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SUMMARY

It frequently happens in machine learning problems that the information explaining the subject of

interest to be obtained from different sources or modalities and many well-studied algorithms are pro-

posed for multi-view problems. The choice of the algorithms however, should adapt to the particular

properties of each multi-view problem.

Inspecting brain connectivity networks represented in brain images is a prevalent way to determine sub-

jects affected by the neurological disorders. From a machine learning perspective, brain images and

their corresponding class are labeled data instances which can be used for learning purposes. Medical

images obtained from different imaging techniques are considered to be multi-view structured instances.

Tensorial representation is the method we use in this study to preserve the natural structure of these im-

ages.

Since the connectivity information corresponding to each brain image is embedded in tensorial structure,

it is highly important that the implemented learning algorithm to preserve the multi-way structure. we

use a structure preserving kernel representation of the tensor instances for all views of the data which

eventually is exploited in a multiple kernel learning algorithm that is an extension of support vector

machines for multi-view data.

x



CHAPTER 1

INTRODUCTION

Multi-view sources have recently been a great subject of interest in classification problems for their

capability of revealing different aspects of the same subject and accordingly increasing the accuracy of

predictions. Multi-view data does not necessarily have to be from different domains as they could just

be feature sets divided to different groups. Regardless of how it is generated, searching for effective

algorithms that could make the most of provided information is an active area of research. Generally,

three major methods are applied to solve multi-view learning problems depending on the requirements

and characteristics of the specific problem. The co-training style algorithms are holding to consensus

principle which implies the necessity of mutual agreement of views to improve the prediction results

(Dasgupta et al., 2002). The second widely used approach is multiple kernel learning method that a va-

riety of its formulations can be find in (Lanckriet et al., 2004), (Bach et al., 2004), (Cortes et al., 2009),

(Kloft et al., 2011). This method is basically representing the multi-view data according to the various

predefined kernel functions and searches for the best possible combination of predefined kernels that

results in better predictions. The third method is subspace learning that assumes all views are generated

from a shared subspace and searches for this hidden subspace; in other words this approach is based on

finding minimal principal components representing multiple views. (Hotelling, 1936), (Akaho, 2006).

One of the widely used multi-view sources for medical diagnosis is the brain images acquired by two

main medical imaging techniques, functional Magnetic Resonance Imaging (fMRI) and Diffusion Ten-

sor Imaging (DTI).These two methods are vastly used to explore the gray matter functions and white

1
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matter microstructures in neuroscience. In addition; due to the close relationship between the nature of

the information they represent, it is believed that educated integration of these two sources can facilitate

the outcome of predictions, estimations or classification problems.

From a machine learning perspective, this requires an optimal algorithm for combination of multi-

ple views. Moreover; it is highly important that the multi-way property of brain images that actually

contains the inherent network structure to be preserved. fMRI and DTI instances can be regarded as

multi-dimensional arrays or tensors with grayscale values for each voxel. Therefore, the problem is to

efficiently represent the tensorial data while maintaining its structure and using an optimal multi-view

learning approach.(He et al., 2014) proposes a structure preserving kernel for tensorial data that achieves

higher classification accuracies compared to other conventional kernels that initially perform flattening

on the data.

Moreover; Many of the works in the literature hold to the fact that the brain connectivity networks can

naturally be modeled as graph representations and choose graph classification methods for the analysis

(Richiardi et al., 2011), (Cao et al., 2015).

A motivation for the presented work in this thesis is that brain network connectivities can also be mod-

eled as tensors while remaining the original data structure. Afterwards; a set of experiments are con-

ducted to explore the preferred multi-view learning algorithms on fMRI and DTI sources.

The main contribution of this work is to explore whether multiple kernel learning method

in conjunction with an structure preserving kernel can improve the accuracy results for

classification of multi-view structured data.
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1.1 Thesis Organization

This thesis is organized into 5 chapters. Descriptions of each chapter are as follows:

Chapter 1 First chapter introduces the problem in hand and gives a brief explanation

about the motivation for the current study and the specific approach we chose to solve

the problem.

Chapter 2 This chapter provides the reader with the basic knowledge about SVM

theory, sufficient representation for structured data and common approaches to deal

with multi-view problems. Tensor analysis and factorization methods are also being

reviewed along with some conventional tensor based learning methods. The frequently

used notation is also included at the beginning.

Chapter 3 The implemented approach is explained in this chapter. First, the formulation

for DuSKPoly is derived to be used along with DuSKRBF as the basekernels of MKL

algorithm. Second, the SM1MKL algorithm as a preferred MKL approach is explained

to deal with multi-view structured data.

Chapter 4 The implemented experiments and their corresponding results are included

in this chapter to evaluate the efficiency of proposed method compared to a baseline

method on a given multi-view brain network data.
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Chapter 5 The conclusion out of the conducted experiments along with some cases for

future study is summarized in this chapter.



CHAPTER 2

BACKGROUND AND NOTATION

2.1 Notation

In this section we list the variables that we will keep referring to in the following chapters:

a,b,c, ... Boldface lowercases show vectors

A,B,C, ... Boldface uppercases show matrices

A ,B,C , ... Calligraphic uppercases show sets

A,B,C, ... Euler script uppercases show tensors

A(m) shows m’th mode matricization of A

〈a,b〉 shows inner product of vectors a and b

a⊗b shows outer product between a and b

A×m B shows m-mode tensor product between A and B

5
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Before presenting our methodology, in this chapter we first give some basic definitions in machine

learning area that will be used as the foundation of this study and then we briefly review some works

mostly related to multi-view learning on structured data.

2.2 Support Vector Machines

Support vector machines as the baseline of learning methods that we use in this study and are briefly

reviewed in this section (Murphy, 2012).

Among all other machine learning algorithms for classification, SVM’s or support vector machines have

proved to yield considerably good results in practice and therefore have been an interesting subject of

study. The main idea behind the SVM learning theory is to find the maximum separating margin of

different classes. Maximizing the margin is important in the sense that in case some interference was

added to data samples, the algorithm would still be able to classify the samples correctly. Maximizing

the margin is equivalent to solve the following problem:

min
1
2
‖w‖

2
subject to y(i)(wT x(i)+b)≥ 1 (2.1)

Where ‖w‖ defines the separating hyperplane and the constraint assures that all data samples lie on

the correct side of the boundary while the margin is maximized. The Lagrangian of this minimization

problem is given by:

L (w,b,α) =
1
2
‖w‖2−

m

∑
i=1

αi(y(i)(wT x(i)+b)−1) (2.2)
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Normally solving the dual from of the 2.2 is easier than solving the primal form and when Kurush-

Kuhn-Tucker conditions are met dual form can be solved instead of primal problem and is given by:

max
α≥0

(min
w,b

L (w,b,α)) (2.3)

This is a quadratic optimization problem that is solved by quadratic programming. w is the weight

vector corresponding to the separating hyperplane, b is the bias value and α is the vector of coefficients

for all data points. These set of coefficients are shown to be zero for the points away from the margin and

usually positive for those on the margin of each class. The data points with positive αi values actually

determine the margin and are called support vectors.

max
α

(
m

∑
i=1

αi−
1
2

m

∑
i=1

m

∑
j=1

y(i)y( j)
αiα j〈x(i),x(j)〉) (2.4)

subject to
m

∑
i=1

y(i)αi = 0, αi ≥ 0

w, α and b are obtained by solving 2.4, a decision function is derived that can classify any given point

x according to the sgn function h(x) :

h(x) = sgn(
m

∑
i=1

αiyi(xi ·x)+b) (2.5)

Where negative h(x) corresponds to the negative class and positive h(x) corresponds to the positive

class. Equations 2.4 and 2.5 clearly show that the pairwise inner product of all training samples and
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also the pairwise inner product of all training and testing samples is required for learning and labeling

respectively. However it is proven that the αi’s are zero for all other points except the support vectors

and accordingly the computation cost decreases significantly.

The Dual objective function in 2.4 and accordingly the functional margin of SVM in 2.5 are derived

based on the assumption that the samples belonged to each class are linearly separable. In other words,

this formulation searches for hypothesis that can strictly separate the different classes with no errors. If

the assumption is violated there will be no solution for 2.4. Since for the real world data it is inevitable

to encounter with not linearly separable problems and to be able to use the desirable properties of

SVM formulation for these cases, 2.1 is changed in a way that allows a budgeted amount of error for

misclassified samples. The error is modeled by a slack variable called ξi for any given training sample.

For those of samples which are in the correct side of the margin ξi = 0, for those inside the margin

0≤ ξi ≤ 1 and the ones that are completely in the wrong side

xii ≥ 1. To control the budget of error tolerance the trade-off parameter C is introduced that balances

between complexity and the number of errors. The frequently used formulation for this case (Murphy,

2012) is called C-SVM and is given by :

min
1
2
‖w‖

2
+C

N

∑
i=1

ξi subject to ξi ≥ 0 ,y(i)(wT x(i)+b)≥ 1−ξ , (2.6)
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A variant of C-SVM penalizes the errors according to the tolerable number of misclassified samples.

The ratio of misclassified samples to all samples is represented by parameter ν where it holds that

C = 1
Nν

(Chen et al., 2005).

2.2.1 Kernel methods for SVM problems

The SVM derivation in previous section assumes that data points are linearly separable in the feature

space, in other words different classes can be separated according to the straight lines in the original

space. However; the fact is that usually the real world data are not linearly separable in the original

feature space. Therefore, the kernel methods were introduced to overcome this issue. The main idea

behind kernel method is that there existis a higher dimensional feature space ,where if the data mapped

to, can solve the non-separability problem. In addition to this desirable property, kernel methods are

popular due to the fact that they decrease the computational complexity of learning when inner product

of samples is required to be calculated. This property which is referred as kernel trick paves the way for

learning algorithms since it does not need the detailed coordinates of the samples in a possibly infinite

dimensional space. Instead, it can calculate the desired inner product in the higher dimensional space

based on their coordinates in the raw feature space. Equation 2.7 illustrates how the kernel trick works:

h(x) = sgn(
m

∑
i=1

αiyi(φ(xi) ·φ(x))+b) (2.7)

K(xi,x) = φ(xi) ·φ(x)
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where φ(xi) and φ(x) are the mapped samples and k(xi,x) is the corresponding kernel function.

Radial basis function (RBF) kernel and Polynomial kernel are two frequently applied kernels due to

their good performance on a wide range of datasets. For given sample x and y, RBF and Polynomial

kernels are defined as follows:

KRBF = exp(−‖x−y‖2

2σ2 ) (2.8)

KPolynomial = (x ·y+ c)d (2.9)

The bandwidth parameter of RBF kernel (σ ) and the degree parameter of polynomial kernel are

adjusted according to the requirements of the learning problem.

2.3 Structured Data

According to the prolific advances in data acquisition technologies, the representation methods of

gathered data is grown to be a matter of great importance. Arbitrary types of features or attributes

explain the data instances that may not necessarily be related to each other; however, for some of the

datasets the features are bonded together in different ways and a meaningful interpretation of the ob-

served data cannot be acquired without taking the inherent structure into account which requires an

expressive model of the data.

One of the most common methods to efficiently represent the structured data is to utilize various matrix

factorization methods that use the tensor product as their common principle and make a compact repre-

sentation of the data possible. (Srebro, 2004) comprehensively studied the matrix factorization models
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as common tools of analyzing the machine learning problems such as matrix compression, matrix pre-

diction or extracting the structure of a matrix. (Nickel and Tresp, 2013) expands the results to the higher

order tensor case and conducts a set of experiments to analyze the consequences of unfit representation

of tensorial data. For a given tensor of order 3 called X , matrices A,B,C and the tensor W are called

factorization matrices and the core tensor respectively if they can express X by a set of tensor products:

X =W ×1 A×2 B×3 C (2.10)

A,B,C and W are actually the elements of multi-linear or tucker3 decomposition explained in 2.6.

Tucker3 is the true factorization of X since it can take all the dimensions of X into the account. How-

ever, other factorizations that assume higher or lower order for X are referred to be overstructured or

understructured representations. For instance tucker4 which assumes fourth mode for the data is con-

sidered overstructured for X. Overstructured representation is created when we assume unreal slicing

along extra modes. Analogously, an understructured representation for X can be a SVD decomposition

for matrixes where the structure along one mode of X is ignored by flattening methods.

2.3.1 Generalization Bounds for Tensor Factorizations

Tensor factorizations are a non dispensable part of tensor learning methods as they can give efficient

representation of structured data. In the other hand, factorizations enforce constraints that may affect

the generalization ability of a representation in many learning problems such as link prediction or item

recommendation.
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Given a tensor prediction problem with the zero-one loss function which is the commonly used function

for classification purposes, for each element of X and the target labels of yi ∈ {±1}:

Loss(xi,yi) =


0, if sgn(xi) = sgn(yi)

1, otherwise
(2.11)

The value of loss function clearly just depends on the sign of xi and not its magnitude. Therefore, the

equivalence classes of tensors are those with the same sign patterns. The set of all possible sign pattern

for a given tensor of arbitrary order is given by(Nickel and Tresp, 2013):

sgn(X) ∈ {−1,0,1}∏n (2.12)

Therefore, a constrained factorization of X such as Tucker decomposition actually limits the sign pat-

terns in 2.12. This is the reason why the discrepancy of any future prediction X is bounded by the

observed discrepancy between X and the target tensor Y plus another term(Nickel and Tresp, 2013):

∀X ∈Xr : Prob(D(X,Y)≤ DΩ(X,Y)+

√
log |Sn,r|− logδ

2|Ω|
)> 1−δ (2.13)

Sn,r = {sgn(X) ∈ {−1,0,1}∏n|X ∈ R∏n,n-rank(X)≤ r} (2.14)

where |Sn,r| ≤ (
4e(ord(X)+1)pol(X)

Var(X)
)Var(X)

This is a Probably approximately correct(PAC) bound for discrepancy and the second term clearly

shows that how the structure of a tensor, determined by ord(X) and Pol(X), and the factorization con-
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straints, determined by var(X) affect the upper bound on the generalization ability of the model.

(Srebro, 2004) compares the generalization ability of overstructered and understructured factorizations

of X with its true model factorization. The generalization ability of the overstructured model is entirely

low compared to the true model and therefore, the overstructured model may seem not to be expressive

enough but at the same time it is more persistent for different ratio’s of missing data. On the other

hand, the understructured model shows good generalization abilities compared to the true models for

low amounts of missing data which is an evidence on its expressiveness but it degenerates when the

missing data ratio increases.

The effects of factorization constraints are studied in (Srebro, 2004) and the results suggest that although

due to the limited sign patterns of a model with more constraints, the overall classification results are

worst than the true model, However; it also does not suffers from the overfitting problem like the true

model with no constraints.

2.4 Multi-view Data

The main difference between the single-view and multi-view data is the availability of extra infor-

mation that actually represents the data from other points of view. In many of the data analytic problems,

there are often different domains that the data can be collected from. Although groups of collected data

may be heterogeneous, they are actually representing the subjects of the same source. Therefore, it is

important to be able to sufficiently exploit and combine all views to improve prediction or classification

performance. For example, the information used for medical diagnosis may be acquired by medical

imaging techniques along with some clinical reports about subjects. To obtain better classification per-

formance an efficient integration of these information is necessary.
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A multi-view algorithm is naturally expected to perform better compared to a single-view algorithm;

however, if the learning method cannot adapt to the multi-view data, the performance measures may

even get worse. There are two main principles to assure the compatibility of the algorithm to the multi-

view data. These principles are as follows

2.4.1 Consensus Principle and Complementary Principle

Assuming two different views for the dataset X that are shown by X1,X2 and the label Y associated

with X , the consensus principle maximizes the acknowledgement between multiple views.Under some

assumptions (Dasgupta et al., 2002)the relation between the probability of error for single view and

multi-view acknowledgement is proved to be as follows:

P( f 1 6= f 2)≥max{Perr( f 1),Perr( f 2)} (2.15)

2.15 shows that the probability of disagreement upper bounds the probability of error for both of the

single-view classifiers or equivalently it is inferred that minimizing the disagreement for multi-view

problem also minimizes the error rate of both single-view hypothesis. Many algorithms such as co-

training or co-regularization algorithms formulate their objective functions holding to this principle.

The complementary principle assumes each view containing supportive or complementary information

that is used to boost the performance of the other views. For example, the predicted labels of a hypothesis

learned on one view can be used as the labeled training set of other views which is indeed a method to

exchange useful information contained in only one view (Nigam and Ghani, 2000). Different views

of the data can even be generated by differently set the configurations of the same hypothesis such as
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its bias and (Wang and Zhou, 2007) shows that when the diversity of these different configurations is

greater than each learner’s error, better performance can be expected.

2.4.2 Multi-view Acquisition

Sometimes different views are gathered directly from different sources describing the same data and

the adaptation analysis is required to prove their adequacy for multi-view learning. However; sometimes

the multiple views are generated manually according to a given feature space. One way of generating

multiple views is dividing the set of features to as subsets of features. If the data samples reside in

an n dimensional feature space, a total of 2n possible feature subspaces can be generated that can be

considered as different views of the data. This method is called random subspace method (Ho, 1998)

and employs the bootstrapping and aggregation approach to choose the feature subsets. There are also

other methods that try to construct a low-dimensional feature space representing both views by taking

advantage of the complementary principle.(Sigal et al., 2009). Also to evaluate the proficiency of the

constructed views, various methods are proposed to analyze and predict their adequacy.(Muslea et al.,

2002)

2.5 Multi-View Learning

In section 2.3 different methods of gathering or even generating the multi-view versions of the data

were explained. however; it is equivalently important that the algorithms used for learning on the multi-

view data can adapt to the multi-view characteristics to be able to extract the underlying distribution or

pattern of the represented data. Various multi-view learning algorithms are explained in this chapter. In

particular, the multiple kernel learning method as a promising approach in multi-view problems will be

studied.
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A variant of approaches are used to deal with multi-view data which could mainly be categorized ito

three groups.

2.5.1 Co-training

These kind of algorithms first learn the classifier on each view similar to the learning on single-

view data and then according to the consensus principle the disagreement between multiple views is

forced to be minimized by possibly propagating back the inconsistency. In other words, each learned

hypothesis according to the labeled data, is first used to predict the labels on a new unlabeled set of data

called validation set and the prediction results of this hypothesis is fed back to the other hypothesis as

training set and therefore, each hypothesis uses the information in other views to improve its accuracy. A

formulated version of co-training method is co-regularization which induces the agreement on unlabeled

data for all hypothesis and minimizes the loss resulting form misclassification of the labeled data.

2.5.2 Subspace Learning

Despite the Co-training method that postpones the combination procedure of learners to the last

stage of multi-view learning, in subspace learning method, the first step is to define an expressive sub-

space that is assumed to be the foundation for all produced views. One of the most common learning

methods that falls into this category is Canonical correlation analysis (CCA) which is considered to be

the multi-view version of principle component analysis(PCA).

2.5.3 Multiple Kernel Learning

Kernel methods are considered as powerful tools to overcome the nonlinearity problem of the real

world data by benefiting from kernel trick that highly decreases the computational complexity of kernel

matrix calculation.
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kernels may be calculated according to the data samples in the original feature space where each kernel

value represents the measure of similarity between corresponding mapped data points in the new space

called Hilbert space. Every kernel matrix is characterized by its generating kernel function. In the case of

multi-view data, a kernel matrix is generated according to a particular kernel function for each view. The

second step is to combine the calculated kernels to be used in one of the common kernel-based learning

methods. Therefore, the classifier is neither learned separately for each view like co-training method nor

is learned on a shared representation like subspace learning method. Multiple kernel learning method

can be considered as an in-between approach. The transitional stage of combining the calculated kernel

matrixes as a single kernel can be done as a linear or non-linear combination; however, the performance

results of non-linear combination were shown to be inconsistent (Varma and Babu, 2009) and the linear

kernel combination is desired in terms of performance.

2.5.3.1 Multiple kernels for SVM Classifiers

Different kernels are representing various aspects of the data and not all of these features are neces-

sarily relevant or useful for learning purpose. For example, some of the features may only be the result

of some noise or interference in the data. To reduce the result of irrelevant kernels, a set of weights

associated with each kernel are introduced that can be considered as the importance measure of a given

kernel. A primitive way of combining a set of predefined kernels is through calculating the average

kernel that basically sums a set of equally weighted kernels:

K(xi,x j) =
1
M

M

∑
k=1

Kk(xi,x j) (2.16)
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Average kernel method has shown(Cortes et al., 2009) to obtain better performance results on some

applications compared to the more sophisticated methods like L1MKL method; however, it is not ideal

when a lot of noisy features are included in the data.

To be able to efficiently control the effect of each basekernel in MKL algorithm, a set of Lp norm

constraints may be enforced on their importance coefficients. Generally L1MKL method is known for

its sparsity property because the kernel with minimum objective takes all the weight. For this reason

L1MKL is sometimes referred as the hard margin MKL. MKL-SVM tries to simultaneously learn the

optimal kernel combination and α coefficients of the SVM classifier.The dual objective function of a

SVM classifier for L1 constrained MKL is given by:

max
α∈A

min
µ∈M

M

∑
m=1

µm(
−1
2
(α�y)T Km(α�y)) (2.17)

where


A = {α|αT 1 = 1,αT y = 0,0≤ α ≤C1}

M = {µ|0≤ µ,∑M
m=1 µm = 1}

It can be seen in 2.17 that the constraints on the kernel weights for L1MKL are just simplex constraints

that eventually lead to sparsity. The difference of L1MKL with LpMKL for p ≥ 2 is that the kernel

coefficient constraint term in 2.17 is replaced by Lp norm ball constraint:

µ ∈ {µ|0≤ µ,
M

∑
m=1

µ
P
m ≤ 1} (2.18)

Due to the 2.18 the kernel importance coefficients of LpMKL will not be zero for any of the baseker-

nels in SVM problem which leads to diversity and is the main disadvantage of LpMKL while irrelevant
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kernels are included in the kernel set.

Considering the shortages of L1MKL and LpMKL methods, an intermediate approach with the capabil-

ity of choosing the optimal kernels without including the irrelevant ones is desired. The next section

explains the proposed method in (Xu et al., 2013b) to overcome this problem.

2.6 Tensor Analysis

Tensor representations for the real world data are proven to be an efficient way of preserving infor-

mative relations between data samples where neglecting these inherent structures results in non-optimal

solutions for the learning algorithms. structural representation in the form of multi-dimensional arrays

is specifically important when the learning process is done according to a small number of samples

because learning algorithm needs to be fed the most informative representation of these scarce samples.

The number of dimensions determines the order or mode of the tensor. Scalars, vectors and matrices are

0 order, first order and second order tensors respectively.

2.6.1 Basic Definitions

A set of essential definitions for tensor analysis are reviewed in this section that are explained com-

prehensively in (Kolda and Bader, 2009). These definitions are the principle for various tensor factor-

ization methods.

Each element of a given M’th order tensor X ∈ RI1×I2×...×IM is specified with xi1,i2,...,iM . The inner prod-

uct of two same-sized tensors is, similar to the vector case, the summation of element-wise product

between two tensors.

〈X,Y〉=
I1

∑
i1=1

I2

∑
i2=2

...
IM

∑
iM=1

xi1,i2,...,iM yi1,i2,...,iM (2.19)
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Outer product of given M’th order tensor X and N’th order tensor Y, also called tensor product, is a

tensor of order M+N and is defined by:

(X⊗Y)i1,i2,...,iM ,i′1,i
′
2,...,i

′
M
= xi1,i2,...,iM yi′1,i

′
2,...,i

′
M

(2.20)

Rank of a given tensor X is determined by the minimum number of rank one tensors that could exactly

fit in X when summed together. A rank-one tensor of order M, similar to the matrix case, is a tensor that

can be expressed as the tensor product of M vectors.

when tensor multiplication is required, given a high order tensor and a matrix, the problem is that there

are different ways of multiplying tensor fibers with a given matrix, i.e. it is important to specify the

mode that the the fibers are chosen from. To solve this issue the m-mode product is defined. For a given

tensor X ∈ RI1×I2×...×IM and a matrix A ∈ RJ×Im , the m-mode product is calculated as follows:

(X×m A)xi1 ,i2 ,...,im−1 , j,im+1 ,...,iM
=

IM

∑
im=1

xi1,i2,...,iM a j,im (2.21)

m-mode product can equivalently be expressed by matricization of tensor X along mode m:

Y= (X×m A)⇔ Ym = (A)Xm (2.22)

Where the subscripts in the right term indicates the matricization along m th mode.
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2.6.2 Tensor Factorization

Recently, tensor methods have been used in attempts to better understand the success of structured

analysis. One class of broadly useful techniques within tensor methods are tensor decompositions. Con-

sidering the favorable properties of SVD decomposition for second order tensors (matrices) in extracting

and ordering the basis components of a given matrix, higher order generalization of SVD decomposi-

tion or HOSVD is used for efficient representation of tensorial data. Two main tensor decompositions

that are widely used in tensorial data analysis are Tucker decomposition (Tucker, 1963) and CANDE-

COMP/PARAFAC referred as CP (Carroll and Chang, 1970) (Harshman, 1970). CP can be considered

as a special case of Tucker decomposition. The details and properties of both decompositions is given

below.

2.6.2.1 Tucker Decomposition

Given a third order tensor X ∈ RI×J×K , the tucker decomposition is defined by factor matrices

A ∈ RI×P, B ∈ RJ×Q, C ∈ RK×R and the core tensor G ∈ RP×Q×R where:

X≈ G×1 A×2 B×3 C =
P

∑
p=1

Q

∑
q=1

R

∑
r=1

gp,q,rap⊗bq⊗ cr = JG;A,B,CK (2.23)

An element indexed by xi jk in tensor X is :

xi jk =
P

∑
p=1

Q

∑
q=1

R

∑
r=1

gpqraipb jqckr (2.24)

Tucker decomposition can also be computed for higher order tensors.
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2.6.2.2 CP Decomposition

CP decomposition is a special case of Tucker decomposition where P = Q = R and xi1i2...iM 6= 0 only

if i1 = i2 = ...= iM. Given a third order tensor X ∈ RI×J×K , the CP decomposition is defined by factor

matrices A ∈ RI×R, B ∈ RJ×R, C ∈ RK×R where:

X≈ JA,B,CK =
R

∑
r=1

ar⊗br⊗ cr (2.25)

An element indexed by xi jk in tensor X is :

xi jk ≈
R

∑
r=1

airb jrckr for all i, j,k (2.26)

2.6.3 Tensor based learning

Kernel methods are popular for their flexibility in alleviating the non separability of samples be-

longed to different classes. For data samples that reside in vector spaces, mapping to a higher dimen-

sional space is done according to the conventional kernel functions that take sample feature vectors

as their input and regardless of the description of mapped sample in high dimensional feature space,

provide a similarity measure between all pairs of data samples which is fed to the classifier as data rep-

resentation.

Although tensors are proven to efficiently capture the multi-way structure, since the suggested models

for tensors are affine on the data (Signoretto, 2011) they are unable to cope with nonlinearities pre-

sented by real world data. Many studies are conducted to integrate the favorable properties of kernels

to tensorial data; however, most of these methods inevitably need to perform flattening tasks that give



23

a vectorized or matricized representation of data(Signoretto et al., 2012)(Zhao et al., 2013a). However,

all or parts of the structural information is lost in the cost of using the desirable properties of kernel

methods.

Variations of tensor kernels are studied in (Signoretto, 2011) with their specific characteristics. The

most naive type of kernels for tensorial data is the kernel that operates on vectorized version of tensor

as follows:

k(X,Y) = 〈vec(X),vec(Y)〉 (2.27)

Where for the well-known Gaussian-RBF kernel, it is given by:

k(X,Y) = ∏
p∈I1×I2×...×IM

exp(− 1
2σ2 (xp− yp)

2) (2.28)

Regardless of data-type, this kernel neglects the structure along all dimensions which is referred as an

invariance property.

Another type of structure exploiting kernels that is based on kernel products uses matrix unfoldings of

a given tensor as inputs to each factor kernel.

k(X,Y) = k1(X,Y)k2(XY)...kM(X,Y) (2.29)
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where km(X,Y) is the kernel calculated according to the m’th mode tensor unfolding. Distance mea-

sure for product kernel with Gaussian-RBF factor kernels is different from Euclidean distance. It is

concluded from 2.29 that the distance measure between X and Y for RBF kernel is given by:

dT (X,Y) =

√
M

∑
m=1

d(X(m),Y(m)) (2.30)

where d(X(m),Y(m)) is the distance between m’th mode unfolding of tensors X and Y. Therefore, the

product RBF kernel in 2.29 is:

k(X,Y) = exp(− 1
2σ2 dT (X,Y)

2) (2.31)

2.29 and 2.31 clearly show that flattening of the tensor is a non dispensable part of these methods.



CHAPTER 3

METHODOLOGY

The proposed algorithm in this study uses structure preserving kernels to represent multi-way data

coming from different views. Dual structure preserving kernel or briefly DuSK is a specific variant of

these kind of kernels that is previously proposed by (He et al., 2014) with an application of radial basis

function DuSK to third dimensional brain images. We use two variants of DuSK, namely DuSK-RBF

and DuSK-Polynomial, in the framework of a multiple kernel learning algorithm that has the ability

of tuning the kernel weights according to their importance. Multiple kernel learning method that we

choose for the multi-view problem is soft margin MKL that has some advantages over its counterpart

formulations. In this chapter, derivation of DuSK kernels and solution to the soft margin MKL are

briefly reviewed.

3.1 Dual Structure Preserving Kernels (DuSK)

A training set of tensorial data {Xi}l
i=1 and their corresponding binary labels yi = ±1 are given.

Similar to the derivation of non-linear SVM, where sample vectors are mapped to the higher dimensional

space, this method generalizes vector mapping to tensor mapping in non-linear SVM formulation:

min
W 2

F ,b,ξi

1
2
‖W ‖+C

l

∑
i=1

ξi (3.1)

s.t. yi(〈W ,φ(Xi)〉)≥ 1−ξi , ξi ≥ 0 ∀i = 1, ..., l

25
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Using the Lagrangian method, the decision function for tensorial SVM is derived:

f (X) = sign(
l

∑
i=1

αiyik(X,Xi)+b) (3.2)

It is shown in 3.2 that the tensorial SVM problem is only different from standard SVM by the kernel

function k(X,Xi) to be defined.

The specific method presented in (He et al., 2014) exploits CP factorization to express the data as a sum

of low rank (rank one) tensors. CP is desirable in a sense that the factorization extracts the principle

features of a tensor in the form of component vectors that are easier to operate on. For a factorized rank

one tensor X, the mapping φ is:

φ :
M

∏
m=1
⊗x(m)→

M

∏
m=1
⊗φ(x(m)) ∈ RH1×H2×...×HM (3.3)

Therefore, the kernel function as an inner product in Hilbert space is given by:

k(X,Y) =
M

∏
m=1

k(x(m),y(m)) (3.4)

Where 3.4 is resulted from the fact that the inner product of two factorized rank-one tensors is the multi-

plication of the inner products of corresponding modes. When the rank of the tensor is more than one, a

summation is added to the formulation; however, since the Hilbert space is just a higher dimensional ver-

sion of the original space, mapping of R summed tensors is equivalent to a summation between mapped

factor tensors in CP. In other words, this kernel preserves the structure of tensorial data regardless of the
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used mapping function. The dual tensorial mapping of a second order tensor is illustrated in Figure 1.

For a M’th order tensor of rank R, the dual tensorial mapping is given by:

φ :
R

∑
r=1

M

∏
m=1
⊗x(m)→

R

∑
r=1

M

∏
m=1
⊗φ(x(m)) (3.5)

1

Figure 1: Dual tensorial mapping has applied to a 2D tensor of Rank R

Accordingly, DuSK kernel that is a measure of similarity between two structured samples of order

M and rank R is derived as follows:
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k(
R

∑
r=1

M

∏
m=1
⊗x(m)

r ,
R

∑
r=1

M

∏
m=1
⊗y(m)

r ) =
R

∑
i=1

R

∑
j=1

M

∏
m=1

k(x(m)
i ,y(m)

j ) (3.6)

3.2 DuSKRBF and DuSKPolynomial

The DuSK version of the well-known RBF kernel with parameter σ is formulated by:

k(X,Y) =
R

∑
i=1

R

∑
j=1

exp(−σ

M

∑
m=1
‖x(m)

i −y(m)
j ‖

2) (3.7)

As it is shown in 3.7, DuSKRBF is a summation between a set of product kernels.

Similar to the DuSKRBF , polynomial DuSK is derived by choosing the core kernel function for 3.6 to be

polynomial. The polynomial kernel function for two given vectors x and y is:

k(x,y) = (x ·y+ c)d (3.8)

Where C is a constant value and d is called the degree of polynomial kernel. Therefore DuSKPoly is

formulated as follows:

k(X,Y) =
R

∑
i=1

R

∑
j=1

M

∏
m=1

(x(m)
i ·y

(m)
j + c)d (3.9)

Now the kernel matrices for a given tensorial data instance can be calculated according to 3.7 and

3.9. A set of experiments conducted in (He et al., 2014) illustrates the preference of DuSK over other

conventional kernels or those which initially use flattening methods. Normally there is no trivial way

to determine the best combination of decomposition rank, kernel parameter and the trade-off parameter

of SVM classifier; therefore, a grid search is preformed for a reasonable range of parameters. In multi-
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view learning problems where information carried out by all views are considered equally important,

the chosen learning methods should be capable of highlighting the beneficial features of each view. The

effect of irrelevant or harmful features also needs to be attenuated.

3.3 Soft Margin Multiple Kernel Learning

C-SVM method tries to alleviate the problem of not linearly separable data by introducing the

penalty parameter C that tries to balance the number of outliers and the complexity of the separat-

ing hyperplane. In other words, it adds a soft margin property to the standard SVM problem that allows

a particular number of training errors determined by C. Soft margin multiple kernel learning or shortly

SM-MKL that is studied extensively in (Xu et al., 2013b) is an approach that uses the notion of slack

variable for SVM problem.

For a given dataset S = {(xi,yi)|i = 1, ..., l}, if we consider a set of M basekernels K = {K1, ....,KM}

generated according to S, the slack variable corresponding to each basekernel can be represented as:

ζm = τ− (
−1
2
(α�y)T Km(α�y)) (3.10)

It can be seen from 3.10 that ζm is the difference between target margin and the SVM dual objective for

each kernel. Various loss functions can be defined for ζ where the most common loss function also used
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for C-SVM is hinge-loss. Subsequently, the objective formulation for the soft margin multiple kernel

learning algorithm with hinge-loss for kernel slack variables is defined as follows:

min
τ,α∈A,ζm

−τ +θ

M

∑
m=1

ζm (3.11)

s.t. −1/2(α�y)T Km(α�y)≥ τ−ζm, ζm ≥ 0, m = 1, ....,M

Equation 3.11 clearly shows the role of parameter θ as the penalty for kernel slack variables defined in

3.10. It is proven (Xu et al., 2013b) that the solution to the problem in 3.11 is equivalent to solving the

following problem:

min
µ∈M1

max
α∈A
−1/2

M

∑
m=1

µm(α�y)Km(α�y) (3.12)

where: M1 = {µ|0≤ µ ≤ θ1,
M

∑
m=1

µm = 1}

By comparing 2.17 and 3.12 it is concluded that the only difference in formulation is the upper bound θ

on the kernel combination coefficients for SM1MKL. In other words, this new formulation guarantees

that each kernel is given a limited weight and therefore it is less likely that extreme cases like L1MKL

happens. The constraint in 3.12 ensures that θ could not be less than 1/M because the coefficients

should sum to one. It can also be inferred that for θ = 1/M the same result as the average kernel is

obtained. However; when θ ≥ 1 the new formulation for SM1MKL is the same as L1MKL.
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3.3.1 Solving the hinge loss SM-MKL (SM1MKL)

Although other losses can be defined for kernel slack variables, we stick to the hinge loss within

our experiments. The Dual form of the objective function in 3.11 represents the role of the kernel slack

variables ζm and the regularization parameter θ in the SM1MKL problem. However; the block-wise

coordinate descent algorithm suggested in (Xu et al., 2013b) actually exploits the primal form that is

convex on the objective function (Rakotomamonjy et al., 2008) and linear on the constraints and is given

by:

min
µ∈M1, fm,b,ρ,ξi

1
2

M

∑
m=1

‖ fm‖2
Hm

µm
+C

l

∑
i=1

ξi−ρ (3.13)

s.t. yi(
M

∑
m=1

fm(xi)+b)≥ ρ−ξi, ξi ≥ 0

The idea behind a coordinate descent procedure is based on optimizing the objective function for a group

of variables at a time. Starting from some initial values for a set of variables, the algorithm solves the

problem for the other set of variables. Subsequently, the obtained values are substituted in the objective

function and the problem is solved for the second set of variables. The procedure iterates between these

two steps until convergence or until the maximum iteration limit is reached.

For the problem in 3.12 we are trying to optimize the kernel combination coefficients µ at one hand and

to maximize the margin of a standard C-SVM problem by adjusting fm,b,ρ,ξi variables on the other

hand. Therefore, the procedure is as follows:

According to (Xu et al., 2013b) the algorithm begins by initializing equal kernel weights, i.e. µ =

[1/M, .....,1/M], and the resulting single kernel that is a summation between same-sized and weighted
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kernels can be calculated. Afterwards, the problem reduces to a classic kernel SVM problem and can be

solved as a quadratic programming problem to obtain α values of SVM classifier.

max
α∈A
−1/2

M

∑
m=1

µm(α�y)Km(α�y) (3.14)

After obtaining α values, the primal variables fm,b,ρ,ξi are retrieved. Now with fixed values for

fm,b,ρ,ξi there are M fixed SVM values shown by am and the algorithm solves the following convex

problem for µm:

min
µ∈M1

M

∑
m=1

am

µm
(3.15)

where am = 1/2µ
2
m(α�y)Km(α�y)

Algorithm 1 SM1MKL Algorithm

1: Set initial values for kernel weigths µ t = [1/M,1/M, ...,1/M] . Initialize by equal weights

2: while Maximum iteration is not reached do

3: Obtain α t by solving 3.14 using the Standard QP solver with µ t

4: Calculate am and update µ t+1 by solving the convex problem in 3.15

5: t = t +1

6: end while

7: return Prediction results
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We suppose all the basekernels in 3.15 are positive definite during implementation. This assumption

imposes all am ≥ 0. Without loss of generality If all am values are also supposed to be ordered in a

descending manner (a1 ≥ a2 ≥ ....≥ aM) by using the Lagrangian multipliers for the constraints in 3.12

we arrive (Xu et al., 2013b) at the following solution to the problem in 3.15:

µm =


θ m≤ ω

(1−ωθ)
√

am

∑
M
p=ω+1

√ap
m≥ ω

(3.16)

Where ω is the number of kernels that their coefficient equals to the upper bound θ and is calculated

according to the following criteria:

min{p ∈ {0,1, ...,M−1}|
√

ap+1(1− pθ)

∑
M
m=p+1

√
am

≤ θ} (3.17)

It is also proven that (Xu et al., 2013b) for the optimal values of µ∗: ∀ ap > aq, if µ∗q = θ ⇒ µ∗p = θ . Al-

gorithm 1 demonstrates the underlying procedure. The final step is to use Dusk’s as input representation

of data to the SM1MKL algorithm which is explained in chapter 4.



CHAPTER 4

EXPERIMENT EVALUATION

The application of DuSK kernels for solving multi view problem is the baseline of our experiments.

Two learning methods that use DuSK kernels are examined to tackle the classification problem of multi

view brain network images. As explained in appendix ?? the used dataset consists of two sets of fMRI

and DTI brain images for 52 subjects affected by bipolar disease along with brain images of 47 healthy

controls. The problem is to train a classifier that can efficiently discriminate between these two classes.

In addition, data are collected and preprocessed to highlight the brain network connectivity information

in fMRI and DTI images corresponding to each of 97 subjects. All experiments are implemented in

Matlab. CP factorization is obtained using Tensorlab toolbox for Matlab (Sorber et al., 2014). The

factor matrices are set to be initialized randomly and the alternating least square method is chosen as

optimization approach for CP decomposition. However, for higher order tensors (order ≥ 3) there is

only bounds for the true rank of a tensor; therefore, a set of rank values R∈ {1,2, ...,8} are all examined

during each experiment to find the true rank resulting in better accuracies. These are common ranks that

result in better accuracy values in brain images according to(He et al., 2014).

4.1 Experimnets

4.1.1 Dusk in the framework of SM1MKL

One of the promising methods to deal with multi-view data is multiple kernel learning method

that can represent each view according to a kernel matrix and then simultaneously search for kernel

34
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SM1MKL

𝑁×𝑁

𝑁×𝑁

𝑁

𝑁

DuSK kernel

DuSK kernel

M
views

Symmetric kernel matrices 
with maximum similarity in 

the diagonal

Figure 2: An overview of the proposed algorithm

combination coefficients and α parameters of SVM classifier. The specific variant of MKL that we use

for multi-view structured data is the soft margin multiple kernel learning method that penalizes very

low or very high weights for predefined kernels by adjusting the trade-off parameter θ for kernel slack

variables. Therefore; it can be considered as a desired approach for our multi-view problem where fMRI

and DTI both contain useful information. The diagram illustrated in figure 3 is an overview of the steps

for the proposed algorithm. The inputs of the SM1MKL algorithm are changed in each experiment to

evaluate the best choice of DuSK basekernels.

DuSKRBF and DuSKPoly kernels are used as basekernels of this method. The range of Bandwidth

parameter for DuSKRBF , degree parameter for DuSKPoly and trade off parameter of SVM are chosen
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from σ ∈ {−5, ...,5}, d ∈ {1,2,3} and C ∈ {−5, ...,5} respectively. There is no trivial way to find

the optimal combination of these parameters and a grid search is conducted that performs the learning

process for all possible combinations of these parameters. The implemented grid search is illustrated

in Algorithm 2. The parameter optimization part for a given decomposition is done a total of 10 times

by putting 20% of data aside to avoid overfitting of parameters to the data. Then optimized parameters

are used as fixed parameters of SM1MKL and the total reported accuracy on whole data is obtained

by averaging the accuracy of 5-fold cross validation over 10 repeats. The whole procedure is repeated

for the all ranks to achieve better accuracy results corresponding to a specific CP decomposition rank.

Figure 2 illustrates the procedure for parameter optimization and the training and testing process for all

ranks.

Method

2	views	of	
brain	

images	for	
97	subjects

Putting	
20%	of	
subjects	
aside

CP	
decomposition	
of	all	instances

Choosing	the	
optimal	kernel	
parameter	and	

trade-off	
parameter

Training	and	
testing	via	
5-fold	cross	
validation		on	
whole	data

Repeat	5	times

Repeat	10	times

1
Repeat	for	all	ranks

Figure 3: An overview of the proposed method
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The first experiment is inspired by the success of DuSKRBF kernels on 3D brain images (He et

al., 2014). Two DuSKRBF kernels are used to represent both set of brain images where the bandwidth

parameters are σ1 and σ2 for each of the kernels respectively. The second experiment is the first appli-

cation of DuSKPoly on brain network images where the degree parameters are d1 and d2 for each of the

kernels. Eventually, the third experiment uses a combination of DuSKRBF and DuSKPoly in an attempt

to evaluate whether different basekernels could capture the sufficient measure of similarity for our pur-

pose. The bandwidth parameter σ and degree parameter d are the kernel parameters in this experiment.

Training and testing through soft margin MKL, which iteratively optimizez the SVM parameters α and

kernel weights µ , is implemented using LIBMKL package introduced in (Xu et al., 2013b) for SM1MKL

algorithm. The algorithm 2 shows the procedure for the third experiment.

As it is illustrated in emphTable I the soft margin multiple kernel learning method with DuSKRBF

and DuSKPoly kernels outperforms other two settings where the same type of kernel is used for both of

the views.

Note that there is no trivial way to determine which kernel is a better choice for each of views and

the reported accuracy is the choice with higher accuracy. In other words, the kernel that performs best

on one view is not necessarily a good choice for the other view. When we introduce an algorithm that

can learn an optimized combination, the accuracy increases. The parameter sensitivity for this method

is demonstrated in Figure 5. This plot illustrates how the obtained accuracy values are affected by the

CP decomposition rank.
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Algorithm 2 SM1MKL algorithm with DuSK-RBF and DuSK-Poly basekernels

1: for d = d1 : d2 do

2: for g = g1 : g2 do

3: for c = c1 : c2 do

4: calculate Dusk-RBF and Dusk-Poly kernels for test and train

5: Train and test via SM1MKL and store accuracy values

6: end for

7: end for

8: end for

9: return the optimal values of c,d,g corresponding to highest accuracy value

DuSKRBF DuSKPoly DuSKRBF & DuSKPoly

DuSK-SM1MKL on Multi-view
(R=3)

0.635±0.034
(R=7)

0.584±0.031
(R=2)

0.640±0.015

DuSK-SVM on concatenated fMRI & DTI
(R=3)

0.608±0.018
(R=5)

0.604±0.029 N/A

TABLE I: Accuracy comparison of proposed DuSK-SM1MKL on multi-view data and the baseline DuSK-SVM

on concatenated data
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Figure 4: Summary of the general procedure repeated in all of the experiment

4.1.2 Dusk on the concatenated data

A conventional method for learning on multi-view homogeneous data is to concatenate multiple

views to obtain a single representation. This is considered to be a naive way of early combination for

multi-view data since it is known to cause overfitting. This method is used as a baseline for our proposed

method where a single view is constructed from multiple views and then a single DuSK is calculated

for concatenated data. The overview of this baseline approach is shown in figure 4.

Despite the second order CP factorization that was required for the proposed method, the concate-

nated single version is a third order tensor that requires third order CP factorization. Both of DuSKRBF



40

and DuSKPoly are tested on the concatenated data to determine the best representing kernel that results

in higher accuracy.

Figure 5: Sensitivity of accuracy to the CP rank for DuSK-SM1MKL and DuSK-SVM methods
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The learning method for this experiment is standard C-SVM method and is implemented by the

well-known libsvm library for support vector machines (Chang and Lin, 2011). According to the Table

I concatenation method cannot beat the proposed multiple kernel learning with two kernels of different

types. As it can be seen in Figure 5, the accuracy results are less affected by decomposition rank of CP

for concatenated data.



CHAPTER 5

SUMMARY AND CONCLUSION

To the best of our knowledge, this work is the first effort to apply tensor learning method to the brain

network images. We used structure preserving kernels in the framework of multiple kernel learning al-

gorithm to solve the problem of learning on the multi-view structured data. The results clearly show

that MKL algorithm tunes the kernel weights to achieve better accuracy results. It is interesting to note

that within the MKL method the approach that uses the same type of kernel for both views cannot beat

the accuracy obtained by using different types of kernels. It can be inferred that each of the views are

adapted more to one of the kernels than the other. The structure preserving MKL method performs better

compared to a baseline approach that uses early concatenation of views to first obtain a single view. It is

also concluded that the accuracy of proposed method is highly affected by the rank of CP decomposition.

The optimal kernel calculated in the proposed algorithm is calculated as a linear combination of

basekernels; however, other types of combinations such as product kernels can be examined. In the

other hand, the used dataset in this study consisted of two views with the same order and same size. An

interesting extension to this work can be using views with different sizes and even different dimensions

in the framework of multiple kernel learning.
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APPENDIX

DATA COLLECTION AND PREPROCCESSING

This dataset consists of the fMRI and DTI image data of 52 bipolar I subjects who are in euthymia

and 45 healthy controls with matched age and gender. The resting-state fMRI scan was acquired on a 3T

Siemens Trio scanner using a T2*-weighted echo planar imaging (EPI) gradient-echo pulse sequence

with integrated parallel acquisition technique (IPAT), set with TR = 2 sec, TE = 25 msec, flip angle = 78,

matrix = 64x64, FOV = 192 mm, in-plane voxel size = 3x3 mm, slice thickness = 3 mm, 0.75 mm gap,

and 30 total interleaved slices. Two TRs at the beginning of the scan were discarded to allow for scanner

equilibration. There are 208 volumes acquired for the total sequence time of 7 min and 2 sec. Diffusion

weighted MRI data were acquired on a Siemens 3T Trio scanner. Sixty contiguous axial brain slices

were collected using the following parameters: 64 diffusion-weighted (b = 1000s/mm2) and 1 non-

diffusion weighted scan; field of view (FOV) 190x190 mm; voxel size 2x2x2 mm; TR = 8400 ms; TE =

93 ms. In addition, high-resolution structural images were acquired using T1-weighted magnetization-

prepared rapid-acquisition gradient echo (MPRAGE; FOV 250x250 mm; voxel size: 1x1x1 mm; TR =

1900 ms, TE = 2.26 ms, flip angle = 9 ).

For the Bipolar dataset, the brain networks were constructed using the CONN3 toolbox (Whitfield-

Gabrieli and Nieto-Castanon, 2012). The raw EPI images were first realigned and co-registered, after

which we perform the normalization and smoothing. Then the confound effects from motion artifact,

white matter, and CSF were regressed out of the signal. Finally, the brain networks were derived using
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APPENDIX (Continued)

the pairwise signal correlations based on the 82 labeled Freesurfer-generated cortical/subcortical gray

matter regions.
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