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SUMMARY

The purpose of this dissertation is to construct a radically new type of mathematics whose

underlying logic differs from the ordinary classical logic used in standard mathematics, and

which we feel may be more natural for applications in quantum mechanics. Specifically, we begin

by constructing a first order quantum logic, the development of which closely parallels that of

ordinary (classical) first order logic — the essential differences are in the nature of the logical

axioms, which, in our construction, are motivated by quantum theory. After showing that the

axiomatic first order logic we develop is sound and complete (with respect to a particular class

of models), this logic is then used as a foundation on which to build (axiomatic) mathematical

systems — and we refer to the resulting new mathematics as “quantum mathematics.” As noted

above, the hope is that this form of mathematics is more natural than classical mathematics for

the description of quantum systems, and will enable us to address some foundational aspects

of quantum theory which are still troublesome — e.g. the measurement problem — as well as

possibly even inform our thinking about quantum gravity.

After constructing the underlying logic, we investigate properties of several mathematical

systems — e.g. axiom systems for abstract algebras, group theory, linear algebra, etc. — in

the presence of this quantum logic. In the process, we demonstrate that the resulting quantum

mathematical systems have some strange, but very interesting features, which indicates a rich-

ness in the structure of mathematics that is classically inaccessible. Moreover, some of these

features do indeed suggest possible applications to foundational questions in quantum theory.
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SUMMARY (Continued)

We continue our investigation of quantum mathematics by constructing an axiomatic quan-

tum set theory, which we show satisfies certain desirable criteria. Ultimately, we hope that such

a set theory will lead to a foundation for quantum mathematics in a sense which parallels the

foundational role of classical set theory in classical mathematics. One immediate application of

the quantum set theory we develop is to provide a foundation on which to construct quantum

natural numbers, which are the quantum analog of the classical counting numbers. It turns

out that in a special class of models, there exists a 1-1 correspondence between the quantum

natural numbers and bounded observables in quantum theory whose eigenvalues are (ordinary)

natural numbers. This 1-1 correspondence is remarkably satisfying, and not only gives us great

confidence in our quantum set theory, but indicates the naturalness of such models for quantum

theory itself. We go on to develop a Peano-like arithmetic for these new “numbers,” as well

as consider some of its consequences. Finally, we conclude by summarizing our results, and

discussing directions for future work.
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CHAPTER 1

INTRODUCTION

Reasoning and ‘what constitutes a valid argument’ have been of interest to humankind since

at least the time of Aristotle, who was the first to organize patterns of argument into logical

forms. Additionally, the idea of axiomatizing a mathematical theory and deducing theorems

from the axioms dates back to Euclid. However, it is only relatively recently that any attempt

was made to use symbolic logic to actually formalize mathematics — the idea that axiomatic

mathematics could be considered as an extended system of formal logic originated with Frege,

and the first attempts to systematically carry out such a program were initiated by Whitehead

and Russell in their famous Principia Mathematica. This approach to mathematics — i.e. the

formulation of a mathematical theory as a logical system to which further axioms specific to the

mathematics are appended — has been in use for just over a century, and the ability to use first

order logic in this manner has revolutionized the way we “do mathematics.” It is only through

this process that mathematics has achieved the level of rigor with which we are familiar.

Contemporaneous with these developments in logic and axiomatic theories were two others,

each of which had significant implications for modes of thought at that time. The first of these

is Cantor’s development of (what is known today as) naive set theory, along with his related

construction of the infinite cardinal numbers and their associated arithmetic — subsequent

work led to the development of axiomatic set theory, which ultimately enabled set theory to

play a foundational role in mathematics (alongside first order logic). The second of these is

1
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the development of quantum theory, which was necessitated by experimental evidence of the

breakdown of the laws of Newtonian mechanics at microscopic scales. With the advent of quan-

tum theory and the developing understanding of its consequences, came the realization that

perhaps nature was suggesting a new type of logic which effectively accounted for the strange

new behaviors and properties of quantum systems. The publication of Birkhoff and von Neu-

mann’s seminal 1936 paper marked the inception of quantum logic, which ultimately branched

off in directions which were abstractions of the logic that they originally envisioned. Although

such branches of quantum logic have less of a direct connection to physical systems themselves

or measurement related questions about them, they are potentially useful in a more abstract

sense, as they suggest important applications within the field of mathematical logic.

Motivated by these historical developments, the work1 described in this document is the

construction of a quantum logic, and the beginning of an investigation into the properties

of (axiomatic) mathematical systems which have this logic as their foundation, as well as a

consideration of some implications of this new quantum mathematics for quantum theory.2

1The work described in this thesis was done in collaboration with Richard DeJonghe and Tom Imbo.

2We note that we are not the first to consider the possibility of using a first order quantum logic as
the underlying logic for mathematical systems — the initial contributions to quantum mathematics were
made by Dunn (9) and Takeuti (22), and their powerful papers both appeared around 1980. Although
these papers initially generated some interest within the community, the follow-up to their work has been
somewhat minimal (due, in part, to the inherent difficulty of the subject), and the systematic study of
quantum mathematics has essentially lain fallow for approximately 30 years.
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More specifically, we begin by constructing a first order quantum logic,1 the development of

which closely parallels that of ordinary (classical) first order logic — the essential differences

are in the nature of the logical axioms, which are motivated by quantum theory.

After describing the deductive system (i.e. axioms and inference rules) for the logic, which

we denote by Q(L), we go on to develop a semantics (i.e. a model theory) for Q(L), and prove

soundness and completeness theorems for our deductive system relative to this semantics.

It turns out that we can obtain an axiomatization of classical logic from Q(L) by simply

adding another axiom, from which it follows that our quantum logic is sub-classical — i.e. ev-

ery theorem of Q(L) will also be a theorem of classical logic. As such, every model of classical

logic will still be a model of the quantum logic Q(L) — that is, Q(L) doesn’t eliminate any

classical models, but does allow for more models than are allowed classically. The differences

from classical logic do not end here. We go on to consider several (axiomatic) mathematical

systems — e.g. axiom systems for set theory, group theory, linear algebra, etc. — using the

first order quantum logic as the underlying logic, and in the process demonstrate that quantum

mathematics has some strange, but very interesting features. One example of such an intriguing

feature is that certain axiomatizations of mathematical systems which are equivalent in clas-

sical mathematics (in the sense that they have exactly the same theorems) are not necessarily

equivalent in quantum mathematics. This suggests a richness in the structure of mathematics

which is classically inaccessible. Additionally, in our discussion of quantum mathematics we will

1Although our first order logic is based on the quantum logics of Dunn (9) and Dishkant (10), the
work discussed here goes well beyond either of their constructions of quantum logic.
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encounter models which are extremely natural from the point of view of quantum theory. We

go on to show that certain classical properties no longer hold in these natural models, as well

as consider what these models are trying to teach us about quantum mechanics. In particular,

we give an initial (albeit very brief) analysis of the status of the Schrödinger and von Neumann

equations (as quantum mechanical axioms) in the context of quantum mathematics.

Another aspect of this work is an initial foray into quantum set theory — that is, we con-

struct an axiomatic set theory based on the quantum logic Q(L), which we hope will ultimately

lead to a foundation for quantum mathematics in a sense which parallels the foundational role

of classical set theory in classical mathematics.1 However, as quantum mathematics and the

quantum set theory are both in their infancy, our immediate goals with regard to quantum set

theory are much less lofty — in particular, we put forth two modest goals which, we believe, are

respectable minimal criteria any attempt at quantum set theory should satisfy. First, recalling

that quantum logic is sub-classical (and therefore includes all of classical logic and mathematics

as a special case), we expect that quantum set theory should be a generalization of classical

set theory, and in particular, those models of our quantum set theory with the standard biva-

lent truth values should give rise to all such models of classical set theory. Second, we expect

that quantum set theory should at least be powerful enough to develop a notion of a ‘natural

number,’ as well as an arithmetic for these numbers, which we again expect to reduce to classi-

1Such an attempt was first made by Gaisi Takeuti (22), but the resulting quantum set theory is very
difficult to work with, as has been noted by Takeuti himself. Our construction has the advantage that
it is not only more intuitive, but more tractable as well.



5

cal arithmetic when the truth values are (the standard) bivalent truth values used in classical

logic. We demonstrate that our quantum set theory meets these criteria, and moreover, we

go on to show that in a special class of models, there exists a 1-1 correspondence between the

new quantum natural numbers and bounded observables in quantum theory whose eigenvalues

are (ordinary) natural numbers. This 1-1 correspondence is remarkably satisfying, and gives

us great confidence in our quantum set theory, as well as its possible future applications in

quantum mechanics. We then go on to study the arithmetic of the new “numbers” in these

natural models, as well as consider some consequences of the arithmetic.

All in all, we feel that the work described in this document provides strong evidence that

quantum mathematics has a richness and complexity worthy of further investigation. Moreover,

we believe that a systematic study of axiomatic quantum theory based on quantum mathematics

is warranted, and that this framework has the potential for enabling us to address foundational

questions in quantum theory such as, e.g., the measurement problem, as well as for possibly

informing our thinking about quantum gravity and associated issues surrounding the interpre-

tation of the “collapse” of the wave function.

Finally, although this document is written assuming that the reader is familiar with classical

first order logic and set theory, as well as has some background or familiarity with axiomatic

mathematics, the appendices are intended to offer some assistance. Additionally, the relevant

concepts and definitions for the theory of orthomodular lattices (which are necessary for the

model theory of the quantum logic Q(L)) are developed in appendix A.



CHAPTER 2

FIRST-ORDER QUANTUM LOGIC

2.1 Introduction

Mathematics enables organization and computation within quantitative science, and logic

provides a foundation for mathematics. However, while classical physical systems have an inter-

nal logic which is very closely affiliated with the usual first order logic used to do mathematics,

quantum theory has an intrinsic logic of its own which is different from that of classical physics.

This motivates an investigation of mathematics based on (some form of) quantum logic, and

one may wonder whether it is more natural to use such a “quantum mathematics” as the ap-

propriate framework via which to describe quantum theory. To this end, we consider several

mathematical systems — e.g. axiomatizations for set theory, group theory, linear algebra, etc.

— using the first order quantum logic developed in this chapter as the underlying logic, as well

as discuss some consequences of this for quantum theory.

After showing that the axiomatic first order logic that we develop is sound and complete

(with respect to a particular class of models), we demonstrate that mathematics based on

this quantum logic has some strange, but very interesting features, some of which may have

applications to foundational aspects of quantum theory such as, e.g., the unification of unitary

evolutions (which govern the dynamics of closed systems) and measurement evolutions.

6
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2.1.1 Overview

In Section 2.2 we define the syntax as well as set out the basic axioms and inference rules

for our logic, which is based on work by Dunn (9) and Dishkant (10). This discussion closely

parallels the development for any first order predicate logic (see, e.g. (11) or (23)) — the

essential differences are in the nature of the logical axioms, which, in our construction, are

motivated by quantum theory. In Section 2.3 we present a semantics for our quantum logic.

Here we demonstrate soundness and completeness for the semantics relative to the deductive

system of Section 2.2.2 via a method developed by Dishkant (10) (although we will actually

prove a stronger result than in (10)). In Section 2.4, we discuss some important and interesting

features of mathematics based on this logic, and finally, in Section 2.5, we make some comments

concerning the construction of models. We conclude and summarize the discussion in Section

2.6.

This chapter is somewhat terse and technical, and is written assuming the reader has some

background knowledge of standard first order logic. The material is essential to the discussions

in the subsequent chapters in the sense that without laying the framework for the deduc-

tive system and model theory for the first order quantum logic, the applications to specific

mathematical systems cannot be made formally correct or rigorous. However, even without

understanding all of the technical machinery described here, the reader can get the jist of the

following chapters from a basic understanding of the gross features of what follows. To this

end, the reader interested only in the qualitative features of the logic and a general overview of
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the details developed in this chapter is referred to Sections 2.2.1 and 2.2.2 for basic set-up and

notation, as well as Sections 2.4 and 2.6 for a relatively qualitative discussion of our results.

2.2 Syntax & Deductive System

In this section we set out to define precisely what we mean by quantum mathematical

systems. The discussion here will formalize both the object language (in which we can make

mathematical statements) as well as important portions of the metalanguage (in which we make

statements about mathematical statements).

2.2.1 The Object Language

We begin by defining the basic symbols in our object language. First, we define a set of

logical symbols BS ∶= {∧,∼,∀} (representing logical ‘and’, ‘not’ and ‘for all’, respectively), along

with an infinite set of (individual) variables BV , as well as auxiliary symbols BA consisting of

(left and right) parentheses and commas. In the sequel we reserve the letters x, y, z to stand for

arbitrary variables (so they will be ‘metavariables’ — i.e. variables in the metalanguage which

stand for arbitrary elements of BV ). We then define our basic symbols to consist of the set

B ∶= BS ∪BV ∪BA, which is the set of symbols which are common to any mathematical structure

we consider.

A language ⟨L, α⟩ is then defined to be a set of “operation symbols” LF , along with a set

of “predicate symbols” LP (where we assume that LP ≠ ∅), with L ∶= LP ∪LF and L ∩ B = ∅,

along with a function α ∶ L → N (where we let N ∶= {0,1,2, . . .} denote the natural numbers).
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For f ∈ LF we call α(f) the arity of f , and say that f is an n-ary operation.1 For P ∈ LP

we call α(P ) the arity of P , and say that P is an n-ary predicate. As in ordinary first order

mathematical languages, the elements of LF will represent mathematical operations, while the

elements of LP effectively define properties of mathematical objects.

An example of a possible language ⟨LG, α⟩ with which to construct axioms for groups is

built up from LPG ∶= {≈} and LFG ∶= {e, ⋅, −1}, with α(≈) ∶= 2, α(e) ∶= 0, α(−1) ∶= 1, and α(⋅) ∶= 2,

where ‘≈’ is interpreted as the predicate “equality,” ‘e’ is interpreted as the “identity element,”

‘−1’ is interpreted as the “inverse,” and ‘⋅’ is interpreted as the “binary operation” for the group.

Clearly, each different mathematical structure — such as sets, monoids, groups, lattices, etc. —

will have a language associated with it; however, this language need not be unique. Additionally,

for notational convenience, we will often refer to a language ⟨L, α⟩ simply as L, taking the

function α as implicit. In the sequel, let L denote any fixed language.

We define an L-term inductively in the standard way — a string of symbols t is an L-term

if and only if either t = x for x ∈ BV , or t = f(t1, . . . , tα(f)) for each ti an L-term and f ∈ LF .2

Continuing our example in the language LG, both (e ⋅x) and ((y ⋅ z) ⋅ e) with x, y, z ∈ BV would

be LG-terms, while (e ≈ e) would not.

1A 0-ary operation is called a constant.

2Note that for a binary operation such as ‘⋅’, and terms t, u, we will often commit the standard abuse
of notation and write (t ⋅ u) instead of ⋅(t, u). Similarly, for the binary predicate ≈, we will write t ≈ u
instead of ≈ (t, u).
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The well-formed formulas of L (or L-wffs) are then constructed inductively in the standard

way using the symbols in L ∪ B — namely a string of symbols s is an L-wff if and only if s is

of the following form

1. P (t1, t2, ...tα(P )) for L-terms ti and P ∈ LP (such L-wffs are called atomic)

2. ∼ A for A an L-wff

3. (A ∧B) for A,B both L-wffs

4. (∀x)(A) for x ∈ BV and A an L-wff.

Returning to the language LG, both the strings

e ≈ e and (x ≈ e ∧ e ≈ e)

would be LG-wffs, while (∀y)(y ⋅ e) would not. Using the usual notion of free and bound

variables, for an L-wff B (respectively, L-term t), we write B(x) (respectively, t(x)) to indicate

that the only free variable occurring in B (respectively, t) is x. Then, for any L-term t and

L-wff B(x), we write B(t) to represent the formula B with all free occurrences of x replaced

by t (and similarly for multiple free variables). Finally, we define an L-sentence to be an L-wff

with no free variables.
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We now introduce some notation which will be useful in the sequel — for L-wffs A and B,

we define1

A ∨B ∶= ∼ (∼ A∧ ∼ B), (∃x)(B) ∶= ∼ (∀x)(∼ B), A→ B ∶= ∼ A ∨ (A ∧B),

and then define A↔ B ∶= (A→ B)∧(B → A). Also, for some fixed L-wff A, define � ∶= A ∧(∼ A),

and ⊺ ∶= ∼ �. To reduce notational clutter, we take ∼ to bind tighter than ∧,∨, which bind tighter

than →, which, in turn, binds tighter than ∃,∀. We warn the reader that we may occasionally

either omit or add parentheses to make things clearer — ideally this will only reduce confusion

and never further it.

2.2.2 Formal Deduction

Now that we have defined our object language, we proceed to construct a formal deductive

system for quantum logic.2 We first define our quantum logical axioms for L to be the set of

axiom schema (Q1) — (Q6) below (meaning the collection of formulas (Q1) — (Q6) with A,B

replaced by every L-wff and t by every L-term), which we denote by QA(L).

(Q1) A→ ⊺ ∧A

(Q2) (∼∼ A)→ A and A→ (∼∼ A)

1Readers familiar with orthomodular lattices will recognize ‘→’ as the infamous ‘Sasaki hook’.

2All of the axioms and inference rules that follow are chosen with an eye toward a completeness
theorem for a particular class of models — namely, those whose “truth value algebra” is an orthomodular
lattice. These models, in turn, are motivated by quantum theory (see e.g., the seminal work of Birkhoff
and von Neumann (2)).
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(Q3) A ∧B → A and A ∧B → B

(Q4) [A ∧ (A→ B))]→ B

(Q5) (A ∧ ∼ A)→ B

(Q6) (∀x)B(x)→ B(t)

By an L-rule we mean a pair (Γ,A) where Γ is a finite set of L-wffs and A is an L-wff. For

Γ = {γ1, γ2, . . . , γn} we will write ‘γ1, γ2, . . . , γn Ô⇒ A’ to denote the L-rule (Γ,A). We then

define our quantum rules of inference to be the schema1

(R1) A→ B, B → C Ô⇒ A→ C

(R2) A→ B Ô⇒ ∼ B → ∼ A

(R3) A→ B, A→ C Ô⇒ A→ (B ∧C)

(R4) A→ B(z) Ô⇒ A→ (∀x)B(x)

(R5) A, A→ B Ô⇒ B.

In (R4) we assume z does not occur free in A. We denote the set of all quantum rules of inference

for the language L by QR(L), and define the quantum logic Q(L) as Q(L) ∶= QA(L)∪QR(L).

In the case in which LP includes “equality” ≈, we define (E1) — (E3) (listed below for

x, y, z ∈ BV ) to be the equality axioms for L, which we collectively denote E(L), and which

1Analogues of our (Q1) — (Q6) and (R1) — (R4) appear in Dunn (9) numbered 1–10, and he refers
to this system as OM#. It is important to point out that we have transferred his ‘relational logic’
approach into a more standard treatment of axioms and derivability.
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ensure that the predicate ≈ behaves like “equality.” When the only predicate in LP is “equality,”

then we will say that L is an equational language.

(E1) Reflexivity: (∀x)[x ≈ x]

(E2) Symmetry: (∀x)(∀y)[(x ≈ y)→ (y ≈ x)]

(E3) Weak Transitivity: (∀x)(∀y)(∀z)[[(x ≈ y) ∧ (y ≈ z)]→ (x ≈ z)]]

We also define an alternate form of transitivity below which will be useful for us in some

contexts.1

(E3′) Strong Transitivity: (∀x)(∀y)(∀z)[(x ≈ y)→ [(y ≈ z)→ (x ≈ z)]].

In the framework of classical logic, (E3) and (E3′) are logically equivalent (as we will show in

the following section). However, as we will see, (E3′) is strictly stronger in the quantum logic

Q(L). Also in classical logic, it is customary to enforce the following substitution axioms for

L, which consist of an axiom for each f ∈ L and m ∈ {1, . . . , α(f)}, where x, y, z1, . . . zα(f) ∈ BV .

(Sub) Substitution of the operation f in the mth slot for the predicate P :

(∀x)(∀y)(∀z1)⋯(∀zα(f))(P (x, y, . . .)→

[P (f(z1, . . . , zm−1, x, zm+1, . . . , zα(f)), f(z1, . . . , zm−1, y, zm+1, . . . , zα(f)), . . .)]).

1Note, however, that (E3′) is not part of E(L) — that is, we do not require (E3′) as an axiom for
languages with “equality” ≈.
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In particular, note that for “equality” ≈, this becomes

(∀x)(∀y)(∀z1)⋯(∀zα(f))((x ≈ y)→

[f(z1, . . . , zm−1, x, zm+1, . . . , zα(f)) ≈ f(z1, . . . , zm−1, y, zm+1, . . . , zα(f))]).

We will say that an operation f satisfies substitution for the predicate P if (Sub) is satisfied

for every “slot” of f . In particular, for a language L with “equality” ≈, if the L-wff schema

(Sub) holds in Â for “equality” and for some operation f ∈ L in every “slot,” we say that Â has

substitution for f with respect to ≈. As we will see in Sections 3.4 and 3.5, some very natural

constructions in quantum mathematics fail to satisfy (Sub) for at least some of their operations.

Now that we have established the axioms for our quantum logic, we can define formal

deductions. For any set of L-wffs Γ, an L-wff A is said to be derivable from Γ (in symbols,

Γ ⊢ A) if there exists a sequence A1,A2, . . . ,An (called a formal argument) such that γn = A

and for each i < n, either Ai ∈ Γ ∪ QA(L) ∪ E(L) (or simply Ai ∈ Γ ∪ QA(L) if ≈ ∉ LP ) or

there exists a subset Γ0 ⊆ {γ1, . . . γi−1} such that Γ0 Ô⇒ Ai by some L-rule (R1) — (R5). The

statement ‘A is derivable from Γ’ informally means that one can construct a proof of A from

the set of statements Γ. We then extend the notion of derivable to sets of L-wffs in the natural

way — a set Γ′ of L-wffs is derivable from Γ if every γ ∈ Γ′ is derivable from Γ. Given a set

of L-wffs Γ, and two L-wffs A,B, we will write Γ,A ⊢ B to mean Γ ∪ {A} ⊢ B, and A ⊢ B to

mean {A} ⊢ B. Also, we will write ⊢ A to mean ∅ ⊢ A. It is easy to see that this deduction
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system is monotonic — i.e. for two sets of L-wffs Γ,Γ′ with Γ ⊆ Γ′, and any L-wff A, whenever

Γ ⊢ A then also Γ′ ⊢ A.

Another important notion is that of logical equivalence — for L-wffs A and B and any set

of L-wffs Γ, we say that A and B are logically equivalent with respect to Γ if Γ ⊢ A ↔ B (or

simply logically equivalent if Γ = ∅). We present examples utilizing these concepts in Section

2.2.3. For any set of L-wffs Γ, the quantum theorems of Γ (denoted T (Γ)) are defined to be the

set of all L-wffs derivable from Γ∪E(L) if “equality” ≈ is a predicate in the language; otherwise,

T (Γ) is defined to be the set of all L-wffs derivable from Γ. One simple example is that the

axiom schema (E3) is derivable from (E3′) for any language L with “equality” ≈ and any set of

L-wffs Γ (see Section 2.2.3).

We conclude our discussion of the syntax by defining a mathematical system (or M-system)

to be a pair (L,A) where L is a language, and A is a set of L-wffs (which are effectively the set

of mathematical axioms for the M-system). Furthermore, for a given M-system (L,A) and any

L-wff A, we say that A is a theorem of (L,A) (or just a “theorem of A” if L is clear from the

context) if A ∈ T (A). For example, recalling the language LG defined above, one possibility for

AG is the following set of axioms (with x, y, z ∈ BV ).

(G1) (∀x)(∀y)(∀z)[(x ⋅ y) ⋅ z ≈ x ⋅ (y ⋅ z)]

(G2) (∀x)[e ⋅ x ≈ x] and (∀x)[x ⋅ e ≈ x]

(G3) (∀x)[x ⋅ x−1 ≈ e] and (∀x)[x−1 ⋅ x ≈ e]

(G4) (∀x)(∀y)[x ≈ y → x−1 ≈ y−1]

(G5) (∀x)(∀y)(∀z)[x ≈ y → x ⋅ z ≈ y ⋅ z] and (∀x)(∀y)(∀z)[x ≈ y → z ⋅ x ≈ z ⋅ y]
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Note that (G4) and (G5) are just (Sub) for ‘−1’ and ‘⋅’, respectively.

2.2.3 Some Simple Formal Arguments

In this section we will provide some examples of the syntax discussed above. In what

follows, assume that L is some fixed language, and recall the definition of the Sasaki hook,

namely A→ B ∶=∼ A ∨ (A ∧B)

Lemma 2.1. Let A be any L-wff. Then ⊢ A→ A.

Proof. We construct the following formal argument —

s1 ∶= A→ ⊺ ∧A (Q1)

s2 ∶= ⊺ ∧A→ A (by (Q3))

s3 ∶= A ∧B → A (by (R1) from s1 and s2)

Lemma 2.2. Let A,B,C be L-wffs. Then

[A→ (B → C)] ⊢ [(A ∧B)→ C]. (2.1)

Proof.
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s1 ∶= (A ∧B) → A (by (Q3))

s2 ∶= (A ∧B) → B (by (Q3))

s3 ∶= A → (B → C) (by assumption)

s4 ∶= (A ∧B)→ (B → C) (by (R1) from s1 and s3)

s5 ∶= (A ∧B)→ B ∧ (B → C) (by (R3) from s2 and s4)

s6 ∶= [B ∧ (B → C)] → C (by (Q4))

s7 ∶= (A ∧B) → C (by (R1) from s5 and s6)

Corollary 2.3. (E3) is derivable from (E3′).

Proof. Let A = t ≈ u, B = u ≈ v, and C = t ≈ v in the above lemma, where t, u, v are any L-terms.

Note that the axiom schema

[(t ≈ u) ∧ (u ≈ v)]→ (t ≈ v)

is an equivalent way of stating the axiom (E3) (and similarly for (E3′)).

Typically we will be more informal in demonstrating that an L-wff is derivable.

Lemma 2.4. Let A,B,C be L-wffs, and Γ be any set of L-wffs. Then

1. ⊢ ⊺

2. ⊺→ A ⊢ A

3. A ⊢ B ∨A

4. A ⊢ ⊺→ A

5. A,B ⊢ A ∧B
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6. If Γ ⊢ A↔ B then Γ,A ⊢ B and Γ,B ⊢ A.

7. ⊢ A ∧B ↔ B ∧A

8. ⊢ A ∧ (B ∧C)↔ (A ∧B) ∧C

9. ⊢∼∼ A↔ A.

Proof.

1. Let Z ∶= (∼∼ A) → A for some fixed L-wff A, so we have Z by (Q2). Then � →∼ Z by

(Q5). (R2) then gives ∼∼ Z → ⊺. But Z →∼∼ Z by (Q2), so (R1) yields Z → ⊺. Modus

ponens (R5) then gives ⊺.

2. From (1) above, we have ⊺. By assumption we have ⊺→ A, and so (R5) yields A.

3. First (∼ B∧ ∼ A) →∼ A by (Q3). This then yields ∼∼ A → B ∨A by (R2). By (Q2) and

(R1) we then obtain A→ B ∨A. Using the assumption A and (R5) then gives B ∨A.

4. (Q1) gives A→ ⊺∧A. By assumption we have A, so (R5) gives ⊺∧A, and so by (3) above

we have ∼ ⊺ ∨ (⊺ ∧A) = ⊺→ A.

5. By (4) above, we have ⊺ → A and ⊺ → B. Then by (R3), this gives ⊺ → (A ∧B), which

by (2) above gives A ∧B.

6. First assume Γ,A. From Γ we have A ↔ B, and then (Q3) and (R5) yield A → B. By

assumption we have A, and so (R5) gives B. Assuming Γ,B, the proof works similarly.

7. We have A ∧B → B, as well as A ∧B → A by (Q3). (R3) then gives A ∧B → B ∧A. In

similar fashion, we have B ∧A→ A ∧B. Then (5) above yields A↔ B.
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8. We have A∧(B∧C)→ A and A∧(B∧C)→ (B∧C) by (Q3). Then by (Q3) again we have

B∧C → B and B∧C → C, so (R1) gives A∧(B∧C)→ B and A∧(B∧C)→ C. Then, using

(R3) we obtain A∧ (B ∧C)→ (A∧B) and (R3) again yields A∧ (B ∧C)→ (A∧B)∧C.

A similar argument yields the other arrow, and (5) above gives the desired conclusion.

9. This follows trivially from (Q2) and (5) above.

Lemma 2.5. Let A,B,C,D be L-wffs. Then (A ∨B)→ (C ∨D) is derivable from A→ C and

B →D — that is

A→ C, B →D ⊢ (A ∨B)→ (C ∨D).

Proof. First, ∼ C →∼ A and ∼D →∼ B by (R2), and then (∼ C∧ ∼D)→∼ A and (∼ C∧ ∼D)→∼

B by (Q3) and (R1). Then (∼ C∧ ∼ D) → (∼ A ∧ ∼ B) by (R3) and then, by (R2) and the

definition of ∨, this gives (A ∨B)→ (C ∨D).

In classical logic there is a clear connection between derivability (⊢) and implication (→) in

the form of the ‘deduction theorem’ which states, for any set of L-wffs Γ and L-wffs A and B,

that Γ,A ⊢ B if and only if Γ ⊢ A→ B. We note that nothing of the sort holds for our quantum

logic Q(L) — not even for the case Γ = ∅.

We conclude this section with an extremely useful theorem whose proof is similar to that

for the classical first order predicate calculus.

Theorem 1. (Replacement) Let (L,A) be any M-system, and let A and B be L-wffs which

are logically equivalent with respect to A. Further let CA and CB be L-wffs which are identical
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except that one instance of A in CA is replaced by B in CB. Then CA and CB are logically

equivalent with respect to A.

Proof. Assume that A and B are logically equivalent with respect to A, so that A ⊢ A ↔ B.

We proceed by induction on the construction of L-wffs, so let ϕA and ϕB be L-wffs such as

in the hypothesis with A ⊢ ϕA ↔ ϕB. Then ϕA → ϕB by (Q3), and so ∼ ϕB →∼ ϕA by (R2).

Similarly we have ∼ ϕA →∼ ϕB, and so Lemma 2.4 (5) gives ∼ ϕA ↔∼ ϕB. Let D be some other

L-wff. ϕA ∧D → ϕA and ϕA → D by (Q3), and so ϕA ∧D → ϕB by (R1) and the inductive

hypothesis, and then (R3) gives ϕA ∧D → ϕB ∧D. Similarly, we have ϕB ∧D → ϕA ∧D, and

so Lemma 2.4 (5) gives ϕA ∧D ↔ ϕB ∧D. By (7) in Lemma 2.4, we have D ∧ ϕA ↔ D ∧ ϕB.

Finally, assume all free variables in ϕA, ϕB are listed (x, y1, . . . , yn). Then by (Q6),

ϕA(x, y1, . . . , yn)→ (∀x)(ϕA(x, y1, . . . , yn)),

and also ϕB → ϕA by inductive hypothesis and (Q3). (R1) then gives

ϕB(x, y1, . . . , yn)→ (∀x)(ϕA(x, y1, . . . , yn)).

(Q6) gives

(∀x)(ϕB(x, y1, . . . , yn))→ ϕB(x, y1, . . . , yn),
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and so (R1) again gives

(∀x)(ϕB(x, y1, . . . , yn))→ (∀x)(ϕA(x, y1, . . . , yn)).

The other expression

(∀x)(ϕA(x, y1, . . . , yn))→ (∀x)(ϕB(x, y1, . . . , yn))

is derived similarly, so Lemma 2.4 (5) gives the desired conclusion.

Of course, using induction this can be extended to any number of replacements of A by B.

2.3 Quantum Models

In order to set up our discussion of models of mathematical systems whose underlying logic

is Q(L), we begin with some preliminary definitions and concepts.

For any set A and any language L, a truth function on A is a set of maps

{⟦P ⟧ ∶ Aα(P ) → L ∣ P ∈ LP },

where L is a complete orthomodular lattice. For a1, a2, ...aα(P ) ∈ A— so that (a1, a2, ...aα(P )) ∈ Aα(P )

— we have that ⟦P ⟧ ∶ Aα(P ) → L is such that

⟦P ⟧((a1, a2, ...aα(P ))) ∶= ⟦P (a1, a2, ...aα(P ))⟧.
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In a language L with “equality” ≈, we further require that (for all a, b ∈ A)1

⟦a ≈ b⟧ = 1 if and only if a = b.

In the notion of “model” that we’ll define below, ⟦P (a, b, ...)⟧ can informally be interpreted as

the “truth value” of the atomic L-wff P (a, b, ...).

For any language L, an L-structure Â is a sequence

Â ∶= (A,L,{⟦P ⟧}, FA)

consisting of

1. A non-empty set2 A (called the underlying set of Â) where the variables are interpreted.

2. A complete orthomodular lattice L (called the truth value algebra of Â).

3. A truth function {⟦P ⟧}P ∈LP on A (called the truth function for Â), where ⋃P ∈LP Im(⟦P ⟧)

generates L as a complete ortholattice.3

1Note that in this statement, equality is used in three distinct ways. ≈ denotes the predicate “equal-
ity”, while the first use of “=” denotes equality in L and the second use of “=” denotes equality in the
meta-language.

2Note that more generally we can develop the L-structures to be based on classes instead of sets.

3Im(⟦P ⟧) denotes the image of the set A under the map ⟦P ⟧. We require L to be generated by

⋃P ∈LP Im(⟦P ⟧) to avoid odd cases where L is non-Boolean but Im(⟦P ⟧) only generates a Boolean
sub-algebra of L. Such cases are, in some sense, classical. See Section 2.3.1 for a brief discussion.
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4. A list FA which consists of, for every f ∈ LF , one α(f)-ary function f̂ ∶ Aα(f) → A (where

f̂ is called the interpretation of f in Â).1

We sometimes also say that Â is based on A to mean that A is the underlying set for Â.

By adding each element of a set A as a (constant) symbol to our language L, we obtain a

new (extended) language LA. We then define, for any L-wff B(y1, . . . , yn) an evaluation of B

to be the LA-term B(a1, . . . , an) where a1, . . . , an ∈ A. An evaluated L-wff is then defined to

be an evaluation of any L-wff.2 For any LA-term t with no free variables, define the evaluation

of t (denoted here by t̃) inductively by

1. ã ∶= a for all a ∈ A.

2. f̃(t1, . . . , tα(f)) ∶= f̂(t̃1, . . . , t̃α(f))

We note that the evaluation of t is clearly an element of A, and A ⊆ LA. Now, for each P ∈ LP ,

we can then extend ⟦P ⟧ to a map on all evaluated L-wffs (which we still refer to as a truth

function, and which we will still denote by ⟦P ⟧). We define the extension of ⟦P ⟧ inductively on

the set of all evaluated L-wffs by (where B and C are L-wffs, ti(y1, . . . , yn) is an L-term, and

a1, . . . , an ∈ A),

1. ⟦P (t1(y1, . . . , yn), t2(y1, . . . , yn), ...)⟧ ∶= ⟦P (t̃1(a1, . . . , an), t̃2(a1, . . . , an), ...)⟧.

2. ⟦∼ B⟧ ∶= ¬⟦B⟧.

1In the following sections we will frequently use the same symbol for an operation in a given language
and its interpretation in the relevant L-structure.

2Note that any L-wff with no free variables is vacuously an evaluated L-wff.
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3. ⟦B ∧C⟧ ∶= ⟦B⟧ ∧ ⟦C⟧.

4. ⟦(∀x)B(x)⟧ ∶= ⋀a∈A⟦B(a)⟧.

For an evaluated L-wff B, we call ⟦B⟧ the truth value of B. Note that this inductive definition

is ‘top down’ which is best illustrated by an example —

⟦(∀x)[(∀y)(x ≈ y)]⟧ = ⋀
a∈A

⟦(∀y)(a ≈ y)⟧ = ⋀
a∈A

(⋀
b∈A

⟦a ≈ b⟧).

Let Â ∶= (A,L,{⟦P ⟧}, FA) be an L-structure. We say that an L-wff B(y1, . . . , yn) holds in

Â if

⟦B(a1, . . . , an)⟧ = 1

for any a1, . . . , an ∈ A, and we will sometimes denote this by Â ⊧ B(y1, . . . yn). Note that the

expression above for the truth value of B(a1, . . . an) is completely equivalent to

⟦(∀y1)(∀y2)⋯(∀yn)B(y1, . . . , yn)⟧ = 1,

i.e. taking the “for all” in the metalanguage is equivalent to using ‘∀’ in the object language

when it comes to determining if a given L-wff holds in a given structure.

Finally, we conclude this section with a couple of simple lemmas which are useful computa-

tionally.
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Lemma 2.6. Let L be a language, let Â be an L-structure with underlying set A, and let A(x)

be an L-wff (with x ∈ BV ). Then (∀x)A(x) holds in Â iff A(a) holds in Â for every a ∈ A (i.e.

Â ⊧ (∀x)A(x) iff Â ⊧ A(a) for every a ∈ A).

Proof. First, letting {⟦P ⟧} be the truth function of Â, we assume that A(a) holds in Â for

every a ∈ A, i.e. that for any a ∈ A, we have ⟦A(a)⟧ = 1. But then we have

⟦(∀x)A(x)⟧ = ⋀
a∈A

⟦A(a)⟧ = ⋀
a∈A

1 = 1,

so that (∀x)A(x) holds in Â.

Conversely, assume (∀x)A(x) holds in Â. Then we have

1 = ⟦(∀x)A(x)⟧ = ⋀
a∈A

⟦A(a)⟧,

which means that ⟦A(a)⟧ = 1 for all a ∈ A.

Note that this result is easily extended to an arbitrary number of variables.

Lemma 2.7. Let L be a language, and let Â be an L-structure with truth function {⟦P ⟧} and

underlying set A. Further let a, b, a1, . . . an ∈ A be such that

⟦P (a1, . . . , am−1, a, am+1, aα(P ))⟧ = ⟦P (a1, . . . , am−1, b, am+1, aα(P ))⟧

for every P ∈ LP and for every m ∈ {1, . . . , α(P )}. Then for any L-wff ψ(x,x1, . . . , xn) (with

x ∈ BV ), we have that ⟦ψ(a, a1, . . . , an)⟧ = ⟦ψ(b, a1, . . . , an)⟧.
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Proof. The proof is by induction on the construction of Lwffs. By assumption, the result holds

for the atomic L-wffs. Assuming the result holds for some L-wff ψ, we have

⟦¬ψ(a, a1, . . . , an)⟧ = ¬⟦ψ(a, a1, . . . , an)⟧ = ¬⟦ψ(b, a1, . . . , an)⟧ = ⟦¬ψ(b, a1, . . . , an)⟧.

Next, assuming the result holds for ψ1 and ψ2 we have

⟦(ψ1 ∧ ψ2)(a, a1, . . . , an)⟧ = ⟦ψ1(a, a1, . . . , an) ∧ ψ(a, a1, . . . , an)⟧

= ⟦ψ1(a, a1, . . . , an)⟧ ∧ ⟦ψ2(a, a1, . . . , an)⟧

= ⟦ψ1(b, a1, . . . , an)⟧ ∧ ⟦ψ2(b, a1, . . . , an)⟧

= ⟦ψ1(b, a1, . . . , an) ∧ ψ1(b, a1, . . . , an)⟧

= ⟦(ψ1 ∧ ψ2)(b, a1, . . . , an)⟧.

Finally, assume the result holds for some ψ(x,x1, . . . , xn, y). Then

⟦(∀y)ψ(a, a1, . . . , an, y)⟧ = ⋀
c∈A

⟦ψ(a, a1, . . . , an, c)⟧

= ⋀
c∈A

⟦ψ(b, a1, . . . , an, c)⟧

= ⟦(∀y)ψ(b, a1, . . . , an, y)⟧.

This completes the induction.
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2.3.1 Models

Finally, we are in a position to define a model. Let (L,A) be an M-system, and let Â ∶=

(A,L,{⟦P ⟧}, FA) be an L-structure. Then, in a language L with “equality” ≈, we say that Â

is a model for (L,A) (or simply a model for A if L is clear from the context) if every L-wff in

QA(L) ∪ E(L) ∪A holds in Â. (If there is no notion of equality in the language L, we say that

Â is a model for (L,A) if every L-wff in QA(L) ∪A holds in Â.)

We call a model standard if L is a Boolean algebra, otherwise it is said to be non-standard.

In the usual approach to classical logic, the only admissible models are ones in which L = 2,

where 2 is the two element Boolean algebra. From this we see that our notion of a standard

model goes beyond models typically considered in classical logic. However, it is well-known

that an L-wff ϕ holds in all models where L is a Boolean algebra if and only if ϕ is true in all

models with L = 2, and so in this sense all standard models behave classically, which is why,

for purposes of this discussion, we will focus on non-standard models.1

2.3.2 Soundness and Completeness

Having defined a semantics for our language, the first things to look for are soundness

and completeness theorems. It is straightforward to see that our quantum axioms and rules

of inference are sound, i.e. every L-wff which is derivable from A holds in every model of A.

Theorems 2 and 3 below make this explicit.

1For a discussion of Boolean-valued models and their connection to set theory and forcing, see (7).
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We would also like a completeness theorem stating that for any language L and any set

of L-wffs A, if an L-wff ϕ holds in every model of A, then it is derivable from A. Following

Dishkant (10), we prove such a completeness theorem; for the details, see Lemmas 2.9 – 2.13,

Corollary 2.8 and Theorem 4 below, as well as the associated discussion. More strongly, we

have actually been able to demonstrate completeness using only models whose associated truth

value algebras are irreducible, as illustrated by (Lemma 2.14 and) Theorem 5 below.

Theorem 2. Soundness: Let (L,A) be an M-system. The axioms (Q1) – (Q6) are true in any

model Ŵ ∶= (W,L,{⟦P ⟧}, FW ) of (L,A).

Proof.

(Q1). A→ (T ∧A).

We have that

⟦A→ (T ∧A)⟧ = ⟦A⟧→ ⟦T ∧A⟧ = ⟦A⟧→ (⟦T ⟧ ∧ ⟦A⟧).

Taking ⟦A⟧ ∶= x, where x ∈ L, we have that ⟦A⟧→ (⟦T ⟧ ∧ ⟦A⟧) becomes

¬x ∨ (x ∧ (1 ∧ x)) = ¬x ∨ (1 ∧ x) = ¬x ∨ x = 1.

Thus, we have that ⟦A→ (T ∧A)⟧ = 1 in any model.

(Q2). ∼∼ A→ A and A→∼∼ A.

We have that ⟦∼∼ A⟧ = ¬¬⟦A⟧, and so, ⟦∼∼ A → A⟧ and ⟦A →∼∼ A⟧ both become
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⟦A⟧ → ⟦A⟧. Now, taking ⟦A⟧ ∶= x, where x ∈ L, we have that ¬¬⟦A⟧ = ⟦A⟧ since the law

of double negation holds in any OML. Thus, since ≤ is reflexive, we have that x → x = 1,

where we have used the fact that p→ q = 1 if and only if p ≤ q. Thus, we see that

⟦∼∼ A→ A⟧ = ⟦A→∼∼ A⟧ = 1.

(Q3). A ∧B → A and A ∧B → B.

We have that

⟦A ∧B → A⟧ = ⟦A ∧B⟧→ ⟦A⟧ = ⟦A⟧ ∧ ⟦B⟧→ ⟦A⟧.

Taking ⟦A⟧ ∶= x and ⟦B⟧ ∶= y, where x, y ∈ L, we have that ⟦A⟧ ∧ ⟦B⟧→ ⟦A⟧ becomes

x ∧ y → x.

Since x ∧ y ≤ x for any x, y ∈ L, we have that x ∧ y → x = 1 (since p → q = 1 if and only if

p ≤ q). Thus, we see that

⟦A ∧B → A⟧ = 1.

Similarly,

⟦A ∧B → B⟧ = 1.
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(Q4). [A ∧ (A→ B)]→ B.

We have that

⟦(A ∧ (A→ B))→ B⟧ = ⟦A ∧ (A→ B)⟧→ ⟦B⟧

= [⟦A⟧ ∧ ⟦A→ B⟧]→ ⟦B⟧ = [⟦A⟧ ∧ (⟦A⟧→ ⟦B⟧)]→ ⟦B⟧.

Taking ⟦A⟧ ∶= x and ⟦B⟧ ∶= y, where x, y ∈ L, we have that [⟦A⟧ ∧ (⟦A⟧ → ⟦B⟧)] → ⟦B⟧

becomes

[x ∧ (x→ y)]→ y.

Now, x ∧ (x → y) = x ∧ (¬x ∨ (x ∧ y)) = x ∧ y, where the last equality follows from the

fact that L is an OML. Since x ∧ y ≤ y for all x, y ∈ L, we have that x ∧ y → y = 1 (since

p→ q = 1 if and only if p ≤ q). Thus, we have that

[⟦A⟧ ∧ (⟦A⟧→ ⟦B⟧)]→ ⟦B⟧ = 1.

(Q5). A∧ ∼ A→ B.

We have that

⟦A∧ ∼ A→ B⟧ = ⟦A∧ ∼ A⟧→ ⟦B⟧ = (⟦A⟧ ∧ ⟦∼ A⟧)→ ⟦B⟧

= (⟦A⟧ ∧ ¬⟦A⟧)→ ⟦B⟧.
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Taking ⟦A⟧ ∶= x and ⟦B⟧ ∶= y, where x, y ∈ L, we have that (⟦A⟧ ∧ ¬⟦A⟧)→ ⟦B⟧ becomes

(x ∧ ¬x)→ y = 0→ y = 1,

where the last equality follows from the fact that 0 ≤ y for all y ∈ L as well as the fact

that p→ q = 1 if and only if p ≤ q. Thus, we have that

(⟦A⟧ ∧ ¬⟦A⟧)→ ⟦B⟧ = 1.

(Q6). (∀x)B(x)→ B(y).

We have that (for a, b ∈W )

⟦(∀x)B(x)→ B(y)⟧ = ⟦(∀x)B(x)⟧→ ⟦B(b)⟧ = ⋀
a∈W

⟦B(a)⟧→ ⟦B(b)⟧.

However, since ⋀a∈W ⟦B(a)⟧ runs over all a ∈W , we have that

⋀
a∈W

⟦B(a)⟧ ≤ ⟦B(b)⟧

for any b ∈W . And so, since p→ q = 1 if and only if p ≤ q, it follows that

⋀
a∈W

⟦B(a)⟧→ ⟦B(b)⟧ = 1.
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Theorem 3. Let (L,A) be an M-system. The set of L-wffs that are true in any model

Ŵ ∶= (W,L,{⟦P ⟧}, FW ) is closed under the rules of inference (R1) — (R5).

Proof.

(R1). A→ B and B → C Ô⇒ A→ C.

Let x, y, z ∈ L, and assume that x→ y = 1 and y → z = 1. Using that p→ q = 1 if and only

if p ≤ q, these assumptions give that x ≤ y and y ≤ z, respectively. Since ≤ is transitive in

an OML, we have that x ≤ y and y ≤ z give that x ≤ z. Again using that p → q = 1 if and

only if p ≤ q, we obtain that x→ z = 1.

(R2). A→ B Ô⇒∼ B →∼ A.

Let x, y ∈ L, and assume that x → y = 1. Using that p → q = 1 if and only if p ≤ q, this

gives that x ≤ y. In an ortholattice, whenever x ≤ y, we have ¬y ≤ ¬x; thus, again using

that p→ q = 1 if and only if p ≤ q, we have that ¬y → ¬x = 1.

(R3). A→ B and A→ C Ô⇒ A→ (B ∧C).

Let x, y, z ∈ L, and assume that x→ y = 1 and x→ z = 1. Using that p→ q = 1 if and only

if p ≤ q, these assumptions give that x ≤ y and x ≤ z, respectively. By definition of the

GLB, we have that x ≤ y and x ≤ z imply that x ≤ y∧ z. Again using that p→ q = 1 if and

only if p ≤ q, the latter result is equivalent to x→ (y ∧ z) = 1.

(R4). A→ B(z)Ô⇒ A→ (∀x)B(x).

Assume that ⟦A → B(a)⟧ = 1 for any a ∈ W . (Note that ⟦A → B(a)⟧ = ⟦A⟧ → ⟦B(a)⟧.)

Now, using that p → q = 1 if and only if p ≤ q, ⟦A⟧ → ⟦B(a)⟧ = 1 gives that ⟦A⟧ ≤
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⟦B(a)⟧ for any a ∈ W . As such, however, it follows (by definition of the GLB) that

⟦A⟧ ≤ ⋀a∈W ⟦B(a)⟧. Again using that p → q = 1 if and only if p ≤ q, this gives that

⟦A⟧→ ⋀a∈W ⟦B(a)⟧ = 1. However, we have that

⟦A⟧→ ⋀
a∈W

⟦B(a)⟧ = ⟦A→ (∀x)B(x)⟧,

which shows that ⟦A→ (∀x)B(x)⟧ = 1.

(R5). A and A→ B Ô⇒ B.

Let x, y ∈ L, and assume that x = 1 and x → y = 1. Using that p → q = 1 if and only if

p ≤ q, this gives that x ≤ y, and thus that y = 1.

Corollary 2.8. Consistency: If Γ ⊢ A, then A is true in any model of Γ.

Proof. This result follows from Theorems 2 and 3.

Let F denote the free algebra over the extended language which is obtained by considering

‘∀’ as a unary operation in the algebra of L-wffs. Also, recall that for L-wffs A and B and any

set of L-wffs Γ, we say that A and B are logically equivalent with respect to Γ if Γ ⊢ A↔ B.

In what follows, we will write A ≃Γ B to denote logical equivalence of A and B with respect to

Γ.

Lemma 2.9. ≃Γ is a congruence on F .

Proof.
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Reflexivity: Since ⊢ A → A follows from (Q1), we have that ⊢ A ↔ A. Since Q(L) is

monotonic, we have that Γ ⊢ A↔ A, which shows that A ≃Γ A.

Symmetry: Assume that A ≃Γ B; as such, we have that Γ ⊢ A ↔ B, which is symmetric by

construction — thus, we have that Γ ⊢ B ↔ A, so that B ≃Γ A.

Transitivity: Assume that A ≃Γ B and B ≃Γ C; these give that Γ ⊢ A ↔ B and Γ ⊢ B ↔ C,

respectively. However, using replacement (i.e. Theorem 1) in the latter result (given the

former), it follows that Γ ⊢ A↔ C, and thus that A ≃Γ C.

∼-congruence: Assume that A ≃Γ B. This gives that Γ ⊢ A ↔ B. Using replacement (i.e.

Theorem 1), we obtain that Γ ⊢∼ A↔∼ B, from which it follows that ∼ A ≃Γ∼ B.

∧-congruence: Assume that A ≃Γ B and C ≃Γ D; these give that Γ ⊢ A↔ B and Γ ⊢ C ↔ D,

respectively. By (Q3) we have that A ∧ C → A, so we have that Γ ⊢ A ∧ C → A. Since

Γ ⊢ A→ B follows from the assumptions, (R1) gives that Γ ⊢ A∧C → B. Also, from (Q3)

we have that A∧C → C, which gives that Γ ⊢ A∧C → A; and by assumption, Γ ⊢ C →D,

so (R1) gives that Γ ⊢ A∧C →D. Now, by (R3), Γ ⊢ A∧C → B and Γ ⊢ A∧C →D give

that Γ ⊢ A ∧C → B ∧D. Similarly, we obtain Γ ⊢ B ∧D → A ∧C. Together these results

give that Γ ⊢ B ∧D↔ A ∧C, or equivalently A ∧C ≃Γ B ∧D.

Lemma 2.10. The quotient algebra F / ≃Γ (called the Lindenbaum–Tarski algebra or LTA

associated with Γ) is an orthomodular lattice.
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Proof. In what follows, let [A] denote the equivalence class of the L-wff A under the congruence

≃Γ. Note that since ≃Γ is a congruence (Lemma 2.9), we have that [∼ A] = ¬[A] and [A ∧B] =

[A] ∧ [B].

● wts: [A] ∧ [B] = [B] ∧ [A].

We have that [A] ∧ [B] = [A ∧ B]. By (Q3), we have ⊢ A ∧ B → A and ⊢ A ∧ B → B;

together these give that ⊢ A ∧B → B ∧A by (R3). Similarly, we have ⊢ B ∧A → A ∧B.

And so, ⊢ A ∧B ↔ B ∧A, which gives that [A ∧B] = [B ∧A]. Thus, we have that

[A] ∧ [B] = [A ∧B] = [B ∧A] = [B] ∧ [A].

● wts: [A] ∧ ([B] ∧ [C]) = ([A] ∧ [B]) ∧ [C].

We have that [A] ∧ ([B] ∧ [C]) = [A] ∧ [B ∧ C] = [A ∧ (B ∧ C)]. By (Q3) we have

⊢ A∧ (B ∧C)→ A and ⊢ A∧ (B ∧C)→ B ∧C. Again by (Q3), we have that ⊢ B ∧C → B

and ⊢ B∧C → C. Using the latter results along with (R1) and the fact that ⊢ A∧(B∧C)→

B∧C, we obtain ⊢ A∧(B∧C)→ B and ⊢ A∧(B∧C)→ C. Now, by (R3) ⊢ A∧(B∧C)→ A

and ⊢ A ∧ (B ∧ C) → B give that ⊢ A ∧ (B ∧ C) → A ∧B. And, this result, along with

the previously obtained result ⊢ A∧ (B ∧C)→ C give that ⊢ A∧ (B ∧C)→ (A∧B)∧C.

Following a similar procedure, we obtain that ⊢ (A ∧ B) ∧ C → A ∧ (B ∧ C) so that

⊢ (A∧B)∧C ↔ A∧ (B ∧C); equivalently, [(A∧B)∧C] = [A∧ (B ∧C)]. Thus, we have

that

[A] ∧ ([B] ∧ [C]) = [(A ∧B) ∧C] = [A ∧ (B ∧C)] = ([A] ∧ [B]) ∧ [C].
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● wts: ¬¬[A] = [A].

We have that ¬¬[A] = ¬[∼ A] = [∼∼ A]. By (Q2), we have that ⊢∼∼ A→ A and ⊢ A→∼∼ A,

which together give that A ≃Γ∼∼ A (or equivalently, [∼∼ A] = [A]). Thus, we have that

¬¬[A] = ¬[∼ A] = [∼∼ A] = [A].

● wts: [A] ∧ ([B] ∧ ¬[B]) = [B] ∧ ¬[B].

We have that [A]∧ ([B]∧¬[B]) = [A]∧ ([B]∧ [∼ B]) = [A]∧ [B∧ ∼ B] = [A∧ (B∧ ∼ B)].

By (Q3) we have that ⊢ A ∧ (B∧ ∼ B)→ B∧ ∼ B, and by (Q5) we have that ⊢ B∧ ∼ B →

A ∧ (B∧ ∼ B). Together these results give that A ∧ (B∧ ∼ B) ≃Γ B∧ ∼ B (or equivalently,

[A ∧ (B∧ ∼ B)] = [B∧ ∼ B]). Thus, we have that

[A] ∧ ([B] ∧ ¬[B]) = [A] ∧ ([B] ∧ [∼ B]) = [A] ∧ [B∧ ∼ B] = [A ∧ (B∧ ∼ B)]

= [B∧ ∼ B] = [B] ∧ [∼ B] = [B] ∧ ¬[B].

● wts: [A] ∧ ([A] ∨ [B]) = [A].

We have that [A] ∧ ([A] ∨ [B]) = [A] ∧ [A ∨B] = [A ∧ (A ∨B)]. By (Q3) we have that

⊢ A∧ (A∨B)→ A. Also, by (Q3), (R2), (Q2) and (R1), we have that ⊢ A→ A∨B, while

(Q1) gives that ⊢ A → A. Using these two results, (R3) gives that ⊢ A → A ∧ (A ∨ B).
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And so, we see that A ∧ (A ∨B) ≃Γ A (or equivalently, [A ∧ (A ∨B)] = [A]). Thus, we

have that

[A] ∧ ([A] ∨ [B]) = [A] ∧ [A ∨B] = [A ∧ (A ∨B)] = [A].

● wts: [A] ∧ [B] = [A] ∧ (¬[A] ∨ ([A] ∧ [B])).

We have that [A]∧ (¬[A]∨ ([A]∧ [B])) = [A]∧ ([∼ A]∨ [A∧B]) = [A]∧ [∼ A∨ (A∧B)] =

[A∧ (∼ A∨ (A∧B))] = [A∧ (A→ B)], where the last equality follows from the definition

of →. By (Q4) we have that ⊢ (A ∧ (A→ B))→ B, while by (Q3), ⊢ (A ∧ (A→ B))→ A;

together these results give that ⊢ (A ∧ (A → B)) → A ∧B by (R3). Now, by (Q3), (R2),

(Q2) and (R1), we have that ⊢ (A ∧B) → (∼ A ∨ (A ∧B)); also by (Q3), we have that

⊢ A ∧ B → A. Together these results give that ⊢ A ∧ B → (A ∧ (∼ A ∨ (A ∧ B))), or

equivalently, (by definition of →) ⊢ A ∧ B → (A ∧ (A → B)). As such, we have that

A ∧B ≃Γ (A ∧ (A→ B)) (or equivalently, [A ∧B] = [A ∧ (A→ B)]). Thus, we have that

[A] ∧ (¬[A] ∨ ([A] ∧ [B])) = [A] ∧ ([∼ A] ∨ [A ∧B]) = [A] ∧ [∼ A ∨ (A ∧B)]

= [A ∧ (∼ A ∨ (A ∧B))] = [A ∧ (A→ B)] = [A ∧B] = [A] ∧ [B].

Let f ∶ F → F / ≃Γ be the natural homomorphism from the free algebra F to the quotient

algebra.

Lemma 2.11. If Γ ⊢ A→ B, then f(A) ≤ f(B).
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Proof. Assume that Γ ⊢ A → B. Note that we also have Γ ⊢ B → B (from (Q1), (Q3) and

(R1)). Together, these give that Γ ⊢ A∨B → B, using (R2), (R3) and the definition of ∨. Now,

we also have that X → X ∨ Y (from (Q3), (R2), (Q2) and (R1)), so we have Γ ⊢ B → A ∨B.

Thus, we see that we have Γ ⊢ B ↔ A ∨ B, or that B ≃Γ A ∨ B. From this, we have that

f(A) ∨ f(B) = f(A ∨B) = f(B), or f(A) ≤ f(B)

Lemma 2.12. Consider Ŵ = (W,F / ≃Γ,{f̃}, FW ), where W is the free algebra over L (i.e. the

set of all possible L-wffs not involving ‘∀’), and f̃ is the restriction of f ∶ F → F / ≃Γ to atomic

L-wffs. Then Ŵ is a model of Γ.

Proof. We first note that by Lemma 2.10 we have that F / ≃Γ is an orthomodular lattice. (Note

that although we haven’t shown that F / ≃Γ is a complete lattice, we don’t actually need for the

OM lattice in the model to be complete — we only need that the GLBs which are necessary to

evaluate the quantified statements exist.)

Now, we also need to show that

f((∀x)B(x)) = ⋀
a∈W

f(B(a)).

That is, we wts that for any variable y and any assignment of that variable to an element a ∈W ,

the evaluation of B(y) is such that f((∀x)B(x)) ≤ B(a); we also wts that if β ≤ f(B(a)), then

β ≤ f((∀x)B(x)). Now, by Lemma 2.11, if Γ ⊢ X → Y , then f(X) ≤ f(Y ). So, we wts that

Γ ⊢ (∀x)B(x) → B(y) and if Γ ⊢ β → B(y), then Γ ⊢ β → (∀x)B(x). Wrt the latter, we note

that by (R4), we have that A→ B(z)Ô⇒ A→ (∀x)B(x). So, if Γ ⊢ A→ B(z) for any variable
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z, then (R4) gives that Γ ⊢ A→ (∀x)B(x). Now, by (Q6), we have that (∀x)B(x)→ B(y), so

Γ ⊢ (∀x)B(x)→ B(y).

Finally, since the above discussion demonstrates that Ŵ is a model, we have that consistency

(Corollary 2.8) gives that f̃(A) = 1 whenever Γ ⊢ A.

Lemma 2.13. If f(A) = 1, then Γ ⊢ A.

Proof. If f(A) = 1, then we have that A ≃Γ T . By axiom (Q5), we have that X∧ ∼X → Y , and

by (R2) this gives that ∼ Y → (X∨ ∼ X) (using (Q2), (R1) and the definition of ∨). Thus, we

have that A→ (B∨ ∼ B), or that Γ ⊢ A→ (B∨ ∼ B). Thus, f(A) ≤ f(B∨ ∼ B). However, since

f(A) = 1 by assumption, we see that f(B∨ ∼ B) = 1 as well, giving that B∨ ∼ B ≃Γ T . And, since

≃Γ is a congruence, it is transitive, so B∨ ∼ B ≃Γ A. As such, we have that Γ ⊢ (B∨ ∼ B) → A.

Also, we have that ⊢ B∨ ∼ B, so it follows that Γ ⊢ B∨ ∼ B. Using these, (R5) gives that

Γ,B∨ ∼ B ⊢ A, which is the same as Γ ⊢ A (since ⊢ B∨ ∼ B).

Theorem 4. Completeness: If an L-wff A is true in any model of Γ, then Γ ⊢ A.

Proof. By Lemma 2.12, Ŵ is a model of Γ. Since f(A) = 1 by assumption, Lemma 2.13 gives

that Γ ⊢ A.

The theorem above demonstrates that our deductive system is complete with respect to

our model theoretic semantics. We now prove a simple lemma which is useful for proving

completeness with respect to models associated with irreducible truth value algebras.

Lemma 2.14. Let Γ be some set of L-wffs, and let A be the underlying set of a model of Γ,

with truth function {⟦P ⟧} into truth value algebra L1 × L2, where ⋃P ∈LP Im(⟦P ⟧) generates
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L1 ×L2. Let p1 ∶ L1 ×L2 → L1 be the natural projection map onto L1. Then replacing L1 ×L2

with L1, and ⟦P ⟧ with p1 ○ ⟦P ⟧ for each P ∈ LP , yields a new model of Γ.

Proof. For any γ ∈ Γ, ⟦γ⟧ = 1, and so p1○⟦γ⟧ = 1. Also, since p1 is surjective and ⋃P ∈LP Im(⟦P ⟧)

generates L1 × L2, we clearly have that ⋃P ∈LP Im(p1 ○ ⟦P ⟧) generates L1. It remains to show

that L1 is complete enough to evaluate the appropriate ‘∀’ statements, so consider an L-wff

B(x), and let (α,β) = ⋀a∈A⟦B(a)⟧, i.e. (α,β) is the greatest lower bound of the set of all

⟦B(a)⟧ =∶ (αa, βa), where a ∈ A. Hence α ≤ αa for all a ∈ A, so α is a lower bound for the set

of all αa = p1 ○ ⟦B(a)⟧. Also, for any α′ ∈ L1 which is a lower bound for all the p1 ○ ⟦B(a)⟧, we

have that (α′,0) is a lower bound for all the ⟦B(a)⟧ ((α′,0) is in the sub-algebra generated by

⋃P ∈LP Im(⟦P ⟧)), and so by definition (α′,0) ≤ (α,β), and so α′ ≤ α, showing that

α = ⋀
a∈A

p1 ○ ⟦B(a)⟧ = p1 ○ ⟦(∀x)(B(x))⟧,

and so L1 is complete enough to serve as a model.

Theorem 5. Let Γ be a set of L-wffs, and ϕ an L-wff. Then ⟦ϕ⟧ = 1 in every model of Γ if

⟦ϕ⟧ = 1 in every model of Γ with irreducible truth value algebra.

Proof. We prove the contrapositive, so assume that there is some model of Γ in which ⟦ϕ⟧ ≠ 1.

By the completeness theorem (i.e. Theorem 4), we must have that ⟦ϕ⟧ ≠ 1 in the Lindenbaum-

Tarski algebra associated with Γ — i.e. Γ /⊢ ⊺ ↔ ϕ. Now define A to consist of exactly those

sets of axioms A in which (i) Γ ⊆ A, and (ii) ⟦ϕ⟧A ≠ 1, where {⟦P ⟧A} is the truth function

which maps L-wffs to the Lindenbaum-Tarski algebra associated with A.
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A is partially ordered by inclusion, and we will use Zorn’s Lemma to prove that A contains

some maximal element M . Let C ⊆ A be linearly ordered under inclusion, and define U ∶= ⋃C.

Clearly U is an upper bound for C under inclusion, so it suffices to show that U ∈ A. Clearly

Γ ⊆ U . We prove property (ii) by contradiction, so assume ⟦ϕ⟧U = 1, i.e. U ⊢ ⊺↔ ϕ. The proof of

⊺↔ ϕ is finite by definition, and so may only contain a finite number of wffs ϕ1, ϕ2, . . . , ϕn ∈ U .

Each ϕi ∈ Ai for some Ai ∈ C. Since C is linearly ordered by inclusion, we must have that

⋃ni=1Ai = Aj for some j ∈ {1, . . . , n}, and henceAj ⊢ ⊺↔ ϕ, so ⟦ϕ⟧Aj = 1, which is a contradiction

since Aj ∈ A. Hence U ∈ A, and since C was a generic chain in A, Zorn’s Lemma gives that A

has a maximal element Ω.

We claim that the Lindenbaum-Tarski algebra L associated with Ω is irreducible. Assume

not, so that L ≃ L1 × L2. By Lemma 2.14 above, this produces two new models of Ω with

corresponding truth value algebras L1 and L2, respectively (and truth functions {⟦P ⟧(1)} and

{⟦P ⟧(2)}, respectively). Since ⟦ϕ⟧Ω ≠ 1, we must have (wlog) ⟦ϕ⟧(1) ≠ 1. Let ψ be some wff

such that ⟦ψ⟧(1) = 1 and ⟦ψ⟧(2) = 0. We cannot have Ω ∪ {ψ} ⊢ ⊺ ↔ ϕ, since then we would

have ⟦ϕ⟧(1) = 1. This means that Ω ∪ {ψ} ∈ A, and also Ω ⊆ Ω ∪ {ψ}, which contradicts the

maximality of Ω in A. Hence L must be irreducible, and so we have constructed an irreducible

model in which ⟦ϕ⟧Ω ≠ 1, which establishes the contrapositive.

And so, this theorem shows that without loss of generality, we can restrict ourselves to

models for which the associated truth value algebra is irreducible.
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2.4 Qualitative Properties of Quantum Mathematics

We begin by defining a property of L-wffs which plays an important role in the quantum

logic Q(L) — namely, for L-wffs A and B, we define the L-wff A C̃ B by

A C̃ B ∶= (A→ [(A ∧B) ∨ (A∧ ∼ B)]) ∧ ([(A ∧B) ∨ (A∧ ∼ B)]→ A), (2.2)

and for a given M-system (L,A), we say that A is compatible with B if A C̃ B is a theorem of

A. Note that whenever A C̃ B, we also have A C̃ (∼ B). And, although it is not obvious from

the definition above, it is straightforward to show that the compatibility relation is symmetric

in Q(L) (i.e. A C̃ B is logically equivalent (with respect to ∅) to B C̃ A); as such, if A is

compatible with B, we will simply say that A and B are compatible. Now, we note that a set of

axioms of classical logic is derivable from the quantum logic Q(L) described above by adding

the property that all L-wffs are compatible — namely, we could add

(CL) A C̃ B

as an axiom schema to Q(L). For convenience we denote Q(L)∪{(CL)} (where (CL) implicitly

represents an axiom schema) by C(L). Additionally, for an M-system (L,A) we will say that

an L-wff is classically derivable if it is derivable from A ∪ {(CL)}. Although a simpler set of

axiom schema and inference rules can be used to describe classical logic (e.g. as in (11)), the

one given by C(L) is equivalent to these.

Since an axiomatization of classical logic can be obtained from Q(L) by simply adding an-

other axiom, it is easy to see that the quantum logic Q(L) is sub-classical — i.e. every theorem
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of Q(L) will also be a theorem of classical logic. As such, every model of classical logic will still

be a model of the quantum logic Q(L) — that is, Q(L) doesn’t eliminate any classical models,

but does allow for more models than are allowed classically (as will be discussed below). One

consequence of this (along with the fact that a set of axioms is consistent if and only if there

exists a model of those axioms(23)) is that any M-system (L,A) which is consistent in the

presence of classical logic is still consistent when the underlying logic is Q(L). Another conse-

quence of the fact that the quantum logic Q(L) is sub-classical is that any set of axioms which

are independent when the underlying logic is classical remain so in the presence of the quantum

logic Q(L). However, we note that a statement which is provable from a set of axioms in the

presence of classical logic may no longer be provable when the underlying logic is sub-classical

as in the case of the quantum logic Q(L).

We next note several features of quantum mathematics which are of particular interest; we

mention them here and discuss each of the points further in the context of the relevant examples

in the subsequent chapter.

To begin with, one may expect that whenever the quantum logic Q(L) is used in place of

classical logic, any M-system (L,A) will admit non-standard models. A little thought shows

that this is clearly not the case, as A may contain some “purely logical” axiom schema (such as,

e.g. (CL) above) which can be seen to be directly responsible for the classical behavior of the

associated M-system. However, what is more surprising is that, even in cases in which A seems
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to have “purely mathematical” content, it still might be the case that an M-system admits no

non-standard models, as Dunn (9) was the first to show. We will call an M-system (L,A) (or

simply A if L is clear from the context) inherently classical if A ∪QA(L) ⊢ (CL). For such

M-systems, any theorem of A which is classically derivable is also a quantum theorem, from

which it follows that inherently classical M-systems do not admit any non-standard models.

Thus, for such axiom systems A there is no difference, as far as the mathematics is concerned,

between using the quantum logic Q(L) or classical logic as the underlying logic. It turns out

that when a set of L-wffs A satisfies certain properties (which will be discussed in Sections

3.2 and 3.3), the axiom system A is inherently classical.1 However, we note that inherently

classical M-systems are the exception rather than the rule.

Now, for any given area of mathematics, there are often alternative but equivalent formu-

lations of the axioms (as a set of L-wffs) in the presence of classical logic, where by equivalent

presentations for a language L, we mean that two sets of L-wffs A and A′ have exactly the same

theorems — i.e. T (A) = T (A′). When Q(L) (instead of, e.g. C(L)) is used for the underlying

logic, these equivalent classical presentations may no longer be equivalent.2 Indeed, examples

of this splitting phenomenon are given in Sections 3.2 and 3.3. This sensitivity to the choice

1We note that a general characterization of inherently classical M-systems is still lacking. In the
sections mentioned above, we provide classes of examples of inherently classical M-systems.

2This result does not depend on the specific choice of axiomatization for classical logic — any equiv-
alent set of axioms and inference rules for classical logic can be used.
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of classically equivalent mathematical axioms is another novel feature of the quantum logic

Q(L) which enables us to see a richness in the structure of mathematics which is completely

inaccessible using classical logic.

We now distinguish between two classes of models. Let (L,A) be an M-system, and let

Â = (A,L,{⟦P ⟧}, FA) be a model for A. If there is an L-structure B̂ = (A,L′,{⟦P ⟧′}, FA)

which is a standard model for A such that L′ = 2 (the two element Boolean algebra), then we

say that Â is conservative. Essentially, a model is conservative if each n-ary operation f ∈ L

has the same interpretation in Â as it does in some classical model B̂ over the same set — that

is, (for a, b ∈ A) only the definition of ⟦P (a, b, ...)⟧ (for each P ∈ LP ) differs from ⟦P (a, b, ...)⟧′.

Clearly every standard model is conservative. A model which is not conservative is said to be

non-conservative. Examples of non-standard conservative models can be found in Sections 3.3,

3.4, and 3.5, as well as in Chapter 5; an example of a non-conservative model can be found

in Section 3.3. Note that non-conservative models allow for the n-ary operations f ∈ L to be

more general than can be obtained classically. However, non-standard conservative models are

still interesting in that they (at least in principle) allow for different mathematical properties

to hold compared to the associated bivalent model.

Finally, we note that there are certain orthomodular lattices which are very natural with

respect to quantum theory, and as such, these are natural candidates for the truth value alge-

bras in models of our quantum M-systems. For example, despite the wide variation in what is
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considered quantum logic, there is relatively little disagreement that projection1 (or subspace)

lattices are relevant structures; such lattices seem to be suggested strongly by quantum me-

chanics, and are of particular interest due to the fact that they can be empirically motivated.

When considering the relevant mathematics which utilizes these natural structures as truth

value algebras of models, we find that certain classical properties no longer hold (see Sections

3.4 and 3.5 for a discussion). While this fact in and of itself may not be surprising, it is striking

that some of the properties which no longer hold are ones as fundamental as (E3′) and (Sub).

Although the tendency would simply be to discard any models in which such intuitive proper-

ties fail, we hesitate to do so given the naturalness of these models with respect to the quantum

theory — instead we want to see what these models are trying to teach us.

2.5 Construction of Models

In the following chapters we will be constructing explicit models of various axiom systems,

and so it will behoove us to examine conditions under which a given L-structure is a model of

some M-system (L,A).

Now in any L-structure (A,L,{⟦P ⟧}, FA), every L-wff in QA(L) automatically holds, since

L is a complete orthomodular lattice, and we have shown that Q(L) is sound. In languages L

1See Section A.4.3 for a brief discussion of these structures.
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with “equality” ≈, (E1) is also automatically satisfied due to the requirement on ⟦≈⟧ that (for

all a, b ∈ A)

⟦a ≈ b⟧ = 1 if and only if a = b.

It is also straightforward to see that (E2) will hold if and only if ⟦≈⟧ is a symmetric function

(where by symmetric, we mean ⟦a ≈ b⟧ = ⟦b ≈ a⟧ for all a, b ∈ A). Hence (in languages L with

“equality” ≈), when attempting to determine if an L-structure with a symmetric truth function

⟦≈⟧ is a model for the M-system (L,A), it suffices to check only axiom schema (E3) and A. In

order to see that (E3) is satisfied, one only needs to check that the following inequality holds

in L (for all a, b, c ∈ A).

⟦a ≈ b⟧ ∧ ⟦b ≈ c⟧ ≤ ⟦a ≈ c⟧. (2.3)

Given some model Â of an M-system (L,A), we can construct other (distinct) models from

it, using the following theorem.

Theorem 6. Let (L,A) be an M-system with model Â = (A,L,{⟦P ⟧′}, FA), and let Â0 =

(A,L0,{⟦P ⟧}, FA) be an L-structure, where (for n-ary predicate P ∈ LP and a1, . . . an ∈ A)

⟦P (a1, . . . an)⟧′ = 1 iff ⟦P (a1, . . . an)⟧ = 1.

If B is an L-wff which holds in Â and which can be written as to not contain the symbol ‘∼’

(using ∨ and ∃ is still allowed), then B holds in Â0.
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Proof. The proof is by induction on the definition of the extension of ⟦P ⟧′ (for each P ∈ LP ) to all

evaluated L-wffs. First, we consider the base case of an atomic L-wff (for any P ∈ LP with arity

n) P (t1(y1, . . . yk), . . . tn(y1, . . . yk)) such that Â ⊧ P (t1, . . . tn). Then, for any a1, . . . , ak ∈ A,

we have that ⟦P (t1(a1, . . . ak), . . . tn(a1, . . . ak))⟧′ = 1 since P (t1, . . . tn) holds in Â. Then, by

assumption, we must have that ⟦P (t1(a1, . . . ak), . . . tn(a1, . . . ak))⟧ = 1 for any a1, . . . ak ∈ A,

from which it follows that Â0 ⊧ P (t1, . . . tn).

For the inductive step, first assume that for L-wffs B and C that ⊢ B and ⊢ C hold in Â0 —

i.e. assume that Â ⊧ B and Â ⊧ C. Then for any evaluations B̃ of B and C̃ of C, ⟦B̃⟧′ = ⟦C̃⟧′ = 1.

Then ⟦B̃ ∧ C̃⟧′ = ⟦B̃⟧′ ∧ ⟦C̃⟧′ = 1, so ⊢ B ∧ C holds in Â0 (and similarly for ∨). Next, assume

that ⊢ B(x, y1, . . . , yn)) holds in Â, so ⟦B(a, a1, . . . , an)⟧′ = 1 for all a, a1, . . . , an ∈ A. Then we

have

⟦(∀x)B(x, a1, . . . , an)⟧′ = ⋀
a∈A

⟦B(a, a1, . . . , an)⟧′ = ⋀
a∈A

1 = 1

so that B(x, y1, . . . , yn) holds in Â0. For the final case, assume that ⊢ B(x, y1, . . . , yn) holds in

Â. Then for any a1, . . . , an ∈ A we have

⟦(∃x)B(x, a1, . . . , an)⟧′ = ¬ ⋀
a∈A

¬⟦B(a, a1, . . . , an)⟧′ = ⋁
a∈A

⟦B(a, a1, . . . , an)⟧′ = 1,

so that (∃x)(B) holds in Â. This completes the induction.

Thus, if there is a known model Â of an M-system (L,A), and from that model we change

only the truth value algebra L and the way that the predicates P ∈ LP are valuated in L, so

as to form a new L-structure Â0, then any L-wff B (which doesn’t contain logical negation ∼)
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which holds in (the original model) Â will also hold in the new L-structure Â0. This result will

be most useful when the initial model Â is standard (and especially so when Â is a model we

are familiar with from classical mathematics). More specifically, whenever trying to construct a

non-standard conservative model of (L,A) from, e.g. a standard model, Theorem 6 guarantees

that any axiom in A which does not contain logical negation will hold in the L-structure Â0.

However, any axiom of A which does contain logical negation needs to be checked explicitly to

verify that the L-structure Â0 is indeed a model.

2.5.1 Classically Equivalent Axiom Systems

In Section 2.4 we mentioned that certain sets of axioms which are equivalent classically may

no longer be equivalent in the presence of the quantum logic Q(L). In this section we show

that for an M-system (L,A), one can always find such classically equivalent sets of axioms in

any language L which is such that ≈ ∈ LP .

Let L be any language and let ϕ, ϕ̂ be L-wffs. We will say that ϕ̂ is a reduction of ϕ if we

have that ϕ and ϕ̂ are logically equivalent in the presence of classical logic. Further, for a set

of L-wffs Γ and a set of L-wffs Γ′ for which γ′ ∈ Γ′ implies that γ′ is a reduction of γ for some

γ ∈ Γ, we say that Γ′ is a reduction of Γ. Additionally, if A is an L-wff such that (CL) ⊢ A,

we say that A is a classical tautology, and if, further, A is not derivable from ∅, we say that

A is a strictly classical tautology. Then, for any L-wffs ϕ,A such that A is a strictly classical

tautology, the choice ϕ̂ ∶= A→ ϕ is an example of a reduction of ϕ.

Given an M-system (L,A) and a reduction A′ of A it is trivial to see that the M-system

(L,A′) is equivalent classically to (L,A). Whether or not a given reduction of some axiom
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system is still equivalent in quantum logic is, in principle, a difficult question. However, for a

specific class of reductions, we can state some general facts.

For L-wffs A,B, define the L-wff c(A,B) by

c(A,B) ∶= [(A ∧B) ∨ (A∧ ∼ B)] ∨ [(∼ A ∧B) ∨ (∼ A∧ ∼ B)]. (2.4)

It well known from orthomodular lattice theory (see (21) p. 26) that the expression in equa-

tion 2.4, when interpreted as a lattice polynomial in a truth value algebra L, has the property

that c(x, y) = 1 if and only if x = (x∧ y)∨ (x∧¬y) — that is, when x and y are compatible ele-

ments of L. This means that, for a given M-system (L,A) and any model Â = (A,L,{⟦P ⟧}, FA)

thereof, that ⟦c(A,B)⟧ = 1 for every evaluated L-wffs A,B if and only if L is Boolean (since

any orthomodular lattice in which all elements are compatible is necessarily Boolean). Then

completeness gives that CL ⊢ c(A,B) for any two L-wffs A and B, so that c(A,B) is always a

classical tautology. Whether or not it is strictly classical depends upon the specific A and B

— for example, in a language L with “equality” ≈, taking A ∶= x ≈ y and B ∶= y ≈ z gives that

c(A,B) is strictly classical, while c(A,A) is not strictly classical.

In MOn (for n ≥ 2)1 we have that c(vi, vj) = 1 if i = j and 0 if i ≠ j. Now, still considering a

language L with “equality” ≈, we define the L-wff

K ∶= (∀x)(∀y)(∀z)⋯(∀w)(c(x ≈ y, z ≈ w)).

1See Section A.10 in appendix A for a description of these modular ortholattices.
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Note that K is clearly a strictly classical tautology, and so, using this fact we can define a

reduction of A′ as follows —

A′ ∶= {K → A ∣ A ∈ A}.

Define 4 ∶= {0,1,2,3}, and consider the M-system (L,A), where L is equational (i.e. LP = {≈}).

For any f ∈ LF , define f̂ ∶ 4α(f) → 4 to be the constant function taking everything to 0, and

define ⟦≈⟧ to be the unique symmetric truth function which satisfies ⟦0 ≈ 1⟧ = v1, ⟦2 ≈ 3⟧ = v2,

and ⟦i ≈ j⟧ = 0 for all other i ≠ j. Then we define the L-structure 4̂ ∶= (4,MO2,{⟦≈⟧}, ⟨f̂⟩f∈L),

and claim that 4̂ is a model for A′. As per the discussion above, since ⟦a ≈ b⟧∧ ⟦b ≈ c⟧ ≤ ⟦a ≈ c⟧

holds for all a, b, c ∈ 4, we have (E3) and (E1) and (E2) hold since ⟦≈⟧ is a symmetric truth

function. Finally, it is easy to verify that ⟦K⟧ = 0, so that for any A ∈ A, ⟦K → A⟧ = 0→ ⟦A⟧ = 1,

so that A′ holds in 4̂. This shows that for any equational language L, there is always an

axiomatization of a classical M-system which allows non-standard models using Q(L) as the

underlying logic.

The above reduction was clearly very artificial, but reductions can be very natural in some

contexts. For example, if we have some binary operation ∗ ∈ LF , where L is a language with

“equality” ≈, a reduction of substitution such as

c(x ≈ y, z ≈ w)→ [(x ≈ y ∧ z ≈ w)→ x ∗ z ≈ y ∗w]

seems extremely natural in the context of quantum logic.
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2.5.2 Classicality Operators

In this section, we discuss two other natural classes of L-wffs which can be useful for reducing

axioms in the context of certain classes of models — in particular, those whose associated truth

value algebras are irreducible. We note, however, that such L-wff schema are only well-defined

for languages L such that ∣LP ∣ <∞.

The first of these L-wff schema C(ψ) is designed to evaluate to 1 or true (in any model) in

which ⟦ψ⟧ is in the center of the truth value algebra. The motivation for C(ψ) is essentially

the fact that the center of an orthomodular lattice L forms a Boolean sub-algebra of L (see

Theorem 33), which essentially captures the classical behavior within L. We now construct the

L-wff schema C(ψ). Let LP = {P1, . . . , Pn}, and for any L−wff ψ define

C(ψ) ∶= (∀s1
1)⋯(∀s1

α(P1)
)[ϕP1(s1,...,sα(P1))

(ψ)→ ψ] ∧⋯

∧ (∀sn1)⋯(∀snα(Pn))[ϕPn(s1,...,sα(Pn))(ψ)→ ψ)], (2.5)

where ϕx(y) = x ∧ (¬x ∨ y) is the Sasaki projection.

Lemma 2.15. Let L be a language with a finite number of predicates, let (A,L,{⟦P ⟧}, FA)

be an L-structure, and let ψ be an evaluated L-wff. Then ⟦C(ψ)⟧ = 1 if and only if ⟦ψ⟧ is in

the center of L.
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Proof. By definition of C(ψ), and since ⟦C(ψ)⟧ = 1 iff every term in the meet equals one

(recalling that ‘∀’ statements evaluate to meets in the truth value algebras), we have that

⟦C(ψ)⟧ = 1 iff

ϕ⟦P (a1,...,aα(P ))⟧
(⟦ψ⟧)→ ⟦ψ⟧ = 1

for every predicate P in L, and for every a1, . . . , aα(P ) ∈ L. But by Lemma A.12, the above

statement holds iff ϕ⟦P (a1,...aα(P ))⟧
(⟦ψ⟧) ≤ ⟦ψ⟧. By Lemma A.11, this is true iff

⟦P (a1, . . . , aα(P ))⟧ C ⟦ψ⟧

for every a1, . . . , aα(P ) ∈ L and P ∈ LP (where x C y denotes compatibility of x and y in L).

Clearly if ⟦ψ⟧ is in the center of L, the previous statement is satisfied. Conversely, since by

the definition of an L-structure the set of all ⟦P (a1, . . . aα(P ))⟧ generate L, by Theorem 34, ⟦ψ⟧

must be in the center of L.

We now introduce the second L-wff schema T(ψ) which, is designed to evaluate to 1 or true

(in any model) in which ⟦ψ⟧ = 1 and evaluate to 0 otherwise, whenever two simple L-wffs are

also satisfied (in any model). The motivation for T(ψ) essentially comes from the desire to be

able to reduce L-wffs involving the existential quantifier and capture certain classical behaviors
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of this quantifier in the process (more will be said regarding this in Section 2.5.3 below). In

order to define T(ψ), let LP = {P1, . . . , Pn}, and then for any L−wff ψ, we have

T(ψ) ∶= (∀s1
1)⋯(∀s1

α(P1)
)(P1(s1, . . . , sα(P1))→ ψ) ∧⋯

∧ (∀sn1)⋯(∀snα(Pn))(Pn(s1, . . . , sα(Pn))→ ψ)]. (2.6)

The following lemmas regarding the L-wff schema T(ψ) are useful.

Lemma 2.16. Let L be a language with a finite number of predicates, and let (A,L,{⟦P ⟧}, FA)

be an L-structure. Further let ψ be any evaluated L-wff such that ⟦ψ⟧ = 1. Then ⟦T(ψ)⟧ = 1.

Proof. Assuming ⟦χ⟧ = 1, then ⟦T(χ)⟧ = 1 trivially by Lemma A.12, which gives that in any

OML L with a ∈ L, we have (a→ 1) = 1.

Lemma 2.17. Let L be a language with a finite number of predicates, let Â ∶= (A,L,{⟦P ⟧}, FA)

be an L-structure, and let ψ be any L-wff. Further assume that there exists some a1, . . . , an ∈ A

and some predicate P with arity n such that ⟦P (a1, . . . , an)⟧ = 1. Then ⟦T(ψ)→ ψ⟧ = 1.

Proof. Let ψ be any L-wff. By Lemma A.12, we only need to show that ⟦T(ψ)⟧ ≤ ⟦ψ⟧. But by

the definition of T and Lemma A.12 we have

⟦T(ψ)⟧ ≤ ⋀
a1,...,an∈A

(⟦P (a1, . . . an)⟧→ ⟦ψ⟧) ≤ (1→ ⟦ψ⟧) = ⟦ψ⟧.

We then have the following result.
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Lemma 2.18. Let L be a language with a finite number of predicates, and let Â ∶= (A,L,{⟦P ⟧}, FA)

be an L-structure such that L is irreducible, and (for all L-wffs ψ)

(i) ⟦C(T(ψ))⟧ = 1;

(ii) ⟦T(ψ)→ ψ⟧ = 1.

Then for any evaluated L-wff χ,

⟦T(χ)⟧ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 if ⟦χ⟧ = 1

0 if ⟦χ⟧ ≠ 1

(2.7)

Proof. First, assume ⟦χ⟧ = 1. Then ⟦T(χ)⟧ = 1 by Lemma 2.16. Next, assume ⟦χ⟧ ≠ 1. By

(i) above, ⟦C(T(χ))⟧ = 1, and so by Lemma 2.15, ⟦T(χ))⟧ is in the center of L. Since L is

irreducible, the center of L is just {0,1}. Then by (ii) above, ⟦T(χ)⟧→ ⟦χ⟧ = 1, so that

⟦T(χ)⟧ ≤ ⟦χ⟧ ≠ 1

by Lemma A.12, and hence we must have that ⟦T(χ)⟧ = 0.

The following section illustrates one particular (and important) application of L-wff schema

T(ψ).
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2.5.3 Reduction & Existential Quantifiers

As mentioned previously, we would like to use the L-wff schema T(ψ) defined above to

reduce L-wffs involving the existential quantifier ∃. (Recall that (∃x)(B) ∶= ∼ (∀x)(∼ B).)

Now, for a model Â ∶= (A,L,{⟦P ⟧}, FA), and an L-wff (∃x)χ(x), we have that

⟦(∃x)χ(x)⟧ = ⋁
a∈A

⟦χ(a)⟧.

From this, we see that we can have ⟦(∃x)χ(x)⟧ = 1 without ⟦χ(a)⟧ = 1 for any a ∈ A — that is,

even if ⟦(∃x)χ(x)⟧ = 1, it does not follow that there really exists an a ∈ A such that ⟦χ(a)⟧ = 1.

And so, the quantifier ∃ is much weaker in Q(L) than in classical logic. However, the L-wff

(∃x)χ(x) can be reduced to

(∃x)T(χ(x)),

so that in any model Â ∶= (A,L,{⟦P ⟧}, FA) in which both C(T(χ)) and T(χ) → χ hold, we

have

⟦(∃x)T(χ(x))⟧ = 1,

which actually guarantees that the existence of some a ∈ A such that ⟦χ(a)⟧ = 1. And so we see

that reducing any axiom involving ‘∃’ in this way enables us to retain the full power of L-wffs

which involve the existential quantifier ∃ that we are used to from classical logic.
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2.6 Summary and Conclusion

In this chapter, we have defined, for any first order language L, the quantum logic Q(L),

which consists of the axioms (Q1) — (Q6) and inference rules (R1) — (R5). We then went on

to define notions of formal deduction and derivability in Q(L). (Recall that for an L-wff A and

set of L-wffs Γ, the statement ‘A is derivable from Γ’ informally means that one can construct

a proof of A from the set of statements Γ.)

Following this discussion, we defined an M-system (mathematical system) (L,A) to be a

language L, along with a set of L-wffs A (which is effectively the set of mathematical axioms).

We then described a model theory for an arbitrary M-system (L,A). We did this by constructing

L-structures

Â ∶= (A,L,{⟦P ⟧}, FA)

for (L,A) consisting of (i) an underlying set A in which variables are interpreted, (ii) a truth

value algebra L, which is a complete orthomodular lattice, (iii) for each predicate P ∈ LP , a

map ⟦P ⟧ which assigns truth values (in L) to the atomic sentences, with ⋃P ∈LP ⟦P ⟧ generates

L, and (iv) for every f ∈ LF , an interpretation of f in Â. Then, an L-structure Â is a model

for (L,A) if all of the axioms A hold in Â. (If ≈∈ LP , then we must also have that the axioms

E(L) are also satisfied in order for Â to be a model of the M-system.) Note that for simplicity,

one can, when considering conservative models, effectively think of the associated truth value

algebra L along with the truth function for L (which defines how the atomic L-wffs get sent
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to elements of L) as the model. Finally, we note that we have demonstrated soundness and

completeness for our semantics relative to our formal deductive system.

We now go on to apply this formalism to specific mathematical structures — that is, we

will consider several mathematical systems using Q(L) as the underlying logic, and we will

illustrate some interesting features of such quantum mathematical systems.



CHAPTER 3

QUANTUM MATHEMATICS

3.1 Introduction and Overview

In this chapter, we consider applications of the quantum logic Q(L) described in Chapter 2.

In particular, we consider models of M-systems associated with groups, monoids, orthomodular

and Boolean lattices, as well as Hilbert spaces and their operator algebras, in order to demon-

strate some of the basic features of mathematical systems in the presence of quantum logic.1

As noted previously, when considering models which are conservative, we can dispense with

most of the formality, as in such cases it suffices to think of the truth value algebra L (along

with the truth function for L that defines how the atomic L-wffs get evaluated) as the model,

keeping everything else in the background.

We reiterate that the quantum logic Q(L) is sub-classical — i.e. every theorem of Q(L)

will also be a theorem of classical logic (but not vice versa). As such, every model of a classical

M-system will still be a model when the underlying classical logic is replaced by Q(L), but there

will, in general, be more models than are allowed classically, and we will see several examples

of such non-standard models in this chapter.

1In what follows, we will often use the phrase ‘an M-system (L,A) associated with, e.g., groups’ to
refer to an M-system (L,A) whose axioms A give rise, in the presence of classical logic, to models which
are groups.

59



60

Also, as noted in Section 2.4, there are (for any given area of mathematics) often alternative

but classically equivalent formulations of the axioms, and when Q(L) is used for the underly-

ing logic (instead of classical logic), these equivalent classical presentations may no longer be

equivalent. This sensitivity to the choice of classically equivalent mathematical axioms is an

interesting feature of the quantum logic Q(L) which demonstrates a richness in the structure

of mathematics which is classically inaccessible.

Additionally, one may expect that whenever the quantum logic Q(L) is used in place of

classical logic, any M-system (L,A) will admit non-standard models. However, this is not

always the case, and examples of inherently classical M-systems will be discussed in this chapter.

Also, examples of conservative and non-conservative models (defined in Section 2.4) will be

discussed as well.

Finally, we note that there are certain orthomodular lattices which are very natural with

respect to quantum theory, and which are of particular interest due to the fact that they can

be empirically motivated. In this chapter, we examine models which have such lattices as their

truth value algebras, and we find that certain classical properties no longer hold in these mod-

els. Although the tendency would be simply to discard any models in which such intuitive

properties fail, we hesitate to do so given the naturalness of these models with respect to the

quantum theory — instead want to see what these models are trying to teach us.

We begin in Section 3.2, where we consider a particular presentation of the axioms for the

successor fragment of Peano arithmetic, and show that the M-system associated with these ax-
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ioms is inherently classical. Then, in Section 3.3, we show a similar result for any axiomatization

of abstract algebras which satisfy certain properties. We go on to give some examples which

demonstrate that the aforementioned properties are indeed necessary to establish that these

M-systems are inherently classical. Finally, we demonstrate an example of a non-conservative

model.

In Section 3.4, we consider quantum lattice theory, where we discuss a particular class of

non-standard models for an M-system associated with axioms for orthomodular lattices, and

note some interesting results with regard to substitution (Sub). We then go on to show that for a

class of M-systems associated with an axiomatization of Boolean algebras, if strong transitivity

(E3′) is satisfied, then there exist no non-standard models — i.e. these M-systems are inherently

classical. We also provide examples of M-systems whose models are quantum Boolean algebras

which do admit non-standard models; in such cases, only the (required) axiom (E3) — and not

(E3′) — is satisfied.

Finally, in Section 3.5, we examine M-systems for axiomatizations of both Hilbert spaces

and their operator algebras in the presence of our quantum logic Q(L). We will show that

a natural class of conservative models present themselves for both classes of M-systems; and

moreover, that the Hilbert space models are related to those for the operator algebras in a

very natural way. Additionally, when the truth function for any model of an operator algebra

is restricted to the sub-algebra of projection operators, we show that we recover exactly the

truth function for the natural class of models for the axiomatization of orthomodular lattices

discussed in Section 3.4.
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3.2 Quantum Arithmetic

In this section, we briefly consider quantum arithmetic — much more will be said in Chap-

ter 5 regarding a particular quantum arithmetic motivated by the quantum set theory which

will be developed in Chapter 4. Here, we begin by discussing the result that for an M-system

associated with the successor fragment of Peano arithmetic (for a particular presentation of the

axioms), there exist no non-standard models — i.e. such an M-system is inherently classical. It

follows from this that there do not exist any non-standard models for the full Peano arithmetic

(built upon these successor fragment axioms) since any model for the full Peano arithmetic is

a model for the successor fragment when restricted appropriately. We present an alternative

formulation of the successor theory axioms which is equivalent to the original (discussed below)

when the underlying logic is classical (11).1 For this alternative presentation of the axioms, a

class of non-standard models will be provided in Section 5.3, thereby demonstrating the split-

ting phenomenon discussed previously.

We begin with an M-system (LSF ,ASF ) associated with the successor fragment of Peano

arithmetic. We define the language ⟨LSF , α⟩, where LPSF ∶= {≈} and LFSF ∶= {0,′ }, with α(≈) ∶= 2,

α(0) ∶= 0 and α(′) ∶= 1; and where ‘≈’ is interpreted as the predicate “equality,” ‘0’ is interpreted

1We note that although the two sets of successor fragment axioms which are discussed in this section
are equivalent in the presence of classical logic, when the arithmetic axioms due to Peano are appended
to each of the distinct sets of the successor fragment axioms, the resulting arithmetics are not equivalent
(even in the presence of classical logic). True Peano arithmetic refers to the standard arithmetic axioms
appended to the successor fragment axioms (S1) — (S4) below. The alternative axiomatization of the
successor fragment ultimately leads to a weaker arithmetic than Peano arithmetic.
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as the “zero element,” ‘′’ is interpreted as the “successor function.” By ASF we denote the set

of axioms (S1) — (S3) and the axiom schema (S4) below (where ψ(x) is any LSF -wff for any

x ∈ BV ).

(S1) (∀x)[∼ (x′ ≈ 0)]

(S2) (∀x)(∀y)[(x ≈ y)→ (x′ ≈ y′)]

(S3) (∀x)(∀y)[(x′ ≈ y′)→ (x ≈ y)]

(S4) (ψ(0) ∧ (∀x)[ψ(x)→ ψ(x′)])→ (∀y)ψ(y)

Note that axiom schema (S2) is just (Sub) for the unary operation ‘′’.

Theorem 7. Any two LSF -wffs are compatible.

This result1 was first noticed and proved by Dunn (9). It follows immediately from this

theorem (as noted in (9)) that, for any LSF -wff A, we have that ⊢ A if and only if A is classi-

cally derivable in Peano arithmetic. In addition to the axioms (Q1) — (Q6) and the quantum

inference rules (R1) — (R5), the proof of this theorem requires (all of) the axioms (S1) — (S4)

along with axioms (E1) and (E2); in particular, we note that axiom (E3) does not play a role

in the proof.

Now, using the same language LSF , an alternative set of axioms for the successor theory of

Peano arithmetic consists of (S1) — (S3) above, along with

1Dunn actually considers a Gentzen style deduction system which has a slightly different syntax where
he treats ⊢ as part of the object language. His proof can be translated into our approach by treating
the relation A ⊢ B as the L-wff A→ B.
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(S⋆) (∀x)[∼ (x ≈ 0)→ [(∃y)[∼ (x ≈ y′)]]

and

(S∞) (∀x)[∼ (x ≈ x′)], (∀x)[∼ (x ≈ x′′)], . . .

where (S∞) denotes an infinite sequence of axioms. We will use ÃSF to refer to the set of

axioms consisting of (S1) — (S3), (S⋆), and (S∞).

As mentioned above, we will describe a class of non-standard models for ÃSF in Chapter

5, the existence of which demonstrates the splitting phenomenon for equivalent classical pre-

sentations of the M-systems. That is, when the underlying logic is classical, ASF and ÃSF

are equivalent formulations (11) of the axioms for the successor fragment of Peano arithmetic

since any theorem of ASF is also a theorem of ÃSF , and vice versa; however, when Q(LSF ) is

the underlying logic, ASF and ÃSF are no longer equivalent presentations of the axioms since

Theorem 7 holds for ASF , while there does not exist such a theorem for ÃSF (as evidenced by

the class of non-standard models which will be discussed in Chapter 5).

3.3 Quantum Algebras

As discussed in the previous section, Dunn’s Theorem (i.e. Theorem 7) states that (for

certain presentations of the axioms), the theorems of arithmetic under the quantum logic Q(L)

are exactly the same as those under classical logic. In this section, we prove a similar theorem

for M-systems associated with any abstract algebra which satisfies both strong transitivity (E3′)

and substitution (Sub), as well as possesses some cancellative ‘binary operation’; we assume
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that the language L associated with these M-systems is such that LP = {≈} — i.e. we assume

that L is an equational language. We then demonstrate both a non-standard (conservative)

model of an M-system associated with groups — which has the cancellative property and which

does not satisfy strong transitivity (E3′) — as well as a non-standard (conservative) model

of an M-system associated with monoids — which satisfies strong transitivity (E3′), but lacks

cancellativity — showing that both the cancellation property and strong transitivity (E3′) are

indeed necessary for the aforementioned theorem. Finally, we demonstrate an example of a

non-conservative model of an M-system associated with monoids.

3.3.1 Some Abstract Algebras with only Standard Models

Fix an M-system (L,A). We first define what we mean for an L-term to be cancellative.1

Define the following two L-wff schema (for t(x, y) an L-term)

(LC) t(x, y) ≈ t(x, z)→ y ≈ z

(RC) t(x, z) ≈ t(y, z)→ x ≈ y

If, for a given t(x, y), both (LC) and (RC) are derivable from A, we say that t is cancellative

in (L,A).

We now prove some simple lemmas.

1Although we only consider terms with two free variables for simplicity, we could easily generalize
our notion of cancellativity to terms with an arbitrary number of free variables.
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Lemma 3.1. Let (L,A) be an M-system which satisfies substitution (Sub) for every f ∈ LF .

Then, for any L-term t(y1, . . . , yn),

A ⊢ (y1 ≈ z1) ∧⋯ ∧ (yn ≈ zn)→ t(y1, . . . , yn) ≈ t(z1, . . . , zn). (3.1)

Proof. Since every operation in L satisfies (Sub), the statement is established by a simple

induction on the construction of L-terms.

If equation 3.1 holds for an M-system (L,A) and an L-term t(y1, . . . , yn), we will say that

t satisfies substitution in (L,A).

Lemma 3.2. Let L be any language and let A and B both be L-wffs. Then ⊢ A C̃ B if and

only if ⊢ A ∧ (∼ A ∨B))→ B.

Proof. First we assume A C̃ B. Then A → [∼ (∼ A ∨B) ∨ (A ∧B] by (Q3), (R1), replacement

(i.e. Theorem 1), and Lemma 2.4. Then

[A ∧ (∼ A ∨B)]→ [(∼ A ∨B) ∧ (∼ (∼ A ∨B) ∨ (A ∧B))]

by (Q3) and (R3). Since A ∧B → B by (Q3), and B → (∼ A ∨B) ∧B by (Q3), (R2), (Q1) and

(R3), we have that

[A ∧ (∼ A ∨B)]→ [(∼ A ∨B) ∧ (∼ A ∨B)→ B)]

by (R1) and Lemma 2.5. Then, (R1) and (Q4) then give the desired conclusion.
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Next, assume A ∧ (∼ A ∨B))→ B. By (Q4), (R2), and (Q2) we have

A→ ((A∧ ∼ B) ∨ [∼ (A∧ ∼ B) ∧ (A ∨ (A∧ ∼ B))]),

and then by (Q3), (Q2), and (R1) this gives A→ (A∧ ∼ B) ∨ [(∼ A ∨B) ∧A]. Our assumption

also gives A ∧ (∼ A ∨B)→ (A ∧B) by (Q3) and (R3), so that by (R1), (Q3) and (R3) we have

A→ (A∧ ∼ B) ∨ (A ∧B), from which it follows (since the other implication is trivial and holds

in any orthomodular lattice) that A C̃ B.

As stated in the beginning of this section, the proof of our main theorem requires (E3′).

The following lemma is the reason.

Lemma 3.3. Let L be an equational language, let (L,A) be a M-system such that A ⊢(E3′),

and let t, u, v be L-terms. Then

A ⊢ (t ≈ u) C̃ (t ≈ v).

Proof. Let A ∶= (t ≈ u), B ∶= (t ≈ v) and C ∶= (u ≈ v). From (E3′), and (Q3), along with (E2)

and replacement (Theorem 1), we have (B ∧C)→ (B → A). Then by (R1) and Lemma 2.5, we

have (B → C) → (B → A). Also by (E3′) and (E2), we have A → (B → C), and hence by (R1)

we have A → (B → A). Then by (R2) and (Q2) we have B ∧ (∼ B∨ ∼ A) →∼ A, which gives

B C̃ ∼A by Lemma 3.2. Recalling the discussion of Section 2.4, this means that A C̃ B.
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Lemma 3.4. Let L be an equational language, and let (L,A) be a M-system such that

A ⊢ (t ≈ u) C̃ (v ≈ w)

for all L-terms t, u, v,w. Then the axiom schema (CL) is derivable from A.

Proof. The hypothesis of this lemma is that all atomic L-wffs are compatible. The proof

of the conclusion is an induction on the formation of L-terms. The ‘∼’ and ‘∧’ steps are

essentially a transcription of similar statements for orthomodular lattices (see Kalmbach (21)).

The induction on the quantified statements appears in Dunn (9).

We are now ready to prove our main theorems. Note that the following two theorems,

although similar, are for different types of M-systems — i.e. there exists no M-system to

which both Theorem 8 and Theorem 9 are both applicable. In particular, Theorem 8 applies

to M-systems which satisfy strong transitivity and have some cancellative term which satisfies

substitution, while Theorem 9 is relevant for M-systems which satisfy strong transitivity and

has a particular type of constant term.

Theorem 8. Let L be an equational language, let (L,A) be a M-system such that A ⊢ (E3′),

and also let there exist an L-term t(x, y) which is cancellative and which satisfies (Sub) for

every f ∈ LF for the predicate ≈. Then (CL) is derivable from A — i.e. such an M-system is

inherently classical.
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Proof. By Lemma 3.4, it suffices to prove that any two atomic L-wffs u1 ≈ v1 and u2 ≈ v2 are

compatible. Then by Lemma 3.1 and since t(x, y) is cancellative, it follows that

u1 ≈ v1 ↔ t(u1, v2) ≈ t(v1, v2) and u2 ≈ v2 ↔ t(v1, u2) ≈ t(v1, v2).

Further using modus ponens (R5) we have that u1 ≈ v1 is logically equivalent to t(u1, v2) ≈

t(v1, v2) and u2 ≈ v2 is logically equivalent to t(v1, u2) ≈ t(v1, v2) (with respect to A).

Then, by Lemma 3.3, we have that

[t(u1, v2) ≈ t(v1, v2)] C̃ [t(v1, u2) ≈ t(v1, v2)].

Using replacement (i.e. Theorem 1), this gives that (u1 ≈ v1) C̃ (u2 ≈ v2). Since this holds for

arbitrary L-terms u1, u2, v1, v2, the conclusion is established.

Theorem 9. Let L be an equational language, let (L,A) be a M-system such that A ⊢ (E3′),

and also let there exist an L-term u with no free variables and an L-term t(x, y) such that

A ⊢ x ≈ y → t(x, y) ≈ u and A ⊢ t(x, y) ≈ u→ x ≈ y.

Then (CL) is derivable from A — i.e. such an M-system is inherently classical.
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Proof. As in the previous theorem, it suffices to show that any two atomic L-wffs are compatible

with respect to A. Let u1 ≈ v1 and u2 ≈ v2 be arbitrary atomic L-wffs. By Lemma 3.3,

t(u1, v1) ≈ u C̃ t(u2, v2) ≈ u.

But by assumption and (R5), we have that u1 ≈ v1 is logically equivalent to t(u1, v1) ≈ u and

u2 ≈ v2 is logically equivalent to t(u2, v2) ≈ u. Hence replacement (i.e. Theorem 1) yields that

u1 ≈ v1 C̃ u2 ≈ v2.

And so, we see by Theorem 8 above, that any M-system (L,A) associated with abstract

algebras (whose language L is equational) which satisfies both strong transitivity (E3′) and

substitution, as well as possesses some cancellative ‘binary operation’ is inherently classical,

and so, by definition, will not admit any non-standard models. Similarly, by Theorem 9 above,

any M-system (L,A) associated with abstract algebras (whose language L is equational) which

satisfies strong transitivity (E3′), as well as possesses some L-term with no free variables is

inherently classical.

3.3.2 A Non-Standard Conservative Model of an M-system Associated with Groups

We define the language ⟨LG, α⟩ such that LPG ∶= {≈} and LFG ∶= {e, ⋅, −1}, with α(≈) ∶= 2,

α(e) ∶= 0, α(−1) ∶= 1, and α(⋅) ∶= 2; and where ‘≈’ is interpreted as the predicate “equality,” ‘e’ is
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interpreted as the “identity element,” ‘−1’ is interpreted as the “inverse,” and ‘⋅’ is interpreted

as the “binary operation” for a quantum group. Further, let AG be the following set of axioms

(with x, y, z ∈ BV ).

(G1) (∀x)(∀y)(∀z)[(x ⋅ y) ⋅ z ≈ x ⋅ (y ⋅ z)]

(G2) (∀x)[e ⋅ x ≈ x] and (∀x)[x ⋅ e ≈ x]

(G3) (∀x)[x ⋅ x−1 ≈ e] and (∀x)[x−1 ⋅ x ≈ e]

(G4) (∀x)(∀y)[x ≈ y → x−1 ≈ y−1]

(G5) (∀x)(∀y)(∀z)[x ≈ y → x ⋅ z ≈ y ⋅ z] and (∀x)(∀y)(∀z)[x ≈ y → z ⋅ x ≈ z ⋅ y]

Note that (G4) and (G5) are just (Sub) for ‘−1’ and ‘⋅’, respectively.

We define the LG-structure K̂ = (Z2 ×Z2,MO3,{⟦≈⟧},{00,+,−}), where the operations are

given their usual interpretation in Z2 ×Z2, and we write ij as shorthand for (i, j). Then ⟦≈⟧ is

defined to be the unique symmetric truth function which satisfies

⟦00 ≈ 01⟧ = ⟦10 ≈ 11⟧ ∶= v1, ⟦00 ≈ 10⟧ = ⟦01 ≈ 11⟧ ∶= v2, ⟦00 ≈ 11⟧ = ⟦01 ≈ 10⟧ ∶= v3.

Now, since the underlying set for K̂ is the (classical) group Z2 × Z2 and since we give the

operations their usual interpretation in Z2 × Z2, we have that the LG-structure K̂ ′ = (Z2 ×

Z2,2,{⟦≈⟧},{00,+,−}) is a standard model for the M-system (LG,AG); thus, by Theorem 6,

we have that (G1) — (G3) hold in K̂. It remains to verify transitivity (E3) along with (G4)

and (G5) in order to show that the LG-structure K̂ is a model for the M-system (LG,AG).

Given the above definition for ⟦≈⟧, one can easily verify by brute force computation that these
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schema hold in K̂, so that K̂ is, indeed, a model for AG, which is clearly non-standard and

conservative.

Given Theorem 8, it is clear that (E3′) cannot hold in this model. To see that it fails,

consider the evaluated LG-wff

⟦(01 ≈ 10)→ [(10 ≈ 11)→ (01 ≈ 11)]⟧.

We see that ⟦01 ≈ 10⟧ = v3, while

⟦(10 ≈ 11)→ (01 ≈ 11)⟧ = ¬v1 ∨ (v1 ∧ v2) = ¬v1,

and v3 /≤ ¬v1 in MO3, so v3 → ¬v1 ≠ 1, which shows that (E3′) does not, in fact, hold.

As such, we see that the existence of the non-standard conservative model K̂ of the M-system

(LG,AG) (whose terms are cancellative — i.e. AG ⊢ (LC) and AG ⊢ (RC)) demonstrates that

strong transitivity (E3′) is necessary for Theorem 8 to hold.

3.3.3 A Non-Standard Conservative Model of an M-system Associated with Monoids

We define the language ⟨LMon, α⟩ such that LPMon ∶= {≈} and LFMon ∶= {e, ⋅}, with α(≈) ∶= 2,

α(e) ∶= 0 and α(⋅) ∶= 2; and where ‘≈’ is interpreted as the predicate “equality,” ‘e’ is interpreted

as the “identity element,” and ‘⋅’ is interpreted as the “binary operation” for a quantum monoid.

Further, let AMon be the following set of axioms (with x, y, z ∈ BV ).

(M1) (∀x)(∀y)(∀z)[(x ⋅ y) ⋅ z ≈ x ⋅ (y ⋅ z)]
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(M2) (∀x)[e ⋅ x ≈ x] and (∀x)[x ⋅ e ≈ x]

(M3) (∀x)(∀y)(∀z)[x ≈ y → x ⋅ z ≈ y ⋅ z] and (∀x)(∀y)(∀z)[x ≈ y → z ⋅ x ≈ z ⋅ y]

Note that these are the axioms AG from the previous section which do not refer to ‘−1’ (except

that here these axioms consist of LMon-wffs instead of LG-wffs).

We now define what will turn out to be a class of (conservative) models for the M-system

(LMon,AMon). Let n ∈ {1,2, . . .} and define n̄ ∶= {1,2, . . . , n}. Then for n ≥ 3, define the

LMon-structure

n̂ ∶= (n̄,MO2,{⟦≈⟧},{1,∗}),

where we let ⟦≈⟧ be defined by (for all i, j ∈ n̄)

⟦i ≈ j⟧ ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1 if {i, j} = {1,2}

v2 if {i, j} = {n,n − 1}

δij otherwise,

where δij = 1 if i = j and 0 otherwise. Clearly, ⟦≈⟧ is a symmetric truth function by construction.

The “identity operation” e is defined in the obvious way, and ∗ ∶ n̄2 → n̄ is defined by i ∗ j ∶=

max(i, j). It is straightforward to verify that n̂ is indeed a model for AMon. Also, (E3′)

corresponds to the inequality

⟦a ≈ b⟧ ≤ ¬⟦a ≈ c⟧ ∨ (⟦a ≈ c⟧ ∧ ⟦b ≈ c⟧) (3.2)
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holding in MO2 for all a, b, c ∈ n̄, and the reader will find it straightforward to check that for

n ≥ 4, the inequality in (equation 3.2) is indeed satisfied, so that (E3′) holds in n̂ for all n ≥ 4.

This class of examples demonstrates that without cancellativity, one may find non-standard

conservative models which satisfy (E3′), so that (E3′) alone cannot guarantee that an M-system

is inherently classical — i.e. cancellativity is necessary for Theorem 8 to hold.

3.3.4 A Non-Conservative Model of an M-system Associated with Monoids

We define the language ⟨L̃Mon, α⟩ such that L̃PMon ∶= {≈} and L̃FMon ∶= {⋅}, with α(≈) ∶= 2

and α(⋅) ∶= 2; and where, as for LMon, ‘≈’ is interpreted as the predicate “equality” and ‘⋅’

is interpreted as the “binary operation” for a quantum monoid. Then define a set ÃMon of

alternate axioms for monoids — i.e. let ÃMon be the following axioms (with x, y, z ∈ BV ).

(M2′) (∃x)((∀y)[(x ⋅ y ≈ y) ∧ (y ⋅ x ≈ y)])

along with axioms (M1) and (M3) from the previous section (with these as L̃Mon-wffs instead

of LMon-wffs). In this presentation of the monoid axioms, we have incorporated the identity

element by a ‘there exists’ statement, rather than treating it as a constant (0-ary) operation.

In the presence of the schema (CL), these two presentations of axiom systems for monoids have

exactly the same models; however without this schema we will exhibit a model of (L̃Mon, ÃMon)

that has an underlying set with a binary operation which can never be a model of (LMon,AMon),

and as such, this model is non-conservative — that is, the M-system (L̃Mon, ÃMon) admits

models which have interpretations of the binary operation which are not allowed in any standard

model.



75

We now construct such a non-conservative model of (L̃Mon, ÃMon). Let A = {a, b, c} and

consider the L̃Mon-structure Â = (A,MO2,{⟦≈⟧},{⋅}), where ⟦≈⟧ is the unique symmetric truth

function from A to MO2 satisfying ⟦a ≈ b⟧ ∶= v1, ⟦a ≈ c⟧ ∶= v2, and ⟦b ≈ c⟧ ∶= 0. The operation

⋅ ∶ A2 → A is given by the following multiplication table

⋅ a b c

a a a a

b a b a

c a a c

By inspection, one can see that there is no (classical) identity element, which immediately

shows that this L̃Mon-structure cannot possibly be a conservative model. Since (A, ⋅) forms

a (classical) semi-group, Theorem 6 gives us immediately that (M1) holds in Â. That the

remainder of the axioms in ÃMon do indeed hold in Â is straightforward, but mildly tedious,

to check.

3.4 Quantum Lattice Theory

In this section, we consider quantum lattice theory. We begin by discussing a particular

class of non-standard models for M-systems associated with orthomodular lattices, and we note

some interesting results with regard to substitution (Sub). We then go on to show that for a

class of M-systems associated with Boolean algebras, if strong transitivity (E3′) is satisfied, then

such M-systems are inherently classical. We also provide examples of M-systems for Boolean

algebras which do admit non-standard models; in such cases, only the (required) axiom (E3) is
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satisfied.

3.4.1 Quantum Orthomodular Lattices

We begin by discussing an M-system (LOML,AOML) associated with orthomodular lattices.

We define the language ⟨LOML, α⟩ such that LPOML ∶= {≈} and LFOML ∶= {0,¬,∧}, with α(≈) ∶= 2,

α(0) ∶= 0, α(¬) ∶= 1, and α(∧) ∶= 2; and where ‘≈’ is interpreted as the predicate “equality,” ‘0’ is

interpreted as the “bottom element,” ‘¬’ is interpreted as the “negation,” and ‘∧’ is interpreted

as the “meet” or GLB in the models (or quantum orthomodular lattices). Further, let AOML

denote the set of axioms (OL1) — (OL6), and (OM) below (with x, y, z ∈ BV ).

(OL1) (∀x)(∀y)[x ∧ y ≈ y ∧ x]

(OL2) (∀x)(∀y)(∀z)[(x ∧ y) ∧ z ≈ x ∧ (y ∧ z)]

(OL3) (∀x)[x ≈ ¬¬x]

(OL4) (∀x)(∀y)[x ∨ y ≈ ¬(¬x ∧ ¬y)]

(OL5) (∀x)(∀y)[x ≈ x ∧ (x ∨ y)]

(OL6) (∀x)[x ∧ 0 ≈ 0]

(OM) (∀x)(∀y)[x ∧ y ≈ x ∧ (¬x ∨ (x ∧ y))]

Although we still refer to (LOML,AOML) as an M-system associated with orthomodular

lattices, we note that AOML is not actually equivalent (in the presence of classical logic) to any

known axiomatization for orthomodular lattices. This lack of equivalence is due entirely to the

fact that axioms enforcing substitution (Sub) to hold for ‘¬’ and ‘∧’ have not been included in
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AOML. The reason for this omission will become apparent after we see the behavior of (Sub)

in the natural class of models discussed below.

We now describe a class of non-standard (conservative) models for the M-system (LOML,AOML).

Let L be a complete orthomodular lattice, and let Â ∶= (L,L,{⟦≈⟧},{0,¬,∧}) be an LOML-

structure in which ‘0’, ‘¬’, and ‘∧’ are given their standard interpretations. Notice that for

these LOML-structures, the set of truth values is the same as the underlying set for Â. Also,

let ⟦≈⟧ be the negation of the symmetric difference in L — i.e.

⟦a ≈ b⟧ ∶= (a ∧ b) ∨ (¬a ∧ ¬b) = (a→ b) ∧ (b→ a),

where “→” is the Sasaki hook — i.e. a→ b ∶= ¬a ∨ (a ∧ b), where a ∨ b ∶= ¬(¬a ∧ ¬b).

Since we can immediately see that ⟦≈⟧ is indeed a symmetric truth function, we have that

axioms (E1) and (E2) are satisfied; additionally, from (8), we know that the negation of the

symmetric difference in an orthomodular lattice satisfies the inequality equation 2.3. Thus, since

L is an orthomodular lattice, we have that (E3) is satisfied, and hence, the LOML-structure Â

defined above is a model for (LOML,AOML).

However, this class of (conservative) models for (LOML,AOML) does not, in general, satisfy

(E3′). To see that this is so, consider the orthomodular lattice defined by two Boolean cubes

with a common atom and the same top and bottom elements — that is, let the lattice generated

by α,β, γ form a Boolean cube, and let γ, δ, ε form another Boolean cube, where the top elements

of each Boolean cube are identified with one another, and the bottom elements of each Boolean
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cube are also identified with one another. Then, using the definition of ⟦≈⟧ given above, we

have that ⟦α ≈ γ⟧ = β, ⟦γ ≈ ε⟧ = δ and ⟦α ≈ ε⟧ = γ, so that

⟦α ≈ γ⟧ �≤ ⟦γ ≈ ε⟧→ ⟦α ≈ ε⟧,

which shows that strong transitivity (E3′) is not satisfied. Thus, there exist orthomodular

lattices such that the LOML-structure Â defined above is a model for (LOML,AOML), but

(E3′) is not satisfied.

Now, we also note that a model Â (in the class of models for (LOML,AOML) described

above) has substitution (Sub) for the operation ‘¬’ — i.e. we have that

⟦(∀x)(∀y)(x ≈ y → ¬x ≈ ¬y)⟧ = 1

holds in all models. To see that this is so, note that (for any a, b in the underlying set L for Â)

⟦¬a ≈ ¬b⟧ = (¬a ∧ ¬b) ∨ (¬a ∧ ¬b) = ⟦a ≈ b⟧,

where we have used the fact that the law of double negation (i.e. ¬¬a = a) holds in any ortho-

modular lattice, as well as the definition of ‘∨’ in terms of ‘¬,’ and ‘∧’ and the fact that ‘∧’ is

commutative in any orthomodular lattice.
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However, Â does not have substitution (Sub) for the operation ‘∧’ — i.e. in general

⟦a ≈ b⟧ �≤ ⟦(a ∧ c) ≈ (b ∧ c)⟧.

To see that this is so, consider the example from above (which was used to illustrate that (E3′)

does not hold generally) — in particular, note that

⟦¬α ≈ 1⟧ = ¬α and ⟦¬α ∧ ¬ε ≈ 1 ∧ ¬ε⟧ = ⟦γ ≈ ¬ε⟧ = ¬δ.

And since ¬α�≤¬δ, we see that substitution for ‘∧’ does not hold in general. Note, however, that

if a C̃ b, a C̃ c and b C̃ c, then substitution (Sub) for ‘∧’ does hold generally.

The lack of substitution (Sub) for the operation ‘∧’ with respect to “equality” ≈ in this

extremely natural class of models suggests that this is, perhaps, natural behavior for “quantum

equality” — this is to say that the lack of substitution (Sub) should be seen not as a failure

of a classical property that should hold in a model, but rather as a manifestation of the true

behavior1 of “equality” in mathematics based on quantum logic. Thus, substitution (Sub) for

‘∧’ with respect to “equality” ≈ (and even the property of strong transitivity (E3′) for “equal-

ity” ≈) — as intuitive as they are — are very classical properties, and are not something that

1Although it is not impossible to find (non-standard) models in which substitution and/or strong
transitivity of equality hold, we expect that such models will be few and far between — i.e. “most”
non-standard models will not satisfy these properties. Moreover, these properties do not, in general,
seem to hold in the most natural (from the point of view of quantum theory) classes of models.
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quantum mathematics seems to want in general.1

3.4.2 Quantum Boolean Algebras

In what follows, we discuss an M-system (LBA,ABA) associated with Boolean algebras.

We define the language ⟨LBA, α⟩ such that LPBA ∶= {≈} and LFBA ∶= {0,¬,∧} , with α(≈) ∶= 2,

α(0) ∶= 0, α(¬) ∶= 1, and α(∧) ∶= 2, which we note is the same language as LOML, and where

(as noted for ⟨LOML, α⟩) ‘≈’ is interpreted as the predicate “equality,” ‘0’ is interpreted as the

“bottom element,” ‘¬’ is interpreted as the “negation,” and ‘∧’ is interpreted as the “meet” or

GLB in the model (or quantum Boolean algebra). Further, let ABA denote the set of axioms

(OL1) — (OL6) from above, along with (BA), (BS1) and (BS2) below (with x, y, z ∈ BV ).

(BA) (∀x)(∀y)[x ≈ (x ∧ y) ∨ (x ∧ ¬y)]

(BS1) (∀x)(∀y)[x ≈ y → ¬x ≈ ¬y]

(BS2) (∀x)(∀y)(∀z)[x ≈ y → (x ∧ z) ≈ (y ∧ z)]

Note that (BS1) and (BS2) are just substitution (Sub) for ‘¬’ and ‘∧’, respectively.2

1Of course, it is possible that a reduced form of (Sub) holds in these models.

2Although ABA is not the usual presentation of the axioms for Boolean algebras, ABA is equivalent
to the standard axiomatization of Boolean algebras in the presence of classical logic.
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Now, we want to show that in the presence of (E3′), the M-system (LBA,ABA) is inherently

classical, but that if (E3′) is not satisfied, then the M-system (LBA,ABA) does admit non-

standard models.

Theorem 10. There exist no non-standard models for (LBA,ABA ∪ {(E3′)}).

Proof. In order to show this, we make use of the well-known fact that any Boolean algebra is

isomorphic to some commutative ring with identity, all of whose elements are idempotent. Let

the term with two free variables x + y be defined by

x + y ∶= (x ∧ ¬y) ∨ (¬x ∧ y), (3.3)

and note that such a term is cancellative. Also note that by Lemma 3.1, the M-system

(LBA,ABA) has substitution (Sub) for the terms x + y (i.e. such terms satisfy equation 3.1)

since the axiom schema (BS1) and (BS2) give us substitution (Sub) for ¬ and ∧, respectively.

And so, if we impose strong transitivity of equality (E3′), then by Theorem 8, we have that

there exist no non-standard models for Boolean algebras even when the underlying logic is

Q(LBA).

However, if (E3′) is not satisfied and only the (required) transitivity of equality (E3) is

satisfied, then there do exist non-standard models. In order to see this, consider the following

LBA-structure Â ∶= (A,L,{⟦≈⟧},{0,∧,¬}), where ‘0’, ‘∧′, and ‘¬’ are given their usual inter-

pretations, A ∶= {1,0, a,¬a} is the free Boolean algebra on one generator (i.e. the Boolean

diamond), and L is MO2 ∶= {1,0, v1, v2,¬v1,¬v2}. Further, let ⟦≈⟧ be defined as follows — take
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⟦i ≈ i⟧ ∶= 1 for all i ∈ A, take ⟦i ≈ j⟧ = ⟦j ≈ i⟧ for all i, j ∈ A, and take ⟦i ≈ ¬i⟧ ∶= 0 for all i ∈ A;

also let ⟦a ≈ 0⟧ = ⟦¬a ≈ 1⟧ ∶= v1 and ⟦a ≈ 1⟧ = ⟦¬a ≈ 0⟧ ∶= v2.

We see immediately that ⟦≈⟧ is indeed a symmetric truth function; notice also that by The-

orem 6, Â will automatically satisfy the axioms (OL1) — (OL6) and (BA) since the underlying

set A for Â is a (classical) Boolean algebra (and since we give each f ∈ LFBA its usual inter-

pretation). Additionally, it is easy to verify (by simply checking all cases) that axiom (E3) is

satisfied; similarly, it is straightforward to check that axioms (BS1) and (BS2) are also satisfied.

As such, we have that the LBA-structure Â ∶= (A,L,{⟦≈⟧},{0,∧,¬}) is indeed a non-standard

conservative model for the M-system (LBA,ABA).

3.5 Quantum Linear Algebra

It is fitting that we finish our examination of mathematics with quantum logic by focusing

on the area of mathematics responsible for the inception of quantum logic (2). In this section,

we examine M-systems associated with Hilbert spaces as well as M-systems associated with

their operator algebras.1 For M-systems associated with both Hilbert spaces and operator alge-

bras, we will see that a natural class of conservative models present themselves. Moreover, the

Hilbert space models are related to those of operator algebras in a very natural way. For the

case of Hilbert spaces, these natural models satisfy substitution for all their operations. This is

1In order to keep the discussion simple, we assume that everything in sight is topologically well-
behaved. We note that we have not yet considered the topological axioms for the M-systems associated
with either Hilbert spaces or their operator algebras. The discussion here is focused on the algebraic
properties (which, of course, follow from the algebraic axioms), and as such we are actually just consid-
ering M-systems for axiomatizations of vector spaces and linear algebra. However, we still refer to the
models for these sets of axioms as Hilbert spaces and operator algebras, respectively.
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not the case, however, for the operation of multiplication in the operator algebra models. Fur-

thermore, we show that the operator algebra models yield precisely the symmetric difference

models discussed above (see Section 3.4) when they are restricted to the lattice of projection

operators. Finally, we discuss the possibility of modifying the von Neumann equation within

the framework of quantum linear algebra to possibly allow for classes of quantum evolutions

beyond what is allowed in standard quantum mechanics.

We note that we will only be considering conservative models in this section, and as such,

we will be considerably more informal in our discussion — conservativity allows us to dispense

with much of the technicality of the model theory. For M-systems associated with both Hilbert

spaces and their operator algebras, we allow any choice of axioms such that (conservativity

of the models along with) Theorem 6 guarantees they are satisfied. Additionally, we take the

truth value algebra to be the lattice of closed linear subspaces of H (which we denote by LH),

and we essentially think of LH (along with a map which assigns, to each atomic sentence, some

element of LH) as the model.

3.5.1 Hilbert Spaces

For concreteness, we take the language and axioms for vector spaces as in (23), which we

will refer to as LV S and AV S , respectively. (Note that implicitly the language LV S is such that

LPV S = {≈}.) As mentioned above, the specific choice of axioms is not relevant here (since we

will only consider conservative models), provided that we choose our axioms such that Theorem

6 guarantees they are satisfied. We note that we will work over the field C for concreteness.
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The non-standard (conservative) models we construct below will be based on (separable)

Hilbert spaces H. We will use the Dirac bra-ket notation for the inner product in H, and for

any A ⊆H, we define

A� ∶= { ∣ψ⟩ ∈H ∣ ⟨ψ∣φ⟩ = 0 for all ∣φ⟩ ∈ A }.

That is, A� ⊆H is the closed subspace consisting of vectors which are orthogonal to every vector

in the original set A ⊆ H. Additionally, for any ∣ψ⟩ ∈ H, we define ∣ψ⟩⊥ ∶= {∣ψ⟩}⊥, which is the

(closed) subspace of H which is orthogonal to the vector ∣ψ⟩ ∈H. Further, we let ∣0⟩ denote the

zero vector in H.

Consider the LV S-structure Ĥ ∶= (H, LH,{⟦≈⟧}, FH), where LH is the lattice1 of closed linear

subspaces ofH, and let each operation f ∈ LFV S have its usual interpretation; additionally, define

⟦≈⟧ ∶H2 → LH by

⟦∣ψ⟩ ≈ ∣φ⟩⟧ ∶= (∣ψ⟩ − ∣φ⟩)⊥.

We see immediately that ⟦≈⟧ is, by construction, a manifestly symmetric truth function, and as

such, both (E1) and (E2) are satisfied. Also, as mentioned above, we assume that the axioms

AV S are chosen such that Theorem 6 guarantees that they are satisfied. Hence, it remains to

examine (E3) to see that Ĥ is indeed a model for the M-system (LV S ,AV S). That is, we need

to show that

(∣ψ⟩ − ∣φ⟩)� ∩ (∣φ⟩ − ∣χ⟩)� ⊆ (∣ψ⟩ − ∣χ⟩)�. (3.4)

1This lattice is complete and orthomodular, and is actually a modular ortholattice in the finite
dimensional case. See Section A.4.3 for a description of the subspace/projection lattices of a Hilbert
space.
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To see that this is satisfied, suppose that ∣η⟩ ∈ (∣ψ⟩ − ∣φ⟩)� ∩ [∣φ⟩ − ∣χ⟩]�; this gives that ⟨η∣ψ⟩ −

⟨η∣φ⟩ = 0 and ⟨η∣φ⟩ − ⟨η∣χ⟩ = 0, from which it follows that ⟨η∣ψ⟩ = ⟨η∣χ⟩. However, this shows

that ∣η⟩ ∈ (∣ψ⟩ − ∣χ⟩)�, and since ∣η⟩ was generic, equation 3.4 holds.

Furthermore, it is easy to see that

⟦∣ψ⟩ ≈ ∣φ⟩⟧ = ⟦λ∣ψ⟩ ≈ λ∣φ⟩⟧ for all λ ∈ C,

as well as that

⟦∣ψ⟩ ≈ ∣φ⟩⟧ = ⟦(∣ψ⟩ + ∣χ⟩) ≈ (∣φ⟩ + ∣χ⟩)⟧ for all ∣χ⟩ ∈H.

As such, we have that both (LC) and (RC) hold for the binary operation ‘+’, as well as that

substitution is satisfied for vector addition and scalar multiplication. We note, however, that

(E3′) does not hold.

We conclude this section by noting that in the class of non-standard (conservative) models

Ĥ discussed above, the Schrödinger equation appears as a vector equation given by (where H

is the Hamiltonian operator, which we take to be bounded for simplicity, and we set h̵ = 1)

i
d

dt
∣ψ⟩ ≈H ∣ψ⟩. (3.5)

Taking equation 3.5 as an axiom of quantum theory, we necessarily have that ⟦i ddt ∣ψ(t)⟩ ≈

H ∣ψ(t)⟩⟧ = H (where H is the top element of LH); however, for any ∣χ⟩, ∣η⟩ ∈ H, we have

that ⟦∣χ⟩ ≈ ∣η⟩⟧ = H if and only if ∣χ⟩ and ∣η⟩ are actually the same vector (since ⟦≈⟧ is a
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truth function). From this, it is clear that in the class of models Ĥ described above, all usual

unitary quantum dynamics are retained, but equation 3.5 cannot allow for any new dynamics

(even though vector equations can, in general, be assigned truth values other than the standard

{0,1}).

3.5.2 Operator Algebras

There are a variety of languages and axioms for operator algebras (for example, those

of B∗-algebras, C∗-algebras, von Neumann algebras, etc.). As in the previous section, any

axiomatization for which Theorem 6 guarantees that all the axioms hold will suffice for our

purposes. Let AOA be one such axiomatization and LOA the corresponding equational language

(i.e. LPOA = {≈}).1

We use the bounded linear operators on any separable Hilbert space to construct a model

for the M-system (LOA,AOA). Again, for a separable Hilbert space H, let LH be the lattice of

closed linear subspaces of H, and let B(H) denote the set of bounded linear operators on H.

Also, let each operation f ∈ LFOA have its standard interpretation. Then two natural choices

giving symmetric truth functions ⟦≈⟧ ∶ B(H)2 → LH and ⟦≈⟧′ ∶ B(H)2 → LH are as follows:

(i) ⟦A ≈ B⟧ ∶= ker(A† −B†),

(ii) ⟦A ≈ B⟧′ ∶= ker(A −B),

1Although we will refer to (LOA,AOA) as an M-system associated with operator algebras, we note
that AOA is not actually equivalent (in the presence of classical logic) to any known axiomatization for
operator algebras, as standard axiomatizations include axioms enforcing substitution (Sub) to hold in
any model, and AOA does not have these axioms.
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where A† denotes the Hermitian conjugate of A. While ⟦≈⟧′ may seem to be the more natural

choice at first, it will be enlightening at this point to connect back to the models Ĥ discussed

in the previous section. Although either choice for a truth function yields an interesting class

of models, it turns out that it is actually ⟦≈⟧ above which is related to the truth function for

models of Hilbert spaces in a nice way, as we now show.

In standard (classical) mathematics, for A,B ∈ B(H), the equation A ≈ B simply means that

A∣ψ⟩ ≈ B∣ψ⟩ for all ∣ψ⟩ ∈ H. Now for a separable Hilbert space H, consider the non-standard

model Ĥ defined in the previous section. Then1

⟦(∀∣ψ⟩)(A∣ψ⟩ ≈ B∣ψ⟩)⟧ = ⋀
∣ψ⟩∈H

⟦A∣ψ⟩ ≈ B∣ψ⟩⟧ = ⋂
∣ψ⟩∈H

((A −B)∣ψ⟩)⊥

= {∣φ⟩ ∈H ∣ ⟨φ∣(A −B)∣ψ⟩ = 0 for all ∣ψ⟩ ∈H }

= {∣φ⟩ ∈H ∣ (A −B)†∣φ⟩ = 0 } = ker(A† −B†)

= ⟦A ≈ B⟧. (3.6)

Given the naturalness of ⟦≈⟧ with regards to our previous vector space models, we define

ÔH ∶= (B(H), LH,{⟦≈⟧}, FB(H)) to be the LOA-structures which, as it turns out, are indeed

models (i.e. quantum operator algebras).

1In this expression, we use the same notation for the truth function associated with models for distinct
M-systems — that is, for the expression, ⟦(∀∣ψ⟩)(A∣ψ⟩ ≈ B∣ψ⟩)⟧, we have that ⟦≈⟧ is the truth function
from the class of models Ĥ defined above in Section 3.5.1, while for the expression ⟦A ≈ B⟧, we have
that ⟦≈⟧ is the truth function (i) above from the class of models Ô below.
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Now the lattice of closed subspaces of H is isomorphic to the lattice of projection operators,

and so we can use ÔH to construct a model of LH in the following way. Define κ ∶ L2
H → LH

to be (for V,W ⊆ H both closed linear subspaces) κ(V,W ) ∶= ⟦PV ≈ PW ⟧, where PV , PW

are the projection operators onto V,W respectively. Then define the LOM -structure L̂H ∶=

(LH, LH,{κ},{{∣0⟩}, ⊥,∩}). As we will show below, this structure is precisely the symmetric

difference model of the previous section1 — this is clear for all aspects of L̂H except for the

truth function κ, which we now discuss.

For V,W ∈ LH with associated (Hermitian) projectors PV and PW , we have κ(V,W ) =

ker(PV − PW ). Now ∣ψ⟩ ∈ ker(PV − PW ) if and only if PV ∣ψ⟩ = PW ∣ψ⟩. First, assume ∣ψ⟩ ∈

(V ∩W ) ∨ (V ⊥ ∩W ⊥), so that ∣ψ⟩ = ∣φ⟩ + ∣χ⟩ with ∣ψ⟩ ∈ (V ∩W ) and ∣χ⟩ ∈ (V ⊥ ∩W ⊥). Then

PV ∣ψ⟩ = PV ∣φ⟩ + PV ∣χ⟩ = ∣φ⟩ = PW ∣φ⟩ + PW ∣χ⟩ = PW ∣ψ⟩, (3.7)

and so we have ⟦V ≈ W ⟧SD ⊆ κ(V,W ), where we let ⟦≈⟧SD denote the truth function in the

symmetric difference models discussed in Section 3.4.1 (in order to distinguish it from the truth

functions used in this section). Now consider ∣ψ⟩ ∈ κ(V,W ), so that PV ∣ψ⟩ = PW ∣ψ⟩ ∈ V ∩W .

1Recall that the symmetric difference models have a truth function defined by (letting ⟦≈⟧ used in
Section 3.4.1 now be denoted by ⟦≈⟧SD in order to distinguish it from the truth functions used in this
section)

⟦V ≈W ⟧SD = (V ∧W ) ∨ (V ⊥ ∧W ⊥),
where for subspaces, � denotes the negation and ‘P ∨Q’ is the closed linear span of P and Q.
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Then, for I the identity operator in B(H), since PV ⊥ = I − PV and PW ⊥ = I − PW , we have

PV ⊥ ∣ψ⟩ = PW ⊥ ∣ψ⟩ ∈ (V ⊥ ∩W ⊥) and

∣ψ⟩ = PV ∣ψ⟩ + PV ⊥ ∣ψ⟩ ∈ (V ∩W ) ∨ (V ⊥ ∩W ⊥), (3.8)

so ∣ψ⟩ ∈ ⟦V ≈ W ⟧SD. Hence, we have both inclusions, which gives that ⟦V ≈ W ⟧SD = κ(V,W )

for all V,W ∈ LH, showing that LOM -structure L̂H just described is indeed the symmetric dif-

ference model. We cannot help but believe that the natural and smooth interplay between the

symmetric difference models of Section 3.4.1, the Hilbert space model of the previous section,

and the operator algebra model of this section hints at a profound significance for these classes

of models with respect to quantum theory.

Now, in quantum theory, the usual way of expressing the time-evolution of quantum states

is via time-dependent density operators which satisfy the von Neumann equation d
dtρ = −i[H,ρ].

In the class of non-standard (conservative) models Ô discussed above, von Neumann equation

is given by

(vN) d
dtρ ≈ −i[H,ρ].

A similar argument to the one given above for the Schrödinger equation tells us that if (vN)

is taken as an axiom of quantum mechanics, we again have only the standard unitary dynamics

of quantum mechanics.
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Now suppose that we wanted to somehow generalize the von Neumann equation in the

framework of quantum logic to allow for more than the standard unitary evolutions as solutions.

For this we have a natural tool at our disposal, namely that of reducing the axiom (vN) in some

way. Define Bρ ∶= d
dtρ + i[H,ρ], where we note that since operator algebras satisfy (Sub) for

‘+’, the LOA-wffs Bρ ≈ 0 and d
dtρ ≈ −i[H,ρ] are logically equivalent. It seems fairly natural to

attempt a reduction utilizing c(Bρ ≈ 0,A) for some LOA-wff A — i.e. something like

(vN′) c(Bρ ≈ 0,A)→ Bρ.

There is no reason to suspect a priori, that for an appropriate choice of an LOA-wff A, we

have only standard unitary dynamics for all states ρ. The challenge is to come up with a

reduction which does indeed allow for additional dynamical evolutions, and we are currently

investigating such reductions, along with alternative possibilities for reductions of (vN) which

can, in principle, allow for certain types of additional dynamics in quantum theory. The ultimate

goal is to be able to unify ordinary time-evolution of closed quantum systems and measurement

evolutions, thereby resolving the infamous measurement problem of quantum theory.

3.6 Conclusion

In this chapter we have considered a wide variety of examples of M-systems based on the

quantum logic Q(L). In particular, examples of inherently classical M-systems have been

given, as have examples of conservative and non-conservative models. Additionally, we have

encountered extremely natural classes of models, as well as examined relationships between

some of them. Moreover, we have demonstrated that certain classical properties no longer hold
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in these natural models, and have begun to consider what these models are trying to suggest

to us about quantum theory.

In future work we would like to further explore consequences of the quantum logic Q(L) for

quantum theory — in particular, we would like to systematically examine (axiomatic) quantum

mechanics built on the relevant quantum mathematics. In addition, we would also like to

continue to examine the different properties and features of a variety of M-systems in the

presence of the quantum logic Q(L).



CHAPTER 4

QUANTUM SET THEORY

4.1 Introduction

As a branch of mathematics, axiomatic set theory is on very different footing than other

areas of mathematics. One reason for this is that set theoretic concepts are actually necessary

for precisely defining certain (mathematical) concepts. More strongly, axiomatic set theory,

along with first order classical logic, is capable of providing a foundation for all of modern

mathematics. Another aspect of axiomatic set theory which sets it apart from other areas of

mathematics is the model theory associated with it. One of the major goals of axiomatic set

theory is to precisely capture a particular intended model, which we often, in practice, actually

conflate with set theory itself.1

In what follows, we construct a quantum set theory — that is, an axiomatic set theory based

on the quantum logic Q(L) developed previously in Chapter 2 — which we hope will ultimately

lead to a foundation for quantum mathematics in a sense which parallels the foundational role of

classical set theory in classical mathematics. However, as quantum mathematics and quantum

set theory are both in their infancy, our immediate goals with regard to quantum set theory

are much less lofty — in particular, we put forth two modest goals which, we believe, are a

1This differs significantly from the general goals of an axiomatic theory, which are essentially to unify
a plethora of interesting examples (which in the axiomatic approach, become distinct models).

92
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respectable minimal criteria any attempt at quantum set theory should satisfy. First, recalling

that quantum logic is sub-classical (and therefore includes all of classical logic and mathematics

as a special case), we expect that quantum set theory must be a generalization of classical set

theory, and in particular, those models of our quantum set theory with the standard bivalent

truth values should reduce to models of classical set theory. Second, we expect that quantum

set theory should at least be powerful enough to develop a notion of a ‘natural number,’ as

well as a quantum arithmetic for these numbers, which we again expect to reduce to classical

arithmetic when the truth values are (the standard) {0,1}.

With regard to the quantum set theory described below, we note that, analogous to the

(historical) development of classical axiomatic set theory, our quantum set theory is motivated

by a seemingly natural class of models, and it is these intended models which we have in mind

as we set forth our axioms for quantum set theory. Additionally, we note that other attempts

at developing a quantum set theory have already been made — Gaisi Takeuti’s (22) work on

quantum set theory precedes ours by several decades. Takeuti’s construction of a quantum set

theory also has specific intended models which are a generalization of “Boolean-valued models”

for classical set theory. This leads to a much larger (and possibly richer) quantum set theory

relative to our construction.1 The resulting set theory is very difficult to work with, as has

been noted by Takeuti himself. The advantage that our quantum set theory has over Takeuti’s

1However, the semantics for Takeuti’s quantum set theory is very different from ours.
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is that it is not only more intuitive, but is more tractable as well, as the development below

will illustrate.

4.1.1 Overview

In Section 4.2 we discuss the classical ZFC axioms, and give a brief description of their

content; then in Section 4.2.1 we give a brief description of the classical universe of sets — i.e.

the intended model of the ZFC axioms. Following this, we develop and discuss the axioms for

our quantum set theory in Section 4.3, and show that in the presence of classical logic, they’re

equivalent to the standard ZFC axioms. We then go on, in Section 4.4 to describe candidates for

the “quantum universe” of sets (Section 4.4.1), as well as discuss the intended class of models

for our quantum set theory. Finally, in Section 4.4.2, we prove that the intended class of models

does satisfy the axioms of our quantum set theory — i.e. they are indeed models.

4.2 Classical Axiomatic Set Theory

In this section, we consider the Zermelo-Fraenkel axioms along with the axiom of choice

(or ZFC for short) for classical set theory,1 as well as give a brief qualitative description of

the axioms; for a more detailed discussion of the ZFC axioms for (classical) set theory, the

reader is referred to, e.g. Enderton (12). As in standard ZF set theory, we will have only two

primitive notions — namely that of a set and “membership.” In doing so, we have that the

1Although there exist other well-known axiomatizations of classical set theory — e.g. that of von
Neumann, Bernays and Gödel (or the NBG axiomatization) — we will not be concerned with these
alternative sets of axioms here.
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only members (or elements) of sets are sets, and as such, the development of the set theory is

relatively streamlined.

We note that we will not be concerned here with discussing or resolving any of the issues

related to the foundational role of classical set theory. Rather, we will simply accept classical

(axiomatic) set theory and the intended model of the classical universe of sets as a foundation

on which to build our quantum set theory.

This being said, we define the language Lset = LPset ∶= {∈}, where α(∈) ∶= 2 — that is, ‘∈’ is

a binary predicate which is interpreted as the “membership” relation. However, for notational

convenience, we introduce the following defined binary predicates — i.e.1

(x = y) ∶= (∀u)(u ∈ x↔ u ∈ y), (4.1)

and

x ⊆ y ∶= (∀u)(u ∈ x→ u ∈ y). (4.2)

Additionally, we define

(x ≠ y) ∶= ¬(x = y) and x ∉ y ∶= ¬(x ∈ y). (4.3)

1Note that here and in what follows, we move to a more standard notation, using ‘=’ to denote the
(defined) predicate “equality” in Lset instead of ‘≈’ as in the previous chapters.
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Now, since in what (immediately) follows we will be considering classical set theory, we note

that for any Lset-wff ψ(x), a statement of the form (∃x)(ψ(x)) holding in a model implies the

existence of some set A in the model such that ψ(A) holds — as such, a statement of the form

(∃x)(∀u)(u ∈ x↔ ψ(u))

which holds in a given model yields a set in that model whose elements are precisely those a’s

which satisfy ψ(a), and any two sets so defined will be equal by the definition of equality in

equation 4.1 above. Given this, and assuming the existence of some model of the ZFC axioms

presented below, we can define notation to refer to any sets whose existence is guaranteed in

any model by the axioms; for convenience, we now do so for certain sets.

Empty Set : We define ∅ (using ZFC3) to be the set satisfying (for any choice of set x)

(∀u)(u ∈ ∅↔ u ∈ x ∧ u ≠ u).

Pairs and Singletons: For any two sets x and y, we define {x, y} to be the set satisfying

(∀u)(u ∈ {x, y}↔ u = x ∨ u = y), and define {x} ∶= {x,x}. These exist by ZFC2 below.

Intersection: For any two sets x and y, we define (using ZFC3) x ∩ y to be the set satisfying

(∀u)(u ∈ x ∩ y↔ u ∈ x ∧ u ∈ y).

Union: For any set x, we define ⋃x to be the set which satisfies the statement

(∀u)(u ∈ ⋃x↔ (∃z)(u ∈ z ∧ z ∈ x)). This set exists by ZFC4 below. Then for any two

sets x and y we define x ∪ y ∶= ⋃{x, y}.
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Power Set : For any set x, we define (using ZFC5) P(x) to be the set satisfying

(∀u)(u ∈ P(x)↔ u ⊆ x).

Set Builder Notation: For any sets x and y and any Lset-wff ψ, we define {u ∈ x ∶ ψ(u, y)}

to be that set containing exactly those elements of u for which ψ(u, y) is true. This set

exists by ZFC3 below.

Using this notation, we now list the ZFC axioms for classical set theory.

ZFC1 Extensionality: (∀x)(∀y)[x = y → (∀z)(x ∈ z ↔ y ∈ z)].

ZFC2 Pairing: (∀x)(∀y)(∃z)(∀u)(u ∈ z ↔ u = x ∨ u = y).

ZFC3 Separation Schema: For ψ any Lset-wff,

(∀x)(∀y)(∃z)(∀u)(u ∈ z ↔ u ∈ x ∧ ψ(u, y)).

ZFC4 Union: (∀x)(∃y)(∀u)(u ∈ y↔ (∃z)(u ∈ z ∧ z ∈ x)).

ZFC5 Power Set: (∀x)(∃y)(∀u)(u ∈ y↔ u ⊆ x).

ZFC6 Infinity: (∃x)(∅ ∈ x ∧ (∀y)(y ∈ x→ y ∪ {y} ∈ x)).

ZFC7 Replacement Schema: For ψ any Lset-wff,

[(∀x)(∀y)(∀z)[(ψ(x, y) ∧ ψ(x, z))→ y = z]]

→ (∀x)(∃z)(∀u)[u ∈ z ↔ (∃y)(y ∈ x ∧ ψ(y, u))].
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ZFC8 Regularity: (∀x)(x ≠ ∅→ (∃y)(y ∈ x ∧ y ∩ x = ∅)).

ZFC9 Choice:

(∀z)([(∀x)(∀y)(x ∈ z → x ≠ ∅) ∧ (x ∈ z ∧ y ∈ z ∧ x ≠ y → x ∩ y = ∅)]

→ (∃s)(∀t)[t ∈ z → (∃u)(s ∩ t = {u})]).

We now provide a brief qualitative description of the ZFC axioms listed above. We begin by

noting that ordinarily the role of the extensionality axiom is to dictate that sets are determined

by their members. However, recalling that equality ‘=’ is a defined predicate rather than a

predicate in the language Lset, the role of extensionality in this presentation of the axioms is

simply to provide a basis upon which to prove that equality (as defined in equation 4.1) satisfies

substitution. (Since this result will be useful, it is marked off as Lemma 4.1 at the end of this

section.)

The pairing axiom states that, given any two sets, one can form a new set whose members

are exactly the two original sets. The axiom schema of separation states that for any Lset-wff

ψ and any class Z, there exists some set u which contains all and only elements of Z which

have the property specified by the Lset-wff ψ. As for the union, power set, and infinity axioms,

we have that the union axiom essentially states that given a collection of sets, one can obtain

a new set whose members are exactly the members of the original collection, while the power

set axiom states that for any set, the set of all subsets of that set forms a set itself; and the

infinity axiom stipulates the existence of at least one infinite set.
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We next consider the replacement axiom schema and the regularity axiom, both of which

are necessary for essentially technical reasons. The replacement axiom has important proof-

theoretic consequences and is necessary for the construction of the higher cardinals (see (14)),

while the regularity axiom prevents some counter-intuitive behavior such as sets being elements

of themselves (see, e.g., Lemma 4.2).

Finally, the axiom of choice essentially states that for any collection of sets, it is possible to

form a new set containing exactly one element from each set in the original collection.1

We conclude this section with two useful lemmas; note that the first of these is proven in

quantum logic since the proof is the same as in classical logic.

Lemma 4.1. In the language Lset, ZFC1 implies that equality ‘=’ as defined in equation 4.1

above satisfies the substitution property, i.e. we have both

ZFC1 ⊢ (∀x)(∀y)[x = y → (∀z)(x ∈ z ↔ y ∈ z)]

and

ZFC1 ⊢ (∀x)(∀y)[x = y → (∀z)(z ∈ x↔ z ∈ y)].

Proof. The second statement follows from the definition of ‘=’ using (Q3) and (R5), and the

first is simply a restatement of axiom ZFC1.

1For a brief discussion of the axiom of choice, see appendix B.4, and for a lengthy and in-depth
investigation of this controversial axiom, see (18).
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Lemma 4.2. In the language Lset, the sentence (∀x)(x ∉ x) is classically derivable from the

ZFC axioms.

Proof. We know that {x} ≠ ∅ since x ∈ {x}. Then by ZFC8, we have that there is some y ∈ {x}

such that y ∩ {x} = ∅. But by definition of the singleton, we know that y ∈ {x} means that

y = x, and hence x∩ {x} = ∅, so that for any z ∈ x, we know that z ∉ {x}, i.e. that z ≠ x. Hence

x ∉ x.

4.2.1 The Classical Universe of Sets

As mentioned previously, one of the major objectives of axiomatic set theory is to precisely

capture a particular intended model, which we often, in practice, actually conflate with set

theory itself. It is this intended model which we now describe — that is, we construct the

classical universe of sets.1

The construction typically begins with the empty set ∅, which, for notational purposes is

defined to be V0, and then proceeds inductively — that is, Vα+1 = P(Vα), where α runs over all

the successor ordinals, and Vβ ∶= ⋃γ∈β Vγ , where β runs over all the limit ordinals.2

1The reader is referred to Enderton (12) or Halmos (15) for a discussion of the relevant concepts, etc.
from naive set theory.

2Note that this procedure actually requires transfinite induction. The reader unfamiliar with ordinal
numbers and transfinite induction is referred to Section B.3 of the appendix.
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More precisely, let Ord be the class of ordinal numbers, and define

V0 ∶= ∅

Vα+1 ∶= P(Vα)

Vα ∶= ⋃
β∈α

Vβ if α is a limit ordinal.

Then, we have that the classical universe of sets V is given by

V ∶= ⋃
α∈Ord

Vα where the union is understood to give rise to a proper class. (4.4)

We note that the principle of transfinite induction (see Theorem 40) and the fact that (by

Lemma 42) every ordinal is well-ordered by the membership relation, essentially guarantee that

each Vα (for α ∈ Ord) is, in fact, well-defined.

The truth function for this model is characterized by actual “membership” in the Vα’s —

that is,

⟦x ∈ y⟧ ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1, if x is a member of y

0, if x is a not member of y.

We conclude this section by noting that the entire apparatus of transfinite recursion is

actually built on set theory, and as such, it is not possible to prove the existence of the classical

universe — i.e. the intended model of the ZFC axioms — without assuming the consistency
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of the ZFC axioms.1 Moreover, we are only able to proceed with the construction of models of

our quantum set theory if we assume the existence of the classical universe, and thus, assume

consistency of the classical ZFC axioms.

4.3 Quantum Axiomatic Set Theory

In this section, we define a reduced version of the ZFC axioms which we will take as the

axioms for our quantum set theory. As above, we take the language Lset = LPset ∶= {∈}, where

α(∈) ∶= 2, and the binary predicate ‘∈’ is interpreted as the “membership” relation. Also, we

continue to use the ‘=’,‘≠’, ‘∉’, and ‘⊆’ as defined previously in equation 4.1 — equation 4.3. We

further define

(x ≐ y) ∶= (∀z)(x ∈ z ↔ y ∈ z). (4.5)

Additionally, for a given variable y, we will abuse notation slightly, defining

(x ∈ y∗) ∶= (∃z)(z ≐ y ∧ x ∈ z)

(y∗ ∈ z) ∶= (y ∈ z). (4.6)

Note that these definitions effectively enable us to treat ‘⋅∗’ as if it were a unary function

symbol.2

1Of course, a set of axioms is, by definition, consistent if and only if there exists a model for those
axioms.

2See Definition B.4 in the appendix.
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Finally, the formula schema C(ψ) and T(ψ) (defined in Section 2.5.2) become, for an Lset-

wff ψ,

C(ψ) = (∀s)(∀t)(ϕs∈t(ψ)→ ψ) (4.7)

and

T(ψ) = (∀s)(∀t)(s ∈ t→ ψ), (4.8)

where ϕx(y) = x ∨ (¬x ∧ y) denotes the Sasaki projection. Also, recall that ⟦(∃x)T(ψ(x))⟧ = 1

in a model will guarantee (in the presence of other axioms) the actual existence of an a such

that ⟦ψ(a)⟧ = 1 in that model, assuming that the associated truth value algebra is irreducible.1

Now, paralleling the discussion in Section 4.2, we define notation to refer to certain sets

whose existence will be guaranteed in any model of the quantum set theory axioms RZFC1 —

RZFC12 below.

Empty Set : We define (using RZFC3) ∅ to be the quantum set satisfying (for any choice of

set x)

(∀u)(u ∈ ∅↔ u ≠ u ∧ u ∈ x).

Singletons: For any set x, we define {x} to be the quantum set satisfying

(∀u)(u ∈ {x}↔ u∗ = x∗). This exists by axiom RZFC2.

1Recall that wlog, we can restrict the truth value algebras to those which are irreducible by the
completeness Theorem 5.
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Intersection: For any two sets x and y, we define x ∩ y to be the quantum set satisfying

(∀u)(u ∈ x ∩ y↔ u ∈ x ∧ u∗ ∈ y∗), which exists by RZFC3.

Pairwise Union: For any two sets x and y, we define x∪y to be the quantum set which satisfies

(∀u)(u ∈ x ∪ y↔ u ∈ x ∨ u ∈ y), which exists by RZFC10.

Set Union: For any set x, we define ⋃x to be the quantum set which satisfies the statement

(∀u)(u ∈ ⋃x↔ (∃z)(u ∈ z ∧ z ∈ x)), This set exists by axiom RZFC4.

Power Set : For any set x, we define P(x) to be the quantum set satisfying

(∀u)(u ∈ P(x)↔ u∗ ⊆ x), which exists by RZFC5.

Set Builder Notation: For any sets x and y and any Lset-wff ψ, we define {u ∈ x ∶ ψ(u∗, y)}

to be that quantum set which satisfies u ∈ x↔ u ∈ z ∧ ψ(u∗, y), which exists by RZFC3.

Using this notation, we now list the axioms for our quantum set theory — namely, a reduced

version of the ZFC axioms which we collectively refer to as the RZFC axioms.

(RZFC1) Extensionality: (∀x)(∀y)[T(x = y)→ (∀z)(x ∈ z ↔ y ∈ z)].

(RZFC2) Singleton: (∀x)(∃z)T((∀u)(u ∈ z ↔ u∗ = x∗).

(RZFC3) Separation Schema: For ψ any Lset-wff,

(∀x)(∀y)(∃z)T[(∀u)(u ∈ z ↔ u ∈ x ∧ ψ(u∗, y))].

(RZFC4) Union: (∀x)(∃y)T[(∀u)(u ∈ y↔ (∃z)(u ∈ z ∧ z ∈ x))].

(RZFC5) Power Set: (∀x)(∃y)T[(∀u)(u ∈ y↔ u∗ ⊆ x)].
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(RZFC6) Infinity: (∃x)T(∅ ∈ x ∧ (∀y)(y ∈ x→ y ∪ {y} ∈ x)).

(RZFC7) Replacement Schema: For ψ any Lset-wff,

[(∀x)(∀y)(∀z)[(ψ(x, y) ∧ ψ(x, z))→ y = z]]

→ (∀x)(∃z)T[(∀u)[u ∈ z ↔ (∃y)(y ∈ x ∧ ψ(y∗, u∗))].

(RZFC8) Regularity: (∀x)(x ≠ ∅→ (∃y)(y ∈ x ∧ y ∩ x = ∅)).

(RZFC9) Choice:

(∀z)([(∀x)(∀y)(x ∈ z → x ≠ ∅) ∧ (x ∈ z ∧ y ∈ z ∧ x ≠ y → x ∩ y = ∅)]

→ (∃s)T[(∀t)[t ∈ z → (∃u)(s ∩ t = {u})]]).

(RZFC10) Pairwise Union: (∀x)(∀y)(∃z)T[(∀u)(u ∈ z ↔ u ∈ x ∨ u ∈ y)].

(RZFC11) ∗-classicality: (∀x)[(∀u) C(u ∈ x)→ x = x∗].

(RZFC12) T-normality: For ψ any Lset-wff, C(T(ψ)) ∧ [T(ψ)→ ψ].

Note that in the RZFC axioms above, the classical pairing axiom from the ZFC axioms has

been replaced by the singleton and pairwise union axioms. This change is motivated by the

fact that, as we will see in Section 4.4,

⋃({x} ∪ {y}) ≠ x ∪ y
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in general.

In the lemma below, we demonstrate that equality ‘=’ (as defined in equation 4.1 above)

has some properties that we would expect equality to have.

Lemma 4.3. In the language Lset, we have that

(i) ⊢ (∀x)(x = x)

(ii) ⊢ (∀x)(∀y)(x = y → y = x)

(iii) ⊢ (∀x)(∀y)(∀z)(x = y ∧ y = z → x = z)

(iv) ⊢ (∀x)(∀y)[x = y → (∀z)(z ∈ x↔ z ∈ y)]

(v) RZFC1 ⊢ (∀x)(∀y)[T(x = y)→ (∀z)(x ∈ z ↔ y ∈ z)]

Proof. Number (iv) above is already established in Lemma 4.1, and (v) follows trivially, since

the statement to be proved is RZFC1. To utilize the full power of orthomodular lattice theory,

we will prove the remaining items above using the completeness theorem for the quantum logic

Q(L) described in Chapter 2, so that we only need to examine each of the above sentences in

an arbitrary Lset-structure — to this end let Â be an Lset-structure with truth valuation ⟦∈⟧

and underlying class A.1

First, considering (i), for any a ∈ A, we have

⟦a = a⟧ = ⟦(∀u)(u ∈ a↔ u ∈ a)⟧ = ⋀
a∈A

(⟦u ∈ a⟧↔ ⟦u ∈ a⟧) = 1,

1We urge the reader to pay careful attention to the ‘=’ which is a defined predicate in Lset and the
‘=’ which represents equality in the truth value algebra of the model.
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where the last equality is by Lemma A.12. Then (i) holds by Lemma 2.6 (and the completeness

theorem).

Considering (ii), for any a, b ∈ A, we have

⟦a = b⟧ = ⋀
c∈A

(⟦c ∈ a⟧↔ ⟦c ∈ b⟧) = ⟦b = a⟧,

where the final equality holds by Lemma A.12, so that we have

⟦a = b→ b = a⟧ = (⟦a = b⟧→ ⟦b = a⟧) = 1

by the same lemma, and so (ii) holds by Lemma 2.6 and completeness as well.

Moving on to (iii), for any a, b, c ∈ A, we have

(⟦a = b⟧ ∧ ⟦b = c⟧) = [ ⋀
d∈A

(⟦d ∈ a⟧↔ ⟦d ∈ b⟧) ∧ ⋀
e∈A

(⟦e ∈ b⟧↔ ⟦e ∈ c⟧)]

= ⋀
f∈A

[(⟦f ∈ a⟧↔ ⟦f ∈ b⟧) ∧ (⟦f ∈ b⟧↔ ⟦f ∈ c⟧)]

≤ ⋀
f∈A

(⟦f ∈ a⟧↔ ⟦f ∈ c⟧) = ⟦a = c⟧,

where the second line is obtained by definition of the greatest lower bound, and the inequality

follows from Lemma A.12. Then (iii) holds by Lemma 2.6 and completeness.
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We note that (i)–(iii) in the above lemma are just the standard equality axioms (E1) —

(E3), while (iv)-(v) in the above lemma are substitution axioms for the predicate ‘∈’.

We now show that the RZFC axioms are, in the presence of classical logic, equivalent to the

ZFC axioms listed in Section 4.2 above.

Theorem 11. The RZFC axioms presented above are a reduction of the ZFC axioms presented

in Section 4.2.

Proof. We need to show that the classical and reduced ZFC axioms are equivalent in the

presence of the schema (CL) (i.e. using classical logic). RZFC12 is a tautology of classical logic

(so is automatically implied by ZFC). RZFC8 is unchanged from the classical axiomatization (so

the reduced versions imply the classical versions and vice versa). RZFC1, RZFC3-RZFC7 and

RZFC9 now include the ‘T’ operator, but this is simply the identity (up to logical equivalence)

in classical logic, and so we can ignore this operator for the purposes of proving equivalence.

Axioms RZFC3, RZFC5, and RZFC7 also replace some instances of x, y, . . . with x∗, y∗, . . ..

Clearly, if RZFC11 holds in a model with the standard bivalent truth values, then, since C(ψ)

is satisfied in any such model, we have x = x∗, and hence the classical versions of these axioms

are logically equivalent to the reduced ones by the substitution property of ‘=’ (see Lemma 4.1).

Hence, the RZFC axioms automatically implies the classical axioms ZFC1, ZFC3, ZFC5, and

ZFC7 — moreover, if we demonstrate that RZFC11 is implied by the classical ZFC axioms,

we obtain the reduced axioms RZFC3, RZFC5, and RZFC7 for free. Hence we only need to

show that (in classical logic) ZFC2 follows from the RZFC axioms, as well as that the reduced
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axioms RZFC2, RZFC10 and RZFC11 follow from the classical ZFC axioms (and the axiom

schema (CL)).

The reduced axioms RZFC2 and RZFC10 follow trivially from the classical pairing and

union, since we have the classical {x} as well as the classical union x ∪ y. Now, we show that

the ZFC axioms of Section 4.2 imply RZFC11 (∗-classicality). By definition of ‘=’, ‘u ∈ x∗’, and

‘≐’, we have

(x = x∗)↔ (∀u)(u ∈ x↔ u ∈ x∗)

↔ (∀u)[u ∈ x↔ (∃z)(z ≐ x ∧ u ∈ z)]

↔ (∀u)[u ∈ x↔ (∃z)((∀s)(z ∈ s↔ x ∈ s) ∧ u ∈ z)]. (4.9)

Hence, we only need show the double implication in the final line. If u ∈ x, then taking z = x,

we see that the RHS of the implication in the bottom line holds. Conversely, if the RHS of

said implication holds, then by the (classical) pairing axiom, there is some z with1 z ∈ {x} and

u ∈ z, so since z = x this implies u ∈ x. This establishes the double implication, so we see that

x = x∗ so that RZFC11 holds.

Next, we assume the RZFC axioms, and wish to show that ZFC2 follows. But for arbitrary

sets x, y we have the singleton sets2 {x}, {y} by RZFC2, and hence we have the set {x} ∪ {y}

1Here {x} is the singleton existing by virtue of the classical axioms.

2Here {x} and {y} are the singletons existing by virtue of the reduced axioms.
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by axiom RZFC10, which shows that ZFC2 is indeed implied by the RZFC axioms combined

with the schema (CL).

Theorem 11 above shows that when we restrict ourselves to the standard bivalent truth

values, we recover classical (ZFC) set theory.

4.4 Models of Quantum Set Theory

In this section, we describe our intended class of models for quantum set theory, and show

that they are indeed models of the RZFC axioms listed in Section 4.3. We note that although

we will define candidates for “quantum universes of sets” associated with any orthomodular

lattice, not all of these potential “universes” will actually turn out to be models — this is to

say that only certain orthomodular lattices L whose properties are similar to those of projection

lattices of separable Hilbert spaces will actually satisfy (all of) the RZFC axioms. Additionally,

we note that for the ensuing discussion, it is necessary to generalize the notion of model defined

in Section 2.3 to allow for the underlying set in an Lset-structure to be extended to a class; we

also employ the notion of a class function (see Section B in the appendix).

4.4.1 Quantum Universes of Sets

We begin with some preliminary definitions. Let L be an orthomodular lattice, let1 K be a

class, and let f ∈ LK. The support of f (denoted sup f) is given by

sup f ∶= {k ∈ K ∶ f(k) ≠ 0}. (4.10)

1Recall that elements of LK are maps from K to L (see appendix B).
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Let V denote the classical universe of sets. We then define the L-valued universe (of sets)

(which we denote by QL) to be the class1

QL ∶= {f ∈ LV ∶ sup f is a (classical) set }. (4.11)

Further, each f ∈ QL is called an L-valued set or simply quantum set if L is clear from the

context.2

We define the truth function ⟦∈⟧ (for L-valued sets f, g) by

⟦f ∈ g⟧ ∶= g(sup f),

and extend this to all Lset-wffs in the usual way. The Lset-structure (QL, L,{⟦∈⟧},∅) will be

denoted by QL. These are the candidates for our intended models of quantum set theory.3

4.4.2 Soundness of the Intended Models of Quantum Set Theory

In this section we show that for L a projection lattice of a separable Hilbert space (over C),

an Lset-structure QL as defined above is a model for the RZFC axioms. We note that a number

1Here the “set” builder notation is understood in the sense of classes.

2Although the only true models will turn out to be those where L satisfies certain additional proper-
ties, we will still call the elements of QL sets since, as will be shown in Section 4.4.2, the L-valued sets
for an arbitrary orthomodular lattice L satisfy almost all of the RZFC axioms.

3Note that for any g, h ∈ QL where sup g = suph, we have that g ∈ f ↔ h ∈ f (for any f ∈ QL) holds in
any Lset-structure QL defined above. Also note that in Lset-structure in which ⟦∈⟧ is as defined above,
we have that (for any f ∈ QL) ⟦f ∈ f⟧ = 0, so that there are no quantum sets (which are even partially)
elements of themselves.
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of the RZFC axioms actually hold for any complete orthomodular lattice L, while others hold

for a larger class of orthomodular lattices than just projection lattices. For each RZFC axiom,

the largest class of orthomodular lattices for which we know the axiom holds will be indicated.

We begin with some useful definitions and lemmas. For classical sets A,B ∈ V, the L-valued

set δA ∶ V → L is defined by

δA(B) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 if A = B

0 if A ≠ B,

(4.12)

while the L-valued set χA ∶ V → L is defined by

χA(B) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 if B ∈ A

0 if B ∉ A.

(4.13)

Clearly, sup δA = {A} and supχA = A for any A ∈ V. Note that by identifying any classical set

A with χA ∈ QL, we have that the classical sets can be thought of as a subset of the quantum

sets associated with QL.

Lemma 4.4. Let L be a complete orthomodular lattice, and let f, g ∈ QL. Then

⟦f ≐ g⟧ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 if sup f = sup g

0 if sup f ≠ sup g

(4.14)
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⟦g ∈ f∗⟧ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 if sup g ∈ sup f

0 if sup g ∉ sup f

(4.15)

⟦f∗ = g∗⟧ = ⟦f ≐ g⟧. (4.16)

Proof. First, using the definition of f ≐ g, we have

⟦f ≐ g⟧ = ⟦(∀z)(f ∈ z ↔ g ∈ z)⟧

= ⋀
h∈QL

(⟦f ∈ h⟧↔ ⟦g ∈ h⟧)

= ⋀
h∈QL

(h(sup f)↔ h(sup g)),

and so we immediately see that if sup f = sup g, then h(sup f) = h(sup g), so that (h(sup f)↔

h(sup g)) = 1 for any h ∈ QL by Lemma A.12, and so ⟦f ≐ g⟧ = 1. On the other hand, if

sup f ≠ sup g, we have (from equation 4.12 above) that

⟦f ≐ g⟧ ≤ (δsup f(sup f)↔ δsup f(sup g)) = (1↔ 0) = 0,

which establishes equation 4.14.

Next, using the definition of g ∈ f∗, we have

⟦g ∈ f∗⟧ = ⟦(∃z)(z ≐ f ∧ g ∈ z)⟧ = ⋁
h∈QL

(⟦h ≐ f⟧ ∧ ⟦g ∈ h⟧),
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but from equation 4.14, we have that ⟦h ≐ f⟧ is non-zero only when suph = sup f , and so only

these h’s contribute to the join. Hence, we have

⟦g ∈ f∗⟧ = ⋁
h∈QL

suph=sup f

(1 ∧ h(sup g)) ≥ χsup f(sup g),

so by equation 4.12, we see that if sup g ∈ sup f then ⟦g ∈ f∗⟧ = 1. On the other hand, if

sup g ∉ sup f , then for any h with suph = sup f , we must have h(sup g) = 0, and so ⟦g ∈ f∗⟧ = 0,

which establishes equation 4.15.

Finally, by definition of ‘=’, and equation 4.15, we have

⟦f∗ = g∗⟧ = ⟦(∀x)(x ∈ f∗ ↔ x ∈ g∗⟧

= ⋀
h∈QL

⟦h ∈ f∗⟧↔ ⟦h ∈ g∗⟧.

Now if sup f = sup g, by equation 4.15, we have that (⟦h ∈ f∗⟧↔ ⟦h ∈ g∗⟧) = 1 for any h ∈ QL,

so that ⟦f∗ = g∗⟧ = 1. If, on the other hand, sup f ≠ sup g, then there exists some classical

set A such that A ∈ sup f but A ∉ sup g (or vice versa). Either way, for this A, we have (by

equation 4.12, equation 4.15, and Lemma A.12) that

(⟦χA ∈ f∗⟧↔ ⟦χA ∈ g∗⟧) = 0,

and so ⟦f∗ = g∗⟧ = 0. Hence, by equation 4.14, this establishes equation 4.16.
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Lemma 4.5. Let L be a complete orthomodular lattice, let f ∈ QL, and let ψ(x) be an Lset-wff.

Then

⟦ψ(f∗)⟧ = ⟦ψ(χsup f)⟧.

Proof. We prove this as a consequence of Lemma 2.7, so we only need show that both ⟦f∗ ∈

g⟧ = ⟦χsup f ∈ g⟧ and ⟦g ∈ f∗⟧ = ⟦g ∈ χsup f⟧ for any two quantum sets f and g. First, for any

quantum set g, we have

⟦f∗ ∈ g⟧ = ⟦f ∈ g⟧ = g(sup f) = g(supχsup f) = ⟦χsup f ∈ g⟧

by the definition of the expression f∗ ∈ g and χsup f . For the other case, we have that ⟦g ∈ f∗⟧ =

χsup f(sup g) = ⟦g ∈ χsup f⟧ by Lemma 4.4.

Theorem 12. Let L be a complete orthomodular lattice. Then QL satisfies RZFC2-RZFC5

as well as RZFC10.

Proof. For RZFC2, we need

QL ⊧ (∀x)T((∃z)(∀u)(u ∈ z ↔ u∗ = x∗),

i.e. (using Lemma 2.16) it suffices to show that for any quantum set f , there exists some other

quantum set g such that

⟦(∀u)(u ∈ g↔ u∗ = f∗)⟧ = 1.
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Taking g = δsup f , we see that

⟦(∀u)(u ∈ δsup f ↔ u∗ = f∗)⟧ = ⋀
h∈QL

(⟦δsup f(suph)⟧↔ ⟦h∗ = f∗⟧) = 1,

where the last equality follows from equation 4.12 and equation 4.12, as well as equation 4.16

and equation 4.14 from Lemma 4.4.

To show the RZFC3 holds, we need (for any wff ψ) that

QL ⊧ (∀x)(∀y)(∃z)T[(∀u)(u ∈ z ↔ u ∈ x ∧ ψ(u∗, y))],

and so (again using Lemma 2.16) it suffices to show for any quantum sets f, g that there exists

some quantum set h such that

⟦(∀u)(u ∈ h↔ u ∈ f ∧ ψ(u∗, g))⟧ = 1,

i.e. that, for any j ∈ QL, that h(sup j) = f(sup j) ∧ ⟦ψ(j∗, g)⟧. But we can simply define, for

any A ∈ V, that

h(A) ∶= f(A) ∧ ⟦ψ(χA, g)⟧.

By the (classical) schema of separation, suph is indeed a (classical) set (contained in sup f).

The result the follows immediately from Lemma 4.5.
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Considering RZFC4, we must show

QL ⊧ (∀x)(∃y)T[(∀u)(u ∈ y↔ (∃z)(u ∈ z ∧ z ∈ x))],

and so it is sufficient to find, given an arbitrary quantum sets f , another quantum set g such

that

⋀
h∈QL

(⟦h ∈ g⟧↔ ⋁
j∈QL

(⟦h ∈ j⟧ ∧ ⟦j ∈ f⟧)) = 1.

Equivalently, we need to satisfy, for every h ∈ QL, that

g(suph) = ⋁
j∈QL

(j(suph) ∧ f(sup j)).

But clearly to satisfy the previous equation we can simply define, for any A ∈ V,

g(A) ∶= ⋁
j∈QL

(j(A) ∧ f(sup j)),

and since g(A) ≠ 0 implies that A ∈ sup j ∈ sup f for some j ∈ QL, we have that sup g is indeed

a (classical) set, so that RZFC4 is satisfied.

Moving on to RZFC5, we need to show

QL ⊧ (∀x)(∃y)T[(∀u)(u ∈ y↔ u∗ ⊆ x)],
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and so it suffices to demonstrate for any quantum set f , that there is another quantum set g

such that

⟦(∀u)(u ∈ g↔ u∗ ⊆ f)⟧ = 1.

Define g by (for all A ∈ V)

g(A) ∶= ⟦χA ⊆ f⟧,

and so if A ∈ sup g, then since

⟦χA ⊆ f⟧ = ⋀
h∈QL

(χA(suph)→ f(suph)) = ⋀
B∈A

f(B)

(using Lemma A.12), we must have A ⊆ sup f , so that sup g ⊆ P(sup f), which shows that sup g

is a (classical) set. Then we have

⟦(∀u)(u ∈ g↔ u∗ ⊆ f)⟧ = ⋀
j∈QL

(⟦j ∈ g⟧↔ ⟦j∗ ⊆ f⟧)

= ⋀
j∈QL

(g(sup j)↔ ⟦χsup j ⊆ f⟧) = 1,

where we have used the definition of g and Lemmas 4.5 and A.12 to obtain the final equality.

Considering now RZFC10, we must show that

QL ⊧ (∀x)(∀y)(∃z)T[(∀u)(u ∈ z ↔ u ∈ x ∨ u ∈ y)],
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and so it suffices to show that for quantum sets f, g that there exists some quantum set h such

that

⟦(∀u)(u ∈ h↔ u ∈ f ∨ u ∈ g)⟧ = 1.

Define h by (for any A ∈ V)

h(A) ∶= f(A) ∨ g(A),

and since clearly suph = sup f ∪ sup g, we see that suph is indeed a (classical) set. Then we

have

⟦(∀u)(u ∈ z ↔ u ∈ x ∨ u ∈ y)⟧ = ⋀
j∈QL

(⟦j ∈ h⟧↔ (⟦j ∈ f⟧ ∨ ⟦j ∈ g⟧))

= ⋀
j∈QL

(h(sup j)↔ (f(sup j) ∨ g(sup j))) = 1

by the definition of h and Lemma A.12.

We now consider axioms RZFC1 and RZFC12.

Theorem 13. Let L be a complete irreducible orthomodular lattice satisfying the relative

center property.1 Then QL satisfies RZFC1 and RZFC12.

1If unfamiliar, see Definition A.32 in the appendix.
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Proof. First we consider RZFC12. Since L has the relative center property, by Lemma A.18,

we have, for any evaluated Lset-wff ψ, that ⋀b∈L(b→ ⟦ψ⟧) is in the center of L. But

⋀
b∈L

(b→ ⟦ψ⟧) = ⋀
f,g∈QL

(⟦f ∈ g⟧→ ⟦ψ⟧) = ⟦T(ψ)⟧,

so that ⟦C(T(ψ))⟧ = 1 by Lemma 2.15 (using that ⟦∅ ∈ {∅}⟧ = 1, for instance). Also, ⟦T(ψ)⟧→

⟦ψ⟧ = 1 by Lemma 2.17. Hence

QL ⊧C(T(ψ)) ∧ [T(ψ)→ ψ].

Next, considering RZFC1, we must show

QL ⊧ (∀x)(∀y)[T(x = y)→ x ≐ y],

i.e. we must show (by Lemma A.12) for any quantum sets f, g that

⟦T(f = g)⟧ ≤ ⟦f ≐ g⟧.

By the above, QL ⊧ RZFC12, so that ⟦T(f = g)⟧ ∈ {0,1} by Lemma 2.18. The statement

trivially holds whenever ⟦f = g⟧ ≠ 1 (since then ⟦T(f = g)⟧ = 0 by the aforementioned lemma),

so consider the case where ⟦f = g⟧ = 1. By the definition of ‘=’ this means that f(A) = g(A)

for all A ∈ V, and in particular sup f = sup g. A simple computation then yields ⟦f ≐ g⟧ = 1, so

that RZFC1 indeed holds in QL. This follows trivially from equation 4.16 in Lemma 4.4.
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Now that we know that axioms RZFC1 and RZFC12, which guarantee the existence of

certain quantum sets, hold in Lset-structures QL when L satisfies the relative center property,

it is safe to make use of the notation defined in Section 4.3 which is utilized in what follows.

Lemma 4.6. Let L be a complete irreducible orthomodular lattice satisfying the relative center

property. Then, for f, g ∈ QL, and any A ∈ V

(i) ∅(A) = 0

(ii) {f}(A) = δsup f(A)

(iii) (f ∩ g)(A) = f(A) ∧ g(A)

(iv) (f ∪ g)(A) = f(A) ∨ g(A)

(v) f(sup f) = 0

(vi) (f ∪ {f})(A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if A = sup f

f(A) if A ∈ sup f

0 otherwise.

(vii) P(f)(A) = ⋀
B∈A

f(B)

(viii) ⋃ f(A) = ⋁
B∈sup f
A∈B

f(B)

Proof. For number (i) above, the empty set is defined to satisfy f ∈ ∅↔ (f ≠ f), but

⟦f = f⟧ = ⋀
h∈QL

(⟦h ∈ f⟧↔ ⟦h ∈ f⟧) = 1,
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so ⟦f ∈ ∅⟧ = ∅(sup f) = 0 for all f ∈ QL, hence ∅(A) = 0 for all A ∈ V.

Numbers (ii)–(iv) above follow directly from the proof of Theorem 12, extensionality and

the fact that ⟦g ∈ f⟧ ∶= f(sup g).

For number (v) above, we note that by the classical axiom of regularity no set may be a

member of itself (Lemma 4.2), and so (v) follows from the fact that sup f ∉ sup f .

For number (vi) above we note that the cases are mutually exclusive by (v) above. We then

use (iv) and (ii) above to compute

f ∪ {f}(A) = f(A) ∨ {f}(A) = f(A) ∨ δsup f(A),

which gives the above result.

For numbers (vii) and (viii), since the sets which are given by RZFC4 and RZFC5 are

unique, from the proof of Lemma 4.2, we know that

P(f)(A) = ⟦χA ⊆ f⟧ = ⋀
h∈QL

(χA(suph)→ f(suph)) = ⋀
B∈A

f(B),

as well as that

⋃ f(A) = ⋁
j∈QL

(j(A) ∧ f(sup j)) = ⋁
B∈V

(χB(A) ∧ f(B)) = ⋁
B∈sup f
A∈B

f(B).
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We are now in a position to show there are quantum sets f and g such that ⋃ ({f}∪{g}) ≠

f ∪ g. From the above we know that for any A ∈ V that (f ∪ g)(A) = f(A) ∨ g(A). However

⋃ ({f} ∪ {g})(A) = ⋁
B∈sup({f}∪{g})

A∈B

({f} ∪ {g})(B)

= ⋁
B∈{sup f,sup g}

A∈B

(δsup f(B) ∨ δsup g(B))

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 if A ∈ sup f ∪ sup g

0 otherwise.

where we have used that

({f} ∪ {g})(A) = δsup f(A) ∨ δsup g(A),

so that sup({f} ∪ {g}) = {sup f, sup g}. Hence, we clearly have ⋃ ({f} ∪ {g}) ≠ f ∪ g for any

quantum sets f, g such that there is some A ∈ V with f(A) ∨ g(A) ≠ 1.

Lemma 4.7. Let L be a complete orthomodular lattice, and let ω be the first infinite ordinal.

Also, for any f ∈ QL define (for any A ∈ V)

f+(A) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if A = sup f

f(A) if A ∈ sup f

0 otherwise,

(4.17)



124

and define g∅ ∈ QL by g∅(A) ∶= 0 for every A ∈ V. Further, for any f, g ∈ QL assume1 that

f ∩ g ∈ QL which satisfies (iii) in Lemma 4.6 exists.

Then we have

(i) ⟦g∅ ∈ χω⟧ ∧ ⋀
h∈QL

⟦(h ∈ χω → h+ ∈ χω)⟧ = 1

(ii) If L ≠ {0,1}, then

⋀
h∈QL

(⟦h ≠ g∅⟧→ ⋁
j∈QL

[⟦j ∈ h⟧ ∧ ⟦j ∩ h = g∅⟧]) = 1

(iii) If L ≠ {0,1}, then for any f ∈ QL and any Lset-wff ψ(s, t) (with s, t ∈ BV )

⟦(∀x)(x ∈ f → x ≠ g∅)→ (∃s)(∀t)(t ∈ f → ψ(s, t))⟧ = 1.

Proof. First we consider (i) above. Note that ∅ ∈ ω and for any α ∈ ω, we have α+1 = α∪{α} ∈ ω.

Also, for any quantum set h, we have that suph+ = suph∪{suph}. Then, using that sup g∅ = ∅,

we compute

⟦g∅ ∈ χω⟧ ∧ ⋀
h∈QL

⟦(h ∈ χω → h+ ∈ χω)⟧ = χω(∅) ∧ ⋀
h∈QL

[χω(suph)→ χω(suph+)]

= 1 ∧ ⋀
A∈V

[χω(A)→ χω(A ∪ {A})] = 1,

1If f ∩g exists as a consequence of the RZFC axioms (such as whenever L satisfies the relative center
property by Lemma 4.6), then the assumption is not necessary. Otherwise we can simply take this
assumption as the definition of f ∩ g for purposes of this lemma.
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which establishes (i).

Considering (ii) above, for any quantum sets j and h we have (using Lemma A.12)

⟦h ≠ g∅⟧ = ¬ ⋀
k∈QL

(h(supk)↔ g∅(supk)) = ⋁
A∈V

¬(h(A)↔ 0) = ⋁
A∈V

h(A),

as well as

⟦j ∩ h = g∅⟧ = ⋀
k∈QL

([j(supk) ∧ h(supk)]↔ g∅(supk)) = ⋀
B∈V

(¬j(B) ∨ ¬h(B)).

Using these then yields

⋀
h∈QL

(⟦h ≠ g∅⟧→ ⋁
j∈QL

[⟦j ∈ h⟧ ∧ ⟦j ∩ h = g∅⟧])

= ⋀
h∈QL

([ ⋁
A∈V

h(A)]→ ⋁
j∈QL

[h(sup j) ∧ ⋀
B∈V

(¬j(B) ∨ ¬h(B))]).

By Lemma A.12, it suffices to show that for any quantum set h, we have

⋁
A∈V

h(A) ≤ ⋁
j∈QL

[h(sup j) ∧ ⋀
B∈V

(¬j(B) ∨ ¬h(B))],



126

and hence it is sufficient to show that, for any A ∈ V, that

h(A) ≤ ⋁
j∈QL

sup j=A

[h(sup j) ∧ ⋀
B∈suph∩sup j

(¬j(B) ∨ ¬h(B))]. (4.18)

Now we proceed by cases. First, the case h(A) = 0 is trivial, 0 is the bottom element of L (this

is always the case if L is trivial). Next, if A = ∅, then the inequality in equation 4.18 is satisfied

since any quantum set j such that sup j = ∅ also satisfies sup j ∩ suph = ∅, so that

⋁
j∈QL

sup j=∅

[h(sup j) ∧ ⋀
B∈suph∩sup j

(¬j(B) ∨ ¬h(B))] = h(∅).

For the third case, assume A ≠ ∅ and also that h(A) ≠ 0 and h(A) ≠ 1. Then define a quantum

set j0 by j0(B) ∶= ¬h(A) for every B ∈ suph∩A, j0(B) ∶= 1 for every B ∈ A/ suph, and j0(B) ∶= 0

otherwise. Then sup j0 = A since h(A) ≠ 1. Then the inequality in equation 4.18 is satisfied,

since we have

⋀
B∈suph∩sup j0

(¬j(B) ∨ ¬h(B)) = ⋀
B∈suph∩A

(h(A) ∨ ¬h(B)) ≥ h(A).

For the final case, we consider A ≠ ∅, and h(A) = 1. Since L ≠ {0,1} (and L non-trivial), there

exists some a ∈ L with a ∉ {0,1}. Define j1(B) ∶= a, and j2(B) ∶= ¬a for all B ∈ suph ∩ A,
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and j1(B) ∶= j2(B) ∶= 1 for all B ∈ A/ suph, and j1(B) ∶= j2(B) = 0 otherwise, so that sup j1 =

sup j2 = A. Then the inequality in equation 4.18 is satisfied, since

⋀
B∈suph∩sup j1

(¬j1(B) ∨ ¬h(B)) = ⋀
B∈suph∩A

(¬a ∨ h(B)),

and

⋀
B∈suph∩sup j2

(¬j2(B) ∨ ¬h(B)) = ⋀
B∈suph∩A

(a ∨ h(B)),

so that

⋁
j∈QL

sup j=A

[h(sup j)∧ ⋀
B∈suph∩sup j

(¬j(B) ∨ ¬h(B))]

≥ [ ⋀
B∈suph∩A

(¬a ∨ h(B))] ∨ [ ⋀
B∈suph∩A

(a ∨ h(B))] ≥ ¬a ∨ a = 1

which establishes (ii).

Finally, we consider (iii) above. First, by Lemma A.12, it suffices to show

⟦(∀x)(x ∈ f → x ≠ g∅)⟧ ≤ ⟦(∃s)(∀t)(t ∈ f → ψ(s, t))⟧. (4.19)
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Computing the LHS of the inequality in equation 4.19 yields

⟦(∀x)(x ∈ f → x ≠ g∅)⟧ = ⋀
h∈QL

(⟦h ∈ f⟧→ ⟦h ≠ g∅⟧)

= ⋀
h∈QL

(f(suph)→ [ ⋁
A∈V

¬h(A)])

= ⋀
B∈V

⋀
h∈QL

suph=B

(f(B)→ [ ⋁
A∈B

¬h(A)]).

Then considering the RHS of the inequality in equation 4.19 we have

⟦(∃s)(∀t)(t ∈ f → ψ(s, t))⟧ = ⋁
h∈QL

[ ⋀
j∈QL

(⟦j ∈ f⟧→ ⟦ψ(h, j)⟧)]

= ⋁
h∈QL

[ ⋀
j∈QL

(¬f(sup j) ∨ (f(sup j) ∧ ⟦ψ(h, j)⟧))]

≥ ⋀
j∈QL

¬f(sup j) = ⋀
B∈V

¬f(B),

and so it suffices to show that, for any B ∈ V, that

⋀
h∈QL

suph=B

(f(B)→ [ ⋁
A∈B

¬h(A)]) ≤ ¬f(B). (4.20)
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If f(B) = 0, then ¬f(B) = 1, and so the inequality in equation 4.20 is automatically satisfied.

If f(B) ≠ 0, define h0(A) ∶= f(B) if A ∈ B, and h0(A) = 0 otherwise, so suph0 = B. Then

⋀
h∈QL

suph=B

(f(B)→ [ ⋁
A∈B

¬h(A)]) ≤ (f(B)→ [ ⋁
A∈B

¬h0(A)])

= (f(B)→ ¬f(B)) = ¬f(B)

by Lemma A.12, and so (iii) is established.

We now use the above lemma to establish the following theorem.

Theorem 14. Let L be a complete irreducible orthomodular lattice which satisfies the relative

center property. Then the Lset-structure QL satisfies RZFC6, RZFC8, and RZFC9.

Proof. First, we see that QL ⊧ RZFC6 iff

⟦(∃x)T(∅ ∈ x ∧ (∀y)(y ∈ x→ y ∪ {y} ∈ x))⟧ = 1,

but

⟦(∃x)(∅ ∈ x ∧ (∀y)(y ∈ x→ y ∪ {y} ∈ x))⟧ = ⋁
j∈QL

T(⟦g∅ ∈ j⟧ ∧ ⋀
h∈QL

⟦(h ∈ j → h′ ∈ j))

≥ ⟦g∅ ∈ χω⟧ ∧ ⋀
h∈QL

⟦(h ∈ χω → h′ ∈ χω)⟧

= 1
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where in the first equality we have used that g∅ = ∅ (as quantum sets) as well as that h′ = h∪{h}

(by Lemma 4.6), and the final equality follows immediately from (i) in Lemma 4.7.

Now, if L = {0,1}, then our model is just the classical universe, and so RZFC8 and RZFC9

follow by Theorem 11, and so we need only consider the case in which L ≠ {0,1}. Also, the

axioms trivially hold if L is trivial, so we assume L non-trivial as well.

To show that QL ⊧ RZFC8, we need to show

⟦(∀x)(x ≠ ∅→ (∃y)(y ∈ x ∧ y ∩ x = ∅))⟧ = 1,

and so we compute (using that g∅ = ∅)

⟦(∀x)(x ≠ ∅→ (∃y)(y ∈ x ∧ y ∩ x = ∅))⟧

= ⋀
h∈QL

(⟦h ≠ g∅⟧→ ⋁
j∈QL

[⟦j ∈ h⟧ ∧ ⟦j ∩ h = g∅⟧]) = 1

where the last equality follows from (ii) in Lemma 4.7.

Finally, we see that QL ⊧RZFC9 iff

⟦(∀z)([(∀x)(∀y)(x ∈ z → x ≠ ∅) ∧ (x ∈ z ∧ y ∈ z ∧ x ≠ y → x ∩ y = ∅)]

→ (∃s)T[(∀t)[t ∈ z → (∃u)(s ∩ t = {u})]])⟧ = 1,
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so it suffices to show (by Lemmas A.12 and 2.16, and since ∅ = g∅), for any quantum set f ,

that

⟦(∀x)(∀y)(x ∈ f → x ≠ g∅) ∧ (x ∈ f ∧ y ∈ f ∧ x ≠ y → x ∩ y = g∅)⟧

≤ ⟦(∃s)(∀t)[t ∈ f → (∃u)(s ∩ t = {u})]⟧. (4.21)

However, trivially we have that

⟦(∀x)(∀y)(x ∈ f → x ≠ g∅) ∧ (x ∈ f ∧ y ∈ f ∧ x ≠ y → x ∩ y = ∅)⟧

≤ ⟦(∀x)(∀y)(x ∈ f → x ≠ g∅)⟧. (4.22)

Define the Lset-wff ψ(s, t) ∶= (∃u)(s ∩ t = {u}), and then by Lemma 4.7, we have

⟦(∀x)(x ∈ f → x ≠ g∅)→ (∃s)(∀t)(t ∈ f → ψ(s, t))⟧ = 1,

which by Lemma A.12 is true iff

⟦(∀x)(x ∈ f → x ≠ g∅)⟧ ≤ ⟦(∃s)(∀t)(t ∈ f → ψ(s, t))⟧. (4.23)

Combining the inequalities in equation 4.22 and equation 4.23 yields the inequality in equa-

tion 4.21, which establishes RZFC9.
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We note that it is only in the case in which L = {0,1} that we actually need to use the fact

that the classical axiom of regularity (respectively, choice) holds in order to establish that the

reduced axiom of regularity (respectively, choice) holds — this is to say that when L ≠ {0,1},

the proof given here is independent of whether the classical universe satisfies the regularity

(respectively, choice) axiom.

Finally, we consider the remaining two RZFC axioms — namely, RZFC7 and RZFC11,

noting that the proofs of these axioms are slightly more subtle.

Lemma 4.8. Let L be a complete orthomodular lattice, and let G be the group of continuous

(ortholattice) automorphisms of L. Further let ψ(x1, . . . , xn) be an Lset-wff and let f, f1, . . . , fn ∈

QL. Then for any α ∈ G we have

(i) α(0) = 0 and α(1) = 1.

(ii) supα ○ f = sup f

(iii) QL = {α ○ g ∶ g ∈ QL}

(iv) α(⟦ψ(f1, . . . , fn)⟧) = ⟦ψ(α ○ f1, . . . , α ○ fn)⟧.

Proof. First, since α is an ortholattice automorphism on L, we have that α(0) = 0 and α(1) = 1

by definition.

Next, since α(0) = 0 by (i) above, we know that for any A ∈ V, α ○ f(A) = 0 iff f(A) = 0,

and hence supα ○ f = sup f .
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For (iii) above, note that if g is a quantum set, then so is α ○ g. Also, this trivially means

that α−1 ○ g is a quantum set. Then g = α ○ (α−1 ○ g), establishing the desired equality.

We then prove (iv) above by induction on the construction of evaluated Lset-wffs. For the

base case, we see that (for any quantum sets g, h)

α(⟦g ∈ h⟧) = α(h(sup g)) = α ○ h(supα ○ g) = ⟦α ○ g ∈ α ○ h⟧,

where we have used (ii) above. For the inductive steps, consider evaluated Lset-wffs ψ(g1, . . . , gm)

and ξ(g1, . . . , gm) with quantum sets g1, . . . , gm for which (iv) holds. Then we have

α(⟦¬ψ(g1, . . . , gm)⟧) = ¬α(⟦ψ(g1, . . . , gm)⟧) = ⟦¬ψ(α ○ g1, . . . , α ○ gm)⟧,

as well as

α(⟦ψ(g1, . . . , gn)⟧ ∧ ⟦ξ(g1, . . . , gm)) = ⟦ψ(α ○ g1, . . . , α ○ gm) ∧ ξ(α ○ g1, . . . , α ○ gm)⟧

= ⟦(ψ ∧ χ)(α ○ g1, . . . , α ○ gm)⟧,
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and finally

α(⟦(∀x)ψ(x, g2, . . . , gm)⟧) = ⋀
h∈QL

α(⟦ψ(h, g2, . . . , gm)⟧)

= ⋀
h∈QL

⟦ψ(α ○ h,α ○ g2, . . . , α ○ gm)⟧

= ⋀
h∈QL

⟦ψ(h,α ○ g2, . . . , α ○ gm)⟧

= ⟦(∀x)ψ(x,α ○ g2, . . . , α ○ gm)⟧,

where the second to last equality follows by (iii) above.

Lemma 4.9. Let L be a complete orthomodular lattice which is rotatable.1 Then for any

A,B ∈ V, and any Lset-wff ψ(x, y), we have ⟦ψ(χA, χB)⟧ ∈ {0,1}.

Proof. Since 0 and 1 are the only fixed points of the group of continuous automorphisms on

L (where we denote this group G), it suffices to show that ⟦ψ(χA, χB)⟧ is a fixed point of G.

Define a ∶= ⟦ψ(χA, χB)⟧, so by Lemma 4.8 we have

α(a) = α(⟦ψ(χA, χB)⟧) = ⟦ψ(α ○ χA, α ○ χB)⟧ = ⟦ψ(χA, χB)⟧ = a,

where we have used the following fact: for any Y ∈ V and α ∈ G, we have α○χY = χY . To see this,

note that for any Y,Z ∈ V, we have that χY (Z) ∈ {0,1} by definition, and so α○χY (Z) = χY (Z)

for any Z ∈ V by Lemma 4.8. Hence α ○ χY = χY .

1If unfamiliar, see Definition A.33 in the appendix.
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Theorem 15. Let L be a complete orthomodular lattice which is rotatable. Then the Lset-

structure QL satisfies RZFC7.

Proof. We need to show

QL ⊧[(∀x)(∀y)(∀z)(ψ(x, y) ∧ ψ(x, z)→ y = z)]

→ (∀x)(∃z)T[(∀u)[u ∈ z ↔ (∃y)(y ∈ x ∧ ψ(y∗, u∗))].

It suffices to assume that

⟦(∀x)(∀y)(∀z)(ψ(x, y) ∧ ψ(x, z)→ y = z)⟧ ≠ 0,

and then prove that, for any quantum set f , there is some other quantum set g such that

⟦(∀u)(u ∈ g↔ (∃y)[y ∈ f ∧ ψ(y, u∗)])⟧ = 1,

i.e. that for any quantum set h

g(suph) = ⋁
j∈QL

(f(sup j) ∧ ⟦ψ(j∗, h∗)⟧).

But this will be automatically be satisfied (by Lemma 4.5) if we define, for any A ∈ V,

g(A) ∶= ⋁
B∈V

(f(B) ∧ ⟦ψ(χB, χA)⟧) = ⋁
j∈QL

(f(sup j) ∧ ⟦ψ(χsup j , χA)⟧),
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and so we only need show that sup g is a (classical) set.

Now, we see immediately that, for any A ∈ V, that g(A) ≠ 0 iff there is some B ∈ V such that

f(B)∧ ⟦ψ(χB, χA)⟧ ≠ 0. But by Lemma 4.9, ⟦ψ(χB, χA)⟧ ∈ {0,1}, and so in order for g(A) ≠ 0

there must exist some B ∈ V such that B ∈ sup f and ⟦ψ(χB, χA)⟧ = 1.

We will show that, for any given A, the class of all sets B satisfying both B ∈ sup f as well

as ⟦ψ(χB, χA)⟧ = 1 is indeed a (classical) set using the classical replacement axiom with regard

to the statement Ψ(B,A) which states1 that “⟦ψ(χB, χA)⟧ = 1”.

To show that Ψ satisfies the hypothesis of classical replacement, we assume that, for

generic X,Y,Z ∈ V, that Ψ(X,Y ) and Ψ(X,Z) are true, i.e. that both ⟦ψ(χX , χY )⟧ = 1 and

⟦ψ(χX , χZ)⟧ = 1. Now recall our assumption that

⟦(∀x)(∀y)(∀z)(ψ(x, y) ∧ ψ(x, z)→ y = z)⟧ ≠ 0,

which implies that,

⟦(ψ(χX , χY )⟧ ∧ ⟦ψ(χX , χZ)⟧→ ⟦Y = Z⟧ ≠ 0,

but since Ψ(X,Y ) and Ψ(X,Z) are true, this means (using Lemma A.12 that

(1→ ⟦χY = χZ⟧) = ⟦χY = χZ⟧ ≠ 0,

1We are being rather informal here, since we have not used a formal language when using the classical
set theory by which we defined our Lset-structure QL. However, it would be simple (although tedious)
to write every statement in dealing with the construction of QL formally, in which case we would arrive
at the statement “⟦ψ(χB , χA)⟧ = 1” as a formal wff in classical set theory, and it is this formal wff to
which Ψ(B,A) refers.
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but clearly ⟦χY = χZ⟧ ∈ {0,1}, and so we must have ⟦χY = χZ⟧ = 1, so that χY = χZ as quantum

sets, which means that Y = Z as classical sets.

Hence Ψ(X,Y ) satisfies the hypothesis of classical replacement, and so for any Z ∈ V, there

exists some S ∈ V such that for any T ∈ V, T ∈ S iff there exists some U ∈ V such that U ∈ Z

and Ψ(U,T ). Taking Z = sup f , we have that T ∈ S iff there exists a U ∈ V with U ∈ sup f and

⟦ψ(χU , χT )⟧ = 1, which is to say that T ∈ S iff T ∈ sup g, so that sup g = S, which is indeed a

classical set.

Theorem 16. Let L be a complete irreducible atomic orthomodular lattice which satisfies the

exchange axiom.1 Then the Lset-structure QL satisfies RZFC11.

Proof. If L = {0,1}, then RZFC11 holds by Theorem 11, so we can assume that L ≠ {0,1}, and

in particular the height of L is greater than or equal to 3. We need to show

Q ⊧ (∀x)[(∀u) C(u ∈ x)→ x = x∗].

By Lemma A.12, it suffices to show, for any quantum set f , that

⋀
h∈QL

⟦C(h ∈ f)⟧ ≤ ⟦f = f∗⟧. (4.24)

1If unfamiliar, see Definitions A.28 and A.29 in the appendix.
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Now, by definition of ‘C’, we have

⋀
h∈QL

⟦C(h ∈ f)⟧ = ⋀
h∈QL

⋀
j,k∈QL

(ϕ⟦j∈k⟧(⟦h ∈ f⟧)→ ⟦h ∈ f⟧)

= ⋀
A∈V

[ ⋀
a∈L

(ϕa(f(A))→ f(A))]

= ⋀
A∈sup f

[ ⋀
a∈L

(ϕa(f(A))→ f(A))],

where for the last equality we have used that ϕx(0) = 0 by Lemma A.11, while we also have

⟦f = f∗⟧ = ⋀
h∈QL

⟦h ∈ f ↔ h ∈ f∗⟧ = ⋀
A∈sup f

f(A).

by Lemma 4.4. Since for f = ∅ this gives ⟦f = f∗⟧ = 1, in order to establish ZFC11 it will suffice

to show, for any b ∈ L with b ≠ 0, that

[ ⋀
a∈L

ϕa(b)→ b] ≤ b.

But this follows directly from Lemma A.16, and so RZFC11 is established.

Finally, we arrive at the following result.

Theorem 17. Let L be a complete, irreducible, atomic, rotatable orthomodular lattice which

satisfies the exchange axiom and the relative center property. Then the Lset-structure QL is a

model of RZFC.

Proof. This simply collects the results of Theorems 12, 13, 14, 15, and 16.
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Corollary 4.10. Let L be the projection lattice of a separable complex Hilbert space H. Then

the Lset-structure QL is a model of RZFC.

Proof. This follows immediately from the previous theorem (i.e. Theorem 17) along with Lem-

mas 38 and 39, as well as Lemma A.17.

This corollary shows that the intended class of models QL most strongly motivated by

quantum mechanical formalism are models for our quantum set theory.

4.5 Conclusion

In this chapter, we have constructed an axiomatic set theory based on the quantum logic

Q(L), and we showed that the intended class of models for this set theory does indeed satisfy

the axioms (axiom schema) of the quantum set theory we constructed. We believe this quantum

set theory to be a reasonable first attempt at a foundation for quantum mathematics (in a sense

which parallels the foundational role of classical set theory in classical mathematics). This is

supported by the fact that the first of two minimal criteria for the quantum set theory is met —

namely, we have shown that the quantum set theory is a generalization of classical set theory,

and in particular, that those models of our quantum set theory with standard bivalent truth

values reduce to models of classical set theory. The second objective which we set forth for our

quantum set theory was that it be powerful enough to develop a Peano-like quantum arithmetic.

In the following chapter, we use the models QL of quantum set theory in order to construct

quantum natural numbers (in these models), as well as develop a Peano-type arithmetic for

these quantum natural numbers, along with some consequences of it.
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In future work along these lines, we would like to continue to develop (and possibly gen-

eralize) the quantum set theory we have constructed — that is, possibly develop a more fully

quantum version of the set theory, as well as undertake a systematic study of quantum ordinal

and cardinal numbers within the quantum set theory — with the ultimate goal that the set

theory play a foundational for quantum mathematics in a sense which parallels the foundational

role of classical set theory in classical mathematics.



CHAPTER 5

QUANTUM ARITHMETIC

5.1 Introduction

In Chapter 4, we stated certain minimal criteria that any attempt at a quantum set theory

should satisfy. One of these is that the set theory should be powerful enough to develop a

notion of a ‘natural number,’ as well as an associated arithmetic. In this chapter, we take on

this task.

In ordinary (classical) mathematics, the standard way of constructing the natural numbers

is from sets, and properties of those numbers are then proven from known properties of the sets

from which they’re constructed. In this chapter, we use an analogous approach to construct the

quantum natural numbers from the quantum set theory which we’ve developed. In particular,

in each model QL of the quantum set theory,1 we will identify the quantum natural numbers ωL

which arise from this process, as well as discuss arithmetical properties of these new numbers.

Along the way, we compare our results with those of classical arithmetic.

In any model QL with L = 2, the above process yields the usual natural numbers N. More-

over, an isomorphic copy of N sits inside ωL for each L. However, there are, in general, more

quantum natural numbers than ordinary classical numbers; as such, we see that the quantum

natural numbers are much richer than their classical counter parts.

1See Section 4.4 for a description of the Lset-structures QL.
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Additionally, we note that in a special class of models which is particularly relevant for

quantum theory — namely when L = P(H), the projection lattice1 of a Hilbert space H —

it turns out that there exists a 1-1 correspondence between the quantum natural numbers ωL

and bounded observables in quantum theory (i.e. bounded Hermitian operators on H) whose

eigenvalues are (ordinary) natural numbers. This 1-1 correspondence is remarkably satisfying,

and gives us great confidence in our quantum set theory, as well as its possible future applications

in quantum mechanics.

5.1.1 Overview

In what follows, our objective is to describe the quantum natural numbers as they arise

from the models QL of our quantum set theory (which were developed in Section 4.4,2 as well

as discuss properties of an arithmetic for these quantum natural numbers.

We begin, in Section 5.2, by briefly reviewing the construction of the natural numbers as

they arise from classical set theory. Paralleling this construction, we then define the quantum

natural numbers ωL in the models QL of our quantum set theory. In the process of constructing

the sets which correspond to the quantum natural numbers, we define the successor function

1See Section A.4.3 for a discussion of projection lattices.

2We note that the orthomodular lattices L for which QL is actually a model of our RZFC axioms
is restricted to those orthomodular lattices which are complete, irreducible, atomic, rotatable, and
satisfy the relative center property, as well as the exchange axiom. We further note that this class of
orthomodular lattices includes projection lattices of separable Hilbert spaces. However, for an arbitrary
orthomodular lattice L, we can still construct the structure QL and consider quantum natural numbers
associated with it, despite the fact that such a structure isn’t truly a model of the axiomatic set theory
we’ve developed (since only axioms RZFC2-5,10 are satisfied in QL for an arbitrary orthomodular lattice
L).
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on the quantum universe of sets QL, and go on in Section 5.3 to prove that the successor, when

restricted to ωL, satisfies a set of axioms which completely characterize the ordinary successor

function in the presence of classical logic.

In Section 5.4, we then define an addition
⋅+ and multiplication

⋅× on the quantum natural

numbers ωL, after which we demonstrate that all but one of the ordinary arithmetic axioms

hold for these arithmetical operations, while the remaining arithmetic axiom holds if and only

if L is modular. We go on in Section 5.5 to consider consequences of the full arithmetic (i.e.

successor fragment axioms along with the arithmetical axioms for
⋅+ and

⋅×) for the quantum

natural numbers ωL in the case in which L is modular. Although in such a case we demonstrate

that these arithmetical operations behave classically with regard to two-variable identities in

ωL, we show that other consequences of these axioms which involve three or more quantum

natural numbers need not hold in general.

Finally, we conclude by considering the quantum natural numbers ωL for L = P(H) (the

projection lattice of a Hilbert space H). In Section 5.6, we show that in such models, the arith-

metical operations
⋅+ and

⋅× are the unique operations which satisfy certain desirable criteria.

5.2 The Quantum Natural Numbers

We begin our discussion of the quantum natural numbers and their properties with some

preliminary definitions and concepts, as well as a few comments regarding the construction of

ordinary natural numbers. For a more detailed discussion of the classical natural numbers, see

Enderton (12).
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The first thing that is necessary for the construction of the natural numbers (either classical

or quantum) is the notion of a successor of a set.

We define the successor f ′ of a quantum set f to be given by

z ∈ f ′ ↔ [[(∃g)[(z⋆ = g⋆ ∪ {g⋆}) ∧ (g ∈ f)]] ∨ (z⋆ = ∅)], (5.1)

and we note that our axioms for quantum set theory guarantee the existence of such a set in

any model QL. More precisely, in this class of models, the successor f ′ of a quantum set f ∈ QL

becomes (for y ∈ V)

f ′(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if y = ∅

f(x), if y = x′

0, otherwise .

(5.2)

See Section 5.3 below for a proof and a more detailed discussion of the successor function

and its properties. In ordinary (classical) set theory, the successor S′ of a set S is defined

by S′ ∶= S ∪ {S}.1 We first note that although the definition of the successor of a quantum

set agrees with this definition of the classical successor when the quantum set considered is a

1We note that we can actually keep this same definition for the successor f ′ of a quantum set f ∈ QL
— that is, we can define f ′ ∶= f ∪ {f} — without affecting the definition or construction of the quantum
natural numbers. Moreover, all of the proofs of the relevant properties still go through with this standard
definition of the successor for quantum sets. However, when we restrict our attention to the quantum
natural numbers ωL as a subset of QL, not all of the successor fragment axioms ((SF1)–(SF5) discussed
below) hold with this definition of the successor. See Section 5.3 for a more detailed discussion of the
axioms and properties of the successor of a quantum set given in equation 5.1 above.
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classical natural number,1 it does not, in general (i.e. for an arbitrary classical set), reduce to

the successor function as defined for classical sets. However, since we’re only interested in using

the successor to construct the quantum natural numbers, the discrepancy is rather innocuous.

We next define and discuss what it means for a set to be inductive, as well as what it means

for a set to be a transitive set.

Definition 5.1. A set f ∈ QL is said to be inductive if ⟦∅ ∈ f⟧ = 1 and f is closed under the

successor function — i.e. ⟦(∀g)(g ∈ f → g′ ∈ f)⟧ = 1.

We first review how the construction of natural numbers goes in classical set theory. Here,

the existence of an inductive set is guaranteed by the infinity axiom. The concept of a natural

number can then be defined as a set which belongs to every inductive set. We denote the

collection of all such (ordinary) natural numbers by ωc, which one can show is, itself, an

inductive set. Moreover, ωc is characterized by the property that it is contained in every

inductive set — i.e. ωc is the smallest inductive set. And, since ∅ ∈ ωc, it follows that the set

obtained by taking any number of successors of ∅ is also an element of ωc. Indeed, all elements

of ωc are of this form. The first few natural numbers are listed below.

● 0 ∶= ∅

● 1 ∶= 0′ = ∅′ = {∅} = {0}

1Recall that in any model QL, the classical sets can be thought of as a subset of the quantum sets,
and hence, in this way, the classical natural numbers can also be thought of as a subset of the quantum
sets. Moreover, any standard property of classical sets still holds for the classical sets when considered
as a subset of the L-valued universe QL.
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● 2 ∶= 1′ = 0′′ = ∅′′ = {∅}′ = {∅,{∅}} = {0,1}

● 3 ∶= 2′ = 1′′ = 0′′′ = ∅′′′ = {∅,{∅}}′ = {∅,{∅},{∅,{∅}}} = {0,1,2}

Inductively, we define n ∶= {0,1, ...n − 1}.

Definition 5.2. A set f ∈ QL is said to be a transitive set if every member of a member of f

is itself a member of f — i.e.

⟦[(g ∈ f) ∧ (h ∈ g)]→ (h ∈ f)⟧ = 1.

We can immediately see that every (classical) natural number is a transitive set, as is ωc

itself. That is, using classical set theory, the transitive properties associated with natural num-

bers follow from their inductive properties. Indeed, in classical set theory, the property of being

in every inductive set and the property of being a finite transitive set such that every element

is also a transitive set are equivalent.

However, in our quantum set theory, it turns out that both the property of being in every

inductive set and that of being a transitive set are needed to characterize the quantum natural

numbers, as these properties of quantum sets no longer have the same relationship that they

have classically.1

1Note that in our quantum set theory, we have that the existence of an inductive set in any model
QL is guaranteed by the infinity axiom (RZFC6). Similarly, the axioms of quantum set theory guarantee
the existence of transitive sets in these models.
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For notational purposes, let µ(f) denote the first order statement “f is an element of every

inductive set” — i.e.

µ(f) ∶= (∀h)[[(∅ ∈ h) ∧ (∀g)(g ∈ h→ g′ ∈ h)]→ f ∈ h],

and let λ(f) denote the first order statement “f is a transitive set” — i.e.

λ(f) ∶= [(g ∈ f) ∧ (h ∈ g)]→ (h ∈ f).

We construct the quantum natural numbers in any model QL to be the elements of the

classical set ωL which is given by

ωL ∶= {f ∈ QL ∣ ⟦µ(f)⟧ = 1 ∧ ⟦λ(f)⟧ = 1}.

That is, we consider the quantum natural numbers to be those quantum sets which are “fully”

a member of every inductive set and are “fully” transitive sets, and we discard everything else.

We note that the requirement that µ(f) evaluates to 1 in the model QL is equivalent to

sup f being an ordinary (classical) natural number. (See Theorem 18 below for details.) That

is, ⟦µ(f)⟧ = 1 if and only if sup f = n for some natural number n ∈ ωc. On the other hand, the

requirement that λ(f) evaluates to 1 (i.e. ⟦λ(f)⟧ = 1) gives that (i) sup f is a transitive set,

and also that (ii) for each n, k ∈ ωc, we have that f(k) ≤ f(n) if n ∈ k — that is, the f(k)’s

form a decreasing sequence of elements in L. (See Theorems 19 and 20 below for details.) In
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what follows, we will sometimes identify f ∈ ωL with its associated decreasing sequence — i.e.

we will often represent f by the tuple

(f(0), f(1), ...f(sup f − 1)).

Similar to the way in which the classical universe of sets embeds in any L-valued universe of

(quantum) sets, the classical natural numbers embed into the set of quantum natural numbers.

In particular, n ∈ ωc is represented in ωL by the quantum set f which has sup f = n and f(m) = 1

for all m ∈ n. (Notice also that when L = 2, we have that ωL = ωc).

In the case in which L = P(H) (i.e. when L is a projection lattice), if f ∈ ωP(H) is such

that f ∶ n →P(H) where n ∈ ωc, then for all m ∈ n we have that f(m) = Pm, where the Pm’s

are a decreasing sequence of projectors.1 Such a decreasing sequence can be used to construct a

Hermitian operator Af on H whose eigenvalues are (classical) natural numbers — in particular,

Af = ∑
m∈n

Pm. (5.3)

It is also clear that any bounded Hermitian operator on H whose eigenvalues are natural

numbers can uniquely be put into the form of equation 5.3, and hence corresponds uniquely

to a quantum natural number. This 1-1 correspondence between quantum natural numbers

1For a quantum natural number f ∈ ωL whose support is n ∈ ωc, we write f ∶ n→P(H), suppressing
the portion of the domain V on which f evaluates to the zero operator. In what follows, we will silently
abuse notation in a similar way for other quantum sets.
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and bounded observables in quantum theory with natural number eigenvalues is remarkably

satisfying, and gives us great confidence in our quantum set theory.1 As an example, let

dim(H) = 3, and let {∣ψ1⟩, ∣ψ2⟩, ∣ψ3⟩} be an orthonormal basis for H. Further, suppose that

f ∈ ωP(H) is such that f ∶ n→P(H) where n = 4, and

f(0) ∶= P0 = I, f(1) ∶= P1 = PSpan(∣ψ2⟩,∣ψ3⟩), f(2) ∶= P2 = P∣ψ3⟩, f(3) ∶= P3 = P∣ψ3⟩.

The corresponding Hermitian operator Af is given by the sum of these projectors, and in the

basis {∣ψ1⟩, ∣ψ2⟩, ∣ψ3⟩}, we have that

Af =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0

0 2 0

0 0 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Additionally, as noted previously, an isomorphic copy of ωc sits inside ωL — in particular,

in the case in which L = P(H), for any n ∈ ωc, the corresponding Hermitian operator is given

by nI, where I is the identity operator on H.

The following theorems (and proofs) fill in some technical detail for results which were

already mentioned above, and these details constitute the remainder of this section.

1Takeuti’s (22) much more complicated quantum set theory yields the same quantum natural num-
bers, although the construction is much more cumbersome than ours.
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Theorem 18. Consider the class of models QL of quantum set theory, and let f ∈ QL. Then

⟦µ(f)⟧ = 1 if and only if sup f ∈ ωc.

Proof. Note that in these models, the first order statement that f is in every inductive set

becomes

1 = ⟦(∀h)[[(∅ ∈ h) ∧ (∀g)(g ∈ h→ g′ ∈ h)]→ f ∈ h]⟧

= ⋀
h∈QL

[[h(∅) ∧ ⋀
g∈QL

[h(sup g)→ h(sup g′)]]→ h(sup f)].

We first assume that f is in every inductive set; as such, the above expression must hold for all

h ∈ QL — in particular, it holds for z ∈ QL, where z is such that z(x) = 1 if x ∈ ωc and z(x) = 0

if x ∉ ωc — that is, we have that

[[z(∅) ∧ ⋀
g∈QL

[z(sup g)→ z(sup g′)]]→ z(sup f)] = 1.

First note that z(∅) = 1 since ∅ ∈ ωc (i.e. ∅ is the first classical ordinal). Now, if sup g ∉ ωc,

then z(sup g) = 0 by definition of z, so z(sup g) → z(sup g′) = 0 → a = 1. On the other hand, if

sup g ∈ ωc, then sup g′ ∈ ωc as well, and by definition of z, z(sup g) = 1 and z(sup g′) = 1; and

so, z(sup g) → z(sup g′) = 1 → 1 = 1. (To see that sup g ∈ ωc implies that sup g′ ∈ ωc, note that

with the definition of the successor, we have that x ∈ sup g implies that x′ ∈ sup g′, so that in

the case that sup g = n for some classical natural number n ∈ ωc, we have i′ ∈ sup g′ for every
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i ∈ n; and thus, since ∅ ∈ sup g′ by construction, it follows that sup g′ = n + 1 ∈ ωc.) Together

these results give that

[z(∅) ∧ ⋀
g∈QL

[z(sup g)→ z(sup g′)]] = 1.

Since we also have that

[[z(∅) ∧ ⋀
g∈QL

[z(sup g → z(sup g′)]]→ z(sup f)] = 1

by assumption, it follows that z(sup f) = 1, which gives that sup f ∈ ωc simply by definition of

z. Thus, we see that if f is in every inductive set, then sup f ∈ ωc.

We now want to show that if sup f ∈ ωc, then f is in every inductive set. We again recall

that in our models, this property valuates to

⋀
h∈QL

[[h(∅) ∧ ⋀
g∈QL

[h(sup g)→ h(sup g′)]]→ h(sup f)].

Assume that sup f ∈ ωc, and note that

h(∅) ∧ ⋀
g∈QL

[h(sup g)→ h(sup g′)] ≤ h(sup ĝ)→ h(sup ĝ′)
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for any ĝ ∈ QL. In particular, it holds if sup ĝ ∈ ωc. (And, if sup g ∈ ωc, then sup g = ∅(n), where

∅0 = ∅, ∅(1) = {∅}, and ∅(n+1) = ∅(n) ∪ {∅(n)}.) That is, we have that

h(∅) ∧ ⋀
g∈QL

[h(sup g)→ h(sup g′)] ≤ h(∅(n))→ h(∅(n+1)).

Now, we proceed via proof by induction. We clearly have that

h(∅) ∧ ⋀
g∈QL

[h(sup g)→ h(sup g′)] ≤ h(∅) = h(∅(0)),

which gives the zeroth step. We assume that

h(∅) ∧ ⋀
g∈QL

[h(sup g)→ h(sup g′)] ≤ h(∅(n)).

By the discussion above, we have that

h(∅) ∧ ⋀
g∈QL

[h(sup g)→ h(sup g′)] ≤ h(∅(n))→ h(∅(n+1)),

and together these results give that

h(∅) ∧ ⋀
g∈QL

[h(sup g)→ h(sup g′)] ≤ h(∅(n)) ∧ [h(∅(n))→ h(∅(n+1))].



153

And so, by the orthomodular law (i.e. a ∧ (a→ b) = a ∧ (¬a ∨ (a ∧ b)) = a ∧ b ≤ b, where the last

equality follows from the orthomodular law), we have that

h(∅) ∧ ⋀
g∈QL

[h(sup g)→ h(sup g′)] ≤ h(∅(n+1)).

Since this holds for any m ∈ ωc and any h ∈ QL, and since sup f ∈ ωc implies that sup f = ∅(k)

for some k, we have that

⋀
h∈QL

[[h(∅) ∧ ⋀
g∈QL

[h(sup g)→ h(sup g′)]]→ h(sup f)] = 1.

(We note that we have used the fact that “→” satisfies Hardegree’s “minimal implicative crite-

ria” (16), (17) so that a ≤ b iff a → b = 1.) Thus, we have that sup f ∈ ωc implies that f is in

every inductive set.

Theorem 19. Consider the class of models QL of quantum set theory, and let f ∈ QL be such

that ⟦λ(f)⟧ = 1. Then sup f is a (classical) transitive set.

Proof. First note that in a model, we have that first order statement that f is a transitive set

becomes

⟦λ(f)⟧ = f(sup g) ∧ g(suph)→ f(suph),
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and we have that

⟦((g ∈ f)∧(h ∈ g))→ (h ∈ f)⟧ = f(sup g)∧g(suph)→ f(suph) = 1⇐⇒ f(sup g)∧g(suph) ≤ f(suph),

which is equivalent to

f(sup g) ∧ g(A)→ f(A)

since suph is (necessarily) some classical set.

Now, we wts that whenever f is a transitive set, sup f is a transitive set. To see this, suppose

that f is a transitive set, but that sup f is not a transitive set. As such, there exist (classical)

sets, B,C such that B ∈ C and C ∈ sup f , but B ∉ sup f (i.e. f(B) = 0). Letting C = sup g⋆ and

B = suph, we have that

f(C) ∧ g⋆(B) = f(C) ∧ 1 = f(C),

where f(C) ≠ 0 since C ∈ sup f by assumption, and the fact that g⋆(B) = 1 follows from the

fact that B ∈ sup g. However, since f(B) = 0 and f is a transitive set, we have that

f(C) ∧ g⋆(B) ≤ f(B) = 0,

which forces f(C) = 0, which is a contradiction to the assumption that f is a transitive set —

thus, we must have that sup f is a transitive set.
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Theorem 20. Consider the class of models QL of quantum set theory, and let f ∈ QL. If

⟦λ(f)⟧ = 1, then, for x, y ∈ sup f , we have that f(x) ≤ f(y) whenever y ∈ x (where “≤” denotes

the partial ordering in L).

Proof. First note that in a model, we have that first order statement that f is a transitive set

becomes

⟦λ(f)⟧f(sup g) ∧ g(suph)→ f(suph),

and we have that

f(sup g) ∧ g(suph)→ f(suph) = 1⇐⇒ f(sup g) ∧ g(suph) ≤ f(suph),

which is equivalent to

f(sup g) ∧ g(A)→ f(A)

since suph is (necessarily) some classical set.

Now, assume that f is a transitive set, and note that if we have that sup f is a transitive

set, then f(sup g) ≠ 0 and g(A) ≠ 0 imply that f(A) ≠ 0. To see this, assume that A ∈ sup f . If

A ≠ ∅, then there exists a set B such that B ∈ A implies that B ∈ sup f . Take g(x) = 1 for all

x ∈ A, and g(x) = 0 otherwise. Then the transitive set inequality becomes (for all x ∈ A)

f(A) ∧ g(x) ≤ f(x),
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from which it follows that f(A) ≤ f(x) for all x ∈ A. Thus, we see that whenever a quantum

set f is transitive, we have the f(x)’s form a decreasing sequence in the truth value algebra L

associated with a model.

5.3 The Successor Fragment of the Quantum Arithmetic

We begin with a proof of equation 5.2.

Lemma 5.1. In the models QL, the successor f ′ of a quantum set f ∈ QL is given by (for y ∈ V)

f ′(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if y = ∅

f(x), if y = x′

0, otherwise .

Proof. As mentioned previously, the first order sentence which defines the successor f ′ of a

quantum set f is given by

z ∈ f ′ ↔ [[(∃g)[(z⋆ = g⋆ ∪ {g⋆}) ∧ (g ∈ f)]] ∨ (z⋆ = ∅)].

Recall that in the models QL, we have that ⟦z ∈ f ′⟧ = f ′(sup z), while the RHS of “↔” in

the expression above valuates to

[ ⋁
g∈QL

[f(sup g) ∧ ⋀
x∈V

[z⋆(x)↔ (g⋆(x) ∨ {g⋆}(x))]]] ∨ [⋀
x∈V

z⋆(x)↔ 0]



157

= [ ⋁
g∈QL

[f(sup g) ∧ ⋀
x∈sup g

or
x=sup g

[z⋆(x) ∧ ⋀
x∉sup g
x≠sup g

¬z⋆(x)]] ∨ [⋀
x∈V

z⋆(x)↔ 0]].

Note that we have used that

z⋆(x)↔ (g⋆(x) ∨ {g⋆}(x)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z⋆(x)↔ 1, if x = sup g

z⋆(x)↔ g⋆(x), if x ∈ sup f

z⋆(x)↔ 0, otherwise

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

z⋆(x)↔ 1, if x = sup g or x ∈ sup g

z⋆(x)↔ 0, otherwise

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

z⋆(x), if x = sup g or x ∈ sup g

¬z⋆(x), otherwise ,

so that

⋀
x∈V

z⋆(x)↔ (g⋆(x) ∨ {g⋆}(x)) = ⋀
x∈sup g

or
x=sup g

z⋆(x) ∧ ⋀
x∉sup g
x≠sup g

¬z⋆(x).

Notice that if g is such that

sup z ≠ sup g ∪ {sup g},

then we have that

⋀
x∈V

z⋆(x)↔ (g⋆(x) ∨ {g⋆}(x)) = 0.

Also note that ⋀x∈V ¬z⋆(x) = 0 if sup z ≠ ∅, while ⋀x∈V ¬z⋆(x) = 1 if sup z = ∅. As such, for

the first term (since we have ⋁g∈QL), we need only consider the quantum sets g ∈ QL such that

sup z = sup g ∪ {sup g}, in which case the first term becomes f(sup g), and the second term is
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0 since sup z ≠ ∅ in this case (i.e. sup z = sup g ∪ {sup g} implies that sup z ≠ ∅). And so, we

obtain that

f ′(sup z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if sup z = ∅

f(sup g), if sup z = sup g ∪ {sup g}

0, otherwise .

As such, we see that in the models QL, we have that the successor f ′ of a quantum set f ∈ QL

to be given by (for y ∈ V)

f ′(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if y = ∅

f(x), if y = x′

0, otherwise .

We note that when the successor function is restricted to the quantum natural numbers,

the successor of f ∈ ωL works in such a way as to add 1 (i.e. the top element of L) to the

beginning of the decreasing sequence of elements of L associated with f . As such, we see that

whenever f ∈ ωL, we also have that f ′ ∈ ωL, which shows that ωL is closed under the successor

function. In the case in which L = P(H), where we have the 1-1 correspondence between

the quantum natural numbers and bounded Hermitian operators on H whose eigenvalues are

natural numbers (which was described above), we have that Af ′ = Af + I. Thus, for the quan-

tum natural numbers which correspond to ordinary (classical) natural numbers, the successor

behaves exactly as the classical successor function does — that is, for any n ∈ ωc the successor
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of nI is given by (n+1)I. Hence, the subset of ωP(H) which is isomorphic to ωc is closed under

the successor function, as expected. However, we also note that we clearly cannot build up

every quantum natural number from 0 via the successor — if this were the case, then the set

ωP(H) would consist only of the subset isomorphic to ωc. Thus, we see that, in general, the

quantum natural numbers are much richer than their classical counter parts.

Now, we want to consider an M-system (LS ,AS) associated with the successor fragment

of Peano arithmetic. We define the language ⟨LS , α⟩, where LPS ∶= {=} and LFS ∶= {0,′ }, with

α(=) ∶= 2, α(0) ∶= 0 and α(′) ∶= 1. By AS we denote the set of axioms (SF1) — (SF5) below.

(SF1) (∀x)[x′ ≠ 0]

(SF2) (∀x)[x ≠ x′], (∀x)[x ≠ x′′], . . .

(SF3) (∀x)(∀y)[x = y → x′ = y′]

(SF4) (∀x)(∀y)[x′ = y′ → x = y]

(SF5) (∀x)[(x ≠ 0)→ [(∃y)(x ≠ y′)]]

We note that the axioms listed above comprise an alternative (well-known, but not ubiq-

uitously used) axiomatization of the successor fragment of Peano arithmetic, which, in the

presence of classical logic, is equivalent to the standard one (11).1

1For a list of the standard successor fragment axioms (axiom schema), see Section 3.2 where they
appear as (S1) — (S4). Note that in the axioms above, the induction axiom schema from the standard
axiomatization has essentially been replaced by the infinite sequence of axioms in (SF2). Also, recall
that in Section 3.2 we have shown that the standard axiomatization is inherently classical; as such, in
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We next construct an LS-structure associated with each Lset-structure QL = (QL, L,{⟦∈⟧},∅)

— that is, we consider the LS-structures

ω̂L ∶= (ωL, L,{⟦=⟧},{0, ′}),

where ωL ⊆ QL are the quantum natural numbers in QL, and for f, g ∈ ωL,

⟦f = g⟧ ∶= ⋀
x∈V

(f(x)↔ g(x)).

As for the interpretation of the operations in LFS , we take 0 ∈ QL to be the zero map (i.e.

we have sup 0 = ∅ so that 0 is the quantum set which is the analogue of the classical natural

number 0), and ′ is as given in equation 5.2, but restricted to elements of ωL.

Theorem 21. The successor fragment axioms (SF1) – (SF5) hold in any LS-structure ω̂L.

Proof.

(SF1) (∀x)[x′ ≠ 0]

order to demonstrate the full power and richness of our quantum models, we use some alternative (but
classically equivalent) axiomitization.
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Let 0 ∈ QL be the zero map (i.e. we have sup 0 = ∅ so that 0 is the quantum set which

is the analogue of the classical natural number 0), and let f ∈ ωL be such that f ∶ n → L

with n = sup f ∈ ωc, and f(i) ∶= Pi with Pi+1 ≤ Pi. We have that

⟦f ′ = 0⟧ = ⋀
x∈V

f ′(x)↔ 0(x) = ⋀
x∈V

f ′(x)↔ 0

= ⋀
x∈V

¬f ′(x) = ¬f ′(∅) ∧ ⋀
x∈V

¬f(x) = ¬1 ∧ ⋀
x∈V

= 0.

Thus, we see that ⟦f ′ = 0⟧ = 0, from which it follows that

⟦f ′ ≠ 0⟧ = ⟦∼ (f ′ = 0)⟧ = ¬⟦f ′ = 0⟧ = 1.

Thus, we see that for any f ∈ ωL, we have that ω̂LvDashf
′ ≠ 0, so that the axiom

(∀x)[x′ ≠ 0] holds — i.e. ω̂L ⊧ (∀x)[x′ ≠ 0].

(SF2) (∀x)[x ≠ x′], (∀x)[x ≠ x′′], . . .

In what follows, we consider (∀x)[x ≠ x′], noting that the proof is similar for the other

axioms in this infinite sequence (e.g. (∀x)[x ≠ x′′], (∀x)[x ≠ x′′′], . . . ) — as such, we

only explicitly consider the first axiom in the infinite sequence.
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In what follows, we consider f ≠ f ′, where f ∶ n → L with n = sup f ∈ ωc, and f(i) ∶= Pi

with Pi+1 ≤ Pi. We have that

⟦f = f ′⟧ = ⋀
x∈V

f(x)↔ f ′(x) = (f(∅)↔ f ′(∅)) ∧ [⋀
x∈V
x≠∅

f(x)↔ f ′(x)]

= (f(∅)↔ f ′(∅)) ∧ [⋀
i∈n
i≠0

f(i)↔ f ′(i)] ∧ (0↔ f ′(n − 1))

= P0 ↔ I ∧ ¬Pn−1 ∧ [⋀
i∈n
i≠0

Pi ↔ Pi−1].

We clearly have that P0 ↔ I = P0 (by Lemma A.12 (5)), and the first term in ⋀i∈n
i≠0
Pi ↔

Pi−1 is given by P1 ↔ P0; additionally, since P1 ≤ P0, Lemma A.12 (2) gives that this

simplifies to

P0 ↔ P1 = P0 → P1 = ¬P0 ∨ (P0 ∧ P1) = ¬P0 ∨ P1.

Together, these two terms give

P0 ∧ (P0 ↔ P1) = P0 ∧ (¬P0 ∨ P1) = ϕP0(P1) = P1,

where the last equality follows from the fact that ϕa(b) = b⇔ b ≤ a (by Lemma A.11 (3)).

The next term in ⋀i∈n
i≠0
Pi ↔ Pi−1 is given by P2 ↔ P1; and since P2 ≤ P1, Lemma A.12 (2)

gives that this simplifies to

P1 ↔ P2 = P1 → P2 = ¬P1 ∨ (P1 ∧ P2) = ¬P1 ∨ P2.
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Combining this with the previous result, we have that

P0 ∧ (P0 ↔ P1) ∧ (P1 ↔ P2) = P1 ∧ (¬P1 ∨ P2) = ϕP1(P2) = P2,

where the last equality again follows from the fact that ϕa(b) = b ⇔ b ≤ a (by Lemma

A.11 (3)).

And so, for the mth term ⋀i∈n
i≠0
Pi ↔ Pi−1 is given by Pm ↔ Pm−1; and since Pm ≤ Pm−1,

Lemma A.12 (2) gives that this simplifies to

Pm−1 ↔ Pm = Pm−1 → Pm = ¬Pm−1 ∨ (Pm−1 ∧ Pm) = ¬Pm−1 ∨ Pm.

And so, combining this with the result from all the previous m − 1 terms, we have that

P0 ∧ [ ⋀
i∈n

0<i<m

Pi ↔ Pi−1] = Pm−1 ∧ (¬Pm−1 ∨ Pm) = ϕPm−1(Pm) = Pm,

where the last equality follows from the fact that ϕa(b) = b⇔ b ≤ a (by Lemma A.11 (3)).

Now, this continues until we reach i = n − 1, which yields

P0 ∧ [⋀
i∈n
0<i

Pi ↔ Pi−1] = Pn−1.
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Thus, we have that

⟦f = f ′⟧ = (P0 ↔ I) ∧ [⋀
i∈n
i≠0

Pi ↔ Pi−1] ∧ ¬Pn−1 = Pn−1 ∧ ¬Pn−1 = 0.

As such,

⟦f ≠ f ′⟧ = ⟦∼ (f = f ′)⟧ = ¬⟦f = f ′⟧ = 1,

from which we see that for an arbitrary f ∈ ωL, we have that ω̂LvDashf ≠ f ′, so that the

axiom (∀x)[x ≠ x′] holds — i.e. ω̂LvDash(∀x)[x ≠ x′].

(SF3) & (SF4) (∀x)(∀y)[x = y → x′ = y′] and (∀x)(∀y)[x′ = y′ → x = y]

Let f, g ∈ ωL be such that f ∶ n→ L with n = sup f ∈ ωc, and f(i) ∶= Pi with Pi+1 ≤ Pi, and

g ∶m → L with m = sup g ∈ ωc, and g(i) ∶= Qi with Qi+1 ≤ Qi; additionally, we take m ≤ n

wlog. We have that

⟦f = g⟧ = ⋀
x∈V

f(x)↔ g(x),

and

⟦f ′ = g′⟧ = ⋀
x∈V

f ′(x)↔ g′(x) = (f ′(∅)↔ g′(∅)) ∧ [⋀
x∈V

f(x)↔ g(x)] = ⟦f = g⟧

= (1↔ 1) ∧ [⋀
x∈V

f(x)↔ g(x)] = ⋀
x∈V

f(x)↔ g(x).
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Thus, we have that ⟦f ′ = g′⟧ = ⟦f = g⟧, which shows that

ω̂LvDashf = g → f ′ = g′ and ω̂LvDashf
′ = g′ → f = g.

Since these hold for arbitrary f, g ∈ ωL, we have that axioms (SF3) and (SF4) hold.

(SF5) (∀x)[(x ≠ 0)→ [(∃y)(x ≠ y′)]]

Let 0 ∈ QL be the zero map (i.e. we have sup 0 = ∅ so that 0 is the quantum set which

is the analogue of the classical natural number 0), and let f ∶ n → L with n = sup f ∈ ωc,

and f(i) ∶= Pi with Pi+1 ≤ Pi. Note that in order for this axiom to hold in our models, we

must have that ⟦f ≠ 0⟧ ≤ ⋁h∈ωL⟦f = h′⟧. First consider ⟦f = 0⟧; we have that

⟦f = 0⟧ = ⋀
x∈V

f(x)↔ 0(x) = ⋀
x∈V

f(x)↔ 0 = ⋀
x∈V

¬f(x) =⋀
i∈n

¬Pi = ¬P0.

Thus, we see that ⟦f ′ = 0⟧ = ¬P0, from which it follows that

⟦f ′ ≠ 0⟧ = ⟦∼ (f ′ = 0)⟧ = ¬⟦f ′ = 0⟧ = P0.

We next consider ⟦(∃y)(x = y′)⟧; we have that

⟦(∃y)(x = y′)⟧ = ⋁
h∈ωL

⟦f = h′⟧ = ⋁
h∈ωL

f ↔ h′.
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Let g ∈ ωL be such that f ∶m → L with m = sup g ∈ ωc, and g(i) ∶= Qi with Qi+1 ≤ Qi; we

then have that

⟦f = g′⟧ = ⋀
x∈V

f(x)↔ g′(x) = (f(∅)↔ 1) ∧ [⋀
x∈V
x≠∅

f(x)↔ g′(x)]

= (P0 ↔ 1) ∧ [ ⋀
i∈min(n,m)

i≠0

Pi ↔ Qi−1] = P0 ∧ [ ⋀
i∈min(n,m)

i≠0

Pi ↔ Qi−1].

However, since we consider

⟦(∃y)(x = y′)⟧ = ⋁
h∈ωL

⟦f = h′⟧ = ⋁
h∈ωL

f ↔ h′,

where h runs over all quantum sets h ∈ ωL, then the map g ∶ n − 1 → L defined by

g(i) ∶= Pi+1 for i ∈ n − 1 certainly exists and is included in the join. For this choice of g,

we have that

⟦f = g′⟧ = P0

since

⋀
i∈n
i≠0

Pi ↔ Qi−1 =⋀
i∈n
i≠0

Pi ↔ Pi = 1.

As such we have that ⟦f ≠ 0⟧ ≤ ⋁h∈ωL⟦f = h′⟧ (i.e. P0 ≤ P0), which shows that for any

f ∈ ωL, we have that ω̂LvDash(f ≠ 0) → [(∃y)(x = y′)]. It follows from this that the ax-

iom (∀x)[(x ≠ 0)→ [(∃y)(x ≠ y′)]] holds — i.e. ω̂LvDash(∀x)[(x ≠ 0)→ [(∃y)(x ≠ y′)]].
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We also have the following lemma.

Lemma 5.2. In any LS-structure ω̂L, the following properties hold.

(i) (∀x)(x = x)

(ii) (∀x)(∀y)(x = y → y = x)

(iii) (∀x)(∀y)(∀z)(x = y ∧ y = z → x = z)

Proof. Recall that for f, g ∈ ωL,

⟦f = g⟧ ∶= ⋀
x∈V

(f(x)↔ g(x)).

First note that

⟦f = f⟧ = ⋀
x∈V

(f(x)↔ f(x)) = 1,

which follows from the fact that in any orthomodular lattice L, we have that a↔ a = 1 for all

a ∈ L (by Lemma A.12 (2)). Since this holds for any f ∈ ωL, we have that (i) above holds in ω̂L

— i.e. ω̂L ⊧ (∀x)(x = x). Next note that

⟦f = g⟧ = ⋀
x∈V

(f(x)↔ g(x)) = ⋀
x∈V

(g(x)↔ f(x)) = ⟦g = f⟧,

which follows from the fact that in any orthomodular lattice L, we have that a↔ b = b↔ a for

all a, b ∈ L (see (1) in Lemma A.12). As such, we have that ⟦f = g → g = f⟧ = 1 for all f, g ∈ ωL;
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and so, it follows that ⟦(∀x)(∀y)(x = y → y = x)⟧ = 1, or equivalently, that (ii) holds in ω̂L —

i.e. ω̂L ⊧ (∀x)(∀y)(x = y → y = x). Finally, we have that for any f, g, h ∈ ωL,

⟦((f = g) ∧ (g = h))→ (f = h)⟧ = ⋀
x∈V

(f(x)↔ g(x) ∧ h(x)↔ h(x)) = ⋀
x∈V

(f(x)↔ h(x)),

which follows from (8) in Lemma A.12. However, since this holds for arbitrary f, g, h ∈ ωL, we

have that ⟦(∀x)(∀y)(∀z)[((f = g)∧ (g = h))→ (f = h)]⟧ = 1, so that (iii) above holds in ω̂L —

i.e. ω̂L ⊧ (∀x)(∀y)(∀z)[((f = g) ∧ (g = h))→ (f = h)].

Note that (i)–(iii) in the above lemma are just the standard equality axioms (E1)–(E3).

And so, Theorem 21 and Lemma 5.2 show that our quantum set theory has given rise to a

natural class of (non-standard) models ω̂L of the successor fragment of Peano arithmetic.

5.4 An Arithmetic for Quantum Natural Numbers

In this section we discuss an arithmetic for the quantum natural numbers. In what follows,

we will define an addition
⋅+ and multiplication

⋅× on any ωL, and then go on to show that

the arithmetic axioms due to Peano1 hold for these operations when L is modular. Further

motivation for the following definitions of
⋅+ and

⋅× comes, in some sense, from their properties

1Here we specifically mean the axioms (A1) — (A4) listed in Section 5.4.1 below. However, we note
that Peano arithmetic refers specifically to the arithmetic which is associated with the axioms (A1) —
(A4) along with the standard successor fragment axioms (axiom schema) (S1) — (S4) listed in Section
3.2. The same arithmetical axioms (A1) — (A4), when combined with the alternative successor fragment
axioms (SF1) — (SF5) listed in Section 5.3 above, yield an arithmetic which, in the presence of classical
logic, is strictly weaker than Peano arithmetic. It is the quantum analogue of the weaker arithmetic
which will occupy our attention below.
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in the case in which L = P(H). In particular, for f, g ∈ ωP(H), the eigenvalues of the Her-

mitian operator associated with f
⋅× g are obtained as products of eigenvalues of Af and Bg.

Similarly, the eigenvalues of the Hermitian operator associated with f
⋅+ g are obtained as sums

of eigenvalues of Af and Bg.
1 Further, when the Hermitian operators Af and Bg associated

with the quantum natural numbers f, g ∈ ωP(H) are such that [Af ,Bg] = 0 (i.e. Af and Bg

are commuting linear operators), the operations
⋅+ and

⋅× correspond to the ordinary sum and

product of linear operators.2 Moreover, when P(H) is modular, it can be shown that
⋅+ and

⋅×

are the unique binary operations which satisfy certain desirable criteria.3

This being said, we extend the language LS to include the additional operations
⋅+ and

⋅× — that is, we define the language ⟨LA, α⟩, where LPA ∶= {=} and LFA ∶= {0,1,′ ,
⋅+, ⋅×}, with

α(=) ∶= 2, α(0) ∶= 0, α(1) ∶= 0, α(′) ∶= 1, α( ⋅+) ∶= 2, and α( ⋅×) ∶= 2. Additionally, we extend the

LS-structures ω̂L to LA-structures ω̂(L), which we define by

ω̂(L) ∶= (ωL, L,{⟦=⟧},{0, ′,
⋅+, ⋅×}),

where (as before) for f, g ∈ ωL,

⟦f = g⟧ ∶= ⋀
x∈V

(f(x)↔ g(x)),

1See Theorems 26 and 27 in Section 5.6 below for a proof of these properties.

2See Theorems 5.7 and 5.8 below for a proof of these properties.

3See Theorems 28 and 29 in Section 5.6 below for a proof of these properties.
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and the interpretation of the operations 0 and ′ in the LFA-structures ω̂(L) remain the same

as in LFS -structures ω̂L. As for the interpretation of 1, we take 1 ∈ QL to be the map whose

support is the classical natural number 1 ∈ ωc, and which evaluates to 1 ∈ L on its support —

i.e. we have sup 1 = {∅} = 1 so that 1 is the quantum set which is the analogue of the classical

natural number 1). We now define the interpretation of addition
⋅+ and multiplication

⋅×1 in

any LA-structure ω̂(L). Let p, q ∈ ωc, and let A,B ∈ ωL be such that A ∶ p→ L, B ∶ q → L, with

A(i) ∶= Ai+1 for i ∈ p and Ai ≤ Aj for j ∈ i, and B(i) ∶= Bi+1 for i ∈ q with Bi ≤ Bj for j ∈ i. We

define

(A ⋅+ B)n ∶= An ∨Bn ∨ [
n−1

⋁
k=1

(Ak ∧Bn−k)] = An ∨Bn ∨ [ ⋁
k+j≥n

Ak ∧Bj]

and

(A ⋅× B)n ∶= ⋁
s,t≤n;s⋅t≥n

(Ps ∧Qt) =
n

⋁
s=1

(Ps ∧Q[n
s
]) = ⋁

k⋅j≥n

Ak ∧Bj ,

where [ns ] denotes the smallest integer greater than n
s . A proof of the right-most equality in

the above expressions for
⋅+ and

⋅× is given by Lemmas 5.3 and 5.4 below, respectively.

1Note that from here on, when talking about the arithmetic of the quantum natural numbers, we
will denote the quantum natural numbers by A,B, ... instead of f, g, ... that we have been using up to
now. This allows us surreptitiously to naturally use the same symbol for a quantum natural number
and its associated Hermitian operator when L = P(H). Also notice that we change the way in which
we name the elements of the decreasing sequence associated with a quantum natural number — i.e. we
now denote the first element of a sequence by A1 instead of A0. This notational shift facilitates future
computations and makes certain conditions easier to state.
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Lemma 5.3. Let p, q ∈ ωc, and let A,B ∈ ωL be such that A ∶ p→ L, B ∶ q → L, with A(i) ∶= Ai+1

for i ∈ p and Ai ≤ Aj for j ∈ i, and B(i) ∶= Bi+1 for i ∈ q with Bi ≤ Bj for j ∈ i. Then

n−1

⋁
k=1

Ak ∧Bn−k = ⋁
k+j≥n

Ak ∧Bj .

Proof. Clearly, we have that

n−1

⋁
k=1

Ak ∧Bn−k ≤ ⋁
k+j=n

Ak ∧Bj .

Consider Ak∧Bj with k+j ≥ n. It follows that j ≥ n−k, and since the Bi’s form a decreasing

sequence, we have that Bj ≤ Bn−k. As such, we see that anything extra in ⋁k+j=nAk ∧Bj will

not contribute to the join because it will be less than some element which is in ⋁n−1
k=1 Ak ∧Bn−k.

Thus, we have that

⋁
k+j=n
k≤n

Ak ∧Bj =
n−1

⋁
k=1

Ak ∧Bn−k.

Now, for n < k, we have that

Ak ∧Bj ≤ An−1 ∧Bj ≤ An−1 ∧B1,

and we see that these terms won’t contribute to the join either. As such, we see that

⋁
k+j≥n

Ak ∧Bj ≤
n−1

⋁
k=1

Ak ∧Bn−k.
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Together, these inequalities give that

⋁
k+j≥n

Ak ∧Bj =
n−1

⋁
k=1

Ak ∧Bn−k.

Lemma 5.4. Let p, q ∈ ωc, and let A,B ∈ ωL be such that A ∶ p→ L, B ∶ q → L, with A(i) ∶= Ai+1

for i ∈ p and Ai ≤ Aj for j ∈ i, and B(i) ∶= Bi+1 for i ∈ q with Bi ≤ Bj for j ∈ i. Then

n−1

⋁
s=1

As ∧B[n
s
] = ⋁

k⋅j≥n

Ak ∧Bj .

Proof. Clearly, we have that

n−1

⋁
s=1

As ∧B[n
s
] ≤ ⋁

k⋅j≥n

Ak ∧Bj

since each term in ⋁n−1
s=1 As ∧B[n

s
] is a term in ⋁k⋅j≥nAk ∧Bj .

Consider Ak ∧Bj with k ⋅ j ≥ n. It follows that j ≥ n
k , so that [nk ] ≤ j. We then have that

Ak ∧Bj ≤ Ak ∧B[n
k
] since the Bi’s form a decreasing sequence. As such, we see that anything

extra in ⋁k⋅j≥nAk ∧Bj will not contribute to the join because it will be less than some element

which is in ⋁ns=1As ∧B[n
s
]. Thus, we see that

⋁
k⋅j≥n

Ak ∧Bj ≤
n

⋁
s=1

As ∧B[n
s
].
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Together, these inequalities give that

⋁
k⋅j≥n

Ak ∧Bj =
n

⋁
s=1

As ∧B[n
s
].

With regard to the arithmetical operations
⋅× and

⋅+, we obviously must have that each

of A
⋅× B and A

⋅+ B is associated with a decreasing sequence of elements of the relevant

orthomodular lattice L in order for
⋅× and

⋅+ to be well-defined operations in any LA-structure

ω̂(L). It turns out that this is relatively straight-forward to show, and the details are included

below in Lemmas 5.5 and 5.6.

Lemma 5.5. (A ⋅+ B)n+1 ≤ (A ⋅+ B)n.

Proof. In what follows, we denote An = Pn and Bn = Qn for any n ∈ ωc. By definition, we have

that

(A ⋅+ B)n = Pn ∨Qn ∨ [
n−1

⋁
k=1

(Pk ∧Qn−k)]

and

(A ⋅+ B)n+1 = Pn+1 ∨Qn+1 ∨ [
n

⋁
k=1

(Pk ∧Qn+1−k)].

However, since both the Pi’s and the Qi’s form a decreasing sequence, we have that Pn+1 ≤ Pn

and Qn+1 ≤ Qn. Now, if we consider the terms in ⋁n−1
k=1(Pk ∧Qn−k) and ⋁nk=1(Pk ∧Qn1−k), we

see that

n−1

⋁
k=1

(Pk ∧Qn−k) = (P1 ∧Qn−1) ∨ (P2 ∧Qn−2) ∨ ... ∨ (Pn−1 ∧Q1)
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and

n

⋁
k=1

(Pk ∧Qn+1−k) = (P1 ∧Qn) ∨ (P2 ∧Qn−1) ∨ ... ∨ (Pn ∧Q1).

Since Qn ≤ Qn−1, we have that P1 ∧ Qn ≤ P1 ∧ Qn−1; in general, we have that Ps ∧ Qn+1−s ≤

Ps∧Qn−s. Thus, since every term in (A ⋅+ B)n+1 is less than or equal to the corresponding term

in (A ⋅+ B)n, we obtain the result

(A ⋅+ B)n+1 ≤ (A ⋅+ B)n.

Lemma 5.6. (A ⋅× B)n+1 ≤ (A ⋅× B)n.

Proof. In what follows, we denote An = Pn and Bn = Qn for any n ∈ ωc. By definition, we have

that

(A ⋅× B)n =
n

⋁
s=1

(Ps ∧Q[n
s
])

and

(A ⋅× B)n+1 =
n+1

⋁
s=1

(Ps ∧Q[n+1
s

])

Since the Qi’s form a decreasing sequence, we have that Qn+1 ≤ Qn, from which it follows that

Q[n+1
s

] ≤ Q[n
s
] for any classical natural number s. As such,

Ps ∧Q[n+1
s

] ≤ Ps ∧Q[n
s
],
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so that every term in (A ⋅× B)n+1 is less than or equal to the corresponding term in (A ⋅× B)n,

and we obtain the result

(A ⋅× B)n+1 ≤ (A ⋅× B)n.

One interesting feature of these arithmetical operations in the case in which L = P(H), is

that if two quantum natural numbers are associated with commuting Hermitian operators, then

⋅× and
⋅+ correspond to ordinary multiplication and addition, respectively, of these operators.

We now prove these properties (Lemmas 5.7 and 5.8 below).

Lemma 5.7. Let L = P(H), and let A and B be linear operators associated with quantum

natural numbers such that [A,B] = 0. Then A
⋅+ B = A + B, where “+” denotes ordinary

addition of linear operators.

Proof. We first note that [A,B] = 0 implies that there exists a basis for H consisting of common

eigenvectors of A and B. (In what follows, we denote An = Pn and Bn = Qn for any n ∈ ωc.)

We also have that the projector Rn associated with (A +B)n is such that Rn is the projector

onto the subspace given by Span({∣ψi⟩}i∈I), where

{∣ψi⟩}i∈I ∶= {∣ψi⟩ ∈H ∣ (A +B)∣ψi⟩ = λi∣ψi⟩ with λi ≥ n}.

Let A↔ P1, P2, ...Pk, where Pn is the projector onto the subspace given by the span of

{∣ψi⟩ ∈H ∣ A∣ψi⟩ = γi∣ψi⟩ with γi ≥ n}.
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And, let B ↔ Q1,Q2, ...Qm, where Qn is the projector onto the subspace given by the span of

{∣ψi⟩ ∈H ∣ B∣ψi⟩ = νi∣ψi⟩ with νi ≥ n}.

Also, recall that by definition, we have that

(A ⋅+ B)n ∶= Pn ∨Qn ∨ [
n−1

⋁
k=1

(Pk ∧Qn−k)].

For ∣ψi⟩ an element of the subspace associated with Pn, we have that A∣ψi⟩ = γi∣ψi⟩ with

γi ≥ n; also, we have that (A +B)∣ψi⟩ = λi∣ψi⟩, where λi = γi + µi (which follows from the fact

that A and B are commuting Hermitian operators with positive integer eigenvalues). How-

ever, this shows that (since λi ≥ γi ≥ n) ∣ψi⟩ is an element of the subspace associated with Rn.

Similarly, for ∣ψi⟩ an element of the subspace associated with Qn, we have that B∣ψi⟩ = µi∣ψi⟩

with µi ≥ n; also, we have that (A + B)∣ψi⟩ = λi∣ψi⟩, where λi = γi + µi (which follows from

the fact that A and B are commuting Hermitian operators with positive integer eigenvalues).

However, this shows that (since λi ≥ γi ≥ n) ∣ψi⟩ is an element of the subspace associated with

Rn. Since these results give that Pn ≤ Rn and Qn ≤ Rn, respectively, it follows that Pn∨Qn ≤ Rn.

Next consider Pk ∧ Qn−k for k ∈ {1,2, ...n − 1}. Let ∣ψi⟩ be an element of the subspace

associated with Pk ∧ Qn−k; then we have that A∣ψi⟩ = γi∣ψi⟩ with γi ≥ k and B∣ψi⟩ = µi∣ψi⟩

with µi ≥ n − k. Then (A + B)∣ψi⟩ = λi∣ψi⟩, where λi = γi + µi ≥ k + n − k = n, which shows

that ∣ψi⟩ is an element of the subspace associated with Rn; and thus that Pk ∧Qn−k ≤ Rn (for
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k ∈ {1,2, ...n − 1}). Since each such term is ≤ Rn, we have that [⋁n−1
k=1 Pk ∧Qn−k] ≤ Rn.

The latter result, along with the fact (established above) that Pn ∨Qn ≤ Rn gives that

Pn ∨Qn ∨ [
n−1

⋁
k=1

Pk ∧Qn−k] ≤ Rn,

i.e. (A ⋅+ B)n ≤ Rn = (A +B)n.

We next wts that (A + B)n = Rn ≤ (A ⋅+ B)n. Let ∣ψi⟩ be such that it is an element of

the subspace associated with Rn; then we have that (A +B)∣ψi⟩ = λi∣ψi⟩, where λi =≥ n. Now,

we have that λi = γi + µi ≥ n, where A∣ψi⟩ = γi∣ψi⟩ and B∣ψi⟩ = µi∣ψi⟩ since ∣ψi⟩ is a common

eigenvector of A and B.

If µi = 0, then γi ≥ n, and as such, ∣ψi⟩ is an element of the subspace associated with Pn

(from which it follows that ∣ψi⟩ is an element of the subspace associated with (A ⋅+ B)n). Sim-

ilarly, if γi = 0, then µi ≥ n, and as such, ∣ψi⟩ is an element of the subspace associated with Qn

(from which it follows that ∣ψi⟩ is an element of the subspace associated with (A ⋅+ B)n). Next,

suppose that λi = n; if µi ≠ 0 and γi ≠ 0, and γi = k for some k ≤ n, then µi = n − k and we have

that ∣ψi⟩ is an element of the subspace associated with Pk ∧Qn−k, so that ∣ψi⟩ is an element of

the subspace associated with (A ⋅+ B)n. Since any terms Pm ∧Ql with m + l > n are such that

Pm ∧Ql ≤ Pk ∧Qn−k for some k < n (which follows from the fact that both the Pi’s and the

Qj ’s form decreasing sequences), we have that if ∣ψi⟩ is an element of the subspace associated
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with Pm ∧Ql, then ∣ψi⟩ is an element of the subspace associated with (A ⋅+ B)n. As such, we

see that Rn ≤ (A ⋅+ B)n.

Together, the results Rn ≤ (A ⋅+ B)n and (A ⋅+ B)n ≤ Rn give that Rn = (A ⋅+ B)n; and since

Rn = (A +B)n, we have that (A +B)n = (A ⋅+ B)n, from which it follows that A +B = A ⋅+ B

whenever [A,B] = 0.

Lemma 5.8. Let L = P(H), and let A and B be linear operators associated with quantum

natural numbers such that [A,B] = 0. Then A
⋅× B = A ⋅ B, where “⋅” denotes ordinary

multiplication of linear operators.

Proof. We first note that [A,B] = 0 implies that there exists a basis for H consisting of common

eigenvectors of A and B. (In what follows, we denote An = Pn and Bn = Qn for any n ∈ ωc.)

We also have that the projector Rn associated with (A ⋅B)n is such that Rn is the projector

onto the subspace given by Span({∣ψi⟩}i∈I), where

{∣ψi⟩}i∈I ∶= {∣ψi⟩ ∈H ∣ (A +B)∣ψi⟩ = λi∣ψi⟩ with λi ≥ n}.

Let A↔ P1, P2, ...Pk, where Pn is the projector onto the subspace given by the span of

{∣ψi⟩ ∈H ∣ A∣ψi⟩ = γi∣ψi⟩ with γi ≥ n}.
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And, let B ↔ Q1,Q2, ...Qm, where Qn is the projector onto the subspace given by the span of

{∣ψi⟩ ∈H ∣ B∣ψi⟩ = νi∣ψi⟩ with νi ≥ n}.

Also, recall that by definition, we have that

(A ⋅× B)n ∶= ⋁
s,t≤n
s⋅t≥n

(Ps ∧Qt) =
n

⋁
s=1

(Ps ∧Q[n
s
]),

where [ns ] denotes the smallest integer greater than n
s .

First suppose that ∣ψi⟩ is an element of the subspace associated with Ps ∧ Qt, where

s, t ∈ {1, ...n} and s ⋅ t ≥ n. This gives that A∣ψi⟩ = γi∣ψi⟩ with γi ≥ s and B∣ψi⟩ = µi∣ψi⟩

with µi ≥ t since A and B are commuting linear operators with positive integer eigenvalues. As

such, we see that γi ⋅ µi ≥ s ⋅ t ≥ n so that ∣ψi⟩ is an element of the subspace associated with Rn

— i.e. (A ⋅ B)∣ψi⟩ = λi∣ψi⟩, where λi = γi ⋅ µi ≥ n, which shows that ∣ψi⟩ is an element of the

subspace associated with Rn. Thus, since this holds for any choice of s, t ∈ {1, ...n} with s ⋅ t ≥ n,

we have that (A ⋅× B)n ≤ Rn.

Now suppose that ∣ψi⟩ is an element of the subspace associated with Rn. This gives that

(A ⋅B)∣ψi⟩ = λi∣ψi⟩, where λi ≥ n and λi = γi ⋅µi since A and B are commuting linear operators

with positive integer eigenvalues. In order to see that ∣ψi⟩ is an element of the subspace asso-

ciated with (A ⋅× B)n, note that since γi = k for some positive integer k and µi = m for some
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positive integer m, with k ⋅m ≥ n, we have that ∣ψi⟩ is an element of the subspace associated

with Pk ∧ Qm, which is some element of ⋁s,t≤n
s⋅t≥n

(Ps ∧ Qt) = (A ⋅× B)n. If, on the other hand,

either γi�≤n or µi�≤n, we would still have that ∣ψi⟩ is an element of the subspace associated

with Pγi ∧Qµi . However, because the Pi’s and Qi’s form a decreasing sequence, we have that

Pγi ∧Qµi ≤ Pk ∧Qm for some positive integers m,k which satisfy the constraint k ≤ n, m ≤ n

and k ⋅m ≥ n. Thus, we have that Rn ≤ (A ⋅× B)n.

Together, the results Rn ≤ (A ⋅× B)n and (A ⋅× B)n ≤ Rn give that Rn = (A ⋅× B)n; and since

Rn = (A ⋅ B)n, we have that (A ⋅ B)n = (A ⋅× B)n, from which it follows that A ⋅ B = A ⋅× B

whenever [A,B] = 0.

5.4.1 The Arithmetic Axioms

The purely arithmetical axioms we consider (due to Peano) are given by

(A1) (∀x)[x ⋅+ 0 = x]

(A2) (∀x)(∀y)[x ⋅+ y′ = (x ⋅+ y)′]

(A3) (∀x)[x ⋅× 1 = x]

(A4) (∀x)(∀y)[x ⋅× y′ = (x ⋅× y) ⋅+ x]

Using the definitions of the arithmetical operations
⋅× and

⋅+ given above, we have that the first

three arithmetic axioms hold in any LA-structure ω̂(L), as Theorem 22 below shows. However,

the fourth axiom holds if and only if the L is modular ; for a proof of this result, see Theorem

23 below.
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Theorem 22. The arithmetic axioms (A1) — (A3) hold in any LA-structure ω̂(L).

Proof. In what follows, we denote An = Pn and Bn = Qn for any n ∈ ωc.

(A1) (∀x)[x ⋅+ 0 = x]

By definition, we have that

(A ⋅+ B)n ∶= Pn ∨Qn ∨ [
n−1

⋁
k=1

(Pk ∧Qn−k)],

and also, 0n = 0 for all n. And so,

(A ⋅+ 0)n = Pn ∨ 0 ∨ [
n−1

⋁
k=1

(Pk ∧ 0)] = Pn.

We clearly have thatAn = Pn for anyA. Thus, for anyA ∈ ωL, we have that ω̂(L)vDashA ⋅+

0 = A, so that axiom (A1) holds in ω̂(L) — i.e. ω̂(L) ⊢ (∀x)[x ⋅+ 0 = x].

(A2) (∀x)(∀y)[x ⋅+ y′ = (x ⋅+ y)′]

First note that (B′)n = Bn−1 for all n ≠ 1 and (B′)1 = 1. Now, by definition, we have that

(A ⋅+ B′)n ∶= Pn ∨Qn−1 ∨ [
n−1

⋁
k=1

(Pk ∧Q(n−1)−k)]

= Pn ∨Qn−1 ∨ [
n−2

⋁
k=1

Pk ∧Q(n−1)−k] ∨ (Pn−1 ∧ 1)

= Pn ∨ Pn−1 ∨Qn−1 ∨ [
n−2

⋁
k=1

Pk ∧Q(n−1)−k]
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= Pn−1 ∨Qn−1 ∨ [
n−2

⋁
k=1

Pk ∧Q(n−1)−k],

where the last equality follows from the fact that Pn−1 ∨ Pn = Pn−1 since the Pi’s form a

decreasing sequence. Now consider [(A ⋅+ B)n]′. We have that

[(A ⋅+ B)n]′ = (A ⋅+ B)n−1 = Pn−1 ∨Qn−1 ∨ [
n−2

⋁
k=1

Pk ∧Q(n−1)−k].

Thus, we see that for arbitrary A,B ∈ ωL, we have that ω̂(L)vDash[A ⋅+ B]′ = A ⋅+ B′.

As such, we have that axiom (A2) holds in ω̂(L) — i.e.

ω̂(L) ⊢ (∀x)(∀y)[x ⋅+ y′ = (x ⋅+ y)′].

(A3) (∀x)[x ⋅× 1 = x]

By definition, we have that

(A ⋅× B)n ∶= ⋁
s,t≤n
s⋅t≥n

(Ps ∧Qt) =
n

⋁
s=1

(Ps ∧Q[n
s
]),

where [ns ] denotes the smallest integer greater than n
s , and also 11 = 1, while 1n = 0 for

all n > 1. And so,

(A ⋅× 1)n =
n

⋁
s=1

(Ps ∧ 1[n
s
]) = Pn ∧ 1 = Pn.

We clearly have thatAn = Pn for anyA. Thus, for anyA ∈ ωL, we have that ω̂(L)vDashA ⋅×

1 = A, so that axiom (A3) holds in ω̂(L) — i.e. ω̂(L) ⊢ (∀x)[x ⋅× 1 = x].
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Theorem 23. The distributive axiom (A4) of arithmetic holds in an LA-structure ω̂(L) if and

only if L is modular.

Proof.

● Let A = (A1,A2, ...Ai...) and B = (B1,B2, ...Bq...). We have that

(A ⋅× B′)n = An ∨ ⋁
k⋅j≥n
j≠1

Ak ∧Bj−1,

where we have used Lemma 5.4 along with the fact that (B′)n = Bn−1 for all n ≠ 1, and

(B′)1 = 1. We also have that

((A ⋅× B) ⋅+ A)n = An ∨ ⋁
k⋅j≥n

(Ak ∧Bj) ∨ ⋁
k+j≥n

[( ⋁
s⋅t≥k

(As ∧Bt)) ∧Aj],

where we have used Lemma 5.3 along with the fact that by Lemma 5.4, (A ⋅× B)n =

⋁k⋅j≥nAk ∧Bj . Finally, we recall that the modular identity is given by

x ≤ bÔ⇒ x ∨ (a ∧ b) = (x ∨ a) ∧ b.

We first show that ((A ⋅× B) ⋅+ A)n ≤ (A ⋅× B′)n. We do this by showing that each piece of

the expression for ((A ⋅× B) ⋅+ A)n is ≤ some piece in (A ⋅× B′)n; it then follows that the

join of all such pieces is ≤ (A ⋅× B′)n. We clearly have that An ≤ (A ⋅× B′)n. Now, for the
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term ⋁k⋅j≥n(Ak ∧Bj), we consider the following two cases: j = 1 and j ≠ 1. For j = 1, we

have that k ⋅ j ≥ n implies that k ≥ n. Since in such a case (i.e. for n ≤ k) Ak ≤ An (since

the Ai’s form a decreasing sequence), we have that Ak ∧Bα ≤ An for any Bα; as such, we

have in this case that Ak ∧Bj ≤ (A ⋅× B′)n. Now suppose that j ≠ 1 — since the Bi’s form

a decreasing sequence, we know that Bj ≤ Bj−1, and hence, Ak ∧Bj ≤ Ak ∧Bj−1, which

shows that Ak ∧Bj ≤ (A ⋅× B′)n. And so, it follows that

⋁
k⋅j≥n

(Ak ∧Bj) ≤ (A ⋅× B′)n.

We next consider the last term in ((A ⋅× B) ⋅+ A)n — namely,

⋁
k+j≥n

[( ⋁
s⋅t≥k

(As ∧Bt) ∧Aj)].

As such, we take k + j ≥ n, and consider (⋁s⋅t≥k(As ∧Bt)) ∧Aj — we have that

( ⋁
s⋅t≥k

(As ∧Bt)) ∧Aj = ( ⋁
s⋅t≥k
s≥j

(As ∧Bt) ∨ ⋁
s⋅t≥k
s<j

(As ∧Bt)) ∧Aj .

For j ≤ s, we have that As ≤ Aj so that As ∧Bt ≤ Aj ; and thus, [⋁s⋅t≥k,s≥j(As ∧Bt)] ≤ Aj .

We now use modularity along with the latter inequality (i.e. [⋁s⋅t≥k,s≥j(As ∧Bt)] ≤ Aj)

in order to re-associate — i.e. we have that

[ ⋁
s⋅t≥k
s≥j

(As ∧Bt) ∨ ⋁
s⋅t≥k
s<j

(As ∧Bt)] ∧Aj
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= [ ⋁
s⋅t≥k,s≥j,s,t≤k

(As ∧Bt)] ∨ [Aj ∧ ( ⋁
s⋅t≥k,s<j

(As ∧Bt))].

Wlog, we consider k + j = n, and as such, we have that k = n − j. Then, since s ≥ l, we

have l
s ≤ 1, so that

t ≥ n
s
− j
s
≥ n
s
− 1,

which implies that Bt ≤ B[n
s
]−1. This in turn, implies that

As ∧Bt ≤ As ∧B[n
s
]−1.

(We have that n ≤ s ⋅ [ns ].) And since

n

s
= k + j

s
= k
s
+ j
s
≥ 1,

As ∧B[n
s
]−1 is some term in ⋁k⋅j≥n

j≠1
Ak ∧Bj−1; thus, we have that each such term satisfies

As ∧Bt ≤ ⋁
k⋅j≥n
j≠1

Ak ∧Bj−1 ≤ (A ⋅× B′)n.

It then follows that

⋁
s⋅t≥k,s≥j
s,t≤k

(As ∧Bt) ≤ ⋁
k⋅j≥n
j≠1

Ak ∧Bj−1 ≤ (A ⋅× B′)n.
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Finally, we consider Aj ∧ [⋁s⋅t≥k,s<j(As ∧Bt)]. Here we have that (since 1
j ≤

1
s )

t ≥ k
s
= n − j

s
≥ n − j

j
≥ [n

j
] − 1,

which implies that Bt ≤ B[n
j
]−1. We also have that j < n (since we take k + j = n), and

so 2 ≤ [nj ] (which follows from the fact that 1 < n
j ). And so, we have that Aj ∧ B[n

j
]−1

is a term in ⋁k⋅j≥n
j≠1

(Ak ∧Bj−1). Now, since Bt ≤ B[n
j
]−1 and As ∧Bt ≤ Bt, it follows that

[⋁s⋅t≥k
s<j

(As ∧Bt)] ≤ B[n
j
]−1, and thus,

Aj ∧ [ ⋁
s⋅t≥k
s<j

(As ∧Bt)] ≤ Aj ∧B[n
j
]−1.

Then, finally, using the above result that Aj ∧B[n
j
]−1 is a term in ⋁k⋅j≥n

j≠1
(Ak ∧Bj−1), we

have that

Aj ∧ [ ⋁
s⋅t≥k
s<j

(As ∧Bt)] ≤ ⋁
k⋅j≥n
j≠1

(Ak ∧Bj−1) ≤ (A ⋅× B′)n.

Since we have shown that all terms in ((A ⋅× B) ⋅+ A)n is ≤ some piece in (A ⋅× B′)n; it

then follows that the join of all such pieces is ≤ (A ⋅× B′)n. From this, we establish that

((A ⋅× B) ⋅+ A)n ≤ (A ⋅× B′)n.
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We now show that (A ⋅× B′)n ≤ ((A ⋅× B) ⋅+ A)n. We note that this inequality ef-

fectively follows from the distributive inequality (which holds in any lattice). Consider

⋁k+j≥n[(⋁s⋅t≥k(As ∧Bt)) ∧Aj]. Using the distributive inequality, we have that

⋁
k+j≥n

[( ⋁
s⋅t≥k

(As ∧Bt ∧Aj)] ≤ ⋁
k+j≥n

[( ⋁
s⋅t≥k

(As ∧Bt)) ∧Aj].

We also have that

⋁
k+j≥n

[( ⋁
s⋅t≥k
s≥j

(As ∧Bt ∧Aj)] ≤ ⋁
k+j≥n

[( ⋁
s⋅t≥k

(As ∧Bt ∧Aj)].

Since As ∧Aj = As when s ≥ j, we have that the above inequality simplifies to

⋁
k+j≥n

[( ⋁
s⋅t≥k
s≥j

(As ∧Bt)] ≤ ⋁
k+j≥n

[( ⋁
s⋅t≥k

(As ∧Bt ∧Aj)],

and thus we see that,

⋁
k+j≥n

[( ⋁
s⋅t≥k
s≥j

(As ∧Bt)] ≤ ⋁
k+j≥n

[( ⋁
s⋅t≥k

(As ∧Bt)) ∧Aj].

Now, k ≥ n − j so s ⋅ t ≥ k becomes s ⋅ t ≥ n − j; also, j ≤ s so

s(t + 1) = s ⋅ t + s ≥ n − j + s ≥ n,



188

where we have used that s− j ≥ 0 (since j ≤ s) to establish that n ≤ s(t+1). These results

show that

[ ⋁
k+j≥n

( ⋁
s⋅t≥k
s≥j

(As ∧Bt))] ≤ ⋁
s(t+1)≥n

(As ∧Bt).

We now wts that

[ ⋁
s(t+1)≥n

(As ∧Bt)] ≤ ⋁
k+j≥n

[( ⋁
s⋅t≥k
s≥j

(As ∧Bt))].

Assume that s(t+1) ≥ n; then for k = s⋅t and j = s, we have that k+j = s(t+1). But, k = s⋅t

and j = s show that s ⋅ t ≥ k and s ≥ j, so the term As ∧Bt is in ⋁k+j≥n[(⋁s⋅t≥k
s≥j

(As ∧Bt))],

which establishes the above inequality. Together the two inequalities give that

[ ⋁
s(t+1)≥n

(As ∧Bt)] = ⋁
k+j≥n

[( ⋁
s⋅t≥k
s≥j

(As ∧Bt))].

Relabelling t + 1 ∶= m (noting that the fact that s and t are positive integers gives that

m ≠ 1), we have that [⋁s(t+1)≥n(As ∧Bt)] becomes [⋁s⋅m≥n
m≠1

(As ∧Bm)], and thus, we see

that

[ ⋁
s⋅m≥n
m≠1

(As ∧Bm)] ≤ ⋁
k+j≥n

[( ⋁
s⋅t≥k

(As ∧Bt)) ∧Aj].

It then follows that (A ⋅× B′)n ≤ ((A ⋅× B) ⋅+ A)n.

● What follows is a counter-example that shows that the distributive axiom (A4) of arith-

metic does not hold generally in our models for addition and multiplication of quantum
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natural numbers defined by (for A(i) ∶= Pi+1 for i ∈ supA with Pi ≤ Pj for j ≤ i and

B(i) ∶= Qi+1 for i ∈ supB with Qi ≤ Qj for j ≤ i)

(A ⋅+ B)n ∶= Pn ∨Qn ∨ [
n−1

⋁
k=1

(Pk ∧Qn−k)],

and

(A ⋅× B)n ∶= ⋁
s,t≤n
s⋅t≥n

(Ps ∧Qt) =
n

⋁
s=1

(Ps ∧Q[n
s
]),

respectively, where [ns ] denotes the smallest integer greater than n
s . We note that this

counter-example requires the OML L to be non-modular; as such, it shows that if the

OML L is non-modular, then the distributive axiom of Peano arithmetic does not hold

— i.e. modularity is necessary for the distributive axiom of Peano arithmetic to hold.

We let

A = (P1, P2, P3) and B = (Q1,Q2,Q3)

Also, we recall that any OML which is not modular has an M5 sub-lattice. We take the

top element of that M5 sub-lattice to be P1 = Q1, and define the bottom element to be

x; we take Q2 = Q3 to be the “nose” of the M5 sub-lattice and take the elements of the

other chain to be P2 and P3, where P3 ≤ P2. We compare (A ⋅× B′)5 and ((A ⋅× B) ⋅+ A)5.



190

In order to evaluate (A ⋅× B′)5, note that B′ = (I,Q1,Q2,Q3). We have that

(A ⋅× B′)5 = ⋁
s,t≤5
s⋅t≥5

(As ∧ (B′)t) = (A3 ∧ (B′)2) ∨ (A2 ∧ (B′)3)

= (P3 ∧Q1) ∨ (P2 ∧Q2) = P3 ∨ x = P3,

where we have used the fact that in order to evaluate ⋁s,t≤p;s⋅t≥p(Ps ∧Qt), we only need

to take (for each fixed Pj) Pn ∧Qm, where m is the smallest integer with which n can be

paired.

Next consider the terms of A
⋅× B. We have that

(A ⋅× B)1 = P1 ∧Q1 = P1 = Q1

(A ⋅× B)2 = (P1 ∧Q2) ∨ (P2 ∧Q1) = P1 = Q1

(A ⋅× B)3 = (P1 ∧Q3) ∨ (P2 ∧Q2) ∨ (P3 ∧Q1) = P1 = Q1

(A ⋅× B)4 = (P3 ∧Q2) ∨ (P2 ∧Q2) = (P2 ∧Q2) = x
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(A ⋅× B)5 = (P3 ∧Q2) ∨ (P2 ∧Q3) = x.

Using these results, we have that

((A ⋅× B) ⋅+ A)5

= P5 ∨ (A ⋅× B)5 ∨ (P1 ∧ (A ⋅× B)4) ∨ (P2 ∧ (A ⋅× B)3) ∨ (P3 ∧ (A ⋅× B)2) ∨ (P4 ∧ (A ⋅× B)1)

= 0 ∨ x ∨ (P1 ∧ x) ∨ (P2 ∧ P1) ∨ (P3 ∧ P1) ∨ (0 ∧ P1) = x ∨ x ∨ P2 ∨ P3 = P2.

Clearly P2 ≠ P3, so we see that the distributive axiom of Peano arithmetic does not hold.

Together, Theorems 22 and 23, along with Lemma 5.2 (with the LS-wffs that appear in

the lemma considered as LA-wffs) show that the LA-structures ω̂(L) are models for M-systems

(LA,AA) if and only if L is modular, where AA is taken to consist of the successor fragment

axioms (SF1)–(SF5) along with the purely arithmetical axioms (A1)–(A4). Additionally, we

note that Theorem 23 is a little surprising — we would not have expected modularity to play

this role in our quantum arithmetic. We also note that this result shows that in the context of

quantum logic and quantum set theory (on which the arithmetic is built), the algebraic prop-

erty of modularity has purely arithmetical content! This result also suggests that there should

be some natural way of reducing the axiom using modularity — this is to say that we would
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like some clever way of rewriting (in a form which is equivalent to the usual one in the presence

of classical logic) the axiom (A4) so that it holds in any LA-structure ω̂(L), and when L is

modular, it reduces to the standard distributivity axiom.1

5.4.2 Substitution Axioms

The substitution axioms for
⋅+ and

⋅× are given by (respectively)

(Sub+) (∀x)(∀y)(∀z)[x = y → x
⋅+ z = y ⋅+ z],

(Sub×) (∀x)(∀y)(∀z)[x = y → x
⋅× z = y ⋅× z].

We note that in order for these to hold in our models ω̂(L), we must have that the following

lattice inequalities hold in L (for arbitrary A,B,C ∈ ωL):

⟦A = B⟧ ≤ ⟦A ⋅+ C = B ⋅+ C⟧

and

⟦A = B⟧ ≤ ⟦A ⋅× C = B ⋅× C⟧,

respectively.

The following lemmas (i.e. Lemmas 5.9 and 5.10) provide simple examples which show that

these inequalities are not satisfied in general.

1This is actually something that, at the time of the writing of this document, we are still working on.
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Lemma 5.9. In the models ω̂(L), the substitution axiom for
⋅× does not hold in general.

Proof. In order to see that substitution for
⋅× does not hold generally, let L = P(H) where

dim(H) = 2, and let

A = (I, I, I, P,P,P ), B = (I, I, I, I, P,P ), and C = (I, I, I, I,Q,Q),

where P ≠ Q and P,Q ≠ I,0. Now, note that ⟦A = B⟧ = P . That this is what A = B valuates to

follows from the fact that in ⋀i∈I Ai ↔ Bi, we get at least one term that is P ↔ 1, and we get

no P ↔ 0 terms; all other terms in ⋀i∈I Ai ↔ Bi are 1. Thus, we have ⟦A = B⟧ = P .

Now, an explicit calculation gives that

A
⋅× C = (I, I, ...I, P,P, ...P ),

where there are 18 I’s and 6 P ’s; also, we obtain B
⋅× C = (I, I, ...I), where there are 24 I’s.

Finally, we have that ⟦A ⋅× C = B ⋅× C⟧ = 0 since ⋀i∈I(A
⋅× C)i∧(B

⋅× C)i has at least one term

that is P ↔ Q = 0. (Note that P ↔ Q = 0 follows from the fact that P → Q = ¬P ∨(P ∧Q) = ¬P

and Q → P = ¬Q ∨ (P ∧ Q) = ¬Q, so that P ↔ Q = ¬P ∧ ¬Q = 0 since we consider a two-

dimensional example and we take P ≠ Q and P,Q ≠ I,0.)

And so, since P �≤0, we see that ⟦A = B⟧�≤⟦A
⋅× C = B ⋅× C⟧, which shows that substitution

for
⋅× does not hold even in the in the two-dimensional case.

Lemma 5.10. In the models ω̂(L), the substitution axiom for
⋅+ does not hold in general.
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Proof. In order to see that substitution for
⋅× does not hold generally, we again let L = P(H)

where dim(H) = 2, and we let

A = (I, I, I), B = (Q,Q,Q), and C = (I,P,P ),

where P ≠ Q and P,Q ≠ I,0. Now, note that ⟦A = B⟧ = Q. That this is what A = B valuates to

follows from the fact that in ⋀i∈I Ai ↔ Bi, the only contributions come from I ↔ Q = Q (since

all other terms are 0↔ 0 = 1); thus, we have that ⟦A = B⟧ = Q. An explicit calculation gives

A
⋅+ C = (I, I, I, I, P,P ) and B

⋅+ C = (I, I, I,Q,Q),

from which we see that

⟦A ⋅× C = B ⋅× C⟧ =⋀
i∈I

(A ⋅× C)i ∧ (B ⋅× C)i

= (I ↔ I) ∧ (I ↔ I) ∧ (I ↔ I) ∧ (I ↔ Q) ∧ (P ↔ Q) ∧ (P ↔ 0) = Q ∧ 0 ∧ P � = 0,

where we have used the fact that P ↔ Q = 0. As such, we see that ⟦A ⋅+ C = B ⋅+ C⟧ = 0, and

so, since Q�≤0, we see that ⟦A = B⟧�≤⟦A
⋅+ C = B ⋅+ C⟧, which shows that substitution for

⋅+ does

not hold in the two-dimensional case.

Given the results of Lemmas 5.9 and 5.10 above, we would like to have a natural way of

reducing the substitution axioms for
⋅+ and

⋅×.
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One possibility is given by1

(RSub+) (∀x)(∀y)(∀z)[T̂(x = y)→ x
⋅+ z = y ⋅+ z],

(RSub×) (∀x)(∀y)(∀z)[T̂(x = y)→ x
⋅× z = y ⋅× z],

where, for an arbitrary LA-wff φ

T̂(φ) ∶= (∀x)(∀y)[x = y → φ].

We note that we also need to define

Ĉ(φ) ∶= (∀x)(∀y)[ϕx=y(φ)→ φ],

and add the LA-wff schema

Ĉ(T̂(φ)) and T̂(φ)→ φ

as axioms in order to insure that T̂(φ) behaves the way we want it to in the models ω̂(L). We

note that this method of reducing the substitution axioms is elegant, as well as effective, but

may be a little “heavy-handed” for the job we need it to do.

1Recall the discussion in Section 2.5.2 where the “classicality operators” T and C are defined for an
arbitrary predicate.
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5.5 Consequences of the Arithmetic for Quantum Natural Numbers

When considering the arithmetic associated with ordinary (classical) natural numbers, one

can prove, as simple consequences of the definitions of the addition and multiplication functions,

that both are commutative and associative, as well as that “full” distributivity of multiplication

over addition holds — i.e. for m,n, k ∈ ωc that

n
⋅× (m ⋅+ k) = (n ⋅×m) ⋅+ (n ⋅× k).

While the quantum multiplication and addition are both clearly commutative by definition,

neither is an associative operation, as the following counter-examples in Lemmas 5.11 and 5.12

show. Moreover, “full” distributivity does not hold in general either for the quantum natural

numbers (see Lemma 5.13).

Lemma 5.11. In the models ω̂(L), the addition
⋅+ is not, in general, associative.

Proof. In order to see that associativity of
⋅+ does not hold in general, let L = P(H) with

dim(H) = 2, and let A = P , B = Q, and C = R for distinct one-dimensional projectors P,Q,R.

We have that

A
⋅+ B = (P ∨Q,P ∧Q) and B

⋅+ C = (Q ∨R,Q ∧R),

while

(A ⋅+ B) ⋅+ C = (P ∨Q ∨R, (P ∧Q) ∨ (R ∧ (P ∨Q)), P ∧Q ∧R).
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Taking L =MOn, we have that

(A ⋅+ B) ⋅+ C = (I,R).

On the other hand, we have that

A
⋅+ (B ⋅+ C) = (P ∨Q ∨R, (Q ∧R) ∨ (P ∧ (Q ∨R)), P ∧Q ∧R),

so that if we let L =MOn, we have that

A
⋅+ (B ⋅+ C) = (I,P ).

Thus, we see that

A
⋅+ (B ⋅+ C) ≠ (A ⋅+ B) ⋅+ C,

and as such,
⋅+ is not an associative operation.

Lemma 5.12. In the models ω̂(L), the multiplication
⋅× is not, in general, associative.

Proof. In order to see that associativity of
⋅× does not hold in general, let L = P(H) with

dim(H) = 2, and let A = (I,P ), B = (I,Q), and C = R, where P,Q,R are distinct one-

dimensional projectors. Again, letting L =MOn, we have that

A
⋅× B = (I,P ∨Q,P ∧Q,P ∧Q) = (I, I),
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while

B
⋅× C = R.

Now,

(A ⋅× B) ⋅× C = (R,R),

while

A
⋅× (B ⋅× C) = R.

Thus, we see that

A
⋅× (B ⋅× C) ≠ (A ⋅× B) ⋅× C,

and as such,
⋅× is not an associative operation.

Lemma 5.13. Full distributivity of multiplication over addition does not hold generally in the

models ω̂(L) — i.e. there are models for which

A
⋅× (B ⋅+ C) ≠ (A ⋅× B) ⋅+ (A ⋅× C)

for some A,B,C ∈ ωL.

Proof. In order to see that in any model ω̂(L), full distributivity does not always hold in the

arithmetic for the quantum natural numbers, let L =MOn, and let

A = (I, I, P,P ), B = (I, I,Q,Q,Q,Q), and C = (I,R,R,R),
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where P ≠ Q, P ≠ R and Q ≠ R; also P,Q,R ≠ I,0. We have that

(B ⋅+ C) = (I, I, I, I, I, I,Q),

and an explicit calculation shows that A
⋅× (B ⋅+ C) is given by 14 I’s and 10 P ’s. Now, we also

have that

(A ⋅× B) = (I, I, I, I, I, I, I, I,Q,Q,Q,Q),

and

(A ⋅× C) = (I, I, I, I,R,R,R,R).

From these, one can then show that (A ⋅× B) ⋅+ (A ⋅× C) is given by 16 I’s. Thus, we see that

A
⋅× (B ⋅+ C) ≠ (A ⋅× B) ⋅+ (A ⋅× C).

Although the above counter-examples in Lemmas 5.11, 5.12 and 5.13 show that associativ-

ity and full distributivity (of multiplication over addition) do not hold in the models ω̂(L) in

general, we do have that lattice distributivity is sufficient for the associative laws and full (arith-

metical) distributivity to hold in the models ω̂(L). We illustrate this below for distributivity

of multiplication over addition, and note that the proofs for associativity are similar.
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Theorem 24. Let L be a distributive lattice. Then in the model ω̂(L), we have that

A
⋅× (B ⋅+ C) = (A ⋅× B) ⋅+ (A ⋅× C).

holds for all A,B,C ∈ ωL.

Proof. First note that

[A ⋅× (B ⋅+ C)]n = ⋁
α⋅β≥n

(Aα ∧ (B ⋅+ C)β) = ⋁
α⋅β≥n

(Aα ∧ [Bβ ∨Cβ ∨ ⋁
m+j≥β

(Bm ∧Cj)])

= ⋁
α⋅β≥n
m+j≥β

[(Aα ∧Bβ) ∨ (Aα ∧Cβ) ∨ (Aα ∧ (Bm ∧Cj))],

where we have used lattice distributivity to obtain the last equality. We also have that

[(A ⋅× B) ⋅+ (A ⋅× C)]n = (A ⋅× B)n ∨ (A ⋅× C)n ∨ ⋁
k+l≥n

[(A ⋅× B)k ∧ (A ⋅× C)l]

= [ ⋁
s⋅t≥n

(As ∧Bt)] ∨ [ ⋁
u⋅w≥n

(Au ∧Cw)] ∨ ⋁
k+l≥n

[( ⋁
p⋅q≥k

(Ap ∧Bq)) ∧ ( ⋁
y⋅z≥l

(Ay ∧Cz))]

= [ ⋁
s⋅t≥n

(As ∧Bt)] ∨ [ ⋁
u⋅w≥n

(Au ∧Cw)] ∨ ⋁
k+l≥n
p⋅q≥k
y⋅z≥l

[(Ap ∧Bq) ∧ (Ay ∧Cz)],

where we have again used lattice distributivity to obtain the last equality.
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We first show that [A ⋅× (B ⋅+ C)]n ≤ [(A ⋅× B) ⋅+ (A ⋅× C)]n. We take an arbitrary term in

[A ⋅× (B ⋅+ C)]n — e.g.

(Aα ∧Bβ) ∨ (Aα ∧Cβ) ∨ (Aα ∧ (Bm ∧Cj))

with α ⋅ β ≥ n and m + j ≥ β. Now, for α ⋅ β ≥ n, we have that Aα ∧ Bβ is some term in

⋁s⋅t≥n(As ∧Bt), which gives that

Aα ∧Bβ ≤ ⋁
s⋅t≥n

(As ∧Bt).

Similarly, for α ⋅β ≥ n, we have that Aα ∧Cβ is some term in ⋁u⋅w≥n(Au ∧Cw), which gives that

Aα ∧Cβ ≤ ⋁
u⋅w≥n

(Au ∧Cw).

Together these results give that

(Aα ∧Bβ) ∨ (Aα ∧Cβ) ≤ [ ⋁
s⋅t≥n

(As ∧Bt)] ∨ [ ⋁
u⋅w≥n

(Au ∧Cw)].

We next show that for α ⋅ β ≥ n and m + j ≥ β,

Aα ∧ (Bm ∧Cj) ≤ ⋁
k+l≥n
p⋅q≥k
y⋅z≥l

[(Ap ∧Bq) ∧ (Ay ∧Cz)].
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We have that

Aα ∧ (Bm ∧Cj) = Aα ∧Aα ∧ (Bm ∧Cj) = (Aα ∧Bm) ∧ (Aα ∧Cj),

where α ⋅ β ≥ n and m + j ≥ β. And so, since α(m + j) = α ⋅ m + α ⋅ j ≥ n, we see that

(Aα ∧Bm) ∧ (Aα ∧Cj) is some term in ⋁k+l≥n
p⋅q≥k
y⋅z≥l

[(Ap ∧Bq) ∧ (Ay ∧Cz)]. Thus, it follows that

⋁
α⋅β≥n
m+j≥β

[(Aα ∧Bβ) ∨ (Aα ∧Cβ) ∨ (Aα ∧ (Bm ∧Cj))]

≤ [ ⋁
s⋅t≥n

(As ∧Bt)] ∨ [ ⋁
u⋅w≥n

(Au ∧Cw)] ∨ [ ⋁
k+l≥n
p⋅q≥k
y⋅z≥l

[(Ap ∧Bq) ∧ (Ay ∧Cz)]],

or equivalently,

[A ⋅× (B ⋅+ C)]n ≤ [(A ⋅× B) ⋅+ (A ⋅× C)]n.

We now wts that [(A ⋅× B) ⋅+ (A ⋅× C)]n ≤ [A ⋅× (B ⋅+ C)]n. First consider As ∧ Bt with

s ⋅ t ≥ n; clearly, taking s = α and t = β gives that (since α ⋅ β ≥ n)

As ∧Bt ≤ (Aα ∧Bβ) ∨ (Aα ∧Cβ) ∨ (Aα ∧ (Bm ∧Cj)) ≤ [A ⋅× (B ⋅+ C)]n.

And since As ∧Bt is an arbitrary term in ⋁s⋅t≥n(As ∧Bt), it follows that

⋁
s⋅t≥n

(As ∧Bt) ≤ ⋁
α⋅β≥n
m+j≥β

[(Aα ∧Bβ) ∨ (Aα ∧Cβ) ∨ (Aα ∧ (Bm ∧Cj))] = [A ⋅× (B ⋅+ C)]n.
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Similarly, we have that

⋁
u⋅w≥n

(Au ∧Cw) ≤ ⋁
α⋅β≥n
m+j≥β

[(Aα ∧Bβ) ∨ (Aα ∧Cβ) ∨ (Aα ∧ (Bm ∧Cj))] = [A ⋅× (B ⋅+ C)]n.

Finally, we wts that

⋁
k+l≥n
p⋅q≥k
y⋅z≥l

[(Ap ∧Bq) ∧ (Ay ∧Cz)]

≤ ⋁
α⋅β≥n
m+j≥β

[(Aα ∧Bβ) ∨ (Aα ∧Cβ) ∨ (Aα ∧ (Bm ∧Cj))] = [A ⋅× (B ⋅+ C)]n.

Consider (Ap ∧Bq)∧ (Ay ∧Cz) with k + l ≥ n, p ⋅ q ≥ k, and y ⋅ z ≥ l. (Note that these conditions

imply that p ⋅ q + y ⋅ z ≥ n.) Now, for either n ≤ k ≤ p ⋅ q or n ≤ l ≤ y ⋅ z, there exist appropriate

choices of α and β which satisfy α ⋅ β ≥ n and are such that

Ap ∧Bq ≤ Aα ∧Bβ ≤ ⋁
α⋅β≥n
m+j≥β

[(Aα ∧Bβ) ∨ (Aα ∧Cβ) ∨ (Aα ∧ (Bm ∧Cj))],

or

Ay ∧Cz ≤ Aα ∧Cβ ≤ ⋁
α⋅β≥n
m+j≥β

[(Aα ∧Bβ) ∨ (Aα ∧Cβ) ∨ (Aα ∧ (Bm ∧Cj))],

respectively. (Note also that the same holds for k ≤ n but p ⋅ q ≥ n and l ≤ n but y ⋅ z ≥ n.)

And so, we’re left with the cases k ≤ p ⋅ q < n and l ≤ y ⋅ z < n, where k + l ≥ n. As above, we

consider (Ap ∧Bq) ∧ (Ay ∧Cz). If p ≤ y, then Ay ≤ Ap, so we have that

(Ap ∧Bq) ∧ (Ay ∧Cz) = (Ap ∧Ay) ∧ (Bq ∧Cz) = Ay ∧ (Bq ∧Cz),
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where the second equality follows from the fact that ∧ is associative and the last equality follows

from the fact that Ay ≤ Ap. Now, since we assume that k + l ≥ n, we have that n ≤ p ⋅ q + y ⋅ z;

also, since p ≤ y, p ⋅ q ≤ y ⋅ q, so it follows that

n ≤ p ⋅ q + y ⋅ z ≤ y ⋅ q + y ⋅ z = y(q + z).

Choosing α = y, j = z, m = q and β ∶= [nα], we get that α ⋅ β ≥ n (since α ⋅ [nα] ≥ n) as well as

m + j ≥ β (since n ≤ y(q + z)). Thus, we see that Ay ∧ (Bq ∧Cz) ≤ Aα ∧ (Bm ∧Cj). Note also

that the argument is exactly the same for the case y ≤ p (i.e. just interchange y and p in the

discussion above); as such, we omit this case in order to avoid excessive repetition.

So, we see that

(Ap ∧Bq) ∧ (Ay ∧Cz) ≤ ⋁
α⋅β≥n
m+j≥β

[(Aα ∧Bβ) ∨ (Aα ∧Cβ) ∨ (Aα ∧ (Bm ∧Cj))],

from which it follows that

⋁
k+l≥n
p⋅q≥k
y⋅z≥l

[(Ap ∧Bq) ∧ (Ay ∧Cz)] ≤ ⋁
α⋅β≥n
m+j≥β

[(Aα ∧Bβ) ∨ (Aα ∧Cβ) ∨ (Aα ∧ (Bm ∧Cj))].

Then, since we also have that

⋁
s⋅t≥n

(As ∧Bt) ≤ ⋁
α⋅β≥n
m+j≥β

[(Aα ∧Bβ) ∨ (Aα ∧Cβ) ∨ (Aα ∧ (Bm ∧Cj))] = [A ⋅× (B ⋅+ C)]n
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and

⋁
u⋅w≥n

(Au ∧Cw) ≤ ⋁
α⋅β≥n
m+j≥β

[(Aα ∧Bβ) ∨ (Aα ∧Cβ) ∨ (Aα ∧ (Bm ∧Cj))] = [A ⋅× (B ⋅+ C)]n,

it follows that

[ ⋁
s⋅t≥n

(As ∧Bt)] ∨ [ ⋁
u⋅w≥n

(Au ∧Cw)] ∨ [ ⋁
k+l≥n
p⋅q≥k
y⋅z≥l

[(Ap ∧Bq) ∧ (Ay ∧Cz)]]

≤ ⋁
α⋅β≥n,m+j≥β

[(Aα ∧Bβ) ∨ (Aα ∧Cβ) ∨ (Aα ∧ (Bm ∧Cj))].

That is,

[(A ⋅× B) ⋅+ (A ⋅× C)]n ≤ [A ⋅× (B ⋅+ C)]n.

5.5.1 Algebraic Identities in Two Variables

In the LA-structures ω̂(L) for which L is modular, it turns out that our quantum arithmetic

looks classical with regard to two variable expressions — this is to say that if we have two

classical polynomials p(x, y) and q(x, y) which are such that p(x, y) can be manipulated into

q(x, y) via standard arithmetic, then the corresponding identity for quantum natural numbers
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p̂(A,B) = q̂(A,B) will also hold1 — that is ⟦p̂(A,B) = q̂(A,B)⟧ = 1 when L is modular. This

remarkable property follows easily from Theorem 25 below.

Theorem 25. Let L be a complete modular ortholattice, and let A,B ∈ ωL. Then, for any

n ∈ ωc

p̂(A,B)n = ⋁
p(j,k)≥n

(Aj ∧Bk), (5.4)

where p is any two-variable polynomial expression.

Proof. We proceed via proof by induction on the construction of (two-variable) polynomials p.

There are there are two base cases to consider — namely, we consider case p(x, y) = 0, as well as

the case p(x, y) = x. For the case p(x, y) = 0, we recall that for any model ω̂(L), the quantum

natural number described by the map which sends every n ∈ ωc to 0 in L is the analogue of

∅ (or the ordinary classical number 0). As such, by definition 00 = 1 and 0n = 0 for all n ≥ 1.

(Recall that X0 ∶= 1 for any X ∈ ωL, but that this is not part of the sequence which defines X.)

We see by inspection that this agrees with

0n = ⋁
0≥n

(An ∧Bk)

1We use p̂(A,B) to denote the quantum natural number constructed in the same way that the
ordinary classical polynomial expression p(x, y) is constructed from x and y using classical addition and

multiplication, but instead using the arithmetical operations
⋅+ and

⋅× and quantum natural numbers A
and B.
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from the fact that A0 = B0 = 1 and the join over an empty set is the bottom element of L. The

other base case for a term is p(x, y) = x, and we easily see that for this p,

⋁
p(j,k)≥n

(Aj ∧Bk) = ⋁
j≥n

(Aj ∧Bk) = ⋁
j≥n

(Aj) = An = p̂(A,B).

We now consider the inductive steps. The first operation to consider is the successor.

Assume that p(x, y) satisfies equation 5.4. We need to show that [p(x, y)]′ also satisfies this

equation. It is easy to see that for any quantum natural number C, we have that (C ′)n = Cn−1

for all n ≥ 1 (and, of course, (C ′)0 = 1). From this, we compute (for n ≥ 1 — the n = 0 case is

trivial)

[p(A,B)′]n = [p(A,B)]n−1 = ⋁
p(j,k)≥n−1

(Aj ∧Bk) = ⋁
p(j,k)′≥n

(Aj ∧Bk)

for all n ≥ 1 (since the classical successor function effectively just gives that k′ = k + 1 for any

k ∈ ωc).

For the next inductive step, we consider the sum and product simultaneously — to this end,

let ∗ ∈ { ⋅+, ⋅×} and assume that equation 5.4 holds for the two terms p(x, y) and q(x, y). First,
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using Theorem 32, we see that the set of all Ai’s and Bj ’s generate a distributive sub-lattice of

L. Hence, we can use this (lattice) distributivity with abandon.1

[p(A,B) .∗ q(A,B)]n = ⋁
k∗l≥n

([ ⋁
p(a,b)≥k

(Aa ∧Bb)] ∧ [ ⋁
q(c,d)≥l

(Ac ∧Bd)])

= ⋁
k+l≥n

[ ⋁
p(a,b)≥k
q(c,d)≥l

(Aa ∧Bb ∧Ac ∧Bd)]

= ⋁
k+l≥n

[ ⋁
p(a,b)≥k
q(c,d)≥l

(Amax(a,c) ∧Bmax(b,d))],

where we have used that the Ai’s and Bj ’s form a decreasing sequence. Now, first note that we

trivially have

⋁
k+l≥n

[ ⋁
p(a,b)≥k
q(c,d)≥l

(Amax(a,c) ∧Bmax(b,d))] ≥ ⋁
p(r,s)∗q(r,s)≥n

(Ar ∧Bs)

as we can see that (for any r and s satisfying p(r, s)∗q(r, s) ≥ n) the term Ar ∧Bs is in the join

on the LHS of the above expression by taking a = c = r and b = d = s along with k = p(r, s) and

l = q(r, s). To get the other inequality, note that for any k, l, a, b, c, d ∈ ωc such that k + l ≥ n,

p(a, b) ≥ k and q(c, d) ≥ l, we can take r = max(a, c) and s = max(b, d). Then p(r, s) ≥ p(a, b)

and q(r, s) ≥ q(c, d) (due to the monotonicity of polynomials in standard arithmetic on natural

1Although we appear to have infinite joins, since both A and B are quantum natural numbers, in
fact the joins only run over a finite number of terms.
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numbers), and this means that p(r, s) + q(r, s) ≥ k + l ≥ n, so that any term in the LHS of the

above expression is also in the right, yielding that in fact we have

[p(A,B) .∗ q(A,B)]n = ⋁
k+l≥n

[ ⋁
p(a,b)≥k
q(c,d)≥l

(Amax(a,c) ∧Bmax(b,d))] = ⋁
p(r,s)∗q(r,s)≥n

(Ar ∧Bs)

which completes the induction.

5.6 Properties of a Class of Models Relevant for Quantum Theory

In what follows, we consider properties of the class of models ω̂(P(H)). We begin by noting

that the eigenvalues of A
⋅× B are actually a subset of the products of eigenvalues of A and

eigenvalues of B; similarly, the eigenvalues of A
⋅+ B are a subset of the sums of eigenvalues of

A and eigenvalues of B. Theorems 26 and 27 below establish these remarkable results, which

point to a possible interpretation of
⋅+ and

⋅× in terms of measurement.

Theorem 26. The eigenvalues of A
⋅× B are a subset of the products of eigenvalues of A and

eigenvalues of B.

Proof. Consider a model ω̂(P(H)), and let A be an arbitrary quantum natural number thought

of as a Hermitian operator on H (whose eigenvalues are ordinary natural numbers) — that is,

let A = ∑i∈k Pi, where k = supA. Further, for any λ ∈ R, let SλA denote the projector onto the

subspace defined by

{∣ψ⟩ ∈H ∣ A∣ψ⟩ = a∣ψ⟩ with a ≥ λ}.
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Then we have that P[λ] = SλA, where [λ] denotes the smallest integer greater than λ. To see

that this is so, first note that by definition,

SλA∣ψ⟩ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∣ψ⟩, if λ ≤ a

0, if λ > a.

On the other hand, if we have ∣ψ⟩ ∈H such that A∣ψ⟩ = α∣ψ⟩, then Pα∣ψ⟩ = ∣ψ⟩, while Pα+1∣ψ⟩ = 0.

Since the Pi’s form a decreasing sequence, it follows immediately that Pn∣ψ⟩ = ∣ψ⟩ for all n ≤ α,

as well as that Pm∣ψ⟩ = 0 for all m ≥ α + 1. As such, we see that P[λ] = SλA.

Given this relationship, we re-write the formula for A
⋅× B in terms of the Sλ’s. Let A and

B be a quantum real numbers thought of as Hermitian operators on H, and let {a1, a2, ...} and

{b1, b2, ...} denote the eigenvalues of A and B, respectively. We have that

Sλ
A
⋅

×B
= ⋁
α⋅β≥λ

(SαA ∧ S
β
B) = ⋁

0�α≤a1,α⋅β≥λ
(Sa1A ∧ SβB) ∨ ... ∨ ⋁

an−1�α≤an,α⋅β≥λ
(SanA ∧ SβB).

Now, since the SχB’s form a decreasing sequence, we can, wlog, choose β = λ
α to be the smallest

value in the range (which corresponds to taking α to be the largest value in each range). We

then obtain that

Sλ
A
⋅

×B
= ⋁

0�α≤a1
(Sa1A ∧ S

λ
α
B ) ∨ ... ∨ ⋁

an−1�α≤an
(SanA ∧ S

λ
α
B ) =

n

⋁
i=1

(SaiA ∧ S
λ
ai
B ).
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Now, we’re interested in where Sλ
A
⋅

×B
jumps as a function of λ. However, the only λ depen-

dence is in S
λ
ai
B — and since SχB jumps at exactly the eigenvalues of B, we must have that the

places where Sλ
A
⋅

×B
jumps are such that λ

ai
= bj for some eigenvalue bj of B. That is, λ = ai ⋅ bj ,

which shows that the eigenvalues of A
⋅× B are products of eigenvalues of A with eigenvalues of

B.

Theorem 27. The eigenvalues of A
⋅+ B are a subset of the sums of eigenvalues of A and

eigenvalues of B.

Proof. Consider a model ω̂(P(H)), and let A be an arbitrary quantum natural number thought

of as a Hermitian operator on H (whose eigenvalues are ordinary natural numbers) — that is,

let A = ∑i∈k Pi, where k = supA. Further, for any λ ∈ R, let SλA denote the projector onto the

subspace defined by

{∣ψ⟩ ∈H ∣ A∣ψ⟩ = a∣ψ⟩ with a ≥ λ}.

Then we have that P[λ] = SλA, where [λ] denotes the smallest integer greater than λ. To see

that this is so, first note that by definition,

SλA∣ψ⟩ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∣ψ⟩, if λ ≤ a

0, if λ > a.

On the other hand, if we have ∣ψ⟩ ∈H such that A∣ψ⟩ = α∣ψ⟩, then Pα∣ψ⟩ = ∣ψ⟩, while Pα+1∣ψ⟩ = 0.

Since the Pi’s form a decreasing sequence, it follows immediately that Pn∣ψ⟩ = ∣ψ⟩ for all n ≤ α,
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as well as that Pm∣ψ⟩ = 0 for all m ≥ α + 1. As such, we see that P[λ] = SλA.

Given this relationship, we re-write the formula for A
⋅+ B in terms of the Sλ’s. Let A and

B be a quantum real numbers thought of as Hermitian operators on H, and let {a1, a2, ...} and

{b1, b2, ...} denote the eigenvalues of A and B, respectively. We have that

Sλ
A
⋅

+B
= ⋁
α+β≥λ

(SαA ∧ S
β
B) = ⋁

0�α≤a1,α+β≥λ
(Sa1A ∧ SβB) ∨ ... ∨ ⋁

an−1�α≤an,α+β≥λ
(SanA ∧ SβB).

Now, since the SχB’s form a decreasing sequence, we can, wlog, choose β = λ−α to be the smallest

value in the range (which corresponds to taking α to be the largest value in each range). We

then obtain that

Sλ
A
⋅

×B
= ⋁

0�α≤a1
(Sa1A ∧ Sλ−αB ) ∨ ... ∨ ⋁

an−1�α≤an
(SanA ∧ Sλ−αB ) =

n

⋁
i=1

(SaiA ∧ Sλ−aiB ).

Now, we’re interested in where Sλ
A
⋅

×B
jumps as a function of λ. However, the only λ de-

pendence is in Sλ−aiB — and since SχB jumps at exactly the eigenvalues of B, we must have

that the places where Sλ
A
⋅

×B
jumps are such that λ − ai = bj for some eigenvalue bj of B. That

is, λ = ai + bj , which shows that the eigenvalues of A
⋅+ B are sums of eigenvalues of A with

eigenvalues of B.

We also have that whenever P(H) is modular (i.e. dim(H) < ∞), we can show that
⋅×

and
⋅+ (as defined previously) are the unique operations which satisfy a certain set of criteria

(Theorems 28 and 29 below). We begin by establishing a result (Lemma 5.14) which is useful
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in the proofs of Theorems 28 and 29.

Let A = (P1, P2, ...Pn) be a quantum natural number (thought of as a linear operator on

H), and let ∣ψ⟩ ∈ H. Also, let P0 ∶= I, but here note that P0 is not part of the sequence that

defines A.

We define a (classical) natural number #
∣ψ⟩
A associated with any pair ∣ψ⟩,A by

P
#
∣ψ⟩
A

∣ψ⟩ = ∣ψ⟩ and P
#
∣ψ⟩
A +1

∣ψ⟩ ≠ ∣ψ⟩.

The number #
∣ψ⟩
A always exists for any ∣ψ⟩ ∈ H and quantum natural number A. Note that if

A = nI for n ∈ ωc, then #
∣ψ⟩
A = n for any ∣ψ⟩ ∈H.

Lemma 5.14. ∣ψ⟩ is an eigenvector of A if and only if P
#
∣ψ⟩
A +1

∣ψ⟩ = 0. In this case, the associated

eigenvalue is exactly #
∣ψ⟩
A .

Proof. First assume that ∣ψ⟩ is an eigenvector of A. Then we have that A∣ψ⟩ = α∣ψ⟩, where

A = ∑i Pi. By definition we have that P
#
∣ψ⟩
A

∣ψ⟩ = ∣ψ⟩. Since the Pi’s form a decreasing sequence,

P
#
∣ψ⟩
A

≤ Pi for all i ≤ #
∣ψ⟩
A , so that for all such i, Pi∣ψ⟩ = ∣ψ⟩. As such, we have that #

∣ψ⟩
A ≤ α.

However, we also have (by definition) that P
#
∣ψ⟩
A +1

∣ψ⟩ ≠ ∣ψ⟩. Note that if P
#
∣ψ⟩
A +1

∣ψ⟩ ≠ 0, then

we have a contradiction to the fact that ∣ψ⟩ is an eigenvector of A — this follows from the fact

that if

P
#
∣ψ⟩
A +1

∣ψ⟩ = ∣φ⟩ ≠ ∣ψ⟩,
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then A∣ψ⟩ = λ∣ψ⟩ + µ∣φ⟩; however, since the Pi’s form a decreasing sequence, P
#
∣ψ⟩
A +1

≤ Pi for all

i such that i ≤ #
∣ψ⟩
A + 1, which implies that Pi∣ψ⟩ = ∣φ⟩, which is a contradiction. And so, we see

that P
#
∣ψ⟩
A +1

∣ψ⟩ = 0, and also that it follows that #
∣ψ⟩
A = α.

Now assume that P
#
∣ψ⟩
A +1

∣ψ⟩ = 0. By definition, P
#
∣ψ⟩
A

∣ψ⟩ = ∣ψ⟩, and since the Pi’s form a

decreasing sequence, P
#
∣ψ⟩
A

≤ Pi for all i’s such that i ≤ #
∣ψ⟩
A , so that Pi∣ψ⟩ = ∣ψ⟩ for all such i’s.

Thus, we see that

A∣ψ⟩ =∑
i

Pi∣ψ⟩ = #
∣ψ⟩
A ∣ψ⟩,

which shows that ∣ψ⟩ is an eigenvector of A with eigenvalue #
∣ψ⟩
A .

We now have the uniqueness theorems for
⋅× and

⋅+.

Theorem 28. Uniqueness of
⋅×: Let L = P(H) be modular, and let A,B,C be quantum

natural numbers given by

A = (P1, P2, ...), B = (Q1,Q2, ...), and C = (R̂1, R̂2, ...).

Further, assume that C satisfies:

1. Each R̂n is a lattice polynomial (i.e. a polynomial in ∧ and ∨, but not ¬) in the Pi’s and

Qj ’s. That is, we assume that the polynomial in the Pi’s and Qj ’s is the same no matter

what A and B are inputs.
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2. For ∣ψ⟩ ∈H,

Pn∣ψ⟩ = Qm∣ψ⟩ = ∣ψ⟩Ô⇒ R̂n⋅m∣ψ⟩ = ∣ψ⟩.

3. If ∣ψ⟩ is a simultaneous eigenstate of A and B with eigenvalues α and β, respectively, then

∣ψ⟩ is an eigenstate of C with eigenvalue α ⋅ β.

Then C = A ⋅× B.

Proof. We wts that R̂n = Rn for all n. Recall that

[A ⋅× B]n ∶= Rn =
∞

⋁
s⋅t≥n
s,t=1

(Ps ∧Qt).

(i) We first show that R̂i ≥ Ri for all i (where ≥ is the ordering in the lattice). From assump-

tion/criterion (2) above, we have that

Pk∣ψ⟩ = Qm∣ψ⟩ = ∣ψ⟩Ô⇒ R̂k⋅m∣ψ⟩ = ∣ψ⟩.

We also have that

Pk∣ψ⟩ = Qm∣ψ⟩ = ∣ψ⟩Ô⇒ (Pk ∧Qm)∣ψ⟩ = ∣ψ⟩.
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As such, we know that R̂k⋅m ≥ Pk ∧Qm. However, we also know that Pk ∧Qm ≥ Ps ∧Qt

for s ≥ k and t ≥ m; and as such, it follows that Pk ∧Qm ≥ ⋁s≥k
t≥m

(Ps ∧Qt). And so, we

have that

R̂λ ≥ R̂µ⋅γ ≥ Pµ ∧Qγ ,

where µ and γ are such that µ ⋅ γ ≥ λ. Thus,

R̂λ ≥ R̂µ⋅γ ≥ ⋁
µ⋅γ≥λ

(Pµ ∧Qγ) = Rλ.

i.e. we have that R̂λ ≥ Rλ.

(ii) We have that

R̂n = (Pα1 ∧Qβ1) ∨ (Pα2 ∧Qβ2) ∨ ...

That this is true follows from the fact that for any element y in a distributive lattice L,

y = a1 ∨ a2 ∨ ..., where ai = g1 ∧ g2 ∧ ... ∧ gq for gw ∈ G ⊆ L (where G is a generating set

for L) — i.e. any element in a distributive lattice can be expressed in disjunctive normal

form, which is the join of finite meets of generating elements. In our case, the Pi’s and

Qj ’s are the generating set, and we know by Jonsson’s Theorem (Theorem 32) that the

sub-lattice of a modular lattice generated by two chains is a distributive sub-lattice. As

such, we can always put any element Rn in the form above. Note that the fact that this

is so follows from the fact that since the Pi’s and Qj ’s always each form a decreasing
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sequence, the meet of any subset of Pi’s and Qj ’s always comes down to just Pp ∧Qq for

a single projector from each chain.

(iii) Since by (i) above we have that R̂i ≥ Ri, and by (ii) above we have that

R̂n = (Pα1 ∧Qβ1) ∨ (Pα2 ∧Qβ2) ∨ ...,

it follows that

R̂n = Rn ∨ (Pα1 ∧Qβ1) ∨ (Pα2 ∧Qβ2) ∨ ...

Now, if each Pαj ∧Qβj is such that Pαj ∧Qβj ≤ Rn, then R̂n = Rn for all n, and we’re

done with the proof. So, suppose that R̂n > Rn. Then we have that there exists some

Pα ∧Qβ which is such that Pα ∧Qβ�≤Rn — i.e. wlog, take α ⋅β < n. In particular, suppose

that Pα = Qβ, Pα+1 = Qβ+1 ≠ Pα, and consider ∣ψ⟩ ∈ H such that Pα∣ψ⟩ = ∣ψ⟩ (and as

such Qβ ∣ψ⟩ = ∣ψ⟩) and Pα+1∣ψ⟩ = 0 (and as such Qβ+1∣ψ⟩ = 0). And since we assume that

α ⋅ β � n, we have that R̂n∣ψ⟩ = 0. Now, by Lemma 5.14 above, we have that

A∣ψ⟩ = α∣ψ⟩ and B∣ψ⟩ = β∣ψ⟩,

which by assumption/criterion (3) above implies that ∣ψ⟩ is an eigenvector of C with

eigenvalue α ⋅ β — i.e. C ∣ψ⟩ = α ⋅ β∣ψ⟩ — so that by Lemma 5.14, R̂α⋅β ∣ψ⟩ = ∣ψ⟩ and

R̂α⋅β+1∣ψ⟩ = 0. (Actually, we have that R̂n∣ψ⟩ = 0 for all n > α ⋅ β.) However, since
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(Pα ∧Qβ)∣ψ⟩ = ∣ψ⟩, we see that R̂n∣ψ⟩ ≠ 0, which is a contradiction. As such, we must

have that R̂n = Rn.

Theorem 29. Uniqueness of
⋅+: Let L = P(H) be modular, and let A,B,C be quantum

natural numbers given by

A = (P1, P2, ...), B = (Q1,Q2, ...), and C = (Ŝ1, Ŝ2, ...).

Further, assume that C satisfies:

1. Each Ŝn is a lattice polynomial (i.e. a polynomial in ∧ and ∨, but not ¬) in the Pi’s and

Qj ’s. That is, we assume that the polynomial in the Pi’s and Qj ’s is the same no matter

what A and B are inputs.

2. For ∣ψ⟩ ∈H,

Pn∣ψ⟩ = Qm∣ψ⟩ = ∣ψ⟩Ô⇒ Ŝn+m∣ψ⟩ = ∣ψ⟩.

3. If ∣ψ⟩ is a simultaneous eigenstate of A and B with eigenvalues α and β, respectively, then

∣ψ⟩ is an eigenstate of C with eigenvalue α + β.

Then C = A ⋅+ B.
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Proof. We wts that Ŝn = Sn for all n. Recall that

[A ⋅+ B]n ∶= Sn = Pn ∨Qn ∨
∞

⋁
k+j≥n
k,j=1

(Pk ∧Qj) =
∞

⋁
k+j≥n
k,j=0

(Pk ∧Qj),

where the last equality follows from the fact that we can include a “fictitious” P0 = Q0 = I in

the join.

(i) We first show that Ŝi ≥ Si for all i (where ≥ is the ordering in the lattice). From assump-

tion/criterion (2) above, we have that

Pi∣ψ⟩ = Qm∣ψ⟩ = ∣ψ⟩Ô⇒ Ŝi+m∣ψ⟩ = ∣ψ⟩.

We also have that

Pi∣ψ⟩ = Qm∣ψ⟩ = ∣ψ⟩Ô⇒ (Pi ∧Qm)∣ψ⟩ = ∣ψ⟩.

As such, we know that Ŝi+m ≥ Pi ∧Qm. However, we also know that Pi ∧Qm ≥ Pk ∧Qj for

k ≥ i and j ≥ m; and as such, it follows that Pi ∧Qm ≥ ⋁ k≥i
j≥m

(Pk ∧Qj). And so, we have

that

Ŝλ ≥ Ŝµ+γ ≥ Pµ ∧Qγ ,

where µ and γ are such that µ + γ ≥ λ. Thus,

Ŝλ ≥ Ŝµ+γ ≥ ⋁
µ+γ≥λ

(Pµ ∧Qγ) = Sλ.
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i.e. we have that Ŝλ ≥ Sλ.

(ii) We have that

Ŝn = (Pα1 ∧Qβ1) ∨ (Pα2 ∧Qβ2) ∨ ...

That this is true follows from the fact that for any element y in a distributive lattice L,

y = a1 ∨ a2 ∨ ..., where ai = g1 ∧ g2 ∧ ... ∧ gq for gw ∈ G ⊆ L (where G is a generating set

for L) — i.e. any element in a distributive lattice can be expressed in disjunctive normal

form, which is the join of finite meets of generating elements. In our case, the Pi’s and

Qj ’s are the generating set, and we know by Jonsson’s Theorem (Theorem 32) that the

sub-lattice of a modular lattice generated by two chains is a distributive sub-lattice. As

such, we can always put any element Rn in the form above. Note that the fact that this

is so follows from the fact that since the Pi’s and Qj ’s always each form a decreasing

sequence, the meet of any subset of Pi’s and Qj ’s always comes down to just Pp ∧Qq for

a single projector from each chain.

(iii) Since by (i) above we have that Ŝi ≥ Si, and by (ii) above we have that

Ŝn = (Pα1 ∧Qβ1) ∨ (Pα2 ∧Qβ2) ∨ ...,

it follows that

Ŝn = Sn ∨ (Pα1 ∧Qβ1) ∨ (Pα2 ∧Qβ2) ∨ ...
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Now, if each Pαj ∧ Qβj is such that Pαj ∧ Qβj ≤ Sn, then Ŝn = Sn for all n, and we’re

done with the proof. So, suppose that Ŝn > Sn. Then we have that there exists some

Pα∧Qβ which is such that Pα∧Qβ�≤Sn — i.e. wlog, take α+β � n. In particular, suppose

that Pα = Qβ, Pα+1 = Qβ+1 ≠ Pα, and consider ∣ψ⟩ ∈ H such that Pα∣ψ⟩ = ∣ψ⟩ (and as

such Qβ ∣ψ⟩ = ∣ψ⟩) and Pα+1∣ψ⟩ = 0 (and as such Qβ+1∣ψ⟩ = 0). And since we assume that

α + β < n, we have that Ŝn∣ψ⟩ = 0. Now, by Lemma 5.14 above, we have that

A∣ψ⟩ = α∣ψ⟩ and B∣ψ⟩ = β∣ψ⟩,

which by assumption/criterion (3) above implies that ∣ψ⟩ is an eigenvector of C with

eigenvalue α + β — i.e. C ∣ψ⟩ = α + β∣ψ⟩ — so that by Lemma 5.14, Ŝα+β ∣ψ⟩ = ∣ψ⟩ and

Ŝα+β+1∣ψ⟩ = 0. (Actually, we have that Ŝn∣ψ⟩ = 0 for all n > α + β.) However, since

(Pα ∧ Qβ)∣ψ⟩ = ∣ψ⟩, we see that Ŝn∣ψ⟩ ≠ 0, which is a contradiction. As such, we must

have that Ŝn = Sn.

5.7 Conclusion

In this chapter we have, using the models QL of quantum set theory, constructed the

quantum natural numbers ωL in these models, as well as developed an arithmetic for these new

numbers. In future work, we would like to further explore consequences of the arithmetical

axioms in the presence of the quantum logic Q(L). We would also like to consider additional

applications of the new arithmetic, particularly with regard to the models ω̂(P(H)), as well
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as find a physical interpretation of the arithmetical operations in these models, as such an

interpretation may lend insight into foundational questions in quantum theory (particularly

with regard to measurement). Additionally, we would like to extend our construction of the

quantum natural numbers to obtain the quantum analogue of the real numbers, as well as

extend our arithmetic to the quantum real numbers.



CHAPTER 6

SUMMARY & CONCLUSION

In this work, we began by defining, for any first order language L, the quantum logic Q(L),

which consists of the axioms (Q1) – (Q6) and inference rules (R1) – (R5). We then defined

notions of formal deduction and derivability in Q(L). We also noted that an axiomatization

of classical logic can be obtained from Q(L) by simply adding one additional axiom, which

illustrated the fact that this quantum logic is sub-classical — i.e. every theorem of Q(L) is also

a theorem of classical logic (but not vice versa).

We then went on to define a semantics for Q(L). Recalling that an M-system (or math-

ematical system) is a language L along with a set of L-wffs A (which is effectively the set of

mathematical axioms), we constructed L-structures Â for M-systems to consist of (i) an un-

derlying set A in which the variables are interpreted, (ii) a truth value algebra L, where L is a

complete orthomodular lattice, (iii) a map ⟦P ⟧ which assigns truth values (in L) to the atomic

sentences for each predicate P ∈ LP , and (iv) for every f ∈ LF , an interpretation of f in Â.

Then, an L-structure Â is a model for (L,A) if all of the axioms A∪QA(L) (or A∪QA(L)∪E(L)

if ≈ ∈ LP ) hold in Â. Additionally, we demonstrated soundness and completeness for our formal

deductive system relative to this (model theoretic) semantics.

We then applied this formalism to specific mathematical structures. That is, we considered

several mathematical systems using the first order quantum logic as the underlying logic, and

illustrated some interesting features of these quantum mathematical systems. In particular, we

223
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have shown that axiomatizations of M-systems which are equivalent in the presence of classical

logic (in the sense that they have exactly the same theorems) are not necessarily equivalent

when Q(L) is used for the underlying logic, which suggests a richness in the structure of

mathematics which is classically inaccessible. Additionally, interesting examples of M-systems

which admit no non-standard models have been given, as have examples of conservative and

non-conservative models. Also, we have encountered classes of models which are extremely

natural from the point of view of quantum theory, as well as examined relationships between

some of them. Moreover, we have demonstrated that certain classical properties — namely,

substitution for (some) operations with respect to equality, and strong transitivity of equality

— no longer hold in these natural models. Given the naturalness of these models, we have

interpreted these results as a manifestation of the true behavior1 of “equality” in quantum

mathematics, and have begun to consider what this is suggesting about quantum theory.

We next constructed an axiomatic set theory based on the quantum logic Q(L), with a

particular intended class of models. We believe this quantum set theory to be a reasonable

first attempt at a foundation for quantum mathematics (in a sense which parallels the foun-

dational role of classical set theory in classical mathematics). For instance, we show that this

quantum set theory is robust enough to provide a foundation on which to construct quantum

natural numbers. Moreover, we have seen that in a special class of models, there exists a 1-1

1As noted previously, although it is not impossible to find (non-standard) models in which substitution
and/or strong transitivity of equality hold, we expect that such models will be few and far between —
i.e. “most” non-standard models will not satisfy these properties. Moreover, these properties do not, in
general, seem to hold in the most natural (from the point of view of quantum theory) classes of models.
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correspondence between the quantum natural numbers and bounded observables in quantum

theory whose eigenvalues are (ordinary) natural numbers. This 1-1 correspondence is remark-

ably satisfying, and not only gives us great confidence in our quantum set theory, but indicates

the naturalness of such models for quantum theory. Additionally, we went on to consider an

elegant arithmetic for the new numbers in these natural models, as well as some consequences

of this arithmetic.

From all of this, we see that our initial investigations into quantum mathematics have

yielded results which provide strong evidence that it has a richness and complexity worthy of

further attention.

In future work, we would like to further explore the foundational role of the quantum logic

Q(L), one aspect of which involves continuing our examination of the different properties and

features of a variety of M-systems in the presence of Q(L). In particular, we will continue to

develop the quantum set theory we have constructed, with an eye toward developing a more

fully quantum version of set theory. We would also like to undertake a systematic study of

quantum ordinal and cardinal numbers within quantum set theory.

With regard to the quantum arithmetic motivated by our quantum set theory, we would like

to further explore consequences of the arithmetical axioms we have presented. We would also

like to consider additional applications of this arithmetic, particularly with regard to the models

ω̂(P(H)), as well as find a quantum mechanical interpretation of the arithmetical operations in

these models. Such an interpretation may potentially lend insight into foundational questions
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in quantum theory (particularly with respect to measurement). Additionally, we would like to

extend our construction of the quantum natural numbers to obtain the quantum analog of the

real numbers, as well as extend our quantum arithmetic to include these as well.

Finally, we also intend to explore the possibility of an axiomatization of quantum mechanics

built on quantum mathematics, extending the initial results described here. The hope is that

allowing quantum mechanics to “speak” through its own native mathematics will naturally ad-

dress (or at least suggest how to resolve) some troublesome questions and paradoxes that have

been plaguing the interpretation of quantum mechanics for decades.
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Appendix A

LATTICE THEORY

A.1 Basic Concepts and Definitions

Definition A.1. Let X be a set, and let ⊛ be a binary relation on X. Then ⊛ is said to be

● reflexive if a⊛ a for all a ∈X;

● anti-symmetric if a⊛ b and b⊛ a imply that a = b;

● symmetric if a⊛ b implies that b⊛ a for all a ∈X;

● transitive if a⊛ b and b⊛ c imply that a⊛ c.

Definition A.2. A binary relation ≤ on a setX is a partial order if it is reflexive, anti-symmetric

and transitive. A set X equipped with a partial order ≤ is called a partially ordered set (or

poset), and is denoted ⟨X,≤⟩.

Definition A.3. Let ⟨X,≤⟩ be a poset and let S ⊆ X. An element u ∈ X is called an upper

bound of S if s ≤ u ∀s ∈ S. We say that u is a least upper bound (abbreviated LUB) (or join)

of S if it is an upper bound of S and we have that u ≤ v for any upper bound v of S. Lower

bound and greatest lower bound (abbreviated GLB) (or meet) are defined analogously.

Let ⟨X,≤⟩ be a poset, with A ⊆ X. Then the meet of A (or GLB of A), denoted ⋀A, is

defined to be the element z ∈X (if it exists) such that

(i) z ≤ a for all a ∈ A
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(ii) For any b ∈X such that b ≤ a for all a ∈ A, we have b ≤ z.

We then also denote a ∧ b ∶= ⋀{a, b}. Similarly, the join of A (or LUB of A), denoted ⋁A, is

defined to be the element y ∈X (if it exists) such that

(i) a ≤ y for all a ∈ A

(ii) For any b ∈X such that a ≤ b for all a ∈ A, we have y ≤ b.

We then also denote a ∨ b ∶= ⋁{a, b}.

Definition A.4. Let ⟨X,≤⟩ be a poset, with a, b ∈X. Then b is said to cover a if for any c ∈X

with a ≤ c ≤ b, we have either a = c or b = c.

Any finite poset ⟨X,≤⟩ can be represented graphically by a Hasse diagram — this repre-

sentation for a poset can be obtained by drawing a dot for each element of X, and for every

a, b ∈X such that b covers a, we draw a line from a up to b. One of the simplest examples of a

non-trivial Hasse diagram is shown below.

Example A.1. Let B2 = {0,1} with the usual partial ordering. Then the Hasse diagram for

B2 is given in Figure 1. Note that we will also refer to B2 as 2.

Definition A.5. Let ⟨X,≤⟩ be a poset. X is called a chain if for every a, b ∈X, either a ≤ b or

b ≤ a. If X is finite, the length of X (denoted l(X)) is the number of elements of X.

Note that another common convention is to define the length of X as the number of elements

of X minus 1.
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Figure 1. The Hasse diagram for B2 = {0,1} from example A.1.

Definition A.6. Let ⟨X,≤⟩ be a poset. The height of X (denoted Ht X is defined to be the

supremum of the set

{l(C) ∶ C ⊆X and C is a finite chain under ≤}

if the supremum exists; otherwise Ht X is defined to be ‘∞’. If the height of X is finite, then

X is said to be of finite height.

Definition A.7. A poset ⟨X,≤⟩ is called a lattice if every pair of elements of X has both a

greatest lower bound (GLB) and a least upper bound (LUB). If X is further equipped with an

involution, then we will call X an involutive lattice. A lattice which has a top element (denoted

by 1) and bottom element (denoted by 0) is said to be bounded.

Theorem 30. Let L be a set and let ‘∨’ and ‘∧’ be binary operations on L satisfying (for all

a, b, c ∈ L)

Commutativity: a ∨ b = b ∨ a and a ∧ b = b ∧ a.

Associativity: (a ∨ b) ∨ c = a ∨ (b ∨ c) and (a ∧ b) ∧ c = a ∧ (b ∧ c).
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Absorption: a ∨ (a ∧ b) = a and a ∧ (a ∨ b) = a.

Further define the relation ‘≤’ on L by a ≤ b iff a ∧ b = a. Then ≤ is a partial order and L is a

lattice under ≤. Conversely, if L is a lattice under ≤, then the meet and join (of pairs) satisfy

the three properties above.

Definition A.8. A bounded lattice L is said to be ∧-complete if for any non-empty subset of

L the meet exists. L is said to be ∨-complete if for any non-empty subset the join exists. L is

said to be complete if it is both ∧-complete and ∨-complete. L is said to be σ-complete if any

countable subset has a meet and a join.

Lemma A.2. Let L be a lattice, with a, b, c ∈ L. Then

1. If a ≤ b and a ≤ c, then a ≤ b ∧ c.

2. If L is complete, with B ⊆ L, and a ≤ b for every b ∈ B, then a ≤ ⋀
b∈B

b =⋀B.

3. a ≤ b iff a ∧ b = a iff a ∨ b = b.

Definition A.9. A subset S of a lattice L is called a sub-lattice of L if for every a, b ∈ S we

have that a ∨ b ∈ L and a ∧ b ∈ L. If S is a sub-lattice such that S ⊊ L, we say S is a proper

sub-lattice of L.

Definition A.10. A bounded lattice L is said to be complemented if for any a ∈ L there exists

some element b ∈ L such that a ∧ b = 0 and a ∨ b = 1. We refer to a as the complement of b, or

vice versa.

Definition A.11. Let L be a lattice with a ∈ L. An involution is a map f ∶ L → L which

satisfies (for all a, b ∈ L)
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1. f(f(a)) = a

2. if a ≤ b, then f(b) ≤ f(a)

The involution of an element a will often be denoted by ¬a.

Definition A.12. Let L be an involutive lattice. De Morgan’s law is given by (for a, b ∈ L)

¬(¬a ∨ ¬b) = a ∧ b.

Note that the dual version of this law is given by ¬(¬a ∧ ¬b) = a ∨ b, as well as that de

Morgan’s law holds in any involutive lattice.

An equivalent statement of De Morgan’s law is f(a1 ∨ a2) = f(a1) ∧ f(a2).

DeMorgan’s Law relates the three algebraic operations (∧ ∨ ¬) in a fundamental way in

lattices with involution; these algebraic operations are not independent, but rather, given either

meet or join DeMorgan’s Law automatically gives the other.

Definition A.13. A bounded lattice in which the involution is a complementation is called

an orthocomplemented lattice, or simply an ortholattice — that is, an ortholattice is a bounded

involutive lattice L which satisfies both (for all a, b ∈ L)

a ∧ ¬a = 0 and b ∨ ¬b = 1.

Lemma A.3. Let L be a non-trivial ortholattice. Then

1. Ht L ≥ 2
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2. Ht L = 2 iff L = {0,1}.

Proof. Since L is non-trivial, we have that 0 ≠ 1, and since 0 < 1 we have that Ht L ≥ 2,

establishing (1) above.

If L ≠ {0,1}, then there is some a ∈ L with a ∉ {0,1}, and hence 0 < a and a < 1, so that

{0, a,1} is a chain with three elements so if L ≠ {0,1}, then Ht L ≥ 3. For the other implication,

if Ht L ≥ 3, then there is some chain C ⊆ L with at least 3 elements, so that L ≠ {0,1}.

A.1.1 Maps

Definition A.14. Let ⟨X1,≤1⟩ and ⟨X2,≤2⟩ be posets, and let a, b ∈X1. Then a map f ∶X1 →

X2 is called isotone if whenever a ≤1 b, we have that f(a) ≤2 f(b). f is called antitone if

whenever a ≤1 b, we have that f(b) ≤2 f(a).

This is to say that isotone maps are order preserving, while antitone maps are order revers-

ing.

Definition A.15. An order isomorphism between posets ⟨X1,≤1⟩ and ⟨X2,≤2⟩ is a bijective

map f ∶X1 →X2 for which both f and f−1 are isotone.

Note that order isomorphisms constitute an equivalence relation on the set of all posets.

This is to say that two posets are equivalent if and only if they are order isomorphic to one

another.

Definition A.16. Let L1, L2 be lattices. A lattice homomorphism from L1 to L2 is a map

f ∶ L1 → L2 which satisfies, for all a, b ∈ L1
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1. f(a ∧1 b) = f(a) ∧2 f(b)

2. f(a ∨1 b) = f(a) ∨2 f(b)

If the map, f ∶ L1 → L2 satisfies only property 1, we say that it is a ∧-homomorphism; if the

map satisfies only property 2, we say that it is a ∨-homomorphism. If L1 and L2 are involutive

trellises, and f satisfies f(¬1a) = ¬2f(a) for all a ∈ L1, then f is called a ¬-homomorphism.

Definition A.17. Let L1 and L2 be lattices, with h ∶ L1 → L2 a lattice homomorphism. Then

h is said to be continuous if, for every A ⊆ L1, we have that

h(⋁A) =⋁h(A) and h(⋀A) =⋀h(A).

Definition A.18. Let L1 and L2 be lattices. A bijective lattice homomorphism f ∶ L1 → L2

is called a lattice isomorphism (or L-isomorphism) from L1 to L2. If there exists a lattice

isomorphism between two lattices L1 and L2, we say that L1 is isomorphic to L2, and denote

this by L1 ≃ L2. If L1 and L2 are involutive, then a bijective involutive lattice homomorphism

is called an IL-isomorphism from L1 to L2.

A.1.2 Orthogonality and Compatibility

Definition A.19. Let L be an ortholattice, and let a, b ∈ L. If a ≤ ¬b, then a is said to be

orthogonal to b (denoted by a�b).
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Note that a�b⇒ b�a for a, b ∈ L — i.e. � is a symmetric binary relation on L. This follows

trivially from the fact that

a ≤ ¬b⇒ ¬(¬b) ≤ ¬a⇒ b ≤ ¬a ∶= b�a.

Also, a��a for any a ∈ L — i.e. � is an irreflexive relation on L. Note also that a�b does not

imply ¬a�¬b. Additionally, we have the following properties.

Lemma A.4. Let a, b, c ∈ L an ortholattice. The following properties hold concerning the

relation � of Definition A.19 above.

1. a�b and a�c⇒ a � b ∨ c;

2. a�b or a�c⇒ a � b ∧ c;

3. a�a⇒ a = 0;

4. a�b⇒ a ∧ b = 0.

Proof.

1. a ≤ ¬b and a ≤ ¬c implies that a ≤ ¬b ∧ ¬c = ¬(b ∨ c), and hence a � b ∨ c.

2. a ≤ ¬b or a ≤ ¬c implies that a ≤ ¬b ∨ ¬c = ¬(b ∧ c), and hence a � b ∧ c.

3. a ≤ ¬a implies that a ∧ ¬a = a, but a ∧ ¬a = 0 since L is an ortholattice, and hence a = 0.

4. Joining both sides of a ≤ ¬b with ¬a gives a ∨ ¬a = 1 ≤ ¬b ∨ ¬a = ¬(a ∧ b), but this means

that 1 = ¬(a ∧ b) and hence 0 = a ∧ b.
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Definition A.20. Let L be an ortholattice. Then for a, b ∈ L we say that a is compatible with

b (denoted a C b) if

a = (a ∧ b) ∨ (a ∧ ¬b).

Alternatively, we will sometimes say that a commutes with b when we have that a C b.

Lemma A.5. Let L be an ortholattice, and let a, b ∈ L. The following properties hold concern-

ing the relation C of Definition A.20 above.

1. a C b ⇐⇒ a C ¬b;

2. a C 1, a C 0, 0 C b, 1 C b ∀a, b ∈ L;

3. a�bÔ⇒ a C b and b C a;

4. a ≤ bÔ⇒ a C b (and therefore a C a).

Proof.

1. (a ∧ ¬b) ∨ (a ∧ b) = a because a C b, and hence a C ¬b.

2. (a) (a ∧ 1) ∨ (a ∧ ¬1) = a ∨ 0 = a, so a C 1.

(b) (a ∧ 0) ∨ (a ∧ ¬0) = 0 ∨ a = a, and so a C 0.

(c) (0 ∧ b) ∨ (0 ∧ ¬b) = 0 ∨ 0 = 0, and so 0 C b.

(d) (1 ∧ b) ∨ (1 ∧ ¬b) = b ∨ ¬b = 1 because L is an ortholattice, so 1 C b.

3. a ≤ ¬b implies that (a∧ b)∨ (a∧¬b) = (a∧ b)∨ a = a, and so a C b. Since a�b implies b�a,

b C a as well.
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4. a ≤ b implies that (a ∧ b) ∨ (a ∧ ¬b) = a ∨ (a ∧ ¬b) = a, and so a C b.

Note that in general a C b does not imply b C a — that is, compatibility is not symmetric

in general — nor do the combination of a C b and b C c imply a C c — that is, compatibility is

not transitive.

A.2 Distributive Lattices

Lemma A.6. In a lattice L, the following inequalities hold for all a, b ∈ L.

a ∧ (b ∨ c) ≥ (a ∧ b) ∨ (a ∧ c)

a ∨ (b ∧ c) ≤ (a ∨ b) ∧ (a ∨ c)

For proof see (3), p.9.

Definition A.21. A lattice L is called distributive if the following equalities hold for all a, b, c ∈

L.

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

Example A.7. A simple distributive lattice is given by D = {0, x, y,1} with 0 ≤ x ≤ 1 and

0 ≤ y ≤ 1 and no other orderings. Then the Hasse diagram for D is given in Figure 2.
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Figure 2. The Hasse diagram for D = {0, x, y,1} from example A.7.

Definition A.22. An ortholattice which satisfies distributivity is called a Boolean Algebra (or

Boolean Lattice).

In the example above, if y = ¬x, then D becomes the Boolean diamond.

A.3 Modular Lattices

Definition A.23. A lattice L is called modular if for a, b, c ∈ L with c ≤ a we have

a ∧ (b ∨ c) = (a ∧ b) ∨ c.

Note that every distributive lattice is modular — that is, modularity is a weakening of

distributivity.

A.3.0.0.1 M3 and N5:

These are the two smallest non-distributive lattices.
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Figure 3. M3 and N5

Theorem 31. The M3-N5 Theorem:

1. A lattice is modular if and only if it has no sub-lattices isomorphic to N5.

2. A lattice is distributive if and only if it has no sub-lattices isomorphic to M3 or N5.

Theorem 32. Jonsson’s Theorem: Let L be a modular lattice, let p ∈ Z+, and let X1, X2,

. . .Xp be non-empty chains of L. In order that the sub-lattice of L generated by

X1 ∪X2 ∪ . . . ∪Xp

be distributive, it is necessary and sufficient that, for any x1 ∈ X1, x2 ∈ X2, . . .xp ∈ Xp, the

sub-lattice of L generated by the set {x1, x2, . . . xp} be distributive.

A.4 Orthomodular Lattices

A standard reference for orthomodular lattice theory is Kalmbach (21).
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Definition A.24. Let L be an ortholattice. If all a, b ∈ L satisfy

a ∧ b = a ∧ (¬a ∨ (a ∧ b)),

then L is said to be an orthomodular lattice (or OML).

Note that when L is an ortholattice, modularity implies orthomodularity (see (21)). Also,

note that orthomodularity is a weakening of the distributivity law satisfied by Boolean algebras,

and as such, every Boolean algebra is an OML. Additionally, there is a simple way to characterize

when an OML is a Boolean algebra.

Proposition A.8. Let L be an orthomodular lattice. Then L is a Boolean algebra if and only

if for every a, b ∈ L we have a C b.

Proof. This is a trivial corollary of Theorem 33.

Also, note that in an OML, we have that (for every a, b ∈ L)

a C b if and only if b C a.

That is, ‘C’ is a symmetric relation in an OML.

Definition A.25. Let L be an OML. Then the center of L is defined to be the set

{c ∈ L ∶ c C a for all a ∈ L},
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and is denoted by Z(L).

The following theorems are both proven in Kalmbach (21), p. 24.

Theorem 33. Let L be an OML. Then Z(L) is a sub-algebra of L which is a Boolean Algebra.

If L is also complete, then so is Z(L).

Theorem 34. Let L be an OML with a ∈ L. Then the set of elements of L which commute

with a form a sub-algebra which is closed under infinite meets and joins (whenever they exist).

Definition A.26. Let L be an OML. We define, for any a, b ∈ L, the commutator of a and b

(denoted c(a, b)) to be

c(a, b) ∶= [(a ∧ b) ∨ (a ∧ ¬b)] ∨ [(¬a ∧ b) ∨ (¬a ∧ ¬b)]

The following theorem is also proven in Kalmbach (21), p. 26.

Proposition A.9. Let L be an OML, with a, b ∈ L. Then c(a, b) = 1 if and only if a C b.

We now consider a particular class of orthomodular lattices that will be extremely useful

for constructing models — namely, the modular ortholattices MOk, for some finite cardinal

k ∈ {1,2, . . .}.1 More precisely,

MOn ∶= {vi∣ i < n + 1} ∪ {¬vi∣ i < n + 1},

1There is an obvious generalization to the infinite cardinals, so that the lattice MOα is defined for
any infinite cardinal α.
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Figure 4. The Hasse diagram for MO2 = {0,1, v1, v2,¬v1,¬v2} of example A.10.

where v0 = 1 (hence 0 = ¬v0), and where for every distinct v,w ∈ MOn/{0,1} we have v ∧w = 0

and v ∨ w = 1. Note that MO1 is, in fact, a reducible Boolean algebra (isomorphic to 2 × 2),

and also that MOn is irreducible for every n ≥ 2.

Example A.10. We define MO2 to be the set {0,1, v1, v2,¬v1,¬v2} (with the obvious involu-

tion), and with partial order given as in the Hasse diagram of Figure 4. Then MO2 is a modular

ortholattice (and hence an orthomodular lattice) which is not a Boolean algebra.

A.4.1 The Sasaki Projection and the Sasaki Hook

Definition A.27. Let L be an orthomodular lattice, and let a, b ∈ L. We define the Sasaki

Hook (denoted ‘⋅→ ⋅’) to be the binary operation on L given by

a→ b ∶= ¬a ∨ (a ∧ b) (A.1)
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and the Sasaki projection (denoted ‘ϕ⋅(⋅)’) to be the binary operation defined by

ϕa(b) ∶= a ∨ (¬a ∧ b). (A.2)

Finally, define

a↔ b ∶= (a→ b) ∧ (b→ a).

Note that for any a, b ∈ L, the Sasaki hook and the Sasaki projection are related by a→ b =

¬ϕa(¬b).

Lemma A.11. Let L be an orthomodular lattice, and let ϕ be the Sasaki projection. Then

for any a, b ∈ L,

1. a ∧ b ≤ ϕb(a) ≤ b

2. a C b iff ϕa(b) ≤ b

3. ϕa(0) = 0

4. ϕb(a) = a iff a ≤ b

Proof.

1. We have that ϕb(a) = b ∧ (¬b ∨ a), from which we clearly see that ϕb ≤ b. Also, because

a ≤ ¬b ∨ a, we clearly have that a ∧ b ≤ ϕb(a).

2. This is 12.(iii) in Kalmbach (21), p. 156.

3. ϕa(0) = a ∧ (¬a ∨ 0) = a ∧ ¬a = 0.
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4. First assume that a ≤ b; we have that a ≤ b is equivalent to ¬b ≤ ¬a, and so by orthomod-

ularity we have ¬a = ¬b ∨ (b ∧ ¬a). Taking the negation of both sides of this expression

gives a = b ∧ (¬b ∨ a) ≡ ϕb(a). Now consider ϕb(a) = a. We have (by (1) above) that

ϕb(a) ≤ b, but by assumption ϕb(a) = a, and hence a ≤ b.

Lemma A.12. Let L be an orthomodular lattice, let ‘→’ be the Sasaki hook (of Definition

A.27 above), and let a, b, c ∈ L.

1. a↔ b = b↔ a

2. a→ b = 1 iff a ≤ b

3. 1→ a = a

4. a↔ b = 1 iff a = b

5. a↔ 1 = a

6. a↔ 0 = a→ 0 = ¬a

7. a→ ¬a = ¬a

8. a↔ b ∧ b↔ c ≤ a↔ c

9. a↔ b = (a ∧ b) ∨ (¬a ∧ ¬b) = ¬a↔ ¬b .

Proof.

1. Follows trivially from the definition.
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2. If a → b = ¬a ∨ (a ∧ b) = 1 then meeting both sides with a yields (using orthomodularity)

that

a = a ∧ (¬a ∨ (a ∧ b)) = a ∧ b,

i.e. that a ≤ b. Conversely, if a ≤ b, then a ∧ b = a so a→ b = ¬a ∨ a = 1.

3. 1→ a = ¬1 ∨ (1 ∧ a) = 0 ∨ a = a

4. a↔ b = 1 iff a→ b = b→ a = 1, by (2) this is true iff a ≤ b and b ≤ a, i.e. iff a = b.

5. Trivially by (2) and (3) above.

6. By (2) above 0→ a = 1, so a↔ 0 = a→ 0 = ¬a ∨ (a ∧ 0) = ¬a.

7. a→ ¬a = ¬a ∨ (a ∧ ¬a) = ¬a ∨ 0 = ¬a.

8. That this holds can be found in (8). However, we can easily use the Foulis-Holland The-

orem to compute this. Since we have that a∧ bC¬a and a∧ bC¬b, we simply ‘undistribute’

to obtain

a↔ b = [¬a ∨ (a ∧ b)] ∧ [¬b ∨ (b ∧ a)] = (¬a ∧ ¬b) ∨ (b ∧ a).

9. This can be found in (8) (where a∆b ∶= ¬[a↔ b]). See p. 437.

A.4.2 The Exchange Property & Some Others

Definition A.28. Let L be a lattice with bottom element 0, and let a ∈ L. Then a is said to

be an atom of L if a covers 0. L is said to be atomic if for every x ∈ L with x ≠ 0, there exists

an atom p ∈ L such that p ≤ x.
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Note that we will often denote the set of all atoms of a lattice L by Ω(L).

The following two propositions are proven in Kalmbach (21), p. 140.

Lemma A.13. Let L be an atomic OML. Then L is atomistic.

Theorem 35. The following three conditions are equivalent in any orthomodular lattice L.

1. If (for any a, b ∈ L) a covers a ∧ b, then a ∨ b covers b.

2. If (for any a ∈ L and atom p ∈ L) p /≤ a, then p ∨ a covers a.

3. If (for any a ∈ L and atoms p, q ∈ L) the conditions p ≤ q ∨ a and p ∧ a = 0 imply q ≤ p ∨ a.

Definition A.29. Let L be an atomic OML. If L satisfies any of the three equivalent conditions

of proposition 35, then L is said to satisfy the exchange axiom (EA).

Definition A.30. Let L be an atomic OML. If, for every pair of atoms p, q ∈ L such that p ⊥ q,

we have that there exists an atom r ∈ L such that r ≤ p ∨ q and also r �C p and r �C q, then L is

said to satisfy the atomic bisection property (or ABP).

Definition A.31. Let L be an atomic OML. If L satisfies ABP and also, for every triple of

distinct atoms p, q, r ∈ L we have that p ≤ q ∨ r imply both q ≤ p∨ r and r ≤ p∨ q, then L is said

to satisfy the superposition principle (or SP).

Lemma A.14. Let L be an atomic OML satisfying the exchange axiom. Then L is irreducible

if and only if L satisfies SP.

Lemma A.15. L atomic OML, with a, s ∈ L, s an atom, and s and a commute. Then s ≤ a or

s�a.
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Proof. To see this, note that we have

s C a↔ s = (s ∧ a) ∨ (s ∧ ¬a),

and also s ∈ Ω(L) implies that s ∧ x = s or s ∧ x = 0, and if s ∧ a = 0, then s ∧ ¬a = s (or vice

versa) — thus, s ≤ a or s�a.

Lemma A.16. Let L ≠ {0,1} be a complete, atomic, irreducible OML satisfying EA. Then for

any y ∈ L with y ≠ 0,1, we have

⋀
x∈L

(ϕx(y)→ y) = 0.

Proof. First, since L ≠ {0,1} then L is height greater than 2 (Lemma A.3). Then since L is

an atomic, irreducible, OML such that EA holds and the height of L is greater than 2, both

superposition (SP) and the atomic bisection property (ABP) hold (Lemma A.14). Let Ω(L)

denote the set of all atoms of L. Since L is an atomic OML, L is atomistic (Lemma A.13), so

for any y ∈ L, we have that both

y = ⋁
p≤y

p∈Ω(L)

p and ¬y = ⋁
q≤¬y
q∈Ω(L)

q,

and so

1 = y ∨ ¬y = [ ⋁
p≤y

p∈Ω(L)

p] ∨ [ ⋁
q≤¬y
q∈Ω(L)

q] = ⋁
p≤y,q≤¬y
p,q∈Ω(L)

(p ∨ q).
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Now, for each p, q ∈ Ω(L) with p ≤ y, q ≤ ¬y, we have p�q (since p ≤ y ≤ ¬q), and so since

L satisfies ABP, we choose some rpq ∈ Ω(L) which is such that rpq ≤ p ∨ q and rpq does not

commute with either p or q, and furthermore, by SP, we have that p ∨ q = q ∨ rpq = p ∨ rpq. We

further claim that rpq does not commute with y. By Lemma A.15, rpq commutes with y iff

either rpq ≤ y or rpq ≤ ¬y. But if rpq ≤ y, then rpq ∨ p = p ∨ q ≤ y, so that q ≤ y ∧ ¬y = 0 which

is a contradiction since q ∈ Ω(L). A similar contradiction results if rpq ≤ ¬y, and so rpq cannot

commute with y.

Now, rpq ∈ Ω(L) implies that ¬rpq is a coatom, and rpq ≤ p ∨ q implies that p ∨ q�≤¬rpq (by

transitivity of ≤ since rpq ≠ 0). Then, ¬rpq ∧ (p ∨ q) is an atom by EA.

But then, by remark 9 in Kalmbach p.143 (using that p�≤rpq since both p, rpq ∈ Ω(L), and

also rpq�¬rpq) we see that zpq ∶= ¬rpq ∧ (p ∨ rpq) is an atom. Since zpq ≤ ¬rpq, clearly zpq ≠ rpq,

and then by SP we have

zpq ∨ rpq = p ∨ zpq = p ∨ q.

Additionally, we must have that zpq does not commute with y, by the same argument that rpq

does not commute with y. Hence, we have that

1 = ⋁
p≤y,q≤¬y
p,q∈ΩL

(p ∨ q) = ⋁
p≤y,q≤¬y
p,q∈ΩL

(rpq ∨ zpq) ≤ ⋁
r∈Ω(L)

r �C y

r,

and taking the negation yields,

0 = ⋀
r∈Ω(L)

r �C y

¬r. (A.3)
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But for r any atom that doesn’t commute with y, we have

ϕr(y) = r ∧ (¬r ∨ y) = r ∧ 1 = r,

since y /≤ ¬r and ¬r is a coatom, so that

ϕr(y)→ y = ¬r ∨ (r ∧ y) = ¬r ∨ 0 = ¬r.

Plugging this back into equation A.3 yields

0 = ⋀
r∈Ω(L)

r �C y

¬r = ⋀
r∈Ω(L)

r �C y

(ϕr(y)→ y) ≥ ⋀
x∈L
x �C y

(ϕx(y)→ y).

A.4.3 Projection/Subspace Lattices

We begin by defining some notation. For any Hilbert space H we will use the Dirac bra-ket

notation for the inner product, ‘∣0⟩’ to represent the zero vector, and for any S ⊆H, we define

S⊥ ∶= { ∣ψ⟩ ∈H ∣ ⟨ψ∣φ⟩ = 0 for all ∣φ⟩ ∈ S },

(which is always a closed subspace). Also, for any set S ⊆H, we denote the linear span of S by

span(S), and the closure of the span of S by span(S). Also recall that an orthogonal projection
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operator on H is a Hermitian operator P such that P 2 = P . Finally, for any linear operator A

on H we define ker(A) ∶= {∣ψ⟩ ∈H ∶ A∣ψ⟩ = ∣0⟩}.

Theorem 36. Let H be a separable Hilbert space. Then the set of closed linear subspaces

(ordered under inclusion) form an orthomodular lattice with S ↦ S⊥ as the involution. This

OML is called the subspace lattice of H.

Note that for two closed subspaces V,W ⊆ H, we have that V ∧W = V ∩W (i.e. the meet

is the intersection), and V ∨W = span(V ∪W ) (i.e. the join is the closure of the span of the

union). Also, the closed linear subspaces of a separable Hilbert space are in 1-1 correspondence

with the orthogonal projection operators1 on H, and so the projection operators of H form an

OML (called the projection lattice) which is naturally isomorphic to the subspace lattice of H.

Given this correspondence, we will frequently go back and forth between the two. See (19).

For a given quantum system described by some Hilbert space H, the orthogonal projections

on H have a natural interpretation as (equivalence classes of) propositions concerning that

quantum system — this follows from the fact that the measurement of such an operator always

yields an outcome of ‘1’ or ‘0’. One may think of the relevant proposition for a projection

operator P as being the declarative statement ‘the state of the system is in the subspace

ker(P )⊥’.

As noted by Birkhoff and von Neumann (2), when H is a finite dimensional Hibert space,

its corresponding projection lattice has the following nice property.

1An orthogonal projection operator P corresponds to its image (i.e. with ker(P )⊥) under this 1-1
correspondence.
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Theorem 37. Let H be a finite dimensional Hilbert space. Then the subspace lattice of H is

a modular lattice.

A.4.4 Additional Properties

Definition A.32. Let L be an orthomodular lattice. L is said to satisfy the relative cen-

ter property if for any a ∈ L, the center of any interval [0, a] is exactly the set {a ∧ b ∶

b is in the center of L}.

Lemma A.17. The following OMLs satisfy the relative center property.

1. Any complete modular ortholattice;

2. Projection lattices of any Hilbert space;

3. Projection lattices of any von Neumann algebra.

Proof. For (1) and (3) see Theorem 14 in Kalmbach (21), pages 110-111. (2) is a special case

of (3).

Lemma A.18. Let L be a complete orthomodular lattice which satisfies the relative center

property, and let a ∈ L. Then ⋀b∈L b→ a is in the center of L.

Proof. Note that an element is in the center of L iff its negation is, and

¬⋀
b∈L

b→ a = ⋁
b∈L

¬(¬b ∨ (b ∧ a)) = ⋁
b∈L

ϕb(¬a),

(with ϕb(a) the Sasaki projection), and so it suffices to show that ⋁b∈Lϕb(a) is in the center

of L if L satisfies the relative center property. But this then follows directly from Theorem 14
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in Kalmbach (21) (page 110) and Theorem 7 (page 108) along with proposition 10 in Chevalier

(6) (specifically the equivalence of (b) and (d)).

Definition A.33. Let L be a complete OML, and let G be the group of continuous ortholattice

automorphisms on L. L is said to be rotatable if the only fixed points of L under the action of

G are 0 and 1.

Theorem 38. The projection lattice of a separable complex Hilbert space is rotatable.

Proof. For any unitary transformation U , the map which takes any projection operator P to

U †PU induces an automorphism on the projection lattice. However, the only projectors fixed

by all such automorphisms are I and 0.

Theorem 39. The projection lattice of a separable complex Hilbert space is an atomic, irre-

ducible OML satisfying the exchange axiom.
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ELEMENTARY SET THEORY

In this appendix we attempt to provide some basic classical set theory; here we follow the

approach of naive set theory, the interested reader is referred to (15) for additional details, or

to (12) to see this material developed axiomatically.

B.1 Basic Concepts

In naive set theory, there are three primitive notions — namely, that of object, set, and

membership. Everything in the universe of discourse is an object, but only certain objects are

sets. Membership (often used synonymously with ‘being an element of’) is a binary relation

between an object and a set, and for a given object a and set A we write a ∈ A to mean that

a is an element of A, and a ∉ A to mean that a is not an element of A. Moreover, sets are

determined entirely by their members, so that two sets are said to be identically equal if and

only if they have the same members. This is known as the property of extensionality. One set

which is relevant in many contexts is the power set of a set — for a set A, the power set of A is

the set whose elements are exactly the subsets of A (including ∅ and A itself), and is denoted

by P(A).

We also note that for any set A and any property P , we can form the set whose elements

are exactly those elements a ∈ A such that a satisfies P , which we denote by

{a ∈ A ∶ a satisfies P},
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and often refer to this as set builder notation. We note that when we use set builder notation,

we must begin with some set A (rather than just taking the collection of all objects satisfying

some property P ) in order to avoid Russel’s paradox.1 However, we will occasionally use set-

builder notation without this restriction, but doing so will (in general) only result in a class2,

not necessarily a set.

B.2 Relations and Maps

In order to define what we mean by a relation on a set, we first need a notion of ordered

pair. The basic idea is that, for two objects a and b, we want a new object (a, b) such that

(a, b) = (c, d) if and only if a = b and c = d. To this end, we define (for objects a and b)

(a, b) ∶= {{a},{a, b}},

and then any such (a, b) is called an ordered pair. Then, for any objects a1, . . . , an define

inductively

(a1, . . . , an) ∶= ((a1, . . . , an−1), an),

and call (a1, . . . , an) an ordered n-tuple. We then have the following lemma, a proof of which

can be found in Enderton (12).

1We take the property P to be the property of not being an element of oneself. Then if we consider
the set S of all sets which are not members of themselves (i.e. S ∶= {x ∶ ψ(x)}, where ψ(x) ∶= ¬ x ∈ x).
If S ∉ S, then S ∈ S by definition of ψ(x), but if S ∈ S, then by the definition of ψ(x), we haveS ∉ S.
Either possibility leads to a contradiction, and so S cannot be a set.

2See Section B.2.3



255

Appendix B (Continued)

Lemma B.1. Let a, b, c, d be objects. Then (a, b) = (c, d) if and only if a = c and b = d.

Using the notion of an ordered pair, we can define, for sets A and B, the product of A and

B (which we denote by A ×B) by

A ×B ∶= {(a, b) ∈ P(P(A ∪B)) ∶ a ∈ A and b ∈ B}.

Let A1, . . . ,An be a finite list of sets. Then define the product of the Ai’s (denote A1 ×⋯×An,

or ∏n
i=1Ai) inductively by

n

∏
i=1

Ai ∶= (A1 ×⋯ ×An−1) ×An.

If A1 = ⋯ = An we define An ∶= A1 ×⋯ ×An, and define A0 ∶= {∅}.

B.2.1 Relations

We are now in a position to define relations on sets.

Definition B.1. Let n ∈ {1,2,3, . . .}, and let A1, . . .An be sets. Then an n-ary relation between

A1, . . . , and An is a subset R ⊆ A1 ×⋯×An. If A1 = ⋯ = An = A, then we say that R is an n-ary

relation on A. If n = 1 we call R unary, and if n = 2 we call the relation binary. For R a binary

relation we define aRb ∶= (a, b) ∈ R.

Note: Unary relations are essentially just predicates, for example if we define P ⊆ Z by

P ∶= {n ∈ Z ∶ z > 0} then P is just the predicate of positivity.

Some of the most important relations are equivalence relations.
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Definition B.2. Let A be a set, and � be a binary relation on A. Then � is called an equivalence

relation on A if � satisfies the following three properties.

Reflexivity: a � a for all a ∈ A

Symmetry: If a � b, then b � a for all a, b ∈ A

Transitivity: If a � b and b � c, then a � c for all a, b, c ∈ A

If � is an equivalence relation, then for any a ∈ A, the set {b ∈ A ∶ b ∼ a} is called the equivalence

class of a modulo �, and we denote this equivalence class [a]�.

There is a natural relationship between equivalence relations and partitions.

Definition B.3. Let A be a set. Then a set S ⊆ P(A) is called a partition of A if both

1. X ∩ Y = ∅ for all X,Y ∈ S,

2. ⋃S = A.

The natural relationship between equivalence relations on a set and partitions of that set is

made explicit in the lemma below. See Enderton (12) for a proof.

Lemma B.2. Let A be a set, let S be a partition of A, and let ≡ be an equivalence relation on

A. Define the binary relation � on A by (for all a, b ∈ A)

a � b iff there exists some X ∈ S with both a, b ∈X,
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and for every a ∈ A let Xa be the equivalence class of a modulo ≡, and define

T ∶= {X ∈ P(A) ∶ X =Xa for some a ∈ A.}.

Then � is an equivalence relation, T is a partition of A, and � & ≡ are the same equivalence

relation if and only if S = T .

B.2.2 Maps

We ordinarily think of a map f from some set A to another set B, as a rule such that for

every a ∈ A, we assign some object f(a) which must be in B. Using relations, this can be

formalized. This is to say that for sets A and B, a binary relation f between A and B is said

to be a map (or equivalently a function) from A to B (denoted by f ∶ A→ B) if for every a ∈ A,

there is a unique b ∈ B such that (a, b) ∈ f . For a given a, we denote this unique b by f(a), and

if f is a function from A to B, we say that A is the domain of f (denoted dom f), and define

the range of f (denote ran f) to be the set {b ∈ B ∶ b = f(a) for some a ∈ A}.

Ex: Consider the function on the integers which assigns to any number its square, i.e. n↦ n2.

The relation f which corresponds to this function is {(n,n2) ∈ Z ×Z ∶ n ∈ Z}.

The following sets associated with functions are frequently used:

Let A, B, and C, be sets, and f ∶ A→ B, and g ∶ B → C. Further let A0 ⊆ A and B0 ⊆ B.

1. The image of A0 under f (denoted f(A0)) is defined by

f(A0) ∶= {b ∈ B ∶ b = f(a) for some a ∈ A0}.
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2. The pre-image of B0 under f (denoted f−1(B0)) is defined by

f−1(B0) ∶= {a ∈ A ∶ f(a) ∈ B0}.

3. The composition of f with g (denoted g ○ f) is the set

g ○ f ∶= {(a, c) ∈ A ×C ∶ (a, b) ∈ f and (b, c) ∈ g for some b ∈ B}.

4. The restriction of f to A0 (denoted f ∣A0) is given by

f ∣A0 ∶= {(a, b) ∈ f ∶ a ∈ A0}.

Note that the image of A under f is just the range of f , i.e. f(A) = ran f . Also, the

composition g ○ f is clearly a function from A to C, and the restriction f ∣A0 is a map from A0

to B.

Additionally, for sets A and B, we denote the set of all maps from A to B by

BA ∶= {f ∈ A ×B ∶ f is a map from A to B}. (B.1)

We next consider several useful properties of maps between sets. Consider the sets A and

B, and a map f ∶ A → B between them. If for any a, b ∈ A, we have that f(a) = f(b) implies

that a = b, we say that f is 1-1 (or injective), and if, for any b ∈ B there exists some a ∈ A such
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that f(a) = b, then we say f is onto (or surjective). If f is both injective and surjective, we say

that f is bijective; in such a case we will sometimes say that A and B are isomorphic as sets.

B.2.3 Classes and Class Functions

In passing, we noted that the collection of all sets satisfying some given property may not be

a set. However, for some property P , it is often convenient to be able to refer to the collection

of all sets satisfying this property as something, and this motivates the definition of a class.

That is, we take a class to be any collection of objects. If a class is not a set, then we will often

refer to it as a proper class. For example, we have that the collection of all sets is a proper

class, while the collection of all sets contained in a given set A is a class, but is not a proper

class — this class is just P(A).

For a given property P , we will use the following notation (similar to set-builder) to designate

classes. Namely,

{a ∶ a satsifies property P} (B.2)

is defined to be the class of all objects satisfying property P . We then abuse the ‘∈’ notation,

and so for a given class K and object a, we write ‘a ∈ K’ to mean that ‘the object a is in the

class K’. We employ similar abuses of notation for ∪, ∩, ⊆, etc.

Further, we define the notion of a class function.

Definition B.4. Let F be a class such that every element of F is an ordered pair, and for any

objects a, b and c such that (a, b) ∈ F and (a, c) ∈ F, we have b = c. Then F is said to be a class
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function, and we define F(a) to be the unique object b such that (a, b) ∈ F. We also say that,

for classes L and K, a class function F ∈ LK if for all (a, b) ∈ F, we have a ∈ F and b ∈ L.

We note that if a class function is a set, then it is an ordinary function (as defined above),

and as such, functions can be seen as a special case of class functions. We now define some

notation for specifying class functions. First, when the intended domain of a class function is

clearly seen to be some class A, we will specify a class function F by stating ‘for all a ∈ A, a↦ b’

to mean that (a, b) ∈ F. Also, rather than using the usual ‘F(a)’ for the image of an object

under a given class function F, we may instead use some expression such as a∗. In such a case,

we will use the symbol ‘ ⋅ ’ to indicate where the symbol representing the object(s) should go.

For example, for a ↦ a∗ we would use ‘ ⋅∗ to represent the associated class function, and for

(a, b)↦ ϕa(b) we would use ϕ⋅(⋅) to represent the asssociated class function.

Additionally, we define the domain and range of a class function F in such a way that these

concepts agree with those already defined when F is a set. That is, for a class function F, we

define the domain of F (denoted dom F) by

dom F ∶= {a ∶ for some object b, (a, b) ∈ F},

and define the range of F (denoted ran F) by

ran F ∶= {b ∶ for some object a, (a, b) ∈ F},
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and for any subclass K ⊆ dom F, we define

F(K) ∶= {b ∶ a ∈ K and (a, b) ∈ F}.

Also, we will write F ∶ A→B to mean that dom F = A and ran F ⊆B.

Finally, we will need the following notion in discussions of the models of our axiomatic set

theory.

Definition B.5. Let K be a class, and n ∈ {1,2, . . .}. Define

Kn ∶= {(k1, . . . , kn) ∶ k1, . . . , kn ∈ K},

and K0 ∶= {∅}. Then an n-ary operation on K is a class function F such that for any pair

(a, b) ∈ F, we have that both a ∈ Kn and b ∈ K.

B.3 Ordinal Numbers and Transfinite Induction

In this section we define the ordinal numbers. In order to do so, we need to discuss proofs

by transfinite induction as well as definitions by transfinite recursion — these concepts are

used in the construction of the classical universe of sets, as well as our models of quantum set

theory. We note that this discussion follows Chapter 7 in Enderton (12) closely, and the reader

is referred there for details and proofs.
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B.3.1 Transfinite Induction and Recursion

We begin with the basic notions of a strict linear ordering1 a well-ordering, and a segment.

That is, if A is a set, and < be a binary relation on A, we say that < is a strict linear ordering

on A if < satisfies

1. Transitivity: For every a, b, c ∈ A with a < b and b < c we have a < c.

2. Trichotomy: For every a, b ∈ A, exactly one of the following

a < b, b < a, a = b

holds.

Definition B.6. Let A be a set and < a strict linear ordering on A. We say that < is a well-

ordering if every non-empty subset X ⊆ A has a least element under <. The pair (A,<) is then

called a well-ordered structure.

Ex: The quintessential example of a well-ordered set is the natural numbers N with the usual

strict ordering.

Definition B.7. Let A be a set with a ∈ A, and < a strict linear ordering. Define the segment

of A before a (denoted seg a) by

seg a ∶= {b ∈ A ∶ b < a}.

1We could develop the theory in this section using chains rather than strict linear orderings, but we
follow Enderton (12) for ease of reference.
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We now consider the principle of transfinite induction.

Theorem 40. Let A be a set and < a well-ordering on A. Further let B ⊆ A, and assume that

seg a ⊆ B implies that a ∈ B for every a ∈ A. Then B = A.

Theorem 40 extends the ordinary principle of induction, enabling us to do proofs by transfi-

nite induction on any well-ordered set — e.g. the above theorem can be used to prove that (for

some well-ordered set A) every a ∈ A satisfies some property P . This is to say that if we can

demonstrate that whenever every element of seg a satisfies property P then a does as well, the

above theorem then gives that all of A satisfies P (simply by taking B to be the set of elements

satisfying P .)

We next discuss definition by transfinite recursion, which is necessary for defining the ordinal

numbers. We note that the following theorem requires the axiom of replacement (see Section

4.2) for its proof.

Theorem 41. Let (A,<) be a well-ordered structure, and let F be a class function such that

for every set x there exists an object y with (x, y) ∈ F. Then there exists a unique function f

with domain A such that

(f ∣seg a, f(a)) ∈ F

for all a ∈ A.

B.3.2 Ordinal Numbers

We can now use definition by transfinite recursion to define the ordinal numbers.
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Definition B.8. Let (A,<) be a well-ordered structure, and take K ∶= {(x, ran x) ∶ x is a set}.

Then let f be the unique function with domain A given by Theorem ?? such that

f(a) = ran fseg a = f(seg a) = {f(x) ∶ x < a}.

Then ran f is called the ∈-image of (A,<). If, for a given set α, there exists a well-ordered

structure (A,<) such that α is the ∈-image of (A,<), then α is called the ordinal number of

(A,<), or just an ordinal number. We denote the class of all ordinals by Ord.

Ex: Take A to be r, s, t with r < s < t. Then we compute the function f to be

f(r) = {f(x) ∶ x < r} = ∅

f(s) = {f(x) ∶ x < s} = {f(r)} = {∅}

f(t) = {f(x) ∶ x < t} = {f(r), f(s)} = {∅,{∅}}.

We note that the class of all ordinals Ord is a proper class, and this statement is known as

the Burali-Forti Theorem.

From the above example we can see the beginning of a pattern. In fact this allows us

to consider the natural numbers as a special case of the ordinal numbers. To see this, let

n ∈ N ∶= {0,1, . . .}, with < the standard ordering on N. Then define the nth ordinal (denoted

n) to be the ordinal number of ({m ≤ n},<). We define the first infinite ordinal ω to be the

ordinal number of (N,<). As such, we have that 0 = ∅, 1 = {∅}, 2 = {∅,{∅}}, etc.
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Now, the following definition and theorem are needed for the construction of the classical

universe of sets.

Definition B.9. Let α be an ordinal number. Define α + 1 ∶= α ∪ {α}. If there is some ordinal

number β such that α = β + 1 then α is said to be a successor ordinal. If there is no such β,

and α ≠ ∅, then α is said to be a limit ordinal.

Theorem 42. Let α be an ordinal number, and A a set of ordinal numbers. Define ∈α∶=

{(A,B) ∈ α × α ∶ A ∈ B}. Then

1. (α, ∈α) is a well-ordered structure.

2. ∅ = α or ∅ ∈ α.

3. α + 1 is an ordinal number.

4. ⋃A is an ordinal number.

B.4 The Axiom of Choice and Zorn’s Lemma

We conclude with a brief discussion of the Axiom of Choice and Zorn’s Lemma. The content

of the axiom of choice1 is essentially that

For any set A consisting of disjoint, non-empty sets, there is a set B such that

every b ∈ B is a member of exactly one set A ∈ A.

This axiom of set theory is certainly intuitive for finite collections — in fact, it can be

proven from the other (ZF) axioms of set theory if we restrict A above to be a finite collection

1See Section 4.2 for a formal treatment.



266

Appendix B (Continued)

(by simply making a choice of an element from each A ∈ A and forming B from those chosen

elements). However, the axiom of choice enables us to extend this procedure to arbitrary infinite

collections.

We note that although the statement of this axiom seems relatively intuitive, there are

certain other equivalent1 statements which are seem much less intuitive — e.g. it has been

shown (4) that the statement ‘every vector space has a basis’ is equivalent to the axiom of

choice. Zorn’s Lemma is another (equivalent) way of stating the axiom of choice.

Lemma B.3. Zorn’s Lemma: Let A be a set partially ordered under ≤, such that for every

chain C ⊆ A, there exists some a ∈ A such that a is an upper bound for C. Then A has a

maximal element under ≤.

Zorn’s Lemma makes frequent appearences in classical mathematics, where it is used to

prove that every vector space has a basis, that every ring has a maximal ideal, etc. (e.g. see

Aluffi (1)). This lemma is used in the proof of Theorem 5.

1At least in the presence of the other axioms of set theory under classical logic.
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BASICS OF UNIVERSAL ALGEBRA

Here we define some basic concepts from universal algebra that are needed in the construc-

tion of the model theory for our first order quantum logic Q(L), as well as in the proof of the

soundness and completeness theorems for the deductive system relative to the semantics for our

first order logic developed in Chapter 2. See (5) for a comprehensive introduction to universal

algebra.

C.1 Algebras and Homomorphisms

Definition C.1. Let A and F be nonempty sets such that F , as well as every f ∈ F is a map

from An to A for some n ∈ N ∪ {N}. Then the pair (A,F ) (as well as just the set A itself) is

said to be an algebra with operations F . If f ∶ An → A, then f is said to be an n-ary operation

on A, and f is said to be of arity n. The type of (A,F ) is the map α ∶ F → N∪{N} assigning to

each f ∈ F its airity. If ran α ⊆ N, then (A,F ) is said to be of finite type. If F is finite, (A,F )

is said to have a finite number of operations. If F has m elements, with m ∈ N, then (A,F ) is

said to be a (n1, n2, . . . , nm)-algebra, where n1, . . . , nm are the airities of the elements of F in

non-increasing order.

As an example, consider a group G with idenity ‘e’, multiplication ‘⋅’, and inverse operation

⋅−1. Using the above definition, we can construct several different algebras for this group —
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namely, (G,{⋅, ⋅−1, e}) is a (2,1,0)-algebra (with α(e) = 0, α(⋅) = 2, and α(⋅−1) = 1), while

(G,{⋅}) as a (2)-algebra, and so on.

Now, for (A1, F1) and (A2, F2) algebras of type α and β, respectively, if there exists a

bijection ν ∶ F1 → F2 such that β ○ ν = α, then A1 and A2 are said to be of the same type,

and the bijection ν is called a type identification. These notions enable the definition of a

structure-preserving map between algebras of the same type.

Definition C.2. Let (A1, F1) be an algebra of type α, and let (A2, F2) be another algebra of

the same type with type identifier ν. Then a F1-homomorphism from A1 to A2 wrt ν is a map

h ∶ A1 → A2 such that

ν(f)(h(a1), . . . , h(aα(f)) = f(a1, . . . , aα(f)).

for every f ∈ F1 and a1, . . . , aα(f) ∈ A1.

We note that, in practice, the type identifier is usually implicit, as the algebras under

consideration will use the same symbols to denote identified operations; in such a case, the map

h is simply called a homomorphism. Further, if (A1, F1) and (A2, F2) are algebras of the same

type, and h ∶ A1 → A2 is a homomorphism which is also a bijection, an algebraic isomorphism,

or simply an isomorphism. If there exists an algebraic isomorphism from (A1, F1) to (A2, F2),

then (A1, F1) and (A2, F2) are said to be isomorphic.



269

Appendix C (Continued)

C.2 Products and Irreducibility

In what follows, we consider products of two algebras; although the concept of a product of

algebras can be defined more generally, the following discussion suffices for our purposes.

Definition C.3. Let (A1, F1) and (A2, F2) be algebras of the same type with type identifier ν.

For each f ∈ F1, define the α(f)-ary operation f̂ on A1 ×A2 by (for every a1 ∈ A1 and a2 ∈ A2)

f̂(a1, a2) ∶= (f(a), ν(f)(a)),

and let F̂ ∶= {f̂ ∶ f ∈ F1}. Then the product of (A1, F1) and (A2, F2) is the algebra given by

(A1 ×A2, F̂ ).

We note that if (A,F ) is the product of (A1, F1) and (A2, F2), then (A,F ) is of the same

type as (A1, F1) and (A2, F2). Finally, if (A,F ) is an algebra and there exist two other algebras

(A1, F1) and (A2, F2) which are of the same type as (A,F ), and further, if (A,F ) is isomorphic

to the product of (A1, F1) and (A2, F2), then (A,F ) is said to be reducible. Otherwise, (A,F )

is said to be irreducible.

C.3 Free Algebras, Congruences and Quotients

For purposes of our discussion we only need to consider free algebras of finite type. A proof

that such algebras are well-defined and always exist can be found in Burris (5).

Definition C.4. Let F be a set with a map α ∶ F → N, and let A be a nonempty set.

Then the free algebra with operations F on A (denoted by F(A)) is the unique algebra (up to

isomorphism) with operations F of type α such that for any algebra (B,F ′) (which is also of type
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α) and every set theoretic map f ∶ A→ B, there exists a unique homomorphism f̂ ∶ (F(A)→ B

such that f̂(a) = f(a) for every a ∈ A. Also, for any a ∈ A, a is called a basic element of F(A).

Just as a set can be partitioned into equivalence classes, the set of which forms a new set, it

is possible to make a similar construction for algebras — that is, for a given algebra (A,F ), it

is possible to take a partition of the underlying set A (with the right properties), and from this

form an algebra on the equivalence classes of A which is of the same type as (A,F ). To this

end, we consider the following definition of a congruence (which is effectively an equivalence

relation which respects the algebraic properties of the algebra).

Definition C.5. Let (A,F ) be an algebra of type α, let f ∈ F , and let ‘�’ be an equivalence

relation on A. Then ‘�’ is called a congruence wrt f if, for any a1, . . . , aα(f), b1, . . . , bα(f) ∈ A

such that ai � bi for i ∈ {1, . . . , α(f)},

f(a1, . . . , an) � f(b1, . . . , bn).

If ‘�’ is a congruence wrt every f ∈ F , then ‘�’ is simply called a congruence on A.

Using this definition, we can now define a quotient algebra.

Theorem 43. Let (A,F ) be an algebra of type α, and let ‘�’ be a congruence on A. Then

for each f ∈ F , define1 f̂ ∶ (A/ �)α(f) → (A/ �) by f̂([a]�) ∶= [f(a)]�. Let F̂ ∶= {f̂ f ∈ F} and

define β ∶ F̂ → N by β(f̂) ∶= α(f). Then

1That the map f̂ is well-defined requires proof. The details can be found in Burris (5).
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1. (A/ �, F̂ ) is an algebra of type β.

2. (A,F ) and (A/ �, F̂ ) are of the same type, with type identifier f ↦ f̂ .

3. The map given by a↦ [a]� (for every a ∈ A) is a surjective algebra homomorphism.

Now, if (A,F ) is an algebra of type α and ‘�’ is a congruence on A, then the algebra

(A/ �, F̂ ) from Theorem 43 is called the quotient algebra of A by ‘�’.

Finally, we conclude this section by noting that while the above theorem shows that quo-

tients give rise to homomorphisms, the theorem below shows that homomorphisms give rise to

quotients.

Theorem 44. Let (A1, F1) and (A2, F2) be algebras of the same type, and let h ∶ A1 → A2 a

homomorphism. The binary relation ‘�’ on A1 given by

a � b iff h(a) = h(b)

is a congruence on A.
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