

A Stochastic Simulation Method Using Constraints for the Modeling of Blood Rheology

BY

KYUNG HYO KIM

DISSERTATION

Submitted as partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Chemical Engineering

in the Graduate College of the

University of Illinois at Chicago, 2015

Chicago, Illinois

Defense Committee:

Lewis E. Wedgewood, Chair and Advisor

Ludwig C. Nitsche

Belinda S. Akpa

Ying Liu

Michael L. Berbaum, Institute for Health Research and Policy

ii

This dissertation is dedicated to my parents, Young Geun Kim and Heng Shin Kim.

ACKNOWLEDGMENTS

iii

First and foremost, I deeply thank my academic advisor Dr. Lewis E. Wedgewood for his

encouragement and inspirational teachings throughout my study. I have been motivated by his

mathematical abilities and insight. He has been a great mentor in many ways giving me fruitful

advices.

I would also like to gratefully acknowledge my committee members, Drs. Ludwig C. Nitsche,

Belinda S. Akpa, and Ying Liu. Their superb conceptual understanding helped me think problems in

multifaceted direction. It was a pleasure to work with Prof. Nitsche although I regret that I have not

had a chance to learn programming skills from him. I was inspired by his software development.

My deepest gratitude goes to the Institute of Health Research and Policy for an opportunity to

be part of such enthusiastic group that I have a lot to learn from and their financial support. My work

has benefited from the advice, feedback, and encouragement of many people, in particular, my

committee member, Dr. Michael Berbaum, and Dr. Yoonsang Kim at IHRP. I appreciate them for

generously sharing wisdom and giving technical supports. It was truly an enriching experience

working at IHRP.

I thank Dr. Donald Hedeker, Dr. Kevin Berbaum, and the aforementioned Dr. Ludwig C.

Nitsche and Dr. Michael Berbaum, all of whom I feel privileged for the opportunity to work with.

Their perpetual energy and enthusiasm in research motivated me in my study. Also, thanks to

coordinators in both departments I have worked, Karen and Amy.

I would like to acknowledge the following people for their magnificent support. My colleage,

Manuela A. A. Ayee, always shown interest in my work and our unlimited discussions have given me

inspirations. I shall always miss my dear colleages (HyeRan, Mali, Xiaoru, Nihal, Sean, Alex),

undergraduates (Xin, Vijeta, Nicole), and many others including my dear friends in Korea. Special

thanks also go to Mark C. Simmons, Yoonsang, Hajwa, and Manuela for supporting me to go through

hardship.

ACKNOWLEDGMENTS

iv

Last but definitely not least, I thank my parents, my brother, my sister, brother-in-law, my

nephew (Andrew HeeSung), and all my extended family members for their unconditional

extraordinary support. Especially, without Joon Sung, I would never have dreamed of exploring the

bigger world. Thank you for your appreciation gift.

KKim

TABLE OF CONTENTS

CHAPTER PAGE

v

1. INTRODUCTION .. 1

1.1 Motivation and Purpose of the Study .. 1

1.2 Organization of the Dissertation .. 4

2. LITERATURE REVIEWS .. 5

2.1 Blood Rheology ... 5

2.2 Simulation Technique .. 8

2.2.1 Monte Carlo (MC) ... 8

2.2.2 Molecular Dynamics (MD) ... 9

2.2.3 Brownian Dynamics (BD) ... 11

3. METHODOLOGY ... 14

3.1 Kinetic Theory: Diffusion Equation .. 14

3.1.1 The Equation of Motion .. 14

3.1.2 The Equation of Continuity ... 19

3.2 Method of Constraint with Lagrange Multiplier ... 21

3.3 Model Development .. 25

3.3.1 Inter-particle Forces and Constraint Setup for Each Models .. 28

3.4 Stress Tensor ... 39

3.5 Material Properties .. 42

3.5.1 Shear Flow ... 42

3.5.2 Stress Relaxation after Sudden Shearing Displacement .. 43

3.5.3 Shear Free (Elongational) Flow... 44

3.6 Radius of Gyration .. 44

4. SIMULATION ... 46

5. RESULTS and DISCUSSION ... 49

5.1 Three-Bead-Spring Ring Model with One Constraint ... 49

5.1.1 Stress Relaxation ... 49

5.1.2 Start-up Shear Flow ... 50

5.1.3 Steady Shear Flow ... 51

5.1.4 Capillary Flow ... 54

5.1.5 Steady Shear Free Flow ... 57

5.2 Three-Bead-Spring Ring Model with Two Constraints .. 58

5.2.1 Stress Relaxation ... 59

5.2.2 Start-up Flow ... 59

5.2.3 Steady Shear Flow ... 61

5.2.4 Steady Shear Free Flow ... 64

5.3 Bead-Spring Tetrahedron Model with Two Constraints ... 66

5.4 Multi-Bead-Spring Model with One Constraint .. 70

6. CONCLUSION AND DISCUSSION .. 72

CITED LITERATURE.. 77

TABLE OF CONTENTS

CHAPTER PAGE

vi

APPENDICES ... 82

Appendix A ... 83

Appendix B .. 85

Appendix C .. 91

Appendix D ... 93

Appendix E .. 96

Appendix F .. 101

Appendix G ... 105

Appendix H ... 108

VITA .. 140

LIST OF TABLES

TABLE PAGE

vii

I. COMPARISON BETWEEN SIMULATION METHODS .. 13

II. DISTANCE BETWEEN BEADS AND NUMBER OF PARTICLES 33

III. EXAMPLE OF STORED WORKSPACES OF 262 PARTICLE CASE 36

IV. ALL POSSIBLE PAIR NODES AND UNIQUE PAIR NODES ... 37

V. THE PARAMETERS USED FOR THE SIMULATIONS .. 47

VI. COMPARISON OF ZERO-RATE VISCOSITY ... 58

VII. OPTIMIZATION OF AREA SIZE .. 63

VIII. STEADY STATE VISCOSITY DATA: TWO-CONSTRAINT TRIANGLE MODEL 105

IX. SUDDEN DISPLACEMENT DATA: TWO-CONSTRAINT TRIANGLE MODEL 106

X. ELONGATIONAL VISCOSITY DATA:

TWO-CONSTRAINT TETAHEDRON MODEL .. 107

LIST OF FIGURES

FIGURE PAGE

viii

1. (a) Schematic of a biconcave model with interconnected bead-spring triangular

regions. (b) Cross-sectional diagram of RBC showing its average size.25

2. (a) Schematic representation of the erythrocyte membrane beneath the lipid bilayer

showing the protein network connection primarily in triangular grid with spectrin

and actin. The nodes represent actins and the links are spectrin tetramers. (b)

Representation of constraint force with simple triangular model. New arbitrarily

deformed positions of the beads (solid lines) calculated based on kinetic theory from

the initial configuration. Adjusted positions after constraint forces are applied and

satisfied (dashed line with filled area). ...26

3. The tetrahedron model with area and/or volume constraint. Total surface area is a

sum of four triangles. ..31

4. (1) Biconcave shape of normal human red blood cell (RBC). Modeling of RBC

using mathematical expression from Kuchel (1999) in Cartesian coordinate. (2)

Cross-sectional view of the 3D surface meshing model considering RBC as a thin

layer of lipid bilayer sac. ..32

5. Example 3D surface meshing of RBC with (a) 2006 and (b) 262 hydrodynamic

resistant site. (c) Hexagons, pentagons, and septagons in the lattice................................34

6. An example of 3D surface meshing of RBC with 78 hydrodynamic resistant sites.35

7. Flow chart of the program. ...46

8. Relaxation of elastic modulus with 16.25% strain (a = 100). ..50

9. Viscosity of a suspension of bead-spring triangle with one-constraint plotted verses

dimensionless time for a start-up shear flow (a = 100). ...51

10. Comparison of the one-constraint triangular model result against the experimental

data. (a) The simulated results of a simple bead-spring-ring model with one

constraint (a = 100 dimensionless unit). (b) Dintanfass (1971, 1974) used cone-in-

cone rhombospheroid viscometer without the use of anticoagulant. The samples

were tested immediately after withdrawal. (c) Copley and King (1973) used

Weissenburg rheogoniometer with the use of dry ethylenediamine tetraacetate

(EDTA) as an anticoagulant. The blood samples were that of human donors ranging

in age from 25 to 60 years. (d) Windberger (2010) used Cell-Dyn 3500 and K-

EDTA after the withdrawal. ...52

11. A log-log plot of the first normal stress of a suspension of bead-spring triangle with

one-constraint with respect to shear rate for a steady shear flow (a = 100).53

LIST OF FIGURES

FIGURE PAGE

ix

12. A comparison of result of one-constraint method with different area sizes. (a) A log-

log plot of viscosity with respect to shear rate for a steady shear flow. (b) A log-log

plot of first normal stress coefficient with respect to shear rate for a steady shear

flow. ..54

13. (a) Representation of reflection method. (b) Rejection method for capillary flow.55

14. Fahraeus-Lindqvist effect is observed in a capillary flow. Compared with Pries

(1992) analysis (a = 100). ...56

15. A log-log plot of viscosity of a suspension of bead-spring triangle with one-

constraint with respect to the elongation rate for a shear free flow (a = 100).57

16. Relaxation of elastic modulus with 21.93% strain (a = 100). ..59

17. Representation of how data are collected for two-constraint method to reduce

computer running time. ...60

18. Viscosity of a suspension of bead-spring triangle with two-constraint model plotted

verses dimensionless time for a start-up shear flow (a = 100). ..61

19. A comparison of result of two-constraint method against one-constraint of a triangle

model (a = 100). (a) A log-log plot of viscosity with respect to shear rate for a

steady shear flow. (b) A log-log plot of first normal stress coefficient with respect to

shear rate for a steady shear flow. ..62

20. A comparison of result of two-constraint method with different area sizes. (a) A log-

log plot of viscosity with respect to shear rate for a steady shear flow. (b) A log-log

plot of first normal stress coefficient with respect to shear rate for a steady shear

flow. ..63

21. A comparison log-log plot of elongational viscosity as a function of the elongation

rate for the triangular model with constraints (a = 100). ..64

22. A comparison of gyration of the model as the elongation rate increases for the

triangular model with constraints (a = 100). ..65

23. Comparison of viscosity plots of RBC tetrahedron model with constraint (a' = 400).66

24. Comparison of first normal stress coefficient responses for the RBC tetrahedron

model under constraint (a' = 400).. ...67

25. A comparison log-log plot of elongational viscosity as a function of the elongation

rate for the tetrahedron model with constraints (a) a' = 100 and (b) a' = 40068

LIST OF FIGURES

FIGURE PAGE

x

26. A comparison of gyration of the model as the elongation rate increases for the

tetrahedron model with constraints (a) a' = 100 and (b) a' = 40069

27. A comparison of elongational viscosity of single constraint tetrahedron model with

different area sizes. ...70

28. A viscosity plot of the Multi-Bead-Spring RBC model with respect to shear rate

(a'' = 100). ...71

29. Gyration plot of the Multi-Bead-Spring RBC model with respect to shear rate

(a'' = 100). ...71

30. Schematic of a bending potential to the springs connected to the bead.75

31. Schematic of using (a) center of mass of RBC (b) local center of mass to maintain

the curve in the biconcave model. ..75

LIST OF ABBREVATIONS

xi

BD Brownian Dynamics

GC Coarse-Grained

FEM Finite Element Method

FENE Finite Extensible Nonlinear Elastic

FPE Fokker-Planck equation

GNF Generalized Newtonian Fluid

HI Hydrodynamic interaction

MC Monte Carlo

MD Molecular Dynamics

ODE Ordinary Differential Equation

RBC Red Blood Cell

SDE Stochastic Differential Equation

SUMMARY

xii

In this dissertation, I present Brownian Dynamic simulation technique with constraint

method to predict the movement of biological cells specifically focused on rheology of blood.

Blood is often treated as continuum fluid or an empirical constitutive equation is used to study

a blood flow. However, it would be impossible to observe neither the deformation nor the

elasticity of the cell. The proposed method based on kinetic theory where the stress tensor and

the stochastic differential equation (SDE) of motion depend on the configuration of the

microstructure of the fluid will allow observing the movement as well as the material

properties. In addition, the constraint method using Lagrange multiplier describes the effect of

the biological cell conserving its overall size throughout the motion of flow while allowing

the shape to deform. In this study, blood is considered as suspension of deformable red blood

cells (RBCs) in a dilute solution of fluid. A discrete model of bead-spring RBC is constructed

with linear Hookean spring to give flexibility to deform. To demonstrate the capability of the

method, the minimalist bead-spring model to represent the RBC was simulated. Contraints

used in this research are geometrical holonomic constraints. The RBC models are tested under

shear and shear free flow. An assumption was made that the friction tensor is isotropic. The

rheological material properties are obtained through simulations. A comparison is then made

between predicted viscosity and experimental observations followed by discussion of the

effects of constraint on each RBC models that are developed.

1

1. INTRODUCTION

1.1 Motivation and Purpose of the Study

In the human body as well as all other living animals, blood is indispensable to sustain

life that transports essential nutrients to the tissue in the circulatory system. According to

CDC (Center for Disease Control and Prevention), heart disease is the leading cause of death

for people of most ethnicities in the United States. In 2006, 26% of the population died of

heart disease, half of them being women. The total cost of the heart disease related health care

services, medications, and lost productivity was 444 billion US dollars in 2011. Among heart

related diseases, coronary artery disease is the most common type which can cause heart

attack, heart failure, angina and arrhythmias. There are wide range of vascular diseases that

affect circulation and other diseases in which blood rheology plays in important role such as

atherosclerosis (Leschke, 2008), diabetes (Lockhart et al., 2008), Crohn’s disease (Novacek et

al., 2008), sickle cell anemia (Coates, 2008), cerebral aneurysms (Valencia et al., 2008), and

venous hypertension (Khodabandelou et al., 2004) just to name a few. The rheological

material properties of blood are important factors in the occurrence and onset development of

such diseases. The progression of disease is oftentimes accelerated by the changes in the

mechanical behavior of cells. A better fundamental understanding of blood flow and its

rheological properties will help rational approach to prevention of serious conditions and its

costs, and development of new treatments as well.

Blood is a complex mixture of cells, proteins, lipoproteins, and ions suspended in a

Newtonian fluid where erythrocyte (red blood cell, RBC) typically comprise approximately

40% of blood by volume. Studying the rheological property of RBC is a key factor of the

2

blood flow characteristics because of their large volume fraction. The empirical data shows

that the human blood has non-Newtonian behavior and its elastic properties have been

measured by Copley (1973) and Dintanfass (1974). The viscosity drops as the shear rate

increases instead of remaining constant as in the Newtonian fluids. Often times the Casson

model has been used to model the behavior of the blood since it gives the characteristic of

negative one half power-law slope of the viscosity similar to that of experimental data.

However, the model neither predicts the time-dependent behavior nor fit all the range of shear

rate empirical data where viscosity tends to be Newtonian at the low and high shear limits.

More importantly, the Casson model gives us no insight into the dynamics of RBC in

complex flows.

The Brownian Dynamic simulation will allow predicting the movement of biological

cell in methodological way with the consideration of all the forces. Instead of using an

empirical constitutive equation, we can use kinetic theory where the stress tensor depends on

the configuration of the fluid microstructure (i.e. the RBC). This will allow us to explore more

about the blood flow in various conditions such as microcapillary flow, rouleaux effect or

sickle cells. In this preliminary study, we propose a method to simulate a suspension of

deformable microstructures. The microstructure model is red blood cell, a primary constituent

of blood, suspended in a dilute solution of Newtonian fluid.

The microstructures are represented by bead-spring model where hydrodynamic

resistant site referred as ‘beads’ with inter-bead potentials referred as ‘springs.’ The model is

designed to capture the most essential features of RBC. A simple linear Hookean spring is

used to give flexibility to deform. Constraining the size of the microstructure in the previous

study has led to good prediction of mechanical properties. The crudest possible geometry, the

3

three bead-spring ring, with a holonomic constant-area constraint have shown that the RBC in

the dilute solution deformed easily in accordance with the RBC low resistance to shear while

maintaining a constant area (Lopez, 2007). It has also shown Fahraeus-Lindqvist Effect where

effective viscosity is reduced in the capillary flow as RBCs squeeze through the narrow

capillary tube in the microcirculatory system (Fahraeus et al., 1931).

There are assumptions made to the stochastic simulation of RBC. For preliminary

research purpose, we assume that there is no hydrodynamic interaction (HI) between RBCs.

This means that the motion of a red blood cell does not affect the position or configuration of

another RBC. However, in reality, the RBCs cannot only interact, but also stack up and form

rouleaux conditions which can be caused by infections, inflammatory, diabetes, tissue or

disorders, and cancers, and coagulation. The rouleaux phenomena are due to the unique

biconcave shape of RBC. This study is focused on vessel flow including capillary, but not

considering the flow in the heart.

We would like to extend the idea of constraining method to two-constraint model.

Constraints introduce difficulty that the positions of the beads are no longer independent since

they are connected by the equations of the constraint. First, to test the method of multiple

constraints, we tested a three bead-spring model with area and sum of length square

constraints. The sum of length square constraint keeps the total length of the connected

springs so that we give restriction to deformation yet still have some degree of flexibility. The

flow properties of blood in different type of flow conditions are obtained. Then, the

tetrahedron configuration of RBC is tested in the shear flow with area and volume constraints.

Lastly, the foundational work has been done for biconcave model. With these ideas, this

dissertation is organized as follows.

4

1.2 Organization of the Dissertation

In Section 2, background study for blood rheology is explored. The experimental data

are collected from Copley (1973), Dintanfass (1974), and Windberger (2010). The constraint

method by Ö ttinger (1996) and Liu’s (1989) application on the constraint method is reviewed.

Other literatures on constructing the RBC model and development of algorithm are discussed

followed by the comparison of simulation methods.

In Section 3, the methodology that is applied for the study is explained with

fundamentals of kinetic theory. Diffusion equation is constructed from the equation of motion

and the equation of continuity considering all the forces applied to the system such as

hydrodynamic, the Brownian, inter-particle, and constraint forces. The method of constraint

that is applied to the system is discussed. Then, the development of RBC models is presented

to derive the inter-particle force and apply geometric constraints. With the calculated position

of the microstructure in the flow after all the forces are applied to the system, we quantify the

shear stress and obtain the material functions.

In Section 4, the demonstration on how the material properties are calculated in the

computer simulation and setting the parameters that are used for the simulation is discussed.

In Section 5, the material properties of three-bead-spring triangular ring with one-constraint

and two-constraint are compared and analyzed for start-up shear flow, steady state shear flow,

capillary flow, and steady state elongational flow. For tetrahedron model, the viscosity and

the first normal difference of the model in shear and shear-free flow with area and volume is

illustrated. In Section 6, the summary of this research including some suggestions for the

future directions of this work are discussed.

5

2. LITERATURE REVIEWS

First, we explore the research on related field. We will focus on work in the area of fluid

models of blood, and fluid model with constraints and bead-spring model of fluid

microstructure. Then, simulation techniques that are widely used for modeling of fluids such

as Monte Carlo (MC) method, Molecular Dynamics (MD), and Brownian Dynamics (BD)

simulations are reviewed.

2.1 Blood Rheology

The elastic properties of blood have been measured and reported by Dintenfass L. (1985),

Thurston G. B (1972), Copley A. L. et al. (1970), Chien. Shu et al. (1966), Thurston G.B. et

al. (2004), Fahraeus R. (1931), Azelvandre F., C. (1976). The Copley and King, Dintenfass,

and Windberger (2010) data are used in the preliminary study to compare the results. Evans

(1976) exhibits a viscoelastic response of the membrane in shear deformation in which the

total shear stress is comprised of a viscous and an elastic component. Evans (1976) suggests

the viscous component is due to the fluid-like behavior of the lipid bilayer whereas the elastic

component is from the stretching of the cytoskeleton (Secomb, 2003). The membrane network

that lies under the lipid bilayer is examined. A triangular grid is observed in the cytoskeleton

where actin complexes linked by spectrin filaments (Liu S-C, 1987). To incorporate the idea

of elasticity of cytoskeleton in the development of RBC model, relevant studies are reviewed.

Wiest (1987) applied kinetic theory to the ring closure structure of polymers and

compared against linear polymers. Both ring closure and polymer chains were modeled as

freely jointed bead-spring structure with Hookean springs. Kramers-Kirkwood expression of

6

bead-spring model was selected for stress tensor. It is stated in this paper that the ring closure

model was first studied by Kramers with freely jointed bead-rod structure and that he obtained

the zero-shear-rate viscosity comparing with Kramers chain. The zero-shear-rate viscosity is a

viscosity at the lower shear rate limit where the viscosity approaches a constant value. The

result showed that the ring closure structure has lowered the viscosity and first normal stress

coefficient. However, there were no constraints applied to this model, therefore, the shear

material properties were independent of shear rate.

The constraint method by Liu (1989) is review to apply constraint to the ring closure

structure in our study. This study demonstrates sample trajectories of a dilute solution of

Kramers freely jointed bead-rod chains in different flow conditions using multiple constraints

method. Liu implemented the constraint method proposed by Ryckaert (1977) using iterative

Lagrange multipliers procedure to constrain the length of the bond and angle. Using the

Brownian dynamics simulation algorithm, the model exhibits shear thinning effects in both

viscosity and first normal stress coefficient in the steady flow. In steady elongational flow, the

viscosity of the solution increased drastically as the elongational rate increased. This paper

gives the algorithm for BD simulations with constraints and is the basis for the simulation

methods used in the work presents herein.

Fahraeus Lindqvist has done experimental work on capillary flow and found that the

viscosity drops as the diameter of the vessel decreases. There have been numerical studies

done for capillary flow. Secomb (2003) and Tsukada et al. (2001) demonstrated that the RBC

shape changes gradually from biconcave shape to a parachute shape as the velocity increase in

the pressure driven Poiseuille flow. This theoretical phenomenon is due to the fact that the

velocity profile is parabolic and the RBC shape is deformed by the pressure effect. Evans et al.

7

(1972) used the RBC model which the biconcave shape is expressed in mathematical

parametric form. The center of RBC (𝑥0, 𝑦0) in the expression or the local center can be

utilized to keep the biconcave shape in our study, for example.

Hosseini et al. (2009) used discrete 2D model where the particles are connected by non-

linear springs to represent an elastic membrane. The spring force ensures conservation of the

membrane area. In addition, linear bending is implemented to give the model an elasticity

using resistance against deviation of the local curvature from the equilibrium curvature of the

biconcave RBC shape at rest. The RBC is treated as a capsule made of an elastic membrane

enclosing a Newtonian cytoplasm and is suspended in a Newtonian fluid. However, it is a

continuum model that flows according to the Navier-Stokes equation. Secomb (2003) used the

lubrication theory to examine the axisymmetric motion of RBC in capillary tubes, and

Pozrikidis (2005) further analyzes this motion using a boundary integral method for Stokes

flow where the RBC membrane is regarded as a thin shell.

Brownian dynamics simulation has been used in a number of studies of bead-spring and

bead-rod model (Dotson, 1983; Atkinson, 1984; Ö ttinger, 1986; Saab, 1987; Biller, 1988; Liu,

1989). The Brownian dynamics simulations of a rouleaux effect have been investigated where

aggregates of RBC stack are taken to be a dumbbell (Moyers-Gonzalez 2008). The only

Brownian dynamics simulation of microstructure modeled by bead-spring chain with

constraint that we are aware of is the work of Lopez (2007). Lopez reviewed different

simulation techniques for computational modeling of viscoelastic fluid especially focused on

Molecular dynamics (MD) and Brownian dynamics (BD). He compares constraint algorithms

such as SHAKE and RATTLE (Andersen, 1983) that are widely used in MD methods to Liu’s

Brownian Dynamic simulation of Kramers chain. The SHAKE algorithm which is introduced

8

by Ryckaert works well in MD, but not BD. In Liu’s method, the linear equations for the

Lagrange multipliers need to be solved for each iteration step as oppose to method of SHAKE

where all previous constraints are altered in order to fulfill each constraint.

Lopez’s ring model with area constraint result has good agreement with empirical data

showing the shear thinning effect. However, it leads to unrealistic shape of the model when

the chain is subjected to large deformations. Although it is true that the shape of the

microstructure in the capillary flow tends to stretch in order to squeeze through the narrow

channel, the normal cell would not stretch infinitely, and therefore, the connector spring in the

microstructure model should not extend infinitely. We can improve the microstructure model

by adding more hydrodynamic resistant site introducing volume constraint. Tetrahedron

model volume constraint can be tested under same flow condition as the triangular model.

Next, Multi-Bead-Spring RBC model can be constructed and improve the simulation code to

find the new configuration of the model at each time step in a systematical way. Ultimately,

the goal will be to add a local force to keep the model biconcave shape in the future study.

First and foremost, we will be reviewing different simulation methodology to study

blood rheology including advantages and disadvantages of the techniques.

2.2 Simulation Technique

2.2.1 Monte Carlo (MC)

A system setup for Monte Carlo (MC) statistical mechanics includes representation of

molecules as collections of atom-centered interaction sites, utilization of classical force fields

for the potential energy terms, and implementation of periodic boundary conditions

(Jorgensen et al., 1996). A new configuration of the system is generated by stochastic

9

sampling. Acceptance of the new configuration is determined by the sampling algorithm

where the application over enough configurations yields properly Boltzmann-weighted

averages for structure and thermodynamic properties. In the standard Metropolis Monte Carlo,

a move is accepted if the new configuration results in a lower potential energy. Or else, it is

accepted with a probability given by the Boltzmann factor (Meller, 2001). As a result, average

properties obtained from the accepted configurations are consistent with the canonical

ensemble (NVT) where the thermodynamic state is characterized by fixed number of

particles N, fixed volume V, and fixed temperature T.

 The advantage of the Monte Carlo method is its generality and a relatively weak

dependence on the dimensionality of the system. Finding a new configuration that would

ensure efficient sampling may be a nontrivial problem. However, the ability to bias the

sampling process and transition rate while retaining the essential conditions for an equilibrium

ensemble provides powerful methodologies. The force bias MC method is developed to speed

up relaxation in many MC systems. In some cases, basic MC method can be faster since it

requires extra computation time for the calculation of the forces. With MC methods, the

Helmholtz free energy of an atomic system can be obtained from an integration of the

Boltzmann actor over phase space and other equilibrium properties (Gilmer et al., 2005).

2.2.2 Molecular Dynamics (MD)

Molecular dynamics (MD) simulation is for computing the equilibrium and transport

properties of many-body system in atomistic scale. The energy of the system is calculated by

discretely accounting varous inter-particle interactions such as van der Waals, covalent bonds,

electrostatic force and external forces. The forces acting on particles in the system are related

10

to the derivative of the energy with respect to the particle position. In the classical MD, the

dynamics of the system is defined by the laws of classical mechanics. The quantum MD takes

the quantum nature of the chemical bond into account so that the electron density function for

the valence electrons that determine bonding in the system is computed using quantum

equations, whereas the dynamics of ions is followed classically (Meller, 2001).

A system setup for Molecular Dynamics is similar to Monte Carlo. The main

differences are in the modes of sampling the configuration. MD is a technique to generate

new configurations of the system by integration of Newton’s laws of motion to all particles in

the system simultaneously over a small time step to determine new positions and velocities. It

explores the macroscopic properties of a system through microscopic simulations using

statistical mechanics. The distribution of the system within the ensemble, collection of all

possible systems which have different microscopic states but identical macroscopic or

thermodynamic state, follows Boltzmann distribution. Since the sample contains a larger

number of conformations, the averaged value is needed; Average values in statistical

mechanics correspond to ensemble averages, and it requires integrating over all possible states

of the system. Ergodic hypothesis states that the time averages equal the ensemble average

allowing the system to evolve in time so that the system eventually passes through all states

(Jorgensen et al., 1996).

MD simulation has advantage computationally over MC in the case where a system of

atoms is being equilibrated at a new temperature or other change of conditions. It is more

efficient due to the fact that the displacement of the particles is affected by the neighboring

particles for MD so that the movement that causes a large increase in energy is rejected

whereas MC generates random numbers for the unsuccessful moves. Moreover, coordinated

11

moves of a number of particles such as those moving into a region of reduced pressure allow

fast relaxation of recovery in MD whereas such are not possible with Metropolis MC.

The time scale of the MD simulation is of the order of picoseconds (Table I).

Simulations of processes on longer timescale beyond that require so many timesteps (Gilmer

et al., 2005). Similarly, very large systems may require extensive computer resources that

they cannot easily be studied by traditional all-atom methods. In these cases, instead of

explicitly representing every atom of the system, reduced representations can be used. Small

groups of atoms are treated as single particles which are called coarse-grained (GC) models

and it increases the time and length scales. This method is widely used for membrane–protein

systems.

2.2.3 Brownian Dynamics (BD)

The Brownian dynamics (BD) simulation is a powerful technique to study the structure and to

simulate non-equilibrium dynamics of polymer or complex fluids in hydrodynamic flows.

Explicit solvent molecules are replaced by a stochastic force taking advantage of the fact that

there is a large separation in time scales between the rapid motion of solvent molecules and

the slower motion of solute. It allows simulating in much larger time scales than in a

molecular dynamics simulation. The stochastic differential equation is integrated forward in

time to create trajectories of molecules for the study of the temporal evolution and dynamics

of complex fluids such as polymers, large proteins, colloidal solutions, and so on (Doyle et al.,

2005).

To simulate the dynamics of particles that undergo Brownian motion, force terms are

added using Newton's second law; the frictional drag from the particle moving through the

12

viscous solvent, random collision of the solvent with the particle describing Brownian motion

particle, and spring forces. Non-hydrodynamic external forces, such as magnetic or electric

fields, can be added. The detailed explanation of each force is discussed further in the next

chapter.

The stochastic differential equation governing the motion of the particle is called a

Langevin equation. The Brownian force is taken from a random distribution that results from

random interaction between a particle and the solvent molecules. Since these random events

are not correlated, the average expected values of the forces are the following in order to

satisfy the fluctuation-dissipation theorem.

〈𝑭𝜈
𝑏(𝑡)〉 = 0

〈𝑭𝜈
𝑏(𝑡)𝑭𝜈

𝑏(𝑡′)〉 = 2𝑘𝐵𝑇𝜻𝛿𝑖𝑗𝛿(𝑡 − 𝑡
′)𝜹

where 𝑭𝜈
𝑏 Brownian force for particle 𝜈, 𝑘𝐵 is Boltzmann constant, 𝑇 is absolute temperature,

𝛿𝒊𝒋 is Kronecker delta, 𝛿(𝑡 − 𝑡′) is Dirac delta function, and 𝜹 is unit tensor. These

descriptions are equivalent to that of Fokker-Planck equation which we will go in depth in the

main method part of this dissertation. Fokker-Planck equation (FPE) is a diffusion equation

for the phase space probability density function 𝐹(𝒓𝛎, �̇�𝛎, 𝑡). This approach solves the FPE

directly for 𝐹(𝒓ν, �̇�ν, 𝑡) whereas, in the Langevin approach, the phase space trajectories are

found from the strict Langevin equation and 𝐹(𝒓ν, �̇�ν, 𝑡) can be obtained by averaging over

the trajectories. When the Maxwellian velocity distribution assumption is used to reduce the

FPE into an equation for the coordinate space distribution function, the equation is referred as

the diffusion equation (Doyle et al., 2005).

13

A summary of simulation methods are compared in the Table I below.

 TABLE I

COMPARISON BETWEEN SIMULATION METHODS

Method Advantages Disadvantages

Monte Carlo Atomic-level

Large scale sampling

Useful statistics

Difficult to devise structural

perturbations

Molecular Dynamics Continuous motion

Microscopic level

Experimental bridge between

structures and macroscopic

kinetic data

Equilibrium

Short time span

Brownian Dynamics Mesoscopic

Larger time scales

Non-equilibrium state

Limited to systems with small

inertia

14

3. METHODOLOGY

The BD simulation has advantage over other simulation techniques we have reviewed in the

previous section for the study of blood flow. The recent study of molecular dynamics

incorporates randomness to its study which is equivalent to Brownian motion; however, we

use kinetic theory since explicit structure of solvent is not in our interest. The kinetic theory

has advantages over the Monte Carlo method because it can also consider non-equilibrium

state. In this dissertation, we use kinetic theory to explore rheology of blood with a discrete

model of RBC where the Brownian random motion describes the movement of RBC particles.

Simulating dilute solution of RBC in simple linear flows will be a benchmark to evaluate the

ability of BD simulations on biological systems with mesoscopic size of the cell.

We first start with an explanation of all the possible forces that act on the beads. Then

the diffusion equation is derived from the equation of motion and the equation of continuity.

In addition to the Brownian motion, we apply constraint method to restrict the motion so that

the RBC microstructure moves and stretch in more plausible way in the flow. The information

we can collect from this study is stress tensors in which we can define the rheological

properties to analyze the characteristic of the fluid. Also, we can investigate the configuration

and distribution of RBCs in more complex flows.

3.1 Kinetic Theory: Diffusion Equation

3.1.1 The Equation of Motion

In this research, blood is treated as red blood cells (RBC) suspended in a Newtonian fluid.

The RBC is constructed with spherical beads and each bead is subject to be influenced by a

15

variety of forces. The main forces under consideration are a hydrodynamic force in the form

of a Stokes’ law drag, the Brownian force, inter-particle forces, and constraint forces. In

general, the equations of motion for each bead of the RBC can be represented by the sum of

all the forces acting on the bead.

 𝑭𝜈
ℎ + 𝑭𝜈

𝑏 + 𝑭𝜈
𝜙
+ 𝑮𝜈 = 𝑚𝜈�̈�𝜈 = 0 𝜈 = 1, 2, 3, … ,𝑁 (3.1)

The indices 𝜈 denote the number of particles throughout this study. The mass 𝑚𝜈 of

each bead is assumed identical for all beads and 𝒓𝜈 is position vector. The inertial term 𝑚𝜈�̈�𝜈

is neglected assuming that the inertia of the beads is negligible as they move through the

viscous medium. This assumption of low Reynolds number has been tested for polymer

suspension (Cordoba, 2012); however, in the case of RBCs, inertia may have a greater effect,

but we have ignored it as a justifiable simplification. The effects of bead inertia on the Rouse

model are found by solving coupled ordinary differential equations (ODE) involving the

ensemble average (Schieber, 1988). The bead-spring chain model is called the Rouse and

when the hydrodynamic interaction is included it is referred as the Zimm model. In the

following subsequence sections, each of the contribution to the force balance is described.

(a) The hydrodynamic drag force

The hydrodynamic drag force is a resistance that the bead experiences as it moves through the

viscous solution being influenced by the motion of other bead as well. The velocity of

homogeneous flow field at bead 𝜈 is 𝒗𝜈 = 𝒗0 + [𝜿 ∙ 𝒓𝜈] (𝜿 is sum of the velocity gradient and

its transpose ∇𝒗†, see Appendix E), and 𝒗�́� is the perturbation of the flow field at bead 𝜈 that

is from the motion of other bead. This perturbation is called the hydrodynamic interaction.

Then the hydrodynamic drag force can be expressed so that the force is proportional to the

16

difference between the averaged bead velocity �̇�𝜈 and the velocity (𝒗𝜈 + 𝒗�́�)of the solution at

bead 𝜈. The definition of averaged value can be found in Appendix A.

 𝑭𝜈
ℎ = −𝜻 ∙ [⟦�̇�𝜈⟧ − (𝒗𝜈 + 𝒗�́�)] (3.2)

The friction tensor 𝜻 is assumed to be isotropic so that 𝜻 = 휁𝜹 where the scalar 휁is the friction

coefficient. Note that ⟦�̇�𝜈⟧is the momentum-space-averaged velocity of the bead; It is not

evaluated by Maxwell velocity distribution since it gives the fluid velocity of 𝒗 and not

necessary to evaluate explicitly as this is substituted into the equation of continuity (Bird et al.,

1987). We neglect the term 𝒗𝜈 ́ that is from the motion of other bead.

(b) The Brownian force

A particle with small mass tends to move randomly making the movement of the bead an

irregular path because of the thermal fluctuations in the liquid. The average of this rapidly and

irregularly fluctuating force can be expressed with the configurational distribution

function Ψ(𝒓1, 𝒓2, … , 𝒓𝑁 , t). The standard expression for the Brownian force is then given by

 𝑭𝜈
𝑏 = −

1

Ψ

𝜕

𝜕𝒓𝜈
∙ [⟦𝑚(�̇�𝜈 − 𝒗)(�̇�𝜈 − 𝒗)⟧Ψ] (3.3)

When the equilibration in momentum space is assumed, average velocity space distribution

function can be evaluated using Eq. A-4 in Appendix A. That is assuming the velocity

distribution to be Maxwellian about the fluid velocity at the center-of-mass of the polymer

model. Then the contribution of Brownian motion can be simplified as

 𝑭𝜈
𝑏 = −𝑘𝐵𝑇

𝜕 lnΨ

𝜕𝒓𝜈
 (3.3a)

where 𝑘𝐵 is the Boltzmann constant and 𝑇 is absolute temperature. Thus, the 𝑘𝐵𝑇 factor is

from the velocity of the bead due to thermal fluctuation.

17

(c) The inter-particle force

The inter-particle force on a bead results from the connected springs in the model given as the

negative gradient of the spring potential energy 𝜙 as following.

 𝑭𝜈
𝜙
= −

𝜕𝜙

𝜕𝒓𝜈
 (3.4)

Different types of springs can be used for the modeling of suspended microstructures in

a fluid. Defining connector force 𝑭𝜈
𝑐 and acquiring appropriate inter-particle force for specific

model is discussed in detail in Section 3.3.1 and Section 6.

(d) The constraint force

The contribution of constraint force on bead 𝜈 is expressed as

 𝑮𝜈 = −∑ 𝜆𝑗(𝑡)
𝜕𝜎𝑗

𝜕𝒓𝜈

𝑑′

𝑗=1 (3.5)

where 𝜎 is the given constraint on the system and 𝑑′ is number of applied constraints

(Ö ttinger, 1996). Further in-depth discussion is in Section 3.2.

The hydrodynamic forces tend to distort the microstructure as oppose to inter-particle

forces which tend to restore the microstructure to its original shape. The Brownian forces

randomize the orientation of the microstructure. In the case of dilute suspension of RBC, we

do not expect the Brownian force to significantly affect the center-of-mass diffusion of the

cell. It rather causes fluctuation in the cell’s shape, and therefore, influences the stress in the

cell. Some researchers have ignored Brownian forces because the Péclet number for the

center-of-mass motion of the RBC is above the colloidal limit. However, it is not clear that

the effects of Brownian fluctuations on the shape of the RBC are insignificant and there will

18

not have significant effect on the viscosity. Indeed, lipid membranes are extremely soft and

are easily deformed by thermal fluctuations. This has long been known experimentally as the

flicker phenomenon (Blowers, 1951 and Brochard, 1975), caused by RBC membrane

undulations. Therefore, we choose to include Brownian effects in our model.

Although beads of the particle can perturb the flow field in the neighboring particles,

hydrodynamic interaction is excluded in preliminary study. The interactions between beads

would be expected to be important in concentrated systems. In this study, we mainly consider

inter-particle, Brownian, and constraint forces that gives restriction to the movement of

particle. Lopez (2007) studied a RBC model in which only a single constraint was used. In

this study we will examine a two-constraint method. When Eq. 3.1 is numerically integrated,

the dependence of all the forces on beads has to be obtained from the relations of constraint.

Although the constraints are fulfilled at the beginning, integrating the equation of motion with

constraint force will cause a discrepancy in the constraints at the end of time integration due

to the approximate character of the numerical calculations. In order to make all the constraints

satisfy at each time step of the integration, we can first integrate Eq. 3.1 without the constraint

force and obtain the position of the beads. Then, we can apply constraints which will be

discussed in next section in detail.

Substituting Eqs. 3.2, 3.3a, 3.4 into 3.1 gives

 −휁[⟦�̇�𝜈⟧ − (𝒗0 + [𝜿 ∙ 𝒓𝜈])] − 𝑘𝐵𝑇
𝜕 lnΨ

𝜕𝒓𝜈
+ 𝑭𝜈

𝜙
= 0 (3.6)

In the next section, the equation of continuity is combined with Eq. 3.6 to give the differential

equation, which is the basis for the Brownian dynamics simulation method.

19

3.1.2 The Equation of Continuity

In equilibrium systems, the expression configurational distribution function can be directly

obtained by equilibrium statistical mechanics. For non-equilibrium system, we can derive a

second-order partial differential equation for the configuration-space distribution function, so

called the diffusion equation, by combining the force balances on the beads (Eq. 3.6) with the

equation of continuity in configuration space. Bird et al. (1987) gives a thorough explanation

of the principle of kinetic theory and C. F. Curtiss derived the diffusion equation for general

bead-rod-spring models of dilute solutions (Bird, 1987).

Considering the time rate of change of system points (the location and orientation of

beads in the microstructure model) within a hypercube, the equation of continuity for

Ψ shows the conservation of system points.

𝜕Ψ

𝜕𝑡
= −∑ (

𝜕

𝜕𝒓𝜈
∙ ⟦�̇�𝜈⟧Ψ)𝜈 (3.7)

𝜕Ψ

𝜕𝑡
= −(

𝜕

𝜕𝒓𝑐
∙ ⟦�̇�𝑐⟧Ψ) − ∑ (

𝜕

𝜕𝑸𝑗
∙ ⟦�̇�𝑗⟧Ψ)𝑗 (3.7a)

The Eq. 3.7 can be expressed in the form of connector vectors 𝑸𝜈 and the center-of-mass

𝒓𝑐 =
1

N
∑ 𝒓𝜈
N
𝜈 as shown in Eq. 3.7a by substituting the expression ⟦�̇�𝜈⟧ with ⟦�̇�𝑗⟧ and ⟦�̇�𝑐⟧.

The expression ⟦�̇�𝑐⟧ can be obtained by adding 𝜈 number of equations in Eq. 3.6 and then

divide by N. When these equations are subtracted using the relations in Eq. A-2 (Appendix A)

and the chain rule of partial differential equations, we obtain the equation of motion for the

connector vectors 𝑸𝜈. Connector vectors are defined in Appendix B for each model. In this

study, the Cartesian coordinate is chosen so that we obtain the diffusion equation in terms of

position of the beads by simply substituting ⟦�̇�𝜈⟧ using Eq. 3.6 into Eq. 3.7.

20

𝜕Ψ

𝜕𝑡
= −∑

𝜕

𝜕𝒓𝜈
∙ [(𝒗𝜈 +

1

𝜁
𝑭𝜈
𝝓
)Ψ]𝑁

𝜈=1 +
𝑘𝐵𝑇

𝜁
∑

𝜕

𝜕𝒓𝜈
∙
𝜕

𝜕𝒓𝜈
Ψ𝑁

𝜈=1 (3.8)

We are able to recognize that Eq. 3.8 is a form of well-known Fokker-Planck (FPE or

Kolmogorov forward) equation where the general form is

𝜕𝑓

𝜕𝑡
= −∑

𝜕

𝜕𝑥𝑖
[𝐷1𝑖(𝑥1, … , 𝑥𝑁)𝑓]

𝑁
𝑖=1 + ∑ ∑

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
[𝐷2𝑖𝑗(𝑥1, … , 𝑥𝑁)𝑓]

𝑁
𝑗=1

𝑁
𝑖=1

 (3.9)

with Ito drift vector term 𝐷1𝑖(𝑥, 𝑡) and diffusion tensor term of 𝐷2𝑖𝑗(𝑥, 𝑡). This second order

partial differential equation describes how the system points diffuse in the multidimensional

configuration space.

When we consider the Itô SDE, the relationship between Fokker-Planck equation and

stochastic differential equation (SDE) is

𝑑𝑋𝑡 = 𝜇(𝑋𝑡, 𝑡)𝑑𝑡 + 𝜖(𝑋𝑡, 𝑡)𝑑𝑊𝑡 (3.10)

An independent Wiener process 𝑊𝑡 that is generated by the SDE is a three dimensional

Gaussian white noise process caused by the random Brownian force.

The drift and diffusion term in the Fokker-Planck equation are

 𝐷1𝑖(𝑥, 𝑡) = 𝜇𝑖(𝑥, 𝑡) (3.11a)

 𝐷2𝑖𝑗(𝑥, 𝑡) =
1

2
∑ 𝜖𝑖𝑘(𝑥, 𝑡)𝜖𝑗𝑘(𝑥, 𝑡)𝑘 (3.11b)

Then the Eq. 3.10 becomes

 𝑑𝒓𝜈(𝑡) = (𝒗𝜈 +
1

𝜁
𝑭𝜈
𝝓
)𝑑𝑡 + √

2𝑘𝐵𝑇

𝜁
𝑑𝑊𝜈(𝑡) (3.12)

This also agrees with Risken (1989) and Ö ttinger (1996) with the assumption of isotropic

friction tensor, and no hydrodynamic interaction.

21

The Euler scheme for integration is applied to get the positions of the beads at time(𝑡 +

∆𝑡).

 𝒓𝜈
𝑈𝑁(𝑡 + ∆𝑡) = 𝒓𝜈(𝑡) + [(𝒗𝜈 +

1

𝜁
𝑭𝜈
𝝓
)] ∆𝑡 + √

2𝑘𝐵𝑇

𝜁
∆𝑊𝜈 (3.13)

where ∆𝑊𝜈 = 𝑊𝜈(𝑡 + ∆𝑡) −𝑊𝜈(𝑡) is Gaussian white noise.

Once the displacement of beads in the RBC model is calculated from the stepwise

integration (Euler scheme solution) of SDE, constraints can be applied to adjust positions of

the beads. This adjustment is made for each time step by Lagrange multiplier to enforce the

constraint. Averaged rheological material properties of the RBC solution can be calculated

accounting all the number of trajectories. The calculation of the material properties depend on

the type of flow and will be discussed in Section 3.5.

The positions of the beads by applying constraint force using Lagrangian method is

further discussed in the following section.

3.2 Method of Constraint with Lagrange Multiplier

A constraint can be applied to a system in order to give a condition to satisfy. For example,

the constraint can be a length of the bond or an angle between the bonds since the bonds

between the elements maintain particular angle in reality due to the attraction and repulsion of

electrons in its orbitals. The constraint algorithm where the equations of motion are solved

while simultaneously satisfying all the constraints at each step of the integration was

developed for the use in molecular dynamics (Ryckaert, 1977): however, it can be

implemented to Brownian dynamics. Liu (1989) used Brownian dynamics simulation to

22

calculate rheological properties of Kramers freely jointed bead-rod polymer chain with

constant lengths and angles (Ö ttinger, 1996).

Here, we will apply geometrical constraints to the erythrocyte so that it conserves its

overall size throughout the motion of flow in the blood while allowing the shape to change.

This constraint will strongly resist the constructed model from stretching infinitely which will

not happen in reality. It is possible to select the springs that are connected to the beads other

than Hookean in order to maintain the length of springs in microstructure. The magnitude of

the end-to-end vector of the linear Hookean chain model has no upper bound that it can in fact

extend to infinity. Polymer molecule, in general, has a finite fully extended length. For such

reason, there are improved spring models such as FENE (finitely extensible nonlinear elastic)

or Fraenkel spring which the force law between the beads of the chain has modified so that

the chain stiffens as its extension increases. However, FENE has singularity and simple linear

Hookean is selected to give more degree of freedom to stretch knowing the fact that the RBC

in the micro vessel can lengthen its shape more than in the other flow conditions.

The result of three-bead-spring ring RBC model with one constraint was reported by

Lopez (2007). We will observe whether the multiple constraints method complies with

preliminary model using two constraints. Depending on how we set up the constraints,

number of bead positions involved will be different. Therefore, calculating the gradient can be

complicated as more beads are considered for each constraint. It is our interest to find a

pattern to set up the constraint and calculate its derivative in a systematical way for future

development of a biconcave model.

A system of 𝑁 particles with 𝑑′ holonomic constraints has 3𝑁 − 𝑑′degrees of freedom

in Cartesian coordinate. The positions of the beads are connected by the equations of

23

constraints such that the constraints limit the motion of the particles in the system. The form

of holonomic constraints are given below.

 𝜎𝑗({𝒓𝜈}) = 𝑓(𝒓1, 𝒓2, … , 𝒓𝑁 , 𝑡) = 0 for 𝑗 = 1, 2, 3, … , 𝑑′ (3.14)

where 𝑑′ is the number of constraint equations and 𝒓𝜈 are the coordinates of 𝑁 particles with

indices of 𝜈 = 1, 2, 3, … ,𝑁. The holonomic constraints for preliminary and proposed model

are set in Section 3.3.1 and Section 6. The derivative of the constraint is in Appendix B.

There are various approaches to apply constraints to the system. It can be done at

different level; Fokker-Planck equation, SDEs, or numerical integration scheme. Although it

should be theoretically equivalent, there can be some deviation in these approaches depending

on how strictly the constraint is satisfied since they are approximation schemes. The

classification of different approaches and their advantages and disadvantages are discussed in

Ö ttinger (1996). The numerical integration scheme in Cartesian coordinates is used here to

solve SDE.

The total contribution of constraint 𝑮𝜈on bead 𝜈was defined in Eq. 3.5. The time-

dependent Lagrange multipliers 𝜆𝑗 that are associated with 𝜎𝑗are determined to satisfy Eq.

3.14 at each time step. The Lagrange multipliers method is used for optimization to find the

maximum or minimum of a function subject to constraints. The Lagrange formulation has

advantage of giving a scalar value as opposed to vector.

From the system without constraint in Eq. 3.13, we can optimize the positions by

applying constraint force 𝑮𝜈 using Lagrangian method to get the constrained positions of the

beads at time 𝑡 + ∆𝑡.

 𝒓𝜈
𝐶𝑂𝑁(𝑡 + ∆𝑡) = 𝒓𝜈

𝑈𝑁(𝑡 + ∆𝑡) −
1

𝜁
∑ 𝜆𝑗[∇𝜈𝜎𝑗]𝑐
𝑑′

𝑗=1 (3.15)

24

 𝜆𝑗 = ∑ [𝑔
𝑗𝑘
]
𝑐′
𝜎𝑘

𝑑′

𝑘=1 (3.16)

At each step of integration in Eq. 3.12, the iterative method for constraint is treated

individually. The superscript CON denotes constrained and UN denotes unconstrained. The

unconstrained position starts with Eq. 3.13, and then the constraint converges by iteration

until the second term in Eq. 3.15 approaches zero. This means the estimation of the positions

of the beads satisfies the constraint that we set up and the correction is no longer needed.

There are 𝑁 + 𝑑′ equations in 3.14 and 3.15 that need to be solved simultaneously

for 𝑁 + 𝑑′ variables. The unknown variables are 𝒓1
𝐶𝑂𝑁, 𝒓2

𝐶𝑂𝑁,…, 𝒓𝑁
𝐶𝑂𝑁 and 𝜆1, 𝜆2,…,𝜆𝑑′.

The bracket […]𝑐′ means the term is evaluated at 𝑐′ ∈ [0,1] with zero being the old

position at 𝑡 and one being the new position at 𝑡 + ∆𝑡 (Ö ttinger, 1996). In the simulation code,

𝑐 = 0 and 𝑐′ = 1 is used. Choosing which position to determine Lagrange multiplier is a

matter of number of iteration in the constraint subroutine which also depends on how the

constraint is set up. Overall, for the case where Lagrange multiplier is calculated only with the

old position, the computation is less expensive in a sense that it does not need to recalculate

the derivative of new position for every time step to satisfy the constraint. However, it

converge better using new position as the model structure gets complicated with multi-beads.

In addition, it is better to avoid setting an initial position exactly to equilateral triangle. In that

case, the constraint did not converge because it gives the denominator of the Lagrange

multiplier to be practically zero. Analytically, determinant of a modified metric matrix is not

zero as proved in Appendix D.

The metric matrix 𝑔
𝑗𝑘

is an inverse of modified metric matrix 𝐺𝑗𝑘, therefore, it satisfies

 ∑ 𝑔
𝑗𝑙
𝐺𝑙𝑘

𝑑′

𝑙=1 = 𝛿𝑗𝑘 (3.17)

25

Modified metric matrix with dimension 𝑑′ × 𝑑′is

 𝐺𝑗𝑘 =
1

𝜁
∑

∂𝜎𝑗

∂𝒓ν
∙
∂𝜎𝑘

∂𝒓ν

𝑁
𝜈=1 (3.18)

assuming the friction tensor 𝜻 is isotropic and there is no hydrodynamic interaction. One other

way to determine the Lagrange multiplier is from Taylor expansion of the constraint as shown

in Lopez (2007). Detailed calculations of Lagrange multiplier for one and two constraints are

demonstrated in Appendix C.

Next, we will examine how the configuration of the RBC model is constructed and

propose a new model with volume. Moreover, constraints will be set up for particular model

to apply Lagrangian method.

3.3 Model Development

To construct a simulation model of RBC, we can examine structure of the cell first. For a

healthy normal human, RBC is a flexible biconcave disk with approximately 8 μm(microns)

in diameter and cell thickness is about 2 microns. It is a lipid bilayer vesicle with volume of

approximately 90 fL containing a cytoplasm and hemoglobin. The thickness of bilayer is

approximately 5 nm which is roughly 1/1000 of its size of cell. Its membrane is highly elastic

and deformable.

Figure 1. (a) Schematic of a biconcave model with interconnected bead-spring triangular regions.

(b) Cross-sectional diagram of RBC showing its average size.

26

Underneath the lipid layer, there is protein network primarily in triangular grid (Figure

1). The membrane structure of human erythrocytes was examined by Liu S-C (1987) using

high resolution negative staining electron microscopy. The study shows that this cytoskeleton

of RBC is triangular grid configuration with mostly hexagonal lattice and the rest which is

approximately 11% of lattice structure is shown as pentagons and septagons. Each triangular

grid observes actin complexes linked by spectrin filaments. The end-to-end distance of

spectrin tetramer is approximately 100 nm between the nodes and the total length when it is

stretched is 200 nm (Liu S-C, 1987).

Figure 2. (a) Schematic representation of the erythrocyte membrane beneath the lipid bilayer

showing the protein network connection primarily in triangular grid with spectrin and actin.

The nodes represent actins and the links are spectrin tetramers. (b) Representation of constraint

force with simple triangular model. New arbitrarily deformed positions of the beads (solid lines)

calculated based on kinetic theory from the initial configuration. Adjusted positions after

constraint forces are applied and satisfied (dashed line with filled area).

When constructing the kinetic theory models, beads, springs, and rods are the typical

building blocks. Incorporating the structure of cytoskeleton to the model development, the

structure of RBC can be modeled as a collection of beads connected with springs with

triangular grid to represent the membrane of the cell. All the beads are assumed to have

identical mass. The spring selection is not limited to, but the Hookean spring is selected as a

connector to demonstrate the deformation of the RBC. It is a simple linear spring model that

27

gives a linear relation between the tension and separation of any given masses that are joined

together. With this spring connection, the RBC model can capture flexibility and elasticity of

the membrane. Moreover, by selecting Hookean spring, it can avoid overlap effect of the

constraint.

The model can have degrees of complexity in order to have good estimate of the RBC

configuration. In this dissertation, three models are tested. We first start out with very crude

triangular model with constraint to roughly see how macroscopic fluid behavior is related to

molecular orientation and stretching. It proves that the method using kinetic theory works for

non-linear polymer structure with a minimum of mathematics. Two combined constraint has

been applied to the model to test multiple constraint method. Then, tetrahedron model is

constructed to test volume constraint which eventually would be applied to biconcave model.

Finally, the foundation for biconcave model is developed in this dissertation.

For such model, the potential forces on the beads are related by tension in the spring

and the connection between beads and springs. Thus, as seen in Section 3.1, the equation of

motion which results in the stochastic differential equation (SDE) of motion depends on the

RBC configuration. In the following subsections, RBC configuration for each model is

constructed, connectors are defined, expressions for inter-particle forces are found, and

applied constraints are setup.

28

3.3.1 Inter-particle Forces and Constraint Setup for Each Models

The Three-Bead-Spring Ring Model with Two Constraints

The simplest triangular bead-spring RBC model with Hookean spring and area constraint was

proposed by Lopez (2007). This is a ring structure with three identical beads, each connected

to two adjacent springs. Further study of this model is done to observe the effect of multiple

constraint method described in Section 3.2. Additional sum of length square constraint is

applied to the system. As in the previous study (Lopez, 2007), the polymer kinetic theory is

used for the triangular model with two constraints. The hypothesis is that the constraints of

RBC are yet preserved while RBC deforms.

Without any constraint, the triangular model becomes a Rouse model with ring closure

effect (Rouse, 1953; Wiest, 1986). Lopez (2007) presented the inter-particle force by using

the definition for ring structures. The connector vector for the ring closure structure is

 𝑸𝑘 = 𝒓𝑘+1 − 𝒓𝑘 (3.19)

where

 ∑ 𝑸𝑘
𝑵
𝒌 = 0

so that the connector vector for N-th bead is 𝑸𝑁 = 𝒓1 − 𝒓𝑁. The position vectors 𝒓𝜈 denote

the absolute positions of the beads with respect to the fixed reference frame in space as shown

in Figure 2(b). The force acting on each bead through two adjacent springs has the following

relation between the potential forces on the beads 𝑭𝜈
𝜙

 and the tension in the spring 𝑭𝜈
𝑐 using

Eq. 3.4.

 𝑭𝜈
𝜙
= −∑ (�̅�𝑘𝜈 − 𝛿1,𝜈 + 𝛿𝑁,𝜈)

𝑁−1
𝑘 𝑭𝑘

𝑐 (3.20)

with

29

 �̅�𝑘𝜈 = 𝛿𝑘+1,𝜈 − 𝛿𝑘,𝜈

 𝑭𝑘
𝑐 = 𝐻𝑸𝑘

When substituted, the forces can be expressed with the connector vectors which are relative

positions that do not depend on the reference frame. The parameter 𝐻 is a constant for

Hookean spring and the spring force for different types of spring is well explained in Bird et

al. (1987). Time constant for Hookean springs for the model is expressed as 𝜆𝑁. For Example,

this value is 𝜆𝐻 = 휁/4𝐻 for the Hookean dumbbell model and 𝜆𝑁 = ∑ 𝜆𝑘
𝑁−1
𝑘 =

𝜁

4𝐻
[
𝑁2−1

3
] =

𝜆𝐻 [
𝑁2−1

3
] for Rouse chain, and 𝜆𝑁 = ∑ 𝜆𝑘

𝑁−1
𝑘 =

𝜁

4𝐻
[
𝑁2−1

6
] for ring closure.

We can generalize that

 𝜆𝑁 =
𝜁

4𝐻
𝑓(N) = 𝜆𝐻𝑓(N) (3.21)

Units of time, length, and mass used in the simulation is such that 𝜆𝑁 𝑓(N)⁄ = 1, 𝑘𝐵𝑇 𝐻⁄ = 1,

𝑛𝑐𝑘𝐵𝑇 = 1.

Equation 3.20, however, only applies to the ring closure structure. Knowing that two

connector vectors are going to be used to calculate the area of the triangle and the pattern for

the relation between potential forces and the tension has to be developed as the number of

beads increase, the connector vectors for the triangular structure in this study is defined as

following for convenience.

 𝑸1 = 𝒓2 − 𝒓1, 𝑸2 = 𝒓3 − 𝒓1, 𝑸3 = 𝒓3 − 𝒓2 (3.22)

Then, the inter-particle forces on each bead are

 𝐹1
𝜙
= 𝐻(𝑸1 + 𝑸2) (3.23a)

 𝐹2
𝜙
= 𝐻(𝑸3 − 𝑸1) (3.23b)

30

 𝐹3
𝜙
= −𝐻(𝑸2 + 𝑸3) (3.23c)

for a triangular model.

For the area constraint, an area of a triangle can be calculated with the cross product of

two vectors. Since the cross product of two vectors is a vector, it can be dotted by itself which

is also the square of the magnitude of the vector so that the constraint gives scalar value back

and it is simpler to obtain its derivative. Then, the imposed constraint of constant area for

each ring is

 𝜎1({𝒓}) = ∑(area)2 − constant

 = {
1

2
|𝑸1 × 𝑸2|}

2

− 𝑎 = 0 (3.24)

in which a is a scalar value of constant area.

Similarly, the second constraint can be sum of length square constraint and postulated

as following.

 𝜎2({𝒓}) = (|𝑸1|
2 + |𝑸2|

2 + |𝑸3|
2) − 𝑙 = 0 (3.25)

The constraint is set to be a sum of square of the length of each spring rather than perimeter

for simpler form of its derivative. The derivatives of each constraint are in Appendix B. The

constants 𝑙 are lengths of sides of a triangle.

Three-Bead-Spring Ring Tetrahedron Model with Two Constraints

As the healthy RBC flows through the vessel in the body, it will try to conserve its shape.

Maintaining shape can be represented as having constant surface area and volume. The two-

constraint method has been tested with the triangle model in previous section. We can extend

31

the model to have volume by adding one additional bead and three additional springs to make

tetrahedron as shown in the Figure 3.

Figure 3. The tetrahedron model with area and/or volume constraint. Total surface area is a

sum of four triangles.

As in preliminary study, same assumption is made that all the beads have identical mass.

Each bead is connected to three adjacent springs. The connector vectors are defined as

 𝑸1 = 𝒓2 − 𝒓1, 𝑸2 = 𝒓3 − 𝒓1, 𝑸3 = 𝒓4 − 𝒓1, (3.26)

 𝑸4 = 𝒓3 − 𝒓2, 𝑸5 = 𝒓4 − 𝒓2, 𝑸6 = 𝒓4 − 𝒓3

In similar way as it is done for triangular model, the potential forces for tetrahedron are:

 𝐹1
𝜙
= 𝐻(𝑸1 + 𝑸2 + 𝑸3) (3.27a)

 𝐹2
𝜙
= 𝐻(𝑸4 + 𝑸5 − 𝑸1) (3.27b)

 𝐹3
𝜙
= 𝐻(𝑸6 − 𝑸2 − 𝑸4) (3.27c)

 𝐹4
𝜙
= −𝐻(𝑸3 + 𝑸5 + 𝑸6) (3.27d)

Now, we set up constraints for tetrahedron model. The area constraint is

 𝜎1({𝒓}) =
1

4
(
|𝑸1 × 𝑸2|

2 + |𝑸2 × 𝑸3|
2

+|𝑸3 ×𝑸1|
2 + |𝑸4 × 𝑸5|

2) − 𝑎
′ = 0 (3.28)

32

where 𝑎′is a constant for total surface area which is a value for sum of square of the area of

each triangle.

The volume constraint is set using the fact that 1/6 of the triple product represent the

volume

 𝜎2({𝒓}) =
1

6
(𝑸3 ∙ [𝑸1 × 𝑸2]) − 𝑏 = 0

(3.29)

where 𝑏 is a constant for volume. See Appendix B for the calculation of derivatives for each

constraint.

Multi-Bead-Spring 3D Mesh Model with Total Surface Area Constraint

Further study on more complicated geometric modeling of RBCs as in Figure 4 is done. In

this section, a systematical way to find neighboring beads is developed to calculate inter-

particle forces. The initial biconcave shape of RBC is set using mathematical expression by

Kuchel (1999). Detail regarding the expression is in the MATLAB function ‘discocyte’ in

Appendix F.

Figure 4. (1) Biconcave shape of normal human red blood cell (RBC). Modeling of RBC using

mathematical expression from Kuchel (1999) in Cartesian coordinate. (2) Cross-sectional view

of the 3D surface meshing model considering RBC as a thin layer of lipid bilayer sac.

To generate the initial position of the biconcave model, 3D surface meshing using

implicit distance function above and Delaunay triangulation algorithm (Appendix F) is

33

applied. From this algorithm, we get positions of all the beads in the RBC in Cartesian

coordinate and indices of three beads that forms triangle. Depending on the distance between

beads that are set up, this algorithm gives different number of particles in the same overall

size of RBC (see Table II).

TABLE II

DISTANCE BETWEEN BEADS AND NUMBER OF PARTICLES

ℎ0
a
 Number of Particles

0.4 2006

0.6 922

0.8 522

1.00 334

1.16 262

1.40 156

1.50 110
a
 distance between beads

This algorithm becomes more robust when the length between the beads are set as smaller

value and/or larger bounding box so that it iterates and find the optimal curve of the function

that user provides without disturbing any termination criteria within the generator. The

smaller the length, the bigger number of the beads increases. For example, following shows

the number of particles in RBC for ℎ0 = 0.3 and 1.16, respectively. We are able to see in

Figure 5(c) that the model constructed has hexagonal lattice with pentagons and septagons.

34

(a)

(b)

(c)

Figure 5. Example 3D surface meshing of RBC with (a) 2006 and (b) 262 hydrodynamic resistant

site. (c) Hexagons, pentagons, and septagons in the lattice.

35

The limitation of the Persson’s (2005) method is when the length ℎ0 is set to high value

that is beyond the convergence level; In other words, that is when we try to set the model with

as few beads as possible. It gets difficult to converge with fewer beads as the expression of

the shape gets complicated. Nontheless, we can initiate the simulation from simple sphere

with least number of beads using that method and possibly apply bending potential constraint.

The bending potential would lower the energy in the center region of the cell to give

biconcave shape.

Figure 6. An example of 3D surface meshing of RBC with 78 hydrodynamic resistant sites.

Regardless of the number of beads or the shape of the model, the output workspace p

contains bead positions in Cartesian coordinate in each column and 𝑡 contains indices of three

beads that forms triangle in each row. For the case of 262 hydrodynamic resistant sites in the

RBC, it gives 520 triangles. Examples of workspaces are listed below in Table III.

36

TABLE III

EXAMPLE OF STORED WORKSPACES OF 262 PARTICLE CASE

(a) Workspace 𝑡 (b) Workspace p

A B C

1st triangle 1 2 3

2nd triangle 1 3 5

3rd triangle 4 1 5

4th triangle 4 5 6

5th triangle 6 5 7

6th triangle 8 6 9

7th triangle 9 6 7

8th triangle 10 8 11

9th triangle 11 8 9

10th triangle 10 11 12

… … … …

517th triangle 260 238 240

518th triangle 261 242 262

519th triangle 261 240 242

520th triangle 242 241 262

nodes x y z

1 -1.54098 -3.27474 -1.35968

2 -2.51673 -3.52151 -1.25039

3 -1.75791 -4.25786 -1.14782

4 -0.54548 -3.00805 -1.33876

5 -0.7944 -3.99527 -1.31109

6 0.206042 -3.69366 -1.35591

7 -0.06192 -4.6622 -1.12149

8 1.23879 -3.33153 -1.36143

9 0.930028 -4.32063 -1.2214

10 2.393535 -3.21883 -1.32183

… … …

259 -0.86469 3.304071 1.361211

260 0.118393 3.435949 1.361577

261 1.139157 3.488476 1.357507

262 2.100848 3.482507 1.312315

As in Figure 5(b) above, three indices form one triangle. Those indices that form each triangle

are stored in each row in workspace t (Table III (a)). For each bead points, the position is

stored in workspace 𝑝 as in Table III (b). These workspaces will be read into the main

simulation program.

Based on this information, total surface area can be obtained by summing all the

triangles using two connector vectors for each triangle. With the list of indices, connector

vectors can be defined. For inter-particle forces, unique connector vectors can be found by

elimination of duplicate connectors from all the possible pair of nodes. From workspace t, we

find the possible pair of nodes, sort, and eliminate duplicate.

37

TABLE IV

ALL POSSIBLE PAIR NODES AND UNIQUE PAIR NODES

(a) (b)

possible pair (sorted)

1 2

1 3

1 4

2 3

1 3

1 4

1 2

2 4

2 3

3 4

2 4

3 4

… …

duplicate eliminated

k A B

1 1 2

2 1 3

3 1 4

4 2 3

5 2 4

6 3 4

… … …

Then, generalize expression for defining the unique connector vectors is

 𝑸𝒖𝒏𝒊𝒒𝒖𝒆,𝒌 = 𝒓B − 𝒓𝐴 (3.30)

where 𝒓B is position of bead with index in column B and 𝒓Ais position of bead with index in

column A in the Table IV (b) above.

 𝑸𝒖𝒏𝒊𝒒𝒖𝒆,1 = 𝒓2 − 𝒓1 (3.31a)

 𝑸𝒖𝒏𝒊𝒒𝒖𝒆,2 = 𝒓3 − 𝒓1 (3.31b)

 𝑸𝒖𝒏𝒊𝒒𝒖𝒆,3 = 𝒓4 − 𝒓1 (3.31c)

 𝑸𝒖𝒏𝒊𝒒𝒖𝒆,4 = 𝒓3 − 𝒓2 (3.31d)

 𝑸𝒖𝒏𝒊𝒒𝒖𝒆,𝟓 = 𝒓4 − 𝒓2 (3.31f)

 𝑸𝒖𝒏𝒊𝒒𝒖𝒆,6 = 𝒓4 − 𝒓3 (3.31g)

 …

Once we have tabulated data of Table IV (b), we can figure out which are the neighboring

38

beads for each bead position by searching for same indices. The algorithm to search for is

written in the subroutine ‘InterParticleForces’ and its sub-calls in Fortran code (Appendix H).

This method works for any number of beads that are greater than 3, that is, at least one or

more triangles to form a RBC model. Following is an example for inter-particle forces of 4-

bead model using this algorithm and definition of connector vector in Eq. (3.26).

 𝐹1
𝜙
= 𝐻(𝑸𝒖𝒏𝒊𝒒𝒖𝒆,1 + 𝑸𝒖𝒏𝒊𝒒𝒖𝒆,2 + 𝑸𝒖𝒏𝒊𝒒𝒖𝒆,3) (3.32a)

 𝐹2
𝜙
= 𝐻(𝑸𝒖𝒏𝒊𝒒𝒖𝒆,4 + 𝑸𝒖𝒏𝒊𝒒𝒖𝒆,5 − 𝑸𝒖𝒏𝒊𝒒𝒖𝒆,1) (3.32b)

 𝐹3
𝜙
= 𝐻(𝑸𝒖𝒏𝒊𝒒𝒖𝒆,6 − 𝑸𝒖𝒏𝒊𝒒𝒖𝒆,2 − 𝑸𝒖𝒏𝒊𝒒𝒖𝒆,4) (3.32c)

 𝐹4
𝜙
= −𝐻(𝑸𝒖𝒏𝒊𝒒𝒖𝒆,3 + 𝑸𝒖𝒏𝒊𝒒𝒖𝒆,5 + 𝑸𝒖𝒏𝒊𝒒𝒖𝒆,6) (3.32d)

It proves to have same result as set of Eq. (3.27).

From the constructed RBC configuration knowing the relations of beads and its

movement based on stochastic method, we are able to quantify the shear stress of the RBC

flow in the solvent fluid.

39

3.4 Stress Tensor

It is conventional to express the total stress tensor as a sum of pressure and stress tensor where

𝜹 is unit tensor. The extra stress tensor 𝝉 is the part of the total stress tensor that is zero at

equilibrium.

 𝝅 = 𝑝𝜹 + 𝝉 = 𝝅𝑠 + 𝝅𝑐 (3.33)

The total stress tensor is assumed that the contribution of serum and cells of blood are

additive. Correspondingly, the isotropic pressure is 𝑝 = 𝑝𝑠 + 𝑝𝑐 and the stress tensor is

 𝝉 = 𝝉𝑠 + 𝝉𝑐 (3.34)

The stress tensor of the solvent can be easily obtained by

 𝝉𝑠 = −휂𝑠�̇� (3.35)

where 𝜸 ̇ is rate-of-strain tensor (definition in Appendix E) and 휂𝑠is the viscosity of solvent.

In general, stress tensor is a function of rate-of-strain tensor, and it can be linear or

nonlinear. The constitutive equation can be expressed various ways to add viscoelaticity of

the fluid. It can have differential form of rate-of-strain tensor. Examples are Jeffrey’s model

or retarded motion expansion which rate-of-strain tensor is expanded using Taylor series.

Wedgewood (1999) developed an objective constitutive equation by expressing the stress

tensor in terms of rate-of-strain tensor and the deformational vorticity tensor

 𝝉 = 𝑓(�̇�,𝝎𝐷) (3.36)

such that there is no dependency on the reference frame. The vorticity tensor 𝝎 = ∇𝒗 −

(∇𝒗)† is decomposed into the rigid vorticity tensor 𝝎𝑅 part which depends on the reference

frame and deformational vorticity tensor 𝝎𝐷 part which is objective. As described in the

introduction, Casson model is often used for blood flow calculations due to the fact that the

experimental data show a slope of viscosity verses shear rate of -1/2 in the mid-region of the

40

shear rate where it has shear thinning effect. The model is a purely empirical model

explaining the flow behavior written as

 √𝝉 = √𝝉0 +√휂0√�̇� (3.37)

This model gives fairly good fit with the slope of exactly negative one half, however, would

not explain the full range of shear rate since the model would not consider the elasticity of

blood flow (Healey, 1975; Rogelio, 2007). Other Generalize Newtonian Fluid (GNF) model

such as Herschel-Bulkley is used for blood flow studies. These GNF models have no elasticity.

We can introduce an expression of stress tensor with elasticity based on kinetic theory.

Among all the various forms of the stress tensor, we would like to use the constitutive

equation which gives physical insight into the relation between the bulk flow and the structure

of polymer molecules. In this study, Kramers-Kirkwood form where the polymer contribution

of the stress tensor is derived by Kramers and Kirkwood (1967) is used to find the material

functions. The alternative expressions for the stress tensor appear in the (Bird et al., 1987).

The definitions of the material functions will be discussed in detail in the following section.

Assuming that the velocity distribution is Maxwellian (see Appendix A), the polymer

contribution of the stress tensor is

 𝝉𝑐 = −𝑛𝑐 ∑ 〈𝑹𝜈𝑭𝜈
ℎ〉𝜈 (3.38)

considering the Brownian motion contribution of the beads to the stress tensor 𝝅𝑐
𝑏 =

𝑁𝑛𝑐𝑘𝐵𝑇𝜹 (Maxwellian); Each beads gives a contribution of 𝑛𝑘𝑇𝜹 in consequence of the

equilibration in momentum space. Here, 𝑛𝑐 is number of cells per unit volume and 𝑹𝜈 = 𝒓𝜈 −

𝒓𝑐 is relative bead position to the center-of-mass. The bracket 〈… 〉 indicates an average with

respect to the configurational distribution function over the configuration space.

41

When we insert the expression for the hydrodynamic force in Eq. 3.2 using Liu’s (1989)

stochastic approach with actual bead velocity instead of the momentum-space-averaged

velocity of the bead,

 𝑭𝜈
ℎ = −휁 ∙ [�̇�𝜈(𝑡) − 𝒗𝜈(𝒓𝜈 , 𝑡)] (3.39)

then we obtain

 𝝉𝑐 = 𝑛휁{∑ 〈𝑹𝜈[�̇�𝜈 − 𝜿 ∙ 𝑹𝜈]〉𝜈 + 〈𝑹𝜈[�̇�𝑐 − 𝜿 ∙ 𝒓𝑐]〉} (3.40)

Only the first term of Eq. 3.37 survives if we neglect the hydrodynamic interaction. This is

due to the center-of-mass moving on the average with the fluid velocity. The stress tensor 𝝉𝑐

is symmetric with no external force being present; therefore, we can rewrite the equation as

 𝝉𝑐 =
1

2
𝑛휁 ∑ {〈𝑹𝜈[�̇�𝜈 − 𝜿 ∙ 𝑹𝜈]〉 + 〈[�̇�𝜈 − 𝜿 ∙ 𝑹𝜈]𝑹𝜈〉}𝜈 (3.41)

Then using the definition of convected derivative

 𝚲(1) =
𝑑

𝑑𝑡
𝚲 − {𝜿 ∙ 𝚲 + 𝚲 ∙ 𝜿†}

we get

 𝝉𝑐 =
1

2
𝑛휁 ∑ {

𝑑

𝑑𝑡
〈𝑹𝜈𝑹𝜈〉 − 𝜿 ∙ 〈𝑹𝜈𝑹𝜈〉 − 〈𝑹𝜈𝑹𝜈〉 ∙ 𝜿

†}𝜈

 =
1

2
𝑛휁 ∑ 〈𝑹𝜈𝑹𝜈〉(1)𝜈 (3.42)

For steady state, the polymer contribution of stress tensor is

 𝝉𝑐 = −
1

2
𝑛휁 ∑ {𝜿 ∙ 〈𝑹𝜈𝑹𝜈〉 + 〈𝑹𝜈𝑹𝜈〉 ∙ 𝜿

†}𝜈 (3.43)

The Eqs. 3.42 and 3.43 are a stress tensor derived by Kramers-Kirkwood form that applies to

any flow types.

42

3.5 Material Properties

The rheological material functions relate the kinematics of a flow to the stresses required to

sustain the motion. The shear flow and shear free elongational flow are often used to

characterize polymeric liquids. We will focus on these two types of flow conditions to obtain

the material properties of RBC. All flows are considered homogeneous and incompressible

(see Appendix E) so that the deformations are uniform. The Cartesian coordinates are chosen

for all the calculations that are done in this paper.

3.5.1 Shear Flow

When a flow is in 𝑥 direction, the gradient direction in 𝑦, and the vorticity in 𝑧, we can

postulate the velocity field as follow:

 𝑣𝑥 = �̇�𝑦𝑥(𝑡)𝑦, 𝑣𝑦 = 0, 𝑣𝑧 = 0 (3.44)

in which the rate-of-strain �̇�𝑦𝑥 can be a function of time and the absolute value of �̇�𝑦𝑥 is the

shear rate �̇� . The viscosity, 휂 , which measures shear stress is a function of shear rate as

oppose to a constant in Newtonian flow. In the non-Newtonian flow, we introduce additional

material functions such as the first normal stress coefficient and the second normal stress

coefficient, 𝜓1 and 𝜓2 respectively. Particularly in the steady shear flow, the second normal

stress 𝜓2 becomes zero.

 𝜏𝑦𝑥 = −휂(𝑡, �̇�)�̇�𝑦𝑥 (3.45a)

 𝜏𝑥𝑥 − 𝜏𝑦𝑦 = −𝜓1(𝑡, �̇�)�̇�𝑦𝑥
2 (3.45b)

 𝜏𝑦𝑦 − 𝜏𝑧𝑧 = −𝜓2(𝑡, �̇�)�̇�𝑦𝑥
2 (3.45c)

These are differences of normal stress tensors that can be measured since the

𝜏𝑖𝑖 components are not zero (Eq. 3.46). The total stress tensor in the Eq. 3.33 is

43

 𝝅 = (

𝑝 + 𝜏𝑥𝑥 𝜏𝑦𝑥 0

𝜏𝑦𝑥 𝑝 + 𝜏𝑦𝑦 0

0 0 𝑝 + 𝜏𝑧𝑧

) (3.46)

for a simple shear flow. Each component of stress tensor and invariants of �̇� are shown in

Appendix E.

 For time-dependent unsteady start-up flow, the stress tensor with the transient term in

Eq. 3.42 is used. The material functions for such flow are noted as 휂+(𝑡, �̇�), 𝜓
1
+(𝑡, �̇�), and

𝜓2
+(𝑡, �̇�) where �̇� = 0 at 𝑡 < 0. For the steady state flow, time-dependent term in Eq. 3.42

vanishes to Eq. 3.43. Then, the functions are 휂(�̇�), 𝜓1(�̇�), and 𝜓2(�̇�).

3.5.2 Stress Relaxation after Sudden Shearing Displacement

The fluid is at rest for all times previous to 𝑡 = 0.

 𝑢𝑥 = 0, 𝑢𝑦 = 0, 𝑢𝑧 = 0 (3.47a)

 We can postulate the sudden displacement as follow:

 𝑢𝑥 = 𝛾0𝑦, 𝑢𝑦 = 0, 𝑢𝑧 = 0 (3.47b)

where 𝛾0 is shear strain that can be induced by applying a large, constant shear rate �̇�0 for a

short time interval ∆t so that �̇�0∆t = 𝛾0. The time decay of the shear stress is described by the

relaxation modulus 𝐺(𝑡, 𝛾0) and the relaxation of the first normal stress difference by the

function 𝐺𝜓1(𝑡, 𝛾0) (Eq. 3.48a and Eq. 3.48b)

 𝜏𝑦𝑥 = −𝐺(𝑡, 𝛾0)𝛾0 (3.48a)

 𝜏𝑥𝑥 − 𝜏𝑦𝑦 = −𝐺𝜓1(𝑡, 𝛾0)𝛾0
2 (3.48b)

44

For a small shear strain limit, the relaxation modulus becomes independent of 𝛾0 and contains

the same linear viscoelastic information as elastic modulus 𝐺′ and 𝐺′′.

3.5.3 Shear Free (Elongational) Flow

The shear free flow shows lamina stretching rather than shear. The velocity field of

elongational flow is expressed as follow with the elongation rate 휀̇ which can depend on time.

 𝑣𝑥 = −
1

2
휀̇𝑥, 𝑣𝑦 = −

1

2
휀̇𝑦, 𝑣𝑧 = +휀̇𝑧 (3.49)

There are two independent combinations of stress tensor component that are in interest for

incompressible fluids since the total stress tensor in the Eq. 3.33 has only the diagonal

component. This means that the deformation is unaffected by the rotation about the axes.

 𝜏𝑧𝑧 − 𝜏𝑥𝑥 = −휂̅1(휀̇)휀̇ (3.50a)

 𝜏𝑦𝑦 − 𝜏𝑥𝑥 = −휂̅2(휀̇)휀̇ (3.50b)

For the elongational and biaxial stretching flows as introduced in the Appendix E, the 𝑥 and 𝑦

directions are indistinguishable.

 휂̅ = 휂̅1 (3.51a)

 휂̅2 = 0 (3.51b)

Hence, we only calculate one viscosity function 휂̅1 in the simulation for shear free flow.

3.6 Radius of Gyration

The gyration of radius tells how much the polymers are stretched out from center of mass.

The mean-square radius of gyration is

〈𝑠2〉 = 〈
1

𝑁
∑ (𝑹𝜈 ∙ 𝑹𝜈)
𝑁
𝜈 〉 (3.52)

45

 〈𝑠2〉𝑒𝑞 is the mean-square radius of gyration at equilibrium. In other words, it is no-flow with

infinite wall condition.

We now see how these rheological material functions are calculated in the simulation

code in detail.

46

4. SIMULATION

Based on the theory, the simulation code is developed. The realization of a trajectory requires

the sampling of random numbers. Uniform random numbers are used rather than Gaussian

distributed since the computational cost is significant for BD simulations.

The Figure 7 shows a flow chart of the program. Sample Fortran codes are given in

Appendix H.

Figure 7. Flow chart of the program.

4
7

47

The two constraints method was tested with the triangular model. To initiate the

configuration of the model, the simulation is run until the system reaches the steady state in

flow. For each time step, five values of viscosity that are collected previously are used to

determine the plateau point of steady state with the criteria of tolslope. The material functions

can then be obtained for steady state from the bead positions. This process is repeated for each

shear rate. The data for steady state shown in the result section is extrapolated to ∆𝑡 = 0.

Linear least square method is employed for the determination of steady state and for

extrapolation.

TABLE V

THE PARAMETERS USED FOR THE SIMULATIONS

The initial parameter settings are given above in Table I. Initial position is set up so that

the area is equal to a constant 𝑎 given in Table V. This value is determined by the relation

between the size of the area of triangle and the slope of the viscosity to the shear rate. To

optimize value of the area of triangle, different sizes of triangle were tested by Qin 2008. The

slope is compared with the empirical data result (Dintanfess, 1974). The perimeter-constraint

is sum of length square which is |𝑸1|
2 + |𝑸2|

2 + |𝑸3|
2 as described in Section 3.3.1. The

value of this parameter is initially set up from the initial position. If the initial position is

Parameter Value Description

�̇�𝑦𝑥 10−2~103 dimensionless shear rate for shear flow

휀̇ 10−3~ 4 × 101 dimensionless elongational rate for shear free flow

Ntraj 104 ~ 106~ number of trajectories

∆𝑡 10−4~10−6 dimensionless time step size

tol𝜎1,𝜎2 1.5 × 10−3 convergence criteria for constraints

𝑎, 𝑎′, 𝑎′′ 100 ~ 400 constant area of ∑(area)2

𝑙 Constant length of ∑(𝑸i)
2
 when initial area = 𝑎

𝑏 constant volume when initial area = 𝑎′

4
8

48

equilateral triangle with (area)2 = 𝑎 of 100, the sum of length square (𝑙) is 69.2820323.

Since this condition gives the shortest length, the model would be too rigid. Therefore, in this

study the value in Table V is used.

For triangle model with one constraint, the range of the dimensionless time step ∆𝑡 was

set between 10−2~10−5 depending on the shear rate. The ∆𝑡 = 10−2 would be small enough

for low shear rates. However, as more beads and springs are added to the configuration, 10−2

would give a larger error and would not converge. With the trial run, ∆𝑡 needs to be set

to 10−4 for triangle with two constraints. As the shear rate increases, smaller ∆𝑡 is needed

requiring more integration steps. Higher shear rate converges slower and requires

dimensionless time step ∆𝑡 value closer to zero to converge, and vice versa. Larger ∆𝑡

decrease the calculation time, but leads to larger deviations and possibly non-convergence.

Despite of slower convergence of higher shear rate, it is calculated first to reduce the overall

simulation time because at high shear rate the model reaches the steady state faster in laminar

flow. Then the simulation runs for the next shear rate starting from the time where the

previous shear rate reached the steady state. This process reduces greatly the number of time

integration steps and unnecessary constraint iteration so that we can find the steady state

reaching point faster in the simulation.

All calculations were executed on the Extreme Computing System with Intel® Xeon®

CPU E5-2670 0 at 2.60GHz processor and ARGO Beowulf cluster with Dual AMD Opteron,

two 3GHz Xeon, and two dual-core AMD Opteron processors.

The results on the rheological properties of the model with two constraints under

different flow conditions are discussed in the following section.

49

5. RESULTS and DISCUSSION

5.1 Three-Bead-Spring Ring Model with One Constraint

In this section, the results of Lopez’s one-constraint model with optimized value of the area of

triangle are shown. The transient term and no-flow condition (in otherwords, no shear) in the

beginning of the flow is added in the simulation code. The start-up shear flow is observed for

longer dimensionless time (𝑡 = 0.5~50) to ensure that the steady-state is reached. The steady

state result is a snapshot result at 𝑡 = 50.

5.1.1 Stress Relaxation

In the stress relaxation experiment, we observe relaxing stress after sudden shearing

displacement is applied. A fluid sample with the three beads-springs ring under constant area

constraint that is in no flow condition is suddenly applied with shear strain 𝛾0. This can be

induced by a large, constant shear rate �̇�0 for a short time interval. The time interval used in

the simulation is ∆𝑡 = 0.0002 . The response observed is that the model is back to its

equilibrium size in a short, but finite, time (Thurston, 2004).

50

Figure 8. Relaxation of elastic modulus with 16.25% strain (𝒂 = 𝟏𝟎𝟎).

The RBC cell model recovers its shape to equilibrium condition such that the slope of

log plot of relaxation modulus verses dimensionless time ranges from -3.4268 to -1.0686

which gives the relaxation time measured ranging 0.2829 to 0.9358 𝜆𝐻. This time scale is

used to compare with the experiment data for this particular model. Because it is a

displacement experiment, there is no significant change in the radius of gyration.

5.1.2 Start-up Shear Flow

The shear rate range between 0.1 and 50 were tested. For higher shear rate, it required smaller

time steps. In other words, it took more looping in the simulation for integration resulting

longer physical time to simulate. However, as shown in Figure 9, it is proven that it takes less

dimensionless time for the higher shear rate to reach the steady state than the lower shear rate

when we plot the result. The unit of viscosity becomes dimensionless when divided by the

51

number of cells, the 𝑘𝐵𝑇 factor, and time constant for Hookean spring. The unit of time

divided by time constant makes it dimensionless.

Figure 9. Viscosity of a suspension of bead-spring triangle with one-constraint plotted verses

dimensionless time for a start-up shear flow (𝒂 = 𝟏𝟎𝟎).

In the higher shear rate, overshoot is shown before it approaches steady value. The size of the

maximum overshoot is larger with increasing shear rate. In general, the viscosity decreases as

shear rate increases, and further observation will be discussed in the steady state shear flow

section.

5.1.3 Steady Shear Flow

As shown in Bird et al. (1987), neither of the Rouse nor the Zimm model result gives a

decrease of viscosity with increasing shear rate. Liu (1989) demonstrated the result of

Kramers chain, a bead-rod model, with multiple constraints showing the shear thinning effect.

The bead-spring-ring model with an area constraint was constructed to represent the RBC

microstructures in this preliminary study and the results clearly show the expected shear-

52

thinning effect for viscosity. Comparison of viscosity with experimental data (Copley, 1973;

Dintanfass, 1974) is shown in Fig. 10.

Figure 10. Comparison of the one-constraint triangular model result against the experimental

data. (a) The simulated results of a simple bead-spring-ring model with one constraint (𝒂 = 𝟏𝟎𝟎

dimensionless unit). (b) Dintanfass (1971, 1974) used cone-in-cone rhombospheroid viscometer

without the use of anticoagulant. The samples were tested immediately after withdrawal. (c)

Copley and King (1973) used Weissenburg rheogoniometer with the use of dry ethylenediamine

tetraacetate (EDTA) as an anticoagulant. The blood samples were that of human donors ranging

in age from 25 to 60 years. (d) Windberger (2010) used Cell-Dyn 3500 and K-EDTA after the

withdrawal.

The scaled simulation result of bead-spring-ring model above has two adjusted parameters:

the low-shear-rate plateau value and the constraint area of the model. The time scale value 𝜆 is

from the relaxation simulation. This result shows that this simplest bead-spring-ring

configuration gives the quantitatively similar trend compare to the experimental observation

by Dintanfess (1974) and Copley (1973), thus gives the potential of BD with constraint

algorithm for future studies of blood flow. In the mid region between 0.1 sec−1and 50 sec−1,

the viscosity depends on the rate of shear showing non-Newtonian shear thinning where the

53

viscosity decreases as shear rate increase. The slope is approximately negative one half in the

log-log plot of shear rate verses viscosity.

Figure 11. A log-log plot of the first normal stress of a suspension of bead-spring triangle with

one-constraint with respect to shear rate for a steady shear flow (𝒂 = 𝟏𝟎𝟎).

In the region after 50 sec−1 , all the material functions 휂 and 𝜓1 approach plateau values

showing the behavior of Newtonian fluid. The second normal stress coefficient 𝜓2is zero in

all range of shear rate. The plot of first normal stress coefficient is shown in Figure 11.

 Different sizes of area are compared for optimization. The following plot in Figure 12 is

the viscosity and first normal stress difference of different area size for single area constraint.

When we increase the size of the area, the absolute value of the slope increased as the 𝑦𝑥-

component of shear stress increases.

54

Figure 12. A comparison of result of one-constraint method with different area sizes. (a) A log-

log plot of viscosity with respect to shear rate for a steady shear flow. (b) A log-log plot of first

normal stress coefficient with respect to shear rate for a steady shear flow.

The value of the slope for each size of area is compared in Table VII. We have chosen the

area that matches the experimental data. That value is used throughout this study and is one of

the two adjusted parameters that can be reoptimized for multi-bead model in the future study.

Generally speaking, the size of erythrocyte depends on mammalian species (Windberger,

2010). For the method comparison purpose, we do not variate the size of the area on the rest

of the study.

5.1.4 Capillary Flow

In microcirculation, the diameters of the vessels smaller than 100 𝜇𝑚 is considered as a

capillary flow. The position of the beads in boundary flow can be calculated with either

reflection or rejection method (Fig. 13). The reflection method is done by repositioning the

position of the bead that is out of boundary and locates it within the boundary by reflecting

the position with remaining beads as an axis. This shows that the microstructure bounces on

the wall. The rejection method rejects the positions of the microstructure that are out of

55

boundary and recalculates the positions of the beads so that all the beads are within the

boundary.

Figure 13. (a) Representation of reflection method. (b) Rejection method for capillary flow.

In the micro vessels, the RBCs tend to migrate toward the center of the tube. This is due

to tendency of the RBCs to move faster toward the center of the micro vessel while move

slower near the wall. As the velocity of flow increases, the volume percentage of RBCs

(hematocrit) increases in the center (Fahraeus, 1931). The simulation methods for capillary

flow described above comply with this fact because these methods increase the chance of

RBCs to be located towards the center when the calculation of the position is out of boundary.

In this study, the rejection method is used for several reasons. We do not want to

consider elastic vessel wall to be solid and the RBC particle as well. Moreover, we are not

absolutely sure how the pulse affects the position of the cells. The result below (Fig. 14) is

capillary flow using rejection method with the dimensionless radius of the vessel ranging

56

1~40 for given shear rate of 0.5. It shows that the viscosity drops drastically as the dimension

decreases.

Figure 14. Fahraeus-Lindqvist effect is observed in a capillary flow. Compared with Pries (1992)

analysis (𝒂 = 𝟏𝟎𝟎).

We have observed that the blood has shear thinning effect. It can also be considered as

thixotropic which the viscosity not only depends on the shear rate, but also on the time of

shearing. This can explain the behavior in the micro vessels where the fluid gets less viscous

as it slides through the capillary because the fluid is agitated or stressed. This is commonly

known as Fahraeus-Lindqvist effect (Fahraeus, 1931). We can also verify this effect by

observing the position of the RBC migrating to the center of the domain in the radial direction.

The relative viscosity of the bead-spring triangle model decreases when the radius of the

vessel decreases in steady shear flow as shown in the analysis of experimental data by Pries

(1992). Pries has shown vessel diameter dependence on the relative apparent viscosity

analyzing the experimental measurements mostly tube hematocrit, the volume concentration

of RBC within the tube, between 0.4 and 0.45. It is stated that the influence of shear rate on

57

viscosity appears to be small in the microcirculation under normal conditions generally above

50 sec−1. At substantially lower shear rate, it shows significant effects on viscosity which the

reasons can be that the tube flow is stongly affected by cell segmentation and effect of RBC

aggregation tendency. Therefore, it is advised that we simulate shear rate above 50 sec−1 to

give fair comparison.

5.1.5 Steady Shear Free Flow

The plot of elongational viscosity 휂̅ verses elongational rate is shown in Figure 15.

Figure 15. A log-log plot of viscosity of a suspension of bead-spring triangle with one-constraint

with respect to the elongation rate for a shear free flow (𝒂 = 𝟏𝟎𝟎).

It is seen that the viscosity increases drastically as the elongational rate increases in the log-

log plot. At low elongational rates the viscosity approaches a constant value 휂̅0 known as the

zero-elongation-rate viscosity. This value is known to have three times the zero-shear-rate

viscosity.

58

TABLE VI

COMPARISON OF ZERO-RATE VISCOSITY

(a) (b)

When the viscosity of shear and shear-free data between 0.01~0.11 is extrapolated (Table

VI), the value of extrapolated zero-shear-rate times three is 47.544 which is approximately the

value of extrapolated zero-elongation-rate.

5.2 Three-Bead-Spring Ring Model with Two Constraints

The two-constraint model of three-bead-spring ring is run for dimensionless time range of

 0.5~20 for a start-up flow. The steady state result is collected at the time where the steady

state is reached. The result of steady state flow with two-constraint method is compared with

that of one-constraint. To optimize value of the area of triangle, three different sizes of

triangle are tested.

SHEAR FLOW SHEAR-FREE FLOW

Shear rate Viscosity Elongational rate Viscosity

0.01 15.5671 0.01 48.93449

0.02 15.5642 0.02 49.83773

0.04 15.4459 0.03 50.58737

0.06 14.8614 0.04 51.38912

0.08 14.6285 0.05 52.18082

0.11 14.2861 0.06 52.77896

 0.07 53.91829

 0.08 54.62412

 0.09 55.18893

 0.10 55.90995

Zero-shear-rate 15.848 Zero-elongation-rate 48.248

59

5.2.1 Stress Relaxation

For the relaxation simulation of combined constraint model, it was difficult to observe decay

of relaxation modulus value under 20% strain due to non-linearity in the constraint. The RBC

cell model recovers its shape to equilibrium condition such that the slope of log plot of

relaxation modulus verses dimensionless time ranges from -92.717 to - 3487.9 which gives

the relaxation time measured ranging approximately 0.000287 to 0.01 𝜆𝐻 (Fig. 16).

Figure 16. Relaxation of elastic modulus with 21.93% strain (𝒂 = 𝟏𝟎𝟎).

This shows that the model recovered much faster than the area only constraint which means

the constraints affected more to this model.

5.2.2 Start-up Flow

We have seen in Figure 9 that the higher shear rate reaches steady-state faster than lower

shear rate. Instead of calculating all the points for time range of 0.5~40 and collect steady

state points at 𝑡 = 40 for all shear rates, the calculation of highest shear rate is calculated first

60

starting at 𝑡 = 0.5. After letting it flow for a while, five data points are collected to check if

the flow reached the steady state by linear least square method. When it reached steady state,

the next shear rate calculation starts from the time point where the previous shear rate reached

steady state.

Figure 17. Representation of how data are collected for two-constraint method to reduce

computer running time.

Viscosity of a suspension of bead-spring triangle with two-constraint model plotted

verses dimensionless time for a start-up shear flow.

61

Figure 18. Viscosity of a suspension of bead-spring triangle with two-constraint model plotted

verses dimensionless time for a start-up shear flow (𝒂 = 𝟏𝟎𝟎).

The Figure 17 shows how the data is collected and the reason why the result of two-

constraint method in Figure 18 appears different from Figure 9. In fact, the trend of two-

constraint method should be similar to that of one-constraint. By using this method, the

overall calculation time is drastically reduced.

5.2.3 Steady Shear Flow

The Figure 19 is the result of two constraint method with triangular model in shear flow

collecting the steady state data from the last points of start-up flow. The sample selected data

are in the table in Appendix G.

62

Figure 19. A comparison of result of two-constraint method against one-constraint of a triangle

model (𝒂 = 𝟏𝟎𝟎). (a) A log-log plot of viscosity with respect to shear rate for a steady shear flow.

(b) A log-log plot of first normal stress coefficient with respect to shear rate for a steady shear

flow.

The result of two-constraint was superposed to that of one-constraint for comparison. In

Table VII, the slope of each case is presented. Only a few data points in the mid-section of

shear rate verses viscosity where the viscosity value drops significantly is selected to calculate

the slope. The result with area and sum of length square constraint in Figure 19 shows that the

slope drops to −0.2718 in the mid region between dimensionless shear rate 1~10 showing

less shear thinning. In addition, the high shear rate limit did not show clear plateau. This is

due to the elimination of degree of freedom that the model does not have flexibility to change

its shape compare to one constraint. Our interest for the preliminary model was to see whether

the two-constraint method converges well. In addition, in the case of perimeter-constraint

only, the model is insufficient to get result for higher shear rate in the simple shear flow. We

have observed that the model just fold with no area.

63

TABLE VII

OPTIMIZATION OF AREA SIZE

 EXPERIMENTAL DATA ONE-CONSTRAINT TWO-CONSTRAINT

Dintenfass

a

Copley and

King
 b

Size of area
 c
 Size of area

 d

25 100 400 25 100 225

Slope -0.5106 -0.5188~-0.5212 -0.4214 -0.5217 -0.6151 -0.2458 -0.2718 -0.2793

a
Dintenfass, L.: Biorheology, 11: 397, 1974.

b
Copley, A.L.: Biorheology, 10: 87, 1973.

c d
size of area is dimensionless and the value is ∑(area)2

In the proposed tetrahedron model with volume and total area constraint, there would

we more degrees of freedom than the triangular model with area and sum of length square

constraint since there are four areas of triangle added to give constant area. The size of the

area is expected to be optimized to fit the experimental data.

Viscosity and first normal stress coefficient of different sizes of area are compared for

the combined constraint.

Figure 20. A comparison of result of two-constraint method with different area sizes. (a) A log-

log plot of viscosity with respect to shear rate for a steady shear flow. (b) A log-log plot of first

normal stress coefficient with respect to shear rate for a steady shear flow.

64

To obtain the value in the high shear rate beyond dimensionless unit 150 in Figure 20, smaller

 ∆𝑡 is needed to retain the constraint; otherwise, the calculation result gives non-convergence.

Table VII also shows that there are no significant differences in slope against different sizes.

5.2.4 Steady Shear Free Flow

The results for the RBC model under constraint for steady elongational flow are presented in

Figure 21. This graph shows the comparison between single constrained method and

combined constraint method for elongational flow with same area size.

Figure 21. A comparison log-log plot of elongational viscosity �̅� as a function of the elongation

rate �̇� for the triangular model with constraints (𝒂 = 𝟏𝟎𝟎).

At low elongational rate 휀̇ , the elongational viscosity 휂̅ approaches a constant

value 휂̅0 known as the zero-elongation-rate viscosity. This value is known to have three times

the zero-shear-rate viscosity. When the viscosity of shear and shear-free data are extrapolated

to zero-rate point respectively, the value of extrapolated zero-elongation-rate approximately

matches when the value of extrapolated zero-shear-rate is multiplied by three. As the

elongational rate is increased, 휂̅(휀̇) is seen to increase. There is no data available of typical

65

behavior for blood. At higher elongational rate, our model with single constraint is unable to

maintain its area integrity; thus we are unable to measure the elongational viscosity plateau

value that we would expect.

Figure 22. A comparison of gyration of the model as the elongation rate �̇� increases for the

triangular model with constraints (𝒂 = 𝟏𝟎𝟎).

Unlike the result of area only constrained model where the viscosity increases

exponentially as the value of �̇� increases, the rate of increase in viscosity drops after certain

point for combined-constraint model (Fig. 21). This is assumed because of decrease in degree

of freedom in the constraint. The exponential growth in area-constraint model means the

model can be stretched infinitely with Hookean spring which will not happen in reality.

Therefore, the combined-constraint result gave an improvement to the model. Furthermore,

when we do analysis of the possible shape of RBC, equilateral triangle was unlikely for two

constraint model.

66

5.3 Bead-Spring Tetrahedron Model with Two Constraints

This microstructure model is tested in steady shear flow condition. Below is the result of

viscosity and first normal stress difference for tetrahedron model. Three different simulation

is compared in one plot; RBC model with area constraint only, with volume constraint only,

and combination of two constraints (Fig. 23).

Each constraint by itself observed shear thinning effect, whereas, viscosity of the

combined constraint does not show much dependence on the shear rate. The tetrahedron

model with combined constraint does not have flexibility to change its shape compared with

previous study with triangular model due to the decrease in the degree of freedom. Simiar

result has been observed for area-constraint only of this model as the perimeter-constraint

only of the triangular model in shear flow. It tends to fold with no volume.

Figure 23. Comparison of viscosity plots of RBC tetrahedron model with constraint (𝒂′ = 𝟒𝟎𝟎).

For first normal stress difference, all three simulation shows the dependence on the shear rate

meaning that the constraint effect on the stress component 𝑥𝑥 and 𝑦𝑦 are not significant.

67

Figure 24. Comparison of first normal stress coefficient 𝝍𝟏 responses for the RBC tetrahedron

model under constraint (𝒂′ = 𝟒𝟎𝟎).

In general, we can verify that gyration is larger when large shear is applied to the

system. Specifically, volume constraint deforms easier than the area constraint where the

constraint is sum of area squared.

68

Figure 25. A comparison log-log plot of elongational viscosity �̅� as a function of the elongation

rate �̇� for the tetrahedron model with constraints (a) 𝒂′ = 𝟏𝟎𝟎 and (b) 𝒂′ = 𝟒𝟎𝟎.

For single constraint, the elongational viscosity increases exponentially as the rate increases

even with the volume only constraint due to the increase of degree of freedom (Fig. 25).

When we see the gyration plot in Figure 26, it implies that the model stretches infinitely

69

which led to the result above for the elongational viscosity. In the combined constraint model,

elongational rate reaches plateau state showing nearly constant value of gyration.

Figure 26. A comparison of gyration of the model as the elongation rate �̇� increases for the

tetrahedron model with constraints (a) 𝒂′ = 𝟏𝟎𝟎 and (b) 𝒂′ = 𝟒𝟎𝟎.

70

Figure 27. A comparison of elongational viscosity of single constraint tetrahedron model with

different area sizes.

When we compare the result of area only constraint of the model with different area sizes, the

zero rate viscosity of larger area size gives higher viscosity than the smaller area size.

5.4 Multi-Bead-Spring Model with One Constraint

The viscosity for Multi-Bead-Spring model with area constraint only is tested in steady shear

flow condition. The tested sphere model contains 78 beads. There has been yet applied force

to form biconcave shape of RBC. Result of viscosity started to show shear thinning effect

after dimensionless shear rate of 1 where the decrease of the viscosity happens later than other

models.

71

Figure 28. A viscosity plot of the Multi-Bead-Spring RBC model with respect to shear rate

(𝒂′′ = 𝟏𝟎𝟎).

Smaller value of ∆𝑡 would be needed to retain the constraint to obtain the value in the high

shear rate beyond dimensionless unit 10 in Figure 26. The model would retain its shape better

with combined constraint.

Figure 29. Gyration plot of the Multi-Bead-Spring RBC model with respect to shear rate

(𝒂′′ = 𝟏𝟎𝟎).

72

6. CONCLUSION AND DISCUSSION

The main developments here are the modeling microstructure of RBC and simulations of

dilute solution of RBC model based on kinetic theory with constraint algorithm. Three

different models we constructed and tested under shear and shear free flow. For the shear flow,

stress growth upon inception of steady shear flow, steady shear flow, stress relaxation after a

sudden shearing displacement, and steady shear flow in capillary is simulated. In the model

developed part, a foundational framework is proposed.

In essence, the method outlined in this dissertation is an application of the study of

polymeric fluid by Liu (1989) and Wiest (1987) to biorheological fluid. This procedure

employed as a stress tensor calculator to study the motion of suspended RBC. Discrete models

of the RBC are constructed using hydrodynamic resistant site and its connection to

demonstrate its flow behavior. The constraints applied to the system allowed seeing the

shearing dependence in the material function while maintain its overall size.

The findings of this study is that the Brownian Dynamic simulation results of the bead-

spring ring with constraints show a powerful capability to model the rheological properties of

red blood cell in steady flow and boundary under shear stress based on the shear thinning of

viscosity, first normal tensor coefficient responses, and Fahraeus-Lindqvist effect. The

rheological material properties for both single and combined constrained triangular models

are presented and the results are qualitatively in agreement with experimental data (Copley,

1973; Dintenfass, 1974; Windberger, 2010) clearly showing shear-thinning effect of viscosity

in shear flow. Adjusted parameters in this study are relaxation time, correlation between the

size of the RBC and the slope.The model using both constraints has less degree of freedom

giving more restriction to cell deformation; therefore, lead to less shear thinning of shear

73

properties than single constraint model where the constraint is only on area, perimeter, or

volume. The short time for the stress relaxation after shear displacement explains the strong

effect of the constraint forces on the RBC. We also observed Fahraeus-Lindqvist effect in the

capillary flow with this study. The results involve the phenomenon of axial accumulation of

red cells as well. In steady elongational flow, the rings remain in equilibrium at low

elongation rates. At higher elongation rates, the ring is oriented along the axis of elongation

and extended. The degree of extension and the viscosity increases with increasing elongation

rate. It showed more realistic behavior in the elongational flow with combined-constraint

model.

Overall, introducing another constraint to the model with only area constraint gave an

improvement to the model. It was successful to see that the second constraint gave restriction

to deformation while the model still has some degree of flexibility. For multi-bead model,

degree of freedon would increase so that we are expected to see more shear thinning effect in

the combined constraint model for shear flow. We therefore, conclude that using a method

based on kinetic theory with holonomic constraints to simulate discrete bead-spring model of

the RBC has shown the potential for future studies of blood of rheology.

The use of random variables in the simulation and a finite number of trajectories in the

ensemble means that there is intrinsic statistical noise to the method that is used in this study

(Doyle et al., 2005). The size of this error is proportional to the number of independent

trajectories. There is a technique called variance reduction for the reduction of this error by

reducing the proportionality factor rather than increasing the number of trajectories even more

(Ö ttinger, 1996). Although the exact way of performing variance reduction depends on the

system of study, we can investigate this to see if this can be done in our system. Moreover, the

74

simulation code can be further revised that the vector and tensor calculations are done in

efficient way by using existing algebra packages, for example, since it is computationally

intensive.

The further development of modeling RBC is extended to biconcave shape as shown in

Fig. 1(a) with total surface area. The 3D mesh generator was beneficial to develop framework

for 𝑁 number of beads in the RBC structure to systematically find neighboring beads and

obtain inter-particle forces. Moreover, the total surface area is easily calculated with the

indices of each triangle from the generator.

There can be improvement to this research for future works. Some ideas are listed

below. At this point, we need to first develop volume constraint to test combine constraint for

biconcave RBC model. Setting up the constraint equation so that the constraint 𝜎 is

differentiable by the bead position is inevitable to use the constraint method used in this study.

We can consider using Gauss Divergence theorem using the curve of the surface. Rathod

(2007) proposed a numerical integration algorithm of an arbitrary tetrahedron in three-

dimensional space by summing four integrals of such arbitrary function over the unit triangle

which can be tested as well. A good overview of methods for evaluating volume integrals can

be found in Lee et al. (1982).

Second, we can investigate bending potential energy function to the springs connected

to the bead in order to maintain a biconcave curve in the mid region of the RBC model.

Representation of such is drawn below in Figure 30.

75

Figure 30. Schematic of a bending potential to the springs connected to the bead.

Similarly, the center of mass of RBC 𝒓𝑐(𝑥𝑐, 𝑦𝑐 , 𝑧𝑐) or the local center can be used to

determine the direction of the local curvature to keep the biconcave shape. The local surface

dotted with local center of mass will give the direction of the curve as shown in Figure 31.

Figure 31. Schematic of using (a) center of mass of RBC 𝒓𝒄(𝒙𝒄, 𝒚𝒄, 𝒛𝒄) (b) local center of mass to

maintain the curve in the biconcave model.

As the model is build up, we expect the degree of freedom will increase so that the

motion of RBC model will lead to result giving the shear-thinning effect that lines better with

the experimental result. The use of the procedure can be extended to more complex situations

and more realistic models to understand changes in flow behavior and rheological properties

of RBC flow in small diameter vessels, and replacing the single vessel for more complex

geometries (walls, constriction, bends, junction, networks) or combinations. In addition, this

method makes feasible its use as a model capable of predicting the performance of RBC

circulation over a wide range of physiological conditions of the RBC. Ultimately, our model

76

combined with aspects of other models may lead the best representation of RBC, and include

interaction between blood cells.

77

CITED LITERATURE

Andersen, H.C.: Rattle: A “velocity” version of the shake algorithm for molecular dynamics

calculations. J. Comput. Phys., 52(1): 24-34, 1983.

Atkinson, J., Goh, C.J., and Phan-Thien, N.: Bead‐spring models for an adsorbed polymer molecule in

a shear flow. J. Chem. Phys., 80: 6305, 1984.

Bagchi, P.: Mesoscale Simulation of Blood Flow in Small Vessels. Biophys. J., 92: 1858–1877, 2007.

Biller, P. and Petruccione, F.: Rheological properties of polymer dumbbell models with

configuration‐dependent anisotropic friction. J. Chem. Phys., 89: 2412, 1988.

Bird, R.B., Curtis, C.F., Armstrong, R.C., and Hassager, O.: Dynamics of Polymeric Liquids: Volume

2 Kinetic Theory. 2nd edition, New York, Wiley-Interscience, 1987.

Charm, S.E. and Kurland, G.S.: Blood Flow and Microcirculation. New York, John Wiley & Sons,

1974.

Ciccotti, G. and Ryckaert, J.P.: Molecular dynamics simulations of rigid molecules. Comput. Phys.

Rep., 4: 345-392, 1986.

Coates T.D.: Clinical Introduction to Sickle Cell Anemia and the Importance of Blood Rheology.

Biorheology, 45: 85, 2008.

Copley, A.L.: On biorheology. Biorheology, 10(2): 87-105, 1973.

Cordoba, A., Indei, T. and Schieber J.D.: Elimination of Inertia from a Generalized Langevin Equation:

Applications to Microbead Rheology Modeling and Data Analysis. J. Rheol., 56: 185-212, 2012.

Davit, Y. and Peyla, P.: Intriguing Viscosity Effects in Confined Suspensions: A Numerical Study.

EPL, 83: 64001, 2008.

Dintenfass, L.: Blood viscosity in healthy men, measured in rhombospheroid viscometer on EDTA

blood. A comparison with the cone-in-cone viscometer data and those of Copley. Biorheology, 11:

397-403, 1974.

Dintenfass, L.: Blood viscosity, Hyperviscosity and Hyperviscosaemia. Boston, MTP, 1985.

Discher, D.E., Mohandas, N., and Evans, E.A.: Molecular maps of red cell deformation: Hidden

elasticity and in situ connectivity. Science, 266: 1032, 1994.

Dotson, P.J.: Brownian dynamics simulation of macromolecules in steady shear flow. J. Chem. Phys.,

79: 5730, 1983.

Doyle, P.S and Underhill, P.T.: Brownian Dynamics Simulations of Polymers and Soft Matter. In:

Handbook of Materials Modeling. Springer, 2005.

Doyle, P.S.: Brownian Dynamics Simulations of Polymers and Soft Matter. Retrieved from

http://web.mit.edu/doylegroup/pubs/BD-Handbook-v5.pdf, 2014.

http://web.mit.edu/doylegroup/pubs/BD-Handbook-v5.pdf

78

Evans, E. and Fung Y.: Improved measurements of the erythrocyte geometry. Microvasc. Res., 4: 335-

347, 1972.

Evans, E.A. and Hochmuth, R.M.: Membrane viscoelasticity. Biophys. J., 16: 1-11, 1976.

Fahraeus, R. and Lindqvist, T.: The viscosity of the blood in narrow capillary tubes. Am. J. Physiol.,

96: 562-568, 1931.

Galdi, G.P., Rannacher, R., Robertson, M., and Turek, S.: Hemodynamical Flows: Modeling, Analysis

and Simulation. Oberwolfach Seminars, vol 37, 2008.

Gidaspow, D. and Huang, J.: Kinetic Theory Based Model for Blood Flow and its Viscosity. Ann.

Biomed. Eng., 37(8): 1534-1545, 2009.

Gilmer, G. and Yip, S.: Basic Monte Carlo Models: Equilibrium and Kinetics. In: Handbook of

Materials Modeling. Springer, 2005.

Goldsmith, H.L., Fed. Proc. 26: 1813-1820, 1967.

Haynes, R.H. and Burton, C.: Role of the non-Newtonian behavior of blood in hemodynamics. J. Appl.

Physiol., 197: 943-950, 1959.

Healy, C. and Joly, M.: Rheological Behavior of Blood in Transient Flow. Biorheology, 12: 335-340,

Figure 10, 1975.

Hosseini, S.M. and Feng, J.J.: A particle-based model for the transport of erythrocytes in capillaries.

Chem Eng. Sci., 64: 4488-4497, 2009.

Hosseini, S.M. and Feng, J.J.: A particle-based model for the transport of erythrocytes in capillaries.

Chem Eng. Sci., 64: 4488-4497, 2009.

Jorgensen, W. and Tirado-Rives, J.: Monte Carlo vs Molecular Dynamics for Conformational

Sampling. J. Phys. Chem., 100: 14508-14513, 1996.

Khodabandelou, T., Boisseau, M.R., and LeDevehat, C.: Blood Rheology as a Marker of Venous

Hypertension in Patients with Venous Disease. Clin. Hemorheol. Microcirc., 30: 307-312, 2004.

Kirkwood, J.G.: Macromolecules. New York, Gordon and Breach, 1967.

Kuchel, P.W., Fackerell, E.D.: Parametric-equation representation of biconcave erythrocytes. Bull.

Math. Biol., 61(2): 209-220, 1999.

Larkin, T.J., Kuchel, P.W.: Mathematical models of naturally “morphed” human erythrocytes:

stomatocytes and echinocytes. Bull. Math. Biol., 72(6):1323-1333, 2010.

Lee, Y.T. and Requicha, A.G.G.: Algorithms for computing the volume and other integral properties

of solids I: known methods and open issues. Commun. ACM, 25: 635-641, 1982.

Leschke, M.: Rheological Factors in Coronary Heart Disease. Deutsche Medizinishe Wochenschrift,

133: S270-S273, 2008.

Liu, T.: Flexible polymer chain dynamics and rheological properties in steady flows. J. Chem. Phys.,

90(10): 5826, 1989.

79

Liu, S-C., Derick, L., and Palek, J.: Visualization of the hexagonal lattice in the erythrocyte membrane

skeleton. J. CellBiol.., 104: 527-536, 1987.

Liu, Y. and Liu, W.K.: Rheology of Red Blood Cell Aggregation by Computer Simulation. J. Comput.

Phys., 220: 139–154, 2006.

Lockhart, C.J., Hamilton, P.K., McVeigh, K.A., and McVeigh, G.E.: A Cardiologist View of Vascular

Disease in Diabetes. Diabetes Obes. Metab., 10: 279-292, 2008.

Lopez, R.H.: Blood Rheology using a Brownian Dynamics Simulation of Bead-Spring Rings with a

Constant Area Constraint. PhD dissertation, University of Illinois at Chicago, Illinois, 2007.

Meller, J.: Molecular Dynamics. Enc. Life Sci., 1-8, 2001.

Merrill, E.W., Gilliland, E.R., Cokelet, G., Shin, H., Britten, A., and Wells, R.E.: Rheology of blood

and flow in the microcirculation. J. Appl. Physiol., 18: 225, 1963.

Moyers-Gonzalez, M., Owens, R.G., and Fang, J.: A Non-Homogeneous Constitutive Model for

Human Blood. Part 1. Model Derivation and Steady Flow. J. Fluid Mech., 617: 327–354, 2008.

Novacek, G., Vogelsang, H., Genser, D., Moser, G., Gangl, A., Ehringer, H., and Koppensteiner, R.:

Changes in Blood Rheology Caused by Crohn’s Disease. Euro. J. Gastroenterol. Hepatol., 8: 1089-

1093, 2008.

Ö ttinger, H.C.: On the distribution of included angles for the Rouse chain in strong steady shear flow.

J. Chem. Phys., 84: 1850, 1986.

Ö ttinger, H.C.: Models with Constraints. In: Stochastic Processes in Polymeric Fluids. Springer, 1996.

Pan, T. and Wang, T.: Dynamical Simulation of Red Blood Cell Rheology in Microvessels. Int. J.

Numer. Anal. Model., 6(3): 455–473, 2009.

Persson, P.-O.: Mesh Generation for Implicit Geometries. PhD dissertation, Massachusetts Institute of

Technology, 2005.

Peyla, P.: Rheology and Dynamics of a Deformable Object in a Microfluidic Configuration: A

Numerical Study. EPL, 80: 34001, 2007.

Pozrikidis, C.: Axisymmetric motion of a file of red blood cells through capillaries. Phys. Fluids, 17:

031503, 2005.

Pozrikidis, C.: Numerical Simulation of the Flow-Induced Deformation of Red Blood Cells. Ann.

Biomed. Eng., 31: 1194, 2003.

Pries, A.R., Neuhaus D., Gaehtgens P.: Blood viscosity in tube flow: dependence on diameter and

hematocrit. Am. J. Physiol. Heart Circ. Physiol., 263(6): H1770-H1778, 1992.

Pries, A.R. and Secomb, T.W.: Rheology of the Microcirculation. Clin. Hemorheol. Microcirc.,

29:143–148, 2003.

Puig-De-Morales-Marinkovic, M., Turner, K.T., Butler, J.P., Fredberg, J.J., and Suresh, S.:

Viscoelasticity of the Human Red Blood Cell. Am. J. Physiol. Cell Physiol., 293:597–605, 2007.

80

Qin, X.: Report on Continued Simulation of three Bead-Spring Rings with a Constant Area Constraint.

University of Illinois at Chicago, Illinois, 2008.

Rathod, H.T., Nagaraja, K.V., Venkatesudu, B.: Numerical integration of some functions over an

arbitrary linear tetrahedra in Euclidean three-dimensional space. Appl. Math. Comput., 191:397-409,

2007.

Risken, H.: The Fokker-Planck Equation: Methods of Solution and Applications. 2nd edition, Berlin,

Springer, 1989.

Ryckaert, J.P., Ciccotti, G., and Berendsen, H.J.C.: Numerical integration of the Cartesian equations of

motion of a system with constaints: molecular dynamics of n-alkanes. J. Comput. Phys., 23:327-341,

1977.

Saab, H.H. and Dotson, P.J.: Nonequilibrium statistics of flexible macromolecules in dilute solutions.

II. Macromolecular extension and comparison with nonequilibrium Brownian dynamics. J. Chem.

Phys., 86: 3039, 1987.

Secomb, T.W.: Modeling and Simulation of Capsules and Biological Cells. edited by Pozrikidis, C.,

Boca Raton, Chapman & Hall/CRC, 2003.

Secomb, T.W.: Red Blood Cell Mechanics and Capillary Blood Rheology. Cell Biophysics 18: 231,

1991.

Schieber, J.D. and Ö ttinger, H.C.: The effects of bead inertia on the Rouse model. J. Chem.Phys., 89

(11): 6972-6981, 1988.

Sung, L.A. and Vera, C.: Protofilament and Hexagon: A Three-Dimensional Mechanical Model for the

Junctional Complex in the Erythrocyte Membrane Skeleton. Ann. of Biomed. Eng., 31: 1314-1326,

2003.

Snyder, G.K. and Sears, R.D.: Red Blood Cell Size and the Fahraeus–Lindqvist Effect. Can. J. Zool.,

84: 419–424, 2006.

Thurston, G.B., Henderson, N.M. and Jeng, M.: Effects of erythrocytapheresis transfusion on the

viscoelasticity of sickle cell blood. Clin. Hemorheol. Microcirc., 30: 61-75, 2004.

Tsubota, K.: Particle method for computer simulation of red blood cell motion in blood flow. Comput.

Meth. Prog. Biomed., 83(2): 139-146, 2006.

Tsukada, K.: Direct measurement of erythrocyte deformability in diabetes mellitus with a transparent

microchannel capillary model and high-speed video camera system. Microvasc. Res., 61:231-239,

2001.

Valencia, A., Morales, H., Rivera, R., Bravo, E., and Galvez, M.: Blood Flow Dynamics In Patient-

Specific Cerebral Aneurysm Models: The Relationship Between Wall Shear Stress And Aneurysm

Area Index. Med. Eng. & Phys., 30: 329-340, 2008.

Wedgewood, Lewis E.: An objective rotation tensor applied to non-Newtonian fluid mechanics.

Rheologica Acta, 38: 91-99, 1999.

Wiest, J.M., Burdette, S.R., Liu, T.W., and Bird, R.B.: Effect of ring closure on rheological behavior.

J. Non-Newton. Fluid Mech., 24: 279-295, 1987.

81

Windberger, U.: Whole blood viscosity, plasma viscosity and erythrocyte aggregation in nine

mammalian species: reference values and comparison of data. Exp. Physiol., 88.3: 431–440, 2010.

Wolstenholme, G.E.W., Knight, J., and Goldsmith, H.L.: Circulatory and respiratory mass transport:

a Ciba Foundation symposium. London, Churchill: Ciba Foundation, 1969.

Zhou, R. and Chang, H-C.: Capillary Penetration Failure of Blood Suspensions. J. Colloid Interface

Sci., 287: 647–656, 2005.

82

APPENDICES

83

Appendix A

Distribution Function and Definition of its Average

The distribution function in position-velocity space can be expressed as configuration-space

distribution function and velocity-space distribution function.

 𝐹(𝒓ν, �̇�ν, 𝑡) = Ψ(𝒓ν, 𝑡)Ξ(�̇�ν, 𝒓ν, 𝑡) (A-1)

To indicate that the distribution of configurations is independent of the location of the particle in space,

we can factor configuration-space distribution as following.

 Ψ(𝒓ν, 𝑡) = 𝑛𝜓(𝑸, 𝑡) (A-2)

Per unit volume, there are 𝒏 polymer molecules. The distribution function 𝝍 satisfies the

normalization condition of

 ∫𝜓(𝑸, 𝑡)𝑑𝑸 = 1 (A-3)

When we assume the distribution to be Maxwellian, the velocity-space distribution function is

 Ξeq(�̇�ν) =
exp{−∑ [

1

2
𝑚(�̇�𝑖−𝒗)

2]ν
1 /𝑘𝐵𝑇}

∫ …∫ exp{−∑ [
1

2
𝑚(�̇�𝑖−𝒗)

2]ν
1 /𝑘𝐵𝑇}𝑑�̇�1…𝑑�̇�ν

+∞

−∞

+∞

−∞

 (A-4)

where is the mass-average velocity of the solution and satisfies the normalization condition of

 ∫…∫Ξ𝑑�̇�1…𝑑�̇�ν = 1 (A-5)

The assumption made here is that velocity distribution in a flow system is the same as that in a

solution at equilibrium. This is only used in the Brownian motion term in the equation and in the bead-

momentum flux contribution to the stress tensor (Bird et al. 1987).

Average values

A velocity-space average of a time-independent function 𝐵(𝒓ν, �̇�ν) is

 ⟦𝐵⟧ = ∫…∫𝐵Ξ𝑑�̇�1…𝑑�̇�ν (A-6)

84

where the velocity of the bead is �̇�ν = 𝑑𝒓ν/𝑑𝑡 with respect to the same origin. The phase-space

average in a function of time 𝒕 is then

 〈𝐵〉 =
1

𝑛𝑉
∫…∫⟦𝐵⟧Ψ𝑑𝒓1…𝑑𝒓ν (A-7)

If 𝐵 depends only on 𝑸, then

 〈𝐵〉 = ∫𝐵𝜓(𝑸, 𝑡)𝑑𝑸 (A-8)

The rest of the components have been proven to be zero for incompressible fluids.

85

Appendix B

Gradient of Constraints

The definition of constraints and its derivatives are derived below for each model of microstructure.

The notation used in this dissertaion is that of Bird et al. (1987).

For Triangle Model,

Area constraint is

 𝜎1({𝒓}) =
1

4
(|𝑸1 × 𝑸2| ∙ |𝑸1 ×𝑸2|) − 𝑎

2 = 0 (B-1)

Sum of length square constraint is

 𝜎2({𝒓}) = (𝑸1 ∙ 𝑸1 +𝑸2 ∙ 𝑸2 +𝑸3 ∙ 𝑸3) − 𝑙
2 = 0 (B-2)

where the connector vector is defined as

 𝑸1 = 𝒓2 − 𝒓1, 𝑸2 = 𝒓3 − 𝒓1, 𝑸3 = 𝒓3 − 𝒓2 (B-3)

For simplicity, we let 𝒘 = 𝑸1 × 𝑸2, then the gradients of the constraints are

 ∇𝜎1 =
1

4
∇(𝒘 ∙ 𝒘) =

1

2
[∇𝒘 ∙ 𝒘] (B-4)

 ∇𝜎2 = 2[∇𝑸1 ∙ 𝑸1 + ∇𝑸2 ∙ 𝑸2 + ∇𝑸3 ∙ 𝑸3] (B-5)

using the identity for vector calculation.

The term ∇𝒘 in (B-4) is

 ∇𝒘𝜈 = {∇𝑸1 × 𝑸2 − ∇𝑸2 × 𝑸1}, 𝜈 = 1, 2, 3 (B-6)

Solving this for each bead gives

𝜕𝒘

𝜕𝒓1
= −𝜹 ∙ 𝑸2 + 𝜹 ∙ 𝑸1 (B-6a)

𝜕𝒘

𝜕𝒓2
= 𝜹 ∙ 𝑸2 (B-6b)

𝜕𝒘

𝜕𝒓3
= −𝜹 ∙ 𝑸1 (B-6c)

86

The term ∇𝑸 in (B-5) gives

𝜕𝑸1

𝜕𝒓1
= −𝜹,

𝜕𝑸2

𝜕𝒓1
= −𝜹,

𝜕𝑸3

𝜕𝒓1
= 0, (B-7)

𝜕𝑸1

𝜕𝒓2
= 𝜹,

𝜕𝑸2

𝜕𝒓2
= 0,

𝜕𝑸3

𝜕𝒓2
= −𝜹,

𝜕𝑸1

𝜕𝒓3
= 0 ,

𝜕𝑸2

𝜕𝒓3
= 𝜹,

𝜕𝑸3

𝜕𝒓3
= 𝜹

By substituting all (B-6a) through (B-7) into (B-4) and (B-5) gives the gradient of constraints with

respect to position of the beads.

𝜕𝜎1

𝜕𝒓1
=

1

2
(
𝜕𝒘

𝜕𝒓1
∙ 𝒘) =

1

2
(−𝜹 ∙ 𝑸2 + 𝜹 ∙ 𝑸1) ∙ (𝑸1 × 𝑸2) (B-8a)

 =
1

2
[𝑸1(𝑸1 ∙ 𝑸2 −𝑸2 ∙ 𝑸2) + 𝑸2(𝑸1 ∙ 𝑸2 −𝑸1 ∙ 𝑸1)]

𝜕𝜎1

𝜕𝒓2
=

1

2
(
𝜕𝒘

𝜕𝒓2
∙ 𝒘) =

1

2
(𝜹 ∙ 𝑸2) ∙ (𝑸1 × 𝑸2) (B-8b)

 =
1

2
[𝑸1(𝑸2 ∙ 𝑸2) − 𝑸2(𝑸1 ∙ 𝑸2)]

𝜕𝜎1

𝜕𝒓3
=

1

2
(
𝜕𝒘

𝜕𝒓3
∙ 𝒘) =

1

2
(−𝜹 ∙ 𝑸1) ∙ (𝑸1 × 𝑸2) (B-8c)

 =
1

2
[−𝑸1(𝑸1 ∙ 𝑸2) + 𝑸2(𝑸1 ∙ 𝑸1)]

𝜕𝜎2

𝜕𝒓1
= −2(𝜹 ∙ 𝑸1 + 𝜹 ∙ 𝑸2) = −2[𝑸1 +𝑸2] (B-9a)

𝜕𝜎2

𝜕𝒓2
= 2(𝜹 ∙ 𝑸1 − 𝜹 ∙ 𝑸3) = 2[𝑸1 −𝑸3] (B-9b)

𝜕𝜎2

𝜕𝒓3
= 2(𝜹 ∙ 𝑸2 + 𝜹 ∙ 𝑸3) = 2[𝑸2 +𝑸3] (B-9c)

These gradients in (B-8a) through (B-8c) and (B-9a) through (B-9c) are used in the constraint

subroutine in the computer simulations.

87

For Tetrahedron Model,

Area constraint is defined as

 𝜎1({𝒓}) =
1

4
(|𝑸1 × 𝑸2|

2 + |𝑸2 × 𝑸3|
2 + |𝑸3 × 𝑸1|

2 + |𝑸4 × 𝑸5|
2) − 𝑎′ = 0

 (B-10)

Volume constraint is

 𝜎2({𝒓}) =
1

6
(𝑸3 ∙ [𝑸1 × 𝑸2]) − 𝑏 = 0 (B-11)

where the connector vectors are redefined for tetrahedron model.

 𝑸1 = 𝒓2 − 𝒓1, 𝑸2 = 𝒓3 − 𝒓1, 𝑸3 = 𝒓4 − 𝒓1, (B-12)

 𝑸4 = 𝒓3 − 𝒓2, 𝑸5 = 𝒓4 − 𝒓2, 𝑸6 = 𝒓4 − 𝒓3

For simplicity, we will introduce vector 𝒘 for intermediate step.

 𝒘1 = 𝑸1 × 𝑸2, 𝒘2 = 𝑸2 × 𝑸3, 𝒘3 = 𝑸3 × 𝑸1, 𝒘4 = 𝑸4 ×𝑸5 (B-13)

The gradients can be expressed in terms of 𝒘.

 ∇𝜎1 =
1

4
[∇(𝒘1 ∙ 𝒘1) + ∇(𝒘2 ∙ 𝒘2) + ∇(𝒘3 ∙ 𝒘3) + ∇(𝒘4 ∙ 𝒘4)]

 =
1

2
[∇𝒘1 ∙ 𝒘1 + ∇𝒘2 ∙ 𝒘2 + ∇𝒘3 ∙ 𝒘3 + ∇𝒘4 ∙ 𝒘4] (B-14)

 ∇𝜎2 =
1

6
∇[𝑸3 ∙ 𝒘1] =

1

6
[∇𝑸3 ∙ 𝒘1 + ∇𝒘1 ∙ 𝑸3] (B-15)

The ∇𝒘 terms are

 ∇𝒘1,𝜈 = {∇𝑸1 × 𝑸2 − ∇𝑸2 × 𝑸1} 𝜈 = 1, 2, 3, 4 (B-16a)

 ∇𝒘2,𝜈 = {∇𝑸2 × 𝑸3 − ∇𝑸3 × 𝑸2} (B-16b)

 ∇𝒘3,𝜈 = {∇𝑸3 × 𝑸1 − ∇𝑸1 × 𝑸3} (B-16c)

 ∇𝒘4,𝜈 = {∇𝑸4 × 𝑸5 + ∇𝑸5 × 𝑸4} (B-16d)

88

Solving for each bead, we get

𝜕𝒘1

𝜕𝒓1
= −𝜹 × 𝑸2 + 𝜹 × 𝑸1,

𝜕𝒘2

𝜕𝒓1
= −𝜹 × 𝑸3 + 𝜹 × 𝑸2, (B-16e)

𝜕𝒘3

𝜕𝒓1
= −𝜹 × 𝑸1 + 𝜹 × 𝑸3,

𝜕𝒘4

𝜕𝒓1
= 0

𝜕𝒘1

𝜕𝒓2
= 𝜹 × 𝑸2 ,

𝜕𝒘2

𝜕𝒓2
= 0, (B-16f)

𝜕𝒘3

𝜕𝒓2
= −𝜹 × 𝑸3,

𝜕𝒘4

𝜕𝒓2
= −𝜹 × 𝑸5 + 𝜹 × 𝑸4

𝜕𝒘1

𝜕𝒓3
= −𝜹 × 𝑸1,

𝜕𝒘2

𝜕𝒓3
= 𝜹 × 𝑸3 , (B-16g)

𝜕𝒘3

𝜕𝒓3
= 0 ,

𝜕𝒘4

𝜕𝒓3
= 𝜹 × 𝑸5

𝜕𝒘1

𝜕𝒓4
= 0 ,

𝜕𝒘2

𝜕𝒓4
= −𝜹 × 𝑸2, (B-16h)

𝜕𝒘3

𝜕𝒓4
= 𝜹 × 𝑸1,

𝜕𝒘4

𝜕𝒓4
= −𝜹 × 𝑸4

Similarly, calculating (B-14) and (B-15) gives

𝜕𝜎1

𝜕𝒓1
=

1

2
[∇𝒘𝟏,𝟏 ∙ 𝒘𝟏 + ∇𝒘𝟐,𝟏 ∙ 𝒘𝟐 + ∇𝒘𝟑,𝟏 ∙ 𝒘𝟑 + ∇𝒘𝟒,𝟏 ∙ 𝒘𝟒] (B-16)

 =
1

2
[
(−𝜹 × 𝑸2 + 𝜹 × 𝑸1) ∙ (𝑸1 × 𝑸2) + (−𝜹 × 𝑸3 + 𝜹 × 𝑸2) ∙ (𝑸2 × 𝑸3)

+ (−𝜹 × 𝑸1 + 𝜹 × 𝑸3) ∙ (𝑸3 × 𝑸1) + 0 ∙ (𝑸4 × 𝑸5)
]

 =
1

2
[𝑸1(𝐴1,1) + 𝑸2(𝐴1,2) + 𝑸3(𝐴1,3)]

Therefore, in general

𝜕𝜎1

𝜕𝒓𝜈
=

1

2
[𝑸1(𝐴𝜈,1) + 𝑸2(𝐴𝜈,2) + 𝑸3(𝐴𝜈,3) + 𝑸4(𝐴𝜈,4) + 𝑸5(𝐴𝜈,5)] (B-17)

where 𝑚 = 1, 2, 3, 4, 5 and the scalar components 𝐴𝜈,𝑚 of vector ∇𝜎1 are grouped for simplicity.

 𝐴1,1 = −𝑸2 ∙ 𝑸2 +𝑸1 ∙ 𝑸2 +𝑸1 ∙ 𝑸3 − 𝑸3 ∙ 𝑸3 (B-18a)

 𝐴1,2 = 𝑸1 ∙ 𝑸2 −𝑸1 ∙ 𝑸1 −𝑸3 ∙ 𝑸3 +𝑸2 ∙ 𝑸3

 𝐴1,3 = 𝑸2 ∙ 𝑸3 −𝑸2 ∙ 𝑸2 −𝑸1 ∙ 𝑸1 +𝑸1 ∙ 𝑸3

89

 𝐴1,4 = 0

 𝐴1,5 = 0

 𝐴2,1 = 𝑸2 ∙ 𝑸2 +𝑸3 ∙ 𝑸3 (B-18b)

 𝐴2,2 = −𝑸1 ∙ 𝑸2

 𝐴2,3 = −𝑸1 ∙ 𝑸3

 𝐴2,4 = −𝑸5 ∙ 𝑸5 +𝑸4 ∙ 𝑸5

 𝐴2,5 = 𝑸4 ∙ 𝑸5 −𝑸4 ∙ 𝑸4

 𝐴3,1 = −𝑸1 ∙ 𝑸2 (B-18c)

 𝐴3,2 = 𝑸1 ∙ 𝑸1 +𝑸3 ∙ 𝑸3

 𝐴3,3 = −𝑸2 ∙ 𝑸3

 𝐴3,4 = 𝑸5 ∙ 𝑸5

 𝐴3,5 = −𝑸4 ∙ 𝑸5

 𝐴4,1 = −𝑸1 ∙ 𝑸3 (B-18d)

 𝐴4,2 = −𝑸2 ∙ 𝑸3

 𝐴4,3 = 𝑸2 ∙ 𝑸2 +𝑸1 ∙ 𝑸1

 𝐴4,4 = −𝑸4 ∙ 𝑸5

 𝐴4,5 = 𝑸4 ∙ 𝑸4

Therefore,

 ∇𝜎2 =
1

6
[∇𝑸1(𝑸2 ∙ 𝑸3) + ∇𝑸2(𝑸3 ∙ 𝑸1) + ∇𝑸3(𝑸1 ∙ 𝑸2)] (B-19)

𝜕𝜎2

𝜕𝒓1
= −

1

6
[(𝑸1 × 𝑸2) + (𝑸2 × 𝑸3) + (𝑸3 ×𝑸1)] (B-19a)

𝜕𝜎2

𝜕𝒓2
=

1

6
(𝑸2 × 𝑸3) (B-19b)

𝜕𝜎2

𝜕𝒓3
= −

1

6
(𝑸1 × 𝑸3) =

1

6
(𝑸3 × 𝑸1) (B-19c)

𝜕𝜎2

𝜕𝒓4
=

1

6
(𝑸1 ×𝑸2) (B-19d)

For each constraint, it satisfies ∑
𝜕𝜎

𝜕𝒓ν
= 0𝑁

𝜈 .

90

For Multi-Bead Model,

We can generalize the form for 𝑁 particles using the information of indices of each triangle and the

position of all beads stored in workspaces from Appendix F. Then the area constraint is

 𝜎1({𝒓}) =
1

4
∑ (|𝑸m,1 × 𝑸m,2|

2
)𝑛_𝑡𝑟𝑖

𝑚 − 𝑎′′ = 0 (B-20)

where connector vectors are defined as following for each triangle using Table IV in Section 3.3.1.

𝑛_𝑡𝑟𝑖 is the total number of triangles.

 𝑸𝑚,1 = 𝒓B − 𝒓𝐴, 𝑸𝑚,2 = 𝒓C − 𝒓𝐴 (B-21)

For simplicity, we will introduce vector 𝒘 for intermediate step.

 𝒘𝑚 = 𝑸m,1 × 𝑸m,2

Then, the gradients of the constraints are

 ∇𝜎1,ν =
1

4
∑ ∇(𝒘m ∙ 𝒘𝑚)
𝑛_𝑡𝑟𝑖
𝑚

 =
1

2
∑ ∇𝒘m,ν ∙ 𝒘𝑚
𝑛_𝑡𝑟𝑖
𝑚 (B-22)

using the identity for vector calculation.

The ∇𝒘 term is

 ∇𝒘𝑚,𝜈 = {∇𝑸m,1 × 𝑸𝑚,2 − ∇𝑸m,2 × 𝑸𝑚,1}, 𝜈 = 1, 2, 3, … (B-23)

As a result,

𝜕𝜎1

𝜕𝒓𝜈
=

1

2
∑ [

∇𝑸m,1(𝜈) (𝑸𝑚,1(𝑸𝑚,2 ∙ 𝑸𝑚,2) − 𝑸𝑚,2(𝑸𝑚,1 ∙ 𝑸𝑚,2))

−∇𝑸m,2(𝜈) (𝑸𝑚,1(𝑸𝑚,1 ∙ 𝑸𝑚,2) − 𝑸𝑚,2(𝑸𝑚,1 ∙ 𝑸𝑚,1))

]𝑛_𝑡𝑟𝑖
𝑚 (B-24)

Using Eq. B-24, we can also verify that we get Eq. B-8a through Eq. B-8c for triangular model and Eq.

B-17 for tetrahedron model.

91

Appendix C

Calculation of Metric Matrices for One and Two Constraints

For one constraint, metric matrix is 11 matrix where

 𝑔11 = 𝐺11
−1
=

𝜁

∑ ∇ν𝜎∙∇ν𝜎
𝑁
𝜈=1

 (C-1)

Therefore, the Lagrange multiplier is

 𝜆𝑀 = 휁
𝜎

∑ ∇ν𝜎∙∇ν𝜎
𝑁
𝜈=1

 (C-2)

and the iteration for the correction is

 𝒓𝜈
𝐶𝑂𝑁(𝑡 + ∆𝑡) = 𝒓𝜈

𝑈𝑁(𝑡 + ∆𝑡) −
𝜎

∑ ∇ν𝜎∙∇ν𝜎
𝑁
𝜈=1

∇ν𝜎 (C-3)

For two constraints, metric matrix 𝑔 is 22 matrix.

Two Lagrange multipliers are obtained.

 𝜆1
𝑀 = 𝑔11𝜎1 + 𝑔12𝜎2 (C-4a)

 𝜆2
𝑀 = 𝑔21𝜎1 + 𝑔22𝜎2 (C-4b)

Then,

𝒓𝜈
𝐶𝑂𝑁(𝑡 + ∆𝑡) = 𝒓𝜈

𝑈𝑁(𝑡 + ∆𝑡) −
1

휁
[(𝑔11𝜎1 + 𝑔12𝜎2)∇ν𝜎1 + (𝑔21𝜎1 + 𝑔22𝜎2)∇ν𝜎2]

 (C-5)

where scalar 𝐺𝑗𝑘are

 𝐺11 =
1

𝜁
∑ ∇ν𝜎1 ∙ ∇ν𝜎1
𝑁
𝜈=1 (C-6a)

 𝐺12 =
1

𝜁
∑ ∇ν𝜎1 ∙ ∇ν𝜎2
𝑁
𝜈=1 (C-6b)

 𝐺21 =
1

𝜁
∑ ∇ν𝜎2 ∙ ∇ν𝜎1
𝑁
𝜈=1 (C-6c)

 𝐺22 =
1

𝜁
∑ ∇ν𝜎2 ∙ ∇ν𝜎2
𝑁
𝜈=1 (C-6d)

92

The relationship between metric matrices and modified metric matrices are

 𝑔11 =
𝐺22

|𝑮|
, 𝑔12 = −

𝐺12

|𝑮|
, 𝑔21 =

𝐺21

|𝑮|
, 𝑔22 =

𝐺11

|𝑮|
 (C-7)

The determinant of a modified metric matrix is

 𝑑𝑒𝑡𝑮 = |𝑮| = 𝐺11𝐺22 − 𝐺12𝐺21 (C-8)

In Appendix D, this determinant is proved that the value is not zero and also shown that 𝐺12 and 𝐺21

is equal.

93

Appendix D

Proof of the value of Determinant of Modified Metric Matrix

Presented below is the proof that the determinant of modified metric matrix in the constraint

subroutine is not zero. In addition, it is shown that (1,2) and (2,1) component of the modified metric

matrix is equal. Following is a sample MATLAB code and the result for tetrahedron model.

%===

% Time-stamp: "3:29 PM 9/21/2010 415CU7 kkim32"

% This is program to check if det(G) is zero or not

% when G = SUM (DEL(sigma_old).DEL(sigma_old))

% For equalateral triangles as initial position, det(G) is practically zero

% G is modified metric matrix

% Prove det(G) = G(1,1)*G(2,2)-G(1,2)*G(2,1) /= 0

% Also, prove that G(1,2) = G(2,1)

%===

syms x1 y1 z1 x2 y2 z2 x3 y3 z3 x4 y4 z4

% position

r1 = [x1 y1 z1];

r2 = [x2 y2 z2];

r3 = [x3 y3 z3];

r4 = [x4 y4 z4];

% connector vectors

Q1 = r2 - r1;

Q2 = r3 - r1;

Q3 = r4 - r1;

Q4 = r3 - r2;

Q5 = r4 - r2;

Q6 = r4 - r3;

% cross product of connector vector

Q1XQ2 = cross(Q1,Q2);

Q2XQ3 = cross(Q2,Q3);

Q3XQ1 = cross(Q3,Q1);

Q4XQ5 = cross(Q4,Q5);

% dot product of connector vector

Q1dQ1 = sum(Q1.*Q1);

Q1dQ2 = sum(Q1.*Q2);

Q1dQ3 = sum(Q1.*Q3);

Q1dQ4 = sum(Q1.*Q4);

Q1dQ5 = sum(Q1.*Q5);

Q2dQ1 = Q1dQ2;

Q2dQ2 = sum(Q2.*Q2);

Q2dQ3 = sum(Q2.*Q3);

Q2dQ4 = sum(Q2.*Q4);

Q2dQ5 = sum(Q2.*Q5);

Q3dQ1 = Q1dQ3;

Q3dQ2 = Q2dQ3;

Q3dQ3 = sum(Q3.*Q3);

Q3dQ4 = sum(Q3.*Q4);

Q3dQ5 = sum(Q3.*Q5);

94

Q4dQ1 = Q1dQ4;

Q4dQ2 = Q2dQ4;

Q4dQ3 = Q3dQ4;

Q4dQ4 = sum(Q4.*Q4);

Q4dQ5 = sum(Q4.*Q5);

Q5dQ1 = Q1dQ5;

Q5dQ2 = Q2dQ5;

Q5dQ3 = Q3dQ5;

Q5dQ4 = Q4dQ5;

Q5dQ5 = sum(Q5.*Q5);

% scalar component A(v,:) where v is number of beads

A(1,1) = -Q2dQ3+Q1dQ2+Q1dQ3-Q3dQ3;

A(1,2) = Q1dQ2-Q1dQ1-Q3dQ3+Q2dQ3;

A(1,3) = Q2dQ3-Q2dQ2-Q1dQ1+Q1dQ3;

A(1,4) = 0;

A(1,5) = 0;

A(2,1) = Q2dQ2+Q3dQ3;

A(2,2) = -Q1dQ2;

A(2,3) = -Q1dQ3;

A(2,4) = -Q5dQ5+Q4dQ5;

A(2,5) = Q4dQ5-Q4dQ4;

A(3,1) = -Q1dQ2;

A(3,2) = Q1dQ1+Q3dQ3;

A(3,3) = -Q2dQ3;

A(3,4) = Q5dQ5;

A(3,5) = -Q4dQ5;

A(4,1) = -Q1dQ3;

A(4,2) = -Q2dQ3;

A(4,3) = Q2dQ2+Q1dQ1;

A(4,4) = -Q4dQ5;

A(4,5) = Q4dQ4;

param1 = 1/2;

param2 = 1/6;

% sigma1 : AREA

% DEL(sigma1)

dSIG1dr1 = param1*(A(1,1)*Q1+A(1,2)*Q2+A(1,3)*Q3+A(1,4)*Q4+A(1,5)*Q5);

dSIG1dr2 = param1*(A(2,1)*Q1+A(2,2)*Q2+A(2,3)*Q3+A(2,4)*Q4+A(2,5)*Q5);

dSIG1dr3 = param1*(A(3,1)*Q1+A(3,2)*Q2+A(3,3)*Q3+A(3,4)*Q4+A(3,5)*Q5);

dSIG1dr4 = param1*(A(4,1)*Q1+A(4,2)*Q2+A(4,3)*Q3+A(4,4)*Q4+A(4,5)*Q5);

% sigma2 : VOL

% DEL(sigma2)

dSIG2dr1 = param2 * (-Q3XQ1 - Q1XQ2 - Q2XQ3);

dSIG2dr2 = param2 * (Q2XQ3);

dSIG2dr3 = param2 * (Q3XQ1);

dSIG2dr4 = param2 * (Q1XQ2);

% modified metric matrix: G(a,b) = sum(dSIGadrv .* dSIGbdrv)

G(1,1) = sum(dSIG1dr1 .* dSIG1dr1) + sum(dSIG1dr2 .* dSIG1dr2)

 + sum(dSIG1dr3 .* dSIG1dr3) + sum(dSIG1dr4 .* dSIG1dr4);

G(1,2) = sum(dSIG1dr1 .* dSIG2dr1) + sum(dSIG1dr2 .* dSIG2dr2)

 + sum(dSIG1dr3 .* dSIG2dr3) + sum(dSIG1dr4 .* dSIG2dr4);

G(2,1) = sum(dSIG2dr1 .* dSIG1dr1) + sum(dSIG2dr2 .* dSIG1dr2)

95

 + sum(dSIG2dr3 .* dSIG1dr3) + sum(dSIG2dr4 .* dSIG1dr4);

G(2,2) = sum(dSIG2dr1 .* dSIG2dr1) + sum(dSIG2dr2 .* dSIG2dr2)

 + sum(dSIG2dr3 .* dSIG2dr3) + sum(dSIG2dr4 .* dSIG2dr4);

% proved that following is zero

G12MG21 = G(1,2)-G(2,1);

% [OUTCOME] G12MG21 = 0

% determinant of G

detG = G(1,1)*G(2,2)-G(1,2)*G(2,1);

% metric matrix: g = inv(G)

g(1,1) = G(2,2)/detG;

g(1,2) = -G(1,2)/detG;

g(2,1) = -G(2,1)/detG;

g(2,2) = G(1,1)/detG;

96

Appendix E

Velocity Field and Stress Tensor for Different Flow Types

Homogeneous velocity fields with 𝒗0 = 0 in Cartesian coordinate is

 𝒗(𝑣𝑥, 𝑣𝑦, 𝑣𝑧) (E-1)

Where each component is written explicitly as

 𝑣𝑥 = 𝜅𝑥𝑥𝑥 + 𝜅𝑥𝑦𝑦 + 𝜅𝑥𝑧𝑧 (E-2a)

 𝑣𝑦 = 𝜅𝑦𝑥𝑥 + 𝜅𝑦𝑦𝑦 + 𝜅𝑦𝑧𝑧 (E-2b)

 𝑣𝑧 = 𝜅𝑧𝑥𝑥 + 𝜅𝑧𝑦𝑦 + 𝜅𝑧𝑧𝑧 (E-2c)

The incompressible flow can be expressed as the first invariant to be zero.

 I = 𝑡𝑟(𝜿) = ∑ 𝜅𝑖𝑖 =𝑖 0 (traceless) or ∇ ∙ 𝑣 = 0 (E-3)

Shear flow

The 𝜿 in the shear flow is a rate-of-strain tensor.

 𝜅𝑥𝑦 = �̇� (E-4a)

 𝜿 = (
0 1 0
0 0 0
0 0 0

) �̇� = (∇𝒗)† (E-4b)

 �̇� = ∇𝒗 + (∇𝒗)† = (
0 1 0
1 0 0
0 0 0

)
𝜕𝑣𝑥

𝜕𝑦
 (E-4c)

The superscript † indicates the transpose of the tensor.

The invariants of �̇� are calculated below.

First invariant I = 𝑡𝑟(�̇�) = 2∑
𝜕𝑣𝑖

𝜕𝑥𝑖
i = 2(

𝜕𝑣𝑥

𝜕𝑥
+
𝜕𝑣𝑦

𝜕𝑦
+
𝜕𝑣𝑧

𝜕𝑧
) = 2∇ ∙ 𝒗 = 0 (E-5a)

Second invariant II = 𝑡𝑟(�̇�2) = 𝑡𝑟 (
1 0 0
0 1 0
0 0 0

) �̇�𝑦𝑥
2 (E-5b)

97

Third invariant III = 𝑡𝑟(�̇�3) = 𝑡𝑟 (
0 1 0
1 0 0
0 0 0

)(
𝜕𝑣𝑥

𝜕𝑦
)
3
= 0 (E-5c)

The shear rate �̇� is a scalar that is relate to the second invariant of rate-of-strain tensor.

 �̇� = √
1

2
�̇�: �̇� (E-6)

The homogeneous Giesekus form of tensor in Eq. 3.39 (Section 3.4) is then

 𝝉𝑐 = 2∑ {
𝑑

𝑑𝑡
〈𝑹𝜈𝑹𝜈〉 − 𝜿 ∙ 〈𝑹𝜈𝑹𝜈〉 − 〈𝑹𝜈𝑹𝜈〉 ∙ 𝜿

†}𝜈 (E-7)

after substituting 𝑛𝑐𝐻 = 1 and 휁 = 4𝐻 (Bird 1987).

Then components of the stress tensor we need to calculate the material functions are

 𝜏𝑥𝑦 = 𝜏𝑦𝑥 = 2 {
𝑑

𝑑𝑡
∑ 〈𝑹1𝑹2〉𝜈 − �̇� ∑ 〈𝑹2𝑹2〉𝜈 }

 = 2
𝑑

𝑑𝑡
∑ (𝑟𝜈,𝑥 − 𝑟𝑐,𝑥)(𝑟𝜈,𝑦 − 𝑟𝑐,𝑦)𝜈 − 2�̇� ∑ ((𝑟𝜈,𝑦 − 𝑟𝑐,𝑦)

2
)𝜈 (E-8)

 𝜏𝑥𝑥 = 2 {
𝑑

𝑑𝑡
∑ 〈𝑹1𝑹1〉𝜈 − 2�̇� ∑ 〈𝑹1𝑹2〉𝜈 }

 = 2
𝑑

𝑑𝑡
∑ ((𝑟𝜈,𝑥 − 𝑟𝑐,𝑥)

2
)𝜈 − 4�̇� ∑ {(𝑟𝜈,𝑥 − 𝑟𝑐,𝑥)(𝑟𝜈,𝑦 − 𝑟𝑐,𝑦)}𝜈 (E-9)

 𝜏𝑦𝑦 = 2 {
𝑑

𝑑𝑡
∑ 〈𝑹2𝑹2〉𝜈 }

 = 2
𝑑

𝑑𝑡
∑ ((𝑟𝜈,𝑦 − 𝑟𝑐,𝑦)

2
)𝜈 (E-10)

where 𝑟𝜈,𝑥 is the x-coordinate of the position of bead 𝜈and 𝑟𝑐,𝑥 is that of center-of-mass.

Stress Relaxation after Sudden Shearing Displacement

The 𝜿 in the shear flow is a rate-of-strain tensor.

 𝜅𝑥𝑦 = 𝛾0𝛿(𝑡) (E-11a)

 𝜿 = (
0 1 0
0 0 0
0 0 0

)𝛾0𝛿(𝑡) (E-11b)

Components of the stress tensor in Eq. E-7is then

98

 𝜏𝑥𝑦 = 𝜏𝑦𝑥 = 2 {
𝑑

𝑑𝑡
∑ 〈𝑹1𝑹2〉𝜈 − 𝛾0𝛿(𝑡)∑ 〈𝑹2𝑹2〉𝜈 } (E-12)

 𝜏𝑥𝑥 = 2 {
𝑑

𝑑𝑡
∑ 〈𝑹1𝑹1〉𝜈 − 2𝛾0𝛿(𝑡) ∑ 〈𝑹1𝑹2〉𝜈 } (E-13)

 𝜏𝑦𝑦 = 2 {
𝑑

𝑑𝑡
∑ 〈𝑹2𝑹2〉𝜈 } (E-14)

Shear free flow

The 𝜿 in the shear free flow is elongational rate. The 𝑧𝑧-component of 𝜿 is

 𝜅𝑧𝑧 = 휀̇ (E-15)

The components of velocity field are

 𝑣𝑥 = −
1

2
𝜅𝑧𝑧(1 + 𝑏)𝑥 (E-16)

 𝑣𝑦 = −
1

2
𝜅𝑧𝑧(1 − 𝑏)𝑦

 𝑣𝑧 = 𝜅𝑧𝑧𝑧

where the parameter 𝑏 that defines the type of flow has range of 0≤ 𝑏 ≤ 1. The elongational flow

(𝑏 = 0, 휀̇ > 0) gives the flow characteristic by stretching the fluid in the 𝑧-axis whereas the biaxial

stretching flow (𝑏 = 0, 휀̇ < 0) stretches in the direction of 𝑥-axis and 𝑦-axis. When 𝑏 = 1, the flow is

called planer elongational and there is no stretching in the 𝑦 direction. The illustrations of deformation

of these three shear free flows are in the volume 1 of Bird et al. (1987).

In the case elongational flow where 𝑏 = 0 and 휀̇ > 0, the velocity field becomes

 𝑣𝑥 = −
1

2
휀̇𝑥 (E-17a)

 𝑣𝑦 = −
1

2
휀̇𝑦 (E-17b)

 𝑣𝑧 = +휀̇𝑧 (E-17c)

The gradient of velocity is then

99

 ∇𝒗 =

(

𝜕𝑣𝑥

𝜕𝑥

𝜕𝑣𝑦

𝜕𝑥

𝜕𝑣𝑧

𝜕𝑥

𝜕𝑣𝑥

𝜕𝑦

𝜕𝑣𝑦

𝜕𝑦

𝜕𝑣𝑧

𝜕𝑦

𝜕𝑣𝑥

𝜕𝑧

𝜕𝑣𝑦

𝜕𝑧

𝜕𝑣𝑧

𝜕𝑧)

=

1

2
(
−1 0 0
0 −1 0
0 0 2

)휀̇ = (∇𝒗)† (E-18)

 𝜿† = 𝜿 =
1

2
(
−1 0 0
0 −1 0
0 0 2

) 휀̇ (E-19)

The invariants of 𝜿 are

First invariant I = 𝑡𝑟(𝜿) = 2 (
𝜕𝑣𝑥

𝜕𝑥
+
𝜕𝑣𝑦

𝜕𝑦
+
𝜕𝑣𝑧

𝜕𝑧
) = 2 (−

�̇�

2
−
�̇�

2
+ 휀̇) = 0 (E-20a)

Second invariant II = 𝑡𝑟(𝜿2) = 𝑡𝑟 (
1 0 0
0 1 0
0 0 4

)휀̇2 = 6휀̇2 (E-20b)

Third invariant III = 𝑡𝑟(𝜿3) = 𝑡𝑟 (
−1 0 0
0 −1 0
0 0 8

) 휀̇3 = 6휀̇3 (E-20c)

Note that the third invariant for shear free flow is not zero where shear flow is zero.

Similarly as calculated for the shear flow, stress tensor is

 𝝉𝑐 = ∑

{

2
𝑑

𝑑𝑡
(

𝑹1𝑹1 𝑹1𝑹2 𝑹1𝑹3
𝑹2𝑹1 𝑹2𝑹2 𝑹2𝑹3
𝑹3𝑹1 𝑹3𝑹2 𝑹3𝑹3

) − 2

(

−𝑹1𝑹1 −𝑹1𝑹2

1

2
𝑹1𝑹3

−𝑹1𝑹1 −𝑹2𝑹2
1

2
𝑹2𝑹3

1

2
𝑹3𝑹1

1

2
𝑹3𝑹2 2𝑹3𝑹3)

휀̇

}

𝜈 (E-21)

Then three components of the stress tensor we need to calculate the material functions are as follows.

 𝜏𝑥𝑥 = 2 {
𝑑

𝑑𝑡
∑ 〈𝑹1𝑹1〉𝜈 + 휀̇ ∑ 〈𝑹1𝑹1〉𝜈 } (E-22)

 = 2
𝑑

𝑑𝑡
∑ {(𝑟𝜈,𝑥 − 𝑟𝑐,𝑥)

2
}𝜈 + 2휀̇ ∑ {(𝑟𝜈,𝑥 − 𝑟𝑐,𝑥)

2
}𝜈

 𝜏𝑦𝑦 = 2 {
𝑑

𝑑𝑡
∑ 〈𝑹2𝑹2〉𝜈 + 휀̇ ∑ 〈𝑹2𝑹2〉𝜈 } (E-23)

 = 2
𝑑

𝑑𝑡
∑ {(𝑟𝜈,𝑦 − 𝑟𝑐,𝑦)

2
}𝜈 + 2휀̇ ∑ {(𝑟𝜈,𝑦 − 𝑟𝑐,𝑦)

2
}𝜈

100

 𝜏𝑧𝑧 = 2 {
𝑑

𝑑𝑡
∑ 〈𝑹3𝑹3〉𝜈 − 2휀̇ ∑ 〈𝑹3𝑹3〉𝜈 } (E-24)

 = 2
𝑑

𝑑𝑡
∑ {(𝑟𝜈,𝑧 − 𝑟𝑐,𝑧)

2
}𝜈 − 4휀̇ ∑ {(𝑟𝜈,𝑧 − 𝑟𝑐,𝑧)

2
}𝜈

The rest of the components have been proven to be zero for incompressible fluids.

101

Appendix F

MATLAB Code for the Initial Position of the Biconcave Model

Modeling of RBC using mathematical expression from Kuchel (1999) in Cartesian coordinate.

% [p,t] = distmeshsurface(@fd,@fh,h0,bbox);
% [p,t] = distmesh3d(@fd,@fh,h0,bbox,pfix,varargin);

% OUTPUT:
% p Contains x,y,z coordinates for each of the N nodes. (Nx3) array
% t Contains the indices of each triangle (NTx3)
% INPUT :
% fd Geometry given as a distance function d(x,y)
% fh Scaled edge length function.

% Returns h for all input points h(x,y).

% Constant for uniform meshes.

% h0 Initial edge length.

% Distance between points in the initial distribution p0
% bbox Bounding box for the region [xmin,ymin; xmax,ymax]
% pfix Fixed node positions given as an array
% varargin Additional parameters to the functions fd and fh

h0 = 1.16;
bbox = [-100,-100,-30;100,100,30];
% For biconcave RBC,

[p,t] = distmeshsurface(@discocyte,@huniform,h0,bbox);
%[p,t] = distmesh3d(@discocyte,@huniform,h0,bbox,[]);
%[p,t] = distmesh3d(@dmatrix3d,@huniform,h0,bbox,x,y,z,phi,hh);
%[p,t] = distmeshnd(@fdrbc,@fhrbc,h0,box,[]);

% For sphere,

%[p,t]=distmeshnd(@fdsph,@huniform,0.2,[-ones(1,dim);ones(1,dim)],[]);

The scalar value of ℎ0 gives the distance between beads. The program will run until the value

of h0 is optimized and yet satisfies the surface shape of the RBC to get the initial distribution of the

beads. The following is the MATLAB function showing the mathematical expression of Kuchel (1999)

to model RBC surface in Cartesian coordinate that is used to construct the healthy normal RBC.

Diameter and thickness of RBC is scaled to have 10 dimensionless unit.

function phi=discocyte(p)
% For a mature normal erythrocyte, biconcave disk without a nucleus
r2 = p(:,1).^2 + p(:,2).^2;
z = p(:,3);

102

% d : Diameter of the RBC.
d = 7.8*1.4; % (7.8 micron) Martin 2006
% 2a : Thickness of the RBC at the center
a = 0.5*1.4; % (0.5 micron) Martin 2006

% m [0,1] ; controls the maximum thickness of the cell
m = 0.9447; % Martin 2006
% V = 85.1 % (micron^3) volume Martin 2006
% See paper for the expression for V
P = (1 - 2*m)*d.^2 / (4*m);
Q = (1 - m)*d.^4 / (16*a.^2*m);
R = (m - 1)*d.^4 / (16*m);

% % Larkin and Kuchel 2010
% Phi(x,y,z) = (x2 + y2)2 + P(x2 + y2) + Qz2 + R

% phi = r2.^2 + P*r2 + Q*z.^2 + R;

% % Kuchel and Fackerell 1999
% Phi(x,y,z) = (x2 + y2 + z2)2 + P(x2 + y2) + Qz2 + R
phi = (r2 + p(:,3).^2).^2 + P * r2 + Q * z.^2 + R;

% For a sphere geometry given as a distance function
function d=fdsph(p)
d=sqrt(sum(p.^2,2))-1;
% sum(p.^2,2) = p(:,1).^2+p(:,2).^2+p(:,3).^2
dsphere = 0.65-sqrt(p(:,1).^2+p(:,2).^2+p(:,3).^2);
d=max(d,dsphere);

Delaunay triangulation algorithm using distance functions by Persson (2005) is used to obtain

the initial position of biconcave RBC and all the indices of the bead positions. A sample code of 3D

surface meshing algorithm is provided below. This algorithm is not limited to biconcave shape (e.g.

function discocyte) and can apply to uniform size functions. Note that not all the functions and routine

calls are listed in this appendix.

% DISTMESHSURFACE 3-D Surface Mesh Generator using Distance Functions

% by Per-Olof Persson (2005)

function [p,t]=distmeshsurface(fd,fh,h0,bbox,varargin)

% kkim32: Save the result figure as an animation file
vidObj = VideoWriter('RBCanimation.avi');
vidObj.Quality = 100;
vidObj.FrameRate= 3;
open(vidObj);

dptol=1e-4; ttol=.1; Fscale=1.2; deltat=.2; deps=sqrt(eps)*h0;

% 1. Create initial distribution in bounding box (isosurface from grid)
[x,y,z]=ndgrid(bbox(1,1):h0:bbox(2,1),bbox(1,2):h0:bbox(2,2),bbox(1,3):h0:b

103

box(2,3));
pv=isosurface(x,y,z,reshape(fd([x(:),y(:),z(:)],varargin{:}),size(x)),0);
p=pv.vertices;
t=pv.faces;
% 2. Connectivities (for trisurfupd)
[t2t,t2n]=mkt2t(t);
t2t=int32(t2t-1)'; t2n=int8(t2n-1)';
N=size(p,1); % Number of points N
pold=inf; % For first iteration
while 1
 p0=p;
 % 3. Retriangulation
 if max(sqrt(sum((p-pold).^2,2))/h0)>ttol % Any large movement?
 pold=p; % Save current positions
 [t,t2t,t2n]=trisurfupd(int32(t-1)',t2t,t2n,p');% Update triangles
 t=double(t+1)';
 pmid=(p(t(:,1),:)+p(t(:,2),:)+p(t(:,3),:))/3; % Compute centroids
 % 4. Describe each bar by a unique pair of nodes
 bars=[t(:,[1,2]);t(:,[1,3]);t(:,[2,3])]; % Interior bars duplicated
 bar=sort(bars,2);
 % barr=bar(521:530,[1,2])
 bars=unique(sort(bars,2),'rows'); % Bars as node pairs
 % 5. Graphical output of the current mesh
 %clf,patch('faces',t,'vertices',p,'facecol',[1,0,0],'edgecol','k');

 % <-- kkim32

 % Plot of the positions
 % simpplot(p,t,'p(:,1)<0'); % plot half
 simpplot(p,t); % plot all
 f = getframe;
 writeVideo(vidObj,f);
 % Labeling the nodes
 m=[p(t(:),1),p(t(:),2),p(t(:),3)];
 mu=unique(m,'rows');
 %th=text(mu(:,1),mu(:,2),mu(:,3),num2cell(1:size(mu,1)),'fontsize',8);
 th=text(mu(1:15,1),mu(1:15,2),mu(1:15,3),num2cell(1:15),'fontsize',15);
 % -->

 %axis equal;axis off;view(3);cameramenu;drawnow
 end

 % 6. Move mesh points based on bar lengths L and forces F
 barvec=p(bars(:,1),:)-p(bars(:,2),:); % List of bar vectors
 L=sqrt(sum(barvec.^2,2)); % L = Bar lengths
 hbars=feval(fh,(p(bars(:,1),:)+p(bars(:,2),:))/2,varargin{:});
 L0=hbars*Fscale*sqrt(sum(L.^2)/sum(hbars.^2)); % L0 = Desired lengths
 F=max(L0-L,0); % Bar forces (scalars)
 Fvec=F./L*[1,1,1].*barvec; % Bar forces (x,y,z components)

Ftot=full(sparse(bars(:,[1,1,1,2,2,2]),ones(size(F))*[1,2,3,1,2,3],[Fvec,-

Fvec],N,3));
 p=p+deltat*Ftot; % Update node positions

 % 7. Bring all points back to the boundary

d=feval(fd,p,varargin{:});

104

% % Numerical
dgradx=(feval(fd,[p(:,1)+deps,p(:,2),p(:,3)],varargin{:})-d)/deps;

% % gradient
dgrady=(feval(fd,[p(:,1),p(:,2)+deps,p(:,3)],varargin{:})-d)/deps;

dgradz=(feval(fd,[p(:,1),p(:,2),p(:,3)+deps],varargin{:})-d)/deps;
 dgrad2=dgradx.^2+dgrady.^2+dgradz.^2;

% % Project back to boundary

p=p-[d.*dgradx./dgrad2,d.*dgrady./dgrad2,d.*dgradz./dgrad2];

 % 8. Termination criterion: All nodes move less than dptol (scaled)
 if max(sqrt(sum((p-p0).^2,2))/h0)<dptol, break; end
end

close(vidObj);
winopen('animation.avi')

105

Appendix G

Selected Tabulated Material Functions Data

 TABLE VIII

STEADY STATE VISCOSITY DATA:

TWO-CONSTRAINT TRIANGLE MODEL

𝑎 = ∑(area)2 =100, N
a
 = 100000

Shear rate Viscosity
First Normal

Stress Coefficient

 Mean SD
b
 Mean SD

b

0.03 17.49895 0.10554 78.22529 6.05346

0.05 17.21468 0.10480 82.93406 3.61387

0.08 16.44187 0.10354 70.43676 2.18357

0.14 15.09160 0.10124 57.76792 1.29798

0.30 12.38448 0.09292 35.05726 0.53434

0.50 10.35347 0.08215 23.29330 0.29981

0.82 8.57062 0.07108 14.89336 0.16431

1.35 6.95398 0.05966 8.73350 0.08963

2.23 6.00090 0.05670 5.11169 0.04962

3.67 5.31736 0.05553 2.98024 0.02770

6.05 4.78847 0.05465 1.69725 0.01545

9.97 4.17397 0.05304 0.95872 0.00877

16.44 3.74467 0.05106 0.52778 0.00499

27.11 3.25934 0.04908 0.29468 0.00284

44.70 2.85535 0.04653 0.16333 0.00161

73.70 2.50128 0.04542 0.08801 0.00094

90.02 2.45235 0.04454 0.07055 0.00076
a
 number of trajectories.

b
 standard deviation.

106

TABLE IX

SUDDEN DISPLACEMENT DATA:

TWO-CONSTRAINT TRIANGLE MODEL

𝑎 = ∑(area)2 =100, N
a
 = 100000

Time G modulus Gpsi modulus

 Mean SD
b
 Mean SD

b

0.0004 1675.98001 10.27759 0.44237 0.00841

0.0006 554.57244 7.97822 0.17233 0.00739

0.0008 331.67137 6.26625 0.09898 0.00656

0.001 194.45828 5.25403 0.05467 0.00608

0.002 63.57219 1.90032 0.02649 0.00252

0.004 20.97707 1.10628 0.01359 0.00168

0.006 15.22199 1.05165 0.01251 0.00168

0.008 13.05975 1.03696 0.01446 0.00167

0.010 11.89818 1.01423 0.01255 0.00167

0.020 7.43251 0.43798 0.01056 0.00075

0.040 3.10912 0.29602 0.00935 0.00053

0.060 1.21032 0.29163 0.00909 0.00053

0.080 1.72320 0.29103 0.00869 0.00053

0.100 0.87101 0.29070 0.00810 0.00053

0.200 1.80519 0.12980 0.00877 0.00023

0.400 1.58106 0.09144 0.00841 0.00017

0.600 1.44305 0.09155 0.00832 0.00017

0.800 1.41885 0.09152 0.00772 0.00017

1.000 1.39459 0.09156 0.00725 0.00007

2.000 1.34548 0.03997 0.00631 0.00007

3.000 1.16469 0.04005 0.06923 0.00105
a
 number of trajectories.

b
 standard deviation.

107

 TABLE X

ELONGATIONAL VISCOSITY DATA:

TWO-CONSTRAINT TETAHEDRON MODEL

𝑎′ = ∑(area)2 =100, N
a
 = 100000

Elongational

rate
Elongational Viscosity Gyration

 Mean SD
b
 Mean SD

b

54.59815 66.86314 0.00134 2.30273 0.00001

33.11545 66.80118 0.00172 2.30249 0.00001

20.08554 66.67966 0.00247 2.30210 0.00001

12.18249 66.41815 0.00403 2.30144 0.00002

7.38906 65.85665 0.00700 2.30040 0.00003

4.48169 64.57229 0.01328 2.29854 0.00004

2.71828 61.70145 0.02703 2.29496 0.00008

1.64872 56.26433 0.05648 2.28480 0.00022

1.00000 50.19397 0.08069 2.26627 0.00036

0.60653 45.84464 0.08710 2.25049 0.00042

0.36788 43.47376 0.08619 2.24228 0.00044

0.22313 41.92541 0.08420 2.23727 0.00044

0.13534 41.07066 0.08320 2.23491 0.00044

0.08208 41.07066 0.08167 2.23436 0.00044

0.04979 40.27892 0.08109 2.23363 0.00045

0.03020 40.10661 0.08061 2.23346 0.00045

0.01832 40.06649 0.08191 2.23285 0.00045

0.01111 40.08654 0.08065 2.23217 0.00045

0.00674 39.91831 0.08068 2.23318 0.00044

0.00409 39.91433 0.08091 2.23271 0.00044

0.00248 39.80886 0.08144 2.23247 0.00045

0.00150 39.99004 0.08111 2.23318 0.00044

0.00091 40.00605 0.08072 2.23331 0.00044

0.00055 39.96790 0.08125 2.23278 0.00044

0.00034 39.84075 0.07989 2.23237 0.00044

0.00020 39.89897 0.08093 2.23270 0.00044
a
 number of trajectories.

b
 standard deviation.

 Computation time: 2074630.5 (sec)

108

Appendix H

Fortran Code for the Simulation

This appendix contains the list of modules, functions, and subroutines that are used in the

program along with a sample Fortran code. The number of trajectories (n_tra) range

between 104~ 106 in which the material properties are averaged. The range of shear rate is

between 0.01~1000 dimensionless unit. The maximum number of iterations (maxiter) is set to 100

in the constraint subroutine. The Lagrange multiplier convergence tolerance (tol) to satisfy each

constraint is set to 1.5 × 10−3 . These values of parameters were chosen to make the simulation

converge with low standard deviation. The rest of the parameters are shown in Table V in Section 4.

In the simulation code, the derived data types in Fortran is used to contain coordinate

information in one variable (or object). In addition, declaration of custom operators shown in the

module vec_func makes the form of vector calculations much simpler and easy to read. This will allow

us to generalize the form of equations used in the code so that we can systematically increase the

number of beads in the microstructure. For example, we can use the custom cross product operator to

calculate cross product of two vectors 𝑸1 and 𝑸2 by

𝒘1 = 𝑸1. X.𝑸2

Each vector contains subcomponent of 𝑥, 𝑦, and 𝑧 coordinates as follow.

{

𝑸1%𝑥
𝑸1%𝑦
𝑸1%𝑧

 , {

𝑸2%𝑥
𝑸2%𝑦
𝑸2%𝑧

The operator is linked to function crossVEC so that each 𝑥, 𝑦, and 𝑧 component of 𝒘1 is calculated and

returns as a package.

109

!% Copyright (C) 2009-2015 Kyung Hyo Kim

! ---

! [MODULES]

! module Numeric_kinds : Define variable types

! module constants : Constants and logicals

! module vec_func : Vector functions

! contains

! function absVEC : Absolute of a vector

! function dotVEC : Dot product of two vectors

! function crossVEC : Cross product of two vectors

! function addVEC : Addition of two vectors

! function subtVEC : Subtraction of two vectors

! function multiVEC : Multiplication of scalar and vector

! module Global : Globally used parameters

! module info : Contains file information

! module RNGcommon : Constants and common variables

! for Random Number Generator

!

! program RBCHOOKE : Main program

!

! [TYPE OF FLOW]

! subroutine FLOW : Shear/elongational flow

! subroutine NoFLOW : No flow condition (no shear)

! subroutine BOUNDARY_FLOW : Capillary flow

!

! [SUBROUTINES]

! subroutine t_setup : Array of time

! subroutine srt_setup : Array of shear rate

! subroutine srt_test : deltat for selected shear rate

! subroutine init_position : Initial position of the beads

! subroutine constrnt_area : Calculation of area constraint

! subroutine constrnt_len : Total length constraint for triangular

! subroutine constrnt_vol : Total volume constraint for tetrahedron

! subroutine constrnt_com_no : Calculation of two constraints

! DEL(SIGnew).DEL(SIGold)

! subroutine constrnt_com_oo : Calculation of two constraints

! DEL(SIGold).DEL(SIGold)

! subroutine center_mass : Calculation of center-of-mass

! subroutine R_position : Calculate distance from the

! center of mass

! subroutine connector : Calculation of connector vectors

! subroutine UNIQUEconnector : Unique connector vectors from

! sets of connector vectors

! subroutine SORTpairnodes : sort the row of each pair nodes

! subroutine InterParticleForces : Inter-particle Forces

! for each points

! subroutine crossProductQ1Q2 : scalar component of ds1point

! (area constraint) for triangles

! subroutine fit : Linear extrapolation (regression)

! subroutine ranils : Initializes random number generators

!

! [FUNCTIONS]

! function area2 : Calculate sum of (area)^2 of a triangle

! function ranuls : Uniform Random Number Generator

! function rangls : Gaussian Random Number Generator

110

! function ranils : Subroutine to initiate ranuls

! ---

!@ module vec_func - vector functions

 module vec_func

 use Numeric_kinds

 implicit none

 type coord

! x,y,z : Refers to x,y,z coordinate of bead

 real(R8K) :: x,y,z

 end type coord

 interface abs

 module procedure absVEC

 end interface

 interface operator(.dot.)

 module procedure dotVEC

 end interface

 interface operator(.X.)

 module procedure crossVEC

 end interface

 interface operator(.A.)

 module procedure addVEC

 end interface

 interface operator(.S.)

 module procedure subtVEC

 end interface

 interface operator(.M.)

 module procedure multiVEC

 end interface

 contains

! ---

! a Vector

! b Vector

! s Scalar

! x,y,z Refers to x,y,z coordinate of bead

! absVEC Absolute of vector

! dotVEC Dot product of two vectors

! crossVEC Cross product of two vectors

! addVEC Addition of two vectors (element by element)

! subtVEC Subtraction of two vectors (element by element)

! multiVEC Multiplication of scalar and vector

! ---

!@ Absolute of vector

 function absVEC(a)

 type(coord), intent(IN) :: a

 real(R8K) :: absVEC

 absVEC = SQRT(a%x**2 + a%y**2 + a%z**2)

 end function absVEC

! ---

!@ Dot product of two vectors

 function dotVEC(a,b)

 type(coord), intent(IN) :: a,b

 real(R8K) :: dotVEC

 dotVEC = a%x*b%x + a%y*b%y + a%z*b%z

 end function dotVEC

! ---

111

!@ Cross product of two vectors

 function crossVEC(a,b)

 type(coord), intent(IN) :: a,b

 type(coord) :: crossVEC

 crossVEC%x = a%y*b%z - a%z*b%y

 crossVEC%y = a%z*b%x - a%x*b%z

 crossVEC%z = a%x*b%y - a%y*b%x

 end function crossVEC

! ---

!@ The addition operator implements element-by-element addition between two

vectors

 function addVEC(a,b)

 type(coord), intent(IN) :: a,b

 type(coord) :: addVEC

 addVEC%x = a%x + b%x

 addVEC%y = a%y + b%y

 addVEC%z = a%z + b%z

 end function addVEC

! ---

!@ The subtraction operator implements element-by-element subtraction

between two vectors

 function subtVEC(a,b)

 type(coord), intent(IN) :: a,b

 type(coord) :: subtVEC

 subtVEC%x = a%x - b%x

 subtVEC%y = a%y - b%y

 subtVEC%z = a%z - b%z

 end function subtVEC

! ---

!@ function multiVEC - The multiplication operator implements

!@ element-by-element multiplication scalar with vector

 function multiVEC(s,a)

 real(R8K), intent(IN) :: s

 type(coord), intent(IN) :: a

 type(coord) :: multiVEC

 multiVEC%x = s * a%x

 multiVEC%y = s * a%y

 multiVEC%z = s * a%z

 end function multiVEC

end module vec_func

! ---

!@ module Global - globally used parameters

 module Global

 use constants

 use Numeric_kinds

 use vec_func

! --

! Constants used in this code:

! --

! n_bead Number of beads

! n_tri Number of triangles in RBC model

! n_data Number of different deltats for extrapolation

112

! n_srt Number of shear rate points

! n_elong Number of set of elongational rate points

! n_time Number of time steps

! n_t Number of time points

! n_tra Number of trajectories

! tmax Total dimensionless time

! deltat Time step size

! time_equil Dimensionless time to meet equilibrium initial

! condition

! maxiter Maximum iteration in the constraint subroutine

! tol Tolerence to converge

! tol_slope Tolerence to determine the st. st.

! minus Negative sign for vector calculaton

! TriIndices Indices of each triangle (fixed values)

! --

! Variables used in this code:

! --

! xEta Set of deltats

! yEta Set of viscosity at different deltats

! ydEta Standard deviation of yEta

! EXTRA_Eta Extrapolated viscosity to deltat=0

! EXTRA_dEta Standard deviation of EXTRA_Eta

! Bead Position of beads

! NewBead New position of beads

! Q Connector vectors

! ---

!@ program RBCHOOKE - Biconcave Model

 Program RBCHOOKE

 use Global

 implicit none

! --

! Flow type

! --

! SHEAR Shear flow

! SHEARFREE Shear-free flow

! CAPILLARY Capillary flow

! --

! Flow condition

! --

! STUP Start-Up

! STST Steady-State

! DISP Sudden Shearing Displacement: Relaxation experiment

! --

! Constraints

! --

! AREA Area constraint

! LEN Perimeter constraint

! VOL Total volume constraint

! COM_no Combined constraint using old and new position

! for DEL(SIGnew).DEL(SIGold)

! COM_oo Combined constraint using only old position

! for DEL(SIGold).DEL(SIGold)

! --

113

 flow_type = 'SHEAR' !'SHEARFREE''CAPILLARY'

 flow_cond = 'STST'!'DISP'!'STUP'

 areasize = 'SUMarea2_100' ! subroutine init_position

 constraint = 'COM_no'!'COM_oo'!'VOL'!'AREA'

 if (constraint == 'VOL' .and. n_bead == 3) constraint = 'LEN'

 if (flow_type == 'SHEAR') n_rate = n_srt

 if (flow_cond == 'DISP') n_rate = 1

 if (flow_type == 'SHEARFREE') n_rate = n_elong

 if (flow_type == 'CAPILLARY') n_rate = n_srt

 ! if STUP flow simmulation was done separately,

 then call tmax_fromSTUP

 ! the valuse was collected from the log file from STUP call.

 !if (flow_cond == 'STST') call tmax_fromSTUP()

 if (flow_type == 'CAPILLARY') then

 call CAPILLARY_FLOW()

 else

 call FLOW()

 end if

 ! Inital position of beads read from files:

 ! 1. a file containing Cartesian position of each bead

 ! 2. a file containing 3 node indices of each triangle

 end Program RBCHOOKE

! ---

!@ subroutine FLOW - [Start-up/Steady-state] [Shear Flow/Shear-free Flow]

 subroutine FLOW()

! ---

! The variables used in this code are:

! ---

! sr Shear rate

! time Dimensionless time

! sq21dt 0.707*(sqrt(12.0D0*deltat))

! 0.707 SQRT(2kT/friction coeff.)

! sqrt(12*deltat) Part of the distribution sqrt(12dt)*(Y-0.5)

! where Y is uniform distribution [0,1]=ranuls

! slope Slope of viscosity wrt time

! ---

! Material properties:

! ---

! q21 yx component of stress tensor

! q1122 xx-yy component of stress tensor

! q3311 zz-xx component of stress tensor

! aeta Viscosity

! apsi1 First normal stress coefficient

! apsi2 Second normal stress coefficient

! veta Variance of viscosity -> Standard Deviation

! vpsi1 Variance of first normal stress coefficient

! -> Standard Deviation

! vpsi2 Variance of second normal stress coefficient

! -> Standard Deviation

114

! ---

! Indices

! ---

! irate i-th shear or elongation rate

! it i-th time

! itime i-th time step

! itra i-th trajectory

! ideltat i-th deltat

! ---

 use constants

 use Global

 use info

 use Numeric_kinds

 use RNGcommon

 implicit none

 integer(I4K) :: nu,j,k,it,it01,irate

 integer(I4K) :: ideltat

 integer(I4K) :: ndata,nt

 integer(I4K), parameter :: msign = -1

 real(R8K) :: area2,volumeM2

 real(R8K) :: InitialArea2,InitialVal

 real(R8K) :: TotalArea2,TotalVal

 real(R8K) :: sr

 real(R8K), dimension(:),allocatable :: rate

 real(R8K) :: deltat01

 real(R8K) :: omdth,ratedt,sq21dt

 real(R8K) :: q21_it01,q1122_it01

 real(R8K) :: q11_it01,q22_it01

 real(R8K) :: q11,q22,q11t01,q22t01

 real(R8K) :: q21,q1122,q21t01,q1122t01

 real(R8K) :: q3311,q3311t01 !,q2211

 real(R8K) :: q3311_term1,q3311_term2

 real(R8K) :: q11_transient,q22_transient

 real(R8K) :: q11_transient01,

 real(R8K) :: q22_transient01

 real(R8K) :: q21_transient,q21_transient01

 real(R8K), dimension(:),allocatable, SAVE :: aEta,vEta

 real(R8K), dimension(:),allocatable, SAVE :: aPsi1,vPsi1

 real(R8K), dimension(:),allocatable, SAVE :: mtau21,sumRyRx,sumRyRy

 real(R8K), dimension(:),allocatable, SAVE :: sumRyRxt01,sumRyRyt01

 real(R8K), dimension(:),allocatable, SAVE :: aGmod,vGmod

 real(R8K), dimension(:),allocatable, SAVE :: aGmodt01,vGmodt01

 real(R8K), dimension(:),allocatable, SAVE :: aGpsi1,vGpsi1

 real(R8K), dimension(:),allocatable, SAVE :: aGpsi1t01,vGpsi1t01

 real(R8K), dimension(:),allocatable, SAVE :: aGyra,vGyra

 real(R8K), dimension(:),allocatable, SAVE :: aGyrat01,vGyrat01

 real(R8K) :: qGyra,qGyrat01

 real(R8K) :: chi2,slope,dslope

 real(R8K), dimension(5) :: LLS_x,LLS_y,LLS_dy

 real(R8K) :: ranuls,rangls

 character(len=16) :: itoa

 character(len=long_len) :: file_name

 type(coord), dimension(n_bead) :: Fphi

 !type(coord) :: r_c

 type(coord), dimension(n_bead) :: R_nu, R_nu01

115

 type(coord), dimension(n_bead) :: R_nuOLD, R_nuOLD01, R_t01

 call ranils()

 it_init = 1

 ndata = n_data

 nt = n_t

!% [LOOP 1] Shear rate

 do irate = 1, n_rate

! initial settings with dummy values

 call init_LL3(LLS_x,LLS_y,LLS_dy)

 slope = -1000.0D0

 dslope = -1000.0D0

!% [LOOP A] different deltat : for extrapolation

!% n_data loops for 'STST', one loop for 'STUP'

 if (flow_cond == 'STUP') ndata = 1

 do ideltat = 1, ndata

!% [LOOP B] Time for Start-up flow

!% one loop for 'STST', n_t loops for 'STUP'

 if (flow_cond == 'STST') nt = 1

 do it = it_init, nt

!% for 'STST' time = tmax, for 'STUP' time = t(it)

 if (flow_cond == 'STUP') time = t(it)

 if (flow_cond == 'STST') time = tmax(irate)

 call deltat_test(irate,ideltat,deltat)

 sr = rate(irate) ! for shear or shear-free

!% n_time = floor(time/deltat)

 n_time = floor(time/deltat)

 omdth = 0.25*deltat

! SQRT(2kT/rho) = SQRT(2H/4H) = SQRT(0.5) = 0.707

! where rho is friction coeff.

! kT = H, rho = 4H

 sq21dt = SQRT(0.5D0)*(SQRT(12.0D0*deltat))

 ratedt = sr*deltat

! [Material properties]

! 1. Viscosity: aeta

! 2. First normal stress coefficient: apsi1

! 3. Second normal stress coefficient: apsi2

! variance of material properties : veta, vpsi1, vpsi2

! initial setup

 if (flow_type == 'SHEARFREE') then

 aEta(:) = 0.0D0

 vEta(:) = 0.0D0

 else

 aGmod(:) = 0.0D0

 vGmod(:) = 0.0D0

 aGpsi1(:) = 0.0D0

116

 vGpsi1(:) = 0.0D0

 !aEta(:) = 0.0D0

 !vEta(:) = 0.0D0

 !aPsi1(:) = 0.0D0

 !vPsi1(:) = 0.0D0

 !aPsi2 = 0.0D0

 !vPsi2 = 0.0D0

 end if

 mtau21(:) = 0.0D0

 sumRyRx(:) = 0.0D0 ! SIG<RyRx>

 sumRyRy(:) = 0.0D0 ! SIG<RyRy>

 aGyra(:) = 0.0D0

 vGyra(:) = 0.0D0

 if (flow_cond == 'DISP') then

 aGmodt01(:) = 0.0D0

 vGmodt01(:) = 0.0D0

 aGpsi1t01(:) = 0.0D0

 vGpsi1t01(:) = 0.0D0

 sumRyRxt01(:) = 0.0D0 ! SIG<RyRx>

 sumRyRyt01(:) = 0.0D0 ! SIG<RyRy>

 aGyrat01(:) = 0.0D0

 vGyrat01(:) = 0.0D0

 end if

 TotalArea2 = 0.0D0

 TotalVal = 0.0D0

 InitialArea2 = 0.0D0

 InitialVal = 0.0D0

!% [LOOP 2] for n trajectories

 do itra = 1, n_tra

! initialize position

 call init_position()

! connector vector Q's

 call connector(n_bead,Bead,n_tri,TriIndices,Q)

! ---

! calculation of initial SUM(area^2) of trianlges

! ---

 InitialArea2 = area2(n_tri,Q)

! ---

! calculation of initial volume of RBC

! ---

 if (n_bead == 4) InitialVal = volumeM2(n_tri,Q)

! ---

! calculation of sum of length square of triangles

! ---

 if (n_bead == 3) &

 InitialVal = (Q(1,1) .dot. Q(1,1)) &

 + (Q(1,2) .dot. Q(1,2)) &

 + (Q(1,3) .dot. Q(1,3))

 ! absVEC(Q(1))**2 + absVEC(Q(2))**2 + absVEC(Q(3))**2

 ! abs(Q) is magnitude of a vector Q

!%-------------No flow condition for dimensionless time (time_equil)

117

! to meet equilibrium initial condition

 call NOflow(sr,Q,Bead,InitialArea2,InitialVal)

!%-------------[LOOP 3] Time ---

 do it = 1, nt!it_init, nt

 if (flow_cond == 'STST') then

 time = tmax

 else

 time = real(it)

 end if

! Store old position at dimensionless time t and calculate

! R_nu=bead_nu-r_center_nu

 if (it /= 1) then

 do nu = 1, n_bead

 OldBead(nu)%x = Bead(nu)%x

 OldBead(nu)%y = Bead(nu)%y

 OldBead(nu)%z = Bead(nu)%z

 end do

 call R_position(OldBead,R_nuOLD)

 end if

 if (flow_cond == 'DISP' .and. it==1) it01 = 0

!% [LOOP B] Time Integration for 1 time step with time step

! width of deltat: Euler scheme

 do itime = 1, n_time

! Intermolecular Forces

! Each of Fphi have x, y, z component

! Indices 1,2,3,... represent the number of bead

 call IntermolecularForces(Bead,Fphi)

! Find new position of beads

 if (flow_type == 'SHEAR') then

! [DISPLACEMENT experiment]

 if (flow_cond == 'DISP') then

 do nu = 1, n_bead

 if (it == 1 .and. (itime == 1 .or. itime == 2)) &

 then

 ! shear strain can be induced by applying large,

 ! constant shear rate

 ! for a short time interval (deltat) : DPL Chap 3.4

 ! It is applied right before t = 1. The time index

 ! t = 1 throughout the code actually corresponds to

 ! displacement at t > 0 in the reference.

 NewBead(nu)%x = Bead(nu)%x +ratedt*Bead(nu)%y +&

 ! applying large, constant shear rate; sr over

 ! 1000 (1000*dt=0.1;10% strain)

 omdth*Fphi(nu)%x+sq21dt*(ranuls()-0.5)

 else

 ! NO FLOW CONDITION

 NewBead(nu)%x = Bead(nu)%x + &

 omdth*Fphi(nu)%x+sq21dt*(ranuls()-0.5)

 end if

 NewBead(nu)%y = Bead(nu)%y + &

118

 omdth*Fphi(nu)%y+sq21dt*(ranuls()-0.5)

 NewBead(nu)%z = Bead(nu)%z + &

 omdth*Fphi(nu)%z+sq21dt*(ranuls()-0.5)

 end do

 else

! [STEADY SHEAR FLOW experiment]

! note that x component has extra term.

! (shear flow in x-dir)

 do nu = 1, n_bead

 NewBead(nu)%x = Bead(nu)%x + ratedt*Bead(nu)%y + &

 ! applying constant shear rate

 omdth*Fphi(nu)%x+sq21dt*(ranuls()-0.5)

 NewBead(nu)%y = Bead(nu)%y + &

 omdth*Fphi(nu)%y+sq21dt*(ranuls()-0.5)

 NewBead(nu)%z = Bead(nu)%z + &

 omdth*Fphi(nu)%z+sq21dt*(ranuls()-0.5)

 end do

 end if

 else if (flow_type == 'SHEARFREE') then

! note that z component has extra term.

 do nu = 1, n_bead

 NewBead(nu)%x =Bead(nu)%x-(1/2)*ratedt*Bead(nu)%x &

 + omdth*Fphi(nu)%y+sq21dt*(ranuls()-0.5)

 NewBead(nu)%y =Bead(nu)%y-(1/2)*ratedt*Bead(nu)%y &

 + omdth*Fphi(nu)%z+sq21dt*(ranuls()-0.5)

 NewBead(nu)%z = Bead(nu)%z + ratedt*Bead(nu)%z &

 + omdth*Fphi(nu)%x+sq21dt*(ranuls()-0.5)

 end do

 end if

! translate to the origin of the reference

 call re_position(NewBead)

! call constraint subroutine

 if (constraint == 'AREA') &

 call constrnt_com_area(Q,Bead,NewBead,InitialArea2,&

 InitialVal,TotalArea2,TotalVal)

 if (constraint == 'LEN') &

 call constrnt_len (Q,Bead,NewBead,&

 InitialVal,TotalVal)

 if (constraint == 'VOL') &

 call constrnt_com_vol(Q,Bead,NewBead,InitialArea2,&

 InitialVal,TotalArea2,TotalVal)

 if (constraint == 'COM_no') &

 call constrnt_com_no(Q,Bead,NewBead,InitialArea2,&

 InitialVal,TotalArea2,TotalVal)

 if (constraint == 'COM_oo') &

 call constrnt_com_oo(Q,Bead,NewBead,InitialArea2,&

 InitialVal,TotalArea2,TotalVal)

! update old position to new

 do nu = 1, n_bead

 Bead(nu)%x = NewBead(nu)%x

 Bead(nu)%y = NewBead(nu)%y

119

 Bead(nu)%z = NewBead(nu)%z

 end do

! translate to the origin of the reference

 call re_position(Bead)

! connector vector Q's

 call connector(n_bead,Bead,n_tri,TriIndices,Q)

 if (flow_cond == 'DISP' .and. it==1) then

 if (itime==record) then

 it01 = it01+1

 time01(it01) = 0.0001*itime

! Store position at dimensionless time 1 and

! calculate R_t01

 if (it01 == 1) then

 deltat01 = 0.0001

 do nu = 1, n_bead

 Bead_t01(nu)%x = Bead(nu)%x

 Bead_t01(nu)%y = Bead(nu)%y

 Bead_t01(nu)%z = Bead(nu)%z

 end do

 call R_position(Bead_t01,R_t01)

 else

 deltat01 = time01(it01)-time01(it01-1)

 end if

 call R_position(Bead,R_nu01)

 q21t01 = 0.0D0 ! yx component of stress tensor

 q11t01 = 0.0D0 ! xx component of stress tensor

 q22t01 = 0.0D0 ! yy component of stress tensor

 q1122t01 = 0.0D0 ! xx-yy component of stress tensor

 ! transient terms

 q21_transient01 = 0.0D0

 q11_transient01 = 0.0D0

 q22_transient01 = 0.0D0

 ! store values for first two time steps for

 ! 3-point differentiation

 q21_it01 = 0.0D0

 q11_it01 = 0.0D0

 q22_it01 = 0.0D0

 q1122_it01 = 0.0D0

 if (it01 == 1) then

 !<----displacement for short time (deltat) is affects

 !the material property @ itime == 1

 do nu = 1, n_bead

 q21t01 = q21t01 + (R_nu01(nu)%y)**2

 q11t01 = q11t01 + R_nu01(nu)%x*R_nu01(nu)%y

 end do

 q21t01 = 2.0D0 * q21t01

 q11t01 = (4.0D0/sr) * q11t01

120

 !q2233 = 0.0D0

 q1122t01 = q1122t01 + q11t01 ! - q22 (q22=0 is zero)

 end if !---->

 do nu = 1, n_bead

 if (it01 == 1) then

 q21_transient01 = 0.0D0

 q11_transient01 = 0.0D0

 q22_transient01 = 0.0D0

 else if (it01 == 3) then

 ! FOR FIRST TIME POINT,

 ! 3-POINT FORWARD DIFFERENCE METHOD is used.

 ! Position @ it01 == 1 is stored and

 ! time derivative term is calculated @ it01 == 3

 q21_it01 = q21_it01 + &

 (4*R_nuOLD01(nu)%x*R_nuOLD01(nu)%y-&

 R_nu01(nu)%x*R_nu01(nu)%y-&

 3*R_t01(nu)%x*R_t01(nu)%y)

 q11_it01 = q11_it01 + &

 (4*R_nuOLD01(nu)%x**2-R_nu01(nu)%x**2-&

 3*R_t01(nu)%x**2)

 q22_it01 = q22_it01 + &

 (4*R_nuOLD01(nu)%y**2-R_nu01(nu)%y**2-&

 3*R_t01(nu)%y**2)

 ! 2-POINT BACKWARD DIFFERENCE METHOD is used

 q21_transient01 = q21_transient01 +&

 (R_nu01(nu)%x*R_nu01(nu)%y- &

 R_nuOLD01(nu)%x*R_nuOLD01(nu)%y)

 q11_transient01 = q11_transient01 + &

 (R_nu01(nu)%x**2-R_nuOLD01(nu)%x**2)

 q22_transient01 = q22_transient01 + &

 (R_nu01(nu)%y**2-R_nuOLD01(nu)%y**2)

 else

 ! 2-POINT BACKWARD DIFFERENCE METHOD is used

 q21_transient01 = q21_transient01 + &

 (R_nu01(nu)%x*R_nu01(nu)%y-&

 R_nuOLD01(nu)%x*R_nuOLD01(nu)%y)

 q11_transient01 = q11_transient01 + &

 (R_nu01(nu)%x**2-R_nuOLD01(nu)%x**2)

 q22_transient01 = q22_transient01 + &

 (R_nu01(nu)%y**2-R_nuOLD01(nu)%y**2)

 end if

 end do

 if (it01 == 3) then

 q21_it01 = msign*(1.0D0/sr)/deltat*q21_it01/deltat01

 q11_it01 = (1.0D0/sr/sr)/deltat*q11_it01/deltat01

 q22_it01 = (1.0D0/sr/sr)/deltat*q22_it01/deltat01

 q1122_it01 = q1122_it01-q11_it01+q22_it01

 end if

 q21_transient01 = (2.0D0/sr) &

 / deltat*q21_transient01/deltat01

 q11_transient01 = (2.0D0/sr/sr) &

 / deltat * q11_transient01 / deltat01

 q22_transient01 = (2.0D0/sr/sr) &

121

 / deltat * q22_transient01 / deltat01

 q21t01 = q21t01 - q21_transient01

 q1122t01 = q1122t01 - q11_transient01 + q22_transient01

! [Material properties for Shear Flow]

 ! Note that aGmod, vGmod, aGpsi1, vGpsi1 corresponds to

 ! aEta, vEta, aPsi1, vPsi1 for flow_cond /= 'DISP'

 aGmodt01(it01) = aGmodt01(it01) + q21t01

 vGmodt01(it01) = vGmodt01(it01) + q21t01*q21t01

 aGpsi1t01(it01) = aGpsi1t01(it01) + q1122t01

 vGpsi1t01(it01) = vGpsi1t01(it01) + q1122t01*q1122t01

 if (it01 == 3) then

 aGmodt01(1) = aGmodt01(1) + q21_it01

 vGmodt01(1) = vGmodt01(1) + q21_it01*q21_it01

 aGpsi1t01(1) = aGpsi1t01(1) + q1122_it01

 vGpsi1t01(1) = vGpsi1t01(1) + q1122_it01*q1122_it01

 end if

 ! print sum<RxRy>,sum<RyRy> for every time step

 do nu = 1, n_bead

 sumRyRxt01(it01) = sumRyRxt01(it01) + &

 R_nu01(nu)%x*R_nu01(nu)%y

 sumRyRyt01(it01) = sumRyRyt01(it01) + &

 R_nu01(nu)%y*R_nu01(nu)%y

 end do

! ---

! Radius of gyration s2 between time 0 and 1

! ---

 qGyrat01 = 0.0D0

 do nu = 1,n_bead

 qGyrat01 = qGyrat01 + R_nu01(nu)%x**2 + &

 R_nu01(nu)%y**2 + R_nu01(nu)%z**2

 end do

 qGyrat01 = qGyrat01 / n_bead

! [Radius of cell]

 aGyrat01(it01) = aGyrat01(it01) + sqrt(qGyrat01)

 vGyrat01(it01) = vGyrat01(it01) + &

 sqrt(qGyrat01)*sqrt(qGyrat01)

! Store old position at dimensionless time t and calculate

! R_nu=bead_nu-r_center_nu

 do nu = 1, n_bead

 OldBeadt01(nu)%x = Bead(nu)%x

 OldBeadt01(nu)%y = Bead(nu)%y

 OldBeadt01(nu)%z = Bead(nu)%z

 end do

 call R_position(OldBeadt01,R_nuOLD01)

 end if

 end if !if (flow_cond == 'DISP' .and. it==1) then

122

 end do

 if (position) then

 if (itra==n_tra) then !itra == 1 .or.

 !write(ioutf5,*) 'time= ',time,'itra=',itra

! PRINT position of beads at each time

 ! call display_position(ioutf3,Bead,TotalArea2,'AREA^2')

 end if

 end if

!% END [LOOP B]: 1 Time step Integration

! distance from the center of mass

 call R_position(Bead,R_nu)

 if (flow_type == 'SHEAR') then

 q21 = 0.0D0 ! yx component of stress tensor

 q11 = 0.0D0 ! xx component of stress tensor

 q22 = 0.0D0 ! yy component of stress tensor

 q1122 = 0.0D0 ! xx-yy component of stress tensor

 ! transient terms

 q21_transient = 0.0D0

 q11_transient = 0.0D0

 q22_transient = 0.0D0

!%--------------- sum of each material function

!% displacement term : -2SIG(kappa.<RR>+<RR>.kappa)

 if (flow_cond /= 'DISP') then

 !<----displacement for short time (deltat) is affects

 ! the material property @ t = 1

 do nu = 1, n_bead

 q21 = q21 + (R_nu(nu)%y)**2 !(Bead(nu)%y-r_c%y)**2

 q11 = q11 + R_nu(nu)%x*R_nu(nu)%y

 end do

 q21 = 2.0D0 * q21

 q11 = (4.0D0/sr) * q11

 !q2233 = 0.0D0

 q1122 = q1122 + q11 ! - q22 (q22=0 is zero)

 end if !---->

!% unsteady-state term: 2SIG(d<RR>/dt) :

! 2-POINT BACKWARD DIFFERENCE METHOD is used

 if (flow_cond /= 'STST') then

 do nu = 1, n_bead

 if (it == 1) then

 q21_transient = q21_transient + &

 (R_nu(nu)%x*R_nu(nu)%y-&

 R_nuOLD01(nu)%x*R_nuOLD01(nu)%y)

 q11_transient = q11_transient + (R_nu(nu)%x**2-&

 R_nuOLD01(nu)%x**2)

 q22_transient = q22_transient + (R_nu(nu)%y**2- &

 R_nuOLD01(nu)%y**2)

 else

 q21_transient = q21_transient + &

123

 (R_nu(nu)%x*R_nu(nu)%y-&

 R_nuOLD(nu)%x*R_nuOLD(nu)%y)

 q11_transient = q11_transient + (R_nu(nu)%x**2-&

 R_nuOLD(nu)%x**2)

 q22_transient = q22_transient + (R_nu(nu)%y**2-&

 R_nuOLD(nu)%y**2)

 end if

 end do

 if (it == 1) then

 deltat01 = time - time01(20)

 q21_transient = (2.0D0/sr)/deltat*q21_transient/deltat01

 q11_transient = (2.0D0/sr/sr)/deltat*&

 q11_transient/deltat01

 q22_transient = (2.0D0/sr/sr)/deltat*&

 q22_transient/deltat01

 else

 q21_transient = (2.0D0/sr) / deltat * q21_transient

 q11_transient = (2.0D0/sr/sr) / deltat * q11_transient

 q22_transient = (2.0D0/sr/sr) / deltat * q22_transient

 end if

 q21 = q21 - q21_transient

 q1122 = q1122 - q11_transient + q22_transient

 end if

! [Material properties for Shear Flow]

 ! Note that aGmod, vGmod, aGpsi1, vGpsi1 corresponds to

 ! aEta, vEta, aPsi1, vPsi1 for flow_cond /= 'DISP'

 aGmod(it) = aGmod(it) + q21

 vGmod(it) = vGmod(it) + q21*q21

 aGpsi1(it) = aGpsi1(it) + q1122

 vGpsi1(it) = vGpsi1(it) + q1122*q1122

 ! these value is analytically proven to be zero.

 ! Redundant to calculate.

 !aPsi2 = aPsi2 + q2233

 !vPsi2 = vPsi2 + q2233*q2233

 mtau21(it) = aGmod(it) * sr

 else if (flow_type == 'SHEARFREE') then

 q3311 = 0.0D0 ! zz-xx component of stress tensor

 q3311_term1 = 0.0D0 ! first term of q3311

 q3311_term2 = 0.0D0 ! second term of q3311

!% sum of each material function

 do nu = 1, n_bead

 q3311_term1 = q3311_term1 + &

 (R_nu(nu)%z)**2!(Bead(nu)%z-r_c%z)**2

 q3311_term2 = q3311_term2 + &

 (R_nu(nu)%x)**2!(Bead(nu)%x-r_c%x)**2

 end do

 q3311 = 4.0D0 * q3311_term1 + 2.0D0 * q3311_term2

124

 !q2211 = 0.0D0

! [Material properties for Shear Flow]

 aEta(it) = aEta(it) + q3311

 vEta(it) = vEta(it) + q3311*q3311

 !aEta2 = aEta2 + q2211

 !vEta2 = vEta2 + q2211*q2211

 mtau21(it) = aEta(it) * sr

 end if

 ! print sum<RxRy>,sum<RyRy> for every time step

 do nu = 1, n_bead

 sumRyRx(it) = sumRyRx(it) + &

 R_nu(nu)%x*R_nu(nu)%y!(Bead(nu)%x-&

 r_c%x)*(Bead(nu)%y-r_c%y)

 sumRyRy(it) = sumRyRy(it) + &

 R_nu(nu)%y*R_nu(nu)%y!(Bead(nu)%x-&

 r_c%y)*(Bead(nu)%y-r_c%y)

 end do

! ---

! Radius of gyration s2

! ---

 qGyra = 0.0D0

 do nu = 1,n_bead

 qGyra = qGyra + R_nu(nu)%x**2 + R_nu(nu)%y**2 + &

 R_nu(nu)%z**2!R_nu(nu) .dot. R_nu(nu)

 end do

 qGyra = qGyra / n_bead

! [Radius of cell]

 aGyra(it) = aGyra(it) + sqrt(qGyra)

 vGyra(it) = vGyra(it) + sqrt(qGyra)*sqrt(qGyra)

 end do

!% END [LOOP 3]: Time

 end do

!% END [LOOP 2]: itra

!% Average over number of trajectories

! time between 0 and 1 : for displacement experiment only

 if (flow_cond == 'DISP') then

 do j=1,20

 aGmodt01(j) = aGmodt01(j) / n_tra

 vGmodt01(j) = vGmodt01(j) / n_tra

 vGmodt01(j) = sqrt((vGmodt01(j)-aGmodt01(j)*&

 aGmodt01(j)) / (n_tra-1))

 aGpsi1t01(j) = aGpsi1t01(j) / n_tra

 vGpsi1t01(j) = vGpsi1t01(j) / n_tra

 vGpsi1t01(j) = sqrt((vGpsi1t01(j)-&

 aGpsi1t01(j)*aGpsi1t01(j)) / (n_tra-1))

 sumRyRxt01(j) = sumRyRxt01(j) / n_tra

125

 sumRyRyt01(j) = sumRyRyt01(j) / n_tra

 aGyrat01(j) = aGyrat01(j) / n_tra

 vGyrat01(j) = vGyrat01(j) / n_tra

 vGyrat01(j) = sqrt((vGyrat01(j)-&

 aGyrat01(j)*aGyrat01(j))/(n_tra-1))

 end do

 end if

! time between 1 and nt

 do k=1,nt

 if (flow_type == 'SHEARFREE') then

 aEta(k) = aEta(k) / n_tra

 vEta(k) = vEta(k) / n_tra

 vEta(k) = sqrt((vEta(k)-aEta(k)*aEta(k)) / (n_tra-1))

 else

 !if (flow_cond == 'DISP') then

 aGmod(k) = aGmod(k) / n_tra

 vGmod(k) = vGmod(k) / n_tra

 vGmod(k) = sqrt((vGmod(k)-aGmod(k)*aGmod(k)) / (n_tra-1))

 aGpsi1(k) = aGpsi1(k) / n_tra

 vGpsi1(k) = vGpsi1(k) / n_tra

 vGpsi1(k) = sqrt((vGpsi1(k)-aGpsi1(k)*aGpsi1(k)) / &

 (n_tra-1))

 !else

 !aEta(k) = aEta(k) / n_tra

 !vEta(k) = vEta(k) / n_tra

 !vEta(k) = sqrt((vEta(k)-aEta(k)*aEta(k)) / (n_tra-1))

 !aPsi1(k) = aPsi1(k) / n_tra

 !vPsi1(k) = vPsi1(k) / n_tra

 !vPsi1(k) = sqrt((vPsi1(k)-aPsi1(k)*aPsi1(k)) / (n_tra-1))

 !end if

 end if

 mtau21(k) = mtau21(k) / n_tra

 sumRyRx(k) = sumRyRx(k) / n_tra

 sumRyRy(k) = sumRyRy(k) / n_tra

 aGyra(k) = aGyra(k) / n_tra

 vGyra(k) = vGyra(k) / n_tra

 vGyra(k) = sqrt((vGyra(k)-aGyra(k)*aGyra(k))/ (n_tra-1))

 end do

!% Display results

! print result of time between 1 and nt

 do k=1,nt

 !if (flow_type == 'SHEAR') then

 call display_results(ioutf1,sr,deltat,&

 aGmod(k),vGmod(k),aGpsi1(k),&

 vGpsi1(k),n_time,time,sumRyRx(k),sumRyRy(k),&

 aGyra(k),vGyra(k))

 end do

!% END [LOOP A]: ideltat

!% Extrapolated material properties for steady state

100 continue

 end do

126

!% END [LOOP 1]: irate

!% simmulation time recorded

 stop

 end subroutine FLOW

! ---

!@ subroutine constrnt_com_no - calculate LaGrange multiplier

! Program (steps procedure)that calculates the lambda coefficient that

! adds the constraint force and calculates the corrected positions to

! satisfy the homologic constraint.

 subroutine constrnt_com_no

 (Qi,point,Newpoint,TotArea2,TotLen,TriArea2,TriLen)

 use constants

 use Global

 use Numeric_kinds

 use vec_func

 implicit none

 real(R8K), intent(IN) :: TotArea2,TotLen

 real(R8K), intent(OUT) :: TriArea2,TriLen

 type(coord), dimension(n_bead), intent(INOUT) :: point

 type(coord), dimension(n_bead), intent(OUT) :: Newpoint

 type(coord), dimension(*), intent(INOUT) :: Qi

! Local variables:

 integer(I4K) :: iter,nu

 real(R8K), dimension(2,2) :: g,modG

 real(R8K) :: detG

! real(R8K) :: discr1,discr2

 real(R8K) :: sigma1,sigma2

 real(R8K) :: lambda1,lambda2

 real(R8K), dimension(n_bead,n_bead+1) :: A

 real(R8K) :: area2

 real(R8K) :: param,param1,param2

 type(coord), dimension(n_bead) :: ds1point,ds2point

 type(coord), dimension(n_bead) :: ds1Newpoint,ds2Newpoint

! center of mass

 call center_mass(point)

! translate center of mass to the origin of the reference

 do nu = 1, n_bead

 point(nu)%x = point(nu)%x-r_c%x

 point(nu)%y = point(nu)%y-r_c%y

 point(nu)%z = point(nu)%z-r_c%z

 end do

! ---------- sigma1 : area constraint ---------------------------------

! DEL(sigma) @t : not scalar

! compute the partial derivatives of the area constraint

! using the old position

 param = 0.5D0

 call scalarcomp(Qi,A)

 do nu = 1, n_bead

 ds1point(nu) = param .M. ((A(nu,1).M.Qi(1)) .A. (A(nu,2).M.Qi(2)))

 end do

! ---------- sigma2 : sum of length square constraint ---------------

! DEL(sigma) @t : not scalar

! compute the partial derivatives of the sum of length square

! constraint using the old position

127

 param1 = 2.

 param2 = -2.

 ds2point(1) = param2 .M. (Qi(1) .A. Qi(2))

 ds2point(2) = param1 .M. (Qi(1) .S. Qi(3))

 ds2point(3) = param1 .M. (Qi(2) .A. Qi(3))

 lambda1 = 0.0D0

 lambda2 = 0.0D0

 do iter = 1, maxiter

! discr1 = 0.0D0 discr2 = 0.0D0

 call connector(Newpoint,Qi)

! ==

! compute the constraint SIG using new position

! ---------- sigma1 : area constraint ------------------------------

 TriArea2 = area2(Qi(1),Qi(2))

! TotArea2 is four equilateral triangle with each area = 10

 sigma1 = TriArea2 - TotArea2

! ---------- sigma2 : sum of length square constraint --------------

 TriLen = (Qi(1).dot.Qi(1))+(Qi(2).dot.Qi(2))+(Qi(3).dot.Qi(3))

 sigma2 = TriLen - TotLen

! ==

 if (abs(sigma1) .LT. tol .and. abs(sigma2) .LT. tol) goto 200

! if (discr1 .LT. abs(sigma1)) discr1 = abs(sigma1)

! if (discr2 .LT. abs(sigma2)) discr2 = abs(sigma2)

! ==

! DEL(sigma) @(t+deltat) :

! compute the partial derivatives of the constraint using

! the New position

! scalar values for new position with updated Qi

! ---------- sigma1 : area constraint ------------------------------

 call scalarcomp(Qi,A)

 do nu = 1, n_bead

 ds1Newpoint(nu) =

 param.M.((A(nu,1).M.Qi(1)).A.(A(nu,2).M.Qi(2)))

 end do

! ---------- sigma2 : sum of length square constraint --------------

 ds2Newpoint(1) = param2 .M. (Qi(1) .A. Qi(2))

 ds2Newpoint(2) = param1 .M. (Qi(1) .S. Qi(3))

 ds2Newpoint(3) = param1 .M. (Qi(2) .A. Qi(3))

! ===

! calculate modified metric matrix

 modG = 0.

 do nu = 1, n_bead

 modG(1,1) = modG(1,1) + (ds1Newpoint(nu) .dot. ds1point(nu))

 modG(1,2) = modG(1,2) + (ds1Newpoint(nu) .dot. ds2point(nu))

 modG(2,1) = modG(2,1) + (ds2Newpoint(nu) .dot. ds1point(nu))

 modG(2,2) = modG(2,2) + (ds2Newpoint(nu) .dot. ds2point(nu))

 end do

! This is for [2x2] matrix

! put algorithm to inverse matrix modG to get [d' x d']

! metric matrix g

 detG = modG(1,1)*modG(2,2)-modG(1,2)*modG(2,1)

 g(1,1) = modG(2,2)/detG

128

 g(1,2) = -modG(1,2)/detG

 g(2,1) = -modG(2,1)/detG

 g(2,2) = modG(1,1)/detG

! Lagrange multiplier

! lambda = (rho)* g(j,k)*sigma @(t+deltat)

 lambda1 = lambda1 + g(1,1)*sigma1 + g(1,2)*sigma2

 lambda2 = lambda2 + g(2,1)*sigma1 + g(2,2)*sigma2

! r_CON = r_UN - (1/rho)*lambda * DEL(sigma) @t : see Ottinger

 do nu = 1, n_bead

 Newpoint(nu) = Newpoint(nu) .S. &

 ((lambda1 .M. ds1point(nu)).A.(lambda2.M.ds2point(nu)))

 end do

! center of mass

 call center_mass(Newpoint)

! translate center of mass to the origin of the reference

 do nu = 1, n_bead

 Newpoint(nu)%x = Newpoint(nu)%x-r_c%x

 Newpoint(nu)%y = Newpoint(nu)%y-r_c%y

 Newpoint(nu)%z = Newpoint(nu)%z-r_c%z

 end do

! if discr=0, end of iteration

200 if (abs(sigma1) .LT. tol .and. abs(sigma2) .LT. tol) return

 end do

 return

 end subroutine constrnt_com_no

! ---

!@ subroutine constrnt_com_oo - calculate LaGrange multiplier

! Program (steps procedure)that calculates the lambda coefficient that

! adds the constraint force and calculates the corrected positions

! to satisfy the homologic constraint.

! USE ONLY OLD POSITION TO CALCULATE METRIC MATRIX

! c = c' = 0

 subroutine constrnt_com_oo

 (Qi,point,Newpoint,TotArea2,TotLen,TriArea2,TriLen)

 use constants

 use Global

 use Numeric_kinds

 use vec_func

 implicit none

 real(R8K), intent(IN) :: TotArea2,TotLen

 real(R8K), intent(OUT) :: TriArea2,TriLen

 type(coord), dimension(n_bead), intent(INOUT) :: point

 type(coord), dimension(n_bead), intent(OUT) :: Newpoint

 type(coord), dimension(*), intent(INOUT) :: Qi

! Local variables:

 integer(I4K) :: iter,nu

 real(R8K), dimension(2,2) :: g,modG

 real(R8K) :: detG

 real(R8K) :: discr1,discr2

129

 real(R8K) :: sigma1,sigma2

 real(R8K) :: lambda1,lambda2

 real(R8K), dimension(n_bead,n_bead+1) :: A

 real(R8K) :: area2

 real(R8K) :: param,param1,param2

 type(coord), dimension(n_bead) :: ds1point,ds2point

 type(coord), dimension(n_bead) :: ds1Newpoint,ds2Newpoint

! center of mass

 call center_mass(point)

! translate center of mass to the origin of the reference

 do nu = 1, n_bead

 point(nu)%x = point(nu)%x-r_c%x

 point(nu)%y = point(nu)%y-r_c%y

 point(nu)%z = point(nu)%z-r_c%z

 end do

! ---------- sigma1 : area constraint ---------------------------------

! DEL(sigma) @t : not scalar

! compute the partial derivatives of the area constraint using the

! old position

 param = 0.5D0

 call scalarcomp(Qi,A)

 do nu = 1, n_bead

 ds1point(nu) = param .M. ((A(nu,1).M.Qi(1)) .A. (A(nu,2).M.Qi(2)))

 end do

! ---------- sigma2 : sum of length square constraint ---------------

! DEL(sigma) @t : not scalar

! compute the partial derivatives of the sum of length square

! constraint using the old position

 param1 = 2.0D0

 param2 = -2.0D0

 ds2point(1) = param2 .M. (Qi(1) .A. Qi(2))

 ds2point(2) = param1 .M. (Qi(1) .S. Qi(3))

 ds2point(3) = param1 .M. (Qi(2) .A. Qi(3))

! calculate modified metric matrix

 modG = 0.

 do nu = 1, n_bead

 modG(1,1) = modG(1,1) + (ds1point(nu) .dot. ds1point(nu))

 modG(1,2) = modG(1,2) + (ds1point(nu) .dot. ds2point(nu))

 modG(2,1) = modG(2,1) + (ds2point(nu) .dot. ds1point(nu))

 modG(2,2) = modG(2,2) + (ds2point(nu) .dot. ds2point(nu))

 end do

! This is for [2x2] matrix

! put algorithm to inverse matrix modG to get [d' x d']

! metric matrix g

 detG = modG(1,1)*modG(2,2)-modG(1,2)*modG(2,1)

 g(1,1) = modG(2,2)/detG

 g(1,2) = -modG(1,2)/detG

 g(2,1) = -modG(2,1)/detG

 g(2,2) = modG(1,1)/detG

 lambda1 = 0.0D0

130

 lambda2 = 0.0D0

 do iter = 1, maxiter

 discr1 = 0.0D0

 discr2 = 0.0D0

 call connector(Newpoint,Qi)

! ==

! compute the constraint SIG using new position

! ---------- sigma1 : area constraint ------------------------------

 TriArea2 = area2(Qi(1),Qi(2))

! TotArea2 is four equilateral triangle with each area = 10

 sigma1 = TriArea2 - TotArea2

! ---------- sigma2 : sum of length square constraint --------------

 TriLen = (Qi(1).dot.Qi(1)+(Qi(2).dot.Qi(2))+(Qi(3).dot.Qi(3))

 sigma2 = TriLen - TotLen

! ==

 if (abs(sigma1) .LT. tol .and. abs(sigma2) .LT. tol) goto 200

 if (discr1 .LT. abs(sigma1)) discr1 = abs(sigma1)

 if (discr2 .LT. abs(sigma2)) discr2 = abs(sigma2)

! Lagrange multiplier

! lambda = (rho)* g(j,k)*sigma @(t+deltat)

 lambda1 = lambda1 + g(1,1)*sigma1 + g(1,2)*sigma2

 lambda2 = lambda2 + g(2,1)*sigma1 + g(2,2)*sigma2

! r_CON = r_UN - (1/rho)*lambda * DEL(sigma) @t : see Ottinger

 do nu = 1, n_bead

 Newpoint(nu) = Newpoint(nu) .S. &

 ((lambda1.M.ds1point(nu)).A.(lambda2.M.ds2point(nu)))

 end do

! center of mass

 call center_mass(Newpoint)

! translate center of mass to the origin of the reference

 do nu = 1, n_bead

 Newpoint(nu)%x = Newpoint(nu)%x-r_c%x

 Newpoint(nu)%y = Newpoint(nu)%y-r_c%y

 Newpoint(nu)%z = Newpoint(nu)%z-r_c%z

 end do

! if discr=0, end of iteration

200 if (discr1 .LT. tol .and. discr2 .LT. tol) return

 end do

 return

 end subroutine constrnt_com_oo

! ---

!@ subroutine constrnt_area_no - calculate Lagrange multiplier

 subroutine constrnt_area(triIndices,Qm,point,Newpoint,InitArea2,TotArea2)

 use Global

 use Numeric_kinds

 use vec_func

 implicit none

 integer(I4K), dimension(n_tri,3), intent(IN) :: triIndices

 real(R8K), intent(IN) :: InitArea2

131

 real(R8K), intent(OUT) :: TotArea2

 type(coord), dimension(n_bead), intent(INOUT) :: point

 type(coord), dimension(n_bead), intent(INOUT) :: Newpoint

 type(coord), dimension(n_tri,3), intent(INOUT) :: Qm

 ! Local variables:

 integer(I4K) :: iter,nu

 real(R8K) :: param

 real(R8K) :: sigma1,discr

 real(R8K) :: denom,lambda

 real(R8K), dimension(2,2) :: g,modG

 real(R8K) :: area2

 type(coord), dimension(n_bead) :: ds1point

 type(coord), dimension(n_bead) :: ds1Newpoint

 param = 0.5D0

! metric matrix. NOT used in this subroutine

 modG = 0.

 g = 0.

! DEL(sigma) @t : not scalar

! Initialization

 do nu = 1, n_bead

 ds1point(nu)%x = 0.0D0

 ds1point(nu)%y = 0.0D0

 ds1point(nu)%z = 0.0D0

 end do

 do nu = 1, n_bead

 ds1Newpoint(nu)%x = 0.0D0

 ds1Newpoint(nu)%y = 0.0D0

 ds1Newpoint(nu)%z = 0.0D0

 end do

! compute the partial derivatives of the constraint (ds1point)

! using the old position

 call crossProductQ1Q2(n_bead,n_tri,triIndices,Qm,ds1point)

 do iter = 1, maxiter

 discr = 0.0D0

! connector vector Q's

 call connector(n_bead,Newpoint,n_tri,triIndices,Qm)

 TotArea2 = area2(n_tri,Qm)

! compute the constraint SIG using new position

! InitArea2 is four equilateral Totangle with each area

 sigma1 = TotArea2 - InitArea2

 if (abs(sigma1) .LT. tol) goto 200 !sqrt(abs(sigma1))

 if (discr .LT. abs(sigma1)) discr = abs(sigma1)

! DEL(sigma) @(t+deltat) :

! compute the partial derivatives of the constraint using

! the New position

! scalar values for new position with updated Qm

 call crossProductQ1Q2(n_bead,n_tri,triIndices,Qm,ds1Newpoint)

132

! calculate denominator

 denom = 0.0D0

 do nu = 1, n_bead

 denom = denom + (ds1Newpoint(nu).dot.ds1point(nu))

 end do

! Lagrange multiplier

! lambda = (rho/deltat)* sigma1 @(t+deltat)/denom

! denom = SUM(DEL(sigma1) @(t+deltat) .dot. DEL(sigmaCON) @t)

 lambda = sigma1/denom

! r_new = r_old - (deltat/rho)*lambda * DEL(sigmaCON) @t :

 do nu = 1, n_bead

 Newpoint(nu) = Newpoint(nu) .S. (lambda .M. ds1point(nu))

 end do

! if discr=0, end of iteration

200 if (discr .LT. tol) then

 return

 end if

 end do

 return

 end subroutine constrnt_area

! ---

!@ subroutine center_mass - Calculate center of mass

 subroutine center_mass(point,r_center)

 use Global

 use Numeric_kinds

 use vec_func

 implicit none

! ---

! The variables used in this code are:

! ---

! point Position of bead, vector

! r_center Center of mass of position of bead, vector

! ---

 type(coord), intent(IN), dimension(n_bead) :: point

 type(coord), intent(OUT) :: r_center

 ! Local variables:

 integer(I4K) :: nu

 r_center%x = 0

 r_center%y = 0

 r_center%z = 0

 do nu = 1, n_bead

 r_center%x = r_center%x + point(nu)%x

 r_center%y = r_center%y + point(nu)%y

 r_center%z = r_center%z + point(nu)%z

 end do

 r_center%x = r_center%x / n_bead

 r_center%y = r_center%y / n_bead

 r_center%z = r_center%z / n_bead

133

 end subroutine center_mass

! ---

!@ subroutine re_position - reposition of the beads to the origin of the

! reference

 subroutine re_position(point)

 use Global

 use Numeric_kinds

 use vec_func

 implicit none

 type(coord), intent(INOUT), dimension(n_bead) :: point

 ! Local variables:

 integer(I4K) :: nu

 type(coord) :: r_center

 call center_mass(point,r_center)

 do nu = 1, n_bead

! point(nu) = point(nu) .S. r_center

 point(nu)%x = point(nu)%x-r_center%x

 point(nu)%y = point(nu)%y-r_center%y

 point(nu)%z = point(nu)%z-r_center%z

 end do

 end subroutine re_position

! ---

!@ subroutine R_position - Calculate distance from the center of mass

 subroutine R_position(point,R_nu)

 use Global

 use Numeric_kinds

 use vec_func

 implicit none

 type(coord), intent(IN), dimension(n_bead) :: point

 type(coord), intent(OUT), dimension(n_bead) :: R_nu

 ! Local variables:

 integer(I4K) :: nu

 type(coord) :: r_center

 call center_mass(point,r_center)

 do nu = 1, n_bead

! R_nu(nu) = point(nu) .S. r_center

 R_nu(nu)%x = point(nu)%x-r_center%x

 R_nu(nu)%y = point(nu)%y-r_center%y

 R_nu(nu)%z = point(nu)%z-r_center%z

 end do

 end subroutine R_position

! ---

!@ subroutine connector - connector vector for each local Triangle

 subroutine connector(n_bead,point,n_tri,triIndices,Qm)

 use Numeric_kinds

 use vec_func

 implicit none

! ---

! The variables used in this code are:

! ---

134

! triIndices Indices of each triangle

! ---

 integer(I4K), intent(IN) :: n_tri,n_bead

 integer(I4K), dimension(n_tri,3), intent(IN) :: triIndices

 type(coord), dimension(n_bead), intent(IN) :: point

 type(coord), dimension(n_tri,3), intent(OUT) :: Qm

 integer(I4K) :: m

! Q(n_tri,1) = r(n_tri,2) - r(n_tri,1)

! Q(n_tri,2) = r(n_tri,3) - r(n_tri,1)

! Q(n_tri,3) = r(n_tri,3) - r(n_tri,2)

! Only need set of two connector vectors (Qm(m,1) and Qm(m,2))

! for each triangle to calculate the area

! However, need all three sets to get Inter-particle Forces.

! Details are in subroutine UNIQUEconnector.

 do m = 1,n_tri

 Qm(m,1) = point(triIndices(m,2)) .S. point(triIndices(m,1))

 Qm(m,2) = point(triIndices(m,3)) .S. point(triIndices(m,1))

 Qm(m,3) = point(triIndices(m,3)) .S. point(triIndices(m,2))

 end do

 end subroutine connector

! ---

!@ subroutine UNIQUEconnector - Unique connector vectors from sets of

connector vectors

 subroutine UNIQUEconnector(n_tri,triIndices,count,uniquepairIndices)

 use Numeric_kinds

 use vec_func

 implicit none

! ---

! The variables used in this code are:

! ---

! triIndices Indices of each triangle

! uniquepairIndices Unique pair out of pairnodes

! pairnodes1 1st pairnodes for each row (triangle)

! pairnodes2 2nd pairnodes for each row (triangle)

! pairnodes3 3rd pairnodes for each row (triangle)

! pairnodes All combination of two indicies

! count Count of unique pair indices

! isUnique Boolean to check uniqueness

! ---

 integer(I4K), intent(IN) :: n_tri

 integer(I4K), intent(OUT) :: count

 integer(I4K), dimension(n_tri,3), intent(IN) :: triIndices

 integer(I4K), dimension(n_tri*3,2), intent(OUT) :: uniquepairIndices

 integer(I4K) :: k,l,m

 integer, dimension(n_tri,2) :: pairnodes1

 integer, dimension(n_tri,2) :: pairnodes2

 integer, dimension(n_tri,2) :: pairnodes3

 integer(I4K), dimension(n_tri*3,2) :: pairnodes

 LOGICAL,DIMENSION(n_tri*3) :: isUnique

 do m = 1, n_tri

 pairnodes1(m,1) = triIndices(m,1)

 pairnodes1(m,2) = triIndices(m,2)

135

 pairnodes2(m,1) = triIndices(m,1)

 pairnodes2(m,2) = triIndices(m,3)

 pairnodes3(m,1) = triIndices(m,2)

 pairnodes3(m,2) = triIndices(m,3)

 end do

 pairnodes(:,1) = [pairnodes1(:,1), pairnodes2(:,1), pairnodes3(:,1)]

 pairnodes(:,2) = [pairnodes1(:,2), pairnodes2(:,2), pairnodes3(:,2)]

 call SORTpairnodes(n_tri,pairnodes)

 isUnique = .False.

 count = 0

 uniquepairIndices(:,:) = 0

 do l = 1,n_tri*3

 if (l == 1) then

 isUnique(l) = .TRUE.

 count = count+1

 uniquepairIndices(count,1) = pairnodes(l,1)

 uniquepairIndices(count,2) = pairnodes(l,2)

 else

 do k = 1, count

 if ((pairnodes(l,1)==uniquepairIndices(k,1)) .and. &

 (pairnodes(l,2)==uniquepairIndices(k,2))) then

 isUnique(l) = .FALSE.

 exit

 else

 isUnique(l) = .TRUE.

 end if

 end do

 if (isUnique(l)) then

 isUnique(l) = .TRUE.

 count = count+1

 uniquepairIndices(count,1) = pairnodes(l,1)

 uniquepairIndices(count,2) = pairnodes(l,2)

 end if

 end if

 end do

 end subroutine UNIQUEconnector

! ---

!@ subroutine SORTpairnodes - sort the row of each pair nodes

 subroutine SORTpairnodes(n_tri,pairnodes)

 use Numeric_kinds

 use vec_func

 implicit none

! ---

! The variables used in this code are:

! ---

! pairnodes All combination of two indicies

! tempint Temporary storage for integer

! ---

 integer(I4K), intent(IN) :: n_tri

 integer(I4K), dimension(n_tri*3,2), intent(INOUT) :: pairnodes

136

 integer(I4K) :: m

 integer(I4K) :: tempint

 do m = 1, n_tri*3

 if (pairnodes(m,1) .GT. pairnodes(m,2)) then

 tempint = pairnodes(m,1)

 pairnodes(m,1) = pairnodes(m,2)

 pairnodes(m,2) = tempint

 end if

 end do

 end subroutine SORTpairnodes

! ---

!@ subroutine InterParticleForces - Inter-particle Forces for each points

 subroutine InterParticleForces(point,triIndices,Fphi)

 use Global

 use Numeric_kinds

 use vec_func

 implicit none

! ---

! The variables used in this code are:

! ---

! triIndices Indices of each triangle

! uniquepairIndices Unique pair out of pairnodes

! count Count of unique pair indices

! Qunique Connector vectors of unique pair indices

! type(coord) and has dimension of (count)

! This is equivalent to Qk in the dissertation.

! Fphi Inter-particle Forces

! ---

 integer(I4K), dimension(n_tri,3), intent(IN) :: triIndices

 type(coord), dimension(n_bead), intent(IN) :: point

 type(coord), dimension(n_bead), intent(OUT) :: Fphi

 integer(I4K) :: nu,k,count

 integer(I4K), dimension(n_tri*3,2) :: uniquepairIndices

 call UNIQUEconnector(n_tri,triIndices,count,uniquepairIndices)

 if (.not. allocated(Qunique)) allocate(Qunique(count))

 do k = 1, count

 Qunique(k) = point(uniquepairIndices(k,2)) .S.

 point(uniquepairIndices(k,1))

 end do

 do nu = 1, n_bead

 Fphi(nu)%x = 0.0D0

 Fphi(nu)%y = 0.0D0

 Fphi(nu)%z = 0.0D0

 end do

 do nu = 1, n_bead

 do k = 1, count

 if (uniquepairIndices(k,1) == nu) then

 Fphi(nu) = Fphi(nu) .A. Qunique(k)

 end if

 if (uniquepairIndices(k,2) == nu) then

137

 Fphi(nu) = Fphi(nu) .S. Qunique(k)

 end if

 end do

 end do

 end subroutine InterParticleForces

! ---

!@ subroutine crossProductQ1Q2 - scalar component of ds1point

!@ (area constraint) for triangles

 subroutine crossProductQ1Q2(n_bead,n_tri,triIndices,Qm,delSIG)

 use Numeric_kinds

 use vec_func

 implicit none

 integer(I4K), INTENT(IN) :: n_bead,n_tri

 integer(I4K), dimension(n_tri,3), intent(IN) :: triIndices

 type(coord), dimension(n_tri,3), intent(IN) :: Qm

 type(coord), dimension(n_bead), intent(OUT) :: delSIG

 ! Local variables:

 integer(I4K) :: nu,m

 real(R8K) :: delA,delB,delC

 real(R8K), parameter :: minus = -1.0D0

 real(R8K), parameter :: plus = 1.0D0

 real(R8K), parameter :: zero = 0.0D0

 real(R8K), dimension(n_bead) :: delQ1,delQ2

 real(R8K) :: param

 real(R8K) :: Q1Q1,Q1Q2,Q2Q2

 param = 0.5D0

 do nu = 1, n_bead

 delSIG(nu)%x = 0.0D0

 delSIG(nu)%y = 0.0D0

 delSIG(nu)%z = 0.0D0

 end do

 ! A,B,C denotes the three indices for each triangle that is stored

! in triIndices.

 ! Originally read from Excel file with A,B,C columns.

 do m = 1,n_tri ! for each triangle

 ! w = [Q1 X Q2]

 !w(m) = Qm(m,1) .X. Qm(m,2)

 ! A(m) = triIndices(m,1)

 ! B(m) = triIndices(m,2)

 ! C(m) = triIndices(m,3)

 delQ1(:) = 0

 delQ2(:) = 0

 Q1Q1 = Qm(m,1) .dot. Qm(m,1)

 Q1Q2 = Qm(m,1) .dot. Qm(m,2)

 ! Q1Q2 = Q2Q1

 Q2Q2 = Qm(m,2) .dot. Qm(m,2)

 do nu = 1,n_bead

138

 delA = 0

 delB = 0

 delC = 0

 if (triIndices(m,1) == nu) then

 delA = minus

 else

 delA = zero

 end if

 if (triIndices(m,2) == nu) then

 delB = plus

 else

 delB = zero

 end if

 if (triIndices(m,3) == nu) then

 delC = plus

 else

 delC = zero

 end if

 ! delw = {delQ1 X Q2 - delQ2 X Q1}

 !delw(m,nu) = (delB+delA) .dot. Q(m,2) - (delC+delA) .dot. Q(m,1)

 delQ1(nu) = delB + delA ! A(m) /= B(m)

 delQ2(nu) = delC + delA ! A(m) /= C(m)

 ! Indices of each triangle is never the same number

 ! Therefore, delQ1(nu)s and delQ2(nu)s are always -1,1,or 0

 ! DEL(sigma) = 0.5 * SUM([delw .dot. w])

 delSIG(nu) = delSIG(nu) .A. &

 ((delQ1(nu) .M. ((Q2Q2 .M. Qm(m,1)) .S. (Q1Q2 .M.

 Qm(m,2)))) .S. (delQ2(nu) .M. &

 ((Q1Q2 .M. Qm(m,1)) .S. (Q1Q1 .M. Qm(m,2)))))

 end do

 end do

 do nu = 1, n_bead

 delSIG(nu) = param .M. delSIG(nu)

 end do

 end subroutine crossProductQ1Q2

! ---

!@ function area2 - Calculate (area)^2 of a triangle

 function area2(n_tri,Qm)

 use Numeric_kinds

 use vec_func

 implicit none

! ---

! The variables used in this code are:

! ---

! Qm1,Qm2 Vector

! area2 area**2 of triangle

! ---

 integer(I4K), intent(in) :: n_tri

 type(coord), dimension(n_tri,3), intent(IN) :: Qm

 ! Local variables:

 integer(I4K) :: m

139

 real(R8K) :: area2

! area = 1/2 * SQRT(SUM(Q1Q2 .X. Q1Q2))

! = 1/2 * abs((Q1 .X. Q2))

! area2 = 1/4 * (Q1 .X. Q2)**2

 area2 = 0.0D0

 do m = 1,n_tri

 area2 = area2+((Qm(m,1) .X. Qm(m,2)) .dot. (Qm(m,1) .X. Qm(m,2)))

 end do

 area2 = 1/4. * area2

 end function area2

! ---

140

VITA

Kyung-Hyo Kim

1255 S.State St. Phone: +1 (773) 398-7721

Chicago, IL 60605 Email: kim.kyunghyokim@gmail.com

EDUCATION

Ph.D., Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois, 2015

B.A., Chemistry, Soongsil University, Seoul, Korea, 2001

RESEARCH EXPERIENCE

Department of Chemical Engineering, 2008-Present

University of Illinois at Chicago, Chicago, IL

Dissertation: “A Stochastic Sumulation Method Using Constraints for the Modeling of Blood

Rheology”

Institute for Health Research and Policy, 2009-Present

University of Illinois at Chicago, Chicago, IL

• Research project on the development of advanced statistical software tools for health

and prevention studies: Maximum marginal likelihood estimates for mixed-effects

ordinal probit, logistic, and complementary log-log regression models with operating

characteristic (ROC).

Department of Chemical Engineering, 06/2008 - 12/2008

University of Illinois at Chicago, Chicago, IL

• Research on the characterization of the metal surface to develop high quality coating

with the enhancement of material properties.

Department of Chemistry, 08/2002 – 12/2002

University of Illinois at Chicago, Chicago, IL

• Research on analytical instrumentation and methods for neurological system: A push-

pull perfusion method.

Department of Chemistry, 03/2000 – 02/2001

SoongSil University, Seoul, Korea

• Undergraduate research: Synthesis of Supramolecular based on Cyclotriveratrylene

(CTV)

• Dissertation: “Sensors and Switches in Supramolecular Chemistry”

TEACHING EXPERIENCE

Undergraduate Research Advisor, 09/2008 - 08/2011

University of Illinois at Chicago

• Xin Qin, “Continued Simulation of three Bead-Spring Rings with a constant area

constaint”

• Vijeta Patel, “Applying Volume Constraint to Red Blood Cell Model”

mailto:kim.kyunghyokim@gmail.com

141

Teaching Assistant, 1/2009 - 05/2009

Department of Chemical Engineering,

University of Illinois at Chicago, Chicago, IL

• CHE 410 : Transport Phenomena

Teaching Assistant, 1/2008 - 05/2008

Department of Chemical Engineering,

University of Illinois at Chicago, Chicago, IL

• CHE 312 : Transport Phenomena II

PUBLICATIONS

• Kim, K. H., Rogelio H. Lopez, and Lewis E. Wedgewood, Stochastic Method Using

Constraints for Modeling of Blood Rheology, submitted to Physical Review E

• Kim, K. H. and Lewis E. Wedgewood, Stochastic Method Using Constraints for

Modeling of Blood Rheology: Part II, in preparation

CONFERENCES ATTENDED

• Presentation at the Society of Rheology (SOR) 86th Annual Meeting, Philadelphia, PA,

2014

• Presentation at 2014 Midwest Thermodynamics and Statistical Mechanics Conference

Chicago, IL, 2014

• Poster Presentation at 5th Annual AIChE Midwest Regional Conference, Chicago, IL,

2014

• Presentation at the Society of Rheology (SOR) 84th Annual Meeting, Pasadena, CA,

2013

• Poster Presentation at the Annual Meeting of AIChE and ACS Great Lakes Chapter

(GLCACS), Chicago, IL, 2013

PROFESSIONAL MEMBERSHIP

• Society of Rheology (SoR)

• American Institute of Chemical Engineers (AIChE)

• The Society of Women Engineers (SWE)

• Korean-American Scientists and Engineers Association (KSEA)

• Korean Institute of Chemical Engineers (KIChE)

