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SUMMARY

This work defines the étale homotopy type in the context of non-archimedean geometry, in both

Berkovich’s and Huber’s formalisms. To do this we take the shape of a site’s associated hypercom-

plete ∞-topos. This naturally leads to discussing localizations of the category of pro-spaces. For a

prime number p, we introduce a new localization intermediate between profinite spaces and `-profinite

spaces. This new category is well suited for comparison theorems when working over a discrete val-

uation ring of mixed characteristic. We prove a new comparison theorem on the level of topoi for

the formalisms of Berkovich and Huber, and prove an analog of smooth-proper base change for non-

archimedean analytic spaces. This provides a necessary result for the non-archimedean analog of

Friedlander’s homotopy fiber theorem, which we prove. For a variety over a non-archimedean field,

we prove a comparison theorem between the classical étale homotopy type and our étale homotopy

type of the variety’s analytification. Finally, we examine certain log formal schemes over the formal

spectrum of a complete discrete valuation ring, and compare their Kummer étale homotopy type with

the étale homotopy type of the associated non-archimedean analytic space.
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CHAPTER 1

INTRODUCTION

“I have come to believe that the whole world is an enigma, a harmless enigma that is

made terrible by our own mad attempt to interpret it as though it had an underlying

truth.” – Umberto Eco, Foucault’s Pendulum

A starting point for this work is the following proto-question.

Question 1.1. For a scheme X, is there a space Y such that both

(1) the étale cohomology of X is the singular cohomology of Y ,

(2) and the étale fundamental group of X is the fundamental group of Y ?

/

This is an unreasonable question since in full generality neither “étale cohomology” nor “étale funda-

mental group” have a unique meaning. The simplest fix to this problem is to restrict to finite coe�cients.

Question 1.2. For a scheme X, is there a space Y such that both

(1) the étale cohomology Hi(Xét,Z/`) is the singular cohomology Hi(Y,Z/`),

(2) and there is a bijection between the categories of finite étale covers ofX and the finite covering

spaces of Y ?

/

This question is more well posed, and we can start from here.

Theorem 1.3 (Artin-Mazur’s étale homotopy type, see[1]). To a schemeX , we assign an object in the

pro-category of the homotopy category of topological spaces pro HoTop denoted by étX such that the cohomology

of étX agrees with sheaf cohomology,

Hi(étX,A) ' Hi(Xet, A)

and the pro�nite completion of the fundamental group of étX agrees with the pro�nite étale fundamental group

of X .
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Here the cohomology and fundamental groups of a pro-object are the colimit and limit of the coho-

mologies and fundamental groups of the elements in the diagram. The essential motivation of Artin

and Mazur is the Verdier hypercovering theorem, which gives an alternate class of covers for which the

analogue of Čech cohomology computes derived functor cohomology. This class is hypercovers which

we will come back to later.

Theorem 1.4 (Verdier, Theorem 01H0 of [2]). Let C be a site with �ber products. Let X be an object

in C , F a sheaf on C , and n ≥ 0 an integer. Then the derived functor cohomology is functorially isomorphic to

the colimit of the cohomologies over all hypercovers of X

Hn(X,F ) ' colim
U∈HC(X)

Ȟn(U,F )

Accepting Verdier’s theorem, Artin and Mazur’s construction becomes quite natural. Their pro-space

is essentially constructed as follows.

Definition 1.5. Let X be a scheme, and U• a hypercover of X . Then we write reU• for the geometric

realization of the simplicial set determined by the assignment

n 7→ π0Un

Let X be a scheme, and write HC(X) for the category of hypercovers of X . Then the diagram

re : HC(X)→ Top becomes a model for computing hypercover cohomology, in the sense that for any

abelian group A and hypercover U of X, the two cohomologies are canonically isomorphic

Hn(reU, A) ' Ȟn(U, A).

Thus taking the colimit over HC(X), the diagram of spaces re : HC(X) → Top necessarily recovers

sheaf cohomology. /

This definition is simple and satisfying. Its technical problem is that the underlying diagram is not

cofiltered, which is why Artin and Mazur had to pass to the pro-category of homotopy spaces. They

also upgraded that a bit to the homotopy category of pro-spaces. In [3], Friedlander strengthens this

to an étale topological type construction which lands directly in pro-simplicial sets. To do this he uses a

rigidification idea, which originates with Lubkin, essentially taking covers which have a chosen minimal

étale neighborhood of every geometric point they contain. This fixes the fact that the hypercover

category is only cofiltered up to homotopy, but breaks functoriality.
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Theorem 1.6 (Friedlander, see [3]). Let X be a scheme. Then there is a pro-simplicial set Y whose

cohomology agrees with sheaf cohomology on the étale site of X , and whose pro�nitely completed fundamental

group agrees with the pro�nite étale fundamental group of X .

Investigations into the correct notion of Ho pro S go back to the 1960’s, however [4] first enriched this

from a homotopy category to a model category. The étale homotopy type was then revisited from a

purely toposic perspective, by Toën-Vezzosi in [5], Lurie in [6], and Hoyois in [7]. Their construction

is simple, and instead of describing the diagram of simplicial sets, uses a functor of points approach.

Theorem 1.7. Let X be a scheme. Then to X we can assign the hypercomplete∞-topos of sheaves on the étale

site of X . Then the étale homotopy type of X is the pro-space which is corepresented by the functor

π∗π
∗ : S→ S

which takes a space U ∈ S to the constant U -valued sheaf U and then performs a pushforward back to S.

This definition lifts the étale homotopy type of Artin and Mazur while still being functorial. However

we wish to localize the étale homotopy types to make them more manageable. The full étale homotopy

type is di�cult to work with, and it’s not clear how to distinguish which morphisms of schemes induce

equivalences of the étale homotopy type. For a fixed prime p, the four localizations we use here are

(1) the category of pro-truncated spaces,

(2) the category of profinite spaces,

(3) the category of {p}c-profinite spaces,

(4) and the category of `-profinite spaces.

The category of pro-truncated spaces is the least destructive localization of pro-spaces. A pro-space’s

image in pro-truncated spaces still ‘remembers’ all the information of how the original space mapped

to truncated spaces. This is the minimal localization to force the Whitehead theorem to be true. In

pro-truncated spaces, a morphism of pro-truncated spaces inducing an equivalence on all homotopy

group(-oid)s is already an equivalence. The same statement is not true of pro-spaces, the ur-example is

the morphism of a space to its Postnikov tower. In fact the localization of pro-spaces to pro-truncated

spaces is essentially localizing at the class of all morphisms of pro-spaces to their Postnikov towers.

This is due to Isaksen, [8].

The category of profinite spaces is the next least destructive localization. The model categorical un-

derpinnings of this are due to Gereon Quick in [9] and [10]. However one can do this directly with
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∞-categories, as Lurie does in [11]. The image in profinite spaces of a pro-space ‘remembers’ all the

information of how the original space mapped to π-finite spaces, that is spaces with finitely many non-

zero homotopy groups, which are all finite. Equivalences between profinite spaces are detected by their

(naturally profinite) fundamental group, and cohomology with finite coe�cients.

We will come back to {p}c-profinite spaces later, these are new to this work. They are an intermediate

localization between profinite spaces and `-profinite spaces.

Finally the most destructive is the category of `-profinite spaces. The model categorical underpinnings

of this are due to Morel, in [12]. As before, you can find an ∞-categorical account in [11]. The image

of a pro-space in `-profinite spaces ‘remembers’ all the information of how the original space mapped

to `-finite spaces, that is spaces with finitely many non-zero homotopy groups, which are all `-primary

groups. Since finite `-groups are nilpotent, one can show that this is a homological localization.

The new content is the following.

(1) The model category and associated∞-category of {p}c-profinite spaces. This is a localization

of the category of profinite spaces which is not as destructive as passing to `-profinite spaces.

As the name suggests, the image of a pro-space in {p}c-profinite spaces ‘remembers’ how the

pro-space maps to classifying spaces BG and Eilenberg-MacLane spaces K(Z/`, n) for all

primes ` 6= p, all n ≥ 0 and all finite groups G with order coprime to p. This forces the

fundamental group of such a space to be its maximal prime-to-p quotient, and it still has the

correct `-adic cohomology. For a fixed p, a morphism being a {p}c-profinite equivalence is

strictly stronger than being an `-profinite equivalence for every ` 6= p, since the fundamental

groups do not need to be nilpotent.

(2) We re-introduce the Kummer étale homotopy type of a log scheme, and introduce the adically

Kummer étale homotopy type of certain log formal schemes. The usual analogy of a formal

scheme over the formal spectrum of a complete dvr is as a fibration over an ε-ball. Under this

analogy the Kummer étale topology is something like the Milnor tube over the punctured

ball.

(3) We apply the developed techniques to non-archimedean geometry, both in the sense of Berkovich

and of Huber. This is essentially setting up a dictionary to pass properties of spaces and mor-

phisms between the two categories. Many geometric theorems admit an easy proof in one of

the formalisms, and so we are able to easily reduce smooth-proper base change for Berkovich’s

formalism to the analogous and proved statement in Huber’s formalism. Finally, we consider

the case where a non-archimedean analytic space admits a model by a suitable formal scheme,
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and show that the étale homotopy type of the analytic space agrees with the adically Kummer

étale homotopy type of its formal model.

The main results are as follows.

Theorem 1.8 (Theorem 2.81). Let f : D → C be a functor between locally connected 1-site with �nite

limits inducing a geometric morphism f∗ : Sh(D)→ S(C). Write sh? for the localization the shape in one of:

(1) pro-truncated spaces,

(2) pro�nite spaces,

(3) {p}c-pro�nite spaces,

(4) or `-pro�nite spaces.

Then the induced map of shapes

sh?(Sh(D))→ sh?(Sh(C)

is an equivalence if and only if the corresponding condition is met.

(1) The functor f∗ induces

(a) equivalences on non-abelian cohomology for every group G

Ȟ1(D, f∗G ) ' Ȟ1(C,G ),

(b) and equivalences on cohomology for every abelian group L

Hn(D, f∗L ) ' Hn(C,L )

(2) The functor f∗ induces

(a) equivalences on non-abelian cohomology for every locally constant sheaf of �nite groups G

Ȟ1(D, f∗G ) ' Ȟ1(C,G ),

(b) and equivalences on cohomology for all n ≥ 0 and every constant sheaf of �nite abelian groups

L

Hn(D, f∗L ) ' Hn(C,L )

(3) The functor f∗ induces

(a) equivalences on non-abelian cohomology for every locally constant sheaf of groups of order not

divisible by p G

Ȟ1(D, f∗G ) ' Ȟ1(C,G ),
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(b) and equivalences on cohomology for every prime ` 6= p and every n ≥ 0,

Hn(D,Z/`) ' Hn(C,Z/`).

(4) The functor f∗ induces

(a) equivalences on non-abelian cohomology for every locally constant sheaf of `-primary groups G

Ȟ1(D, f∗G ) ' Ȟ1(C,G ),

(b) and equivalences on cohomology for all n ≥ 0, Z/`

Hn(D, f∗L ) ' Hn(C,Z/`)

Proposition 1.9 (Proposition 4.57). Let X be an fs log special formal scheme over spf R, with X◦ a�ne.

Assume that the log structure is given by a global chart P → OX, then X is adically log regular if and only if

the scheme X = spec OX(X) is log regular.

Lemma 1.10 (Lemma 4.59). LetA be a Noetherian adic ring with ideal of de�nition I/A. WriteX := specA

and Xred = specA/I . Then the morphisms of sites

siteXred, ét → siteXaét → siteXét

induces equivalences on the pro�nitely completed shapes of the associated∞-topoi,

̂́etXred → aét X→ ̂́etXét.

Corollary 1.11 (Corollary 5.27). Let K be a non-archimedean normed �eld. Let X be a scheme locally

of �nite type over K , then

(1) if the characteristic of K is zero or X is proper, we have an equivalence of pro�nitely completed étale

homotopy types ̂́etX ' ̂́etXan

(2) if instead the characteristic of K is a positive prime p, then we have an equivalence of {p}c-pro�nitely

completed étale homotopy types,

̂́et{p}c X ' ̂́et{p}c Xan
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Theorem 1.12 (Theorem 4.42). Let f : X → Y be a smooth and proper map of compact and Hausdor�

K-analytic spaces, and y a geometric point in Y . Pick any prime ` coprime to the characteristic of the residue

�eld k. Assume that

(1) the morphism has geometrically connected �bers,

(2) the étale fundamental group πét
1 (Y, y) acts trivially on the `-adic cohomology of the �bers,

(3) and that Y is connected.

Then we have a homotopy �ber sequence of `-pro�nite spaces

̂́et` Xy → ̂́et` X → ̂́et` Y

Theorem 1.13 (Theorem 5.40). Let X be a Hausdor� strictlyK-analytic space. Then the quasi-étale 1-topos

of X is equivalent to the étale 1-topos of X ad

τXqét ' τX ad
ét

The local version of the main result is the following.

Lemma 1.14 (Lemma 5.47). Let X be a fs vertical log special formal scheme, and assume

(1) that X◦ is a�ne,

(2) there exists a strict and log smooth specR-scheme V → specR,

(3) it admits a global chart P → OV for a fs monoid P ,

(4) and there exists a strict log morphism X→ V̂Vs
making X isomorphic to the completion of V̂Vs

along

some closed subset with the inverse image log structure.

Then the `-pro�nitely completed adically Kummer étale homotopy type of X is equivalent with the `-pro�nitely

completed étale homotopy type of its generic �ber X = Xη .

We can glue this together into two global results. The weak one applies for any algebraizably log

smooth formal model, whereas the stronger one applies to topologically of finite type formal models.

Theorem 1.15 (Theorem 5.49). Let X be a locally Noetherian and separated log formal scheme, algebraizably

log smooth over spf R. Then there is an equivalence of `-pro�nitely completed shapes

q̂ét` Xη ' âkét` X
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Theorem 1.16 (Theorem 5.50). Let X be a locally Noetherian and separated log formal scheme, adically log

smooth over spf R. Then there is an equivalence of {p}c-pro�nitely completed shapes

q̂ét{p}c Xη ' âkét{p}c X
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CHAPTER 2

HOMOTOPICAL PRELIMINARIES

In this chapter we will cover the homotopical background we need for later results.

1. Simplicial objects and Model Categories

We will do this in generality.

Definition 2.1. The category of finite ordered sets with order preserving (but not strictly order pre-

serving) functions between them will be denoted by ∆. /

One of the well known structure results is the following, which gives an explicit set of generating

morphisms and relations between them.

Theorem 2.2. The category ∆ is determined by the objects [n] where n ranges over non-negative integers and

[n] = {0, 1, . . . , n} is ordered in the usual way. The morphisms are generated by the degeneracy maps δni : [n]→

[n − 1], for all n and 0 ≤ i < n which are the unique maps from [n] to [n − 1] which are surjective and the

preimage of i is {i, i + 1}, along with the face maps σni : [n] → [n + 1] which are the unique injective maps

whose image does not contain i. In fact ∆ is equivalent to the free category generated by the families δ and σ

subject to the relations that

(1) If i < j, then δni ◦ δ
n+1
j = δnj− ◦ δ

n+1
i ,

(2) if i < j, then σn+1
i ◦ σnj = σn+1

j ◦ σni−1,

(3) the compositions of δ and σ satisfy,

δn−1
i ◦ σnj =


σn+1
j−1 ◦ δni if i < j

id if i = j

σn+1
j ◦ δni−1 if j < i

We briefly state the definition and then give some motivation.

Definition 2.3. A simplicial object in a category C is a functor X• : ∆op → C. /
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An excellent introduction to model categories is [13]. We will review some of the definitions and major

results of these foundations.

Definition 2.4. Let M be a category.

(1) We call M a model category if it is equipped with the data of three classes of morphisms,

(W,C,F ) which satisfy the following axioms.

As a matter of terminology, the morphisms in W are called weak equivalences, those in C

called co�brations, those in F called �brations, those inW ∩C called acyclic cofibrations, and

those in W ∩ F called acyclic fibrations.

MC1 The ambient category M admits all small limits and colimits,

MC2 the class of weak equivalences satisfies the 2-of-3 property with respect to composition,

MC3 all three classes W , C, and F are closed under retracts in M ,

MC4 the class of fibrations is exactly the class of morphisms satisfying the right-lifting property

with respect to morphisms in C ∩W , and the class of cofibrations is exactly the class of

morphisms satisfying the left-lifting property with respect to morphisms in F ∩W . That

is the context of the diagram
A B

C D

i pe

the morphism p is a fibration exactly when a dashed lift exists for any i in C ∩W , and

the morphism i is a cofibration exactly when a dashed lift exists for any p in F ∩W .

MC5 Every morphism can functorially be factorized as a cofibration followed by an acyclic

fibration, or as an acyclic cofibration followed by a fibration.

(2) IfM is enriched in simplicial sets, we callM a simplicial scant model category if it also satisfies

MC6 the categoryM is tensored and cotensored over simplicial sets, that is for every simplicial

set K, and any two objects X and Y of M there are objects X ⊗K and Y K along with

functorial isomorphisms of simplicial sets

MapM (X ⊗K,Y ) ∼= MapsSet(K,MapM (X,Y )) ∼= MapM (X,Y K)

MC7 if i : A→ B is a cofibration and p : X → Y is a fibration, then the map

MapM (B,X)→ MapM (A,X)×MapM (A,Y ) MapM (B, Y )

is a fibration, and is an acyclic fibration as soon as either i or p is acyclic.

/
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As promised, the category of simplicial sets is the most basic example of a model category, and satisfies

numerous properties one might ask of a model category. We first make one definition.

Definition 2.5. A morphismX• → Y• is called a Kan �bration when it satisfies the right lifting property

with respect to the inclusion of the inner horns Λni ⊂ ∆n for all non-negative integers n and all integers

0 ≤ i ≤ n.

Λni X•

∆n Y•

i
e

/

Proposition 2.6. The category of simplicial sets sSets is a simplicial model category when equipped with the

classes of morphisms as follows.

(1) Weak equivalences are homotopy equivalences,

(2) co�brations are inclusions,

(3) and �brations are Kan �brations.

This is called the Kan-Quillen model structure.

Lemma 2.7. Assume that M is a simplicial model category. Then if X is co�brant and Y is �brant, the

simplicial set

MapM (X,Y )

is a Kan complex.

Proof. This follows immediately due to MC7, as we may take i : ∅ → X and p : Y → ∗. The

fiber product of mapping spaces must be trivial, since the term on the right is a point. That the map

MapM (B,X)→ ∗ is fibrant is exactly that the object MapM (B,X) is a Kan complex. �

As a caution to the reader, the original definition of a model category was weaker than what we call

a scant model category. However our definition of model category agrees with the majority of recent

literature.

Definition 2.8. We pose the following definitions.

(1) A model category is left proper when weak equivalences are closed under pushout by cofibra-

tions.
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(2) A model category is right proper when weak equivalences are closed under pullback by fibra-

tions.

(3) A model category is proper when it is both left proper and right proper.

(4) If f : X → Y and g : X → Z are morphisms in a category with pushouts, then the pushouts

of f and g are the two morphisms fg : X
∐
Y Z → X and gfX →

∐
X Z.

(5) If f : Y → X and g : Z → X are morphisms in a category with pullbacks, then the pullbacks

of f and g are the two morphisms fg : Z ×X Y → Z and gf : Z ×X Y → Y .

(6) Let α be a limit ordinal and C a category , a α-composable family of morphisms in C is a

diagram in C indexed over the category of elements of α with inclusion as morphisms.

(7) Let C be a category, α a limit ordinal α→M an α-composable family of morphisms. If the

colimit X0 → colimβ<αXβ exists, we call it the trans�nite composition of the α-composable

family.

(8) Let M be a model category, and I ⊂ Mor(M) a set of morphisms. We denote by I∐ the

closure of I under pushouts

(9) Let M be a model category, and I ⊂ Mor(M) a set of morphisms. We denote by I∏ the

closure of I under pullbacks.

(10) Let M be a model category, and I ⊂ Mor(M) a set of morphisms. We denote by trfin(I) to

be the closure of I under transfinite composition.

(11) Let M be a model category. We say that M is co�brantly generated if there are small sets

I, Iacyc ⊂ Mor(M) of morphisms such that

(a) the class of fibrations of M is exactly those morphisms which have the right lifting

property with respect to all morphisms in trfin(Iacyc∐ ),

(b) and the class of acyclic fibrations is exactly those morphisms which have the right lifting

property with respect to all morphisms in trfin(I∐).

(12) Let M be a model category. We say that M is �brantly generated if there are small sets

J, Jacyc ⊂ Mor(M) of morphisms such that

(a) the class of cofibrations in M is exactly those morphisms which have the left lifting

property with respect to all morphisms in trfin(Jacyc∏ ,

(b) and the class of acyclic cofibrations inM is exactly those morphisms which have the left

lifting property with respect to all morphisms in trfin(J∏).

/

Theorem 2.9. The model category sSet is proper and co�brantly generated.
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Proof. That sSet is proper is Theorem 13.1.13 of [14], that it is cofibrantly generated is Example

11.1.6 of [14]. �

2. Model Structures on pro-Spaces

There are two general model structures on pro-categories, both due to Isaksen. The first comes from

[4], and we call it the strict model structure.

Definition 2.10. Let C be a category. The pro-category of C, denoted proC, is the category whose

objects are filtered diagrams in C, and whose homomorphisms are defined via limit and colimit in sets

HomproC(X•, Y•) := lim
j

colim
i

HomC(Xi, Yj)

Composition of morphisms is defined via diagram chasing and universal properties. /

When a categoryM is given the structure of a model category, it was a long standing question of how

to give proC a model structure so that Ho proM is categorically equivalent to pro HoM . The earliest

this was considered is arguably [1], and the question was answered for reasonable model categoriesM

by Isaksen in [4].

Definition 2.11. Let M be a proper model category. Then we define the weak equivalences W of

proM to be morphisms f : X• → Y• which are essentially levelwise weak equivalences, meaning that f

factors as

Y•
∼→ Y ′•

f ′→ X•

where the first morphism is an isomorphism in the pro-category and the second is a levelwise weak

equivalence. /

This definition already becomes insu�cient without the proper hypothesis, as one cannot show the

2-of-3 property, or even that compositions of these weak equivalences are still weak equivalences.

The definition for cofibrations is similar,

Definition 2.12. Let M be a proper model category. Then we define the cofibrations of proM to be

morphisms f : X• → Y• which are essentially levelwise cofibrations, meaning that f factors as

Y•
∼→ Y ′•

f ′→ X•

where the first morphism is an isomorphism in the pro-category and the second is a levelwise cofibration.

/
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The class of fibrations has a fairly explicit description in terms of matching spaces, see Definition 4.2

of [4], but is unnecessary for our purposes.

Theorem 2.13 (Theorems 4.15 and 4.17 of [4]). The above weak equivalences and co�brations determine

a model structure on proM . IfM is simplicial, then so is proM .

Although not formally stated, it is a simple consequence of Isaksen’s definitions that Ho proM will be

pro HoM :

Lemma 2.14. The natural functor taking levelwise homotopy types Ho : proM → pro HoM witnesses the

latter category as the homotopy category of the former.

Proof. The functor Ho takes a morphism to an equivalence if and only if it is essentially a lev-

elwise weak equivalence in pro HoM , which happens if and only if it is an essentially levelwise weak

equivalence. Thus we are exactly inverting the class of weak equivalences W . �

The final theorem of this section is the existence of left Bousfield localizations at a set of objects for a

pro–category.

Theorem 2.15 (Theorem 2.4 of [15]). Let M be a left proper �brantly generated model category with all

small limits. Then, if K ⊂M is a set of �brant objects the following holds.

(1) The left Bous�eld localization LKM ofM at K exists,

(2) the localization LKM is left proper,

(3) if all objects inM are co�brant then LKM is �brantly generated,

(4) and ifM is also a simplicial model category, then LKM is also simplicial.

This will be a critical tool in the next section.

In [8], Isaksen defines the following model structure on pro-simplicial sets.

Definition 2.16. Let pro sSet be the category of pro-simplicial sets. We give it a model structure given

by the following.

(1) The weak equivalences are morphisms f : X• → Y• where π0f is an isomorphism of pro-sets,

and f∗ induces an isomorphism of homotopy groupoids for n ≥ 1

f∗ : ΠnX• → ΠnY•
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here the homotopy groupoid is the pro-groupoid with (ΠnX•)i = Πn(Xi) and the same index

category as X•.

(2) The cofibrations are morphisms that are essentially levelwise injections.

(3) The fibrations are maps with the right lifting property with respect to all acyclic cofibrations.

We call this the non-strict model structure on pro sSet. /

In [8], Isaksen shows that this gives a model category on pro-simplicial sets, and that it is the localization

of his strict model structure at the functor sending a pro-simplicial set to its Postnikov tower.

3. The Model Category of pro�nite spaces and p-pro�nite spaces

We will first review the model category of profinite spaces due to [9].

Definition 2.17. The category of profinite spaces ŝSet is the category of simplicial objects in profinite

sets. /

In fact the underlying category was first used by [12], who equipped it with a model structure modeling

p-profinite completion of spaces. We will soon see that Morel’s p-profinite model structure is a left

Bousfield localization of the profinite model structure. We can mimic many of the basic definitions

from abstract homotopy theory in the category of simlicial profinite sets.

Definition 2.18. We define the following for a pointed simplicial profinite set (X,x).

(1) The pointed profinite set π0(X,x) which is the equalizer in the category of profinite sets of

d0, d1 : X0 → X1, with chosen element the component containing x ∈ X .

(2) The profinite fundamental group π1(X,x) defined in terms of the Galois category in the sense

of Grothendieck, of finite covers of the pair (X,x).

(3) The continuous singular chains on X•, where CnX• = Ẑ[Map(∆n, X•)] = Ẑ[Xn], and its

homology the continuous homology H•(X•, Ẑ).

(4) The continuous singular cochains as the continuous dual of the above, and continuous coho-

mology as the cohomology of that cochain complex.

(5) Given a continuous representation of the profinite fundamental group π1(X,x), we can con-

struct the corresponding local system on the profinite space X .

/

We can pretty quickly deduce some results.
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Theorem 2.19 (See [9] and [10]). Write F : ŝSet→ sSet for the levelwise forgetful functor from simplicial

pro�nite sets to simplicial sets, and by abuse of notation write F for the forgetful functor from pro�nite sets to

sets and from pro�nite groups to groups. Then the following hold.

(1) The underlying set of connected components of a pro�nite space agrees with the connected components

of the underlying simplicial set,

F (π0(X,x)) ∼= π0(F (X), F (x)).

(2) The the fundamental group of a pro�nite space agrees with the pro�nite completion of the fundamental

group of the underlying simplicial set

π1(X,x) ∼= π̂1(F (X), F (x)).

(3) at least with �nite coe�cients, the continuous homology of X agrees with the homology of F (X),

H∗(X,Z/n) ∼= H∗(F (X),Z/n).

(4) at least with �nite coe�cients, the continuous cohomology of X agrees with the cohomology of F (X),

H∗(X,Z/n) ∼= H∗(F (X),Z/n).

Given this set up, we define the model structure on ŝSet as follows.

Definition 2.20. A morphism f : X → Y of profinite spaces is a weak equivalence when it induces an

isomorphism on π0 and on homology coe�cients in arbitrary local systems. A morphism of profinite

spaces is a cofibration when it is a levelwise monomorphism. /

As before, we can describe a generating class of fibrations explicitly, however it is not necessary for

our use case. What we do need is the nice properties of this model structure.

Theorem 2.21 (Theorem 2.12 of [9]). The above gives a left proper �brantly generated model structure on

ŝSet.

Corollary 2.22. Let K ⊂ ŝSet be any set of objects. Then the left Bous�eld localization LK ŝSet exists and

is left proper, �brantly generated, and simplicial.

Proof. We just apply Theorem 2.15. �

To finish this section we will first enumerate some results about this model category.
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Theorem 2.23 (Theorem 2.28 of [9]). There is a Quillen adjunction (̂−) : sSet → ŝSet whose right

adjoint is the levelwise forgetful functor.

Proof. It is a well known fact that to check that an adjoint pair is a Quillen adjunction, it is

su�cient to check that the left adjoint preserves cofibrations and acyclic cofibrations. This is one of

a few equivalent formulations, see Theorem 8.5.3 of [14]. Since cofibrations in both categories are

levelwise monomorphisms, checking that (̂−) preserves cofibrations simply means checking that the

profinite completion functor of sets preserves injections.

Injections are monomorphisms in sets, and monomorphisms are preserved by limits. Since the profinite

completion functor is determined by taking the limit over all finite sets surjected upon by the given set,

it preserves injections. �

Definition 2.24. Let p be a prime number.

Taking Kp to be the set of K(Z/p, n) for all non-negative integers n gives us Morel’s p-profinite spaces

of [12].

Taking K{p}c to be the set of spaces K(Z/`, n) for all primes ` 6= p and non-negative n, and BG

where G is a finite group whose order is coprime to p gives the model category of {p}c-pro�nite spaces

LK{p}c ŝSet. /

Lemma 2.25. Let ` and p be distinct prime numbers. Then the category LKp
ŝSet is a left Bous�eld localization

of LK{p}c ŝSet.

Proof. Since the localization ŝSet → LK`
ŝSet inverts LK{p}c ŝSet-local morphisms, we obtain

a Quillen adjunction LK{p}c ŝSet → LK`
ŝSet. By Theorem 2.15 LK{p}c ŝSet is left proper, fibrantly

generated, and simplicial. It again satisfies the assumptions for Theorem 2.15, and so the localization

at the images of the objects in K` exists. By the universal properties of LK`
LK{p}c ŝSet and LK`

ŝSet

we see that the two are Quillen equivalent. �

3.1. Model structures on simplicial (pre)sheaves. In this section we will recall some of the

definitions and relations of the various model structures on simplicial sheaves and simplicial presheaves

over a site. We will first give an exceedingly brief review of sheaves on sites.

Definition 2.26. Let C be a category with fibered products. A Grothendieck pretopology on C is a class

of families Cov(U), where each Cov(U) is a family of morphisms to U

Cov(U) = {{Ui → U}i∈I}
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satisfying the following properties:

(1) For every isomorphism α : U ′ → U in C, the one element covering family {α} is in Cov(U).

(2) For every covering family {Ui → U}i∈I and every arrow f : V → U the pullback of the

covering family of U gives a covering family of V ,

{Ui ×U V → V }i∈I ∈ Cov(V )

(3) For every covering family {Ui → U}i∈I , and every family of covering families {Uij → Ui} ∈

Cov(Ui), the composition {Uij → U}i∈I,j∈J is a covering family.

/

This lays the minimum structure with which to define sheaves. The second axiom is essentially about

intersections, and the third is about refinements of open coverings. Given a presheaf on C, we can use

the above to make sense of whether or not it is a sheaf.

Definition 2.27. Let F be a presheaf on a category C that is equipped with a Grothendieck pretopol-

ogy. We declare F a sheaf when for every object U ∈ C, and every covering family {Ui → U}i∈I the

diagram

F (U)→
∏
i

F (Ui)⇒
∏
i,j∈I

F (Ui ×U Uj)

is an equalizer diagram. /

The above definition is not special to presheaves of sets, and makes sense for presheaves valued in any

category with equalizers. We have one more technical definition we need, that of hypercovers.

Definition 2.28. Let C be a category with fibered products and equipped with a Grothendieck pre-

topology. For an object X in C, a hypercover U• of X is a simplicial object in C with an augmentation

to X such that all of the maps

coskn(U•/X)→ U•

are levelwise coverings of each Ui.

The category of hypercoverings HCov(X) of an object X is the category with objects hypercoverings of

X, and whose morphisms are morphisms of simplicial sets. /

A major technical issue with the category of hypercoverings is that it is not a cofiltered category.

However the associated ∞-category is cofiltered.
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Lemma 2.29. When viewed as a simplicially enriched category, the∞-category of hypercovers Ns(HCov(X))

is co�ltered.

Proof. See the discussion preceeding Proposition 4.1 of [7]. �

We will use this fact after we have defined ∞-categories and reviewed some basic results. We now

specialize to the case where the target category is simplicial sets. We have the following lemma, whose

proof is essentially trivial.

Lemma 2.30. Let C be a category with a Grothendieck pretopology. The category of simplicial objects in the

category of presheaves (resp. sheaves) of sets is equivalent to the category of presheaves (resp. sheaves) of simplicial

sets.

The major issue is that there is an abundance of model category structures which model “sheaves

of spaces on C”, which have di�erent underlying categories but simplify to a few Quillen equivalent

classes.

For the underlying category, we have two options.

(1) The category of simplicial presheaves of sets on C, sPre(C).

(2) The category of simplicial sheaves of sets on C, sSh(C).

Historically, the category of simplicial sheaves attracted more interest than the category of simplicial

presheaves. Since the 2000’s the simplicial presheaf category has ascended to prominence, due to the

simplicity of Dugger’s projective model structure.

On both sPre(C) and sSh(C) we have a choice of six model structures.

(1) The injective model structure, also called the global injective model structure,

(2) the Čech-local injective model structure,

(3) the hyper-local injective model structure,

(4) the projective model structure, also called the global projective model structure,

(5) the Čech-local projective model structure,

(6) and the hyper-local projective model structure.

Since the Čech-local and hyper-local model structures are just Bousfield localizations of the base ones,

we will first define the injective and projective model structures. Given the previous lemma, this is

essentially just restating a case of the definition of the injective and projective model structures for

functor categories.
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Definition 2.31. Let C be a category with a Grothendieck pretopology.

Then the injective model structure on the category of simplicial presheaves (resp. simplicial sheaves)

is the model structure whose weak equivalences are sectionwise weak equivalences, and whose cofibra-

tions are sectionwise cofibrations of simplicial sets.

The projective model structure on the category of simplicial presheaves (resp. simplicial sheaves) is

the model structure whose weak equivalences are sectionwise weak equivalences, and whose fibrations

are sectionwise fibrations of simplicial sets. /

Lemma 2.32. The identity induces a Quillen equivalence between the global injective model structure and global

projective model struture on simplicial presheaves.

The same is true for the restrictions of those two model structures to simplicial sheaves.

Proof. This follows from immediately from the definition of a Quillen equivalence. �

We now define the local and hyper-local variants of the above.

Definition 2.33. The local model structure is obtained by performing a left Bousfield localization at

the class of “Čech descent morphisms”

S = { { hocolim
n

čech(U/X)n }U/X∈Cov(X) }X∈C

where čech(U/X)n is the simplicial Čech complex of the covering U/X . The homotopy colimit is taken

in the ambient model structure.

The hyper-local model structure is obtained by performing a left Bousfield localization at the class of

“hyperdescent morphisms”

S = { { hocolim
n

(U/X)n }U/X∈HCov(X) }X∈C

where HCov(X) is the class of hypercovers of X in the pretopology on C. /

Beware that this is not entrenched terminology. The term “local model structure” is typically defined in

terms of stalkwise equivalences. When a site has enough points, being local for stalkwise equivalences is

equivalent to a morphism being local for hyperdescent morphisms. By using Čech-local and hyper-local

we avoid any ambiguity. We now state the relationships between these twelve model categories.

Theorem 2.34. Let S be a site. Then the following four model categories are Quillen equivalent.
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(1) The Čech-local projective model structure on simplicial presheaves,

(2) the Čech-local projective model structure on simplicial sheaves,

(3) the Čech-local injective model structure on simplicial presheaves,

(4) and the Čech-local injective model structure on simplicial sheaves.

Proof. This follows from the preceding lemma and the appendix of [16], which shows that after

Čech-localization the model structures on simplicial presheaves and simplicial sheaves are Quillen

equivalenta. �

Corollary 2.35. Let S be a site. Then the following four model categories are Quillen equivalent.

(1) The hyper-local projective model structure on simplicial presheaves,

(2) the hyper-local projective model structure on simplicial sheaves,

(3) the hyper-local injective model structure on simplicial presheaves,

(4) and the hyper-local injective model structure on simplicial sheaves.

In this work, we will always use the projective model structures on simplicial presheaves unless otherwise

specified.

Definition 2.36. A presheaf of simplicial sets F on a site will be called a sheaf of spaces when it is

fibrant for the Čech-local projective model structure on simplicial presheaves. /

Note the corresponding sheaf in the corresponding ∞-category will be the cofibrant replacement of

the given sheaf of spaces. However the cofibrant replacement cannot be too di�erent from a fibrant

presheaf due to the following lemma.

Lemma 2.37. If F is a �brant simplicial presheaf, then it is sectionwise weakly equivalent to a �brant and

co�brant simplicial presheaf.

Proof. There are multiple prototypes for this result in the literature, and so we make no claim

to the originality of this proof. Being fibrant for the local projective model structure implies that the

simpicial presheaf F is fibrant for the global projective model structure. Taking a cofibrant replacement

there, we find aF ′ which is sectionwise equivalent toF and is cofibrant. However since it is sectionwise

equivalent, the descent diagram for F and F ′ with respect to any Čech cover are levelwise equivalent.

This implies their homotopy limits are the same on an arbitrary hypercover. By the Yoneda lemma,

this is equivalent to saying that F ′ is local with respect to hypercovers, and is thus fibrant for the local

projective model structure. �
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4. Quasicategories

The notion of a higher category has been around for quite some time. Arguably, the first concrete

definition of a 2-category is due to Bourbaki. The core of the analogy is that higher categories are to

1-categories as homotopy types are to sets. Just as there are multiple notions and special classes of

homotopy types, there is a wealth of definitions of higher categories.

The model of ∞-categories we will use is that of quasi-categories. Denote by Λni the “i-th horn of

the n-simplex”, which is the n-simplex ∆n minus both its unique non-degenerate n-simplex and the

n− 1-simplex opposite the i-th vertex.

Definition 2.38. A simplicial set X• is a weak Kan complex, or synonymously a quasi-category, if for

every positive integer n, every integer 0 < i < n, and every commutative diagram,

Λni X•

∆n ?

i
e

a filling e exists which makes the resulting diagram commute. /

Originally studied by Boardman and Vogt in [17], these simplicial sets were not widely acknowledged

as a model for higher category until the late 1990s. A careful and detailed treatment is available in [6].

We will review some of the key results and ideas of it, along with newer results used in this work. In

this work∞-category will always be interpreted in the model of quasi-categories.

The motivating theorem for the base definition of an ∞-category is the following theorem, which is

originally due to Segal.

Theorem 2.39. Let Cat be the category of small categories, and sSet the category of simplicial sets. Then the

nerve construction N : Cat → sSet induces a fully faithful map whose essential image is the subcategory of

weak Kan complexes whose �llings in the above diagram are unique.

The heuristic behind this is the following correspondence.

(1) A 0-simplex is an object.

(2) A 1-simplex is a morphism from its source to its target. The degenerate 1-simplices are the

identity maps of the objects.

(3) A 2-simplex has three 1-simplices corresponding to morphisms f , g, and h, and the 2-cell tells

us that h = g ◦ f . The uniqueness of fillings for the horn Λ2
1 tells us that there are unique

compositions.
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(4) An 3-simplex corresponds to four objects {x, y, z, w}, six morphisms

{
f : x→ y, g : y → z, h : z → w, i : x→ z, j : y → w, k : x→ w

}
four 2-simplicies which declare that i = g ◦ f , j = h ◦ g, k = j ◦ f , and k = h ◦ i. In other

words, we see that the two compositions agree.

h ◦ (g ◦ f) = (h ◦ g) ◦ f

The 3-cell is interpreted as a composable triple of morphisms, and the unique filling condition

gives the associativity of morphism composition.

(5) An n-simplex corresponds to composable n-tuples of morphisms and guarantees the existence

of a unique composition and that all possible parentheses placements agree.

This motivates the following definition, of a deceptively simple nature.

Definition 2.40. A ∞-category is a weak Kan complex, and a morphism of ∞-categories is simply a

map of simplicial sets. /

By relaxing the uniqueness condition on the simplicial set, we allow the possibility that there may be

multiple compositions of two composable functions. If there are two candidates for g◦f , then we expect

that there are even more candidates for a triple composition h ◦ g ◦ f , and we no longer know that

(h ◦ g) ◦ f = h ◦ (g ◦ f). The situation rapidly becomes impossible to track by hand. The higher inner

horn filling condition in fact guarantees that while there is no uniqueness of composition, nor is there

associativity of composition, these are rectifiable by some higher homotopy. This higher homotopy

itself is unique up to a non-unique higher homotopy.

This definition is convenient foundationally, but it is less convenient for actually producing examples

of ∞-categories. The upshot is that every 1-category C is naturally an ∞-category through the nerve

construction. We will take care to write N(C) for the ∞-category associated with a 1-category. There

are a few more families we may construct ∞-categories from.

Definition 2.41. For each non-negative integer n ≥ 0, define the categorical n-simplex C(n) to be

the simplicially enriched 1-category whose objects are the elements of {0, 1, . . . , n}, and where the

homomorphisms are defined to be the nerve of the poset of subsets of {i + 1, . . . , j − 1} ordered by

inclusion.

HomC(n)(i, j) := N({S ⊂ (i, j)| for all k ∈ S, i < k < j})
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Composition of such subsets is just the union.

Now let C be an arbitrary 1-category enriched in simplicial sets. The homotopy coherent nerve Ns(C) is

the geometric realization of the bisimplicial set determined by the assignment

∆n 7→ Hom(C(n), C)

/

The key result is that the simplicial nerve of suitable simplicially enriched categories gives us an ∞-

category. Since such categories are abundant, this is quite convenient.

Theorem 2.42. Let C be a simplicially enriched 1-category whose homomorphism simplicial sets are Kan

complexes. Then Ns(C) is an∞-category.

See Proposition 1.1.5.10 of [6] for a proof.

Corollary 2.43. LetM be a simplicial model category, and writeMfc for the full simplicially enriched sub-

category of �brant-and-co�brant objects. Then the simplicial nerve Ns(Mfc) is an∞-category, and furthermore

we have a natural equivalence of homotopy categories HoNs(Mfc) ' HoM .

In this generality we also recover the result that homotopy (co)limits in the simplicial scant model

category exactly agree with (co)limits in the corresponding ∞-category.

Theorem 2.44 (Theorem 4.2.4.1 of [6]). Let I and C be simplicially enriched categories such that all

mapping spaces in them are Kan complexes. Further assume there is a functor d : I → C , then an object X ∈ C

is the homotopy (co)limit of d if and only if X ∈ Ns(C) is the (co)limit of the functor d : Ns(I)→ Ns(C).

We now define some of the key∞-categories we will use.

Definition 2.45. The simplicial nerve of the fibrant-cofibrant objects in the simplicial model category

of simplicial sets with the Kan-Quillen model structure is the ∞-category of ∞-groupoids. We call its

objects spaces or sometimes ∞-groupoids and denote the category S.

The simplicial nerve of the fibrant-cofibrant objects in the simplicial model category of simplicial sets

with the Joyal model structure is the ∞-category of∞-categories, called Cat∞. /

Since we have essentially defined that all categories are small, functor categories are relatively easy to

construct. We simply define the functor category to be the mapping space in the simplicially enriched
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category of simplicial sets.

Fun(C,D) := MapsSet(C,D)

This doesn’t quite avoid set-theoretic di�culties, since it just pushes them into the theory of universes.

However, the di�culties may be overcome and we ignore them.

5. Accessibility and Presentability

Accessibility and presentability are technical conditions which allow us to work with large categories.

Since largeness and smallness are set-theoretic notions, it is no surprise that these are tied to set theory.

Let us begin recalling some basic definitions. We will assume the axiom of choice.

Definition 2.46. We pose the following definitions.

(1) An ordinal is a set α such that if β ∈ α is an element, then β ⊂ α is also a subset, and the

elements of α are well ordered by inclusion.

(2) Given the axiom of choice, all ordinals are comparable by inclusion. Explicitly, if α and β

are ordinals, either β ⊂ α, β = α, or α ⊂ β.

(3) A cardinal is the least ordinal number in its bijection class.

(4) The co�nality of an ordinal X is the minimum of the order types of subsets S of X whose

supremum supS is X . It is immediate that the cofinality of an ordinal is less than or equal

to itself.

(5) A cardinal is regular if its cofinality is equal to itself, and it is uncountable.

/

This is the core terminology we will need to discuss these ideas. Now recall the following definition.

Definition 2.47. A category C is �ltered if for any finite diagram d : I → C, we have that d has a

cocone in C. /

The generalization we will make here is by relaxing the finiteness condition on the diagram.

Definition 2.48. Let κ be a cardinal. Then a category (resp. an ∞-category) C is κ-filtered if any

diagram d : I → C has a cocone in C, whenever the cardinality of

Ob I ∪
⋃

x,y∈Ob I
HomI(x, y)

is less than κ. /
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The intuition is that this is a highly filtered category. If κ < κ′ are regular cardinals, then C being

κ′-filtered implies that C is also κ-filtered. Since the usual definition of filtered is just ω-filtered, we

see that this is a special case of being filtered. Just as filtered colimits commute with finite limits, we

generalize this idea to uncountable regular cardinals.

Theorem 2.49. Let S be the ∞-category of ∞-groupoids. Then for any cardinal κ, κ-�ltered colimits in S

commute with κ-small limits.

Proof. The key observation is that a κ-filtered diagram refines to a κ-filtered poset. This is Propo-

sition 5.3.1.16 of [6]. Once we are taking the limit over a poset, we compute the colimit and limit as

homotopy colimits and homotopy limits in the model category of simplicial sets. Then the desired

result follows from the fact that κ-filtered colimits commute with κ-small limits in Sets. �

With this notion, we can define ind-categories.

Definition 2.50. Let C be an ∞-category. The κ-ind-category of C, denoted indκ C as the subcategory

of the functor category Fun(Cop, S) spanned by functors which are κ-filtered colimits of representables.

The ind-category of C, denoted indC is the subcategory of functors which are filtered colimits of repre-

sentables. /

This is an appropriate definition, albeit abstract. If X• is a filtered diagram of objects in C, we can take

the colimit of the filtered diagram of representables hX• . We can construct X• from the presheaf hX• ,

using Grothendieck’s famous result that all presheaves are colimits of representables. At least when C

has enough limits, we can actually characterize them directly in terms of categorical properties of the

corresponding presheaves.

Lemma 2.51 (Corollary 5.3.5.4 of [6]). If C admits all κ-small limits for a regular cardinal κ, then indκ C

can be identi�ed as functors in Fun(Cop, S) which preserve all κ-small limits.

With this we can now define accessible∞-categories, which are large∞-categories generated by some

small amount of data.

Definition 2.52. An ∞-category C is κ-accessible if there is a small subcategory C0 ⊂ C such that C is

equivalent to indκ C0.

An∞-category C is accessible if it is κ-accessible for some regular cardinal κ. Note that such κ will not

be unique. /
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Accessible categories are ubiquitous, and often accessibility is an important technical property in

proofs. A slight strengthening of this notion is that of presentability. Together, accessibility and pre-

sentability are fundamental technical concepts in ∞-category theory.

Definition 2.53. An∞-category C is presentable when it is accessible and closed under small colimits.

/

The most useful handle on such objects is that presentable ∞-categories always come from model

categories.

Theorem 2.54 (Proposition A.3.7.6 of [6]). The following are equivalent for an∞-category C.

(1) The∞-category C is presentable,

(2) there is a combinatorial simplicial model categoryM such that C is equivalent to the simplicial nerve

of the �brant-co�brant objects ofM

C ' Ns(Mfc).

6. Basics of ∞-topoi

Classically there are two ways to think about topoi. One is geometric, where a topos is the category of

sheaves on some site and is the minimal formalism one wants to do geometry. One is more foundational,

where a topos is a category which behaves su�ciently much like the category of sets. The∞-categorical

perspective is closer to the former, where ∞-topoi are now the minimal formalism one wants to do

homotopical geometry.

Just as topoi were categories of sheaves on some site,∞-topoi are in a suitable sense built out of sheaves

of spaces on ∞-sites which we first define. Recall that a sieve on a category C is a subcategory C′ ⊂ C

whose morphisms are closed under precomposition by arbitrary morphisms in C. Given a morphism

f : X → Y in C, the sieve generated by f is the subcategory of C/Y whose morphisms are morphisms

factoring through f .

Definition 2.55. An∞-category C is called an∞-site when it is equipped with a class of covering sieves

Cov(U) of arrows

Cov(U) = {Ui ⊂ C/U}i∈I

index over the objects U of C satisfying the following properties:

(1) For every object U the slice category C/U is a covering sieve.
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(2) For every object U , morphism f : V → U , and covering sieve U0 on U , the pullback f∗U0 is

a covering sieve of V .

(3) For every object U , covering sieve U0, and arbitrary sieve D, if for every morhpism f in U0

the pullback f∗D is a covering sieve, then D is a covering sieve.

/

Given the definition of an ∞-site, we can already give some examples of ∞-topoi in analogy to the

classical case.

Definition 2.56. Let C be an ∞-site. The ∞-topos of sheaves of spaces on C is the full subcategory of

FunCat∞(Cop, S) spanned by functors that invert monomorphisms which generate covering sieves of

their target. /

Theorem 2.57. If C is the nerve of a 1-category, then the topos of sheaves of spaces on C is equivalent to the

simplicial nerve of the simplicial model category of simplicial presheaves with the Čech-local projective model

structure.

Proof. Inverting those monomorphisms is the definition being local with respect to those selfsame

monomorphisms. The way sites are defined, this is exactly being local with respect to Čech covers,

which is what makes a presheaf fibrant in the Čech-local projective model structure. �

This does not construct all ∞-topoi. As we already saw, the hyper-local projective model structure

is typically not Quillen equivalent to the local projective model structure. The corresponding prop-

erty in terms of ∞-topoi is that of hypercompleteness. We will first discuss the notion of cotopological

localizations, it will turn out that the hypercompletion is the maximal cotopological localization.

Definition 2.58. Let X be an ∞-topos and Y ⊂ X a subcategory, and assume the inclusion has a left

adjoint L : X→ Y which is accessible and left exact. We call the inclusion ⊂ a cotopological localization

if its left adjoint L does not invert any monomorphisms in X that are not already equivalences. /

We open with the definition, in the vein of Giraud’s axioms.

Definition 2.59. An∞-category X is said to be an ∞-topos when

(1) the∞-category X is presentable,

(2) colimits in X are universal,

(3) coproducts in X are disjoint,
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(4) and every groupoid in X is e�ective.

The correct class of morphisms of∞-topoi are geometric morphisms, which as in the 1-categorical case

are those morphisms with left exact left adjoints.

A geometric morphism of∞-topoi f : X→ Y is an adjoint pair (f∗, f∗) with the additional property that

f∗ : Y → X preserves finite limits. We call the left adjoint f∗ the inverse image functor, and the right

adjoint f∗ the direct image functor.

Note that we have chosen the morphism to be covariant with the direct image functor, as is common. /

We will not use Giraud’s axioms, we will always use the following alternative characterization of ∞-

topoi.

Theorem 2.60 (Remark 6.5.2.20 of [6]). Let X be an∞-category. Then the following are equivalent.

(1) X is an∞-topos,

(2) there is an ∞-site C, and a geometric morphism X → Sh(C) which witnesses X as a cotopological

localization of the category of sheaves on C.

The purpose of the cotopological localization is that it inverts “∞-connective” morphisms, e.g. mor-

phisms whose fibers have trivial homotopy group sheaves. The issue is that satisfying Čech descent

is strictly weaker than satisfying hypercover descent in general, and so there are sheaves that are

stalkwise equivalent but not equivalent in the non-hypercompleted topos. This is highly analogous to

Whitehead’s Theorem, and in fact one may interpret Whitehead’s Theorem as proving that the∞-topos

S is hypercomplete.

Definition 2.61. (1) Let C be an∞-category, and k a non-negative integer. Then an object X in

C is called k-truncated if for all objects Y of C the mapping space MapC(Y,X) is k-truncated

as a Kan complex. It is called∞-truncated if it is k-truncated for all non-negative integers k.

(2) Let C be an ∞-category with finite limits, then a morphism f : X → Y in C is called ∞-

connective if the fiber 0×Y X is ∞-truncated.

(3) Let X be an∞-topos, then the hypercompletion X∧ is the cotopological localization of X at the

class of all ∞-connective morphisms.

(4) Let C be an∞-site, then the hypercompletion of the topos of sheaves of spaces on C is called

the hypercomplete topos of sheaves on C.

/
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7. Pro-objects in ∞-categories

We now come to notion of pro-objects in an ∞-category. While formally dual to the notion of a ind-

object, the major technical di�culty is that one does not have good control of non-accessible categories.

If C is accessible, it is almost never the case that Cop is accessible, and so pro-categories are a bit di�cult

to work with. This can be overcome when we have some control over C, and we can make an alternate

definition in two special cases.

Definition 2.62. Let C be either a small category or an accessible category, which has all finite limits

in either case. The pro-category of C is the full subcategory of Fun(C, S)op spanned by functors which

are ω-accessible and preserve finite limits. /

Lemma 2.63. The following are equivalent for an ∞-category C that is small (resp. accessible), and a functor

F in Fun(C, S)op.

(1) The functor preserves �nite limits(resp. preserves �nite limits, and is also accessible).

(2) There is a co�ltered ∞-category I and a diagram G : I → C such that the functor G corepresents on

C is equivalent to F .

Proof. When C is small, we can directly apply Corollary 5.3.5.4 of [6].

The case when C is accessible is also due to Lurie. The essential argument goes as follows, given a

diagram G it corepresents the following functor.

X 7→ colim
i∈I

MapC(G(i), X)

We need to show that for some regular cardinal κ that this preserves finite limits and κ-filtered colimits

in its argument X . Finite limits follows since the Yoneda functors all preserve limits, the colimit above

is filtered, and filtered colimits commute with finite limits in S. We may take κ to be any regular

cardinal larger than both the size of I and the regular cardinal that C is accessible with respect to. If

C is λ-accessible, then all objects in C are λ-compact, and so the above mapping spaces commute with

colimits who are more than λ-filtered.

To construct the diagram, we note that F can be realized by some colimit of corepresentables. The

properties of limits and colimits in S force the underlying diagram to be cofiltered. �
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Lemma 2.64. Let C be an∞-category, then ifX• : I→ C and Y• : J→ C are co�ltered diagrams, the mapping

space in the pro-category is equivalent to the expected formula.

MapproC(X•, Y•) ' lim
i∈I

colim
j∈J

MapC(X(i), Y (j))

Proof. Our definition of pro-objects is as special functors. To pass from a diagram to a functor,

we take the functor it corepresents on C. Given X•, we simply send it to the functor

X• 7→
[
c 7→ lim

i∈I
MapC(X(i), c)

]
which will satisfy the assumptions of preserving finite limits (resp. preserving finite limits and κ-filtered

colimits for κ larger than the size of I) by virtue of the fact that I is a cofiltered category. We can

instead write X• as the formal colimit in functors to S of hX(i) so that we have the equivalence

MapFun(C,S)(colim
i

hX(i), colim
j

hY (j)) ' lim
i

MapFun(C,S)(hX(i), colim
j

Y (j))

By the Yoneda lemma, we can simplify the right hand side

lim
i

(colim
j

Y (j)) ◦X(i) ' lim
i

colim
j

MapC(Y (j), X(i))

Of course, the pro-category is the opposite category of Fun(C, S), and so we conclude the desired

lemma. �

We can now state the universal property of the pro-category as we have constructed it.

Definition 2.65 (cf. [11] and [6]). Let C be an arbitrary ∞-category. A pro-category construction for

C is a functor c : C → P such for any other ∞-category D admitting all cofiltered limits, there is an

equivalence of functor categories given by precomposition

− ◦ c : Fun′(P,D) ' Fun(C,D)

where Fun′ is the subcategory of functors that preserve all cofiltered limits. /

As a trivial consequence of this universal property, pro-category constructions for a fixed ∞-category

are unique up to equivalence.

Theorem 2.66 (Proposition 3.1.6 of [11]). The �rst de�nition of proC gives a pro-category construction

for small categories and for accessible categories.
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The above gives the universal property of the pro-category, however we still need some more functori-

ality properties of pro-categories. Given a functor C → D we get a functor (up to contractible space

of indeterminacy) proC→ proD, and one of the more important questions for us is when it admits a

left adjoint. The following lemma su�ces for what we need.

Lemma 2.67. Let C andD be∞-categories with all �nite limits, and f : C→ D a functor that preserves �nite

limits. Assume that one of the following holds,

(1) the former∞-category C is small,

(2) or both C and D are accessible, and f is accessible.

Then the following statements hold.

(1) The induced functor F : proC → proD admits a left adjoint Lf .

(2) If f is fully faithful, so is F .

(3) If f is fully faithful, the functor Lf is a localization.

(4) A morphism X• → Y• in proD is taken to an equivalence in C if and only if

colim
j∈J

MapC(fY (j), Z)→ colim
i∈I

MapC(fX(i), Z)

is an equivalence for every Z in C.

(5) If C is generated under �nite limits by a subcategory C′, then a morphism X• → Y• in proD is taken

to an equivalence in C if and only if

colim
j∈J

MapC(fY (j), Z)→ colim
i∈I

MapC(fX(i), Z)

is an equivalence for every Z in C′.

Proof. We separate the proofs of the statements.

(1) This is a mild extension of similar results in [11] and [18].

The functor Lf : proD→ proC has a simple definition.

Lf :
(
c ∈ Fun(C, S)op

)
7→
(
c ◦ f ∈ Fun(D, S)op

)
If C is small, then this automatically lands in the full subcategory of pro-objects. If C is

accessible, then the assumption that f is accessible and left exact precisely implies that it

maps functors in proD to functors in proC. To put F and Lf on the same footing, we need

to give explicit and easily comparable expressions. Recall that the easiest way to do this is
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with diagram notation. If X• : I→ C is a cofiltered diagram, then we have

FX• ' F ◦X•

unraveling the functor this corepresents leads to

FX• ' colim
i∈I

(f(Xi),−) = colim
i∈I

hfX(i) : D→ S

and if Y• : J→ D

LfY• ' colim
j∈J

MapD(Yj , f(−)) : C→ S

We have to check that the following are naturally equivalent simplicial sets whenever X• and

Y• are left exact (and if C is accessible, also accessible) functors

MapFun(D,S)(FX•, Y•) ' MapFun(C,S)(X•, LfY•)

By Lemma 2.64,

MapFun(D,S)(FX•, Y•) ' lim
i

colim
j

MapD(Y (j), fX(i))

but the mapping space there is exactly (LfhY (j))(X(i)).

lim
i

colim
j

MapD(Y (j), fX(i)) ' lim
i
LfYj(X(i))

and by the Yoneda lemma for C,

lim
i
LfYj(X(i)) ' lim

i
MapFun(C,S(X(i),ŁfY•)

finally we bring the limit inside and deduce

MapFun(D,S)(FX•, Y•) ' MapFun(C,S)(X•, LfY•)

In fact from the above proof we see that the only place we needed accessibility/smallness

was in understanding when the functor Lf takes pro-objects to pro-objects. In general we do

not have a neat condition that guarantees Lf takes pro-objects to pro-objects.

(2) To see that F is fully faithful if f is, we use the explicit representation of the mapping spaces

MapproC(X•, Y•) ' lim
i∈I

colim
j∈J

MapC(X(i), Y (j)) ' lim
i∈I

colim
j∈J

MapC(fX(i), fY (j))
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and

MapproC(X•, Y•) ' lim
i∈I

colim
j∈J

MapC(fX(i), fY (j)) ' MapproD(FX•, FY•)

(3) A functor is defined to be a localization when it is left-exact and has a fully faithful right

adjoint.

(4) This follows directly by the definition of Lf , any morphism of pro-objects satisfying this

property becomes a natural equivalence of functors after composition by Lf .

(5) Since pro-objects are left-exact, checking that the two functors corepresented by two pro-

objects are equivalent can be checked on any subcategory generating C under finite limits.

�

We close the section with the following identifications.

Theorem 2.68. The following pairs of∞-categories are equivalent.

(1) The pro-∞-category of spaces and the simplicial nerve of Isaksen’s strict model structure on pro-simplicial

sets,

pro S ' Ns(pro sSet, strict).

(2) The∞-category of pro-truncated spaces and the simplicial nerve of Isaksen’s non-strict model structure

on pro-simplicial sets

pro\S ' Ns(pro sSet,non− strict).

(3) The ∞-category of pro�nite spaces and the simplicial nerve of Quick’s model structure on simplicial

pro�nite sets,

S∧ ' Ns(ŝSet,Quick).

(4) The ∞-category of {p}c-pro�nite spaces and the simplicial nerve of the localization of Quick’s model

structure at {p}c-pro�nite equivalences,

S∧{p}c ' Ns(LK{p}c ŝSet,Quick).

(5) The ∞-category of `-pro�nite spaces and the simplicial nerve of Morel’s model structure on simplicial

pro�nite sets,

S∧` ' Ns(LK`
ŝSet,Quick) ' Ns(ŝSet,Morel).
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Proof. We split up the claims.

(1) This is Theorem 5.2.1 of [18].

(2) This follows since both are the localization at the Postnikov tower construction.

(3) This is Theorem 7.4.5 of [18].

(4) This follows from the previous since we are localizing both sides at a set of elements.

(5) This is Theorem 7.4.8 of [18].

�

8. The ∞-category of ∞-topoi and shapes

Modulo some set theoretic issues, the full subcategory of Cat∞ spanned by ∞-topoi is a good first

approximation to the category of∞-topoi, however it has too many morphisms. The correct notion of

a morphism of ∞-topoi is that of a geometric morphism.

Now we come to a potentially tricky definition.

Definition 2.69. Write LTop for the ∞-category of ∞-topoi whose morphisms are the inverse image

functors. As shorthand, we write

Fun∗(X,Y)

for the mapping space between two ∞-topoi in LTop, e.g. geometric morphisms from Y to X.

Write RTtop for the∞-category of∞-topoi whose morphisms are the direct image functors. As short-

hand, we write

Fun∗(X,Y)

for the mapping space between two ∞-topoi in RTop, e.g. geometric morphisms from X to Y.

Beware that we will mostly use LTop whose hom-sets are going to be contravariant in the adjunction. /

The first lemma we cite is the expected result that these are opposite categories of each other.

Lemma 2.70 (Corollary 6.3.1.8 of [6]). The category LTop is canonically anti-equivalent to RTop.

We have the following structural results on the category of ∞-topoi.

Theorem 2.71. The category of∞-topoi has the following properties.

(1) The category RTop admits an initial object given by S.
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(2) The category RTop admits small colimits, and they agree with their underlying colimits in Cat∞.

(3) The category RTop admits �ltered limits, and they agree with their underlying limits in Cat∞.

(4) The category RTop admits �bered products, and they do not agree with their underlying �bered product

in Cat∞.

Proof. We separate the claims.

(1) See Proposition 6.3.4.1 of [6].

(2) See Proposition 6.3.2.3 of [6].

(3) See Theorem 6.3.3.1 of [6].

(4) See Proposition 6.3.4.6 of [6]

�

Now given a geometric morphism of topoi f : X→ Y, we can use Lemma 2.67.

Definition 2.72. Let f : X → Y be a geometric morphism of topoi. Then the left adjoint f∗ satisfies

the assumptions of Lemma 2.67 and thus its extension f∗ : proY → proX admits a left adjoint we

denote by f! : proX→ proY and call the relative shape functor.

In the case of π : X→ S, we instead call π! : proX→ pro S as the shape functor internal to X. /

Lemma 2.73. Given two composable morphisms of topoi X
f→ Y

g→ Z, the two compositions g! ◦ f! and (g ◦ f)!

are equivalent.

Proof. This is essentially just the uniqueness of adjoints, cf. the dual of Proposition 5.2.2.6 of

[6]. �

This motivates the following terminology.

Definition 2.74. Let sh : RTop→ pro S be the functor induces by sending a topos X to π!1X, where

π : X→ S is the terminal morphism in RTop. This will be called the shape functor. /

Lemma 2.75. Let X be an∞-topos, and shX its shape. Writing π : X→ S, the functor

U 7→ π∗π
∗U

naturally corepresents shX in pro S.
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Proof. The formal left adjoint to π∗ : pro S→ proX is given by precomposition by π∗, that is

π!F ∈ MapFun(S,S) : U 7→ MapX(F , π∗U)

Since we are taking the sheaf to be 1X ' π∗?, we get the desired identity.

shX : U 7→ MapX(1X, π
∗U) ' MapS(?, π∗π∗U)

�

We can also use the generalized Verdier theorem of [16] to deduce

Lemma 2.76. Let C be a 1-site with a terminal object, and HCov be the hyper covers of the terminal object.

Then

sh τ∧∞ C ' colim
U•∈HCov

colim
n

π!(U[n])

Proof. This follows since the inner colimits are all equivalent to π!1C . �

Theorem 2.77. Let C be a locally connected 1-site with �nite limits, so in particular there is a well de�ned

functor π0 : C → Set. Then the shape of the hypercomplete topos of sheaves of spaces on C is naturally

corepresented by the diagram of π0 indexed by hypercovers

π0 : HCov(1C)→ S

Proof. This follows by the generalized Verdier theorem. �

We immediately deduce the following corollary.

Corollary 2.78. Let X be an∞-topos and assume that X is the topos of sheaves on some 1-categorical site C .

Then for any abelian group A, and non-negative integer i the singular cohomology of the shape agrees with the

derived functor cohomology of the corresponding constant sheaf.

Hi(shX, A) := Mappro S(shX,K(A, i)) ' Hi(C,A)

For any group G, the pointed set of principal G-torsors over the shape agrees with the pointed set of non-abelian

cohomology of the corresponding constant sheaf.

H1(shX, G) := Mappro S(shX, BG) ' H1(C,G)
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Proof. This follows by the above and the original Verdier theorem relating hypercover cohomol-

ogy with sheaf cohomology. �

In fact we could essentially take this to be a definition of the shape associated with a site. The historical

issue with this is that the category HCov is typically not a cofiltered category. Instead, one can show

that the simplicial nerve of the simplicially enriched version of HCov is a cofiltered ∞-category. See

the discussion preceeding Proposition 4.1 of [7] for further details.

Definition 2.79. Let X be a topological space. The shape of X, shX, is the shape of the hypercom-

pletion of its∞-topos of sheaves of spaces.

shX := sh Sh(X)∧

The Čech shape of X is the shape of its ∞-topos.

šhX := sh Sh(X)

/

Lemma 2.80. Let X be an ∞-topos. Then the geometric morphism h : X∧ → X induces an equivalence of

pro-truncated shapes

sh\ X∧ ' sh\ X

Proof. Let π : X → S be the geometric morphism to the terminal ∞-topos. The morphism on

shapes is the opposite arrow of the natural tranformation π∗π∗  π∗h∗h
∗π∗. We have to show that

this is an equivalence on the subcategory of truncated spaces. If X ∈ S is a truncated space, then π∗X

is truncated as well, in which case it automatically satisfies hyperdescent. Thus π∗X → h∗h
∗π∗X is

an equivalence, and the pro-truncated shapes of X and X∧ are naturally equivalent. �

We can give a streamlined recognition principle, which gives us a convenient way of recognizing which

morphisms of sites lead to shape equivalences, possibly after some localization of the shapes.

Theorem 2.81. Let f : D → C be a functor between locally connected 1-site with �nite limits inducing a

geometric morphism f∗ : Sh(D)→ S(C). Write sh? for the localization the shape in one of:

(1) pro-truncated spaces,

(2) pro�nite spaces,

(3) {p}c-pro�nite spaces,



39

(4) or `-pro�nite spaces.

Then the induced map of shapes

sh?(Sh(D))→ sh?(Sh(C)

is an equivalence if and only if the corresponding condition is met.

(1) The functor f∗ induces

(a) equivalences on non-abelian cohomology for every group G

Ȟ1(D, f∗G ) ' Ȟ1(C,G ),

(b) and equivalences on cohomology for every abelian group L

Hn(D, f∗L ) ' Hn(C,L )

(2) The functor f∗ induces

(a) equivalences on non-abelian cohomology for every locally constant sheaf of �nite groups G

Ȟ1(D, f∗G ) ' Ȟ1(C,G ),

(b) and equivalences on cohomology for all n ≥ 0 and every constant sheaf of �nite abelian groups

L

Hn(D, f∗L ) ' Hn(C,L )

(3) The functor f∗ induces

(a) equivalences on non-abelian cohomology for every locally constant sheaf of groups of order not

divisible by p G

Ȟ1(D, f∗G ) ' Ȟ1(C,G ),

(b) and equivalences on cohomology for every prime ` 6= p and every n ≥ 0,

Hn(D,Z/`) ' Hn(C,Z/`).

(4) The functor f∗ induces

(a) equivalences on non-abelian cohomology for every locally constant sheaf of `-primary groups G

Ȟ1(D, f∗G ) ' Ȟ1(C,G ),
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(b) and equivalences on cohomology for all n ≥ 0, Z/`

Hn(D, f∗L ) ' Hn(C,Z/`)

Proof. (1) We are working with the pro-truncated shapes, so equivalence of the pro-spaces is

defined in terms of homotopy groupoids, however Theorem 7.3.c of [8] gives a cohomological

criterion for a map to be a weak equivalence. By 2.67, the pro-truncated shape is determined

by its maps to truncated spaces. Since the functor it co-represents preserves finite limits and

coproducts of truncated spaces, we use homological induction to reduce to the case where

the space to be mapped to is an Eilenberg-MacLane space. Once in that case, this is just

Theorem 2.77.

(2) Profinite spaces are the localization of pro-truncated spaces at the class of π-finite spaces. By

the same Postnikov tower argument as in (1), we can reduce to the Eilenberg-MacLane case.

However, the only Eilenberg-MacLane spaces satisfying the criteria to be a π-finite space are

those with finite homotopy group.

(3) This follows from (2) as the ∞-category of {p}c-profinite spaces is the left localization of

profinite spaces at the corresponding collection of objects.

(4) This follows from (2) as the∞-category of `-profinite spaces is the left localization of profinite

spaces at the corresponding collection of objects.

�
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CHAPTER 3

ALGEBRAIC PRELIMINARIES

This chapter recalls classical notions of algebra: rings, groups, monoids, valuations. It further gives

basic development of topological monoids.

1. Monoids

Definition 3.1. We pose the following definitions.

(1) A monoid is a setM along with a binary operation · : M ×M →M which is associative and

admits an identity element. The operation will typically be referred to as the multiplication of

the monoidM .

(2) A commutative monoid is a monoid whose binary operation is commutative.

(3) A morphism of monoids is any morphism which preserves the binary operation and the identity.

(4) The category of monoids is the categoryMon whose objects are monoids, and whose morphisms

are homomorphisms of monoids.

(5) The category of commutative monoids is the full subcategory CMon of Mon spanned by com-

mutative monoids.

(6) The trivial monoid, denoted by 0 or 1 depending on context, is any monoid isomorphic to

one whose underlying set is a singleton, with trivial multiplication. It is both the initial and

terminal monoid.

(7) A group is a monoid where every element has an inverse.

(8) The product of any collection of monoids is the product of the underlying sets along with

coordinate-wise multiplication.

(9) A congruence ∼ on a monoidM is an equivalence relation onM whose graph ∼⊂M ×M is

a submonoid of the product of M with itself.

/
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Construction 3.2. LetM be a monoid and a congruence ∼ onM . Then we construct the quotient ofM by

∼ as follows. Denote the set of equivalence classes of elements ofM under the equivalence relation ∼ byM/ ∼.

Then we can de�ne multiplication as follows.

For elementsm,m′ ∈M/ ∼, represented by elements [a] and [b] we de�nem ·M/∼m
′ to be the class of [a ·M b].

We present the following lemma without proof. It lists the expected properties of the construction.

Lemma 3.3. LetM and ∼ be as in the construction above. Then the following statements hold.

(1) The multiplication in the above construction is well de�ned.

(2) The equivalence class of the identity element ofM is an identity forM/ ∼.

(3) The set functionM →M/ ∼ given by sending m→ [m] is a homomorphism of monoids.

(4) The homomorphism M → M/ ∼ is initial among morphisms from M which identify all elements

equivalent under ∼.

(5) The diagram below is a pushout in the category of monoids.

∼ M ×M

0 M/ ∼

Definition 3.4. We pose the following definitions.

(1) The groupi�cation of a monoidM is the quotient ofM ×M by the congruence that (m,m) ∼

(0, 0) for all m ∈M . This is a group since [(m,n)] · [(n,m)] is equivalent to the identity, and

admits an monoid homomorphism from M by the function m 7→ [(m, 0)].

(2) IfM is a monoid andG is a submonoid ofM which is a group, we writeM/G for the quotient

ofM by G. This is constructed by the equivalence relation that m · g ∼ m and g ·m ∼ m for

every m ∈M and g ∈ G.

(3) A monoid M is called integral if it satisfies the cancellative property (ab = ac)⇒ (b = c) for

any three elements in M .

(4) A commutative monoid M is called �ne if it is finitely generated and integral.

(5) A monoid M is called saturated if it is integral, and for any g ∈ Mgp, if gn lies in the image

of M in Mgp for any positive natural number n then g is also in the image of M in Mgp.

(6) A monoid is called sharp if it has no units besides its identity.

(7) For a monoid M the integration M int of M is the image of M in Mgp.

(8) For a monoid M the sharpening M of M is the quotient M/M× of M by its subgroup of

invertible elements.
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(9) For a monoid M the saturation M sat of M is the smallest submonoid of Mgp generated by

the image of M which is also saturated.

(10) The category of integral commutative monoids is the full subcategory CMonint of CMon spanned

by integral monoids.

(11) The category of saturated commutative monoids is the full subcategory CMonsat of CMon

spanned by saturated monoids.

(12) The category of sharp commutative monoids is the full subcategory CMon of CMon spanned by

sharp monoids.

/

From here all monoids will be commutative unless stated otherwise. However we will still use CMon

instead of the more common Mon to denote the category of commutative monoids. We state some

basic categorical results.

Lemma 3.5. The category CMon admits all small limits and colimits.

The following adjunctions hold.

(1) Groupi�cation, integration, saturation, and sharpening extend to functors.

(2) The inclusion CGrp ⊂ CMon is right adjoint to the groupi�cation functor.

(3) The inclusion CMonint ⊂ CMon is right adjoint to the integration functor.

(4) The inclusion CMonsat ⊂ CMon is right adjoint to the saturation functor.

(5) The inclusion CMon ⊂ CMon is right adjoint to the sharpening functor.

(6) Integration, saturation, and sharpening preserve small colimits.

The following operations commute

(1) sharpening and saturation,

(2) saturation and integration,

(3) and �nally sharpening and integration.

Proof. We have already constructed products in CMon, so we must only construct equalizers to

deduce that it admits all small limits. However we can just take the set-theoretic equalizer which is

forced to be a submonoid by the multiplicativity of homomorphisms of monoids.

We next prove that CMon is cocomplete. It is a well known result that a category is cocomplete if

and only if it admits all small coproducts and coequalizers. Coproducts for commutative monoids are
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constructed as follows, let {Mi}i∈I be a set of monoids. Then the coproduct

∐
Mi = {(mi) | mi = 0i for all but finitely many i}

with coordinate-wise multiplication. Given two morphisms of monoids φ, ψ : M ⇒ M ′, we form the

congruence onM ′ generated by φ(m) ∼ ψ(m) for allm ∈M . One may easily show this is a submonoid

and an equivalence relation and thus a congruence. Taking the quotientM ′/ ∼ satisfies the categorical

condition to be a coequalizer.

Functoriality follows quickly from the objectwise definitions. IfM →M ′ is a morphism of monoids, we

have an induced morphismsMgp →M ′gp, and an induced morphismM× →M ′×. The former follows

by the universal property of quotienting by a congruence, and the fact that the congruence for groupi-

fication is preserved under homomorphisms of monoids. The second follows since a homomorphism

of monoids preserves units.

Now we prove the case for integration. If we have a morphism f : M → M ′ we get an associated

commutative diagram

M M ′

Mgp M ′gp

f

γM γM′

fgp

the commutativity forces that fgp(γM (M)) ⊂ γM ′(f(M)). Thus the restriction of fgp to im γM is

the morphism we want. For saturation, if m ∈ Mgp is such that mn lies in the image of γM , then of

course fgp(m)n must lie in the image of γM ′ as desired. Thus fgp : M sat → M ′gp factors through

the inclusion M ′sat ⊂M ′gp as desired. For sharpening, the universal property of M is that it is initial

among monoids equipped with maps from M which identify everything in M× with 0M . The map

M →M ′ certainly satisfies this, and so we get a unique morphism M →M ′ as desired.

That groupification is a left adjoint to the inclusion is a well known result, so we omit a proof. For

integration, we must show that if M → M ′ is a morphism from M to an integral monoid that the

morphism factors through the integrationM int. However sinceM ′ is its own integration, the fact that

we have a commutative square

M M ′

M int M ′ = M ′int

∼=
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forces the morphism M → M ′ to factor through M int as desired. For saturation the reasoning is

essentially the same,M ′sat is its own saturation and a slightly modified diagram shows the same result.

For sharpening we simply note that a morphism M → M ′ where M ′ is sharp must kill o� M× by

necessity, and so it must factor through M .

The claim that the three functors preserve colimits follows by being left adjoints. To show that the three

pairs of functors commute, we simply repeat the above arguments to show that both compositions give

left adjoints to the inclusions of categories of sharp and saturated monoids, saturated monoids, and

sharp and integral monoids respectively. �

Now we turn to monoids internal to topoi.

Definition 3.6. We pose the following definitions.

(1) Let S be a site. A sheaf of monoids on S is a sheaf of sets M plus a binary operator · :

M ×M → M such that for every object s ∈ S every F (s) is a monoid and for every

i : s→ s′ the set-theoretic morphism F (i) is a morphism of monoids.

(2) Let T be a topos and S a site defining T . We write CMon(T ) for the category of commutative

monoid objects of T .

By the adjunction of functor categories and the product of categories, CMon(T ) is iso-

morphic to the category of sheaves of commutative monoids on S.

(3) We write Ab(T ) and the category of commutative abelian group objects of T .

(4) We write CMonint(T ) for the category of integral commutative monoid objects of T , that is

sheaves of commutative monoids whose sections are all integral.

(5) We write CMon(T ) for the category of sharp commutative monoid objects of T , that is sheaves

of commutative monoids whose sections are all sharp monoids.

(6) When T has enough points, we write CMonsat(T ) for the category of saturated commutative

monoid objects of T , that is sheaves of commutative monoids whose stalks are all saturated.

(7) We can define the groupification functor as follows:, to a sheaf of commutative monoids we

first perform groupification sectionwise, then we sheafify.

F 7→
[
U 7→ F (U)gp

]
7→
[
U 7→ F (U)gp

]+
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(8) We can define the integration functor as follows: to a sheaf of commutative monoids we first

perform integration sectionwise, then we integrate.

F 7→
[
U 7→ F (U)int

]
7→
[
U 7→ F (U)int

]+
(9) We can define the sharpening functor as follows: to a sheaf of commutative monoids we first

perform sharpening sectionwise, then we sheafify.

F 7→
[
U 7→ F (U)

]
7→
[
U 7→ F (U)

]+
(10) We can define the saturation functor as follows: to a sheaf of commutative monoids we first

perform saturation sectionwise, then we sheafify.

F 7→
[
U 7→ F (U)sat

]
7→
[
U 7→ F (U)sat

]+
/

The following lemma follows from the analogous cases for CMon, except that the saturation functor

must be treated slightly specially. The subtlety for saturation is that sheafification breaks the condition,

since an element is in F sat(U) if and only if it locally satisfies that some power is in the groupification.

However there may not be a supremum if there are infinitary covers of U that don’t refine to finite ones.

Lemma 3.7. The following properties hold for the above constructions.

(1) The given construction of groupi�cation satis�es the following.

(a) It gives a functor (−)gp : Mon(T )→ Ab(T ),

(b) the functor (−)gp is a left adjoint to the forgetful functor Ab(T ) ⊂ Mon(T ),

(c) and for any stalk functor x : Sets→ T and any sheaf M in Mon(T ) the induced morphism

(Mx)gp → (M gp)x

is an isomorphism of abelian groups.

(2) The given construction of sharpening satis�es the following.

(a) It gives a functor (−) : Mon(T )→ Mon(T ),

(b) the functor (−) is a left adjoint to the forgetful functor Mon(T ) ⊂ Mon(T ),

(c) and for any stalk functor x : Sets→ T and any sheaf M in Mon(T ) the induced morphism

(Mx)→ (M )x
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is an isomorphism of sharp commutative monoids.

(3) The given construction of saturation satis�es the following when T has enough points.

(a) It gives a functor (−)sat : Mon(T )→ Mon(T ).

(b) the functor (−)sat is a left adjoint to the forgetful functor Monsat(T ) ⊂ Mon(T ),

(c) and for any stalk functor x : Sets→ T and any sheaf M in Mon(T ) the induced morphism

(Mx)sat → (M sat)x

is an isomorphism of saturated commutative monoids.

Proof. We separate the parts first.

(1) Groupi�cation

(a) To see that this gives a functor, we simply note that groupification is functorial.

(b) Sectionwise groupification is the left adjoint on the level of presheaves, since a morphism

from a sheaf of commutative monoids M to a sheaf of abelian groups A induces a map

M (U) → A (U) for every U , which by the universal property of groupification factors

through M (U)gp. The universal property also forces a unique system of restriction maps

M (U)gp →M (V )gp whenever V → U is a morphism in a site of definition. The unique-

ness guarantees these glue into a presheaf. The sheafification is further universal with

respect to morphisms from the presheaf groupification to sheaves, and so we conclude

that

HomMon(T )(M ,A ) ' HomAb(T )(M gp,A)

as desired.

(c) Stalk functors are functors from Sets which are preserve finite limits and all small col-

imits. We may even write the stalk functor as a (possibly non-filtered!) colimit over

neighborhoods of the point in a suitable sense, see the discussion at the beginning of

7.31 of [2]. Groupification is the left adjoint to the forgetful functor, and so it com-

mutes with colimits. Thus the stalk of sectionwise groupification is the groupification

of the stalk. Since the sectionwise groupification and its sheafification have naturally

isomorphic stalks, we conclude the desired result.

(2) Sharpening

(a) The sharpening of a monoid is functorial.
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(b) This follows formally as in argument (b) for groupification, we are instead using the

fact that the sharpening funtor is the left adjoint to the inclusion of sharp commutative

monoids into all commutative monoids.

(c) This follows formally as in argument (c) for groupification.

(3) Saturation

(a) The saturation of a monoid is functorial.

(b) This follows formally as in argument (b) for groupification, we are instead using the fact

that the saturation functor is the left adjoint to the inclusion of saturated commutative

monoids into all commutative monoids.

(c) This follows formally as in argument (c) for groupification.

�

Theorem 3.8. Let S and S′ be sites admitting �nite limits, and F : S → S′ a functor inducing a geometric

morphism of topoi F∗ : τS′ → τS. Also assume both sites have enough points.

(1) The functors F ∗ and F∗ commute with groupi�cation of sheaves of commutative monoids.

(2) The functors F ∗ and F∗ commute with integration of sheaves of commutative monoids.

(3) The functors F ∗ and F∗ commute with sharpening of sheaves of commutative monoids.

(4) Assume that both sites have enough points. Then F∗ commutes with saturation of sheaves of commuta-

tive monoids.

Proof. Since the groupification, integration, sharpening, and saturation satisfy a universal prop-

erty with respect to mapping into groups, integral monoids, sharp monoids, and saturated monoids

respectively, it is enough to show that both F∗ and F ∗ preserve the properties of being a group, being

integral, sharp, and saturated respectively.

(1) The claim is essentially obvious for F∗, since a sheaf is a group when all sections are groups.

Since the sections of the direct-image are always sections of the original sheaf the result is

immediate. For F ∗, this follows via the description of F ∗ as a (possibly non-filtered) colimit,

which groupification commutes with.

(2) The claim is again obvious for F∗, since a sheaf is integral when all sections are integral.

For F ∗, this follows again via the description of F ∗ as a colimit, which integration commutes

with.

(3) The claim is again obvious for F∗, since a sheaf is sharp when all sections are sharp. For F ∗,

this follows again via the description of F ∗ as a colimit, which sharpening commutes with.
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(4) We need the assumption on points to have a easy description of which sheaves are saturated.

Since the stalks of the inverse image sheaf are the stalks of the original sheaf, it is automatic

that F ∗ preserves saturation.

�

2. Commutative rings and completions

Definition 3.9. We pose the following definitions.

(1) Let R be a Noetherian commutative ring, and I / R an ideal. Then R̂I the I -adic completion

of R is defined to be the limit in CRing

R̂I := lim
n
R/In.

(2) Let R be a Noetherian commutative ring, I / R an ideal, andM an R-module. Then M̂I the

I -adic completion ofM is defined to be the limit in R−Mod

M̂I := lim
n
M/InM

(3) Let R be a Noetherian commutative ring, and I / R an ideal. For any R-module M we

can equip M̂I with the topology determined by being invariant under addition and scalar

multiplication, and that each (InR̂I) · M̂I is a neighborhood of zero. This is called the I -adic

topology on M̂I .

/

Lemma 3.10. Let R be a Noetherian commutative ring and I / R an ideal. For any R-moduleM

(1) The ring R̂I is a �at R-algebra.

(2) For any R-moduleM , the completion M̂I is complete with respect to the IR̂-adic topology.

(3) The functorM 7→ M̂I is right exact.

(4) IfM is �nitely generated, the morphismM ⊗R R̂I → M̂I is an isomorphism.

(5) Completion is exact when restricted to �nitely generated R-modules.
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3. Norms and valuations

Definition 3.11. (1) A seminorm on a ringR is a set function to the semi-ring ‖−‖R : R→ [0,∞)

such that ‖0‖R = 0, ‖x · y‖R ≤ ‖x‖R‖y‖R, and satisfies the triangle inequality ‖x + y‖R ≤

‖x‖R + ‖y‖R.

(2) A seminorm on a ring R is called non-archimedean if it satisfies the ultrametric inequality,

‖x+ y‖R ≤ max{‖x‖R, ‖y‖R }.

(3) A seminorm on a ring is a norm when the only ring element with seminorm zero is the zero

element of the ring.

(4) Two seminorms on a ring are equivalent when they are bounded with respect to each other,

that is there are positive real numbers C1, C2 > 0 such that C1 · ‖−‖1 < ‖−‖2 < C2 · ‖−‖1.

(5) A Banach ring is a ring R along with a , and R is complete with respect to the metric topology

given by d(x, y) = ‖x− y‖R.

(6) If R is a Banach ring, a Banach algebra under R is a R-algebra i : R → S such that S is a

Banach ring, and the algebra map is bounded, i.e. that there is a real number C > 0 such

that ‖i(−)‖S ≤ C · ‖ − ‖R as functions on R.

(7) The categoryBRing of commutative Banach rings is the category whose objects are Banach rings,

and whose morphisms are Banach algebra maps, that is bounded ring homomorphisms.

(8) A ring homomorphism φ : S → T of Banach algebras over a base Banach ring R is admissible

if the induced norm on S/ kerφ is equivalent to that of the restricted norm on imφ, explicitly

‖φ(f)‖T = inf
φ(f ′)=φ(f)

‖f ′‖S

(9) A seminorm on a Banach ring R is a seminorm on the underlying ring that is bounded with

respect to the Banach ring’s norm, that is there is a positive real number C > 0 such that

| − | < C · ‖ − ‖R.

(10) LetM be a module over a normed ring R. Then a seminorm on the moduleM is a set function

‖ − ‖M : M → [0,∞) satisfying that ‖0M‖M = 0, the triangle inequality with respect to the

group law on M , and that multiplication by elements in the ring R is bounded with respect

to the seminorm on M , i.e. there is a positive real number C > 0 such that ‖rm‖M ≤

C · ‖r‖R‖m‖M . By dividing ‖ − ‖M by such a C, we can construct an equivalent seminorm

with C = 1.
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(11) LetM be a module over a normed ring R. Then a norm on the moduleM is a seminorm with

the further property that the only element of the module with seminorm zero is the additive

identity of the module.

(12) Given two seminormed modules M and N over an arbitraryu Banach ring R, we can form

the completed tensor product of the two by completing the algebraic tensor product with

respect to a seminorm we define as follows.

‖ − ‖M⊗RN : x ∈M ⊗R N 7→ inf
x=
∑

mi⊗ni

{∑
‖mi‖M‖ni‖N

}
(13) Given two seminormed modules M and N over a non-archimedean Banach ring R, we can

insteadform the completed tensor product of the two by completing the algebraic tensor product

with respect to the non-archimedean seminorm we define as follows.

‖ − ‖M⊗RN : x ∈M ⊗R N 7→ inf
x=
∑

mi⊗ni

{
max
i
{‖mi‖M‖ni‖N}

}
(14) Given a Banach ringR and Banach algebras S/R and T/R, a morphism of BanachR-algebras

φ : S → T is called inner with respect to R when there exists an admissible epimorphism of

Banach algebras

π : R{r−1
1 T1, . . . , r

−1
n Tn} → S

such that the morphism φ does not increase the spectral radius of the Ti, that is the spectral

radius of φπ(Ti) is less than ri.

/

Lemma 3.12. The following statements hold.

(1) The completed tensor product S⊗̂RT is the coproduct of S\R and T\R in the category of Banach

R-algebras.

(2) For a Banach ringR, the category of �nite Banach modules with bounded homomorphisms is equivalent

to the category of �nite R-modules. This is Proposition 2.1.9 of [19].

(3) The category of �nite Banach algebras over a �xed Banach ring R is equivalent to the category of �nite

R-algebras via the forgetful functor. This is Proposition 2.1.12 of [19].

Lemma 3.13 (Theorem A.3.7.i of [20]). If S, S′, T , and T ′ are all Banach algebras over a non-archimedean

Banach �eld R, and further i : S → S′ and j : T → T ′ are admissible algebra maps, then the induced map of

completed tensor products

i⊗R j : S⊗̂RT → S′⊗̂RT ′
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is also an admissible algebra map.

Now we switch gears from normed rings to valued rings. The theories give the algebraic underpinnings

of non-archimedean analytic spaces in the sense of Berkovich and of adic spaces of Huber.

Definition 3.14. We pose the following definitions.

(1) Let Γ be a totally ordered abelian group, and for convenience assume it is also written mul-

tiplicatively. Then with Γ we associate the totally ordered, associative, and commutative

magma Γ∪ {0} extending the multiplication on Γ by declaring x · 0 = 0 for any x ∈ Γ∪ {0}.

For brevity we will call this the value magma of Γ.

(2) Let R be a topological ring, then a subset T ⊂ R is bounded if for every open neighborhood

U of 0R, there is another open neighborhood V of 0R such that T · V ⊂ U .

(3) For a topological ring R, we write R◦◦ for the subset of topologically nilpotent elements in R.

(4) For a topological ring R, we write R◦ for the subset of power-bounded elements in R, that is

elements r ∈ R where the set {rn|n ≥ 0} is bounded.

(5) We call a topological ring R adic if there is some ideal I /R such that the powers of I form a

fundamental system of neighborhoods of 0R. Such an ideal is called an ideal of de�nition for

R.

(6) We call a topological ring R f -adic if there is an open subring R0 such that R0 is an adic

ring for the subspace topology and some ideal of definition is finitely generated. Any open

subring R0 which is adic will be called a ring of de�nition for R.

(7) We call a topological ring R Tate if it is both f -adic and has a unit that is topologically

nilpotent.

(8) For a Tate ring R, the ring of convergent power series in n variables R〈T1, . . . , Tn〉 is the ring

whose elements are formal power series
∑
rIT

I satisfying that rI → 0 as I →∞.

(9) A Tate ring R is called strongly Noetherian if rings of convergent power series in any number

of variables are always Noetherian.

(10) Let R be an f -adic ring, then a ring of integral elements is an open subring S ⊂ R consisting

of power-bounded elements S ⊂ R◦, which is further integrally closed in R.

(11) An a�noid pair R is a pair of topological rings (R., R+) such that R. is an f -adic ring and

R+ is a ring of integral elements for it. Beware that this is weaker than Huber’s definition in

[21].
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(12) A adic morphism between a�noid pairs R = (R., R+) and S = (S., S+) is a ring homomor-

phism f : R. → S. such that f(R+) ⊂ S+ and for some ideal of definition I / R., the f(I)

generates an ideal of definition for S+.

(13) Let R be a ring. Then a valuation on R is a multiplicative map to a value magma v : R →

Γ ∪ {−∞}, where Γ is some totally ordered abelian group, v is subadditive

v(r1 + r2) ≤ max{v(r1), v(r2)}

and finally v(0R) = 0 and v(1R) = 1Γ.

(14) Let v : R→ Γ ∪ {0} be a valuation on a ring R. Then the tidying of the group Γ with respect to

the valuation v is the subgroup spanned by the image of v, Γtdy = 〈im v \ {0}〉. The tidying

of the valuation is the valuation vtdy : R → Γtdy ∪ {0} obtained by coastriction. A valuation

is called tidy if the tidying of the valuation is itself, equivalently if the image of the valuation

generates the value magma under multiplication.

(15) Two valuations v1 : R→ Γ1∪{0} and v2 : R→ Γ2∪{0} on a ring R are said to be equivalent

if there is an isomorphism of groups φ : Γtdy
1 → Γtdy

2 such that vtdy
2 = φ ◦ vtdy

1 .

(16) Given a topological ring R, a tidy valuation v : R→ Γ ∪ {0} is continuous, if the preimage of

any half-open intervals [0, γ) ⊂ Γ ∪ {0} is open in R. A valuation is called continuous if its

tidying is.

(17) Given a ring R the raw valuative spectrum of R, spvR, is the set of equivalence classes of

valuations on R, given the topology generated by sets U(r1, r2) = {v ∈ spvR | v(r1) <

v(r2) and v(r2) 6= 0}.

(18) Given a topological ring R the valuative spectrum of R, spvR, is the set of equivalence classes

of continuous valuations on R, given the subspace topology from the raw valuative spectrum.

(19) Given an a�noid pair R = (R., R+), the valuative spectrum of R, spaR, is the subspace of

spvR. determined by

spaR = {x ∈ spvR. | |R+|x ⊂ [0, 1]}

(20) Given a complete topological ring R, the ring of restricted power series R〈T1, . . . , Tn〉 is the ring

R〈T1, . . . , Tn〉, defined as the subset

{f ∈ R[[T1, . . . , Tn]] | all neighborhoods U of 0, only finitely many coe�cients aren’t in U}
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This is the completion of the usual polynomial ring given a topology as follows. For an open

neighborhood U ⊂ R. of 0 we take the subset of all power series whose coe�cients all lie in

U , and as U varies we let this be a basis of neighborhoods of 0 in R.〈T1, . . . , Tn〉.

(21) Given a complete topological ring R and a list of finite subsets M1, . . . ,Mn ⊂ R such that

each Mi generates an open ideal, we can define the ring R〈T1, . . . , Tn〉M1,...,Mn

{f ∈ R[[T1, . . . , Tn]] | for open U 3 0, only finitely many coe�cients aI are outside of M I · U.}

where for a multi-index I = (i1, . . . , in), M I is defined to be M i1
1 · . . . ·M in

n . We give this

the topology where to an open subset U ⊂ R. we take the subset of all formal power series

whose coe�cients all lie in M IU for the corresponding multi-index. This gives a basis of

neighborhoods of 0.

This satisfies a universal property with respect to algebras wheremiXi is power bounded

for every 1 ≤ i ≤ n and every mi ∈ Mi, see Lemma 3.1 (i) of [22]. Given that property, we

will call this construction the ring of power-bounded power series with respect toM1, . . . ,Mn.

(22) A homomorphism of a�noid pairs f : R→ S is called of topologically �nite type, or �nite type

in the sense of Huber if there is danger of confusion, if there are finite subsetsM1, . . . ,Mn of R

and there is a continuous, open, and surjective homomorphism R〈T1, . . . , Tn〉M1,...,Mn
→ S

factoring the algebra map.

/

Lemma 3.15. The following hold.

(1) Let R be a ring. Then the raw valuative spectrum spvR is a spectral space.

(2) Let R be a topological ring. Then the valuative spectrum spvR is a spectral space.

(3) Let R = (R., R+) be an a�noid pair. Then the valuative spectrum of R is a spectral space.

4. Topological monoids

Before we begin on topological monoids, recall the definition of the initial and final topologies on a

set.

Definition 3.16. Let X be a set and {Yi}i∈I a collection of topological spaces. For a collection of

set functions {fi : X → Yi}i∈I the initial topology on X with respect to the family {fi} is the coarsest

topology on X such that each fi is continuous.
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Let Y be a set and {Xi}i∈I a collection of topological spaces. For a collection of set-functions {fi :

Xi → Y }i∈I the �nal topology on Y with respect to the family {fi} is the finest topology on Y such that

each fi is continuous. /

The final topology tends to be di�cult to interpret, however in the cases we care about it will behave.

A concrete example of it is the quotient topology of a space with respect to an equivalence relation on

it. The final topology satisfies the following universal property.

Lemma 3.17. Let Y be a set and {fi : Xi → Y }i∈I a family of set-functions from topological spaces Xi. Then

a set-function g : Y → Z is continuous if and only if every g ◦ fi is continuous.

Now we introduce the basic definitions of topological monoids.

Definition 3.18. (1) A topological monoid is a monoid given a topology such that its multiplica-

tion is continuous.

(2) If M is a topological monoid, we write oblivM for the underlying monoid of M obtained by

forgetting the topology.

(3) A commutative topological monoid is a topological monoid whose multiplication is also commu-

tative.

(4) A morphism of topological monoids is a morphism of the underlying monoids which is also

continuous.

(5) The category of topological monoids is the category TMonwhose objects are topological monoids,

and whose morphisms are morphisms of topological monoids.

(6) The category of commutative topological monoids is the category CTMon whose objects are com-

mutative topological monoids, and whose morphisms are morphisms of topological monoids.

(7) By abuse of notation we will denote both forgetful functors CTMon→ CMon and TMon→

Mon via obliv, using context to make sense of which we are using.

(8) The trivial topological monoid 0 is the trivial monoid equipped with the trivial topology. It is

both the initial and terminal topological monoid.

(9) A topological group is a topological monoid where every element has a multiplicative inverse.

(10) The product of a set of topological monoids is the product of the underlying monoids given

the product topology.

(11) A congruence of a topological monoid M is a congruence on the underlying monoid of M .

(12) The quotient of a topological monoid by a congruence is the quotient of the underlying monoid

given the quotient topology.
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(13) The groupi�cation of a topological monoid M is the quotient of M ×M with respect to the

congruence∼ generated by the image of ∆×0 in (M×M)×(M×M), where ∆ : M →M×M

is the diagonal map.

(14) IfM is a topological monoid, and G ⊂M is a submonoid which is a topological group, then

the quotient of underlying monoid and group M/G is given the quotient topology to define

the quotient of the topological monoidM by the topological subgroup G.

(15) A topological monoid will be called sharp, integral, or saturated if its underlying monoid is.

(16) We will call a topological monoid �ne when it is integral, finitely generated, and the topology

is discrete.

(17) We will write CTMonint, CTMon, and CTMonsat for the full subcategories of CTMon

spanned by topological monoids that are respectively integral, sharp, or saturated.

(18) For a commutative topological monoid M , we define the integration of M to be the image of

M in Mgp given the quotient topology.

(19) For a commutative topological monoid M , we define the sharpening of M to be the quotient

of M by the subgroup M×.

(20) For a commutative topological monoidM , we define the saturation ofM to be the saturation

of M given the final topology with respect to the map M →M sat.

(21) For a monoidM , we writeMdisc for the topological monoid resulting from equippingM with

the discrete topology.

/

From here we will only consider commutative topological monoids unless specifically stated otherwise.

Note that the topological aspect becomes di�cult to work with in some ways. For example he author

does not believe thatM int has the subspace topology when considered as a subspace ofMgp for general

topological monoids M . However the topologies involved still satisfy some of the basic properties

monoids do.

Lemma 3.19. LetM be a topological monoid.

(1) The morphismM →Mgp is initial among morphisms fromM to a topological group.

(2) The morphismM →M int is initial among morphisms fromM to an integral topological monoid.

(3) The morphismM →M is initial among morphisms fromM to a sharp topological monoid.

(4) The morphismM →M sat is initial among morphisms fromM to a saturated topological monoid.
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Proof. That any morphismM to a integral (resp. sharp, resp. saturated) monoid factors through

the underlying monoid of the topological integration (resp. sharpening, resp. saturation) is purely

algebraic and was proved in the section on monoids. That the new morphism is continuous follows by

the universal property of the quotient topology(resp. quotient topology, resp. final topology). �

We can immediately deduce the following corollary.

Corollary 3.20. The constructions above are functorial.

(1) Integration is functorial.

(2) Sharpening is functorial.

(3) Saturation is functorial.

Further they are left adjoints to forgetful functors.

(1) The discrete functor disc : Mon→ TMon is right adjoint to the forgetful functor obliv.

(2) The discrete functor disc : CMon→ CTMon is right adjoint to the forgetful functor obliv.

(3) The forgetful functor TAb→ CTMon is right adjoint to groupi�cation

(4) The forgetful functor CTMonint → CTMon is right adjoint to integration.

(5) The forgetful functor CTMon→ CTMon is right adjoint to sharpening.

(6) The forgetful functor CTMonsat → CTMon is right adjoint to saturation.

Proof. The only claims that do not follow from the previous lemma are those about the adjunction

between the discrete and forgetful functors. To see this we must check that

Hom(Mdisc,M ′) ∼= Hom(M, oblivM ′)

however this follows immediately since all morphisms of the underlying monoids M → oblivM ′ are

continuous when M is given the discrete topology, irregardless of what topology M ′ has. �

Theorem 3.21. The category of commutative topological monoids admits all small limits and colimits.

Proof. To compute a limit of commutative topological monoids, we take the limit of the underly-

ing diagram monoids and equip it with the initial topology with respect to the maps from the limit to

the elements of the diagram.

To compute a colimit of commutative topological monoids, we take the colimit of the underlying

diagram of monoids and equip it with the final topology with respect to the maps from the elements

of the diagram to the colimit. �
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Now the topologies we have put on groupification, integration, sharpening, and saturation are in general

badly behaved. However for fine monoids things work nicely.

Lemma 3.22. LetX be a discrete topological space, andX → Y a set-theoretic function. Then the �nal topology

on Y with respect to the family of maps {X → Y } is the discrete topology.

Proof. The universal property for the final topology with respect to {X → Y } is that a map

Y → Z is continuous if and only if its precompositionX → Z is continuous. However, all set functions

out of a discrete topological space are continuous so every set function Y → Z is also continuous. This

forces Y to be discrete as well. �

Corollary 3.23. LetM be a commutative topological monoid. IfM is discrete, so are

(1) its groupi�cationMgp,

(2) its integrationM int,

(3) its sharpeningM ,

(4) and its saturationM sat.

Proof. Since M is discrete, so is M ×M . All four constructions are quotients of either M or

M ×M , so by the immediately preceding lemma they are all also discrete. �

Corollary 3.24. LetM be a commutative topological monoid. IfM is �ne, then so are

(1) its groupi�cationMgp,

(2) its sharpeningM ,

(3) and its saturationM sat.

Definition 3.25. We pose the following definitions.

(1) Let S be a site. A sheaf of topological monoids on S is a sheaf of monoids M along with the data

of a topology on every M (s) such that for every map s → s′ in S the restriction morphism

M (s′)→M (s) is continuous.

(2) Let T be a topos and S a site defining T . We write TCMon(T ) for the category of commutative

topological monoid objects of T .

By the adjunction of functor categories and the product of categories, TCMon(T ) is

isomorphic to the category of sheaves of commutative monoids on S.

(3) We write TAb(T ) and the category of commutative topological abelian group objects of T .



59

(4) We write TCMonint(T ) for the category of integral commutative topological monoid objects of T ,

that is sheaves of commutative monoids whose sections are all integral.

(5) We write TCMon(T ) for the category of sharp commutative topological monoid objects of T , that

is sheaves of commutative monoids whose sections are all sharp monoids.

(6) When T has enough points, we write TCMonsat(T ) for the category of saturated commutative

topological monoid objects of T , that is sheaves of commutative monoids whose stalks are all

saturated.

(7) We can define the groupification functor as follow:, to a sheaf of commutative topological

monoids we first perform groupification sectionwise, then we sheafify.

F 7→
[
U 7→ F (U)gp

]
7→
[
U 7→ F (U)gp

]+
(8) We can define the integration functor as follows: to a sheaf of commutative topological

monoids we first perform integration sectionwise, then we integrate.

F 7→
[
U 7→ F (U)int

]
7→
[
U 7→ F (U)int

]+
(9) We can define the sharpening functor as follows: to a sheaf of commutative topological

monoids we first perform sharpening sectionwise, then we sheafify.

F 7→
[
U 7→ F (U)

]
7→
[
U 7→ F (U)

]+
(10) We can define the saturation functor as follows: to a sheaf of commutative topological

monoids we first perform saturation sectionwise, then we sheafify.

F 7→
[
U 7→ F (U)sat

]
7→
[
U 7→ F (U)sat

]+
/

Example 3.26. Let X be a space, and F any sheaf of abelian groups. Giving all sections the discrete

topology gives F disc the structure of a sheaf of commutative topological monoids.

Let X be a formal scheme, then OX with its multiplication law is a sheaf of commutative monoids. /

The following lemma follows from the analogous one for sheaves of monoids plus the fact that all the

topologies we are using are final topologies.

Lemma 3.27. The following properties hold for the above constructions.
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(1) The given construction of groupi�cation satis�es the following.

(a) It gives a functor (−)gp : CTMon(T )→ TAb(T ),

(b) the functor (−)gp is a left adjoint to the forgetful functor TAb(T ) ⊂ CTMon(T ),

(c) and for any stalk functor x : Sets→ T and any sheafM in CTMon(T ) the induced morphism

(Mx)gp → (M gp)x

is an isomorphism of topological abelian groups.

(2) The given construction of integration satis�es the following.

(a) It gives a functor (−)gp : CTMon(T )→ CTMonint(T ),

(b) the functor (−)gp is a left adjoint to the forgetful functor CTMonint(T ) ⊂ CTMon(T ),

(c) and for any stalk functor x : Sets→ T and any sheafM in CTMon(T ) the induced morphism

(Mx)int → (M int)x

is an isomorphism of integral commutative topological monoids.

(3) The given construction of sharpening satis�es the following.

(a) It gives a functor (−) : TMon(T )→ TMon(T ),

(b) the functor (−) is a left adjoint to the forgetful functor CTMon(T ) ⊂ CTMon(T ),

(c) and for any stalk functor x : Sets→ T and any sheafM in CTMon(T ) the induced morphism

(Mx)→ (M )x

is an isomorphism of sharp commutative topological monoids.

(4) The given construction of saturation satis�es the following when T has enough points.

(a) It gives a functor (−)sat : CTMon(T )→ CTMon(T ).

(b) the functor (−)sat is a left adjoint to the forgetful functor CTMonsat(T ) ⊂ CTMon(T ),

(c) and for any stalk functor x : Sets→ T and any sheafM in CTMon(T ) the induced morphism

(Mx)sat → (M sat)x

is an isomorphism of saturated commutative topological monoids.

The following results follow just as in the usual sheaves of commutative monoid case.

Theorem 3.28. Let S and S′ be sites with �nite limits, and F : S → S′ be a functor inducing a geometric

morphism of topoi F∗ : τS′ → τS.
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(1) The functors F∗ and F ∗ commute with groupi�cation of sheaves of commutative topological monoids.

(2) The functors F∗ and F ∗ commute with integration of sheaves of commutative topological monoids.

(3) The functors F∗ and F ∗ commute with sharpening of sheaves of commutative topological monoids.

(4) When both sites have enough points, the functor F ∗ commutes with saturation of sheaves of commutative

topological monoids.
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CHAPTER 4

ÉTALE HOMOTOPY THEORY OF SCHEMES, LOG

SCHEMES, AND LOG FORMAL SCHEMES

In this chapter we will review étale homotopy theory for schemes. The first definition of etale homotopy

type goes back to the book of Artin and Mazur [1], but the ideas go back further. Already in Weil’s

work [23] he refers to hypothetical Betti numbers of an algebraic variety. By the mid 1950s the Bourbaki

group has defined Grothendieck topologies, sheaves, and eventually topoi. The étale homotopy type

is simply another idea from topology being applied to algebraic geometry, and a direct continuation

of their work.

1. Classical results in algebraic geometry

The reader is expected to be familiar with the more geometric notions of smoothness, such as those

that appear in [24]. However we must work in extreme generality and so we review the more general

definitions of the concepts we use. We assume the reader is familiar with schemes and their structure

sheaves, along with notions from commutative algebra such as Krull dimension, finite presentation of

algebras, flatness, and Kähler di�erentials. While these definitions are abstract, they are quite closely

connected to the classical definitions for algebraic varieties, which provide a good base of intuition to

draw on.

Definition 4.1. (1) A morphism of schemes f : X → Y is quasi-compact if the preimage of a

quasi-compact open in Y is quasi-compact and open in X .

(2) A morphism of schemes f : X → Y is separated if the diagonal morphism ∆f : X → X×Y X

is a closed immersion.

(3) A morphism of schemes f : X → Y is quasi-separated if ∆f : X → X×Y X is a quasi-compact

morphism.

(4) A morphism of schemes f : X → Y is locally of �nite presentation if for every open a�ne

U ⊂ Y , and for every x ∈ f−1(U), there is an open a�ne neighborhood Vx such that the

map of a�nes f : Vx → U corresponds to a map of rings that is of finite presentation.
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(5) A morphism of schemes is of �nite presentation if it is quasi-compact, quasi-separated, and

locally of finite presentation.

(6) A morphism of schemes f : X → Y is said to be formally unrami�ed if it admits at most one

lift for any diagram of the form

specT X

specT ′ Y

i
e

whenever T ′ → T is a ring map isomorphic to quotienting by a square-zero ideal.

(7) A morphism of schemes f : X → Y is said to be formally smooth if it admits at least one lift

for any diagram of the form

specT X

specT ′ Y

i
e

whenever T ′ → T is a ring map isomorphic to quotienting by a square-zero ideal.

(8) A morphism of schemes is said to be formally étale if it is formally unramified and formally

smooth, that is when there is a unique lift in all such diagrams.

(9) A morphism is said to be unrami�ed (resp. smooth, resp. étale) if it is formally unramified

(resp. formally smooth, resp. formally étale) and locally of finite presentation.

/

Lemma 4.2. Let f : X → Y and g : Y → Z be morphisms of schemes. If both f and g are any of the following

(1) quasi-compact,

(2) separated,

(3) quasi-separated,

(4) locally of �nite presentation,

(5) of �nite presentation,

(6) formally unrami�ed,

(7) formally smooth,

(8) formally étale,

(9) unrami�ed,

(10) smooth,

(11) or étale;

then so is g ◦ f .
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Proof. We separate the proofs.

(1) We immediately see that (g ◦ f)−1(U) = f−1 ◦ g−1(U), and so if f−1 and g−1 take quasi-

compact opens to quasi-compact opens, then so does their composition.

(2) See Lemma 01KU of [2].

(3) See Lemma 01KU of [2].

(4) See Lemma 01TR of [2].

(5) See Lemma 01TR of [2].

(6) See Lemma 02HA of [2].

(7) This is stated without proof in the Stacks Project, but its proof is quite simple so we reproduce

it here. We want to show there is a lifting in the diagram

specT Y

specT ′ Z

i g
e

but we simply observe that we can first lift from T ′ to Y , and then to X via the lifted map

specT X

specT ′ Y

i g◦f

e

e′

(8) See Lemma 02HI of [2].

The cases of unramified, smooth, and étale follow from the cases of formally unramified, formally

smooth, and formally étale plus the case of locally of finite presentation. �

Theorem 4.3. Let f : X → Y be a morphism of schemes, and g : Z → Y a morphism with the same target.

Further, assume that f is,

(1) quasi-compact,

(2) separated,

(3) quasi-separated,

(4) locally of �nite presentation,

(5) of �nite presentation,

(6) formally unrami�ed,

(7) formally smooth,

(8) formally étale,

(9) unrami�ed,

(10) smooth,

(11) or étale.
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Then the base change f ′ : X ×Y Z → Z also satis�es that property.

Proof. We break up the proof again.

(1) See Lemma 01K5 of [2].

(2) See Lemma 01KU of [2].

(3) See Lemma 01KU of [2].

(4) See Lemma 01TS of [2].

(5) See Lemma 01TS of [2].

(6) See Lemma 02HB of [2].

(7) See Lemma 02H2 of [2].

(8) See Lemma 02HJ of [2].

The cases of unramified, smooth, and étale follow from the cases of formally unramified, formally

smooth, and formally étale plus the case of locally of finite presentation. �

Here we define the notion of an fpqc covering.

Definition 4.4. A morphism of schemes is a fpqc covering if it is flat, surjective, and quasi-compact.

The fpqc pretopology on schemes is the pretopology with covering families {Ui → U}i∈I where the

disjoint union ∐
Ui → U

is an fpqc covering. Beware! This is a significantly stronger condition than asking that each Ui → U is

a fpqc covering. /

We define the little sites and then the little topoi.

Definition 4.5. Let X be a scheme and P be one of Zariski, étale, smooth, fppf, or fpqc. Write

siteXP for the category of morphisms of schemes with target X, which are in the class P . We put a

Grothendieck pre-topology on the category as follows. For U → X an object in the category siteXP ,

the covering families are exactly the families of morphisms {Ui → U}i∈I such that

(1) the family is jointly surjective,

(2) and the induced morphism ∐
i∈I

Ui → U

is a fpqc covering.
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The little P site of X, denoted siteXP , is defined to be restriction of covering families from the big

site to the category of morphisms to X that are in P .

The little P topos of X, denoted τXP , is the topos of sheaves of sets on the little P site of X . /

We will work only with the little topoi in this document, as they are more well behaved. Two warnings

are in order. The first is that not all sources define the little étale site in the same way. Some take the

étale site to be jointly surjective families of étale morphisms with no condition that the disjoint union

becomes fpqc over the base. By Lemma 03PH of [2] such covers always refine to covers in our sense.

This implies the topoi are equivalent. Secondly, the fpqc topos is badly behaved due to set theoretic

issues. For example there is no sheafification functor from fpqc presheaves of sets to it. There is an

explicit counter-example constructed in [25]. We now discuss the∞-categorical variants of the above.

Definition 4.6. Let X be a scheme and P be one of Zariski, étale, smooth, fppf, or fpqc.

The little P ∞-topos of X, denoted τ∞XP , is the ∞-category presented by the Čech-local projective

model structure on simplicial presheaves of sets on X with respect to the P pretopology. For brevity,

we will usually call this by the P ∞-topos of X .

The hypercomplete little P ∞-topos of X, denoted τ∧∞XP , is the∞-category presented by the hyperlocal

projective model structure on simplicial presheaves of sets on X with respect to the P pretopology. For

brevity, we will usually call this the hyperconmplete P ∞-topos of X . /

Lemma 4.7. We have the following equivalences of étale topoi and smooth topoi,

τXét ' τXsm

τ∞Xét ' τ∞Xsm

τ∧∞Xét ' τ∧∞Xsm

Proof. The sheaf condition for the smooth topology is actually equivalent to the sheaf condition

for the étale topology. This is because every smooth cover can be refined to an étale one, see Lemma

055V of [2]. This implies that the collection of étale covering families is cofinal in the family of smooth

covering families, so that the homotopy colimits must agree. �

2. The étale homotopy type of a scheme

We open with the stark definition.
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Definition 4.8. LetX be a scheme. The étale homotopy type étX ofX is the shape of the hypercomplete

étale topos of X

étX := sh τ∧∞ siteXét

We will denote by ét\X (resp. ̂́etX, resp. ̂́et{p}c X, resp ̂́et`X) the pro-truncated completion (resp. the

profinite completion, resp. the {p}c-profinite completion, resp. the `-profinite completion) of étX . /

Theorem 4.9. The étale homotopy types of Artin-Mazur [1] and Friedlander [3], the étale topological type of

Friedlander [3], and the∞-categorical construction above all agree; at least in the pro-category of the homotopy

category of spaces.

Proof. There are two separate claims that imply the theorem.

(1) Friedlander’s étale topological type is isomorphic to the étale homotopy type in the pro-

category of the homotopy category of spaces. This is essentially due to Friedlander, see

Proposition 4.5 [3]. The key point is that Friedlander’s geometrically pointed covers are

cofinal in the system of all covers.

(2) Taking a fibrant-cofibrant replacement of Friedlander’s étale topological type, it is equivalent

to the shape of the hypercomplete ∞-topos. This follows by Thoerem 2.77.

�

Corollary 4.10. Let A be an abelian group, and X a scheme. Then

Hi(Xét, A) ' Hi(étX,A)

Corollary 4.11. Let X be a connected scheme of �nite type over specC. Then the pro�nitely completed étale

homotopy type is weakly equivalent to the pro�nite completion of the Betti realization of X .

̂́etX ' X(C)∨

Definition 4.12. The map that we claim induces an equivalence of profinite spaces is the one induced

by the geometric morphism from the étale site of the scheme X to the topos of the space X(C). To

verify that it induces an equivalence of profinitely completed shapes, it is equivalent to verify that

the geometric morphism preserves sheaf cohomology with locally constant coe�cients and that the

geometric morphism induces an equivalence of categories of finite torsors. The former is the Artin

comparison theorem, see for example Theorem 3.12 of chapter III of [26]. The second is the Riemann

existence theorem, see for example Corollaire 5.2 of Expose XII of [27] . /
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Theorem 4.13. Let f : (X,x)→ (Y, y) be a smooth proper map of geometrically pointed, connected, Noetherian

schemes such that the geometric �ber fy is connected. Then for any prime ` > 0 invertible on Y the `-pro�nite

completion of ̂́et` fy is the homotopy �ber of the map f : ̂́et`X → ̂́et` Y .

Proof. This is just a restatement in ∞-categorical language of Friedlander’s homotopy fiber the-

orem. See Theorem 4.6 of [28] �

3. Logarithmic geometry

Chapter 3 contains some results on monoids and sheaves of monoids used in this section.

Definition 4.14. We pose the following definitions.

(1) A pre-log structure on a scheme X is a pair (MX , α) of a sheaf of monoids MX on the étale

site of X, along with a morphism of sheaves of monoids α : MX → OX . Here the monoid

structure on the OX is the multiplicative one.

(2) A log-structure on a scheme X is a pre-log structure (MX , αX) such that the induced map

αX : α−1
X (O×X)→ O×X is an isomorphism.

(3) A morphism of pre-log structures from (M , α) to (M ′, α′) on a scheme X is a morphism of

sheaves of commutative monoids a : M →M ′ such that α′ ◦ a = α.

(4) A morphism of log structures is a morphism of the underlying pre-log structures.

(5) A pre-log scheme X consists of a pair (X◦,MX) of a scheme X◦ with a pre-log structure MX

on it.

(6) A log scheme X consists of a pair (X◦,MX) of a scheme X◦ with a log structure MX on it.

(7) A morphism of pre-log schemes f : (X,MX)→ (Y,MY ) is a pair (f◦, f#) where f◦ : X◦ → Y ◦

is a morphism of the underlying schemes, and f# : f◦,−1MY → MX is a morphism of

sheaves of commutative monoids such that the following square is commutative

f◦,−1MY MX

f◦,−1OY OX

(8) A morphism of log schemes is a morphism of the underlying pre-log schemes.

(9) The trivial log structure on a scheme X is the triple (X,O×X , i : O×X → OX). A log structure

on a scheme is trivial if it is isomorphic to the trivial log structure.

(10) Given a log scheme X = (X◦,MX , αX), the scheme Xtriv is the largest open subscheme of

X◦ such that MX is trivial after restriction.
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/

Lemma 4.15. With every pre-log structure (M ′, α′) on a scheme X , we may associate a log structure (M , α)

such that any morphism from the pre-log structure (M ′, α′) to a log structure on X uniquely factors through

(M,α)

Proof. The construction is quite straightforward, we simply take M to be the push-out of the

following diagram.

α′−1O×X M

O×X

and it automatically satisfies this property. �

Corollary 4.16. The category of log schemes admits �nite limits.

Proof. Take the limit of the underlying schemes, and give it the log structure induced by the limit

of the inverse image log structures from the schemes in the diagram. �

Definition 4.17. LetX be a scheme, and Y = (Y,MY , αY ) be a log structure on Y . Given a morphism

of schemes f : X → Y , the inverse-image log structure on X is the log structure associated with the pre-

log structure given by the composition f−1MY → f−1OY → OX . A morphism of log schemes is strict

if the log structure on the domain is isomorphic to the inverse-image log structure associated with the

target. /

Now the trouble is that while it turns out that log schemes are quite a useful concept, it is highly

non-obvious how to construct them at a first glance. Luckily there is a rich set of cases where one can

construct them with manageable amounts of data.

Definition 4.18. We pose the following definition.

(1) Let X be a regular Noetherian scheme and D be a reduced divisor with normal crossings on

X . Then the log structure associated with (X,D) is the sheaf of commutative monoids given by

U/X 7→ {g ∈ OX | g is invertible outside of D}

(2) Let X be a scheme and D a Cartier divisor on X . Then we may associate with D a log

structure as follows. Take any representation of D as (Ui, fi)i∈I and add all powers of fi
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to O×X(Ui). This glues to a globally defined sheaf, since on the overlaps Ui,j there is some

invertible element ui,j ∈ O×X(Ui,j) with ui,jfi = fj . Any two representations can be refined

to a common one which di�ers only by an invertible element, and so the construction does

not depend on the representation.

(3) Let X be a scheme, and P a monoid. Given a morphism of commutative monoids P →

OX(X) we can lift this to a morphism of constant sheaves of commutative monoids P → OX

and take the associated log structure P a. We call such a morphism P → OX(X) a global

chart, and the resulting P a as the log structure associated with the chart. A log structure is said

to admit a chart if there is a monoid P and a global chart for P such that the log structure

is isomorphic to the log structure associated with the chart. A log structure on a scheme X

is said to locally admit charts if there is a covering {Ui → X◦}i∈I in the étale topology such

that the inverse image log structure on each Ui admits a chart.

(4) Let P be an arbitrary commutative monoid. Then the scheme specZ[P ] canonically admits

a log structure associated with the morphism of monoids P → Z[P ].

/

Lemma 4.19. Let X be a log scheme. The following are equivalent.

(1) The log scheme X admits a global chart P → OX ,

(2) there is a strict morphism of log schemes X → specZ[P ].

Proof. This is essentially just unraveling the definitions The existence of a morphism of schemes

X◦ → specZ[P ] just follows from the adjunction between spec and the global sections functor. That

the morphism is strict is exactly that the log structure on X is the associated log structure with P →

OX . �

Definition 4.20. Let X be a fine log scheme admitting a global chart X → specZ[P ] to some fine

commutative monoid P . The saturation Xsat of X is given by the fiber product

Xsat specZ[P sat]

X specZ[P ]

and demanding that the map Xsat → specZ[P sat] is a strict morphism of log schemes.

For a general fine log scheme X, we perform the above construction locally, and then glue the result

log structures to a global one resulting in Xsat. /
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Lemma 4.21 (Proposition 1.8 [29]). Let X be a �ne log scheme. Then the above construction is well de�ned

and independent of choices and gives Xsat the structure of an fs log scheme.

In practice we will mostly use charts and log structures associated with normal crossings divisors.

However the log structures used in practice are rather special, and we need a few more abstract

properties for later proofs and statements.

Definition 4.22. Let X be a log scheme. Then the log structure MX → OX on X is called integral

if the geometric stalks of MX are all integral monoids. It is called �ne if it locally admits charts given

by fine monoids P . It is called saturated if it locally admits charts by saturated monoids. It is called fs

if it locally admits charts given by fine and saturated monoids P .

An fs log scheme is a log scheme whose log structure is fs, meaning it étale locally admits charts given

by integral finitely generated monoids which are power-saturated in their groupification. /

Now a word as to the motivation of this. The most powerful theorems of algebraic geometry only

apply to proper morphisms. Logarithmic geometry can allow one to extend some results to non-proper

morphisms by acting as an intermediate. The core geometrical idea is roughly the following. Given a

non-proper variety X/ spec k, we compactify (when possible) to an X where D = X \X is a normal

crossing divisor. Then the logarithmic geometry of X with log structure associated with D should

behave much like the usual geometry of X .

Definition 4.23. We pose the following definitions.

(1) Let f : X → Y be a log morphism of log schemes, and assume that the underlying morphism

of schemes f◦ is locally of finite presentation. Then f is said to be formally log unrami�ed if

for every commutative square of log schemes

specT X

specT ′ Y

i

where specT → specT ′ is a strict log morphism and a closed immersion defined by a square-

zero ideal, there is at most one dashed lift.

(2) Such an f is said to be formally log smooth if there is at least one dashed lift in the above

diagram.

(3) Such an f is said to be formally log étale if it is formally log unramified and formally log

smooth, that is there is a unique dashed lift in the above diagram.
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(4) A morphism of log schemes f : X → Y is called Kummer if the map f−1MY toMX is injective

and the cokernel of (f−1MY )gp →M gp
X is torsion.

(5) A morphism of log schemes is called log unramified (resp. log smooth, resp. log étale) if

the underlying morphism of schemes is locally of finite presentation and the log morphism is

formally log unramified (resp. formally log smooth, resp. formally log étale).

(6) A morphism of log schemes is called Kummer étale if it is log étale and Kummer.

/

We immediately deduce the following lemma.

Lemma 4.24. Let f : X → Y be a morphism of log schemes given the trivial log structure. Then f is formally

log étale if and only if it is formally étale.

Proof. Any morphism of schemes T ′◦ → X◦ will be a log morphism since X has the trivial log

structure. Thus the condition that f is log étale is exactly the square-zero-ideal lifting condition of the

formal étale property. �

The following gives some illumination as to what the local structure of log smooth and log étale

morphisms looks like.

Lemma 4.25 (Theorem 3.5 of [30]). If f : X → Y is a morphism of fs log schemes. Then the following are

equivalent.

(1) The morphism f is formally log smooth (resp. formally log étale),

(2) for any point x ∈ X◦ there are étale neighborhoods U of x and V of f(x) with charts PU and PV

such that there is a commutative diagram as follows

U

V ×Z[PV ] specZ[PU ] specZ[PU ]

V specZ[PV ]

f ′

such that every morphism f ′ is formally smooth (resp. formally étale) and the morphism of monoids

PV → PU satis�es that the kernel and the torsion part of the cokernel (resp. the kernel and the

cokernel) of the morphism P gp
V → P gp

U are �nitely groups of orders invertible on X .

There is a notion of logarithmic blow ups, which are special types of blow ups that have no clear

analogue to the classical case.
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Definition 4.26. Let X be a fs log scheme admitting a global chart by some fine and saturated

monoid P . For any monoidal ideal I ⊂ P , we define the blow up of X along I as follows. The

monoidal ideal I determines a ring-theoretic ideal of Z[P ], which we can blow up to get the a�ne log

scheme blI(specZ[P ]). We take the logarithmic fiber productX×Z[P ] blI(specZ[P ]) and then perform

the saturation of this fiber product. We call the resulting fs log scheme blI X .

If X is a fs log scheme and I /MX is a coherent ideal of the monoid structure, then we can perform

the above construction locally and glue it together into a fs log scheme blI X . /

Lemma 4.27. The above construction does not depend on the choices made.

For a proof, see the discussion in section 3.3.2 of [31]. There is also a notion of logarithmic regularity,

which is also of critical importance.

Definition 4.28. Given a log scheme X = (X◦,MX , α) and a geometric point x ∈ X◦, we can form

the logarithmic ideal sheaf of MX at x by taking the ideal I(MX , x)of OX generated by MX,x \O×X,x. If

the log structure is given by a chart in some étale neighborhood of x then by definition the ideal will

be generated by the elements of the chart which are not invertible at x.

A log scheme X satisfying that X◦ is locally Noetherian is called log regular when for every geometric

point x ∈ X◦ the ring OX,x/I(MX , x) is regular and the following equation holds

dim OX,x = rank (MX,x)
gp

+ dim OX,x/I(MX , x)

/

Lemma 4.29. If X is an fs log scheme admitting a global chart by a �ne and saturated monoid, then the above

condition may be checked on the stalks for the Zariski topology instead of the étale topology.

Proof. This result is due to Nizioł, see Lemma 2.3 of [32]. �

Also due to Nizioł is the following result, which is the main theorem of [32].

Theorem 4.30. Log regular fs log schemes admit resolutions of singularities by logarithmic blow ups.

Proposition 4.31. Let Y be a log regular locally Noetherian fs log scheme, andX → Y a log smooth morphism

of fs log schemes. Then X is log regular.

Proof. This is true if the log structure is defined on the Zariski topology by Theorem 8.2 of [33].

Note that Kato’s condition (S) is the Zariski topology analogue of our fs condition. However, being
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log regular étale locally implies that a scheme is log regular, since log regularity only depends on the

étale local rings of the structure sheaf. Thus we conclude that such a X is log regular. �

Definition 4.32. The log étale site of a log scheme X has the underlying category whose objects are

formally log étale morphisms U → X and whose morphisms are commutative triangles. The coverings

for the Grothendieck pretopology are jointly surjective families.

The Kummer étale site siteXkét of a log scheme X has the underlying category whose objects are

Kummer and formally log étale morphisms U → X and whose morphisms are commutative triangles.

The coverings for the Grothendieck pretopology are jointly surjective families. /

Being Kummer and log étale has a convenient characterization due to Kisin.

Theorem 4.33. Let f be a morphism of fs locally Noetherian log schemes. Then the following are equivalent.

(1) The morphism f is Kummer étale.

(2) The morphism f is formally log étale, and f◦ is quasi-�nite.

Proof. See Proposition 1.7 of [34] and the preceeding discussion. �

We can give a neat characterization of the cohomology of the Kummer étale site for log regular log

schemes. This result is one of the major motivations for using log schemes.

Theorem 4.34. Let X be a log regular locally Noetherian fs log scheme. Then for any locally constant sheaf A

of �nite abelian groups with orders invertible on X , the inclusion i : Xtriv ←↩ X induces isomorphisms

H•(Xkét,A ) ' H•(Xtriv
ét , i−1A )

and an isomorphism for any geometric point x ∈ Xtriv on pro-` completions for any prime number ` invertible

on X .

πkét
1 (X,x)∧` ' ̂πét

1 (Xtriv, x)`.

More generally, the category of Kummer étale coverings of X is equivalent to the category of étale covers of Xtriv

which extend to tamely rami�ed covers of X .

Proof. The if the underlying scheme is regular, then the proof is sketched following Theorem 7.4

of [35]. Otherwise we may resolve the singularities of X using a logarithmic blow up by the main result

of [32]. Logarithmic blow ups do not change Kummer étale cohomology, and they do not change the

open subset of triviality, so we deduce the first claim.
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The second claim follows from the third one, which is proven as Proposition B.7 of [36]. To deduce

the second claim from the third, we must simply note that finite torsors for the Kummer étale topology

are representable by Kummer étale schemes. �

In fact, the entire Kummer étale topos admits a description as the étale topos of a certain stack.

Theorem 4.35 (Theorem 6.22 of [37]). The Kummer étale topos of a fs log scheme is equivalent to the étale

topos of the associated in�nite root stack ∞
√
Xét

The definition of the infinite root stack is quite elegant, but a bit too far from our applications.

In the case of a log smooth log scheme over specC, we get the following special case.

Theorem 4.36. Let X → specC be a log smooth morphism where specC is given the trivial log structure.

Then the pro�nitely completed Kummer étale homotopy type in our sense is equivalent to the pro�nite completion

of the Kato-Nakayama space X(C)log associated with the log complex space X(C),

k̂étX ' [X(C)log]∨

Proof. This is the main result of [38], although their definition uses the étale site of the infinite

root stack of Talpo-Vistoli [37]. By the immediately preceding theorem, these must be the same with

the log smoothness assumption. �

4. Formal geometry

Open sets in schemes are too large to correctly capture all notions from geometry, as are étale neigh-

borhoods. One concept is that of formal neighborhoods, which behave something like ε-neighborhoods

in di�erential geometry.

Definition 4.37. LetX be a locally Noetherian scheme and I /OX a sheaf of ideals. The completion of

X along the idealI , written as X̂I is the locally topologically ringed space whose underlying topological

space is V (I ) with the sheaf of rings given by the limit

OX̂I
:= lim

n→∞
OX/I

n

/
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One does not need the locally Noetherian hypothesis for this locally ringed space to make sense. How-

ever completion is badly behaved for non-Noetherian rings, and consequently most of the properties

we will use repeatedly will not hold without this hypothesis.

Lemma 4.38. Let V ⊂ X be a closed subset of a locally Noetherian scheme X . Then for any two ideals

I ,I ′ /OX such that V (I ) = V (I ′) = V the completions of X along I and I ′ are naturally isomorphic.

Definition 4.39. (1) A locally topologically ringed space is a formal scheme if it is locally isomor-

phic to the completion of a locally Noetherian a�ne scheme along a closed subset.

(2) A morphism of formal schemes is a map of locally ringed spaces, the maps of topological rings

are automatically continuous.

(3) An ideal of de�nition for a formal scheme is any open ideal whose powers form a basis of open

neighborhoods of 0 in every a�ne neighborhood.

(4) A formal scheme X is regular at a point x ∈ X if its local ring OX,x is a regular local ring.

(5) A formal scheme X is regular if it is regular at every point.

(6) Let R = limnR/I
n be a complete Noetherian topological ring with ideal of definition I .

An R-algebra A is topologically of �nite type if there is a finite type R-algebra B such that the

completion of B with respect to IB is isomorphic to A.

(7) A morphism of formal schemes is adic when any ideal of definition for the target gives an

ideal of definition for the source.

(8) A morphism of formal schemes f : X → Y is locally topologically of �nite type any x ∈ X there

are a�ne open neighborhoods U of x and V of f(x) such that f(U) ⊂ V and the induced

map f : spf B = V → U = spf A comes from a algebra map A → B which is topologically

of finite type.

(9) A morphism of formal schemes is topologically of �nite type if it is locally topologically of finite

type and quasi-compact.

(10) A morphism of formal schemes is locally formally of �nite type if its reduction is locally of finite

type for any compatible pairs of ideals of definition.

(11) A morphism of formal schemes is locally adically of �nite type if it is locally formally of finite

type, and the morphism is adic.

(12) A morphism of formal schemes is formally of �nite type if its reduction is of finite type for any

compatible pairs of ideals of definition.

(13) A morphism of formal schemes is adically of �nite type if it is formally of finite type, and the

morphism is adic.
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(14) A morphism of formal schemes is formally �at if its reduction is classically flat for any com-

patible pair of ideals of definition.

(15) A morphism of formal schemes is adically �at if it is formally flat, and the morphism is adic.

(16) A morphism of formal schemes is formally étale if its reduction is classically étale for any ideal

of definition.

(17) A morphism of formal schemes is adically étale if it is formally étale, and the morphism is

adic.

(18) A morphism of formal schemes is formally smooth if its reduction is classically smooth for any

ideal of definition.

(19) A morphism of formal schemes is adically smooth if it is formally smooth, and the morphism

is adic.

/

We have the following basic results.

Theorem 4.40. The following relations hold between the above de�ned classes.

(1) Locally adically of �nite type adic morphisms are exactly the locally topologically of �nite type mor-

phisms.

(2) Adically of �nite type adic morphisms are exactly the topologically of �nite type morphisms.

(3) Adically étale morphisms that are adic morphisms are locally topologically of �nite type.

(4) Adically étale morphisms are adically smooth.

(5) Adically smooth morphisms are adically �at.

(6) Adically �at morphisms f : X → Y satisfy that the induced map on all local rings OY,f(x) → OX,x

are �at ring homomorphisms.

(7) Let X be a locally Noetherian scheme and V a closed subset. Then X̂V is regular if and only if X is

regular at every point in V .

(8) Let f : X → Y be a morphism of �nite type between integral and locally Noetherian schemes, and let

V ⊂ Y be a closed subset. Then the induced morphism f̂ : X̂f−1(V ) → ŶV is adically P if and only

if f is P at every point in V , when P is any of the following properties.

(a) �at,

(b) étale,

(c) smooth
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Proof. (1) This is true since our definition of a topologically of finite type algebra requires

that the ideal of definition for the base ring gives an ideal of definition for the algebra. We

can apply Theorem 8.4.2 of chapter 0 of [39].

(2) This follows by the above plus the claim that a morphism of formal schemes is quasi-compact

if and only if its reduction is. The claim is essentially trivial, since quasi-compactness of a mor-

phism is a topological condition and the formal scheme and its reduction are homeomorphic

via the reduction map.

(3) Adically étale morphisms have locally of finite type reductions, and by the first claim are

necessarily locally topologically of finite type.

(4) Since the reductions of an adically étale morphism are all étale, they are also smooth.

(5) The reductions of an adically smooth morphism are of course flat, and so the morphism must

be adically flat.

(6) This follows by Lemma 0912 of [2].

(7) It is a well known result that a local ring is regular if and only if its completion is. For any

x ∈ V , we have an isomorphism on completions

ÔX,x ' ÔX̂V ,x

and so one local ring is regular if and only if the other is.

(8) Since all three properties are stable under base change, the claim that f being P implies that

f̂ is adically P is immediate. We give proofs for the reverse implication.

(a) Adically flat morphisms give flat algebra maps on local rings. A local homomorphism

of local rings is flat if and only if its completion is flat by Lemma 0C4G of [2]. But for

any x ∈ V , the maps f : OY,f(x) → OX,x and f̂ : OŶ ,f(x) → OX̂,x have isomorphic

completions. Thus one is flat if and only if the other is.

(b) Since f̂ is adically étale we deduce that for any ideal of definition I, the quotients OX̂,x

are all finite projective OŶ ,f(x)/I
n-algebras. As n-increases we can choose a compat-

ible system of module theoretic generators which give generators for the I -adic limit,

witnessing that OŶ ,f(x) is a finite algebra. It is also flat and thus projective.

(c) The morphism f is flat along f−1(V ) by the first claim, and as f is locally of finite type

by assumption, Lemma 01V8 [2] guarantees that it is enough for the fibers of f to be

smooth. However the fibers of f are just the reduced fibers of f̂ which are smooth by

assumption.
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�

5. Formal geometry over a discrete valuation ring

For this subsection, letR be a complete discretely valued ring, with maximal idealm, residue field k, and

fraction fieldK. Then we can form the formal spectrum of R, spf R, in the usual manner. This scenario

is well-behaved enough that we may actually ease some of the assumptions of being topologically of

finite type from our formal schemes. The benefit here is that some compact K-analytic spaces will

have non-quasicompact but locally topologically of finite type formal models, and by dropping the

locally topologically of finite type assumption we can get quasi-compact formal models of these non-

archimedean spaces.

Definition 4.41. Let A be an R-algebra which is an adic ring with ideal of definition I . We say that

A is a special R-algebra if A/In is a finite type algebra over R/mn for all positive integers n ≥ 0. /

This does not depend on the ideal I, see [40]. This is exactly demanding that A is an algebra that is

formally of finite type, without specifying that it is an adic algebra. The basic structural result is the

following.

Lemma 4.42. An R-algebra A is special if and only if it is isomorphic as a topological ring to a quotient of

R{T1, . . . , Tn}[[S1, . . . , Sm]]

Proof. See Lemma 1.2 of [40]. �

Definition 4.43. A special formal scheme over spf R is a locally Noetherian formal scheme and morphism

X→ spf R that is locally formally of finite type.

The special �ber of a special formal scheme X is the formal scheme X̃ over k given by the pullback

X×̂spf R spf k.

The closed �ber of a special formal scheme X is the scheme Xs over k given by taking the quotient of

OX by the largest ideal of definition. /

Example 4.44. Let X = spf R[[x]], then special fiber is the formal scheme spf k[[x]], and the closed

fiber is spec k. /

Lemma 4.45. If the structure morphism X → spf R is adic then the closed �ber and the special �ber agree, at

least after reduction.
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Proof. Being adic over spf R means that the maximal ideal of R is an ideal of definition. Thus

the special fiber admits a closed immersion into the closed fiber. �

Theorem 4.46 (Theorem 2.1 (i) of [40]). Let X be a special formal scheme over spf R, then the adically

étale site of X is equivalent to the étale site of its closed �ber.

We can set up the machinery for log geometry in this category as well.

Definition 4.47. We pose the following definitions.

(1) A pre-log structure on a formal scheme X is a sheaf of commutative topological monoids MX for

the adically étale site of X, and a morphism of sheaves of commutative topological monoids

αX : MX → OX.

(2) A log structure on a formal scheme X is a pre-log structure such that the induced map

α−1(O×X ) → O×X is an isomorphism. Recall that the sheaf α−1O×X carries the subspace

topology.

(3) A morphism of pre-log structures (M , α) and (M ′, α′) on a formal scheme X is a morphism of

sheaves of commutative topological monoids f : M →M ′ such that α′ ◦ f = α.

(4) A morphism of log structures is a morphism of pre-log structures.

(5) Given a pre-log structure (M , α) on a formal scheme X, we may construct the associated log

structure by forming the push-out as in the case for log schemes.

(6) A log formal scheme X = (X◦,MX, αX) is the data of a formal scheme X with a log structure

(MX, αX) on it.

(7) A morphism of log formal schemes is a morphism of schemes f : X → Y and a morphism of

sheaves of commutative topological monoidsf# : f−1MY →MX such that the square

f◦,−1MY MX

f◦,−1OY OX

commutes.

(8) Let Y be a log formal scheme and f : X → Y◦ be a morphism of formal schemes. The

inverse image log structure on X◦ is the log structure associated with the composition f−1MY →

f−1OY → OX.

(9) A morphism of log formal schemes is called strict if the log structure on the source is isomor-

phic to the inverse image log structure of the underlying morphism of schemes.

(10) A log formal scheme X is quasi-coherent if adically étale locally on X◦, the log structure is

isomorphic to one associated with a constant sheaf of commutative monoids. It is coherent if
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further the constant sheaves are of finitely generated and discrete commutative topological

monoids.

(11) A log formal scheme is �ne if it is coherent and the log structure is integral.

(12) A log formal scheme is saturated if it is coherent and the log structure is saturated.

(13) A log formal scheme is fs if it is fine and saturated.

/

Lemma 4.48. Given a pre-log structure α : M → OX on a formal scheme X, the push-out ofM ← α−1O×X →

O×X gives a log structure.

Proof. Write M a for the pushout of the diagram, and write αa : M a → OX for the associated

morphism. What needs to be proven here is that the topology on the pushout agrees with the subspace

topology on O×X . However a simple diagram chase shows that the pullback of M a → OX ← O×X is a

retract of O×X . Since the underlying sets are isomorphic via the retraction, it must be isomorphic as a

space. �

Recall that also have a notion of saturation, sharpening, and groupification of sheaves of commutative

monoids in any topos.

Definition 4.49. A morphism f : X → Y of coherent log formal schemes is adically log étale if it is

locally adically of finite type, and for each x ∈ X there are étale neighborhoods U of x and V of f(x)

with charts PU and PV such that we can factor the morphism

U

V×Z[PV] specZ[PU] specZ[PU]

V specZ[PV]

f ′

such that f ′ is adically étale, and PV → PU has finite kernel and cokernel with orders coprime to the

characteristics of Y. /

Lemma 4.50. A morphism of special formal spf R-schemes is log étale if and only if we can adically étale locally

factor the morphism as
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U

V×̂R[PV] spf R[PU] spf R[PU]

V spf R[PV]

f ′

where the kernel and cokernel of PV → PU has �nite kernel and cokernel with orders coprime to the characteristics

of Y.

Proof. The square

spf R[PU] specZ[PU]

spf R[PV] specZ[PV]

is a pull-back square in formal schemes. Chasing the universal properties gives an bijection between

commutative diagrams in the definition and in the statement of the lemma. �

Definition 4.51. We pose the following definitions.

(1) Let X be a fs log formal scheme admitting a global chart P → OX, and I / P an ideal of the

monoid. Then the log blow up of X along I is the log scheme obtained by first performing the

blowup of blI specZ[P ], saturating the resulting log formal scheme, and then taking the fs

pullback

blI X := X×̂Z[P ](blI Z[P ])sat

(2) A fs log formal scheme is log regular if for every geometric point x ∈ X◦ the ringOX,x/I(MX, x)

is regular and the following equation holds

dim OX,x = rank (MX,x)
gp

+ dim OX,x/I(MX, x)

(3) A morphism of log formal schemes is adically Kummer étale if it is adically log étale, and the

morphisms of monoids in the diagram can be taken to be injective.

/

Lemma 4.52. Let X be a fs log formal scheme. If the log structure on X admits a chart by a �ne saturated

monoid P in some neighborhood of a point x ∈ X then there are canonical isomorphisms

P gp ∼→ (MX,x)
gp ∼← (MX,x/OX,x)gp
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We also introduce the following notion.

Definition 4.53. A fs log special formal scheme X over spf R is algebraizably log smooth if each point

admits an adically étale neighborhood U→ X such that

(1) there is an fs log scheme U equipped with a log smooth log morphism to specR,

(2) there is a morphism φU : U→ ÛUs
,

(3) the morphism φU induces an isomorphism of U with the completion of ÛUs along some closed

subset,

(4) and the restricted log structure MX|U is isomorphic via the canonical homomorphism to the

pull-back of the canonical log structure on ÛUs .

/

Lemma 4.54. The following hold,

(1) The categories of log formal schemes and fs log formal schemes admit �nite limits.

(2) Adically Kummer étale morphisms are stable under fs pullbacks.

(3) The distinguished formal schemes of [41] are algebraizably log smooth.

Proof. We break up the proof.

(1) The case for log formal schemes follows as for log schemes. The case of fs log formal schemes

follows from the case for fs log schemes, since the log formal scheme is determined by its

diagram of reductions. We can chooseN-indexed diagrams for each of the log formal schemes,

and then for each i ∈ N take the fs limit. Taking the limit of the resulting N-indexed diagram

of schemes gives a formal scheme.

(2) The reduction of an fs pullback is an fs pullback of log schemes, so this follows from the case

for log schemes.

(3) The only thing that does not follow immediately is the compatibility of the pull-back of the

log structure and the canonical log structure. This is a lemma in [41].

�

Definition 4.55. The adically Kummer étale site of a fs log formal scheme X is the category whose

objects are adically Kummer étale morphisms U→ X, morphisms are commutative triangles, and the

coverings for the pretopology are jointly surjective families. /
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Lemma 4.56. Let X be a coherent log special formal scheme over spf R. Then the adically Kummer étale site of

X is equivalent to the Kummer étale site of the special �ber with induced log structure.

Proof. This follows from the result of Berkovich that the adically étale sites are equal, since we

can reduce to the case where X has a global chart by some finitely generated monoid. �

Proposition 4.57. Let X be an fs log special formal scheme over spf R, with X◦ a�ne. Assume that the

log structure is given by a global chart P → OX, then X is adically log regular if and only if the scheme

X = spec OX(X) is log regular.

Proof. The log structure on X is the one associated with the chart P → OX(X) = OX(X). First,

by Proposition 7.1 of [33], being log regular generalizes at the level of points. To prove necessity, we

must then only show that X is log regular at every closed point. The closed points are naturally in

bijection the closed points of X via the formal immersion X ↪→ X . Choose a closed point x ∈ X, so

that we get a homomorphism of commutative monoids P → OX,x. Log regularity for the scheme X is

the condition that for the ideal Ix =
(
P \ (P ∩ O×X,x)

)
OX,x the following two conditions hold.

(1) The ring OX,x/Ix is regular,

(2) and the following equation holds.

dim OX,x = rank
(
P gp
x \ (P ∩ O×X,x)

)
+ dim OX,x/Ix

The proposition then reduces to show the following statements.

(1) The scheme’s local ring OX,x/Ix and the formal scheme’s local ring OX,x/Ix have isomorphic

completions.

(2) The groups P gp
x \ (P ∩ O×X,x) and P gp

x \ (P ∩ O×X,x) are isomorphic.

Given these two statements, it becomes clear that one local ring is regular if and only if the other is,

and since dimension is preserved by completion we show that the dimension terms in both equations

are equal.

(1) There is a natural inclusion OX,x → OX,x, and since the map P → OX,x factors through this

inclusion, we determine that Ix has the same set of generators regardless of which local ring

is used. We then have two short exact sequences

0→ IxOX,x → OX,x → OX,x/Ix → 0
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and

0→ Ix → OX,x → OX,x/Ix → 0

where the first can be seen as an exact sequence of finitely presented OX,x-modules, and

the second as an exact sequence of finitely presented OX,x-modules. To conclude that the

two rings have isomorphic completion, we note that the completion of OX,x/Ix as an OX,x-

module agrees with its completion as a local ring, and similarly the completion of OX,x/Ix

as an OX,x-module agrees with its completion as a local ring. Combining these statements

and the fact that there is a natural isomorphism ÔX, x ' ÔX,x gives a commutative diagram

0 IxÔX,x ÔX,x ÔX,x/Ix 0

0 Ix ÔX,x ̂OX,x/Ix 0

where the vertical morphisms are isomorphisms. Thus by the universal property of the ring

quotient, the two rings are isomorphic.

(2) The group P ∩ O×X,x is isomorphic to P ∩ O×X,x, since the morphism OX,x → OX,x does not

invert any elements that are not already invertible.

�

Corollary 4.58. Let f : X → Y be a morphism of fs log schemes �at and �nite type over specR, and

Z ⊂ Ys a closed subset. Assume further that the log structures on both schemes are vertical. Then the induced

morphism f̂ : X̂Z′ → ŶZ is adically Kummer étale if and only if f is Kummer étale.

Lemma 4.59. Let A be a Noetherian adic ring with ideal of de�nition I / A. Write X := specA and

Xred = specA/I . Then the morphisms of sites

siteXred, ét → siteXaét → siteXét

induces equivalences on the pro�nitely completed shapes of the associated∞-topoi,

̂́etXred → aét X→ ̂́etXét.

Proof. The first two topoi are actually equivalent, so the first morphism of sites is a fortiori a shape

equivalence. We are thus reduced to showing that the usual profinitely completed étale homotopy types

of Xred and X agree. We can assume Xred is connected, which forces X to be connected as well. We

must first check that their étale fundamental groups agree, for which we may use any geometric point

in Xred, since the categories of finite étale coverings are equivalent by Lemma 09ZL of [2].



86

For the cohomology, we actually have a stronger statement that the cohomology of any abelian torsion

sheaf on X agrees with the cohomology of its preimage on Xred by Gabber’s “A�ne Analogue of

Proper Base Change”, Theorem 09ZI of [2]. �

Theorem 4.60. Let A be a Noetherian adic ring with ideal of de�nition I / A. Assume that there is an fs

monoid P → A \A× so that the scheme (resp. formal scheme, resp. scheme) X = specA (resp. X = spf A, resp.

Xred = specA/I) is an fs Noetherian log scheme (resp. fs Noetherian log formal scheme, resp. fs Noetherian log

scheme). Then the morphisms of sites

siteXred, két → siteXakét → siteXkét

induce equivalences on the {p}c-pro�nitely completed shapes of the associated∞-topoi,

k̂ét{p}c Xred → âkét{p}c X→ k̂ét{p}c Xét.

Proof. We have a commutative diagram of morphisms of sites

siteXred, két siteXakét siteXkét

siteXred, ét siteXaét siteXét

jred jX jX

Since the morphisms of sites coming from the inclusion Xred → X give equivalences of topoi in

both the étale Kummer étale topologies, it is enough to show that the inclusion Xred → X induces

a profinite shape equivalence. We still have an equivalence of the categories of finite torsors in the

adically Kummer étale topology on X and the Kummer étale topology on X, and so we just need to

check the cohomological statement. But we can actually use Gabber’s result again.

By Theorem 2.4 of [42], we have functorial isomorphisms of the higher direct image functors of both

the j.

Rqjred,∗L ∼=
q∧
P gp ⊗Z L (−q) RqjX,∗L ∼=

q∧
P gp ⊗Z L (−q).

Specifically for any sheaf L of torsion abelian groups whose orders are invertible on X (given our

assumptions this is only the prime p) we have the claimed isomorphisms, which are further functorial

in the sheaf L . Since P was a fine monoid, P gp is a finitely generated group, and so its exterior

powers are also finitely generated. The tensor product of a finitely generated abelian group and a

torsion group whose order is coprime to p is again a torsion group of order coprime to p. Now by

Gabber’s result, Theorem 09XI of [2], the cohomology of RqjX,∗L agrees with that of its pullback to

Xred. But pullbacks commute with tensor products and alternating powers of sheaves, and the pullback
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of P gp on X is exactly the groupification of the log structure on Xred. This implies that the higher

direct images all functorially agree. Thus the Es,t2 terms of the Grothendieck spectral sequence for the

composition of derived functors agree, and the desired cohomologies agree. �

In fact the above proof gives an equivalence for any abelian torsion sheaf on the Kummer étale site

with orders coprime to p.
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CHAPTER 5

ÉTALE HOMOTOPY THEORY IN NON-ARCHIMEDEAN

GEOMETRY

“I’ve found the clay!” – Andrei Tarkovsky, Andrei Rublev

There are several formalisms of non-archimedean geometry. The earliest formalism is that of Tate’s rigid

analytic spaces, first discovered via Tate’s uniformization theorem which gave a p-adic uniformization

of some strictly semi-stable elliptic curves. The main issue with Tate’s formalism is that the underlying

topological spaces are still quite pathological, and one instead has to work with a suitable Grothendieck

topology. Berkovich’s formalism of non-archimedean analytic spaces fixes this deficiency, as does Hu-

ber’s slightly more recent notion of adic spaces. We will first review the theory of Berkovich spaces

before that of adic spaces. Since adic spaces e�ectively subsume the theory of rigid spaces, we will not

delve into the formalism of rigid spaces.

1. Non-archimedean analytic spaces

We begin with the base definitions we need, one can reference [19].

Definition 5.1. Let R be a Banach ring. The normative spectrum of R is the set of all bounded multi-

plicative seminorms on the Banach ring R up to equivalence of seminorms,

spR = {| − | : R→ [0,∞) | | − | is a bounded multiplicative seminorm }/ ∼

we further topologize this set by giving it the weakest topology so that the family of functions given by

evaluation of the seminorms evalr : spR→ [0,∞) are all continuous.

Given a point x ∈ spR, any choice of representing seminorm |−|x determines a prime ideal ker |−|x =

p / R. This is easily checked to only depend on the equivalence class of the seminorm. Further the

seminorm induces a norm on the field of fractions FF (R/p). Completing with respect to the norm

induced by | − |x gives the completed residue �eld H (x). /
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As justification for why this is a desirable space to take as the analogue of an a�ne scheme, we have

the following two results.

Theorem 5.2. The normative spectrum of a Banach ring R is non-empty, Hausdor�, and compact.

Proof. See Theorem 1.2.1 of [19] for details.

The general idea of the proof is that spR embeds as a closed subspace of
∏

spK(x) where the K(x)

are a family of Banach fields. This reduces the claim to showing that a Banach field has a compact and

Hausdor� normative spectrum. �

Lemma 5.3. For R a Banach ring, an element r is invertible if and only if evalr never takes the value zero on

spA.

Proof. A ring element r is invertible only if it lies in no proper ideal, and so it cannot be in

the kernel of any valuation. Conversely, maximal ideals in Banach rings are necessarily closed. This

implies that for any maximal m / R, the ring R/m is a non-Archimedean field and a Banach algebra

over R. In particular, if r is not invertible it is contained in a maximal ideal m with corresponding

valuation vm. Then evalr(vm) = 0 as desired. �

Now we will restrict our scope quite a bit. Our base rings will be non-archimedean fields, and the basic

algebras over them are the family of convergent power series rings

K{r−1
1 T1, . . . , r

−1
n Tn} = {

∑
aIT

I ∈ K[[T1, . . . , TN ]] | ‖rIaI‖K → 0 as I →∞}

Note that this already adds many new rings compared to rigid analytic geometry. If any of the ri above

are not in the rational vector space spanned by the image of K∗ under the norm map, then this ring

is not directly accessible to rigid geometry.

Definition 5.4. We pose the following definitions.

(1) A K-a�noid algebra is a Banach algebra A/K such that there is an admissible epimorphism

K{r−1
1 T1, . . . , r

−1
n Tn} → A

(2) In the above, if we can find an admissible epimorphism K{} → A every ri = 1, we call A a

strictly K-a�noid algebra.

As a warning to the reader, epimorphisms in the category of rings are not necessarily

surjections.
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(3) A morphism of K-a�noid algebras is a bounded homomorphism of Banach algebras.

(4) A morphism of K-a�noid algebras is said to be inner when it is an inner morphism of K-

algebras.

(5) Let V ⊂ spA be a closed subset. Then V is said to be an a�noid domain if there is a map of

K-a�noid algebras A→ B such that spB ⊂ V and B is initial in the category of A-algebras

with to this property. If B is a strictly K-a�noid algebra, we call V a strictly a�noid domain.

/

In fact the class of a�noid domains give a Grothendieck topology, since they are closed under finite

intersections. We will work up to that statement with some more basic results.

Lemma 5.5. Let A be a K-a�noid algebra. Then,

(1) the underlying ring of A is Noetherian,

(2) all ideals of A are topologically closed,

(3) the algebra A is strictly K-a�noid if and only if the spectral radius ρ(a) = infn≥0 ‖an‖1/nA of every

element is a rational power of the norm of some element in K , i.e. ρ(a) ∈
√
‖K∗‖K for every a ∈ A,

(4) the completed tensor product of a�noid algebras is again a�noid,

(5) if V ⊂ spA is an a�noid domain with corresponding a�noid algebra AV , then spAV = V ,

(6) if V ⊂ spA is an a�noid domain, then AV is a �at A-algebra,

(7) and if V and W are a�noid domains in spA, then V ∩W is again an a�noid domain.

Proof. We separate the proofs.

(1) See Proposition 2.1.3 of [19].

(2) See Proposition 2.1.3 of [19].

(3) See Proposition 2.1.6 of [19].

(4) Let the two algebras be calledA andB, with given admissible epimorphismsK{r−1
1 T1, . . . , r

−1
n Tn} →

A and K{s−1
1 T ′1, . . . , s

−1
m T ′m} → B. The tensor product of an epimorphism is an epimor-

phism, and the tensor product of admissible algebra maps is again admissible. Since

K{r−1
1 T1, . . . , r

−1
n Tn}⊗̂KK{s−1

1 T ′1, . . . , s
−1
m T ′m} ' K{r−1

1 T1, . . . , r
−1
n Tn, s

−1
1 T ′1, . . . , s

−1
m T ′m}

we deduce that the map

K{r−1
1 T1, . . . , r

−1
n Tn, s

−1
1 T ′1, . . . , s

−1
m T ′m} → A⊗̂KB
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(5) See Proposition 2.2.4 of [19].

(6) See Proposition 2.2.4 of [19].

(7) If V = spAV andW = spAW , then we claim that V ∩W = spAV ⊗̂AAW . This follows by the

universal property of a�noid domains. Assume that B is an a�noid algebra under A whose

normative spectrum lies within V ∩W . Since AV is initial among A-algebras whose normative

spectrum lies within V , and AW among those whose normative spectrum lies within W , we

get unique algebra maps from both AV and AW into B, which gives a unique map from

AV ⊗̂AAW → B, thus satisfying the universal property.

�

Corollary 5.6. The category whose objects are a�noid domains in an a�noid space, and whose morphisms

are inclusions satis�es the axioms of a Grothendieck pretopology.

Proof. The coverings are covering families of a�noid domains. The previous lemma shows that

they are closed under finite fiber products, which in this category are just intersections of the a�noid

domains. �

We have the germs of abstract algebraic geometry already with just this Grothendieck pretopology, as

was first discovered in rigid analytic geometry.

Theorem 5.7. Let spA be an a�noid space.

(1) Tate’s theorem: LetM an A-module (resp. a �nite Banach A-module). Then the Čech cohomology of

M with respect to the Grothendieck pretopology of a�noid domains is trivial (resp. the Čech complex

is exact and has admissible boundary homomorphisms).

(2) Kiehl’s theorem: Every descent datum for �nite Banach A-modules is e�ective.

Proof. (1) See Proposition 2.2.5 of [19].

(2) See Theorem 3 of 9.4.3 from [43] for the case when A is strictly analytic. If A is not, then

one uses the usual trick of base change and descent.

�

We can almost define general K-analytic spaces, we need a few preparatory definitions.

Definition 5.8. We pose the following definitions,
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(1) A locally Banach ringed space is a locally ringed space (X,OX) such that OX takes values in

the category of Banach rings with bounded morphisms.

(2) A morphism of locally Banach ringed spaces is a morphism of locally ringed spaces such that the

component morphisms are all bounded morphisms of Banach rings.

(3) A quasi-net {Ui}i∈I on a topological space X is a family of subsets of X with the property

that for any x ∈ X, there is a finite subset {Ui1 , . . . , Uin} such that x is an element of the

intersection ∩nj=1Uij , and the union ∪nj=1Uij contains an open neighborhood of x.

(4) An a�noid K-analytic space is the locally Banach ringed space given by (spA,OspA) where

the structure sheaf is defined as follows. For an open set U ⊂ spA we set the sections over

U to be the colimit over

lim
U⊂V1∪...∪Vn

ker
(∏

AVi
→
∏

AVi∩Vj

)
where every Vi is an a�noid domain.

(5) A K-analytic space is a locally Banach ringed space which is has a quasi-net of closed subsets

isomorphic to an a�noid K-analytic space.

(6) A morphism ofK-analytic spaces f : (X,OX)→ (Y,OY ) is a morphism of locally ringed spaces

f which further satisfies that for all x ∈ X, there are a�noid subspaces V1, . . . , Vn of X and

W1, . . . ,Wn of Y such that

(a) the given point x lies in every Vi,

(b) the point f(x) lies in every Wi,

(c) the union ∪Vi contains an open neighborhood of x,

(d) the union ∪Wi contains an open neighborhood of f(x),

(e) the image f(Vi) ⊂Wi,

(f) the restrictions {f |Vi
|Vi → Wi} form a compatible family of morphisms of a�noid

K-analytic spaces.

(7) The category of K-analytic spaces, denoted AnK , is the category whose objects are K-analytic

spaces and whose morphisms are morphisms of K-analytic spaces.

(8) For convenience, we introduce this new piece of terminology. Given a morphism ofK-analytic

spaces f : X → Y and a point x ∈ X, an a�noid framing of f at x is the data of a�noid

subspaces V1, . . . , Vn of X and a�noid subspaces W1, . . . ,Wn of Y satisfying

(a) the given point x lies in every Vi,

(b) the point f(x) lies in every Wi,

(c) the union ∪Vi contains an open neighborhood of x,
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(d) the union ∪Wi contains an open neighborhood of f(x),

(e) the image f(Vi) ⊂Wi,

(f) the restrictions {f |Vi
|Vi → Wi} form a compatible family of morphisms of a�noid

K-analytic spaces.

(9) Given a morphism of a�noid K-analytic spaces f : spB → spA, the relative interior of the

morphism of a�noid K-analytic spaces f Int(spB/ spA) is the open subset of spB consisting

of points x ∈ spB such that the induced morphism to the completed local ring B → H (x)

is inner with respect to A.

(10) Given a morphism of K-analytic spaces f : X → Y , the relative interior of f Int(X/Y ) is the

open subset of points x ∈ X such that there is an a�noid framing of f at x with a�noid

domains V1, . . . , Vn ⊂ X and W1, . . . ,Wn ⊂ Y with the property that x is in the relative

interior of each morphism of a�noid K-analytic spaces f : Vi →Wi.

(11) Given a morphism of K-analytic space f : X → Y , the relative boundary of f ∂(X/Y ) is the

set-theoretic complement of the relative interior of f .

/

We will return to the more subtle notions of the relative interior of a morphism after a dicussion on the

less subtle notions of the Grothendieck topology generated by a�noid domains. The most fundamental

result is that K-analytic spaces form a sheaf for the Grothendieck topology of a�noid domains.

Lemma 5.9. LetX be aK-analytic space. For any quasi-net {Yi} of a�noid domains inX and anyK-analytic

space Z , the sequence

HomAnK
(X,Z)→

∏
HomAnK

(Yi, Z)⇒
∏

HomAnK
(Yi ×X Yj , Z)

is an equalizer diagram.

Proof. See Proposition 1.3.2 of [44]. �

As noted above there is a Grothendieck topology on a given K-analytic space, and the locally compact

topology. To build a morphism of their corresponding topoi, we will define an intermediate site which

can be compared to both.

Definition 5.10. Let X be a K-analytic space. A subset Y ⊂ X is an analytic domain in X, if every

point y ∈ Y has a�noid domains V1, . . . , Vn of X, with each Vi contained in Y such that y ∈ ∩Vi and

∪Vi contains an open neighborhood of Y . /
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Lemma 5.11. The following statements hold.

(1) Arbitrary unions of analytic domains are analytic domains. Finite intersections of analytic domains

are analytic domains. The family of analytic domains gives an alternate topology on X .

(2) The preimage of an analytic domain under a morphism of K-analytic spaces is an analytic domain.

(3) An analytic domain itself is a K-analytic space.

(4) All open subsets of a K-analytic space are analytic domains.

(5) The topos of sheaves τXG on the analytic domain topology is equivalent to the topos of sheaves on the

Grothendieck topology of a�noid domains.

(6) The obvious inclusion of the usual topology on aK-analytic space X into the analytic domain topology

induces a morphism of sites πX : siteXG → siteX .

Proof. (1) The claim for unions is clear. For intersections, we will prove the claim. Let

Y and Y ′ be analytic domains in X, and let y ∈ Y ∩ Y ′. Then we have V1, . . . , Vn in Y

and V ′1 , . . . , V
′
m in Y ′ satisfying the above definition. We may take all pairwise intersections

between the two sets, V1 ∩ V ′1 , . . . , V1 ∩ V ′m, V2 ∩ V ′1 . . . , Vn ∩ V ′m which satisfies the above

definition.

(2) We have to lift the morphism to a strict morphism of K-analytic spaces with a given atlas.

Since we are not discussing atlases, we will omit the remainder of the proof.

(3) The assumptions of analytic domain are exactly that it has a quasi-net of closed a�noid

analytic subspaces.

(4) The system of all a�noids is dense, in the sense that every point in an analytic space has a

system of a�noids containing open neighborhoods which generate the topology. See the end

of Remark 1.2.2 of [44].

(5) The only di�cult observation that needs to be made is that the class of special subsets is

cofinal in the class of analytic domains.

(6) Morphisms of topological spaces always induce morphisms of the underlying sites.

�

The first major result comparing the two topoi is for coherent modules in both. We first define the

relevant categories.

Definition 5.12. Let X be a K-analytic space. We write Mod(X) for the category of OX -modules in

τX, and Mod(XG) for the category of OXG
:= π−1

X OX -modules. We write Coh(X) for the category

of coherent OX modules in τX and Coh(XG) for the category of coherent OXG
modules. /
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Theorem 5.13. Let X be a K-analytic space. Then,

(1) the functor π−1
X : Mod(X)→Mod(XG) is fully faithful,

(2) the functor π−1
X : Coh(X)→ Coh(XG) is an equivalence,

(3) a coherent module over OX is locally free if and only if its inverse image is a locally free OXG
-module.

(4) for any sheaf of abelian groups F in τX , we have isomorphisms on sheaf cohomology

Hq(τX,F ) ' Hq(τXG, π
−1
X F )

(5) if X is paracompact then for any sheaf of groups G we have isomorphisms on non-abelian cohomology

Ȟ1(τX,G ) ' Ȟ1(τXG, π
−1
X G )

Proof. (1) See Proposition 1.3.4 of [44].

(2) See Proposition 1.3.4 of [44].

(3) See Proposition 1.3.4 of [44].

(4) See Proposition 1.3.6 of [44].

(5) See Proposition 1.3.6 of [44].

�

We take a slight detour back to studying the category of K-analytic spaces. We first give a rigorous

definition of gluing data, which is what the reader expects.

Definition 5.14. A�noid gluing data for aK-analytic space is a triple ({Xi}i∈I , {Xi,j}i,j∈I , {ιi,j1 , ιi,j2 }i,j∈I)

whose elements are

(1) an indexed family of a�noid K-analytic spaces, {Xi}i∈I ,

(2) a second family of a�noid K-analytic spaces corresponding to the pairwise intersections

{Xi,j}i,j∈I ,

(3) and a family of inclusions ιi,j1 : Xi,j → Xi and ι
i,j
2 : Xi,j → Xj witnessing theXi,j as a�noid

domains in the Xi and Xj .

A gluing of a�noid gluing data is aK-analytic spaceX along with a pair ({γi}i∈I , {γi,j}i,j∈I) consisting

of

(1) morphisms of K-analytic spaces γi : Xi → X witnessing Xi as an a�noid domain in X,

(2) morphisms of K-analytic spaces γi,j : Xi,j → X witnessing Xi,j as an a�noid domain in X,
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which further satisfy that

(1) the three maps γi,j , γi ◦ ιi,j1 and γj ◦ ιi,j2 agree as maps from Xi,j to X for every pair,

(2) the Xi cover X,

(3) and Xi ∩Xj = Xi,j as subsets of X .

/

There are two major cases when a gluing exists for gluing data.

Lemma 5.15. Let ({Xi}i∈I , {Xi,j}i,j∈I , {ιi,j1 , ιi,j2 }i,j∈I) be a�noid gluing data. Then a gluing exists for it

in either of the following cases,

(1) every Xi,j is open in Xi and Xj ,

(2) everyXi,j is an analytic domain inXi andXj , and furthermore for every �xed i there are only �nitely

many j such that Xi,j is non-empty.

Proof. See Proposition 1.3.3 of [44]. �

Using this we deduce the following proposition.

Proposition 5.16. The category AnK of K-analytic spaces admits �ber products.

Proof. The proof is essentially in the same spirit of the analogous result for schemes: one breaks

the schemes into gluing data, performs the fiber product as a tensor product, and then reassembles the

tensor products into a compatible family gluing data. The major di�culty is this only directly works

for paracompact K-analytic spaces, however one can reduce the general case to this one. See the proof

of Proposition 1.4.1 of [44] for details. �

2. Properties of morphisms of K-analytic spaces

We now come to the section where we discuss properties of morphisms of K-analytic spaces.

Definition 5.17. We pose the following definitions.

(1) A morphism f : X → Y is compact if the underlying map of topological spaces is.

(2) A morphism f : X → Y is separated if the diagonal ∆f : X → X×Y X is a closed immersion.

(3) A morphism f : X → Y is quasi-separated if the diagonal morphism ∆f : X → X ×Y X is

compact.
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(4) A morphism f : X → Y is quasi-�nite if for any point x ∈ X, there is an open neighborhood

U of x and V of f(x) with the restriction f : U → V a finite morphism of K-analytic spaces.

Beware! The analytic topology on normative spectra is much finer than the Zariski topology,

meaning that being source-locally a finite morphism is a much weaker condition than in

algebraic geometry.

(5) Amorphism is closed or boundaryless if the relative interior is the entire domain, or equivalently

if its relative boundary is empty.

(6) A morphism is called naively �at (following [45]) if the induced algebra maps on all local

Banach rings is flat.

(7) A morphism is called �at (following [45]) if it is naively flat, and all base changes of the

morphism remain naively flat.

(8) For a separated morphism f : X → Y , the ideal determining the closed immersion ∆f gives

a coherent OX -module ΩY/X , called the sheaf of relative di�erentials.

(9) A separated morphism is called unrami�ed if the sheaf of relative di�erentials is the zero

module.

(10) A separated morphism is called étale if it is unramified, naively flat, and quasi-finite.

(11) A separated morphism f : X → Y is called smooth if for every point x ∈ X, there is an open

neighborhoodU of x such that the induced morphismU → Y factors asU → Y×An×Y → Y

where the second map is the natural projection and the first map is étale.

(12) A separated morphism f : X → Y is called quasi-étale if for every x ∈ X there is a framing

of f at x consisting of V1, . . . , Vn ⊂ X and W1, . . . ,Wn ⊂ Y so that every f : Vi → Wi is

étale.

(13) A separated morphism f : X → Y is called quasi-smooth if for every x ∈ X there is a framing

of f at x consisting of V1, . . . , Vn ⊂ X and W1, . . . ,Wn ⊂ Y so that every f : Vi → Wi is

smooth.

/

We are mostly interested in the smooth, étale, quasi-smooth, and quasi-étale morphisms.

Theorem 5.18. The class of étale (resp. smooth, resp. quasi-étale, resp. quasi-smooth) morphisms is closed under

composition, base change, and extensions of the ground �eld.

Let X → Z and Y → Z be any étale (resp. quasi-étale) morphisms. Then any Z-morphism X → Y is also étale

(resp. is also quasi-étale).
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Proof. For the first claims, we cite the following.

For étale morphisms, see Corollary 3.3.8 of [44]. The case for smooth morphisms follows essentially by

the case for étale morphisms and the definition of smoothness. This is Proposition 3.5.2 of [44]. The

case for quasi-étale morphisms is Lemma 3.1 (i) of [46].

For the second claims, the case for étale morphisms follows as a corollary to Corollary 3.3.9 of [44].

The case of quasi-étale morphisms is Lemma 3.1 (ii) of [46]. �

Definition 5.19. Let X be a K-analytic space. Then we can define the following sites.

(1) The étale site of X denoted siteXét, whose objects are étale morphisms to X and whose

morphisms are commutative triangles between morphisms.

(2) The quasi-étale site ofX denoted siteXqét, whose objects are quasi-étale morphisms toX and

whose morphisms are commutative triangles between morphisms.

(3) The smooth site ofX denoted siteXsm, whose objects are smooth morphisms toX and whose

morphisms are commutative triangles of smooth morphisms.

(4) The quasi-smooth site of X denoted siteXqsm, whose objects are quasi-smooth morphisms to

X and whose morphisms are commutative triangles of smooth morphisms.

Since an étale morphism is automatically quasi-étale, we obtain a geometric morphism of topoi µX :

τXqét → τXét. Similarly we obtain a geometric morphism of topoi τXqsm → Xsm.

Lastly, we define the étale homotopy type (resp. quasi-étale homotopy type) of a K-analytic space to be the

shape assigned to its étale site (resp. the quasi-étale site). /

The major results are the following.

Theorem 5.20. The étale topos (resp. quasi-étale topos) of a K-analytic space is equivalent to its smooth topos

(resp. quasi-smooth topos).

Proof. Smooth morphisms admit étale local sections, and so étale coverings are cofinal in the

class of smooth coverings. Quasi-smooth morphisms similarly admit quasi-étale local sections. �

Theorem 5.21 (Theorem 3.1 of [47]). Let f : X → Y be a morphism of schemes locally of �nite type over

K , and assume that f is of �nite type. Then for any sheaf of torsion groups A whose orders are coprime to the

characteristic of K , and any non-negative integer i.

(
Rif∗A

)an
' Rifan

∗ A an
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Corollary 5.22. Let X be a variety over K , then for any sheaf of torsion groups A whose orders are coprime

to the characteristic of K ,

Hi(Xét,A ) ' Hi(Xan
ét ,A

an)

Theorem 5.23 (Theorem 3.3 (ii) of [46]). Let X be a K-analytic space, and write µ∗X : τXét → τXqét

for the inverse image functor. Then for any abelian sheaf A on the étale topos of X and any non-negative integer

i,

Hi(Xét,A ) ' Hi(Xqét, µ
∗
XA )

Theorem 5.24 (Theorems 3.1 and 4.1 of [48]). Let X be a scheme locally of �nite type over specK . Then

the category of �nite étale covers of X whose degree is coprime to the characteristic of K is equivalent to the

category of �nite étale covers of Xan whose degree is coprime to the characteristic of K .

Theorem 5.25 (Corollary 4.1.9 of [44]). For any group G, sheaf theoretic G-torsors for the étale topology

are representable by K-analytic spaces.

Corollary 5.26. Let X be a scheme locally of �nite type over specK . Then if the characteristic of K is zero,

the pro�nite étale fundamental groups of X and Xan are isomorphic. If the characteristic of K is a positive

prime number p, then the prime-to-p completion of the étale fundamental groups of X and Xan are isomorphic.

Combining Corollary 5.22 and Theorem 5.24 gives us the following corollary.

Corollary 5.27. Let K be a non-archimedean normed �eld. Let X be a scheme locally of �nite type over K ,

then

(1) if the characteristic of K is zero, we have an equivalence of pro�nitely completed étale homotopy types

̂́etX ' ̂́etXan

(2) if instead the characteristic of K is a positive prime p, then we have an equivalence of {p}c-pro�nitely

completed étale homotopy types,

̂́et{p}c X ' ̂́et{p}c Xan

There is also a natural notion of cohomology with compact support.

Definition 5.28. Let X be a K-analytic space. With any abelian sheaf F for the étale topology on

X , we may define the global sections with compact support

Γc(X ,F ) := {f ∈ F (X ) | supp f is a compact subset of X}
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where the support of a section is the set of points where the stalk of f is zero. This is automatically

left exact since morphisms of sheaves preserve sections with compact support.

The right derived functors of Γc are called the cohomology with compact support functors.

There is also a relative version of this, for a morphism f : X → Y and an abelian sheaf for the étale

topology F , we define the direct image with compact support f!(F ) by the following

f!(F )(U/Y) := {f ∈ F (X ×Y Y) | supp f is a compact subset of X}

this extends to a functor f! and is left exact. Its derived functor is called the higher direct image with

compact support functor and is simply written Rif!. /

We only use this to deduce proper-smooth base change for K-analytic spaces.

Lemma 5.29. Let f : X → Y be a compact morphism between compact Hausdor� K-analytic spaces. Then the

natural tranformation f!  f∗ is an equivalence, inducing an isomorphism of derived functors.

Proof. The support of a section of an arbitrary sheaf is closed. Since the spaces are both compact

and Hausdor�, the support will also be compact, and so all sections of all sheaves have compact

support. �

Theorem 5.30 (Theorem 7.1.1 of [44]). Let X be a compacti�able scheme over specK . Then the algebraic

and analytic compactly supported cohomology agree, at least for abelian torsion sheaves F .

Hi(Xét,F ) ' Hi(Xan
ét ,F

an)

Corollary 5.31. Let X be a proper scheme over K . Then the pro�nitely completed étale homotopy type of X

and Xan agree. ̂́etX ' ̂́etXan

3. Adic spaces

We now come to the next formalism of non-archimedean algebraic geometry, that of adic spaces.

The base theory is due to Huber. While Berkovich’s non-archimedean analytic spaces give compact

Hausdor� a�noids, Huber’s theory gives spectral spaces. Recall that a topological space is spectral if

it is homeomorphic to specR for some (non-unique) ring R.

Definition 5.32. We pose the following definitions.
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(1) Let R = (R., R+) be an a�noid pair and spaR its valuative spectrum. Then to any finite

list of elements f1, . . . , fn, g ∈ R. such that the ideal generated by the fi is open in R. we

construct the open subset

RatR(f1, . . . , fn
g

) := {x ∈ spaR | |fi|x ≤ |g|x 6= 0 for all i}

(2) A subset is called rational if it is of the above form for some sequence of ring elements.

(3) We define a presheaf OspaR as follows. For a rational subset U ⊂ spaR, we define

OspaR(U) := R̂.[g−1]

where the completion is respect to a topology which forces each fi/g to satisfy that limn→∞(fi/g)n =

0R. . Since the details of the topology are not important for our purposes, we will simply cite

[21]. For a general open subset U ⊂ spaR, we define is as the colimit over rational subsets

of U ,

OspaR(U) = colim
V⊂U

OspaR(V )

To any point x ∈ spaR, we get a valuation | − |x : OspaR,x → Γx for which the local rings

are complete.

(4) We define the subpresheaf

O+
spaR :=

[
U 7→ {f ∈ OspaR(U) | |f |x ≤ 1 for all x ∈ U}

]
as the presheaf of bounded elements.

(5) A valuatively ringed space is a triple (X,OX , V alX) where X is a topological space, OX is a

sheaf of topological rings, and V alX = {vx : OX,x → Γx} is a set of valuations indexed by

the points of X satisfying that

(a) the topology on the stalk OX,x is the same as the topology from the valuation vx,

(b) the ring OX,x is a local valuation ring,

(c) and every valuation vx is tidy.

Instead of the tidy condition, one may instead only consider vx as being an equivalence class

of valuations.

(6) A morphism of valuatively ringed spaces is a morphism of locally ringed spaces which is strictly

compatible with the valuations, i.e. if f(x) = y then vx ◦ f = vy as functions on OY,y.

/
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Theorem 5.33. Let R = (R., R+) be an a�noid pair, satisfying one of the following assumptions.

[21] The ring R. is f -adic and has some Noetherian ring of de�nition over which R/ is �nitely generated,

[21] the ring R. is universally Noetherian,

[49] the ring R. is perfectoid,

[50] or the ring R. is stably uniform.

the pair (spaR,OspaR) is a valuatively ringed space.

Since there are two rings in play, the notion of being “of finite type” is more complicated.

Definition 5.34. We pose the following definitions.

(1) An adic space is a valuatively ringed space which is locally isomorphic to the valuative spectrum

of some a�noid pair, and satisfying that the valuation on local rings is independent of which

a�ne open it is computed in.

(2) A morphism of adic spaces is a morphism of valuatively ringed spaces.

(3) A morphism of adic spaces is quasi-compact when the map on topological spaces is, that is

when the preimage of a quasi-compact open subset is quasi-compact.

(4) An adic space is quasi-separated when the intersection of any two quasi-compact open subsets

is again quasi-compact.

(5) A morphism of adic spaces is quasi-separated when the preimage of a quasi-separated open

subset is quasi-separated.

(6) A morphism f : X → Y of adic spaces is adic if for any a�noid opens U ⊂ X and V ⊂ Y

with f(U) ⊂ V , the induces ring morphism OY (V )→ OX(U) is an adic morphism of pairs.

(7) A morphism f : X → Y of adic spaces is locally weakly �nite type if for each x ∈ X there is

an a�noid open neighborhood U of x and V of f(x) such that f(U) ⊂ V and the induced

morphism OY (V )→ OX(U) is topologically of finite type as a morphism of topological rings.

(8) A morphism of adic spaces is locally +weakly of �nite type when it is locally weakly finite type,

and for any x ∈ X and U and V as above, there exists some finite sequence of ring elements

f1, . . . , fn ∈ OX(U) such that the ring O+
X(U) is the smallest ring of integral elements for

OX(U) which contains both O+
Y (V ) and every fi.

(9) A morphism f : X → Y of adic spaces is locally of �nite type if for every x ∈ X there are open

a�noid neighborhoods U of x and V of f(x) such that f(U) ⊂ V and the induced map on

a�noid pairs (
OY (V ),O+

Y (V )
)
→
(
OX(U),O+

X(U)
)
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is finite type in the sense of Huber.

(10) A morphism of adic spaces is of weakly �nite type (resp. of +weakly finite type, resp. of finite

type) when it is quasi-compact and locally weakly finite type(resp. locally +weakly finite type,

resp. locally of finite type).

(11) A morphism of adic spaces is of �nite presentation if it is of finite type, and if the topologies

on the rings are discrete the ring morphisms should also be of finite presentation.

/

The basic structural results for this category are the following.

Lemma 5.35. (1) A morphism between a�noid adic spaces is locally of �nite type if and only if the ring

homomorphism if �nite type in the sense of Huber.

(2) If f : X → Y and g : Z → Y are two morphisms of adic spaces, then the categorical �ber product of

them exists when either of the following conditions are satis�ed.

(a) One of the morphisms is locally of �nite type,

(b) or one of the morphisms is locally weakly �nite type and the other is adic.

(3) Locally of �nite type and locally of �nite presentation morphisms are stable under pullback.

(4) Locally of +weakly �nite type morphisms are stable under pullback by adic morphisms.

(5) If f : X → Y and g : Z → Y are two morphisms with f locally weakly of �nite type and g adic,

then

(a) the pullback f ′ is locally weakly of �nite type,

(b) the pullback g′ is adic,

(c) if f is quasi-compact (resp. quasi-separated), then so is f ′,

(d) if g is quasi-compact (resp. quasi-separated), then so is g′,

(6) For any adic space Y and point y ∈ Y , the morphism spa k(y)→ Y is adic.

(7) For any f : X → Y and point y ∈ Y the �ber Xy exists.

4. Interplay between adic and K-analytic spaces

The theory of adic spaces is more technically convenient in some respects than the formalism of K-

analytic spaces. The opposite is also true, and so it is beneficial to take results from one theory and

port them to the other.

[NOTE: Have to discuss what kinds of fields this works for]
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Theorem 5.36 (Theorem 8.3.1 of [21]). There is an equivalence of categories s : An′ → Rig between the

category of Hausdor� strictly K-analytic spaces and taut rigid analytic varieties.

Theorem 5.37 (Discussion in 1.1.11 of [21]). There is an equivalence of categories r : Rig′ → Ad′ between

the category of quasi-separated rigid analytic varieties and quasi-separated and locally of �nite type adic spaces

over spaK .

We can combine these into the following, keeping in mind that taut implies quasi-separated.

Theorem 5.38. There is an equivalence of categories (−)ad : An→ Ad between

(1) the category of Hausdor� strictly K-analytic spaces,

(2) and the category of taut adic spaces locally of �nite type over spaK .

Proof. Since r is fully faithful, we only need to determine the image under r of the image of s.

The image of s is taut rigid analytic varieties, which by definition are quasi-separated. A morphism of

rigid analytic varieties is taut if and only if the associated morphism of adic spaces is taut by Lemma

5.6.8 (i) of [21]. �

Corollary 5.39. The functor (−)ad preserves the following properties,

(1) it takes strictly a�noid domains to open a�noid immersions,

(2) it takes compact morphisms of K-analytic spaces to quasi-compact morphisms of the associated adic

spaces,

(3) it takes proper morphisms of K-analytic spaces to proper morphisms of the associated adic spaces,

(4) a collection of morphisms {Ui → X}i∈I is jointly surjective if and only if the associated collection of

morphisms of adic spaces is surjective,

(5) it takes étale morphisms of K-analytic spaces to étale and partially proper morphisms of the associated

adic spaces,

(6) it takes quasi-étale morphisms of K-analytic spaces to étale morphisms of the associated adic spaces,

(7) it takes smooth morphisms of K-analytic spaces to smooth morphisms of the associated adic spaces,

(8) and it takes quasi-smooth morphisms of K-analytic spaces to smooth morphisms of the associated adic

spaces,

Proof. We split up the claims. Unless explicitly stated otherwise, all K-analytic spaces should be

assumed to be Hausdor� and strictly K-analytic.
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(1) It is su�cient to check this for a�noid X = spA. In this case, a strictly analytic subdomain

spB ⊂ spA will admit a finite covering by Weierstrass domains in A. Since Weierstrass

domains give open subspaces on the level of rigid varieties, such a spB will give an open

subspace of the adic space associated to A.

(2) See Proposition 3.3.2 of [19] for the associated morphism of rigid spaces, to check that the

associated morphism of adic spaces remains quasi-compact, we simply note that it su�ces to

check that the preimage of an a�noid open is a finite union of a�noid opens, and the lattice

of such a�noid opens is the same in the rigid space and the adic space.

(3) See Proposition 3.3.2 of [19] for the associated morphism of rigid spaces, and Remark 1.3.19

(iv) of [21] for the associated morphism of adic spaces.

(4) This is proved in the course of Proposition 8.3.4 of [21], see “Proof of (b)” on page 427.

(5) By Proposition 8.3.4 of[21] for a fixed base the étale site of a K-analytic space is equivalent to

the étale and partially proper site of the associated rigid analytic variety. By Proposition 1.7.11

of [21] a morphism of rigid analytic varieties is étale if and only if the associated morphism

of adic spaces is. By Proposition 1.5.9 of [21], a locally quasi-finite morphism of rigid analytic

varieties is partially proper if and only if the associated morphism of adic spaces is. Étale

morphisms of rigid analytic varieties are of course locally quasi-finite, and so we deduce that

étale morphisms of K-analytic spaces are taken to étale and partially proper morphisms of

adic spaces.

(6) Let f : X → Y be a quasi-étale morphism. Then by definition at each point x ∈ X , there

is some a�noid framing U1, . . . , Un of x and V1, . . . , Vn of f(x) such that Ui → Vi is étale.

The inclusions Ui → X are a�noid domains, and under the construction above these map

to open a�noid neighborhoods of adic spaces. Thus we can locally factor fad as an open

immersion followed by an étale and partially proper map. Such a composition is still étale,

and in general not partially proper.

(7) Smooth morphisms f étale locally admit factorizations as U → AnK × X → X where the

first map is étale and the second is the projection. By the previous argument, fad admits

étale-and-partially-proper local factorizations into a smooth map. But smoothness is local for

the étale topology on a rigid analytic variety by Theorem 4.2.7 of [51], and a morphism of

rigid analytic varieties is smooth if and only if the associated morphism of adic spaces is

smooth by Proposition 1.7.11 of [21].
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(8) We can use the above argument but replacing étale with quasi-étale. Since the morphism of

rigid spaces associated to a quasi-étale morphism is still étale, the rest of the argument goes

through.

�

Theorem 5.40 (Homotopy Fiber Theorem). Let f : X → Y be a smooth and proper map of compact and

Hausdor� K-analytic spaces, and y a geometric point in Y . Pick any prime ` coprime to the characteristic of the

residue �eld k. Assume that

(1) the morphism has geometrically connected �bers,

(2) the étale fundamental group πét
1 (Y, y) acts trivially on the `-adic cohomology of the �bers,

(3) and that Y is connected.

Then we have a homotopy �ber sequence of `-pro�nite spaces

̂́et` Xy → ̂́et` X → ̂́et` Y

We will split up the proof into several parts.

Lemma 5.41. Let f : X → Y be a smooth and proper map of Hausdor� and paracompact strictly K-analytic

spaces, and ` a prime distinct from the characteristic of the residue �eld k. Then for each i ≥ 0, the higher direct

image functor Rif∗ takes locally constant `-primary torsion sheaves to locally constant `-primary torsion sheaves.

Proof. We may take the associated adic spaces of X and Y , which we write as X ad and X ad. The

map f also becomes an adic morphism fad : X ad → Yad. Smooth morphisms of K-analytic spaces

become smooth morphisms of adic spaces, and proper morphisms ofK-analytic spaces become proper

morphisms of adic spaces. Then we have this result for fad by Corollary 6.2.3 of [21]. But the functors

Rf∗ and Rfad
∗ agree for `-torsion sheaves. �

Theorem 5.42. Let f : X → Y be a smooth and proper morphism of Hausdor� and paracompact K-analytic

spaces, and ` a prime distinct from the characteristic of the residue �eld k. Then for each i ≥ 0, the higher direct

image functor Rif∗ takes locally constant `-primary torsion sheaves to locally constant `-primary torsion sheaves.

Proof. There is a non-archimedean fieldKr such that the base change of both X and Y toKr are

both strictly Kr-analytic. Write f ′ : X ′ → Y ′ We will show that the base change of Rif∗A is exactly

Rif ′∗(A ′). Since the morphism f is proper, the direct image functor is the same as the direct image with

compact support. Thus by the Weak Base Change theorem Theorem 5.3.1 of [44], the stalks of Rif∗A
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are the étale cohomology of the geometric fibers of f . However the étale cohomology of an analytic

space over an algebraically closed non-archimedean field is invariant under ground field extension by

Theorem 7.6.1 of [44]. Thus the morphism furnished by the universal δ-functor Rif ′∗A  (Rif∗A )′

is an isomorphism, and we conclude that the base change of the higher direct images are all locally

constant. �

Proof of Homotopy Fiber Theorem. We have three converging spectral sequences and mor-

phisms between them

Ep,q2 (S) = Hp
sing( ̂́et` Y, Hq(F,Z/`)) ⇒ Hp+q

sing ( ̂́et` X ,Z/`)

Ep,q2 (S′) = Hp
sing( ̂́et` Y, Hq(Xy,Z/`)) ⇒ Hp+q

sing ( ̂́et` X ,Z/`)

Ep,q2 (V ) = Hp
sheaf(Yét, H

q(Xy,Z/`)) ⇒ Hp+q
sheaf(Xét,Z/`)

Ep,q2 (L) = Hp
sheaf(Yét, R

qf∗Z/`) ⇒ Hp+q
sheaf(Xét,Z/`)

' ' '

The marked isomorphisms come from Verdier’s hypercover theorem. If each Rqf∗Z/` is constant, then

Ep,q2 (V )→ Ep,q2 (L) is also an isomorphism. The map from Ep,q2 (S′) to Ep,q2 (S) is the one induced by

the universal property of the homotopy fiber.

From here, we simply proceed as in [3]. We create a tower of étale coverings of Y , and in the colimit

the spectral sequences all collapse. The isomorphism on abutments forces the Ep,q2 terms to become

isomorphic, so that in particular

Hq(Xy,Z/`)→ Hq(F,Z/`)

is an isomorphism. In `-profinite spaces, this says exactly that they are equivalent. �

Theorem 5.43. Let X be a Hausdor� strictlyK-analytic space. Then the quasi-étale 1-topos of X is equivalent

to the étale 1-topos of X ad

τXqét ' τX ad
ét

Proof. The quasi-étale topos is equivalent to the one generated by quasi-étale morphisms whose

source is a�noid. We use that X is Hausdor� to have fiber products in the subcategory. We may refine

such a quasi-étale map q : U → X so that it will factor into q = e◦j where e is étale and j is an a�noid
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embedding. Both ead and jad will be étale as morphisms of adic spaces, and ead is also partially proper.

The composition in general is merely étale and not partially proper and étale.

We will show that such morphisms are cofinal in the category of étale maps to X ad. Let f : Y → X ad

be an étale map, and we may assume without loss of generality that Y = spaA is a�noid and its

image is contained in a partially proper a�noid of X ad as such morphisms generate a cofinal system

of coverings. Theorem 2.2.8 of [21] gives a local compactification f = f ◦ j where f is a finite étale

map and j is an open embedding. Replace our a�noid cover by the local and compactifiable one. The

finite étale map of course comes from a finite étale extension of the corresponding analytic domain in

X , and the open embedding may not directly come from a a�noid in X rig, however it does refine to a

collection of a�noids in X rig whose union is spaA. To relate this back to X itself, we apply Theorem

1.6.2 of [44]. �

Corollary 5.44. Let X be a Hausdor� strictly K-analytic space. Then the geometric morphism from the

quasi-étale topos of X to the étale topos of X is a pro-truncated shape equivalence.

Proof. This follows since the étale topos ofX is the partially-proper étale topos ofX ad, and Propo-

sition 8.12.2.i of [21] guarantees that on locally constant sheaves that the counit natural transformation

θ∗θ
∗  id is an isomorphism. This implies that it is a pro-truncated shape equivalence. �

5. Formal models and non-archimedean geometry

In this section we will explore the relationships between non-archimedean analytic spaces and their

formal models. Let R be a complete discretely valued ring, with fraction field K and residue field k.

Definition 5.45. Let X be a special formal scheme. Then we can construct a strictly K-analytic space

X called the generic fiber of X. We follow the construction in [40].

(1) If X = spf A is a�ne, then we find a surjection R[[T1, . . . , Tn]]{S1, . . . Sm} → A with kernel I .

Write P = Em(0, 1)×Dn(0, 1) where En(c, r) is the closed polydisc of dimension n centered

at c with radius r and Dm(c, r) is the open polydisc of dimension m with center c and radius

r. We take X to be the source of the closed immersion determined by the ideal IOP .

(2) If X is not a�ne, we take an open covering U0 := {Ui}i∈I by a�nes and another a�ne

open covering U1 of the pairwise intersections {Ui,j}i,j∈I . Since X is locally Noetherian it is

quasi-separated and U1 is locally finite in each pairwise intersection Ui,j∈I . We can use (1)

to define a diagram of strictly K-analytic spaces, where all the a�noids coming from U1 are
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analytic domains in those of U0. This directly gives gluing data, and the gluing exists by the

second criterion of Lemma 5.15.

(3) A refinement of an a�noid covering as in (2) induces a unique isomorphism of strictly K-

analytic spaces. This is checked by reducing to the case where X is a single a�noid. That

case follows immediately from Proposition 1.3.2 of [44].

(4) Any two a�ne coverings as in (2) admit a common refinement, and so by (3) are canonically

isomorphic.

(5) For any morphism of special formal schemes, we can find a compatible a�ne covering of

both. Then the universal property of the gluing gives a unique morphism between their

generic fibers.

/

Lemma 5.46. (1) The generic �ber of an adically étale morphism is quasi-étale.

(2) The generic �ber of an adically log étale morphism between vertical log special formal schemes is

quasi-étale.

(3) The generic �ber of an admissible log blow up of a vertical log special formal scheme is the identity

morphism.

(4) The generic �ber functor siteXakét → siteXη,qét induces a morphism of sites in the opposite direction.

Proof. We break up the proof.

(1) This is Proposition 2.1.iii of [40].

(2) This appears in [41]. Being adically log étale means that adically locally the morphism factors

as an adically étale map followed by a simple projection whose generic fiber is étale. Being

quasi-étale is local for the quasi-étale topology, and so we conclude the desired statement.

(3) This reduces to the claim that admissible log blow up does not change the generic fiber, which

can be checked on an a�ne chart.

(4) This follows since the generic fiber functor preserves fiber products, making it a continuous

morphism of sites.

�

Choosing a homotopy inverse of the equivalence from qétXη → étXη gives the following corollary.

Lemma 5.47. Let X be a fs vertical log special formal scheme, and assume
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(1) that X◦ is a�ne,

(2) there exists a strict and log smooth specR-scheme V → specR,

(3) it admits a global chart P → OV for a fs monoid P ,

(4) and there exists a strict log morphism X→ V̂Vs making X isomorphic to the completion of V̂Vs along

some closed subset with the inverse image log structure.

Then the `-pro�nitely completed adically Kummer étale homotopy type of X is equivalent with the `-pro�nitely

completed étale homotopy type of its generic �ber X = Xη .

Proof. We actually have a chain of equivalences involving a few more spaces. Since X is a�ne,

write A for its global sections, X = specA and Xad for the associated adic space. It is not necessarily

true that Xad and X ad agree, however there is a map X ad → Xad. We have a collection of morphisms

̂́et` X
1← q̂ét` X

2→ ̂́et` X ad 3→ ̂́et`XK
4→ k̂ét`X

5→ âkét` X.

We claim that each arrow is an equivalence.

(1) This is 5.44.

(2) This is 5.43.

(3) This is the most di�cult argument, and relies on the other identifications. For convenience

put V = V̂Vs . First we note that for V, the ring OV ⊗R K is actually isomorphic to the

underlying ring of X ad, since V is topologically of finite type. In particular, Theorem 3.2.2

of [21] guarantees that the profinitely completed étale homotopy types of spa OV ⊗R K and

spec OV ⊗R K agree. Furthermore, the morphism i : X → V satisfies the criteria of Propo-

sition 3.15 of [52]. Writing θX and θV for the morphisms from the étale topoi of the corre-

sponding adic spaces to the corresponding adically étale topoi, the referenced proposition

states that i∗RθV,∗F ' RθX,∗iad,∗F for constructible F . Using the isomorphism above and

Theorem 4.60, we can functorially identify

RiθV,∗Z/` ' Z/`⊗Z ∧iP gp

for P a chart for V and now applying Proposition 3.15 of [52] we deduce that

RiθX,∗Z/` ' i∗
(
Z/`⊗Z ∧iP gp)
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but of course we can pull the inverse image functor inside

i∗
(
Z/`⊗Z ∧iP gp) ' Z/`⊗Z ∧ii∗P gp.

Finally, we note that the log scheme X is fs and admits a chart given by i∗P , meaning the

above is exactly the description of the Kummer étale cohomology of X . However away from

p, this is just the cohomology of XK as desired.

(4) If X→ V̂Vs
is an isomorphism, we are done asXtriv is simplyXK . If it is not an isomorphism

then a priori Xtriv could be larger. However, the support of MX/O
×
X must have codimension

1 if it is non-trivial and be supported on the special fiber. Thus any point on which MX/O
×
X

is non-trivial forces Xtriv to be all of XK . However any closed point of X will su�ce: the

chart P for X automatically gives a chart for X at x.

(5) This is an equivalence by the logarithmic corollary of Gabber’s A�ne Analogue of Proper

Base Change, Theorem 4.60.

�

Corollary 5.48. Let X be a fs log scheme over spf R, and assume that the structure morphism is adically log

smooth and that X is a�ne with a global chart for its log structure. Then the {p}c-pro�nitely completed adically

Kummer étale homotopy type of X agrees with the {p}c-pro�nitely completed étale homotopy type of its generic

�ber.

Proof. By Théorèm 7 of [53], X is automatically algebraizable. Examining the proof above, the

only argument that does not also apply for torsors is part (3). However in the case of a topologically

of finite type a�ne, the generic fiber is obtained by simply applying the −⊗RK functor to the ring of

global sections. Thus the categories of torsors agree by Theorem 3.2.2 of [21]. �

Theorem 5.49. Let X be a locally Noetherian and separated log formal scheme, algebraizably log smooth over

spf R. Then there is an equivalence of `-pro�nitely completed shapes

q̂ét` Xη ' âkét` X

Proof. The formal scheme admits a hypercovering by a simplicial formal scheme where each

connected component in each degree is an a�ne étale neighborhood in X and satisfies the assumptions

of the previous lemma. We can now apply hypercover descent to deduce the theorem. �
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Theorem 5.50. Let X be a locally Noetherian and separated log formal scheme, adically log smooth over spf R.

Then there is an equivalence of {p}c-pro�nitely completed shapes

q̂ét{p}c Xη ' âkét{p}c X

Proof. The formal scheme admits a hypercovering by a simplicial formal scheme where each

connected component in each degree is is an a�ne étale neighborhood in X satisfying the assumptions

of the above corollary. We can now apply hypercover descent to deduce the theorem. �
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