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SUMMARY

Multicarrier modulation is widely accepted as a powerful technology to satisfythe increasing de-

mand of high data rate transmission, whether in wireless or in wireline systems. The inherent large

envelope fluctuations of multicarrier signals necessitate the use of power amplifiers with large dynamic

range. However, the incompatibility between linear amplification and power efficiency poses challenges

in deployment of practical systems. When high power efficiency is mandatory, e.g. in mobile systems,

nonlinear power amplifier effects are inevitable. The goal of this research is to explore signal design

and processing techniques to enhance the performance of transmission and reception in multicarrier

communications that employ nonlinear power amplifiers at the system front-end, specifically focusing

on boosting power efficiency and improving bit error rate in orthogonal frequency division multiplexing

(OFDM) and orthogonal frequency division multiple access (OFDMA) systems.

In this dissertation, several novel methods are proposed to combat the nonlinear power amplifier ef-

fects in multicarrier systems. With emphasis on easy implementation and low cost at the transmitter, two

novel peak windowing schemes, with asymmetric window functions and simple coefficient optimiza-

tion respectively, are proposed to handle the case of successive peaks in transmitted signals. Numerical

results validate their effectiveness in overcoming the flaws of excessiveattenuation and ill-conditioning

window weights in existing schemes.

Receiver-oriented methods are explored to provide power efficiency improvement with simple direct

clipping at the transmitter while clipping noise is estimated and compensated at the receiver. To tackle

the intrinsic challenge in OFDMA reception where an individual user has insufficient information of

xiv



SUMMARY (Continued)

other users’ modulation to apply conventional decision-aided schemes, a novel method is proposed to

estimate the clipping noise using two steps: improved peak localization and magnitude estimation with

frame-based alternating projection. The proposed method does not require modulation information of

the entire OFDM symbol, and has significantly enhanced performance compared with existing schemes

in terms of bit error rate, especially in the high signal-to-noise regime.

With focus on the power efficiency improvement without sacrificing system performance in terms of

bit error rate, we propose a joint design of transmitter-oriented scheme oftone reservation with clipping

and receiver-oriented scheme of frame-based alternating projection which opens up a novel way to deal

with the nonlinear power amplifier effects. The tight requirement of sparsitylevel in clipping noise

imposed by compressed sensing framework is relaxed with a novel formulation based on frame theory

and projection over convex sets and thus significant bit error rate performance improvement is achieved

compared with the signal recovery scheme based on compressed sensing. In addition, the proposed

scheme provides increased flexibility in balancing the computational load between the transmitter and

the receiver, which gives more leeway to system designers.

For multicarrier systems with multiple antennas, the large fluctuations of signals that are prone to

nonlinear power amplifier effects still remain an issue. In this research, a hybrid scheme that combines

two existing single-antenna schemes, namely erasure pattern selection and Fourier projection algorithm,

is designed to address the issue for the multi-antenna case and simulations demonstrate it outperforms

a popular existing scheme. Signals in generalized multicarrier modulated systemssuch as multi-band

OFDM, software defined radio and carrier aggregation, still face the issue of combating nonlinear power

amplifier effects, which drives future research in this field.

xv



CHAPTER 1

INTRODUCTION

Multicarrier modulation (MCM) is a parallel data transmission scheme in which datais split into

several components and used to modulate subcarriers spaced within an available bandwidth.

MCM has a long history over decades as an effective technology for data transmission [1] [2].

Initially it was developed in analog military communications. With recent advancesin digital sig-

nal processing technology, MCM such as orthogonal frequency division multiplexing (OFDM) and

discrete multitones (DMT) exhibit rising popularity for the implementation of wireless and wireline

communication systems [3]. Many international standards make use of OFDM or DMT as the physi-

cal layer technology, such as Asymmetric Digital Subscriber Line (ADSL),Very high bit-rate Digital

Line Subscriber (VDSL), Digital Audio Broadcasting (DAB), Digital VideoBroadcasting (DVB), IEEE

802.11a/g wireless LAN [4, 5], IEEE 802.16 [6, 7], IEEE 802.11n [8],IEEE 802.11ac [9] and the 3rd

generation partnership project (3GPP) pre-4G long term evolution (LTE) (3GPP Release 8) [10] and 4G

LTE-Advanced (3GPP Release 10) [11]. Orthogonal frequency division multiple access (OFDMA) that

evolved from OFDM as a multiple access scheme is widely known to be the predominant air interface

of next-generation mobile broadband wireless systems. Increased adoption of multicarrier modulation

is envisioned in the future standards beyond official 4th generation (4G)systems.

MCM is basically a method of frequency division multiplexing (FDM). In classical FDM, the avail-

able bandwidth is divided into many non-overlapping subbands; each subcarrier is modulated with a

data stream and then all subcarriers are frequency-division multiplexed. The basis pulse function for

1



2

each subcarrier is rectangular in frequency domain obtained by band-limited filters. When the number

of subcarriers increases, increasingly sharp filters are required to separate the subbands. This makes the

implementation of such systems impractical. It is also necessary to use some extrabandwidth between

subcarriers to prevent intercarrier interference (ICI). To overcome the inefficiency in bandwidth usage

and the difficulty in implementation, OFDM adoptssinc functions as the basis pulse functions for sub-

carriers. Orthogonality among subcarriers is maintained and multiplexed subcarriers are separable at

the receiver, while the scalability within the assigned bandwidth increases.

There are other forms of multicarrier modulation depending on the orthogonal basis pulse function

used in the system, such as filter bank based multicarrier (FBMC) systems [12] and wavelet packet

modulation (WPM) [13]. In terms of FDM, Multi-Band OFDM (MB-OFDM) divides the spectrum into

several bands and then transmits the information using OFDM modulation in eachband. The spectrum

can be continuous with multiple neighboring subbands, or discrete with different spectrum gaps among

the subbands. The advantages of MB-OFDM were exploited in the proposal of the IEEE 802.15.3a

standard developed for ultra wide band (UWB) communication systems [14].Since bands in MB-

OFDM are still multiplexed, it can be viewed as generalized multicarrier modulation. Another form of

generalized multicarrier modulation arises in software defined radio (SDR) signals [15]. Each subband

signal in SDR can be a single carrier signal or an orthogonal multicarrier signal, while the overall

SDR signal is composed of all subband signals as FDM. Carrier Aggregation (CA) that utilizes SDR as

another form of multicarrier modulation was firstly introduced into 3GPP LTE standard and it aims to

bring multiple subbands together into a total bandwidth greater than 100MHz for wireless broadband

communications. Considering that the major advantages for OFDM or DMT multicarrier signals lie in
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quick and easy practical implementation of fast Fourier transform (FFT) algorithms, the term MCM is

often used in the telecommunication field synonymously as OFDM or DMT, and sometimes they are

interchangeable.

1.1 Multicarrier Modulation: Advantagesand Disadvantages

Advantages of MCM over single carrier modulation are reflected in the widespread acceptance of

MCM in various standards. An OFDM-based system can provide high spectral efficiency and high flex-

ibility in supporting adaptive loading according to channel conditions. It also provides greater immunity

to multipath fading and impulse noise, and simplifies the structure of equalizers withefficient hardware

implementation using FFT techniques [16]. In addition, it makes single frequency networks possible

which is especially attractive in broadcasting applications [17].

While it has many advantages, OFDM also has some drawbacks such as susceptibility to frequency

dispersion and phase noise, which makes it very critical to have accuratesynchronization in multicarrier

systems. In OFDM, subcarriers are perfectly orthogonal only if the transmitter and the receiver use

exactly the same frequencies. Any frequency offset affects the orthogonality consequently resulting

in ICI at the receiver. Random phase jitter between the phase of the carrier and the phase of the local

oscillator may cause the frequency, which is the time derivative of the phase, not to be perfectly constant,

thereby causing ICI.

The drawback that most affects multicarrier systems is due to large fluctuations in transmitted sig-

nals caused by superposition of multiple subcarrier signals. The nonconstant signal envelope affects

performance due to the presence of nonlinear devices in the communication path such as digital-to-

analog converter (DAC), analog-to-digital converter (ADC) and power amplifiers. The design of a
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power-efficient system becomes challenging since high signal peaks produce severe impairments due

to nonlinear distortions. A power amplifier (PA) with a large dynamic linear rangeis required in order

to magnify the peaks without distortions, but the required sophisticated and expensive PA leads to dra-

matically increased system complexity and cost. An alternative is to force the operation of the PA into

the linear range with high input back-off (IBO), that is, offsetting the inputsignal so far away from PA

saturation as to accommodate the peaks and amplify the large peak linearly. Thehigh IBO forces the PA

to work in lower power region most of the time, thereby causing power efficiency to be severely reduced

and energy to be unacceptably wasted. Low power efficiency significantly shortens the battery lifetime

in mobile devices and also leads to undesirable reduction in the range of signal transmission in mobile

systems.

In order to combat nonlinear effects without sacrificing power efficiency, many schemes have been

proposed in the literature [18–20]. Most of them use the ratio between the peak power to the average

power, Peak-to-Average Power Ratio (PAPR) as a measure of fluctuations of the input signals, and at-

tempt to reduce nonlinear distortions by reducing PAPR to the extent possible. PAPR reduction schemes

are mostly focused on the transmitter (TX) side, either in a distortionless way orwith acceptable distor-

tion. Distortionless transmitter-oriented schemes apply signal transformationsto alter the input signal

in a way that PAPR of the transformed signal is reduced, while the inverse transformation is applied

at the receiver to restore the original signal without any impairment, so system performance is not

degraded. Such schemes include multiple signal representation, probabilistic methods, dummy signal

insertion and coding based methods. Distortion transmitter-oriented schemes modify the signal directly

to satisfy PAPR requirements of TX PA, such as clipping and filtering, peak windowing, compounding
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transforms, and constraint constellation shaping. The signal with reduced PAPR at TX tends to incur

less in-band distortion and smaller out-of-band emission. However, the gainof reduced PAPR comes

with penalties such as increased transmission power, loss of data rate, extra computational complexity,

spectral inefficiency and so on, which impacts the overall system performance negatively [21]. Depend-

ing on system requirements and user applications, different criteria rule the system design, especially

when high power efficiency is demanded in a multicarrier system with a large number of subcarriers

like OFDMA.

Besides PAPR, bit error rate (BER) has also been used as a figure of merit to evaluate the influence

of signal transformation schemes on the system performance [22], [23]. The interference caused to

other channels in these schemes is also a major concern in real-world systemdesign [7]. While BER

performance can be improved by some techniques at the receiver (RX),interference to other channels

at the transmitter is relatively hard to control in practical systems. This challenge becomes especially

important when high power efficiency is mandatory and the high back-off condition is unavailable, e.g.

when sensor lifetime needs to be prolonged, or when limited interference canbe tolerated to boost

power efficiency. It is shown [24] that BER increases when PAPR further decreases assuming PAPR-

reduced signals are entirely confine to PA linear range. Operating PA close to saturation to achieve high

power efficiency makes PAPR reduction largely ineffective as the PAPR-reduced signals still drive PA

to nonlinear amplification.

Beyond the considerations of performance metrics, simple implementation and fine controllability

of the system are also important criteria for system designers to choose anappropriate scheme. In some

low-cost applications, easy compatibility even outweighs other factors in complying with the standards.
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After assessing different PAPR schemes, some popular PAPR reductionschemes are identified as lack-

ing fine control on the performance and hard to maintain or upgrade. Some other schemes like peak

windowing [25] permit fine control, are easy to implement and have excellentcompatibility with other

schemes.

Recently with the coming era of mobile Internet, the increasing demand of high data rate transmis-

sion pushes OFDM system design to employ more and more subcarriers. Highorder OFDM increases

the complexity of PAPR reduction and the implementation cost at the transmitter. In the meanwhile,

system capacity is demanded to provide services to more and more users. Withmore attention on BER

performance in multiuser access scenario, interest has recently shifted toreceiver-oriented schemes

and is rapidly growing with the goal of tackling the nonlinear PA effects, especially when limitations on

power consumption, implementation cost or computational complexity exist at the transmitter. Receiver-

oriented methods may take an advantage of combating nonlinear effects with reduced dimension of sig-

nals on own subcarriers. However, a new challenge is posed by lack ofinformation of other users which

invalidates existing decision-aided methods.

Through the identification of key features of various schemes, integrationof different schemes to

achieve better performance can be envisioned accordingly. Previous schemes mostly were developed

for single-antenna system. The implementation of OFDM in conjunction with multi-antenna techniques

is a promising way to efficiently use the radio spectrum extending the capacity of mobile communica-

tion systems [26]. However, in a multiple input multiple out (MIMO) OFDM system, the high peak

power issue still exists. Improvements obtained by combining different single-antenna PAPR reduction

schemes are shown to be effective in enhancing the system performancein multiple antenna systems.
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As generalized multicarrier modulation, multi-band signals like MB-OFDM or SDR or CA also

exhibit high peak power due to the superposition of subcarrier signals. The trade-off between nonlinear

distortions and the system power efficiency is still a major concern in that scenario which provides fertile

ground for future work.

Therefore, this research is strongly motivated by the need to address thelong-standing issue of

balancing the conflict of power efficiency and nonlinear distortions in multicarrier modulated systems.

1.2 ResearchContributions

The goal of this research is to explore signal design and processing techniques to enhance the per-

formance of transmission and reception in multicarrier communications that employnonlinear power

amplifiers at the system front-end, specifically focusing on boosting power efficiency and improving

BER in the PAPR issue in OFDM(A) systems. We develop new methods to alleviate nonlinear effects

before signal transmission and/or to mitigate nonlinear effects by compensating received signals. We

consider techniques suitable for implementation at the transmitter and at the receiver, and hybrid solu-

tions with both ends involved together. We evaluate the performance throughtheoretical analysis and

numerical simulations. Techniques are also extended to multicarrier systems withmultiple antennas.

Other considerations in practical systems such as block synchronization,phase jitter, I/Q imbalance, PA

linearization and channel estimation are not addressed in this research.

By introducing the formulation of clipping noise estimation in terms of frame theory and projection

over convex sets (POCS), we propose a new solution which very efficiently handles estimation and

compensation of clipping noise in OFDMA systems, successfully resolving thenew challenging issue

that modulation information of other users is not known to any individual users in OFDMA. We cast the
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problem under frame theory and utilize POCS to achieve reliable results and better performance without

increasing complexity.

We exploit the full potential of reserved bandwidth available in practical systems, and investigate

the dual sparsity in frequency domain and time domain to jointly design the schemesin TX and RX.

In this way we make it feasible to balance the load between TX and RX, and provide more flexibility

in utilizing the reserved bandwidth. System performance is significantly improved by overcoming the

sparsity limitations imposed in the existing schemes based on compressed sensing.

1.2.1 Transmitter-Oriented Approach: Improved PeakWindowing

We start with investigating the peak windowing scheme that is widely used in practice because of its

simplicity of not requiring transmission of side information and neither modifying receiver structure nor

incurring loss of data rate. More importantly, peak windowing does not impose heavy computational

burden which is highly desirable for high order OFDM with limited resources at the transmitter. Despite

of its relative simplicity of processing at TX, the specific challenge of peak windowing lies in the con-

secutive peaks in one OFDM symbol. We discovered the existing conventional methods treat multiple

peaks in one OFDM symbol simply as isolated peaks without factoring in neighborhood context in the

formulation, which results in over-attenuation from closely spaced windowed segments generated from

neighboring peak window functions. Thus it leads to severe performance degradation. Meanwhile, the

window shape is restricted to be symmetric and with limited flexibility.

For preserving the attractive features of low complexity of peak windowingwhile addressing the

shortcoming of excessive attenuation of closely spaced peaks, as a solution, we propose two new peak

windowing schemes, called Sequential Asymmetric Superposition (SAS) and Optimally Weighted Win-
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dowing (OWW) respectively, to overcome the disadvantages in previous schemes. We utilize asym-

metric windows and propose to optimize coefficients of consecutive window functions with a novel

formulation under convex optimization. Thereby we rectify the over-attenuation condition and incor-

rect coefficient calculation due to ill-conditioned matrix inversion. Although thecost of complexity

is slightly higher than directly clipping, improved peak windowing incurs lower penalty in out-of-band

distortion and meanwhile it provides a way to control the spectral mask to complywith the requirements

of standards.

1.2.2 Receiver-OrientedApproach: Frame-basedClipping NoiseEstimation and Compensation

We exploit the schemes of further reducing the processing cost at the transmitter which apply direct

clipping at the transmitter and on the other hand estimating and recovering the distortion at the receiver.

The existing schemes like decision-aided methods that require iterative computational load over the

entire OFDM symbol are not suitable for high order OFDMA and meanwhile OFDMA poses a new

challenge because individual users do not have modulation information ofother users, which makes it

infeasible to reconstruct the whole OFDM symbol to reevaluate the clipping scenario at TX,and there-

fore decision-aided schemes are invalidated.

We analyze the key factors in reconstructing the clipping noise at the receiver, and note that the accu-

racy of peak localization is crucial to the success of the whole scheme. We also identify the drawback of

existing band-limited signal recovery scheme. Based on that, we propose anovel method of estimating

peak locations with the help of oversampling and spectrogram analysis, in conjunction with predicting

peak magnitudes with a combination of frame iteration algorithms and alternating projection over con-
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vex sets. The BER performance is significantly improved over existing schemes while the complexity

is kept on the same level.

1.2.3 Designof Joint Transmitter-Receiver-Oriented Schemes

We identify the advantages of fully exploiting the degree of freedom of reserved bandwidth avail-

able in practical systems, and emphasize the necessity of balancing the complexity between TX and

RX to provide flexibility to adapt to different system design requirements. Recently receiver-oriented

approaches based on compressed sensing have attracted a lot of attention and a promising approach

based jointly on TX and RX in conjunction with compressed sensing has been newly proposed. We

investigated the performance of this TX-RX-based scheme and identified its limitations due to sparsity

level and weak immunity against noise contamination. When high power efficiency is demanded and

severe clipping happens at the transmitter, the performance of compressed sensing based schemes is

diminished.

Recently receiver-oriented approaches based on compressed sensing have attracted a lot of attention

and a promising approach of joint TX and RX with compressed sensing is proposed. We examine the

performance of the existing scheme and identify its limitations due to sparsity leveland weak immunity

against noise contamination. When high power efficiency is demanded and severe clipping happens at

the transmitter, the performance of compressed sensing based schemes is limited.

In our approach we examine the partition of the available reserved subcarriers into two sets, and

utilize one set for tone reservation at the transmitter and the other set with frame-based signal recovery

at the receiver. In our design we further incorporate a clipping step withtone reservation to boost power

efficiency at the transmitter, and the clipping noise is recovered and compensated with frame-based
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alternating projection at the receiver. The proposed joint design overcomes the drawback of existing

schemes that depend on light clipping and impose restrictions of only a few clips being allowed. The

performance enhancement is significant especially for the high order OFDMA systems.

1.2.4 Extensionon Multiple Antenna Systems

We examine the still-existing problem of high PAPR in the front-end of multicarriersystems with

multiple antennas. High peaks can appear on any antenna. Direct application of PAPR reduction

schemes for single input signal output (SISO) to each antenna individually in MIMO requires extensive

computations to reach a final solution for all antennas, thus causing undesirable increase in complexity

and redundancy.

We develop a frame-based algorithm erasure pattern selection to reduce the maximal peak power

simultaneously over all antennas and utilize spatial diversity from space-timecoding as well. Through

the proposed scheme, more reliable communications over MIMO-OFDM is accomplished.

1.3 Organizationof Dissertation

The remainder of the dissertation is organized as follows.

In Chapter 2 the concept of multicarrier signals specifically OFDM and the system model is first

introduced and extended to discuss the PAPR issue. Typical methods of PAPR reduction are then sur-

veyed. After introducing the power efficiency of PA, the importance of boosting power efficiency in

multicarrier systems is emphasized.

In Chapter 3 an improved signal design based on peak windowing with the aimof simplifying

transmitter processing while not severely penalizing system performance ispresented. An optimization
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formulation is proposed as well to address the issue of multiple consecutive peaks in one OFDM symbol.

Numerical results validate the proposed ideas.

In Chapter 4 a new idea is presented to handle clipping noise estimation and compensation at the

receiver side after further reducing the transmitter processing to simple clipping only. The new method

consists of two major steps: improved peak localization with analysis of run-length and spectrogram

on oversampled sequences, and alternating projection over convex setsformulated with frame theory to

further enhance the accuracy of signal recovery. Complexity analysisand simulation results reveal the

advantages of the proposed method.

Efforts are taken in Chapter 5 to jointly design schemes at both the transmitter and the receiver,

namely tone reservation with clipping at TX and frame-based alternating projection at RX. The new

hybrid scheme provides flexibility in balancing load between TX and RX, in the meanwhile, simulations

results demonstrate its superiority over the existing scheme based on compressed sensing.

Next the PAPR issue in multi-attenna multicarrier systems is explored with erasurepattern selection

(EPS) method in Chapter 6.

Finally the major remarks in this dissertation are concluded in Chapter 7 and directions of future

work are outlined.



CHAPTER 2

MULTICARRIER SIGNALS

2.1 SystemModel

In high-speed wireless communications, time-dispersive channels often cause severe inter-symbol

interference (ISI), and also make the traditional symbol-to-symbol equalization complicated, especially

when the number of time-dispersive channel taps become large. Multicarrier modulation like OFDM is

a block transmission mechanism and it has been introduced to simplify the equalizer structure and also

provide high spectral efficiency and robustness against time-dispersive channels. MCM is performed to

group the data stream on a block-by-block basis with guard intervals inserted between blocks. Several

symbols in one block are transmitted in parallel and therefore each symbol duration is increased thus

reducing ISI. If the guard interval is larger than the channel delay spread, the received frequency-domain

signal is simply the input signal multiplied with the frequency domain channel coefficients, which makes

a simple single-tap equalizer feasible for each subcarrier.

OFDM systems can be efficiently implemented by using an Inverse Fast Fourier Transform (IFFT) at

the transmitter while applying FFT at the receiver. The block diagram in Figure 1 shows a conventional

OFDM system.

In an OFDM system withN subcarriers, the sequence of input bits are first aggregated intoN

parallel groups and then each group is mapped onto appropriate symbols based on the constellation

13
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size assigned to each subcarrier,Xn. Each of these groups can be represented by a data symbol vector

X = [X0,X1, · · · ,XN−1]
T .

To optimize the overall bit error rate over the whole data symbol vector, each subcarrier can be

allocated with different modulation by adaptive modulation algorithms like bit loading where the con-

stellation size is a function of the subchannel quality. The subcarriers with better quality, i.e. higher

signal-to-noise ratio (SNR), use larger constellation size. In that scenario, channel state information

(CSI) normally obtained at the receiver (RX) needs to be sent back to thetransmitter (TX). Coding and

interleaver can also be applied at TX in practical OFDM systems to improve the system performance.

For keeping the model simple with focus on nonlinear PA effects, however,adaptive modulation, coding

and interleaving are not considered in this research.

The OFDM symbolX is fed to IFFT and the discrete-time OFDM sequence is obtained. The time

domain multicarrier signalxk,k= 0,1, · · · ,N−1 after the IFFT operation is given by

xk =
1√
N

N−1∑

n=0

Xne
j 2πN nk, k= 0,1, . . . ,N−1 (2.1)

where 1√
N

is the normalization factor. The modulation process can also be representedin matrix form.

Let x = [x0,x1, · · · ,xN−1]
T , then

x = WNX (2.2)
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where

WN =




W1,1 W2,1 · · · WN,1

W1,2 W2,2 · · · WN,2

...
...

. ..
...

W1,N W2,N . . . WN,N




(2.3)

and

Wm,n =
1√
N
ej2π(m−1)(n−1)/N (2.4)

WN is a symmetric and orthonormal matrix. After the discrete coefficientsxk are converted into analog

values by digital-to-analog converter (DAC), the valuesxk can be deemed as samples of a continuous-

time signalx(t) taken at timest= kTs/N, whereTs is the symbol period.

x(t) =
1√
N

N−1∑

n=0

Xne
j2πnt/Ts , 0≤ t≤ Ts, (2.5)

thenx(t) is upconverted to modulate the carrier and transmitted over the channel afterbeing amplified

by HPA.

The frequency spacing between two adjacent subcarriers is usually set as1/Ts, the subcarriers are

specified as

fk = k/Ts, k= 0,1, · · · ,N−1 (2.6)
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By selecting the bandwidth of1/Ts for each subcarrier to be very small, the symbol time duration is

large compared with channel time dispersion, which effectively avoids ISI. At the receiver, the signal is

demodulated by FFT. The orthogonality of baseband subcarriers, that is,

∫ Ts

0

cos(2πfit+θi)cos(2πfjt+θj)dt= 0,i 6= j

guarantees the subcarriers can be easily separated at the receiver.

To mitigate ICI caused by multipath fading, a guard interval of size ofv modulated symbols in time

domain is added. If the guard interval is chosen larger than the channel response durationL, ICI free

reception can be obtained by discarding the extra symbols at the receiver. Two forms of guard intervals

can be adopted, namely zero padding and cyclic prefix (CP). Cyclic prefix copiesv extra samples from

the end of the OFDM symbol and then appends them to the beginning of the OFDM symbol while zero

padding addsv extra zeros there. Both ideas are motivated by simple equalization at the receiver. Cyclic

prefix is generally used in the system since zero padding introduces slightly more nonlinear distortion

in the presence of nonlinear PA clipping effects [27].

The signal is then converted into analog by DAC, amplified by a high power amplifier (HPA)and fed

into the channel. The sequence is transmitted through a channel with frequency selective fading whose

channel impulse response (CIR) hasL non-zero taps denoted ash = [h0,h1, . . . ,hL−1]
T . NoteL < v.

Assuming that carrier-frequency offset and time offset estimations are perfect and compensated without

any synchronization error, the received signal contaminated by channel noise is expressed as

ỹ = h∗xcp+ g̃ (2.7)
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where∗ denotes convolution operation,xcp denotes the signal with cyclic prefix andg̃ is the zero mean

additive complex Gaussian channel noise. Noteỹ is a vector with lengthN+v+L−1.

The receiver basically reverses the process at the transmitter. The receiver strips off the CP and then

gathersN samples of the received signal,y = [y0,y1, · · · ,yN−1]
T that satisfy

y = H̃x+g (2.8)

whereg is the additive zero mean circularly symmetric complex Gaussian noise vector withcovariance

matrixN0IN, H is anN×N circulant Toeplitz matrix derived from the CIRh as

H̃ =




h0 0 · · · 0 0 hL−1 · · · h1

h1 h0 0 · · · · · · 0
. . .

...

... h1 h0 0 0
.. . 0 hL−1

hL−1

... h1
. .. 0

.. . 0 0

0 hL−1

...
. .. h0

.. . . . . 0

... 0 hL−1
. .. h1 h0 0 0

...
... 0

. ..
...

...
. . . 0

0 0 · · · 0 hL−1 · · · h1 h0




(2.9)

The matrixH̃ is circulant, the eigendecomposition ofH̃ with the maxtrixWH
N is

H̃ = WN H WH
N (2.10)
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whereH = diag{H0,H1, · · · ,HN−1} is a diagonal matrix with

Hk =

L−1∑

l=0

hle
− j2πkl

N , k= 0,1, · · · ,N−1 (2.11)

Hk is the samples of frequency channel response.

The detection at the receiver simply applies FFT to get

Y = WH
N y (2.12)

= WH
N WN H WH

N x+WH
N g

The CP insertion and removal combined with FFT render the channel time convolution operation to

a circular convolution operation. Then in frequency domain, the convolution operation converts into a

multiplication operation.

Y = H X +G (2.13)

whereG is the frequency domain channel noise. If the CSI is available, which implies that Hk,k =

0,1, · · · ,N−1 are all known, the estimation of data symbolX can be simply obtained as

X̂ =DecML{HH Y} (2.14)

whereDecML{·} denotes the maximum likelihood symbol detection.

It can be seen from Equation 2.14 that the equivalent channel matrix is diagonal and the frequency

selective channel is therefore decoupled intoN flat fading channels in parallel. The equivalent flat
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channel coefficients are just the FFT of theL tap channel impulse response as Equation 2.11. Note that

the CP is just a replica of part of the original block signal and it therefore does not change the power

characteristics of the original signal. It is easy to implement.

2.2 PAPRin OFDM systems

The time-domain signal in Equation 2.5 is constituted by the superposition ofN complex expo-

nential subcarrier signals at every time instant. At the instants that subcarriers are all in phase, the

instantaneous power of the signal can reachN times the value of the signal average power if uniform

modulation is used for each subcarrier. These large fluctuations are the major drawback of multicarrier

signals. HPAs are key components in communication systems. Owing to cost, design, and the most

importantly, power efficiency, HPA cannot accommodate the large dynamic range in the transmitted

signal. Clipping the signal at some point is inevitable, i.e. PA saturation. Consequently distortions are

generated. In the meanwhile, large fluctuations in the signal also require large word length in DAC or

ADC to diminish the precision cut-off errors, which increases the system complexity and cost.

To counteract the peak power problem inherent in multicarrier modulation, alarge amount of re-

search work has been done in exploiting signal transformation schemes to neutralize the PA nonlinear-

ity. Most of the research focuses on reducing the Peak to Average Power Ratio (PAPR) of the signal.

PAPR is defined in continuous-time domain as:

PAPR=

max
0≤t≤Ts

|x(t)|2

E(|x(t)|2)
(2.15)
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In this dissertation, the PAPR of discrete-time sequences (the sampled sequence as in Equation 2.1) is

of particular interest. So, PAPR defined for discrete-time samples is used to approximate the value in

Equation 2.15 withxk. However, it is noted that the Nyquist rate sampled discrete-time signal can not

fully capture the actual peak values in the continuous domain. So, oversampling is needed for discrete-

time signal to approximate the continuous PAPR. Accordingly, samples ofx(t) at t = kTs/NQ can be

efficiently computed via IFFT as

xk =
1√
N

NQ/2−1∑

n=−NQ/2

Xn ej 2π
NQnk, k= 0,1, . . . ,NQ−1 (2.16)

whereX = {Xn} of sizeNQ is obtained by inserting(Q−1)N zeros into the original OFDM symbol as

X = [X0, · · · ,XN/2−1,0, · · · ,0,X−N/2, · · · ,XN−1] andQ is the oversampling factor. Correspondingly the

PAPR definition on the oversampled sequence is

PAPR=

max
0≤k≤(NQ−1)

|xk|
2

E
{

|xk|
2
} . (2.17)

Interpolating the discrete-time signal with an oversampling factorQ = 4 can generate an acceptable

approximation of PAPR in Equation 2.15 [28].

Suppose the input symbols in Equation 2.5 are statistically independent and identically distributed

(i.i.d.), when the numberN is considerably large, based on central-limit theorem, the resulting signal

x(t) approximates a complex Gaussian random process with zero-mean and varianceσ2. Its envelope
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follows Rayleigh distribution while the power distribution becomes a centralchi-squaredistribution

with two degrees of freedom. The cumulative distribution function (CDF) of the power distribution is

F(u) =

u∫

0

1

2σ2
e
− s

2σ2 ds (2.18)

The probability that PAPR of an OFDM signal of sizeN exceeds a given levelP0, indicated by the

complementary cumulative distribution function (CCDF), can be expressed as:

CCDF= Pr{PAPR> P0}= 1−
(
1−e−P0

)N
. (2.19)

CCDF is used to depict the effectiveness of PAPR reduction scheme in decreasing the probability of

clipping, thus lowering possible nonlinear effects. After oversampling, thesamples can not be approx-

imated as uncorrelated random variables any more. To roughly evaluate theCCDF after oversampling,

the oversampled sequence is deemed as composed ofαN uncorrelated samples. Then CCDF becomes

CCDF= Pr{PAPR> P0}= 1−
(
1−e−P0

)αN
. (2.20)

Simulations indicate a good approximation can be obtained by setting the valueα= 2.8 in case of over-

sampling [29]. As seen from Equation 2.20, when the number of subcarriers increases, the probability

of large PAPR decreases very quickly.
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2.3 Efficiencyof PowerAmplifiers

A perfectly linear ideal memoryless power amplifier produces an output signal that is a scalar mul-

tiple of the input signal. The scalar is referred as the gain of the power amplifier. In reality, no practical

amplifier is able to provide unlimited output power. All power amplifiers have certain maximum output-

power capacity, referred as saturation. It imposes a limitation for PA input signal amplitudes. When the

envelope of the input signal exceeds the limitation, the corresponding output will not be amplified nor-

mally. Instead, the output signal is in effect “clipped off” bounded by thesaturation. This is the major

source of nonlinear distortions. In practical systems when DAC is applied,the cut-off of DAC on preci-

sion conversion also produces similar nonlinear distortions; but such distortion is relatively very small.

Thus in this work, only PA nonlinear distortion is considered. Note that besides the saturation clipping,

signal distortions can also be generated due to a loss of linearity in envelop amplification and nonlinear

phase shift for different input power levels and different frequency components in the input signal. All

factors result in the nonlinearity of the PA and cause intermodulation-distortion (IMD) especially when

multicarrier signals are applied.

A typical class of memoryless power amplifiers is solid state power amplifiers (SSPA). The nonlinear

curve to characterize SSPA input-output power relationship is shown as Figure 2. One way of avoiding

nonlinear distortion is to offset the input average power away from the saturation so as to fit the whole

dynamic range of input signals into the linear range of PA, which is referred as Input Back-Off (IBO).

It is defined in decibels as:

IBO= 10log
Pinsat

Pin
(2.21)
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wherePinsat is the input saturation power which is the minimum power that drives output power to

saturation, andPin is the average power of the input signal. Accordingly, the Output Back-Off (OBO)

is defined as:

OBO= 10log
Poutsat

Pout
(2.22)

wherePoutsat is the output saturation power andPout is the actual output power. Clearly, increasing

IBO reduces input power and consequently reduces output power.

Power amplifier efficiency is a significant factor affecting the efficiency of most wireless commu-

nication systems. Poor efficiency at the PA stage leads to large energy consumption, not only lowering

the system efficiency like reducing the battery lifetime of the devices, but alsoexacerbating thermal

problems with the devices thus causing other issues like instability. Power efficiency is usually defined

to measure what portion of the PA consumption powerPDC is delivered to the load.

ηdc =
Pout

PDC
(2.23)

Depending on the properties of linearity, gain and design, amplifiers can beassigned to a number

of classes. The main types of amplifiers with good linearity are Class A, Class AB, and Class B. Other

classes power amplifiers with relative large nonlinearity belong to Class C, D,E, F, G, H and S [30].

Power efficiency varies from the class of power amplifiers, but power efficiency is usually low. A typical

Class A has efficiency around 50% even at 0 dB OBO, while Class B may reach around 80% at the

same condition. A relation between the efficiency and the OBO is illustrated in Figure 3 [30]. So, it is

critical to improve power efficiency to avoid energy loss. Reducing the input back-off or increasing the
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average operating power of the PA increases the efficiency, on the hand, using large back-off degrades

the efficiency of PA. For a Class A PA, every 3dB increase in IBO halvespower efficiency.

Figure 3. Efficiency versus OBO for various PA classes

One way to boost power efficiency while not incurring signal nonlinear distortions is to increase PA

linear range by using digital pre-distorter (DPD) before feeding signalsinto PAs [31]. DPD rectifies

nonlinear envelop amplification and nonlinear phase shift in real PA especially for the input range close
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to PA saturation. After DPD compensation, the combined nonlinearity is equivalent to a soft limiter

as shown in Figure 2. In this work, a soft limiter is assumed in the performancecomparison and phase

nonlinearity is assumed to be very small and neglected which is essentially true for SSPA PA using Rapp

model [32]. The input-output relation is

y(t) =A(|x(t)|) e(jx(t)) e(jΦ(|x(t)|)) (2.24)

where the AM-to-AM and AM-to-PM characteristics in Rapp model are

A(x) =
x

[1+( x
A0

)2p]
1
2p

(2.25)

Φ(x)≈ 0 (2.26)

Equation 2.26 means SSPA adds no phase distortion,A0 > 0 is the saturating amplitude from PA, and

p > 0 is the parameter which controls the smoothness of the transition from the linear region to the

saturating region. Note that even if DPD is used, the linear range might be enlarged for input power, but

output signal power is still bounded by the saturation, and the output signal still suffers from saturation

clipping.

In order to obtain more output power from PA with high power efficiency, PA has to be driven to high

input levels close to saturation (low IBO). In such a scenario complete linearamplification is difficult to

fulfill. The nonlinear distortions are increased though power efficiency isboosted. Another alternative

is to reduce PAPR to combat nonlinear effects while enhancing power efficiency. An approximate
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PAPR 0 2 4 6 8 10 12 14
Class A Efficiency 58.7 45.75 35.66 27.79 21.66 16.89 13.16 10.26
Class B Efficiency 90.7 71.32 56.08 44.10 34.67 27.26 21.44 16.86

TABLE I

POWER EFFICIENCY (%) OF CLASS A AND CLASS B PA WITH INPUT SIGNAL AT
DIFFERENT PAPR LEVELS

relationship of the power efficiency of class A and B PA and PAPR of a multicarrier signalx is given

as [24] [33]:

η̄= α∗e−β∗PAPR(x) (2.27)

where PAPR(x) indicates the PAPR of the input signalx, andα andβ are coefficients depending on

the PA class, e.g.α = 58.7 andβ = 0.1246 for Class A PA andα = 90.7 andβ = 0.1202 for Class B

PA. The power efficiency of typical Class A and Class B PA’s driven byan input signal with different

PAPR is shown in Table I. The power efficiency increases monotonically asthe PAPR decreases. So, it

is desirable to boost power efficiency by reducing the PAPR of the input signal instead of improving PA

linearity.

2.4 PAPRreduction schemes

A large effort has been devoted recently to address the high peak power issue in multicarrier systems

[18, 19, 21]. Existing signal transformation schemes targeted at reducing PAPR can be divided into

several categories: Clipping Based, Coding Based, Multiple Representation and Signal Adding Context.
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2.4.1 Clipping-BasedSchemes

The simplest way to avoid high peaks is clipping. Time-domain signals are clippedand the peak val-

ues are limited up to the clipping threshold before application to PA. By clipping thesignals deliberately,

peak values can be controlled thereby avoiding unmanageable nonlinear effects of PA.

To achieve better performance, the clipping threshold is usually preset lower than the saturation

value of PA, due to which more distortion is expected to be generated. While theOOB distortion is

critically limited in practical systems for the purpose of not interferencing adjacent channels, so filtering

is usually followed the hard clipping to remove the OOB distortion. It has been argued [34] that filtering

in frequency domain will regrow the time domain peaks in some way. A method of improvement is to

iteratively do the clipping-filtering process to remove distortion [35].

Although distortion can be removed by filtering, it is not adequately controlledto meet the require-

ments of some specifications. Thus distortion controllable methods are developed. [36] introduced the

distortion control schemes by setting a bound on modifications on frequency domain symbols after each

recursive clipping-filtering process. In [37] similar distortion control is applied, using different bounds

for in-band processing and out-of-band processing.

Clipping gives rise to out-of-band power by introducing sharp edges in the time domain signal. To

mitigate the out-of-band frequency content, an alternative is to apply a companding transform to adjust

the signal gradually instead of directly clipping it [38]. At the receiver, an inverse process is needed to

recover the original signal.

A hybrid scheme of combining clipping and companding is proposed in [39]. The combination

is targeted to reduce PAPR while not degrading BER performance compared to conventionalµ-law
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companding scheme. The authors [39] proposed a concept of “proper” clipping ratio which limits the

amplitude but does not degrade BER performance. The “proper” clipping ratio is identified through

simulations according to different modulation sizes of QAM.

Peak Windowing is another method closely related to clipping [25,29,40,41]. Large peaks were mul-

tiplied by a window function, chosen to reduce out-of-band distortion by smoothing the sharp corners.

The selection of different window functions and parameters enables designers to control the distortion

level to comply with the regularities.

2.4.2 Coding-BasedSchemes

This class of techniques limit PAPR by excluding codewords that generate large PAPR from the

transmission codebook. Only those signals with a peak amplitude below the targeted level are chosen.

This results in a complete elimination of the clipping noise.

Coding based scheme was first proposed in [42], in which an exhaustive search method is applied

to produce a 3/4 rate block code, reducing the PAPR of a four-carrier signal from 6.02dB to 2.48dB. A

general analysis reveals that only limited redundancy is needed to achievethe goal of reducing PAPR,

however, no good codes for practical values ofN> 64 are known. A simple strategy is to exhaustively

check all possibilities and use a table lookup. Some codes are chosen based on the observation that

an OFDM symbol with a small PAPR has an instantaneous power that is most of the time close to the

average power. The symbol before the IFFT block therefore has a spectrum close to flat, or alternatively

an impulse-like autocorrelation. Two codes based on this criterion are Golaysequences [43] and m-

sequences [44].
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All these block codes provide a low PAPR, typically below 3 dB for the small number of carriers

considered, but suffer some serious drawbacks. They introduce significant overhead (25% to 50%) and

are only available for a small number of carriers (4 to 16) and small constellation sizes (1 to 4 bits per

carrier).

In theory, the error correcting capabilities of these codes can also be exploited, thus leading to

codes to protect both BER and PAPR. However, finding a good code which is also good for PAPR

reduction purposes is not an easy task, because if a codeword has good PAPR characteristics most

likely its neighbors will too, but they cannot be chosen as codewords since adequate distance should be

provided for good coding. Moreover, no efficient implementations are available yet. These drawbacks

dramatically limit their usefulness with regard to real applications.

2.4.3 Multiple SignalRepresentationSchemes

The idea behind multiple signal representation is to generate multiple equivalentrepresentations

of the transmitted information block and choose the representation resulting in the lowest PAPR to

transmit [45]. This approach does not remove the high PAPR completely, but lower the probability of

occurrences of high peaks, and it requires less redundancy compared with coding based schemes.

Selective Mapping (SLM) [46] uses different phase vectors to rotate the pre-IFFT OFDM symbol

to generate different representations, and side information indicating which phase vector being used

is needed for the receiver to convert it back. The drawbacks of the schemes lies on high computa-

tional complexity in exhaustive search for the best representation out ofthe candidate pool, and side

information needed to be transmitted to indicate which one being selected. PartialTransmit Sequences

(PTS) [47] aiming to reduce the complexity of SLM, groups the subcarriersinto sub blocks. For each
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block a rotation phase vector is applied. The complexity is reduced by eliminatingthe need to compute

IFFT for every phase vector.

Although the partition can reduce complexity from SLM, PTS still needs to address the problem of

how to obtain the optimal phase vector for each block. Exhaustive searchis proven to be inefficient. A

gradient descent search [48] accelerates the process and lowers the complexity. [49] addresses the issues

in PTS of search complexity of high dimensional vector and optimal transmissionof side information. It

formulates the search process as a combinational optimization (CO) and develops simulated annealing

to solve it. It concluded that random search can achieve better performance over sequence search. A

scheme of embedded side information was also mentioned.

Since side information has to be transmitted, it causes some data rate loss. Some methods are

proposed to transmit the side information implicitly, that is, no explicit side information is transmitted

but it is suitably hidden in the data without sacrificing bandwidth [50]. However, this is achieved at

some cost in power.

For PTS, it is common to use uniform rotation phase factors in[0,2π). Given a partition method

(adjacent, interleave or random), after studying relative phase changes referenced to the phase of peak

in the cluster, [51] concludes that such phase changes to optimize PTS canbe approximated properly

by a Gaussian-like curve. Then, it suggests the use ofnon-uniform phase factors in PTS which can be

determined in advance according to the number of subcarriers and the number of PTS clusters and PTS

partition. The non-uniform phase factors are obtained by optimizing a MMSEobjective function which

is similar to minimizing quantization errors, using discrete points to approximate a Gaussian-like curve.
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Other methods can also be used to generate multiple representations, for example, different inter-

leavers are used in [52]. Each interleaver generates one representation of the original information data.

The advantages of interleaving is that it protects data transmission from the burst errors and increases

the robustness of transmission thus lowering the bit error rate.

2.4.4 SignalAddition Schemes

Schemes in this category seek to reduce PAPR by adding property alterationsignals in the OFDM

system. In the adding context, the property alteration signal can be designed in the frequency domain

and then inserted in null or data-bearing subcarriers; or designed in time domain and then directly

imposed on the signal. Unlike removing the peaks by directly hard clipping, the alteration signal is

designed with the interaction between time and frequency domain, with some iterative process involved

in the schemes. Through the process, clipping noise is distributed accordingly under the criterion of not

degrading the system performance.

The added signal is required not to affect the information transmitted. This can be done by either

reserving peak cancellation carriers [53–55], or using pilot tones [56], or adjusting the constellation

symbols [57–59].

Tone reservation (TR) [55] designs the alteration signal by projecting theclipping noise to reserved

subcarriers, while data-bearing subcarriers are not affected. Thecancellation signal can also be designed

through convex programming [60,61].

Active Constellation Extension (ACE) [58,62] adds signals to data bearingor null subcarriers with-

out degradation by adjusting the constellation points along some specific directions. Only the outer

points of a constellation can be extended along the direction that increases their distances with all other
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points, thus not degrading BER performance at cost of large power consumption and increased com-

plexity of iterative processing between frequency and time domain.

Yoo et al. [63] proposed a scheme named Selective Mapping of Partial Tones (SMOPT). It combines

the ideas of TR and SLM. Instead of optimally searching dummy symbols added intoall the unused

subcarriers, it presets a finite set of PAPR Reduction Tones (PRT) vectors that contain symbols designed

to reduce PAPR. Then only selecting the best vector out of the finite set given the number and positions

of PRT. It reduces the time cost by avoiding TR search process, but asexpected, its performance is not

as good as TR and still side information of SLM needs to be transmitted.

The PAPR problem is formulated [64] as a two-stage optimization process of adjusting signs and

amplitudes of subcarriers respectively. First the signs of values of different subcarriers are adjusted and

then the problem is converted into a convex optimization problem to choose the amplitudes. Unlike [60]

[61], it restricts the change of amplitudes to correspond to some search direction to guarantee the BER

performance.

[65] deemed the out-of-band subcarriers after taking FFT back from oversampled time signal as

“Ghost carriers” introduced in [66], values are set on those subcarriers under some spectrum constraint

via convex optimization to minimize PAPR, simulations showed the scheme respects thespectrum mask

even after average power was increased in this adding context, similar work was also reported in [67].

Similarly in the adding context, [68] borrows the idea from [69] to design an adding signal that only

contains one or two extra subcarriers. The adding signal is calculated from time domain signal which

exceeds the clipping threshold.
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Some cost is still incurred in these schemes in transferring clipping noise effects. If the signal is

added on reserved peak cancellation subcarriers, data transmission rate is correspondingly lost. Mean-

while, the average power of transmitted signal is increased after adding thealteration signals, equiva-

lently, the power used for data transmission is decreased, which affects the system performance.

2.5 Analysisand Trade-off Considerationsof PAPR Reduction

As shown before, many signal transformation schemes proposed to mitigate nonlinear effects adopt

PAPR as the cost function and try to reduce nonlinear effects by achieving smaller PAPR. In order to

improve the system performance, we expect that PAPR should predict theamount of distortion induced

by nonlinear power amplifier. However, we note that PAPR itself is not enough to capture the statistical

effects of PA nonlinearity.

Firstly, PAPR only indicates the maximal peaks in time domain as shown in Equation 2.17 while

some secondary peaks beyond the clipping threshold also contribute to nonlinear distortions. But the

PAPR value does not capture this situation especially in the high power efficiency region, where it

is common to have more than one peak clipped by the PA saturation. Secondly, PAPR indicates the

probability of clipping in conjunction with IBO and PA saturation from Equation 2.19; but it is not clear

how the probability of clipping explicitly expresses the nonlinear impact, that is,given the same PAPR,

different locations of clipping may produce different nonlinear effects. Therefore, only evaluating the

capability of achieving smaller PAPR is inadequate to represent the overall link performance. Thirdly,

It may be intuitive to think there is an explicit relationship between PAPR and BERin the presence of

nonlinear PA. To some extent, PAPR should indicate or predict the distortionswhen nonlinear PA is

present. However, the relationship is quite complicated. From Equation 2.19,PAPR can indicate the
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probability of clipping after a specific system configuration is given such as the number of subcarriers

and PA saturation level above the average power, but it is not clear to estimate how the probability of

clipping affects the amount of nonlinear distortions and degrades the system performance, since at the

receiver clipping noise is spread by Fourier Transform to all subcarriers if clipping occurs. Further,

we note that if signals have the same PAPR values, the distortions may still vary indifferent IBO

configuration and PA saturation. So, we note that PAPR is, in this sense, not an appropriate measurement

to show the potential nonlinear distortions.

To describe the system performance in case of nonlinear amplification, oneshould consider both

in-band distortion and out-of-band distortion. We denote the frequency domain signal after nonlinear

amplification as̃X(NQ)
n ,that is,

X̃
(NQ)
n = IFFT (NQ)(xk) (2.28)

whereIFFT (NQ)(•) representsNQ point IFFT andxk, k = 0,1, . . . ,NQ− 1 is obtained from Equa-

tion 2.16. We definẽX(NL) = [X̃(IB) X̃(OOB)] whereX̃(IB) corresponds the in-band portion of PA output

signal; andX̃(OOB) is the out-of-band portion. By Bussgang theorem, the output signal of PAin time

domainx̃k can be decomposed as [70]:

x̃k = αxk+dk (2.29)

wheredk is the distortion generated by nonlinearity; andα is a complex factor chosen such thatdk is

uncorrelated withxk,

α=
E[x̃kx

∗
k]

E[|xk|2]
(2.30)
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Taking IFFT over distortion termdk in Equation 2.29 and partitioning it into in-band and out-of-band

frequency terms, equivalently we can express the distortion asD = [D(IB) D(OOB)]. Accordingly, we

note that out-of-band distortionD(OOB) here is actually equal tõX(OOB). In this way, the in-band

distortion and out-of-band distortion due to nonlinearity can be separately quantified.

X̃= αX+D(IB)+D(OOB) (2.31)

When clipping occurs in PAPR-reduced signals, the distortions appear both in-band and out-of-band.

It can be seen that the BER performance depends only onD(IB) after this decomposition. A common

evaluation that limits consideration to PAPR and BER trade-off, takes into account just partial impact of

PAPR reduction to the link performance, namely in-band distortion, while ignoring out-of-band distor-

tion. Thus only PAPR or BER assessment is not sufficient to characterizethe impact of PAPR reduction

to system performance.

Therefore, it is natural to develop different schemes to address the preferences on OOB or IB or

trade-off between both which are determined by system specifications anduser demands. In this re-

search, concerns on OOB or IB are addressed by the proposed methods applied at the transmitter or the

receiver or both ends.



CHAPTER 3

TRANSMITTER-ORIENTED SCHEME: IMPROVED SIGNAL DESIGN IN PEAK

WINDOWING

3.1 Introduction

Among the PAPR schemes described in the literature [18–21], the peak windowing method [71]

[29] is widely used in practice as it does not require transmission of side information [46] [47] or

receiver modification [38] [72]. It does not incur loss of data rate forcoding or reserving tones [55]

nor does it require extensive computational load for iteratively processing between frequency and time

domain [35] [58]. Built on the idea of smooth attenuation of peaks to avoid sharp corners caused by

direct clipping [34], peak windowing produces much smaller out-of-band(OOB) radiation than direct

clipping with comparable complexity [40].

In conventional peak windowing [29] [40], each peak is treated by a common symmetric window

function weighted with the amount of the peak above the clipping level and the overall window function

is the superposition of the sequence of all window functions. However, excessive attenuation may oc-

cur due to the convolutional summation at all time instances. When consecutivepeaks cluster together,

neighboring peak window functions will overlap leading to over-attenuationfrom closely spaced win-

dowed segments. An adaptive algorithm is applied in [73] to design the windowcoefficients obtained by

minimizing the mean square error (MSE) between the peak windowing attenuatedsignal and the desired

signal with reduced peaks. However, the weighting factors obtained by averaging errors do not guaran-

38
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tee the windowing attenuated signal to be below the targeted clipping level at alltime instances. A finite

impulse response (FIR) feedback-structure was proposed in [74] to replace negative values in the overall

window function with zeros if necessary, but excessive clipping may still occur due to the convolution

when peaks are close. In [41], the overall window function is taken as the maximal envelope of all sin-

gle peak window functions to avoid over attenuation caused by the superposition, but new sharp corners

appear at some conjunction points of adjacent peak window functions. In[25], a new procedure for

calculating weighting coefficients is applied instead of the usual method using the exceeding amount of

the peak over the clipping level in case that successive peaks appear within a half of the window length.

The new weighting factors for each peak are obtained by solving matrix-based linear equations to con-

trol the attenuated peak amplitudes tightly bounded by the given threshold. However, the coefficient

matrix, depending on the window shape, the window length and relative distances among neighboring

peaks, may be subject to ill-conditioning and may produce undesirable results. In the aforementioned

schemes, the extent of performance improvement is limited especially in the caseof successive peaks.

It should be noted that the window for treating each peak is symmetric with a fixed window length, and

only the weighting factor for each peak window is altered to improve the performance. However, peaks

are randomly distributed in the time signal, and a fixed-length symmetric peak window is not flexible

enough.

3.2 PeakWindowed SystemModel

The most straightforward way to reduce PAPR is to cancel the peaks by clipping the signal over a

threshold, but it generates sharp corners in the time domain thus increasingOOB radiation. An alter-

native is to employ some window function to smooth the corners to lower OOB radiation from direct
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Figure 4. OFDM transmitter block diagram with peak windowing

clipping, as shown in Figure 5. A block diagram of the OFDM system by employing a block of peak

windowing into Figure 1 under consideration is shown in Figure 4.
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Figure 5. Peak windowing smooths signal from direct clipping.

3.3 PeakWindowing Algorithms

The direct clipping on the envelop of the complex baseband signalx(n), can be expressed with a

scale functionc(n) as

xpw(n) = c(n)x(n) (3.1)

c(n) = 1−p(n) (3.2)

p(n) =






1− A
|x(n)|

|x(n)|≥A

0 |x(n)|<A

(3.3)

p(n) is the peak pulse sequence above the clipping thresholdA; xpw(n) is the output.
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Peak windowing smooths the sharp corners in the scale functionc(n) to generate a new function

c̃(n).

c̃(n) = 1−

∞∑

i=−∞

a(i)w(n−ni) (3.4)

wherew(n) is a common symmetric window function with a lengthL. The criterion to choose the

coefficientsa(n) is that the resultant envelope ofxpw(n) never crosses the thresholdA, which implies

that at all time instances especially the peak locationsc̃(n) satisfies

c̃(n)≤ c(n) (3.5)
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Figure 7. New corners emerge at the conjunction of adjacent peak windows in MES.

So all peaks should be clipped below the given threshold after peak windowing. To avoid large dis-

tortion, c̃(n) should approximatec(n) as closely as possible. Any window function with good spectral

characteristics can be adopted in Equation 3.4, such as Hamming, Gaussian or Kaiser window. A Kaiser

window with lengthL and attenuation factorβ is expressed as:

w(n) =
I0

(
β
√
1−( 2n

L+1 −1)2
)

I0 (β)
(3.6)

whereI0(·) is the zeroth order modified Bessel function of the first kind. The kernelwindow function

can easily be shaped by changingL andβ, so the adjustable Kaiser window is used in general.
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In conventional peak windowing,a(n) is easily set as

a(n) =

∞∑

m=−∞

p(hm)δ(n−hm) (3.7)

hm = arg{ max
nm−≤n≤nm+

|p(n)|} (3.8)

wherenm− denotes the index of rising edge of themth peak pulse andnm+ denotes the index of falling

edge of themth peak pulse,δ(·) is the unit impulse. Theñc(n) in Equation 3.4 is a convolutional sum-

mation of all peak windows. The superposition may generate values greaterthan 1 resulting in negative

values ofc̃(n) [74]. The signal is over-attenuated thus increasing IB distortion as shown in Figure 6.

The situation is further aggravated in the presence of closely spaced peaks when a large window length
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is applied. This problem is addressed in the maximal envelop scheme (MES) [41] and the inversion ma-

trix scheme (IMS) [25], but their performance improvement is limited. At every time instance, instead

of summation, MES takes the maximal envelope of all neighboring peak windowsto establish the over-

all window function. The over-attenuation is therefore avoided, however, the resultant window function

may not be smooth at the conjunction points of two adjacent peak windows shown in Figure 7. Such

inflexions increase the out-of-band radiation. IMS computes new weightingvaluesa ′(n) for each peak

window instead ofa(n) when peaks are closely spaced within half of the applied window length. A

coefficient matrix is first formed according to the relative distances between the neighboring peaks, then

new weighting factors of neighboring peak windows are acquired by multiplying the inverse coefficient

matrix with the targeted weighting values at peak locations inp(n). The weighting factorsa ′(n) make

the values at peak locations of clipped signal tightly equal to the targeted clipping threshold, however,

for other points away from peak locations, the overall window function maybe severely attenuated due

to improper weight factorsa ′(n) shown as Figure 8. The coefficient matrix only depending on the peak

locations and the kernel window shape, may be ill-conditioned so as to produce bad weighting factors.

3.4 Improved PeakWindowing Schemes

As discussed before, if peaks are spaced with large distances, i.e. greater than the window length,

the neighboring peak windows will not overlap, then IMS degrades with one peak and MES has only

one entry in the inverse matrix. In this case, either IMS and MES has the same performance as the

conventional peak windowing. However, when peaks are closely spaced with respect to the window

length, adjacent peak windows will overlap and the performance of peakwindowing will be deteriorated

if all peak windows are added unrestrictedly.
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MES completely replaces the summation with taking the maximal values of the window terms to

reduce distortion, but it incurs discontinuity at the conjunction points of adjacent peak windows. Note

that such discontinuities can be effectively smoothed or canceled by partial summation to reduce OOB

radiation. So, the combination of partial summation and maximization helps to smooth there-emergent

sharp corners while maintaining the advantages of MES.

IMS computes the coefficients by taking all peaks in the vicinity under consideration. If two peaks

are very close in distance, they may result in two very similar columns in the coefficient matrix which

makes the coefficient matrix close to ill-conditioning. After the matrix inversion, the resultant new

coefficients may be extremely large positive or negative values which cause undesired scaling despite

that the scaling function is well controlled at peak locations.

However, if the two peaks vary a lot in height, the lower peak may be masked by the window of

the other higher peak, then it is not necessary to compute the coefficient for the lower peak, where the

ill-conditioning column in the matrix thus is removed. So, identifying the relative height differences

between peaks helps to determine the actual effective peaks in constructing the overall window function

while mitigating the influence of the small peaks.

The distance between peaks determines the effect of superposition of peak windows. While peaks

are randomly distributed with varying distances, the symmetric window with a fixedlength for each

peak is not suitable for reducing distortion whens canceling peaks. As in Equation 3.5, peaks should be

canceled with the smallest possible distortions. Variable window length and asymmetric window shape

is expected to better satisfy the condition in Equation 3.5.
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Thus we propose two new peak windowing schemes [75], called Sequential Asymmetric Superpo-

sition (SAS) and Optimally Weighted Windowing (OWW) respectively, to overcome the disadvantages

in previous schemes and improve the peak window schemes.

3.4.1 SequentialAsymmetric Superposition

The key idea in SAS is to exploit the benefits of large window lengths and smoothconjunction

points while limiting performance loss caused by over-attenuation and discontinuity. The overall win-

dow function is constructed in an adaptive way that the window length on the side of a closely-spaced

neighboring peak is reduced and the function is smoothed by summing the adjacent asymmetric peak

windows.

Peaks in the time signal are first detected to get the location indiceshm and then grouped into blocks

if their locationshm are within half of a predefined window length, as in IMS [25]. However, unlike

IMS [25], we further sequentially aggregate successive peaks to isolate those peaks with large heights

and construct asymmetric windows for them to form the scaling function.

SAS relies on adaptively varying window length based on the proximity of successive peaks to form

asymmetric windows for each peak. The overall scaling function is smoothedby summing the adjacent

asymmetric peak windows. The procedure of SAS is as follows:

(i) sort all peaks in the block by height and label them all as ‘unprocessed’;

(ii) starting from the highest peak, check the labeling;

(iii) if the peak is ‘unprocessed’, apply single peak windowing with a predefined window length and

add it to the aggregated window function;
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(iv) if the current peak is ‘uncovered’, use the distance to the closestpreceding peak labeled ‘survivor’

as the half of the window length and use the exceeding amount of the current peak over the

aggregated window function as the weighting factor to construct a window function; Add the left

side of the window function to the aggregated window function; then do the similar operation to

update the aggregated window function with the right side of the current peak window;

(v) label the current maximal peak as ‘survivor’;

(vi) check if remaining peaks are covered by the current aggregated window function; label those

covered as ‘purged’ peaks and those uncovered but in the range ofthe current aggregated window

function as ‘uncovered’; keep those peaks out of the range of the aggregated window function

still as ‘unprocessed’;

(vii) back to (ii), till all peaks are labeled either as ‘survivor’ or ‘purged’.

(viii) adopt the aggregated window function as part of the scaling functionfor the current block of

successive peaks.

In this way, small peaks, similar in MES [41], are concealed under large neighboring peaks by the

aggregation and purged from further processing. Only those peaks with large heights will contribute to

constructing the scaling function. The new scaling function is:

csas(n) = 1−

∞∑

i=−∞

as(i)[wsl(n−ni)+wsr(n−ni)] (3.9)
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wherewsl(n) andwsr(n) are the left side and the right side half of the window function respectively

which have different window lengths;as(i) is the new weighting factors, for those concealed peaks

indexed byj, as(j) = 0.

For each unconcealed peak, we design an asymmetric window as in step (iv), and then superpose all

peak windows to build up the overall window function for the block. The distance between the current

peak and the adjacent preceding peak defines the left-side window length, the window coefficient at the

current peak is one, while zero is at the preceding peak. The right sideof the peak window is obtained

similarly. Each peak window is made of two asymmetric segments in general. For thefirst and last

peaks at both ends of the block, the predefined window length is used as the window length.

The weighting factor for each asymmetric window is adaptively updated in step(iv). They are

actually set as the corresponding value inp(n), which guarantees that the peak is tightly bounded below

the threshold, thus avoiding over-attenuation. Note that the superposition of asymmetric peak windows

occurs only between adjacent unconcealed peaks, so the overall window function is smoothed without

new corners.

3.4.2 Optimally WeightedWindowing

The strategy underlying OWW is to take the advantages of the inverse matrix approach with limited

attenuation at peak locations but impose constraints on coefficients to avoid ill-conditioning.

In this scheme, similar to the first stage shown in Figure 4, peaks in the input signal are detected and

grouped into blocks which contain consecutive peaks captured by the half of the given window length,

and then peaks are sequentially ordered according to their heights.
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After that, instead of constructing asymmetric windows for peaks, a symmetric window with the

predefined window length is still used for each peak, so we establish a coefficient matrix from the

predefined common window function according to the relative distances among those peaks. Instead

of using the procedure in IMS [25] of calculating the weighting factors by multiplying the inverse

coefficient matrix with the target peak pulse values inp(n), we formulate a constrained optimization

problem and solve it to get the optimal weighting factors for peaks.

The optimization is performed withU peaks in one block. It is formulated as follows:

minimize ‖α‖

subject to : Whα≥ P (3.10)

whereα = [α1,α1, · · · ,αK] that containsK weighting factors for peaks grouped in one block;Wh is

aK×K symmetric matrix with entry values from the predefined common window function according

to the relative distances among peaks in the block;P = [ph1
, · · · ,phK

] contains the desired peak pulse

heights at the peak locations inp(n).

In this way, the window attenuated signal can be tightly limited up to the threshold atpeak locations

so that over-attenuation is avoided. In the meanwhile, the constraint in Equation 3.10 guarantees that

Equation 3.5 is satisfied. The new scaling function can be expressed as:

coww(n) = 1−

∞∑

m=−∞

α
′
oww(hm)w(n−hm) (3.11)

whereα
′
oww denotes the new weighting factors on all peaks andhm indicates the peak locations.
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Equation 3.10 is a general Quadratic Programming (QP) problem. It is easy tosolve and implement

using some standard algorithm [76]. Depending on the clipping level and thepredefined window length,

the peaks may be grouped in different ways, consequently the formation of coefficient matrix is also

varying. However, large PAPR ratios only occur very infrequently andvery large window length should

be avoided as it increases the IB distortion [29]. So with moderate window lengths and clipping levels,

usually only several peaks are grouped in one block, which do not impose heavy computational burden

to solve this optimization problem. And the number of unconcealed peaks in one block is usually small

after the aggregation process in the first stage, so only slight computation load is incurred to solve this

optimization problem.

3.5 SimulationResultsand Discussion

Simulation results and comparison analysis are presented in this section. As discussed in [29], the

performance of peak windowing schemes relies on the common window waveform and the window

length. The shape of the window function affects the spectral propertiesof the window clipped signal.

Given that the window shape is fixed, a larger window length is expected to produce smaller OOB

radiation but larger IB distortion. To some extent, the choice of of window shape and window length

should be factored in for evaluating the performance. So, to fairly compare the performance of proposed

schemes with others, we only fix the window shape in our simulation using a Kaiser window withβ= 12

while the window length is varied to observe the capabilities of each scheme.

When the window length is being changed, IB distortion and OOB radiation aretwo competing

factors. The trade-off between them must be considered in the performance evaluation. In our simula-
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tion, Relative Constellation Error (RCE) and Adjacent Channel Power Ratio (ACPR) are computed to

characterize the IB distortion and the OOB distortion respectively [7].

−95 −90 −85 −80 −75 −70 −65 −60 −55 −50 −45
−30

−29

−28

−27

−26

−25

−24

ACPR (dB)

R
C

E
 (

d
B

)

 

 
IMS
MES
OWW
SAS

Figure 9. RCE versus ACPR curve for peak windowing schemes with different window length at a
fixed output power level

To fairly assess different peak windowing schemes, our simulation focuses on power efficiency that

measures how much PA output signal power is delivered to the communication channel. This output

power is tightly connected with SNR which in turn impacts the receiver BER. So,RCE and ACPR

are evaluated with different window lengths given that the output signal power after power amplifier

(PA) is normalized among all schemes. In the meanwhile, the nonlinearity of PA isthe main source of
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distortions, but here we focus on evaluating peak windowing schemes, so, an ideal linearized PA up to

its saturation is assumed.

In our simulation, OFDM signal is modulated with 16QAM and has 256 subcarriers, and an over-

sampling factor of 8 is used. The window length is defined as the number of time samples after over-

sampling varying from 17 to 225.

schemes IMS MES SAS OWW
Window Length 97 193 161 179

RCE -26.41 -25.00 -25.38 -25.00
ACPR -76.93 -81.34 -85.34 -91.58

TABLE II

ACHIEVABLE MINIMAL ACPR FOR DIFFERENCE PEAK WINDOWING SCHEMES UNDER A
CONSTRAINT(RCE≤−25DB)

Given a required PA output power level of output backoff 2.47dB, theRCE and ACPR trade-off

curves of all peak windowing schemes are shown as in Figure 9.

For each scheme, RCE increases with increasing the window length, while ACPR decreases, as

expected. When the window length is short, the improvement of the new proposed schemes is not

obvious because all peaks are treated as individual peaks and no clustered peaks are detected. With the

window length increasing, correspondingly more consecutive peaks appear. As a result, the advantages

of proposed SAS and OWW schemes become larger compared with MES and IMS.
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Considering the trade-off between RCE and ACPR, the SAS and OWW methods both achieve

smaller ACPR given the same RCE constraint compared with existing MES and IMS. For example,

given a requirement that RCE is below -25dB as in the WiMax standard [7],the minimal ACPR that

can be achieved by different schemes with different window length are listed in Table II. When RCE is

limited under the condition that the output power level is fixed, the window lengthcan not be increased

indefinitely to decrease the ACPR. But we do not set any constraint on window length, so we assume as

long as RCE is under the RCE requirement, any window length can be used.

It can be seen that SAS has ACPR approximately 8dB lower than that of IMSand ACPR 4dB lower

than that of MES when the constraint of RCE is applied. OWW even achieve 6dB lower OOB radiation

than that SAS. So, given the RCE constraint, the proposed schemes outperform the existing schemes in

obtaining smaller OOB radiation. OWW even exhibits the best performance amongthese schemes.



CHAPTER 4

RECEIVER-ORIENTED SCHEME: CLIPPING NOISE ESTIMATION AND

COMPENSATION

4.1 Introduction

With the increasing demand for high speed data transmission, more bandwidth isemployed in the

physical layer techniques in wireless communications systems, e.g. bandwidthin mobile wireless sys-

tems increases from 5MHz in 3G WCDMA to 20MHz 4G LTE systems. This trend of employing larger

bandwidth to provide higher data rate extends to on-going standardization activities in LTE-A systems

and even to future 5G systems. The use of OFDMA in those systems therefore demands high order

OFDM with a large number of subcarriers being adopted.

In recent years various methods have been proposed to address the PAPR issue at the receiver

side [77], aiming to lighten the computational burden at the transmitter. Receiver-oriented methods

are highly desirable when limitations on power consumption, implementation cost orcomputational

complexity exist at the transmitter depending on system specifications or userapplications. However,

receiver-oriented reconstruction methods face new challenges in OFDMA systems. The envelope varia-

tions of the multicarrier signal become even more severe due to significantly large number of subcarriers

being used in OFDMA.

Conventional receiver-oriented methods require all subcarriers in one OFDM symbol to be demod-

ulated in order to perform decision-aided iterative estimation and compensation [78–80]; however in

55
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OFDMA each user only knows his/her own modulation while modulations of otherusers are generally

unknown, which precludes these methods from being deployed. Unlike theapproach of performing it-

erative reconstruction on the entire signal in [81], the clipped signal in OFDMA is compensated in [82]

with iterative band-limited signal recovery over reserved subcarriers after applying simple clip localiza-

tion on signal samples at Nyquist rate.

In this research, we propose a novel method of estimating clip locations with spectrogram analysis

on oversampled signal sequences and reformulating the signal reconstruction with frame theory to de-

velop an iterative algorithm of alternating projection over convex sets to tackle the problem of clipping

noise mitigation in OFDMA [83, 84]. As discussed in [82], the accuracy of clip locations in the recov-

ery process is a key factor that dictates the selection of the coefficient sub-matrix out of the full-size

Discrete Fourier Transform (DFT) matrix in the inverse problem, and thus itsignificantly impacts the

system performance.

We explore three factors to identify the clip candidates in the time domain: the closeness of sig-

nal level to the clipping threshold, the time distance of neighboring samples thatexceed the clipping

threshold, and the out-of-band power in local windowed spectrogram based on time-frequency struc-

ture extracted from Short Time Fourier Transform (STFT). After clip locations are extracted from the

received signal, the iterative projection method is adopted to recover the clipped signal. Extensive sim-

ulations are conducted to show that our proposed method significantly outperforms the method in [82]

especially in high SNR regime.
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4.2 TransceiverModel in OFDMA

Unlike the general case of OFDM in Equation 2.5, OFDMA signals under investigation here include

multiple users and guard subcarriers reserved to protect signals from ISI of other bands. Let us consider

a complex baseband representation of an OFDMA signal withN subcarriers andP users,

x(t) =
1√
N

P∑

p=1

∑

m∈Up

Xme
j2πmt/Ts

+
1√
N

∑

r∈R

Xre
j2πrt/Ts , 0≤ t≤ Ts (4.1)

whereUp is the index set of subcarriers allocated to thepth user;R is the index set of pilot and guard

band subcarriers as non-data-bearing tones;Xm is a data symbol on themth subcarrier modulated from

a given QAM constellation for data-bearing tones or known values or zeros on non-data-bearing tones.

The union of all index sets covers all subcarriers, i.e.{
P⋃

p=1
Up}

⋃
R = {0,1, . . . ,N−1}. In this research,

all subcarriers inR are used for signal recovery at the receiver. When clipping occursat the transmitter

due to nonlinear PA effects, the output signalxc(t) of the PA is bounded by a predefined clipping

thresholdVs, similar to Equation 3.3, assuming the phase is unchanged.

xc(t) =






Vs

|x(t)|
x(t), |x(t)|> Vs

x(t), |x(t)|≤ Vs

(4.2)

The clipping ratio is defined as

γ= Vs/σ. (4.3)
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GenerallyVs is either close or identical to the actual PA saturation level, while the signal power σ2 is

adjusted by input back off (IBO) to PA saturation. It is obvious that the selection of a proper clipping

ratioγ highly depends onPAPR in Equation 2.15.

NormallyN-point Inverse Discrete Fourier Transform (IDFT) is applied at the transmitter to obtain

the discrete time signal sampled asx(n) = x(t)|t=nTs/N in Equation 4.1. Briefly its vector form with

x = {x(n)} is the same as Equation 2.2,x = WN X, with X = {X(m)} andWN is the N-IDFT matrix.

The clipped signal is expressed asxc = {xc(n)}= {xc(t)|t=nTs/N} and the clipping noise is given by

ec(n) = xc(n)−x(n) (4.4)

In OFDMA receiver, assuming that the frequency channel responseH is known, the received fre-

quency domain signal, similar to Equation 2.13, at subcarrierm is

Y(m) =H(m)Xc(m)+G(m),m ∈ [0,N−1]. (4.5)

After zero-forcing (ZF) channel equalization [85], the output signalin frequency domain is

Y(m) = Xc(m)+G(m)/H(m)

= X(m)+Ec(m)+G(m)/H(m),m ∈ [0,N−1]. (4.6)
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whereXc = {Xc(m)} is the DFT ofxc = {xc(n)}, G(m) is the Gaussian channel noise in frequency

domain with zero mean and varianceσ2
w andEc(m) is the distortion due to clipping. The demodulated

signal of thepth user is estimated with maximal likelihood as

X̂(m) = argmin
χp

|Y(m)−χp|
2, m ∈Up (4.7)

whereχp denotes the constellation points of the modulation scheme of userp.

Clearly if the clipping distortionEc(m) in Equation 4.6 is compensated, better results are obtained

by replacingY(m) with Ỹ(m) = Y(m) −Ec(m) in Equation 4.7. Note that in the absence of other

users’ modulation information, thepth user cannot utilize the difference betweenX̂(m) andY(m) of

the whole symbolX(m),0≤m≤ (N−1) to iteratively cancelec(n) which invalidates the conventional

schemes [78] [80].

4.3 Recoveryof Clipped Signal

With a normal clipping ratio, it is easily seen from Equation 4.2 that the clipping noise in Equa-

tion 4.4 consists of a sequence of pulses in time domain. Given one symbol period of the input signal

x(t), t ∈ [0,Ts], each pulse in the clipping noise sequenceec(t) characterized by its location, dura-

tion, magnitude, shape and phase is determined by the clipping ratioγ. The original signalx(t) is

approximately a Gaussian random process following the central limit theorem.Therefore, the pulse

characteristics are completely random from symbol to symbol.
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As widely known, the magnitude ofx(n) in Equation 5.1 is approximately Rayleigh distributed [86].

The average up level-crossing rate depends on the clipping ratioγ as [87],

Np =N

√
π

6
∗γ∗e−γ2

2 (4.8)

whereNp denotes the average number of samples out of N with magnitudes exceeding the thresholdVs.

For instance, for a practical clipping ratio of 4dB, the average number ofclipping pulses in one OFDM

symbol period is about0.0775∗N.

For the discrete samplesec(n), it is necessary to specify the location, magnitude and phase of each

pulse to fully determine the clipping noise sequence. However, it is very difficult to determine the

characteristics of the clipping noise directly from equalized frequency samples in Equation 4.6 without

knowing clip locations, because known variables on pilots, guard band subcarriers and target user data

subcarriers are far fewer than all unknown variables that characterize the pulses in the clipping noise.

As in [82], we recover the clipped signal in two major steps, namely, peak localization and magnitude

estimation, as shown in Figure 10.

Firstly the locations of clip candidates are estimated through peak processingand corresponding

phases of clips are predicted, and secondly magnitudes of clips are obtained by iteratively solving

equations established with the estimated clip locations and the difference between Y(m) andX(m)

on reserved subcarriers in setR.
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By utilizing all known valuesX(r), r∈R on frequency reserved subcarriers, the differences between

received samples and prior known values are obtained as known variables to guide the calculation of the

unknown magnitudes of clips.

Ec0(r) = Y(r)−X(r), r ∈ R (4.9)

The differenceEc0(r) contains the equalized channel noise and clipping noise as indicated in Equa-

tion 4.6. From Equation 4.4,ec has non-zero values only at the clip locations while being zeros at other

locations, so there exists

Ec = Wr ,c
H ec+ξ (4.10)

whereWr ,c
H is theLr×Lc sub matrix takenLr rows andLc columns from N-DFT matrixWH, (·)H de-

notes Hermitian transpose, andξ denotes the channel noise. The index set ofLc columns is determined

by clip locations. The clipping noiseec(n) can be calculated with Least-Square (LS) projection when

Lc < Lr as

êc = (Wr ,cWr ,c
H)−1Wr ,cEc0 (4.11)

If the number of possible clipsLc>Lr the cardinality of setR, Equation 4.10 becomes under-determined.

The results obtained from Equation 4.11 can be ill-conditioned. The clip candidates are refined or the

recovery process for this OFDM symbol is skipped. Therefore the accuracy of estimating the number

and locations of clips significantly impacts the performance of clipped signal recovery.

4.3.1 ClipLocalization through peakfiltering

PA clipping in Equation 4.2 affects the entire continuous-time signal. Unlike [82]where clips are

estimated with samples at Nyquist rate, our clip localization samples the receivedsignal with an up-
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sampling factorJ > 4, which facilitates the localization of all the peak pulse candidates in Equation 4.4.

The discreteJN samples of the input signal are given asx̄ = {x̄(n)} = {x(t)|t=nTs/JN},n ∈ [0,JN− 1]

from Equation 4.1, that is,

x̄(n) = 1√
JN

K∑

k=1

∑

m∈Uk

X̄k(m)ej2πmn/JN

+ 1√
JN

∑

r∈R

X̄(r)ej2πrn/JN,n ∈ [0,JN−1]

(4.12)

where{X̄(n)} of sizeJN can be seen as zero-padding the original OFDM block{X(n)} of sizeN. Thus

the corresponding received signal in time domain is

ȳ(n) = x̄(n)+ ēc(n)+ η̄(n) (4.13)

whereη̄(n) is up-sampled equalized noise. Deep frequency fading inH may boost noise severely in

frequency domain but̄η(n) in time domain is smoothed due to IDFT averaging effects. Further, we

employ median filtering with sizeJ/2+ 1 over ȳ(n) to remove the disturbance from large impulse

values in noisēη(n) to clip location estimation.

Under normal circumstances for reliable communications the signal power is much larger than the

noise power and thus the magnitude of the signal is much larger than the noise at the time instances

where clipping occurs. The equalized signal magnitude satisfies [82]

|ȳ(n)|≫ |η̄(n)| (4.14)
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which is exploited to identify the potential clip locations. So the equalized time sampleswith magnitudes

close toVs are selected as clip candidates. Assuming the clipping thresholdVs is known at the receiver,

samples inȳ(n) with the magnitude greater thanVs −µσw are selected, whereµ is a factor chosen

to adjust the number and locations of clip candidates andσw is standard deviation of noise power.

Depending on the system configuration,µ can be chosen offline to avoid clips being missed due to

smallµ values or being falsely reported due to largeµ values.

The clipping pulse duration is a Rayleigh random variable depending on the clipping ratioγ [87]

which is also exploited to identify the potential clip locations. So we use run-length analysis over the

sequence of clip candidates identified according to Equation 4.14. Clip candidates are filtered out if

the number of consecutive samples spanned by the clip candidates is less than a threshold̄τ determined

in [87]. The Lr known variables are usually insufficient to recover all unknown magnitudes of up-

sampled clip candidates obtained from̄y(n). So we have to find the clipped sample locations at Nyquist

rate to establish the equations as Equation 4.10. Clip candidates that span multipleconsecutive samples

are consolidated and represented by the close sample location in Equation 4.4which reduces the number

of unknowns.

From Equation 4.2 the clipped time signal exhibits a flattened top shape where clipping occurs

and the instantaneous frequency components contain larger out-of-band power at clipped samples than

that at non-clipped samples, which is another factor exploited to estimate clip locations. We introduce

STFT based spectrogram to examine local time-frequency structures of the up-sampled sequence. The

sequences used to calculate the spectrogram are constructed as follows: (1) select the local short window

length as2J− 1; (2) apply a rectangular window with that length centered at each sample obtained at
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the Nyquist rate, thus the up sampled sequence is divided intoN sub sequence with 50% overlapped

between adjacent windows; (3) inside each windowed sub sequence, subtract from the samples with the

line determined by the start and end samples of the window; (4) append to each resultant sub sequence

with a negative duplicate of itself; (5) cyclically extend the sub sequence to length2N; (6) take 2N-DFT

over the extended sequence to get spectrogram. A thresholdPo of measuring out-of-band power of

instantaneous frequency components for each time sample at Nyquist rate isused to further filter out the

clip candidates with small out-of-band power in the previous steps.

Our peak filtering procedure to locate clips is summarized in Table III.

TABLE III

PEAK FILTERING PROCEDURE FOR CLIP LOCALIZATION
1) up sample the sequence and apply median filtering
2) label all samples as clips;
3) filter out clips with magnitude|ȳ(n)|< Vs−µσw;
4) filter out clips with number of consecutive samples less thanτ̄;
5) calculate spectrogram and out-of-band power at each time sample;
6) filter out clips with out-of-band power less than a thresholdPo;
7) obtain the clip candidate setC

It is noted that peak filtering detects and locates almost all the actually clipped samples but it reports

some false peaks as well, which can be refined during the iteration steps.
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As the clipping model in Equation 4.2 indicates, the clipping noise maintains the phase as the time

domain signal. So the phases of located clips are chosen identical to the equalized signal at the receiver.

∠(ec(n)) = ∠(xc(n)) ∼= ∠(y(n)), for n ∈ C (4.15)

whereC denotes the index set of peak locations obtained from Table III.

Although the noise item introduces some disturbance in the received signal, the phase changes are

ignored due to noise magnitude being far smaller than the signal strength in Equation 4.14.

4.3.2 Frame-basedAlternating Projection for Magnitude Estimation

To avoid matrix inversion and possible ill-conditioned calculation that may causelarge estimation

errors in Equation 4.11, an iterative algorithm based on the band-limited signal recovery is adopted

in [82] to resolve Equation 4.10. The iterative process in [82] is

ei = I cWI r WHI cei−1+e0, i > 1 (4.16)

e0 = I cWHEc0

whereI c is a diagonalN×N matrix with diagonal elements equal to 1 only corresponding to clipping

locations and 0 otherwise.I r is also a diagonalN×N matrix with 1’s corresponding to user data

subcarriers and 0’s corresponding to reserved subcarriers.

Studying Equation 4.16, the iterative process is implemented over the signal offull size N. It

updates the potential clips and forces other non-clip samples to be zeros in timedomain, while updating

samples on user data carriers and keeping reserved subcarriers unchanged in the frequency domain.
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When errors still exist inith iterationei, the error disperses into user data subcarriers [82], which may

degrade the performance especially when channel noise power is small and clipping noise makes the

major contribution.

As the simulation results in [82] reveal, the performance of the iterative process Equation 4.16,

however, is not as good as the direct least square (LS) solution when SNR is high (> 25dB). In the

high SNR regime, the iterative process Equation 4.16 is deficient. When SNR ishigh, the noise power

is relatively small; estimation of clip locations is more accurate for using the LS method since ill-

conditioned matrix inversion is less likely to happen.

Revisiting Equation 4.10, the matrixWr ,c
H hasLr > Lc as the clip location estimation determines.

Then the rows of matrixWr ,c
H can form a finite frame [88]. A set of vectorsΦ = {φp}

P
p=1in C

K is a

frame if there existA,B ∈ℜ, and0 < A≤ B such that

A‖x‖2 ≤
P∑

p=1

|〈x,φp〉|2 ≤ B‖x‖2 , ∀x ∈ C
K, (4.17)

where‖·‖ and〈·〉 denote norm and inner product in Euclidean space respectively.A andB are called

lower and upper frame bounds. Clearly,Wr ,c
H has upper and lower bounds because it is a sub matrix

from DFT matrixWH. According to frame theory, the finite frameΦ can be associated with a matrixQ

by setting the rows ofQ as the elements of the frame, the boundsA andB are actually determined by

the minimal and maximal eigenvalues of the square matrixQHQ. Considering the dual frame operator

with Wr ,c
H

Wr ,cWr ,c
Hx =

Lr∑

r=1

〈x,wr〉wr (4.18)
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wherewr is therth row of Wr ,c. DefineT = I− 2
B+AWr ,cWr ,c

H. SinceA andB are the bounds of the

frame, then,

||T | |≤ B−A

B+A
≤ 1 (4.19)

Then,

(Wr ,cWr ,c
H)−1 =

2

B+A
(I−T)−1 =

2

B+A

∞∑

i=1

T i (4.20)

When truncating the infinite series to different values, different levels ofapproximation to the matrix

inversion are obtained. Then the iterative inverse construction is formulated as

xk = xk−1+
2

B+A

Lr∑

r=1

(〈x0,wr〉− 〈xk−1,wr〉)wr (4.21)

As Equation 4.20 indicates, the iteration in Equation 4.21 is guaranteed to converge to the LS solution.

Meanwhile, the iteration in Equation 4.21 performs only on the sub space ofWH with sizeLr andLc.

The band limited recovery formulation is actually a projection over convex set(POCS). The set of

vectors withΨ= {ec|ec(j) = 0, j 6∈ C,0≤ j≤N} is convex.

Proof. ∀0≤ α≤ 1, α ∈ℜ, let s= (1−α)ec1+αec2 whereec1 ∈ Ψ, ec2 ∈ Ψ.

Consider allj 6∈ C, s(j) = (1−α)ec1(j)+αec2(j) = (1−α)∗0+α∗0= 0.

So,s∈ Ψ. Therefore,Ψ is convex.

The same argument applies to the setΩ in frequency domain,Ω = {Ec|Ec(m) = Ec0(m),m ∈

R,0≤m≤N}. So the projection with DFT matrixWH is over the two convex sets.
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Our new frame-based alternating projection scheme seeks to find another alternating projection path

between the two convex setsΨ andΩ to tackle the performance degradation in high SNR regime. We

concatenate the iterative process in Equation 4.21 and Equation 4.16, to makeuse of the upper bound

of frame to narrow down the candidates in the sub space in Equation 4.21 andspeed up the convergence

process. The new iterative process is

ei = (
B−1

B
I +

1

B
I cWI r WH)I cWI r WHI cei−1+e0, i > 1 (4.22)

e0 = (I+
1

B
I cWI r WH)I cWEc0

The coefficient2/(A+B) in Equation 4.21 adjusts the convergence rate in the frame-based iterative

process. AsWr ,c
H takes a sub matrix of N-DFT matrix, it has spectral norm||Wr ,c

H|| < 1 [89], that is,

the largest eigenvalue B is bounded, so1/B is used instead of2/(A+B) to accelerate the convergence

linearly.

As discussed, both iterative processes converge to the LS’s solution if the noise is zero. Comparing

Equation 4.23 and Equation 4.16, the complexity of both schemes is the same. Thecoefficient matrix can

be pre-caculated and stored before each iteration. The stop condition is simply selected as||ei−e(i−1)||<

ǫ whereǫ is a predefined threshold. Extensive simulations are conducted to verify the performance and

simulation results validate the performance of the new proposed frame-based alternating projection

scheme.
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4.4 SimulationResultsand Discussion

The performance of the proposed scheme is examined through simulations. The OFDMA system

is set up according to the IEEE802.16 2004 WiMAX standard [6]. The system takes totalN = 2048

subcarriers out of which are 192 pilot and 319 guard band carriers used as reserved carriers for clipping

noise recovery. A total of 8 users equally share the remaining data subcarriers in an interleaved pattern.

The target user uses 64QAM modulation, and other users randomly selectmodulation schemes from

BPSK, QPSK, 16QAM and 64QAM, which is unknown to the target user. The additive white Gaussian

noise (AWGN) channel is used to simulate flat fading case. The WiMAX SUI3channel model is used to

represent the frequency selective fading channel [90]. UncodedOFDM without bit loading is assumed

at the transmitter. A typical clipping ratioγ = 4dB is used in the simulation. The performance of

different schemes is studied in terms of BER versus SNR curves with normalpractical range of SNR

that is normally up to 32dB.

The effect of the proposed clip localization through peak filtering is compared with the existing

simple clip location estimation adopted in [82]. Using clip locations known at the transmitter as the

reference, the ratio of correctly located clips to the reference clips at difference SNR level is shown

in Figure 11. It is seen that peak filtering can locate many more actual clips compare with the simple

localization method, above 99.8% clips at the transmitter are located correctly atthe receiver. The level

is lower than 97.6% in simple localization by which some real peaks are missed in detection. And

the ratio of falsely reported clips to the reference clips at difference SNRlevel is shown in Figure 12.

With SNR increasing, the amount of false clips are reduced since the noise power is much smaller

compared to the signal power, the interference to detecting the clips is also reduced. Compared with
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Figure 13. Clipping Recovery with peak filtering localization and iterative projection in OFDMA

simple localization that locates extra 23% false clips, peak filtering reduces thefalse clips to lower than

17% at a SNR at 32dB.

The BER curves at different SNR levels in different cases are shownin Figure 13. With no clipping

noise compensation at the receiver, it is obvious that a BER floor exists even if the SNR is as high as

over 30dB, which deteriorates the system performance. With increased accuracy in locating clips by
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peak filtering, the performance of the magnitude estimation of clipping noise is also improved which

leads to BER enhancement over the method in [82]. After combining peak filtering for clip localization

with frame-based iterative projection for clip magnitude estimation, our proposed method outperforms

the reference method of simple clip localization and band limited signal recoveryalgorithm in [82],

especially in high SNR regimes. AtSNR = 32dB, around 14% information bits are wrong if no noise

suppression is applied; and [82] improves the error rate to below 0.1%. Withour proposed scheme, the

BER is further reduced to below 0.04%.

When SNR is low, the interference from channel noise is so strong that thenumber of falsely re-

ported clips exceeds the number of the actual clips by a factor greater thanone, which may lead to a

longer convergence time. It is noted that oversampling is adopted in peak filtering to extract the clip

characteristics inherent in the time sequence. Oversampling used in the proposed method is uniform,

some detailed information around clips or samples close to the clipping threshold may be lost due to the

uniform sample. Considering this, level-crossing based non-uniform sampling [91] in analog-to-digital

converter may retrieve more detailed information to further improve the performance, which we will

investigate in future work.



CHAPTER 5

JOINT DESIGN OF TRANSMITTER AND RECEIVER SCHEMES

5.1 Introduction

The PAPR issue has been addressed in various solutions [19–21]. Thesolutions either reduce PAPR

to avoid nonlinear clipping on the transmitter (TX) side, such as multiple representations [92], tone

reservation (TR) [55] and constellation extension [93], or reconstruct nonlinear distorted or clipped

signal on the receiver (RX) side [72, 82, 94]. Receiver-oriented methods are highly desirable when

limitations on power consumption, implementation cost or computational complexity exist at TX. Con-

ventional RX-oriented methods like [72], [94] require modulation informationof all subcarriers at RX

in order to perform decision-aided iterative estimation. However, in OFDMA, modulation information

of other users is generally unknown to any individual user which invalidates schemes based on fre-

quency domain reconstruction over the entire symbol block. Most recentapproaches [95], [96] utilize

Compressed Sensing (CS) framework to estimate and compensate the time-domainclipping noise as a

sparse signal with partial frequency-domain information on reserved orreliable subcarriers in OFDM.

An approach of combining TR and CS is reported in [97]. However, the sparsity level in CS frame-

work imposes constraints on the number of clipping samples allowed at TX and the recovery algorithms

do not show adequate performance when measurements are corrupted by severe noise [20], thus the

performance of [97] is limited when high power efficiency is demanded with severe clipping scenario.

74
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In this research we propose a novel method of jointly designing TR at TX and frame-based alter-

nating projections (FAP) at RX to improve the performance in presence of severe clipping. The non-

data-bearing tones in one OFDM symbol, normally available in practical systems[7], are partitioned

into two disjoint sets, one set used for TR at TX to reduce peak values, theother set used for FAP at

RX to recover the clipped signal. The hybrid PAPR reduction at TX is designed with a clipping step

that follows with TR at TX to satisfy the required output power level and boost power efficiency. The

clipping step cancels residual peaks after TR step of peak reduction. Only a few subcarriers are needed

in TR and thus the complexity in resolving TR at TX can be reduced to the minimal acceptable level.

On the other hand, the combination of TR with clipping reduces the out-of-band emission with lower

PAPR compared with directly clipping case. Unlike CS recovery [97] in whichthe number of clipping

samples is picked due to the necessity of maintaining sparsity for CS recoveryat RX, FAP tolerates

more clipping samples and therefore a smaller clipping ratio can be adopted at TX to further increase

power efficiency. The overall system complexity is well balanced with the freedom in choosing clipping

ratio and the flexibility of allocating subset of non-data-bearing tones between TR and FAP. Numerical

results are presented to show the proposed method significantly improves BER performance compared

with that of the existing method when the clipping ratio is low.
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5.2 SystemModel

In OFDMA transmission withP users, a complex symbol blockX = {Xn|n= 0, . . . ,N−1} is passed

to anN-point inverse fast Fourier transform (IFFT) to obtain the discrete time-domain samples to be

transmitted. The complex baseband representation of an OFDMA signal is

xk =
1√
N

P∑

p=1

∑

m∈Up

Xme
j2πmk/N

+
1√
N

∑

r∈R

Xre
j2πrk/N,k= 0, . . . ,N−1 (5.1)

whereUp is the index set of subcarriers allocated to thepth user;R is the index set of pilot and guard

band subcarriers as non-data-bearing tones;Xm is a data symbol on themth subcarrier modulated from

a given QAM constellation for data-bearing tones or known values or zeros on reserved tones. Briefly

its vector form withx = {xk} is

x = W X (5.2)

whereW is the N-IDFT matrix.

To characterize the dynamic range of the OFDM signal in time domain, PAPR is defined as the

maximal power of the transmitted signal divided by its average powerσ2 in the continuous time domain.

An estimate with discrete samplesx can be obtained as

PAPR(x) =
max

k=0,...,N−1
|xk|

2

σ2
=

‖xk‖2∞
1
N ‖xk‖22

(5.3)
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where‖·‖2 is the2-norm and‖·‖
∞

stands for the∞-norm.

5.2.1 ToneReservation

As described in 2.4.4, Tone Reservation (TR) is a distortionless method that adds a peak canceling

signal onto the original signal and the resultant signal has a lower PAPR.The peak canceling signal is

designed over a subset of tones in frequency domain which carry no information data, i.e.,

x̃T = x+xT = IDFT(X+XT) (5.4)

whereXT = {XT,k,k = 0,1, · · · ,N− 1} andX have non-zero values on disjoint frequency subspaces.

So XT , the signal added, does not impact the information data bearing subcarriers. The target in this

formulation is then to findxT that minimizes the maximum peak value of the new signalx̃T , i.e.

xT = arg min
xT

‖x+xT‖∞ = IDFT(arg min
XT

‖x+ IDFT(XT)‖∞) (5.5)

The values ofXT,k,k∈RT are obtained by resolving Equation 5.5 through a convex optimization, which

can be cast into a Linear Programming (LP) problem of complexityO(|RT |N
2), whereRT is the index

set of non-zero values ofXT and| · | denotes the cardinality of a set. The complexity tightly depends on

the number of reserved tones as|RT |. Some simplification [98] is introduced to reduce the complexity

while comprising the capability of PAPR reduction. The locations of those reserved tones have signifi-

cant impact on the capability of PAPR reduction as well. Without restriction, alltones could be reserved

for this purpose, but in this research, only pilots and guard band subcarriers are reserved.
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Figure 14. Sparsity of TR Peak Canceling Signal in Frequency Domain

Actually it is noted [99] that only using a few subcarriers can achieve reasonable level of PAPR

reduction and render a good balance between the complexity and PAPR reduction. A few subcarriers

in guard bands and pilots are reserved to contain the adding signal in the frequency domain. Thus, the

signalXT is “sparse” in frequency domain as Figure 14 illustrates.

5.2.2 Directpeakclipping

When clipping occurs at TX, the output signalx̃k of PA is bounded by a predefined clipping thresh-

oldAs assuming the phase is unchanged from the input signalxk.

x̃k =






As

|xk|
xk, |xk|>As

xk, |xk|≤As

(5.6)
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The clipping ratio is defined asγ = As/σ. GenerallyAs is either close or identical to the actual PA

saturation level, while the signal powerσ̃2 is adjusted by IBO to PA saturation. The clipping noise is

ek = x̃k−xk,k= 0, . . . ,N−1 (5.7)

In OFDMA receiver, assuming that a guard interval of sufficient lengthis used at TX and the fre-

quency channel responseH = diag{Hm,m= 0, . . . ,N−1} is obtained using other methods like preamble

training, the end-to-end equivalent received symbol in frequency domain is

Ym =HmX̃m+Gm,m= 0, . . . ,N−1. (5.8)

whereGm are complex white Gaussian noise samples with zero mean and varianceσ2
g. After zero-

forcing channel equalization, the output signal in frequency domain is

Z̃m = Ym/Hm = X̃m+Gm/Hm

= Xm+Em+Gm/Hm,m= 0, . . . ,N−1 (5.9)

whereX̃ = {X̃m} is the DFT of x̃ = {x̃k} and E = {Em} is the DFT ofe= {ek} which indicates the

distortion in frequency domain due to clipping. The demodulated signal of thepth user is estimated

with maximal likelihood as

X̂m = arg min
χp

∣∣Z̃m−χp
∣∣2, m ∈ Up (5.10)
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whereχp denotes the constellation points of userp. It is noted thatZ̃m contains clipping noiseEm.

Clearly better estimates are acquired by substitutingZ̃m with Zm = Z̃m−Em in Equation 5.10. Note

that distortionE due to time-domain clipping noisee spreads to all subcarriers. In the absence of other

users’ modulation information, userp can not estimate the whole symbol{X̂m,m = 0, . . . ,N− 1} to

iteratively recover̃x so as to cancel{Em,m ∈ Up} from Z̃m.

5.3 Hybrid Designof ToneReservationand Clipping at Transmitter and SignalRecoveryat Receiver

From Equation 5.3 and Equation 5.6, we observe that for a fixed PA saturation, a lower PAPR of

x allows smaller IBO and thus achieves larger power efficiency. Directly clipping like Equation 5.6

reduces PAPR of̃x, however it incurs not only in-band distortion spread asE but also out-of-band emis-

sion which needs to be controlled under the standard spectral mask [7]. So it is desirable to introduce

other schemes at TX to reduce PAPR first and thus lower out-of-band emission to some extent; and then

combine a sequential clipping step to further enhance the power efficiency. The in-band distortion due

to clipping is left to compensate through signal recovery at RX. Non-data-bearing subcarriers inherent

in the system can be divided into two portions, one portion for TX use, the other for RX use. A joint

TX and RX scheme is thereby proposed to mitigate the PA nonlinear effects by judiciously allocat-

ing reserve tones for TR at TX and adequately controlling the clipping ratio toexpose the number of

clipped samples for FAP at RX. The sparsity in the frequency domain is explored through reserving a

few tones to suppress OOB emission with acceptable complexity, while the sparsity in the time domain

is controlled by only clipping a few peaks and thus utilized to make signal recovery feasible at RX.
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5.3.1 Hybrid Tone Reservationand Clipping at TX

Tone Reservation [55] partitions all subcarriers in two separate sets: data-bearing setD and reserved

set RT with |D |+ |RT | = N where |·| denotes the cardinality of a set. Some dummy signalsXT =

{Xq|Xq 6= 0,q ∈ RT ;Xq = 0,q ∈ D} are inserted in the frequency domain thereby addingxT to alter

the waveform in the time domain so that peak values are optimized at TX. While the peak values are

optimized as Equation 5.5, the signal average power is also changed, whichaffects the PAPR of the

signal. Alternatively, PAPR can be directly optimized as the objective function,

min
XT

PAPR(x̃T ), with x̃T = x+xT (5.11)

Those dummy signals are ignored at RX and BER is not affected because of the orthogonality between

D andRT . The achievable PAPR in Equation 5.11 depends on the degree of freedom in RT as|RT | and

the indices. When the setRT is not determined the optimization in Equation 5.11 is NP-hard.

Reexamining Equation 5.1, note that part of non-data-bearing subcarriersR in practical systems can

be used as the reserved tones in TR. With narrowing the searching rangefrom N to |R| for candidate

PAPR reduction tones (PRT), the complexity in resolving Equation 5.4 is decreased. Depending on

limitations on TX, finding the optimal solution in Equation 5.4 may still be undesirable. Usually some

iterative algorithm is employed to acquire the near-optimal solution. The algorithm iterates between

frequency domain by adjustingXT and time domain by searchingxT to make PAPR within a preset

error tolerance with respect to the target PAPR. Empirically using only a fewreserved tones reduces
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PAPR significantly, such that|D | ≫ |RT |. XT exhibits a sparse signal in frequency domain which is

utilized to designxT .

When high power efficiency is demanded with less stress on distortion, a clipping step is further

incorporated after TR to bound peak values to PA saturation.

x̃T,E = x̃T +e= x+xT +e, ‖x̃T,E‖∞ ≤As (5.12)

wheree is the clipping noise between the signal output from TR and the signal outputfrom PA. Naturally

e consists of a sequence of pulses in time domain according to Equation 5.6. Thedegraded system

performance due toe at TX is neutralized after estimating and compensating the clipping noise at RX.

As RT ⊂ R, frequency distortion due toe that spans over the setRF = {R \RT } is only introduced

by clipping so it is utilized as known information to infere. The size ofRF is much smaller than the

dimension ofe, which makes the problem under-determined. However, the sequencee contains a lot of

zeros, which appears to be a “sparse” signal in time domain. The sparsity intime domain makes solving

the under-determined problem more “feasible” and then it is utilized to recover the signal at RX.

Therefore, the combination of TR and clipping at TX generates a very effective PAPR reduction

approach in terms of controlling out-of-band distortion and boosting powerefficiency. The in-band

distortion reduced by TR is shifted to be further compensated at RX as in [95,96] where CS framework

is applied to recover the clipping noise. However, in order to guarantee thesparsity, CS framework

only allows thes-maximal samples to be clipped at TX, which implies a relatively high clipping ratio

and limits the space for power efficiency enhancement. When clipping ratio is low, more samples are
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clipped, the sparsity ine is not maintained which makes CS algorithms less effective in finding the good

estimation of clipping noise.

5.3.2 SignalRecoverythrough Frame-basedAlternating Projection at RX

Compressed Sensing [100,101] tends to minimize the number of samples or measurementsEc (less

than Nyquist rate), which are acquired through the sensing matrixWΦ, to retain the information nec-

essary to recover the original signale, that is,Ec = WΦ e with |Ec| ≪ |e|. Normally it is impossible

to recover the unknown original signal from the measurements of deducted dimension. However, if the

sensing matrixWΦ satisfies the Restricted Isometry Property (RIP), that is, withδ ∈ (0,1),

(1−δ)‖e‖22 ≤ ‖WΦe‖22 ≤ (1+δ)‖e‖22 (5.13)

holds for alls-sparse vectorse that have at mosts non-zeros, the recovery is feasible.

In OFDMA, the estimation of{Em,m∈Up} for userp relies on recovery of the entire clipping noise

e in time domain. Taking the measurementsEcr as the differences between received equalized samples

Z̃r and a prior known valuesXr in RF (|RF|<N), that is,

Ecr = Z̃r−Xr, r ∈ RF (5.14)

and taking the sensing matrixWΦ as the sub-matrixWF
H selected rows inRF from N-DFT matrixWH,

the CS formulation [97] reaches

Ec= WF
H e+Gc (5.15)
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whereEc = {Ecr, r ∈ RF} andGc represents the unrecoverable channel noise with‖Gc‖2 < ξ. Then

under CS framework the estimation of clipping noisee is transformed into anl1-minimization problem.

min
ê

‖ê‖21, subject to
∥∥∥Ec−WF

H ê
∥∥∥
2
< ξ (5.16)

Standard convex optimization algorithms can be applied to solve Equation 5.16, but in the context

of CS, signal recovery algorithms that utilizea prior knowledge of the sparsity level ofs are normally

employed such as regularized optimization algorithm like least absolute shrinkage and selection opera-

tor(LASSO) [102] or greedy algorithm as ROMP [103]. Note that in thosealgorithms the information

of locations of non-zeros (clips) is not pre-determined before the iterative searching process. Revisiting

Equation 5.6, given a targeted PA output power level, the clipping thresholdis known or derived at RX,

however such information is not utilized in the CS formation for signal recovery in [97].

The noise level of the recovery algorithms is related to the sparsity levels and the channel noise

level ξ, e.g. for ROMP it is proportional to
√

log(s)ξ [103]. In order to reduce the noise level of the

recovery, smalls is preferred. The sparsity level is controlled at TX by only selecting a smallnumber

of s maximal values ine to be clipped [97], which normally leads to high clipping ratio and thus low

power efficiency. When clipping ratio is high, the CS recovery algorithms become less efficient.

As widely known, the magnitude ofxk in Equation 5.1 is approximately Rayleigh distributed. The

average up level-crossing rate above some thresholdAs depends on the clipping ratio approximately

as [87]

Nc =N

√
π

3
γ e−γ2

(5.17)
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And it requires|RF| ∼O(Nc∗logN) measurements in frequency domain to recover the original clipping

noise [104]. For instance, for a typical clipping ratio of 2dB, the average number of clipping pulses in

one OFDM symbol period is about0.1316∗N and it needs|RF|> 892 measurements out ofN= 2048

subcarriers which incurs large data rate loss (> 43% reserved tones needed). So when severe clipping

occurs, the sparsity level is not guaranteed and thus CS recovery is not sufficiently effective.

At the receiver, we design Frame-based Alternating Projections (FAP) torecover the clipping noise

in two steps . Firstly the locations of clip candidates are estimated with help ofa prior knowledge of

the clipping threshold and corresponding phases of clips are predicted according to Equation 5.6, and

secondly we cast the problem Equation 5.15 with frame theory instead of CS optimization formulation

in Equation 5.16, and then magnitudes of clips are obtained by alternating projections established on

frame iterations between the complimentary part of reserved tones and clip candidates.

Under normal circumstances for reliable communications the signal power is much larger than the

noise power and thus the magnitude of the signal is much larger than the noisegk at the time instances

where clipping occurs [82]; and the clipping noiseek is also much lower than the in-band OFDM signal,

for a typical value of 2dB clipping ratio, the clipping noise is -18dB lower thanthe in-band OFDM signal

(c.f. (27) in [87]). The equalized signal magnitude satisfies from Equation 5.9

|z̃k|≫ |gk| and |z̃k|≫ |ek| . (5.18)

These conditions are exploited to identify the potential clip locations. So the equalized time samples

with magnitudes close toAs are selected as clip candidates, that is, samples inz̃k with the magnitude
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greater thanAs−µσg are selected in the set of clip candidatesC, whereµ is a factor chosen to adjust

the number and locations of clip candidates andσg is standard deviation of noise power.

It is noted thatµ tends to be selected to make the signal contain as many as possible potential clips

while tolerating some falsely reported locations. During the iterative projections in the next step to

refine the magnitudes at all possible clip locations, the estimated clipping noise is most likely confined

to the actually clipped locations, while the values at falsely reported locations reduce to zero which do

not significantly affect the final estimate. Depending on system configurations,µ can be trained offline

to avoid increasing the complexity of iterations because of including too many false locations.

As clipping in Equation 5.6 indicates, the clipping noise maintains the phase as the timedomain

signal. Although the noise itemgk introduces some disturbance in the received signal, the phase changes

are ignored due to noise magnitude being far smaller than the signal strength inEquation 5.18. So the

phases of located clips are chosen identical to the equalized signal at the receiver.

∠(ek) = ∠(xk) ∼= ∠(z̃k), for k ∈ C (5.19)

From Equation 5.15 after locations of clip candidates are identified,ek has non-zero values only at

the clip locationsk ∈ C while being zeros at other locations, so

Ec = WF,c
H ec+Gc (5.20)

whereWF,c
H is the |RF|× |C| sub-matrix taken|RF| rows and|C| columns from N-DFT matrixWH.

Note that the matrixWF,c
H actually represents a frame matrix that means the rows ofWF,c

H are elements
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of a finite frame [88]. Recall the definition of frame, a set of vectorsΦ = {φv}
V
v=1in C

K is a frame if

there existA,B ∈ℜ, and0 < A≤ B such that

A‖e‖2 ≤
V∑

v=1

|〈e,φv〉|2 ≤ B‖e‖2 , ∀e∈ C
K, (5.21)

where〈·〉 denotes inner product in Euclidean space.A andB are called lower and upper frame bounds.

Clearly, WF,c
H has upper and lower bounds because it is a sub-matrix from N-DFT matrixW, the

boundsA andB are actually determined by the minimal and maximal eigenvalues of the square matrix

WF,cWF,c
H.

Revisiting Equation 5.13 and Equation 5.21, the frame formulation does not impose thes-sparsity

requirements on the unknown signale which is more suitable in presence of severe clipping scenario

when sparsity level is difficult to be maintained due to the requirement of high power efficiency at TX.

Following the frame-based alternating projection, the iterative process is

ei = (B−1
B I + 1

B I cWI r WH)I cWI r WHI cei−1+e0, i > 1

e0 = (I + 1
B I cWI r WH)I cWEc0

(5.22)

whereI c denotes a diagonalN×N matrix with diagonal elements equal to 1 only corresponding to

clipping locations and 0 otherwise;I r is also a diagonalN×N matrix with 1’s corresponding to user

data subcarriers and 0’s corresponding to reserved subcarriers inRF.

The stopping condition is simply selected as||ei−e(i−1)||<ǫ whereǫ is a predefined threshold. The

iterative process converges to the Least Square solution if the noiseGc is ignored in Equation 5.20. The
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Figure 15. Recovery of clipping noise with TR at TX and CS and FAP at RX inOFDMA (CR=2dB)

energy dispersed on reserved subcarriers in frequency domain tends to be confined to actual clips in time

domain in each iteration to solve Equation 5.20. Although there exist falsely reported clip candidates, the

values at those false clips gradually diminish in each iteration. After the clip locations are determined,

the coefficient projection matrix in Equation 5.22 can be pre-calculated and stored before iterations, and

thus the actual iterative process only involves matrix multiplication which lowers the implementation

complexity.

The load balance between TX and RX can be jointly designed by selecting tones dedicated to TR

in |RT | and tones used to recovery in|RF|. For systems with constraints on out-of-band emission, it

is preferable to allocate more tones to TR, while for those with demands of high power efficiency and
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constraints on TX complexity, simply clipping tends to be used at TX, then the complexity is shifted to

RX with a larger number of subcarriers being inRF.

Extensive simulations are conducted to verify the performance and simulationresults validate the

performance of the new proposed method in obtaining more accurate clip locations and the BER perfor-

mance is therefore significantly improved.

5.4 SimulationResultsand Discussion

The OFDMA system is set up according to the IEEE802.16 WiMAX standard [7]. The reserved

subcarriers are 192 pilot and 319 guard band carriers|R| = 512 out of the totalN = 2048 subcarriers.

Total 8 users equally share the other data subcarriers in an interleaved pattern. The target user uses

64QAM modulation, and other users randomly select modulation schemes fromBPSK, QPSK, 16QAM

and 64QAM, which is unknown to the target user. Some percentage of the subcarriers are used for TR,

e.g. 5%*|R|. Uncoded OFDM without bit loading is assumed at the transmitter.

As shown in Figure 16, TR at TX reduces PAPR and thus lower out-of-band emission while boosting

PA output power level. The larger number of reserved tones dedicated toTR, the larger is the achieved

reduction in PAPR. But the complexity of calculating the additive signalxT also increases and the PAPR

level with TR only is still high. So clipping is combined with TR to reduce the computational load and

cancel residual peaks. More PAPR reduction is acquired by combining TR with CS type of clipping

(only thes-maximal values being clipped). The sparsity levels is limited by the number of available

measurementss < |RF|/log(N), thus it does not reach the target PAPR level if high power efficiency is

demanded with a low clipping ratioγ= 2dB, that is, if more clips are generated due to severe clipping,

CS recovery becomes invalid because the number of measurements used is insufficient.
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Figure 16. CCDF with different schemes (onlys-maximal samples clipped in CS)

The performance of different schemes are studied in terms of BER versus SNR curves with practical

range of SNR that is normally up to 32dB. Similar to [97], the CS recovery scheme uses 5% tones in the

set of reserved subcarriers to perform TR, and the remaining reserved subcarriers are used to provide

measurements for CS recovery in which LASSO algorithm is used. To maintain the fairness of the

comparison, same allocations of subcarriers for TR are also applied in the scheme of FAP recovery

proposed in this section. Meanwhile, a typical clipping ratioγ= 2dB is applied at TX in both schemes

to ensure that the identical TX power efficiency is achieved. The BER performance of CS recovery

and FAP recovery is compared in Figure 15. It is obvious that FAP recovery outperforms CS recovery

especially in the high SNR regime. When the clipping ratio is low, the insufficient compensation of
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clipping noise in CS recovery attributes to the limitation of the sparsity level that CSframework can

handle when the available number of measurements is limited.



CHAPTER 6

PAPR REDUCTION IN MIMO-OFDM

6.1 Introduction

Multiple Input Multiple Output (MIMO) systems, employing Space Time Coding (STC) [105]

[106], enable high capacities for wireless links both in theory and in practice. However, for broadband

frequency-selective fading channels, conventional space-time decoding requires very complex equal-

ization at the receiver. This drawback can be overcome by using MIMO systems in conjunction with

OFDM, which significantly reduces the complexity of equalizing delay spreadat the receiver by par-

titioning the broadband frequency-selective channel into parallel narrow-band frequency-flat subchan-

nels [26]. MIMO-OFDM is widely accepted in standards as a technology forthe broadband wireless

communication systems that provide the high performance needed to meet the increasing demand of

Internet and multimedia services. However, high PAPR of transmitter signals still remains an issue in

MIMO-OFDM systems [21].

As discussed in section 2.4.3, multiple representation schemes are coarse control schemes in reduc-

ing PAPR, that is, they lower the probability of occurrences of large peaks, while not guaranteeing the

peak level is below the PA saturation. Erasure Pattern Selection [107,108] belongs to this category. EPS

scheme introduces redundancy into the transmission by frame expansion, and this redundancy is used

not only for PAPR reduction but also for error correction. Active Channel Extension (ACE) [58] is a

different approach which lowers PAPR by modifying signals in the active channels, while a dual ap-

92
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proach namely Fourier Projection Algorithm (FPA) inserts dummy signals on null channels to mitigate

PAPR [53]. FPA designs the dummy signals by projecting hard clipping noise onto null subcarriers,

while not affecting data bearing subcarriers. The redundant subcarriers introduced by EPS can be uti-

lized for FPA purpose. A hybrid scheme of combining both achieve better performance compared with

either of them being used separately, since EPS provides error protection while FPA provides fine con-

trol on PAPR reduction.

We examine the use of the EPS scheme developed for SISO for application to MIMO systems.

Some recent work has addressed PAPR reduction in MIMO signal transmission via MIMO-SLM [109]

and MIMO-ACE [110]. High peaks can appear on any antenna. Directapplication of PAPR reduction

schemes for SISO to each antenna individually in MIMO requires extensive computations to reach a

final solution for all antennas, thus causing undesirable increase in complexity and redundancy. MIMO

introduces additional spatial operations into systems besides the usual time frequency operations in

SISO. We develop an EPS-based method to reduce the maximal peak power simultaneously over all

antennas and utilize spatial diversity from STC [111]. We show that the scheme is advantageous in

reducing redundancy when compared with directly applying it to individualantennas and it provides

reliable transmission.

6.2 PAPRin MIMO-OFDM SYSTEM

We consider MIMO-OFDM system withMt transmit antennas andMr receive antennas which uses

N subcarriers. A block diagram of MIMO-OFDM systems that uses SpaceTime Block Coding (STBC)

is shown as in Figure 17.
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Figure 17. Overall MIMO-OFDM system model

Consider a MIMO frequency-selective Rayleigh fading channel withL independent propagation

delays between each pair of transmit and receive antennas. The channel impulse response between the

jth transmit antenna (j=1,...,Mt) and theith receive antenna (i=1,...,Mr) is given bygi,j (l)(l=0,...,L−1).

Let Mt ×N data symbols be transmitted over the channel. Denote the sequence on thejth transmit

antenna to beXj = [Xj (0) ,Xj (1) , ...,Xj (N−1)]. Then the sequence is first subjected to IFFT operation

following by appending a cyclic prefix (CP) at the transmitter. At the receiver the CP is removed and

then an FFT operation is performed. The signal received at theith antenna over thenth subcarrier is:

Yi (n) =

√
ρ

Mt

Mt∑

j=1

Hi,j (n)Xj(n)+Ui(n) (6.1)
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where
√
ρ/Mt is the factor that normalizes the power of the received signal;Ui(n) is the additive white

Gaussian noise at thenth subcarrier with varianceσ2
n = 1; Hi,j (n) is the channel frequency response

for the nth OFDM subcarrier which is given by

Hi,j (n) =

L−1∑

l=0

gi,j(l)exp

(
−j

2πnl

N

)
, n= 0,1, ...,N−1, (6.2)

wherel denotes the propagation delay,l=0,1,...,L− 1. For Rayleigh fading channel, the coefficient

gi,j (l) is a zero-mean complex Gaussian random variable with varianceσ2
l . It is assumed thatgi,j (l) for

anyi,j,l are i.i.d random variables. And the variancesσ2
l are normalized and set to equal power profile

for multipath, i.e.
∑L−1

l=0 σ
2
l =

∑L−1
l=0 1/L= 1. The signals in Equation 6.1 can be rewritten in the vector

form as

Y (n) =

√
ρ

Mt
H (n)X (n)+U(n) (6.3)

whereY(n) is a column vector with(Y(n))i=Yi(n), U(n) is also a column vector with(U(n))i=Ui(n),

andH(n) is anMr×Mt matrix with (H(n))i,j=Hi,j(n), (i = 1, ...,Mr). For simplicity, an Orthogonal

STBC (OSTBC) is employed in our approach, e.g. Alamouti scheme withMt = 2 [112]. During

the first OFDM symbol period, two OFDM symbolsX1 andX2 are transmitted from antenna 1 and 2

respectively; during the next OFDM symbol period,−X∗
2 andX∗

1 are transmitted from antenna 1 and 2,

where(·)∗ denote element wise conjugate transpose. At the receiver, the Alamouti detection technique

extracts2Mr order diversity, which may give an effective input-output relation for symbols as:

Yi =

√
ρ

2
‖H‖2FXi+Ui, i= 1,2 (6.4)
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where‖·‖F denotes the Frobenius norm and(Yi)n=Yi(n). With the help of OSTBC, ST decoding can

be simplified into a symbol-to-symbol decision. Since MIMO-OFDM channel is decomposed into N

parallel flat MIMO channels over each tone, the indexn of each tone is dropped in Equation 6.4. Note

that the channel needs to remain stable over at least two OFDM symbol periods in the above scheme.

Another point to be noted is thatXi and±X∗
i (i = 1,2) have the same PAPR properties. PAPR

reduction can therefore be considered only for the first symbol period, while the same performance can

be achieved in the second period owing to the orthogonality. For OSTBC withMt > 2, PAPR reduction

needs to be applied to some consecutive symbol periods, but it lends itself tosome simplification. For

example, an OSTBC for 3 antennas can be constructed as:

S=




s1 −s2 −s3 −s4 s∗1 −s∗2 −s∗3 −s∗4

s2 s1 s4 −s3 s∗2 s∗1 s∗4 −s∗3

s3 −s4 s1 s2 s∗3 −s∗4 s∗1 s∗2




(6.5)

For this code, the PAPR reduction operations vary from the first to the fourth symbol period, whereas

they remain the same for the first and the fifth symbol periods since symbols there exhibit similar PAPR

properties. Consequently, the PAPR relationship over these two periods may be exploited to reduce the

complexity.

6.3 FrameExpansionbasedErasure Pattern Selection(EPS)

A detailed description of frame expansion theory can be found in [113]. Here we briefly introduce

the major properties that are used in the PAPR reduction framework, and discuss the use of DFT frames

in our approach.
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A set of vectorsΦ= {gn}
N
n=1in C

K is aframe if there existA,B ∈ R,and0 < A≤ B such that

A‖x‖2 ≤
N∑

n=1

|〈x,gn〉|2 ≤ B‖x‖2 , ∀x ∈ C
K, (6.6)

where‖·‖ and〈·〉 denote norm and inner product in Euclidean space respectively. A andB are called

lower and upper frame bounds; whenA=B, the frame is calledtight. The definition implies a necessary

condition for a frame isK≤N, and the ratior =N/K is defined as the redundancy of the frame. Note

that any finite set of vectors that spansC
K constitutes a frame.

The frameΦ can be associated with a matrix G by setting the rows of G as the elements of the

frame. A frame operator G is defined to extract the frame coefficients of a given K-dimensional vector

x as:

xn = (Gx)n = 〈gn,x〉 , n= 1,2, ...,N (6.7)

For tight frame,G∗G=AIK. So, an overdetermined representation of a K-dimensional vector is obtained

as N frame coefficients by expansion. Corresponding to the frameΦ, the canonical dual framẽΦ can

be used to recover the vector from the expansion coefficients. The dual frame operator is given as the

conjugate transpose of the pseudo-inverse of the original frame,G̃=
(
(G∗G)

−1G∗
)∗

=G(G∗G)
−1. It

minimizes the reconstruction error.

Consider the case that the expanded vector goes through a white noise channel. The received vector

is denoted as̃y= y+η, wherey=Gx is the expanded vector, andη is the noise vector withE [ηi] = 0
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andE [η∗iηj] = δi,jσ
2, whereδi,j is Kronecker’s delta. When the dual frame is used to recover the original

vectorx, the mean square error(MSE) per element is [114]

MSE=
1

K
E[‖x− x̂‖2] = σ2

K

K∑

k=1

1

λk
, (6.8)

where{λk}
K
k=1 is the set of eigenvalues of the matrixG∗G. It is easy to show that when all eigenvalues

are equal,MSE is minimized asMSE0 =
σ2

r . In this case, the frame G is tight. Among all frames, tight

frames give the best performance in terms of reconstruction error in the presence of noise.

Overcomplete expansion through frame operation leads to redundancy, which makes the reconstruc-

tion feasible even if some coefficients are erased or missing during transmission. Vectory, expanded

from vectorx, is split into two parts,yR andyE, such thatyR = GRx, yE = GEx. When sub vectoryE

is erased, only R coefficients are received. Thenx can still be reconstructed fromyR andGR. It can be

shown that ifGR forms a tight frame (R ≥ K), the reconstruction MSE is minimized. MSE is affected

by not only the number of erased samples but also their locations.

DFT frame is widely studied due to its good properties in conjunction with DFT codes and also fast

computation using FFT. The DFT frame used in our approach is inC
K with an operator matrix:

G=

√
N

K
Wh

NΣ, (6.9)

whereWN is an (N×N) DFT matrix, namely(WN)nk = 1√
N
e−j 2πN nk andΣ is an (N×K) matrix,

obtained by selecting from an identity matrix of orderN theK columns corresponding to the indices of

the used subcarriers. The factorN/K is used to normalize the power. Intuitively the DFT frame given
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in Equation 6.9 is tight, withG∗G = K
NIK. As is shown in [114],syndrome decoding is equivalent to

signal space projection reconstruction. The decoding process first recovers the erased samplesyE from

the received vectoryR depicted as:

yE =−
(
Wh

E×(N−K)W(N−K)×E

)−1
Wh

E×(N−K)W(N−K)×RyR (6.10)

whereW(N−K)×E is the matrix obtained by selecting theN−K rows from the DFT matrixWN corre-

sponding to the unused subcarriers and the E columns corresponding to the erased samples. As is shown

in [114], whenE < K, the sub frameGR is not tight; but there are suboptimal sub frames that minimize

MSE which satisfy

Wh
E×KWK×E =

K

N
IE. (6.11)

This shows that MSE is minimized when the spacing between any pair of erasures is an integer multiple

of N/K given N is a multiple of K. Accordingly, this selection of erasures simplifies significantly the

syndrome decoding process by avoiding time-consuming matrix inversion dueto the fact that:

Wh
E×(N−K)W(N−K)×E = IE−Wh

E×KWK×E =
N−K

N
IE, (6.12)

so

yE =−
N

N−K
IEW

h
E×(N−K)W(N−K)×RyR. (6.13)

Erasure Pattern Selection [107] utilizes frame expansion to introduce redundancy. The redundancy

can be used not only for PAPR reduction but also for error correction. A K-dimensional data block is
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expanded to a N-dimensional data block by inserting zeros at the unused subcarrier locations followed

by IFFT. Part of the redundancy introduced by frame expansion is removed by erasures. When the spac-

ing between two adjacent erasures is fixed, all the erasure patterns areequivalent in terms of minimizing

the reconstruction error. So, multiple representations are generated from different equivalent erasures

on the expanded signal. The representation with lowest PAPR is chosen. Since the erasure patterns

cover all elements in the expanded signal, peak values in the signal can be eliminated by erasure, thus

PAPR is reduced significantly without degrading BER performance. In fact, the remained redundancy

introduced by frame expansion can be exploited to provide error protection, or further reduce PAPR by

incorporating FPA [53]. FPA adopts a certain projection over convex set (POCS) algorithm to insert

some dummy symbols at the unused subcarrier locations while not changing data symbols at used sub-

carriers to decrease the PAPR. A faster algorithm for FPA is available to avoid time-consuming DFT

and IDFT iterations, which reduces the complexity dramatically. In particular,complexity of the EPS

scheme is less than SLM scheme with comparable configurations. In that approach, a shaping function

is defined as the IDFT of a vector with zeros in the used subcarrier locations and ones in the unused

subcarrier locations; one iteration of FPA is then simplified as finding clips thenmultiplying and adding

a shifted clip-centered shaping function element-wise onto the time domain signal.In the frequency

domain, only unused subcarrier values are changed, while they are ignored at the receiver. Hence, FPA

does not affect BER performance.

6.4 Algorithm for EPS-FPAin MIMO systems

PAPR reduction in MIMO systems involves many additional considerations compared with SISO

systems. Most schemes developed for SISO systems modify the input symbolin the frequency domain
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and then eliminate the peak in the time domain. For MIMO case, besides the time-frequency transfor-

mation, some spatial freedom is included into the framework by employing multiple antennas. Hence it

is very advantageous to consider PAPR reduction over all transmit antennas together by utilizing spatial

diversity. A precoding transform [106] is widely used in MIMO systems to combat channel fluctuation

and thus increase channel capacity. In this paper, a so called frame precoding module is introduced into

the system to reduce PAPR based on frame expansion. Unlike the common linear precoding for MIMO,

the precoding introduced here focuses on reducing PAPR. Through frame expansion and proper spatial

transform, it provides both error protection and PAPR reduction for MIMO-OFDM systems. To balance

the total redundancy used in the system, the conventional channel codercan be ignored due to the prop-

erties of frame expansion, which reduces the complexity of the whole systemagain. Figure Figure 18

shows the block diagram of the scheme:

The frame precoding module basically consists of transforming the signal in frequency-space do-

main by evaluating PAPR in the time-space domain given a maximum peak constraint.Such transform

operations may include scrambling, permutation or expansion. Unlike ACE [93], FPA needs some

unused subbands in an OFDM symbol to reduce PAPR. Frame expansion exactly provides a way of

identifying those unused subcarriers to facilitate FPA. By combining all transmitting antennas, more

unused subcarriers can be utilized to reduce PAPR thereby outperforming a single antenna since more

spatial freedom is available in the MIMO case. The EPS scheme provides multiple representations of

the same information data by selecting different erasure patterns. In MIMO, a better solution to utilize

the spatial freedom is to apply a common erasure pattern over all antennas.The EPS-FPA algorithm in

MIMO is derived from the corresponding SISO algorithm , and it consistsof the following steps:
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Figure 18. MIMO OFDM with frame expansion

1. Compute constellation symbolsX1,X2, ...,XMt
each with size K for all antennas by mapping input

binary digits to used carriers.

2. Code allXi, i= 1,2, ...,Mt by OSTBC encoder, get a block codeXK of sizeMtK×T in frequency-

spatial domain (T is the time dimension of STBC); MapXK into XN by frame expansion.

3. Apply one erasure pattern from a total of P possible erasure patternson all antennas, and record

the values at the erasure pattern locations as used subcarriers.

4. Calculate IFFT for all antennas, then clip the magnitude of all time samples exceeding a constraint

Th.

5. Reconstruct the signal in frequency-spatial domain by FFT and spatial transform.
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6. Reset the values at used subcarrier locations and the corresponding erasure pattern locations,

while preserving values at other locations.

7. Return to step 4 and iterate until the time-domain constraint is satisfied for all samples or the

maximum allowed number of iterations is attained.

8. Return to step 3, apply another erasure pattern, repeat the whole process until exhausting all

possible patterns.

9. Select the pattern satisfying the optimal criterion as the one used to reducePAPR.

Since there is an equivalent and fast algorithm for FPA, IFFT and FFT operations above may be

simplified significantly. Here instead of employing the optimal criterion stated in [46], a criterion namely

minimax is used, which selects the erasure pattern to minimize the maximal PAPR valuesover all

antennas.

p̂= arg minp∈P(arg max1≤i≤Mt
(PAPR(XNi

))) (6.14)

whereP is the predefined set of possible erasure patterns. At the receiver, the inverse process is em-

ployed to recover the original data symbols. As discussed, either construction method for frame can be

used in presence of erasures. In the simulation, syndrome decoding is adopted and a similar simplified

receiver structure is used as in [108].

As argued in [109], the side information to specify which erasure pattern isused in EPS can be

protected more with STBC utilizing spatial diversity since all antennas share one common pattern.

Actually, a better alternative is to use Erasure Pattern Identification (EPI) stated in [107], where the

erasure pattern is detected by evaluating the power present in all possibleerasures set. The one with
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lowest power will be selected as the actual pattern. Thus no side informationis needed at the receiver,

which is similar to blind identification, thus avoiding the potential errors of side information due to the

transmission. Note that the side information is critical since any error in it might cause a burst of bit

errors. Thanks to spatial-temporal diversity in MIMO again, estimation of theerasure pattern from EPI

is similarly more robust since the common pattern is used over all antennas. Notethat if OSTBC is

employed, as pointed out before, the same erasure pattern can be used indifferent symbol periods in

one block code, that increases the reliability of EPI again by using temporaldiversity.

6.5 SimulationResultsand Discussion

Simulation results are now presented along with a discussion of the proposedscheme. In our simu-

lation, QPSK modulation is used and the channel is assumed to be frequency selective Rayleigh fading

with AWGN. HereMr =Mt = 2,N= 128 OFDM subcarriers per antenna. Alamouti orthogonal space

time code is used in the simulation.

Simulation is run to compare the performance with (1) the conventional MIMO-OFDM system

without PAPR reduction; (2) the MIMO-OFDM system using SLM to suppress the PAPR. For fairness

in comparison, redundancy for different schemes is required to be equivalent; the complexity in different

schemes is comparable. With these constraints, a rate of 1/2 convolutional channel coder is used to

add redundancy in both cases which is slightly more than the redundancy introduced in the EPS-FPA

scheme. SinceK symbols are expanded toN which is twice of K, E erasures(E < K) are applied to

reduce the redundancy rate to(N−E)/K which is less than 2. In our simulation, E=9 erasures are

used, thus the redundancy introduced in EPS-FPA is slightly less. In SLM,a rate1/2 convolutional

coder is applied before feeding the data stream into the space time encoder,and U=2 rotation vectors
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are used to produce multiple representations of OFDM symbols, as is shown in[108]. Complexities of

this configuration and the EPS scheme are comparable. The simulation results are shown as Figure 19.

Figure 19 shows that EPS provides not only PAPR reduction but also BERprotection. Compared to

conventional MIMO-OFDM systems without error protection and PAPR reduction, EPS reduces BER

and achieves around 1.5dB PAPR reduction gain with the same clipping probability. Given a bit error

rate of10−4, EPS requires around 2.5dB less SNR than SLM scheme without channel coder. When a

channel coder is applied in SLM, EPS has as good performance as SLM inBER; furthermore, it outper-

forms SLM in PAPR reduction by around 0.4dB for the practical value of clipping probability of10−2.

Considering the complexity for each branch, which is mainly determined by vector multiplications, EPS

needs total around 1664 operations in our configuration, while SLM needs around 1930. After adding

complexity of channel coder, SLM requires extra complexity to achieve a performance comparable to

EPS. Hence EPS performs better than SLM with channel coder in PAPR reduction while with similar

redundancy and less computational complexity.



CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this research PAPR reduction schemes on OFDM link performance wereinvestigated in the pres-

ence of nonlinear amplification. The emphasis was on power efficiency andcross-channel interference.

We evaluated the performance regarding the cost introduced by signal transformations at the transmit-

ter, and we also examined the computational cost of scheme implementation at the transmitter of both

SISO and MIMO systems. We simplified the complexity of the transmitter and thus shifted the load to

the receiver or jointly designed schemes to balance the load between the transmitter and the receiver.

The performance of bit error rate of data transmission of evaluation is improved with our proposed

algorithms.

In Chapter 3, two novel peak windowing schemes called sequential asymmetric suppression peak

windowing and optimally weighted windowing were presented. Both schemes are focused on handling

consecutive peaks that may cause excessive attenuation or spectral regrowth thus degrading the system

performance in existing peak windowing schemes. Their RCE and ACPR performance is compared

with existing schemes. Extensive simulations show that the proposed schemesoutperforms existing

schemes in terms of RCE-ACPR trade-off, and in particular, better performance is achieved when a

larger window length is applied.

107
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In Chapter 4, a novel and efficient algorithm based on improved clipping localization through peak

filtering and frame-based alternating projection is proposed to recover signals nonlinearly distorted at

the transmitter due to high PAPR in OFDMA systems. The clipping distorting is compensated and

rectified in a way that does not require all subcarriers to be demodulated.With identifying key factors

characterizing clips with oversampling the time signal sequence, clip location estimation through peak

filtering is more accurate and thus in turn facilitate the recovery of clipping signal. Frame-based alter-

nating projection exploits the iterative processing with the help of projection over convex sets which

promotes its convergence and reliability. Simulation results show that the new proposed scheme outper-

forms existing schemes without increasing the complexity, and in particular, thesystem performance is

improved significantly when SNR is high.

in Chapter 5, a hybrid scheme of joint designing tone reservation with clippingat TX and exploiting

recovery of clipped signal at RX with frame-based alternating projection ispresented to mitigate the PA

nonlinear effects in OFDMA systems. Only a few tones are needed in TR with the help of clipping to

suppress residual peaks, and complexity at TX is therefore reduced while power efficiency is boost. The

clipping distortion is further estimated and compensated through FAP at RX which does not impose any

restrictions on the number of clipped samples at TX. So the proposed method improves BER perfor-

mance significantly compared with the existing CS recovery scheme [97] whenhigh power efficiency

is demanded with severe clipping at TX. The freedom of partitioning the non-data-bearing subcarriers

available in practical systems promotes the flexibility of shearing computational load between TX and

RX to meet different system requirements.
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In Chapter 6, a method of combining frame-based EPS method with FPA is proposed to tackle the

high PAPR problem in MIMO-OFDM systems. The extension utilizes the new variables introduced

by multiple antennas to provide not only PAPR reduction but also error protection for MIMO-OFDM

systems. Thanks to space time diversity, the side information for selected erasure pattern gets more

protection, and its transmission may even be avoided. The complexity is thus reduced and robustness

of transmission is increased. Simulation results show the advantage of the newapproach which outper-

forms the existing SLM method [109] by providing more PAPR reduction with reduced complexity.

7.2 Future Work

In future work, we propose to investigate the following tasks related to our work in signal design

and processing to combat the PA nonlinear effects in multicarrier systems:

• Integrate the PAPR reduction schemes along with predistortion methods as the basis of a joint

design methodology to improve the PA efficiency. The easy adaptability of peak windowing facil-

itates the joint design to compensate the nonlinearity of PA. And also investigate hybrid schemes

of combining multiple representations schemes such as interleaver with clipping based schemes

such as peak windowing. The combination can utilize the distortionless featureof interleaver to

improve the RCE performance of peak windowing, while using the fine tuning controllability of

peak windowing to improve the ACPR performance thus boosting power efficiency.

• Investigate allocation schemes of non-data-bearing subcarriers shared by schemes between TX

and RX, which provides flexibility and space to optmize system performance.And also explore

reliable data-bearing subcarriers according to channel conditions to recover the clipping noise
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through which less loss of data rate can be achieved because of reducing reserved subcarriers and

thus spectrum efficiency is increased.

• Explore the impact of nonlinear PAs on the system performance in generalized multicarrier sys-

tems. It is expected similar nonlinear distortions would affect multicarrier modulation. However,

with the specific formulation of the multi-bands multi-standards signals, new signal transforma-

tions needs to be investigated to counteract the nonlinear effects in such systems.
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