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SUMMARY

Current nanoscale designs are highly interconnect dominated, taking about 70% of the chip

area. Interconnects also consume a significant part of the dynamic power and are responsible

of about the 60% of signal delays. It is, thus, important to be able to synthesize much lower

interconnect-complexity designs than are possible with current high-level synthesis (HLS) tools

and algorithms. Towards that end, we have developed the following new paradigms in the

scheduling, binding and general architecture synthesis problems of HLS:

• Flexibly-structured that connect a few neighborhood functional units (FUs) instead of

dedicated interconnects between pairs of FUs, thereby sharing interconnects among a

number of FU pairs that need to communicate.

• Communication scheduling (followed by standard operation scheduling that respects the

communication schedules) in which communications between FUs are scheduled at ap-

propriate times to minimize the number of buslets needed, subject to buslet cardinality

constraints (for the purpose of upper bounding signal delay).

• Buslet binding techniques, aiming to respect both buslet cardinality constraint and a con-

straint on maximum fanin and fanout for the functional units. These techniques will range

from simple but effective approaches like chronological binding (CB) to more sophisticated

ones, like the use of lookahead approaches and simultaneous binding of iso-scheduled com-

munications (communications scheduled in the same clock cycle). Furthermore, in this

direction, similar solutions detection mechanism was developed, in order to improve the

xv



SUMMARY (Continued)

final quality of the result. Finally, also a force directed approach was used to solve the

binding problem (FDB). All these techniques were implemented and compared in terms

of both performance and complexity.

• Buslet power modeling. A number of configurations with multiple tri-state buffers for

interconnecting FUs through a buslet were implemented, aiming to minimize the total

power consumed using buslets. These range from techniques using minimum spanning

trees to more sophisticated structures with constraints on maximum graph distance be-

tween connected FUs to hierarchical partitioning.

Using the aforementioned techniques, we obtain significant wirelength (WL) reduction, ranging

between 35% and 71%, compared to conventional designs with dedicated interconnects between

communicating FU-pairs. The total chip area, including total FU area, also reduces in our

designs compared to conventional designs. The power, on the other side of the coin, will

increase with buslet size, but sublinearly. Empirical results show that we are able to limit

the increment of power consumed by buslets compared to dedicated-interconnect designs, to a

logarithmic function of the maximum buslet cardinality.

xvi



CHAPTER 1

INTRODUCTION

Our world is full of integrated circuits. It is possible to find them practically everywhere,

like in mobiles, cars, televisions etc.; hence, they are now the heart of the modern technology.

The integrated circuit (IC) is a cluster embedding a number of very advanced electric circuits.

In particular, it will contain a very large number of components like transistors, resistors and

capacitors, all interconnected. Among these, the transistor is the fundamental electrical com-

ponent, at the basement of modern technology. It was invented in 1947 by John Bardeen,

Walter Brattain and William Shockley[1], it was revolutionary: it embedded together tiny di-

mensions, high speed, high reliability and efficiency. Decades after decades, larger and more

complex circuits, but at the same time compact and efficient, were this way realized.From the

first ICs commercialized in the early 60s, containing just a few of components on the same chip

(for example, TAA320 by Philips had two transistors only) and, for this, called Small-Scale

Integration devices (SSI), transistors scaling increased thanks to more accurate fabrication

technologies (Medium-Scale Integration contained hundreds of transistors on the same chip,

Large-Scale Integration hundreds of thousands). Nowadays, the most advanced ICs embed mil-

lions of components on an area no larger than a fingernail. The transistors on these chips are

realized using up 14 nm technology (like for Intel Core i7-5550U). In order to understand these

1
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sizes, we can say that we could fit thousands of transistors inside a red blood cell1. This is the

era of Very Large-Scale Integrated Circuits (VLSI).

A very famous prediction in this field was done in 1965 by Gordon Moore, head of the

research and development office at Fairchild Semiconductor. He speculated [3] that:

“The complexity for minimum component costs has increased at a rate of roughly a factor of

two per year. Certainly over the short term this rate can be expected to continue, if not to

increase. Over the longer term, the rate of increase is a bit more uncertain, although there is

no reason to believe it will not remain nearly constant for at least 10 years.”

G. Moore, 1965

Today we have reached physical limits of transistor scaling: we need to handle problems like

leakage power consumption, limited range of gate metals, limited available materials for mod-

eling the channel due to scaling degree and, most important, atomic dimension about to be

reached2. Keep on scaling transistors (trend known as More Moore) is unsustainable.

However, nowadays a huge work of research for allowing transistor scaling is done. One of the

1A human blood cell (erythrocyte) has approximately a 50µm2 area[2]. From this, we can see that we
have three magnitude orders of difference between the size of an erythrocyte and a modern transistor.

2Nowadays the used technology is 14 nm (as stated before) while we know that a silicon atom has
a Van Der Waals radius of 220 pm. This means that a transistor is realized with less than a hundred
of silicon atoms. Furthermore, we can not have transistors too much close each other in order to avoid
mutual electric field influence.
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most promising among these relies on spin state electron usage, called spintronics[4], but there

are also other possibilities like tunnel junctions[5][6][7] and new studies on nano-wire geome-

tries[8][9]. The use of these new technologies in order to produce new ICs and, for this, making

the transistor scaling trend keep on increasing is known as More than Moore.

Hence, in rapidly shrinking technologies, interconnect design has become a significant issue

to be tackled. Indeed, as we are scaling more and more transistors, the density of interconnec-

tions is hugely increasing. With this, interconnections consume the most of the dynamic power

in the IC[10]. Further, performance in terms of maximum clock frequency is bottlenecked by

interconnections because of self and inter-wire parasitic capacitance effects, some of them due

to tight narrowness of wires like crosstalk [11], wire performance fall for effects like IR-Drop

[12] and its reliability for the electromigration effect [12]. These, mixed with the increase of

resistance due to both long wires and use of VIAs, will increase the RC time constant, reducing

the cutoff frequency. A number of approaches like buffer insertion[13], wire shaping[14] and

communication encoding[15] were proposed in order to minimize VLSI interconnects. However,

all of these techniques focus their attention on the minimization of the delay on designs with a

big number of interconnections. What if we try to directly minimize the number of the required

interconnections or their length? In that case, as effect, we will obtain the effect of minimizing

parasitic parameters making also designs less complex, making the routers algorithms running

more easily and obtaining better results (in terms of average wirelength for a given design).

The problem, here, is how to address such an issue. In order to minimize the “wire cost”, we

need to work on such a minimization already at HLS phase. During this phase, indeed, FUs are
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instantiated as well as their mutual interconnections: the true minimization of interconnections

starts here.

Traditionally, in HLS one of the following two problems need to be solved:

• Minimum latency-resource constrained scheduling (ML-RCS): here we have a fixed num-

ber of hardware units and we need schedule operations on them to minimize the total

latency.

• Minimum resource-latency constrained scheduling (MR-LCS): in this case we have a fixed

latency and we need to schedule operations to satisfy the latency constraint and minimize

the total number of resources.

As we aim to minimize the interconnect complexity, which is a problem tightly linked to re-

sources minimization, we will solve the MR-LCS problem. Furthermore, this correlates to

current problems of interest in both ASICs and embedded designs, where the paradigm of re-

source/power optimization for a target performance is nowadays dominant.

Some works already tried to address such a relevant issue. The approaches used were mainly

two:

• Wirelength minimization.

• Minimization of the number of interconnects.
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All the papers aiming to minimize the wirelength are interconnection-aware high level syn-

thesis algorithms which will have a floorplanning1 step during the HLS. In particular, during

this, both scheduling2 and binding3 steps are performed together and the whole design is driven

by the wirelength estimated by the floorplanner. As we can imagine, using such an approach, we

will effectively be able to minimize the wirelength. However, as we are introducing a floorplan

step, we are also introducing a non negligible computation effort: for each possible decision at

the scheduling/binding step, in order to evaluate it, we need to run the floorplanner. Hence,

such an approach is feasible for small designs only.

One of the approaches used was integrating interconnect power optimization into high-level

synthesis[16]. The main strength of such a paper consisted not only in the reduction datapath

unit power but also in the reduction of the power consumed by interconnects. Practically, such

a work reduces unnecessary switching activity in the interconnects. This is accomplished by an

interconnect-aware binding, which tries to allocate as close as possible hardware resources with

a high communication rate. Furthermore, a gating technique is proposed to reduce spurious

switching activity. Such a work, however, has the big drawback of running, together with the

1A floorplan of an IC is a schematic representation of the placement of its FUs. Floorplans are
created during the so called floorplanning design stage, which usually is the first step in the physical
design phase.

2We define scheduling as the step in the HLS in which we are deciding when a given operation should
happen. It usually is the first step of HLS.

3We define binding as the step in HLS in which we map each operation to a given FU. It usually is
performed after scheduling step.
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binding algorithm, also the floorplanning stage. This will lead to a big overhead in the compu-

tation, also using an approximate power model.

Another proposed work uses physical information to drive the solution at the HLS stage of the

VLSI CAD flow[17]. In particular, here it was explicitly designed an incremental floorplan-

ning HLS algorithm, which improves at the same time designs schedule, binding and floorplan.

Thanks to the incremental approach, the overhead introduced by the floorplan stage is reduced;

however, performing both scheduling, binding and floorplan stages at the same time will make

runtime hugely increasing.

Other works reducing interconnections in VLSI have, on the contrary, their focus on trying to

minimize the amount of wires itself instead of their own length. They are able to do it detecting

“common patterns” across the input[18]: if a sequence of same-type operations is observed in

more than one point of the input, then they can be mapped to the same physical units, using

exactly the same interconnections, which will result in the reduction of interconnect complexity.

This approach is completely unaware of the wirelength because it is not the parameter to be

optimized. For this, its execution is relatively fast and it obtains improvements in wiring

complexity respect to a wire minimization unaware algorithm. However, such a model is not

very accurate for two reasons:
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• It is not estimating the wirelength at all: for this reason, there may be cases in which we

prefer to have more short connections than few very long ones1.

• It is not trivial to dynamically decide the granularity of the pattern detection: if this is

fixed, then it may lead to non negligible suboptimal results; if it is dynamically determined,

instead, it will result in a high computation effort.

Another approach used in such a direction was trying to optimize communication sharing in

pipelined architectures[19]: in this way, the total number of interconnections reduces and their

use increases. However, such a technique has some significant weaknesses:

• It works after HLS and, for this, it is limited to an already defined hardware architecture.

• It relies on pipeline architectures: this means that such an optimization is limited to the

number of pipeline stages through a line: the more they are, the more the number of

registers will be (higher power consumption) and the least they are, the least such an

optimization is effective.

1.1 Flexible buslets: a new interconnection paradigm

Minimizing the number of interconnects is an interesting because it aims to maximize the

use of the same interconnections. Let us define for a given wire wi a parameter, called wire

efficiency, as

ε(wi) =
T (wi)

λ
(1.1)

1Connecting distant FUs is more difficult than connecting close ones; for this, designs with few very
distant connections may result in more complex interconnections than those with more but shorter.
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where T (wi) is the number of clock cycles wi is busy and λ is the total latency of the output

design1. A good approach in order to minimize interconnections is the maximization of such a

parameter. In this way, we are trying to reuse, where possible, the already existing intercon-

nections.

However, in a typical design, such a parameter is usually very low2 making a given wire idle

for most of the time.

In a typical design, wire efficiency is usually very low (according to experimental data we

present in in Table IV and Fig. 48, maximum wire efficiency for dedicated-interconnection based

designs is below 0.1 or 10%), making a given wire idle most of the time. A natural solution

to alleviate these issues is merging close-by wires which are busy in different clock cycles in

a single mini-bus like structure which we call a buslet, and whose wirelength (WL) is smaller

than the sum of the WL’s of the merged wires. Such a buslet is a flexibly-structured mini-bus

in that it connects a small subset of FUs placed potentially anywhere on the chip. However,

we need to take into account the no-conflict constraint on a given buslet: we need to ensure

that at most one FU per clock cycle will drive the buslet (which it will do via tri-state buffers

that are enabled at the right clock cycle(s) by the datapath FSM controller, which all HLS

design have). In order to ensure this, a proper scheduling algorithm (minimizing the number

1We define latency of a given design as the number of clock cycles needed for a complete execution.

2From our collected empiric data, even trying to maximize such a parameter, we obtained peak values
below 0.1 (Table IV)
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of buslets requested for such a constraint) as well as a binding one, need to be designed, as well

as a study of the necessary constraints in order to ensure a good solution quality.

1.1.1 Previous work using bus-like structures

Finally, we note that the problem of minimizing design wirelength using “bus-like” structures

was earlier proposed in [20]. This problem was solved using partitioned buses, each of which:

1. Spans across all the FUs.

2. Connects to the FUs in a linear order (determined based on the DFG in order to maximize

the number of adjacent FU communication).

The number of such buses depends on the maximum number of simultaneous “overlapping”

communication needed across the aforementioned linear order, and this depends on the opera-

tion scheduling performed to solve the ML-RCS. Further, it is also not clear that they can solve

the more standard MR-LCS problem that we are solving, due to their technique not having any

control on worst-case communication delay because of their long-spanning buses. While this

was an innovative technique, one of the drawbacks is that the number of buses is not minimized

in initial scheduling, and this number can be prohibitive for large designs—they only show that

their technique works well in reducing total wirelength and area for two small DFGs compared

to previous dedicated-interconnects based designs. Further, the worst-case length across which

a communication can take place is linear in the number of FUs, leading to a slow design for

larger DFGs. Also, since there is no constraint on the number of buses, the input and output

capacitive loading of FUs can be large, leading to a further slow-down of their designs, as well
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as to high dynamic power. Finally, apparently in order to reduce the interconnect complexity

imposed by their linear order (each bus spans across all FUs), they use ALUs instead of FUs

of different functionality, thus reducing the number of total resources. However, this can lead

to higher leakage power (only one FU within an ALU can be active at any time, meaning that

FU usage will be low, and thus they would generally need more total FUs—in spite of the

constraint on number of ALUs—than a design of comparable speed that uses individual FUs).

In contrast, we have flexibly structured buslets that each connect only a few FUs (thus not

having a slow down or increased dynamic power due to unnecessary FU loading from buses).

Further, we perform communication scheduling first in order to minimize the number of buslets

needed, and thereby significantly reduce interconnect complexity for DFGs of any size.

1.2 Thesis outline

The rest of the thesis is organized as follows. In the next chapter an analysis of the con-

straints needed for designs without high interconnect delay and power consumption will be

presented. In Chapter 3, I present an overview of the entire VLSI flow with focus on the gen-

eral area of this thesis. Furthermore, some basic issues in scheduling are presented, including

the well-known force-directed scheduling algorithm, which is the starting point for our schedul-

ing algorithms. Chapter 3 discusses also our scheduling algorithms that aim to minimize, first,

the number of buslets, and then the number of FUs. Chapter 4 discusses several new binding

algorithms and Chapter 5 is entirely devoted to the design of different buslet interconnection

structures in order to minimize dynamic power. The thesis ends with presentation and discus-

sion of results in Chapter 6, and conclusions in Chapter 7.



CHAPTER 2

MAIN ISSUES IN BUSLET WIRED DESIGNS

The use of buslet in place of standard dedicated interconnections will bring evident benefits

to the whole design in terms of overall wire structure to be routed as well as maximization

of the already existing resources itself. However, a number of factors are involved in such a

process: from the increment in dynamic power consumed during the communication for fanins

to the increment of area due to multiplexers or demultiplexers needed. In this chapter all these

aspects will be analyzed, defining the main driving factors of the HLS algorithm.

2.1 Maximization of wire efficiency

A design involving buslets will bring evident benefits on the efficiency of the design itself:

as previously stated, it is literally possible to merge separate wires which are active in different

clock cycles, obtaining benefits in the overall wirelength. Let us take, as example, Fig. 1.

From this, we can see that we have to map 4 different communications between 4 different

Functional Units (FUs). Unfortunately, in order to map all of these communications, using

dedicated interconnections we will need to use four different interconnections, even if all of

these will happen in different clock cycles. Now, let us use a buslet instead: as all of these

communications will happen in different clock cycles, we will be able to map all of these in

a wire structure simultaneously linking all of these FUs. This is possible because, when a

11
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Figure 1: Example of dedicated interconnections design.
Dashed arrows indicate communications while continuous lines are implemented

interconnection. Each color indicates a different clock cycle in which the communication
happens.

communication between source functional unit FUs and destination functional unit FUd takes

place, then all the others wired to the same buslet will ignore the signal, exactly how it does

work in a regular bus, thanks to the use of tristate buffers. The same implementation of the

problem presented in Fig. 1 with the use of buslets is sketched in Fig. 2.

Let us, now, analyze the difference in wirelength between the two designs. In the dedicated

interconnections we will have the following wirelengths:

• blue wire: d(FU1, FU3) + 0.25d(FU2, FU3)

• red wire: d(FU1, FU3) + 0.25d(FU2, FU3)

• green wire: d(FU2, FU3)
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Figure 2: Example of buslet design. Dashed arrows indicate communications while the
continuous line is the buslet. Each color indicates a different clock cycle in which the

communication happens.

• black wire: d(FU2, FU3)

where d(x, y) indicates the distance between x and y. So, we will have that the total wirelength

for dedicated interconnections design in Fig. 1 is obtaining a relevant reduction in wirelength.

dded interc = 2d(FU1, FU3) + 2.5d(FU2, FU3)

For the buslet wiring, instead, it is evident it is

dbuslet = d(FU1, FU3) + 2d(FU2, FU3)
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Let us, now, analyze the difference in wire efficiency between the two implementations. Ac-

cording to the definition of wire efficiency in (1.1), in the dedicated interconnections design we

have 1
4 the efficiency we will have in the buslet design. This evidences that having designs with

buslets will have also a significant improvement in the overall wire efficiency. We can generalize

this telling that the wire efficiency of a buslet is the sum of the dedicated interconnections

merged in order to obtain it.

Let us say that C(wm) is the set of communications mapped in the dedicated interconnection

wm. We say that wm respects the condition of non conflicting communications if, ∀comi ∈

C(wm), t(comi) 6= t(comj), with comi 6= comj , where t(comi) is the scheduling time for comi.

However, such a condition works assuming communication latency1 λcom unitary. If we have a

parametric value of λcom, we need to ensure the following conditions:


t(comi) + λcom − 1 < t(comj) if t(comi) ≥ t(comj)

t(comj) + λcom − 1 < t(comi) if t(comi) ≥ t(comj)

(2.1)

which can be also written as

|t(comi)− t(comj)| ≥ λcom (2.2)

which means that the scheduling times for the two communications must differ at least by the

latency of the communication itself.

1We define communication latency the time interval necessary to complete the communication from
its begin.
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Figure 3: Example of overlapping communications.

Let us take, as example, Fig. 3. In this case, at a certain point, t(comj) has been scheduled

while t(comi) has not finished yet. This obviously means that these communications will bever

been scheduled to the same buslet. Now, let us analyze the case represented in Fig. 4. In this

case, which is a limit case, the two scheduling times will exactly differ of λcom. However, there

will not be any conflict between them. In this way, they may be “mapped” to the same buslet.

Now, if we decide to merge a set M of wires, we need to ensure the non conflicting communi-

cations condition: ∀comi ∈ ∀wn ∈M (2.2) must be true.

Let us say that M is a set of dedicated interconnections respecting the condition of non over-

lapping communications. We can here see that, merging buslets, we will always increase the

wire efficiency (1.1)

εbuslet =
∑

∀ wn∈M
εi (2.3)
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Figure 4: Example of non overlapping communications.

However, now comes the problem of how to maximize buslet efficiency. Let us assume we need

to merge, in a certain way, some interconnections. Here we are using, for sake of simplicity,

λcom = 1. We have a design with 6 functional units (respectively A, B, C, D, E and F) and

with the following communication scheduling times:


t[com(A,B)] = t[com(A,C)] = t[com(E,F )]

t[com(C,D)] = t[com(C,B)] = t[com(D,E)]

Dedicated interconnections design is pictured in Fig. 5. In order to build buslets merging these

wires, we have 6 possibilities.

For example, we can have an example of merging in Fig. 6. Here, in particular, wires w1 and

w5 were merged creating buslet b1, w2 and w4 generated b2 and w3 and w6 were merged into
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Figure 5: Example of dedicated interconnects implementation.

Figure 6: Example of buslet implementation.



18

Figure 7: Second example of buslet implementation.

b3. This may appear to be an optimal solution for the input design. However, in order to

get such a solution, all the possible solutions were inspected, and this will take exponential

time; so, for big designs, this is not a very good solution. For this, an heuristic to solve

such a problem appears to be necessary. Furthermore, we can see that we are constrained

by communications scheduling times: in fact, it is evident that the lowest possible number of

buslets is the maximum number of overlapping communications scheduling times. Hence, if we

could change the previous constraints on this like



t[com(A,B)] = t[com(A,C)]

t[com(C,D)] = t[com(C,B)]

t[com(E,F )] = t[com(D,E)]

we would be able to reduce the total number of needed buslets. An example is provided in
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Figure 8: Functional unit interface with the buslet. It will have an output and an input
tristate buffer, which will read/write from a proper buffer.

Fig. 7 in which w1, w5 and w6 were merged in b1 and all the remaining created b2. Hence, in

order to have good quality solutions, we do not need to work on binding only, but scheduling

times for communication play a fundamental role in the final solution quality.

2.2 Dynamic power consumption and signal delay: constraint on maximum cardinality

of a buslet

Reduction of wirelength and increase of wire efficiency are two wonderful effects brought by

buslets. However, we have also to take into account two relevant side effects of simultaneously

connecting several functional units: each of these will have an input capacitance which will

increase the overall dynamic power necessary to perform a single communication. Furthermore,

the wirelength of the single interconnection (not of the overall design) will increase, which

will also bring to an increment of the signal delay. This implies that we have to use a higher

dynamic power compared to the dedicated interconnections case having, at the same time, a

lower maximum working frequency. We need to carefully handle such a relevant issues. Let
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us suppose that buslets are bidirectional communication structures (so, data can travel from any

connected functional unit FUa to any FUb). In such a structure, any connected resource/FU

needs two different “accesses” to the buslet1:

• one as its output, which needs to be a tristate buffer.

• one as its input.

Let us ignore the capacitive parasitics at the tristate buffer outputs (as they generally are much

smaller than input capacitances) as well as capacitance for the interconnection itself (for the

moment). We can see that the main capacitive load is given by the input capacitances. Let us

define buslet cardinality |bj | of buslet bj as the number of FUs connected to it. We know that,

in the general case, some FUs can be connected to a buslet bj as a fanout, without having it as

a fanin. For this reason, defining |fin(bj)| as the number of FUs having bj as a fanin, we know

that |fin(bj)| ≤ |bj |. Defining Ci as the input capacitance of FUi (or that if a fanin multiplexer

of bj), the total buslet capacitance will be

Cbj =

|fin(bj)|∑
i=1

Ci (2.4)

1Actually, this is not always true. In particular, let us assume FUi, FUj ∈ bn where bn is a buslet. If
bn performs communication from FUi to FUj only, then FUi will not need input tristate buffer and FUj

will not need output tristate buffer. Such a consideration will be taken into account in the estimation
of the power consumed for communications.
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If we say, for sake of simplicity, that every FU will have the same input capacitance Cin, we

can approximate (2.4) to

Cbj ≈
|fin(bj)|∑
i=1

Cin = |fin(bj)| · Cin (2.5)

According to (2.5), if we have a large number of FUs having a buslet as fanin and, according to

this, allowing high buslet cardinality, we may have a high input load capacitance to a driving

FU. Hence, one important parameter to be taken into account is an upper bound on buslet

cardinality.

Buslet cardinality and length also affect signal delay, and thus limiting maximum buslet car-

dinality reduces the RC delay by both reducing wire resistance and capacitance, as well as

capacitive load of FU inputs. However, signal delay is generally tackled as on upper bound

constraint (e.g., signal delay between any two FUs should be at most 1 clock period) and not a

minimization metric, and thus the ramification of buslets on signal delay is a little lighter than

on power.

2.2.1 Maximum fanin and fanout per FU

All the functional units , in order to be connected to a buslet, need an input and an output

access to it. However, in the general case, they will be connected to a number of buslets greater

than one: we need extra structures in order to connect the input or the output access of the FU

to the buslets. These structures are multiplexers for inputs and demultiplexers for the outputs.

According to this, from the point of view of a single FU, it becomes important to limit the
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number of buslets it is connected to, in order to minimize the signal delay in demultiplexers

or multiplexers. Since a FU may have a buslet as only fanin or fanout, these two paramers

will typically not be the same, and thus we need an upper-bound constraint on each. In the

following, we motivate the need for such constraints:

• Signal delay: as already stated, if a FU has a high fanout, the amount of delay in the

data transmission to the buslet is proportional to the number of 1:2 demultiplexers that

a larger 1:m demultiplexer is constructed from the signal needs to cross. Assuming a

tree structure, if the amount of time to cross a single 1:2 demultiplexer is tdemux and the

fanout is m, the estimated delay is

∆tfanout = dlog2(m)e · tdemux (2.6)

The same issue applies to fanin using multiplexers. Thus, fixing an upper bound on the

fanin and on the fanout, we will ensure data transmission from FU to target buslet (and

vice versa) will not be too slow.

• Area increment: multiplexers, as well as demultiplexers, have a cost, here expressed in

terms of increment in area size. Assuming fanout m, tree structure for the 1:m demul-

tiplexer and area for a single 1:2 demultiplexer Ademux, the expected increment of area

is

∆Afanout = (m− 1) ·Ademux (2.7)
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which, unlike for the time delay increment in (2.6), is a linear increment and, for this, for

high m, this has a non negligible effect on the whole design.

We know, indeed, that a 2:1 multiplexer needs 4 transistors to be implemented, as it

uses transmission gates, while a full-adder requires 14 transistors[21]. For this reason,

as increasing the input data size of h bits (we have 2 inputs of size h) we will increase

hardware area cost of a factor h itself for both an h bit size 2:1 multiplexer and for a

Ripple Carry Adder (RCA) (as for two h-bits inputs we need h 2:1 multiplexers and for

adding two h-bits addenda we need h Full Adders (FAs)), we can approximately say that

for a given h data size of any input, we have that the area of a multiplexer is about 1
3

RCA’s. The same issue applies for fanin and multiplexers.



CHAPTER 3

SCHEDULING ALGORITHMS

3.1 Introduction to the VLSI CAD flow

The electronics industry was able to achieve an outstanding growth over the last two decades,

thanks to the huge improvements obtained in the field of large-scale systems design. Essentially,

such a market took place thanks to the the advent of VLSI. For this, some well organized

structure for designing VLSI circuits needed to be developed.

The design process, at each one of its levels, meets the same intermediate steps. Indeed, it

starts from a given set of requirements; then, an initial design structure is developed according

to some criteria and tested against the requirements. Whenever the requirements are not met,

the design needs to be somehow improved. We can divide the nowadays VLSI CAD flow in the

following steps:

1. System specification: In this stage global goals and constraints of the system are defined.

In particular, it will be evidenced which one will be the functionality of the system (like

input and output signals description) as well as boundaries on minimum speed or max-

imum power consumption, constraints on size and space occupied by the circuit or even

more complex constraints like maximum temperature.

2. High level synthesis: Here we take as input a sequence of operations which will provide

the desired output and it will give, as output, a general FU structure with all needed data

24
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transfer between hardware blocks and time in which these FU are allowed to start their

computation. Functional Units are here seen as black boxes which will perform a given

computation.

3. Logic design: Choice of the proper logic gates structure for each functional unit needed

in the high level synthesis stage. This phase can be seen also as RTL description of the

FUs.

4. Ciruit design: All logic gates are here converted in transistors, according to the used

technology. In particular, all the transistors are here sized in order to meet power and

delay requirements (the transistor model has plenty of capacitances which are heavily

taken into account in this synthesis stage).

5. Physical design: Here the circuit is converted into a layout, which is the physical imple-

mentation of the circuit. This will represent the actual fabrication result of the circuit.

It is divided in a number of intermediate stages; however the two most significant are

floorplanning (which is the placement on the board of the FUs) and routing (which is

the creation of the physical wires interconnecting, where needed, the functional units).

Both these synthesis stages can be iterated until physical constraints like delay and power

consumption are not met.

6. Physical verification and signoff : In this stage all the constraints are checked. If some of

these are not met, then synthesis stage(s) are iterated, depending on how the synthesis

algorithms are designed.
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7. Fabrication: Here layout is converted into masks for lithography, which will be used for

the fabrication in the tapeout process.

8. Packaging and testing : Now, the circuit is physically tested and a verification of the

constraints is performed.

We will mainly focus on the high level synthesis stage as it is our work domain.

3.2 High level synthesis

High-level synthesis (HLS) became a relevant issue in the VLSI design since the late 1970s.

Because of the huge scaling trend happened in the last decades, a lot of the research was

performed in order to bring some improvement at the design level. More, soon researchers

realized that some decisions taken at in the earliest stages of the CAD flow will determine the

quality of the final output. For this reason, a lot of research was done on the so called High

Level Synthesis (HLS).

We can divide the high level synthesis in some steps, which can be also each other merged:

1. Scheduling : operation nodes, of the input DFG, will receive a scheduling time, according

to some implemented heuristics, which usually aims to minimize total quantity of needed

functional units for the given design or the total request time to accomplish the task the

whole DFG aims to reach

2. Binding : here, operation nodes will be “mapped” to functional units (FUs) according to

some heuristics. This means that we will decide which physical piece of hardware will

execute the operation described by each operation node.
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As these are the earliest steps in the whole physical design process, any decision taken here

may affect quality of gained design in successive steps: for example, if we do not take into

account chip area minimization problem, we may have huge designs with very distant FUs,

indirectly affecting maximum distance between communicating functional units and, for this,

making working frequency drop. For this reason, it is very important to properly take into

account a number of metrics also in the early stages of physical design.

Through the history of high level synthesis, a number of algorithms were developed. Here

follows the most significant, fundamental ones, in order to wholly understand the thesiswork.

3.2.1 As-soon-as-possible scheduling algorithm

This is the simplest scheduling algorithm. Let us suppose we wish to minimize the final

design total latency regardless the number of hardware units we will need to use. In order to

do this, what we can do is simply schedule any operation node in the first available clock cycle

when all its predecessors in the dataflow graph ended their own computation. This gives this

algorithm the name as-soon-as-possible (ASAP).

Let us define λ(ui) the latency of the operation node ui. If P (ui) is the set of all predecessors

of operation node ui, the asap schedule of ui is defined as

asap(u) = max
∀v∈P (u)

{asap(v) + λ(v)} (3.1)

Of course, the first nodes in the DFG are immediately scheduled as they do not have dependency

with any other node.
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Figure 9: This is an example of as-soon-as-possible schedule.

An interesting property of this algorithm is that it provides the lowest possible execution time

for the provided input. This is called minimum latency for the input.

Let us take, as example of as-soon-as-possible schedule, Fig. 9. Here we are assuming execution

time for each operation node to be 1 clock cycle and communication latency to be negligible.

Here we can see that, regardless the number of nodes working at the same clock cycles, we

are scheduling all of them as soon as input data is ready. For example, we can schedule node

F just when data will arrive from its predecessor nodes A and B. At the beginning, there are

some nodes which have no predecessors (in this case, A, B, C, D and E) and are immediately
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executed. Following this approach, we see that the clock cycle when the last operation nodes

ends its execution (in this case K at clock cycle 5) corresponds also to the minimum possible

latency for correctly executing the whole dataflow graph. We see that such an algorithm has

a pull-up effect on the scheduling times (all of these are placed at the earliest possible clock

cycle). This algorithm will analyze each node (O(n)) inspecting all its predecessors (O(n)). In

the worst case, this runs in O(n2).

Algorithm 1 As-soon-as-possible scheduling

procedure ASAP(DFG)
Topological sort (DFG) . Here, for every directed edge e(ui, uj) from ui to uj , ui comes

before uj in the ordering
for all ui ∈ DFG do

first sched = 0 . This is asap time, initialized
for all uj ∈ P (ui) do

if t(uj) + λ(uj) > first sched then . We need to respect data dependency, as
stated in (3.1)

first sched = t(uj) + λ(uj)

t(ui) = first sched

3.2.2 As-late-as-possible scheduling algorithm

As-late-as-possible (ALAP) scheduling algorithm can be seen as the complementary than

ASAP. Indeed, it will schedule the operation nodes in the latest available opportunity. However,

such an algorithm will not provide the input latency as output, but it will ask for it as input.



30

Hence, the provided latency λ needs to be greater than the minimum latency for the input,

provided by ASAP scheduling:

λ ≥ λASAP (3.2)

Contrarily than the ASAP schedule, the ALAP schedule for a given node u can happen when

all its successors are scheduled: if we define V (ui) the set of all the successor nodes of ui, the

alap schedule for ui is

alap(u) = min
∀uj∈V (ui)

{alap(uj)− λ(ui)} (3.3)

Here the latest nodes (those having no successors) will be scheduled at time λ minus their

own latency. Let us also here analyze an example of as-late-as-possible schedule (proposed in

Fig. 10). We underline that it is the same DFG as in Fig. 9. Here, unlike for asap, we start

binding all the nodes which have no successors or, in a different way, all nodes not needing to

send computed data (in this case, K, H and I) at the least possible clock cycle (which has to

be provided as input) minus their own latency (in this case we are assuming all the operation

nodes have the same unitary latency; so, we are scheduling these at λ − 1). Then, we will

schedule all the nodes which have to transmit data to these (K needs to receive data from both

J and G, H from D and E from I) and so on. We see that such an algorithm has a pull-down

effect on the scheduling times (all of these are placed at the least possible clock cycle).

The complexity follows the same analysis as done for asap schedule: it is O(n2). Such an

algorithm is not that much useful by itself; however, it contributes in the definition of a very

important parameter in our algorithms.
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Figure 10: This is an example of as-late-as-possible schedule. It is the same DFG as in 9

Algorithm 2 As-late-as-possible scheduling

procedure ALAP(DFG, λ)
Reverse topological sort (DFG). Here, for every directed edge e(ui, uj) from ui to uj , uj

comes before ui in the ordering
for all ui ∈ DFG do

last sched =∞
for all uj ∈ V (ui) do

if t(uj)− λ(ui) < first sched then . Here we need to respect reverse data
dependency (3.3)

last sched = t(uj)− λ(ui)

t(ui) = last sched
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3.2.3 Mobility range for an operation node

According to the definition of as-soon-as-possible (3.1) and as-late-as-possible (3.3) schedule,

given a maximum execution time for out input λ, we can determine a set of acceptable clock

cycles in which a given node u can be scheduled. In particular, we can say that, if node u will

be scheduled in any clock cycle between asap(u) and alap(u), it will certainly exist a solution

such that the total latency will be lower or equal than λ. The clock cycles between asap(u)

and alap(u) are called mobility range of operation node u.

Hence, in order to respect latency constraints, we say that scheduling time t(u) must be in its

mobility range

t(u) ∈ [asap(u); alap(u)] (3.4)

Further, from the mobility range of a node u we can know how much decisional power on its

scheduling time we have. Such an estimation is obtained just counting all the valid scheduling

times for node u. Now, as we know by (3.2) that asap(u) ≤ alap(u), we can determine a

parameter, called mobility of node u, defined as

µ(u) = alap(u)− asap(u) + 1 (3.5)

which will always be a positive number. Let us take, as example, Fig. 11. This, in particular,

encloses both the asap schedule in Fig. 9 and the alap in Fig. 9. Let us focus on the node G.

Here we see that its asap schedule is at clock cycle 2 while its alap is at clock cycle 3. According

to what stated for asap and alap schedules and to the maximum latency constraint here fixed
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Figure 11: Example of mobility range for a node in a dataflow graph

to λ = 5, we will never beein able to schedule G earlier than clock cycle 2 or later than clock

cycle 3. Hence, we have just two possible schedulings for this and, for this, a mobility of 2.

3.3 Force directed scheduling algorithm

One well-known scheduling algorithm, known for its efficacy and efficiency, is forced directed

scheduling, by Pierre G. Paulin and John P. Knight [22]. A wide number of MR-LCS algorithms

used in High Level Synthesis comes from force directed scheduling (FDS). The main objective

of FDS is minimizing the least number of FUs needed for the binding step. Such an objective is

achieved uniformly distributing the operation nodes in all the available functional units. This

will guarantee that functional units necessary in order to perform some operation in a given

time range are efficiently used in any other time moment of the overall design latency, leading

to a very high use of the FU and, according to the efficiency definition we provided, to a high
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efficiency. Fundamental for FDS algorithm are asap and alap scheduling algorithms, because

the mobility range for each operation node is an essential parameter.

We can divide this algorithm essentially in four different steps:

1. Computation of probabilities for operation nodes.

2. Creation of “distribution graphs”.

3. Computation of forces and self forces

4. Inclusion of the effect on predecessors and successors

3.3.1 Probability estimation for an operation node

FDS algorithm assumes each operation node will have a uniform scheduling probability for

any of the clock cycles in the mobility range and null in any other clock cycle. For this, we can

say that the probability p(u, k) of scheduling the operation node u in clock cycle k is

p(u, k) =


1

µ(u) if asap(u) ≤ k ≤ alap(u)

0 otherwise

(3.6)

Let us take, as example, the probability of scheduling node G in the DFG in Fig. 11. As

shown in Fig. 12 and as already stated, the only two available clock cycles G can be scheduled

are 2 and 3. According to the mobility definition, its µ is 2. Hence, as stated in (3.6), we have

a uniform probability distribution for all clock cycles in range [2;3] which is 1
2 for each of these

clock cycles, while it is zero for all the others clock cycles (in this case, 1 and 4).
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Figure 12: Probability for node G to be scheduled in any clock cycle of the DFG in Fig. 11.

3.3.2 Distribution graph

After computing all the probabilities for any clock cycle j in range [0;λ], we can see each

clock cycles how many functional units of a certain type (like adders, multipliers...) are needed.

If we say that J is the set of all the operations nodes ui requiring the same type g(ui), we can

say that, at the generic clock cycle j, the distribution graph for functional units of type g(ui) is

W (g(ui), k) =
∑
ui∈J

p(ui, k) (3.7)

From this, we have an estimation of the peak of needed functional units: indeed, the minimum

number of FUs for a design is the maximum number of functional units active in the same

clock cycle. W (k(ui), k) indicates the distribution of the sum of scheduling a node of a certain

type g(ui) in a given clock cycle k. Hence, if we minimize such a quantity, then we will try to

schedule operation nodes in points in which the distribution graph is the lowest.

Let us try, for example, to build the distribution graph for multipliers in the DFG in Fig. 11.

We have to take all the probabilities for all the latency of our DFG for any node performing

multiplication and adding them through every single clock cycle, according to the formulation
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Figure 13: Example of distribution graph for multipliers in DFG in Fig. 11

given in (3.7). This is shown in Fig. 13. In particular, in this case we will have the highest

value for our distribution graph in clock cycle 1 (it is 17
6 ). Hence, we will have a lot of operation

nodes that can be scheduled in clock cycle 1. As we are solving an MR-LCS problem, we want

to minimize such a maximum value. Furthermore, in this way, we are implicitly maximizing

the efficiency of the needed functional units and at the same time minimizing them. However,

a formulation for this is necessary.
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3.3.3 Force computation

Now we can compute the so called force for a given schedule1. This is the new parameter

introduced by such a technique and it can be called the heart of this algorithm.

We define force of a given node ui in clock cycle k as

F (ui, k) = p(ui, k) ·W (g(ui), k) (3.8)

This expresses a sort of “repulsive” force, like that of a spring. For this, what we aim to have

is the scheduling of the generic operation node ui in the clock cycle having the lowest force

possible or, better, where the other forces are pushing to. For this, it is introduced the notion

of self force, expressing how much a given force is weak against the others for scheduling the

same operation node ui:

SF (ui, k) =

alap(ui)∑
j=asap(ui)

(δj,k − p(ui, k)) ·W (g(ui), k) (3.9)

where δj,k is a Kronecker delta.

In order to evaluate which is the best clock cycle to schedule a particular node u, we look at

the lowest self-force value of it per every available clock cycle, because essentially it is the clock

cycle in which we will make the total force being the lowest.

Let us analyze, for example, the self force for node G. According to the distribution graph,

1With the term schedule we identify a pair operation node - clock cycle in which it is scheduled.
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Figure 14: Example of self force computation. Here we want to focus on node G. The DFG is
in Fig. 11

we have just two possible schedules (as we can see in Fig. 14). Let us suppose we want to

schedule it in clock cycle 2. If we take such a decision, then we will have, as effect, that the

distribution graph for cc 2 will increase of a value 1 − 1
2 while it will decrease for clock cycle

2 of 1
2 . So, we will have distribution graph value in 2 being 8

6 + (1 − 1
2) = 11

2 while in 3 being

5
6 −

1
2 = 2

6 . We can see a representation of this in Fig. 15a

Let us suppose, now, that we wish to schedule it in clock cycle 3. The distribution graph will

decrease its value in 2 to 8
6 −

1
2 = 5

6 while it will increase in 3 to 5
6 + (1 − 1

2) = 8
6 . We can

see a representation of this in Fig. 15b. So, at the end, we will have a lower maximum in the

distribution graph if we schedule G in 3.
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Figure 15: Example of self force computation. Here we are scheduling node G in clock cycle 2
(a) or 3 (b). The DFG is in Fig. 11

The self force formulation in (3.9) performs exactly such an analysis: it will evaluate at the

same time the increment of the distribution graph at a certain point and the decrease in all

the other possible schedules. For this, choosing the lowest value of self force for performing our

scheduling, we will at the same time minimize both the value of the distribution graph in the

scheduling point and in all the other points in the mobility range.

3.3.4 Predecessor and successor forces

Scheduling the operation node ui in a given clock cycle k will affect mobility range of

adjacent nodes in the dataflow graph. In particular, we will have the effect of modifying the
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Figure 16: Reduction of mobility range for predecessor of G if scheduled at clock cycle 2. The
DFG is in Fig. 11

mobility range for the predecessors of ui modifying alap(P (ui)) and the mobility range of its

successors modifying asap(V (ui)).

Let us take the example of scheduling node G in clock cycle 2. According to the input DFG (in

Fig. 11), it has as predecessor node C and as successor K. If we perform such a scheduling, it

means that it needs to receive input data at most by clock cycle 2. For this, C needs to produce

its output data at most by cc 2 and, for this, it has to be scheduled earlier. This results in

the reduction of its mobility range and, for instance, in the reduction of its mobility, which will

modify the distribution graph itself. This is visible in Fig. 16 This may be a non-negligible effect

for the quality of our solution because it may lead to suboptimalities. For this, we have to take

in consideration the effect of the scheduling on predecessors and successors for the scheduled

node, together with self force in the choice of scheduling to be performed.
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Figure 17: Effect of scheduling node Nj on predecessor Ni and successor Nk

The predecessor force PF (ui, k), corresponding to scheduling ui at clock cycle k, is

PF (ui, k) =
∑

uh∈P (ui)

∑
j∈MR(uh)

[∆pred(j, k, uh)]W (j) (3.10)

where

∆pred(j, k, uh) =



pnew(uh, j)− p(uh, j)

if j + λ(uh)

+λ(com) ≤ k

−p(uh, j)

otherwise

(3.11)
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pnew(uh, j) =
1

µnew(uh)
(3.12)

λ(uh) is the latency uh-type node requires and µnew(uh) is the new mobility of uh due to

alap(uh) reduction to k−λ(com)−λ(uh) in case it originally was >= k−λ(com)−λ(uh) (k is

the clock cycle for which the force effect of the current node of interest ui is being determined).

Instead, the successors force V F (ui, k) is

V F (ui, k) =
∑

uh∈V (ui)

∑
j∈MR(uh)

[∆succ(j, k, uh)]W (j) (3.13)

where

∆succ(j, k, uh) =



pnew(uh, j)− p(uh, j)

if j − λcom ≤ k

−p(uh, j)

otherwise

(3.14)

Let us analyze more in depth the example previously discussed and pictured in Fig. 16.

In particular, let us analyze the predecessor force contribution to the scheduling of G to cc

2. In particular, it can no longer be scheduled in clock cycle 2. For this, we will apply a

similar formulation already described for self force. For this, we will have positive contribution
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Figure 18: Reduction of mobility range for predecessor of G if scheduled at clock cycle 2 and
its effect on the distribution graph. The DFG is in Fig. 11.

(making the evaluation of the current scheduling worse) from all the schedules which will not

be available while a negative one from those still available. In this case, in particular, we will

have for clock cycle 2 a contribution 1 − 1
2 ·

8
6 which indicates that the current solution will

bring the distribution graph having a higher value in 2. As we can see, this is conform to the

formulation provided in (3.10).
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Finally, the schedule being chosen (ui, k) is the one having the lowest value, combining self force

and predecessors/successors contributions.

(ui, k) = min
∀k,∀ui

{SF (ui, k) + PF (ui, k) + V F (ui, k)} (3.15)

Algorithm 3 Force directed scheduling

procedure FDS(DFG, λ)
REM NODES ← NODES(DFG) . Load all the nodes in remaining nodes
while REM NODES 6= ∅ do . While there still is one node to be scheduled

Update asap and alap times for all REM NODES
Compute distribution graph for all clock cycles . According to (3.7)
for all ui ∈ REM NODES do . For all unscheduled nodes compute forces

for all ck ∈ [asap(ui); alap(ui)] do
Compute SF (ui, ck) . The computation follows (3.9)
PSF (ui, ck) = 0
for all uj ∈ P (ui), V (ui) do . For all the predecessors and successors of ui

for all cc ∈ [asap(uj); alap(uj)] do
if cc valid schedule then . This follows the formulation in (3.10)

PSF (ui, ck)-= SF (uj , ck)
else

PSF (ui, ck)+= SF (uj , ck)

Schedule usch, having min{SF (ui, ck) + PSF (ui, ck)}
Remove usch from REM NODES . You remove it as it is now scheduled

return (sched(NODES)) . Return all nodes scheduling times
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3.3.5 Complexity

Let us first analyze this algorithm without predecessors and successors. In such a condition,

we will analyze every node every scheduling step (as we need to compute self forces), this will

totally take O(n2) time. Including predecessors and successors, as their maximum number can

be n− 1, we have an overhead of O(n), making the total complexity being O(n3).

3.4 Scheduling algorithm for buslet-based designs

The topic here discussed involves the scheduling of operation nodes. As previously seen, a

good scheduling algorithm used for minimizing the minimum amount of FUs for a given design

is FDS. However, such an approach assumes that an arbitrary number of interconnections is

available for the final design and their contribution to the design is negligible. In general, this

is not true, as a big number of interconnections will make the design at the routing phase being

a very complex problem to be solved.

3.4.1 Communication with dedicated interconnections

For any design using dedicated interconnections, if we schedule node ui at time t(ui) and

one of its successors vi at t(vi) (in this way, if P (vi) is the set of vi predecessors and V (ui) is

the set of successors of ui, we can say that ui ∈ P (vi) and vi ∈ V (ui)), the communication

com(ui, vi) between these can happen in the time frame

t[com(ui, vi)] ∈ [t(ui) + λ(ui); t(vi)− λcom] (3.16)
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Figure 19: Example of time frame in which the communication between ui and uj can happen

where λcom is the latency of the communication, usually

λcom = 1 (3.17)

and deciding when a given communication will take place will not appreciably change the

hardware structure as well as the total power consumed1. For this reason, such a problem

is not taken into account by scheduling, as it involves the management of registers and their

allocation. Timing for communications, in this way, will happen after the binding phase.

Let us suppose uj is a successor of ui. Further, ui will have data ready from clock cycle 3

and uj is scheduled for clock cycle 5 (as pictured in Fig. 19). If λcom = 1 we can schedule

1However, we have to state that, changing communication schedule, we may have effect on peak
temperature on the realized device. Anyway, such a problem can not be taken directly into account at
high level synthesis stage, as routing still does not exist.
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Figure 20: Example of communications possible concurrency.
Such an issue is relevant for our buslet-based design.

the communication to both clock cycle 3 or 4 and, in case it is λcom = 2, just in clock cycle

3. However, from this we can see that, when we will perform the binding, we really need an

interconnection between the functional units ui and uj will be bound to and, finally, such a

communication needs be performed in any case1.

3.4.2 Force directed communication scheduling

Here we wish to use wiring structures which will connect at the same time a number of

functional units. For this, in order to minimize their minimum needed number, we have to

reduce as much as possible their concurrency.

Let us suppose to have three communications having some timeframes (computed as previ-

1This statement is always true if ui and uj need to be mapped to different types of FUs. If they can
be mapped to the same FU, such a communication will never take place as data is already in internal
registers of such an FU. We are assuming such an optimization will automatically be performed.
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ously stated previously and stated in Fig. 19) as pictured in Fig. 22. As we are going to use

buslets, we need to ensure that, in a given buslet, conflicts do not have to happen. For this,

one communication at a time can happen on each buslet. In case we decide to schedule all

the communications in clock cycle 3, then we need 3 buslets. However, as it is possible to see,

assuming λcom = 1, it is easy to minimize such a number scheduling communications in differ-

ent clock cycles. So, if our aim is here to minimize the minimum number of needed buslets,

the scheduling must happen not on the nodes in the DFG (operation nodes) but on the arcs

(communications between operation nodes).

For this, let us assume that operation nodes are not scheduled yet. we can say that the mobility

range for communication com(ui, vi) between operation node ui and vi is

µ[com(ui, vi)] ∈ [asap(ui) + λ(ui); alap(vi)− λcom] (3.18)

An example of communication mobility range can be found in Fig. 21. However, once we will

schedule a communication, we will have an effect on the mobility range of the operation nodes.

Let us decide to schedule communication com(ui, uj) from ui to uj in t[com(ui, uj)]. The new

alap time for ui will be

alap(ui) = t[com(ui, uj)]− λ(ui) (3.19)

while the new asap time for vi will be

asap(vi) = t[com(ui, uj)] + λcom (3.20)
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Figure 21: Mobility range for communication between ui and uj .
We are assuming here λ(ui) = 2 and λcom = 1.

In general, the situation presented in (3.19) and (3.20) is pictured in Fig. 22. This happens

because we need to ensure data from the source being ready by the beginning of the communi-

cation from the source ui and data to be computed by uj has already been transmitted when

uj is scheduled. For this reason, we need to take into account a reduction of the mobility range

for operation nodes. However, as our main objective here is minimizing concurrency between

communications, we will perform force directed scheduling for communications (FDCS) inde-

pendently from the regular FDS. However, we will not have the warranty that mobility for

every operation node will drop to 1.

For this, regular FDS has to be performed on the modified mobility ranges after FDCS, in order

to get a complete schedule for both communications and operation nodes.
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Figure 22: Example of communication scheduling and its effect on mobility ranges for
functional units

Algorithm 4 Force directed scheduling

procedure FDCS(DFG, λ)
REM COMS ← EDGES(DFG) . Load all the edges of the input DFG
while REM COMS 6= ∅ do . While there still is one com to be scheduled

Update asap and alap times for all REM COMS
Compute distribution graph for all clock cycles . According to (3.7)
for all ei ∈ REM COMS do . For all unscheduled coms compute forces

for all ck ∈ [asap(ei); alap(ei)] do
Compute SF (ei, ck) . The computation follows (3.9)
PSF (ei, ck) = 0
for all ej ∈ P (ei), V (ei) do . For all the predecessors and successors of ei

for all cc ∈ [asap(ej); alap(ej)] do
if cc valid schedule then . This follows the formulation in (3.10)

PSF (ei, ck)-= SF (ej , ck)
else

PSF (ei, ck)+= SF (ej , ck)

Schedule esch, having min{SF (ei, ck) + PSF (ei, ck)}
Remove esch from REM COMS . You remove it as it is now scheduled

return (sched(COMS)) . Return all communications scheduling times
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3.4.3 Complexity

Let us first analyze this algorithm without predecessors and successors. In such a condition,

we will analyze every edge (as we are talking about communications) every scheduling step (as

we need to compute self forces), this will totally take O(e2) time. Including predecessors and

successors, as their maximum number can be e − 1, we have an overhead of O(e), making the

total complexity being O(e3).

3.5 Summary of scheduling algorithms

Our scheduling is articulated in two different parts, sequentially executed:

1. Scheduling for communications: applies exactly the same model than FDS (3.9) to com-

munications, including communication predecessors/successors analysis (3.10)

2. Scheduling for operation nodes, according to remaining mobility ranges

The complexity for FDCS is O(e2) while the complexity for FDS is O(n2). As these algorithms

are applied sequentially and we can not say anything on the input DFG connectivity, the total

complexity for the scheduling is O(n2 + e2).
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Figure 23: General dataflow for the scheduling technique used



CHAPTER 4

BINDING ALGORITHMS

4.1 General concepts to be taken into account

After communication and node scheduling, we need to bind each operation node to a FU

and each communication between operation nodes to a target buslet (these bindings also lead

to binding of FU connections to buslets). From FDCS and FDS we obtained:

• Scheduling times for operation nodes t(ui)

• Scheduling times for communications t[com(ui, uj)]

• Lower bound on the final number of functional units. We may finally need more FUs than

those determined during scheduling because of the fanin/fanout constraints we impose

on binding that were not imposed during scheduling (we cannot determine fanin/fannout

during scheduling).

Let us assume we need to bind operation node ui to a target functional unit. This

operation node requires a FU able to perform the operation needed by ui. Let us identify

the type of functional units able to perform the operation described by operation node ui

as k(ui) and let us say the set of FUs of type k(ui) is FU [k(ui)]. We identify the subset

FUavl(ui) of available functional units as the set of functional units rl ∈ FU [k(ui)] which

53
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are idling in the clock cycles range [t(ui); t(ui) + λ(ui) − 1]. More formally we can say

that

rl ∈ FUavl(ui)

∣∣∣∣∣∣
t(ui)+λ(ui)−1∏

k=t(ui)

δck(rl, k) = 1 (4.1)

where

δck(rl, k) =


1 if rl idling in k

0 otherwise

(4.2)

Further, we also observe that we have

FUavl(ui) ⊆ FU(k(ui)) (4.3)

Let us here define, for a given functional unit rl, the set of all the buslet in fanin as

fin(rl) and the set in fanout as fout(rl). From this, we know that the fanin of rl is the

cardinality of fin(rl) and that the fanout is the cardinality of fout(rl). We define fanin

for the functional unit ui as |fin(rl)| and fanout as |fout(rl)|. Because of the constraint

on maximum allowable fanin and fanout on any functional unit, we need also to ensure

that, after binding, for any rl in our design, we will have

|fin(rl)| ≤ max fanin (4.4)

and

|fout(rl)| ≤ max fanout (4.5)
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It may happen that, if we will not have any rl ∈ FUavl(ui) also respecting (4.4) and (4.5),

we may need to add some functional unit of type k(ui) to FU [k(ui)] and, consequently,

to FUavl(ui).

• Lower bound on the final number of buslets. The number of buslets can also increase

beyond this value during binding due to the max buslet cardinality constraint on it that

we cannot determine during scheduling.

Let us assume that the set of buslets in our design is B. In this way, any buslet in the

design bk ∈ B. Furthermore, the number of total buslets in our design is given by the

cardinality of B. For this, we say that our design has |B| buslets. Let us assume we

need to bind com(ui, uj). Let us define set of available buslets Bavl[com(ui, uj)] as set of

buslets which are idling in clock cycles window [t[com(ui, uj)]; t[com(ui, uj)] + λcom − 1].

More formally,

bi ∈ Bavl[com(ui, uj)]|
t[com(ui,uj)]+λcom−1∏

k=t[com(ui,uj)]

δck(bi, k) = 1 (4.6)

where δck(bi, k) is defined in (4.2).By consequence, we also have

Bavl[com(ui, uj)] ⊆ B (4.7)

Let us assume that

FUavl(ui) 6= ∅ (4.8)
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and that

FUavl(uj) 6= ∅ (4.9)

If ∀rl ∈ FUavl(ui), ∀rm ∈ FUavl(uj),∀bk ∈ Bavl[com(ui, uj)], after binding, we will have

|bk| > max buslet cardinality (4.10)

then we need to add another buslet to B and, consequently, to Bavl[com(ui, uj)], in order

to use it to bind com(ui, uj).

At the end of binding process, what we aim to reach is to satisfy buslet cardinality constraint

as well as maximum fanin and fanout. Moreover, just using these conditions is not sufficient in

order to have a design in which we have low wirelength: this has to be a driving factor in our

whole binding process. For this reason, what we want to use is a wirelength estimation model

giving us an idea on which solution, among all those available, may be better to choose.

4.1.1 Wirelength model

As we need a very quick-to-be computed wirelength model, without performing any kind of

floorplanning, we estimate wirelength for a given buslet bk based on only two parameters:

1. current buslet cardinality |bk|

2. maximum allowed buslet cardinality max{|b|}

We assume for simplicity that all FUs have the same square shape and same area. We then

estimate the buslet WL as the sum of Manhattan distances of all FUs in it from the center of
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Figure 24: Examples of computation of wirelength for buslet cardinalities from 2 to 5

gravity of the most “compact” area that the buslet and its FUs lie in. This is a obviously lower

bound on the WL of the buslet, since due to FUs being connected to multiple buslets, not all

buslets can be located in their most compact areas determined independent of other buslets.

However, as empirical evidence shows (Fig. 50 and Table III), this simple WL model works well

in yielding a final design with low floorplanning determined WL.

4.1.2 Effect of fanin/fanout constraints on binding

As previously stated, during our binding, we will have to deal with fanin and fanout con-

straints for ach functional unit. Let us say that FUl is a generic functional unit required from
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our binding. We need to ensure that the number of buslets it is connected as fanin will not

exceed a given threshold level max fanin

fanin(FUl) ≤ max fanin (4.11)

Same issue will apply to fanout:

fanout(FUl) ≤ max fanout (4.12)

We need to ensure this during binding. However, such a problem is not straightforward. Let

us say that we want to bind operation node ui to functional unit FUl, which, as it is connected

to the operation node uj , bound to FUm, will require a link with it through a buslet bk. When

we perform such an operation, we have to ensure that, at least,

fanin(FUl) +
∑

∀k(un)∈Punb(ui)

δconn(FUl, k(un)) ≤ max fanin (4.13)

where

δconn(FUl, k(un)) =


1 if FUl not connected to any FU of type k(un)

0 otherwise

(4.14)
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Figure 25: Example of fanin/fanout constraint to be taken into account if binding G (in red).
FU which binds G needs to be able to be connected to the connected to the ones the green op

nodes will be mapped to.

and Punb(ui) is the set of unbound predecessor nodes of ui. This is because we need to ensure

that, after binding ui to FUl, we will be able to respect maximum fanin constraint. Such a

constraint will apply to the fanout constraint:

fanout(FUl) +
∑

∀k(un)∈Vunb(ui)

δconn(FUl, k(un)) ≤ max fanout

where Vunb(ui) is the set of unbound successor nodes of ui.

A practical example of this is presented by Fig. 25. Here, when we decide to bind the operational

node G to a given functional unit FUi, we also need to ensure it will be able to be connected

to at least one more functional unit (that K will be mapped to): in fact, C can potentially be
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mapped to the same FU as it is of the same type. However, such a constraint may be too tight.

Let us assume we have un ∈ Vunb(ui). When binding ui to FUl, we have FUl already connected

to the functional unit FUm, with k(un) = k(FUm). However, when binding un, we may have

the case that FUm has already been bound from another operation node. This means that we

may not been able to satisfy maximum fanout constraint. Same issue applies to predecessors

and fanin constraint. In order to be sure to satisfy fanin/fanout constraints, we need to use the

loose constraints

fanin(FUl) + |Punb(ui)| ≤ max fanin (4.15)

fanout(FUl) + |Vunb(ui)| ≤ max fanout (4.16)

This may oversize the constraint but this will certainly allow us to satisfy maximum fanin and

fanout constraints.

4.2 Chronological binding

The first finding algorithm we are going to introduce is called chronological binding (CB).

This is because it will perform binding moving chronologically: if we are binding com(ui, uj),

then it means that we will have already bound all the communications com(uk, ul) having

t[com(uk, ul)] < t[com(ui, uj)]. This is a greedy strategy that will ensure us to bind the absolute

locally best solution for the current communication. This technique, in its semplicity, will bring

with itself two huge benefits:

1. Makes reuse of hardware available more natural

2. Reduces the solution space to be explored
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Figure 26: Example of reuse of previously bound buslets.
In blue communications binding, while in green operation nodes binding.

4.2.1 Reuse of already available hardware

Binding communications in chronological way, we will be able to more easily reuse already

existing hardware. Let us suppose we have bound com(ui, uj) to bk, binding also ui to the

functional unit r0 and uj to r1. When its communication successor com(uj , ul) needs to be

bound, considering that uj has already been bound to r1, if resource type k(ul) = k(ui) and

r0 is an available FU, then it is possible to bind such a communication without any resource

adding. We have also to add that it is very likely for both r0 and bk to be available as we are

moving chronologically.

Let us analyze an example to better understand this. Looking at Fig. 26, we see that, moving

chronologically, we will first bind com(A,B). Let us assume A is bound to the FU A1 while

B to B1. In order to perform the communication between these functional units, a certain

interconnection is created (as we will use buslets, it will be through one of these). When
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we will need to bind successor communication, if it is with an “A-type” operation node, we

can reuse such a communication. Furthermore, as we are moving chronologically and if we

realistacally assume λcom = 1, if such a connection exists, it can certainly be reused. This

naturally contributes int the wire efficiency increment.

4.2.2 Reduction of solution space

In the general case (except at the beginning of our binding process), when we need to bind

a communication com(ui, uj), we have already bound ui to a target functional unit, as we

have also bound the predecessor communication com(uh, ui) ∈ P [com(ui, uj)]. If we consider

the space of the solutions as combination of communications, buslets, source and destination

functional units, each binding step not only we are analyzing one communication at a time

but we already know which is the functional unit the source is bound to. For this, as the

total number of buslets will be at most the number of edges e of the DFG and the quantity of

functional units is the amount of nodes n of the DFG, then we say that CB will scale the size

of solutions to be analyzed from n2e2 to ne.

An example of such an issue can be observed in Fig. 27. Let us suppose we already bound

com(A, B) with, of course, operation nodes to functional units. When we are going to bing

the successor communication com(B, A), we already find B being bound to B1. This, as it is

here evidenced, reduces the solution space to be explored. This is something constant in all the

binding execution, significantly reducing the amount of possibilities to be computed each step.
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Figure 27: Example of binding solution space reduction.
In blue communications binding, while in green operation nodes binding.

Algorithm 5 General chronological binding algorithm

procedure Chronological binding(sched(NODES, COMS))
Sort growing sched time(COMS)
partial soln set = ∅
initial empty binding = initialize(buslets, FUs) . Initialized empty design
push(partial soln set, initial empty binding) . Initialized list of partial solutions
for all comi ∈ COMS do

com bound = false
while com bound = false do

Compute all possibilities and put them in Local solns
if Local solns = ∅ then . If no possibility available, then we lack of FU or buslet

Add needed resource (FU or buslet)
else

com bound = true
if similar soln pruning = true then

Local solns = Similar solns cutter(Local solns) . This function will be
explained in Sec. 4.3

Sort in decreasing WL order(Local solns)
partial soln set = first n solns(Local solns, soln held per step) . We take the

best n solutions
return (first(partial soln set)) . We return at the end the design having the best

wirelength
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4.2.3 Complexity

About the binding, as we are binding e different communications to b buslets and to r

functional units, a first estimation of the complexity could be O(ebr2). However, according to

our former analysis, source nodes are most of the times already bound. For this, the complexity

will reduce to reduces to O(ebr). We can also state that certainly b ≤ e (as at most we will

have one buslet per communication) and r ≤ n (as at most we will have one functional unit

per node and in the worst case we will have only one resource type). According to this, the

complexity for CB will be O(ne2). Finally, let us say that we want to propagate each binding

step at most S best solutions: the complexity becomes O(Sne2).

4.3 Chronological binding with similarity reduction

Chronological binding with similarity reduction (CBSR) is a natural extension of simple

CB. When we decide to hold a number of locally “optimal” solution, in fact, there may be

the case that we are holding some similar solution. We can say that two solutions are similar

if they will bring, at the end, to the same buslet structures. This means that, at the end of

our binding process, if we say that solution S1 is similar to solution S2, then the set of buslets

B1 ∈ S1 will be exactly the same as the set of buslets B2 ∈ S2. More formally, we can say that

∀bi ∈ B1∃bj ∈ B2 |∀rk ∈ bi ⇒ rk ∈ bj (4.17)

We can see an example in Fig. 28. Here we see that Solution A is similar to Solution B as

buslet b1 and b2 are inverted and functional units bind exactly the same operation nodes in the
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Figure 28: Example two solutions similar differing for buslets labels.
In red operation nodes bindings, in black buslets and in yellow functional units.

DFG. However, such a definition seems to be weak for rk: in fact, potentially any ri ∈ FU [k(rk)]

can have the same schedule of rk in a different design: it is like swapping labels.

In the example presented by Fig. 29, we not only have buslet labels swapped, but also those

for functional units. We are here assuming FUi and FUj are of the same type. We see that the

schedules for both are overlapping, as well as the structure of the buslets they are connected

to. Here it is not necessary that they are bound exactly to the same operation nodes, provided
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Figure 29: Example two solutions similar with different binding for both buslets and
functional units. In red operation nodes bindings, in black buslets and in yellow functional

units.

that the buslets they are connected to are the same and their busy clock cycles are exactly

identical. For this, we should modify statement (4.17) allowing any resource in bj to match rk:

∀bi ∈ B1∃bj ∈ B2

∣∣∀rk ∈ bi∃rl ∈ bj ∣∣∀ck ∈ [0;λ− 1]δck(rk, ck) = δck(rl, ck) (4.18)

In general we can say that, if (4.18) is true, then S1 and S2 are similar. Let us give, now, an

extensive formulation of this.

Let us suppose we need to bind com(ui, uj). We know that the set of available FUs to be
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mapped to ui is FUavl(ui) and for uj is FUavl(uj). Moreover, the set of available buslets is

Bavl(com(ui, uj)). If we say that

bk ∈ Bavl(com(ui, uj)) (4.19)

rl ∈ FUavl(ui) (4.20)

rm ∈ FUavl(uj) (4.21)

we can say that the quantity of binding possibilities |S(com(ui, uj))| is

|S(com(ui, uj))| =
∑
∀bk

∑
∀rl

∑
∀rm

δR(rl, bk) · δR(rm, bk) · δB(rl, rm, bk) (4.22)

where, having

∆R(fanout)(rl, bk) =


1 if bk /∈ fanout(rl)

0 otherwise

(4.23)

it is

δR(rl, bk) =


1 iffanout(rl) + ∆R(fanout)(rl, bk) ≤ max fanout

0 otherwise

(4.24)

and in the same way we have

∆R(fanin)(rm, bk) =


1 if bk /∈ fanin(rm)

0 otherwise

(4.25)
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δR(rm, bk) =


1 iffanin(rm) + ∆R(fanin)(rm, bk) ≤ max fanin

0 otherwise

(4.26)

and, saying that

∆B(rl, rm, bk) =



2 if (rl ∧ rm) /∈ busletset(bk)

1 if ∃!(rl, rm) /∈ busletset(bk)

0 otherwise

(4.27)

we have

δB(rl, rm, bk) =


1 if |bk|+ ∆B(rl, rm, bk) ≤ max bus cardinality

0 otherwise

(4.28)

From this, we can see that we may potentially have several binding possibilities, resulting with

the same estimated wirelength, which are “similar”: for example, assuming that we are just

beginning out binding (so, all buslets are empty and all FUs available), if we need to bind

com(ui, uj), which one may be the difference between binding it to buslet bk or bk+1, as both

of them are empty?

If we desire to save more than one binding possibility for every step, as those “similar” solutions

will have exactly the same wirelength, it may be necessary to implement a similar solutions

detector, in order to prune all solutions leading to same final solutions.

In order to find solution S∗ is similar to Sref , we need to look at the following issues:
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1. Each buslet b∗ ∈ S∗ needs to have a corresponding buslet bref ∈ Sref such that

|b∗| = |bref | (4.29)

2. Each buslet b∗ ∈ S∗ needs to have a corresponding buslet bref ∈ Sref so that, for each

clock cycle m, defining, for the generic resource1 r

δck(r,m) =


0 if r idling in m

1 otherwise

(4.30)

we need to have

δck(b
∗,m) = δck(b

ref ,m) (4.31)

∀m value.

3. Then, assuming brefk has been found similar to b∗k, ∀ functional unit FU refi ∈ brefk , we

need to find a functional unit FU∗i ∈ b∗k such that

(a) Has same busy clock cycles and, in particular, ∀m

δck(FU
ref
i ,m) = δck(FU

∗
i ,m) (4.32)

1Here with resource we mean both FU or buslet.
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(b) Has same fanin and fanout:


fanin(FU refi ) = fanin(FU∗i )

fanout(FU refi ) = fanout(FU∗i )

(4.33)

4.3.1 Justification of similarity-based pruning

Let us imagine two solutions S1 and S2 are similar at step l−1 but, at step l, while binding

com(ui, uj), S1 will have, among all its binding possibilities, a solution with a better best

wirelength than S2. We can have this when we need to add FUi to a buslet bk in S2 while we

do not do the same in S1. This happens if:

1. @b1 ∈ S1, b2 ∈ S2| |FUavl(ui) ∈ b1| = |FUavl(ui) ∈ b2|

If we have not the same number of same type FUs available connected to the same

buslet, then we may need to add one more of such a FU to the buslet, resulting in a

cardinality increment and, consequently, in a wirelength increase. However, this goes

against condition (4.32).

2. @FU1 ∈ S1, FU2 ∈ S2 | k(FU1) = k(FU2),

|bavl[fin(FU1)]| = |bavl[fin(FU2)]|

If we need to use a FU as source and the available different fanin buslets are different,

then we need to add one more buslet to fanin(FU2). However, as we have ensured (4.33)

for all FUs linked to buslets having (4.29), this can not happen.
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3. @FU1 ∈ S1, FU2 ∈ S2 | k(FU1) = k(FU2),

|bavl[fout(FU1)]| = |bavl[fout(FU2)]|

Same as previous point.

Algorithm 6 Similarity detector algorithm

procedure Similar solns cutter(Input solns) . Here I take as input the set of solutions
to verify

Output solns = ∅
for all Si ∈ Input solns do

similar = false
for all Sj ∈ Output solns do

if all buslets in Si have a similar in Sj then
if all FUs in Si have a similar in Sj then

similar = true
if similar = false then push(Output solns, Si)

return (Output solns)

4.3.2 Complexity

Similarity reduction will certainly improve the quality of solutions. However, it may intro-

duce some overhead in the computation of the final solution. It will concur, at the end of each

binding step, in the formation of the set of the Y partial solutions to be propagated in the

next binding steps. For this, for each binding step (O(e)) we will analyze the Y top ranked

(according to our driving metrics which, in this case, is wirelength) solutions (O(Y )). For each

of these, we will try to match buslets (O(e)) and functional units (O(n)). Let us say sn ∈ Y .
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y0 will be matched with Y − 1 other solutions, y1 with Y − 2 and so on. With this, we have

a number of matchings to be tested which is O(Y 2)1. So, the total complexity added from

simularity reduction will be O(Y 2ne). With this, we will have that total complexity for SRCB

will be O(Y ne(e+ Y )).

4.4 Chronological lookahead binding

A possible development of chronological binding algorithm is to evaluate the fouture impli-

cations for a given binding solution chosen. In fact, if we perform choices in function of the

current design structure without taking care of future effects of it, then we may easily fall in

suboptimal solutions.

Let us assume we are at binding step i− 1 and our current solution is Si−1 (with this we mean

the set of both functional units and buslets already bound). We know that each communication

1We know that
N−1∑
i=0

i =
N(N − 1)

2
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can be bound to a buslet only, as well as to a source FU and a destination one. Let us say that

such a quatern of values is identified by qk ∈ Qi12. We see that

Si = Si−1 + qbest (4.35)

where qbest ∈ Qi is the quatern of values which will make the increase of total wirelength the

lowest. Each qk ∈ Qi may significantly modify the sets Qi+f with f positive integer. Let us

assume our qbest involved the binding of com(uh, uj) to buslet bk and uj to rm. When we will

bind its successor communication com(uj , ul), we will already have uj bound to rm and, if no

a connection is available between rm and any functional unit in FUavl(ul), then extra wiring

cost will be needed. However, if we will be able to detect this in advance, then we may be able

to save extra wirelength.

So, let us say we need to compute the partial solution at the i-th step allowing the inspection

of the next k levels. Our partial solution will be

Si = Si−1 + qbest(i+ k − 1) (4.36)

1In particular, we can extensively write

qk = (comi, bj , rl, rm) (4.34)

where comi is the bound communication, bj is the buslet comi has been bound to, rl is the source FU
while rm is the destination one.

2Note here that, as we are moving in chronological order, we will analyze each time all the possible
binding solutions for the same communication comi. For this reason, we will have as Q sets as it is the
total latency λ
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where qbest(i+k−1) is the quatern producing, to the i+k−1 binding step, the best wirelength.

Algorithm 7 Chronological binding with lookahead

procedure Chronological binding with lookahead(sched(NODES, COMS))
sort coms per ascending sched time() . From lowest to highest scheduling time
root soln = initialize binding soln()
for all comi ∈ coms to bind do

best LA wl = ∞
for all available buslets bk, source FUm, destination FUn do . Any combination of

these
local = bind(Sj , comi, bk, FUm, FUn) . Here we will bind the quatern (comi, bk,

FUm, FUn) to Sj
LA wirelen = wl lookahead(local, comi, coms to bind, LA level) . We call

lookahead function
if LA wirelen < best LA wl then. This was implemented holding 1 solution only

best local soln = local
best LA wl = LA wirelen

root soln = best local soln
return (root soln)

4.4.1 Complexity

We already know that usual chronological binding will take O(ne2). However, here we need

to take into account that, when we are performing the lookahead search, we will try any possible

combination between any buslet (O(e)), any source (O(n)) and any destination (O(n)). All of

this will be performed for the next, let us say, k steps, each binding step.

The overhead introduced by lookahead technique is, this way, O(ken2), bringing the total

algorithm complexity to O(kn3e3).
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Algorithm 8 Wirelength lookahead

procedure wl lookahead(binding soln, last bound com, coms to bind, LA level) . This
performs the lookahead and returns the best wirelength after k binding steps.

if LA level = 0 then
return wirelength(binding soln) . This function will compute wirelength for a given

solution
current com = next com(last bound com, coms to bind) . We compute the

chronologically next com of last bound com
best LA wl = ∞
for all available buslets bk, source FUm, destination FUn do. any combination of these

local = bind(Sj , com to bind, bk, FUm, FUn)
LA wirelen = wl lookahead(local, current com, coms to bind, LA level-1) .

Recursive call: we decrease LA level and we pass the new bound com and the new partial
solution (local)

if LA wirelen < best LA wl then
best LA wl = LA wirelen

return (best LA wl) . LA function will return just the best wirelength value found

4.5 Simultaneous binding of iso-scheduled COMs

According to the algorithm developed so far, what we are going to do in our design is

binding the best solution(s) moving from one communication to another. Communications are

sorted in ascending scheduling time order; so, we are binding communications according to this.

However, what shall we expect to do if more than one communication has the same scheduling

time? How to sort them? Can this lead us to suboptimal solutions?

If we assume a generic communication latency λcom > 0, for any nodes in the DFG ui, uj , uk,

ul, if we have |t[com(ui, uj)]− t[com(uk, ul)]| < λcom, then the two communications can not be

scheduled to the same buslet. However, depending on the order they are bound, we may have

different effects on the resulting output.
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Figure 30: Scheduling example in order to figure out why simultaneous binding matters.
Here we are assuming latency for both FUs and communications 1.

Figure 31: Binding obtained by using CB (on the left, (a)) or simultaneous binding of
iso-scheduled communications (on the right, (b)).

Input scheduling is taken by Fig. 30.
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Let us assume we have, as input, the scheduling in Fig. 30. Further, let us also assume we

have a maximum cardinality constraint of 3. If we use Chronological binding technique, when

we will bind com(B, A), we will reuse the already existing interconnection between these FUs

(in Fig. 31a, it is the black wire). However, in order to bind com(D, A), as we can not use the

black wire because already busy in clock cycle 4 and we can not use the blue wire because we

would violate the buslet maximum cardinality constraint, we need to add another buslet (the

red one). However, if we analyze simultaneously scheduled communications, we can be able to

find better configurations, satisfying the constraints and saving on the number of buslets (and,

in this way, increasing the wire efficiency). This is pictured in Fig. 31b. Here we have bound

com(B, A) to the blue buslet, connecting A to it ans com(D, A) to the black one, adding D to

it.

Hence, for this simple example we can formalize as follows: if we have that

∀com(ui, uj) ∈ DFG∃com(uk, ul) ∈ DFG|t[com(uk, ul)] < t[com(ui, uj)] + λcom (4.37)

then we have to take into account all the edges being bound in any possible order (this means

that the complexity will be e!). However, in order this to happen, some conditions need to be

satisfied. We can primarily say that, if we have

∀ui ∈ DFG∃k(ui)|λ[k(ui)] ≥ λcom (4.38)
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Figure 32: Example of domino effects when considering overlapping communications. Here we
are assuming λcom = 2.

Furthermore, we usually have

λcom ≤ λ[t(ui)]∀ui ∈ DFG (4.39)

Let us assume (4.39) is verified. At such a point, the maximum number of communications to

be taken into account will be the maximum number of overlapping communications, which is

an output of FDCS. However, for this, we have a domino effect which may let the number of

communications to be bound huge.

Let us analyze the case proposed in Fig. 32. Here we want to bind com1. In order to do

it, assuming that we have λcom = 2, we want to respect (4.37). For this, we need to bind

together all the communications within the red circle. However, we see that the same condition

applies to all the other communications, generating the overmentioned domino effect. In our
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computation case, we will assume λcom = 1, which is a realistic parameter which, more, will

satisfy (4.39). In this case, thanks to FDCS, we will have that the maximum number of

overlapping communications φ will be

φ =

⌈
max{t[com(ui, uj)]} −min{t[com(uk, ul)]}

e

⌉
(4.40)

∀ui, uj , uk, ul ∈ DFG. Hence, as this is a special case, the overmentioned domino effect does

not take place. Usually such a number is very low and, thanks to this, computing all the

dispositions between these will not bring to any significant overhead. An example of graph

with 3 overlapping communications can be found in 33.

4.5.1 Improving the average computation time

We define binding level the group of binding solutions in which the same number of com-

munication has already been bound.

Let us suppose we have φ overlapping communications. For the first communication to be

bound, we have φ possibilities. In each of them there will still be φ − 1 communications to

be bound; so, at the second binding level, we will have φ · (φ − 1) possibilities. If we step to

the last level which has to be the φth as we need to bind all φ communications, we will have

φ · (φ− 1) · ... · 1 possibilities, which is φ!.

What we want to do now is trying to reduce this number of possibilities to be computed as

much as possible. In order to do this, we can use the detection of similar patterns heuristics

(Sec. 4.3), applied at each binding level: in this way, we are able to prune all similar solutions.
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Figure 33: Analysis of possibilities for 3 overlapping communications

At this point, however, if we find solutions moving per binding levels (e.g. we first find solutions

for first binding level, then for second...) we will not be able to erase any similar pattern, as we

need to arrive at the last level in order to correctly explore solution space1. For this, in order

to make us able to prune some solutions, we may apply here Depth-First Search algorithm: as

we have a final result, we may be able to prune branches in the “possibilities tree” we have.

Here a question comes naturally out: is this really necessary? Can we go in depth just for one

1at a certain level k we may prune a solution because worse than others for ∆1WL but, in the next
φ−k levels, while this pruned solution worsened of a factor ∆2, all the solutions held at level k worsened
of factor ∆3 > ∆1 + ∆2
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solution and then, applying other algorithms, like Breadth-first search, prune all suboptimal

solutions (referring to the first initially found)?

If we act this way, we have the disadvantage of having just one reference solution (until we do

not reach leaves in our solutions graph): if we use DFS algorithm, we are constantly trying to

reach leaves in our solution graph, having best solution been updated quicker than in BFS. In

particular, here we are using a “left hand” algorithm.

The pseudocode is divided into three different procedures.

Simultaneous COM binding caller will just find out which will be the next communications to

be bound and it will pass both the current solution and the communications to be bound to

Simultaneous COM binder, which will produce the best solution (in terms of wirelength).

Algorithm 9 Simultaneous com binding caller

procedure Simultaneous COM binding caller
root soln = initialize binding soln()
while not all coms bound do . While there still is a com not bound

coms to bind = lowest sched time unbound coms (coms) . Look for the set of
unbound coms with the lowest scheduling time

root soln = Simultaneous COM binder(coms to bind, root soln) . Call
Simultaneous COM binder: it will return the best solution binding all the coms to bind

return (root soln)

Simultaneous COM binder is really the heart of the algorithm: it will analyze all the possible

solutions binding communications in any possible order and will choose the best. It is a recursive
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function. This also calls solution binder which, taking as input a set of binding solutions and

the com to be bound, it will produce the set of all possible binding solutions for the given

inputs.

Algorithm 10 Simultaneous COM binder

procedure Simultaneous COM binder(coms to bind, binding solns)
if coms to bind = ∅ then . Recursive function: if no more coms to be bound, then

return just the best among the passed binding solutions
return (best(binding solns)) . best=lowest wirelength

for all comi ∈ coms to bind do
intermediate bindings = solution binder(comi, binding solns)
coms list next level = coms to bind - comi . coms list next level contains

coms to bind excluding comi

binding solns harvest = Simultaneous COM binder(coms list next level, intermedi-
ate bindings) . Recursive call: it will be passed all the computed solutions to this moment
and the remaining coms to be bound

best binding soln = best(binding solns harvest, best binding soln) . best=lowest
wirelength

return (best binding soln)

4.5.2 Complexity

This algorithm adds an overhead to standard chronological binding (O(ne2)). Such an

overhead is given by the computation of all possible solutions for overlapping communications.

If we say that the maximum number of overlapping communications is φ, usually much lower

than e, and that γ = 2φ (γ, in this case, represents the average computations for all the
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Algorithm 11 Solution binder

procedure Solution binder(com to bind, binding solns) . Inputs
are scheduling times (both coms and nodes), max buslet cardinality, max fanin and fanout
for FUs and how many solutions to propagate each binding step. Finally, we can choose to
use similar solution pruning enabling the proper flag.

for all Sj ∈ binding solns do
for all available buslets bk, source FUm, destination FUn do . any combination of

these
local = bind(Sj , com to bind, bk, FUm, FUn) . We perform binding, starting

from solution Sj , for the quatern (COMi, Bk, FUm, FUn)
push(Local solns, local) . Add local to Local solns

return (Local solns)

combinations, having first a reference solution to be compared with intermediates). The final

complexity will be, this way, O(γne2).

4.6 Force directed binding

Here what we aim to present is an alternative to chronological binding. In fact, as chrono-

logical binding has evident benefits, unfortunately, shows also the non negligible drawback of

having a too local view of the whole dataflow graph. If we focus just on binding a single

communication per time (or, by extension, to a restricted set of them, considering overlapping

communications or also taking into account lookahead mechanisms), we will not be able to take

into account the whole DFG structure, seeing which will be the effect of our binding on the

whole final solution. For this, it may be reasonable to use a force directed-like approach also

for binding, with the aim of minimizing final wirelength.

Let us define a solution possibility q as a combination of four different elements:
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• Communication com(ui, uj) to be bound

• Buslet bk to which com(ui, uj) will be bound

• Functional unit rl to which ui will be bound

• Functional unit rm to which uj will be bound

If, at step n during execution of our algorithm, we have obtained a binding solution BSi−1, the

new binding solution BSi will be obtained applying the chosen solution qi to BSi−1:

BSi = BSi−1 + qi (4.41)

Now comes naturally the question: how to choose qi, if we are not moving chronologically

anymore?

4.6.1 Formulation of probability for a given solution

As we aim to minimize the overall wirelength of our design and our wirelength model

deals with buslet cardinality (in particular, wirelength is directly proportional to current buslet

cardinality), it is very likely for us to try to minimize it. It may sounds natural to elaborate

a force using the probability of binding a given solution qk is inversely proportional to the

cardinality bk will have after binding FUi and FUj to it.

According to the definition of probability, in order to compute the probability for a particular

qk, we need to have the future buslet cardinalities for any solution binding the communication
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com(ui, uj) taken into exam.

We can model, this way, the probability of binding the possibility q(comi, bk, rl, rm) as

p[q(comi, bk, rl, rm)] =

1
1+∆WL(Sn−1,q(comi,bk,rl,rm))∑

all qs for comi
p(qs)

(4.42)

where ∆WL(Sn−1, q(comi, bk, FUm, FUn)) is the difference between the wirelength for Sn =

Sn−1 + Pr and wirelength for Sn−1.

4.6.2 Formulation of weight function for a given solution

What we aim here to formulate is a factor determining a sort of distribution graph in which

we may aim to minimize peaks. However, it is not a straightforward issue to determine which

one could be the parameter we may apply such an issue.

The first idea we may have is to directly plug whole solution’s wirelength into it. In fact, the

highest such a parameter is for a given solution, the least we are likely to choose it. So, as first

instance, we may decide to define weight function in our FDB algorithm as

w(qk) = ∆WL(Sn−1, qk)

With these, we will compute the self force as

SF (qk) = (1− p(qk)) ∗ w(qk)−
∑

∀qs 6=qk with comi

p(qs) ∗ w(qs) (4.43)

After computing all the self forces, it will be chosen the binding solution with the lowest one.
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4.6.3 Predecessor/successor forces

According to what said previously for the force directed-like approaches (FDS, our FDCS),

after we take a decision we will have an effect on predecessors as well as on successors. Does

such an issue apply also on force directed binding?

Let us assume we want to bind the quatern described in qk which was defined in (4.34). Then,

we will have, on all the other binding possibilities, the following effects:

1. bj ∈ qk will not be anymore available ∀comh||t(comh)− t(comi)| < λcom

2. rl will not be available ∀uh|k(uk) = k(ui), |t(uh)− t(ui)| < λ(k(ui))

3. rm will not be available ∀uh|k(uk) = k(uj), |t(uh)− t(uj)| < λ(k(uj))

4. bj may increase its cardinality

5. rl and rm may increase their own fanin/fanout

Let us analyze all these effects. For the first effect, as we can not have any conflict on the buslet,

we have a direct effect on the forces for all the communications scheduled at the same time the

currently bound communication is. About the availability of the the functional units, we will

certainly have an effect on all the nodes in the DFG having a scheduling time which overlaps

the currently marked as busy clock cycles for the current functional units. This will certainly

affect the force for all the communications between nodes having such a type. These are the

effects not taking into account the constrains on the buslet cardinality and on functional unit

fanin/fanout.

Analyzing the buslet variation of cardinality, we will have an effect on the force for all the
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communications which can be bound to buslet bj . Unfortunately, this means that we will have

an effect on all the forces for our DFG and, for this, we need to analyze all of them. Further,

the effect on fanin/fanout will affect all the operation nodes of the same type as the currently

bound ones through the whole design. Synthesizing, we need to analyze the variation for all

the forces in the design.

4.6.4 Efficacy of this algorithm

Such an algorithm will show a very peculiar behavior. For its formulation, it will take a

communication between two operation nodes, bind it and, then, keep on binding other commu-

nications between the same kind of functional units as much as possible. So we can say that,

after binding the quatern qk, it will bind all the other quaterns qh such that

• It will not create conflicts on the buslet bj ∈ qk.

• Functional units rl and rm will not be busy.

This happens because the distribution graph will make the force dropping for these (as it will

use an already available structure, the value for it is zero). According to this, any effect on

predecessors/successors appears being unuseful (as all this contribution is ignored from the

distribution graph structure). However, this may lead to suboptimalities. A similar example

was already discussed in Sec. 4.5. In that case, the self force to bind com(B, A) will be the

lowest as an interconnection is already present. This, as seen, will drive the solution to be

suboptimal.

For this, we expect such a technique not to produce the best absolute result but, as it globally
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looks at all the communications, not producing the worst results either.

Down here it is presented a very synthetic version of FDB which, however, illustrates all main

issues to be tackled.

Algorithm 12 FDB algorithm

procedure Force Directed Binding(sched(COM, NODES))
root soln = initialize binding soln()
while not all coms bound do

prev wl = wirelength (root soln) . Wirelength before next binding step
for comi ∈ coms to bind do

for all available buslets bk, source FUm, destination FUn do . Any combination
of these

wl after[comi][bk][FUm][FUn] = wirelength(bind(root soln, comi, bk, FUm,
FUn)). With this we can identify a 4D variable. The same will apply to weight, probability
and SF

weight[comi][bk][FUm][FUn] = wl after[comi][bk][FUm][FUn] - prev wl

for all available buslets bk, source FUm, destination FUn do
compute probability[comi][bk][FUm][FUn] . See 4.42

for all available buslets bk, source FUm, destination FUn do
compute SF[comi][bk][FUm][FUn] . See 4.43

lowest SF = ∞
for comi ∈ coms to bind do

for all available buslets bk, source FUm, destination FUn do
if SF[comi][bk][FUm][FUn] < lowest SF then . Look for the lowest SF

lowest SF = SF[comi][bk][FUm][FUn]
best bind = (comi, bk, FUm, FUn)

root soln = bind(root soln, best bind)

return (root soln)
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4.6.5 Complexity

Here the complexity is comparable to that already computed for FDS algorithm, as the basic

technique is the same. However, in FDS the solution space to be explored was n only. Here it will

be O(n2e2) (complexity coming from the quatern of values composing each binding possibility).

For this, the total complexity of such a technique without predecessors and successors will be

O(n4e4). However, if we want to also add predecessors and successors contribution, the total

expected complexity will be O(n6e6).



CHAPTER 5

BUSLET POWER MODELING

Once we perform scheduling and binding, we will have, as output, a bench of functional

units and interconnections between them. Furthermore, we also have the correct sequence for

both data transmissions (performed using buslets) and data computation (performed in the

functional units). Having these data, commonly outputted after the high level synthesis step in

VLSI CAD (Sec. 3.1), we need to go through the rest of the CAD flow. Let us assume we will

jump straight to physical design (floorplanning). In order to estimate the power consumed using

buslets and to compare it with dedicated interconnections, some modeling is necessary. Indeed,

we can use some technique to minimize all the metrics involved in wiring power consumption.

All the models here presented assume floorplanning stage has already been performed: for this,

all the FUs are already placed on chip.

5.1 Metrics involved in buslet power consumption

Let us assume a generic buslet bi connects |bi| functional units (this is its cardinality).

Further, let us assume that the two functional units FUj , FUk ∈ bi. Whenever a communication

between these two functional units has to be performed, two main factors contribute to the

power consumption (in this case, this is dynamic power):

90
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1. Wire length to be driven. The wire has its own capacitance and it has to be driven. From

this, we can say that, the lowest this is, the lowest this power contribution is. An idea

could be “slicing” the circuit such that just the minimum wirelength will be driven.

2. Input buffer capacitance. Each FU will have, as input, a buffer. This has a non negligible

input capacitance to be driven. Furthermore, if we wish to insert some buffers in the

middle of the circuit, this contribution depends on the number of buffers met. This goes

against the statement evidenced in the previous point and, for this, some trade-off is

necessary.

Furthermore, we have also a static power contribution, coming from the buffers in the design,

due to leakage current. All of these factors need to be taken into account while designing the

buslet structure itself.

5.2 Minimum spanning tree

The first approach we can try to use is creating a minimum spanning tree (MST), connecting

all the functional units. Let us build a completely connected1 undirected2 graph G, having as

nodes all the functional units connected to the same buslet bj . Let us associate to each edge

e(FUi, FUj) connecting FUi, FUj ∈ G the weight w[e(FUi, FUj)], which will be the Manhattan

distance between the two functional units. Now, we will use an algorithm allowing us to have

1We define completely connected a graph G having n nodes, each of them directly connected to all

the other n− 1 nodes. Such a graph will have n2−n
2 edges in total.

2We define a graph G being undirected when, for each couple of nodes ui, uj ∈ G, if exists an edge
connecting ui to uj , then it will also exist an edge connecting uj to ui.
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a connected graph1 with the least total minimum wirelength. We define it being a minimum

spanning tree. Here follows a quick description of two standard algorithms used to solve this

problem.

5.2.1 Prim’s algorithm

This algorithm was designed by Robert Prim in 1957[23]. Prim’s algorithm uses a greedy

approach that computes an MST in a weighted undirected graph. So, it will look for all the

edges which will create a tree including each and every node, in which the total of the edges’

weights is the minimum. The algorithm builds such a tree one node at a time, from an arbitrary

chosen one, and each step it will add the cheapest possible connection from such a built the

tree to any other non connected node.

The algorithm, however, may be modified to start with any particular vertex. The total com-

plexity of this algorithm is O(n2).

5.2.2 Kruskal’s algorithm

This algorithm was designed by Joseph Kruskal 1956[24]. Kruskal’s algorithm is another

minimum-spanning-tree algorithm.

It will work finding, each step, the cheapest edge which will connect any two trees in the forest.

Also this uses a greedy approach and it will compute the MST starting from a connected graph.

Hence, it will find the edges, which will form a tree, which will include all the nodes, minimizing

the total of the edges’ weights.

1We define a graph G being connected if, ∀ui, uj ∈ G, exists a path connecting them.
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Algorithm 13 Prim algorithm

procedure Prim(G) . G is the input graph, containing both nodes and edges
Q = ∅
F = ∅ . F will be our minimum spanning tree
for each node ui ∈ G do

C[ui] = min∀uj∈P (ui){w[e(ui, uj)]}
Q = Q+ ui . When initialized Q contains all the nodes in G

while Q not empty do
ubest = first(Q)
for all ui ∈ Q do

if C[ui] < ubest then
ubest = ui . Here we will select the edge with the lowest cost in Q

F = F + ubest
Q = Q− ubest . Here we will exclude ubest from Q

return (F) . We return the MST

The complexity of this algorithm is O(e log(e)): this means that this algorithm is better than

Prim’s if the number of arcs from the starting graph is not high. Hence, if the graph is fully

connected, Prim runs in lower time.

5.3 Standard buffer placement

According to the common structure for any bus, through the line we will not have any buffer.

The signal, in this way, will be propagated through the whole wirelength of the buslet, reaching

all the functional units connected to it. Of course, we will minimize their number according to

the fact that a given FU will need to read or to write only data from/to the buslet. This is

completely deterministic as it is a known data from any of our HLS algorithms. For example, if

a given functional unit FUj ∈ bj will drive the buslet never reading it, we will insert the output

buffer only. This will improve both static and dynamic power, reducing also signal delay. We
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Algorithm 14 Kruskal algorithm

procedure Kruskal(G) . G is the input graph, containing both nodes and edges
Q = ∅
F = ∅
for each edge ei ∈ G do

Q = Q+ ei . When initialized Q contains all the edges in G

Sort ascending(Q) . Sort all the edges in weight ascending order
while Q not empty do

ebest = first(Q)
F = F + ui + uj
for all ei ∈ Q do

if ui ∈ F and uj ∈ F then
Q = Q− ei

return (F) . We return the MST

Figure 34: Example of standard buffer placement model for buslet of maximum cardinality 8.
FUs are the squares, diamonds are bidirectional buffers (connected as shown in the legend)

and blue nodes are steiner points.
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have benefits on the dynamic power because we will decrease the total buslet capacitance to be

driven. We know that, for estimating dynamic power, we have two contributions. In this case,

the contribution from the wirelength Cw is fixed for any communication happening and it is

Cw(bj) = WL(bj) · CF/m (5.1)

where WL(bj) is the total wirelength for bj and CF/m is characteristic line capacitance per

length unit. The contribution from the buffers, instead, is

Ctri(bj) = Ctri−in
∑

∀FUi∈bj

δfanin(FUi, bj) (5.2)

where

δfanin(FUi, bj) =


1 if FUi reads data from bj

0 otherwise

(5.3)

and Ctri−in is typical input capacitance for tristate buffers. For this reason, minimizing fanout

buffers will have here a contribution on saving static power only, but fanin buffers will also save

static power. An example of such an interconnection type is shown in Fig. 34

To wrap-up, the final dynamic power for a single buslet in the design bj will be

Pdyn(bj) = fw · V 2
dd ·

COMS(bj)

λ
(Cw(bj) + Ctri(bj) + 1) (5.4)
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Algorithm 15 Standard MST power model

procedure MST-POW(G, D, λ)
tot pow = 0
for all buslet bj ∈ D do

F = Prim(G)
WL = total length(G)
CFIN = total fanin buffers(bj)
this buf pow = Pdyn(bj) . It is (5.4)
this buf pow = this buf pow + static power
tot pow = tot pow + this buf pow

5.3.1 Complexity

In order to build the MST we use here Prim’s algorithm (O(n2)). Then, in order to decide

the buffer placement, we will take another O(n) time and, finally, to compute the total static

and dynamic power we just need to know their quantity (O(1)). The most dominant part is

here the creation of the MST and, for this, the total final complexity is O(n2).

5.4 MST-2B

The main problem with standard buffer placement is that we have to drive all the buslet

for any communication, even if two functional units are each other close.

We can see an example of such a behavior in Fig. 35. In order to avoid this, what we can do

is literally “slicing” the buslet, using tristate buffers which may enable/disable the propagation

of the signal according to the target functional unit position in the MST.

Let us call routing nodes all the nodes in the MST which are not FUs. Each wire w(ui, uj)

in the MST connecting two nodes which are both routing nodes will have, at both its ends, a
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Figure 35: Example of communication between FUs in the case of standard interconnections.
Here, even if the two FUs needing to communicate are close (in this case, FU1 is sending data

to FU2, the signal will propagate through all the buslet (it is evidenced in red).)

bidirectional tristate buffer1. Using these, it is possible to minimize the total wirelength to be

driven. We can see this implementation in Fig. 37. In that case, just the minimum wirelength

will be driven.

However, such an approach has some drawbacks:

• When the signal reaches routing node Rk, the fanin input capacitance at that particular

node will be not only that of the next wire it will cross, but also the sum of the input

capacitances of all the other wires connected to Rk. An example of this is in Fig. 36.

1We define bidirectional tristate buffer the pairing of two tristate buffers in parallel, oriented in the
two opposite directions.
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Figure 36: Example of communication between FU1 and FU4 in the MST-2B model.
In this case, even if the wirelength is the lowest possible (in red), the number of input
capacitances to be loaded (evidenced in green) is very high, much greater than in the

standard implementation.

Let us call the extra capacitance to be driven (that not belonging to the path the signal

will follow) Cfin−extra(Rk). It will be

Cfin−extra(Rk) = Ctri−in ·

 ∑
∀wj connected to Rk

δwirefanin(wj , Rk)− 1

 (5.5)

where

δwirefanin(wj , Rk) =


1 if wj reads data from Rk

0 otherwise

(5.6)



99

• For all the wire slices crossed by the signal, we will have a contribution from the fanin

tristate buffers. Let us call such a contribution Cfin−route−2B. Let us also assume we

have the route Y which is a bunch of wires wj connecting routing nodes only. We can say

that wire w(Rk, Rl) will connect routing nodes Rk and Rl. From this, the contribution of

Cfin−route−2B(Y ) can be expressed as

Cfin−route−2B(Y ) =
∑

∀wj(Rk,Rl)∈Y

2 + δwirefanout(wj , Rk) + δwirefanin(wj , Rl) (5.7)

where δwirefanin(wj , Rl) was already defined in (5.6) while

δwirefanout(wj , Rk) =


1 if wj writes data to Rk

0 otherwise

(5.8)

Always referring to Fig. 36, when performing com(FU1, FU4), input capacitances for

FU2, FU3 and another wire connecting steiner points are loaded.

So, such an approach will minimize capacitance from wire with a higher cost coming from

tristate buffers.

5.4.1 Shortest path problem: Dijkstra’s algorithm

Dijkstra’s algorithm is used in a graph, directed or undirected, to find the shortest path

between two nodes. It was designed by Edsger W. Dijkstra in 1959[25].

From the source node, it will iteratively look for the lowest cost edge, and it will bring at the

destination node the sum of the crossed edges. It will end when it will reach the destination



100

Figure 37: Example of implementation of MST-2B.

node.

The total complexity of this algorithm is O(n2), but there are some other implementations

making this O(e+ n log(n)).

5.4.2 Complexity

The total complexity of such an algorithm is tightly linked to the initial computation of

the MST (Prim’s algorithm, O(n2)), computation of the dynamic power (number of commu-

nications, e, times shortest path computation, O((n + r)2), where r is the number of routing

nodes) and buffer placement (O(w), with w number of wires, because each wire will need to

handle its own buffers, depending on read/write operations). In total, our complexity will

be O(n2) + O((n + r)2) + O(w). As O(n2) ≤ O((n + r)2), we can say that the complexity is
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Algorithm 16 Dijkstra algorithm

procedure Dijkstra(G, s, d). G is the graph, s is the source node and d is the destination
S = ∅
for all ui ∈ G do

if ui 6= s then
d(ui) =∞ . The distance between s and ui is unknown
p(ui) =∞ . The minimum distance node between ui predecessors and s is

unknown
S = S + ui

while S 6= ∅ do
n = node with min d
S = S − n
for all uj predecessors and successors of n do

temp = d(n) + e(uj , n)
if temp < d(uj) then

d(uj) = temp
p(uj) = n

Algorithm 17 MST with two buffers per line slice power model

procedure MST-2B(G, D, λ)
tot pow = 0
for all buslet bj ∈ D do

F = Prim(G)
this buf pow = 0
for all ci ∈ CS(bj) do . For all communications scheduled (CS) in buslet bj

R = Dijkstra(G, ui, uj)
CFIN = Cfin−extra(R,G) + Cfin−route−2B(R) . Cfin−extra(R,G) defined in (5.5)

while Cfin−route−2B(R) defined in (5.7)
this buf pow = Pdyn(bj) . It is (5.4), using as capacitance CFIN and as distance

d(R)

this buf pow = this buf pow + static power
tot pow = tot pow + this buf pow
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Figure 38: Example of implementation of MST-1B.

O((n+r)2+w). However, as we are in a minimum spanning tree, we also know that w = n+r−1.

For this, we rewrite the complexity as O((n+ r)2 + n+ r − 1) and, finally, O((n+ r)2).

5.5 MST-1B

In MST-2B, we are routing signals through the shortest path of our MST. This is performed

completely isolating this path from the rest of the buslet, thanks to the use of tristate buffers

at both the ends of each wire. However, we can reach such a result using a couple of tristate

buffers only.

A structure example of this can be found in Fig. 38. MST-1B differs from MST-2B exactly

from this. In particular, it has the big advantage of halving Cfin−route contribution, as it will

be met one couple of tristate buffers per wire only.

Let us try to perform the same communication as in Fig. 36 (MST-2B). With this implemen-
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Figure 39: Example of communication between FU1 and FU4 in the MST-1B model. In this
case, even if the wirelength is the lowest possible (in red), the number of input capacitances to

be loaded (evidenced in green) is very high, much greater than in the standard
implementation.

tation, the number of the buffers crossed almost halves. We find this in Fig. 39.

Assuming route Y , the contribution of Cfin−route−1B(Y ) can be expressed as

Cfin−route−1B(Y ) =
∑

∀wj(Rk,Rl)∈Y

1 + δwirefanin(wj , Rl) (5.9)

where δwirefanin(wj , Rl) was already defined in (5.6).

The other side of the coin of using this technique, however, is that the signal will not propagate

through the shortest path only. If we look at Fig. 39, indeed, we see that the signal, for a small

piece of line, will overpropagate.
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5.5.1 Placing tristate buffers

Here comes naturally a question: where it is more convenient to place the pair of buffers? It

depends on the communications flow itself. Let us assume we are taking this decision on wire

w(Rk, Rl). Here, we can determine the communication rate, defined as the ratio between the

number of communications between two nodes over the total latency

r(Rk, Rl) =
# coms from Rk to Rl

λ
(5.10)

Note: r(Rk, Rl) 6= r(Rl, Rk). Let us assume we place the buffer at distance x from Rk. In this

case, the total dynamic power consumed by w(Rk, Rl) will be

Pwiredyn[w(Rk, Rl)] = [r(Rk, Rl) + r(Rl, Rk)] · CF/m · d[w(Rk, Rl)] +

[η1 − r(Rk, Rl)] · CF/m · x+ (5.11)

[η2 − r(Rl, Rk)] · CF/m · {d[w(Rk, Rl)]− x}

where η1 is defined as

η1 =
∑

∀ni∈U(Rk,Rl)

r(ni, Rk) (5.12)
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where U(Rk, Rl) is the set of all neighbors nodes of Rk excluding Rl, and η2 is similary defined.

The contribution depending on x is [η1 − r(Rk, Rl)] · CF/m · x + [η2 − r(Rl, Rk)] · CF/m ·

{d[w(Rk, Rl)]− x}. In order to minimize the power, we have two possibilities:

x =


0 ifr(Rk, Rl)− r(Rl, Rk) + η1 − η2 ≥ 0

d[w(Rk, Rl)] otherwise

(5.13)

Furthermore, thanks to this analysis, we can accurately evaluate the total power consumed by

each slice of the buslet. This makes the total dynamic power estimation easier.

When we have to compute the contribution of the buffer input capacitances to the dynamic

power, we have to distinguish the two cases. Let us say that C1 is the buffer oriented from

Rk to Rl and C2 is oriented in the opposite direction. Both will be loaded when signal will

entirely cross the wire (in both directions), while just one will be loaded when neighbor nodes

will communicate. According to this, we can state that


PC1dyn = [r(Rk, Rl) + r(Rl, Rk) + η1] · Ctri−in

PC2dyn = [r(Rk, Rl) + r(Rl, Rk) + η2] · Ctri−in
(5.14)

5.5.2 Complexity

The complexity of this algorithm is the same as MST-2B adding the overhead of taking the

decision of where to place the buffer. This, in particular, analyzes the neighbor nodes (O(n+r))
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Algorithm 18 MST with one buffer per line slice power model

procedure MST-1B(G, D, λ)
tot pow = 0
for all buslet bj ∈ D do

F = Prim(G)
this buf pow = 0
for all ci ∈ CS(bj) do . For all communications scheduled (CS) in buslet bj

R = Dijkstra(G, ui, uj)
track(R, G) . Mark each wire composing R as crossed in G

for all edges ei ∈ G do . G is composed by edges, already owning the number of
times being crossed

Place buffers(ei) . According to (5.13)
Compute wire dpow(ei) . (5.11)
Compute buf dpow(ei)
this buf pow = wire dpow(ei) + buf dpow(ei) + static buf(ei)
this buf pow = this buf pow + static power

tot pow = tot pow + this buf pow

per each edge (O(n + r − 1)), and adding an overhead O((n + r)2). However, complexity for

MST-2B was already O((n+ r)2); so, MST-1B complexity is O((n+ r)2).

5.6 MST-LOGD

All the previous approaches (Standard, MST-2B and MST-1B) are approaches based on

minimum spanning tree. This means that, as they are built, they ensure the lowest possible

wirelength for the buslet. However, this may lead to situations in which, for a given communi-

cation, the total number of nodes to be crossed may be very high. In the worst case, we may

need to cross the whole buslet, making power consumption (for MST-2B and MST-1B) higher

than in the standard approach (this is due to the extra buffers inserted in the line).

In order to ensure this, we may fix a maximum graph distance between, let us say, a root node,
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Figure 40: Example of implementation of MST-LOGD.

and any other node in the buslet. Let us define hop distance hd as the distance, expressed as

number of nodes, between two nodes in a graph.

If we impose this to be at most log2(n) from a root node, which can be randomly chosen,

then we are, at the same time, ensuring that the maximum distance between any two nodes in

such a graph will be, at most, 2 log2(n) + 1. As we will build our MST starting from a fully

connected graph, such a solution will always exist and will have, as result, a more compact

buslet structure. What we need to do is just modifying Prim algorithm adding as constraint

the maximum distance from a root node. For any other characteristic, this will be just an

evolution of MST-1D.
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Algorithm 19 Prim algorithm with max hop distance constraint

procedure Prim logmod(G, D)
Q = ∅
F = ∅
for each node ui ∈ G do

C[ui] = min∀uj∈P (ui){w[e(ui, uj)]}
Q = Q+ ui . When initialized Q contains all the nodes in G

root = ∅
while Q not empty do

ubest = first(Q)
for all ui ∈ Q do

if C[ui] < ubest then
if hops(ui, root) ≤ D then . If the number of hops separating ui and root

respects the constraint
ubest = ui

if root = ∅ then
root = ubest

F = F + ubest
Q = Q− ubest

5.6.1 Complexity

We are just adding an overhead to the computation of the MST obtained satisfying log-

arithmic distance from root node. For this, each time we have to test the distance between

the potentially new node and the root. However, as all the nodes, once added, will store the

information of their own distance from the root, such a test will be O(1), non affecting the

overall complexity, remaining, as in the case of MST-1D, O((n+ r)2).

5.7 MST-BF

The problem with MST-LOGD is that we do not have any constraint on the maximum

number of wires connected to a single node. In this way, we may potentially have high undesired
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Algorithm 20 MST with one buffer per line slice power model and max log distance

procedure MST-LOGD(G, D, λ)
tot pow = 0
for all buslet bj ∈ D do

F = Prim logmod(G, D)
this buf pow = 0
for all ci ∈ CS(bj) do . For all communications scheduled (CS) in buslet bj

R = Dijkstra(G, ui, uj)
track(R, G) . Mark each wire composing R as crossed in G

for all edges ei ∈ G do . G is composed by edges, already owning the number of
times being crossed

Place buffers(ei) . According to (5.13)
Compute wire dpow(ei) . (5.11)
Compute buf dpow(ei)
this buf pow = wire dpow(ei) + buf dpow(ei) + static buf(ei)
this buf pow = this buf pow + static power

tot pow = tot pow + this buf pow

capacitances to be loaded. We want to also impose a constraint on this. Let us call branching

factor the maximum number of wires connected to a single node and let us say it to be f .

Each node will have at most f wires connected to it, limiting the number of extra undesired

capacitances to be loaded.

5.7.1 Complexity

We are just adding an overhead for the introduction of the branching factor. However, such

a test will be O(1) only. The overall complexity, in this way, will keep on being O((n+ r)2).

5.8 MAX-D

Let us, now, focus on the minimization of the longest path between FUs. Such a kind of

optimization makes sense because we may want to minimize as much as possible wire dynamic
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Algorithm 21 Prim algorithm with max branch factor constraint

procedure Prim maxbranchfactor(G, B)
Q = ∅
F = ∅
B = ∅
for each node ui ∈ G do

C[ui] = min∀uj∈P (ui){w[e(ui, uj)]}
B[ui] = 0
Q = Q+ ui . When initialized Q contains all the nodes in G

while Q not empty do
ubest = first(Q)
for all ui ∈ Q do

if C[ui] < ubest then
acceptable = true
for all neighbors nodes uj of ui do

if B[uj ] ≥ B then . If the number of branches of ui does not meet the
constraint

acceptable = false

if acceptable = true then
ubest = ui

for all neighbors nodes uj of ubest do
B[uj ] = B[uj ] + 1

B[ubest] = B[ubest] + 1
F = F + ubest
Q = Q− ubest
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Figure 41: Example of implementation of MST-BF with maximum branching factor allowed 3.

Algorithm 22 MST with one buffer per line slice power model and max branching factor

procedure MST-LOGD(G, B, λ)
tot pow = 0
for all buslet bj ∈ D do

F = Prim maxbranchfactor(G, B)
this buf pow = 0
for all ci ∈ CS(bj) do . For all communications scheduled (CS) in buslet bj

R = Dijkstra(G, ui, uj)
track(R, G) . Mark each wire composing R as crossed in G

for all edges ei ∈ G do . G is composed by edges, already owning the number of
times being crossed

Place buffers(ei) . According to (5.13)
Compute wire dpow(ei) . (5.11)
Compute buf dpow(ei)
this buf pow = wire dpow(ei) + buf dpow(ei) + static buf(ei)
this buf pow = this buf pow + static power

tot pow = tot pow + this buf pow
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power consumption. In order to do this, what we have to do is to fix an upper bound for

such a distance and each other connect the other Functional units accordingly. In order to do

this, we can first connect the two most distant FUs and use their distance as upper bound.

Then, we can connect the other FUs to the so obtained wire through the closest Hannan point1.

However, it may happen that some FUs can not be directly connected to it. At this point, they

are connected to the closest Hannan point (distance computed as Manhattan distance). Then,

there may be FUs that, even if connected in such a way, can not respect the maximum distance

imposed. If this happens, then they are connected at the end, such that the maximum distance

will be minimized.

Finally, as the first two FUs can be connected in a number of ways, as shown by the dashed

lines in Fig. 42, a number of interconnections are attempted and we will hold just the best (i.e.

that having the least maximum distance).

5.8.1 Complexity

This technique first looks for the two most distant FUs (O(n
2

2 )). Then, for each FU, it

will compute Hannan points (O(n)) and check if max distance constraint is respected (O(n),

because just one path exists between any connected FU). Finally, All the FUs not respecting

such a constraint will be connected to the closest Hannan point (O(n2)). Hence, the total

complexity here is O(n
2

2 ) +O(n2) +O(n2) = O(n2).

1In this case, we define Hannan point the intersection between the already placed wire and the wire
representing the shortest distance between such a wire and the target FU.
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Figure 42: MAX-D algorithm at work. First it defines that max distance is between FU1 and
FU2, then it tracks one among the possible min Manhattan distance paths between them (the

other paths are dashed), then Hanna points are computed (green “X”) and finally, where
distance constraints respected, FUs are connected (the example of final design is in Fig. 43).

Figure 43: Example of final interconnections obtained with MAX-D.
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Algorithm 23 Maximum distance constrained buslet generation

procedure MAX-D(G)
tot pow = 0
for all buslet bj ∈ G do

B = ∅ . B is the final structure of the buslet
R = FUs(bj) . R contains the remaining FUs to be connected to the buslet
Q = compute clique(G, bj) . Here we create a clique from G having as nodes all the

FUs in bj having as weight of the arcs the Manhattan distance between the nodes
first edge = ∅
for all edges ei ∈ Q do

if w[ei] ≥ w[first edge] then
first edge = ei

B = first edge
R = R - FUs(first edge) . Remove from the set of FUs to be connected those

connected through first edge
for all ri ∈ R do

next wire = Hannan(ri, first edge). Here we compute the closest wire connecting
ri to first edge

if R+next wire respects max distance w[first edge] then
B = B+next wire . We add wire connecting ri to first edge
R = R-ri . We remove ri from the list of the to be connected FUs

for all ri ∈ R do . For all the FUs not connected because not respecting max
distance constraint

next wire = shortest edge (ri, B). We compute the shortest edge connecting ri to
B

B = B+next wire . We add wire connecting ri to first edge
R = R-ri . We remove ri from the list of the to be connected FUs

this buf pow = 0
for all ci ∈ CS(bj) do . For all communications scheduled (CS) in buslet bj

R = Dijkstra(G, ui, uj)
track(R, G) . Mark each wire composing R as crossed in G

for all edges ei ∈ G do . G is composed by edges, already owning the number of
times being crossed

Place buffers(ei) . According to (5.13)
Compute wire dpow(ei) . (5.11)
Compute buf dpow(ei)
this buf pow = wire dpow(ei) + buf dpow(ei) + static buf(ei)
this buf pow = this buf pow + static power

tot pow = tot pow + this buf pow
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5.9 MAX-D-MAXHOP

MAX-D technique intrinsically has a big drawback: in the first tracked line, there will be

a number of steiner points, which will make huge the power consumption due to buffer load.

A solution to this problem is to include also a constraint to the maximum number of steiner

points a given communication needs to cross: Thanks to this, we my more difficultly meet the

max distance constraint; however, we can fix the maximum number of buffers to be loaded for

a single communication.

5.9.1 Complexity

Here we are adding the overhead of checking hop distance to MAX-D algorithm. However,

when we are computing max distance, this is an O(1) operation. Fot this, the total complexity

remains O(n2).

5.10 Hierarchical partitioning

Let us use, now, a completely different approach. Now, we aim to build a binary tree-like

structure. In order to do this, we hierarchically partition the floorplan computing centers of

gravity. Then, when we will have partitions of one functional unit each, we will build our binary

tree, connecting the previously computed centers of gravity (CG).

We can find an example of hierarchical partitioning in Fig. 44. More formally, let us say we

have a set of functional units S to be connected through a buslet. We compute the center of

gravity of it

CG(S) =

[∑
∀FUi∈S x(FUi)

|S|
;

∑
∀FUi∈S y(FUi)

|S|

]
(5.15)
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Algorithm 24 Maximum distance constrained buslet generation with maximum hop distance
constraint

procedure MAX-D(G, max hops)
tot pow = 0
for all buslet bj ∈ G do

B = ∅ . B is the final structure of the buslet
R = FUs(bj) . R contains the remaining FUs to be connected to the buslet
Q = compute clique(G, bj) . Here we create a clique from G having as nodes all the

FUs in bj having as weight of the arcs the Manhattan distance between the nodes
first edge = ∅
for all edges ei ∈ Q do

if w[ei] ≥ w[first edge] then
first edge = ei

B = first edge
R = R - FUs(first edge) . Remove from the set of FUs to be connected those

connected through first edge
for all ri ∈ R do

next wire = Hannan(ri, first edge). Here we compute the closest wire connecting
ri to first edge

if R+next wire respects max distance w[first edge] then
if R+next wire respects max hop distance max hops then

B = B+next wire . We add wire connecting ri to first edge
R = R-ri . We remove ri from the list of the to be connected FUs

for all ri ∈ R do . For all the FUs not connected because not respecting max
distance constraint

next wire = shortest edge (ri, B). We compute the shortest edge connecting ri to
B

B = B+next wire . We add wire connecting ri to first edge
R = R-ri . We remove ri from the list of the to be connected FUs

this buf pow = 0
for all ci ∈ CS(bj) do . For all communications scheduled (CS) in buslet bj

R = Dijkstra(G, ui, uj)
track(R, G) . Mark each wire composing R as crossed in G

for all edges ei ∈ G do . G is composed by edges, already owning the number of
times being crossed

Place buffers(ei) . According to (5.13)
Compute wire dpow(ei) . (5.11)
Compute buf dpow(ei)
this buf pow = wire dpow(ei) + buf dpow(ei) + static buf(ei)
this buf pow = this buf pow + static power

tot pow = tot pow + this buf pow
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Figure 44: Example of hierarchical partitioning. Here we are recursively partitioning the
floorplan (first partitioning in red, second in blue and, finally, connect all the centers of

gravity in reverse order to that they were created.).

where x(FUi) is x value of the position of FUi while y(FUi) is the y position. Now, we decide

if we want to divide S partitioning vertically or horizontally. If we have

∀FUi, FUj ∈ Smax{d[x(FUi), x(FUj)]} > max{d[y(FUi), y(FUj)]} (5.16)

then we will partition S vertically, otherwise horizontally. We will use, this way, a divide

and conquer-like approach. Furthermore, after tracked the buslet, we can apply the buffer

placements in MST-2B and MST-1B.
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Figure 45: Example of implementation of hierarchical partitioning. In blue we have the
centers of gravity. We see that the last one is a dummy nose as it connects two wires only

and, for this, it can not be considered a steiner point.

Algorithm 25 Hierarchical partitioning wire generation

procedure HP(G)
if size(G) = 1 then return G

F = ∅
Compute CG(G) . According to formulation in (5.15)
Compute maxx(G)
Compute maxy(G)
if maxx > maxy then

L = left partition(G, CG)
R = right partition(G, CG)
F = F + HP(L) + HP(R) + CG

else
U = up partition(G, CG)
D = down partition(G, CG)
F = F + HP(U) + HP(D) + CG

return F
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5.10.1 Complexity

Computing the first center of gravity will take O(n). After partitioning it, we will have two

sets of approx n
2 size each, which will need to be partitioned and so on. We will perform such a

division log2(n) times; so, the time for dividing will be O(nlog(n)). The number of generated

CG will be n− 1; so, conquering will take O(n) time. For this, we can say that the generation

of such a buslet will take O(nlog(n)) time. However, we have to perform also buffer placement,

which will be dominant as it is O((n + r)2). Here we know r as it is n − 1. For this, we can

easily say that the complexity will be O(4n2).



CHAPTER 6

EXPERIMENTAL RESULTS

All the algorithms presented in the previous sections were implemented in C++. In order

to evaluate both final results and runtimes, several runs were performed, from the mediabench

benchmark suite (with number of nodes and edges ranging from (11, 7) for DFG hal to (197,

196) for DFG smooth color z triangle) [26]. In order to evaluate both final results and

runtimes, several runs were performed, with 14 different DFGs, For each FU type, aspect ratios

1:1, 3:4 and 1:2 were used in the floorplanning step, in which we used the well-known floorplanner

Parquet[27] to obtain the wirelengths and areas of the final designs. We assume the following

areas of resources: add/sub 8 µm2, multiplier/divider 128 µm2, memory 512 µm2, comparator

8 µm2. For any run of our algorithm, where we define run of our algorithm the execution of our

algorithm giving as input a particular combination of the following parameters: input DFG,

maximum buslet cardinality, maximum FUs’ fanin, maximum FUs’ fanout, maximum DFG’s

latency, a set of 20 solutions were produced, in which the aspect ratio of any FU was randomly

chosen. Then, for all of these solutions power estimation was performed for all the patterns we

have presented and then these values were averaged. Communication delay (FU-to-FU signal

delay) is assumed to take 1 clock cycle, and the communication as well as operations scheduling

done assume this delay for all communication. All the runs were performed on a 4th Generation

Intel Core i7-4720HQ Processor (2.60 GHz with 1600 MHz 6 MB cache) processor machine with

16 GB RAM.

120
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6.1 Performance for scheduling and binding algorithms

The most significant metrics we determined were area size (Fig. 51) and wirelength (Fig. 50)

shows the wirelength interchange average obtained from 14 different DFGs for different buslet

cardinality constraint, comparing four different algorithm settings:

• No similarity solution pruning, propagating from each binding step 1 best partial solution

only (NSP1).

• No similarity solution pruning, propagating from each binding step 20 best partial solu-

tions (NSP20).

• Use of similarity solution pruning, propagating from each binding step 1 best partial

solution only (YSP1).

• Use of similarity solution pruning, propagating from each binding step 20 best partial

solutions (YSP20).

• Force Directed Binding (FDB).

• No similarity solution pruning, propagating from each binding step 1 best partial solution

only with lookahead of next com to be bound (LA1).

• Simultaneous iso-scheduled communications binding (SIMCOM).

6.1.1 Comparison with another HLS algorithm

In order to evaluate how fair is the solution we obtain for dedicated interconnections (cardi-

nality > 2), which will be used to evaluate the effect on wirelength of buslets, we have compared



122

Figure 46: Comparison between greedy-binding method and ours for buslet cardinality 2.

these results with those obtained from another common sense algorithm. This is structured as

follows: as scheduling algorithm it will use FDS only while, as binding, a greedy approach which

tries to maximize as much as possible the reuse of the same already created interconnections.

However, the special case of our algorithm for buslet cardinality of 2 achieves lower wirelenghts

than the latter FDS and greedy-binding method by about 55% on an average, and thus we

compare the buslet results (cardinality > 2) to our version of the dedicated interconnect results

(Fig. 46). This is possible thanks to the efficacy of our FDCS algorithm, which allows us to

minimize the number of interconnections needed in the binding step. So, all the comparisons

will be performed here on will be fair.
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Figure 47: Comparison between two different output chip layouts for smooth color z

triangle (197 nodes, 196 edges) with max FU fanin and fanout constraints of 8. (a)
Dedicated-interconnections based design (area: 4788.06 µm2, FUs: 34, WL: 2847.29 µm). (b)
Buslet-based design with max cardinality 5 (area: 3147.09 µm2, FUs: 27, WL: 1169.09 µm).

6.1.2 Discussion of results

For all the computed solutions a latency constraint of 1.6x DFG’s asap time was imposed.

Maximum fanin and maximum fanout constraints were set to 8. λcom was set to 1 clock

cycle. With these constraints, using buslets instead of dedicated interconnections, we obtained

a wirelength reduction ranging between 35% and 71% as shown in Table III. According to

these data, the wiring complexity was significantly reduced. We can visually notice (Fig. 47)

this comparing the output of the floorplanner for max buslet cardinality of 5 (Fig. 47b) with

the dedicated interconnections solution (Fig. 47a). Let us focus, for example, on the FU “H1”:
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Figure 48: Average, maximum and peak wire efficiencies gained using NSP1,
λtot = 1.6 · asap(DFG), max FU fanin/fanout = 8.

Figure 49: Runtime data and curve fitting for the designed HLS algorithms
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in Fig. 47a it is placed on the top right of the floorplan and we can count 7 wires it is connected

to, while in Fig. 47b, where it is placed in the low left, it is connected through 3 buslets

only. Such a reduction happens for all the FUs. Same thing happens for “F0”, which is the

most connected FU in Fig. 47a: its number of interconnections scales of a factor greater than

2 in Fig. 47b. We can also see a wirelength reduction trend with the increase of maximum

buslet cardinality in Fig. 50 and Table III. According to this, if we look at how average wire

efficiency (Table IV and Fig. 48) changes as a function of buslet cardinality, we see that it has

a growing trend as buslet cardinality increases. In particular, we can see that best results are

obtained propagating more than one solution: comparing NSP20 to NSP1 (Table III), we have

a reduction in wirelength up to 8%. Empirically we can clearly see that we obtained the best

results using SIMCOM binding, which is followed by LA1. We can explain this thinking that

LA1 will look at the next communication only, while, in a design, there may be more than two

overlapping communications. This empirically states that simultaneously binding iso-scheduled

communications is the best strategy, leading to the best results.

If we look at runtimes (Table I), we notice that runtimes are mainly affected by the number

of edges in the graph as opposed to the number of nodes:

• For NSP1 and YSP1 runtime t = 0.06e2, where e is the number of edges of the input DFG

• For NSP20 and YSP20 runtime t = 0.98e2

• For LA runtime t = 0.74e2

• For SIMCOM runtime t = 0.44e2

• For FDB runtime t = 0.02e3 − 2.85e2 + 91e
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This was also stated during the theoretical analysis of the designed algorithms in Ch. 3 and

Ch. 4: in particular, as our scheduling and binding algorithms are buslet and, for instance,

communication-centric, the number of edges in the DFG, which represents also the number

of communications to be both scheduled and bound, is the main parameter which affects the

runtime. If we look at the runtime in Fig. 49, we see that all the designed techniques, apart from

FDB, empirically have a quadratic best fit. This is consistent with the theoretical analysis: we

expected all of these being O(kne2) where k is a factor differing for all the designed algorithms.

Also FDB behavior is consistent with the theoretical analysis as it was predicted being O(n4e4).

Among these, we can say that the algorithm providing the best wirelength (SIMCOM) is also

the second in speed (the fastest is simple CB). FDB has a cubic best fit and, for this, it is fast

for low number of edges but, beyond 120 edges, increases rapidly, already having, for e ≈ 200,

the worst runtime.

Looking at total chip area (Table II, Fig. 51), we can observe that, for buslet cardinality

lower than 6, increasing buslet cardinality, a decreasing trend occurs. This can be explained

by observing that the number of FUs used is higher for lower buslet cardinalities. This is an

effect of the maximum fanin/fanout constraint. If we are using dedicated interconnections, we

can connect a given FUi to at most max fanin+max fanout other FUs. However, if we use

buslets of maximum cardinality max{|b|}, as the fanin/fanout constraint applies to buslets, we

will be able to connect at most (max fanin+max fanout) · (max{|b|} − 1) FUs to FUi while

respecting the actual fanin/fanout constraint. For this, a reduction of the number of FUs and
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Figure 50: Total wirelength averages

thus layout area is expected.

6.2 Power estimation

All the following power estimations are performed on the outputs of NSP1. When computing

the power, we are assuming supply voltage 1.2 V and working frequency 1 GHz. We have

analyzed the following approaches:

• SBP : standard buffer placement

• MST-2B : MST with2 buffer placed per wire

• MST-1B : MST with 1 buffer placed per wire
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Figure 51: Total area averages

• MST-LOGD : MST with constraint on the maximum hop distance between FUs, which

has to be logarithmic

• MST-BF3 : MST with branching factor 3 (branching factor set to 3)

• MAX-D : buslet with constraint on maximum physical distance between each FU

• MAX-D-MAXHOP3 : buslet with constraint on maximum physical distance between each

FU and maximum hop distance 3

• HP : hierarchical partitioning

The technology node assumed is 22 nm with unit length wire capacitance 0.11 fF
µm [28], input

capacitance for an inverter (CinvL ) 0.08 fF[29] and leakage current (Iinvleak) 3.8 pA[29]. In order
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to compute the dynamic power to drive an FU we first define its dynamic energy per operation

as

DEFUop =
1

2
· V 2

dd · CFUL · p(0→ 1) (6.1)

where

• Vdd is the supply voltage.

• CFUL is the sum of the input loads of all the logic gates of the FU.

• p(0 → 1) is the probability that the driving signal will indeed be a 0 to 1 transiting

signal. Probabilities of 0 and 1 of a signal being uniform, p(0 → 1) = 1
4 ; however, since

this assumption is generally incorrect, and depends on the logic of the path generating

the signal, in our general formulation, we set p(0→ 1) to be a little higher at 1
3 .

From (6.1) we can define the dynamic power for a given FU as

DPFU = DEFUop · f · εFU (6.2)

where

• f is the working frequency.

• εFU is the fraction of cc’s over the latency period in which it will be “busy” (potentially

driven by a 0→ 1 transiting signal).

Leakage power is computed as

PFUleak = Vdd · IFUleak (6.3)
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Figure 52: Logic gates composing a FA

where IFUleak is the leakage current.

Tristate buffers are realized with two inverters and a transmission gate (TG) cascaded. For

this, we can say that the total input load of tristate buffers is 3·CinvL of an inverter (input for

the two inverters and for the transmission gate) while the leakage power consumed is 2·P invleak

(we ignore the leakage current of a T-gate since we estimate that it has much smaller leakage

than an inverter because its path to ground goes through the gate of at least one transistor).

Let us derive the leakage and dynamic power also for a full adder (FA). We know that a FA is

made of two 2-inputs XOR gates, three 2-inputs AND gates and one 3-inputs OR gate. For each

of these, we know that the dynamic power depends on the number of fanins of each gate. For

this, we can say that, according to the FA design we take into account (Fig. 52), the input load

for a FA is 15 ·CinvL . From this, dynamic power is obtained using (6.1) and (6.2). Talking about

leakage power, we can see that the equivalent resistance will always be comparable to that of
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Figure 53: SRAM cell

the inverter, as Roff � Ron, where Roff is the drain-source resistance when the transistor is

off and Ron is the drain-source resistance when transistor is on. For this, for each gate, we have

1x the leakage power consumed by an inverter. As we have 6 different gates, at the end we will

have a leakage power consumption of 6·P invleak.

Let us assume we are working with 16-bit data. Assuming that for arithmetic operations we

will use a ripple carry adder (RCA), its total input load will be 240 ·CinvL and its leakage power

96·P invleak. If we want to determine the leakage and dynamic power for an array multiplier, we

know that it requires, in our case, 162 FAs. Hence, its input load will be 3840 · CinvL and its

leakage power 1536·P invleak.

Finally, let us analyze an SRAM cell power consumption: as it is made of two inverters and two

pass transistors, its power consumption is the same as the tristate buffer. Now, let us assume

we will use 16x256 memories. Its input load in write will be 48·CinvL (as we will write 16 bits
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only), its input load in read 16·CinvL (pass transistors on the address line activated only) while

the leakage power will be 8192·P invleak.

Let us compute, now, the lowest allowable switching time tminsw . From our former analysis, we

can see that the most critical FU we will use is the multiplier, as it will have a critical path

crossing 32 FAs. Let us assume here that the total wirelength of the interconnections in a FA

to be
(

1
10

)th
the average wirelength of a buslet. From experimental data, we know that it is 80

µm. Furthermore, as we know that Rwire is 17 Ω
µm [30], the total delay in a single FU due to

wiring is tFUwire = 11.9 ps. Now, in the entire multiplier, this will be tmulwire = 380.8 ps. Let us

analyze, now, transistors switching time. We know that, in a FA, the critical path crosses 2 logic

gates. Furthermore, the longest switching time is trd = 0.48 ps[29]. Hence, the total transistors

switching time in a FA is tFAtran = 1.44 ps and, for the multiplier, it will be tmultran = 46.08 ps.

Hence, the lowest switching time we may theoretically have is tminsw = 426.88 ps. From this,

we can deduct that the theoretical highest frequency is fmax = 2.34 GHz. We want to use a

frequency which is below the theoretical maximum one: this is why we want to choose f = 1

GHz.

Let us analyze the total power consumption (Table XI, Fig. 54) for different buslet designs.

From this, we can see that SBP, for any buslet cardinality, is the worst approach for the power

metric. We could expect this because, with such a structure, the signal propagates through the

whole buslet wirelength. We can see that, in general, the best approaches are here MST-2B,

MST-1B and MST-LOGD. Hence, here looks like that the total wirelength plays a fundamental

role for the final power consumption (Table XIII, Fig. 55).



133

Figure 54: Total power consumption

Figure 55: Total wirelengths
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Figure 56: Dynamic power contribution of FUs

Let us analyze the contribution of FUs power. Dynamic power (Table IX, Fig. 56) is constant

through all the buslet cardinalities. We have, as input for all our algorithms, a DFG, whose

essential components are operation nodes. Each operation node represents an operation to be

executed, regardless the number of bound FUs, within the total design latency λ. Even if we

minimize the number of FUs, all the operation nodes will be bound to a FU; so, all of them will

always be executed. Hence, dynamic power consumed by FUs does not change for any buslet

cardinality or FU fanin/fanout constraint. However, leakage power (Table X, Fig. 57) depends

on the number of the bound FUs. As stated in Par. 6.1, the number of FUs decreases when

the buslet cardinality increases. Hence, the leakage power decreases and, as dynamic power is

constant, also total power consumed by FUs decreases.
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Figure 57: Leakage power contribution of FUs

Let us analyze now, in detail, all the power contributions of the buslet. Dynamic power, in

particular, receives contributions from both wire capacitance and buffer input capacitance.

If we analyze the contribution of wire capacitance (Table VI, Fig. 58), we see, as we could

expect, that we have the highest contribution from SBP (as previously stated, the signal will

be propagated through all the buslet). This is the upper bound for MST-based interconnect

structures. Then, we see that we have the lowest contribution for MST-2B. As it will isolate just

the shortest path the signal needs to propagate through, this is the lower bound for MST-based

approaches.

Let us analyze, now, the contribution to dynamic power given by tristate buffers (Table VII,

Fig. 60). Here we see that SBP is the lowest (we expect this as their number is in the worst
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Figure 58: Dynamic power contribution of wire

Figure 59: Maximum distance between any two connected FUs



137

Figure 60: Dynamic power contribution of tristate buffers input load

case the number of FUs connected through a buslet) while the worst is MST-2B.

Analyzing leakage power (Table VIII, Fig. 61), which is here the leakage power consumed

by tristate buffers, we see that we have the lowest contribution in SBP while the highest in

both MST-2B and HP. leakage power is here directly proportional to the number of buffers.

We can see that HP, which had a lower dynamic power consumption than MST-2B, here shows

similar power values. This is due to the branching factor each steiner node has. In HP it will

always be 3 and, for this, every time a signal crossing a steiner node will load 3 buffers while, in

MST-2B, such a parameter is not precised; hence, dynamic power may be higher. Furthermore,

with HP we will meet, through the signal shortest path, at most 2 log2(n) steiner points while,

for MST-2B, it will be, in the worst case, 2(n− 1).

The total power consumed by the buslet is the sum of all of these three contributions (we
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Figure 61: Leakage power contribution of tristate buffers

Figure 62: Percentage change in total power
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Figure 63: Total interconnect power

can see this in Table XI and Fig. 63). Hence, we see that the worst values are held by SBP

while the best are for MST-LOGD and MST-2B, as the wire power consumption contribution

is here the most relevant.

If we want to analyze the percentage change of power from the dedicated interconnects

case (Table XII, Fig. 62), we see that, for cardinality 3, we have a reduction of 0.19% on the

total power, for MST-2B and MST-1B. This is due to the fact that buslet power consumption

does not increase as much as FUs leakage power decreases. Apart from this, however, we have

a sublinear increment in the total power, due to the fact that FUs leakage power does not

decrease significantly. We have, for cardinality 8, an increase in total power consumption of
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about 0.8% for all the techniques apart from SBP, whose power increment is 1.43%. Regarding

the wirelength (Fig. 55), we see that as expected SBP has the best values while MST-BF is

second best ranked.



CHAPTER 7

CONCLUSIONS

In this thesis, we proposed a novel and innovative interconnection paradigm for HLS de-

signs, based on the use of flexibly-structured buslets in place of dedicated interconnections.

Moreover, a new scheduling algorithm, Force Directed Communication Scheduling, was devel-

oped to perform communication scheduling (to the best of our knowledge, the first time such

an operation has been performed in HLS) with the goal of minimizing the number of buslets.

A number of buslet-centric binding algorithms were also proposed, with the aim of minimizing

wirelength under maximum buslet cardinality and maximum FU fanin/fanout constraints. A

“similar solutions pruning” heuristic was also developed, whose task is to avoid the propagation

of similar solutions during binding. Finally, a number of buslet designs with multi-tri-stated

points and different routing techniques were developed and implemented with the aim of min-

imizing either the total power consumed by buslets or the maximum communication distance

(in order to meet latency constraints without increasing the number of FUs or buslets). Ex-

perimental results show that the use of buslets results in an average wirelength reduction in

range of 35% to 71% across a set of 14 tested DFGs. This clearly establishes the efficacy of

buslet-based interconnections in reducing interconnect complexity. Finally, power dissipation

grows sublinearly with maximum buslet cardinality. In particular, for high cardinalities, we

have found a buslet design technique that results in logarithmic growth in power with buslet

cardinality. Further challenges in this direction involve the optimization of dynamic power

141
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consumption also for buslets with low cardinalities (as opposed to achieving logarithmic power

growth asymptotically, i.e., for buslets with high cardinalities).
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APPENDIX

EXPERIMENTAL DATA COLLECTED

Here we provide all the tables with various empirical data that have been referenced in

Chapter 6.

TABLE I: AVERAGE RUNTIMES FOR DIFFERENT DFG SIZES
Average runtimes [s]

DFG name nodes/ NSP1 NSP20 YSP1 YSP20 LA1 SIMCOM FDB
edges

hal 11/8 0.06 0.169 0.015 0.015 0.122 0.068 0.004
horner 18/16 0.171 3.42 0.249 0.608 0.98 0.552 0.105
arf 28/30 0.452 11.159 0.734 9.063 3.009 3.213 0.162
ewf 34/47 1.921 32.609 3.156 46.163 29.579 20.509 1.004

smooth 51/52 1.78 36.926 2.626 46.095 17.491 11.948 0.414
motion 53/50 1.982 29.277 3.015 23.55 30.429 13.753 1.449
feedback 53/50 12.834 246.226 20.348 296.99 187.059 88.734 20.066
collapse 56/73 15.361 186.836 24.611 228.616 66.494 79.581 8.409
write 106/88 94.048 1438.797 91.209 1194.191 379.791 237.063 41.464

interpolate 108/104 565.312 15717.174 826.798 14555.136 11780.99 5773.47 6027.027
matmul 109/116 336.527 8193.599 542.706 7172.703 7361.628 2294.239 4492.863
idctcol 114/164 1164.966 18102.956 1222.529 16008.73 11513.62 3501.898 6324.749
jpeg 134/169 1728.064 29170.12 1848.222 27840.8 23334.3 24555.86 33360.879

smooth 197/196 2829.357 49515.27 2941.344 45300.13 34534.22 16134.999 65808.893
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TABLE II: AVERAGE AREA
Average area [µm2]

buslet card NSP1 NSP20 YSP1 YSP20 LA1 SIMCOM FDB

2 34140 33780 34138 34393 31527 31976 28520
3 32682 31427 32710 31698 28330 28850 27240
4 31154 29776 31110 30103 28168 28412 26931
5 30183 29595 30281 29822 27306 27273 26329
6 29423 28769 30044 29413 26832 26500 26044
7 28871 29504 28818 28679 26754 26378 25906
8 28749 28908 29340 28490 27077 26877 25849

TABLE III: AVERAGE WIRELENGTH
Average wirelength [µm]

buslet card NSP1 NSP20 YSP1 YSP20 LA1 SIMCOM FDB

2 12890.23 11829.41 12903.97 12056.56 11951.75 11891.36 11822.00
3 8210.82 7721.33 8355.09 7728.88 7724.66 7588.27 7834.83
4 7419.55 7069.31 7203.90 6889.79 6872.57 6801.19 7212.15
5 5911.16 5684.90 5795.64 5384.46 5513.70 5305.71 5718.99
6 4877.09 4506.85 4989.47 4564.82 4534.18 4348.19 4789.79
7 4301.18 4021.56 4240.95 3930.40 3991.34 3815.23 3981.63
8 3632.94 3467.75 3639.42 3569.15 3595.23 3422.67 3480.06

TABLE IV: AVERAGE WIRE EFFICIENCY
buslet card Average wire efficiency [%] Max wire efficiency [%] Peak wire efficiency[%]

avg(dfgj(avg(ε(bi))) avg(dfgj(max(ε(bi))) max(dfgj(max(ε(bi)))

2 0.6 4.3 9.8
3 0.7 6.8 10.6
4 0.9 8.5 14.9
5 1.8 11.1 20.7
6 3.5 12.4 23.3
7 4.1 14.7 25.5
8 3.6 17.2 27.7
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TABLE V: AVERAGE WIRELENGTH FOR DIFFERENT BUSLET STRUCTURES
Average wirelength [µm]

buslet SBP MST-2B MST-1B MST-LOGD MST-BF3 HP MAX-D MAX-D
card MAXHOP3

2 12043.56 12043.56 12043.56 12043.56 12043.56 12043.56 12043.56 12043.56
3 8290.99 8290.99 8290.99 10135.06 10135.06 8988.84 9143.08 9514.66
4 7877.12 7877.12 7877.12 8695.93 8695.93 9101.65 9609.30 10314.31
5 6830.58 6830.58 6830.58 8055.14 8419.98 8205.02 9111.87 9910.66
6 5756.40 5756.40 5756.40 7229.11 7305.61 7125.79 8252.74 9063.80
7 5338.84 5338.84 5338.84 7164.80 7157.40 6787.59 8051.16 9004.20
8 5094.44 5094.44 5094.44 6103.21 6109.72 6577.24 8066.88 9062.46

TABLE VI: TOTAL DYNAMIC POWER CONSUMED BY INTERCONNECTS - WIRE
CAPACITANCE CONTRIBUTION

Power [nW]

buslet SBP MST-2B MST-1B MST-LOGD MST-BF3 HP MAX-D MAX-D
card MAXHOP3

2 325614.48 302265.00 302265.00 302265.00 302265.00 302265.00 302265.00 302265.00
3 499326.47 333705.21 333705.21 393170.09 393170.09 368010.09 361843.91 379925.31
4 627904.34 359291.88 378154.14 381928.38 381928.38 427339.17 418111.59 449245.76
5 757494.36 377306.02 411995.67 422277.06 458542.19 471866.75 464719.65 501538.98
6 852962.00 390877.94 429326.25 440535.92 486823.15 503781.09 487184.72 524452.74
7 965694.90 410624.50 455353.79 461668.42 519260.68 542027.72 513271.87 549435.31
8 1051381.50 419680.27 467384.43 465556.54 496738.44 561435.89 524144.84 559028.99

TABLE VII: TOTAL DYNAMIC POWER CONSUMED BY INTERCONNECTS -
TRISTATE BUFFER CONTRIBUTION

Power [nW]

buslet SBP MST-2B MST-1B MST-LOGD MST-BF3 HP MAX-D MAX-D
card MAXHOP3

2 31166.38 24774.01 24774.01 24774.01 24774.01 36912.77 24774.01 24774.01
3 42498.09 59350.18 59350.18 59350.18 59350.18 57788.22 59350.18 59350.18
4 50518.95 84559.50 74394.82 71130.52 71130.52 75012.09 73117.42 71737.93
5 60317.44 105972.78 87644.58 82131.07 84163.36 89995.06 84064.25 81427.78
6 69564.78 125518.43 99759.03 91352.18 93900.22 102141.99 93949.53 90398.45
7 77806.02 144498.12 111680.10 100120.85 102304.29 115057.36 104669.25 100012.91
8 87322.46 158367.21 120174.26 112690.69 112834.14 120794.21 110792.24 106931.97
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TABLE VIII: TOTAL STATIC POWER CONSUMED BY INTERCONNECTS - TRISTATE
BUFFER LEAKAGE

Power [nW]

buslet SBP MST-2B MST-1B MST-LOGD MST-BF3 HP MAX-D MAX-D
card MAXHOP3

2 69.97 83.42 83.42 83.42 83.42 96.45 83.42 83.42
3 52.98 78.72 78.72 70.39 70.39 101.05 77.28 76.52
4 51.19 108.88 91.00 81.27 81.27 111.92 87.89 83.90
5 46.87 114.27 89.08 76.39 78.86 113.81 83.60 78.63
6 43.66 115.26 87.29 71.36 76.60 113.06 81.36 75.79
7 42.03 119.14 87.89 69.32 74.39 114.63 81.39 74.25
8 42.09 122.41 89.93 77.83 81.32 115.69 82.56 73.73

TABLE IX: DYNAMIC POWER CONSUMED BY FUS
Power [nW]

buslet SBP MST-2B MST-1B MST-LOGD MST-BF3 HP MAX-D MAX-D
card MAXHOP3

2 494868.04 494868.04 494868.04 494868.04 494868.04 494868.04 494868.04 494868.04
3 494868.04 494868.04 494868.04 494868.04 494868.04 494868.04 494868.04 494868.04
4 494868.04 494868.04 494868.04 494868.04 494868.04 494868.04 494868.04 494868.04
5 494868.04 494868.04 494868.04 494868.04 494868.04 494868.04 494868.04 494868.04
6 494868.04 494868.04 494868.04 494868.04 494868.04 494868.04 494868.04 494868.04
7 494868.04 494868.04 494868.04 494868.04 494868.04 494868.04 494868.04 494868.04
8 494868.04 494868.04 494868.04 494868.04 494868.04 494868.04 494868.04 494868.04

TABLE X: STATIC POWER CONSUMED BY FUS
Power [nW]

buslet SBP MST-2B MST-1B MST-LOGD MST-BF3 HP MAX-D MAX-D
card MAXHOP3

2 359267.20 359267.20 359267.20 359267.20 359267.20 359267.20 359267.20 359267.20
3 356903.60 356903.60 356903.60 356903.60 356903.60 356903.60 356903.60 356903.60
4 357093.60 357093.60 357093.60 357093.60 357093.60 357093.60 357093.60 357093.60
5 356736.40 356736.40 356736.40 356736.40 356736.40 356736.40 356736.40 356736.40
6 356196.80 356196.80 356196.80 356196.80 356196.80 356196.80 356196.80 356196.80
7 356022.00 356022.00 356022.00 356022.00 356022.00 356022.00 356022.00 356022.00
8 356029.60 356029.60 356029.60 356029.60 356029.60 356029.60 356029.60 356029.60
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TABLE XI: TOTAL POWER
Power [nW]

buslet SBP MST-2B MST-1B MST-LOGD MST-BF3 HP MAX-D MAX-D
card MAXHOP3

2 861340.83 860759.44 860759.44 860759.44 860759.44 861015.24 860759.44 860759.44
3 862661.11 859711.47 859711.47 860892.43 860892.43 860388.66 860272.80 860633.67
4 865581.29 860947.54 861103.62 861104.09 861104.09 862120.58 861874.11 862465.22
5 868007.55 861384.28 861686.32 861768.99 862537.41 862955.49 862663.72 863342.41
6 869559.04 861508.03 861733.83 861773.96 862755.91 863296.36 862768.89 863437.65
7 871802.09 862111.64 862318.61 862195.15 863395.73 864146.38 863330.26 863953.26
8 873713.81 862581.00 862738.75 862540.42 863170.41 864657.93 863678.95 864290.59

TABLE XII: PERCENTAGE CHANGE IN TOTAL POWER
Power [%]

buslet SBP MST-2B MST-1B MST-LOGD MST-BF3 HP MAX-D MAX-D
card MAXHOP3

2 0.00 -0.07 -0.07 -0.07 -0.07 -0.04 -0.07 -0.07
3 0.15 -0.19 -0.19 -0.05 -0.05 -0.11 -0.12 -0.08
4 0.49 -0.05 -0.03 -0.03 -0.03 0.09 0.06 0.13
5 0.77 0.01 0.04 0.05 0.14 0.19 0.15 0.23
6 0.95 0.02 0.05 0.05 0.16 0.23 0.17 0.24
7 1.21 0.09 0.11 0.10 0.24 0.33 0.23 0.30
8 1.44 0.14 0.16 0.14 0.21 0.39 0.27 0.34

TABLE XIII: MAXIMUM DISTANCE BETWEEN FUS
distance [µm]

buslet SBP MST-2B MST-1B MST-LOGD MST-BF3 HP MAX-D MAX-D
card MAXHOP3

2 252.4321 252.4321 252.4321 252.4321 252.4321 252.4321 252.4321 252.4321
3 391.4565 391.4565 391.4565 472.7913 472.7913 354.1469 387.966 431.638
4 476.5574 476.5574 476.5574 485.4096 485.4096 418.2369 472.6802 537.204
5 568.4289 568.4289 568.4289 582.4692 647.0399 488.6677 558.275 642.5311
6 635.792 635.792 635.792 643.9562 724.1355 535.0732 618.4402 707.064
7 697.9911 697.9911 697.9911 702.9376 786.1211 576.6508 667.4153 761.1182
8 715.8234 715.8234 715.8234 702.7463 754.152 589.9182 680.1763 766.8425
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