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SUMMARY

Study of measuring agreement is intend to evaluate whether the readings from one rater/

measurement agree with those from other raters/measurements. In this dissertation, we are

going to present a general method to assess agreement for a large variety of data with repeated

measurements using linear and generalized linear mixed models. In the first place, a set of agree-

ment statistics, including mean square deviation, concordance correlation coefficient, precision

and accuracy coefficients, is presented for evaluating the intra-, inter-, and total-rater agreement

in the multiple-rater and multiple-replications cases. Secondly, likelihood-based approaches are

developed to estimate all the agreement statistics. Asymptotic properties of these estimates are

also discussed for different data structures. Furthermore, our method has the merit of handling

missing values and covariates naturally, and a new set of restricted agreement statistics is pro-

posed in order to capture the true random variations and between-instrument effects adjusted

for the covariate effects. Simulations for both linear and generalized linear mixed models are

conducted to show the accuracy and effectiveness of our approaches. In the end, two industry

datasets are evaluated using our approach. One is the cardiac function measurements used to

determine the agreement between impedance cardiography and radionuclide ventriculography

estimates, and the other one is an antihypertensive patch dataset given by FDA for assessing

individual bioequivalence.

xi
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Assessment of agreement has been a popular research topic in applied statistics during the

past decades. It is mainly aimed to answer one crucial question, whether the readings from one

rater/measurement agree with those from other raters/measurements. For example, we may

want to compare several laboratory results collected in various labs, evaluate the performance

between two medical devices, or find out if a newly developed method is interchangeable with the

existing one. It has been widely used in bioinformatics, chemical engineering, pharmaceutical

studies, psychology, and others.

Starting from the Pearson correlation coefficient, paired t-test, there are many methodolo-

gies and statistics developed in this area. Cohen (1), (2), Fleiss, Cohen, and Everitt (3), Fleiss

(4), and Fleiss and Cuzick (5) studied the kappa coefficient to measure agreement for categor-

ical data. Bland and Altman (6) stated agreement using graphical techniques. Lin (7), (8)

introduced the famous concordance correlation coefficient (CCC) for a bivariate data, following

with a lot of literatures in this area, for instance, Chinchilli, Martel, Kumanyika, and Lloyd

(9), Robieson (10), Lin, Hedayat, Sinha, and Yang (11), Carrasco and Jover (12), and Lin,

Hedayat, and Wu (13). Additionally, Barnhart and Williamson (14), Barnhart, Haber, and

Song (15), and Barnhart, Song, and Haber (16) constructed the CCC for multiple raters and

readings using generalized estimating equations (GEE).

In this dissertation, we are going to assess the agreement for both continuous and cate-

gorical data with repeated measurements using likelihood based approach in mixed models,

since the maximum likelihood principle is well developed, and it is known to have consistency
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and asymptotic normality properties, which leads to the desirable asymptotic behavior of our

agreement estimates.

To begin with, a linear additive mixed models is discussed. All the fixed effects and variance

components for random effects are estimated via the restricted maximum likelihood (REML)

approach proposed by Thompson (17). Normality is not required in our model. For balanced

data, REML estimates are exactly the moment-based ANOVA estimates, which are unbiased

and have minimum variances in the class of all quadratic unbiased estimators of the variance

components (Graybill (18), and Graybill and Hultquist (19)), no matter whether normality is

assumed. For unbalanced data, REML is also preferred over other moment-based estimates by

Corbeil and Searle (20), Khuri and Sahai (21), and Searle, Casella, and McCulloch (22). The

asymptotic behavior of the agreement estimates is studied using the second derivatives of the

log likelihood function for normal data, or the asymptotic variances estimates for non-normal

data given by Richardson and Welsh (23).

After studying the linear mixed models, it is natural to ask the question, “what if the data

do not fit in the linear mixed model setup?” Log-Gamma distributed data, and binary data

with logistic regression are two examples. Thus, the agreement statistics should be able to

generate into the generalized linear mixed model framework, in order to cover a wider range

of distribution families. Carrasco (24) has studied the case of overdispersed count data using

generalized concordance correlation coefficient. Based on his work, a complete set of multi-rater

agreement estimates for arbitrary distribution families and link functions are proposed in this

dissertation, with parametric bootstrap percentile intervals for characterizing uncertainty.
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Furthermore, if covariates are involved, the measurements are more likely affected by those

covariates. For example, readings from a sophisticated medical device may depend on the room

temperature and humidity. These readings can not present the true differences among devices,

even the same device can produce different readings under different environments. Hence, in

our study, we eliminate the covariates effect estimated from the linear mixed models, and only

consider the between and within instruments/raters differences, and random measuring errors.

The remaining chapters are organized as follows. Chapter 2 gives a short introduction for

the idea of measuring agreement with some agreement statistics for a pair of observations.

Chapter 3 proposes the intra-, inter-, and total-rater agreement statistics for repeated mea-

surement using linear additive mixed models. Estimating procedures by restricted maximum

likelihood approach are also given, along with the asymptotic properties of all agreement statis-

tics. Simulation studies with covariates and missing values are showed, and two applications

on real industry datasets are presented in Chapter 4. Chapter 5 extends the intra-, inter-, and

total-rater agreement statistics into generalized linear mixed model framework for modeling a

large variety of cases. Chapter 6 contains results of simulations and an interesting application.

And the last Chapter is the conclusion and discussion.



CHAPTER 2
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Consider a paired vector of observations X and Y , Figure 1a shows a scatter plot of an

arbitrary paired vector X and Y , all the paired data are fluctuating around the 45° concordance

line X = Y . If each reading in X is identical to the corresponding one in Y , then we say X

and Y are in perfect agreement. In this case, all the points of the paired observations X and

Y should be located exactly on the concordance line, which is presented in Figure 1b.

There are several widely used statistics or tests designed for measuring the agreement. The

Pearson correlation coefficient, and the paired t-test statistic are two such statistics. However,

both Pearson correlation coefficient and paired t-test are not good enough to characterize the

agreement between X and Y . The Pearson correlation coefficient reflects the linear relationship

but fails to detect the location and scale shift, while paired t-test evaluates the means rather

than individual pairs. They can be misleading in some cases (Lin, (7)), as shown in Figure 1c

and Figure 1d.

After the introduction of concordance correlation coefficient by Lin (7), there are some new

statistics proposed for measuring agreement. To begin with, the most basic model is used to

illustrate the idea of assessment of agreement, assuming X and Y have a bivariate distribution

with means µx and µy, variances σ2
x and σ2

x, and covariance σxy = ρσxσy.
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2.1 Mean Square Deviation (MSD)

Mean square deviation is a frequently-used measure for studying the differences between

two vectors of observations. It evaluates an aggregated deviation from the identity line (25).

ε2 is used to denote the MSD, which is defined as

ε2 = E(X − Y )2. (2.1)

Based on the model assumption, MSD can be rewritten as

ε2 = (µx − µy)
2 + σ2

x + σ2
y − 2σxy. (2.2)

From Equation (2.2), we can see that MSD is always non-negative, and it equals zero if and

only if µx = µy, σ2
x = σ2

y and ρ = 1. MSD increases when there is a large difference between

means, or large variances. However, the drawback of MSD is that it is not intuitively meaningful

and therefore there is no easy way to setup a common allowance of MSD for evaluating the

agreement.

Lin (26) showed the asymptotic normality for MSD using log transformation.

(
ln(ε̂2)− ln(ε2)

)
∼ N

(
0,

2

n− 2

[
1− (µx − µy)

4

ε4

])
.



9

2.2 Total Deviation Index (TDI) and Coverage Probability (CP)

Lin, Hedayat, Sinha, and Yang (11) proposed a method to capture a proportion of data

within a boundary from target value. Such proportion is called coverage probability and denoted

as π, and such boundary is called total deviation index and denoted as δ.

The testing of TDI and CP are interchangeable. For example, we may want to evaluate that

at least 90% of observations are located within 10% relative deviation of their target values. In

this case, we can set the TDI at 10% and test whether the CP exceeds 90% or not, or conversely,

set the CP at 90% and test whether the TDI exceeds 10% or not.

Assume that the difference between two variables is D = X − Y , which has a normal

distribution with mean µd = µx − µy and variance σ2
d = σ2

x + σ2
x − 2σxy.

For a given TDI (δ0), CP can be calculated by

π(δ0) = P (D2 < δ20) = χ2

(
δ20, 1,

µ2
d

σ2
d

)
, (2.3)

where χ2(·) is the cumulative non-central chi-square distribution up to δ20 , with one degree of

freedom and non-centrality parameter of µ2
d/σ

2
d.

Similarly, for a given CP (π0), TDI can be calculated by

δ(π0) =

√
(χ2)−1

(
π0, 1,

µ2
d

σ2
d

)
. (2.4)
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Lin (26) and Lin, Hedayat, Sinha, and Yang (11) suggested a simple version of TDI and CP

using normal approximation.

δ(π0) ≈ Φ−1
(
1− 1− π0

2

)∣∣ε2∣∣, (2.5)

π(δ0) ≈ χ2

(
δ20
ε2

, 1

)
. (2.6)

From the above Equations (2.5) and (2.6), we can see that both TDI and CP are functions

of MSD, and a large MSD leads to a large TDI and a small CP, and they are determined once

MSD is calculated.

2.3 Precision Coefficient and Accuracy Coefficient

The precision coefficient ρ is defined as the Pearson correlation coefficient of X and Y , which

indicates the agreement of observations with their best fit linear line based on within-sample

variations.

ρ =
σxy
σxσy

. (2.7)

The accuracy coefficient indicates the agreement of the two marginal distributions. It can

be decomposed into two parts, one is the location shift defined as υ =
µx−µy√
σyσx

, the other one is

the scale shift defined as $ =
σy

σx
or σx

σy
. Hence, the accuracy coefficient is

χa =
2

$ + 1/$ + υ2
. (2.8)
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If µx = µy and σ2
x = σ2

y , the accuracy coefficient equals one, and if one of the variances

approach infinity or there is a huge difference in means, the accuracy coefficient degenerates to

zero.

2.4 Concordance Correlation Coefficient (CCC)

Since precision coefficient captures the linear relationship while accuracy coefficient cap-

tures the location and scale shift, Lin (7) proposed a compounded statistic called concordance

correlation coefficient for measuring the agreement between two variables. CCC is denoted by

ρc and has the form

ρc = 1− Expected squared perpendicular deviation from 45°line

Expected squared perpendicular deviation from 45°line
when X and Y are uncorrelated

= 1− E(X − Y )2

E(X − Y )2|ρ=0
(2.9)

=
2σxy

(µx − µy)2 + σ2
x + σ2

y

(2.10)

= ρχa. (2.11)

Here, E(X−Y )2 gives the mean square for within sample total deviation, and E(X−Y )2|ρ=0

gives the mean square for total deviation. Thus, CCC is a standardized version of MSD, which

measures whether these two vectors of observations are agreed along the concordance line or

not. It is easy to see that CCC takes the range from −1 to 1, where 1 means perfect agreement,

−1 means perfect reverse agreement, and 0 means totally uncorrelated (σxy = 0).
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Lin (7) also showed the asymptotic normality for CCC using Fisher’s Z-transformation.

(
tanh−1(ρ̂c)− tanh−1(ρc)

)
∼ N

(
0,

1

n

[
(1− ρ2)ρ2c
(1− ρ2c)ρ

2
+

2ρ3c(1− ρc)υ
2

ρ(1− ρ2c)
2

− ρ4cυ
4

2ρ2(1− ρ2c)
2

])
.
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3.1 Linear Additive Mixed Effects Model for Repeated Measurements

In this chapter, we will study the agreement statistics for multiple raters with multiple

replicates. The linear additive mixed effects model we use is assumed to follows,

yijl = µ+ xc′
ijθ + βj + αi + γij + εijl. (3.1)

The subscript i in (3.1) is the index of subjects, j is the index of raters, and l is the index of

replications for each subject and rater. If the total number of subjects is n, the total number of

raters is k, and the number of replications for subject i and rater j is mij , we have i = 1, 2, . . . , n,

j = 1, 2, . . . , k, and l = 1, 2, . . . ,mij .

In Model (3.1), µ is the overall mean and xc
ij is the p× 1 design vector for p× 1 covariate

coefficients θ, βj is the fixed inter-rater effect, αi is the random subject effect with mean 0 and

variance σ2
α, γij is the random subject-rater interaction effect with mean 0 and variance σ2

γ ,

and εijl is the random error with mean 0 and variance σ2
ε . In addition, εijl is assumed to be

uncorrelated with αi and γij .

Generally, the fixed inter-rater effect βj can be included in the covariates θ. Therefore,

Model (3.1) can be rewritten as

yijl = µ+ x′
ijϑ+ αi + γij + εijl, (3.2)

where ϑ′ = (β1, β2, . . . , βk,θ
′) and xij is the corresponding design matrix.
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3.2 Individual Agreement Statistics

3.2.1 Intra-Rater Precision

Intra-rater precision is used for measuring the agreement among multiple replications per-

formed by a single rater. Here, replicates within a rater is assumed to be interchangeable. For

given i and j, the intra-rater mean square deviation is defined as the mean of square difference

between any two replications l and l′, l, l′ = 1, 2, . . . ,mij .

ε2intra|i, j = E(yijl − yijl′)
2

= (x′
ijϑ− x′

ijϑ)
2 + 2(σ2

α + σ2
γ + σ2

ε )− 2(σ2
α + σ2

γ)

= 2σ2
ε . (3.3)

From (2.9), for given i and j, the intra-rater CCC is

ρc,intra|i, j =
σ2
α + σ2

γ

σ2
α + σ2

γ + σ2
ε

. (3.4)

And the precision and accuracy coefficients become

ρintra|i, j =
σ2
α + σ2

γ

σ2
α + σ2

γ + σ2
ε

, (3.5)

χα,intra|i, j = 1. (3.6)
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3.2.2 Inter-Rater Agreement

Inter-rater agreement is used for measuring the agreement among the mean of raters. For

given subject i, and any two raters j and j′, j, j′ = 1, 2, . . . , k, j 6= j′, the inter-rater mean

square deviation can be defined as follows

ε2inter|i, j, j′ = E(ȳij· − ȳij′·)
2

= (x′
ijϑ− x′

ij′ϑ)
2 + 2

(
σ2
γ +

σ2
ε

mijj′

)
, (3.7)

where ȳij· is the mean of mij replications from subject i and rater j, and mijj′ = 2mijmij′
/
(mij+

mij′).

Let Axijj′ = (xij − xij′)(xij − xij′)
′/2, then the inter-rater MSD (3.7) can be expressed as

ε2inter|i, j, j′ = 2
(
ϑ′Axijj′ϑ+ σ2

γ +
σ2
ε

mijj′

)
. (3.8)

The inter-rater CCC, precision and accuracy coefficients are

ρc,inter|i, j, j′ =
σ2
α

ϑ′Axijj′ϑ+ σ2
α + σ2

γ + σ2
ε /mijj′

, (3.9)

ρinter|i, j, j′ =
σ2
α

σ2
α + σ2

γ + σ2
ε /mijj′

, (3.10)

χα,inter|i, j, j′ =
σ2
α + σ2

γ + σ2
ε /mijj′

ϑ′Axijj′ϑ+ σ2
α + σ2

γ + σ2
ε /mijj′

. (3.11)
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3.2.3 Total-Rater Agreement

Total-rater agreement is used for measuring the agreement based on any individual observa-

tion among all raters. For given subject i, and any two raters j and j′, j, j′ = 1, 2, . . . , k, j 6= j′,

the total-rater mean square deviation can be defined as follows

ε2total|i, j, j′ = E(yijl − yij′l′)
2

= (x′
ijϑ− x′

ij′ϑ)
2 + 2(σ2

γ + σ2
ε )

= 2(ϑ′Axijj′ϑ+ σ2
γ + σ2

ε ). (3.12)

Similarly, the total-rater CCC, precision and accuracy coefficients can be calculated as

ρc,total|i, j, j′ =
σ2
α

ϑ′Axijj′ϑ+ σ2
α + σ2

γ + σ2
ε

, (3.13)

ρtotal|i, j, j′ =
σ2
α

σ2
α + σ2

γ + σ2
ε

, (3.14)

χα,total|i, j, j′ =
σ2
α + σ2

γ + σ2
ε

ϑ′Axijj′ϑ+ σ2
α + σ2

γ + σ2
ε

. (3.15)

3.3 Overall Agreement Statistics

The above intra-, inter-, and total-rater agreement statistics are calculated for individual

subject and paired raters. They should be able to extended to multi-rater cases when a large

number of raters are involved. Notice the intra- and total-rater precision coefficients ρ and

all the intra-rater agreement statistics do not depend on the index i and j, and the MSDs are
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linear functions of Axijj′ . Hence, we can directly use their sample means to estimate the overall

agreements for multiple subjects and raters.

ε2intra =

∑n
i=1

∑k
j=1 ε

2
intra|i, j

nk

= 2σ2
ε , (3.16)

ε2inter =

∑n
i=1

∑k−1
j=1

∑k
j′=j+1 ε

2
inter|i, j, j′

nk(k − 1)/2

= 2
(
ϑ′Axϑ+ σ2

γ +
σ2
ε

m

)
, (3.17)

ε2total =

∑n
i=1

∑k−1
j=1

∑k
j′=j+1 ε

2
total|i, j, j′

nk(k − 1)/2

= 2
(
ϑ′Axϑ+ σ2

γ + σ2
ε

)
, (3.18)

ρc,intra =
σ2
α + σ2

γ

σ2
α + σ2

γ + σ2
ε

, (3.19)

ρintra =
σ2
α + σ2

γ

σ2
α + σ2

γ + σ2
ε

, (3.20)

χα,intra = 1, (3.21)

ρtotal =
σ2
α

σ2
α + σ2

γ + σ2
ε

, (3.22)

where Ax =
∑n

i=1

∑k−1
j=1

∑k
j′=j+1(xij−xij′)(xij−xij′)

′/nk(k−1), and m is the harmonic mean

of all mijj′ ’s.
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The other agreement statistics depend on the index i and j. King and Chinchilli (27) and

Barnhart, Haber, and Song (15) proposed the multi-rater CCC in two different ways. King

and Chinchilli (27) defined the generalized concordance correlation coefficient using a convex

function of distance, while Barnhart, Haber, and Song (15) defined the overall concordance

correlation coefficient for multiple raters as following,

Overall CCC = 1−
E

k−1∑
i=1

k∑
j=i+1

(Yi − Yj)
2

E
[ k−1∑
i=1

k∑
j=i+1

(Yi − Yj)2|Y1, . . . , Yk are uncorrelated
] (3.23)

These two methods turn out to be identical when a squared distance function is used in

King and Chinchilli’s generalized concordance correlation coefficient. It can be shown that

the Barnhart et al.’s overall CCC (3.23) is actually a weighted mean of pairwise CCCs, and

the weights are designed to penalize the pairs of observations which have higher variances and

larger mean differences (15). Following the weighting scheme by Barnhart et al., the other

overall agreement statistics are defined as follows,



20

ρc,inter =

∑n
i=1

∑k−1
j=1

∑k
j′=j+1 ρc,inter|i, j, j′ × ξinter|i, j, j′∑n

i=1

∑k−1
j=1

∑k
j′=j+1 ξinter|i, j, j′

, (3.24)

ρc,total =

∑n
i=1

∑k−1
j=1

∑k
j′=j+1 ρc,total|i, j, j′ × ξtotal|i, j, j′∑n

i=1

∑k−1
j=1

∑k
j′=j+1 ξtotal|i, j, j′

, (3.25)

ρinter =

∑n
i=1

∑k−1
j=1

∑k
j′=j+1 ρinter|i, j, j′ × ξinter|i, j, j′∑n

i=1

∑k−1
j=1

∑k
j′=j+1 ξinter|i, j, j′

, (3.26)

χa,inter =

∑n
i=1

∑k−1
j=1

∑k
j′=j+1 χa,inter|i, j, j′ × ξinter|i, j, j′∑n

i=1

∑k−1
j=1

∑k
j′=j+1 ξinter|i, j, j′

, (3.27)

χa,total =

∑n
i=1

∑k−1
j=1

∑k
j′=j+1 χa,total|i, j, j′ × ξtotal|i, j, j′∑n

i=1

∑k−1
j=1

∑k
j′=j+1 ξtotal|i, j, j′

. (3.28)

Where the weight ξ for a pair of observations X and Y is defined as E(X − Y )2|ρ=0.

Thus, based on the definition of inter-, and total-rater agreements, the weights ξinter|i, j, j′ and

ξtotal|i, j, j′ can be computed as follows.

ξinter|i, j, j′ = 2
(
ϑ′Axijj′ϑ+ σ2

α + σ2
γ + σ2

ε /mijj′
)
,

ξtotal|i, j, j′ = 2
(
ϑ′Axijj′ϑ+ σ2

α + σ2
γ + σ2

ε

)
.
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After simple algebra, we have

ρc,inter =
σ2
α

ϑ′Axϑ+ σ2
α + σ2

γ + σ2
ε /m

, (3.29)

ρc,total =
σ2
α

ϑ′Axϑ+ σ2
α + σ2

γ + σ2
ε

, (3.30)

ρinter =
σ2
α

ϑ′Axϑ+ σ2
α + σ2

γ + σ2
ε /m

+
2σ2

α

nk(k − 1)
·
∑n

i=1

∑k−1
j=1

∑k
j′=j+1 ϑ

′Axijj′ϑ/(σ
2
α + σ2

γ + σ2
ε /mijj′)

ϑ′Axϑ+ σ2
α + σ2

γ + σ2
ε /m

, (3.31)

χa,inter =
σ2
α + σ2

γ + σ2
ε /m

ϑ′Axϑ+ σ2
α + σ2

γ + σ2
ε /m

, (3.32)

χa,total =
σ2
α + σ2

γ + σ2
ε

ϑ′Axϑ+ σ2
α + σ2

γ + σ2
ε

. (3.33)

3.4 Estimations

Model (3.2) can be rewritten in the vector form

y = Xβ + Z1α+ Z2γ + Z0ε, (3.34)
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with

α =



α1

α2

...

αn


, γ =



γ11

γ12

...

γ1k

γ21

...

γ2k

...

γi1

...

γnk



, β =

 µ

ϑ

 ,

where X and Zr, r = 0, 1, 2, are the corresponding design matrices, y and ε vectors contain

elements of observations and residuals of i = 1, 2, . . . , n, j = 1, 2, . . . , k, and l = 1, 2, . . . ,mij ,

respectively.

The variance of y is

V = Z1Z1
′σ2

α + Z2Z2
′σ2

γ + Z0Z0
′σ2

ε . (3.35)
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For example, if the data is balanced, we have m = mijj′ = mij , i = 1, . . . , n, j, j′ = 1, . . . , k,

and

X = X̃ ⊗ 1m, X̃ =



1 x′
11

...
...

1 x′
ij

...
...

1 x′
nk


,

Z0 = In×k×m, Z0Z0
′ = In×k×m,

Z1 = In ⊗ 1k ⊗ 1m, Z1Z′
1 = In ⊗ Jk ⊗ Jm,

Z2 = In ⊗ Ik ⊗ 1m, Z2Z′
2 = In ⊗ Ik ⊗ Jm.

where Idim is the identity matrix with dimension dim× dim, 1dim is the vector of all ones with

dimension dim× 1, and Jdim is the square matrix of all ones with dimension dim× dim.

3.4.1 Estimating Fixed Effects

The weighted least square (WLS) estimator is used to estimate the fixed effects β, which

is identical to the maximum likelihood estimates (MLE) when the errors are assumed to be

independently normally distributed.

β̂ = (X′V−1X)−X′V−1y. (3.36)



24

And its asymptotic variance matrix is,

Vβ̂ = (X′V−1X)−. (3.37)

Note that the overall mean µ and fixed rater effects β1, . . . , βk in Model (3.1) can not be

unbiased estimated individually, we can assume β1 = 0, or add the constraint
∑k

i=1 βi = 0.

3.4.2 Estimating Variance Components

Assume all the random effects are independently normally distributed, it can be shown that,

y ∼ N (Xβ,V). (3.38)

Restricted maximum likelihood (REML) approach is used to find the estimators of the

variances components.

Let N =
n∑

i=1

k∑
j=1

mij , and K be an N × (N − p+ 1) matrix with

rank(K) = N − p+ 1, K′X = 0.
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From Searle, Casella, and McCulloch (22), the REML estimate equations for variance com-

ponents are,


tr(Z′

0PZ0Z′
0PZ0) tr(Z′

0PZ1Z′
1PZ0) tr(Z′

0PZ2Z′
2PZ0)

tr(Z′
1PZ0Z′

0PZ1) tr(Z′
1PZ1Z′

1PZ1) tr(Z′
1PZ2Z′

2PZ1)

tr(Z′
2PZ0Z′

0PZ2) tr(Z′
2PZ1Z′

1PZ2) tr(Z′
2PZ2Z′

2PZ2)




σ2
ε

σ2
α

σ2
γ

 =


y′PZ0Z′

0Py

y′PZ1Z′
1Py

y′PZ2Z′
2Py

 .

(3.39)

where

P = V−1 − V−1X(X′V−1X)−X′V−1 = K(K′VK)−1K′.

Patterson and Thompson (28) showed that for the balanced data of mixed model, with or

without assuming normality, the ANOVA estimates for variance components are the same as

the solutions of REML estimating equations (3.39). For unbalanced data, maximum likelihood

approach is preferred due to its well established asymptotic sampling dispersion matrix of the

estimates. Therefore, we use the REML estimating equations (3.39) for both normal and non-

normal data.
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3.5 Asymptotic Variances of Variance Components

3.5.1 With Normality

The estimated variance of variance components with normal assumption can be calculated

from the second derivatives of the log likelihood function (22), let ς̂ =
(
σ̂2
ε , σ̂

2
α, σ̂

2
γ

)′,

Vς̂ = var


σ̂2
ε

σ̂2
α

σ̂2
γ

 = 2


tr(PZ0Z′

0PZ0Z′
0) tr(PZ0Z′

0PZ1Z′
1) tr(PZ0Z′

0PZ2Z′
2)

tr(PZ1Z′
1PZ0Z′

0) tr(PZ1Z′
1PZ1Z′

1) tr(PZ1Z′
1PZ2Z′

2)

tr(PZ2Z′
2PZ0Z′

0) tr(PZ2Z′
2PZ1Z′

1) tr(PZ2Z′
2PZ2Z′

2)



−1

.

(3.40)

3.5.2 Without Normality

Richardson and Welsh (23) discussed the asymptotic behavior of the REML estimates with-

out normality assumption. They were using hierarchical linear mixed models with certain mild

conditions, which are easy to be verified in our model. Their theorem is restated here using our

own notations.

Theorem 1. (Richardson and Welsh (23))

For hierarchical models, observations y can be partitioned into g vectors yi so that V is block

diagonal with g blocks Vj. Each ZiZi
′ is also block diagonal, we denote the jth diagonal block

as [ZiZ′
i]j.
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Assume some mild conditions hold, in order to ensure continuity, there is a solution ς̂ =(
σ̂2
ε , σ̂

2
α, σ̂

2
γ

)′ of the estimating equations (3.39) satisfying |ς̂ − ς| = Op(N
−1/2) as N → ∞.

Moreover,

N1/2(ς̂ − ς)
D−−−−−→ N (0,G−1FG−1), (3.41)

where the elements of G and F can be estimated by,

[Ĝ]ik = (2N)−1
g∑

j=1

tr
(
V̂−1

j [Zi−1Z′
i−1]jV̂−1

j [Zk−1Z′
k−1]j

)
,

[F̂]ik = (4N)−1
g∑

j=1

{[
(yj − Xjβ̂)

′V̂−1
j [Zi−1Z′

i−1]jV̂−1
j (yj − Xjβ̂)(yj − Xjβ̂)

′V̂−1
j

×[Zk−1Z′
k−1]jV̂−1

j (yj − Xjβ̂)
]
− tr

(
V̂−1

j [Zi−1Z′
i−1]j

)
tr
(
V̂−1

j [Zk−1Z′
k−1]j

)}
.

3.6 Asymptotic Properties of Agreement Statistics

Write τ̂ = (ϑ̂
′
, ς̂ ′)′, it is well known that the REML estimates take into account the degrees

of freedom associated with the fixed effects, they are invariant to the fixed effects ((17), (22)).

Let

Vτ̂ = N ·

 Vϑ̂ 0

0 Vς̂

 , (3.42)

where Vϑ̂ is the estimating variance for ϑ̂ from (3.37), and Vς̂ can be calculated either from

(3.40) or (3.41), for normal or non-normal cases respectively.
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From Richardson and Welsh (23), we know that

N1/2(τ̂ − τ )
D−−−−−→ N (0,Vτ ), (3.43)

Furthermore, all the agreement statistics are functions of τ , say h(τ ), where h(·) can be

any expressions of MSD, CCC, precision and accuracy coefficients. Hence, delta method (29)

is used to obtain the asymptotic normality for all the agreement statistics.

N1/2(h(τ̂ )− h(τ ))
D−−−−−→ N (0,Oh(τ )′VτOh(τ )). (3.44)

For example, the asymptotic variance for inter-rater CCC estimate is

var(ρ̂c,inter) =



−2Axϑ
(ϑ′Axϑ+σ2

α+σ2
γ+σ2

ε /m)2

−1/m
(ϑ′Axϑ+σ2

α+σ2
γ+σ2

ε /m)2

ϑ′Axϑ+σ2
γ+σ2

ε /m

(ϑ′Axϑ+σ2
α+σ2

γ+σ2
ε /m)2

−1
(ϑ′Axϑ+σ2

α+σ2
γ+σ2

ε /m)2



T

× Vτ

N
×



−2Axϑ
(ϑ′Axϑ+σ2

α+σ2
γ+σ2

ε /m)2

−1/m
(ϑ′Axϑ+σ2

α+σ2
γ+σ2

ε /m)2

ϑ′Axϑ+σ2
γ+σ2

ε /m

(ϑ′Axϑ+σ2
α+σ2

γ+σ2
ε /m)2

−1
(ϑ′Axϑ+σ2

α+σ2
γ+σ2

ε /m)2


.

Other variances can be calculated similarly. And all these asymptotic variances can be

estimated by replacing τ and Vτ by their sample estimators from REML.

It is well known that the Fisher’s Z-transformation can markedly improve the normal ap-

proximation for the precision coefficient. Lin (7), Robieson (10), and Lin, Hedayat, Sinha, and

Yang (11) showed that the asymptotic normality of MSD, CCC, and accuracy coefficient can be

enhanced by log, Z, and logit transformation respectively. Hence, the 95% confidence intervals
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for estimated agreement statistics are recommended to be calculated based on the transformed

values, and corresponding inverse transformations, such as exponential, inverse Z or logistic

functions, are used to transform confidence intervals back to the original scale.



CHAPTER 4

SIMULATIONS AND CASE STUDIES FOR LINEAR MIXED MODELS

30
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4.1 Simulations

Simulation studies were conducted for both normal and non-normal data in several situations

to demonstrate the performance of our approach.

4.1.1 Normal Cases

4.1.1.1 Without Covariates

We began with the simplest model, balanced normally distributed data without covariates.

The data were generated using the following equation

yijl = µ+ βj + αi + γij + εijl, i = 1, 2, . . . , 50, j = 1, 2, 3, l = 1, 2, (4.1)

where µ = 10, β1 = 0. β2 = −1, β3 = −2, αi, γij and εijl were independently normally

distributed with mean zeros and variances σ2
α = 1, σ2

γ = 0.52 and σ2
ε = 0.12.

Table I presents the simulation results for all intra-, inter- and total-rater agreement statis-

tics in 1000 runs. The column True gives the theoretical values calculated from the simulation

parameters, Mean(Est) gives the means of all the estimates, Std(Est) gives standard devia-

tions of all these estimates in 1000 runs, Mean(Std) gives the means of the estimated standard

deviations for each run using delta method, and the last two columns SIG(%) and SIG∗(%)

gives the proportions of estimates whose 95% confidence interval did not contain the mean of

estimates, with and without normalizing transformations, respectively.

The intra-rater precision and accuracy coefficients are not presented in the table, because

there was no location shift within raters, the accuracy coefficient was always zero and the
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precision coefficient equaled the intra-rater CCC. TDI and CP are also not reported, because

they can be calculated directly from MSD using (2.5) and (2.6).

From Table I, we can see that the results were satisfactory, all the estimates were nearly equal

to the true values. The relative differences between the true values and the means of estimates

were less than 1%. In addition, all the Std(Est) were very close to Mean(Est), and the SIG∗(%)

were all around 5%, which justifies the advantages of those normalizing transformations.

4.1.1.2 With Covariates and 10% Missing Values

For the covariates case, we used the following model to generate the data.

yijl = µ+ xij + βj + αi + γij + εijl, i = 1, 2, . . . , 50, j = 1, 2, 3, l = 1, 2, (4.2)

where xij = ln(i× j), and the other parameters were the same as those we used in (4.2).

Because the method of REML can handle missing values by simply removing the rows in

(3.34), 10% randomly missing values were added into this simulation.

After removing the missing values, the data became unbalanced, the replicates mij could

be 0, 1, or 2. We removed the subject i if mij = 0, because it indicated there was no readings

for subject i on rater j. The other subjects with replicates 1 and 2 were kept in the data.

The covariate effect was removed by assuming θ = 0 in the ϑ of (3.17), (3.18), (3.29), (3.30),

(3.31), (3.32), and (3.33). So the true value of all agreement statistics should be the same as

those in our previous simulation without covariates.
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Table II presents the simulation results in 1000 runs. Comparing Table I and Table II,

we can tell that the results with covariates and missing values were also very closed to the

true values, but had larger variances, and the asymptotic normalities were truly improved by

transformations.

4.1.2 Non-Normal Cases

4.1.2.1 Discrete and Skewed Cases

Binomial distribution was used for the discrete case, data were generated using the following

model

yijl = µ+ βj + αi + γij + εijl, i = 1, 2, . . . , 50, j = 1, 2, l = 1, 2, (4.3)

where µ = 10, β1 = 0. β2 = −1, αi, γij and εijl were independently binomially distributed,

αi ∼ Binom(n = 10, p = 0.5), γij ∼ Binom(n = 3, p = 0.2), εijl ∼ Binom(n = 1, p = 0.5).

Gamma distribution with a small shape parameter was used for the skewed case. The data

generating model was

yijl = µ+ βj + αi + γij + εijl, i = 1, 2, . . . , 50, j = 1, 2, l = 1, 2, (4.4)

where µ = 10, β1 = 0. β2 = −1, εijl was normally distributed with mean zero and variance

σ2
ε = 0.52, αi and γij were independently gamma distributed,

αi ∼ Gamma(shape = 2, scale = 2/
√
2), γij ∼ Gamma(shape = 2, scale = 1/

√
2).
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Table III and Table IV present the simulation results for binomial and Gamma data in 1000

runs. Similar to the previous normal cases, all the estimates were very accurate. The SIGs were

a little bit away from 5%, due to the discreteness or skewness. However, the results in SIG∗(%)

demonstrate that all the results were approximately normally distributed after normalizing

transformations. Furthermore, simulations with sample size n = 200, which are not reported

here, confirmed the asymptotic normalities for all the agreement estimates.

Table V and Table VI present the simulation results for binomial and Gamma data in 1000

runs, with a covariate xij = ln(i× j) and 10% missing values. Similar to the normal case, the

covariate effect was removed by assuming θ = 0. Only fixed effect βj , and random effects αi,

γij and εijl were considered for computing the agreement estimates. The results were very close

to the ones without covariates and missing values, but the estimated standard deviations were

a little bit larger, due to the existence of covariate and missing values.

4.1.2.2 Non-Linear Case

All the data in previous cases were simulated based on the linear additive model (3.1). One

may question the performance of our approach on the non-linear data.

For the illustration purpose, correlated negative binomial data were generated using

Gamma–Poisson mixture with parameters r = 10 and p = 0.91. The algorithm of Gamma-



35

Poisson random number generator is described in the appendix. The dimensions were set as

n = 50, k = 2, m = 2, and Pearson correlation coefficient matrix for the four data series was



1 0.9 0.8 0.8

0.9 1 0.8 0.8

0.8 0.8 1 0.9

0.8 0.8 0.9 1


.

After generating the multivariate negative binomial series, an additional inter-rater effect

β2 = 20 was added to the series of the second rater, in order to make a between rater location

shift.

Table VII presents the simulation results in 1000 runs, and Table VIII presents the simula-

tion results in 1000 runs, with a covariate xij = ln(i× j) and 10% missing values. Notice that

we could not compute all the true values since it was not a linear additive model, the random

effects varied in each simulation. But we did know that the intra-rater CCC and precision

were 0.9 from the Pearson correlation coefficient. The other values in the True column were

computed using a large sample simulation (n ∼ 10, 000).

Table VII and Table VIII justify that even when the true model is non-linear and unclear,

our method still can provide desirable results.
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TABLE I: Simulation Results for Normal Data without Covariates and Missing Values

True Mean(Est) Std(Est) Mean(Std) SIG(%) SIG∗(%)
Intra MSD 0.020 0.020 0.0023 0.0023 6.5 5.9

CCC 0.992 0.992 0.0018 0.0016 8.2 6.2
Inter MSD 2.510 2.518 0.212 0.214 4.5 4.8

CCC 0.443 0.440 0.059 0.058 5.2 5.0
Precision 0.797 0.792 0.045 0.045 6.1 5.3
Accuracy 0.557 0.552 0.051 0.049 6.9 5.5

Total MSD 2.520 2.527 0.212 0.214 4.6 4.9
CCC 0.442 0.438 0.059 0.058 5.2 5.0
Precision 0.794 0.791 0.045 0.046 5.9 5.2
Accuracy 0.558 0.553 0.050 0.047 6.9 5.5

TABLE II: Simulation Results for Normal Data with Covariates and 10% Missing Values

True Mean(Est) Std(Est) Mean(Std) SIG(%) SIG∗(%)
Intra MSD 0.020 0.020 0.0026 0.0026 6.2 4.5

CCC 0.992 0.992 0.0019 0.0017 8.3 5.4
Inter MSD 2.510 2.523 0.439 0.430 6.3 5.3

CCC 0.443 0.440 0.069 0.070 5.7 5.2
Precision 0.797 0.803 0.059 0.057 6.9 5.3
Accuracy 0.557 0.555 0.067 0.063 8.2 5.6

Total MSD 2.520 2.532 0.439 0.430 6.3 5.3
CCC 0.442 0.439 0.068 0.070 5.8 5.2
Precision 0.794 0.787 0.046 0.047 6.6 5.0
Accuracy 0.558 0.556 0.067 0.063 8.2 5.7
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TABLE III: Simulation Results for Binomial Data

True Mean(Est) Std(Est) Mean(Std) SIG(%) SIG∗(%)
Intra MSD 0.500 0.500 0.050 0.057 2.7 3.2

CCC 0.923 0.920 0.016 0.018 3.3 3.6
Inter MSD 2.210 2.232 0.392 0.427 3.5 4.9

CCC 0.693 0.686 0.063 0.066 6.0 4.8
Precision 0.805 0.801 0.050 0.052 7.9 6.1
Accuracy 0.861 0.856 0.043 0.038 8.2 6.9

Total MSD 2.460 2.482 0.391 0.426 3.7 4.7
CCC 0.670 0.663 0.063 0.068 5.5 4.3
Precision 0.774 0.769 0.052 0.055 6.7 4.8
Accuracy 0.866 0.861 0.042 0.038 8.4 6.4

TABLE IV: Simulation Results for Gamma Data

True Mean(Est) Std(Est) Mean(Std) SIG(%) SIG∗(%)
Intra MSD 0.500 0.496 0.071 0.068 7.5 5.9

CCC 0.952 0.950 0.013 0.015 5.2 4.6
Inter MSD 3.250 3.287 0.718 0.680 7.7 6.3

CCC 0.711 0.701 0.082 0.081 6.9 6.3
Precision 0.780 0.773 0.074 0.070 7.5 6.5
Accuracy 0.911 0.905 0.041 0.038 9.8 7.8

Total MSD 3.500 3.535 0.718 0.681 7.7 6.0
CCC 0.696 0.691 0.082 0.084 5.7 5.6
Precision 0.762 0.755 0.074 0.070 7.2 6.6
Accuracy 0.913 0.907 0.040 0.037 9.3 7.5
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TABLE V: Simulation Results for Binomial Data with Covariates and Missing Values

True Mean(Est) Std(Est) Mean(Std) SIG(%) SIG∗(%)
Intra MSD 0.500 0.501 0.065 0.071 4.0 4.3

CCC 0.923 0.919 0.017 0.018 3.8 4.3
Inter MSD 2.210 2.320 0.555 0.569 3.9 5.1

CCC 0.693 0.685 0.070 0.068 7.1 6.9
Precision 0.805 0.796 0.051 0.054 4.2 5.2
Accuracy 0.861 0.855 0.052 0.053 4.6 4.5

Total MSD 2.460 2.484 0.566 0.578 4.0 5.1
CCC 0.670 0.659 0.069 0.068 6.4 6.2
Precision 0.774 0.766 0.056 0.057 3.1 4.2
Accuracy 0.866 0.861 0.050 0.051 5.7 5.2

TABLE VI: Simulation Results for Gamma Data with Covariates and Missing Values

True Mean(Est) Std(Est) Mean(Std) SIG(%) SIG∗(%)
Intra MSD 0.500 0.504 0.089 0.095 3.5 3.9

CCC 0.952 0.949 0.015 0.015 6.2 4.9
Inter MSD 3.250 3.304 0.850 0.885 2.9 3.3

CCC 0.711 0.699 0.091 0.083 8.6 7.6
Precision 0.780 0.770 0.080 0.076 9.7 9.6
Accuracy 0.911 0.902 0.054 0.047 7.2 5.7

Total MSD 3.500 3.550 0.851 0.886 3.9 4.0
CCC 0.696 0.690 0.091 0.086 6.7 6.0
Precision 0.762 0.754 0.081 0.078 8.7 6.3
Accuracy 0.913 0.904 0.053 0.046 9.6 7.5
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TABLE VII: Simulation Results for Negative Binomial Data

True Mean(Est) Std(Est) Mean(Std) SIG(%) SIG∗(%)
Intra MSD 224.788 223.807 33.057 33.350 3.1 3.2

CCC 0.900 0.897 0.025 0.027 3.0 3.3
Inter MSD 735.476 741.954 127.160 123.183 5.1 5.0

CCC 0.709 0.701 0.064 0.067 3.3 3.7
Precision 0.842 0.839 0.046 0.047 3.7 3.8
Accuracy 0.842 0.834 0.046 0.044 6.3 5.5

Total MSD 847.870 850.858 128.879 124.753 2.2 2.1
CCC 0.679 0.671 0.065 0.067 2.6 3.1
Precision 0.800 0.796 0.050 0.052 3.4 3.7
Accuracy 0.849 0.842 0.043 0.041 7.4 6.4

TABLE VIII: Simulation Results for Negative Binomial Data with Covariates and Missing
Values

True Mean(Est) Std(Est) Mean(Std) SIG(%) SIG∗(%)
Intra MSD 224.788 222.452 37.603 42.017 3.0 3.1

CCC 0.900 0.897 0.026 0.025 8.0 7.2
Inter MSD 735.476 742.531 198.931 203.390 6.9 5.2

CCC 0.709 0.697 0.077 0.069 8.2 5.7
Precision 0.842 0.834 0.077 0.073 8.7 6.2
Accuracy 0.842 0.839 0.067 0.063 6.3 6.1

Total MSD 847.870 856.438 200.106 205.268 6.5 5.0
CCC 0.679 0.670 0.076 0.068 9.6 7.1
Precision 0.800 0.792 0.052 0.049 7.7 6.7
Accuracy 0.849 0.844 0.055 0.051 7.2 6.3
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4.2 Case Studies

4.2.1 Cardiac Function Measurements

Consider an example from Bowling, Sageman, O’Connor, Cole, and Amundson (30), which

was used to determine the limits of agreement between left ventricular ejection fraction esti-

mated by impedance cardiography (IC) and radionuclide ventriculography (RV). Sixty mea-

surements of cardiac ejection fraction by these two methods were made on 12 patients, with

unbalanced number of replicates per patient. The cardiac outputs are listed in Table IX.

Figure 2 presents the plots for the means of the outputs by two methods on 12 patients.

The vertical bars give the mean ± 1 standard deviation of RV outputs on each patient, and the

horizontal bars give the mean ± 1 standard deviation of IC outputs on each patient.

Normalizing transformations were used for computing 95% confidence limits for all the

estimates. The allowance for CP was 0.9, and the allowance for TDI was 1. This means that

we required 90% of paired data must not deviate more than 1 unit from each other.

Table X presents the agreement statistics estimates, and 95% confidence limits for cardiac

outputs, only lower limits for CCC, precision and accuracy coefficients and CP, and upper

limits for TDI are reported. Intra-rater accuracy is not reported since it always equals to 1.

The intra-rater CCC estimate is 0.932, indicating good agreement within each method, while

the inter-rater CCC estimate is 0.642, indicating worse agreement between these two methods.

These low inter-rater agreement statistics values reveal that these two methods impedance

cardiography and radionuclide ventriculography are not interchangeable.
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TABLE IX: Cardiac Outputs by RV and IC for 12 Patients

Patients Method Outputs
1 IC 6.57 5.62 6.90 6.57 6.35

RV 7.83 7.42 7.89 7.12 7.88
2 IC 4.06 4.29 4.26 4.09

RV 6.16 7.26 6.71 6.54
3 IC 4.71 5.50 5.08 5.02 6.01 5.67

RV 4.75 5.24 4.86 4.78 6.05 5.42
4 IC 4.14 4.20 4.61 4.68 5.04

RV 4.21 3.61 3.72 3.87 3.92
5 IC 3.03 2.86 2.77 2.46 2.32 2.43

RV 3.13 2.98 2.85 3.17 3.09 3.12
6 IC 5.90 5.81 5.70 5.76

RV 5.92 6.42 5.92 6.27
7 IC 5.09 4.63 4.61 5.09

RV 7.13 6.62 6.58 6.93
8 IC 4.72 4.61 4.36 4.20 4.36 4.20

RV 4.54 4.81 5.11 5.29 5.39 5.57
9 IC 3.17 3.12 2.96

RV 4.48 4.92 3.97
10 IC 4.35 4.62 3.16 3.53 3.53

RV 4.22 4.65 4.74 4.44 4.50
11 IC 7.20 6.09 7.00 7.10 7.40 6.80

RV 6.78 6.07 6.52 6.42 6.41 5.76
12 IC 4.50 4.20 3.80 3.80 4.20 4.50

RV 5.06 4.72 4.90 4.80 4.90 5.10
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Figure 2: Means of the Cardiac Outputs for each Subject with Error Bars
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TABLE X: Estimated Agreement Statistics for Cardiac Outputs

Statistics CCC Precision Accuracy TDI0.9 CP1
Intra Estimate 0.932 0.932 . 0.403 0.957

95% Conf. Limit 0.889 0.889 . 0.568 0.911
Inter Estimate 0.642 0.716 0.874 2.303 0.602

95% Conf. Limit 0.363 0.462 0.719 4.422 0.458
Total Estimate 0.612 0.695 0.880 2.622 0.572

95% Conf. Limit 0.344 0.429 0.740 4.639 0.448
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4.2.2 Antihypertensive Patch Dataset

This antihypertensive patch dataset is an example given by the FDA (http:

//www.fda.gov/Drugs/ScienceResearch/ResearchAreas/Biostatistics/ucm081434.htm)

and had been used in (31) for the population and individual bioequivalence.

We shall study the AUC values from that dataset, which was collected by a four-period,

two-sequence crossover trial to a total of 37 subjects. Table XI gives the summary of the

crossover design for reference (R) and test (T) formulations. The data were considered to have

large subject-by-formulation interaction, and the logarithm of AUC values were assumed to be

normally distributed.

TABLE XI: Summary of the Crossover Design

Sequence Number of Subjects Period
1 18 TRRT
2 19 RTTR

We assume the following linear mixed effects model,

log(AUC)ijl = µ+ βj + si + pl + αi + γij + εijl. (4.5)

http://www.fda.gov/Drugs/ScienceResearch/ResearchAreas/Biostatistics/ucm081434.htm
http://www.fda.gov/Drugs/ScienceResearch/ResearchAreas/Biostatistics/ucm081434.htm
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The subscript i in (4.5) is the index of subjects, j is the index of formulations (T/R), l

is the index of periods, µ is the overall mean, βj is the fixed formulation effects, si is the

fixed sequence effects, which depends on the index of subjects i, and pl is the fixed period

effects. In this case, there are two sequences with four periods TRTR/RTRT, si = s1, s2, and

pl = p1, . . . , p4. The random subject effect αi is nested in sequences h with mean 0 and variance

σ2
α, γij is the random subject-formulation interaction effect with mean 0 and variance σ2

γ , εijl

is the random error with mean 0 and variance σ2
ε , and all random effects are assumed to be

mutually independent.

Likelihood ratio tests showed that the period effects were not statistically significant. The

model (4.5) can be reduced to

log(AUC)ijl = µ+ βj + si + αi + γij + εijl. (4.6)

Because the period effects were negligible, we can list the data in the format of two replica-

tions for two formulations. Our linear agreement approach was applied to the model (4.6), and

the sequence effect si was treated as a between subject covariate.

Figure 3 presents the plots for the log(AUC) between two formulations on 37 subjects. Fig-

ure 3a and Figure 3b show the agreement plots within each formulation. We can see that within

formulation readings of reference formulation were more precise than those of test formulation.

Figure 3c presents the agreement plot of the first test formulation readings and the second

reference formulation readings, reflecting total agreement among individual readings. Figure
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3d presents the agreement plot of the test and reference formulations based on their means,

reflecting inter-formulation agreement.

Table XII presents the agreement statistics estimates by removing the fixed sequence effects.

The allowance for CP was 0.9, and the allowance for TDI was 1. This means that we required

90% of paired data must not deviate more than 1 unit from each other.

From Table XII, all the accuracy coefficients are very close to 1, which indicate no major

location shift for the marginal distributions of reference and test formulations. The 95% upper

limit of inter formulation TDI0.9 is 0.323, meaning that we are 95% confident that 90% of

the mean of the readings from two formulations do not deviate more than 0.323. In contrast,

the 95% upper limit of total formulation TDI0.9 is 0.470, meaning that we are 95% confident

that 90% of the individual readings from two formulations do not deviate more than 0.470,

which is larger than the inter formulation TDI0.9, as seen in the figures. The inter-rater CCC

is 0.841, and its 95% confidence interval is (0.646, 1.000), which covers the perfect agreement

case. Therefore, the agreement between the reference and test formulations are satisfactory,

they can be considered interchangeable.
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(a) Between the Reference Formulation 1 and 2 (b) Between the Test Formulation 1 and 2

(c) Between the Test 1 and the Reference 2 (d) Between the Test and Reference Means

Figure 3: Agreement Plots for log(AUC)
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TABLE XII: Estimated Restricted Agreement Statistics for log(AUC)

Statistics CCC Precision Accuracy TDI0.9 CP1
Intra Estimate 0.820 0.820 . 0.275 0.986

95% Conf. Limit 0.676 0.676 . 0.364 0.967
Inter Estimate 0.841 0.843 0.998 0.221 0.994

95% Conf. Limit 0.646 0.653 0.970 0.323 0.976
Total Estimate 0.766 0.767 0.998 0.359 0.968

95% Conf. Limit 0.577 0.558 0.975 0.470 0.939



CHAPTER 5

AGREEMENT STATISTICS FOR GENERALIZED LINEAR MIXED

MODELS
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5.1 Generalized Linear Mixed Models (GLMM)

Agreement statistics for linear mixed models are studied in the previous chapters, and we

have developed a set of agreement estimates not only for normally distributed data, but also

for non-normally distributed data. However, there still exist some cases, which are not able to

fit into the linear mixed model framework. For example, log-Gamma distributed data, binary

data using logistic regression, over-dispersion Poisson data, zero-inflating negative binomial

data, etc. Generalized linear mixed model is a more appropriate approach for these cases,

because it allows an arbitrary link function rather than the identical link between the observed

mean and linear predictors, in order to provide more flexibility for modeling data.

Consider the simplest case, balanced data without replications, i.e., mij = 1, the generalized

linear mixed model can be described as follows.

f(yij |αi, γij) = exp
(
yijτij − b(τij)

a(φ)
+ c(yij , φ)

)
, (5.1)

E(yij |αi, γij) = µij , (5.2)

g(µ) = Xβ + Z1α+ Z2γ, (5.3)
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where

y =



y11

y12

...

y1k

y21

...

yij

...

ynk



, µ =



µ11

µ12

...

µ1k

µ21

...

µij

...

µnk



, X =



x′
11

...

x′
1k

1n×k Ik ⊗ 1n
...

x′
ij

...

x′
nk



,

α =



α1

α2

...

αn


, γ =



γ11

γ12

...

γ1k

γ21

...

γij

...

γnk



, β =



µ

β1

β2

...

βk

θ



.
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In Equation (5.1) – (5.3), τij is the canonical parameter, φ is the dispersion parameter and

g(·) is the link function. Similar to the linear mixed model, the subscript i is the index of

subjects, j is the index of raters, i = 1, 2, . . . , n and j = 1, 2, . . . , k. In addition, with a little

abuse of notations, µ is the overall mean, xij is the p × 1 design vector for p × 1 covariate

coefficients θ, βj is the fixed inter-rater effect, αi is the random subject effect with mean 0 and

variance σ2
α, γij is the random subject-rater interaction effect with mean 0 and variance σ2

γ ,

and Z1 = In ⊗ 1k, Z2 = In ⊗ Ik.

It can be easily extended to unbalanced replicated data by adding rows for mij replications

of yij respectively. Furthermore, for missing values, the model can be derived by removing the

rows corresponding to the missing values from the design matrices X, Z1, and Z2.

It is well known that

b′(τij) = E(yij |αi, γij) = µij , (5.4)

var(yij |αi, γij) = a(φ)v(µij), (5.5)

where v(·) is the variance function for µ.

Assuming the linear predictor η = Xβ + Z1α + Z2γ, and the inverse link function h(·) =

g−1(·), we have

E(y|α,γ) = h(Xβ + Z1α+ Z2γ). (5.6)
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There are some developed methods to estimate the fixed and random effects via maximum

likelihood (ML) or restricted maximum likelihood (REML) approach. For example, penalized

quasi-likelihood (Breslow and Clayton (32)), Laplace approximation (Lin and Breslow (33)),

pseudo likelihood (Wolfinger (34)), and Gauss-Hermite quadrature. In this dissertation, Laplace

approximation is used due to computational simplicity, and the results were acceptable.

5.2 Agreement Statistics for Generalized Linear Mixed Models

In this section, we shall develop MSD, CCC, precision and accuracy coefficients for intra-,

inter- and total-rater for any distribution families and link functions using generalized linear

mixed model. TDI and CP are no longer available because they require the normal assumption.

In addition, an overall version of these agreement statistics for multiple raters is also provided.

To begin with, all the parameters, involving the dispersion parameter, overall mean, fixed

effects, and variance components are estimated via Laplace approximation and restricted max-

imum likelihood approach. Then, µij can be computed using Equation (5.3) for arbitrary link

functions.

5.2.1 Intra-Rater Precision

From McCulloch and Searle (35) and Carrasco (24), we can show

var(yijl) = var(E(yijl|µij)) + E(var(yijl|µij))

= var(µij) + E(a(φ)v(µij)),
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and

cov(yijl, yijl′) = var(µij).

Thus, for given i and j, the intra-rater MSD between any two replications l and l′ is

ε2intra|i, j = E(yijl − yijl′)
2

=
[
E(yijl)− E(yijl′)

]2
+ var(yijl) + var(yijl′)− 2cov(yijl, yijl′)

= 2E
(
a(φ)v(µij)

)
. (5.7)

The intra-rater CCC for given i and j is

ρc,intra|i, j =
cov(yijl, yijl′)

var(yijl)

=
var(µij)

var(µij) + E(a(φ)v(µij))
. (5.8)

The intra-rater precision coefficient for given i and j is identical to the intra-rater CCC,

and the corresponding intra-rater accuracy coefficient is one.

ρintra|i, j =
var(µij)

var(µij) + E(a(φ)v(µij))
, (5.9)

χa,intra|i, j = 1. (5.10)
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5.2.2 Inter-Rater Agreement

Similarly, we have

var(ȳij·) = var(E(ȳij·|µij)) + E(var(ȳij·|µij))

= var(µij) +
E
(
a(φ)v(µij)

)
mij

,

and

cov(ȳij·, ȳij′·) = cov(µij , µij′).

Thus, for given i, j and j′, j 6= j′, the inter-rater MSD between any two raters j and j′ is

ε2inter|i, j, j′ = E(ȳij· − ȳij′·)
2

=
[
E(ȳij·)− E(ȳij′·)

]2
+ var(ȳij·) + var(ȳij′·)− 2cov(ȳij·, ȳij′·)

=
[
E(µij)− E(µij′)

]2
+ var(µij) +

E
(
a(φ)v(µij)

)
mij

+var(µij′) +
E
(
a(φ)v(µij′)

)
mij′

− 2cov(µij , µij′). (5.11)

The inter-rater CCC is

ρc,inter|i, j, j′ =

2cov(µij , µij′)[
E(µij)− E(µij′)

]2
+ var(µij) +

1
mij

E
(
a(φ)v(µij)

)
+ var(µij′) +

1
mij′

E
(
a(φ)v(µij′)

) .
(5.12)



56

The inter-rater precision coefficient is

ρinter|i, j, j′ =
cov(µij , µij′)√

var(µij) +
1

mij
E
(
a(φ)v(µij)

)√
var(µij′) +

1
mij′

E
(
a(φ)v(µij′)

) . (5.13)

And the inter-rater accuracy coefficient can be calculated as

χa,inter|i, j, j′ =
ρc,inter|i, j, j′

ρinter|i, j, j′
. (5.14)

5.2.3 Total-Rater Agreement

It is straightforward to show that

cov(yijl, yij′l′) = cov(µij , µij′).

Thus, for given i, j and j′, j 6= j′, the total-rater MSD is

ε2total|i, j, j′ = E(yijl − yij′l′)
2

=
[
E(yijl)− E(yij′l′)

]2
+ var(yijl) + var(yij′l′)− 2cov(yijl, yij′l′)

=
[
E(µij)− E(µij′)

]2
+ var(µij) + E

(
a(φ)v(µij)

)
+var(µij′) + E

(
a(φ)v(µij′)

)
− 2cov(µij , µij′). (5.15)
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The total-rater CCC is

ρc,total|i, j, j′ =

2cov(µij , µij′)[
E(µij)− E(µij′)

]2
+ var(µij) + E

(
a(φ)v(µij)

)
+ var(µij′) + E

(
a(φ)v(µij′)

) .
(5.16)

The total-rater precision coefficient is

ρtotal|i, j, j′ =
cov(µij , µij′)√

var(µij) + E
(
a(φ)v(µij)

)√
var(µij′) + E

(
a(φ)v(µij′)

) . (5.17)

And the total-rater accuracy coefficient can be calculated as

χa,total|i, j, j′ =
ρc,total|i, j, j′

ρtotal|i, j, j′
. (5.18)

5.2.4 Restricted Agreement Statistics

In many cases, data may come with several covariates, or other fixed effects. For instance,

readings from a sophisticated medical device may depend on the room temperature and hu-

midity. If the readings of one medical device are collected under room temperature 80°F and

humidity 80%, while the readings of another device are collected under room temperature 50°F

and humidity 50%. It is obvious that we can not obtain good agreement estimates, like CCC,

precision and accuracy coefficients. The agreement will be reduced due to the difference of

these covariates. That is to say, large differences of the covariates between raters will explode
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the inter-rater MSD and make the inter-rater CCC decreasing to zero. However, we may not

be interested in these covariates, but the inter- and total-rater effects or variabilities. Thus, it

is more appropriate to evaluate agreement when all the readings are collected under the same

condition.

The restricted agreement estimates is proposed for this kind of situations, by eliminating

covariates effects. For example, the restricted concordance correlation coefficient (RCCC) for

two raters X and Y is defined as follows,

ρ̃c = 1− E(X − Y )2|xX=xY =x0

E(X − Y )2|xX=xY =x0,ρ=0
, (5.19)

where xX and xY is the covariates for X and Y respectively, and both of them are set as a

constant value x0.

This RCCC (5.19) indicates the concordance correlation coefficient if all observations have

the same covariates. It measures the agreement under the same condition. Moreover, it can be

shown that RCCC possesses all the characteristics of CCC. Using this idea, for given i, j and

j′, j 6= j′, we can conclude the intra-, inter- and total-rater individual RCCC as follows,
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ρ̃c,intra|i, j =
var(µ̂ij)

var(µ̂ij) + E(a(φ)v(µ̂ij))

∣∣∣∣
xij=x0

,

ρ̃c,inter|i, j, j′ =

2cov(µ̂ij , µ̂ij′)[
E(µ̂ij)− E(µ̂ij′)

]2
+ var(µ̂ij) +

1
mij

E
(
a(φ)v(µ̂ij)

)
+ var(µ̂ij′) +

1
mij′

E
(
a(φ)v(µ̂ij′)

)∣∣∣∣
xij=xij′=x0

,

ρ̃c,total|i, j, j′ =

2cov(µ̂ij , µ̂ij′)[
E(µ̂ij)− E(µ̂ij′)

]2
+ var(µ̂ij) + E

(
a(φ)v(µ̂ij)

)
+ var(µ̂ij′) + E

(
a(φ)v(µ̂ij′)

)∣∣∣∣
xij=xij′=x0

,

where µ̂ij , µ̂ij′ are the fitted values when xij = xij′ = x0.

Other restricted agreement statistics can be defined similarly, by using µ̂ij , µ̂ij′ at xij =

xij′ = x0.

5.2.5 Overall Agreement Statistics

Just like the linear mixed model case, weighted averages are used to calculate the overall

agreement statistics for multiple raters. The overall CCC, precision and accuracy coefficient

can be defined as following.
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ρc,intra = ρintra =

∑n
i=1

∑k
j=1 ρc,intra|i, j × ξintra|i, j∑n
i=1

∑k
j=1 ξintra|i, j

, (5.20)

ρc,inter =

∑n
i=1

∑k−1
j=1

∑k
j′=j+1 ρc,inter|i, j, j′ × ξinter|i, j, j′∑n

i=1

∑k−1
j=1

∑k
j′=j+1 ξinter|i, j, j′

, (5.21)

ρc,total =

∑n
i=1

∑k−1
j=1

∑k
j′=j+1 ρc,total|i, j, j′ × ξtotal|i, j, j′∑n

i=1

∑k−1
j=1

∑k
j′=j+1 ξtotal|i, j, j′

, (5.22)

ρinter =

∑n
i=1

∑k−1
j=1

∑k
j′=j+1 ρinter|i, j, j′ × ξinter|i, j, j′∑n

i=1

∑k−1
j=1

∑k
j′=j+1 ξinter|i, j, j′

, (5.23)

ρtotal =

∑n
i=1

∑k−1
j=1

∑k
j′=j+1 ρtotal|i, j, j′ × ξtotal|i, j, j′∑n

i=1

∑k−1
j=1

∑k
j′=j+1 ξtotal|i, j, j′

, (5.24)

χa,inter =

∑n
i=1

∑k−1
j=1

∑k
j′=j+1 χa,inter|i, j, j′ × ξinter|i, j, j′∑n

i=1

∑k−1
j=1

∑k
j′=j+1 ξinter|i, j, j′

, (5.25)

χa,total =

∑n
i=1

∑k−1
j=1

∑k
j′=j+1 χa,total|i, j, j′ × ξtotal|i, j, j′∑n

i=1

∑k−1
j=1

∑k
j′=j+1 ξtotal|i, j, j′

, (5.26)

where the weights are

ξintra|i, j = var(µij) + E(a(φ)v(µij)),

ξinter|i, j, j′ =
[
E(µij)− E(µij′)

]2
+ var(µij) +

1

mij
E
(
a(φ)v(µij)

)
+var(µij′) +

1

mij′
E
(
a(φ)v(µij′)

)
,

ξtotal|i, j, j′ =
[
E(µij)− E(µij′)

]2
+ var(µij) + E

(
a(φ)v(µij)

)
+ var(µij′) + E

(
a(φ)v(µij′)

)
.
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The overall restricted agreement statistics can also be defined using the same weighted

averages as (5.20) – (5.26).

5.3 Estimation for Different Response Models

5.3.1 Dispersion Parameters and Variance Functions

For different types of data, the conditional distribution of y in (5.1) can take several different

distribution families. For example, Gamma distribution can be used for continuous responses in

which all the data are positive, binary distribution can be used for 0/1 responses, and Poisson

and negative binomial distribution can be used for count data. Table XIII lists dispersion

parameters and variance functions for some commonly used distribution families.

5.3.2 Link Functions

For a given distribution family, the frequently used link function is the canonical link func-

tion, which makes the canonical parameter τ equal to the linear predictor η. Table XIV gives

a list of canonical links for several selected distribution families.

The negative binomial model is often served as an advanced model for overdispersed Poisson

regression model (Hardin and Hilbe, (36)). Therefore, it is rarely used in canonical link, and a

natural log link is used more often.

Next, we shall develop the expressions for E(µij), var(µij), and cov(µij , µij′), which will be

used to calculate the agreement statistics for different link functions.
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TABLE XIII: List of Dispersion Parameters and Variance Functions for Selected Distributions

Distribution a(φ) v(µ)

Gaussian(µ,σ2
ε ) σ2

ε 1
Gamma(µ, φ) φ µ2

Binomial(p,N) 1 µ(1− µ)/N
Poisson(µ) 1 µ
Negative Binomial(r, p) 1 µ+ µ2r

TABLE XIV: List of the Canonical Links for Selected Distributions

Distribution Canonical Links Inverse of Canonical Link
Gaussian(µ,σ2

ε ) µ η
Gamma(µ, φ) 1/µ 1/η
Binomial(p,N) ln(µ/(1− µ)) exp(η)/(1 + exp(η))
Poisson(µ) ln(µ) exp(η)
Negative Binomial(r, p) − ln(r/µ+ 1) r/(exp(−η)− 1)
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For natural log link, the expressions for E(µij), var(µij), and cov(µij , µij′) are easy to find,

because

E(µij) = E(exp(Xijβ + Z1ijα+ Z2ijγ))

= exp(Xijβ)E(exp(Z1ijα))E(exp(Z2ijγ))

= exp(Xijβ)Mα(Z1ij )Mγ(Z2ij ),

where M†(·) is the moment generating function for variable † at ·. Xij is the fixed effects

including means, Z1ij and Z2ij stand for the rows corresponding to the response yij in Z1 and

Z2.

Assume α ∼ N(0, σ2
α · In), γ ∼ N(0, σ2

γ · In×k), and the rows Z1ij and Z1ij have all zeros

but only one 1. From McCulloch and Searle (35) and Carrasco (24), we have

E(µij) = exp(Xijβ) exp
(
σ2
α + σ2

γ

2

)
, (5.27)

var(µij) = exp(2Xijβ + 2σ2
α + 2σ2

γ)− exp(2Xijβ + σ2
α + σ2

γ), (5.28)

cov(µij , µij′) = exp(Xijβ +Xij′β + 2σ2
α + σ2

γ)− exp(Xijβ +Xij′β + σ2
α + σ2

γ). (5.29)

For other links, like logit, square root or inverse links, we may use Taylor expansion to

find the first and the second moments, but the radius of convergence for such Taylor series is

hard to determine. Hence, adaptive numerical integration algorithm (Berntsen, Espelid, and
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Genz (37)) is used to calculate the E(µij), E(µ2
ij), and E(µijµij′) numerically for all the link

functions, assuming both α and γ are normally distributed.

5.3.3 Confidence Intervals

Unfortunately, unlike the well developed asymptotic normality of restricted maximum like-

lihood estimates in linear mixed models, the asymptotic behavior of the variance components

estimates from GLMM is not clear. It is known that the sampling distribution of variance esti-

mates from likelihood-based approached is in general strongly asymmetric (38). The estimating

variances may not be a good measure to characterize the uncertainty.

Therefore, instead of using standard normal confidence interval calculated from the variances

estimates, a 95% percentiles interval is used via parametric bootstrap, which is more suitable

for a asymmetric distribution.

The estimating algorithm can be described as following.

1. Estimate the fixed effects, dispersion parameters, and variance components via restricted

maximum likelihood and Laplace approximation.

2. Compute the agreement statistics based on the chosen link function and parameter esti-

mates.

3. Draw new samples randomly from the fitted model, using the same sample size as the

original data.

4. Proceed to Step 1 and Step 2 again for the new samples, and repeat this procedure one

thousand times.
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5. Evaluate the agreement statistics on each bootstrap sample, and report the 95% percentile

interval of these one thousand replications.



CHAPTER 6

SIMULATIONS AND CASE STUDY FOR GENERALIZED LINEAR

MIXED MODELS

66
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6.1 Simulations

For evaluating the performance of our agreement estimates, several simulations using dif-

ferent distribution families and link functions were conducted.

The data generating procedure was based on the generalized linear mixed model (5.1). The

main steps can be described as follows.

1. Generate the random subject and interaction effect αi and γij using independent normal

distribution with mean zero, and pre-determined standard deviations σα and σγ .

2. Calculate the individual mean µij as µij = g−1(µ + βj + αi + γij), where g(·) is the link

function and µ is the overall mean.

3. For each element in the dataset, generate one sample from the desired distribution with

mean µij and some other pre-set parameters.

6.1.1 Log-Gamma Distribution

We began with the Gamma distribution with natural log link, which is widely used as an

alternative to the log-normal data with large skewness.

Fifty samples were generated at each run for three raters with two replications, which is

to say, n = 50, k = 3 and m = 2. The standard deviations for generating linear predictors

were chosen at σα = 1 and σγ = 0.5, the scale parameter for random Gamma generator was

set at 2, the overall mean was chosen at µ = 0.8, and fixed effects was set at β1 = 0, β2 = 0.1,

β3 = 0.2. In addition, 10% randomly missing values were added for demonstrating the capability

of handling unbalanced data in our approach.
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Table XV presents the simulation results for all intra-, inter- and total-rater agreement

statistics in 1000 simulation runs. MSD is no longer reported due to less importance. The

column True gives the theoretical values calculated from the simulation parameters, Mean(Est)

gives the means of all the estimates, Std(Est) gives standard deviations of all these estimates

in 1000 runs, and 95% P.I. gives the means of lower (2.5%) and upper (97.5%) boundary for

the 95% percentiles interval from parametric bootstrap for each run.

Table XVI presents the simulation results in 1000 simulation runs involving a covariate

xij = ln(i×j). All the true values and agreement estimates are reported as restricted agreement

estimates at all xij = 0. No missing values were conducted in this simulation.

Table XV and Table XVI show that our approach had very good estimates for log-Gamma

distribution, even when missing values or covariates were involved. All the means of estimates

were very close to the true value, differences only appeared after the second digit after the

decimal point, and all the standard deviations were within an acceptable range.

Comparing Table XV and Table XVI, we may notice that they had the same true values,

because the covariates effects were eliminated by using the fitted value at xij = 0 during the

regression of generalized linear mixed models. The standard deviations of estimates with covari-

ates were a little larger than those without covariates, and the corresponding 95% percentiles

intervals were a little wider than those without covariates. Such differences were caused by the

introduction of covariates.
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6.1.2 Log-Negative Binomial Distribution

For the negative binomial case with natural log link function, fifty samples were generated

at each run for two raters with two replications, which is to say, n = 50, k = 2 and m = 2. The

standard deviations for generating linear predictors were chosen at σα = 1 and σγ = 0.5, the

shape parameter for random negative binomial generator was set at 10, the overall mean was

chosen at µ = 1.8, and fixed effects was set at β1 = 0, β2 = 0.2.

Table XVII presents the simulation results for all intra-, inter- and total-rater agreement

statistics in 1000 simulation runs with 10% missing values, while Table XVIII presents the

restricted agreement estimates in 1000 simulation runs involving a covariate xij = ln(i× j) but

no missing values.

Table XVII and Table XVIII show that all the means of estimates were very close to the

true value, and all the standard deviations were within an acceptable range. This demonstrates

that our approach also had excellent estimates for log-negative binomial distribution, no matter

there were missing values or covariates.

6.1.3 Logistic-Binary Distribution

Binary data with logistic link function was also conducted. Two hundred samples were

generated at each run for two raters with two replications, which is to say, n = 200, k = 2 and

m = 2. The standard deviations for generating linear predictors were chosen at σα = 2 and

σγ = 1.5, the overall mean was chosen at µ = −2, and fixed effects was set at β1 = 0, β2 = 1.

Like the previous two cases, Table XIX presents the simulation results for all intra-, inter-

and total-rater agreement statistics in 1000 simulation runs with 10% missing values, and Ta-
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ble XX presents the restricted agreement estimates in 1000 simulation runs involving a covariate

xij = ln(i× j) but no missing values.

Table XIX and Table XX also demonstrate that our approach worked well for this logistic-

binary distribution. Although the differences between the true values and estimates were some-

what bigger than those in the log-Gamma or log-negative binomial case, the relative differences

were still no larger than 5%, and all the standard deviations were acceptable.



71

TABLE XV: Simulation Results for Log-Gamma Distribution with 10% Missing Values

95% P.I.
True Mean(Est) Std(Est) Lower Upper

Intra CCC 0.588 0.594 0.042 0.547 0.672
Inter CCC 0.504 0.496 0.063 0.367 0.610

Precision 0.511 0.509 0.064 0.379 0.622
Accuracy 0.987 0.981 0.022 0.931 0.999

Total CCC 0.401 0.403 0.053 0.301 0.506
Precision 0.406 0.413 0.054 0.310 0.516
Accuracy 0.988 0.983 0.021 0.935 0.999

TABLE XVI: Simulation Results for Log-Gamma Distribution with Covariates

95% P.I.
True Mean(Est) Std(Est) Lower Upper

Intra CCC 0.588 0.590 0.043 0.510 0.663
Inter CCC 0.504 0.493 0.068 0.367 0.630

Precision 0.511 0.502 0.069 0.370 0.633
Accuracy 0.987 0.981 0.039 0.871 0.999

Total CCC 0.401 0.392 0.056 0.286 0.497
Precision 0.406 0.407 0.056 0.300 0.516
Accuracy 0.988 0.982 0.037 0.876 0.999
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TABLE XVII: Simulation Results for Log-Negative Binomial Distribution with 10% Missing
Values

95% P.I.
True Mean(Est) Std(Est) Lower Upper

Intra CCC 0.853 0.851 0.031 0.784 0.901
Inter CCC 0.618 0.614 0.084 0.447 0.764

Precision 0.635 0.630 0.085 0.462 0.787
Accuracy 0.974 0.969 0.033 0.887 1.000

Total CCC 0.573 0.566 0.080 0.409 0.713
Precision 0.588 0.583 0.081 0.422 0.732
Accuracy 0.974 0.968 0.032 0.890 1.000

TABLE XVIII: Simulation Results for Log-Negative Binomial Distribution with Covariates

95% P.I.
True Mean(Est) Std(Est) Lower Upper

Intra CCC 0.853 0.846 0.036 0.763 0.898
Inter CCC 0.618 0.613 0.092 0.450 0.778

Precision 0.635 0.630 0.089 0.441 0.817
Accuracy 0.974 0.969 0.046 0.851 1.000

Total CCC 0.573 0.568 0.088 0.404 0.725
Precision 0.588 0.582 0.087 0.414 0.740
Accuracy 0.974 0.970 0.045 0.883 1.000
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TABLE XIX: Simulation Results for Logistic-Binary Distribution with 10% Missing Values

95% P.I.
True Mean(Est) Std(Est) Lower Upper

Intra CCC 0.459 0.472 0.057 0.293 0.571
Inter CCC 0.347 0.340 0.059 0.230 0.502

Precision 0.364 0.356 0.061 0.249 0.474
Accuracy 0.953 0.948 0.025 0.894 0.986

Total CCC 0.256 0.266 0.052 0.172 0.366
Precision 0.265 0.270 0.054 0.171 0.376
Accuracy 0.965 0.957 0.021 0.910 0.989

TABLE XX: Simulation Results for Logistic-Binary Distribution with Covariates

95% P.I.
True Mean(Est) Std(Est) Lower Upper

Intra CCC 0.459 0.477 0.060 0.291 0.586
Inter CCC 0.347 0.335 0.081 0.135 0.468

Precision 0.364 0.352 0.087 0.140 0.509
Accuracy 0.953 0.946 0.031 0.877 0.992

Total CCC 0.256 0.268 0.076 0.083 0.399
Precision 0.265 0.276 0.081 0.763 0.419
Accuracy 0.965 0.951 0.028 0.888 0.993



74

6.2 Antihypertensive Patch Dataset

Let’s revisit the antihypertensive patch dataset in Chapter 4. The logarithm of AUC values

were assumed to be normally distributed in (31) and Chapter 4. However, the histogram plot

of log(AUC) in Figure 4 reveals that the distribution of logarithm of AUC values is actually

skewed. Hence, the log-Gamma model is more appropriate for this dataset.

Applying the GLMM model (5.1) – (5.3) with Gamma distribution family and natural log

link function. Assume the linear predictor,

ηij = µ+ βj + si + αi + γij , (6.1)

where the subscript i is the index of subjects, j is the index of formulations (T/R), µ is the

overall mean, βj is the fixed formulation effects, si is the fixed sequence effects, αi is the random

subject effect nested in sequences, and γij is the random subject-formulation interaction effect.

Table XXI presents the intra-, inter- and total-rater agreement estimates with 95% per-

centiles intervals (95% P.I.) from parametric bootstrap. All the accuracy coefficients are very

close to 1, which indicate no major location shift for the marginal distributions of reference and

test formulations. If an allowance of 0.950 is used for CCC, we can see that the inter-CCC is

0.954, which exceeds that allowance. Therefore, the agreement between the reference and test

formulations are satisfactory, and thus can be considered interchangeable.

Figure 5 presents the histograms of selected agreement estimates for 1000 bootstrap sim-

ulations, these histograms reveal the asymmetric distributions of agreement estimates. Thus,
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the parametric bootstrap percentile interval is more appropriate than the normal confidence

interval for characterizing the uncertainty.

TABLE XXI: Estimated Agreement Statistics for AUC

Est 95% P.I.
Intra CCC 0.914 (0.861, 0.949)
Inter CCC 0.954 (0.925, 0.973)

Precision 0.955 (0.925, 0.974)
Accuracy 0.999 (0.998, 1.000)

Total CCC 0.913 (0.859, 0.948)
Precision 0.914 (0.859, 0.949)
Accuracy 0.999 (0.998, 1.000)
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Figure 4: Histogram of log(AUC)
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Figure 5: Histogram of Selected Estimates for 1000 Bootstrap Simulations
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Assessment of agreement has been studied in many literatures. One of the most cited papers

is Lin’s concordance correlation coefficient paper (7), which defined a brilliant CCC statistic for

evaluating reproducibility. In this dissertation, we follow Lin’s idea of CCC, and extend it for

measuring agreement for multiple raters with multiple replicates. Furthermore, our approach

is designed not only for balanced data, but also for unbalanced data with covariates, and it

can be applied to a large variety of distribution families using either linear mixed models or

generalized linear mixed models.

For the linear mixed models, the well developed restricted maximum likelihood approach is

used, and the desired asymptotic normality for the agreement estimates, even when the original

data is not normally distributed, can be concluded. For the balanced data, with or without the

normality assumption, the REML estimates are exactly the same as the ANOVA estimates, and

our agreement estimates are identical to those estimated by Lin’s unified approach (13). One of

the advantages of using REML rather than the ANOVA approach is that the likelihood-based

approach has the merit of handling unbalanced data, missing values and covariates naturally.

This increases the application scope of our approach dramatically.

Simulations justify the excellent performance of our approach using linear mixed models

for not only normally distributed data, but also discrete and skewed data. Our approach also

works well even when the true model of the data is unclear. In addition, if the sample size is

not large, say less than 100, the normalizing transformations are recommended for computing

the confidence intervals for all the agreement estimates.
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However, the linear mixed model does not perform well for the binary data, because the

binary responses can not be decomposed into the sum of fixed and random effects. One of the

widely used methods for modeling binary data is logistic regression. Hence, it is necessary to

extend our results in linear mixed models to generalized linear mixed models for modeling a

larger diversities of data.

For generalized linear mixed models, the agreement estimates are totally different due to the

existence of various distribution families and link functions. It is not easy to come out with a

unified expression for all the estimates. Thus, numerical algorithms are introduced for estimat-

ing the model parameters and computing the agreement statistics. Several exiting methods,

such as Wald confidence interval, profile likelihood confidence interval via likelihood ratio test,

and parametric bootstrap percentiles interval, can be used to evaluate the uncertainty of the

estimates. However, Wald confidence interval is least preferred since it is only appropriate if the

log-likelihood is well approximated by a quadratic function (39). There are no known substan-

tial advantages between parametric bootstrap and profile likelihood; although some literatures

point out that the performances of the likelihood based approaches depended on the model

assumptions and data structures ((40), (41)). In this dissertation, we shall use the paramet-

ric bootstrap percentiles intervals rather than the likelihood based ones. The reason being the

parametric bootstrap method requires no distribution assumptions and works relatively well for

small sample sizes, while profile likelihood requires computing the log-likelihood many times,

which is unfortunately error-prone in GLMM.
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Antihypertensive patch dataset is a perfect example to illustrate the superiority of our

GLMM approach. Generally, log(AUC) has been regarded as normally distributed, for the

purpose of being statistically analyzed in linear mixed models assume normality (42), (43).

Although some studies reveal the distribution of log(AUC), especially in a small sample size,

is non-normal and skewed (31), (44). The skewness is confirmed in the antihypertensive patch

dataset by the histogram plot. Therefore, GLMM using Gamma distribution family with natural

log link function is a better way to characterize this dataset, and it can yield more appropriate

agreement estimates.

The idea of assessment of agreement may not be restricted to linear and generalized mixed

models alone. It can be generalized to some other models. Liu, Du, Teresi, and Hasin (45)

proposed a bivariate CCC for survival data, and Barnhart, Song, and Lyles (46) studied the

assay validation for left-censored data using maximum likelihood and generalized estimating

equations approaches. Further research are needed for assessing agreement for survival data

if multiple rater, covariates, and missing values are involved. Additionally, non-linear mixed

models are commonly used in pharmaceutical industries for modeling pharmacokinetics and

pharmacodynamics. Further research can also be conducted for evaluating agreement in non-

linear mixed models.
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APPENDIX (Continued)

In this appendix, we shall generate correlated multivariate negative binomial (NB) series

with given parameters.

For example, we may want to generate four correlated negative binomial series for r =

10, p = 0.1, with Pearson correlation coefficient matrix



1 0.9 0.8 0.8

0.9 1 0.8 0.8

0.8 0.8 1 0.9

0.8 0.8 0.9 1


.

To begin with, consider a bivariate case, assuming

y1|λ1 ∼ Poisson(λ1),

y2|λ2 ∼ Poisson(λ2),

and these two Poisson distributions are independent for given λ1 and λ2.

In addition, let λ1, λ2 follow the same Gamma distribution with shape α and scale θ (or

rate β = θ−1), and Cor(λ1, λ2) = ρ.

With a little algebra, we can show that

y1 ∼ NB(r = α, p =
θ

1 + θ
),

y2 ∼ NB(r = α, p =
θ

1 + θ
).
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APPENDIX (Continued)

The variance-covariance matrix for y1 and y2 can be calculated as follows,

Var

 y1

y2

 = Eλ

(
Var

 y1 λ1

y2 λ2

)
+ Varλ

(
E

 y1 λ1

y2 λ2

)

= Eλ

 λ1

λ2

+ Varλ

 λ1

λ2



=

 αθ

αθ

+

 αθ2 ραθ2

ραθ2 αθ2



=

 αθ + αθ2 ραθ2

ραθ2 αθ + αθ2

 .

Therefore, the correlation matrix for y1 and y2 is

 1 θ
1+θρ

θ
1+θρ 1

 .

This can be easily extended to multivariate case with different parameters for negative

binomial, which is not shown here.
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APPENDIX (Continued)

In conclusion, if we want to generate four correlated negative binomial series with the same

parameter set r, p and correlation matrix

Σ =



1 ρ12 ρ13 ρ14

1 ρ23 ρ24

1 ρ34

1


,

the steps can be described as follows.

1. Calculating α = r, θ = p
1−p , and correlation matrix for Gamma distribution

ΣGamma =



1 1+θ
θ ρ12

1+θ
θ ρ13

1+θ
θ ρ14

1 1+θ
θ ρ23

1+θ
θ ρ24

1 1+θ
θ ρ34

1


,

2. Generating four correlated Gamma series using multivariate Gamma generator, with cor-

relation ΣGamma.

3. For each sample in the Gamma series, taking one sample from independent Poisson dis-

tribution, assuming the Poisson parameter equals the value of that Gamma sample.

4. The samples from Poisson distribution are the negative binomial series we want.
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