and were diagonalized to obtain eigenvalues and eigenvectors. Ro-

tationally invariant isotropic (Tr) and anisotropic (FA) maps were computed for each MLF

parameter. Eigenvector orientation was visualized using DEC which colors eigenvector orien-

tations red in the sinister-dexter direction, green in the anterior-posterior direction and blue in

the superior-inferior direction (48). Brightness of the DEC parameter map was modulated by

FA of the parameter. For each sample, based on the T2 weighted image, ROIs were drawn for

the central corpus callosum, lateral corpus callosum, striatum, and cerebral cortex, and then

parameter maps were constructed for the entire slice. Figure 15 shows the T2 weighted images

of the 25 and 90 day old healthy fixed rat brains with ROIs circled in black.

5.2 Results and Discussion

5.2.1 Fixed ∆ experiment

For visual comparison in the fixed ∆ experiment, the trace maps of the MLF parameters,

entropy of the diffusion decay as modeled by the MLF (HMLF ), entropy of the diffusion decay

as modeled by the mono-exponential (Hmono) are shown for a 25 and 90 day sample in Figure 16

and Figure 17, respectively. As shown in Table III, from the adolescent to the adult neural
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Figure 15. T2-weighted images of 25 day old healthy fixed rat brain (top) and 90 day old
healthy fixed rat brain (bottom) with ROIs of the CCC, LCC, Str, and cerebral cortex.

tissue in the CCC, the trace values for α, β, C and D had significant decrease, which is reflected

in an increase in the entropy, H. The mean values for the FA measures of α and C increased

in the adult samples by ∼ 80%, which was more than FA(D) (∼ 15%). There was no change

in FA(H) between the two groups. It should be noted that within each group, FA(D) was the

most anisotropic parameter.
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Figure 16. Trace maps of a healthy 25 day old brain in the fixed ∆ experiment.

In the LCC (Table IV), the trace values for both α and β significantly dropped from the 25

day to the 90 day samples, which was also reflected in a small increase in H. As C represents

the ratio 2α/β, the overall MSD did not change between the groups. Likewise, there was no

change in the trace value of D between the groups. Overall, the FA values for α, β, and C

were lower in comparison to the CCC ROI (Table III). However, significant increases in the
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anisotropic features of α, β, and C were found with age in the LCC, whereas FA(D) only

showed a mild increase. FA(H) did not change between the groups.

Figure 17. Trace maps of a healthy 90 day old brain in the fixed ∆ experiment.
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Surprisingly, the Str and the Cor ROIs of the 25 day group showed more anomalous diffusion

features compared to the 90 day group (Table V and Table VI). The trace values of α, C, and D

increased from the 25 day to the 90 day group, which was reflected as a decrease in Tr(H). The

anisotropic features of the MLF and entropy parameters did not change between the adolescent

and adult samples, except for, perhaps, a slight decrease in FA(H) for the 90 day group.

TABLE III

MEAN AND STD (SIGNIFICANT DIFFERENCE IN MEANS INDICATED BY P ) FOR
THE MLF AND ENTROPY PARAMETERS IN THE CCC ROI OF (3) HEALTHY 25 DAY

AND (3) 90 DAY RATS FOR THE FIXED ∆ EXPERIMENT.
25 Day 90 Day p

Tr(α) 0.61 ± 0.05 0.54 ± 0.07 < 0.001
Tr(β) 1.62 ± 0.07 1.50 ± 0.13 < 0.001
Tr(H) 0.90 ± 0.02 0.94 ± 0.02 < 0.001
Tr(C) 0.76 ± 0.06 0.74 ± 0.09 0.185
Tr(D) (×10−3mm2/s) 0.22 ± 0.04 0.17 ± 0.04 < 0.001
Tr(τ ) (ms) 18.51 ± 0.47 17.78 ± 1.24 0.001
Tr(µ) (µm) 2.13 ± 0.10 2.02 ± 0.40 0.112
FA(α) 0.20 ± 0.09 0.36 ± 0.10 < 0.001
FA(β) 0.11 ± 0.04 0.14 ± 0.05 0.001
FA(H) 0.06 ± 0.01 0.05 ± 0.02 0.208
FA(C) 0.21 ± 0.11 0.38 ± 0.12 < 0.001
FA(D) 0.48 ± 0.16 0.56 ± 0.15 0.012
FA(τ ) 0.07 ± 0.02 0.12 ± 0.13 0.015
FA(µ) 0.14 ± 0.06 0.19 ± 0.14 0.031
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TABLE IV

MEAN AND STD (SIGNIFICANT DIFFERENCE IN MEANS INDICATED BY P ) FOR
THE MLF AND ENTROPY PARAMETERS IN THE LCC ROI OF (3) HEALTHY 25 DAY

AND (3) 90 DAY RATS FOR THE FIXED ∆ EXPERIMENT.
25 Day 90 Day p

Tr(α) 0.69 ± 0.03 0.61 ± 0.04 < 0.001
Tr(β) 1.68 ± 0.08 1.56 ± 0.06 < 0.001
Tr(H) 0.87 ± 0.02 0.89 ± 0.02 < 0.001
Tr(C) 0.82 ± 0.02 0.79 ± 0.06 0.017
Tr(D) (×10−3mm2/s) 0.27 ± 0.03 0.25 ± 0.04 0.044
Tr(τ ) (ms) 18.81 ± 0.34 18.79 ± 0.40 0.778
Tr(µ) (µm) 2.17 ± 0.06 2.23 ± 0.16 0.025
FA(α) 0.08 ± 0.04 0.18 ± 0.07 < 0.001
FA(β) 0.08 ± 0.03 0.11 ± 0.03 < 0.001
FA(H) 0.05 ± 0.01 0.06 ± 0.02 0.003
FA(C) 0.11 ± 0.03 0.19 ± 0.10 < 0.001
FA(D) 0.34 ± 0.09 0.42 ± 0.12 0.002
FA(τ ) 0.07 ± 0.02 0.07 ± 0.02 0.808
FA(µ) 0.11 ± 0.05 0.15 ± 0.06 0.009

Figure 18 and Figure 19 show the DEC and FA maps for an axial slice through a 25 day

and 90 day sample, respectively. In the DEC maps, it is apparent that v3(α) and v3(C) (i.e.,

the eigenvector associated with smallest eigenvalue) are approximately aligned orthogonal to

v1(D) (i.e., the eigenvector associated with the principal direction of diffusivity), indicating

diffusion is more anomalous perpendicular to the fiber tract orientation. This relationship

appears to become stronger in coherence going from the 25 day to the 90 day groups. For

v3(β), similar behavior is found, albeit with less coherence as FA(β) is modulated with a

smaller amplitude. In comparison, it is clear that v1(H) (i.e. the eigenvector associated with
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TABLE V

MEAN AND STD (SIGNIFICANT DIFFERENCE IN MEANS INDICATED BY P ) FOR
THE MLF AND ENTROPY PARAMETERS IN THE STR ROI OF (3) HEALTHY 25 DAY

AND (3) 90 DAY RATS FOR THE FIXED ∆ EXPERIMENT.
25 Day 90 Day p

Tr(α) 0.83 ± 0.01 0.88 ± 0.02 < 0.001
Tr(β) 1.93 ± 0.02 1.94 ± 0.04 0.341
Tr(H) 0.80 ± 0.01 0.77 ± 0.02 < 0.001
Tr(C) 0.86 ± 0.02 0.91 ± 0.03 < 0.001
Tr(D) (×10−3mm2/s) 0.33 ± 0.01 0.36 ± 0.02 < 0.001
Tr(τ ) (ms) 17.54 ± 0.30 17.48 ± 1.06 0.606
Tr(µ) (µm) 2.28 ± 0.06 2.32 ± 0.11 0.006
FA(α) 0.05 ± 0.02 0.06 ± 0.02 0.097
FA(β) 0.05 ± 0.02 0.05 ± 0.02 0.328
FA(H) 0.03 ± 0.01 0.04 ± 0.02 0.004
FA(C) 0.07 ± 0.03 0.09 ± 0.05 0.001
FA(D) 0.23 ± 0.06 0.23 ± 0.06 0.713
FA(τ ) 0.07 ± 0.02 0.09 ± 0.15 0.136
FA(µ) 0.07 ± 0.03 0.12 ± 0.09 < 0.151

the largest entropy eigenvalue) is aligned approximately orthogonal to v1(D) and shows strong

geometrical coherence, albeit modulated by a small range of values of FA(H), which did not

exceed ∼ 0.1 in the most anisotropic ROIs.

5.2.2 Fixed q experiment

For visual comparison in the fixed q experiment, the trace maps of the MLF parameters,

entropy of the diffusion decay as modeled by the MLF (HMLF ), entropy of the diffusion decay

as modeled by the mono-exponential (Hmono) are shown for a 25 and 90 day sample in Figure 20

and Figure 21, respectively. As shown in Table VII, from the adolescent to the adult neural
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TABLE VI

MEAN AND STD (SIGNIFICANT DIFFERENCE IN MEANS INDICATED BY P ) FOR
THE MLF AND ENTROPY PARAMETERS IN THE COR ROI OF (3) HEALTHY 25 DAY

AND (3) 90 DAY RATS FOR THE FIXED ∆ EXPERIMENT.
25 Day 90 Day p

Tr(α) 0.83 ± 0.01 0.87 ± 0.02 < 0.001
Tr(β) 1.92 ± 0.03 1.95 ± 0.03 < 0.001
Tr(H) 0.78 ± 0.01 0.76 ± 0.02 < 0.001
Tr(C) 0.86 ± 0.01 0.89 ± 0.02 < 0.001
Tr(D) (×10−3mm2/s) 0.38 ± 0.01 0.41 ± 0.03 < 0.001
Tr(τ ) (ms) 17.92 ± 0.23 17.55 ± 0.28 < 0.001
Tr(µ) (µm) 2.36 ± 0.05 2.38 ± 0.13 0.337
FA(α) 0.06 ± 0.02 0.07 ± 0.02 0.656
FA(β) 0.06 ± 0.02 0.04 ± 0.03 0.009
FA(H) 0.05 ± 0.01 0.04 ± 0.01 < 0.001
FA(C) 0.06 ± 0.03 0.07 ± 0.04 0.128
FA(D) 0.21 ± 0.04 0.19 ± 0.06 0.100
FA(τ ) 0.06 ± 0.02 0.07 ± 0.03 0.523
FA(µ) 0.07 ± 0.02 0.12 ± 0.08 < 0.391

tissue in the CCC, the trace values for α, C and D had significant decrease, which is reflected in

an increase in the entropy, H. The mean values of FA(D) increased (∼ 35%) with age, however

there is considerable overlap in the standard deviation between the groups. In general, for all

of the ROIs, the magnitude of FA of the anomalous parameters (α, β, C) was reduced in the

fixed q experiment compared to the fixed ∆ experiment. Interestingly, though, is that FA(τ) in

the fixed q experiment was significantly higher than when estimated in the fixed ∆ experiment.

For, the CCC, the mean of FA(τ) increased from ∼ 0.50 to ∼ 0.75 with age, however there is

considerable overlap in the standard deviations, just as is the case with FA(D). The magnitude
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of FA(H) did not change between the fixed ∆ and fixed q experiments. There was no change

in FA(H) between the two groups. It should be noted that within each group, FA(D) was the

most anisotropic parameter.

In the LCC (Table VIII), again, the trace values for α, C and D had significant decrease,

which is reflected in an increase in the entropy, Tr(H) from the 25 day to the 90 day sam-

ples. In general, fractional anisotropy estimations of the MLF and entropy parameters did not

distinguish between the adolescent and adult groups, however, there was a small increase in

FA(α) associated with adult neural tissue.

TABLE VII

MEAN AND STD (SIGNIFICANT DIFFERENCE IN MEANS INDICATED BY P ) FOR
THE MLF AND ENTROPY PARAMETERS IN THE CCC ROI OF (3) HEALTHY 25 DAY

AND (3) 90 DAY RATS FOR THE FIXED Q EXPERIMENT.
25 Day 90 Day p

Tr(α) 0.88 ± 0.02 0.84 ± 0.02 < 0.001
Tr(β) 1.96 ± 0.05 1.97 ± 0.03 0.267
Tr(H) 0.85 ± 0.01 0.89 ± 0.02 < 0.001
Tr(C) 0.90 ± 0.02 0.85 ± 0.02 < 0.001
Tr(D) (×10−3mm2/s) 0.22 ± 0.03 0.18 ± 0.04 < 0.001
Tr(τ ) (ms) 11.98 ± 5.21 23.51 ± 11.92 < 0.001
Tr(µ) (µm) 2.12 ± 0.02 2.23 ± 0.32 0.110
FA(α) 0.06 ± 0.02 0.09 ± 0.04 0.002
FA(β) 0.05 ± 0.04 0.03 ± 0.04 0.400
FA(H) 0.06 ± 0.02 0.06 ± 0.02 0.398
FA(C) 0.08 ± 0.04 0.11 ± 0.05 0.073
FA(D) 0.55 ± 0.18 0.75 ± 0.10 0.001
FA(τ ) 0.49 ± 0.35 0.75 ± 0.33 0.030
FA(µ) 0.02 ± 0.01 0.11 ± 0.10 0.024
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TABLE VIII

MEAN AND STD (SIGNIFICANT DIFFERENCE IN MEANS INDICATED BY P ) FOR
THE MLF AND ENTROPY PARAMETERS IN THE LCC ROI OF (3) HEALTHY 25 DAY

AND (3) 90 DAY RATS FOR THE FIXED Q EXPERIMENT.
25 Day 90 Day p

Tr(α) 0.89 ± 0.01 0.83 ± 0.02 < 0.001
Tr(β) 1.97 ± 0.03 1.99 ± 0.02 0.014
Tr(H) 0.80 ± 0.01 0.84 ± 0.02 < 0.001
Tr(C) 0.90 ± 0.02 0.84 ± 0.02 < 0.001
Tr(D) (×10−3mm2/s) 0.29 ± 0.02 0.25 ± 0.04 < 0.001
Tr(τ ) (ms) 8.44 ± 0.63 11.37 ± 3.65 < 0.001
Tr(µ) (µm) 2.11 ± 0.01 2.12 ± 0.02 0.126
FA(α) 0.04 ± 0.01 0.06 ± 0.02 < 0.001
FA(β) 0.04 ± 0.03 0.01 ± 0.03 0.017
FA(H) 0.07 ± 0.01 0.06 ± 0.01 0.021
FA(C) 0.07 ± 0.04 0.06 ± 0.03 0.779
FA(D) 0.40 ± 0.11 0.38 ± 0.09 0.582
FA(τ ) 0.24 ± 0.15 0.34 ± 0.23 0.064
FA(µ) 0.02 ± 0.01 0.02 ± 0.01 0.685

Surprisingly, for the fixed q experiment, the Str and the Cor ROIs of the 25 day group showed

more anomalous diffusion features compared to the 90 day group (Table IX and Table X), which

is similar to findings in the fixed ∆ experiment. The trace values of α, C increased from the 25

day to the 90 day group, which was reflected as a decrease in Tr(H). The anisotropic features of

the MLF and entropy parameters did not change between the adolescent and adult samples, and

should be highlighted the change in Tr(D) and FA(D) were not able to consistently distinguish

between the 25 and 90 groups.
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TABLE IX

MEAN AND STD (SIGNIFICANT DIFFERENCE IN MEANS INDICATED BY P ) FOR
THE MLF AND ENTROPY PARAMETERS IN THE STR ROI OF (3) HEALTHY 25 DAY

AND (3) 90 DAY RATS FOR THE FIXED Q EXPERIMENT.
25 Day 90 Day p

Tr(α) 0.92 ± 0.01 0.94 ± 0.01 < 0.001
Tr(β) 1.98 ± 0.02 1.95 ± 0.06 0.004
Tr(H) 0.76 ± 0.01 0.74 ± 0.01 < 0.001
Tr(C) 0.93 ± 0.02 0.97 ± 0.05 < 0.001
Tr(D) (×10−3mm2/s) 0.33 ± 0.02 0.34 ± 0.02 0.005
Tr(τ ) (ms) 8.05 ± 0.95 7.49 ± 1.89 0.102
Tr(µ) (µm) 2.09 ± 0.02 2.07 ± 0.03 < 0.001
FA(α) 0.03 ± 0.01 0.02 ± 0.01 0.022
FA(β) 0.02 ± 0.01 0.05 ± 0.04 0.008
FA(H) 0.04 ± 0.01 0.03 ± 0.01 0.049
FA(C) 0.05 ± 0.04 0.10 ± 0.08 0.007
FA(D) 0.22 ± 0.06 0.20 ± 0.05 0.237
FA(τ ) 0.22 ± 0.14 0.29 ± 0.23 0.093
FA(µ) 0.02 ± 0.01 0.02 ± 0.01 0.605

Figure 22 and Figure 23 show the DEC and FA maps for an axial slice through a 25

day and 90 day sample, respectively. In general, for the fixed q experiment, the DEC and

FA maps show less contrast and anisotropy compared to the fixed ∆ experiment. In the CCC,

although modulated by small range of FA(α) (< 0.1), v3(α) (i.e., the eigenvector associated with

smallest eigenvalue) are approximately aligned parallel to v1(D) (i.e., the eigenvector associated

with the principal direction of diffusivity). This relationship appears to become stronger in

coherence going from the 25 day to the 90 day groups. Although this geometrical relationship

is different from that which was found for v3(α) and v1(D) in the fixed ∆ experiment, it should
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be considered that the dynamic range in α estimations was small. Additionally, the DEC and

FA maps for β and C show little to no contrast with tissue structure. In comparison, it is

clear that v1(H) (i.e. the eigenvector associated with the largest entropy eigenvalue) is aligned

approximately orthogonal to v1(D) and shows strong geometrical coherence, albeit modulated

by a small range of values of FA(H), which did not exceed ∼ 0.1 in the most anisotropic ROIs.

TABLE X

MEAN AND STD (SIGNIFICANT DIFFERENCE IN MEANS INDICATED BY P ) FOR
THE MLF AND ENTROPY PARAMETERS IN THE COR ROI OF (3) HEALTHY 25 DAY

AND (3) 90 DAY RATS FOR THE FIXED Q EXPERIMENT.
25 Day 90 Day p

Tr(α) 0.92 ± 0.01 0.94 ± 0.01 < 0.001
Tr(β) 1.97 ± 0.04 1.96 ± 0.04 0.134
Tr(H) 0.74 ± 0.01 0.73 ± 0.01 < 0.001
Tr(C) 0.94 ± 0.03 0.96 ± 0.03 0.018
Tr(D) (×10−3mm2/s) 0.37 ± 0.02 0.37 ± 0.03 0.759
Tr(τ ) (ms) 7.17 ± 0.49 6.78 ± 0.67 0.013
Tr(µ) (µm) 2.09 ± 0.02 2.07 ± 0.02 < 0.001
FA(α) 0.03 ± 0.01 0.02 ± 0.01 0.022
FA(β) 0.04 ± 0.03 0.05 ± 0.04 0.509
FA(H) 0.05 ± 0.02 0.04 ± 0.01 0.001
FA(C) 0.08 ± 0.07 0.08 ± 0.06 0.952
FA(D) 0.18 ± 0.03 0.21 ± 0.04 0.015
FA(τ ) 0.20 ± 0.11 0.24 ± 0.12 0.182
FA(µ) 0.02 ± 0.01 0.02 ± 0.01 0.382
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In the context of CTRW theory, the MLF, and entropy, diffusion in the WM in the adult

neural tissue compared to the WM in the adolescent neural tissue, both for the fixed ∆ and fixed

q experiments. Additionally, it appears that the anomalous measurements are more anisotropic

in the adult neural tissue, particularly for the CC, as described by FA(α) and FA(C) (Table III

and Table IV) for the fixed ∆ experiment. In general, compared to the fixed q experiment, the

fixed ∆ experiment produced more anomalous diffusion features as represented by lower α, β

values and higher H values for the ROIs. This finding is reasonable as the fixed ∆ experiment

samples numerous increasing q values (for higher spatial resolution) to acquire the signal decay,

whereas the fixed q experiment samples numerous increasing ∆ values to acquire the signal

decay. At long ∆ values, there is more time for the water particles to interact with the diffusion

environment and spatial averaging occurs, which is reflected in the Tr(β) maps in both Figure 20

and Figure 21 where β → 2, indicating a Gaussian statistics on the jump length distributions.

Whereas, in the fixed ∆ experiment, from the q-space perspective, the diffusion propagator

is estimated from numerous measurements in the inverse-spatial (Fourier) domain such that

the resolution of the experiment is increasingly magnified and, perhaps is a more accurate

measurement of the actual diffusion dynamics, following (4; 49).

The surprising finding that the deep GM and cortical tissue was more anomalous and sub-

diffusive in the 25 day group compared to the 90 day group was verified both in the fixed ∆ and

fixed q experiments. Lower values for α and C while higher values of H indicate that the Str

and Cor are more heterogeneous at a young age and, upon adulthood, these structures become

more homogeneous. This would indicate that healthy aging in neural tissue is not only limited
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to increased anisotropy and heterogeneity in the WM, but also a decrease in heterogeneity in

the GM, such that complexity is exchanged from the GM to the WM. A possible biological

mechanism for this could be the migration of astrocytes, oligodendrocytes, glia in GM to the

WM during neural development, contributing to increased heterogeneity.

With regard to the directional orientation of the MLF parameters, it is clear, particularly

with α and C, that the eigenvectors associated with the smallest eigenvalues are not aligned

with the principal direction of diffusivity as given by D. In the fixed ∆ experiment, the most

anomalous diffusion was found to be perpendicular to the orientation of the WM fiber tract

bundle direction, that is, in the direction for which the highest entropy estimations were also

found. From an experimental setup perspective, this relationship is reasonable to intuit as the

fixed ∆ experiment probes an increasingly greater spatial resolution as the diffusion encoding

gradient strengths are amplified, such that the appearance of tissue microstructure orthogonal

to the principal WM fiber direction is more sub-diffusive due to the hinderances of the cell walls,

membranes, and wrapped layers of myelinated sheathing. In contrast, for the direction parallel

to the fiber orientation, although the diffusion process is anomalous, it is not as anomalous as

the perpendicular case due to the less hindered diffusion at lower spatial resolutions. For the

fixed q experiment, albeit scaled be a small dynamic range of FA (i.e., < 0.1)and less directional

coherence, the smallest estimations for α appear to align parallel to the principal direction of

diffusivity. Though this relationship may, at first, appear counterintuitive, the experimental

setup of the fixed q, variable ∆ experiment provides insight. That is, as the values for the mixing

time, ∆, are increased in the b-value array. Perpendicular to the fiber direction, the distribution
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of distances traveled by the water particles is more normal, as on one spatial resolution (i.e.

q-value), the hinderances are homogenous with respect to time. Parallel to the fiber direction,

the distribution of distances traveled by the water particles is less normal, as on one spatial

resolution, the hinderances are more heterogeneous when considering that some water particles

are trapped and some are free to jump as is indicated by the high resolution micrographs of

the corpus callosum in (45).

It is clear, regardless of the experimental setup, that D is the most anisotropic diffusion

parameter, however it is not necessarily the most sensitive indicator of tissue type or change in

tissue microstructure in healthy aging. The anomalous measurements of α, β, and C showed

anisotropic characteristics that were scaled on a smaller dynamic range, but provided better

separation of the WM tissue structural morphology, particularly in the corpus callosum. How-

ever, it should be highlighted that the trace values of the MLF parameters performed well in

being able to distinguish between tissue types and age groups. Hence, in order to classify tissue

microstructure, it may not be necessary to build anisotropic tensor constructs, and, perhaps

one or three directions are sufficient to determine an isotropic estimation anomalous diffusion in

an ROI. Regardless, it is clear in Figure 16, Figure 17, Figure 20, and Figure 21, that additional

tissue information is shed when comparing the decay signal captured by the MLF (Tr(H)MLF )

in comparison to a mono-exponential decay (Tr(H)mono).

5.3 Conclusions

In this study, the one-dimensional anomalous diffusion model represented by the MLF and

entropy were extended to a three-dimensional case utilizing tensor constructs. This analysis
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was performed on healthy adolescent and adult rat tissue to investigate the potential changes

in isotropic and anisotropic features of anomalous diffusion in both WM and GM. Fixed ∆ and

fixed q experiments were performed and it was found that, in general, the fixed ∆ protocol

produced more anisotropic and anomalous measurements for the same ROIs compared to the

fixed q experiment. For the fixed ∆ protocol, α, β, and C were anisotropic and more sensitive to

healthy aging than the classical diffusion coefficient, D. Additionally, the orientation of these

anomalous measures were found to be perpendicular to the principal direction of diffusivity.

The entropy, H, provided excellent tissue contrast, ROI separation, age group segmentation,

and was in agreement with the directional dependence of the MLF parameters. For the WM,

the tissue heterogeneity increased with age marked as a decrease in the MLF parameters and an

increase in entropy. Conversely, and surprisingly, for the GM, the tissue heterogeneity decreased

with age as marked as an increase in MLF parameters and a decrease in entropy. These results

indicate that the multi-b-value data acquisition strategy and anomalous diffusion modeling are

promising techniques to produce biomarkers for neural tissue microstructure in vivo for humans

on a clinical scanner, which is addressed in the following chapter.
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Figure 18. DEC and FA maps of a healthy 25 day old brain in the fixed ∆ experiment.
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Figure 19. DEC and FA maps of a healthy 90 day old brain in the fixed ∆ experiment.



63

Figure 20. Trace maps of a healthy 25 day old brain in the fixed q experiment.
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Figure 21. Trace maps of a healthy 90 day old brain in the fixed q experiment.
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Figure 22. DEC and FA maps of a healthy 25 day old brain in the fixed q experiment.
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Figure 23. DEC and FA maps of a healthy 90 day old brain in the fixed q experiment.



CHAPTER 6

CLINICAL DIFFUSION TENSOR IMAGING OF RANDOM WALKS

AND ENTROPY IN HEALTHY HUMAN NEURAL TISSUE

6.1 Methods

Moving from the high field imaging spectrometer to the clinical MRI scanner at 3T, SE-

EPI diffusion weighted protocols were applied to healthy volunteers at SGUL (London, UK)

with multi-b-value acquisitions up to 5,000 s/mm2 and, in addition, HCP data were utilized

to demonstrate feasibility of the MLF and entropy parameters to provide tissue contrast at

multi-b−value acquisitions up to 3,000 s/mm2.

At SGUL, for the 12 direction low resolution aDTI protocol, images were acquired from

nine healthy young male subjects (30 ± 3 years) on a 3T Philips Achieva Dual TX MR scan-

ning system (Philips Healthcare, Best, Netherlands) at SGUL equipped with gradients up to

80mTm−1 using a 32 channel head coil. Written consent was obtained from each subject prior

to the procedure. For each subject, T1-weighted 3D volume images were acquired using a TFE

sequence (TE=3700ms, TR=8200ms, flip angle 8◦, 160 sagittal slices, FOV 240mm×240mm

giving isotropic 1mm3 voxel resolution). DWIs were acquired using a diffusion-sensitized SE-

EPI sequence using the enhanced gradient mode (80mTm−1 at a slew rate of 100mTm−1ms−1)

after a second order shim. Fat suppression was achieved using SPIR and SSGR. Scan pa-

rameters were as follows: TE = 82ms, TR = 10500ms, δ = 27.5ms, ∆ = 40.2ms, FOV

67
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210mm×210mm with 33 3mm thick slices giving 3mm3 isotropic voxel resolution, SENSE

factor 2 and half scan factor 0.745. DWIs were acquired in 12 non-collinear directions at 7

b-values The 12 gradient directions were [-0.049091 -0.911723 0.407862; -0.206148 0.498342

0.842115; 0.738888 -0.614058 0.277448; 0.468899 0.790365 0.394281; -0.956810 -0.102862 -

0.271907; -0.444925 -0.283931 0.849367; -0.928648 -0.068217 0.364635; 0.175416 -0.967668 -

0.181237; 0.534255 0.226736 0.814348; 0.730370 -0.676931 -0.091239; 0.730584 -0.580541 -

0.359469; 0.322146 -0.471761 0.820770]. The b-values were separated approximately log-linearly

with greater averaging at higher b-values to increase signal to noise ratio (SNR). b-value(number

of acquisitions): 0(8), 90(2), 200(2), 450(2), 1000(2), 2250(4), 5000(8).

Additionally, at SGUL, for the 3 direction (Tr) high resolution aDWI protocol, images were

acquired from one healthy young male subject (33 years) on a 3T Philips Achieva Dual TX MR

scanning system (Philips Healthcare, Best, Netherlands) at SGUL equipped with gradients up

to 80mTm−1 using a 32 channel head coil. Written consent was obtained from the subject prior

to the procedure. Scan parameters were as follows: TE = 78ms, TR = 8000ms, δ = 18.5ms,

∆ = 43.6ms, FOV 140mm×140mm for a 5mm thick slice giving 1×1×5mm3 voxel resolution

which were reconstructed to 0.6×0.6×5mm3. DWIs were acquired in 3 orthogonal directions at

10 different b-values with greater averaging at higher b-values to increase SNR. b-value(number

of acquisitions): 0(2), 150(2), 300(2), 450(2), 600(4), 750(6), 1000(4), 2000(4), 3000(4), 3500(8).

Finally, HCP dMRI and T1 data were utilized from eight subjects using the protocol de-

scribed in(50). The T1 data were collected with the following parameters: TR=2400 ms,

TE=2.14 ms, TI=1000 ms, Flip Angle = 8 deg, FOV=224×224, voxel size = 0.7 mm isotropic.
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The SE-EPI diffusion data were collected with the following parameters: TR=5520 ms, TE

89.5 ms, flip angle 78 deg, refocusing flip angle 160 deg, FOV=210x180 mm (RO x PE), ma-

trix=168x144 (RO x PE), slice thickness=1.25 mm, 111 slices, 1.25 mm isotropic voxels, Multi-

band factor 3 Echo spacing=0.78 ms, BW=1488 Hz/Px, Phase partial Fourier=6/8, b-values

1000, 2000, and 3000 s/mm2.

6.2 Data Processing

All low and high resolution DWIs acquired at SGUL were corrected for subject motion and

eddy current distortion in SPM12 (Wellcome Department of Cognitive Neurology, Institute of

Neurology, London, UK, http://www.fil.ion.ac.uk/spm12) using the technique described in

(19).

In the low resolution SGUL data set, for each diffusion weighted gradient experiment, the

data were fit to the 1D MLF and entropy parameters as described in (Equation 2.13) and

(Equation 2.16). In the high resolution SGUL data set, the Tr data were fit to the 1D MLF

and entropy parameters as described in (Equation 2.13) and (Equation 2.16). The MLF pa-

rameters were estimated using the same methodology described in Chapter 4 and Appendix

A. After the MLF parameters were determined, the characteristic decay curve for p(q, ∆̄) was

constructed using N=1,500 increments arrayed over variable q or variable ∆̄ for b-values be-

tween 0 and 25,000 s/mm2. Then, the entropy (defined in (Equation 2.16)) in the diffusion

process, as modeled by the MLF, was computed as H(q, ∆̄)MLF . For comparison, using the

mono-exponential model (Dm) in (Equation 2.12), a characteristic decay curve of N = 1,500

increments arrayed over b-values between 0 and 10,000 s/mm2 was constructed. Then, for
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the SGUL low resolution data, using (Equation 2.17), Gaussian ellipsoids were fitted to ob-

tain tensor maps for each parameter (i.e. D, α, β, τ , µ, H and C) and were diagonalized

to obtain eigenvalues and eigenvectors. Rotationally invariant isotropic (Tr) and anisotropic

(FA) maps were computed for each MLF parameter. Eigenvector orientation was visualized

using DEC which colors eigenvector orientations red in the sinister-dexter direction, green in

the anterior-posterior direction and blue in the superior-inferior direction (48). Brightness of

the DEC parameter map was modulated by FA of the parameter.

As the scope of this study determine the feasibility of the MLF and entropy parameters

to identify tissue features through anomalous diffusion measurements, the HCP data is used

to compute high resolution isotropic MLF and entropy parameter maps and not investigate

anisotropic measures. Furthermore, based on the findings in Chapter 5 on the healthy adolescent

and adult neural tissue, the trace values performed well in distinguishing both tissue type as well

as age group. To convert the HCP data to a format that may be readily fitted to the MLF the

data was initially simplified from a multi b-value shell high angular resolution diffusion weighted

acquisition to multi b-value shell trace DWIs. Diffusion weighted tensors were computed for

each b-value shell (i.e. at b=1000, b=2000 and b=3000 s mm−2) using (Equation 2.17). Trace

DWIs were then computed by diagonalizing these tensors and computing the mean of the

eigenvalues. Additionally, trace DWIs were estimated at b=300, b=550 and b=800 s mm−2

in the mono-exponential regime of diffusion (assuming a mono-exponential decay) in order to

provide the necessary 6 b-value shell DWIs required for MLF fitting using (Equation 2.13).
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For comparison of MLF parameter estimates obtained from the low resolution aDTI dataset

and the HCP dataset ROIs were parcellated using FreeSurfer (https://surfer.nmr.mgh.harvard.edu/)

to process the T1-weighted volume images. ROIs were chosen to include the lateral ventricles

(i.e. CSF), cortical and sub-cortical gray matter and white matter anatomical locations. Mean,

standard deviation, median, lower and upper quartiles were computed for each ROI across each

dataset.

6.3 Results and Discussion

The trace values of MLF and entropy parameter maps showed, in general, exceptional

tissue contrast between CSF, cortical GM and WM regions in the low resolution aDTI and

HCP datasets (Figure 24, Table XI, Table XII). The diffusion coefficient maps for D had

values for the CSF values ∼ 3.0×10−3 mm2/s greater than cortical GM ∼ 0.9×10−3 mm2/s

and WM ∼ 0.8×10−3 mm2/s. Clear contrast was observed in α between the three tissue types

with values ∼ 1 in CSF (revealing a mono-exponential decay curve) and lower values in cortical

GM (∼ 0.8) and WM (∼ 0.7) indicating increased waiting times in WM compared to cortical

GM. Similar step length exponents, β were observed in CSF and GM regions which were closer

to 2 (i.e. indicating normal distribution) in the HCP data. Values for β were lower in white

matter (∼ 1.8)indicating shorter step lengths in white matter structure. The tissue contrast in

α and β maps is particularly apparent when histogram distributions are considered in terms of

the minimal overlap between quartiles in Table XI and Table XII for the ROIs.
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Figure 24. Tr maps of D1,2, α, β, τ , µ, and H for a single subject from the HCP dataset.
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TABLE XI

SGUL LOW RESOLUTION DATA RESULTS FOR THE CSF, CORTICAL GM, AND WM
ROIS.

CSF

Mean ± StD LQ Median UQ

Tr(D)(×10−3mm2/s) 3.01 ± 0.32 2.41 2.76 3.21
Tr(α) 0.88 ± 0.02 0.78 0.91 0.98
Tr(β) 1.86 ± 0.04 1.80 1.93 1.97
Tr(C) 0.94 ± 0.01 0.91 0.97 1.00
Tr(τ ) (ms) 31.6 ± 0.2 31.10 31.30 31.90
Tr(µ) (µm) 5.13 ± 0.03 5.07 5.18 5.24
Tr(H) 0.3 ± 0.02 0.24 0.27 0.33

Cortical GM

Mean ± StD LQ Median UQ

Tr(D)(×10−3mm2/s) 1.32 ± 0.09 0.86 1.10 1.48
Tr(α) 0.77 ± 0.01 0.70 0.76 0.83
Tr(β) 1.86 ± 0.02 1.84 1.91 1.95
Tr(C) 0.83 ± 0.01 0.75 0.82 0.90
Tr(τ ) (ms) 32.2 ± 0.1 31.30 32.10 32.90
Tr(µ) (µm) 5.09 ± 0.02 4.99 5.10 5.22
Tr(H) 0.58 ± 0.01 0.54 0.60 0.64

WM

Mean ± StD LQ Median UQ

Tr(D)(×10−3mm2/s) 0.94 ± 0.06 0.74 0.84 1.01
Tr(α) 0.69 ± 0.02 0.63 0.67 0.72
Tr(β) 1.78 ± 0.01 1.73 1.79 1.85
Tr(C) 0.78 ± 0.02 0.72 0.75 0.81
Tr(τ ) (ms) 32.7 ± 0.2 31.70 32.60 33.60
Tr(µ) (µm) 5.06 ± 0.03 4.93 5.05 5.18
Tr(H) 0.7 ± 0.01 0.68 0.72 0.75
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Images computed from the MLF parameters, such as C, and entropy, H maps also showed

exceptional tissue contrast. In particular, C ∼ 1 was found in CSF regions consistent with

Gaussian diffusion, whereas C < 1 was found in gray matter and white matter indicating a

sub-diffusive growth of the diffusion propagator. Furthermore, lower values of C were found

in white matter (∼ 0.78) than cortical gray matter (∼ 0.85) indicating a more sub-diffusive

dynamic in white matter than cortical gray matter. Entropy maps showed greatest quantified

and visible tissue contrast in comparison to other MLF parameter maps as shown by the lack

of overlap between quartiles. Lowest entropy was found in the CSF (H ∼ 0.3) with greater

values in cortical gray matter (H ∼ 0.6) and highest values in white matter (H ∼ 0.7) and were

consistent between datasets. As stated in the theory section, entropy measures the amount

of information present in the signal decay curve, and a greater entropy is related to a more

anomalous diffusion (i.e. greater deviation from Gaussian). This indicates that intuitively

white matter has greater tissue complexity than cortical gray matter with CSF exhibiting the

least complexity.

ROI results for lateral ventricle CSF, cortical GM, deep GM and WM are shown in Figure 25,

Figure 26, and Figure 27. Figure 25 shows differentiation between the location of ROIs in (α,β)

space with CSF represented by the most Gaussian decay curves. Moving from the cortex

to deep GM structures (i.e., hippocampus, caudate, lentiform nucleus, thalamus) and to the

WM, α and β exhibited progressively decreasing anomalous exponents (and increasing sub-

diffusion). WM exponents were lowest and overlapped with thalamic ROI measures obtained

for the step length distribution, β. Greater separation of ROIs was apparent in the graph
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of entropy, H, against diffusion characteristic, C (Figure 26) where error bars show more

robust characterization of tissue diffusion properties than Figure 25. In contrast, Figure 27

shows diffusion coefficient, D, against C and provides a less reliable separation of ROIs with

overlapping error bars between the cortex and amygdala and the thalamus and WM regions.

Interestingly, Figure 28 shows aggregate entropy values computed for the ROIs with respect to

the estimated values forα and β in those pixels. Interestingly, Figure 28.c displays the entropy

surface for the thalamus values and displays 3 distinct peaks that indicate differences in α,

β and H in thalamic nuclei. Furthermore, it is clear that the ROIs presented in Figure 28

demonstrate that α, β, and H are able to describe a spectrum to distinguish tissue complexity

through anomalous diffusion measurements. This analysis of parameter relationships to an ROI

can be extended by performing a Spearman’s correlation analysis on all of the fitted results of

(Equation 2.13) and (Equation 2.16) as shown in Table XIII, Table XIV, and Table XV (51).

As these tables show, each ROI has different fingerprint of parameter correlations to provide

a general description of the type of diffusion measured in the tissue microstructure. And, to

further elucidate the value of these anomalous diffusion measurement techniques, visible tissue

contrast in the thalamus and other anatomical structures is clearly visible in MLF parameter

maps shows for the high spatial resolution aDWI dataset obtained on a single, healthy subject

(Figure 29).

Anisotropic MLF parameter maps and tissue contrast results computed in the low spatial

resolution aDTI dataset are shown in Figure 30 and Table XVI. With regard to the directional

orientation of the MLF parameters, it is clear, particularly with H that the eigenvector asso-



76

Figure 25. α, β scatter plot for ROIs in the HCP dataset with 2α/β = 1 line.

ciated with the largest eigenvalue is not aligned with the principal direction of diffusivity as

given by D. With regard to α, β, and C it is apparent, though with markedly less coherence,

that the eigenvectors associated with the smallest eigenvalues also are not aligned with the

principal direction of diffusivity. These results indicate that, in general, the most anomalous

diffusion was found to be perpendicular to the orientation of the WM fiber tract bundle direc-

tion, that is, in the direction for which the highest entropy estimations were found. However,

as was determined in Chapter 5, it is clear that D is the most anisotropic diffusion parameter

as can be seen by the scale of the FA maps in Figure 30, where FA(D) < 0.7, FA(H) < 0.1,
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Figure 26. H, C scatter plot for ROIs in the HCP dataset, where C = 2α/β.

FA(α) < 0.1, FA(β) < 0.1, FA(C) < 0.1. In comparison to the anisotropic results on the high

field imaging spectrometer for the rat brain shown in Figure 19, it is encouraging to find that

similar parameter orientations are found on a clinical MRI system to image healthy human

neural tissue. It appears that the study in Chapter 5 found that α and C are more anisotropic

than has been determined in Chapter 6, however, this behavior can be explained by the exper-

imental setup at 17.6T, sampling b-values up to 25,000 s/mm2, whereas the results reported

here sample b-values only up to 25,000 s/mm2 which is limited in estimating the order of the

power-law decay which is intimately associated with α.
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Figure 27. D, C scatter plot for ROIs in the HCP dataset, where C = 2α/β.

6.4 Conclusions

This study demonstrated the viability of performing anomalous diffusion measurements

on a clinical scanner to determine isotropic (Tr) and anisotropic (FA) estimations of tissue

microstructure characteristics. The CTRW parameters in the form of the MLF provided new

tissue contrast to classify ROIs in the CSF, cortical GM, deep GM, and WM. Additionally, the

entropy in the diffusion process was able to provide clear separation of tissue types as an overall

measure of statistical uncertainty in the characteristic function (i.e. spatial Fourier transform)
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of the probability distribution for displacement. HCP data sets were also utilized to build

MLF parameter maps utilizing only three b − values (i.e. 1000, 2000, 3000 s/mm2) and the

results were constant for the low and high resolution acquisitions which collected six and ten

b-values, respectively. Furthermore, the directional dependence of the MLF parameters and

entropy indicate that the most anomalous behavior is not aligned with the principal direction

of diffusivity, but rather appears to be aligned in a perpendicular fashion. Finally, with new

and different contrast (to that of the diffusion coefficient) made available by these clinical in

vivo analyses to classify healthy neural tissue structure, the MLF and entropy parameters are

also potential clinical in vivo biomarkers for neurodegeneration.



80

TABLE XII

HCP DATA RESULTS FOR THE CSF, CORTICAL GM, AND WM ROIS.
CSF

Mean ± StD LQ Median UQ

Tr(D)(×10−3mm2/s) 2.49 ± 0.09 2.16 2.57 2.86
Tr(α) 0.89 ± 0.03 0.85 0.93 0.96
Tr(β) 1.97 ± 0.01 1.98 1.98 1.98
Tr(C) 0.9 ± 0.03 0.86 0.94 0.97
Tr(τ ) (ms) 39.1 ± 0.3 39.20 39.40 39.50
Tr(µ) (µm) 5.43 ± 0.03 5.38 5.40 5.43
Tr(H) 0.33 ± 0.02 0.27 0.30 0.38

Cortical GM

Mean ± StD LQ Median UQ

Tr(D)(×10−3mm2/s) 0.91 ± 0.02 0.74 0.82 0.99
Tr(α) 0.84 ± 0.01 0.80 0.84 0.89
Tr(β) 1.96 ± 0.01 1.95 1.98 1.98
Tr(C) 0.86 ± 0.01 0.81 0.86 0.90
Tr(τ ) (ms) 39.7 ± 0.1 39.60 39.60 39.80
Tr(µ) (µm) 5.37 ± 0.01 5.34 5.37 5.38
Tr(H) 0.61 ± 0.01 0.58 0.62 0.64

WM

Mean ± StD LQ Median UQ

Tr(D)(×10−3mm2/s) 0.74 ± 0.02 0.67 0.72 0.77
Tr(α) 0.72 ± 0.01 0.68 0.71 0.76
Tr(β) 1.87 ± 0.03 1.80 1.87 1.93
Tr(C) 0.78 ± 0.01 0.74 0.77 0.80
Tr(τ ) (ms) 40.1 ± 0.1 39.90 40.10 40.40
Tr(µ) (µm) 5.29 ± 0.01 5.25 5.29 5.33
Tr(H) 0.71 ± 0.01 0.69 0.72 0.74
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Figure 28. For eight HCP subjects, composite entropy surfaces with respect to (α,β) phase
space for ROIs in the (a) cerebrospinal fluid, (b) cortical gray matter, (c) white matter and

(d) thalamus.
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Figure 29. High resolution trace maps of α, β and H obtained from a single subject are shown.
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TABLE XIII

SPEARMAN’S CORRELATIONS OF THE MLF AND ENTROPY PARAMETERS IN THE
CSF

Tr(D) Tr(α) Tr(β) Tr(C) Tr(τ) Tr(µ) Tr(H)

Tr(D) * 0.72 0.64 0.65 0.50 -0.49 -0.98
Tr(α) * * 0.71 0.96 0.04 -0.02 -0.81
Tr(β) * * * 0.54 0.34 -0.34 -0.70
Tr(C) * * * * -0.10 0.12 -0.74
Tr(τ) * * * * * -0.99 -0.45
Tr(µ) * * * * * * 0.44
Tr(H) * * * * * * *

TABLE XIV

SPEARMAN’S CORRELATIONS OF THE MLF AND ENTROPY PARAMETERS IN THE
CORTICAL GM.

Tr(D) Tr(α) Tr(β) Tr(C) Tr(τ) Tr(µ) Tr(H)

Tr(D) * -0.13 0.23 -0.22 0.73 -0.73 -0.87
Tr(α) * * 0.50 0.95 0.05 -0.08 -0.27
Tr(β) * * * 0.26 0.48 -0.48 -0.47
Tr(C) * * * * -0.10 0.06 -0.16
Tr(τ) * * * * * -0.99 -0.77
Tr(µ) * * * * * * 0.79
Tr(H) * * * * * * *
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TABLE XV

SPEARMAN’S CORRELATIONS OF THE MLF AND ENTROPY PARAMETERS IN THE
WM.

Tr(D) Tr(α) Tr(β) Tr(C) Tr(τ) Tr(µ) Tr(H)

Tr(D) * 0.29 0.46 0.09 0.69 -0.71 -0.79
Tr(α) * * 0.80 0.84 0.61 -0.65 -0.76
Tr(β) * * * 0.42 0.83 -0.82 -0.83
Tr(C) * * * * 0.25 -0.33 -0.48
Tr(τ) * * * * * -0.98 -0.88
Tr(µ) * * * * * * 0.90
Tr(H) * * * * * * *

Figure 30. DEC and FA maps for the normalized composite image of eight healthy volunteers.
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TABLE XVI

RESULTS FOR ANISOTROPY OF THE MLF AND ENTROPY PARAMETERS USING
THE LOW RESOLUTION (3 MM ISOTROPIC, 12-DIRECTIONS, B-VALUES UP TO

5,000 S/MM2) ACQUIRED AT SGUL
CSF Cortical GM WM

FA(D) 0.18 ± 0.02 0.27 ± 0.02 0.59 ± 0.02
FA(α) 0.11 ± 0.01 0.11 ± 0.01 0.15 ± 0.02
FA(β) 0.18 ± 0.02 0.14 ± 0.01 0.24 ± 0.01
FA(C) 0.16 ± 0.01 0.14 ± 0.02 0.18 ± 0.02
FA(τ ) 0.05 ± 0.01 0.04 ± 0.00 0.05 ± 0.01
FA(µ) 0.04 ± 0.00 0.03 ± 0.00 0.05 ± 0.00
FA(H) 0.08 ± 0.01 0.08 ± 0.00 0.17 ± 0.01



CHAPTER 7

CONCLUSIONS & FUTURE WORK

In the course of this project, the following key points have been established:

1. Chapter 2 & Chapter 3. As measured by the entropy formalism, systems described by

fractional order derivatives contain more information than do systems described by integer

order derivatives. From this perspective, measurements of anomalous diffusion in biologi-

cal tissue can infer an estimation of structural complexity (i.e., heterogeneity, tortuousity)

through fractional powers (α and β) and entropy (H).

2. Chapter 2 & Chapter 4. The MLF represents the characteristic function of the pdf and is

the closed form solution to the generalized diffusion equation, which encapsulates the four

special classes of diffusion: Gaussian diffusion for α = 1 and β = 2 (Brownian motion),

time-fractional sub-diffusion for α < 1 and β = 2, space-fractional super-diffusion α = 1

and β < 2, time- and space-fractional anomalous diffusion for α < 1 and β < 2. Diffusion

measurements performed on healthy neural tissue demonstrated the data conformed to

either Gaussian, time-fractional, or time- and space-fractional diffusion. The data did

not indicate a mode of super-diffusion, which would have implied a stretched exponential

formalism (i.e. exp(−D1,βq
β∆̄)). Furthermore, the composite exponent for the MSD of

the diffusion propagator indicate that all ROIs in the WM, GM, and CSF were either sub

diffusive or Gaussian, that is, 2α/β = C ≤ 1.

86
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3. Chapter 4. Fixed ∆ and fixed q protocols produced different measured diffusion dynamics

for the same neural tissue, indicating that the values chosen for pulse sequence param-

eters ∆, δ, and q are crucial in order to extract the most information about the tissue

microstructure. In general, the fixed ∆ protocols provided better tissue contrast compared

to the fixed q protocols. Within the fixed ∆ protocols, the acquisition that minimized

the mixing time and maximized the range of q-values sampled produced the best tissue

contrast.

4. Chapter 5. Anisotropic investigations of the MLF and entropy parameters demonstrated

that there is a directional dependence of α, β, C, and H in the WM, which is particularly

coherent when performing a fixed ∆ protocol. The orientation of the eigenvector associ-

ated with the smallest α, β, C eigenvalues and the eigenvector associated with largest H

are not aligned with the principal direction of diffusivity (as determined by D). Rather,

the directions appear to be orthogonal to the eigenvector associated with the largest D.

However, the anisotropy in the MLF and entropy measures are modulated by signifi-

cantly smaller magnitudes of FA, compared to D. In the fixed q experiment, the MLF

parameters are more isotropic compared to the fixed ∆ experiment.

5. Chapter 5. The MLF and entropy parameters were able to provide additional information

to the diffusion coefficient in order to characterize ROIs in healthy adolescent and adult

neural tissue. Whereas FA(D) showed a moderate increase in the CCC, FA(α), and

FA(C) increased with greater separation for the ROI, indicating that the shape of the



88

tail on the decay curve–which is described by α and β–may be a more effective indicator

of morphology in tissue microstructure than D–indicative of the initial decay.

6. Chapter 5. Although the MLF and entropy parameters demonstrated anisotropic features,

the trace values provided excellent contrast in both WM and GM as well as between the

young and adult groups. This finding indicates that an isotropic, or even a one dimensional

DWI acquisition protocol has the capability to capture tissues microstructure features. In

general, for the WM, the diffusion became more anomalous as age increased. Surprisingly,

in contrast, for the GM, the diffusion became less anomalous as age increased.

7. Chapter 6. The MLF and entropy analyses of anomalous diffusion in neural tissue was

successfully extended from ex vivo studies of fixed rat brain tissue on a high field imaging

spectrometer to in vivo studies of human volunteers on a clinical MRI system. In general,

the clinical results for the orientation of the anisotropic measures were in agreement with

the results reported in Chapter 5. That is, the direction of the most anomalous diffusion

is not aligned with the principal direction of diffusivity.

8. Chapter 6. At b-values arrayed up to only ∼3,000 s/mm2, the MLF is able to describe

anomalous diffusion to provide clear tissue contrast and separation of WM, cortical GM

and deep GM structures. The high resolution HCP dataset was utilized in order to

estimate trace values of α, β, and H in which GM ROIs such as the thalamus, lentiform

nucleus, caudate, hippocampus, and amygdala were clearly separated from each other.

Additionally, within a deep GM ROI, such as the thalamus, it is apparent that α, β,

and H are able to identify detailed anatomical features like the individual nuclei. These
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results indicate that high resolution acquisitions, anomalous diffusion measurements, and

analyses, when combined, serve as a valuable tool in pre-surgical planning.

Future work will focus applying these techniques and analyses to characterize microstruc-

ture in neurodegeneration. Additionally, histological validation will be performed in order to

visualize the tissue composition, within the resolution of one voxel that generates a signature of

α, β, and H. It should be emphasized that the analyses are only as good as the quality of the

DWI acquisition, and as such, continual improvement of the gradient coil amplitude capability

and main magnetic field strength (e.g., 7T full body clinical system) will only improve the

characterization of neural tissue with anomalous diffusion measurements.



APPENDICES

90



91

Appendix A

DATA PROCESSING

A.1 Raw signal corrections

For each voxel, the raw signal Sraw was Rician noise corrected with,

Src =
√
S2
raw − 2σ2

n, (A.1)

where Src is the Rician corrected signal and σ2
n is the variance in the background noise floor.

To account for T1 recovery effects at long diffusion times, Src was corrected with,

S = Srcexp(∆/T1), (A.2)

where T1 was computed using the variable TR data.

A.2 Fixed ∆ experiment µ and τ estimations

For the fixed ∆, variable q experiments, first an estimate of µ was made followed by an

estimate of τ . To estimate µ as µ̄, the signal decay was fit to,

S/S0 = exp[−(bDβ̄)β̄], (A.3)
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Appendix A (Continued)

where Dβ̄ is the apparent diffusion coefficient of an exponential function stretched in β̄. Thus,

it follows that a diffusion coefficient equivalency can be formulated as,

(Dβ̄)β̄ = Dm

( ∆̄

µ̄2

)1−β̄
(A.4)

to solve for µ̄,

µ̄ =
√

∆̄
[(Dβ̄)β̄

Dm

] 1
2(β̄−1)

, (A.5)

where the value for ∆ is known from the fixed ∆ experiment. Then, to estimate τ as τ̄ , the

signal decay was fit to,

S/S0 = exp
[
−Dᾱ

1

µ̄2
(bµ̄2)ᾱ

]
, (A.6)

where Dᾱ is the apparent diffusion coefficient of an exponential function stretched in ᾱ. Thus,

it follows that a diffusion coefficient equivalency can be formulated as,

Dᾱ = Dm

( ∆̄

τ̄ ᾱ

)
(A.7)

to solve for τ̄ ,

τ̄ =
(

∆̄
Dm

Dᾱ

) 1
ᾱ
, (A.8)

again, where the value for ∆̄ is known from the fixed ∆ experiment.
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Appendix A (Continued)

A.3 Fixed q experiment µ and τ estimations

For the fixed q, variable ∆ experiments, first an estimate of τ was made followed by an

estimate of µ. To estimate τ as τ̄ , the signal decay was fit to,

S/S0 = exp[−(bDᾱ)ᾱ], (A.9)

where Dᾱ is the apparent diffusion coefficient of an exponential function stretched in ᾱ. Thus,

it follows that a diffusion coefficient equivalency can be formulated as,

(Dᾱ)ᾱ = Dm(q2τ̄)1−ᾱ (A.10)

to solve for τ̄ ,

τ̄ =
1

q2

[(Dᾱ)ᾱ

Dm

] 1
1−ᾱ

, (A.11)

where the value for q is known from the fixed q experiment. Then, to estimate µ as µ̄, the

signal decay was fit to,

S/S0 = exp
[
−Dβ̄ τ̄(

b

τ̄
)β̄
]
, (A.12)

where Dβ̄ is the apparent diffusion coefficient of an exponential function stretched in β̄. Thus,

it follows that a diffusion coefficient equivalency can be formulated as,

Dβ̄ = Dm

(µβ̄
q2

)
(A.13)
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Appendix A (Continued)

to solve for µ̄,

µ̄ =
(
q2
Dβ̄

Dm

) 1
β̄
, (A.14)

again, where the value for q is known from the fixed q experiment.
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Appendix B

TABLES

TABLE XVII

COMPARISON OF DM AND D1,2 FOR THE FIXED ∆1 = 17.5MS, ∆2 = 50MS,
Q1 = 78MM−1 , Q2 = 52MM−1 EXPERIMENTS.

parameter ROI ∆1 ∆2 q1 q2

(1) Cor, l 0.32± 0.01 0.35± 0.02 0.28± 0.01 0.31± 0.01
(2) Cor, r 0.31± 0.01 0.25± 0.02 0.26± 0.01 0.28± 0.01
(3) CC, l 0.32± 0.05 0.33± 0.09 0.25± 0.04 0.29± 0.04

Dm (4) CC, c 0.37± 0.03 0.34± 0.04 0.23± 0.02 0.29± 0.03
(× 10−3mm2/s) (5) CC, r 0.34± 0.02 0.26± 0.03 0.24± 0.02 0.27± 0.02

(6) Str, l 0.27± 0.02 0.29± 0.01 0.23± 0.01 0.25± 0.01
(7) Str, r 0.28± 0.02 0.23± 0.02 0.23± 0.01 0.25± 0.01

(1) Cor, l 0.32 ± 0.01 0.35 ± 0.02 0.29 ± 0.01 0.32 ± 0.01
(2) Cor, r 0.31 ± 0.01 0.26 ± 0.02 0.27 ± 0.01 0.28 ± 0.01
(3) CC, l 0.32 ± 0.05 0.35 ± 0.11 0.26 ± 0.05 0.29 ± 0.05

D1,2 (4) CC, c 0.36 ± 0.04 0.35 ± 0.05 0.25 ± 0.02 0.30 ± 0.03
(× 10−3mm2/s) (5) CC, r 0.34 ± 0.03 0.27 ± 0.03 0.26 ± 0.02 0.28 ± 0.02

(6) Str, l 0.27 ± 0.02 0.28 ± 0.01 0.24 ± 0.01 0.26 ± 0.01
(7) Str, r 0.28 ± 0.02 0.23 ± 0.01 0.24 ± 0.01 0.25 ± 0.01
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Appendix B (Continued)

TABLE XVIII

MLF PARAMETER VALUES FOR ROIS IN THE FIXED ∆1 = 17.5MS, ∆2 = 50MS,
Q1 = 78MM−1 , Q2 = 52MM−1 EXPERIMENTS (Y-AXIS DIFFUSION WEIGHTING).

parameter ROI ∆1 ∆2 q1 q2

(1) Cor, l 0.76 ± 0.05 0.92 ± 0.04 0.95 ± 0.01 0.96 ± 0.01
(2) Cor, r 0.74 ± 0.06 0.92 ± 0.02 0.94 ± 0.01 0.95 ± 0.01
(3) CC, l 0.40 ± 0.11 0.50 ± 0.25 0.82 ± 0.04 0.89 ± 0.02

α (4) CC, c 0.42 ± 0.04 0.39 ± 0.05 0.69 ± 0.05 0.80 ± 0.03
(5) CC, r 0.33 ± 0.13 0.55 ± 0.18 0.82 ± 0.03 0.86 ± 0.04
(6) Str, l 0.58 ± 0.07 0.79 ± 0.09 0.89 ± 0.01 0.91 ± 0.02
(7) Str, r 0.57 ± 0.06 0.83 ± 0.03 0.91 ± 0.02 0.92 ± 0.01

(1) Cor, l 1.95 ± 0.06 1.76 ± 0.14 1.91 ± 0.03 1.98 ± 0.02
(2) Cor, r 1.95 ± 0.08 1.99 ± 0.03 1.93 ± 0.04 1.90 ± 0.05
(3) CC, l 1.79 ± 0.17 1.80 ± 0.16 1.91 ± 0.08 1.97 ± 0.04

β (4) CC, c 1.15 ± 0.13 1.42 ± 0.07 1.85 ± 0.07 1.96 ± 0.04
(5) CC, r 1.82 ± 0.16 1.97 ± 0.09 1.88 ± 0.09 1.92 ± 0.05
(6) Str, l 1.99 ± 0.04 1.87 ± 0.14 1.98 ± 0.03 1.92 ± 0.03
(7) Str, r 2.00 ± 0.02 2.00 ± 0.04 1.98 ± 0.02 1.97 ± 0.03

(1) Cor, l 0.32 ± 0.01 0.35 ± 0.02 0.29 ± 0.01 0.32 ± 0.01
(2) Cor, r 0.31 ± 0.01 0.26 ± 0.02 0.27 ± 0.01 0.28 ± 0.01
(3) CC, l 0.32 ± 0.05 0.35 ± 0.11 0.26 ± 0.05 0.29 ± 0.05

D1,2 (4) CC, c 0.36 ± 0.04 0.35 ± 0.05 0.25 ± 0.02 0.30 ± 0.03
(× 10−3mm2/s) (5) CC, r 0.34 ± 0.03 0.27 ± 0.03 0.26 ± 0.02 0.28 ± 0.02

(6) Str, l 0.27 ± 0.02 0.28 ± 0.01 0.24 ± 0.01 0.26 ± 0.01
(7) Str, r 0.28 ± 0.02 0.23 ± 0.01 0.24 ± 0.01 0.25 ± 0.01

(1) Cor, l 2.39 ± 0.27 4.09 ± 0.22 2.15 ± 0.11 3.37 ± 0.54
(2) Cor, r 2.40 ± 0.37 3.01 ± 0.97 2.12 ± 0.08 3.36 ± 0.29
(3) CC, l 2.26 ± 0.27 3.94 ± 0.45 1.96 ± 0.13 3.38 ± 0.26

µ (4) CC, c 2.44 ± 0.09 4.08 ± 0.36 1.82 ± 0.11 2.95 ± 0.17
(µm) (5) CC, r 2.33 ± 0.06 3.29 ± 0.47 1.96 ± 0.05 3.23 ± 0.20

(6) Str, l 2.18 ± 0.29 3.86 ± 0.35 2.16 ± 0.10 3.45 ± 0.23
(7) Str, r 2.15 ± 0.35 2.97 ± 0.67 2.17 ± 0.11 3.49 ± 0.25

(1) Cor, l 16.88 ± 1.48 50.62 ± 2.14 21.47 ± 1.17 30.98 ± 6.85
(2) Cor, r 16.67 ± 1.65 54.46 ± 6.57 22.09 ± 1.89 33.88 ± 5.08
(3) CC, l 19.94 ± 1.42 60.61 ± 6.71 25.50 ± 1.28 36.62 ± 6.99

τ (4) CC, c 23.14 ± 1.41 67.50 ± 2.53 27.88 ± 2.05 41.21 ± 3.67
(ms) (5) CC, r 20.25 ± 0.84 58.99 ± 2.89 25.57 ± 1.35 38.56 ± 3.97

(6) Str, l 18.39 ± 1.42 52.68 ± 3.17 23.80 ± 1.90 38.15 ± 7.80
(7) Str, r 18.78 ± 1.28 55.04 ± 2.78 22.87 ± 1.04 38.12 ± 4.21
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