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SUMMARY 

 

 

 This thesis addresses the problem of non-ignorable missing ratings in judge rated data. A 

Bayesian bivariate probit ordinal missing data model implemented with Markov chain Monte 

Carlo (MCMC) was applied to simulated and real-world data sets to test the extent to which this 

proposed approach outperformed existing methods for analyzing judge rated data across a variety 

of evaluation criteria and data collection scenarios. The MCMC approach was compared to the 

many-facet Rasch model, generalizability theory (with a linear regression correction for rater 

effects), and the Rasch rating scale model. The objectives of the research were to test the extent 

to which the proposed methods could 1) calculate generalizability theory variance components 

when traditional methods could not be applied, and 2) produce more accurate latent trait 

measures than existing methods. The study used eight simulated data sets with varying numbers 

of examinees, raters, items, and distributional properties of examinee ability estimates. In 

addition a real-world data set consisting of classroom observations was used to test the 

applicability of the methods to non-simulated data. 

 The Bayesian bivariate missing data model produced variance component estimates (and 

D-study coefficients) that were quite accurate for measurement scenarios with only a single, 

randomly assigned rater. The MCMC approach yields confidence intervals with better coverage 

probabilities than traditional approaches, and this finding is consistent when raters are randomly 

or non-randomly assigned to examinees. This modeling approach more accurately models the 

uncertainty in examinee scores by taking into better account the error due to rater severity, and 

non-random assignment of raters. 
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I. INTRODUCTION 

 

An important goal of educational measurement is to develop instruments and measures 

which provide researchers meaningful and valid information on educational phenomena, 

including the performance of examinees on a test or questionnaire. Of particular interest is the 

application of rigorous procedures to ensure that inferences are not based on statistical methods 

which do not account for potential issues with data collection and measurement. Failure to 

account for the possibility of systematic errors and biases during study design, data collection, 

and the subsequent statistical modeling can result in faulty conclusions about the effectiveness of 

educational programs and policies, as well as improper decisions about individual students, their 

teachers, or their schools. 

This thesis will address the open problem of correcting for rater bias in the presence of 

non-ignorable missing ratings. In particular, single-rater and multi-rater designs, where raters 

form disjoint subsets in that they are totally uncrossed with examinees, pose a significant 

challenge to the development of fair, objective measures of examinee ability when raters are not 

interchangeable. Furthermore, measurement may even be problematic for multi-rater designs 

without disjoint subsets, when the missing data mechanism is non-ignorable. This thesis will 

draw upon the knowledge of several distinct lines of research. First, research on the sources and 

types of rater bias will help in understanding the nature of the problem, and suggest ways to 

locate such biases in the data. Next, the methods proposed here will build upon existing methods 

for analyzing and dealing with measurement error due to raters (such as Generalizability Theory, 

Many-Facet Rasch Measurement, and classical test theory correction methods). Finally, the 

fields of missing data analysis and Bayesian data analysis will be combined to develop a solution 

to this problem. This thesis will propose methods for correcting for rater bias in situations when 
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existing methods (which require partially crossed rating designs and no disjoint subsets in the 

data) cannot be applied. Furthermore, the proposed methods will handle measurement scenarios 

where missing data mechanisms cannot be considered ignorable. 

There is a wealth of literature which has documented the presence, impact, and theory of 

rater effects. Rater effects have been shown to significantly decrease the reliability of measures, 

and remain persistent in practice, even with rigorous monitoring and training of raters. Research 

into rater effects has followed three main lines of research: rater cognition; contextual factors 

that relate to rater effects; and the identification of and correction of rater effects (Wolfe, 2004). 

This thesis will sit within the third line of research – identifying and correcting for rater effects. 

One particular example of a rater effect is severity/leniency bias. This type of bias occurs when 

judges have systematic biases that cause them to (on average) rate examinees higher (leniency) 

or lower (severity) than their true scores. While the models proposed in this thesis will focus on 

rater severity/leniency effects, this chapter provides detailed description of a wide range of rater 

effects. 

To complement the literature on rater effects, there exists a body of research on 

determining the how rater effects manifest in a measurement system, the extent of those rater 

effects, how those rater effects are affecting examinee scores, and how to correct scores for those 

effects. The field of psychometrics focuses on developing, analyzing, and refining measurement 

systems across a wide-range of sciences including educational psychology. Generalizability 

Theory (GT), an important area of psychometrics, is the study of variance in scores attributable 

to distinct sources of measurement error (Brennan, 2001). These sources of error are typically 

referred to as facets. Essentially a modified version of traditional analysis of variance combined 

with classical test theory, GT seeks to estimate the level of error in a given observation that can 
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be allocated to each facet of measurement. Examples of facets include test or observation 

protocol items, raters, writing prompts, testing locations, and the occasion of testing. An 

alternative to GT which also examines the impact of the facets of measurement is the Many-

Facet Rasch Model or MFRM (Linacre & Wright, 2004). Both of these approaches were 

developed to partition and account for variability due to facets of measurement for a given 

measurement scenario. For example, if classrooms are observed on multiple days by multiple 

raters, with respect to multiple items or tasks, GT and MFRM could produce estimates of 

measurement error attributable to items, raters, and occasion. However, for GT and MFRM to be 

applicable and useful, careful consideration must be given to the design of the data collection 

process (e.g., the number of raters per observation). 

If data collection is not conducted in a particular fashion, standard GT and MFRM cannot 

be used. In particular, it is important that the data are sufficiently complete to allow for the 

estimation of random (for GT) or fixed (for MFRM) effects for the raters (or other facets of 

interest). Sufficiently complete is meant to imply that there are no disjoint subsets within the 

data. For example, if only one judge observes each person, then no model will be able to 

disentangle the judge effect from the person effect – that is, the two effects will be confounded 

(without adding additional assumptions or information to the model). For GT, this will result in 

the inability to separate out the variance due to persons from the variance due to persons-judge 

interactions. For MFRM, the model will be unable to determine the fixed effects (judge severity 

measures) associated with each judge. When data collection results in complete separation (i.e., 

the presence of disjoint subsets), traditional GT and MFRM cannot be used to analyze and deal 

with the measurement error attributable to the facets of measurement. For this scenario, it 
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becomes necessary to construct a method for dealing with the error introduced into the measures 

by the facets of measurement. 

The situation where data do not exist to separate the effects attributable to the facets of 

measurement from the effects attributable to the objects of measurement can be treated as a 

missing data problem. One can imagine a measurement scenario with five judges rating 

examinees. If each examinee is rated by only one judge of the five, then the hypothetical and/or 

unknown ratings of the remaining four judges could be treated as missing data (which could have 

been collected under a more complete data collection process). This missing data scenario can be 

defined as missing response data (dependent variable missingness), with complete covariate data 

(i.e., the design matrix of judges, items, and persons). Assuming these missing data have no 

effect on the scores (or ability estimates) of the examinees would require at least an assumption 

that data were missing at random (MAR), meaning that the information from the observed 

ratings can be used to predict the values of the missing ratings, via the measurement 

(psychometric) model for the judge ratings. Indeed, if all the missing ratings are MAR, then a 

complete-case analysis can be used with the measurement model (Graham & Donaldson, 1993). 

However, MAR is arguably a very strong assumption, as almost always in practice, missing 

rating data results in the analyst's inability to determine the effect of the judges (or any other 

facet of measurement) on the observed scores, even before data collection. In turn, this can lead 

to biased estimates of judge rating severity parameters in a measurement model, when the model 

is used in a complete case analysis (Schafer & Graham, 2002). 

When latent trait measures for individuals depend on rater perceptions (and thereby 

include error attributable to raters), it becomes necessary to consider methods for correcting 

those measures to account for error and bias induced by the raters. While GT focuses on 
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estimating the extent of variability due to rater effects, other methods have been applied to adjust 

scores based on inference about the effects due to judges (and other facets of measurement). 

These approaches include ordinary least squares (OLS) regression methods, MFRM and other 

latent trait models, linear scaling approaches, and data imputation (MacMillan, 2000). As with 

GT and MFRM, these methods have focused on cases where multiple raters (at least two) have 

rated each examinee. This thesis will discuss existing methods and then propose a correction 

model (a bivariate probit multiple imputation Markov chain Monte Carlo item response model) 

which applies to cases where only a single rater has rated each examinee. Additional scenarios 

where this model will be applicable will be for judge rating designs where the missing data 

mechanism is non-ignorable. Furthermore, this correction model will allow for the estimation of 

traditional GT statistics including reliability and the extent to which measurement error is 

partitioned among the facets. 

This thesis outlines, develops, and tests a method for applying Markov chain Monte 

Carlo (MCMC) and missing data analysis techniques to a sparse data set of judge rated 

examinees (i.e., sparse to the point of only a single judge rating each examinee). The proposed 

methods are applied with the intent of generating estimates of reliability and error similar to 

traditional GT and correcting for rater bias (in a situation not previously addressed in the 

literature) including instances when missing data are non-ignorable. This thesis addresses the 

following research objectives: 

 Research Objective 1: To develop statistical methods that allow one to investigate the 

extent to which measurement error (defined as the difference between one’s true latent 

ability and the measure of that ability) is partitioned among the facets of measurement 
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(with an emphasis on rater bias) for data collection scenarios where traditional 

approaches in the literature cannot be applied. 

 Research Objective 2: To develop methods which produce latent trait measure estimates 

(which are closer to true generating parameters) that account for rater bias and error due 

to the other facets of measurement, compared to existing methods which either cannot 

account for rater bias, or assume non-ignorable missing data. 

This chapter discusses the key topics encountered in the discussion above. In particular, the 

following sections describe sources of bias and measurement error (i.e., that due to judge 

ratings), existing methods for addressing that measurement error (including outlining, 

comparing, and contrasting GT and MFRM), and existing methods used to correct individual 

measures of the latent trait. The topic of missing data is explored and includes foundational 

definitions of different missing data types and methods for handling missing data. Bayesian 

inference and MCMC methods are presented, keying in on how they can be used for polytomous 

multi-rater item response models. The remainder of this chapter serves only as an introduction 

and overview of these topics. A more technical, detailed discussion of how the models are 

developed and implemented is provided in the second chapter. 

A. Sources of Bias and Measurement Error 

Generalizability theory and MFRM are both concerned with the issue of external bias in 

observed scores for the objects of measurement. It is not difficult to imagine how any given 

measurement scenario has multiple competing and interacting sources of bias external to the trait 

of interest which can influence an individual’s overall score. For example, when raters are 

involved in determining the score for an individual on a test, both the characteristics of the rater 

and the individual being rated (interacting with the rater's biases) can introduce considerable bias 
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into a measurement situation. While the effects of many different sources of measurement error 

can and should be considered when developing measures (e.g., raters, occasions, items), this 

thesis focuses on measurement error due to raters (also referred to as judges). Scenarios that 

involve judge rated scoring include classroom observations, college acceptance decisions, 

written essay scoring, partial credit item scoring, oral examinations, and job applicant decisions 

(to name a few). 

Rater effects can be described as systematic patterns in the behavior of the raters that result in 

inaccurate or biased scoring of the objects of measurement (Wolfe, 2004). Despite rigorous 

training of raters aimed at minimizing or eliminating bias due to raters, many studies have shown 

that rater effects continue to be prevalent in the data (e.g., Blok, 1985; Braun, 1988; Englehard, 

1992; Lane & Sabers, 1989; Luntz, Wright, & Linarcre, 1990). The reliability of judge ratings 

can be quite low. King, Hunter, & Schmidt (1980) found that reliabilities for single rater designs 

were often below 0.60. Similar to adding items to an assessment, adding additional raters (i.e., 

multiple raters for each object of measurement) can reduce the measurement error attributable to 

raters, thereby increasing reliability. Determining the extent to which additional raters may 

increase reliability is a major focus of GT. However, reliability is not the only issue when 

dealing with rater error in measurement. Bias introduced into examinee scores can affect 

inference based on those scores in a substantial manner. Examinees may be rewarded or 

penalized unjustifiably depending on the particular rater (or subset of raters) they are judged by 

(Guilford, 1954; Raymond, Webb, & Houston, 1991). That is, if an examinee is assigned a 

particularly lenient rater or severe rater, his or her score may be artificially higher or lower than 

his or her true score, respectively. 
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It is important to clarify what is meant by rater bias (or rater effects) in contrast to rater error 

(and random error in general), in terms of a bias-variance decomposition. Consider the following 

item-response model for a dichotomous item rating 𝑦𝑛𝑖𝑗, with underlying (real-valued) latent 

response 𝑦𝑛𝑖𝑗
∗ . 

𝑦𝑛𝑖𝑗 = I(𝑦𝑛𝑖𝑗
∗ > 0) (1) 

𝑦𝑛𝑖𝑗
∗ = xnij

T β + 휀𝑛𝑖𝑗 (2) 

 

In this model, I(∙) denotes the indicator function, each xnij
T  is the vector of person, item, and 

judge indicator (0/1) variables corresponding to person n, item i, and rater j (i.e., the n-th row of 

the design matrix), with corresponding coefficient parameter vector β having sample point-

estimate �̂�. The associated error term is 휀𝑛𝑖𝑗, assuming E(휀𝑛𝑖𝑗) = 0 and Var(휀𝑛𝑖𝑗) = 𝜎2. 

Specifically, 𝜎2 = 1 in the case of a probit model; for a logit model, 𝜎2 follows a Kolmogorov-

Smirnov distribution (Holmes & Held, 2006). The prediction error for a matrix of predictors 

variables X can be decomposed as follows (Hastie, Tibshirani, & Friedman, 2009): 

 

Err(𝐗) = E [(Y − XTβ̂)
𝟐

] (3) 

 = 𝜎2 + [E(XTβ̂) − XTβ̂] + 𝐸[XTβ̂ − E(XTβ̂)]
2
 (4) 

 = 𝜎2 + Bias2(XTβ̂) + Var(XTβ̂) (5) 

 = irreducible random error + Bias2 + Variance (6) 

 

This decomposition shows that the prediction error for a particular item rating (as 

modeled by the regression model) can be decomposed into three parts: the stable random error of 
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observations around predicted values, estimator bias, and estimator variance. This framework 

may be helpful for thinking about measurement error and how it relates to rater bias. Part of the 

error term is stable. For example, in the above model, predicted values for the observable ratings 

will fall in the range of values between 0 and 1, whereas observed values will be either 1 or 0. If 

there was no systematic bias due to raters, persons, or items, and the variances attributable to 

these facets were 0, the term 𝜎2 would fully determine the error of prediction of the observable 

ratings. The discussion of rater effects that follows describes these effects in terms of how they 

impact this bias-variance decomposition. 

Wolfe (2004) describes three prominent lines of research with respect to the study of rater 

effects. The first line of research has been focused on the area of rater cognition. That is, the 

extent to which there exists a relationship between a rater's cognitive processing abilities and his 

or her rating proficiency (e.g., Breland & Jones, 1984; Freedman, 1979; Freedman & Calfee, 

1983; Wolfe, 1997; Wolfe, Kao, & Ramney, 1998). Similarities exist between this line of 

research and general research in the performance of experts and novices. The second line of 

research focuses on contextual factors that relate to rater effects such as the characteristics of 

raters, the tasks, interactions among raters and the targets (e.g., halo effects), and the rating 

environment (e.g., Dean, 1980; Hoyt, 1999; Hoyt, 2000; McIntyre, Smith, & Hassett, 1984; 

Murphy & Anhalt, 1992; Murphy & Jako, 1990). The third line of research described by Wolfe 

focuses on the impact of rater effects on the ratings themselves (i.e., reliability and bias), and the 

development of methods for statistically correcting these scores. This thesis sits within this third 

line of research, with a focus on estimating the size of rater effects and correcting for them in the 

estimation of examinee ability on the test. 
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Several types of rater effects exist and have been studied for their impact on reliability 

and examinee scores (Hoyt, 2000; Wolfe, 2004). These types of rater effect speak to 

characteristics of the rater (accuracy/inaccuracy, severity/leniency), how they use the scoring 

scale (centrality/extremism, restriction of range), and how they interact with examinees (dyadic 

variance, halo effect). Some terminology is necessary to describe these characteristics within a 

statistical framework. Each of these characteristics can be examined by describing the 

relationship between the actual (or observed) ratings and the conditional expected rating for an 

object of measurement. The conditional expected rating is the average rating that an individual 

would receive over an infinite number of hypothetical tests, conditional on a particular item, 

judge and specific levels of other facets of measurement. Within classical test theory, this is 

often referred to as the true score. Within latent trait modeling, this is the expected value of a 

rating given the generating parameters of the latent trait model. 

Sources of rater effects due to characteristics of the rater include accuracy/inaccuracy and 

severity/leniency. A rater is considered to be accurate when his or her ratings are close to the true 

conditional expected value for the examinee. Accuracy is reflected by a low residual standard 

deviation (where the residuals are calculated as the observed score minus the expected score) and 

no significant correlation between the residuals and the expected score. Inaccurate raters have 

greater variation in their ratings around the expected score. This increase in variation manifests 

itself as a higher standard deviation of the residuals. However, for inaccurate raters, the 

correlation between the residuals and expected scores is still likely to be non-significant 

(assuming the inaccuracy is not biased in one direction or another). Rater severity (or harshness) 

refers to the general tendency of some raters to assign lower scores to examinees. In contrast, 

lenient raters generally assign higher scores to examinees. For latent trait models, severe and 
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lenient raters would have standard deviations of the residuals which were near to zero. For these 

models (such as MFRM), harshness and leniency would be exhibited by positive or negative 

rater parameters, respectively. For classical test theory models (utilizing raw scores), rater 

severity and leniency would show up as greater residual variance around the expected scores. 

Lenient judges would tend to have positive residuals across the scoring scale. Severe judges 

would tend to have negative residuals across the scoring scale. If leniency or severity are a 

consistent characteristic of a rater, there will tend to be a non-significant correlation between the 

residuals and expected score. 

Table I describes the accuracy/inaccuracy and severity/leniency characteristics in the 

bias-variance decomposition terms described earlier. While it may seem counter-intuitive that 

raters can be both accurate and severe (or lenient and severe), this table is provided mostly to 

show how accuracy/inaccuracy is related to the variance of the ratings, and severity/leniency is 

related to the bias of the ratings. Accuracy in this sense refers to the low variance of the rater's 

scores (i.e., on hypothetical repeated ratings, the rater would assign scores which were quite 

similar to one another), rather than the correctness of the scores. Stated another way, 

accurate/severe or accurate/lenient raters assign incorrect, biased scores, which exhibit high 

precision. 
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TABLE I 

ACCURACY VERSUS SEVERITY 

 Accuracy 

Severity Accurate Inaccurate 

Severe Negative bias/low variance Negative bias/high variance 

Lenient Positive bias/low variance Positive bias/high variance 

 

 

 

 

 

In addition to effects stemming from the characteristics of the raters, there can be effects 

due to interactions among the raters and the scoring scale. These interactions are the result of 

different raters interpreting the scoring scale in different manners. Raters who suffer from 

centrality effect (Wolfe, 2004) do not assign many scores at the high or low end of the score 

range. Their ratings tend to be near the middle of the scale. Conversely, raters who suffer from 

extremism (Wolfe, 2004) overuse the scores near the high or low end of the score range. 

Centrality can be seen statistically as large positive residuals for lower expected scores, and large 

negative residuals for higher expected scores. Or, statistically, the correlation between residuals 

and expected values for raters with centrality error will tend towards −1. In contrast, raters 

suffering from extremism will have correlations between residuals and expected values which 

approach +1. An additional form of interaction between raters and the scoring scale is referred to 

as restriction of range (Wolfe, 2004), which results from a combination of centrality and severity 

or leniency. However, if one were to correctly specify a latent trait model (such as the MFRM) 

with appropriate parameters describing the interactions between rating categories (thresholds) 

and judges, these correlations would become zero. 
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A rater effect can also occur as a result of an interaction between a rater and examinee. 

Hoyt (2000) refers to these effects as dyad specific bias – that is, a rater's unique interpretation of 

particular targets of measurement (e.g., examinees). An example of dyad specific bias is the halo 

effect. A halo effect (or dyadic covariance) occurs as a correlation among item scores for an 

individual examinee (conditional on the latent trait). In simpler terms, a halo effect occurs when 

a rater's general impression of an examinee influences the ratings for that person, regardless of 

the individual characteristic under consideration (Linn & Miller, 2005). If the rater has a 

favorable view of the individual, then ratings for all items are likely to be higher as a result – that 

is, item ratings will not be conditionally independent as would be assumed in either GT or 

MFRM. In MFRM, halo effects (or their opposite for unfavorable ratings) will manifest through 

over fit of the persons to the expectations of the model. Person over fit indices alert the data 

analyst to situations where item responses by the raters are too predictable for an individual 

(Wolfe & Smith, 2007). 

B. Existing Approaches for Characterizing Measurement Error 

Several approaches exist for characterizing and accounting for measurement error. This 

thesis first discusses two popular approaches (generalizability theory and the many-facet Rasch 

model), providing the general details of each and then comparing and contrasting their features. 

Following the description of generalizability theory and the many-facet Rasch model will be a 

review of various correction methods used to adjust examinee scores to better account for rater 

effects. 

1. Generalizability Theory 

Generalizability theory is an extension of classical test theory. GT seeks to 

understand the reliability of measures based on multiple facets of measurement, with raw scores 
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on items as the primary unit of analysis. This line of analysis combines traditional theories of 

reliability (taken from classical test theory) with the statistical tools of analysis of variance 

(ANOVA) techniques (Brennan, 2001). Cronbach, Rajaratnam, and Gleser (1963) produced the 

first work in this area and it has seen many developments over the subsequent decades (Brennan, 

2001). While classical test theory viewed measurement error as one large pool of 

undifferentiated measurement error, GT seeks to disentangle the sources of measurement error 

from one another, evaluating them both as individual components of error, and as a whole 

(Shavelson & Webb, 2006). In measurement scenarios with persons, items, raters, and 

potentially other sources of variation, GT can be capable of attributing each facet its specific 

portion of the total variance. GT employs ANOVA to fit a linear model to the data, which can 

then be used to estimate the variance component associated with each measurement facet. 

Examples of these models will be shown below. 

Test theory and measurement theory are based upon the assumption that an object of 

measurement has a "true score" on some underlying latent trait of interest (e.g., intelligence, 

satisfaction, mathematics ability, etc.). Instruments designed to measure that true score 

invariably result in scores that contain measurement error. Thus, a person's observed score can be 

defined as 𝑋 = 𝑇 + 𝐸 where X is the person's observed score, T is the person's true score, and E 

is the error of measurement (Webb, Shavelson, & Haertel, 2006). Classical reliability theory 

focuses on how the error of measurement affects the reliability (or consistency) of scores. GT 

goes further to partition this measurement error among the facets of measurement. 

A key concept of GT is the "universe of admissible observations" (Shavelson & Webb, 

2006). This "universe" is comprised of all observations which decision-makers would view as 

interchangeable with the current measurement. For example, if a student received a particular 
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score on a writing prompt scored by two judges, a decision maker would deem a score to be 

comparable or interchangeable with that score, if that score was based on a combination of a 

writing prompt and judges that were part of the universe of admissible observations. GT further 

distinguishes between generalizability studies (G-studies) and decision studies (D-Studies). G-

studies classify the universe of admissible observations to be as all-encompassing as possible 

(e.g., all possible items, raters, occasions, etc.). By this method, the estimates of variance and 

reliability are appropriate for a variety of uses and needs of decision-makers. D-studies, in 

contrast, typically analyze a particular set of facets that are pertinent to a specific decision or 

measurement scenario (Brennan, 2001; Shavelson & Webb, 2006). The estimates of the variance 

components from a G-study can be used to inform the estimates of reliability of the person 

measures given the specifics of a measurement situation (i.e., the specific facets of measurement 

used in that setting). G-studies and D-studies sometimes are referred to under different names in 

the literature. For example, Raudenbush, Martinez, Bloom, Zhu, and Lin (2007) recommend 

conducting a "reliability study" before conducting an impact study. In that reliability study, the 

variance due to the facets of measurement are estimated (a G-study), and then those estimates are 

used to develop a data collection process (D-study) which will maximize statistical power for the 

impact study. 

a. The Single Facet Case 

The simplest case of a GT model is the single-facet case where each person 

(or object of measurement) is administered the same sample of items. In the GT literature, this 

design is usually denoted as 𝑝 × 𝑖 to signify that persons are crossed with items. Another single-

facet design, denoted 𝑖: 𝑝, represents the situation where different sets of items are presented to 
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different examinees – that is, items are nested within persons. For the single-facet crossed 

design, the person item score can be represented by the linear model (Brennan, 2001): 

 

𝑋𝑝𝑖 = 𝜇 + 𝜈𝑝 + 𝜈𝑖 + 𝜈𝑝𝑖 (7) 

 

where 𝑋𝑝𝑖 is the person-item score, 𝜇 is the grand mean,  𝜈𝑝 is the random person effect, 𝜈𝑖 is the 

random item effect, and 𝜈𝑝𝑖 is the residual effect. GT is concerned with estimating the variance 

components for each of the facets of measurement. Calculations of the variance of the random 

effects associated with each facet of measurement can be used to determine the extent to which 

measurement error affects the total scores for the objects of measurement (presented generally as 

a G-coefficient) and in particular, how much of that error is attributable to different facets of 

measurement. 

b. The Multi-Facet Case 

A more general version of a GT model is the multi-facet GT model. One such 

multi-facet design can be denoted 𝑝 × 𝑖 × 𝑟  where persons 𝑝 are crossed with items 𝑖 and raters 

𝑟. In this scenario, the items could represent constructed response test items, writing prompts, or 

even ratings relative to some indicator for a classroom observation. For the multi-facet design, 

the person-item score can be represented by the linear model (Brennan, 2001): 

 

𝑋𝑝𝑖𝑟 = 𝜇 + 𝜈𝑝 + 𝜈𝑖 + 𝜈𝑟 + 𝜈𝑝𝑖 + 𝜈𝑝𝑟 + 𝜈𝑖𝑟 + 𝜈𝑝𝑖𝑟 (8) 

 

For this more complete model, it becomes apparent that fully crossed data is necessary to 

completely estimate all of the variance components in the GT model. For example, if all raters do 
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not rate all items, 𝜎2(𝑖𝑟) – i.e., the variance attributable to the interaction between raters and 

items – could not be calculated. 

There are two main reliability coefficients that are calculated within generalizability 

theory (Shavelson & Webb, 2006). The first coefficient, typically called the generalizability 

coefficient (or G-coefficient) is similar to the reliability coefficient calculated in classical test 

theory. That is, the G-coefficient estimates the ratio of true score variance to total variance. The 

G-coefficient is useful for determining the reliability of the scores produced from a measurement 

system for the purpose of making relative decisions (i.e., comparing examinees to other 

examinees). A second coefficient is called the dependability index (Kane & Brennan, 1977). This 

coefficient provides an estimate of the reliability of absolute decisions (i.e., the error of 

measurement when comparing examinees to a particular criterion or cut score). The 

dependability index is the appropriate generalizability theory reliability index for criterion 

referenced decisions. 

2. Many-Facet Rasch Model 

The Many-Facet Rasch Model (MFRM) is an extension of the dichotomous Rasch 

model (Rasch, 1960; Wright & Stone, 1979), the Rasch Rating Scale Model (Andrich, 1978; 

Wright & Masters, 1982), and the Rasch Partial Credit Model (Wright & Masters, 1982). Like 

the family of Rasch models, the MFRM is a generalized linear model which incorporates a 

logistic link function to model the ordinal response function as predicted by fixed and random 

effects associated with the persons and facets of measurement. The MFRM adds parameters (to 

the traditional item and person parameters) for the additional facets of measurement considered 

here (e.g., rater severity). The MFRM allows one to model the impact of the variance due to the 
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facets of measurement on each measured person's score. In that sense, MFRM goes beyond the 

capabilities of traditional GT in that GT does not incorporate a model-based correction. 

The basic MFRM (Linacre, 1989; Linacre & Wright, 2004) is commonly denoted in the 

Rasch measurement literature as follows (in model below, it is assumed that all items share a 

common rating scale, something that which can be modified to be more in line with a partial 

credit model formulation): 

 

log(𝑃𝑛𝑖𝑗𝑘 𝑃𝑛𝑖𝑗(𝑘−1)⁄ ) = 𝜃𝑛 − 𝛿𝑖 − 𝛾𝑗 − 𝜏𝑘 (9) 

 

where 𝑃𝑛𝑖𝑗𝑘 is the probability of person (or object of measurement) 𝑛 receiving a score of 𝑘 on 

item 𝑖 as rated by judge 𝑗.  𝑃𝑛𝑖𝑗(𝑘−1) is the probability that person receives a score of 𝑘 − 1 in the 

same scenario. On the right side of the equation, 𝜃𝑛 represents the ability of person 𝑛, 𝛿𝑖 

represents the difficulty of item 𝑖, 𝛾𝑗 represents the severity of judge 𝑗, and 𝜏𝑘 represents the 

Rasch threshold parameter for step 𝑘 (i.e., the location on the latent continuum where there is 

equal probability of receiving a score of 𝑘 relative to that of receiving a score of 𝑘 − 1). The 

MFRM is an extension of the Rasch rating scale model (Andrich, 1978; Wright & Masters, 

1982). Including a parameter for rater severity allows the estimate of the latent trait to be 

adjusted based on the particular severity of the raters assigned to each examinee. 

The model shown above can be generalized to allow for myriad measurement scenarios. 

For example, the model could be adjusted to account for different rating scales across items (a 

Partial Credit Model), rather than the single rating scale case shown above. This could be 

accomplished by replacing the 𝜏𝑘 term with 𝜏𝑖𝑘 (which includes a subscript for each item 𝑖). 

Furthermore, the model could be adjusted to incorporate a variety of interactions among the main 
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effects (facets), including rater-person, rater-item, and rater-rating scale interactions (Kim & 

Wilson, 2009; Muckle & Karabatsos, 2009). 

A general version of the Rasch model which incorporates many existing Rasch models 

including the MFRM is the multidimensional random coefficients multinomial logit model 

(Adams & Wilson, 1996; Adams, Wilson, & Wang, 1997). The item response probability model 

can be formulated as follows: 

 

Pr[𝑋𝑖𝑘 = 1; A,b,ξ|𝜃] =
exp(𝑏𝑖𝑘𝜃 + a𝑖𝑘

𝑇 ξ)

∑ exp(𝑏𝑖𝑘𝜃 + a𝑖𝑘
𝑇 ξ)𝐾𝑖

𝑘=1

 
(10) 

 

with response vector probability model 

 

Pr[X = x|𝜃] = 𝚿(𝜃,ξ)exp[x𝑇(b𝜃 + Aξ)] (11) 

 

where 𝚿 is defined as 

 

𝚿(𝜃,ξ) = {∑ exp[z𝑇(b𝜃 + Aξ)]

𝑧∈Ω

}

−1

 

(12) 

 

and X𝑖
𝑇 = (𝑋𝑖1, 𝑋𝑖2, … , 𝑋𝑖𝑘) is a vector-valued random variable with 𝑋𝑖𝑘 = 1 if the response to 

item 𝑖 is in category 𝑘. The vector ξ𝑇 = (𝜉1, 𝜉2, … , 𝜉𝑝) describes the 𝑝 parameters for the items. 

The characteristics of the items and their response categories can be described through linear 

combinations of these parameters defined by the design vector a𝑖𝑘 (𝑖 = 1, … , 𝐼 and 𝑘 = 1, … , 𝐾𝑖) 
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that can be assembled into a design matrix A. The vector b𝑇 = (𝑏11, 𝑏12, … ) defines the scoring 

function that assigns the performance level to each potential item response. 𝜃 is the (possibly 

multidimensional/vector-valued) latent variable of interest, and Ω is the set of all possible 

response vectors. 

The MFRM and the more general multidimensional random coefficients multinomial 

logit model are members of a class of ordinal models referred to as adjacent categories models. 

Another class of ordinal models are called cumulative logit models and include item response 

theory models such as the modified Graded Response Model (Muraki, 1990). The MFRM and 

other adjacent category models allow for disordered estimates of the threshold parameters (the 

𝜏𝑘). Cumulative logit models, on the other hand, assume ordered thresholds (i.e., 𝜏0 < 𝜏1 < ⋯ <

𝜏𝑘. The standard form of the modified Graded Response Model can be further modified to 

incorporate rater severity effects. Such a model can be defined as 

 

𝑃𝑛𝑖𝑗𝑘 = Pr[𝑋𝑛𝑖𝑗 = 𝑘|θ,δ,γ] = ∫ ℎ(𝑥𝑛𝑖𝑗
∗ |𝜃𝑛 − 𝛿𝑖 − 𝛾𝑗 , 1)

𝜏𝑘

𝜏𝑘−1

𝑑𝑥𝑛𝑖𝑗
∗

 

(13) 

 

where 𝑃𝑛𝑖𝑗𝑘 is the probability of person (or object of measurement) 𝑛 receiving a score of 𝑘 on 

item 𝑖 as rated by judge 𝑗. Furthermore, 𝑥𝑛𝑖𝑗
∗  is the latent variable, and ℎ(∙)is the density of a 

logistic distribution. On the right side of the equation, 𝜃𝑛 represents the ability of person 𝑛, 𝛿𝑖 

represents the difficulty of item 𝑖, 𝛾𝑗 represents the severity of judge 𝑗, and 𝜏𝑘 represents the 

threshold parameter for step 𝑘 (i.e., the point on the latent continuum that represents the 

transition point in probability from a score of 𝑘 relative to that of receiving a score of 𝑘 − 1). 
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3. Contrasting Generalizability Theory and the Many-Facet Rasch Model 

The two approaches (GT and MFRM) differ in the way they treat data and how the 

specific models are implemented. GT is typically implemented through a linear model (Brennan, 

2001; Hocking, 1996). In contrast, MFRM fits a generalized linear model with a logistic link 

function to account for the ordinal response data (Kim & Wilson, 2009; Linacre, 1989; Linacre, 

1995; Linacre & Wright, 2004). GT models either individual observed responses or total scores 

as the outcome variable and fits random effects for each of the facets of measurement and their 

interactions – if possible given the data collection structure (Brennan, 2001; Shavelson & Webb, 

2006; Webb, Shavelson, & Haertel, 2006). Under such a model, the response variable is assumed 

to be continuous with interval properties – however, this assumption is troubling given that item 

responses and observed scores (especially in the case of rating items) are distinctly ordinal in 

nature (Wright & Lincare, 1989). Embretson (2006) has described problems that result from 

using standard parametric statistical routines applied to ordinal data. Maxwell and Delaney 

(1985) showed that differences in mean scores could be found using ordinal data when the true 

scores of the groups were the same. Embretson (1996) showed that improper use of ordinal data 

could result in the finding of significant interactions for experimental studies when no such 

interaction existed relative to the true scores. When data fit the Rasch model (and the MFRM), 

person measures approximate an interval scale. 

In addition to assumptions about the nature of the outcome variable and how it should be 

modeled, GT and MFRM also model person, item, rater, and other facets in a different manner. 

In GT, all such effects are typically modeled as random effects, and are treated as nuisance 

parameters that are assumed to be normally distributed with mean zero. The specific effect for a 

particular rater or item are not of interest, rather the total variance and its effect on the precision 
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of measurement is considered most important. The targets of measurement in GT are the person 

scores and their universe score variance (Kim & Wilson, 2009; Linacre, 1995). In contrast, the 

MFRM fits a model with fixed effects for persons (depending on the estimation algorithm), 

items, and raters. The targets of measurement for the MFRM are all measurement facets. MFRM 

seeks to adjust person measures in a way to approximate each examinee's true score as accurately 

as possible. 

Sudweeks, Reeve, and Bradshaw (2005) identify three key differences in terminology 

between GT and MFRM relating to the definition of facets, interactions among the facets, and 

the definition and interpretation of reliability. MFRM refers to any factor in the model as a facet 

of measurement. In particular, MFRM refers to persons (the object of measurement) as a 

measurement facet along with things like items and raters. In contrast, GT does not include 

persons in a listing of the measurement facets. GT and MFRM also differ in their treatment of 

interactions. In GT, interactions are analyzed through factorial analysis of variance. For example, 

a significant variance attributable to the interaction of raters and persons would imply that the 

rank ordering of persons varies substantially across raters. MFRM considers these interactions as 

phenomena which induce bias in the measurement system and are examined at the individual 

rater level (i.e., through differential rater functioning analysis, similar to differential item 

functioning analysis). Finally, the definition and interpretation of reliability varies slightly 

between GT and MFRM. GT reliability coefficients measure the precision of the mean score as a 

predictor of the true score (or universe score). For a single-facet model, this treatment of 

reliability is the same as that of Cronbach's alpha. In contrast, MFRM analyzes the spread of the 

data (standard deviation) relative to the amount of measurement error within the measurement 

system. 
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The ultimate goals of GT and MFRM also differ from one another. In GT, the goal is 

interchangeable items, raters, and all other facets of measurement. In GT, the desire is to develop 

and implement a set of items with similar difficulties. The case is similar for judges. By reducing 

the item and judge variance (i.e., having equally lenient/severe "machine-like" judges, and items 

of near equal difficulty), the precision of measurement can be greatly increased. The goal of 

MFRM on the other hand is to estimate measures for all facets of measurement, including 

examinees, on the same latent continuum. 

The literature provides several examples of research comparing the utility and efficiency 

of GT and MFRM approaches (e.g., MacMillian, 2000; Smith & Kulikovich, 2004). Briggs and 

Wilson (2007) propose a model (which they refer to as Generalizability in Item Response 

Modeling – GIRM) that joins the two approaches under a common modeling framework. Their 

approach utilizes MCMC estimation methods to fit Rasch models with random item parameters 

(as opposed to the traditional fixed parameters). Fitting random item effects allows for a direct 

comparison of GIRM variance components to the variance components used in GT (while 

simultaneously applying a latent trait model to the ordinal response data). 

4. Methods for Correcting Scores 

Many methods of correcting scores for rater bias have been proposed and studied in 

the literature. The main approaches include regression based approaches, the use of the Many-

facet Rasch Model, and the imputation of missing data. Regression approaches (e.g., de Gruijter, 

1984; Houston, Raymond, & Svec, 1991; Raymond & Roberts, 1987; Raymond & Viswesvaran, 

1983; Raymond, Webb, & Houston, 1991; Wilson, 1988), the approach most commonly applied 

in classical test theory (MacMillan, 2000), adjust observed scores (raw ordinal scores) to account 

for rater bias (or other bias due to measurement facets). These approaches fit linear models in the 
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observed score metric and add parameters for rater effects to the model. The adjusted scores are 

the conditional ability estimates (again, in the observed score metric), adjusted for rater fixed 

effects. The approach is similar to that of the MFRM (with the notable exception that these 

approaches do not use a logistic link function to account for the ordinal nature of the dependent 

variable). 

The MFRM approach has seen wide use for detecting and correcting rater bias due to 

rater severity/leniency (e.g., Englehard, 1994; Englehard, 1996; Englehard & Myford, 2009; 

Gyagenda & Englehard, 2009; Kim & Wilson, 2009; Lang & Wilkerson, 2005; Looney, 2004; 

Myford & Wolfe, 2003; Myford & Wolfe, 2004; Wolfe, 2009; Wolfe, Moulder, & Myford, 

2001). Corrected scores are available both in the logit metric (as "fair" scores accounting for 

differences in rater severity), and in the observed score metric (calculated by estimating the 

expected observed score conditional on item difficulty and rater severity). The details of the 

MFRM are provided earlier in this chapter. 

Studies using the imputation approach have utilized the EM algorithm (Beale & Little, 

1975; Dempster, Laird, & Rubin, 1977) to generate missing data (i.e., values of the missing 

ratings) based on values of the known and measured variables for raters and examinees 

(Houston, Raymond, & Svec, 1991). For these studies, imputation assumed an ignorable missing 

data pattern (discussed in greater detail in Section I.C). Imputation was conducted in the original 

raw score metric, with a similar model to that described above for GT analysis. 

The model proposed in this study will draw on all three methods (regression, 

MFRM, and imputation) in combination with Bayesian inference to adjust for error due to raters. 

The proposed method will expand upon the previous research by imputing ratings using a more 

modern Markov Chain Monte Carlo approach for iterative multiple imputation (Gelman, Carlin, 
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Stern, & Rubin, 2009). Furthermore, the method will incorporate a latent trait model (which 

accounts for the ordinal outcome), will be designed to handle single-rater designs, and will not 

require the assumption of an ignorable missing data mechanism. 

C. Methods for Categorizing and Analyzing Missing Data 

The missing data pattern considered in this thesis is referred to as univariate non-response 

(Little & Rubin, 2002). That is, the design matrix is known and complete for all cases (one 

knows all possible combinations of items/tasks, examinees, and raters), but the outcome variable 

(ordinal ratings) can be missing. In the case of judge ratings of examinees, this missingness is 

considered planned missingness (i.e., not all judges were assigned to rate all examinees by 

design). In statistical data analysis, the pattern of missing data (or missingness) is often related to 

the data itself. Rubin (1976) proposed a framework for characterizing the relationship between 

the data and the pattern of missingness. I will limit the definition of each typology to the 

univariate non-response scenario relevant to this thesis. Missing data distributions are classified 

into two categories: missing at random (MAR) and missing not at random (MNAR). A third 

category, referred to as missing completely at random (MCAR) is a special case of MAR. 

Let y = (𝑦1, … , 𝑦𝑛)𝑇 represent the vector of ordinal judge ratings for a set of examinees 

to a set of items or tasks, where 𝑦𝑖 ∈ {0,1, … , 𝑐}. To allow for missing data (e.g., planned 

missingness of rater responses), let this column vector of ordinal responses be comprised of both 

the observed data elements 𝑦𝑖
𝑜𝑏𝑠 and the missing data elements 𝑦𝑖

𝑚𝑖𝑠. Furthermore, let X =

(x𝑖
𝑇)𝑛×𝑝 represent the design matrix consisting of 𝑛 row vectors which describe the combination 

of examinee, item or task, and rater which produced the ordinal (observed or missing) response 

𝑦𝑖. Then, the data are considered missing completely at random (MCAR) if 
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Pr(𝑚𝑖 = 1|y,X) = Pr(𝑚𝑖 = 1) (14) 

 

where 𝑚𝑖 = 1 when 𝑦𝑖 is unobserved, and 0 otherwise. 

For MCAR data, the probability of missingness is constant and not related to the 

variables in the design matrix. Stated another way, the missing data pattern is independent of 

both the observed data and the unobserved data. MCAR data is rare in practice, but a standard 

example is that of matrix sampling. Matrix sampling is a design of administering items to test 

takers where each test taker takes only a subset of the total items that are being administered. If 

items are randomly assigned to individual examinees, then the missing item responses can be 

considered MCAR. This situation is analogous to the assignment of raters to individual 

examinees (when that assignment is conducted randomly). 

Data are considered missing at random (MAR) if 

 

Pr(𝑚𝑖 = 1|y,X) = Pr(𝑚𝑖 = 1|X) (15) 

 

That is, the pattern of missing responses can depend on the observed data, but not on the 

unobserved data. An example of MAR data would be the case where responses were missing at a 

higher rate for girls than boys on a student survey, but missingness was not related to the 

unmeasured response itself. Together, the categories of MAR and MCAR are often referred to as 

ignorable non-response (Schafer & Graham, 2002). 

The final missing data distribution pattern is missing not at random (MNAR), and occurs 

when missingness depends not only on the observed data, but also on the missing data 

themselves. MNAR data occur when there remains a residual relationship between the missing 
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data and the pattern of missingness after conditioning out the relationship between the observed 

data and missingness. An example of an MNAR missingness pattern would be missing outcome 

measures for patients in a longitudinal drug treatment study. If patients leave the study (and 

therefore stop being measured on the outcome) due to improvement or decline in their condition, 

the missing data pattern is related explicitly to the values of the missing data itself. Schafer & 

Graham (2002) provide a visual depiction of the difference between MCAR, MAR, and MNAR. 

This visual depiction has been replicated and modified to accurately reflect the data collection 

scenario described here. In Figure 1, X, y, and m are defined as above, and Z represents causes of 

missingness unrelated to X, and y. Lines connecting the different elements indicate a relationship 

between the two elements. 

 

 

 

Figure 1. MCAR, MAR, and MNAR. 
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1. Missing Data Patterns in Judge Rated Data 

While in many instances, missing data occurs for a variety of factors outside the control of the 

investigators, for the missing data scenario discussed here, data are missing by design of the 

study (i.e., planned missingness). Planned missingness is quite routine in statistical analysis, 

especially in experimental research. However, when the data collection method does not permit 

the estimation of variance components or fixed-effect parameters (for the MFRM), it becomes 

difficult to examine the extent to which person scores vary (and contain bias) as a result of the 

various facets of measurement. Block designs (Oehlert, 2000) are an example of how missing 

data can be planned and incorporated into a study. It will be useful for this thesis to describe 

three block designs and how they relate to data collection scenarios pertinent to the analysis of 

rater effects. The three designs are a complete block design, a balanced incomplete block design, 

and a partially balanced incomplete block design. 

The ideal data collection case for GT or MFRM is a completely-crossed design (or 

complete block design). This design is “ideal” in the sense that it provides the most information 

possible about the facets, their interactions, and the variance attributable to them; however, this 

design is not ideal in the sense that it represents a very costly data collection plan. A complete 

block design is a data collection procedure which matches all levels of the treatment (or 

manipulated variables) within each block (grouping of outcome units). With respect to judge 

rated data, a complete block design simply describes the case where each judge rates all 

examinees on all items or tasks – that is, the relative effect of each judge (in relation to all other 

judges) can be calculated for each block (in this case, an individual examinee). For a small 

number of judges and examinees, this design may be feasible. However, as sample size 

increases, it can be especially costly to implement. Figure 2 shows a completely crossed design. 
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For this example, assume that three raters were used to rate three examinees and that each 

examinee was rated by all three raters. 

 

 

 Rater 1 Rater 2 Rater 3 

Examinee 1 X X X 
Examinee 2 X X X 
Examinee 3 X X X 

 

Figure 2. A fully crossed design (complete block) 

 

The data collection design shown in Figure 2 allows for the estimation of the variance 

due to the examinees, the raters, and the interaction among raters and examinees (or parameters 

for the main effects in the MFRM case). While complete, and beneficial for estimating all effects 

(including interactions), this design can be quite costly to implement. 

While the complete block design represents the ideal for examining the reliability of 

scores, less complete data designs can still yield valuable information. A balanced incomplete 

block design matches all levels of treatment together an equal number of times, but not all 

treatments are applied to each block. An example of a balanced incomplete block design for 

judge rated data would be the following: each examinee is rated by two judges across all items or 

tasks. Each possible pairing of two judges appears in the data at least once, and all pairs of raters 

occur an equal number of times in the data set. Figure 3 shows a reduced data collection design 

through which the MFRM is capable of estimating measures for rater severity. For GT, rater and 

examinee effects could be estimated, but no interaction effect could be examined. 
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 Rater 1 Rater 2 Rater 3 Rater 4 

Examinee 1 X X   

Examinee 2 X  X  

Examinee 3 X   X 

Examinee 4  X X  

Examinee 5  X  X 

Examinee 6   X X 

 

Figure 3. A balanced incomplete block design. 

 

 

Finally, a partially balanced incomplete block design would not require that all judges 

pair together an equal number of times (or at all), only that there exists a pathway in the data to 

place all rater effects onto a similar metric (i.e., no disjoint subsets of raters). Figure 4 shows a 

partially balanced incomplete block design where each examinee is judged by two raters, but not 

all raters are paired with one another (e.g., rater 2 and rater 4 do not rate a common examinee). 

Despite the fact that not all rater pairs exist in the data, rater severity effects can still be 

calculated as long as no disjoint subsets of raters exist in the data (Bayesian approaches that 

specify prior distributions for rater severity can provide inference even in the case of disjoint 

rater subsets). The MFRM can also be implemented with disjoint subsets as long as some 

assumption is made about the average ability of the groups of examinees corresponding to each 

rater (or group of raters). 
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 Rater 1 Rater 2 Rater 3 Rater 4 

Examinee 1 X X   

Examinee 2  X X  

Examinee 3   X X 

Examinee 4 X   X 

 

Figure 4. A partially balanced incomplete block design. 

 

 

Figure 5 shows a data collection design that utilizes only a single rater per examinee. 

With this data collection design, raters cannot be directly compared to one another as no two 

raters have provided a score for the same examinee. That is, examinee measures are completely 

confounded with rater severity. However, in a Bayesian framework, the specification of a prior 

distribution for the rater severities will allow for the generation of posterior distributions for each 

rater's severity parameter (despite the presence of disjoint rater subsets – i.e., one disjoint subset 

of data for each rater in the sample). 

 

 

 Rater 1 Rater 2 Rater 3 Rater 4 

Examinee 1 X    

Examinee 2  X   

Examinee 3   X  

Examinee 4    X 

 

Figure 5. A single-rater (uncrossed/disjointed rater subsets) design. 
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2. Approaches to Analyzing Missing Data 

Over the years, many approaches to dealing with the missing data problem have been 

developed and tested. This section will highlight a few of the major methods that have been 

popular at times. Methods range from simple deletion methods, to averaging of items (in the case 

of surveys or other psychometric measures), to single imputation methods (such as mean 

substitution, regression based substitution, and imputing from a conditional distribution), to 

multiple imputation. Each of these approaches will be briefly described, with a discussion of 

their assumptions and limitations. 

Simple deletion methods are among the oldest of missing data analysis approaches. Case 

deletion (also referred to as list wise deletion) simply deletes all cases (rows of data) with 

missing observations for one or more variables. This approach is the default setting for many 

statistical software packages (i.e., when performing an analysis, the software automatically 

deletes cases with missing observations). Available case deletion (also referred to as pair-wise 

deletion) is different from case deletion in that it uses different subsets of the data for estimating 

different parameters. These deletion methods are generally valid only under MCAR (Schafer & 

Graham, 2002). When data are not MCAR, estimates can be biased; and, even in the situation 

where MCAR holds, case deletion is quite inefficient (as much of the sample may be discarded 

during the deletion process). If one conceptualizes the ratings for judges not assigned to rate an 

examinee as missing data, the traditional approach to analyzing these data is analogous to case 

deletion. That is, one analyzes the ratings from the judges who rated the examinees, and ignores 

the other judges. For this scenario, estimates of the latent trait measures are now dependent on 

the particular combination of judges that rated each individual in the given data set (i.e., the 

estimates are sample dependent). However, case-deletion can work in a regression (or 
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psychometric) modeling scenario, when the dependent variable data are only missing at random 

(MAR) – that is, the missingness of the response variable (the ratings) depend on the values of 

the observed data, including the observed covariates (Graham & Donaldson, 1993; Ibrahim, 

Chen, Lipsitz, & Herring, 2005). In particular, when missingness is univariate missingness (or 

dependent variable missingness, with complete covariate information), complete case methods 

can yield unbiased estimates. However, in the event that data are missing conditional on the 

unobserved examinee latent abilities (MNAR), complete case methods are inadequate. The 

models proposed in this thesis will not rely on the assumption of a MAR missing data 

mechanism. 

For surveys or assessments with item non-response, one approach is to standardize the 

scores for each item and then use the average item response for missing data values. This 

approach is motivated by an assumption that all items are exchangeable. This approach may 

induce bias even under MCAR (Schafer & Graham, 2002), and reduces reliability. 

Single imputation is another approach to handling missing data. Single imputation 

involves replacing missing data with values that are based somehow on the observed data. 

Methods for calculating the imputed values include (but are not limited to) mean substitution, 

regression predicted values, and sampling from a conditional distribution. Mean substitution is 

considered to be quite a poor approach to missing data as it can greatly bias both coefficient 

estimates as well as the of the standard error estimates of those coefficients. Substituting the 

mean for missing data will result in a downward biased estimate of the sample variance, while 

simultaneously inflating the sample size (Little & Rubin, 2002). Regression methods and 

conditional distribution sampling methods are an improvement on mean substitution, but they 
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still suffer from under-coverage (i.e., the confidence intervals are too narrow) or understated 

uncertainty (Rubin, 1987). Regression and conditional methods require the assumption of MAR. 

Multiple imputation (Little & Rubin, 2002) is the newest of the major approaches to 

missing data analysis and is currently the most widely used. In multiple imputation, each missing 

data point is replaced by multiple imputed values. Each imputed data set is then analyzed 

separately and the results from each analysis are combined to produce an overall estimate of the 

parameters and their associated uncertainty. This approach eliminates the problem of understated 

uncertainty that plague single imputation methods. Multiple imputation relies on Bayesian 

methods, and therefore shares similarities with a likelihood based approach (another approach to 

missing data analysis not discussed here). Assumptions about the pattern of missing data matter 

for MI, with most applications assuming MAR data; however, there have been a few applications 

of MI when missingness was assumed to be MNAR (Schafer & Graham, 2002). 

D. Open Problems in the Analysis of Judge Ratings 

This chapter has served as a review of the extensive research that has been conducted on 

rater effects. Researchers have studied the nature of rater effects, the cognitive causes for those 

effects, and how contextual factors may explain variation in those effects. Statisticians have 

developed methods such as GT for estimating the measurement error attributable to raters. That 

information can then be used to improve the measurement system to improve measure reliability 

(e.g., by reducing rater variance, or by increasing the number of raters per examinee). 

Measurement researchers have used correction methods such as the MFRM that adjust scores to 

account for rater effects, thereby more accurately measuring the underlying latent examinee 

ability. 
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In general, existing methods for examining rater effects require two components. First, 

data collection must align with the needs of different statistical routines. In particular, disjoint 

subsets in the data and a failure to have more than one rater per examinee can result in non-

identification of the model and confounding of variance components, respectively. Second, the 

methods for analyzing judge-rated data assume a MAR missing data mechanism. The 

implication is that existing methods make the strong assumption that raters are assigned to 

examinees in a random fashion and thus after conditioning on design matrix covariates, no 

residual relationship exists between missingness and examinee ability. However, if raters are not 

randomly assigned (as is often the case in educational research – e.g., assigning an observer who 

happens to be available to conduct a given classroom observations), MAR is an assumption that 

seems unrealistic. Dealing with judge rated data when missing responses are non-ignorable 

requires the development of a new set of methods. 

This chapter has reviewed research from across a wide domain of psychometric and 

statistical research into rater effects, correction methods, missing data mechanisms, and the 

treatment of missing data. The methods proposed in this thesis will draw upon one additional 

statistical tool (Bayesian data analysis using MCMC) to address the open problem. The 

following section will provide background on the theory and applications of Bayesian inference 

along with examples of how it has been applied to other psychometric models. The infrastructure 

of Bayesian inference and Bayesian item response theory will be combined with the topics 

covered to this point to propose a model which simultaneously handles the problem of rater 

designs with disjoint subsets and non-ignorable missing data mechanisms. 
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E. Bayesian Data Analysis and a Proposed Solution 

The modeling framework proposed as a solution to the open problem combines Bayesian 

analysis, missing data approaches, GT, and latent trait modeling. With that in mind, it makes 

sense to provide an overview of Bayesian inference, its rationale, implementation, and how it has 

been applied previously to item response theory models. For the purposes of this thesis, the 

Bayesian approach is desirable over a frequentist approach for several reasons. First, it allows for 

the researcher to establish prior beliefs about the extent and type of rater bias (along with priors 

for other model parameters as well). Second, by specifying prior distributions for the rater 

effects, the Bayesian approach allows one to coherently analyze data that could not be analyzed 

under a frequentist framework (e.g., data with disjoint subsets of raters like the single rater case). 

That is, establishing prior distributions for the rater effects provides a mechanism for ensuring 

the model is fully identified. Third, Bayesian methods allow for coherent and logical decisions in 

data analysis. In particular, Bayesian inference  

is fundamentally sound, very flexible, produces clear and direct inferences and makes use 

of all the available information. In contrast, the classical approach suffers from some 

philosophical flaws, has a restrictive range of inferences with rather indirect meanings 

and ignores prior information (O'Hagan & Forster, 2004, pp. 16-17). 

 

Bayesian inference is based on Bayes theorem, which can be represented as follows: 

 

𝑓(θ|y𝑛) =
𝑓(y𝑛 | θ) π(θ)

∫ 𝑓(y𝑛 | θ) 𝑑Π(θ)
  

(16) 

 

where y𝑛 = {𝑦𝑖}𝑖=1
𝑛  represents the collected data, 𝑓(y𝑛 | θ) is the data likelihood under the 

assumed model 𝑓(∙  | θ) and a given value θ = (𝜃1, … , 𝜃𝑛) of the model's parameter, assigned a 

prior density π(θ) corresponding to cumulative distribution function (c.d.f.) Π(∙). The prior 
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density reflects pre-experimental beliefs about the plausible values of the parameter θ. Given the 

data, this prior is updated via Bayes' theorem to a posterior density, 𝑓(θ | y𝑛), that reflects 

plausible values of θ given the data and prior. In essence, the two pieces of information (the prior 

distribution and the data) both provide information towards our inference about the distribution 

of the parameter (O'Hagan & Forster, 2004). Moreover, using standard arguments of probability 

theory, predictions of the model can be made on the basis of the posterior predictive density of a 

new data point 𝑦, given by: 

 

𝑓(𝑦 | y𝑛) = ∫ 𝑓(𝑦 | θ)𝑑Π(θ | y𝑛) 
(17) 

 

The results of a Bayesian data analysis are usually summarized by the distributional 

properties of random samples drawn from the posterior distribution (which can be used to 

facilitate inference about the posterior predictive distribution). These summaries include 

statistics such as the distribution quantiles, means and modes, as well as the 95 percent posterior 

intervals. In some instances – generally single parameter models, or models with conjugate prior 

distributions – direct simulation from the posterior distribution is possible. However, when the 

posterior distribution does not have a familiar form, such direct simulation is not possible – or 

computationally efficient (Gelman, Carlin, Stern, & Rubin, 2009). This is especially true for 

more complex, multi-parameter problems (such as the one considered by this thesis). 

Markov Chain Monte Carlo (MCMC) methods are typically used when it is not possible 

to directly simulate or derive the full joint posterior distribution of the model parameter, θ. 

MCMC sampling uses a Markov chain to iteratively draw values from the full conditional 
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posterior distributions of each of the subcomponents of θ; repeating this process a sufficiently 

large number of times leads to samples of θ that converge to the full joint posterior density  

𝑓(θ | y𝑛) of the model. The development and application of MCMC methods has been 

invaluable to Bayesian data analysis. Standard algorithms for the implementation of MCMC 

include the Metropolis algorithm (Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953) 

the Metropolis-Hastings algorithm (Hastings, 1970), and the Gibbs sampler (Gelfand & Smith, 

1990). 

Bayesian methods have been applied to measurement and item response theory models. 

Patz and Junker (1999a; 1999b) applied MCMC methods to item response models for both 

dichotomous and polytomous items using a Metropolis-Hastings within Gibbs sampling 

approach. Holmes and Held (2006) use a Bayesian auxiliary variable modeling approach to 

logistic regression that applies to cumulative logit models (e.g., the modified Graded Response 

Model), such that if multivariate normal priors are assumed for the model parameters, the easier 

to implement Gibbs sampling approach can be applied. 

MCMC has also been applied to generalizability theory and the MFRM. In particular, 

Briggs and Wilson (2007) propose an approach called generalizability in item response modeling 

(GIRM) that applies MCMC methods to a random effects measurement model. This modified 

measurement model uses random item parameters to allow for the calculation of variance 

components analogous to those used in GT (while simultaneously estimating fixed item 

parameters typical of item response theory models). The Bayesian modeling approach proposed 

in this thesis will allow for estimation of variance components and generalizability coefficients 

by employing summary statistics for the posterior distributions of the model parameters. 
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3. MCMC, Polytomous Latent Trait Models, and Missing Data 

This discussion now returns to the open problem of handling non-ignorable missing 

judge ratings, potentially in the situation where there are disjoint subsets in the data (due to the 

lack of a crossed-rater design). The goal of this thesis is to propose a model which accounts for 

the missing data mechanism (which may be MNAR), imputes values for those missing data 

within a full MCMC Bayesian framework, calculates rater severity parameters, and produces 

examinee ability parameters which are free from bias. To accomplish this task, this thesis will 

evaluate the performance of a bivariate regression model that is introduced briefly here, and then 

fully described in the methods section of this thesis. 

Suppose there is a data set containing judge ratings of individual examinees on a set of 

tasks or items. Each examinee is rated by at least one judge on each item (although the proposed 

modeling framework could handle missing item data in addition to the missing rater data 

proposed here). The judge ratings for each item/examinee combination are ordinal responses. Let 

y = (𝑦1, … , 𝑦𝑛)𝑇 represent the vector of ordinal judge ratings for a set of examinees to a set of 

items or tasks, where 𝑦𝑖 ∈ {0,1, … , 𝑐}. To allow for missing data (e.g., planned missingness of 

rater responses), let this column vector of ordinal responses be comprised of both the observed 

data elements 𝑦𝑖
𝑜𝑏𝑠 and the missing data elements 𝑦𝑖

𝑚𝑖𝑠. Furthermore, let X = (x𝑖
𝑇)𝑛×𝑝 represent 

the design matrix consisting of 𝑛 row vectors which describe the combination of examinee, item 

or task, and rater which produced the ordinal (observed or missing) response 𝑦𝑖. 

For a complete data set (with imputed values for the missing ratings) denoted as 

{(𝑦𝑖, x𝑖, 𝑚𝑖)}𝑖=1
𝑛 , the joint likelihood for the general bivariate regression is as follows:  
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Pr[y,X,m | β,ϕ, 𝜎𝑌, 𝜎𝑚] = ∏ Pr[𝑦𝑖 | x𝑖,β,w, 𝜎𝑌]𝑃𝑟[𝑚𝑖  | x𝑖, 𝑦𝑖 ,ϕ, 𝜎𝑚]

𝑛

𝑖=1

, (18) 

 

where the vector w = (𝑤𝑘 | 𝑘 = 0, … , 𝑐; 𝑤𝑘 ≤ 𝑤𝑘+1;  𝑤0 = −∞, 𝑤𝑐 = ∞) contains the threshold 

parameters for the ordinal regression. 

For the above model, there are two dependent variables. One dependent variable will be 

the ordinal ratings of the judges (which may or may not be observed), and the other dependent 

variable will be a binary indicator variable which denotes the presence or absence of missing 

ratings. Within a Bayesian MCMC sampling framework, this model will multiply-impute 

missing judge ratings and produce estimates of the joint posterior distribution of examinee, 

judge, and item/task parameters. Distributional properties of the posterior distribution can be 

used to estimate variance components and calculate traditional generalizability theory 

coefficients. As stated previously, this model can be fully identified under conditions when there 

are disjoint subsets within the data by establishing prior densities for the person, item, and rater 

parameters (along with priors for the threshold parameters). Full details of the model, the 

potential prior distributions, and the MCMC sampling framework are provided in Chapter 2. 

F. Conclusions 

Accounting for the presence of disjoint subsets, single rater designs, and non-ignorable 

missing data is an open problem within the research studying rater effects. Methods exist for 

dealing with rater effects when data has been collected in a highly rigorous manner (random 

assignment of raters to examinees, multiple raters per examinee). However, when randomization 

of raters cannot be accomplished due to practical requirements, or multiple raters cannot be 

assigned due to financial constraints, existing methods prove unable to adequately model the data 
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in such a manner as to provide unbiased estimates of examinee ability on the underlying latent 

trait. 

This chapter has provided an introduction to the research basis for the methods proposed 

in this thesis. The statistical methods proposed here grow out of the literature across several lines 

of research including Generalizability Theory, Rasch measurement, score correction methods, 

Bayesian inference, and missing data analysis. Iterative multiple imputation procedures 

combined with the use of Markov Chain Monte Carlo logistic item response models demonstrate 

potential for dealing with the issue of bias induced into scores by the mishandling of rater effects 

under measurement scenarios not addressable by existing methods. The proceeding argument has 

established the rationale for pursuing this line of study given that statistical inference which does 

not account for the facets of measurement will produce estimates of individual measures on the 

latent trait that contain hidden, systematic bias above and beyond that due to random error. In the 

case where data collection allows for the estimation of the variance attributable to these facets 

and their effect on the reliability of the scores, traditional GT and MFRM that utilizes existing 

score correction methods may be sufficient. The modeling framework described in this thesis 

extends previous research to the scenario of single rater designs and non-ignorable missing data 

mechanisms, while simultaneously incorporating a more coherent Bayesian approach to 

statistical inference. 

The methods introduced briefly in this first chapter are fleshed out in Chapter II of this 

thesis. Chapter III illustrates the use of the proposed statistical methods in the analysis of 

simulated data sets (for which generating parameters and rater characteristics are known). The 

use of simulated data sets will allow for the manipulation of missing data patterns, the number of 

raters per examinee, the number of items, sample size, and the extent and type of rater effects 



42 
 

 

 

present. Chapter IV applies the model to a real data set consisting of Pre-K classroom 

observations that was collected using a single rater design. 
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II. METHODS 

 

This chapter describes the Bayesian bivariate probit ordinal missing data model, the 

algorithm for implementing it, and the research methods used to test the efficacy of this approach 

versus existing approaches for analyzing judge rated response data. The previous chapter 

established the open problem this study is addressing – namely, how to account for rater effects 

in data collection scenarios where either rater effects cannot be estimated, or the raters are 

assigned in a non-random manner (possibly leading to non-ignorable missing data). As stated 

previously, methods such as GT and MFRM have been developed to estimate the variance due to 

rater effects (GT and MFRM), correct for those effects (MFRM and linear regression 

corrections), and estimate the reliability and generalizability coefficients, along with the standard 

error of measurement of those scores. However, GT and MFRM do not readily apply to 

situations where multiple raters have not rated the same respondents in at least some of the 

observations. With single rater designs, there exist disjoint subsets in the data, which impedes the 

estimation of rater effects (in MFRM), and confounds the error variance due to raters with the 

variance due to differences among the examinees (in GT). MFRM can estimate rater effects in 

such a scenario if one makes a set of assumptions about the average ability of the group of 

examinees assigned to each rater. Furthermore, this thesis characterizes the problem in a missing 

data framework. In particular, it treats the responses for examinees not rated by a particular rater 

as missing data. While these types of missing-data-by-design approaches are common, they are 

often not analyzed as missing data problems. Without considering the implications of missing 

data, there is an implicit assumption that data are missing completely at random. However, if 

raters are not randomly assigned to examinees, the missing data pattern could be either MAR or 

MNAR. Under those patterns, the typical complete case analysis may not be appropriate 
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(especially if there is no attempt to correct for rater effects). The methods proposed in this thesis 

are attempting to reduce the bias due to the non-treatment of rater effects (in single rater 

designs), and the bias due to mistreatment of missing data. 

This thesis has two major research objectives. The first objective is to develop and 

analyze a method for estimating the variance due to raters (or potentially other facets of 

measurement) when data do not support the use of traditional methods such as Generalizability 

Theory. The second objective is to use that method to reduce the bias in the examinee scores 

produced from the data analysis – accounting for rater effects in situations where rater effects 

cannot be estimated with traditional methods. To explore these objectives, this study uses a 

combination of simulated and real data sets. The simulated data sets serve as a basis for 

determining the efficacy of the new and existing methods when the “truth” is known. That is, 

simulating data based on “true” values of the underlying latent trait one is trying to estimate 

enables the evaluation of each approach's ability to return estimates of the parameters that mimic 

the generating parameters as closely as possible. In addition to simulated data, a real world data 

set is analyzed with each of the approaches to compare and contrast the results, as well as 

establish the new method as applicable to actual judge-rated data. 

To accomplish these objectives, the Bayesian bivariate probit ordinal missing data model, 

MFRM, GT (with linear regression correction), and Rasch rating scale models are applied to real 

and simulated data sets. The simulated data sets are designed to compare these models to one 

another across a variety of data collection scenarios. To establish the robustness of the various 

approaches, data sets are considered where the number of raters, examinees, and items are 

varied. Furthermore, the methods are compared on their ability to handle both normal and non-

normal (bimodal mixture normal) distributions of examinee abilities. Two rater designs are 
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explored (double rater and single rater). Finally, missing data patterns for the double and single 

rater designs are generated as both MCAR and MNAR.  

The new method proposed in this thesis is the Bayesian bivariate probit ordinal missing 

data model. This model emulates a standard probit model (with variance parameter fixed to 

approximate a logistic model which is common in psychometric applications). It is contrasted 

with a typical Rasch rating scale model in that it is defined as a cumulative logit model as 

opposed to the rating scale model's adjacent categories form (Embretson & Reise, 2000). The 

cumulative logit model is chosen here because it allows for a more mathematically tractable 

Bayesian solution, although fitting an adjacent categories model is possible. The formulation of 

this model (which is described in mathematical detail below) uses a bivariate outcome, modeling 

the responses and the missing data indicator jointly as dependent variables. The predictor 

variables include fixed effects for the examinees, items, and raters (and the observed and 

unobserved ratings for the missing data indicator). The establishment of prior distributions for 

the independent fixed effect parameters, and the iterative imputation of missing responses 

identifies the model and enables it to both calculate rater effects, and determine their variance, 

even with disjoint subsets in the data. The model can be fit via Markov Chain Monte Carlo 

(MCMC) methods, using a hybrid Gibbs sampler employing Metropolis-Hastings sampling 

steps. This particular model implementation emulates a Bayesian “selection model” (Little & 

Rubin, 2002). The identifiability of such a model is key and is addressed after I specify the 

model. 

The remainder of this chapter discusses the proposed new and existing methods, the data 

sets used for analyzing these methods, the research design, and the evaluation criteria used to 

judge their effectiveness and applicability. The first major section deals with the formulation and 
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explanation of the Bayesian bivariate probit ordinal missing data model and the algorithm that 

can be used to fit the model. Then, the details of the existing comparison methods are explained 

(i.e., the Rasch rating scale model, MFRM, and GT with the linear regression correction). 

Following that is a discussion of how variance components will be estimated in the different 

approaches and how those variance components are used to generate reliability and 

generalizability coefficients. The rest of the chapter deals with the design of the simulated data, 

the specifics of the real data sets, the hypotheses that will be examined to determine the extent to 

which the research objectives are met, and the evaluative criteria that will be used to test those 

hypotheses. 

A. Bayesian Bivariate Probit Ordinal Missing Data Model 

This section outlines the theoretical foundations and implementation of a Bayesian 

bivariate probit ordinal selection model for non-ignorable missing data. In particular, Bayesian 

likelihood theory is introduced, along with its applications to missing data problems. Following 

that is a description of the data structure that will support inference with non-ignorable missing 

ratings. Then, a psychometric model for ordinal responses is developed. Finally, the missing data 

solution, data structure, and psychometric model are combined to form the full model 

implemented in this thesis. 

As provided earlier, Bayes theorem in its general form can be written as 

 

𝑓(θ|y𝑛) =
𝑓(y𝑛|θ)𝜋(θ)

∫ 𝑓(y𝑛|θ) dΠ(θ)
 

(19) 

 

To implement Bayes theorem, one must specify both a likelihood for the data, and a prior 

distribution for the model parameters. Bayesian methods are very useful for the analysis of 
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missing data problems, and are particularly applicable to the problem addressed in this thesis. I 

first provide a general overview of how the data likelihood is specified for missing data problems 

following the guidance of Little and Rubin (2002). I then specify the likelihood used for the 

model proposed in this thesis by first deriving the psychometric model for the ratings, and then 

deriving the model for the missing data indicator. 

Assume a vector y of ordinal responses (the dependent variable), and a matrix X of 

predictors (independent variables). Furthermore, assume that X is fully observed, and that y is 

only partially observed. Note that this scenario makes sense given that predictor variables in the 

rater response model described here will be indicator variables for persons, items, and raters (a 

design matrix) which is fully known. For simplicity, ignore the X for a description of the general 

case of missing data analysis. Now, y can be represented as a set of two vectors y𝑜𝑏𝑠 and y𝑚𝑖𝑠 

which refer to the observed and missing portions of y, respectively. 

 

y = (y𝒐𝒃𝒔, y𝒎𝒊𝒔) (20) 

 

Next, assume there exists a vector m which reflects whether or not the corresponding 

element of y is missing or observed. To formulate a Bayesian selection model, represent the joint 

likelihood of m and y as 

 

𝑓(y,m|β,ϕ, 𝜎𝑦, 𝜎𝑚) = 𝑓(y|β, 𝜎𝑦)𝑓(m|y,ϕ, 𝜎𝑚) (21) 

 

For this data specification, note that the observed data are (y𝑜𝑏𝑠,m), with y𝑚𝑖𝑠 not observed. It 

follows that the joint distribution of the observed data is 
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𝑓(y𝑜𝑏𝑠,m|β,ϕ, 𝜎𝑦, 𝜎𝑚) = ∫ 𝑓(y𝑜𝑏𝑠, y𝑚𝑖𝑠|β, 𝜎𝑦)𝑓(m|y𝑜𝑏𝑠, y𝑚𝑖𝑠,ϕ, 𝜎𝑚) 𝑑𝒚𝑚𝑖𝑠 
(22) 

 

If the responses in y are missing at random, then the joint distribution simplifies as 

follows: 

 

𝑓(y𝑜𝑏𝑠,m|β,ϕ, 𝜎𝑦, 𝜎𝑚) = 𝑓(m|y𝑜𝑏𝑠,ϕ, 𝜎𝑚) ∫ 𝑓(y𝑜𝑏𝑠, y𝑚𝑖𝑠|β, 𝜎𝑦) 𝑑𝒚𝑚𝑖𝑠 
(23) 

 = 𝒇(m|y𝒐𝒃𝒔,ϕ, 𝜎𝑚)𝒇(y𝒐𝒃𝒔|β, 𝜎𝑦) (24) 

 

This simplification is possible because if data are missing at random, then the distribution of the 

missing data m is independent of the missing ratings y𝒎𝒊𝒔. Therefore, 

 

𝑓(m|y𝑜𝑏𝑠, y𝑚𝑖𝑠,ϕ, 𝜎𝑚) = 𝑓(m|y𝑜𝑏𝑠,ϕ, 𝜎𝑚) (25) 

 

and inferences can be based on 

 

𝐿(β|y𝑜𝑏𝑠) ∝ 𝑓(y𝑜𝑏𝑠|β) (26) 

 

However, for the data problems posed in this thesis, the missing data mechanism is not 

assumed to be ignorable (and is simulated to be otherwise in some cases). Therefore, one must 
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deal with the likelihood for the complete data, and not just the observed data. For non-ignorable 

missing data, the above simplification is not possible, and therefore, one bases inference on 

 

𝐿(β,ϕ|y𝑜𝑏𝑠,m) ∝ 𝑓(y𝑜𝑏𝑠,m|β,ϕ) (27) 

 

where 𝑓(y𝑜𝑏𝑠,m|β,ϕ) is defined in Equation 22. 

To apply the likelihood theory just described to this study, first, consider the situation 

where some number of examinees are rated across a number of ordinal response items (assumed 

here to have a similar rating scale). Let 𝑦𝑛𝑖𝑟 denote the ordinal rating received by examinee 𝑛, 

from rater 𝑟, on item 𝑖, (where 𝑛 = 1, … , 𝑁, 𝑖 = 1, … , 𝐼, and 𝑟 = 1, … , 𝑅). Each rating 𝑦𝑛𝑖𝑟 is 

drawn from the sample space {𝑐 = 1, … , 𝐶}. In practice, each item could have a varying number 

of response categories, but for simplicity, the model proposed here will assume all items have the 

same number of possible points. By design (or due to some other reason), the rating 𝑦𝑛𝑖𝑟 could 

be missing. Let 𝑚𝑛𝑖𝑟 denote a missing rating indicator, defined by 

 

𝑚𝑛𝑖𝑟 = {
1 if rating 𝑦𝑛𝑖𝑟 is missing,
0 if rating 𝑦𝑛𝑖𝑟 is nonmissing

 
(28) 

 

for all examinees, raters, and test items. 

Given that definition of 𝑚𝑛𝑖𝑟, the rating (observed or unobserved) can 

be represented as follows:  

 

𝑦𝑛𝑖𝑟 = 𝑦𝑛𝑖𝑟
𝑚𝑖𝑠𝑚𝑛𝑖𝑟 + 𝑦𝑛𝑖𝑟

𝑜𝑏𝑠(1 − 𝑚𝑛𝑖𝑟) (29) 
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Now, define X as a design matrix, such that 

 

X = (x𝑛𝑖𝑟
𝑇 )𝑝×(𝑁+𝐼+𝑅) (30) 

 

where 𝑝 = 𝑁 × 𝐼 × 𝑅. More specifically, the rows of X contain values for a set of 𝑝 covariates 

corresponding to the examinee, item, and rater for a particular response in y. These covariates are 

indicator variables taking the value 1 for the column corresponding to examinee 𝑛, item 𝑖, and 

rater 𝑟, and 0 for all other columns. 

Finally, let Z = (X,y) denote a side-by-side concatenation of X and y, with rows z𝑛𝑖𝑟, such 

that 

 

Z = (z𝑛𝑖𝑟
𝑇 )(𝑝+1)×(𝑁+𝐼+𝑅+1) (31) 

 

To begin to specify the Bayesian bivariate probit missing data model, one needs to first 

define the psychometric model used to model the ordinal response. For mathematical and 

algorithmic tractability, I will use a cumulative probit model. This model specification allows for 

a simple Gibbs sampling routine. Also, by specifying a scale parameter of 1.6, the probit model 

can emulate the more traditional cumulative logit model used in psychometric applications. 

To develop a model for an ordinal outcome, it is natural to hypothesize that there exists 

an underlying latent variable measure of the trait of interest (e.g., the ability of the examinee 

which drives the ratings for that individual). This latent variable is assumed to be drawn from a 

normal distribution that is centered on a value specific to each response in the data (dependent on 
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the value of the covariates – i.e., the examinee, item, and rater indicator variables in the design 

matrix X). Define this latent variable, 𝑦𝑛𝑖𝑟
∗ , such that 

 

𝑦𝑛𝑖𝑟
∗ ~Normal(x𝑛𝑖𝑟

𝑇 β, 𝜎𝑦∗)I(𝑤𝑦𝑛𝑖𝑟−1 < 𝑦𝑛𝑖𝑟
∗ < 𝑤𝑦𝑛𝑖𝑟

) (32) 

 

Therefore, the auxiliary latent variable 𝑦𝑛𝑖𝑟
∗  is drawn from a truncated normal distribution 

centered at the linear predictor for the response. To continue to specify the model, it is assumed 

that the latent metric is divided into categories that can map the latent variable into the ordinal 

response metric. If one assumes responses can take the values 1,2, … , 𝐶, then the model requires 

𝐶 + 1 category thresholds 𝑤𝑐, defined such that 

 

−∞ = 𝑤0 < 𝑤1 ≤ 𝑤2 ≤ ⋯ ≤ 𝑤𝐶 = ∞ (33) 

 

The cumulative probit model defines probabilities such that 

 

𝑃(𝑦𝑛𝑖𝑟 = 𝑐|X,β, 𝜎𝑦) = 𝑃(𝑦𝑛𝑖𝑟 ≤ 𝑐|X,β, 𝜎𝑦) − 𝑃(𝑦𝑛𝑖𝑟 ≤ 𝑐 − 1|X,β, 𝜎𝑦) (34) 

 

Using the above relationship, the latent variable 𝑦𝑛𝑖𝑟
∗ , the threshold 𝑤𝑐, and the normal 

distribution, I can then write the probability of a response 𝑐 as 

 

𝑃(𝑦𝑛𝑖𝑟 = 𝒄|X,β, 𝜎𝑦) = 𝑃(𝑦𝑛𝑖𝑟
∗ ≤ 𝑤𝑐|X,β, 𝜎𝑦∗) − 𝑃(𝑦𝑛𝑖𝑟

∗ ≤ 𝑤𝑐−1|X,β, 𝜎𝑦∗) (35) 

 = 𝑃(𝑤𝑐−1 < 𝑦𝑛𝑖𝑟
∗ ≤ 𝑤𝑐) (36) 
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= ∫ n(𝑦𝑛𝑖𝑟

∗ |x𝑛𝑖𝑟
𝑇 β, 𝜎𝑦∗) 𝑑𝑦∗

𝑤𝑐

𝑤𝑐−1

 
(37) 

 

where n(𝑦𝑛𝑖𝑟
∗ |x𝑛𝑖𝑟

𝑇 β, 𝜎𝑦∗) is the density for the normal distribution centered at x𝑛𝑖𝑟
𝑇 β, with scale 

parameter 𝜎𝑦∗. 

I now turn my attention to specifying a model for m, the vector of missing data 

indicators. The intent is to formulate a model for the probability that a response 𝑦𝑛𝑖𝑟 is not 

observed. To account for non-ignorable missing data, the probability that a response is missing is 

allowed to depend not only on the covariates in X, but also on the observed and unobserved 

responses themselves (i.e., y). To model the probability (which is bounded by 0 and 1) when one 

has a binary outcome, a standard choice is a cumulative normal distribution. Similar to how I 

defined a latent variable 𝑦𝑛𝑖𝑟
∗  for the response variable 𝑦𝑛𝑖𝑟, I can define a latent variable, 𝑚𝑛𝑖𝑟

∗ , 

such that 

 

𝑚𝑛𝑖𝑟
∗ ~ {

n(𝑚𝑛𝑖𝑟
∗ |z𝑛𝑖𝑟

𝑇 ϕ, 𝜎𝑚∗)I(𝑚𝑛𝑖𝑟
∗ ≥ 0) if 𝑚𝑛𝑖𝑟 = 1

n(𝑚𝑛𝑖𝑟
∗ |z𝑛𝑖𝑟

𝑇 ϕ, 𝜎𝑚∗)I(𝑚𝑛𝑖𝑟
∗ < 0) if 𝑚𝑛𝑖𝑟 = 0

 
(38) 

 

Then, I can define the probability that a response in y is missing as 

 

𝑃(𝑚𝑛𝑖𝑟 = 1|Z,ϕ, 𝜎𝑚∗) = N(𝑚𝑛𝑖𝑟
∗ |z𝑛𝑖𝑟

𝑇 ϕ, 𝜎𝑚∗)𝑚𝑛𝑖𝑟[1 − N(𝑚𝑛𝑖𝑟
∗ |z𝑛𝑖𝑟

𝑇 ϕ, 𝜎𝑚∗)]1−𝑚𝑛𝑖𝑟 (39) 

 

where N(𝑚𝑛𝑖𝑟
∗ |z𝑛𝑖𝑟

𝑇 ϕ, 𝜎𝑚∗) is the cumulative distribution function for the normal distribution 

centered at z𝑛𝑖𝑟
𝑇 ϕ with scale parameter 𝜎𝑚∗. 
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The next step is to write out the likelihood for our data (y,m,X). First, note that the 

likelihood can be written in simple terms as follows: 

 

𝑃(y,m,X|β,ϕ, 𝜎𝑦∗ , 𝜎𝑚) = 𝑃(y|β, 𝜎𝑦∗ ,X)𝑃(m|ϕ, 𝜎𝑚∗ ,y,X) (40) 

 

If I substitute the models derived above, this likelihood can be written as 

 

𝑃(y,m,X|β,ϕ, 𝜎𝑦∗ , 𝜎𝑚∗)

= ∏ ∏ ∏ (∫ n(𝑦𝑛𝑖𝑟
∗ |x𝑛𝑖𝑟

𝑇 β, 𝜎𝑦∗) 𝑑𝑦∗
𝑤𝑐

𝑤𝑐−1

{N(𝑚𝑛𝑖𝑟
∗ |z𝑛𝑖𝑟

𝑇 ϕ, 𝜎𝑚∗)𝑚𝑛𝑖𝑟[1

𝑅

𝑟

𝐼

𝑖=1

𝑁

𝑛=1

− N(𝑚𝑛𝑖𝑟
∗ |z𝑛𝑖𝑟

𝑇 ϕ, 𝜎𝑚∗)]1−𝑚𝑛𝑖𝑟}) 

(41) 

 

where n(𝑦𝑛𝑖𝑟
∗ |x𝑛𝑖𝑟

𝑇 β, 𝜎𝑦∗) is the normal density of the auxiliary latent variable 𝑦𝑛𝑖𝑟
∗  underlying the 

rating 𝑦𝑛𝑖𝑟 for person 𝑛 on item 𝑖 by rater 𝑟. N(𝑚𝑛𝑖𝑟
∗ |z𝑛𝑖𝑟

𝑇 ϕ, 𝜎𝑚∗)𝑚𝑛𝑖𝑟  represents the normal 

cumulative distribution function evaluated at the auxiliary latent variable 𝑚𝑛𝑖𝑟
∗  underlying the 

missing data indicator 𝑚𝑛𝑖𝑟. The models above are defined as probit ordinal regression models. 

This lies in contrast to the logistic models typically used in psychometric applications (e.g., 

the Rasch rating scale model or MFRM). However, this model is flexible and can support either 

a probit or logit interpretation. To fit a bivariate probit model for (y,m), one simply uses the 

choices of 𝜎𝑦∗ = 1 and 𝜎𝑚∗ = 1 for the variance parameter. The choices 𝜎𝑦∗ = 1.6 and 𝜎𝑚∗ =

1.6 lead to an approximate, bivariate logit model for (y,m).  
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The next step is to define the joint prior density for (β,ϕ,w). The regression parameters 

are assumed to be multivariate normal and independent from one another, such that 

 

𝑃(β,ϕ) = |(2𝜋)𝑘Σ|−
1
2exp−

1
2

(θ−μ)𝑇Σ−1(θ−μ)
 

(42) 

 

where 

 

θ = (β,ϕ) (43) 

 

is the vector of regression coefficients for the response vector y predicted by X (represented as 𝛃) 

and the missing data indicator vector m predicted by Z (represented by ϕ). In addition, the prior 

mean for the parameters is 

 

μ = (μ𝛽, μ𝜙) (44) 

 

and the block-diagonal variance covariance matrix is 

 

Σ = [
V𝛽 0

0 V𝜙
] 

(45) 

 

Therefore, the joint prior for 𝛃 and ϕ is 
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(β,ϕ)|μ𝛽, μ𝜙, V𝛽 , V𝜙~Normal (β,ϕ|[μ𝛽 , μ𝜙], [
V𝛽 0

0 V𝜙
]) 

(46) 

 

The variance parameters for the joint prior for 𝛃 and ϕ are modeled based on the hyper-priors 

 

𝑣𝛽~Unif(0,1000) (47) 

𝑣𝜙~Unif(0,1000) (48) 

 

where V𝛽 and V𝜙 are diagonal matrices with equal values of 𝑣𝛽 and 𝑣𝜙 on the diagonal (and all 

other entries as 0), respectively. These priors were chosen to keep these variance finite while not 

imposing too strong a restriction on their values. In addition, the prior for the thresholds is 

expressed as 

 

𝑃(w) = 𝛿−∞(𝑤0)𝛿0(𝑤1)𝛿∞(𝑤𝐶+1) ∏ unif(𝑤𝑐|𝑤𝑐−1, 𝑤𝑐+1)

𝐶

𝑐=2

 

(49) 

 

where w = (𝑤0, 𝑤1, … , 𝑤𝐶+1) are the 𝐶 + 2 threshold parameters for the category divisions 

respective to the latent metric. To identify the model, 𝑤0, 𝑤1, and 𝑤𝐶+1 are set to −∞, 0, and ∞, 

respectively. Now that the priors are specified, it is possible to specify the full posterior 

distribution of the parameters as 
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𝑃(β,ϕ,w|y,m,X) ∝ 𝑃(y|β, 𝜎𝑦∗ ,X)𝑃(m|ϕ, 𝜎𝑚∗ ,y,X)𝑃(β,ϕ)𝑃(𝒘) 

 

∝ ∏ ∏ ∏ ( ∫ n(y𝑛𝑖𝑟
∗ |x𝑛𝑖𝑟

𝑇 β, 𝜎𝑦∗) 𝑑𝑦∗ {N(m𝑛𝑖𝑟
∗ |z𝑛𝑖𝑟

𝑇 ϕ, 𝜎𝑚∗)𝑚𝑛𝑖𝑟[1

𝑤𝑦𝑛𝑖𝑟

𝑤𝑦𝑛𝑖𝑟−1

𝑅

𝑟=1

𝐼

𝑖=1

𝑁

𝑛=1

− N(m𝑛𝑖𝑟
∗ |z𝑛𝑖𝑟

𝑇 ϕ, 𝜎𝑚∗)]1−𝑚𝑛𝑖𝑟}) × |(2𝜋)𝑘Σ|−
1
2exp−

1
2

(θ−μ)𝑇Σ−1(θ−μ)

× 𝛿−∞(𝑤0)𝛿0(𝑤1)𝛿∞(𝑤𝐶+1) ∏ unif(𝑤𝑐|𝑤𝑐−1, 𝑤𝑐+1)

𝐶

𝑐=2

 

 

(50) 

 

This posterior distribution cannot be solved analytically, and therefore requires that I implement 

a sampling algorithm to determine the distributions of the parameters. The next section of this 

chapter describes the hybrid Gibbs sampler with Metropolis-Hastings steps used to evaluate this 

model. 

The final definition in the above model specifies a bivariate normal joint prior 

distribution for (β,ϕ). In theory, any mean vector and covariance matrix could be used for the 

prior specification. Lacking any prior information on examinee ability, rater severity, or item 

difficulty, one might choose to use a relatively flat prior centered around 0. However, if pre-

existing information on the values of these parameters exists, that information could be added to 

the prior specification. For example, if there exist estimates of rater severity (along with some 

estimate of the uncertainty of those estimates), the prior distribution for the rater severity 

parameters need not be 0 for all raters. That is, the specific rater parameters and variances could 

be used in the prior mean vector and variance-covariance matrix, respectively. 
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The specification of prior distributions for the regression parameters is of key importance 

for this model. In particular, without thoughtful definition of the prior distributions, the models 

are not identifiable. Huang, Chen, and Ibrahim (2005) showed that identification of generalized 

linear models with non-ignorable missing data is possible when prior distributions for the model 

parameters are proper (e.g., a normal distribution with finite variance). In the model description 

that follows, all prior and hyper-prior distributions are proper (either finite variance normal 

distribution, truncated normal distribution, or bounded uniform distribution).  

B. Markov Chain Monte Carlo Estimation Methods 

The implementation of this model requires a Markov Chain Monte Carlo procedure 

implementing a hybrid Gibbs and Metropolis sampling routine. To fit this model, I implement 

the following iterative algorithm. During each major iteration loop, there are eight steps, each of 

which samples from the full conditional posterior densities of the parameters of interest. 

1. The first step is to sample 𝑣𝛽, the value of the variance parameter for the prior 

distribution for β using random-walk Metropolis sampling. For the first iteration, the 

value of 𝑣𝛽 is set to 1, with all subsequent values drawn as follows: Sample log(𝑣𝛽) from 

the normal proposal distribution log(𝑣𝛽
∗)~Normal(𝑣𝛽

𝑠−1, 1). I then accept or reject the 

proposed value with probability 

 

min {1,exp [∑ log{n(β|μβ, Vβ
*)}

𝛽

− ∑ log{n(β|μβ, Vβ
s-1)}

𝛽

]} 

(51) 

 

subject to the constraint that the proposed variance parameter is less than 1000. 
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2. The next step is to sample 𝑣𝜙, the value of the variance parameter for the prior 

distribution for beta using random-walk Metroplis sampling. For the first iteration, the 

value of 𝑣𝜙 is set to 1, with all subsequent values drawn as follows: Sample log(𝑣𝜙) from 

the normal proposal distribution log(𝑣𝜙
∗ )~Normal(𝑣𝜙

𝑠−1, 1). I then accept or reject the 

proposed value with probability 

 

min {1,exp [∑ log{n(ϕ|μϕ, Vϕ
* )}

𝜙

− ∑ log{n(ϕ|μϕ, Vϕ
s-1)}

𝜙

]} 

(52) 

 

subject to the constraint that the proposed variance parameter is less than 1000. 

3. Next, sample 𝑦𝑛𝑖𝑟
∗  (the latent variable underlying the ordinal responses) from its 

conditional posterior density, denoted as 

 

𝜋(𝑦𝑛𝑖𝑟
∗ | ⋯ ) ∝ n(𝑦∗|x𝑛𝑖𝑟

𝑇 β, 𝜎𝑦∗)I(𝑤𝑦𝑛𝑖𝑟
< 𝑦∗ < 𝑤𝑦𝑛𝑖𝑟+1) (53) 

 

for all 𝑖, 𝑗, and 𝑟, with I(∙) as the indicator function. This density is that of a truncated 

normal distribution and can be sampled using the inverse cumulative distribution function 

(c.d.f.) method (Devroye, 1986). 

4. Next, sample latent variables 𝑚𝑛𝑖𝑟
∗  from the conditional posterior density, denoted as 

 

𝜋(𝑚𝑛𝑖𝑟
∗ | ⋯ ) ∝ {

n(𝑚𝑛𝑖𝑟
∗ |z𝑛𝑖𝑟

𝑇 ϕ, 𝜎𝑚∗)I(𝑚𝑛𝑖𝑟
∗ ≥ 0) if 𝑚𝑛𝑖𝑟 = 1

n(𝑚𝑛𝑖𝑟
∗ |z𝑛𝑖𝑟

𝑇 ϕ, 𝜎𝑚∗)I(𝑚𝑛𝑖𝑟
∗ < 0) if 𝑚𝑛𝑖𝑟 = 0

 
(54) 
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for all 𝑖, 𝑗, and 𝑟. This density is also a truncated normal distribution and can be sampled 

via inverse cdf. 

5. Draw values of the threshold parameters from their conditional posterior via random-

walk Metropolis sampling, denoted as 

 

𝜋(𝑤2, … , 𝑤𝐶) ∝ ∏ ∏ ∑[N(𝑤𝑦𝑛𝑖𝑟+1|x𝑛𝑖𝑟
𝑇 β, 𝜎𝑦∗) − N(𝑤𝑦𝑛𝑖𝑟

|x𝑛𝑖𝑟
𝑇 β, 𝜎𝑦∗)]

𝑅

𝑟=1

𝐼

𝑖=1

𝑁

𝑛=1

× I(−∞ ≡ 𝑤0 ≤ 𝑤1 ≡ 0 ≤ 𝑤2 ≤ ⋯ ≤ 𝑤𝐶 < 𝑤𝐶+1 ≡ ∞) 

(55) 

 

To accomplish this, at each MCMC iteration, I sample a proposal value for the threshold 

parameter. By definition, 𝑤0 = −∞, 𝑤1 = 0, and 𝑤𝐶+1 = ∞. Therefore I only need to 

update the sample at each iteration for the thresholds 𝑤2 through 𝑤𝐶. Starting with 

threshold 𝑤2, I draw a proposal 𝑤2
∗ from a Normal(𝑤2

𝑠−1, 𝜎𝑤2
2 ) distribution and draw a 

uniform random variable (bounded by 0 and 1). I then use the uniform random variable to 

accept the proposal 𝑤2
∗ (set 𝑤2

𝑠 ≡ 𝑤2
∗) with probability 
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min {1,exp [∑ ∑ ∑ log{[N(w𝑦𝑛𝑖𝑟+1
∗ |x𝑛𝑖𝑟

𝑇 β, 𝜎𝑦∗) − N(w𝑦𝑛𝑖𝑟

∗ |x𝑛𝑖𝑟
𝑇 β, 𝜎𝑦∗) ]

𝐽

𝑗=1

𝐼

𝑖=1

𝑁

𝑛=1

× I(−∞ ≡ 𝑤0 ≤ 𝑤1 ≡ 0 ≤ 𝑤2 ≤ ⋯ ≤ 𝑤𝐶 < 𝑤𝐶+1 ≡ ∞)}

− ∑ ∑ ∑ log {[N(w𝑦𝑛𝑖𝑟+1
(𝑠−1)

|x𝑛𝑖𝑟
𝑇 β, 𝜎𝑦∗) − N(w𝑦𝑛𝑖𝑟

(𝑠−1)
|x𝑛𝑖𝑟

𝑇 β, 𝜎𝑦∗) ]

𝐽

𝑗=1

𝐼

𝑖=1

𝑁

𝑛=1

× I(−∞ ≡ 𝑤0 ≤ 𝑤1 ≡ 0 ≤ 𝑤2
𝑠−1 ≤ ⋯ ≤ 𝑤𝐶

𝑠−1 < 𝑤𝐶+1 ≡ ∞)}]} 

(56) 

 

If I fail to accept (or rather, reject) the proposal threshold, I then set 𝑤2
𝑠 ≡ 𝑤2

𝑠−1. This 

step is then repeated for the remaining threshold values (𝑤3, … , 𝑤𝐶), within the same 

MCMC major iteration. 

6. Sample the coefficients for the examinee, item, and rater parameters (which are 

predictive of the rating variable) from the full posterior density, denoted as 

 

𝜋(β| ⋯ ) = n(β|μ𝛽
∗ , 𝜎𝑦∗

2 V𝛽
∗) (57) 

 

With V𝛽
∗ = (V𝛽

−1 + X𝑇X)
−1

 and μ𝛽
∗ = V𝛽

∗(V𝛽
−1μ𝛽 + X𝑇y∗). This can be sampled directly 

from the multivariate normal distribution. 

7. Sample the coefficients for the examinee, item, rater, and rating parameters (which are 

predictive of the missing rating indicator) from the full conditional posterior density, 

denoted as 
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𝜋(ϕ| ⋯ ) = n(ϕ|μ𝜙
∗ , 𝜎𝑚∗

2 V𝜙
∗ ) (58) 

 

With V𝜙
∗ = (V𝜙

−1 + Z𝑇Z)
−1

 and μ𝜙
∗ = V𝜙

∗ (V𝜙
−1μ𝜙 + Z𝑇m∗). This can be sampled directly 

from the multivariate normal distribution. 

8. Finally, sample imputed values for the missing ratings. The conditional posterior 

distribution is denoted as 

 

𝜋(𝑦𝑛𝑖𝑟
∗ | ⋯ ) ∝ 𝑛(𝑦𝑛𝑖𝑟

∗ |x𝑛𝑖𝑟
𝑇 β, 𝜎𝑦∗)n(𝑚𝑛𝑖𝑟

∗ |z𝑛𝑖𝑟
𝑇 ϕ, 𝜎𝑚∗) (59) 

 

This is accomplished via random walk Metropolis. Since the 𝑦𝑛𝑖𝑟 are conditionally 

independent, they can be sampled simultaneously. For each missing rating (where 

𝑚𝑛𝑖𝑟 = 1), draw a proposed 𝑦𝑛𝑖𝑟
∗ ~𝑁𝑜𝑟𝑚𝑎𝑙 (𝑦𝑛𝑖𝑟

𝑠−1, 𝜎𝑦𝑛𝑖𝑟
∗

2 ). The values of the non-missing 

ratings do not change from iteration to iteration. Again, draw a vector of uniform random 

variables (bounded by 0 and 1) and use that random vector to accept the individual 

elements of the proposal vector of 𝑦𝑛𝑖𝑟
∗ with probability:  

 

min {1,
𝑛(𝑦𝑛𝑖𝑟

∗𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙|x𝑛𝑖𝑟
𝑇 β, 𝜎𝑦∗)n(𝑚𝑛𝑖𝑟

∗ |z𝑛𝑖𝑟
𝑇 ϕ, 𝜎𝑚∗)

𝑛(𝑦𝑛𝑖𝑟
∗(𝑠−1)

|x𝑛𝑖𝑟
𝑇 β, 𝜎𝑦∗)n(𝑚𝑛𝑖𝑟

∗ |z𝑛𝑖𝑟
𝑇 ϕ, 𝜎𝑚∗)

} 

(60) 

 

If the proposal vector of imputed latent variables (underlying the ratings) is not accepted, 

the values from the previous iteration are retained. Then, regardless of acceptance or 
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rejection, the ordinal ratings (where the original data were missing) are updated such that 

𝑦𝑛𝑖𝑟 = 𝑘 if and only if 𝑤𝑦𝑛𝑖𝑟
< 𝑦𝑛𝑖𝑟

∗ < 𝑤𝑦𝑛𝑖𝑟+1. 

C. Comparison Methods 

A number of other methodological approaches are applied to the data sets in addition to 

the bivariate probit ordinal Bayesian MCMC approach. In particular, data are analyzed using a 

standard Rasch rating scale model (fit using the WINSTEPS software), a many-facet Rasch 

model (fit using the FACETS software), and true score theory (i.e., generalizability with a linear 

regression adjustment). Not all methods are appropriate for all scenarios. For example, GT (using 

linear regression adjustment) is not appropriate for scenarios with only single rated data sets. 

With single rater designs, disjoint subsets in the data prevent these models from being fit. In 

practice, the Rasch rating scale model can be applied to any approach (as it ignores the rater facet 

entirely). The Bayesian approach is applicable to all situations as the establishment of prior 

distributions on the parameters allows for the calculation of all model parameters, even when 

there exists complete separation in the data. 

1. The Rasch Rating Scale Model 

The Rasch rating scale model (Andrich, 1978; Wright & Masters, 1982) is applicable 

to data where the substantive meaning of each ordinal category (or rating) is defined to be the 

same across all items. For example, the rating scale model is often used to analyze survey data 

with Likert scale type response options (e.g., Strongly disagree, Disagree, Agree, Strongly 

agree). The rating scale model is formulated as an adjacent categories model for ordinal data 

with the probability of response dependent on three types of parameters: 1) the ability (or latent 

trait level) of the object of measurement; 2) the difficulty of the item (typically defined as the 

average of the category thresholds); and 3) the category thresholds (which define the transition 
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point from one category to the next). The Rasch rating scale model imposes no restriction on the 

ordering of these thresholds; they are defined simply as the point along the latent continuum 

where there is equal probability of being in two adjacent categories. That is, for a four-point 

rating scale, the threshold dividing categories 1 and 2 is the point on the latent continuum where 

there is a .5 probability that the respondent would receive a rating of a 1 and a .5 probability that 

the respondent would receive a rating of 2, conditional on the rating being either a 1 or 2. The 

specification of the Rasch rating scale model is often denoted as follows: 

 

𝑃(𝑋 = 𝑥|𝜃𝑛, 𝛿𝑖, 𝜏𝑘) =
exp ∑ (𝜃𝑛 − (𝛿𝑖 + 𝜏𝑘))𝑥

𝑘=0

∑ exp ∑ (𝜃𝑛 − (𝛿𝑖 + 𝜏𝑘))𝑐
𝑘=0

𝐶
𝑐=0

 
(61) 

 

where 𝜃𝑛 is the ability of person 𝑛, 𝛿𝑖 is the difficulty of item 𝑖, 𝜏𝑘 is the 𝑘-th step threshold, and 

𝐶 is the highest rating one can receive (𝑥 ∈ {0,1, … , 𝐶}). The rating scale model is formulated 

such that the thresholds are the same for all items (similar to how they will be defined in the 

Bayesian bivariate model and the MFRM). The Rasch partial credit model (Wright & Masters, 

Rating scale analysis, 1982) is a generalization of the rating scale model that allows the 

thresholds to vary across items. The partial credit model is not considered in this study, without 

loss of generalizability. While the rating scale model does not account for the rater facet, it is 

applied to all single-rater data sets in this study. The rationale for this is that it provides estimates 

of the latent variables associated with the items and persons, in a modern psychometrics sense 

(as opposed to true score theory), ignoring the rater variable. In that sense, it will provide a 

reference for comparing the quality of the parameter estimates and error estimates generated 

from the more favored approaches of MFRM, GT, and the bivariate Bayesian method. 
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2. The Many-Facet Rasch Model 

The rating scale model described above is typically applied to data where there are 

not raters (or each respondent is rated by a single rater). It cannot account for variance among the 

raters. The MFRM is a generalization of the rating scale model which adds additional facets to 

the linear term in the model. A full description and discussion of the MFRM is provided in 

Chapter 1. For this study, the MFRM is fit using the FACETS software, which provides fixed 

effects estimates of person, item, and rater parameters. In addition, it provides estimates of the 

amount of error variance that is attributable to each facet. The MFRM model is applied to data 

sets where there are multiple raters that provide ratings for at least some of the individuals. It is 

not necessary that each respondent is rated by multiple individuals; however, there must be a 

path through the data in order to generate rater parameter estimates in the same metric. For 

example, if rater A and rater B rate student 1 and rater B and rater C rate student 2, one can 

connect raters A and C through their mutual co-rating with rater B. The MFRM model is also 

applied to the single rater data sub sets. Rater severity estimates can be calculated by the 

software via group mean ability anchoring (e.g., setting the average ability for each disjoint 

subset of examinees equal to 0). 

3. Generalizability Theory and Linear Regression Adjustment 

The three data collection scenarios (rated by all raters, rated by two raters, and rated by one rater) 

fall into two generalizability theory frameworks. For GT analysis, the first rating scenario 

exhibits the properties of a balanced, complete, crossed design. The second and third rating 

scenarios are nested designs, with persons nested in raters, crossed with items. I provide details 

on the fully-crossed, balanced design below. 
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When individuals are rated by all raters, the GT design is a fully crossed, balanced, 

complete 𝑝 × 𝑖 × 𝑟 design. For the fully crossed design, main effects can be calculated for 

persons, items, and raters. In addition, effects can also be calculated for all two-way and three-

way interactions; however, the three-way interaction of persons, items, and raters is confounded 

with the residual error variance. The GT model for the fully crossed design is shown in Table II: 

 

 

TABLE II 

A FULLY CROSSED TWO-FACET GENERALIZABILITY THEORY MODEL 

Residual Representation Facet Effect Representation 

  

𝑿𝒑𝒊𝒓 = 𝝁 𝑋𝑝𝑖𝑟 = 𝜇 

+(𝝁𝒑 − 𝝁) +𝜈𝑝 

+(𝝁𝒊 − 𝝁) +𝜈𝑖 

+(𝝁𝒓 − 𝝁) +𝜈𝑟 

+(𝝁𝒑𝒊 − 𝝁𝒑 − 𝝁𝒊 + 𝝁) +𝜈𝑝𝑖 

+(𝝁𝒑𝒓 − 𝝁𝒑 − 𝝁𝒓 + 𝝁) +𝜈𝑝𝑟 

+(𝝁𝒊𝒓 − 𝝁𝒊 − 𝝁𝒓 + 𝝁) +𝜈𝑖𝑟 

+(𝑿𝒑𝒊𝒓 − 𝝁𝒑𝒊 − 𝝁𝒑𝒓 − 𝝁𝒊𝒓 + 𝝁𝒑 + 𝝁𝒊 + 𝝁𝒓 + 𝝁) +𝜈𝑝𝑖𝑟 

  

 

 

This additive model specification defines how each rating 𝑋𝑝𝑖𝑟 can be written as a sum of 

main effects and interaction term deviations from an overall mean 𝜇. Going further, one can 

define variance components for each of the main effects and interactions as follows: 
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𝜎2(𝑝) = [𝑀𝑆(𝑝) − 𝑀𝑆(𝑝𝑖) − 𝑀𝑆(𝑝𝑟) + 𝑀𝑆(𝑝𝑖𝑟)] 𝑛𝑖𝑛𝑟⁄  (62) 

𝜎2(𝑖) = [𝑀𝑆(𝑖) − 𝑀𝑆(𝑝𝑖) − 𝑀𝑆(𝑖𝑟) + 𝑀𝑆(𝑝𝑖𝑟)] 𝑛𝑝𝑛𝑟⁄  (63) 

𝜎2(𝑟) = [𝑀𝑆(𝑟) − 𝑀𝑆(𝑝𝑟) − 𝑀𝑆(𝑖𝑟) + 𝑀𝑆(𝑝𝑖𝑟)] 𝑛𝑝𝑛𝑖⁄  (64) 

𝜎2(𝑝𝑖) = [𝑀𝑆(𝑝𝑖) − 𝑀𝑆(𝑝𝑖𝑟)] 𝑛𝑟⁄  (65) 

𝜎2(𝑝𝑟) = [𝑀𝑆(𝑝𝑟) − 𝑀𝑆(𝑝𝑖𝑟)] 𝑛𝑖⁄  (66) 

𝜎2(𝑖𝑟) = [𝑀𝑆(𝑖𝑟) − 𝑀𝑆(𝑝𝑖𝑟)] 𝑛𝑝⁄  (67) 

𝜎2(𝑝𝑖𝑟) = 𝑀𝑆(𝑝𝑖𝑟) (68) 

 

where, for example, 𝑀𝑆(𝑝) represents the mean square statistic for the main effect associated 

with persons. The above equations can be rewritten as follows: 

 

𝑀𝑆(𝑝) = 𝜎2(𝑝𝑖𝑟) + 𝑛𝑖𝜎2(𝑝𝑟) + 𝑛𝑟𝜎2(𝑝𝑖) + 𝑛𝑖𝑛𝑟𝜎2(𝑝) (69) 

𝑀𝑆(𝑖) = 𝜎2(𝑝𝑖𝑟) + 𝑛𝑝𝜎2(𝑖𝑟) + 𝑛𝑟𝜎2(𝑝𝑖) + 𝑛𝑝𝑛𝑟𝜎2(𝑖) (70) 

𝑀𝑆(𝑟) = 𝜎2(𝑝𝑖𝑟) + 𝑛𝑝𝜎2(𝑖𝑟) + 𝑛𝑖𝜎2(𝑝𝑟) + 𝑛𝑝𝑛𝑖𝜎2(𝑟) (71) 

𝑀𝑆(𝑝𝑖) = 𝜎2(𝑝𝑖𝑟) + 𝑛𝑟𝜎2(𝑝𝑖) (72) 

𝑀𝑆(𝑝𝑟) = 𝜎2(𝑝𝑖𝑟) + 𝑖𝜎2(𝑝𝑟) (73) 

𝑀𝑆(𝑖𝑟) = 𝜎2(𝑝𝑖𝑟) + 𝑛𝑝𝜎2(𝑖𝑟) (74) 

𝑀𝑆(𝑝𝑖𝑟) = 𝜎2(𝑝𝑖𝑟) (75) 

 

Starting with an estimate of 𝑀𝑆(𝑝𝑖𝑟), the system of equations can be solved starting with 

the bottom equation and moving upwards. The mean square statistic is defined as the sum of 

squares divided by the degrees of freedom. Table III shows the necessary calculations for 
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generating the sum of squares and the subsequent mean squares that can be used in these 

equations (note that 𝑇(𝜇) = 𝑛𝑝𝑛𝑖𝑛𝑟�̅�2). 

 

 

TABLE III 

DEGREES OF FREEDOM AND SUMS OF SQUARES FOR A FULLY-CROSSED DESIGN. 

𝜶 𝒅𝒇(𝜶) 𝑻(𝜶) 𝑺𝑺(𝜶) 

𝒑 𝑛𝑝 − 1 𝑛𝑖𝑛𝑟 ∑ �̅�𝑝
2 𝑇(𝑝) − 𝑇(𝜋) 

𝒊 𝑛𝑖 − 1 𝑛𝑝𝑛𝑟 ∑ �̅�𝑖
2 𝑇(𝑖) − 𝑇(𝜋) 

𝒓 𝑛𝑟 − 1 𝑛𝑝𝑛𝑖 ∑ �̅�𝑟
2 𝑇(𝑟) − 𝑇(𝜋) 

𝒑𝒊 (𝑛𝑝 − 1)(𝑛𝑖 − 1) 𝑛𝑟 ∑ ∑ �̅�𝑝𝑖
2  𝑇(𝑝𝑖) − 𝑇(𝑝) − 𝑇(𝑖) + 𝑇(𝜇) 

𝒑𝒓 (𝑛𝑝 − 1)(𝑛𝑟 − 1) 𝑛𝑖 ∑ ∑ �̅�𝑝𝑟
2  𝑇(𝑝𝑟) − 𝑇(𝑝) − 𝑇(𝑟) + 𝑇(𝜇) 

𝒊𝒓 (𝑛𝑖 − 1)(𝑛𝑟 − 1) 𝑛𝑝 ∑ ∑ �̅�𝑖𝑟
2  𝑇(𝑖𝑟) − 𝑇(𝑖) − 𝑇(𝑟) + 𝑇(𝜇) 

𝒑𝒊𝒓 (𝑛𝑝 − 1)(𝑛𝑖 − 1)(𝑛𝑟 − 1) ∑ ∑ ∑ 𝑋𝑝𝑖𝑟
2  𝑇(𝑝𝑖𝑟) − 𝑇(𝑝𝑖) − 𝑇(𝑝𝑟) − 𝑇(𝑖𝑟)

+ 𝑇(𝑝) + 𝑇(𝑖) + 𝑇(𝑟)
− 𝑇(𝜇) 

 

 

 

Using the above systems of equations for the 𝑝 × 𝑖 × 𝑟 design, it is a simple matter to 

calculate the variance components associated with each of the main effects and interactions. 

These variance components can then be used to calculate a generalizability coefficient 

(analogous to reliability) for the data collection scenario. The generalizability coefficient (a 

measure of reliability for relative or normative decisions) is formulated as 
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𝐸𝜌2 =
𝐸𝑝(𝜇𝑝 − 𝜇)

2

𝐸𝑝𝐸𝐼𝐸𝑅(𝑋𝑝𝐼𝑅 − 𝜇𝐼𝑅)
2 =

𝜎𝑝
2

𝜎𝑝
2 + 𝜎𝛿

2 

(76) 

 

where 𝛿 indexes all facets that do not include 𝑝 (unless some of the facets are fixed). The term 

𝜎𝛿
2 denotes the relative error variance attributable to the facets of measurement (in our case, 

items and raters). The above G-theory framework will be implemented for the simulated, 

complete data sets (all raters rate all examinees), and the imputed data sets generated at each 

iteration of the Bayesian bivariate probit ordinal regression model. That is, for each iteration of 

the MCMC algorithm, there will be a set of observed and imputed ratings for all combinations of 

persons, items, and raters. The variance components can be calculated for each of these data sets 

(each iteration), and then the distribution of the variance components can be described similar to 

the other parameters estimated in the MCMC process. 

In addition to the GT model applied to the raw scores for each item/rating, I fit a linear 

regression model that adjusts for rater leniency/severity (Wilson, 1988). This model is similar 

conceptually to the MFRM, but does not use logistic regression. This method is applied to 

demonstrate a traditional (non-IRT based) approach to correcting for rater effects in the observed 

score metric. The model for the linear regression correction can be formulated as follows: 

 

𝑦𝑛𝑖𝑟 = 𝛼𝑛 + 𝛽𝑟 + 𝛿𝑖 + 휀𝑛𝑖𝑟 (77) 

 

where 𝑦𝑛𝑖𝑟 is the observed score for examinee 𝑛 rated by rater 𝑟 on item 𝑖, 𝛼𝑛 is the true score 

for examinee 𝑛, 𝛽𝑟 is the leniency (or scoring bias) for rater 𝑟, 𝛿𝑖 is the easiness for item 𝑖 and 

휀𝑛𝑖𝑟 is the random error term. Note that positive values for the leniency parameter indicate raters 
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who tended to give more favorable ratings on average (which is the opposite relationship seen in 

the MFRM, where positive parameter values indicate severity). If one assumes that there are 𝑝 =

𝑝𝑛 + 𝑝𝑖 + 𝑝𝑟 parameters to be estimated, the model can be rewritten in matrix algebra as 

follows: 

 

y = X [
α
β
δ

] + ε 
(78) 

 

where y is a vector containing the observed ratings, X is a design matrix with column vectors 

representing the examinees, judges, and items, α is the vector of examinee abilities, β is the 

vector of rater leniency, and δ is the vector of item easiness. But, under this definition, the matrix 

X is not full rank, and therefore has no inverse (which will impede OLS estimation). To identify 

the model, assume that ∑ 𝛽𝑟 = 0 and ∑ 𝛿𝑖 = 0. These assumptions are the equivalent of 

dropping a rater and item column vector from the design matrix, which for convenience will be 

the last rater and item. With these final assumptions, I can estimate our true score, item easiness, 

and leniency parameters using ordinary least squares (OLS) as follows:  

 

[
a
b
d

] = (X𝑇X)−1X𝑇y 
(79) 

 

where a, b, and d are the estimates for α , β, and δ, respectively. The parameter estimate for the 

final rater can be computed as follows: 
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𝛽𝑝𝑟
= ∑ −�̂�𝑘

𝑘<𝑝𝑟

 
(80) 

 

Furthermore, the covariance matrix for the parameters is calculated as 

 

𝑠2(X𝑇X)−1 (81) 

 

where 

 

𝑠2 = y𝑇y − [a𝑇b𝑇d𝑇]X𝑇y (𝑝𝑛𝑝𝑖𝑝𝑟 − 𝑝𝑛 − 𝑝𝑖 − 𝑝𝑟 + 2)⁄  (82) 

 

and the variance for the last rater parameter is 

 

𝑠𝑝𝑟𝑝𝑟
= ∑ ∑ ∑ 𝑠𝑛𝑖𝑟

𝑝𝑟−1

𝑟=1

𝑝𝑖−1

𝑖=1

𝑝𝑛

𝑛=1

 

(83) 

 

Wilson (1988) goes beyond this basic OLS algorithm to use information on rater 

consistency to refine his model (employing consistency estimates as weights in a generalized 

least squares model). However, as the data for this study are simulated such that there is no 

systematic inconsistency across raters, this step is omitted for this method. 

D. Study Design Parameters 

The majority of the study utilizes simulated data sets to answer a variety of empirical 

questions and hypotheses. As an overarching theme, the study addresses the effectiveness of 

each of the methods in handling different data scenarios. A total of four methods are applied to 
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each simulated data set (with the exception of methods that don't apply to particular cases). The 

four methods are the true score theory/GT approach using a linear regression correction, the 

Rasch rating scale model fit with WINSTEPS, the MFRM fit with FACETS, and the bivariate 

Bayesian model (fit using MATLAB; the code is provided in the appendix). These methods are 

compared with one another on how well they handle different rating scenarios, sample sizes 

(items, raters, and examinees), data distributions, and different missing data patterns. In 

particular, three rating designs are considered. Under the first design, all examinees are rated by 

all raters on all items. This design will generally be referred to as the complete data case. Under 

the second design, each examinee is rated by two raters, with all other ratings from other raters 

treated as missing data. The third design utilizes a single rater approach, with each examinee 

being rated on the items by a single rater, and all of the ratings from the remaining raters treated 

as missing data. This study is proposing methods for analyzing single and multi-rater data as a 

missing data problem. To that end, each simulated data set is generated with complete data (all 

ratings from all raters on all examinees). In examining the second and third rating design, ratings 

are deleted under different missing data scenarios (MCAR and MNAR), for the purpose of 

examining the impact of ignorable and non-ignorable missingness. 

A total of four main data sets are simulated to examine the sensitivity of model 

comparisons to various aspects of the data collection scenario. These aspects include the number 

of raters (5 versus 10), the number of items (5 versus 20 four-point rating scale items), the 

number of examinees (50 versus 200), and the distribution of examinee abilities (normal versus 

bimodal). Rather than examine the factorial combination of all approaches (along with the four 

missing data scenarios for each), I simulated data sets to address specific comparisons. The four 

data sets are as follows: 
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1. 50 examinees, 5 raters, 5 items, normal distribution of true abilities 

2. 50 examinees, 5 raters, 20 items, normal distribution of true abilities 

3. 200 examinees, 10 raters, 5 items, normal distribution of true abilities 

4. 200 examinees, 10 raters, 5 items, bimodal distribution of true abilities 

These four data sets were strategically chosen to minimize the number of data sets while 

maximizing the number of comparisons across the aspects of data collection. In addition, during 

the course of the thesis work, the model was adjusted to model the variance term of the prior 

distributions for the model parameters (which eliminated the need for some of the original 

comparisons proposed as part of this thesis). The comparisons of note are as follows: 

 Data set 1 versus data set 2: The impact of more items on the estimates of examinee 

abilities. 

 Data sets 1/2 versus data sets 3/4: The impact of more raters on the estimates of examinee 

abilities. 

 Data set 3 versus data set 4: The sensitivity of the different approaches to non-normal 

ability distributions 

All response data used are based on simulated true parameter values and the MFRM (to 

generate data based on person ability, item difficulty, step thresholds, and rater severity 

parameters). The initial simulated data sets serve as the data for the complete case analysis. The 

single and double rater designs have data deleted (response data, not design parameters) in 

accordance with either an MCAR or MNAR missing data pattern. The MCAR data are created 

by randomly deleting the ratings for the items from all but one or two judges for each examinee, 

depending on the rating design. The judges that were kept for each examinee were selected via 

simple random sampling within examinee. Simulating the MNAR data from the complete data is 
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slightly more complicated. As described in the first chapter, missing data are considered MNAR 

when the missingness is related to the values of the missing data themselves. In our case (judge 

rated data), data will be MNAR when there is a systematic relationship between a rating being 

missing, and the unmeasured value of that rating. When working with real data, one can never 

know if missing data are MNAR (except in rare circumstances – e.g., the data collection process 

is set up to be MNAR). In generating the MNAR data from the complete simulated data, ratings 

from more severe judges were kept with higher probability than for more lenient judges. The 

probability of missingness for a particular judges ratings for a given individual was based on the 

value of the ratings received for that judge. Higher ratings were more likely to be missing, which 

results in more ratings from more severe raters in the data set. The missing ratings for some 

individuals are more likely to be their higher ratings (given that lenient judge ratings are more 

likely to be missing). This induces bias into the ratings, especially for individuals who are 

“unlucky” in that they only receive ratings from more severe raters. Each of the four initial data 

sets yielded five analytic data sets: 1) the complete case; 2) single rater MCAR (1MCAR); 3) 

single rater MNAR (1MNAR); 4) double rater MCAR (2MCAR); and 5) double rater MNAR 

(2MNAR). Not all data collection scenarios are analyzed with each method (as not all methods 

are appropriate for each scenario – e.g., the Rasch rating scale model will not produce a single 

ability for each examinee when there are multiple raters). The different methods are be applied to 

the data collection scenarios as follows: 

 The Rasch rating scale model (WINSTEPS): 1MCAR, and 1MNAR 

 The Many-Facet Rasch Model (FACETS): 1MCAR, 1MNAR, 2MCAR, and 2MNAR 

 The Bayesian bivariate probit model (MCMC): 1MCAR, 1MNAR, 2MCAR, and 

2MNAR 
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 Generalizability Theory: Complete Case 

 Linear Regression Adjustment: 2MCAR, and 2MNAR 

In addition to the simulated data sets, a real data set of classroom observation data were 

analyzed to test the applicability and effectiveness of the four methods under real world 

conditions. This data set includes observations of 255 early childhood classrooms using the 

CLASS Pre-K observation protocol. For this data set, raters were not randomly assigned, 

although there was no systematic method for assignment either; rather, raters were assigned 

based on availability and scheduling issues. For the CLASS data, only a single rater rated each 

classroom. The CLASS Pre-K instrument includes 10 items scored with a seven point rating 

scale (1-7) measuring the following concepts: 

 Positive climate 

 Negative climate 

 Teacher sensitivity 

 Regard for student perspectives 

 Behavior management 

 Productivity 

 Instructional learning formats 

 Concept development 

 Quality of feedback 

 Language modeling 

The CLASS data are used to demonstrate the potential for the Bayesian bivariate probit 

ordinal missing data model to be applied to real life judge rated data. For these data, the 
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observation scores from the Bayesian model are compared to those obtained using the Rasch 

rating scale model, and MFRM. 

1. Evaluation Criteria 

The purpose of this thesis is to test a new method against well-known traditional 

approaches. To facilitate this comparison, I established a set of a priori evaluation criteria for 

comparing the results across models. In particular, the models are evaluated based on the 

magnitude of the standard errors of measurement, parameter recovery bias, the reliability of the 

person estimates, consistency of the rank ordering of the persons, consistency of the distribution 

of scores, consistency of the determination of statistical significance, and the coverage 

probabilities of the confidence intervals based on the standard errors of measurement. Each of 

these criteria are described in further detail here. 

a. Magnitude of the Standard Errors of the Person Parameters 

Any psychometric model that produces a parameter estimate (such as the 

examinee ability estimate) typically also estimates the standard error of measurement. The 

concept of the standard error of measurement was developed out of true score theory based on 

the idea that an observed score for an individual varies from their true score due to measurement 

error. Classical test theory approaches traditionally calculate a single standard error of 

measurement (SEM) based on the reliability estimate of the scores, which is applied to all 

individuals, regardless of their score. More modern psychometric approaches such as item 

response theory and Rasch measurement produce a conditional standard error of measurement 

for each examinee. These SEMs vary with the score of the individual, conditional on their score 

on the measurement instrument. Scores near the middle of the distribution typically have lower 

SEMs than scores near the tails of the distribution. The methods applied to the different data sets 
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will be compared on the size and accuracy of their standard errors of measurement. For the 

MFRM and Rasch rating scale model, the standard conditional SEM is calculated. The Bayesian 

bivariate probit ordinal missing data model produces posterior intervals which are used to 

calculate the standard error of measurement for each examinee ability. The estimate of the SEM 

for the Bayesian approach is the standard deviation of the posterior distribution for each of the 

examinee parameters. For the CTT/GT approach using the linear regression correction, the 

standard errors for the coefficients of the examinee terms are used as the SEMs.  

b. Bias in Parameter Recovery 

For the models which estimate examinee ability parameters in the latent trait 

metric (Rasch rating scale model, MFRM, and Bayesian bivariate model), it is important to look 

at the extent to which the model recovers the generating parameters. For the simulated data sets, 

the MFRM was used to generate ratings based on known “true” ability parameters. The estimates 

of these ability parameters from these three models are compared to the true abilities by 

calculating the root mean square error (RMSE). The root mean square error is simply the square 

root of the mean square error, which can be calculated for a single parameter 𝜃 as follows: 

 

𝑀𝑆𝐸 = 𝐸 [(𝜃 − 𝜃)
2

] = var(𝜃) + bias(𝜃, 𝜃)
2
 (84) 

 

Thus, the mean square error (and RMSE) can be used to determine the extent to which the 

parameter estimates are close or far from the true values they are trying to represent.  

c. Reliability of Parameter Estimates 

Reliability can be defined as the extent to which scores are free from 

measurement error. In classical test theory, reliability was defined as the ratio of true score 
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variance to observed score variance – or, the proportion of variance in the scores that was 

attributable to real differences in the objects of measurement. The different modeling approaches 

are compared across data sets using a variety of reliability indices. Rasch modeling approaches 

use a separation reliability index (the ratio of measurement error adjusted variance to observed 

variance). Generalizability theory calculates a G-coefficient (described previously). Classical test 

theory typically uses Cronbach’s alpha, which is calculated as follows:  

 

𝛼 = (
𝐼

𝐼 − 1
) (

𝑆𝐷𝑋
2 − ∑ 𝑆𝐷𝑖

2

𝑆𝐷𝑋
2 ) 

(85) 

 

where 𝐼 is the number of test items, 𝑆𝐷𝑋
2 is the squared standard deviation (or variance) of the 

observed scores (total score), and 𝑆𝐷𝑖
2 is the variance of ratings for item 𝑖 (Thorndike, 2005). 

To compare reliability estimates across models, I propose a common statistic based on 

the variance of the examinee abilities, and the average size of the standard errors of 

measurement. The reliability statistic is calculated as follows: 

 

reliability = 1 −
(𝑆𝐸𝑀̅̅ ̅̅ ̅̅ )2

𝑆𝐷2
 

(86) 

 

where 𝑆𝐸𝑀̅̅ ̅̅ ̅̅  is the average standard error of measurement of the ability estimates and SD is the 

standard deviation of the ability estimates. If the average SEM is as large as the standard 

deviation of the scores, reliability will be 0. If the SEMS are very small relative to the spread of 

the scores, the reliability will be high. Note: the average SEM could be larger than the SD; in this 

scenario, the reliability is set to 0. 
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d. Rank Ordering of Person Abilities 

Pearson correlation coefficients were calculated to examine the extent to 

which the different approaches are producing similar or different ordering of the examinees. 

Models that produce ability estimates with more correspondence to the generating ability 

parameters will exhibit higher correlations, providing evidence of better model performance.  

e. Changes to the Distribution of Person Abilities 

Correlations can examine the consistency of the measures across the methods 

at a macro level, but it is also important to examine the consistency of the metrics at the 

individual examinee level. To accomplish this, the changes to the distribution of the parameter 

estimates are examined by placing individual examinees into groups based on their percentile 

rank in the distribution of examinees (given a particular model). Correspondence of the measures 

to the true parameters is examined by determining the percentage of examinees that stay at the 

same location within the distribution. For example, what percent of examinees in the bottom 

decile remain in the bottom decile under a different modeling approach? 

f. Prevalence of Statistical Significance 

Each of the methods applied to the data sets produces a standard error of 

measurement (see the discussion above). These standard errors are used to produce 95 percent 

confidence intervals for the ability estimates for all methods. That is, 95 percent confidence 

intervals for each ability estimate are created by bounding the estimate by plus or minus 1.96 

SEMs. These confidence intervals are then used to look for systematic differences in the methods 

in the number or percent of examinees who are statistically different from 0 (i.e., the average 

score in the standardized metric for each model). This analysis is intended to determine if any 



79 
 

 

 

methods are over- or under-estimating the precision of the estimates and the extent to which 

scores truly are different from one another. 

g. Confidence Interval Coverage Probability 

The confidence intervals defined above can be used to examine the extent to 

which these intervals accurately represent the uncertainty in the estimates. This is accomplished 

by looking at the percentage of confidence intervals that contain the true generating parameter 

value (for the simulated data sets). To be considered accurate, the confidence intervals should 

contain the true value close to 95 percent of the time on average. True ability parameters, and all 

model-based estimates, are standardized to a z-score (standard normal) metric to facilitate cross-

model comparisons. 

2. Research Hypotheses 

In developing the proposed model for analyzing judge ratings in the presence of non-ignorable 

missing data, I generated a set of hypotheses to test as part of the evaluation of the new approach. 

Five major hypotheses are detailed here and written results speak directly to the findings related 

to these hypotheses. 

a. Hypothesis 1 

The person parameter estimates produced by the new method are as close as 

or closer to the true values than those produced by the existing methods. It is hypothesized that 

for data scenarios that allow for the calculation of rater effects with traditional approaches (GT 

and MFRM), the new method will perform similarly well. Under scenarios where no rater effects 

can be calculated with traditional approaches, the new method will be able to estimate these 

effects, correct for them, and produce examinee parameter estimates which retain less bias than a 
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method which does not take these into account (true score theory or the Rasch rating scale 

model). 

b. Hypothesis 2 

When data are missing not at random, the new method will produce examinee 

estimates with less bias than existing methods, for scenarios where existing correction methods 

are applicable (i.e., double rater designs). Furthermore, for single rater designs, the new method 

will perform better (less biased estimates) than the Rasch rating scale model or true score theory 

approaches when missing ratings are MNAR. 

c. Hypothesis 3 

The standard errors of measurement will be larger (and more accurate 

estimates of uncertainty) with the new method than with existing methods that either cannot 

estimate rater variance, or inaccurately estimate it due to non-ignorable missing data. The 

reliability of the scores from the new method will be lower and will more accurately reflect the 

uncertainty due to rater variance. 

d. Hypothesis 4 

The new method will produce a more accurate rank ordering of the examinees 

than the traditional approaches when compared to the “true” ranking of the persons as determine 

by the data generating parameters. 

e. Hypothesis 5 

The new method will produce confidence intervals that have coverage 

probabilities that are aligned with the definition of the interval. 
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E. Conclusion 

The methods outlined in this chapter are implemented to address two major research 

objectives: 1) to develop and analyze a method for estimating the variance due to raters when 

data do not support the use of traditional methods; and 2) to use that method to reduce the bias in 

the examinee scores produced from an analysis of such data. Two groups of analyses are 

conducted. The first analysis focuses on simulated data sets with the intent of showing how bias 

is reduced when data are analyzed to account for error due to raters (as compared to methods 

which cannot treat non-ignorable missing data). The second analysis demonstrates the proposed 

approach (a Bayesian bivariate probit ordinal missing data model) on a real data set where 

individuals were rated by a single rater. To establish the robustness of the various approaches, 

simulated data sets are considered where the number of raters, examinees, and items are varied. 

Furthermore, the methods are compared on their ability to handle both normal and non-normal 

(bimodal mixture normal) distributions of examinee abilities. Two rater designs are explored 

(double rater and single rater). Finally, missing data patterns for the double and single rater 

designs are generated as both MCAR and MNAR. 
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III. SIMULATION STUDY RESULTS 

 

This chapter presents comparative results from the various simulated data sets discussed 

in the previous chapter. Each data set was analyzed using the approaches described in Chapter II 

(the polytomous Rasch model, many faceted Rasch model, ordinary least squares regression 

adjustment model, generalizability theory, and Bayesian bivariate probit ordinal missing data 

model). Results include general descriptive statistics regarding the data themselves, with 

comparisons made to determine the accuracy and appropriateness of the various analytic 

approaches. The results for the application of the methods to real world data (based on 

observations of classrooms in early childhood centers) are presented in the next chapter.  

As described in Chapter II, a total of four master data sets were simulated. These data sets 

varied in the number of persons, raters, and items (and in one case, the distribution of the person 

abilities). The four master data sets are: 

1. 50 persons (normally distributed abilities), 5 items, and 5 raters (p50i5r5) 

2. 50 persons (normally distributed abilities), 20 items, and 5 raters (p50i20r5) 

3. 200 persons (normally distributed abilities), 5 items, and 10 raters (p200i5r10) 

4. 200 persons (bimodally distributed abilities), 5 items, and 10 raters 

(p200i5r10BM) 

Each of the data sets was then sampled to produce four data subsets based on the number of 

raters each person was rated by, and the method of sampling the raters. Two single rater data 

subsets were created and two double rater data sets were created, with the sampling occurring 

either at random (MCAR) or not at random (MNAR) within each pair. These data collection 

scenarios (or data subsets) are referred to as 1MCAR, 1MNAR, 2MCAR, and 2MNAR. This 
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simulation and sampling process resulted in 16 total data sets to be analyzed with the various 

approaches described in Chapter II. 

 The MCAR data subsets were simulated by randomly selecting one or two judges for 

each examinee (for the 1MCAR and 2MCAR data sets, respectively). The MNAR data sets were 

simulated by selecting judges in a pattern where higher ratings were more likely to be missing – 

that is, examinees were more likely to receive a severe rater than a lenient rater. Table IV shows 

the relationship between the observed and unobserved ratings, and the missing data indicator. 

The table provides the coefficients from 16 different binomial regression models which predicted 

the binary missing data indicator based on the observed/unobserved rating, fixed effects for items 

and judges, and random person effects. For parsimony, only the coefficient for the ratings are 

included in the table. The values in Table IV indicate that there is no relationship between the 

ratings and missingness for any of the MCAR scenarios (although the relationship is marginally 

significant for p50i5r5 1MCAR). However, for all of the MNAR data sets, there is a statistically 

significant relationship between the ratings and the missing data indicator. These results 

demonstrate that the missing data for the MNAR data sets are non-ignorable (as missingness is 

dependent on the value of the unobserved ratings, even after conditioning on the items, judges, 

and examinees. 
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TABLE IV 

BINOMIAL REGRESSION ESTIMATES OF THE RELATIONSHIP BETWEEN RATINGS 

(OBSERVED AND UNOBSERVED) AND MISSINGNESS 

Data Set Scenario Coefficient Std. Err Sig. 

p50i5r5 1MCAR –0.154 0.091 0.090 

 1MNAR 0.460 0.096 0.000 

 2MCAR 0.082 0.075 0.271 

 2MNAR 0.244 0.086 0.005 
     

p50i20r5 1MCAR 0.025 0.045 0.580 

 1MNAR 0.209 0.046 0.000 

 2MCAR –0.008 0.038 0.836 

 2MNAR 0.257 0.043 0.000 
     

p200i5r10 1MCAR 0.000 0.042 0.992 

 1MNAR 0.596 0.046 0.000 

 2MCAR –0.016 0.032 0.607 

 2MNAR 0.417 0.034 0.000 
     

p200i5r10BM 1MCAR –0.012 0.038 0.760 

 1MNAR 0.363 0.039 0.000 

 2MCAR 0.006 0.028 0.820 

  2MNAR 0.284 0.030 0.000 
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Table V provides descriptive statistics for each of the 16 data sets, including the mean 

and standard deviation of the true abilities and observed scores (ordinal ratings) for the persons. 

Abilities were randomly sample to have mean 0 and standard deviation 1 (except for the bimodal 

distribution), and the table shows values which mirror that except for random sampling variance. 

The average observed scores for the MNAR data sets are lower than those for the MCAR data 

sets due to the method in which the MNAR data were sampled. Ratings from more lenient raters 

were more likely to be unobserved (i.e., there are more ratings from severe raters in the data), 

therefore, the average score is lower than in the random case. In addition, the standard deviation 

of the observed scores in lower for the MNAR data. The standard deviation of scores is also 

higher for the p200i5r10BM data set than for the other data sets. This difference is due to the 

p200i5r10BM data set having sampled true abilities from a bimodal mixture distribution (two 

standard normal distributions centered at –1 and +1). 
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TABLE V 

SIMULATED DATA SET DESCRIPTIVE STATISTICS 

Data Set Scenario 

True Ability Observed Score 

M SD M SD 

p50i5r5 1MCAR 0.1412 0.8383 2.6640 0.8680 

p50i5r5 1MNAR 0.1412 0.8383 2.0400 0.4314 

p50i5r5 2MCAR 0.1412 0.8383 2.4640 0.5446 

p50i5r5 2MNAR 0.1412 0.8383 2.1060 0.4283 

p50i20r5 1MCAR 0.1561 1.0258 2.7610 0.7481 

p50i20r5 1MNAR 0.1561 1.0258 2.1580 0.2809 

p50i20r5 2MCAR 0.1561 1.0258 2.6310 0.6336 

p50i20r5 2MNAR 0.1561 1.0258 2.1100 0.3121 

p200i5r10 1MCAR –0.0526 0.9842 2.3920 0.8000 

p200i5r10 1MNAR –0.0526 0.9842 1.8600 0.3132 

p200i5r10 2MCAR –0.0526 0.9842 2.4650 0.6498 

p200i5r10 2MNAR –0.0526 0.9842 1.9105 0.3418 

p200i5r10BM 1MCAR 0.0997 1.4484 2.6100 0.9244 

p200i5r10BM 1MNAR 0.0997 1.4484 2.0180 0.3966 

p200i5r10BM 2MCAR 0.0997 1.4484 2.5795 0.8046 

p200i5r10BM 2MNAR 0.0997 1.4484 2.0320 0.4125 

 

 

 

Two of the four data sets (p50i5r5 and p50i20r5) were created with five total raters, and 

two of the data sets (p200i5r10 and p200i5r10BM) had 10 total raters. Rater severity parameters 

for data generation were not sampled, but rather were purposively, uniformly distributed across a 

range of severities. For the five rater data sets, severity ranged from –2.0 to +2.0; for the 10 rater 

data sets, severity ranged from –2.25 to +2.25. Tables VI to XIII show the severity for each rater, 

and the average true ability and average observed score (in the ordinal rating metric) for the 

examinees that were “assigned” to that rater.  
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 Table VI and Table VII show the rater severity for the “p50i5r5” single rater and double 

rater data sets, respectively. These data sets had 50 persons or examinees, five raters, and five 

items. For the MCAR data, one (1MCAR) or two (2MCAR) raters were selected at random and 

ratings for all other raters were deleted (represented as missing data for the MCMC approach). In 

the case of the MNAR data, one (1MNAR) or two (2MNAR) raters were selected not at random. 

For the MCAR data, true ability averages vary randomly across raters; but, for the MNAR data, 

the average ability is lowest for judge 1 and highest for judge 5. That is, the most lenient raters 

(with negative severity) have the lowest ability examinees and the most severe raters (with 

positive severity) have the highest ability examinees. For both the MCAR and MNAR data, the 

average observed score decreases as rater severity increases. This pattern should result in ability 

estimates for low ability examinees being inflated, and estimates for high ability examinees 

being depressed (if severity is unaccounted for). 

 

 

TABLE VI 

MEAN TRUE ABILITY AND OBSERVED SCORE: P50I5R5 – SINGLE RATER 

Judge Severity 

1MCAR 1MNAR 

True Ability Observed Score True Ability Observed Score 

1 –2 0.1186 3.6000 –0.9666 2.6000 

2 –1 0.0238 2.9600 –0.6888 2.5000 

3 0 0.4968 2.8889 –0.2829 2.0600 

4 1 0.0823 2.0727 0.2049 1.8000 

5 2 0.0157 1.6889 0.8956 1.9176 
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TABLE VII 

MEAN TRUE ABILITY AND OBSERVED SCORE: P50I5R5 – TWO RATERS 

Judge Severity 

2MCAR 2MNAR 

True Ability Observed Score True Ability Observed Score 

1 –2 –0.0165 3.4125 –0.9666 2.6000 

2 –1 0.0540 2.9636 –0.7999 2.5400 

3 0 0.2412 2.5882 –0.4351 2.1125 

4 1 0.1723 1.9905 0.3765 2.1800 

5 2 0.2283 1.7000 0.5963 1.7933 

 

 

 

 Table VIII and Table IX show the rater severity for the “p50i20r5” single rater and 

double rater data sets, respectively. These data sets have 50 persons or examinees, five raters, 

and 20 items. The data sets were generated similarly to those in Table VI and Table VII, and 

show similar patterns in terms of average true ability and average observed score in relation to 

rater severity. For the MCAR case, true ability varies randomly around 0 across raters, but is 

correlated with judge severity for the MNAR case. For both data scenarios, observed score 

decreases with the severity of the judge, but more dramatically for the MCAR case. 
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TABLE VIII 

MEAN TRUE ABILITY AND OBSERVED SCORE: P50I20R5 – SINGLE RATER 

Judge Severity 

1MCAR 1MNAR 

True Ability Observed Score True Ability Observed Score 

1 –2 0.2113 3.4500 –1.6390 2.5625 

2 –1 0.1135 3.0906 –1.0055 2.3917 

3 0 –0.0949 2.4455 –0.3695 2.2200 

4 1 0.0313 1.9375 0.2565 2.0692 

5 2 1.1149 2.0625 1.2209 2.0118 

 

 

 

TABLE IX 

MEAN TRUE ABILITY AND OBSERVED SCORE: P50I20R5 – TWO RATERS 

Judge Severity 

2MCAR 2MNAR 

True Ability Observed Score True Ability Observed Score 

1 –2 0.3182 3.5452 –1.6390 2.5625 

2 –1 0.1541 3.0759 –1.2589 2.3400 

3 0 0.2316 2.5921 –0.6080 2.0781 

4 1 –0.1578 1.9350 0.5099 2.2275 

5 2 0.0848 1.6087 0.8030 1.8333 

 

 

 

 Table X and Table XI show the rater severities, average true abilities by rater, and 

average observed score by rater for the “p200i5r10” data sets. These data sets have 200 

examinees or persons, five items, and 10 raters. Data sets for the 1MCAR, 1MNAR, 2MCAR, 

and 2MNAR cases were generated as above. Again, a similar pattern in the relationship between 

true ability and observed score by rater severity is seen. 
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TABLE X 

MEAN TRUE ABILITY AND OBSERVED SCORE: P200I5R10 – SINGLE RATER 

Judge Severity 

1MCAR 1MNAR 

True Ability Observed Score True Ability Observed Score 

1 –2.2500 –0.1653 3.3750 –2.0940 2.2000 

2 –1.7500 –0.1557 3.2800 –1.5772 2.2500 

3 –1.2500 –0.3144 2.9529 –0.9440 2.2500 

4 –0.7500 –0.4800 2.5913 –0.9513 2.0333 

5 –0.2500 0.2782 2.8000 –0.5869 1.9500 

6 0.2500 0.0659 2.5120 –0.5785 1.6800 

7 0.7500 –0.0584 2.0333 –0.0032 1.7000 

8 1.2500 0.3394 2.1111 0.1469 1.6231 

9 1.7500 –0.2266 1.7000 0.6399 1.7294 

10 2.2500 0.1515 1.4897 1.1590 1.9765 

 

 

 

TABLE XI 

MEAN TRUE ABILITY AND OBSERVED SCORE: P200I5R10 – TWO RATERS 

Judge Severity 

2MCAR 2MNAR 

True Ability Observed Score True Ability Observed Score 

1 –2.2500 –0.1072 3.4054 –2.0940 2.2000 

2 –1.7500 0.0694 3.4000 –1.8356 2.2625 

3 –1.2500 –0.2424 3.0162 –1.1973 2.2500 

4 –0.7500 0.0195 2.9189 –0.9476 2.2500 

5 –0.2500 –0.1656 2.5026 –0.7235 1.9750 

6 0.2500 –0.0372 2.3391 –0.5827 1.8550 

7 0.7500 0.0589 2.1489 –0.2533 1.7522 

8 1.2500 0.0437 1.9613 0.0719 1.6962 

9 1.7500 –0.1408 1.6632 0.6913 1.9362 

10 2.2500 –0.0484 1.5064 0.8994 1.8118 
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 Table XII and Tabl XIII show the rater severities, average true abilities by rater, and 

average observed score by rater for the “p200i5r10BM” data sets. Like the previous data sets 

described in Tables X and XI, these data sets have 200 examinees, five items, and 10 raters. 

However, unlike those data sets, the abilities for the examinees were not sampled from a 

standard normal distribution. Instead, they were sampled from a bimodal distribution (a mixture 

of two normal distributions, both with standard deviation of 1.0, with differing means (–1.0 and 

1.0). The average true abilities for the MCAR data sets vary randomly around zero across all 

raters. Similar to the other data sets, the average abilities for the MNAR data sets also increase 

with rater severity. Again, the observed score for the MCAR cases decreases with the severity of 

the rater; however, for the MNAR data sets, the observed score does not follow a similar pattern.  

 

 

TABLE XII 

MEAN TRUE ABILITY AND OBSERVED SCORE: P200I5R10BM – SINGLE RATER 

Judge Severity 

1MCAR 1MNAR 

True Ability Observed Score True Ability Observed Score 

1 –2.2500 0.1902 3.4500 –2.6063 1.9500 

2 –1.7500 –0.2472 3.1167 –2.0665 2.0250 

3 –1.2500 0.0384 3.0400 –1.8357 1.8833 

4 –0.7500 0.4611 3.1905 –1.4601 1.7333 

5 –0.2500 –0.3692 2.3875 –0.9630 1.8700 

6 0.2500 –0.1287 2.4133 –0.3438 1.9100 

7 0.7500 0.5782 2.4000 0.1324 1.8538 

8 1.2500 0.1468 2.1067 0.4489 1.8538 

9 1.7500 –0.0660 1.6364 1.0530 1.9706 

10 2.2500 0.3342 1.8182 2.1203 2.6294 
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TABLE XIII 

MEAN TRUE ABILITY AND OBSERVED SCORE: P200I5R10 – TWO RATERS 

Judge Severity 

2MCAR 2MNAR 

True Ability Observed Score True Ability Observed Score 

1 –2.2500 0.1786 3.5130 –2.6063 1.9500 

2 –1.7500 0.2125 3.3171 –2.3364 2.0250 

3 –1.2500 0.0595 3.0810 –1.9281 1.9200 

4 –0.7500 0.0268 2.8600 –1.6479 1.8083 

5 –0.2500 –0.0789 2.5758 –1.1494 1.8875 

6 0.2500 0.5801 2.6880 –0.6534 1.8450 

7 0.7500 –0.3574 1.9500 –0.0746 1.8609 

8 1.2500 0.0750 1.9895 0.2906 1.8808 

9 1.7500 0.2205 1.8432 1.2719 2.2468 

10 2.2500 –0.1133 1.4909 1.5866 2.2676 

 

 

 

A. Simulation Results 

 In Chapter II, a number of criteria were established to compare and test the adequacy of 

the different modeling approaches (MCMC bivariate missing data model, many facet Rasch 

model, Rasch rating scale model, and linear regression adjustment) for analyzing judge-rated 

data in the presence of non-ignorable missing data. These criteria utilized (for the most part) the 

fact that the true generating parameters for the simulated data are known. Therefore, I can 

compare the parameter estimates generated by each of the modeling approaches with the known 

“true” generating parameters. The results from each of the criteria are presented in the tables 

which follow in this section. These criteria include, the correlation between parameter estimates 

and the true abilities, the root mean squared error of the parameter estimates, the mean standard 

error of measurement of the parameter estimates, the reliability of the scores, the extent to which 
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examinees position within the distribution matches the true distribution (based on quantile 

membership), the percent of examinee scores significantly different from zero, and the coverage 

probability of the confidence intervals. 

1. Correlation between Estimates and True Scores 

Table XIV shows the correlation between the point estimates from each of the 

modeling approaches and the true abilities (generating parameters for the simulated data sets). 

For this table and subsequent tables, the point estimates for the MCMC approach are the mean of 

the posterior distribution, excluding a burn-in number of cases. In general, MCMC and MFRM 

approaches tend to have the highest correlations with the true ability, though the linear regression 

approach tends to perform nearly as well in double rater cases. Winsteps (for the single rater 

cases) produces the lowest correlations with true ability, except for the cases of the single rater, 

MNAR data set where abilities were simulated from a bimodal distribution. The most important 

finding though is that for all single rater cases, where raters were not randomly assigned, the 

MCMC approach yields higher correlations than the Facets approach. For the p50i5r5 1MNAR 

case, the correlation for the MCMC is .379 compared to .328 for the MFRM. When more items 

are added (p50i20r5 1MNAR), the correlation advantaged for the MCMC approach over the 

MFRM gets considerably larger (.710 versus .351). This might suggest that the capability of the 

MCMC approach to account for the non-ignorable missing data increases with the addition of 

more rating instances per examinee. When there are 200 examinees (with a unimodal distribution 

of abilities), the MCMC estimates correlate .364 with the true abilities in the single rater case (as 

compared to only .198 for the MFRM). When true abilities are bimodal, the correlation for the 

MCMC estimates is .345 as compared to .153 for the MFRM. While many of these correlations 

are low, the differences do matter (see the discussion of the coverage probabilities later in this 
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section). Finally, in one case (p200i5r10BM 2MNAR), the MCMC approach performs very well 

in comparison to the MFRM and linear regression adjustment results. The correlation for the 

MCMC approach is .494 in comparison to negative correlations for the other models. This seems 

to indicate that in an extreme case of non-ignorable missingness, the MCMC approach is able to 

correct for much of the bias. 

 

 

TABLE XIV 

CORRELATION BETWEEN TRUE ABILITY AND MODEL ESTIMATES 

Data Set Scenario MCMC MFRM Winsteps Linear Regression 

p50i5r5 1MCAR 0.694 0.714 0.493  
p50i5r5 1MNAR 0.379 0.328 –0.107  
p50i5r5 2MCAR 0.870 0.862  0.864 

p50i5r5 2MNAR 0.624 0.733  0.751 

p50i20r5 1MCAR 0.797 0.898 0.593  
p50i20r5 1MNAR 0.710 0.351 –0.256  
p50i20r5 2MCAR 0.957 0.962  0.949 

p50i20r5 2MNAR 0.978 0.978  0.980 

p200i5r10 1MCAR 0.765 0.789 0.463  
p200i5r10 1MNAR 0.364 0.198 –0.071  
p200i5r10 2MCAR 0.868 0.868  0.864 

p200i5r10 2MNAR 0.494 –0.108  –0.152 

p200i5r10BM 1MCAR 0.854 0.873 0.661  
p200i5r10BM 1MNAR 0.345 0.153 0.549  
p200i5r10BM 2MCAR 0.935 0.938  0.924 

p200i5r10BM 2MNAR 0.454 0.590   0.633 
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2. Root Mean Squared Error 

Mean squared error is a measure which combines the error in the estimates due to 

variance (or measurement error) and bias (squared). Table XV shows the root mean squared 

error (RMSE) for each of the approaches and data sets, which is just the square root of the mean 

squared error. Values closer to zero indicate the estimates were closer to the true parameters than 

values that are larger. Similar to the correlation results, the RMSE results show that MCMC and 

MFRM approaches oftentimes are quite similar in the precision of the estimates. However, as 

was seen above for the correlations, the MCMC approach has lower RMSE than the MFRM 

approach in all cases with a single non-randomly assigned rater. 

 

 

TABLE XV 

ROOT MEAN SQUARED ERROR BY MODEL 

Data Set Scenario MCMC MFRM Winsteps Linear Regression 

p50i5r5 1MCAR 0.775 0.749 0.997  
p50i5r5 1MNAR 1.103 1.148 1.473  
p50i5r5 2MCAR 0.506 0.518  0.516 

p50i5r5 2MNAR 0.858 0.724  0.699 

p50i20r5 1MCAR 0.631 0.447 0.893  
p50i20r5 1MNAR 0.753 1.128 1.569  
p50i20r5 2MCAR 0.290 0.274  0.317 

p50i20r5 2MNAR 0.207 0.206  0.200 

p200i5r10 1MCAR 0.683 0.649 1.034  
p200i5r10 1MNAR 1.125 1.263 1.460  
p200i5r10 2MCAR 0.512 0.512  0.520 

p200i5r10 2MNAR 1.004 1.485  1.514 

p200i5r10BM 1MCAR 0.539 0.502 0.821  
p200i5r10BM 1MNAR 1.141 1.298 0.947  
p200i5r10BM 2MCAR 0.360 0.352  0.388 

p200i5r10BM 2MNAR 1.043 0.903   0.854 
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3. Mean Standard Error of Measurement 

Different estimation approaches produced different magnitudes of standard errors of 

measurement for the ability estimates. Table XVI presents the average standard error of 

measurement for each modeling approach. It is important to note that the standard errors of 

measurement for the MCMC, MFRM, and Winsteps approaches are conditional SEMs (i.e., 

extreme ability estimates will have larger SEMs than average ability estimates). The SEMs for 

the linear regression approach do not have a relationship between ability and precision (the 

consequences of which will become apparent when looking at coverage probability results). 

 Results in Table XVI indicate that in general, the average SEMs for MNAR data sets are 

larger than those for MCAR data sets (within a data collection scenario – e.g., p50i5r5). 

However, in one case, the SEMS for the MFRM approach are larger for the 2MCAR case than 

the 2MNAR case (p50i20r5). Furthermore, the MCMC approach yields the largest average SEM, 

followed by the MFRM approach, with Winsteps producing the smallest average SEMs. The 

linear regression SEMs are never the smallest, and they tend to be on the larger side among the 

different models. 
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TABLE XVI 

MEAN STANDARD ERROR OF MEASUREMENT BY MODEL 

Data Set Scenario MCMC MFRM Winsteps Linear Regression 

p50i5r5 1MCAR 0.731 0.574 0.357  
p50i5r5 1MNAR 1.517 0.884 0.709  
p50i5r5 2MCAR 0.558 0.425  0.572 

p50i5r5 2MNAR 0.704 0.522  0.918 

p50i20r5 1MCAR 0.383 0.296 0.202  
p50i20r5 1MNAR 0.888 0.687 0.547  
p50i20r5 2MCAR 0.289 0.232  0.337 

p50i20r5 2MNAR 0.263 0.199  0.313 

p200i5r10 1MCAR 0.759 0.547 0.365  
p200i5r10 1MNAR 2.410 1.104 0.879  
p200i5r10 2MCAR 0.509 0.408  0.499 

p200i5r10 2MNAR 1.063 0.498  0.836 

p200i5r10BM 1MCAR 0.531 0.459 0.346  
p200i5r10BM 1MNAR 2.001 1.033 0.757  
p200i5r10BM 2MCAR 0.378 0.328  0.385 

p200i5r10BM 2MNAR 0.842 0.521   0.787 

 

 

 

4. Reliability and Generalizability Coefficients 

Reliability estimates were calculated using the mean SEMs presented in the previous 

section along with the standard deviation of the standardized scores. The reliabilities presented in 

Table XVII were calculated as one minus the squared ratio of the mean SEM to the standard 

deviation of scores. The reliabilities therefore represent the proportion of variance in the 

observed scores that can be attributed to real differences among the examinees. Reliabilities of 0 

indicate that all observed score variance may be measurement error; reliabilities closer to 1 

indicate most variance is due to real differences. 
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The reliabilities are then largely a function of the size of the standard errors. In all 

cases, the estimated reliability of the MCMC approach is lower than the reliability of the MFRM 

model. This indicates that the MCMC approach is reporting greater uncertainty that differences 

in observed scores represent true differences in examinee ability. 

 

 

TABLE XVII 

ESTIMATED RELIABILITY BY MODEL 

Data Set Scenario MCMC MFRM Winsteps Linear Regression 

p50i5r5 1MCAR .466 .671 .873  

p50i5r5 1MNAR .000 .219 .497  

p50i5r5 2MCAR .688 .819  .673 

p50i5r5 2MNAR .505 .728  .157 

p50i20r5 1MCAR .854 .911 .959  

p50i20r5 1MNAR .212 .528 .701  

p50i20r5 2MCAR .916 .946  .887 

p50i20r5 2MNAR .931 .960  .902 

p200i5r10 1MCAR .425 .701 .867  

p200i5r10 1MNAR .000 .000 .227  

p200i5r10 2MCAR .741 .833  .751 

p200i5r10 2MNAR .000 .752  .302 

p200i5r10BM 1MCAR .718 .790 .880  

p200i5r10BM 1MNAR .000 .000 .426  

p200i5r10BM 2MCAR .857 .892  .852 

p200i5r10BM 2MNAR .292 .728  .381 
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Table XVIII provides another look at reliability by showing the D-study 

generalizability coefficients estimated from the fully-crossed data sets and the MCMC 

approaches (calculated from the data sets with missing data). The D-study G-coefficients are 

calculated as described in Chapter II. For the fully-crossed data estimates, the full simulated data 

set (with no missing data) was used to calculate the variance components. For the MCMC 

estimates, the variance components from the MCMC runs were used to calculate the G-

coefficient. These estimates were based on the data set with unobserved cases deleted. Therefore, 

these results indicate the extent to which non-fully-crossed data can be used to determine 

estimates of the reliability under different data scenarios. The table shows the D-study G-

coefficient that takes into account the number of raters and number of items used in the data set 

with missing data. 

The results in Table XVIII show that when raters are randomly assigned, the MCMC 

estimate (which uses incomplete data) comes quite close to the G-coefficient calculated with the 

fully-crossed data using traditional G-theory variance component estimation techniques. In 

general, the MCMC approach does better when there are more items and more examinees. When 

only a single rater rates each examinee, the MCMC approach does not do well if the rater is not 

assigned randomly. Furthermore, the MCMC approach sometimes looks reasonable with two 

non-randomly assigned raters, and is again better when there are more items and more 

examinees. Since GT assumes raters drawn randomly from a universe of potential raters, it is not 

surprising that numbers calculated based on non-randomly sampled judges cannot replicate the 

GT results. 
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TABLE XVIII 

D-STUDY GENERALIZABILITY COEFFICIENT: FULLY-CROSSED DATA SET VERSUS 

MCMC ESTIMATE 

Data Scenario Fully-Crossed Data MCMC Estimate 

p50i5r5 1MCAR .527 .664 

p50i5r5 1MNAR .527 .371 

p50i5r5 2MCAR .690 .767 

p50i5r5 2MNAR .690 .691 

p50i20r5 1MCAR .855 .887 

p50i20r5 1MNAR .855 .634 

p50i20r5 2MCAR .922 .921 

p50i20r5 2MNAR .922 .925 

p200i5r10 1MCAR .615 .606 

p200i5r10 1MNAR .615 .215 

p200i5r10 2MCAR .762 .780 

p200i5r10 2MNAR .762 .470 

p200i5r10BM 1MCAR .778 .769 

p200i5r10BM 1MNAR .778 .250 

p200i5r10BM 2MCAR .875 .864 

p200i5r10BM 2MNAR .875 .588 

 

 

 

5. Distributional Effects 

To examine the extent to which the examinee abilities follow a similar distribution to 

the true abilities, I calculated the percent of cases where the ability estimate from each modeling 

approach placed the examinee into the same quintile of the scoring distribution. The results from 

this analysis are summarized in Table XIX. For single rater data sets, the distributional match 

was higher for the MCAR case than the MNAR case in all cases. In general, for single rater 

MCAR cases, the MCMC and MFRM approach were quite similar in result (which mirrors the 

correlation results described earlier). Winsteps was less effective in placing individuals into the 

correct quintile. These results (similar to the correlation results) seem to indicate that there is not 
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a clear advantage among models (between MCMC and the MFRM) in placing individuals into 

the right place of the distribution. Results can be far from the true abilities under scenarios where 

only a single rater is used or raters are assigned non-randomly. Again, the MCMC approach 

outperformed the MFRM in all cases where there was a single non-randomly assigned rater. 

 

 

TABLE XIX 

PERCENT OF EXAMINEES IN THE SAME QUINTILE AS TRUE ABILITY BY MODEL 

Data Set Scenario MCMC MFRM Winsteps Linear Regression 

p50i5r5 1MCAR 46.0% 40.0% 32.0%  
p50i5r5 1MNAR 20.0% 18.0% 10.0%  
p50i5r5 2MCAR 52.0% 52.0%  58.0% 

p50i5r5 2MNAR 38.0% 44.0%  48.0% 

p50i20r5 1MCAR 58.0% 66.0% 34.0%  
p50i20r5 1MNAR 34.0% 26.0% 24.0%  
p50i20r5 2MCAR 70.0% 72.0%  66.0% 

p50i20r5 2MNAR 88.0% 84.0%  84.0% 

p200i5r10 1MCAR 42.5% 45.0% 26.0%  
p200i5r10 1MNAR 30.5% 27.0% 17.5%  
p200i5r10 2MCAR 49.5% 50.5%  50.0% 

p200i5r10 2MNAR 32.5% 10.2%  10.5% 

p200i5r10BM 1MCAR 55.5% 64.0% 33.5%  
p200i5r10BM 1MNAR 30.5% 21.5% 33.5%  
p200i5r10BM 2MCAR 69.0% 67.0%  65.5% 

p200i5r10BM 2MNAR 28.5% 40.0%   41.5% 
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6. Statistical Significance of Difference from Average 

Table XX shows the percent of examinee ability estimates that are significantly 

different from average (using model SEMs for the abilities). Models with higher percentages 

indicate a greater confidence (rightfully or wrongfully) in the precision of the estimates. These 

results highlight the policy implications of different model choices. Depending on model choice, 

individual examinees may be more likely to be deemed statistically far below or far above 

average, which could lead to various consequences or rewards. In general, models with larger 

mean SEMs will have lower percentages in the table. Across the board, the MCMC approach 

indicates that fewer examinees are significantly different from average than the MFRM. 

Furthermore, the percent of cases that are different from average is lower for MNAR data sets 

than MCAR data sets. All models are taking into account the greater uncertainty due to the non-

random assignment of raters. The linear regression adjustment estimates have a much higher 

percentage that is different from zero. This is largely a function of this approach having smaller 

SEMs which are not conditional on the ability of the examinee; that is, extreme abilities do not 

have larger SEMs to account for greater uncertainty in the ability estimate at the high and low 

end of the ability continuum. 
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TABLE XX 

PERCENT OF ABILITY ESTIMATES SIGNIFICANTLY DIFFERENT FROM AVERAGE 

(ZERO) BY MODEL 

Data Set Scenario MCMC MFRM Winsteps Linear Regression 

p50i5r5 1MCAR 10.0% 32.0% 62.0%  
p50i5r5 1MNAR 2.0% 6.0% 6.0%  
p50i5r5 2MCAR 26.0% 46.0%  24.0% 

p50i5r5 2MNAR 14.0% 28.0%  6.0% 

p50i20r5 1MCAR 44.0% 62.0% 72.0%  
p50i20r5 1MNAR 6.0% 14.0% 26.0%  
p50i20r5 2MCAR 52.0% 66.0%  50.0% 

p50i20r5 2MNAR 72.0% 88.0%  58.0% 

p200i5r10 1MCAR 13.0% 28.0% 58.0%  
p200i5r10 1MNAR 0.0% 1.5% 1.0%  
p200i5r10 2MCAR 34.5% 40.5%  34.5% 

p200i5r10 2MNAR 3.5% 31.0%  12.0% 

p200i5r10BM 1MCAR 31.0% 38.0% 60.5%  
p200i5r10BM 1MNAR 0.0% 4.5% 12.0%  
p200i5r10BM 2MCAR 48.0% 54.0%  51.0% 

p200i5r10BM 2MNAR 9.0% 26.0%   9.0% 

 

 

 

7. Confidence Interval Coverage Probability 

Table XXI displays the proportion of examinees whose 95 percent confidence 

interval covers their true ability estimate by model, data set, and scenario. Most strikingly, the 

intervals for the linear regression adjustment estimates almost never cover the true value. Again, 

this is due to the non-conditional nature of the SEMs from this model, along with the SEMs 

being too small generally. The Winsteps model also doesn’t do well, due to not taking into 

account any uncertainty due to rater effects. The MFRM and MCMC approaches do the best. 

However, in all cases, the MFRM approach does not reach the optimal coverage probability 

(.95). This indicates that the MFRM approach is yielding SEMs which are too small given the 
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measurement error attributable to rater effects. In nearly all cases, the MCMC approach achieves 

or exceeds the coverage probability target of .95. 

 

 

TABLE XXI 

95 PERCENT CONFIDENCE INTERVAL COVERAGE PROBABILITY BY MODEL 

Data Set Scenario MCMC MFRM Winsteps Linear Regression 

p50i5r5 1MCAR .920 .800 .480  
p50i5r5 1MNAR 1.000 .860 .360  
p50i5r5 2MCAR 1.000 .900  .020 

p50i5r5 2MNAR .920 .840  .020 

p50i20r5 1MCAR .860 .800 .740  
p50i20r5 1MNAR .980 .760 .600  
p50i20r5 2MCAR .960 .900  .040 

p50i20r5 2MNAR 1.000 .940  .020 

p200i5r10 1MCAR .980 .905 .520  
p200i5r10 1MNAR 1.000 .915 .220  
p200i5r10 2MCAR .945 .895  .080 

p200i5r10 2MNAR .975 .475  .220 

p200i5r10BM 1MCAR .955 .935 .475  
p200i5r10BM 1MNAR 1.000 .875 .130  
p200i5r10BM 2MCAR .940 .940  .060 

p200i5r10BM 2MNAR .900 .760   .115 

 

 

 

B. Conclusion 

This chapter presented the results from the analysis of the simulated data sets for the 

purpose of comparing the effectiveness of several different approaches to analyzing judge rated 

data. In general, the MFRM and MCMC approaches were similar in their ability to produce 
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ability point estimates that were correlated with the true abilities, and these correlations were 

lower when judges were not randomly assigned. While comparisons of point estimates did not 

yield a clear winner between the MCMC and MFRM approach, other indicators of the relative 

performance of the models tended to favor the MCMC approach under certain circumstances. 

The MCMC approach produces much larger SEMs than the other approaches, and this leads to 

lower estimates of reliability, fewer cases classified as significantly different from average, and 

higher 95 percent coverage probabilities. One interpretation of this would be to say that 

traditional approaches underestimate the uncertainty in the ability estimate. The MCMC 

approach, by directly modeling the missing (perhaps non-ignorable) missing data mechanism, 

accounts for this uncertainty through larger standard errors of measurement. These larger SEMs 

then result in less confidence (appropriately) in the reliability of the point estimates, along with 

the statistical significance of any differences in those estimate.  

In addition to the comparison of the approaches in their ability to estimate generating 

ability parameters, this simulation study also examined the extent to which the MCMC approach 

could produce G-Theory variance components, even when traditional approaches could not 

estimate them. Results generally showed that when raters were randomly assigned, the MCMC 

approach produced variance component estimates which could be used in D-studies for 

calculating G-coefficients, even in cases with only a single rater. With only a single rater, the 

traditional G-Theory approach cannot disentangle the rater effect from the person effect. 
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IV. REAL WORLD DATA RESULTS 

 

 To test the applicability of the Bayesian bivariate probit ordinal missing data model to 

real world data, I analyzed data from the Class Pre-K observation system. These data include 

ratings of 255 early childhood centers in an urban environment. Each center was rated on 10 

items (scored from 1 to 7), which were grouped into three construct scores: emotional support 

(ES), classroom organization (CO), and instructional support (IS). Scores for the emotional 

support construct were based on four items, while scores for classroom organization and 

instructional support were based on three items. As with the simulations, the scores were 

standardized to facilitate comparison across methods. Therefore, the mean score for the MCMC, 

MFRM, and Winsteps approaches is 0, and the standard deviation of scores is 1. Rater 

severity/leniency, item difficulty/easiness, and rating scale threshold parameters were all 

standardized using the mean and standard deviation of the examinee scores (specific to the 

particular analysis – i.e., MCMC, MFRM, or Winsteps). 

A. MCMC Results 

Separate models were fit for each of the three constructs. Tables XXII, XXIII, and XIV 

show the estimates of rater leniency for the emotional support, classroom organization, and 

instructional support constructs, respectively. As opposed to rater severity, the MCMC approach 

estimates rater leniency – that is, higher values of the parameter indicate higher scores for 

examinees on average (for examinees assigned that rater). For the emotional support construct, 

the standardized rater leniency parameters range from 1.988 to 5.180, with an average standard 

error of about 0.4, indicating that there are statistically significant differences in rater leniency 

for this construct. One rater (judge 2) gave particularly high scores for this construct, after 

conditioning on the ability of the examinees. 
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TABLE XXII 

MCMC JUDGE LENIENCY: EMOTIONAL SUPPORT 

Judge Leniency Estimate SEM 

1 3.268 0.399 

2 5.180 0.418 

3 2.722 0.397 

4 2.394 0.394 

5 1.988 0.397 

6 2.358 0.428 

7 2.364 0.421 

8 2.123 0.399 

 

 

 

For the classroom organization construct (Table XXIII), rater leniency ranged from 0.795 

to 3.473, with an average standard error of about 0.41. As with the previous construct, judge 2 is 

again the most lenient; however, this judge did not appear to be quite as much of an outlier as for 

emotional support. Judge 8 appears to give quite lower ratings than the other judges for 

classroom organization. 
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TABLE XXIII 

MCMC JUDGE LENIENCY: CLASSROOM ORGANIZATION 

Judge Leniency Estimate SEM 

1 3.415 0.404 

2 3.473 0.406 

3 2.682 0.402 

4 1.719 0.404 

5 1.434 0.437 

6 1.735 0.438 

7 1.765 0.419 

8 0.795 0.449 

 

 

 

Rater leniency ranged from –0.159 to 2.127 for instructional support (Table XIV), with 

an average standard error of about 0.37. Contrary to the other two constructs, judge 2 was not the 

most lenient for this construct. Judge 8 was again the most severe. The lack of consistency in 

general of the leniency ordering across constructs might indicate an interaction between the 

raters, items, and examinees, which is not accounted for by this model or any of the other 

models. 
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TABLE XXIV 

MCMC JUDGE LENIENCY: INSTRUCTIONAL SUPPORT 

Judge Leniency Estimate SEM 

1 1.613 0.345 

2 1.671 0.345 

3 2.127 0.346 

4 1.089 0.368 

5 1.551 0.407 

6 0.816 0.404 

7 0.808 0.366 

8 –0.159 0.410 

 

 

 

Table XXV presents the standardized item easiness parameters by construct. Items with 

higher easiness parameter estimates are indicative of items where examinees tended to receive 

higher scores (conditional on examinee ability and rater leniency).  

 

 

TABLE XXV 

ITEM EASINESS PARAMETER ESTIMATES BY CONSTRUCT 

Item 

Emotional Support Classroom Organization Instructional Support 

Easiness SEM Easiness SEM Easiness SEM 

1 1.320 0.432 0.589 0.428 –0.091 0.382 

2 0.966 0.419 0.374 0.408 1.323 0.361 

3 1.040 0.397 1.006 0.425 –0.042 0.392 

4 1.222 0.418         
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Table XXVI shows the threshold parameters for the three constructs. These parameters 

represent the dividing points between the seven rating categories. Looking across the constructs, 

there is some evidence that the space between categories is not consistent across items. A partial 

credit model may be more appropriate for these data, but is beyond the scope of this thesis.  

 

 

TABLE XXVI 

MCMC RATING SCALE THRESHOLD PARAMETER ESTIMATES BY CONSTRUCT  

Construct 1/2 2/3 3/4 4/5 5/6 6/7 

Emotional Support –0.053 0.801 1.600 2.831 3.876 5.196 

Classroom Organization –0.038 0.679 1.354 2.490 3.734 5.223 

Instructional Support –0.021 1.004 1.868 2.689 3.436 4.293 

 

 

 

B. MFRM Results 

 Similar to the MCMC results, the results for the MFRM are presented separately by 

construct. Tables XXVII, XXVIII, and XXIX show the rater severity for the emotional support, 

classroom organization, and instructional support constructs, respectively. In contrast to the 

MCMC results above, the tables show judge severity (as opposed to leniency). For the MFRM 

and Winsteps psychometric packages, judge and item parameters are generally reported as judge 

severity and item difficulty. For the MCMC approach, the model parameters represent the 

opposite (leniency and easiness). The MFRM was implemented with an assumption of average 



111 
 

 

 

group ability equal to 0 for each disjoint subset of examinees – that is, the average ability for 

examines was anchored to 0 for each judge. 

 For the emotional support construct (Table XXVII), standardized rater severity ranged 

from –2.884 to –1.457 with an average standard error of about 0.08. Judges 2, 3, and 4 tended to 

be the most lenient, and judge 6 tended to be the most severe. 

 

 

TABLE XXVII 

MFRM JUDGE SEVERITY: EMOTIONAL SUPPORT 

Judge Severity Estimate SEM 

1 –2.678 0.062 

2 –2.884 0.113 

3 –2.884 0.113 

4 –2.755 0.067 

5 –1.751 0.088 

6 –1.457 0.082 

7 –1.720 0.062 

8 –1.612 0.088 

 

 

 

Rater severity for the classroom organization construct (Table XXVIII) ranged from –

2.033 to –0.768, with an average standard error of about 0.08. Judges 1 and 4 were the most 

lenient, and judge 7 was the most severe. 
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TABLE XXVIII 

MFRM JUDGE SEVERITY: CLASSROOM ORGANIZATION 

Judge Severity Estimate SEM 

1 –1.993 0.065 

2 –1.592 0.100 

3 –1.858 0.110 

4 –2.033 0.070 

5 –0.974 0.090 

6 –0.808 0.080 

7 –0.768 0.060 

8 –1.100 0.095 

 

 

 

 Standardized rater severity estimates for the instructional support construct (Table XXIX) 

ranged from –0.933 to 0.653, with an average standard error of about 0.06. Judge 5 was the most 

severe rater, and judge 2 was the most lenient. As with the MCMC results, there is evidence that 

the severity of judges is not consistent across constructs, which may indicate an interaction 

between judges, items, and examinees which is not accounted for by this model. 
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TABLE XXIX 

MFRM JUDGE SEVERITY: INSTRUCTIONAL SUPPORT  

Judge Severity Estimate SEM 

1 –0.653 0.040 

2 –0.933 0.073 

3 –0.216 0.063 

4 –0.346 0.043 

5 0.653 0.067 

6 0.523 0.060 

7 –0.836 0.047 

8 0.543 0.067 

 

 

 

Table XXX shows the item difficulty parameters for the three constructs when analyzed 

with the MFRM. In contrast to the MCMC runs, higher values of the parameter estimates 

indicate more difficult items and lower overall scores (conditional on examinee ability and rater 

severity). 

 

 

TABLE XXX 

MFRM ITEM DIFFICULTY PARAMETER ESTIMATES 

 Item 

Emotional Support Classroom Organization Instructional Support 

Difficulty SEM Difficulty SEM Difficulty SEM 

1 0.144 0.052 –0.176 0.050 0.167 0.033 

2 –1.576 0.093 –0.196 0.050 0.127 0.033 

3 0.582 0.052 0.366 0.045 –0.293 0.033 

4 0.855 0.046         
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 The rating scale thresholds are shown in Table XXXI. Similar to the MCMC results, 

there is some inconsistency in the size of the categories across constructs. This indicates that the 

categories are functioning differently across constructs, and may indicate that a partial credit 

model may be more appropriate for these data (if thresholds vary across items, within construct). 

While MFRM software can easily accommodate a partial credit model, the rating scale model is 

used here to serve as a comparison for the MCMC results. 

 

 

TABLE XXXI 

MFRM RATING SCALE THRESHOLD PARAMETER ESTIMATES BY CONSTRUCT  

Construct 1/2 2/3 3/4 4/5 5/6 6/7 

Emotional Support –2.668 –1.190 –0.597 0.659 1.401 2.395 

Classroom Organization –1.722 –0.964 –0.753 0.155 1.089 2.199 

Instructional Support –2.012 –1.049 –0.313 0.433 1.052 1.892 

 

 

 

 There is one issue of significance to note in the item parameter tables for the MFRM and 

MCMC approach. The ordering of the item difficulties appears to be different. This is perhaps 

due to the existence of missing rater/item interactions, which neither approach is modeling. The 

MCMC results indicate that there is a relationship between missing data and the missing rating 

itself. As the MCMC approach accounts for this different, it may not be surprising that the two 

sets of item parameters are inconsistent with one another. 
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C. WINSTEPS Results 

 The observation data were also analyzed with Winsteps. This modeling approach cannot 

account for raters, so no rater severity estimates are presented here. These results were calculated 

to enable comparisons among the MCMC and MFRM model, and a model which does not adjust 

for rater severity. Table XXXII shows the item difficulty parameter estimates for the three 

constructs. As with the MFRM results, higher values indicate items which had lower scores on 

average (i.e., were more difficult for examinees to achieve a high score). 

 

 

TABLE XXXII 

WINSTEPS ITEM DIFFICULTY PARAMETER ESTIMATES 

Item 

Emotional Support Classroom Organization Instructional Support 

Difficulty SEM Difficulty SEM Difficulty SEM 

1 –1.802 0.045 –1.451 0.045 –0.121 0.030 

2 –2.221 0.071 –1.469 0.045 –0.156 0.030 

3 –1.418 0.045 –0.977 0.040 –0.523 0.030 

4 –1.177 0.040         

 

 

 

 

Table XXXIII shows the rating scale threshold parameters from the Winsteps rating scale 

model run, presented separately by construct. 
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TABLE XXXIII 

WINSTEPS RATING SCALE THRESHOLD PARAMETER ESTIMATES BY CONSTRUCT  

Construct 1/2 2/3 3/4 4/5 5/6 6/7 

Emotional Support –3.688 –2.622 –2.310 –1.195 –0.508 0.393 

Classroom Organization –2.806 –2.139 –1.965 –1.165 –0.347 0.628 

Instructional Support –2.025 –1.181 -0.541 0.113 0.649 1.386 

 

 

 

D. Comparisons 

 Unlike with the simulation analyses, there is no “true” benchmark to which I could 

compare the scores across the different methods. However, I could analyze the results to see the 

extent to which the different methods would yield similar inference in an applied setting. To 

accomplish that, I looked at the correlation among the scores across methods, the average 

standard errors of measurement, the reliabilities of the scores, and the percent of scores that were 

significantly different from average. The results from each of these analyses are presented here. 

 A key component of the MCMC approach is the model specification for the missing data 

mechanism. In particular, the missingness is allowed to be conditional on the value of the 

missing rating itself. Table XXXIV shows the coefficient estimate for the rating (observed or 

unobserved) on the likelihood that a rating is missing. Positive coefficients, with posterior 

intervals which do not overlap zero are indicative of higher ratings being more likely to be 

missing. For all three constructs, the missing data model indicated that missing data are non-

ignorable. These results imply that any model which treats the missing data as ignorable may 

lead to poor statistical inference. 
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TABLE XXXIV 

ESTIMATES OF THE RELATIONSHIP BETWEEN RATINGS (OBSERVED AND 

UNOBSERVED) AND MISSINGNESS  

Construct Estimate Posterior SD 

Emotional Support 0.159 0.016 

Classroom Organization 0.161 0.012 

Instructional Support 0.088 0.018 

 

 

 

To examine the extent to which different methods produced similar scores (by construct), 

I calculated the correlation among the scores. Table XXXV shows these correlations. Across all 

three constructs, the scores from the MCMC and MFRM approaches showed the highest 

correlation. Correlations were lower between Winsteps and the other approaches; however, 

Winsteps scores tended to correlate higher with the MCMC scores than the MFRM scores. These 

correlations imply that the point estimates of the scores from the MCMC and MFRM approaches 

are quite similar for this observation data set. 
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TABLE XXXV 

CORRELATION AMONG ABILITY ESTIMATES BY MODEL AND CONSTRUCT  

Construct Model MCMC MFRM Winsteps 

Emotional Support MCMC 1.000 0.981 0.937 

 MFRM  1.000 0.871 

 Winsteps     1.000 

Classroom Organization MCMC 1.000 0.986 0.937 

 MFRM  1.000 0.880 

 Winsteps     1.000 

Instructional Support MCMC 1.000 0.997 0.901 

 MFRM  1.000 0.875 

 Winsteps     1.000 

 

 

 

Table XXXVI shows the average standard errors of measurement across constructs and 

methods. As with the simulation results, the average standard errors of measurement for the 

MCMC approach were larger than those from MFRM, which were larger than those from 

Winsteps. The MCMC approach takes into account the non-ignorable missing data mechanism 

which leads to larger SEMs. Given the relationship between the unobserved ratings and 

missingness, these larger SEMs seem appropriate. 

 

 

TABLE XXXVI 

MEAN STANDARD ERROR OF MEASUREMENT BY MODEL AND CONSTRUCT 

Construct MCMC MFRM Winsteps 

Emotional Support 0.580 0.491 0.428 

Classroom Organization 0.626 0.493 0.437 

Instructional Support 0.422 0.317 0.280 
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 These larger standard errors contributed to lower estimates of reliability for the MCMC 

scores, with MFRM scores having the second lowest estimated reliabilities, and Winsteps having 

the largest estimated reliabilities (see Table XXXVII). 

 

 

TABLE XXXVII 

RELIABILITY BY MODEL AND CONSTRUCT 

Construct MCMC MFRM Winsteps 

Emotional Support 0.663 0.759 0.817 

Classroom Organization 0.609 0.757 0.809 

Instructional Support 0.822 0.899 0.922 

 

 

 

 In addition to these reliabilities, I also used the variance component estimates from the 

MCMC runs to calculated D-study G-coefficients using the correct number of items, and a single 

rater for each construct. The G-coefficients for the three constructs are .709 for emotional 

support, .711 for classroom organization, and .867 for instructional support. These numbers 

slightly lower than the estimated reliabilities from Winsteps and the MFRM, and slightly higher 

than those from the MCMC approach. This result may imply that the MFRM and Winsteps 

approaches are overestimating the reliability whereas the MCMC approach is underestimating 

the reliability. 

 Table XXXVIII shows the percent of centers with scores that were significantly different 

from average (when taking into account the standard error of measurement). The MCMC 
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approach identified significantly fewer observations as statistically significantly lower than or 

higher than average. As with the simulations, the MCMC approach represents a more 

conservative approach to the classification of scores as different from average. 

 

 

TABLE XXXVIII 

PERCENT OF CENTERS SIGNIFICANTLY DIFFERENT FROM AVERAGE 

Construct MCMC MFRM Winsteps 

Emotional Support 22.4% 31.4% 23.5% 

Classroom Organization 19.6% 27.5% 28.6% 

Instructional Support 43.9% 59.6% 60.8% 

 

 

 

E. Conclusion 

The application of the Bayesian bivariate probit missing data model to a real world data 

set of Pre-K classroom observation demonstrates the applicability of this model in a practical 

setting. Budgetary constraints may have limited observations to a single non-randomly assigned 

rater per classroom. The analysis of these data showed that the particular model implemented 

mattered for the inference drawn about the objects of measurement. In particular, the MCMC 

results indicate that there was a relationship between the observed and unobserved ratings and 

the pattern of missingness. This implies that the data are likely MNAR, with a single rater. 

Simulation results in Chapter III indicate that the MCMC approach outperforms traditional 

approaches such as the MFRM or rating scale model in this type of scenario. The percent of 
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centers identified as significantly above or below average varies by model. Therefore, model 

selection has a potential real world impact for the objects of measurement. The MCMC approach 

best takes into account the uncertainty associated with the non-random assignment of rater. 
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V. DISCUSSION 

 

 Scores and ratings that rely on the judgment of raters with different levels of severity are 

subject to increased measurement error and bias if steps are not taken to account for this source 

of error. Failure to study and control for such error can lead to incorrect conclusions, and real-life 

consequences for the subjects of measurement. Solutions exist to estimate the extent of 

measurement error due to raters and adjust your data collection plan to minimize such error; that 

is, conduct a G-study followed by a D-study using the methods available in generalizability 

theory. Other solutions exist for estimating rater severity when some or all examinees are rated 

by multiple judges. These methods (e.g., the many-facet Rasch model and linear regression 

adjustments) estimate a fair score for an examinee by adjusting for the severity of the judges they 

were assigned. Each of these approaches requires that at least some of the examinees are rated by 

more than one judge. When data are collected without multiple judges per examinee, a solution 

needs to be found for estimating and accounting for the error and bias due to unequal judge 

assignment to examinees. This paper proposes a method to address that scenario. 

This thesis tested a method for applying MCMC and missing data analysis techniques to 

a sparse data set of judge rated examinees (i.e., sparse to the point of only a single judge rating 

each examinee). The proposed methods were applied with the intent of generating estimates of 

reliability and error similar to traditional GT and correcting for rater bias including instances 

when missing data are non-ignorable. The two main objectives of this thesis were as follows: 

 Research Objective 1: To develop statistical methods that allow one to investigate the 

extent to which measurement error is partitioned among the facets of measurement (with 
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an emphasis on rater bias) for data collection scenarios where traditional approaches in 

the literature cannot be applied. 

 Research Objective 2: To develop methods which produce more accurate latent trait 

measure estimates that account for rater bias and error due to the other facets of 

measurement, compared to existing methods which either cannot account for rater bias, 

or assume non-ignorable missing data. 

To accomplish these objectives, the new MCMC approach was compared to several existing 

approaches for analyzing judge rated data. The high-level details of each approach are reiterated 

here. 

 Generalizability theory provides methods for estimating the variance attributable to 

different facets of measurement (e.g., items, judges). The most straightforward method, which 

will produce unconfounded estimates of the variance components, requires fully crossed data (all 

examinees rated on all items by all raters). Once variance components are estimated, these 

parameter estimates can then be used to determine a generalizability coefficient for a given study 

design. This method doesn’t correct for rater bias, but rather helps researchers be proactive about 

selecting an appropriate number of judges to rate each individual to yield measures with an 

appropriately small standard error of measurement. 

 Linear regression adjustment fits a linear model to the individual ratings, including fixed 

effects for raters, persons, and items. The person fixed effect estimates from these models adjust 

for the severity of the specific raters that each examinee was assigned. Examinees with more 

severe raters will receive a boost in their score whereas examinees with more lenient raters will 

have their scores adjusted lower. This model is in line with classical test theory and 

generalizability theory models in that it does not include a link function to account for the ordinal 
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nature of the ratings. This approach also requires that sufficient examinees are rated by more 

than one judge, and that there exists a data-path that connects the ratings of one examinee to 

another via common judges. 

 The many-facet Rasch model is similar to the linear regression model in that it estimates 

parameters for persons, items, and judges, but does do using a logistic linking function to 

account for the ordinal nature of the observed ratings. Furthermore, like the linear regression 

model, this approach requires that at least some of the examinees are rated by multiple judges, 

and that there exists a data-path from one examinee to another. However, it is possible to 

implement the MFRM even when no double ratings have occurred. By assuming that the average 

ability of the examinees assigned to each rater is equivalent, one can estimate rater severity 

effects. Of course, these estimates are dependent on the assumption of this group-mean 

anchoring approach – which may be less appropriate when examinees are not randomly assigned 

to raters. 

 The Rasch rating scale model is similar to the MFRM, but does not account for rater 

effects. This model was applied to data collection scenarios where a single judge rated each 

examinee. These estimates serve as a check on how biased scores might look when the fact that 

judges were used in the scoring process is completely disregarded. 

 Finally, the Bayesian bivariate probit ordinal missing data model described in this thesis 

offers a possible solution to accounting for error and bias due to raters, while minimizing 

assumptions about the data. This approach treats the unobserved responses for judges not 

assigned to a particular examinee as missing data. Based on that, I have proposed a bivariate 

model which simultaneously models the missing data mechanism and the measurement model. 
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This approach is implemented via Markov Chain Monte Carlo methods using a hybrid 

Gibbs/Metropolis algorithm. 

 To compare the different modeling approaches under different data collection 

approaches, I simulated four master data sets. Each of these data sets were generated with ordinal 

data that fit the MFRM. In these master data sets, each judge rated each examinee on all items. 

Then, data subsets were generated which deleted out data (either randomly or non-randomly) to 

emulate data collection scenarios where examinees were either rated by a single judge or two 

judges. The four simulated data sets had the following properties: 

1. P50i5r5: 50 examinees (with normally distributed abilities), rated by 5 judges, on 5 items. 

2. P50i20r5: 50 examinees (with normally distributed abilities), rated by 5 judges, on 20 

items. 

3. P200i5r10: 200 examinees (with normally distributed abilities), rated by 10 judges, on 5 

items. 

4. P200i5r10BM: 200 examinees (with bimodally distributed abilities), rated by 10 judges, 

on 5 items. 

For each of these master data sets, data subsets where generated as 1MCAR (a single, randomly 

assigned rater), 1MNAR (a single, non-randomly assigned rater), 2MCAR (two, randomly 

assigned raters), and 2MNAR (two, non-randomly assigned raters). 

 Each of the modeling approaches described above (generalizability theory, MCMC, 

MFRM, and Rasch rating scale model) were fit to each of the 16 simulated data subsets to allow 

for comparison across a number of criteria. For some data subsets, a particular approach may not 

have been fit due to incompatibility of the method to the particular scenario. The results for each 
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of the comparison criteria were presented in chapter 3, and the nature of these criteria are 

described briefly here. 

 Pearson correlation with true abilities: The correlation between the standardized 

measures from each approach were correlated with the standardized true generating 

parameters used to create the simulated data. This criterion demonstrates the 

correspondence between scores from each method and the targeted true abilities. 

 Root mean squared error: The square root of the average squared deviation between 

the ability estimates and the true abilities was calculated to determine the extent to which 

each method yielded the lowest bias and variance. 

 Average standard error of measurement: The average SEMs were calculated to show 

the extent to which each method represented the uncertainty in the ability estimates 

(which could then be used to estimate reliabilities and confidence intervals). 

 Reliability: Reliability for each set of scores was estimated (for consistency across 

methods) by using the standard error of measurement and standard deviation of the 

observed scores. In addition to these reliabilities, D-study G-coefficients were calculated 

based on the variance components from the MCMC approach (using incomplete data) 

and standard G-Theory techniques (using the fully-crossed data – i.e., the complete data 

set). 

 Percent of cases different from average: The percent of cases statistically different 

from average helps tell the story of the practical impact on examinees of using each of the 

modeling approaches. 

 Confidence interval coverage probability: The proportion of cases where the 95 

percent confidence interval overlapped the true generating parameter was used to 
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estimate the extent to which each approach accurately estimated the amount of 

uncertainty contained in the score. 

 Rank-ordering of examinees into quantiles: The score estimates from each approach 

were grouped by quantile and compared to the quantiles groupings of the true abilities. 

The percent of cases lying along the table of the cross-tabulation served as a further 

indicator of the consistency between the estimates and the true abilities. 

Chapter III presented the results from the analysis of the four main simulated data sets, 

with the results from a real world data set presented in Chapter IV. For each of the data sets, all 

four modeling approaches (plus G-Theory) were used to determine the extent to which different 

approaches yielded more accurate results, or led to different practical inferences. The MCMC 

and MFRM approaches were similar in their capability to generate ability estimates that were 

closely aligned with the true abilities used for the data simulation when raters were randomly 

assigned, or two raters rated each examinee. Correlations favored the MCMC approach when a 

single non-randomly assigned rater was used. The correlations (and RMSE) showed greater 

alignment with true abilities in cases where judges were randomly assigned, and when two raters 

were used to rate each examinee (as opposed to a single rater). The MCMC approach yielded 

larger SEMs than the MFRM or other approaches, which led to higher confidence interval 

coverage probabilities, but lower reliability estimates and fewer examinees identified as 

significantly different from average. These findings were also consistent for the real world data 

set. The MCMC estimates of G-coefficients tended to closely mirror the G-coefficients estimated 

using classical G-Theory techniques on the fully-crossed complete data, but only when raters 

were randomly assigned. Furthermore, the estimates were closer to the classical estimates in 

scenarios with more items and more examinees (i.e., larger sample sizes). 
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The remainder of this chapter provides a discussion of these findings in the context of the 

two main research objectives, along with a plan for potential future research. 

A. Research Objective 1 

The first objective of this thesis was to develop statistical methods that allow one to 

investigate the extent to which measurement error is partitioned among the facets of 

measurement (with an emphasis on rater bias) for data collection scenarios where traditional 

approaches in the literature cannot be applied. Generally speaking, this objective aimed to 

determine if the proposed MCMC approach could replicate classical G-Theory approaches in 

situations where fully-crossed data was not collected.  

This thesis does not argue that the approach described here should be used in place of a 

traditional, rigorous G-Theory approach. To determine the proper number of items and raters 

needed to achieve a certain level of reliability (as estimated by the G-coefficient), researchers 

should conduct a G-study using randomly assigned raters, and using a fully-crossed data 

collection approach. However, when no such study has been conducted, or is not possible given 

time or resource constraints, it seems imperative to still analyze the reliability of the data you are 

collecting, and make decisions about how many judges are needed to collect data which meets 

the needs of your study. To that end, the MCMC method proposed here seems like a promising 

method for estimating the variance attributable to the different facets of measurement in 

situations where data are collected in a manner that doesn’t allow for traditional approaches. In 

particular, this thesis demonstrated that variance component estimates and G-coefficients 

produced from non-fully-crossed data are quite similar to estimates from fully-crossed data when 

only a single rater is used per examinee (as long as the raters are randomly assigned, which is a 

requirement for implementation of traditional GT in practice). 
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B. Research Objective 2 

The second objective of this thesis was to develop methods which produce more accurate 

latent trait measure estimates that account for rater bias and error due to the other facets of 

measurement, compared to existing methods which either cannot account for rater bias, or 

assume non-ignorable missing data. The theory behind this objective was that a modeling 

approach which modeled the missing data model in addition to the measurement model would 

yield ability estimates that were closer to the true ability estimates than approaches which did not 

explicitly model the missing data mechanism.  

Chapter II proposed five research hypotheses that relate to this research objective. 

Hypothesis one proposed that the new method would produce estimates which were closer to the 

true generating parameters than estimates from traditional approaches. Hypothesis two proposed 

that these estimates would exhibit less bias. In cases with a single non-randomly assigned rater, 

the new approach yielded estimates that were closer to the true abilities than traditional 

approaches. Hypothesis three posited that standard errors of measurement would be higher for 

the new approach and reliabilities would be correspondingly lower. Results indicated that this 

was the case regardless of measurement scenario. Hypothesis four proposed that the rank 

ordering of ability estimates would more closely match the ordering of the true abilities when 

using the new method. This was true for non-randomly assigned single-rater cases, but not 

generally. Finally, hypothesis five proposed that the coverage probabilities (defined as the 

percent of true abilities covered by the 95 percent confidence interval for the estimate) would be 

better with the new approach. This was generally true, with the new method having coverages 

close to 95 percent (or higher) in most cases, while traditional approaches were often well under 

95 percent coverage. 
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The results indicated that under many scenarios the MFRM approach (with the 

assumption of equal ability group means by rater) could produce estimates that were as close to 

the true abilities as those from the proposed MCMC approach. However, there were cases where 

the MFRM approach failed dramatically. The MFRM group anchoring approach is only as good 

as the quality of the assumption. The MCMC approach did not yield ability estimates that were 

less biased than the MFRM approach in general. However, the benefit of the MCMC approach 

appears to come in the form of more appropriately larger standard errors of measurement for the 

scores. The MCMC approach achieved the target 95 percent coverage probability in nearly all 

cases. To that end, the MCMC approach appears to be taking better account of the uncertainty 

due to rater severity and the non-random assignment of raters to examinees. In scenarios were 

there are high stakes for examinees, the MCMC approach is more cautious in indicating that 

examinees have scores which are reliably different from one another. The MCMC approach also 

takes greater care in indicating if examinees are either far below or far above average.  

C. Conclusion 

The Bayesian bivariate probit ordinal missing data measurement model proposed here 

provides a potential method for dealing with judge rated data in the presence of non-ignorable 

missing ratings. By treating rater assignment as a missing data problem, this modeling approach 

more accurately models the uncertainty in examinee scores by taking into better account the error 

due to rater severity, and non-random assignment of raters. In particular, the MCMC approach 

yields confidence intervals with better coverage probabilities than traditional approaches, and 

this finding is consistent when raters are randomly or non-randomly assigned to examinees. In 

addition, the MCMC approach provides a method for estimating the variance attributable to 

different facets of measurement, even when a traditional G-study with fully-crossed data has not 
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be implemented. While these techniques require significant computing time, as computing power 

continues to increase, they should be less time-consuming to implement for such measurement 

problems. 

Future research can build upon the initial work on this topic presented in this thesis. In 

particular, the Bayesian ordinal probit missing data measurement model presented here could be 

expanded to models where the same rating scale structure is not used for all items (as in a partial 

credit model). Furthermore, this approach could be implemented with adjacent categories ordinal 

models (such as are traditional in the Rasch family of measurement models), rather than the 

cumulative logit models considered here. More work can also be done to better understand the 

conditions under which the G-Theory variance components obtained via the MCMC approach 

are best matched to those that would have been obtained under a traditional implementation of 

G-Theory with fully-crossed data. Finally, the algorithm could be updated to improve the speed 

of calculation. This step would allow for the generation of results for many simulated datasets, 

which would help demonstrate the generalizability of these results.
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APPENDIX 

 

This appendix provides example code of the implementation of the Bayesian bivariate 

probit missing data model as implemented in Matlab 

 

%% Import the data 

[~, ~, raw] = xlsread(datasetname.xlsx','sheetname'); 

raw = raw(2:end,:); 

 

%% Replace non-numeric cells with 0.0 

R = cellfun(@(x) ~isnumeric(x) || isnan(x),raw); % Find non-numeric cells 

raw(R) = {0.0}; % Replace non-numeric cells 

 

%% Create output variable 

data = cell2mat(raw); 

%% Allocate imported array to column variable names 

personid = data(:,1); 

judgeid = data(:,2); 

itemid = data(:,3); 

ability = data(:,4); 

ability1 = data(:,5); 

difficulty = data(:,6); 

severity = data(:,7); 

rating = data(:,8); 

rating1 = data(:,9); 

txct = data(:,10); 

ab.strata = data(:,11); 

keep = data(:,13); 

 

missing = keep; 

missing(keep==1) = 0; 

missing(keep==0) = 1; 

 

 

%% Clear temporary variables 

clearvars data raw R columnIndices; 

 

%% Create the design matrix X 

X = dummyvar([personid itemid judgeid]); 

 

 

% Create the response vector, Z, and starting values for missing data 

Y = rating; 

m = missing; 

 

 

[n, p] = size(X); 

np = 50; 

ni = 5; 

nj = 5; 
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% need random starting values 

randstart = round(unifrnd(1,4,n,1)); 

Y(m==1) = randstart(m==1); 

 

Z = [Y X]; 

 

[n, pz] = size(Z); 

Zprop = Z; 

 

% Number of iterations 

niter = 100000; 

% Number of response options 

Q = 4; 

 

 

% set up parameter vectors 

beta = zeros([p niter]); 

psi = zeros([pz niter]); 

gamma = zeros([Q+1 niter]); 

gamma(1,:) = -Inf; 

gamma(2,:) = 0; 

gamma(3,1) = 1.5; 

gamma(4,1) = 3; 

gamma(Q+1,:) = Inf; 

 

% Auxilliary variable vectors 

Ystar = zeros([n 1]); 

mstar = zeros([n 1]); 

Ystarmiss = zeros([n 1]); 

 

% establish the prior information for beta and psi 

mu_beta = zeros([p 1]); 

mu_psi = zeros([pz 1]); 

 

var_beta = eye(p); 

var_psi = eye(pz); 

 

sigmaY = ones([n 1]); 

sigmam = ones([n 1]); 

 

mtrunclow = [-Inf 0]; 

mtrunchi = [0 Inf]; 

 

Vbetastar = inv(inv(var_beta)+X'*X); 

invVbeta = inv(var_beta); 

invVpsi = inv(var_psi); 

 

% MCMC Loop 

v_beta = ones([1 niter]); 

v_psi = ones([1 niter]); 

sigma2_p = zeros([1 niter]); 

sigma2_i = zeros([1 niter]); 

sigma2_j = zeros([1 niter]); 

sigma2_pi = zeros([1 niter]); 

sigma2_pj = zeros([1 niter]); 

sigma2_ij = zeros([1 niter]); 

sigma2_pij = zeros([1 niter]); 
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gcoef = zeros([1 niter]); 

 

for k=2:niter 

  

% Step 1: Draw proposed v_beta: 

 

v_betaProp = exp(normrnd(log(v_beta(k-1)),1)); 

LL1 = sum(log(normpdf(beta(:,k-1),0,sqrt(v_betaProp)))) + 

log(real(v_betaProp<1000)); 

LL0 = sum(log(normpdf(beta(:,k-1),0,sqrt(v_beta(k-1))))) + log(real(v_beta(k-

1)<1000)); 

if rand<exp(LL1-LL0); v_beta(k)=v_betaProp; else v_beta(k)=v_beta(k-1); end; 

 

% Step 2: Draw proposed v_phi: 

 

v_psiProp = exp(normrnd(log(v_psi(k-1)),1)); 

LL1 = sum(log(normpdf(psi(:,k-1),0,sqrt(v_psiProp)))) + 

log(real(v_psiProp<1000)); 

LL0 = sum(log(normpdf(psi(:,k-1),0,sqrt(v_psi(k-1))))) + log(real(v_psi(k-

1)<1000)); 

if rand<exp(LL1-LL0); v_psi(k)=v_psiProp; else v_psi(k)=v_psi(k-1); end; 

 

   

% Step 3: Sample Ystar 

 

    Ystar = norminv(normcdf(gamma(Y,k-1),X*beta(:,k-

1),sigmaY)+(unifrnd(0,1,n,1).*(normcdf(gamma(Y+1,k-1),X*beta(:,k-1),sigmaY)-

normcdf(gamma(Y,k-1),X*beta(:,k-1),sigmaY))),X*beta(:,k-1),sigmaY); 

     

% Step 4: Sample mstar 

 

    mstar = norminv(normcdf(mtrunclow(m+1)',Z*psi(:,k-

1),sigmam)+(unifrnd(0,1,n,1).*(normcdf(mtrunchi(m+1)',Z*psi(:,k-1),sigmam)-

normcdf(mtrunclow(m+1)',Z*psi(:,k-1),sigmam))),Z*psi(:,k-1),sigmam); 

     

% Step 5: Metropolis step for threshold parameters (1, 2, and 5 are 

    % constant) 

 

    gammaprop = gamma(:,k-1); 

    gammadenom = gamma(:,k-1); 

    for q=3:Q 

        gammaprop(q) = normrnd(gamma(q,k-1),.05); 

        if gammaprop(q) > gammaprop(q-1) & gammaprop(q) < gammaprop(q+1) 

            if unifrnd(0,1) <= 

min(1,exp(sum(log(normcdf(gammaprop(Y+1),X*beta(:,k-1),sigmaY)-

normcdf(gammaprop(Y),X*beta(:,k-1),sigmaY)))-

sum(log(normcdf(gammadenom(Y+1),X*beta(:,k-1),sigmaY)-

normcdf(gammadenom(Y),X*beta(:,k-1),sigmaY))))); 

                gammadenom(q) = gammaprop(q); 

            else gammaprop(q) = gamma(q,k-1); 

            end 

        else gammaprop(q) = gamma(q,k-1); 

        end 

    end 

    gamma(:,k) = gammadenom; 
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% Step 6: Sample the betas 

 

    beta(:,k) = 

mvnrnd(inv(inv(v_beta(k)*eye(p))+X'*X)*(inv(v_beta(k)*eye(p))*mu_beta + 

X'*Ystar),inv(inv(v_beta(k)*eye(p))+X'*X)); 

     

% Step 7: Sample the psis 

 

    psi(:,k) = 

mvnrnd(inv(inv(v_psi(k)*eye(pz))+Z'*Z)*(inv(v_psi(k)*eye(pz))*mu_psi + 

Z'*mstar),inv(inv(v_psi(k)*eye(pz))+Z'*Z)); 

     

% Step 8: metropolis the ystar for the missing ratings, and generate 

    % missing values 

 

    Ystarmiss = Ystar; 

    Ystarmiss(m==1) = normrnd(Ystar(m==1),1); 

    Zprop = Z; 

    Zprop(m==1 & Ystarmiss < gamma(2,k),1)=1; 

    Zprop(m==1 & Ystarmiss < gamma(3,k) & Ystarmiss >= gamma(2,k),1)=2; 

    Zprop(m==1 & Ystarmiss < gamma(4,k) & Ystarmiss >= gamma(3,k),1)=3; 

    Zprop(m==1 & Ystarmiss >= gamma(4,k),1)=4; 

 

    randdraw = unifrnd(0,1,n,1); 

    proplikelihood = 

(normpdf(Ystarmiss,X*beta(:,k),sigmaY).*normpdf(mstar,Zprop*psi(:,k),sigmam))

./(normpdf(Ystar,X*beta(:,k),sigmaY).*normpdf(mstar,Z*psi(:,k),sigmam)); 

    Z(m==1 & randdraw <= min(1,proplikelihood),1) = Zprop(m==1 & randdraw <= 

min(1,proplikelihood),1); 

    %G = tabulate(Z(m==1,1)); 

    %distofY(:,k) = G(:,3); 

    Y = Z(:,1); 

    % insert G theory here 

     

     

pmean = zeros([np 1]); 

imean = zeros([ni 1]); 

jmean = zeros([nj 1]); 

pimean = zeros([np ni]); 

pjmean = zeros([np nj]); 

ijmean = zeros([ni nj]); 

for ip = 1:np 

    pmean(ip) = mean(Y(personid==ip)); 

    for ii = 1:ni 

        pimean(ip,ii) = mean(Y(personid==ip & itemid==ii)); 

    end 

    for ij = 1:nj 

        pjmean(ip,ij) = mean(Y(personid==ip & judgeid==ij)); 

    end 

end 

for ii = 1:ni 

    imean(ii) = mean(Y(itemid==ii)); 

    for ij = 1:nj 

        ijmean(ii,ij) = mean(Y(itemid==ii & judgeid==ij)); 

    end 

end 

for ij = 1:nj 
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    jmean(ij) = mean(Y(judgeid==ij)); 

end 

gmean = mean(Y); 

 

ss_p = ni*nj*sum(pmean.^2) - np*ni*nj*(gmean^2); 

ss_i = np*nj*sum(imean.^2) - np*ni*nj*(gmean^2); 

ss_j = np*ni*sum(jmean.^2) - np*ni*nj*(gmean^2); 

ss_pi = nj*sum(sum(pimean.^2)) - ni*nj*sum(pmean.^2) - np*nj*sum(imean.^2) + 

np*ni*nj*(gmean^2); 

ss_pj = ni*sum(sum(pjmean.^2)) - ni*nj*sum(pmean.^2) - np*ni*sum(jmean.^2) + 

np*ni*nj*(gmean^2); 

ss_ij = np*sum(sum(ijmean.^2)) - np*nj*sum(imean.^2) - np*ni*sum(jmean.^2) + 

np*ni*nj*(gmean^2); 

ss_pir = sum(Y.^2) - nj*sum(sum(pimean.^2)) - ni*sum(sum(pjmean.^2)) - 

np*sum(sum(ijmean.^2)) + ni*nj*sum(pmean.^2) + np*nj*sum(imean.^2) + 

np*ni*sum(jmean.^2) - np*ni*nj*(gmean^2); 

 

ms_p = ss_p/(np-1); 

ms_i = ss_i/(ni-1); 

ms_j = ss_j/(nj-1); 

ms_pi = ss_pi/((np-1)*(ni-1)); 

ms_pj = ss_pj/((np-1)*(nj-1)); 

ms_ij = ss_ij/((ni-1)*(nj-1)); 

ms_pij = ss_pir/((np-1)*(ni-1)*(nj-1)); 

 

sigma2_p(k) = (ms_p-ms_pi-ms_pj+ms_pij)/(ni*nj); 

sigma2_i(k) = (ms_i-ms_pi-ms_ij+ms_pij)/(np*nj); 

sigma2_j(k) = (ms_j-ms_pj-ms_ij+ms_pij)/(np*ni); 

sigma2_pi(k) = (ms_pi-ms_pij)/nj; 

sigma2_pj(k) = (ms_pj-ms_pij)/ni; 

sigma2_ij(k) = (ms_ij-ms_pij)/np; 

sigma2_pij(k) = ms_pij; 

 

gcoef(k) = sigma2_p/(sigma2_p + 

((sigma2_pi/ni)+(sigma2_pj/nj)+(sigma2_pij/(ni*nj)))); 

end 

     

           

abilests = mean(beta(1:50,10001:niter),2); 

judges = mean(beta(56:60,10001:niter),2); 

items = mean(beta(51:55,10001:niter),2); 

psiests = mean(psi(:,10001:niter),2); 

gamma = mean(gamma(:,10001:niter),2); 

 

se_abil = std(beta(1:50,10001:niter),0,2); 

se_judges = std(beta(56:60,10001:niter),0,2); 

se_items = std(beta(51:55,10001:niter),0,2); 

 

sigma2_p_mean = mean(sigma2_p(10001:niter)); 

sigma2_i_mean = mean(sigma2_i(10001:niter)); 

sigma2_j_mean = mean(sigma2_j(10001:niter)); 

sigma2_pi_mean = mean(sigma2_pi(10001:niter)); 

sigma2_pj_mean = mean(sigma2_pj(10001:niter)); 

sigma2_ij_mean = mean(sigma2_ij(10001:niter)); 

sigma2_pij_mean = mean(sigma2_pij(10001:niter)); 

gcoef_mean = mean(gcoef(10001:niter)); 
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sigma2_p_se = std(sigma2_p(10001:niter)); 

sigma2_i_se = std(sigma2_i(10001:niter)); 

sigma2_j_se = std(sigma2_j(10001:niter)); 

sigma2_pi_se = std(sigma2_pi(10001:niter)); 

sigma2_pj_se = std(sigma2_pj(10001:niter)); 

sigma2_ij_se = std(sigma2_ij(10001:niter)); 

sigma2_pij_se = std(sigma2_pij(10001:niter)); 

gcoef_se = std(gcoef(10001:niter)); 

 

abilities = [abilests se_abil]; 

judgeseverities = [judges se_judges]; 

itemdifficulties = [items se_items]; 

 

gtheory = [sigma2_p_mean sigma2_p_se; 

    sigma2_i_mean sigma2_i_se; 

    sigma2_j_mean sigma2_j_se; 

    sigma2_pi_mean sigma2_pi_se; 

    sigma2_pj_mean sigma2_pj_se; 

    sigma2_ij_mean sigma2_ij_se; 

    sigma2_pij_mean sigma2_pij_se; 

    gcoef_mean gcoef_se;] 

 

 

 

 

 


