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SUMMARY

Due to the tightened legislation on emissions, fuel economy, and diagnostic standards in spark

ignition internal combustion engines from governments, the automotive industry is striving to min-

imize the emission and, at the same time, to achieve better fuel economy and vehicle driveability.

In this dissertation, using neural networks, we develop three advanced learning algorithms for the

control of automotive internal combustion engine with the objectives of reduced emissions and

improved performance.

Using the actual data from a test vehicle with a V8 engine, specific neural networks are trained

offline to simulate engine torque (TRQ) dynamics and exhaust air-fuel ratio (AFR) dynamics for

the purpose of the identification of controllers. We first build a multi-input multi-output neural

network model for the engine TRQ and AFR processes with time-lagged recurrent neural networks.

Reasonably good model for the TRQ and AFR processes is generated. This model is utilized for

the engine control with adaptive critic learning technique. However, considering the coupling of

the TRQ and AFR signals for modeling into a multi-input multi-output system is undesirable due

to the different nature of the processes involved, two separate neural network models are employed

to model the TRQ and AFR processes. A multilayer feedforward neural network is utilized for

the identification of TRQ process due to the fact that the torque generation process appeared to be

quasi-static and governed mostly by nonlinear properties. Considering the AFR process dominated

by purely dynamic effects, we choose nonlinear output error model to model AFR dynamics.

Validation results demonstrate that both models simulate the engine processes with a high degree

of accuracy. Thus, these two models are later utilized for the engine control with neural sliding

mode control technique and the biological adaptive nonlinear control strategy.

Next, we develop adaptive critic designs for self-learning control of automotive engines. A

xi



SUMMARY (continued)

class of adaptive critic designs that can be classified as (model-free) action-dependent heuristic

dynamic programming is used. The present work uses a system, called “critic,” to approximate the

cost function in dynamic programming and thus to achieve optimal control. Our research results

have demonstrated that adaptive dynamic programming provide a powerful alternative approach

for engine calibration and control. A distinct feature of the proposed technique is that the con-

trollers can learn to improve their performance during the actual vehicle operations, and will adapt

to uncertain changes in the environment and vehicle conditions.

We then develop a new approach for the calibration and control of spark ignition engines using a

combination of neural networks and sliding mode control technique. Two parallel neural networks

are utilized to realize the equivalent control and the corrective control of the sliding mode control

design. The calculation of equivalent control is realized by adaptively learning without knowing

the plant dynamics. The proposed adaptation scheme directly results in a chatter-free control

action for the corrective control. The distinct feature of the present technique is that the learning

and control are carried out simultaneously, which allows the neural network controller to be further

refined and improved in real-time vehicle operation through continuous learning and adaptation.

Inspired by the functions of baroreceptor reflex, an adaptive nonlinear control strategy is devel-

oped with applications to the control of the automotive engine. The biological adaptive nonlinear

control strategy is realized by a parallel controller. The controller consists of a linear controller

and a nonlinear controller that interact via a reciprocal lateral inhibitory mechanism. In the linear

operating region, the linear controller takes control. If the controlled process is far away from

the linear regime or is disturbed by noise, the output of linear controller may be inappropriate,

and therefore the nonlinear controller is activated to compensate for the inadequacy of the linear

controller in a dynamic environment. These situations can be addressed by adjusting the amount

xii



SUMMARY (continued)

of lateral inhibition and learning the characteristics of the controlled system such that desirable

controller outputs are produced in any particular operating region. The novelty of the biological

adaptive nonlinear control strategy is that each controller modulates the other controller via the

reciprocal lateral inhibitory connections.

Finally, we apply intelligent optimization method to the intelligent price-responsive manage-

ment of residential energy use, with an emphasis on the use of home battery connected to the

power grid. For this purpose, a self-learning scheme that can learn from the user demand and the

environment is developed for the residential energy system control and management. The idea

is built upon a self-learning architecture with only a single critic neural network instead of the

action-critic dual network architecture of typical adaptive dynamic programming. The single critic

design eliminates the iterative training loops between the action and the critic networks and greatly

simplifies the training process. The advantage of the proposed control scheme is its ability to ef-

fectively improve the performance as it learns and gains more experience in real-time operations

under uncertain changes of the environment. Therefore, the scheme has the adaptability to obtain

the optimal control strategy for different users based on the demand and system configuration.

Simulation results demonstrate that the proposed scheme can financially benefit the residential

customers with the minimum electricity cost.

xiii



1 INTRODUCTION

The tightening regulations on emissions in spark ignition internal combustion engines from govern-

ments, combined with the demanding requirements for better fuel economy and high expectations

from customers, present significant challenges and opportunities for the automotive industry. In

the past few years, numerous researches and applications have been conducted in the development

of efficient and accurate engine control and calibration techniques. Furthermore, the introduction

of microprocessor based control permits the automotive manufacturers to design cleaner, more fuel

efficient, better performing and more reliable engine systems.

There has been considerable discussion of the importance of distributed energy storage, in-

cluding batteries in the home, as a way to create more price-responsive demand and as a way to

integrate renewable energies more effectively into power grids. Many large and small-scale en-

ergy storage resources have been installed in power systems. Distributed storage resources are

now penetrating rapidly towards commercialization as competitive alternatives to the large-scale

centralized generations. The key behind this development is the optimal operational scheduling of

storage resources.

The present dissertation presents results obtained in the past few years and discusses future

research topics. Results obtained in the present work constitute improvements to existing results

in the literature and new applications. In particular, we have developed adaptive critic learning

technique, neural sliding mode control algorithm and baroreceptor reflex inspired nonlinear control

strategy for the automotive engine control. We also developed a self-learning scheme for the

control and management of residential energy system.

1
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Some of the research results presented in this dissertation have been reported in three journal

papers [56], [58], [85] and five conference papers [57], [59], [65], [66], [67].

In the rest of this chapter, we present some background materials regarding artificial neural net-

works, adaptive dynamic programming, automotive engine and emission control, and residential

energy system.

1.1 Artificial Neural Networks

An artificial neural network (ANN) is a computational model that tries to emulate biological neu-

ral networks found in living organisms. It is a massively parallel distributed processor made up of

simple processing units, which has a natural propensity for storing experimental knowledge and

making it available to users [51]. The processing capability of ANN is stored in the inter-unit

connection strength obtained by a process of adaptation to a set of training patterns for specific

problems. In most cases, an ANN is an adaptive system that is utilized to model complex relation-

ships between inputs and outputs or to find patterns in data.

The two distinctive information processing capabilities, that is, massively parallel distributed

computing and the ability to learn and generalize, make it possible to solve complex and large-scale

problems in the real world. An ANN is composed of a large number of simple processing neu-

rons that cooperate with each other by numerous adjustable links to perform a parallel distributed

processing. Other important capabilities are:

• Input-Output Mapping: through learning, ANNs are capable of modelling complex functions

from complicated, corrupted or imprecise data with little or no a priori knowledge for the

problem at hand.
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• Nonlinearity: an ANN, made up of an interconnection of nonlinear neurons, is itself nonlin-

ear.

• Adaptivity: ANNs have a built-in capability to adapt their synaptic strength to changes in

the surrounding environment.

• Fault Tolerance: due to the distributed nature of information stored in the network, partial

destruction of a network leads to the corresponding degradation of performance rather than

catastrophic failure.

The important property of a neural network is the ability of the network to learn from the en-

vironment, and to improve through learning. In general, there are three approaches for learning:

supervised learning, unsupervised learning and reinforcement learning. Supervised training in-

volves a mechanism of learning in which the task of learning is mapping from an input space to

a target space with desired output. Unsupervised learning is where the network has to figure out

the meaning of the inputs without outside help. Reinforcement learning concerns with how an

agent take actions in an environment so as to maximize a long-term reward. The selection of learn-

ing method largely depends on the type of neural network and the characteristics of the specific

problem.

There are many different types of ANNs. Each type of neural network has been designed

to tackle a certain class of problems. The abilities of different networks can be related to their

structure, dynamics and learning methods. Some of the most popular examples are:

• Multilayer feedforward neural networks

• Radial-basis function networks

• Hopfield networks
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• Recurrent neural networks

• ART networks

• Kohonen self-organizing maps.

ANNs have seen an explosion of interest over the last few decades, and are being success-

fully applied across an extraordinary range of problem domains, in areas as diverse as finance,

medicine, engineering, geology and physics. Indeed, anywhere that there are problems of predic-

tion, classification or control, neural networks are being introduced. A few representative examples

of problems to which neural networks have been applied successfully are:

• Detection of medical phenomena

• Stock market prediction

• Service usage forecasting

• Monitoring the condition of machinery

• Short and long-term load estimation

• Agricultural production estimations.

With the integration with conventional computing technologies, artificial intelligence, and re-

lated subjects, ANNs will be more powerful and play more important roles in people’s lives in the

future.
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1.2 Adaptive Dynamic Programming

There have been growing interests in adaptive dynamic programming (ADP) in the past three

decades [13], [16], [20], [31], [33], [85], [86], [87], [94], [108], [119], [123], [134], [137]. In the

literature, ADP is also referred to by several different names including “adaptive critic designs,”

“reinforcement learning,” “neuro-dynamic programming,” “approximate dynamic programming,”

and “asymptotic dynamic programming.” In the present work, we will use the term “adaptive

dynamic programming” as in [94] to refer to a neural network-based scheme that approximates

dynamic programming solutions in the general case, i.e., approximates optimal control over time

in nonlinear environments. There are many problems in practice which can be formulated as cost

maximization or minimization problems. Examples include error minimization, energy minimiza-

tion, profit maximization, and the like. Dynamic programming is a very useful tool in solving

these problems. However, it is often computationally intractable to run dynamic programming due

to the backward numerical process required for its solutions, i.e., due to the “curse of dimensional-

ity” [18], [36]. Over the years, progress has been made to circumvent the “curse of dimensionality”

by building a system, called “critic,” to approximate the cost function in dynamic programming

[13], [108], [109], [119], [134]-[137]. The idea is to approximate dynamic programming solu-

tions by using a function approximation structure such as neural networks to approximate the cost

function.

Generally speaking, there are three design families of ADP: heuristic dynamic programming

(HDP), dual heuristic programming (DHP), and globalized dual heuristic dynamic programming

(GDHP) [108], [109], [134], [136]. A typical ADP scheme consists of three modules (critic, model,

and action) that can be implemented by using neural networks. These three modules provide func-

tions of decision, prediction, and evaluation, respectively. When in ADP the critic network (i.e., the
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evaluation module) takes the action/control signal as part of its inputs, the designs are referred to

as action dependent ADP (ADADP). The difference among three designs is the output of the critic

module. HDP adapts critic whose output is the approximation of the cost function. DHP adapts

critic the output of which is the approximation of the first-order derivatives of the cost function.

GDHP which combines both HDP and DHP outputs the approximation of the cost function and

the approximation of the first-order derivatives of the cost function. The distinguished feature of

ADP approach is that the cost function and the control law are approximated via parametric struc-

tures, whose parameters are adapted and improved over time by solving the recurrent relationship

of dynamic programming.

Researchers have shown the close relationship between ADP and reinforcement learning [16],

[123], [134], [136]. For example, the well-known temporal difference method in reinforcement

learning is closely related to HDP, and the famous Q-learning method is closely related to AD-

HDP [123]. One of the major differences is the way in which the cost function is represented. In

ADP, the cost function is approximated using networks which are built up from differentiable func-

tions such as neural networks; while in reinforcement learning methods, the cost/value function is

usually stored in look-up tables (whicle implies a finite or discrete set of states) [124].

An ADP consists of a parametric structure, the actor, which approximates the control law, and

another parametric structure, the critic, which approximates the cost function that tries to captures

the effect that the control law will have on the future cost. The ADP method determines the optimal

control law for a system by successively adapting the actor and the critic. The adaptation process

starts with a non-optimal, arbitrarily chosen control by the actor. The critic then provide guidance

for the actor on how to improve the control law toward the optimal solution at each successive

adaptation. In return, the actor is used to update the critic toward the cost function. An algorithm

that successively iterates between these two operations converges to the optimal solution over
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time. The essence of the ADP methodology is to iteratively build a link between present actions

and future consequences via an estimate of the cost function and/or its derivatives.

1.3 Engine and Emission Control

Internal combustion engine is the most frequently used power source for automobiles. The internal

combustion engine is a heat engine that converts the chemical energy from the fuel into heat energy,

and then into mechanical energy for the power transmitted to the output shaft. Fuel is burned with

the air inside the engine in a process of the combustion, which greatly raises the temperature and

the pressure of the gases inside the engine. The result is the huge expansion within the engine

that rotates the output crankshaft. The output crankshaft is connected to the transmission to propel

the automotive. In general, the automotive internal combustion engine is a reciprocating engine

having pistons that reciprocate back and forth in cylinders internally within the engine. Most of

automotive reciprocating engines are four-stroke engines. Four-stroke engines are characterized

by two alternate cycles. In the first cycle, including the intake stroke and compression stroke, the

cylinder is filled with fresh air from the intake manifold and the air is compressed. In the second

cycle, including power stroke and exhaust stroke, the gas is combusted and expanded, and the

emissions are transferred to the exhaust pipe.

Automotive internal combustion engine control is considered as one of the most difficult and

complex control problems. The difficulties of the engine control lie in the following aspects.

Firstly, the processes in the engine to be controlled are usually characterized as highly nonlinear

multiple input multiple output systems with complicated interaction among variables. Secondly,

the production variation and ageing of the engine may cause a degradation of engine performance

and an increase in emissions, which is due to the poor adaption capability of the conventional
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engine control system. Thirdly, there are many different operational zones in the engine and the

optimal control strategy at one such zone might perform completely differently in the other zone.

Furthermore, special considerations are needed for different operating modes, including startup,

idle, running, and braking, with the separate techniques. Conventional methods divide the op-

erating regime into many zones with linear models constructed for each zone, and, accordingly,

utilize separate linear controllers for each region. However, it is not practically feasible in the real

implementation.

To alleviate these difficulties, the design of universal intelligent controllers with adaptability

needed to be considered. Such controllers need to be general enough that it would cover the whole

operational range of the controlled system and, at the same time, possess the ability to operate over

highly nonlinear dynamics. Moreover, the controller should have learning ability to improve the

performance during the actual vehicle operations, and will adapt to uncertain changes in the envi-

ronment and vehicle conditions. Another important feature of the controller is the self-calibration

of the engine without the need of service station. The neural-network-based learning control design

approaches together with neural network modelling of the engine processes provide solutions for

overcoming the problems associated with traditional control methods. These approaches enable us

to design engine control systems with minimal a priori knowledge of the processes involved and

allow realtime adaptation of engine controllers due to uncertain changes in the environmental and

vehicle conditions. Once fully developed, those techniques, may offer promise for use as real-time

calibration and control tools.

Emissions generated by automobiles are one of the major sources of air pollution in the United

States. Ever since the introduction of emission control regulations in the 1960’s, great efforts had

been made to reduce the toxicity of exhaust leaving the engine. Theoretically, emissions can be

controlled to a minimum possible level by controlling the engine combustion process so that the
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Figure 1.1: The simple functional decomposition of the system

air and fuel are mixed at certain desired ratio.

Figure 1.1 shows the simple functional decomposition of the combustion module with basic

processes [74]. In conventional port fuel injection gasoline engine, fuel is injected into the intake

port of each cylinder by adjusting the fuel injector plusewidth. The plusewidth is the length of the

time the fuel injectors are open to supple fuel to the engine, which roughly determine the amount of

the fuel being injected into the intake manifold. Air intake is controlled to combined with the fuel to

yield the desirable mix. Then, the spark plugs will generate the sparks to ignite the air/fuel mixture

for the start of the combustion process in cylinders. The timing of spark ignition and the ratio of

air/fuel mixture determine the torque and emissions generated by the combustion process. Finally,

the torque is delivered to the powertrain and the emissions to the exhaust systems. In general, air

to fuel ratio (AFR) ranges from 12:1 to 18:1 in spark ignited engines, which generates different

emission levels with hydrocarbons (HC) and carbon monoxide (CO) highest at rich conditions and

nitrogen oxides (NO) emissions peaking near 16:1 [21].

A three-way catalyst (TWC) is widely used to simultaneously convert emissions of CO, HC

and NO by both oxidizing unburned HC and CO and reducing NO contained in the precatalyst

engine exhaust. With the purpose of effective operation of the TWC system, the engine must work
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between excess oxygen (lean) and excess fuel (rich) cycles [97]. To prevent lean tailpipe emissions,

the excess oxygen in the precatalyst exhaust gas is stored in the catalyst through chemisorption with

the cerium oxides contained in the catalyst. To prevent rich tailpipe emissions, oxygen is released

from the catalyst by oxidizing the hydrocarbons and carbon monoxide.

In theory, high simultaneous conversion efficiencies for HC, CO and NO can be obtained only

in a narrow range around stoichiometric value of AFR, which is equal to approximately 14.67.

Therefore, it is critical to control the AFR close to stoichiometry to minimize exhaust emissions.

Figure 1.2 depicts the typical characteristics of a three-way catalytic converter [138]. As can be

seen in Figure 1.2, it is desirable to maintain the air to fuel mix at 14.67 avoiding lean or rich values

since both exhaust emissions and engine torque are affected by actuators simultaneously and the

control of the engine torque also becomes an issue. The conversion efficiency of the catalyst is

very sensitive to the variation of the ratio as Figure 1.2 shows, and even 1% deviation from the

stoichiometric ratio results in up to 50% degradation in the conversion of one or more pollutants.

Generally, the goal of control strategy are given in terms of torque and emissions. Based

on the data collected from several sensors measuring emissions and car dynamics under various

driving conditions, embedded controllers compute the control actions to apply [14]. Given the

ever increasing computational power of microcontrollers, it is possible to find and design control

algorithms with guaranteed properties that can reduce substantially emissions and gas consumption

while maintaining the performance of the vehicle.

Due to the complex nonlinear dynamical characteristic of modern automotive engines, the ARR

and torque (TRQ) control problem, as they are known, turn out to be very difficult to solve. These

control problems have been investigated for many years by many researchers (see, e.g., [2], [85],

[93], [105], [116], [138], and the references cited therein). Almost every branch of the modern and



11

14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9 15
0

10

20

30

40

50

60

70

80

90

100

Air−to−Fuel Ratio

H
C

, C
O

, N
O

 C
on

ve
rs

io
n 

E
ffi

ci
en

ci
es

 (
%

)

NO

HC

CO

Figure 1.2: Efficiency of a typical tree-way catalyst converter



12

classical control theory has been researched for the control of automotive engines. In terms of con-

trol approaches, the use of nonlinear feedforward controllers [49], adaptive controllers [12], [68],

[114], [115], [128], feedback linearization [48], Smith predictors [99], observer based controllers

[27], [107], [29], sliding mode controllers [106], [122], [138], linear quadratic regulators [102],

[103], H∞ controllers [96], [130], and model predictive controllers [98] can be mentioned.

Classic feedback controllers utilize two controllers for an accurate control of AFR [7], [52].

The first closed-loop controller which relies on information coming from the exhaust gases oxy-

gen sensor accounts for the steady state of AFR, while the second controller addresses the transient

performance by considering an open loop controller based on transient information coming from

the engine. Many of the current production fuel injection controllers utilize feedforward control

based on a mass air flow sensor plus a proportional integral type feedback control to control AFR.

This method cannot produce desirably accurate control performance in highly nonlinear and dy-

namic engines. In the early nineties, much of the research has centered around model-based AFR

controller [6], [103]. A fine control of ARF requires an accurate mathematical description of an

accurate model of various processes of the whole engine. However, for highly nonlinear and com-

plex engine system, the precise mathematical models of the underlying processes are not available

or not fully developed. Often, only input-output measurements are available. Furthermore, model-

based controllers with no adaptive capability have significantly limited their implementation in

a production line scenario. Therefore, a technique with self-adaptive and learning ability for an

individual engine is clearly preferable. Neural networks with good generalization and inherent

adaptivity become attractive techniques to be investigated for an optimal control of AFR. In [2]

and [9], a direct inverse controller based on recurrent neural network was built. The recurrent neu-

ral network controller compensates for the wall wetting dynamics and estimates the right amount

of fuel to be injected to meet the target AFR during engine transients. In [105], Park proposed feed-
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back error learning neural networks, which was inspired by the way the central nervous system of

the brain controls and learns voluntary movement, for AFR control. The promising attribute of the

approach is the adaptation ability, which reduces the tedious calibration efforts. In [95], Manzie

developed a control scheme based on radial basis function neural network for the fuel injection

problems. The proposed approach requires no a priori knowledge of the engine systems, and on-

line learning is achieved using gradient descent updates. Recently, adaptive critic designs, which

approximate optimal control over time in noisy nonlinear environment, has been implemented for

self-learning control of automotive engines [85], which is considered in the Chapter 3. The distinct

feature of the technique is the controller’s real-time adaptation capability based on real vehicle data

which allows the neural network controller to be further refined and improved in real-time vehicle

operation through continuous learning.

1.4 Residential Energy System

There has been wide attentions and increasing interest in various renewable energy resources due

to the growing environmental concerns over the use of fossil fuels for electric power generation.

Of the many alternatives, wind and solar photovoltaic (PV) are considered to be more promising

for continually increasing energy demand than others. They are abundant, inexhaustible, and the

sources for clean energy usage. However, they are not as practical as one would hope. Windmills

require a windy location, and the power generation of PV is variable and intermittent suffering

from uncertainty. To solve this problem, energy storage systems are installed to store energy from

renewable energies.

Over the last past few years, the application of storage resources in power systems have stirred

wide attentions and interest. Distributed storage resources are now penetrating rapidly towards
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commercialization as competitive alternatives to the large-scale centralized generations [24]. Dis-

tributed storage resources includes energy storage resources, renewable energy resources, and other

small-scale generations dispersed on the electrical distribution networks. There are many small and

large-scale energy storage resources installed in power systems. The interest resulted from several

reasons. First, there are more efficient storage resources with lower cost and higher power output

in the market due to advances in technologies. Due to the variable and intermittent nature of renew-

able resources output, the integration of renewable energy resources must include corresponding

energy storage resources. The efficient and low emission distributed storage resources are consid-

ered as competitive alternatives to large-scale centralized generator technologies. Second, under

restructuring and deregulation, electricity supply industries in many countries have been trans-

formed from centralized and regulated power systems to deregulated market-based systems. As

competitive retail markets for electricity begin to open, the pressure to supply premium power has

promoted the use of storage resources to improve power quality and reliability during periods of

generation shortages or transmission congestion. Storage systems can provide energy during the

high market price periods. This feature makes energy storage systems particularly suitable as a

physical hedge against energy market volatility. Therefore, retailers and end users can use energy

storage systems to supply demand and reduce the electricity cost instead of purchasing electrical

energy with high cost from the electricity market. Meanwhile, energy storage systems are also

alternatives to expensive reinforcement of generation and capacity in the transmission and distri-

bution networks. In this case, storage systems are utilized to supply the peak power or network

capacity. Finally, the tightening environmental requirements on clean energy with lower emission

and environmental impacts have led to more usage of storage resources in the commercial reality.

The old or less efficient conventional fossil-fuel power plants are replaced or avoided using with

the energy storage systems.
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Recent developments and advances in energy storage and power electronics technologies are

making the application of energy storage technologies a potentially viable solution for modern

power applications, allowing the system to be operated in a more flexible and controllable manner

[25]. Energy storage system could be utilized for improving reliability, providing a source of

energy when the production is low or during periods of high demand. Some of these energy storage

systems are battery, hydrogen, and full cells. Among them, the battery energy storage system is

one of the most promising technologies [76].

For short duration requirements, battery storage system can bring frequency control and sta-

bility, while for longer duration requirements, it can bring energy management or help to reserve

energy. Battery storage system also can be used to complement primary generation as they can be

used to produce energy during off peak periods. This energy produced can be stored as reserve

power which will be used during the evening peak hours.

The advantages of battery used as the storage system in the electric supply network are sum-

marized as follows.

1. It can reduce the operation cost when used as a generation resource combined with the

electric utility network. It can increase the lifespan of existing transmission and distribution

equipment and defer their upgrade.

2. It provides load-smoothing by storing excess energy from other energy sources, i.e., photo-

voltaic, when the demand is low, and to provide extra power when the demand is high.

3. It can be used to reduce the load during the peak hours. Therefore, transmission line stability

and reliability of utility service for the residential households are guaranteed.

4. It can facilitate the inclusion of renewable energies into the electric power grid. When used
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with renewable resources, battery can improve the efficiency and usability of PV and wind

generated electricity by making its generation coinciding with peak load demand.

5. It can be used as an emergency backup power system in case of power outage. During the

blackout, battery can be used as an independent electricity generation source without any

warm-up time necessary.

Therefore, battery should be widely utilized as a power resource for industrial and residential

customers.

Electric utilities charge time-of-use electric rates, which feature higher demand charges and

energy charges during on-peak periods than during off-peak periods. For economical operation

and control purposes, electric power users with hybrid systems are interested in the availability and

the dispatch of different power supplies on an hourly basis to the load. This could be formulated as

an optimization problem under uncertainty. Taking into account the utility rate structure, as well as

the duration of the on-peak and off-peak periods, the optimization problem must determine what

fraction of the on-peak period load should be met by what energy sources, how to optimize the

dispatch of the hybrid generation system to minimize the cost, and when to schedule the charge or

discharge of the battery.

For hybrid systems with batteries and renewable energy resources, and without either diesel

generators or the power grid, the dispatch control strategy is simple: if there is excess energy left

after meeting the residential demand, the battery gets charged, and the battery discharges if the

load exceeds the renewable energy. However, the control strategies of a hybrid system can become

very complex if the system includes either a diesel generator or the power grid, as it is necessary to

determine how the batteries are charged/discharged and what element (batteries or diesel generator

or power grid) have priority to supply energy when the load exceeds the energy generated from
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renewable sources.

Operational scheduling of storage resources in the power system has been the subject of many

studies. The simplest and most straightforward strategies are predefined rules [19], [28], [46], [47]

[63], [92]. A set of IF-THEN rules are created according to the corresponding scenarios. When

a specific scenario happens, the operating strategy employs some predetermined rules. For exam-

ple, one rule would be: if there is a deficit of power and the battery performance can meet the

residential demand, the load is met by the battery. Rule-based strategies are relatively simple and

can be adapted to a lot of scenarios. However, limitation is obvious that every scenario has to

be considered in advance, which is not practical, especially for large complex system. Further-

more, the solution obtained is, in general, not the optimal solution considering the system load

and characteristics of the energy sources. Thus, predefined rules cannot fully utilize the bene-

fits of the renewable energy sources and storage system for reducing the cost of supplying hourly

load. A large number of more complex optimization techniques have been applied to solve this

problem, such as dynamic programming [15], [88], [90], [132], linear programming [26], [30],

Lagrange relaxation [89], and nonlinear programming [113]. These techniques aim at reducing

either computation time or memory requirements. Recently, computational intelligence method-

ologies including fuzzy optimization, genetic algorithm, simulated annealing method and particle

swarm optimization approach have been employed to deal with the operation cost of hybrid energy

systems with storage systems [24], [25], [43], [76], [129]. Generally, these heuristic approaches

can provide a reasonable solution. However, these approaches are not able to adapt to frequent and

swift load changes and real-time pricing due to their static nature. Therefore, we develop in the

Chapter 6 an operational scheme with self-learning ability and adaptability to optimize residential

energy systems according to system configurations and user demand. The self-learning scheme

based on adaptive dynamic programming has the capability to learn from the environment and
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the residential demand so that the performance of the algorithm will be improved through further

learning.



2 NEURAL NETWORK MODELLING FOR THE TEST ENGINE

The control task always requires the availability of a suitable model of the process to be controlled

of the engine. The characterization of the model is an important step because the consistency of the

model with respect to the actual process will affect the reliability of the controller developed for

the process. Any errors in the modeling, therefore, will be transferred to the controller. Thus, ap-

propriate identification methodologies have to be developed to adapt control or diagnosis schemes

to different engines and make them robust with respect to aging effect and vehicle-to-vehicle vari-

ability.

In the framework of engine control, advanced research mainly relies on model-based tech-

niques. Mean value engine models (MVEMs) , which allow describing the main dynamic pro-

cesses as function of the mean values of the most significant engine variables, were originally

proposed in [7] and [53]. MVEMs are suitable for online AFR control operation since they are

based on a mean value scale and they allow observing the dynamic processes with a good level

of accuracy and a limited computational demand. Despite their intrinsic accuracy, there are some

disadvantages that limit the application of this method. One disadvantage is that some physical

effects are not directly included, for example, EGR. Furthermore, the nonlinear parameters of the

model are determined by the static maps as function of engine speed and the load. In order to solve

these problems, adaptive methods have been utilized to estimate the state and tune the parameters

to make use of real-time measurements, such as in [10], [107].

Neural networks, which is one of the most attractive techniques for simulating highly nonlinear

and dynamic systems, are good candidates for the AFR process modelling. AFR process is usually

characterized as highly nonlinear multiple input multiple output systems with high degree of inter-

action among the variables and lots of constraints imposed. Moreover, the so-called wall-wetting

19
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phenomena and variable time delays compound the difficulties of the AFR estimation. Cylinder

AFR is measured in an indirect way by measuring a wide-range AFR sensor mounted in the ex-

haust pipe. As a result, there are three time-delays included in the measured signal: the injection

delay, the combustion delay and the transportation delay [44]. The measured AFR is expressed

as: AFRs(t) = AFRc(t − tD) and tD = tinj + tburn + ttrans where tinj is the injection delay, tburn

is the combustion delay and ttrans is the transport delay. The measured AFR is then divided by

the stoichiometric AFR for gasoline (14.67). Obviously, a method that would be able to capture

the average contribution of all cylinders and be robust, fast reacting and insensitive to noise is

required for this complicated process. Neural networks with high mapping capabilities and good

generalization ability provide good solutions for such modelling.

It had been stated by many [3], [4], [62], [111], that if the process can be described by a

nonlinear function that represents a nonlinear mapping between inputs and outputs, then a neural

network containing one hidden layer should be capable of approximating this function sufficiently

well. This is almost guaranteed provided that the neural network has sufficient number of neurons

in its forward part, the size and distribution of the training sequences is appropriately chosen and

the training algorithm is efficient enough for the representation of the nonlinear system [55]. Fur-

ther, it is proposed by many [3], [4], [17], and [62] that if a multilayer feedforward neural network

can be constructed to approximate any nonlinearity, then by adding a feedback loop to construct

a recurrent element, it should be able to approximate the state of the nonlinear dynamical system

in the given range of the training set. This can be accomplished by different methods such as the

addition of dynamical memory elements at the output, reminiscent to Hopfield networks as in [17],

[62] or by constructing more complicated fully recurrent network as in [3], [4]. We consider non-

linear output error (NNOE) model in our attempts to model AFR process and feedforward neural

network to model TRQ process.
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2.1 Engine Description

A test vehicle with a V8 engine and 4-speed automatic transmission is instrumented with engine

and transmission torque sensors, wide-range AFR ratio sensors in the exhaust pipe located before

and after the catalyst on each bank, and exhaust gas pressure and temperature sensors. The ve-

hicle is equipped with a dSPACE rapid prototyping controller for data collection and controller

implementation. Data are collected at each engine event under various driving conditions, such

as federal test procedure (FTP cycles), as well as more aggressive driving patterns, for a length

of about 95,000 samples during each test. The engine is run under closed-loop fuel control using

switching-type oxygen sensors. The dSPACE is interfaced with the powertrain control module in

a by-pass model. Due to different complex nature of the TRQ and AFR processes, two neural net-

work models are built for these processes with structures compatible with the mathematical engine

model developed by Dobner [38], [39] and others.

2.2 Identification of Engine Torque using Feedforward Neural Network

In view of the fact that the torque generation process appeared to be quasi-static and governed

mostly by nonlinear properties, it is assumed that the simple multilayer feedforward neural net-

work should be sufficient for the process identification. Figure 2.3 shows the structure of the

model. The TRQ model is represented by neural network containing four input neurons, one hid-

den nonlinear layer using tansig function (i.e., the hyperbolic tangent function) in Matlab [35]

with ten neurons, and one linear output neuron. The inputs to the model are: TPS (throttle po-

sition), MAP (manifold absolute pressure), RPM (engine speed) and SPA (spark advance) where

TPS is the control signal and the other three inputs are reference signals compatible with the con-

trol signal at any operating conditions. The output is TRQ. The target is TRQ∗ which represents the
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Figure 2.3: Structure of the engine torque model

measured values of engine torque generated by the engine using conventional engine controllers

in open- and closed-loop operation. Other parameters have also been tried, such as manifold air

temperature, coolant temperature and exhaust gas recirculation, for modelling the TRQ. However,

all these extra parameters do not improve the modelling accuracy at all.

Validation results for the TRQ modelling of engine are shown in Figures 2.4–2.6. The first

30000 data points are used for training and the rest 65000 data points are used for validation.

Figures 2.4–2.6 display only 10000 data points in each case. The range of these displays is 60000–

70000 for validation data. In these figures and all displays to follow, all values are normalized

to a range between −1 and 1 for convenience in the neural network training. Both the model

networks (TRQ and AFR) were initialized to small random initial weights between −0.18 and

0.18. The error backpropagation learning algorithm is used for the training of the network model.

Figure 2.4 shows the inputs of the feedforward neural network model for TRQ process, while

Figure 2.5 shows the output of neural network and the target TRQ. Fig. 2.6 shows the relative

deviation of the model from TRQ∗, that is, (TRQ − TRQ∗)/max(TRQ∗). Due to the high degree

of accuracy achieved from Figure 2.5 and 2.6, we feel confident that feedforward neural network

is fully capable of representing nonlinear input-output mapping of the torque generation process.
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2.3 Identification of Engine Air-Fuel Ratio using Nonlinear Output Error Model

2.3.1 Manifold Fuel Film Dynamics

In this section a physical insight into the intake manifold fuel dynamics is given through the de-

scription of the mean value engine model [7], [53]. For both single and multi-point spark ignition

engines, a two phase fuel flow occurs in the intake manifold, with a thin film of fuel on manifold

walls and droplets transported by the main stream of air and fuel. It is assumed in [9] that 1) at any

instant uniform conditions exist throughout the intake manifold; 2) a fraction Df of the injected

fuel is deposited on the wall as liquid film; 3) the evaporation rate of liquid fuel is proportional to

the mass of fuel film through a first order process with time constant τ . The fuel flow entering the

combustion chamber ṁf,e is obtained by considering both the vapour flow ṁv,e and the liquid flow

ṁl,e (Couette flow). Thus, the mass balance for liquid (ml) and vapor (mv) can be expressed by

the following system [11]:

ṁl = Dfṁf,i −
ml

τ
− ṁl,e (2.1)

ṁv = (1−Df )ṁf,i +
ml

τ
− ṁa,e

mv

ma

(2.2)

and the fuel flow entering the combustion chamber is:

ṁf,e = ṁv,e + ṁl,e =
mv

ma

ṁa,e + ṁl,e. (2.3)

By following the relationship (2.3), the mixure strength of the flow entering the cylinder is given

by:

AFR =
ṁa,e

ṁf,e

. (2.4)

The dynamics above derived from general physical consideration can be followed to model

any systems, such as continuous and pulse systems. These systems are characterized by different

manifold geometry and model parameters (i.e., τ and Df ).
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2.3.2 Structure of Model

Considering the AFR process dominated by purely dynamic effects, we choose nonlinear output

error model (NNOE) [101], as Figure 2.7 shows, to model AFR dynamics. In practice, NNOE

model has been used frequently for function approximation [8], [101]. The general form of the

NNOE is:

ŷ(t|θ) = F [ŷ(t− 1|θ), ŷ(t− 2|θ), . . . , ŷ(t−m|θ),

u(t− 1), . . . , u(t− n)] (2.5)

where ŷ(t|θ) is the output, θ is the adjustable parameter, u(t) are reference inputs, the indices m,n

define the lag space dimensions of external inputs and feedback variables, and F is a nonlinear

mapping function realized by a recurrent neural network. Figure 2.8 shows a recurrent neural

network.

Starting from the above relationships, the recurrent neural network implemented in the present
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work can be represented in the following short form:

Ŷ (t|θ) = f

( n∑
i=1

vig

( m∑
j=1

wijϕj(t)

))
(2.6)

where n is the number of nodes in the hidden layer and m the number of input nodes, ϕj(t) denotes

the inputs to the network including the recurrent input from the output Ŷ (t|θ), vi represents the

weight between the ith node in the hidden layer and the output node, while wij is the weight con-

necting the jth input node and the ith node in the hidden layer. These weights are the components

of the parameters and ϕj(t) is the jth element of the input.

2.3.3 Input Variables

As it has been shown in the Section above, the actual AFR (2.4) is computed as the ratio between

the air flow rate and the fuel flow rate entering the engine combustion chamber (i.e., leaving the

manifold). From the past experiments and experiences, it is customary to assume that the instan-

taneous air mass flow rate to the engine has a strong dependence on both the manifold pressure

and the engine speed (i.e., engine state variables). The actual fuel flow rate to the engine (2.3)

depends on the fuel dynamics which is controlled by the amount of injected fuel and depends on
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the two-phase process which takes place inside the manifold. This has been described through

Equations (2.1) and (2.2) and depends on the set of parameters which in turn can be assumed to be

the function of MAP and RPM. Considering the manifold as a multi-input single-output system,

the important input variables are MAP, RPM and FPW. Thus, the mathematical model of AFR is:

ˆAFR(t|θ) = F [ ÂFR(t− 1|θ), ˆAFR(t− 2|θ), . . . , ˆAFR(t− r|θ), u(t− 1), . . . , u(t−m)] (2.7)

where u = [MAP,RPM,FPW].

2.3.4 Simulation Results

The data range for training NNOE model is from 20000–50000. The NNOE model is trained

by Levenberg-Marquardt optimization algorithm in the batch mode. Figure 2.9–2.11 show the

simulation results for the validation of the NNOE model. Figure 2.9 shows the inputs of the NNOE

for 5000 points, while Figure 2.10 shows the output of NNOE model and the target AFR. Figure

2.11 shows the relative deviation of the model from AFR∗, that is, (AFR − AFR∗)/max(AFR∗).

All these figures indicate a very good match between the real vehicle data and the NNOE model

output.



30

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−1

0

1

M
A

P

Input data

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−1

0

1

R
P

M

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−1

0

1

Events

F
P

W

Figure 2.9: Illustration of inputs of NNOE for the engine AFR modelling
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3 ADAPTIVE CRITIC LEARNING TECHNIQUES FOR ENGINE TORQUE AND

AIR-FUEL RATIO CONTROL

3.1 Introduction

In an effort to design more advanced engine control algorithms with the objectives of reduced emis-

sions and improved performance, we develop and evaluate a learning control technique originated

from dynamic programming. Dynamic programming is a theory developed back in the 1950’s [18]

for optimal control of nonlinear systems with the objective of minimizing a performance index that

is defined as a summation of a utility function from the present time into the future. In general,

using dynamic programming, such an optimal control design for nonlinear systems is only theoret-

ically possible. Moreover, in practice, it has been known for years that due to the so-called “curse

of dimensionality” [36], dynamic programming can only be applied to simple, small-scale control

problems.

Automotive engines are known to be complex nonlinear dynamical systems. The control prob-

lem of automotive engines has been investigated for many years by many researchers. Almost

every branch of the modern and classical control theory has been researched for the control of

automotive engines. The present study adds another dimension to the existing rich literature on

automotive engine control.

The uniqueness of the present study comes from the following idea. Consider a currently exist-

ing control algorithm implemented in a production vehicle. The algorithm is designed according to

certain criteria and calibrated for vehicle operation over the entire operating regime. In a sense, the

algorithm has been optimized for the engine in terms of its performance, fuel economy and tailpipe

emissions through a significant effort in the research and development and calibration process. To

33
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further improve the engine performance through controller design, one can go through the tradi-

tional calibration and control procedures in place today. An alternative to this traditional approach

is to use the neural network-based learning control design approach initiated in the present work.

The final result of our neural network learning process is a controller that has learned to pro-

vide optimal control signals under various operating conditions. We emphasize that such a neural

network controller will be obtained after a specially designed learning process that performs ap-

proximate dynamic programming. Once a controller is learned and obtained (off-line or on-line),

it will be applied to perform the task of engine control. The performance of the controller can

be further refined and improved through continuous learning in real-time vehicle operations. We

note that continuous learning and adaptation to improve controller’s performance is one of the

key promising attributes of the present approach. Continuous learning and adaptation for optimal

individual engine performance over the entire operating regime and vehicle conditions would be

desirable for future engine controller designs. For practical reasons, during the initial stage of the

controller neural network learning it is preferable to use off-line engine data for initial simulation

studies. We will therefore first develop a model of the engine for the purpose of initial neural

network controller learning but such a model is not necessary for the real-time engine operation.

This chapter is organized as follows. In Section 3.2, the neural network model of the test engine

is described. The model is different from the models in the Chapter 2. In the Chapter 2, we build

two separated models for the engine TRQ and AFR processes. Here, a multi-input multi-output

model based on time-lagged recurrent neural network is constructed. In Section 3.3, dynamic

programming will be introduced. Engine torque and exhaust air-fuel ratio tracking control using

adaptive dynamic programming will be developed. In Section 3.4, simulation results for engine

torque and air-fuel ratio tracking control using adaptive dynamic programming will be presented.

In Section 3.5, the chapter will be concluded with a few remarks.
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3.2 Neural Network Modeling of the Test Engine

We build a neural network model for the test engine compatible with the mathematical engine

model developed by Dobner [38] [39] and others. Due to the complexity of modern automotive

engines, in the present work, we use the time-lagged recurrent neural networks (TLRNs) for engine

modeling. In practice, TLRNs have been used often for function approximation and it is believed

that they are more powerful than the networks with only feedforward structures (cf. [110, 135]).

For the neural network engine model, we choose AFR and TRQ as the two outputs. We choose

throttle position (TPS), fuel pulse width(FPW), and spark advance (SPA) as the three control in-

puts. These are input signals to be generated using our new adaptive critic learning control algo-

rithm. We choose intake manifold pressure (MAP), mass air flow rate (MAF), and engine speed

(RPM) as reference inputs. The time-lagged recurrent neural network used for the engine com-

bustion module has six input neurons, a single hidden layer with eight neurons, and two output

neurons. Validation results for the outputs TRQ and AFR of the neural network engine model in-

dicate very good match between the real vehicle data and the neural network model outputs during

the validation phase [75].

3.3 Adaptive Dynamic Programming

Dynamic Programming is a recursive method for solving sequential decision problems. The

method searches the optimal path by tracking backward from the final step, retaining all sub-

optimal paths from any given point to the finish in memory, until the starting point is reached.

The result of this process is that the procedure may incur the exponential growth in the number

of calculations for the complex problems, which is too computationally expensive for the most

real-world problems. Efforts have been made to overcome this problem. In recent years, adaptive
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dynamic programming which approximates dynamic programming arouses wide attentions and

interest. The technique uses a critic module to learns the cost function in dynamic programming.

3.3.1 Dynamic Programming

Suppose that one is given a discrete-time nonlinear dynamical system

x(t+ 1) = F [x(t), u(t), t] (3.8)

where x ∈ Rn represents the state vector of the system and u ∈ Rm denotes the control action.

Suppose that one associates with this system the performance index (or cost)

J [x(i), i] =
∞∑
k=i

γk−iU [x(k), u(k), k] (3.9)

where U is called the utility function or local cost function and γ is the discount factor with 0 <

γ ≤ 1. Note that J is dependent on the initial time i and the initial state x(i), and it is referred to as

the cost-to-go of state x(i). The objective is to choose the control sequence u(k), k = i, i+1, · · · ,

so that the function J (i.e., the cost) in (3.9) is minimized. Dynamic programming is based on

Bellman’s principle of optimality [18], [36]: An optimal (control) policy has the property that no

matter what previous decisions (i.e., controls) have been, the remaining decisions must constitute

an optimal policy with regard to the state resulting from those previous decisions.

Suppose that one has computed the optimal cost J∗[x(t + 1), t + 1] from time t + 1 on for

all possible states x(t + 1), and that one has also found the optimal control sequences from time

t + 1 on. The optimal cost results when the optimal control sequence u∗(t + 1), u∗(t + 2), · · · , is

applied to the system with initial state x(t+1). Note that the optimal control sequence depends on

x(t+ 1). If one applies an arbitrary control u(t) at time t and then uses the known optimal control
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sequence from t+ 1 on, the resulting cost will be

U [x(t), u(t), t] + γJ∗[x(t+ 1), t+ 1],

where x(t) is the state at time t and x(t + 1) is determined by (3.8). According to Bellman’s

principle of optimality, the optimal cost from time t on is equal to

J∗[x(t), t] = min
u(t)

(
U [x(t), u(t), t] + γJ∗[x(t+ 1), t+ 1]

)
. (3.10)

The optimal control u∗(t) at time t is the u(t) that achieves this minimum, i.e.,

u∗(t) = arg min
u(t)

(
U [x(t), u(t), t] + γJ∗[x(t+ 1), t+ 1]

)
. (3.11)

Equation (3.11) is the principle of optimality for discrete-time systems. Its importance lies in the

fact that it allows one to optimize over only one control vector at a time by working backward in

time. In other words, any strategy of action that minimizes the function J in the short term will

also minimize the sum of U over all future times. Equation (3.10) is called the functional equation

of dynamic programming and is the basis for computer implementation of dynamic programming.

In the computations in (3.11), whenever one knows the function J in (3.9) and the model F

in (3.8), it is a simple problem in function minimization to pick the action u∗(t) that achieves the

minimum in (3.11). However, this procedure requires a backward numerical process and it is too

computationally expensive to determine the solutions due to the so-called “curse of dimensional-

ity” [18, 36].

3.3.2 Action-Dependent Heuristic Dynamic Programming

A typical design of ADP consists of three modules: 1) critic (for evaluation); 2) model (for predic-

tion); and 3) action (for decision). When in ADP, the critic network (i.e., the evaluation module)
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Figure 3.12: A typical scheme of an action-dependent heuristic dynamic programming

takes the action/control signal as part of its inputs, the designs are referred to as action dependent

ADP.

In the present work we use an action-dependent version of ACDs that does not require the

explicit use of the model network in the design. Consider the action-dependent heuristic dynamic

programming (ADHDP) shown in Figure 3.12 (cf. [87]). The critic network in this case will be

trained by minimizing the following error measure over time,

∥Eq∥ =
∑
t

Eq(t)

=
∑
t

[Q(t− 1)− U(t)− γQ(t)]2
(3.12)

where Q(t) = Q[x(t), u(t), t,WC ] and WC represents the weight vector of the critic network
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obtained through training. When Eq(t) = 0 for all t, (3.12) implies that

Q(t− 1) = U(t) + γQ(t)

= U(t) + γ[U(t+ 1) + γQ(t+ 1)]

= · · ·

=
∞∑
k=t

γk−tU(k).

(3.13)

Clearly, comparing (3.9) and (3.13), we have Q(t − 1) = J [x(t), t]. Therefore, after the

minimization of error function in (3.12), the output of neural network trained becomes an estimate

of the performance cost defined in dynamic programming for i = t + 1, i.e., the value of the

performance cost in the immediate future.

The input-output relationship of the critic network in Figure 3.12 is given by

Q(t) = Q [x(t), u(t), t,WC ]

where WC represents the weight vector of the critic network. In off-line applications, the critic

network is trained to obtain an initial fixed weight vector WC . However, in real time applications,

this vector can be adaptively modified to account for slow changes in the process. There are two

methods to train the critic network according to the error function (3.12) in the present case.

(1) Backward-in-time: We can train the critic network at time t, with the desired output target

given by [Q(t− 1)−U(t)]/γ. The training of the critic network is to realize the mapping given by

Cf :


x(t)

u(t)

 →
{
1

γ

[
Q(t− 1)− U(t)

]}
. (3.14)

In this case, we consider Q(t) in (3.12) as the output from the network to be trained and the

target output value for the critic network is calculated using its output at time t−1. Thus, we refer to

this method as the backward-in-time method. Note that Q(t−1) = Q[x(t−1), u(t−1), t−1,WC ] in

(3.14) is obtained at time t−1 and stored in the memory. This method is illustrated in Figure 3.13.
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Figure 3.13: Illustration for the backward-in-time method

(2) Forward-in-time: We can train the critic network at time t−1, with the desired output target

given by U(t) + γQ(t). The training of the critic network is to realize the mapping given by

Cf :


x(t− 1)

u(t− 1)

 → {U(t) + γQ(t)}. (3.15)

In this case, we consider Q(t − 1) in (3.12) as the output from the network to be trained and

the target output value for the critic network is calculated using its output at time t. Thus, we refer

to this method as the forward-in-time method. Note that the training in this case still happens at

time t and x(t−1) and u(t−1) in (3.15) are obtained at time t−1 and stored in the memory. This

method is illustrated in Figure 3.14.

Our experiments have shown that if U(t) is chosen as an error function (which will be non-zero

until the control objective is reached), the training of the critic network using backward-in-time

method will sometimes be numerically unstable due to the increase of the target value in (3.14).

For example, when 0 < γ < 1, the target value in (3.14) will tend to increase in magnitude unless
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if we choose U(t) = 0 for most t. In the following we will provide discussions concerning the

forward-in-time method. Similar discussions are applicable to the backward-in-time method as

well. Initially, the target for the critic network training given in (3.15) for time step t is calculated

using Q(t) = Q
[
x(t), u(t), t,W

(0)
C

]
, where W

(0)
C is the initial value of the critic network weights.

After one step of weight update using either sequential mode training or batch mode training, the

critic network weight vector will become W
(1)
C . This weight updating process will be repeated

until no further improvements in the critic network training can be achieved. This is determined by

either no more weight update during training or no more improvement in the error function during

training. A good critic network obtained after training will satisfy the following properties:

1) |Q(t− 1)− U(t)− γQ(t)| < ε, i.e.,

∣∣∣Q [
x(t− 1), u(t− 1), t− 1,W

(p)
C

]
− U [x(t), u(t), t]− γQ

[
x(t), u(t), t,W

(p)
C

]∣∣∣ < ε

for each t and for some p, where ε is the maximum error tolerance, and



42

2)
∥∥∥W (p+1)

C −W
(p)
C

∥∥∥ < η where η is very small and ∥ · ∥ denotes an appropriate norm.

The first condition implies that with the weight vector W (p)
C obtained after training, we are able to

balance the equation

Q(t− 1) ≈ U(t) + γQ(t)

with an error strictly below the error tolerance ε. We note that the key to adaptive dynamic pro-

gramming is to find a critic network so that its outputs will balance this equation for all t as is

derived in (3.13). The second condition implies that the weight update of the critic network indi-

cated by the training algorithm from the pth cycle to the (p + 1)st cycle is so small that it can be

practically ignored. This is because the training has reached the global minimum or a local min-

imum in the weight space of the error function. If the training reaches a local minimum and the

performance of the critic network is not satisfactory, we will reinitialize the critic network using

random weights and start the critic network training again.

The training samples for the critic network are obtained over a trajectory starting from x(0)

at t = 0. Starting from x(0), we can generate u(0) from the action network and we can apply

{x(0), u(0)} to the plant to be controlled to obtain x(1) (cf. Figure 3.12). We can then generate

u(1) from the action network using x(1) and apply {x(1), u(1)} to the plant to be controlled to

obtain x(2), and so on. Initially, the action signals u(t), t = 0, 1, · · · , will be generated given

x(t), t = 0, 1, · · · , from an action network that is initialized with random weights. We can collect

training samples either over a fixed number of time steps (e.g., 300 consecutive points [108]) or

from t = 0 until the final state is reached (e.g., the fuel cut-off mode is activated in our engine

control problem). For each time instant t, the local cost function will be computed as U(t) =

U [x(t), u(t), t]. Some or all of the data collected, {x(t), u(t), U(t)} for t = 0, 1, 2, · · · , are stored

in the computer memory for the purpose of the critic network and action network training to be
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described next.

After the critic network’s training is finished, the action network’s training starts with the ob-

jective of minimizing Q(t). To collect training samples for the action network, we start with x(0)

and we apply x(0) to the action network to obtain u(0). We then apply x(0) and u(0) to the plant

to be controlled to obtain x(1). Using the action network, we obtain u(1) by applying x(1) and

we obtain x(2) from the plant at the next time step. Clearly, such a data collection process can be

combined with the data collection process for the critic network training. This process continues

until all the necessary training patterns are collected. The goal of the action network training is to

minimize the critic network output Q(t). In this case, we can choose the target of the action net-

work training as zero, i.e., we will train the action network so that the output of the critic network

becomes as small as possible. In general, a good critic network should not output negative values

if U(t) is non-negative. This is particularly true when U(t) is chosen as the square error function

in tracking control problems. The desired mapping which will be used for the training of the action

network in the present ADHDP is given by

A : {x(t)} → {0(t)} (3.16)

where 0(t) indicates the target values of zero for the critic network output. We note that during the

training of action network, it will be connected to the critic network as shown in Figure 3.12. The

target in (3.16) is for the output of the whole network, i.e., the output of the critic network after it

is connected to the action network as shown in Figure 3.12.

After the action network’s training cycle is completed, one may check the system’s perfor-

mance, then stop or continue the training procedure by going back to the critic network’s training

cycle again, if the performance is not acceptable yet.



44

3.3.3 Tracking Control Problem

Assume that the control objective is to have x(t) in (3.8) track another signal given by x∗(t). We

can define in this case the local cost function U(t) as

U(t) =
1

2
eT (t)e(t) =

1

2
[x(t)− x∗(t)]T [x(t)− x∗(t)].

Using the ADHDP introduced earlier in this section, we can design a controller to minimize

J(t) =
∞∑
i=t

γi−tU(i)

where 0 < γ < 1. We note that in this case our control objective is to minimize an infinite

summation of U(t) from the current time to the infinity future, while in conventional tracking

control designs, the objective is often to minimize U(t) itself.

The present neural network engine controller will be obtained through the following three steps:

(1) The optimal controller is designed based on the idea of adaptive dynamic programming;

(2) The initial controller is trained using a neural network engine model developed from off-line

engine data;

(3) In real-time operation of the vehicle, the controller is further refined through continuous

learning and adaptation.

3.4 Simulation Studies

The objective of the present engine controller design is to provide control signals, so that the torque

generated by the engine will track the torque measurement as in the data and the AFR will track

the required values also as in the data. The measured torque values in the data are generated by
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the engine using the existing controller. Our learning controller will assume no knowledge about

the control signals provided by the existing controller. It will generate a set of control signals that

are independent of the control signals in the measured data. Based on the data collected, we use

our learning controller to generate control signals TPS, FPW, and SPA, with the goal of producing

exactly the same torque and AFR as in the data set. That is to say, we keep our system in the same

requirements as the data collected and build a controller that provides control signals that achieve

the torque control and AFR control performance of the engine.

As described in the previous section, the development of an adaptive critic learning controller

involves two stages: 1) the training of a critic network and 2) the development of a controller/action

network. We describe in the rest of this section the learning control design for tracking the TRQ and

AFR measurements in the data set. This is effectively a torque-based controller, i.e., a controller

that can generate control signals given the torque demand. The block diagram of the present

adaptive critic engine control (including AFR control) is shown in Figure 3.15. The diagram

shows how adaptive critic designs can be applied to engine control through adaptive dynamic

programming.

3.4.1 Critic Network

The critic network is chosen as a 8–15–1 structure with eight input neurons and fifteen hidden layer

neurons.

• The eight inputs to the critic network are TRQ, TRQ∗, MAP, MAF, RPM, TPS, FPW, and

SPA, where TRQ∗ is read from the data set, indicating the desired torque values for the

present learning control algorithm to track.

• The hidden layer of the critic network uses sigmoidal function, i.e., the tansig function in
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Figure 3.15: Structure of the adaptive critic learning engine controller

MATLAB [35], and the output layer uses the linear function purelin.

• The critic network outputs the function Q, which is an approximation to the function J(t)

defined as in (3.9).

• The local cost function U defined in (3.9) in this case is chosen as

U(t)=
1

2
[TRQ(t)− TRQ∗(t)]2 +

1

2
[AFR(t)− AFR∗(t)]2

where TRQ(t) and AFR(t) are the TRQ and AFR generated using the proposed controller,

respectively, and TRQ∗ and AFR∗ are the demanded TRQ value and the desired AFR value,

respectively. Both TRQ∗ and AFR∗ are taken from the actual measured data in the present

case. The utility function chosen in this way will lead to a control objective of TRQ following

TRQ∗ and AFR following AFR∗.

• Utilizing the MATLAB Neural Network Toolbox, we have applied traingdx (gradient

descent algorithm) for the training of the critic network. We note that other algorithms

implemented in MATLAB, such as traingd, traingda, traingdm, trainlm are also
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applicable. We employ batch training for the critic network, i.e., the training is performed

after each trial of certain number of steps (e.g., 10000 steps). We choose γ = 0.9 in the

present experiments.

3.4.2 Action Network

The structure of the action network is chosen as 6–12–3 with six input neurons, 12 hidden layer

neurons, and three output neurons.

• The 6 inputs to the action network are TRQ, TRQ∗, MAP, MAF, THR, and RPM, where

THR indicates the driver’s throttle command.

• Both the hidden layer and the output layer use the sigmoidal function tansig.

• The outputs of the action network are TPS, FPW, and SPA, which are the three control input

signals used in the engine model.

• The training algorithm we choose to use is traingdx. We employ batch training for the

action network as well.

3.4.3 Simulation Results

In the present simulation studies, we first train a critic network for many cycles with 500 training

epochs in each cycle. At the end of each training cycle, we check the performance of the critic

network. Once the performance is found satisfactory, we stop critic network training. This process

usually takes about 6–7 hours. We use the forward-in-time training approach for the critic training.

After the critic network training is finished, we start the action network training. We train the
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Figure 3.16: Torque output generated by the neural network controller

controller network for 200 epochs after each trial. We check to see the performance of the neural

network controller at the end of each trial.

We choose to use 4000 data points from the data (16000–20000 in the data set) for the present

critic and action network training.

We first show the TRQ and AFR outputs due to the initial training of our neural network

controller when TRQ∗ and AFR∗ are chosen as random signals during training. Figures 3.16

and 3.17 show the controller performance when it is applied with TRQ∗ and AFR∗ chosen as the

measured values in the data set. The neural network controller in this case is trained for 15 cycles
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Figure 3.17: Air-fuel ratio output generated by the neural network controller
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using randomly generated target signal TRQ∗ and AFR∗. Figures 3.16 and 3.17 show that very

good tracking control of the commanded torque signal (TRQ) and the exhaust AFR are achieved.

We note that at the present stage of the research we have not attempted to regulate the AFR at the

stoichiometric value but to track a given command. In these experiments we simply try to track

the measured engine-out AFR values so that the control signal obtained can directly be validated

against the measured control signals in the vehicle. In Figure 3.17, it appears that better tracking

of AFR was achieved on the rich side of stoichiometric value possibly due to more frequent rich

excursions encountered during model training. This could also have been caused by intentional

fuel enrichments (i.e., wall-wetting compensation) during vehicle accelerations.

Figures 3.18 and 3.19 show the TRQ and AFR outputs after refined training when TRQ∗ and

AFR∗ are chosen as the measured values in the data. The neural network controller in this case

is trained for 15 cycles using target signal TRQ∗ and AFR∗ as in the data. Figures 3.18 and 3.19

show that excellent tracking control results for the commanded TRQ and AFR are achieved.

The figures shown in this section indicate that the present learning controller design based on

adaptive dynamic programming is effective in training a neural network controller to track the

desired TRQ and AFR sequences through proper control actions.

3.5 Conclusions

Our research results have demonstrated that adaptive dynamic programming provide a powerful

alternative approach for engine calibration and control. The design is based on neural network

learning using approximate dynamic programming. After the network is fully trained, the present

controller may have the potential to outperform existing controllers with regard to the following

three aspects. (1) The proposed technique will automatically learn the inherent dynamics and non-
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Figure 3.18: Torque output generated by the refined neural network controller
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linearities of the engine from real vehicle data and, therefore, do not require a mathematical model

of the system to be developed. (2) The methods developed will further advance the development

of a virtual powertrain for performance evaluation of various control strategies through the de-

velopment of neural network models of engine and transmission in a prototype vehicle. (3) The

proposed controllers can learn to improve their performance during the actual vehicle operations,

and will adapt to uncertain changes in the environment and vehicle conditions. This is an inherent

feature of the proposed neural network learning controller. As such, these techniques may offer

promise for use as real-time engine calibration tools.

Simulation results show that the proposed self-learning control approach is effective in achiev-

ing tracking control of engine torque and air-fuel ratio control through neural network learning.



4 NEURAL SLIDING MODE TECHNIQUE FOR ENGINE TORQUE AND AIR-FUEL

RATIO CONTROL

4.1 Introduction

In this chapter, we consider a learning control algorithm based on sliding mode control methods

(SLMCs) for the engine TRQ and AFR control with the goals of reduced emissions and improved

performance. The theory of sliding mode control has been developed and widely used for more

than three decades due to its robustness to system parameter uncertainties and external disturbances

[42], [61], [73], [77], [78], [83], [121], [131]. Essentially, SLMCs utilize a high-speed switching

control law to drive state trajectory of the nonlinear system onto a specified surface in the state

space, called the sliding surface, and to maintain the system state trajectory on this surface for

all subsequent times. The system dynamics restricted to this surface result in very robust control

systems. By proper design of the sliding surface, SLMCs achieve the conventional goals of control

such as stabilization, tracking and regulation. In practical control applications, however, the prob-

lem of chattering and difficulty in the calculation of equivalent control limit the implementation

of SLMCs. The equivalent control cannot be calculated accurately because limited knowledge of

the system is available. The chattering brought by high frequency oscillation of controller output

results in low control accuracy and potential instability. The most common approach to reduce the

chattering is using saturation function [140]. In order to compensate the uncertainties of the plant

and avoid the computational burden, we use an estimation technique based on a neural network

for the calculation of the equivalent control. Meanwhile, the continuous output of the corrective

controller replaces the discontinuous sign term in conventional SLMCs to eliminate chattering.

The present study considers the neuro-sliding mode control (NSLMC) for both engine TRQ

and AFR control of automotive engines. A good deal of work has been reported for the engine

54
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control using sliding mode control methods (SLMCs), a few examples of which are cited in [72],

[104], [106], [122], [133], [138]. The application of model-based SLMCs is the emphasis in these

works. SLMCs also have been applied to motion control and robotics.

Integration of a neural network into SLMCs can alleviate the problems associated with SLMCs,

which can be classified into three main categories. The first method is the use of different kind of

neural networks to approximate the plant nonlinearities or uncertainties and improve the control

performance consequently [37], [60], [138]. The second method utilizes a neural network for the

adaptation of the SLMCs parameters where the SLMCs parameters are progressively updated [70]

[84]. The third approach is the use of neural network together with SLMCs either in parallel to

act as compensator of the conventional SLMCs controller [1], [77] or to compute the equivalent

and corrective control [32], [40], [127]. Both in [40] and [127], two parallel neural networks were

used to realize the equivalent control and the corrective control of sliding mode control (SLMCs)

design. The difference between these two works is the error for updating the neural network for

equivalent control. In [40], the corrective control is handled as the error. While in [127], it is the

sliding function S. However, the speed of convergence of either algorithm is slower than the one

proposed in this study where no special parameter tuning is needed.

The present work uses two parallel neural networks to realize the equivalent control and the

corrective control of the SLMCs design. The calculation of the equivalent control is realized by

adaptively learning without a priori knowledge of the plant dynamics. The proposed adaptation

scheme directly results in a chatter-free control action for the corrective control. The distinct

feature of the present technique is that the learning and control are carried out simultaneously,

which allows the neural network controller to be further refined and improved in real-time vehicle

operation through continuous learning and adaptation.
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This chapter is organized as follows: In Section 4.2, The sliding mode control design is briefly

introduced. In Section 4.3, neuro-sliding mode controller will be developed. In Section 4.4, neuro-

sliding mode technique for the engine control is presented. In Section 4.5, simulation results for

engine TRQ and exhaust AFR tracking control using NSLMC will be presented. In Section 4.6,

the chapter will be concluded with some remarks.

4.2 Sliding Mode Control Design

Sliding mode control has been widely used due to its robustness to system parameter uncertainties

and external disturbances. The most salient feature of an SLMCs is that the feedback control is

discontinuous, switching on one or more manifolds in the state space. When the state crosses each

discontinuity surface, the structure of the feedback system is altered. Under certain circumstances,

all motions in the neighborhood of the manifold are directed toward the manifold and, thus, a

sliding motion on a predefined subspace of the state space is established in which the system state

repeatedly crosses the switching surface. This mode has useful invariance properties in the face of

uncertainties in the plant model and, therefore, is a good candidate for tracking control of uncertain

nonlinear systems [71]. In general, the phase trajectory of the system with SLMCs consists of two

parts. The first part is the reaching mode in which the trajectory starting from anywhere on the

phase plane moves toward a switching surface and reaches the surface in finite time. The second

part is the sliding mode in which the trajectory slides along the surface to the origin of the phase

plane.

Consider the following nonlinear, multi-input multi-output system:

Ẋ = G(X,U) (4.17)

where X ∈ Rp and U ∈ Rq are the states and the control, respectively. The control problem is to
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find a control law so that the states X can track the desired trajectory Xd. Let the tracking error of

the system be

e = Xd(t)−X(t). (4.18)

The aim of SLMCs is to drive the system states to the sliding surface S = 0 and remain on

it. Once the states are on the sliding surface, the system is insensitive to parameter variations

or external disturbances. The sliding mode control design approach consists of two steps. The

first step is to select a sliding surface that models the desired closed-loop performance in the state

variable space according to design specifications. This is a surface that is invariant of the controlled

dynamics, where the controlled dynamics are exponentially stable, and where the system tracks the

desired set-point. The second step is concerned with the selection of a control law which will drive

the system state trajectory toward the sliding surface and remain on it.

The sliding surface S is defined in the state space by the scalar function S(e) = 0, where

S(e) = cT e (4.19)

c = [c1 c2 · · · cn]T , e = [e1 e2 · · · en]T , and n is the number of parameters. The vector c are chosen

so that S(e) = 0, which means the subsequent system is stable [131]. Hence, the control input can

drive the system (4.17) to converge on the sliding surface.

The design of SLMCs is based on the selection of Lyapunov function. The control should be

chosen such that the candidate Lyapunov function satisfy Lyapunov stability criteria.

Lyapunov theorem for global stability: assume that there exists a scalar function V of S, with

continuous first-order derivatives such that (1) V (S) is positive definite, (2) dV (S)/dt is negative

definite, (3) V (S) → ∞ as ∥S∥ → ∞, then the equilibrium at the S = 0 is globally asymptotically

stable [120].
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Let the Lyapunov function be selected as below:

V (s) =
STS

2
. (4.20)

It can be noted that this function is positive definite (V (S = 0) = 0 and V (S) > 0 ∀S ̸= 0). It is

aimed that the derivative of the Lyapunov function is negative definite. This can be assured if one

can assure that

dV (S)

dt
= −STLsign(S). (4.21)

where L is positive number and sign(S) is defined as:

sign(S) =


1 S > 0

−1 otherwise.

Taking the derivative of (4.20) and equating this to (4.21), the following equation is obtained:

ST dS

dt
= −STLsign(S). (4.22)

The time derivative of S can be obtained using (4.19) and the plant equation as given below:

dS

dt
= CT ė = CT (Ẋd − Ẋ) = CT Ẋd − CT (G(X) + BU). (4.23)

By putting (4.23) into (4.22), the control input signal can be written as

U(t) = Ueq(t) + Uc(t) (4.24)

where Ueq is the equivalent control, which is the control action necessary to maintain an ideal

sliding motion on sliding surface, given by

Ueq(t) = (CTB)+(CT Ẋd − CTG(X)) (4.25)
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and Uc is the corrective control, which drives the phase trajectory towards the sliding surface, given

by

Uc(t) = (CTB)+Lsign(S) = Ksign(S) (4.26)

where (CTB)+ is Moore-Penrose pseudo-inverse of the matrix CTB.

SLMCs has many attractive properties, such as insensitivity to parameter variations and good

nonlinear control performance. However, in applications of practical control, the SLMCs suffer

from three main disadvantages: chattering, difficulty in the calculation of equivalent control and

lack of learning ability. The difficulty in the calculation of equivalent control lies in the complete

knowledge of the system dynamics required. In implementation, complex systems with multiple

variables and nonlinear coupling are hard to understand thoroughly. The calculation of equivalent

control requires a good mathematical model of the system, G in (4.17), which is hard to obtain.

Moreover, it is difficult to learn the intricacy and the complexity of the real world industrial systems

using a conventional linearly parametrized adaptive framework. Neural networks with learning

capability represent good candidate solutions to the problems discussed. The corrective control,

given by Ksign(S), exhibits high-frequency oscillations in its output, brought about by the high-

speed switching necessary for the establishment of a sliding mode. The introduction of boundary

layer corresponding to substituting the sign function could give a chattering-free system [140].

However, a finite steady error would always exist. It is suggested that a saturation function or a

sigmoid function is used to eliminate chattering instead of the sign function [41]. In our design,

the shifted sigmoid function T (S) is used to compute the corrective control:

Uc(t) = KT (S) (4.27)

where T (S) is chosen as follows:

T (S) =
1− e−S

1 + e−S
. (4.28)
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Since the output of the corrective controller is continuous and variable, the chattering is eliminated.

4.3 Neuro-Sliding Mode Control

In this study, considering the difficulty of the calculation of the equivalent control, we use neural

networks to generate the equivalent control and the corrective control in SLMCs. The combination

of neural network and SLMCs provides the desirable properties from both neural network and

SLMCs. Neural network based equivalent control and corrective control possess the features of

self-adaptation ability to system uncertainties and robustness to parameter variations and external

disturbances. The aim of NSLMC design is to minimize the value of sliding function S such that

the system states reach the sliding surface as soon as possible. Two neural networks in parallel are

used to realize the equivalent control and corrective control of SLMCs design as in Fig. 4.20 which

shows where neural network 1 (NN1) is used to estimate the equivalent control (Ueq), and neural

network 2 (NN2) is employed to generate the corrective control (Uc). The sliding surface is chosen

as:

S(e) = cT e+ dT ė (4.29)

which its value reflects the difference between the actual and the targeted trajectory.

4.3.1 Neural Computation of the Equivalent Control

The structure will be chosen as a two-layer feedforward neural network with one hidden layer and

one output layer. The inputs to the neural network are the desired target and actual values of the

states. The output of the neural network is the equivalent control Ueq. The weight adaptation of the

neural network is based on a minimization of the cost function as follows:

E =
1

2
(Ueq − Ûeq)

2 =
1

2
ζ2 (4.30)
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Figure 4.20: Structure of neuro-sliding mode control

where Ûeq is the estimated value of the equivalent control and ζ = Ueq − Ûeq.

The Levenberg-Marquardt (L-M) algorithm is used to update the weights of NN1 instead of

the error backpropagation (BP) algorithm. The selection of L-M algorithm is based on the fact that

the L-M algorithm is widely accepted as the most efficient one in the sense of realization accuracy

for nonlinear least squares.[50]

The formula for updating weights is given as follows:

△W = [JT (W )J(W ) + µI]−1JT (W )ζ (4.31)

where the parameter µ is adjustable, W is adjustable weight vector and J(W ) is the Jacobian

matrix. J(W ) can be expressed as follows:

J(W ) =

[
∂ζ

∂W1

∂ζ

∂W2

· · · ∂ζ

∂Wn

]T
. (4.32)

From Eq. (4.30),

∂ζ

∂Wi

=
∂(Ueq − Ûeq)

∂Wi

= −∂Ûeq

∂Wi

. (4.33)

Eq. (4.33) can be calculated using the standard BP algorithm. Thus, the Jacobian matrix can be

computed by Eq. (4.32) and Eq. (4.33).
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Figure 4.21: Structure of neural network #2 for the corrective control.

From Eq. (4.30), we find that the desired equivalent control is unknown. To overcome this

problem, it is suggested that Ueq − Ûeq is replaced by the value of sliding function S since the

characteristics of Ueq − Ûeq and S are similar, that is, when S is close to 0, Ueq − Ûeq → 0.[127]

4.3.2 Neural Computation of the Corrective Control

The structure of the NN2 is decided by the design of SLMC. From the sliding surface (4.29)

and equation (4.27), the gains of SLMC are represented as the weights of neural network 2 as in

Fig. 4.21 shows. In this way, the gains of SLMC are adapted gradually to the best values.

The cost function is chosen to drive the states converging to sliding surface as follows:

Jc =
1

2
SST . (4.34)

Minimization of Jc results in minimization of S. To minimize Jc, the weights are changed in the

direction of the negative gradient,

△K = −µ
∂Jc
∂K

(4.35)
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△ci = −µ
∂Jc
∂ci

(4.36)

△di = −µ
∂Jc
∂di

(4.37)

where K is defined in Eq. (4.27), ci and di are both defined in Eq. (4.29), and µ is the learning rate.

The gradient descent for ci can be derived using Eq. (4.29) as:

△ci = −µ
∂Jc

∂ci
= −µ

∂Jc
∂S

∂S

∂ci
= −µS

∂S

∂ci
= −µ · S · ei. (4.38)

The gradient descent for di can be derived using Eq. (4.29) as:

△di = −µ
∂Jc
∂di

= −µ
∂Jc
∂S

∂S

∂di
= −µS

∂S

∂di
= −µ · S · ėi. (4.39)

The gradient descent for K can be derived as:

△K = −µ
∂Jc
∂K

= −µ
∂Jc
∂S

∂S

∂K
= −µS

∂S

∂K
. (4.40)

From Eq. (4.29),

S(e) = cT e+ dT ė = cT (Xd −X) + dT ė. (4.41)

That is, from Eq. (4.17), Eq. (4.24), Eq. (4.27) and Eq. (4.41)

∂S

∂K
= −cT

∂X

∂K
= −cT

∂X

∂U

∂U

∂Uc

∂Uc

∂K
= −cT

∂X

∂U
T (S) (4.42)

where X is the state of the system and T (S) is defined in Eq. (4.28). Since TRQ and AFR dynamics

are represented by neural networks, according to the BP algorithm, ∂X/∂U can be derived easily.

Finally,

△K = −µScT
∂X

∂U
T (S). (4.43)
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Figure 4.22: Structure of NSLMC for the TRQ control

4.4 Neuro-Sliding Mode Technique for Engine Control

In the present study, we design an intelligent controller that would generate desired control signals,

so that the TRQ signals generated by the engine will track the TRQ measurement as in the data and

the AFR signals will track the required values also as in the data. The TRQ and AFR measurements

in the data are generated by using the existing controller in the car. It is assumed that no a prior

knowledge of the control signals generated by the existing controller. Our learning controller will

provide control signals TPS and FPW with the control objectives of TRQ and AFR which follow

the corresponding measurements as in the data.

The neural network for equivalent control for both TRQ and AFR is chosen as a 2-9-1 structure

with 2 inputs and 9 hidden layer neurons. Both the hidden layer and the output layer use the tansig

function. The block diagram of the present NSLMC controller for TRQ control is shown in Figure

4.22. The inputs to the NN1 are TRQ∗ (TRQ∗ is the demanded TRQ value) and actual TRQ. The

sum of two outputs of the NN1 and NN2 is TPS which is the control signal for the TRQ. The block

diagram for the AFR control is shown in Figure 4.23. The inputs to the NN1 are MAP(t-1) and

RPM(t-1) from the data. The sum of two outputs of the NN1 and NN2 is FPW which is the control
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Figure 4.23: Structure of NSLMC for the engine AFR control

signal for the AFR. AFR∗ is the desired AFR value. Both TRQ∗ and AFR∗ are read from the data

set, indicating the desired values for the present control algorithm to track. The TRQ and AFR

dynamic systems are neural network models we built in Section II.

The sliding surface S is defined as:

S = c1e+ d1ė (4.44)

where e represents the difference between target (TRQ∗ or AFR∗) and actual values (TRQ or AFR).

The sliding surface chosen in this way will lead to control objectives of TRQ which follows TRQ∗

and AFR which follows AFR∗. From the defined S, the structure of NN2 can be decided and it

is shown in Figure 4.24. The inputs to the NN2 are the error e (between the target TRQ and the

actual TRQ for TRQ control or between the target AFR and the actual AFR for AFR control) and

the derivative of the error ė. The overall procedures of NSLMC technique for engine control are

given as follows:

Step 1. Initialize: Set all weights of NN1 to small random values in the range of [−0.18 0.18],

Set c1 and K weights of NN2 as 1, 2, respectively. Set learning rate 0 < µ < 1. All values

of signals were normalized to a range between −1 and 1 for convenience in the neural network
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training.

Step 2. Compute the equivalent control Ueq from NN1.

Step 3. Compute the corrective control Uc from NN2.

Step 4. Apply the sum of equivalent control and corrective control to the engine system.

Step 5. Measure the state of the engine system (TRQ or AFR).

Step 6. Adjust the weights of NN1 and NN2 according to the weight adaptation rules described

in Section IV.

Step 7. Repeat by going to step 2 until the criterion is reached.

4.5 Simulation Results

We randomly choose to use 4000 points from the data (1000-5000 in the data set) for TRQ control

and 3000 points (25000-28000 in the data set) for AFR control. Fig. 4.25 and Fig. 4.29 show the

controller performance for TRQ and AFR, respectively. Both figures show that excellent tracking

control performance is achieved. It is important to note that, at the present stage of the research, we

have not attempted to regulate the AFR at the stoichiometric value but to track a given command.

In these simulation studies, we simply try to track the measured engine-out AFR values. In this

way, the control signal obtained can be directly validated against the measured control signals in
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Figure 4.25: Control effect of NSLMC for TRQ control.

the vehicle. Fig. 4.26 and Fig. 4.30 show the output of the equivalent control and corrective control

compared to the TPS or FPW values in the dataset. From the figures, we can see that most of the

time, the corrective control is around zero. Only when the system states deviate from the sliding

mode, the controller takes action to pull the system states back to the sliding surface. The trajectory

of the sliding function S is as in Fig. 4.27 and Fig. 4.31. From the figures, we can see that only after

5 events, the sliding function S reaches the acceptable value (under 0.005 is generally regarded as

acceptable). Fig. 4.28 and Fig. 4.32 demonstrate the good generalization ability of the NLSMC

controller.

The figures shown in this section indicate that the present learning controller design based

on the combination of neural network and sliding mode control is effective in training a neural
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Figure 4.29: Control effect of NSLMC for AFR control.
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network controller to track the desired TRQ and AFR sequences through proper control actions.

The performance of TRQ controller is a little better than the performance of AFR controller mainly

due to the fact that the process of AFR is far more complex than the TRQ process. Combustion

TRQ is mostly governed by process nonlinearities whereas the AFR process is mostly dominated

by dynamic effects.

Fig. 4.27 and Fig. 4.31 show the trajectory of the sliding function S. For a sliding mode-based

control system, the dynamic behavior is determined by the sliding surface when the system is in

the sliding mode. The sliding surface is chosen as S(e) = cT e + dT ė which its value reflects the

difference between the actual and the targeted trajectory. The sliding surface chosen in this way

will lead to control objectives of TRQ which follows TRQ∗ and AFR which follows AFR∗. When

the sliding curve is near zero, it means that TRQ follows TRQ∗ and AFR tracks AFR∗.

The adoption of L-M optimization method instead of BP for updating the weights of neural

network speed up the convergence greatly. It took only 15 steps (about 1 minute) to achieve very

good results for TRQ control and 20-30 steps (around 5 minutes) for AFR control (The configu-

ration of computer is Pentium 4 3.2G with 1G RAM). Compared to the training technique used

in [127] which took one hour for TRQ control, the training speed is a lot quicker and there’s no

oscillation during the training [59]. The parameters of neural network for the corrective control

are set by trial and error in [40] and [127] which is a time-consuming task, and they are selected

as large values to achieve fast convergence. In our scheme, the parameters are selected as 1 or

2 which is enough to guarantee convergence. Since the controlled systems are modelled using

neural network, the way of computation of K here is different from the method in [40] and [127]

where the computation of the gradient of K is acquired from the integral of G(s). The integral of

G(s) would bring unpredictably big values in real experiments, resulting in potential instability.

Boundary is set to assure stability in [40] and [127].
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4.6 Conclusions

Our research results have demonstrated that NSLMC provides a powerful alternative approach for

engine calibration and control. The design is the combination of neural networks and sliding mode

control. Two parallel neural networks are utilized to realize the equivalent control and the correc-

tive control of SLMC. The successful application of NSLMC to TRQ and AFR control enables us

to formulate the following two conclusions: 1) The proposed technique will automatically learn

the inherent dynamics and nonlinearities of the engine from real vehicle data and therefore no

prior model and the characteristics of the system are required. 2) Learning and control are carried

out simultaneously with very fast convergence speed in the proposed controller, which allows it

to be further refined and improved in real-time vehicle operation through continuous learning and

adaptation.

The simulation results indicate the proposed NSLMC is effective in achieving tracking control

of TRQ and AFR control through neural network learning.



5 BARORECEPTOR REFLEX INSPIRED ADAPTIVE CONTROL STRATEGY FOR

ENGINE TORQUE CONTROL

5.1 Introduction

Biological processes have evolved sophisticated mechanisms for solving difficult control prob-

lems with precise control abilities, robust stability and strong fault tolerance. By analyzing and

understanding these natural systems, it is possible that principles can be derived which are appli-

cable to general control systems. The methodologies based on the inspiration of some biological

mechanism include: artificial neural network, gene algorithm, artificial immune system, etc. The

artificial neural network, gene algorithm, and artificial immune system have been researched for

quite a long time by many researchers and are being widely employed ([22], [23], [34], [51], [54],

[91]). However, due to the high complexity and the scarce cognition of biological prototype, there

are still many open problems under consideration, such as the processing mechanism of the each

part of the brain. Even so, it is believed that control techniques derived from biological systems

offer great potential for solving complex and nonlinear problems in the modern field of control.

The peripheral autonomic nervous system functions in a dynamic balance aiming at homeosta-

sis. It is divided into two nervous systems: the parasympathetic nervous system and the sympa-

thetic nervous system ([126]). The sympathetic system originates from the thoracic and upper lum-

bar spinal segments, while the parasympathetic system originates from the brain stem and sacral

spinal cord. Both systems are efferent and consist of a chain of preganglionic and postganglionic

neurons, which are synaptically connected in peripheral autonomic ganglia. Sympathetic ganglia

are situated remote from the target organs and organized bilaterally in the sympathetic chains and

in the prevertebral ganglia. Parasympathetic ganglia are situated close to the target organs. Stim-

ulation of sympathetic neurons produces many distinct effector responses elicited from a variety

77
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of cell and tissue types including blood vessels, heart, exocrine epithelia, etc., while stimulation of

parasympathetic neurons leads to activation of most exocrine glands, pacemaker and atria of the

heart, and some other target cells ([64]).

The baroreflex is responsible for short-term regulation of arterial blood pressure ([117]) though

recent research in [125] points out that baroreceptors are also important for the regulation of long-

term mean arterial blood pressure. Baroreceptor reflex provides a negative feedback loop in which

an elevated blood pressure reflexively causes blood pressure to decrease; similarly, decreased blood

pressure depresses the baroreflex, causing blood pressure to rise.

Regulation of arterial blood pressure by baroreceptor reflex would be regarded as tracking a

desired curve or value. When blood pressure rises, the carotid and aortic sinuses are distended,

resulting in stretch and therefore activation of the baroreceptors. Active baroreceptors fire action

potentials that are relayed to the nucleus of the tractus solitarius (NTS), which uses frequency as

a measure of blood pressure. The increased activation of the NTS inhibits the vasomotor cen-

ter and stimulates the vagal nuclei. The end result of baroreceptor activation is inhibition of the

sympathetic nervous system and activation of the parasympathetic nervous system. Sympathetic

inhibition leads to a reduction of total peripheral resistance and cardiac output via increased con-

tractility of the heart, heart rate, and arterial vasoconstriction, which tends to decrease blood pres-

sure. At the same time, parasympathetic activation leads to a decreased cardiac output via decrease

in contractility and heart rate, resulting in a tendency to decrease blood pressure.

By coupling sympathetic inhibition and parasympathetic activation, the baroreflex maximizes

blood pressure reduction. Sympathetic inhibition leads to a drop in peripheral resistance, while

parasympathetic activation leads to a depressed heart rate and contractility. The combined effects

will dramatically decrease blood pressure to the normal level. Similarly, sympathetic activation
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Figure 5.33: Parasympathetic and sympathetic manipulation of heart rate

with parasympathetic inhibition allows the baroreflex to elevate blood pressure to the desired level.

A particularly distinctive feature of the baroreflex is the interactions that occur between the

parasympathetic and sympathetic systems at the level of the cardiac pacemaker cells [80], [81]. A

simplified representation is shown in Figure 5.33. The two controllers adjust heart rate by releasing

neurotransmitters from nerve fibers. Acetylcholine (ACh) is released from parasympathetic nerve

endings, while norepinephrine (NE) and neuropeptide Y (NPY) are released from sympathetic

nerve endings. ACh and NE bind to receptors on the surface of cardiac pacemaker cells, thereby

altering the production of second messenger cyclic AMP (cAMP). cAMP affects heart rate by

modulating ionic currents in pacemaker cells. Note that the overall effects of the sympathetic and

parasympathetic systems on heart rate are facilitory and inhibitory, respectively.

Complex interactions occur before and after the synapses between the nerve endings and the

cardiac cells. Presynaptically, ACh inhibits the release of NE from sympathetic nerves, while

NPY inhibits the release of ACh from parasympathetic nerves. Postsynaptically, ACh inhibits the

production of cAMP and therefore diminishes the heart rate response to a given level of NE. In ad-

dition, parasympathetic nerves have ACh autoreceptors which subserve a negative feedback func-

tion; analogous NE autoreceptors are present in sympathetic nerves. This inhibition mechanism
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depicted in Figure 5.33 is present in other biological control systems, including the vestibulo-ocular

reflex (VOR) [118] and the auditory system [100].

The regulation by reciprocal lateral inhibition of sympathetic and parasympathetic nervous

systems exhibit the following interesting control characteristics:

(1) The sympathetic and parasympathetic nervous systems have opposite effects.

(2) The effects of the parasympathetic nervous system are considerably faster than those of the

sympathetic nervous system.

(3) The parasympathetic nervous system is employed only for dynamic control, while the sym-

pathetic nervous system is used primarily for steady-state control.

(4) The effects of the two nervous systems do not sum linearly due to complex interactions

which occur in both the autonomic nervous system and the heart itself.

This body’s homeostatic mechanisms and characteristics for maintaining blood pressure at the

desired value showed superior performances in the highly complex cardiovascular system, which

proves baroreceptor reflex is an adaptive, nonlinear, multivariable control system. Automotive

engine control are known to be highly nonlinear complex systems. Thus, it is potentially suitable

to develop an effective control strategy for the control of such nonlinear dynamic processes as TRQ

generation processes.

5.2 Adaptive Nonlinear Control Strategy

From the optimal control views, the role of parasympathetic nervous system is to refine the perfor-

mances of the sympathetic nervous system by discovering optimal corrections to be added to the

output of whole neural control system.
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The proposed adaptive nonlinear control strategy derived from a biological control system

consists of a linear controller and a nonlinear controller which interact via a reciprocal lateral

inhibitiory mechanism as shown in Figure 5.34, where Y is the control output, U is the control

command, Y sp is the target. The control system has three components: a linear controller, an

adaptive nonlinear controller, and a summation that produces U from the outputs of the two par-

allel controllers (U1, U2). By analogy to the baroreflex, the linear controller plays role of the

sympathetic system, the nonlinear controller plays the role of the parasympathetic system, and the

summation represents the postsynaptic interactions. Note that each controller modulates the other

controller via reciprocal lateral inhibitory connections.

The control output of the linear controller to the nonlinear controller is regarded as a complex

expression of the error of the controlled plant in the way that includes the integral of the errors, the

derivative of the errors and the proportional error. These three terms represent the whole history of

errors, the nonlinear trend of the change of the error and the current error, respectively. Using error

information provided, the nonlinear controller would, in a sense, see the possible situation of the

system and know the compensation will be input to the controlled plant by the other controller. In

this way, the nonlinear controller learns the characteristics of the plant and adjusts itself according
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to the other linear controller. What’s more, in the nonlinear operating regions or the situation with

disturbance, the linear controller may be inappropriate, and therefore, the nonlinear controller is

added to compensate the insuffiency of the linear controller and the dynamic environment such

as the parameter variations of the process and disturbances. These situations can be addressed by

adjusting the amount of lateral inhibition and learning the characteristics of the controlled system

such that desirable controller outputs are produced in particular operating regions.

The linear controller learns the action of the other controller by watching an input from the non-

linear controller. The adjustable parameter attached to this input increases the degree of freedom

of the linear fixed controller.

By coupling linear controller and nonlinear controller, the whole controller adjusts the output

of the controlled plant. The linear controller leads to a basic control output, while the nonlinear

controller refines the performances of the linear controller. The combined effects will dramatically

increase the systems learning ability and adjustability to the noisy environment.

5.2.1 Linear Controller Design

The possible linear controller would be a proportional-integral-derivative controller (PID con-

troller). The PID controller is a generic control loop feedback mechanism widely used in industrial

control systems. The PID controller attempts to correct the error between a measured process vari-

able and a desired setpoint by calculating and then outputting a corrective action that can adjust

the process accordingly.

The PID controller algorithm involves three separate parameters; the proportional, the integral

and derivative gains. The proportional gain determines the reaction to the current error, the integral

determines the reaction based on the sum of recent errors and the derivative determines the reaction
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to the rate at which the error has been changing.

The general form of the PID controller in the time domain is:

Upid = Kpe(t) +Ki

∫
e(t)dt+Kdė(t) (5.45)

where e(t) is tracking error between the target and the actual output of the controlled plant, Kp is

proportional gain, Ki is integral gain and Kd is deriative gain. By tuning the three gains in the PID

controller algorithm, the PID controller can provide control action designed for specific process

requirements.

The modulatory effect of the nonlinear controller is incorporated by adding an interaction term

to the linear PID controller. The form of the PID controller with reciporcal lateral impact is:

U1 = Upid +K1U2 (5.46)

where U2 is the control output of the nonlinear controller, K1 is a lateral impact weight which

determine the amount of the lateral impact from nonlinear controller.

5.2.2 Nonlinear Controller Design

The nonlinear controller is designed without the aid of an explicit dynamic model. The motivation

for this approach is that nonlinear models are much more difficult to obtain than linear models.

The controller could be chosen to have the following form:

U2 = f(e, ė) +K2U1 (5.47)

where f(e, ė) represents a neural network which would be chosen according to the specific control

goal and K2 is another lateral impact weight which determine the amount of the lateral impact

from linear PID controller.
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The control law from equation (5.47) would be represented as:

U2 = yT (e, ė)ω +K2U1 (5.48)

where yT (e, ė) is the regressor vector and ω is the vector of nonlinear controller parameters. The

objective is to adapt the nonlinear parameters (ω) and lateral impact weights (K1,K2) such that the

system output matches the target.

5.3 Adaptive Control System for Engine Torque Control

The structure of the torque control system is shown in Figure 5.35. The control system consists

of three components: a linear controller (PID controller), an adaptive nonlinear controller (neural

network controller), and a summation that produces TPS, command signal, from the outputs of the

two parallel controllers (U1, U2). By analogy to the baroreflex, the linear controller plays role of

the sympathetic system, the nonlinear controller plays the role of the parasympathetic system, and

the summation represents the postsynaptic interactions. In Figure 5.35, TRQ* is the desired TRQ

to be tracked by the parallel biologically inspired controller system, TPS is the command signal

which is formed by the sum of U1 and U2. The two controllers interact via reciprocal lateral

inhibitory connections, that is, U1, the output of PID controller, is one of inputs of neural network

controller while U2, the output of neural network controller, is incorporated in the PID controller.

The idea of coupling controller is the tracking error of the system is asymptotically convergent

to zero by linear and nonlinear controller cooperating with each other using the feedback control

output of the each controller. When the error of the system is zero, since the input of the PID

controller from the NN controller is not zero, the output of the PID controller will not be zero

either. The same rule applies to the NN controller. In this way, the system is controlled to track the

desired TRQ in the normal situation. When there is disturbance in the system, the PID controller
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and NN controller will cooperate with each other to pull the disturbed system back to the normal

situation.

The linear PID controller could take the following form:

U1 = Kpe(t) +Ki

∫
e(t)dt+Kdė(t) +K1U2 (5.49)

where e(t) = Y ∗(t)−Y (t)(TRQ∗(t)−TRQ(t)) and Kp, Ki, Kd, K1 are proportional gain, integral

gain, derivative gain and lateral impact weight respectively. The lateral impact weight K1 is tuned

by adaptive learning algorithm.

The nonlinear controller would have the following form:

U2 = f(e, ė, U1) (5.50)

where f(e, ė, U1) represents a feedforward neural network with inputs: the error, the derivative

of the error and the control output of the PID controller. Here, the control output of the PID

controller is incorporated into the neural network with more parameters to be tuned which have the

same effect as equation (5.47).

The weight adaption of the adaptive nonlinear control strategy is based on a minimization of
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the cost function as follows:

E =
1

2
(Y ∗ − Y )2 =

1

2
ζ2 (5.51)

where ζ = Y ∗ − Y . The Levenberg-Marquardt algorithm is used to update the weights of feed-

forward neural network instead of the backpropagation algorithm which is a steepest descent algo-

rithm.

The formula for updating neural network weights is given as follows:

△W = [JT (W )J(W ) + µI]−1JT (W )ζ (5.52)

where the parameter µ is adjustable and J(W ) is the Jacobian matrix. µ is multiplied by some

factor β whenever a step would result in an increased E. When a step reduces E, µ is divided

by β. By adjusting µ in this way, the search direction interpolates between the gradient and the

Gaussian-Newton direction. That is the reason that the rate of convergence is satisfactory. Jacobian

matrix J(W ) can be expressed as follows:

J(W ) =

[
∂ζ

∂W1

∂ζ

∂W2

· · · ∂ζ

∂Wn

]T
. (5.53)

From equation (5.51),

∂ζ

∂Wi

=
∂(Y ∗ − Y )

∂Wi

= −∂Y

∂U

∂U2

∂Wi

. (5.54)

where U = U1+U2. ∂U2

∂Wi
could be easily calculated using the standard backpropagation algorithm.

Thus, the Jacobian matrix can be computed by (5.54).

The formula for updating lateral weight K1 to minize E in the direction of the negative gradient
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is given as follows :

△K1 = −µ
∂E

∂K1

= µe
∂Y

∂K1

= µe
∂Y

∂U

∂U

∂K1

= µe
∂Y

∂U

∂U

∂U1

∂U1

∂K1

= µe
∂Y

∂U

∂U1

∂K1
(5.55)

where µ is the learning rate.

From (5.46),

∂U1

∂K1
= U2 (5.56)

That is, the change of lateral impact weight is:

△K1 = µe
∂Y

∂U
U2 (5.57)

Since the module of the engine TRQ is represented by a neural network, according to the

backpropagation algorithm, ∂Y
∂U

could be derived easily for updating weights of the algorithm.

5.4 Simulation Results

The objective of the present engine controller is to provide control signals so that torque generated

by the engine will track the torque measurement as in the data. The measured values in the data

are obtained using the commercial engine controller under warmup conditions. Based on the data

collected we use the biological adaptive controller to generate control signal TPS with the goal of

producing exactly the same torque as in the data set. The performance is defined as variations of
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Figure 5.36: ANCS control for TRQ

the torque generated from the measured values in the data set. The engine torque model is as the

one in the Chapter 2.

The data range for the training part of the control algorithm on the TRQ control is from 1000

to 11000 from the data set without any special purpose for the selection. Figure 5.36 is the output

(TRQ) of the engine using adaptive nonlinear control strategy compared to the TRQ data in the

data set. From the figure 5.36, we can see that the TRQ controlled by the adaptive nonlinear

controlle tracks the TRQ measurement in the data set very well. Figure 5.37 is the output of the

PID controller and neural network controller compared to the TPS in the data. Figure 5.38 is the

combined control to the engine compared to TPS in the data. From the figure 5.38, we can see

that the combined control output of controllers is very close to the TPS measuremnt in the data set.
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Figure 5.39: ANCS generalization control effect

From figure 5.37 and 5.38, we can see that the neural network and PID controller interact with each

other all the time. When there is disturbance in the system, the PID controller and neural network

controller cooperate with each other to pull the disturbed system back to the normal situation.

The data range for the generalization part of the control algorithm on the TRQ control is from

21000 to 31000 from the data set without any special purpose for the selection. Figure 5.39, Figure

5.40 and Figure 5.41 are the results from which we can say that the control effect is pretty good.

We can also see that the neural network controller and PID controller cooperate with each other all

the time.

From the Figures, we can tell that the role of neural network controller is to refine the perfor-

mances of the linear PID controller by discovering optimal corrections to be added to the linear
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controllers output, which bears an analogy with the mechanism of the baroreceptor reflex to regu-

late arterial blood pressure. When theres a deviation of the states of the system, the neural network

controller takes actions to pull the systems back to the normal conditions.

Compared to the method of neuro-slding mode control, the training speed is almost the same,

but the tracking effect of biological adaptive controller is better. It took only 15 steps (about

1 minute) to get very good results using Levenberg-Marquardt training algorithm. While using

backpropagation (delta training rule), it took around 2 hours steps to make MSE below 0.0004

during the training. Considering the speed, the adaptive nonlinear control strategy can be a good

candidate used for the online learning control.

The tuning of the parameters (the gains of the proportional, integral and derivative terms) of

PID controller is a very time-consuming task. If the PID controller parameters are chosen in-

correctly, the controlled process input can be unstable, i.e. its output diverges, with or without

oscillation, and is limited only by saturation or mechanical breakage. In our control strategy, the

parameters are selected as Kp = 1.6, Ki = 0 and Kd = −0.48 without any special purpose for the

selection. The other radmon selections of PID parameters are Kp = 0.6, Ki = 0.12 and Kd = 0.18.

We have also got very good results. We do not have to choose the parameters of PID controller

by trials and errors which is a very time-consuming task. In fact, the corrections produced by the

neural controller will compensate the insufficiency of the PID controller, plant-model mismatches

and disturbances from the environments.

5.5 Conclusions

Our research results show that the method of adaptive nonlinear control strategy is a good approach

for engine control. The parallel controllers inspired by the functions of baroreceptor reflex consists
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of a linear controller and a nonlinear controller that interact via a reciprocal lateral inhibitory

mechanism. The linear controller design is based on a PID controller, while the nonlinear controller

is constructed from neural network that are updated online. The nonlinear controller is designed

without the aid of an explicit dynamic model. In the linear operating region, the PID controller

takes control. If the controlled process is far away from linear regime or is disturbed by the noises,

the output of linear controller may be inappropriate, and therefore, the nonlinear controller is

added to compensate the insuffiency of the linear controller and the dynamic environment such

as the parameter variations of the process and disturbance. These situations can be addressed by

adjusting the amount of lateral inhibition and learning the characteristics of the controlled system

such that desirable controller outputs are produced in particular operating regions. From these two

controllers, the objective of tracking the desired TRQ could be realized.

The following advantages are observed in the experiments:

(1) Computational efficiency, suitable for real-time implementation.

(2) Real-time adaptability, insensitive to the changing characteristics of the controlled plant or

the noisy environment.

(3) Superior learning ability, even in the situation of a very poor linear controller

(4) No prior knowledge of the controlled plant needed

(5) Control and learning are done simultaneously.

(6) No need to tune the parameters of PID controller by trails and errors which is a very time-

consuming task.



6 A SELF-LEARNING SCHEME FOR RESIDENTIAL ENERGY SYSTEM CONTROL

AND MANAGEMENT

6.1 Introduction

Over the last decade, the human beings have become more and more dependent on the electricity

for their daily life. The rising cost, the environmental concerns, and the reliability issues all under-

lie the needs and the opportunities for developing new intelligent control and management system

of residential hybrid energy usage. There has been considerable discussion of the importance of

distributed energy storage, including batteries in the home, as a way to create more price-responsive

demand and as a way to integrate more renewable energy resources more effectively into power

grids. It is envisioned that distributed energy storage technologies could reduce the combustion

of fossil fuel, supply reliable energy in concert with other energy sources and financially benefit

residential customers.

The development of an intelligent power grid, i.e., the smart grid, has attracted significant

amount of attention recently. Considerable research and development activities have been carried

out in both industry and academia [5], [45], [82], [112]. Along with the development of smart grid,

more and more intelligence has been required in the design of the residential energy management

system. Smart residential energy management system provides end users the optimal manage-

ment of energy usage by means of robust communication capability, smart metering and advanced

optimization technology.

There has been a growing interest in the development and application of renewable energy

sources for residential households in recent years. Renewable energy sources like solar cells and

wind have many advantages over nonrenewable energy sources like oil and coal. They are nonde-

96
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pleting, modular, and nonpolluting. Although renewable energy source provide attainability, they

depend on nature and, therefore, are intermittent. For example, PV panels provide electricity only

when the sun is available and wind systems generate electricity only when there is enough wind.

To solve this problem, energy storage systems are installed to store energy from renewable ener-

gies. Energy storage systems bring an additional degree of flexibility to power systems, providing

a means of optimizing the way energy is used by decoupling energy production from utilization.

In many of these systems, energy storage has been considered as a means of optimizing the overall

use of energy, with the hope of providing additional value to the system, and limiting the depen-

dence on the power grid. As [69] point out that the system can be handled cost-efficiently if storage

is incorporated into the electrical network.

Time-of-use pricing (or residential real-time pricing as the utility company ComEd calls it) is

one of the load management policies used to shift electricity use from peak load hours to light

load hours in order to improve power system efficiency and allow new power system construc-

tion projects [76]. For the residential families, in general, there is a distinction between night and

day consumption for which different electricity prices apply. Due to the variable and intermittent

nature of renewable energy outputs, hybrid energy system will only function as grid-connected bat-

tery energy system in some peak hours with the absence of renewable energy output. The battery

that stores large amounts of energy during low rate hours could discharge during periods of high

demand with full electricity rate. Therefore, it will financially benefit the residential customers.

The short run value of this scheme would be its ability to off-load peaking units that require more

pricey electricity. The long run value would be its ability to reduce the electricity cost for residen-

tial households.

The main focus of this chapter is on proposing a computationally feasible and self-learning

optimization-based optimal operating control scheme for the residential energy system with bat-
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teries. We aim to minimize the total operating cost over the scheduling period in a residential

household by optimally scheduling the operation of batteries, while satisfying a set of constraints

imposed by the requirements on the system and the capacities of individual components of the sys-

tem. We consider the application of adaptive dynamic programming to the self-learning operation

control and management of the grid-connected energy system in residential households. ADP is

the method which approximate dynamic programming for solving problems of optimization over

time, in the general case of nonlinearity with random disturbance.

The advantages of the optimal energy controller based on ADP are reflected in many aspects.

First, the controller provides optimal control signals under various operating conditions. Such a

neural network controller will be obtained after a specially designed learning process that performs

approximate dynamic programming. Once a controller is learned and obtained (offline or online), it

will be applied to perform the task of energy optimization control. Second, the performance of the

controller can be further refined and improved through continuous learning in real-time operations.

One of the key promising attributes of the present approach is the ability of the continuous learning

and adaptation to improve controllers performance during real-time operations under uncertain

changes in the environment of the residential household. Last, but not least, the optimal controller

can be adapted to different scenarios of different residential customers. Traditional fixed or rule-

based control strategy is generally based on the expert knowledge according to the state-of-the-

art. As a result, the same control strategy is applied for all system configurations. However, this

procedure cannot ensure an optimum system design because it ignores the differences among the

different system configurations. With continuous learning and adaptation for residential household

energy system, the controller based on ADP will obtain the optimal control strategy according to

the system configuration and energy utilization of the residential customer.

The high-level objective of this work is to understand the economics and the security of hybrid
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energy system for the residential households. The specific goal addressed in this chapter is to help

reduce the operational cost and ensure the reliability of the supply for the residential household.

This paper is organized as follows. In Section 2, the residential energy system used in the paper

is briefly described. The control and management problem of residential energy system is formu-

lated. In Section 3, the ADP scheme that is suitable for the application to the residential energy

system control and management problem is introduced. In Section 4, our self-learning control

algorithm for grid-connected energy system in residential households is developed. The present

work will assume the use of artificial neural networks as a means for function approximation in

the implementation of ADP. In particular, multilayer feedforward neural networks are considered,

even though other types of neural networks are also applicable in this case. In Section 5, the per-

formance of our algorithm is studied through simulations. The simulation results indicate that the

proposed self-learning algorithm is effective in achieving the optimal cost. Finally, in Section 6,

the paper will be concluded with a few remarks.

6.2 Description of the Residential Energy System

The objective of this paper is to apply ADP intelligent optimization method to the challenge of

intelligent price-responsive management of residential energy use. Specifically, it is to minimize

the sum of system operational cost over the scheduling period, subject to technological and oper-

ational constraints of grids and storage resource generators and subject to the system constraints

such as power balance and reliability. For this purpose, we focus our research on finding the op-

timal battery charge/discharge strategy of the residential energy system with batteries and power

grids configuration.
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Figure 6.42: Grid-connected residential energy system with battery storage

6.2.1 Residential Energy System

The residential energy system uses AC utility grid as the primary source of electricity and is in-

tended to operate in parallel with the battery storage system. Fig. 6.42 depicts the schematic

diagram of a residential energy system. The system consists of power grids, a sinewave inverter, a

battery system and a power management unit. The battery storage system is connected to power

management system through an inverter. The inverter functions as both charger and discharger for

the battery. The construction of the inverter is based upon power MOSFET technology and pulse-

width-modulation technique [43]. The quality of the inverter output is comparable to that delivered

from the power grids. The battery storage system consists of lead acid batteries, which are the most

commonly used rechargeable battery type. The optimum battery size for a particular residential

household can be obtained by performing various test scenarios, which is beyond the scope of the
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present paper. Generally, the battery is sized to enable it to supply power to the residential load for

a period of twelve hours.

There are three operational modes for the residential energy system under consideration.

(1) Charging mode: when system load is low and the electricity price is inexpensive, the power

grids will supply the residential load directly and, at the same time, charge the batteries.

(2) Idle mode: the power grids will directly supply the residential load at certain hours when,

from the economical point of view, it is more cost effective to use the fully-charged batteries

in the evening peak hours.

(3) Discharging mode: by taking the subsequent load demands and time-varying electricity rate

into account, batteries alone supplies the residential load at hours when the cost of grid power

is high.

This system can easily be expanded; i.e., other power sources along with the power grid and

batteries like PV panels or wind generators can be integrated into the system when they are avail-

able.

6.2.2 Load Profile

For this study, the optimal scheduling problem is treated as a discrete-time problem with the time

step as one-hour and it is assumed that the residential load over each hourly time step is varying

with noise. Thus, the daily load profile is divided into twenty-four hour period to represent each

hour of the day. Each day can be divided into a greater number of periods to have higher resolution.

However, for simplicity and agreement with existing literature [15], [25], [30], [89], we use a

twenty-four hour period each day in this work. A typical weekday load profile is shown in Fig.
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Figure 6.43: A typical residential load profile
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Figure 6.44: A typical daily real-time pricing

6.43. The load factor PL is expressed as PL(t) during hour t (t = 1, 2, · · · , 24). For instance, at

time t = 19, the load is 7.8kW which would require 7.8kWh of energy. Since the load profile is

divided into one hour steps, the units of the power of energy sources can be represented equally by

kW or kWh.

6.2.3 Real-Time Pricing

Residential real-time pricing is one of the load management policies used to shift electricity useage

from peak load hours to light load hours in order to improve power system efficiency and allow new

power system construction projects [76]. With real-time pricing, the electricity rate varies from

hour to hour based on wholesale market prices. Hourly, market-based electricity prices typically

change as the demand for electricity changes; higher demand usually means higher hourly prices.
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In general, there tends to be a small price spike in the morning and another slightly larger spike in

the evening when the corresponding demand is high. Fig. 6.44 demonstrates a typical daily real-

time pricing from [141]. The varying electricity rate is expressed as C(t), the energy cost during

the hour t in cents. For the residential customer with real-time pricing, energy charges are functions

of the time of electricity use. Therefore, for the situation where batteries are charged during the

low rate hours and discharged during high rate hours, one may expect, from an economical point

of view, the profits will be made by storing energy during low rate hours and releasing it during the

high rate hours. In this way, the battery storage system can be used to reduce the total electricity

cost for residential household.

6.2.4 Battery Model

The energy stored in a battery can be expressed as [76], [139]:

Eb(t) = Eb0 −
t∑

i=0

Pb(i) (6.58)

Pb(i) = V0Iα(i) (6.59)

α(i) =


1 (i ≤ i0)

K1(I)dV0/di (i > i0)

(6.60)

V0 = Vs − (Kc(Q/(Q− Ji) +N)J + Aexp(−BQ−1Ji)) (6.61)

where Eb(t) is the battery energy at time t, Eb0 is the peak energy level when the battery is fully

charged (capacity of the battery), Pb(i) is the battery power output at time i, V0 is the terminal
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voltage of the battery, I is the battery discharge current, α(i) is the current weight factor as a

function of discharge time, i0 is the battery manufacturer specified length of time for constant

power output under constant discharge current rate, K1(I) is the weight factor as a function of the

magnitude of the current, Vs is the battery internal voltage, Kc is the polarization coefficient (ohm

cm2), Q is the available amount of active material (coulombs per cm2), J is the apparent current

density (amperes per cm2), N is the internal resistance per cm2, and A and B are constants.

Apart from the battery itself, the loss of other equipments such as inverters, transformers, and

transmission lines should also be considered in the battery model. The efficiency of these devices

was derived in [139] as:

η(Pb(t)) = 0.898− 0.173 |Pb(t)|/Prate, Prate > 0 (6.62)

where Prate is the rated power output of the battery, η(Pb(t)) is the total efficiency of all the auxil-

iary equipments in the battery system.

Assume that all the loss caused by these equipments occur during the charging period. The

battery model used in this work is expressed as follows: when the battery is charged

Eb(t+ 1) = Eb(t)− Pb(t+ 1)× η(Pb(t+ 1)), Pb(t+ 1) < 0 (6.63)

and when the battery discharges

Eb(t+ 1) = Eb(t)− Pb(t+ 1), Pb(t+ 1) > 0. (6.64)

In general, to improve battery efficiency and extend the battery’s lifetime as far as possible,

two constraints need to be considered:

(1) Battery has storage limit. A battery lifetime may be reduced if it operated at lower amount

of charge. In order to avoid damage, the energy stored in the battery must always meet
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constraint as follows:

Emin
b ≤ Eb(t) ≤ Emax

b . (6.65)

(2) For safety, battery cannot be charged or discharged at rate exceeding the maximum and

minimum values to prevent damage. This constraint represents the upper and lower limit for

the hourly charging and discharging power. A negative Pb(t) means that the battery is being

charged, while a positive Pb(t) means the battery is discharging,

Pmin
b ≤ Pb(t) ≤ Pmax

b . (6.66)

6.2.5 Load Balance

At any time, the sum of the power from the power grids and the batteries must be equal to the

demand of residential user

PL(t) = Pb(t) + Pg(t), (6.67)

where Pg(t) is the power from the power grids, Pb(t) can be positive (in the case of batteries

discharging) or negative (batteries charging) or zero (idle). It explains the fact that the power gen-

eration (power grids and batteries) must balance the load demand for each hour in the scheduling

period. We assume here that the supply from power grids is enough for the residential demand.

6.2.6 Optimization Objectives

The objective of the optimization policy is, given the residential load profile and real-time pricing,

to find the optimal battery charge/discharge/idle schedule at each time step which minimize the

total cost

CT =
T∑
t=1

C(t)× Pg(t) (6.68)
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while satisfying the load balance equation (6.67) and the operational constraints (6.62)–(6.66). CT

represents the operational cost to the residential customer in a period of T hours. To make the best

possible use of batteries for the benefit of residential customers, with time of day pricing signals, it

is a complex multistage stochastic optimization problem. Adaptive dynamic programming which

provides approximate optimal solutions to dynamic programming is applicable to this problem.

Using ADP, we will develop a self-learning optimization strategy for residential energy system

control and management. During real-time operations under uncertain changes in the environment,

the performance of the optimal strategy can be further refined and improved through continuous

learning and adaptation.

6.3 Self-Learning Scheme for the Residential Energy System

The learning control architecture for residential energy system control and management is based

on ADP. However, only a single module will be used instead of two or three modules in the original

scheme. The single critic module technique retains all the powerful features of the original ADP,

while eliminating the action module completely. There is no need for the iterative training loops

between the action and the critic networks and, thus, greatly simplify the training process. There

exists a class of problems in realistic applications that have a finite dimensional control action

space. Typical examples include inverted pendulum or the cart-pole problem, where the control

action only takes a few finite values. When there is only a finite control action space in the applica-

tion, the decisions that can be made are constrained to a limited number of choices, e.g., a ternary

choice in the case of residential energy control and management problem. When there is a power

demand from the residential household, the decisions can be made are constrained to three choices,

i.e., to discharge batteries, to charge batteries, or to do nothing to batteries. Let us denote the three

options by using u(t) = 1 for “discharge”, u(t) = −1 for “charge”, and u(t) = 0 for “idle”. In the
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present case, we note that the control actions are limited to a ternary choice, or to only three pos-

sible options. Therefore, we can further simplify the ADP introduced in Fig. 3.12 so that only the

critic network is needed in the ADP design. Fig. 6.45 illustrates our self-learning control scheme

for residential energy system control and management using ADP. The control scheme works in

this way: when there is a power demand from the residential household, we will first ask the critic

network to see which action (discharge, charge and idle) generates the smallest output value of

the critic network; then, the control action from u(t) = 1,−1, 0 that generates the smallest critic

network output will be chosen. As in the case of Fig. 3.12, the critic network in our ADP design

will also need the system states as input variables. It is important to realize that Fig. 6.45 is only a

diagrammatic layout that illustrates how the computation takes place while making battery control

and management decisions. In Fig. 6.45, the three blocks for the critic network stand for the same

critic network or computer program. From the block diagram in Fig. 6.45, it is clear that the critic

network will be utilized three times in calculations with different values of u(t) to make a decision

about whether to discharge or charge batteries or keep it idle. The previous description is based

on the assumption that the critic network has been successfully trained. Once the critic network is

learned and obtained (offline or online), it will be applied to perform the task of residential energy

system control and management as in Fig. 6.45. The performance of the overall system can be

further refined and improved through continuous learning as it learns more experience in real-time

operations when needed. In this way, the overall residential energy system will achieve optimal

individual performance now and in the future environments under uncertain changes.

In stationary environment, where residential energy system configuration remains unchanged,

a set of simple static if-then rules will be able to achieve the optimal scheduling as described previ-

ously. However, system configuration including user power demand, capacity of the battery, power

rate, etc., may be significantly different from time to time. To cope with uncertain changes of en-
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vironments, static energy control and management algorithm would not be proper. The present

control and management scheme based on ADP will be capable of coping with uncertain changes

of the environment through continuous learning. Another advantage of the present self-learning

scheme is that, through further learning as it gains more and more experience in real-time oper-

ations, the algorithm has the capability to adapt itself and improve performance. We note that

continuous learning and adaptation over the entire operating regime and system conditions to im-

prove the performance of the overall system is one of the key promising attributes of the present

method.

The development of the present self-learning scheme for residential energy system control and

management involves the following four steps.

Step 1) Collecting data: During this stage, whenever there is a power demand from residential

household, we can take any of the following actions: discharge batteries, charge batteries or keep

batteries idle and calculate the utility function for the system. The utility function in the present

work is chosen as:

U(t) =
the electricity charge at time t

the possible maximum cost
(6.69)

During the data collection step, we simply choose actions 1,−1, 0 randomly with the same proba-

bility of 1/3. In the meanwhile, the states corresponding to each action are collected. The environ-

mental states we collect for each action are the electricity rate, the residential load, and the energy

level of the battery.

Step 2) Training the critic network: We use the data collected to train the critic network as

presented in the previous section. The input variables chosen for the critic network are states

including the electricity rate, the residential load, the energy level of the battery and the action.

Step 3) Applying the critic network: We apply the trained critic network as illustrated in Fig.
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6.45. Three values of action u(t) will be provided to the critic network at each time step. The

action with the smallest output of the critic network is the one the system is going to take.

Step 4) Further updating critic network: We will update the critic network as needed while it

is applied in the residential energy system to cope with environmental changes, for example, user

demand changes or new requirements for the system. We note that the data has to be collected

again and the training of critic network has to be performed as well. In such a case, the previous

three steps will be repeated.

Once the training data is collected, we use the forward-in-time method to train the critic net-

work. The critic network is trained at time t − 1, with the output target given by U(t) + γQ(t).

The training of the critic network is to realize the mapping given by

Cf :


x(t− 1)

u(t− 1)

 → {U(t) + γQ(t)}. (6.70)

In this case, we consider Q(t − 1) as the output from the network to be trained and x(t − 1)

and u(t − 1) as the input to the network to be trained. We calculate the target output value for

the training of the critic network by using its output at time t as indicated in (6.70). The goal of

learning the function given by (6.70) is to have the critic network output satisfy

Q(t− 1) ≈ U(t) + γQ(t) for all t

which is required by (3.13) for approximating dynamic programming solutions.

Using the strategy of [79], the training procedure for the critic network is presented in the

following steps:

Step 1) initialize two critic networks: cnet1 = cnet2;

Step 2) collect data as in (6.70) including states and action for training;
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Step 3) use cnet2 to get Q(t), and then train cnet1 for five epochs using the Levenberg-

Marquardt algorithm [50];

Step 4) copy cnet1 to cnet2, i.e., let cnet2 = cnet1;

Step 5) repeat Steps 3) and 4), e.g., five times;

Step 6) repeat Steps 2)–5), e.g., fifty times;

Step 7) pick the best cnet1 as the trained critic network.

Note that the training for the critic network we describe here can be applied to both the initial

training of the critic network and further training of the critic network when needed in the future.

6.4 Simulation Results

The performance of the proposed algorithm is demonstrated by simulation studies for a typical

residential family. The objective is to minimize the electricity cost from power grids over one week

horizon by finding the optimal battery operational strategy of the energy system while satisfying

load conditions and system constraints. The focus of the present paper is on residential energy

system with home batteries connected to the power grids. For the residential energy system, the

cost to be minimized is a function of real-time pricing and residential power demands. The optimal

battery operation strategy refers to the strategy of when to charge batteries, when to discharge

batteries and when to keep batteries idle to achieve minimum electricity cost for the residential

user.

The residential energy system consists of power grids, an inverter, batteries and a power man-

agement unit as shown in Fig. 6.42. We assume that the supply from power grid is guaranteed

for the residential user demand at any time. The capacity of batteries used in the simulations is
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100kWh and a minimum of 20% of the charge is to be retained. The rated power output of bat-

teries and the maximum charge/discharge rate is 16kWh. The initial charge of batteries is at 80%

of batteries’ full-charge. We assume that the batteries and the power grids will not simultaneously

provide power to the residential user. At any time, residential power demand is supplied by either

batteries or power grids. The power girds would provide the supply to the residential user and,

at the same time, charge batteries. It is expected that batteries are charged during the low rate

hours, idle in some mid-rate hours, discharged during high rate hours. In this way, energy and cost

savings are both achieved.

The critic network in the present application is a multilayer feedforward neural network with

4–9–1 structure, i.e., four neurons at the input layer, nine neurons at the hidden layer, and one linear

neuron at the output layer. The hidden layer uses the hyperbolic tangent function as the activation

function. The critic network outputs function Q, which is an approximation to the function J(t).

The four inputs to the critic network are: energy level of batteries, residential power demand, real-

time pricing, and the action of operation (1 for discharging batteries, −1 for charging batteries, 0

for keeping batteries idle). The local utility function defined is

U(t) =
C(t)× Pg(t)

Umax

where C(t) is real-time pricing rate, Pg(t) is the supply from power grids for residential power

demand, and Umax is the possible maximum cost for all time. The utility function chosen in this

way will lead to a control objective of minimizing the overall cost for the residential user.

The typical residential load profile in one week is shown in Fig. 6.46 [141]. We add up to

±10% random noise in the load curve. From the load curve, we can see that, during weekdays,

there are two load peaks occurring in the period of 7:00–8:00 and 18:00–20:00, while during

weekend, the residential demand gradually increases until the peak appears at 19:00. Thus, the
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Figure 6.46: A typical residential load profile in one week
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residential demand pattern during weekdays and during weekend is different. Fig. 6.47 shows

the change of the electrical energy level in batteries during a typical one week residential load.

From Fig. 6.47, it can be seen that batteries are fully charged during the midnight when the the

price of electricity is cheap. After that, batteries discharge during peak load hours or medium

load hours, and are charged again during the midnight light load hours. This cycle repeats, which

means that the scheme is optimized with evenly charging and discharging. Therefore, the peak

of the load curve is shaved by the output of batteries, which results in less consumption of power

from the power girds. Fig. 6.48 illustrates the optimal scheduling of home batteries. The bars

in Fig. 6.48 represent the power output of batteries, while the dotted line denotes the electricity

rate in real-time. From Fig. 6.48, we can see that batteries are charged during hours from 23:00

to 5:00 next day when the electricity rate is in the lowest range and discharge when the price of

electricity is expensive. It is observed that batteries discharge from 6:00 to 20:00 during weekdays

and from 7:00 to 19:00 during weekend to supply the residential power demand. The difference

lies in the fact that the power demand during the weekend is generally bigger than the weekdays’

demand, which demonstrates that the present scheme can adapt to varying load conditions. From

Fig. 6.48, we can also see that there are some hours that the batteries are idle, such as from 3:00

to 5:00 and from 21:00 to 22:00. Obviously, the self-learning algorithm believe that, considering

the subsequent load demand and electricity rate, keeping batteries idle during these hours will

achieve the most economic return which result in the lowest overall cost to the customer. The cost

of serving this typical residential load in one week is 2866.64 cents. Comparing to the cost using

the power grids alone to supply the residential load which is 4124.13 cents, it gives a savings of

1257.49 cents in a week period. This illustrates that a considerable saving on the electricity cost is

achieved. In this case, the self-learning scheme has the the ability to learn the system characteristics

and provide the minimum cost to the residential user.
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In order to better evaluate the performance of the self-learning scheme, we conduct compari-

son studies with a fixed daily cycle scheme. The daily cycle scheme charges batteries during the

day time and releases the energy into the residential user load when required during the expensive

peak hours at night. Fig. 6.49 shows the scheduling of batteries by the fixed daily cycle scheme.

The overall cost is 3284.37 cents. This demonstrates that the present ADP scheme has lower cost.

Comparing Fig. 6.48 with Fig. 6.49, we can see the self-learning scheme is able to discharge bat-

teries one hour late from 7:00 to 19:00 during the weekend instead of from 6:00 to 20:00 during

weekdays to achieve optimal performance, while the fixed daily cycle scheme ignore the differ-

ences of the demand between weekdays and weekend due to the static nature of the algorithm.

Therefore, we conclude that the present self-learning algorithm performs better than the fixed al-

gorithm due to the fact that the self-learning scheme can adapt to the varying load consideration

and environmental changes.

6.5 Conclusions

In this chapter, we developed a self-learning scheme based on ADP for the new application of

residential energy system control and management. Such a neural network scheme will be ob-

tained after a specially designed learning process that performs approximate dynamic program-

ming. Once the scheme is learned and obtained (offline or online), it will be applied to perform the

task of energy cost optimization. The simulation results indicate that the proposed self-learning

scheme is effective in achieving minimization of the cost through neural network learning. The key

promising feature of the present approach is the ability of the continuous learning and adaptation

to improve the performance during real-time operations under uncertain changes in the environ-

ment or new system configuration of the residential household. We note that changes in residential

demand are inevitable in real-time operations. Therefore, fixed scheme which cannot take demand
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changes and system characteristics into account is less preferable in practical applications. Another

important benefit of the present algorithm is that it can be adapted to different scenarios of different

residential customers. Traditional fixed control strategies apply the same control strategy for all

system configurations, ignoring the different demands and system configurations. Therefore, this

procedure cannot ensure an optimum system design for all customers. With continuous learning

and adaptation for residential household energy system, the control scheme based on ADP can ob-

tain the optimal control strategy according to the system configuration and energy utilization of the

residential customer. This scheme is customer-centered, unlike the utility-centered, yet effective

and simple enough for a real-life use of residential consumers.



7 CONCLUDING REMARKS

In this dissertation, we addressed two research problems and presented our corresponding methods

to solve them. The first research problem is related to automotive engine control. We proposed

three advanced learning control algorithms for the automotive engine TRQ and AFR control. The

first step required for a successful identification of the neural controller is the characterization

of a suitable model for the processes under control. We tried a multi-input multi-output neural

network model which coupled the TRQ and AFR together to model the engine processes. Based

on this model, we developed the adaptive critic design to address the engine control problems.

However, due to the different nature of the TRQ and AFR process, we built two neural network

models for the engine TRQ process and AFR dynamics. Combustion torque is governed mostly by

nonlinearities whereas the air-fuel ratio process dominated by purely dynamic effects. Simulation

results demonstrate that good matches between the real vehicle data and the outputs of the models.

Based on these two neural network models, we applied neural sliding mode control technique and

baroreceptor reflex inspired adaptive control strategy for the engine TRQ and AFR control.

The goals of the present learning control design for automotive engines include improved per-

formance, reduced emissions and maintained optimum performance under various operating con-

ditions. More specifically, The goal of engine TRQ control is to track the commanded torque.

The objective of the AFR control is to regulate the engine air-fuel ratio at specified setpoints. We

applied three different learning control algorithms to solve these problems: adaptive critic learn-

ing technique, neural sliding mode control technique and biological nonlinear adaptive control

technique. The model-free action-dependent heuristic dynamic programming which approximates

the cost function with respect to the states of the process to be controlled was used at first in the

Chapter 3. Action-dependent heuristic dynamic programming is very useful in solving the cost

121
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minimization problems. By carefully defining the cost function, it realizes the optimal control of

the engine TRQ and AFR regulation in our research. In simulation studies, with the developed

model of the TRQ and AFR process, we have been able to achieve excellent tracking performance.

Meanwhile, excellent neural network controller transient performance also been achieved.

Considering the different characteristics of TRQ and AFR process, it is potential to improve

the results by the separation of the model and building individual controller for the engine TRQ

and AFR control. Therefore, two separated controller each dealing with TRQ and AFR indepen-

dently will beneficial in achieving a better control performance. We investigated an approach of

cooperative control based on the concept of combining neural networks and the methodology of

sliding mode control in the Chapter 4. Two neural networks in parallel are utilized to implement

neural sliding mode control. The equivalent control and the corrective control terms of SLMCs

are the outputs of the neural networks. The weight adaptations of neural networks are based on

the SLMCs equations and Levenberg-Marquardt algorithm. Simulation results indicate that the

suggested approach has considerable advantages compared to the classical sliding mode control

and is capable of achieving a good chattering free trajectory following performance without a prior

detailed knowledge of the controlled plant.

The control techniques derived from biological systems can offer great potential for solving

complex and nonlinear problems in the real world. By analogy to the mechanism of baroreflex

for maintaining the blood pressure at the desired level, we studied an adaptive nonlinear control

strategy in the Chapter 5. The controller consists of a linear controller and a nonlinear controller

that interact via a reciprocal lateral inhibitory mechanism. By cooperating with each other in the

operating region, the controller achieved desirable performance. The most important feature of

the strategy is that each controller adjusts the control output of the other controller via the lateral

inhibitory connections. The computational efficiency, real-time adaptability and superior learn-



123

ing ability are illustrated through extensive numerical simulations for engine torque management

driven by the biological adaptive nonlinear control strategy.

Comparing those different control techniques for the engine control, the adaptive critic learn-

ing control technique needs lengthy training time to achieve a good result, while neural sliding

mode control technique and biological nonlinear adaptive control technique takes considerable

shorter training time. The training for adaptive critic design usually takes about 6-7 hours, while,

with neural sliding mode control technique, it takes around 5-10 minutes to achieve similar result.

Compare the method of neuro-slding mode control with biological nonlinear adaptive control tech-

nique for the TRQ control, the training speed is almost the same, but the tracking effect of control

with biological nonlinear adaptive control technique is better.

Development of reliable techniques for calibration and control of systems for which mathe-

matical models of the underlying physical processes are either not available or not fully developed

have always posed significant challenges in engine control design and synthesis. The adaptive

critic learning control technique, neural sliding mode control technique and biological nonlinear

adaptive control technique, together with neural network modeling of the engine processes will en-

able us to design engine control systems with minimal a priori knowledge of the processes involved

and allow real-time adaptation of engine controllers due to uncertain changes in the environmental

and vehicle conditions. These techniques, once fully developed, may find potential applications as

engine calibration tools for modern propulsion systems such as CIDI, HCCI and even Fuel Cells.

Intelligent energy management systems can help to minimize energy costs for the residential

customers and reduce emissions by efficiently using renewable energy resources and distributed

energy storage systems. If distributed energy storage resources, including batteries in the home,

would be adopted smartly and efficiently, they would be an effective method to create more price-



124

responsive demand and integrate more renewable energy resources more effectively into power

grids. In the Chapter 6, we applied a self-learning scheme for the control and management of res-

idential energy system. The self-learning scheme is based on a single critic neural network. The

distinctive advantage of the scheme is that the intelligent method has the capability to achieve the

optimal control for different customers based on the demand and system configuration. Simulation

results confirmed that our proposed learning scheme can greatly benefit the residential customers

with the minimum electricity charge. This technique has the potential to revolutionize the residen-

tial energy management as it reduces and shifts demand automatically, provides valuable insights

to customers which ultimately save the environment by reducing the carbon footprint of power

companies.
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