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SUMMARY

In this dissertation, I focus on optimal crossover designs under A-criterion and MV-criterion

when assuming the subject effects in the model to be random. An A-optimal design minimizes

the average of the variances of the contrast estimates while A MV-optimal design minimizes

the maximum of those variances. By simple arguments, the MV-efficiency of a design with

completely symmetric information matrix would be at least as high as its A-efficiency. Thus,

an A-optimal design with completely symmetric information matrix would also be MV-optimal

design. Since symmetry is generally a desirable property, it is usually feasible to target on

finding the A-optimal designs first and then check to see if its information matrix is completely

symmetric, which approach is also adopted in this dissertation.

The assumption of the randomness of the subject effects could be argued in two-folds. First,

most practical experiments consider subjects to be a random sample from a large population,

and the main interest is to do the inference of the effects of the treatments on the whole

population rather than the particular subjects in study. Second, as we know the choice of

designs could be made by merely looking at the information matrix. However, mathematical

derivation shows that the information matrix under random assumption would converge to the

information matrix under fixed subject effect assumption when the randomness goes to infinity.

Hence, not only it is more plausible in practical meaning in assuming randomness, but also the

fixed subject effects model could be considered as a special case when we work on the random

subject effects model.
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SUMMARY (Continued)

My research in such direction is presented in five chapters.

Chapter 1 introduces the backgrounds and motivations of my research. It is written in a

way such that one could easily understand it with basic concepts of statistics. By reading this

chapter, one would know what do we mean by good designs, what is Crossover designs exactly

and why and when do we need them, and also a review of the works done in the history.

Chapter 2 gives answers for optimal and efficient designs under A-criterion and MV-criterion.

An A-optimal design minimizes the average of the variances of the estimates of parameters of

interest while a MV-optimal design minimizes the maximum of those variances. I was working

on the model which is not typically studied in literature in that the model assumes the subject

effects to be random. As argued later in the chapter, it is not only more reasonable in practice

but also covers the traditional model as a special case. In fact, results in the chapter covers the

results in the literature as a special case.

Chapter 3 further considers the evaluation of the A-efficiency of any given design if it is

not optimal. By A-efficiency, I mean the ratio of the A-criterion values of the optimal design

and the given design. Since the optimal design is not found while we have need to evaluate

the efficiency of a candidate design in general, the A-criterion value of the so called optimal

design have to be replaced by some tight bound and hence the value of A-efficiency of a design

is actually the lower bound of its A-efficiency. The core context of this chapter is to find the

bound that is easy to calculate and at the same time very close to the A-value of the true

optimal design. As for MV-efficiency, note that the designs that I proposed in Chapter 2 has
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SUMMARY (Continued)

their MV-efficiency no smaller than their own A-efficiency due to some symmetric structure in

them.

Chapter 4 proposes some methods of constructing the totally balanced test-control incom-

plete (TBTCI) crossover designs. Chapter 2 has shown that such designs are very highly effi-

ciency and robust to the change of the amount of randomness in subject effects. This motivates

the studies in Chapter 4.

Chapter 5 summarizes the results of this dissertation and compared them with existing

results. Some comments are made, and future problems are proposed.

As part of my PhD study, I have wrote a paper on asymptotic of sample covariances for

long memory process with Professor Wei-Biao Wu and his student Yinxiao Huang, which is not

included in this dissertation.
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CHAPTER 1

INTRODUCTION

There are always two basic steps involved in a statistical problem, namely collecting the

data and analyzing the data. In recent years, statisticians’ focus are mostly on the latter. While

the collection part is being less emphasized, it is equally important as the analysis part. Once

the method of analyzing the data is fixed, a good strategy of collecting the data, which is called

a design, enables us to do more precise inference under limited resource or save resource under

some requirement of the precision of inference.

The linear model still retains its popularity in application not only for its simplicity but also

most mechanism in reality can be satisfactorily approximated by the linear model. While people

knows well how to analysis the data by assuming the linear model, the problem of selecting the

design points for such model is still unsolved in many scenarios. Particularly, the problem will

become more complicated when we are only interested in part of the parameters in the model,

not to mention that the optimality criterion is not unique.

This thesis will focus on the problem of Crossover designs in which each subject will repeated

take treatments at different periods. In such designs, the treatment taken at the previous periods

will still have residual effects at the current period. In most applications in clinical trial, we

are only interested in the direct effects of the treatments. Besides the residual effects, other

nuisance parameters typically includes subject effects and period effects. Though complicated

as a design problem, the Crossover designs is very popular in the pharmaceutical industry

1
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in comparing treatments, and hence it is worth the effort to study the problem of Crossover

designs.

1.1 Optimality Criteria

Consider a simple linear model

EY = Xβ, V ar(Y ) = I (1.1)

It is well known (Markov-Guess Theorem) that the best linear unbiased estimator (BLUE) for

β is β̂ = (X ′X)−1X ′Y when X ′X is full rank. Here the notation ′ indicate the transpose of

a matrix or vector. The variance of the BLUE is V ar(β̂) = (X ′X)−1. If we further assume

normal distribution of Y , due to Cao-Crammer Lemma, the variance matrix of any unbiased

estimator (could be non-linear) of β would be greater than (X ′X)−1 in Loewner ordering since

X ′X is the Fisher Information Matrix. Without normality assumption, we call the inverse of

variance of BLUE in a linear model as information matrix in the rest of this thesis. Hence the

information matrix for Model (1.1) is X ′X.

Most frequently, we are interested in just part of the parameters in the model while param-

eters of no interest is called nuisance parameters. Now consider

EY = Xdβ + Zdγ, V ar(Y ) = I (1.2)



3

where β is the parameter of interest, and γ is the nuisance parameter. The subscript d for

matrices X and Z is to emphasize the taste of experimental design. The information matrix of

β in Model (1.2) is then

Cd = X ′pr⊥(Z)X, where pr⊥(Z) = I − Z(Z ′Z)−Z ′ (1.3)

with symbol − indicating the generalized inverse of a matrix. Here the operator pr⊥ is called

projection. To understand this, note that a linear combination of the parameters of interest

ℓ′β is estimable if and only if the vector ℓ is in the column space of the information matrix Cd.

When estimable, the BLUE of ℓ′β has the variance of

V ar(ℓ̂′β) = ℓ′C−
d ℓ (1.4)

In the following, the hat notationˆalways means the BLUE of the corresponding parameter. If

Cd is of full rank, then the whole vector β would be estimable since the identity matrix is in

the column space of Cd, and we would have

V ar(β̂) = C−1
d (1.5)

It can be seen that a design d with larger matrix Cd yields smaller variance of the estimate of

τ , and hence the inference would be more precise. The central problem in design of experiment

is to found the design d such that the information matrix Cd is as large as possible. However,
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matrices can not be directly compared in general. To make the information matrices for different

designs comparable, one has to define functions of Cd, which maps from the matrix space to one

dimensional space. Such functions are called criterion of optimality in the statistical society.

Following are some examples of different criteria with the illustration under the case when the

information matrix is of full rank. Modified but similar functions could be defined under the

same name of the criterion when Cd is not of full rank.

⋄ A-optimality: Seeks to minimize the trace of the inverse of the information matrix. This

criterion results in minimizing the average variance of the estimates of the regression

coefficients.

⋄ D-optimality: Seeks to maximize |Cd|. This criterion results in maximizing the differential

Shannon information content of the parameter estimates.

⋄ E-optimality: Seeks to maximize the minimum eigenvalue of the information matrix.

⋄ T-optimality: Seeks to maximize the trace of the information matrix.

⋄ G-optimality: Seeks to minimize the maximum variance of the predicted values.

⋄ I-optimality: Seeks to minimize the average prediction variance over the design space.

⋄ V-optimality: Seeks to minimize the average prediction variance over a set of m specific

points

Each criterion is defined for specific purpose, and hence different criteria would result in different

choices of designs. On the other hand, however, these criteria have the same target of minimizing

the variance of the estimates, hence there could be some occasions where there exists a design
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which is optimal under all these criteria. Specifically, Keifer (1975) gave the sufficient designs

to guarantee the universal optimality of a design:

⋄ The trace of the information matrix is maximized.

⋄ The information matrix is complete symmetric.

Almost all the literatures used these two simple conditions to prove universal optimality.

1.2 Parallel designs or Crossover designs?

Typically in pharmaceutical industry, people need to do experiments in order to compare

effects of different treatments. The main concern is their effects on a certain population, how-

ever an experiment could only recruit a limited number of subjects from the whole population.

Hence, certain assumptions need to be made in order to infer the effectiveness of these treat-

ments based on the data from the experiment. It is a common practice to assume that the

response could be explained by an additive model, which involve effects of the treatments, sub-

jects, other necessary factors, and finally an error term to include anything else that we can

not explain.

There are basically two ways of conducting the experiment, namely Parallel design and

Crossover Design. In Parallel design, each subject takes only one treatment just once and leave.

Such experiment would become problematic when there are significant differences between

subjects. In other words, the treatment effect would confound with the subject effect when the

latter exists and is treated as fixed effect, and hence it is impossible to estimate the treatment

effect. To solve the problem, one has to get the information regarding the treatment from the
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within-subject comparison. Hence, one need to carry out the Crossover design, in which each

subject repeatedly takes treatments in a sequence of periods. The disadvantage of Crossover

design is that the washout time between successive two periods are usually not long enough so

that the nuisance parameter of carryover effect (effects of a treatment from previous periods)

is brought into the model, and make the estimation of the direct treatment effect less efficient.

1.2.1 Introduction to Crossover designs

We denote by Ωt,n,p the set of all of designs where n subjects are used in p ≥ 2 occasions,

called periods, for the purpose of evaluating and studying t ≥ 2 treatments, usually labeled as

{1, 2, ..., t}. Note that we consider designs in which each subject takes treatment at the same

sequence of period. This is for technical convenience and is adopted in almost all literature on

Crossover designs unless the case of dropout is considered (Low, Lewis, and Prescott (1999),

Majumdar, Dean, and Lewis (2008) etc.).

For a continuous response Y , a plausible and useful linear model can be written as

Ydku = µ+ αk + βu + τd(k,u) + ρd(k−1,u) + εku, (1.6)

Here, Ydku denotes the response from subject u in period k to which treatment d(k, u) ∈

{1, 2, ..., t} was assigned by design d ∈ Ωt,n,p k = 1, ..., p, and u = 1, ..., n. Furthermore, µ is

the general mean, αk is the kth period effect, βu is the uth subject effect, τd(k,u) is the (direct)

treatment effect of treatment d(k, u), and ρd(k−1,u) is the (first-order) carryover or residual

effect of treatment d(k − 1, u) that subject u received in the previous period (by convention
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ρd(0,u) = 0). Also we assume the error terms εku’s are independent and have mean 0 and

common variance σ2. It is not necessary to make any distributional assumptions on the error

terms. For example, if we have such a Crossover design:

4 4 4 2 3 1 2 3 1

1 2 3 4 4 4 1 2 3

2 3 1 1 ­ 3 4 4 4

Then the observation Y35 from the trial on subject 5 at the 3rd period could be modeled as

Y35 = µ+ α3 + β5 + τ2 + γ4 + ε35

and we also have n = 9, p = 3, t = 3, d(3, 5) = 2, and d(2, 5) = 4. In general, writing the np× 1

response vector as Yd = (Yd11, Yd21, ...Ydp1, Yd12, ..., Ydpn)
′, we have

Yd = 1npµ+ Pα+ Uβ + Tdτ + Fdγ + ε (1.7)

where τ = (τ1, ..., τt)
′ contains the direct treatment effects, which is of interest. However,

γ = (γ1, ..., γt)
′, α = (α1, ..., αp)

′, β = (β1, ..., βn)
′ are nuisance parameters which represents

the carryover, period, and subject effects. Here P = 1n⊗Ip, U = Ip⊗1p, and Td and Fd denote

the treatment/subject and carryover/subject incidence matrices. The notation ⊗ represents

the Kronecker product; 1s represents the column vector of length s with all its entries as 1; Is

represents the s× s identity matrix.
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There are discussions on whether the subject effects should be assumed to be random or

fixed effects. A heuristic argument is that: If we are interested in drawing the information

about the effectiveness of the treatment on the whole population, and the subjects in study are

believed to be randomly drawn from the whole population, we need to assume subject effects

to be random; On the other hand, if there are limited level of subject effects and all such levels

are included in the study, it is reasonable to assume subject effects to be fixed. Obviously,

assuming subject effects to be random is more applicable in most applications.

Now let us assume subject effects βu’s are independent and have zero mean and a common

variance σ2
β, also they are independent with the error terms. Writing the np×1 response vector

as Yd = (Yd11, Yd21, ...Ydp1, Yd12, ..., Ydpn)
′, we have

E(Yd) = 1npµ+ Pπ + Tdτ + Fdρ, V ar(Yd) = σ2V, (1.8)

where V = In ⊗ (Ip + θJp) with θ = σ2
β/σ

2 and Js = 1s1
′
s. Note that θ represents the relative

size of the variation between subjects as compared to the variation between the error terms.

The general argument in the beginning of this section indicate that the advantage of Crossover

designs over the parallel designs would be more obvious when θ is larger, which will also be

validated by mathematical derivation later on.

The parameter of interest τ is not estimable since each component of it confounds with the

general mean µ. However, for any vector ℓ of length t satisfying ℓ′1t = 0, ℓ′τ would be estimable,
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and its best linear unbiased estimator (BLUE) solved from the normal equation (Guess-Markov

Theorem) would have the variance of

V ar(ℓ̂′τ ) = σ2
ϵ ℓ

′C−
d ℓ, (1.9)

The matrix Cd in (1.9) is called the information matrix for τ and is of the form

Cd = T ′
dV

−1/2pr⊥(V −1/2[1np|P |Fd])V
−1/2Td, (1.10)

where pr⊥ is the projection operator as in (1.3) and [·| · |·] represents the juxtaposition of three

matrices of the same number of rows.

1.2.2 When to use Crossover designs

There are basically two types of circumstances in which Crossover designs is preferred against

Parallel designs.

1. Practical concern: Experimental subjects are scarce or expensive to recruit and they have

to be used repeatedly.

2. Statistical concern: Parallel designs become very inefficient for estimating treatment ef-

fects when the differences among subjects dominate the observations.

The argument of practical concern is straightforward. Hedayat and Afsarinejad (1978)

mentioned examples as small clinics, large military systems, and some experiments where the

subjects need to be trained over a long period of time. In the following, I would like to
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illustrate the second point by comparing the information matrices for these two type of designs.

To make the comparison fair enough, we need to make the same assumptions for both design.

Hence, the period and subject effects should also exist for Parallel designs. Also, for any given

Crossover design d, we would compare it with the Parallel design which considers each sequence

of p treatments by a subject in the corresponding Crossover design being taken by p different

subjects. For the Parallel design, we have the model

Ydku = µ+ αk + βku + τd(k,u) + εku, (1.11)

As in (1.8), we assume βku’s to be independent random variables with mean zero and variance

σ2
β. Then the information matrix for τ is

Cd,p = T ′
dpr

⊥(P )Td/(1 + θ) (1.12)

as compared to (1.10) which is the information matrix for the corresponding Crossover design.

As measure of variation between subjects θ approaches zero and ∞, we have

lim
θ→0

Cd = T ′
dpr

⊥([1np|P |Fd])Td (1.13)

lim
θ→∞

Cd = T ′
dpr

⊥([1np|U |P |Fd])Td (1.14)

lim
θ→0

Cd,p = T ′
dpr

⊥(P )Td (1.15)

lim
θ→∞

Cd,p = 0 (1.16)
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The right hand of (1.13) is exactly the information matrix for Crossover design when there

are no subject effects in the model, while the right hand of (1.14) is exactly the information

matrix for Crossover design when the subject effects are treated as fixed effects in the model.

By comparing the equations from (1.13) to (1.16), we have Cd ≥ Cd,p for large θ and Cd ≤ Cd,p

for small θ. The inequalities are in Loewner’s ordering. For example, A ≤ B means B −A is a

non-negative definite matrix.

As a general guideline, if we assume the same cost for assigning a sequence of treatments to

one subject or many subjects, the Crossover design is better than parallel design when there are

large variations between subjects. As to quantify the exact condition for when to use Crossover

designs, we need further studies under certain assumptions of the cost.

1.3 Literature Survey

The idea of using Crossover designs to estimate the effects of treatments has a long history.

The earliest example in document can be traced back to 1853 when John Bennett Lawes and

Baron Justus von Liebig has disagreement on deciding which manure of two is more effective for

the yield of crops (Jones and Kenward, 2003). Cochran (1939) seems to be the first to formally

separate out the two sorts of treatment effects (direct and carry-over). Other famous works dur-

ing this early period include, but not limited to, Simpson (1938), Yates (1938), Brandt (1938),

Fieller (1940), Cochran et al. (1941), Finney (1956), Outhwaite (1955,1956), and Sampford

(1957). Particularly, one significant work of mathematical state was by Williams (1949,1950)

which showed how balanced designs which used the minimum number of subjects could be

constructed.



12

The area of Crossover designs started to receive more attentions from statisticians when

Hedayat and Afsarinejad (1975,1978) systematically reviewed and studied optimal Crossover

designs. They proved the universal optimality of uniform balanced designs for estimating both

direct and carryover treatment effects among uniform designs. Later on, Cheng and Wu (1980)

proved the universal optimality of strongly balanced uniform designs and its variants in the

whole class for both direct and carryover effects. They also showed that balanced uniform

designs are universal optimal in a subclass in which no treatment is allowed to be immediately

preceded by itself and other conditions. Kunert (1984) was the first to prove the universal

optimality of balanced uniform design among the whole class of designs with the same number

of subjects n, periods p and treatments t when n = p = t ≥ 3 or n/2 = p = t ≥ 6. Hedayat

and Yang (2003) extended the universal optimality of balanced uniform designs to the case of

p = t > 2 and n = λt with λ ≤ (t− 1)/2.

Besides the line of research on (strongly) balanced uniform designs. Other designs are also

proved to be universally optimal. For example, Kunert (1983) proposed Generalized Youden

designs with mdij satisfying some equations; Kunert and Martin (2000) proved that type I

orthogonal arrays are universal optimal among binary designs under any within subject cor-

relation. For the special case of two periods, Hedayat and Zhao (1990) gave interesting and

comprehensive answers. Also, for the special case of two treatments, there is only one contrast

to estimate, and hence all criteria result in the same choices of designs. More specifically, the

information matrix Cd is 2×2, and it has explicit form of Cd = Tr(Cd)B2 where B2 = pr⊥(12).

The problem in this scenario reduces to finding a design which maximizes the trace of the infor-
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mation matrix. For details, please refer to Kunert (1991) and Kunert and Stufken (2008). The

latter studied the more complex model which divide carryover effect into two categories, namely

mixed and self-carryover effects. For the latter model, Kunert and Stufken (2002) considered

the problem of at least three treatments.

Note that all the above work were assuming subject effect to be fixed effects. However,

subjects in the study may often be thought of as representing a larger population of interest

from which they are, more or less, randomly selected. More than that, the information matrix

under the random subject effect model actually covers the model with fixed subject effects as a

special case. For more details, please refer to Section 1.2.2. There are relatively few optimality

results for this direction. Mukhopadhyay and Saha (1983) showed that some of the optimality

results by Hedayat and Afsarinejad (1978), Magda (1980), and Cheng and Wu (1980) remain

valid when the subject effects are assumed to be random. Jones, Kunert, and Wynn (1992)

obtained additional results for a similar setup in which the carryover effects are assume to be

random. However, the number of periods in these results is at least equal to the number of

treatments, and some of the results are, in addition, over restricted classes of designs. For

example, Laska and Meisner (1985) obtained optimal two-treatment Crossover designs, given

arbitrary within-subject covariance. Carrière and Reinsel (1993) showed that strongly balanced

two-period designs that are uniform on the periods are universally optimal for treatment effects

in the entire class of designs. This holds true also when subject effects are fixed, as noted by

Hedayat and Zhao (1990).
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Recently Hedayat, Stufken, and Yang (2006) found universal optimal designs in restricted

subclass where the last period has the same number of replications for each treatment, and

showed their high efficiency under the criterion of Tr(Cd). The restriction is not fair when we

have a control treatment in the study and want to compare each of the test treatments with

the control treatment. For the latter case, it is reasonable to find an A-optimal design which

minimizes maxi=1,...,t V ard(τ̂i − τ0) where τ0 represents the control treatment and the notation

ˆrepresents the best linear unbiased estimator (BLUE). The efficiency measured by Tr(Cd) in

Hedayat, Stufken, and Yang (2006) hence could not reflect the A-efficiency. On the other hand,

however, Hedayat and Yang (2005,2006) have been working on the A-efficient designs for the

model with fixed subject effects. This thesis will discuss A-efficient designs under the model

with random subject effects.

One major difficulty in finding the optimal design is that the design space is of discrete type.

To understand this, let us consider a Crossover design as selecting n sequences with replacement

from all possible N = tp sequences. If we label these sequences by index 1, 2, . . . , N and use

xi to denote the number replications of the ith sequence appearing in the design. Then a

design could be completely characterized by the vector x = (x1, x2, . . . , xN ). Any criterion

can thus be written as a function of the vector x, say ϕ(x). Then the problem of finding the

optimal Crossover design under such criterion would be the same as to optimize ϕ(x) under the

restrictions of (i)
∑N

i=1 xi = n. (ii) xi ≥ 0. (iii) xi’s are all integers. It is easy to see that the

major difficulty come from Restriction (iii). The problem of optimizing ϕ(x) under (i) and (ii)

only is called asymptotic designs problem. Kushner (1997) gave nice answers for the traditional
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model with subject effects assumed to be fixed. Later, Kunert and Martin (2000) solved the

problem for an interference model, and Kunert and Stufken (2002) solved the problem when

the carryover effects are divided into mixed and self-carryover effects. Again both of these

two papers assume subject effects to be fixed. Such results in general does not answer what

design is optimal in exact design theory, however, they at least provide an idea which could be

modified to evaluate the efficiency of the designs that we propose under the random subject

effects model. The details will be illustrated in Chapter 3.



CHAPTER 2

OPTIMAL AND EFFICIENT DESIGNS FOR A-CRITERION WHEN

SUBJECT EFFECTS ARE RANDOM

2.1 The Model and Notations

In this chapter, we will study optimal and efficient designs for A-Criterion under the model

of

Ydku = µ+ αk + βu + τd(k,u) + ρd(k−1,u) + εku, (2.1)

such that the subject effects are assumed to be random. More specifically, βu’s are independent

with zero mean and a constant variance σ2
β. If σ

2 is the variance of the error term, θ = σ2
β/σ

2

measures the relative size of the variation between subjects as compared to the variance of the

error term. When θ is larger, the advantage of Crossover designs against parallel designs will

be more obvious. We are interested in the case when there is a control treatment and we want

to compare two or more test treatments with the control. Without loss of generality, we use

τ0 to denote the effect of control treatment, and τ1, τ2, . . . , τt to denote the t test treatments.

Hence, the number of total treatments will be t + 1 instead of t as we were using in previous

chapter. We will still use n and p to denote the number of subjects and periods, and hence we

16
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have 1 ≤ u ≤ n, 1 ≤ k ≤ p, and 0 ≤ d(u, k) ≤ t as in Model (2.1). Writing the np× 1 response

vector as Yd = (Yd11, Yd21, ...Ydp1, Yd12, ..., Ydpn)
′, we have

E(Yd) = 1npµ+ Pα+ Tdτ + Fdγ, var(Yd) = σ2V, (2.2)

where V = In ⊗ (Ip + θJp). Here β = (β0, ..., βt)
′ and γ = (γ0, ..., γt)

′. All other notations are

consistent with that of Section 1.2.1. The information matrix for τ = (τ0, . . . , τt) would be

Cd = T ′
dV

−1/2pr⊥(V −1/2[1np|P |Fd])V
−1/2Td, (2.3)

where pr⊥ is a projection operator such that pr⊥A = I −A(A′A)−A′ for any matrix A.

Throughout the thesis, for each design d, we adopt the notation ndiu, ñdiu, ldik, mdij , rdi, r̃di,

to denote the number of times that treatment i is assigned to subject u, the number of times

this happens in the first p−1 periods associated with subject u, the number of times treatment

i is assigned to period k, the number of times treatment i is immediately preceded by treatment

j, the total replication of treatment i in the n experimental subjects, and the total replication

of treatment i limited to the first p− 1 periods in the design. Also, we would like to define the

subclass of designs

Λt+1,n,p = {d ∈ Ωt+1,n,p|ld0k = rd0/p, k = 1, ..., p and mdii = 0, i = 0, 1, ..., t}.
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Therefore, for any design in Λ, the control treatment appears equally often in all periods and no

treatment is allowed to be preceded by itself. Additionally, we have the following convention:

For any two square matrices (e.g. A,B) of the same size, the inequality A ≤ B represents the

Loewner’s ordering of the matrices, namely B − A is a non-negative definite matrix; Tr(A)

represents the trace of the matrix A; [x] represents the greatest integer that is not greater than

x; Bs = pr⊥1s = Is − Js/s; {Si, i = 1, 2, ..., t!} is the set of all t× t permutation matrices and

S̃i =

 1 01×t

0t×1 Si

 , i = 1, ..., t!.

2.2 A- and MV- Criteria

Section 1.1 has introduced the concept of A-criterion when the information matrix if of full

rank, that is, all component of parameter of interest is estimable. For a Crossover design with

Model 1.6, the parameter vector of interest τ can not be estimable for each component since

each of them confound with the general mean. However, any contrast of the τi’s would be

estimable. By contrast, I mean ℓ′τ with ℓ′1 = 0. For the circumstance when we have a control

treatment and want to compare two or more test treatments with the control, the contrasts

τi − τ0, 1 ≤ i ≤ t is essentially parameters of interest instead of τ itself. Hence, we can define

the A-optimality and MV-optimality and the corresponding efficiency as follows:

Definition 1. (i) In a class of competing designs, a design is said to be A-optimal if it minimizes∑t
i=1 V ard(τ̂i − τ̂0), where τ̂ = (τ̂0, τ̂1, ..., τ̂t)

′ is the generalized least square estimate of τ .

(ii) A design is said to be MV-optimal if it minimizes maxi=1,...,t V ard(τ̂i − τ̂0).
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Definition 2. For a criterion ϕ(d) with preference of smaller values, we define the efficiency

of a design to be mind{ϕ(d)}/ϕ(d) where the minimum is taken over the completing class of

designs.

Since the row and column sums of Cd are both 0, we could express Cd as

Cd =

 1′tMd1t −1′tMd

−Md1t Md

 . (2.4)

The t× t submatrix Md is closely related to the A- and MV- optimality. let H = (−1t|It), then

var(H τ̂ ) = σ2HC−
d H ′ = σ2M−1

d , since one could choose diag(0,M−1
d ) as a generalized inverse

of Cd in view of (2.4). Hence, we have the following lemmas to deal with A- and MV- Criteria.

Lemma 1. A design d∗ is A-optimal if it minimizes Tr(M−1
d ).

Lemma 2. If the matrix Md is completely symmetric for a design d, then MV-efficiency of it

is no less than the A-efficiency of itself. Here A- and MV- efficiencies are defined by Definition

2.

Proof. Let ϕA and ϕMV to denote the A- and MV- criteria, and let dA and dMV to denote the

optimal designs under A- and MV- Criteria. By simple calculation, we have ϕMV (d) ≥ ϕA(d)/t

with the equality holds for designs with completely symmetric Md. Then we have

ϕMV (d
MV )

ϕMV (d)
≥ ϕA(d

MV )

ϕA(d)

≥ ϕA(d
A)

ϕA(d)
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♢

Corollary 1. If a design d is A-optimal and the matrix Md is completely symmetric, then d is

also MV-optimal.

2.3 Optimal and Efficient Designs

Lemma 2 and Corollary 1 show a nice shortcut for deriving MV-efficient or even optimal

designs once knowledge about A-efficient or optimal designs is given. Since Md contains all

the information needed to evaluate the A- and MV- optimality of a design and Md in turn

is a submatrix of Cd by ignoring the first row and the first column, designs with the same

information matrix Cd should be equivalent in the A- and MV- sense. On the other hand, the

matrix Cd is a function of the unknown variable θ, hence the determination of optimal designs

depends on the value of θ. As pointed out by Hedayat, Stufken, and Yang (2006), two extreme

cases are worth mentioning. The case of θ = 0 corresponds to the situation of no subject effect.

It is easily seen that

lim
θ→0

Cd = T ′
dpr

⊥([1np|P |Fd])Td,

which would indeed be precisely the information matrix for τ if we were to ignore the subject

effect. Under this special case, Theorem 1 below gives the optimal designs in Ω. The other

extreme case corresponds to θ = ∞, and we have

lim
θ→∞

Cd = T ′
dpr

⊥([1np|P |U |Fd])Td,
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where U = In ⊗ 1p. This limit is precisely the information matrix that we would have obtained

had we treated the subject effects as fixed. Under this special case, Hedayat and Yang (2005)

gave the optimal designs in the subclass Λ, and they conjectured that optimal designs in Λ is

still highly efficient in Ω. In this thesis, I derive optimal designs in Λ for any value of θ, which

covers their result as a special case. We also give the explicit way of evaluating the efficiency

of any design for any value of θ.

2.3.1 Special Case: No Subject Effects

Theorem 1. If θ = 0, then for any n, t, p, a design d is simultaneously A- and MV- optimal

in Ωn,t,p if it satisfies

1. mdii = rdir̃di/pn, i = 0, 1, ..., t.

2. mdij ,md0i,mdi0 are constants across all 1 ≤ i ̸= j ≤ t.

3. ℓdik1 = ℓdik2 , i = 0, 1, ..., t, k1, k2 = 1, 2, ..., p.

4. rdi = rdj , i, j = 1, 2, ..., t.

5. rd0 = argminh∈{1,2,...,np}(t/(np− h) + 1/h).

Condition 5 is equivalent to rd0 = np/(1 +
√
t) when the latter is an integer.

We would like to give an intuitive explanation for the conditions imposed in Theorem

1. Conditions 2-4 impose some structure of symmetry among test treatments and periods.

Condition 5 directly determines the replication of each treatment in conjunction with Condition

4. Finally, Condition 1 requires the exact relationship between two type of variables, which is

too strong in general. When n = 18, t = 4, p = 3, we need rd0 = np/(1 +
√
t) = 18. Under this
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situation, the design below constructed by Yang and Stufken (2008) is optimal in Ω18,4,3 when

θ = 0:

d1 :

1 1 1 2 2 2 3 3 3 4 4 4 0 0 0 0 0 0

1 2 3 2 3 4 3 4 0 4 0 0 0 0 1 0 1 2

4 0 0 0 1 2 2 1 2 3 4 0 3 3 0 4 0 1

2.3.2 General Case: Random Subject Effects

For general θ, it is hard to compare all designs in Ω. However, we succeeded in finding

optimal designs in the subclass Λ. In order to introduce the result, it is necessary to give the

definition of a class of designs proposed by Hedayat and Yang (2005).

Definition 3. A design d is said to be a TBTCI design if:

1. mdii = 0 for all 0 ≤ i ≤ t.

2. md0i,mdi0 and mdij are constants across all 1 ≤ i ̸= j ≤ t

3. ℓdik1 = ℓdik2 , i = 0, 1, ..., t, k1, k2 = 1, 2, ..., p.

4. rdi = rdj , i, j = 1, 2, ..., t.

5. ndiu = 0 or 1 for i = 1, 2, ..., t, u = 1, 2, ..., n.

6. |nd0u − nd0v| ≤ 1 and |ñd0u − ñd0v| ≤ 1 for all 1 ≤ u, v ≤ n.

7.
∑n

u=1 nd0undiu,
∑n

u=1 ndiundju,
∑n

u=1 ñd0uñdiu,
∑n

u=1 ñdiuñdju,
∑n

u=1 nd0uñdiu,
∑n

u=1 ñd0undiu,

and
∑n

u=1 ndiuñdju, are constants across all 1 ≤ i ̸= j ≤ t.
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Theorem 2. (i)Suppose p ≥ 3 and t ≥ max(p − 1, 3), then for any value of θ a design d is

simultaneously A-optimal and MV-optimal in Λt+1,n,p if d is a TBTCI design and

rd0 = argmin
h∈{1,2,...,np−1}

f(h, θ), (2.5)

where

f(rd0, θ) = t(t− 1)2(α1 − β2
1/γ1)

−1 + t(α2 − β2
2/γ2)

−1,

α1 =t(1− λp)(np− rd0)− η(np− rd0)
2 − rd0 + λpχ1 + ηr2d0,

β1 =λpt(n(p− 1)− r̃d0) + η(n(p− 1)− r̃d0)(np− rd0)− λpχ2 − ηrd0r̃d0,

γ1 =(t+ 1− 2/p− λpt)(n(p− 1)− r̃d0)− n(p− 1)2/p

− η(n(p− 1)− r̃d0)
2 + ηr̃2d0 + λpχ3,

α2 =rd0 − λpχ1 − ηr2d0,

β2 =λpχ2 + ηrd0r̃d0,

γ2 =r̃d0 − (np2 − np)−1r̃2d0 − λpχ3 − ηr̃2d0,
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λp =θ(1 + θp)−1, and η = λp(θpn)
−1,

χ1 =rd0 + (2rd0 − n)⌊rd0/n⌋ − n⌊rd0/n⌋2,

χ2 ={r̃d0 + (rd0 + r̃d0 − n)⌊r̃d0/n⌋ − n⌊r̃d0/n⌋2}1{rd0/n−⌊r̃d0/n⌋<1}

+ {rd0 + r̃d0 − n+ (rd0 + r̃d0 − 2n)⌊r̃d0⌋ − n⌊r̃d0/n⌋2}1{rd0/n−⌊r̃d0/n⌋≥1},

χ3 =r̃d0 + (2r̃d0 − n)⌊r̃d0/n⌋ − n⌊r̃d0/n⌋2

r̃d0 =(p− 1)rd0/p.

(ii) Suppose p = 3 and t = 2, then the conclusion in (i) is still valid if we change the class of

competing designs from Λt+1,n,p to {d ∈ Λt+1,n,p|rd∗0/n ≥ 0.6306}.

Theorem 2 indicates that θ influences the determination of optimal designs in Λ by deciding

the value of rd0. Based on this rd0, we could try to find a TBTCI design. Also note that

Equation (2.5) is analogues to Condition 5 of Theorem 1. Now let us compare the 7 conditions

in Definition 3 with Conditions 1-4 in Theorem 1. Conditions 2-4 in Definition 3 are identical

to Conditions 2-4 in Theorem 1. Conditions 5-7 in Definition 3 are about symmetry among

subjects, and their association with treatments. Theorem 1 does not impose these conditions

since θ = 0 corresponds to the model with no subject effects. Observe that Condition 1 in

Definition 3 directly contradicts with Condition 1 in Theorem 1, which indicates that TBTCI

designs can not be optimal when θ = 0. However, TBTCI designs satisfying Equation (2.5)

are robust and highly efficient for all values of θ, which will be illustrated in the next section.
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Moreover, TBTCI designs exist more commonly than the designs in Theorem 1. Hedayat and

Zheng (2010) gave different methods of constructing TBTCI designs.

2.4 Main Proofs

Lemma 1 gives an explicit relationship between the optimality criteria and the information

matrix Cd. In order to find optimal designs, we first need to find a function ℓ0(θ) such that

Tr(Md(θ)
−1) ≥ ℓ0(θ) (2.6)

for any (d, θ). If at the same time we have Tr(Md∗(θ
∗)−1) = ℓ0(θ

∗), then the design d∗ would

be optimal when θ = θ∗. To establish (2.6), we can start with maximizing Cd in the Loewner’s

sense.

Lemma 3. For any design d, we have

Cd ≤ T ′
dV

−1/2pr⊥(1np|V −1/2Fd)V
−1/2Td. (2.7)

The equality in (2.7) holds for any design d in which ldik = rdi/p, i = 0, ..., t.

Proof. It is sufficient to prove T ′
dV

−1/2pr⊥(1np|V −1/2Fd)V
−1/2P = 0 when ldik = rdi/p, i =

0, ..., t. Let

A = 1n ⊗

 0 0

0 Bp−1


Then, we have pr⊥(1np|V −1/2Fd)V

−1/2(P −A) = 0 and 1′npV
−1/2A = 0. Plus, ldik = rdi/p, i =

0, ..., t implies T ′
dV

−1A = 0 and T ′
dV

−1A = 0. The lemma is established. ♢
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Lemma 4. (i) For any design d ∈ Ωt+1,n,p, we have

Tr(M−1
d ) ≥ t(t− 1)2

x0
+

t

y0
, (2.8)

where

x0 = α1 −
β2
1

γ1
,

and

y0 = rd0 −
θ

1 + θp

n∑
u=1

n2
d0u −

r2d0
(1 + θp)pn

−
{
(n(p− 1)− r̃d0)

(
md00 −

θ

1 + θp

n∑
u=1

nd0uñd0u − 1

(1 + θp)pn
rd0r̃d0

)2

+ r̃d0

(
rd0
p

− ld01 −md00 +
θ

1 + θp

n∑
u=1

nd0uñd0u +
1

(1 + θp)pn
rd0r̃d0

)2}

×

{
n(p− 1)

(
r̃d0 −

θ

1 + θp

n∑
u=1

ñ2
d0u −

r̃2d0
(1 + θp)pn

)
−

r̃2d0
p

}−1

.
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with

α1 =t(1− θ

1 + θp
)(np− rd0)−

t

(1 + θp)pn

t∑
i=1

r2di − rd0 +
θ

1 + θp

n∑
u=1

n2
d0u +

r2d0
(1 + θp)pn

,

β1 =
θt

1 + θp

t∑
i=1

n∑
u=1

ndiuñdiu +
t

(1 + θp)pn

t∑
i=1

rdir̃di −
θ

1 + θp

n∑
u=1

nd0uñd0u − rd0r̃d0
(1 + θp)pn

,

− t

t∑
i=1

mdii −
rd0
p

+ ld01 +md00

γ1 =(t+ 1− 2

p
− θt

1 + θp
)(n(p− 1)− r̃d0)−

n

p
(p− 1)2 − t

(1 + θp)pn

t∑
i=1

r̃2di,

+
r̃2d0

(1 + θp)pn
+

θ

1 + θp

n∑
u=1

ñ2
d0u,

Further, the equality in (2.8) holds when the following three conditions hold:

1. ndiu is either 0 or 1, 1 ≤ i ≤ t, 0 ≤ u ≤ n

2. ldik = rdi/p, i = 0, ..., t

3. T ′
dV

−1/2pr⊥(1np)V
−1/2Td, T

′
dV

−1/2pr⊥(1np)V
−1/2Fd, and F ′

dV
−1/2pr⊥(1np)V

−1/2Fd are in-

variant under any permutation of test treatments.

(ii) For any design d ∈ Ωt+1,n,p in which rd0
p − ld01 = mdii = 0, 0 ≤ i ≤ t, we have (2.8) with

α1 and γ1 therein keep unchanged, however β1 and y0 have the following simpler forms

β1 =
θt

1 + θp

t∑
i=1

n∑
u=1

ndiuñdiu +
t

(1 + θp)pn

t∑
i=1

rdir̃di −
θ

1 + θp

n∑
u=1

nd0uñd0u − rd0r̃d0
(1 + θp)pn

,
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y0 =α2 −
β2
2

γ2

α2 =rd0 −
θ

1 + θp

n∑
u=1

n2
d0u −

r2d0
(1 + θp)pn

,

β2 =
θ

1 + θp

n∑
u=1

nd0uñd0u +
rd0r̃d0

(1 + θp)pn
,

γ2 =r̃d0 −
r̃2d0

(p− 1)pn
− θ

1 + θp

n∑
u=1

ñ2
d0u −

r̃2d0
(1 + θp)pn

.

The equality in (2.8) still holds under the same conditions.

The proof of Lemma 4 is similar to Lemma 4 of Hedayat and Yang (2005), and we postpone

it to the Supplemental Materials. The merit of Lemma 4 is that we settle down with a very

special subclass of designs such that the A-criterion of designs therein are easy to be calculated

directly and at the same time the optimal design is guaranteed to be included in this subclass.

For the special case of θ = 0, we are ready to prove Theorem 1 in Section ??.

Proof of Theorem 1. By Lemma 4 (i), we have Tr(M−1
d ) ≥ t(t− 1)/(np− rd0) + tnp/(rd0(np−

rd0)) = t/rd0 + t2/(np − rd0) for any design with the equality holds when the design satis-

fies Conditions 1-4. Hence the A-optimality is established. Furthermore these conditions are

sufficient for Md to be completely symmetric. ♢

For general value of θ, we first need the following 4 preliminary lemmas:

Lemma 5. For any d ∈ Λt+1,n,p, we have rd0 ≤ p[n2 ], r̃d0 ≤ (p− 1)[n2 ] and ld0k ≤ [n2 ].

Proof. If ld0k > [n2 ], it will conflict with the condition that md00 = 0. The other two inequalities

follow immediately by noting that ld0k = ld0k′ for any 1 ≤ k ̸= k′ ≤ p ♢
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Lemma 6. For any design d ∈ Λt+1,n,p, we have

n∑
u=1

nd0uñd0u ≤ 1

4
np(p− 1). (2.9)

Consequently, we have
∑n

u=1 nd0uñd0u ≤ t(n(p− 1)− r̃d0) as long as 2t ≥ p.

Proof. To maximize
∑n

u=1 nd0uñd0u, it is necessary for rd0 to attain its maximum, which is p[n2 ]

by Lemma 5. (i) When n is an even number, then rd0 = np/2 and the distribution of control

treatment in the design fall into one type: n/2 of the subjects take the control treatment

at all even periods; the remaining half of the subjects take the control treatment at all odd

periods. Then the inequality trivially holds. (ii) When n is an odd number, the maximum of∑n
u=1 nd0uñd0u will be attained when one of the subjects does not take the control treatment

while the remaining n− 1 subjects take the control treatment in the same way as in (i). To see

this, suppose Subject 1 has the smallest value of ñd0u. If ñd01 > 0, without loss of generality

let us suppose Subject 1 takes the control treatment at the second period. There always exist

a subject (say 2) who takes test treatments in the second period as well as in the neighboring

periods, i.e. periods 1 and 3, since n is odd. Then we can exchange the treatments between

these two subjects at the second period so that md00 is still 0. By this exchange, the decrement

of nd01ñd01 is at most 2ñd01, while the corresponding increment of nd02ñd02 is at least 2ñd02+1.

Since ñd02 ≥ ñd01,
∑n

u=1 nd0uñd0u is increased. Hence we have, by the argument in (i), that

n∑
u=1

nd0uñd0u ≤ 1

4
(n− 1)p(p− 1) ≤ 1

4
np(p− 1).
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♢

Lemma 7. For any design d ∈ Ωt+1,n,p, we have∑t
i=1

∑n
u=1 ndiuñdiu ≥ n(p− 1)− r̃d0.

Proof.
∑t

i=1

∑n
u=1 ndiuñdiu ≥

∑t
i=1

∑n
u=1 ñdiu =

∑t
i=1 r̃di = n(p− 1)− r̃d0 ♢

Lemma 8. For any design d ∈ Λt+1,n,p, we have β1 + γ1 ≥ 0 for any value of θ.

Proof. If we consider β1 + γ1 as a function of θ, then by the simple derivative equations

d
dθ

(
θ

1+θp

)
= 1

(1+θp)2
, d

dθ

(
1

1+θp

)
= − p

(1+θp)2
(2.10)

we have

d(β1 + γ1)

dθ
=

Kd

(1 + θp)2
(2.11)

where Kd is a constant which depends on the design d only. That means β1 + γ1 is either

nondecreasing or nondecreasing with respective to θ when the design d is fixed. Hence, it is
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enough to prove the inequality for θ = 0 and θ = ∞. For θ = 0, we have, in view of Lemma 5,

that

β1 + γ1 =

(
t+ 1− 2

p

)
(n(p− 1)− r̃d0)−

n

p
(p− 1)2 +

t

pn

t∑
i=1

r̃dildip −
r̃d0ld0p
pn

≥
(
t− 1

p

)
n(p− 1)−

(
t+ 1− 2

p
+

ld0p
pn

)
r̃d0

≥ tp− 1

p
n(p− 1)−

(
t+ 1− 2

p
+

1

2p

)
n(p− 1)

2

=
n(p− 1)

2p

(
p(t− 1)− 1

2

)
≥ 0

For θ = ∞, we have, in view of Lemmas 5 and 7, that

β1 + γ1 ≥
(
t+ 1− 2

p

)
(n(p− 1)− r̃d0)−

n

p
(p− 1)2 − 1

p
r̃d0

≥
(
t− 1

p

)
n(p− 1)−

(
t+ 1− 1

p

)
r̃d0

≥n(p− 1)

2p
(p(t− 1)− 1) ≥ 0

♢

In the following, we shall search for designs which minimizes the right hand side of (2.8),

where the components
∑n

u=1 n
2
d0u,

∑n
u=1 ñ

2
d0u,

∑n
u=1 nd0uñd0u,

∑t
i=1

∑n
u=1 ndiuñdiu,

∑t
i=1 r

2
di,∑t

i=1 r̃
2
di, and

∑t
i=1 rdir̃di are related to each other. The latter four components are investi-

gated by Lemmas 9 and 10 while the remaining three are investigated by Lemma 11. Since
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∑t
i=1

∑n
u=1 ndiuñdiu,

∑t
i=1 r

2
di,
∑t

i=1 r̃
2
di and

∑t
i=1 rdir̃di can not be minimized simultaneously,

we need the following decomposition:

∑t
i=1 rdir̃di =

∑t
i=1 r̃

2
di +

∑t
i=1 r̃dildip,∑t

i=1 r
2
di =

∑t
i=1 r̃

2
di + 2

∑t
i=1 r̃dildip +

∑t
i=1 l

2
dip.

(2.12)

By (2.12), we transform
∑t

i=1 r
2
di,
∑t

i=1 r̃
2
di and

∑t
i=1 rdir̃di into

∑t
i=1 r̃dildip,

∑t
i=1 r̃

2
di, and∑t

i=1 l
2
dip. The advantage is that the latter two terms are independent of each other, and thus

we can first find the minimum of
∑t

i=1 r̃dildip for fixed values of the two independent terms as

shown in Lemma 9.

Lemma 9. For any design d ∈ Ωt+1,n,p, when a and b are the values of
∑t

i=1 r̃
2
di and

∑t
i=1 l

2
dip

respectively, we have

t∑
i=1

r̃dildip ≥
1

t
(n(p− 1)− r̃d0)(n− ld0p)−

√
(a− (n(p− 1)− r̃d0)2

t
)(b−

(n− ld0p)2

t
), (2.13)

with the equality holds when r̃di = r̃dj and ldip = ldjp for any 1 ≤ i ̸= j ≤ t.

Proof. For notational simplicity we will let xi = r̃di and yi = ldip. The proof reduces to

minimizing
∑t

i=1 xiyi under the restrictions of
∑t

i=1 xi = n(p−1)− r̃d0,
∑t

i=1 x
2
i = a,

∑t
i=1 yi =

n−ld0p and
∑t

i=1 y
2
i = b. Let x̄ =

∑t
i=1 xi/t = (n(p−1)−r̃d0)/t and ȳ =

∑t
i=1 yi/t = (n−ld0p)/t,
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then
∑t

i=1 xiyi = tx̄ȳ+
∑t

i=1 uivi = (n(p− 1)− r̃d0)(n− ld0p)/t+
∑t

i=1 uivi, where ui = xi − x̄

and vi = yi − ȳ. However,

t∑
i=1

uivi ≥ −

(
t∑

i=1

u2i

) 1
2
(

t∑
i=1

v2i

) 1
2

= −
√

(a− (n(p− 1)− r̃d0)2

t
)(b−

(n− ld0p)2

t
)

with the equality holds if and only if xi = −c0yi, i = 1, ..., t, with

c0 =

√
ta− (n(p− 1)− r̃d0)2

tb− (n− ld0p)2
.

Hence the lemma is established. ♢

Lemma 10. If p ≤ t+ 1 and θ ≥ 0, we have, for any design d ∈ Λt+1,n,p, that

t(t− 1)2

x0
+

t

y0
≥ t(t− 1)2

x̃0
+

t

y0
(2.14)

where

x̃0 = α̃1 −
β̃2
1

γ̃1
(2.15)
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with

α̃1 =t(1− θ

1 + θp
)(np− rd0)−

(np− rd0)
2

(1 + θp)pn
− rd0 +

θ

1 + θp

n∑
u=1

n2
d0u +

1

(1 + θp)pn
r2d0

β̃1 =
θt

1 + θp
(n(p− 1)− r̃d0) +

(n(p− 1)− r̃d0)(np− rd0)

(1 + θp)pn
− θ

1 + θp

n∑
u=1

nd0uñd0u − rd0r̃d0
(1 + θp)pn

γ̃1 =(t+ 1− 2

p
− θt

1 + θp
)(n(p− 1)− r̃d0)−

n

p
(p− 1)2 − (n(p− 1)− r̃d0)

2

(1 + θp)pn

+
r̃2d0

(1 + θp)pn
+

θ

1 + θp

n∑
u=1

ñ2
d0u.

The equality in (2.14) holds when all ndiu’s are binary and r̃di = r̃dj, ldip = ldjp for any

1 ≤ i ̸= j ≤ t.

Proof. Let a, b and c to be the values of
∑t

i=1 r̃
2
di,
∑t

i=1 l
2
dip and

∑t
i=1 r̃dildip respectively. In

view of the decomposition (2.12), and Lemma 8, we have

∂x0
∂c

= − 2

γ1
(β1 + γ1) ≤ 0.

Thus, we have x0 ≤ x′0, where x′0 is obtained from x0 by replacing
∑t

i=1 r̃dildip by its lower

bound in the right side of (2.13). Similarly, denote by β′
1 the new term obtained from β1 by

the same replacement. Obviously, we have β1 ≥ β′
1. In the following, the notation u ∝ v stands
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for u = f(θ, t, n, p, b, ld0p, γ1)v with the function f > 0 for any d ∈ Ωt+1,n,p and θ ≥ 0, and the

explicit form of f may vary from line to line. By direct calculation, we have

∂x′0
∂b

∝
(
1 +

β′
1

γ1

)√
ta− (n(p− 1)− r̃d0)2

tb− (n− ld0p)2
− 1

∝ (β′
1 + γ1)

√
ta− (n(p− 1)− r̃d0)2 − γ1

√
tb− (n− ld0p)2

=Ψ1

√
ta− (n(p− 1)− r̃d0)2 −Ψ2

√
tb− (n− ld0p)2, (2.16)

where

Ψ1 =(t+ 1− 2

p
− θt

1 + θp
)(n(p− 1)− r̃d0) +

θt

1 + θp

t∑
i=1

n∑
u=1

ndiuñdiu

− n

p
(p− 1)2 +

(n(p− 1)− r̃d0)(n− ld0p)

(1 + θp)pn
−

ld0pr̃d0
(1 + θp)pn

− θ

1 + θp

n∑
u=1

nd0uñd0u +
θ

1 + θp

n∑
u=1

ñ2
d0u

Ψ2 =(t+ 1− 2

p
− θt

1 + θp
)(n(p− 1)− r̃d0)−

n

p
(p− 1)2 − (n(p− 1)− r̃d0)

2

(1 + θp)pn

+
r̃2d0

(1 + θp)pn
+

θ

1 + θp

n∑
u=1

ñ2
d0u.

Let r = Ψ1/Ψ2, then (2.16) implies

∂x′0
∂b

= 0 iff
√

tb− (n− ld0p)2 = r
√

ta− (n(p− 1)− r̃d0)2 (2.17)

∂x′0
∂b

> 0 iff
√

tb− (n− ld0p)2 < r
√

ta− (n(p− 1)− r̃d0)2 (2.18)

∂x′0
∂b

< 0 iff
√

tb− (n− ld0p)2 > r
√

ta− (n(p− 1)− r̃d0)2 (2.19)
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Note that r is a positive constant with respect to the values of a and b. (2.17)-(2.19) imply

that the optimal vector (a, b) ∈ R2 maximizing x′0 has to satisfy the right side of (2.17). By

replacing b as a function of a using the equality in (2.17), we denote the updated expression of

β′
1 and x′0 by β′′

1 and x′′0 respectively. Note that the latter two could also be obtained directly

by plugging the following equations into β1 and x0 respectively:

t∑
i=1

rdir̃di = (1− r)

(
a− (n(p− 1)− r̃d0)

2

t

)
+

(np− rd0)(n(p− 1)− r̃d0)

t

t∑
i=1

r2di = (1− r)2
(
a− (n(p− 1)− r̃d0)

2

t

)
+

(np− rd0)
2

t

Notice that β′′
1 , γ1 and x′′0 are functions of a without b involved. By direct calculation, we have

∂x′′0
∂a

∝ −
(
1− r +

β′′
1

γ1

)2

≤ 0. (2.20)

Hence, x′′0 is maximized when a equals to its minimum, (n(p − 1) − r̃d0)
2/t. Then, by (2.13)

and (2.17), the point of (a, b, c) ∈ R3 given by the following equations will attain the maximum

of x0:

a =(n(p− 1)− r̃d0)
2/t

b =(n− ld0p)
2/t (2.21)

c =(n(p− 1)− r̃d0)(n− ld0p)/t.
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Note that the preceding equations will be satisfied if

r̃di = r̃dj and ldip = ldjp for any 1 ≤ i ̸= j ≤ t. (2.22)

By plugging the equations of (2.21) into β1 and x0, we denote the new terms derived by β′′′
1

and x′′′0 respectively. Obviously, x0 ≤ x′′′0 with equality holds when (2.22) holds. By Lemmas 6

and 7 in the supplemental material, we have

β′′′
1 =

θ

1 + θp

(
t

t∑
i=1

n∑
u=1

ndiuñdiu −
n∑

u=1

nd0uñd0u

)
+

(n(p− 1)− r̃d0)(np− rd0)− rd0r̃d0
(1 + θp)pn

≥0.

That indicates that x′′′0 increases when
∑t

i=1

∑n
u=1 ndiuñdiu decreases. Notice that x̃0 is obtained

from x′′′0 by replacing
∑t

i=1

∑n
u=1 ndiuñdiu by its minimum, n(p − 1) − r̃d0, in view of Lemma

7. The conclusion is obtained. ♢

Remark 1. In maximizing the x0 in (20), the conditions r̃di = r̃dj, ldip = ldjp minimize
∑t

i=1 r
2
di

and
∑t

i=1 r̃
2
di, however not

∑t
i=1 rdir̃di. Suppose (n(p−1)− r̃d0)/(t−1) is an integer, let rd1 = 0,

ld1p = n− ld0p, and r̃di = (n(p− 1)− r̃d0)/(t− 1) for i = 2, ..., t, then we have

t∑
i=1

rdir̃di = (n(p− 1)− r̃d0)
2/(t− 1) (2.23)

< (np− rd0)(n(p− 1)− r̃d0)/t, (2.24)
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for d ∈ Λ whenever p < t.

To work on the right hand of (2.14) we now only need to investigate how it is influenced by∑n
u=0 n

2
d0u,

∑n
u=0 nd0uñd0u, and

∑n
u=0 ñ

2
d0u.

Lemma 11. (i) When p ≥ 3 and t ≥ max(p− 1, 3), for any design d ∈ Λt+1,n,p, we have

t(t− 1)2

x̃0
+

t

y0
≥ t(t− 1)2

x∗0
+

t

y∗0
, (2.25)

where x∗0 and y∗0 are derived from x̃0 and y0 respectively by replacing
∑n

u=0 n
2
d0u,

∑n
u=0 nd0uñd0u,

and
∑n

u=0 ñ
2
d0u therein by their minimum with given rd0. Automatically, the equality in (2.25)

holds for a design d∗ which minimizes those three terms.

(ii) When p = 3 and t = 2, the above conclusion is still valid if rd0/n ≥ 0.6306.

Proof. By Lemma 6, we have

n∑
u=1

nd0uñd0u ≤ t(n(p− 1)− r̃d0)

which implies β̃1 ≥ 0 for any θ ≥ 0. Denote by ξ1, ξ2 and ξ3 the values of
∑n

u=1 n
2
d0u,∑n

u=1 nd0uñd0u and
∑n

u=1 ñ
2
d0u. Among the restrictions by the nature of the design, we have

ξ1 ≥ max(
r2d0
n , rd0), t(n(p− 1)− r̃d0) ≥ ξ2 ≥ r̃d0, ξ3 ≥ r̃d0. (2.26)
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We can write α̃1 as a function α̃1(ξ1, ξ2, ξ3, θ) with the value rd0 fixed. The same argument

could be applied to β̃1, γ̃1, α2, β2, γ2, x̃0, y0, and we define

H(ξ1, ξ2, ξ3, θ) =
t(t− 1)2

x̃0(ξ1, ξ2, ξ3, θ)
+

t

y0(ξ1, ξ2, ξ3, θ)
. (2.27)

For notational convenience, we also define

Θ1(ξ1, ξ2, ξ3, θ) =
β̃1(ξ1,ξ2,ξ3,θ)
γ̃1(ξ1,ξ2,ξ3,θ)

, Θ2(ξ1, ξ2, ξ3, θ) =
β2(ξ1,ξ2,ξ3,θ)
γ2(ξ1,ξ2,ξ3,θ)

. (2.28)

In the following, we will omit the variables ξ1, ξ2, ξ3, θ for the functions defined when there

is no ambiguity. We have

∂H

∂ξ1
=

θt

1 + θp

(
1

y20
− (t− 1)2

x̃20

)
∂H

∂ξ2
=

2θt

1 + θp

(
Θ2

y20
− (t− 1)2Θ1

x̃20

)
∂H

∂ξ3
=

θt

1 + θp

(
Θ2

2

y20
− (t− 1)2Θ2

1

x̃20

)
.

Note that the derivative ∂H
∂ξi

increases with ξj for any 1 ≤ i, j ≤ 3. Now to establish

∂H

∂ξi
≥ 0, i = 1, 2, 3, (2.29)



40

for any value of ξi, i = 1, 2, 3 and θ, it is enough to show

∂H(
r2d0
n , r̃d0, r̃d0, θ)

∂ξi
≥ 0, i = 1, 2, 3, (2.30)

or

∂H(rd0, r̃d0, r̃d0, θ)

∂ξi
≥ 0, i = 1, 2, 3, (2.31)

for any value of θ. Propositions 1-5 in the Supplemental Materials finish the proof. ♢

Proof of Theorem 2. Combining Lemmas 1, 4 (ii), 10, and 11, it is enough to prove that a

totally balanced test-control incomplete Crossover design satisfies:

⋄ ndiu is either 0 or 1, 1 ≤ i ≤ t, 0 ≤ u ≤ n

⋄ ldik = rdi/p, i = 0, ..., t

⋄ T ′
dV

−1/2pr⊥(1np)V
−1/2Td, T

′
dV

−1/2pr⊥(1np)V
−1/2Fd, and F ′

dV
−1/2pr⊥(1np)V

−1/2Fd are in-

variant under any permutation of test treatments.

⋄ r̃di = r̃dj , ldip = ldjp for any 1 ≤ i ̸= j ≤ t.

⋄
∑n

u=0 n
2
d0u,

∑n
u=0 nd0uñd0u, and

∑n
u=0 ñ

2
d0u are minimized with respect to fixed rd0.

By comparing these conditions to the 7 conditions in Definition 3, we conclude the theorem. ♢



CHAPTER 3

EVALUATING THE EFFICIENCY OF THE DESIGNS

For any θ, let us denote by d(θ) the corresponding optimal design, then we can define the A-

efficiency of a design d at this θ to be AE(d, θ) = Tr(M−1
d(θ))/Tr(M

−1
d ). We would be interested

in deriving AE(d, ·) for any design d, which should be resorted to deriving Tr(M−1
d(·)). However,

d(·) is generally not known except when θ = 0. In this chapter, we instead derive a lower bound

curve ℓ(·) ≤ Tr(M−1
d(·)), then LB(d, ·) = ℓ(·)/Tr(M−1

d ) serves as the lower bound of AE(d, ·).

In the following, we will simply call LB(d, ·) the efficiency of design d. Section 2.3 gave optimal

designs in Ω when θ = 0, and optimal designs in Λ for general θ. We would like to evaluate the

efficiencies of these designs. For each design, we have

Cd = T ′
dV

−1/2pr⊥(V −1/2[1np|P |Fd])V
−1/2Td

≤ T ′
dV

−1/2pr⊥(V −1/2[1np|Fd])V
−1/2Td

≤ T ′
dV

−1/2pr⊥(V −1/2[1np|FdBt+1])V
−1/2Td

≤
t!∑

i=1

S̃′
iT

′
dV

−1/2pr⊥(V −1/2[1np|FdBt+1])V
−1/2TdS̃i/t!

≤ C
(1)
d − C

(2)
d

(
C

(3)
d

)−
C

(2)
d (3.1)

41
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where C
(i)
d =

∑t!
i=1 S̃

′
iC

(i)
d S̃i/t!, i = 1, 2, 3, and

C
(1)
d = T ′

dV
−1/2pr⊥(1np)V

−1/2Td

C
(2)
d = T ′

dV
−1/2pr⊥(1np)V

−1/2FdBt+1

C
(3)
d = Bt+1F

′
dV

−1/2pr⊥(1np)V
−1/2FdBt+1

As in (2.4), we have the representation

C
(i)
d =

 1′tM
(i)
d 1t −1′tM

(i)
d

−M
(i)
d 1t M

(i)
d

 , C
(i)
d =

 1′tM
(i)
d 1t −1′tM

(i)
d

−M
(i)
d 1t M

(i)
d

 , i = 1, 2, 3. (3.2)

Further, we have the relationship

M
(i)
d =

(
Tr(M

(i)
d )

t− 1
−

1′tM
(i)
d 1t

t(t− 1)

)
Bt +

1′tM
(i)
d 1t
t2

Jt. (3.3)

For any t × t matrix M , define the functions ϕ(M) = 1′tM1t and φ(M) = Tr(M) − 1′tM1t/t.

By (3.1), (3.2), and (3.3), we have

Tr(M−1
d ) ≥ t

ϕ(M
(1)
d )− ϕ(M

(2)
d )2/ϕ(M

(3)
d )

+
(t− 1)2

φ(M
(1)
d )− φ(M

(2)
d )2/φ(M

(3)
d )

= 1/qd (3.4)
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where qd = min(x,y,z)∈R3 Qd(x, y, z), and

Qd(x, y, z) = (ϕ(M
(1)
d ) + 2ϕ(M

(2)
d )z + ϕ(M

(3)
d )z2)x2/t

+(φ(M
(1)
d ) + 2φ(M

(2)
d )y + φ(M

(3)
d )y2)(1 + x)2/(t− 1)2 (3.5)

By (A.3), we have C
(2)
d = C

(2)
d+ − C

(2)
d− , where

C
(2)
d+ = T ′

d (Inp − λpIn ⊗ Jp)FdBt+1,

C
(2)
d− = ηT ′

dJnpFdBt+1,

and λp and η are as defined in Theorem 2 in Section 2.3.2. Then M
(2)
d+ and M

(2)
d− would be

the corresponding submatrices of C
(2)
d+ and C

(2)
d− , and hence M

(2)
d+ = M

(2)
d+ −M

(2)
d+ . In the same

manner, we have the same decomposition M
(i)
d+ = M

(i)
d+ −M

(i)
d+ for i = 1, 3. We can now define

Qd+(x, y, z) (resp. Qd−(x, y, z)) to be the function when we replace M
(i)
d , i = 1, 2, 3 in (3.5) by

M
(i)
d+ (resp. M

(i)
d−). Hence, we have

Qd(x, y, z) = Qd+(x, y, z)−Qd−(x, y, z) (3.6)
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since Qd(x, y, z) is a linear function of M
(i)
d , i = 1, 2, 3. By direct calculation, we have

Qd−(x, y, z)/η = ((r̃d0 − n(p− 1)/(t+ 1))z + rd0)
2x2/t

+

t∑
i=1

((r̃di − n(p− 1)/(t+ 1))y + rdi)
2(1 + x)2/(t− 1)2

−((r̃d0 − n(p− 1)/(t+ 1))y + rd0)
2(1 + x)2/(t(t− 1)2)

≥ ((r̃d0 − n(p− 1)/(t+ 1))z + rd0)
2x2/t

+np(np− 2rd0 − 2(r̃d0 − n(p− 1)/(t+ 1))y)(1 + x)2/(t(t− 1)2)

(3.7)

Let T u
d (resp. F u

d ) be the portion of Td (resp. Fd) corresponding to the uth subject, C
(1u)
d+ =

T u
d
′(Ip−λpJp)T

u
d , C

(2u)
d+ = T u

d
′(Ip−λpJp)F

u
d Bt+1, and C

(3u)
d+ = Bt+1F

u
d
′(Ip−λpJp)F

u
d Bt+1, M

(iu)
d+

be the t× t submatrix of C
(iu)
d+ , i = 1, 2, 3 by ignoring the first row and the first column of the

latter. If we further denote by Qu
d+(x, y, z) the analogues of Qd+(x, y, z) with its components

M
(i)
d+, i = 1, 2, 3 replaced by M

(iu)
d+ , then we have

Qd+(x, y, z) =
n∑

u=1

Qu
d+(x, y, z) (3.8)

Let Hu
d (x, y, z) = Qu

d+(x, y, z)−(p−2nd0u−2(ñd0u−(p−1)/(t+1))y)(1+x)2/(t(t−1)2(1+θp)),

then by (3.6), (3.7) and (3.8) we have

Qd(x, y, z) =
n∑

u=1

Hu
d (x, y, z)− η((r̃d0 − n(p− 1)/(t+ 1))z + rd0)

2x2/t (3.9)
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Even though the notation Hu
d (·) has both the superscript u and the subscript d, this function

actually depends only on the sequence, based on which the uth subject in design d is taking the

treatments. Hence the design influences the summation in (3.9) through choosing n sequences

from all (t+ 1)p possible sequences with replacement.

Definition 4. We define two sequences i1i2...ip and j1j2...jp of the same length p to be TC-

equivalent if π(ik) = jk, k = 1, 2, ..., p for some permutation π with π(0) = 0.

For example, the four sequences 0234, 0194, 0267, and 0854 are TC-equivalent since all of

them start with the control treatment 0, which is then followed by three distinct test treat-

ments. Observe that two TC-equivalent sequences should result in the same function H(·). By

classifying all the (t+1)p sequences into say J classes according to TC-equivalence and denoting

by Hj(·) the function for the jth class, j = 1, 2, ..., J , we can write (3.9) in the form of

Qd(x, y, z) = n
J∑

j=1

wdjHj(x, y, z)− η((r̃d0 − n(p− 1)/(t+ 1))z + rd0)
2x2/t, (3.10)
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where wdj is the proportion of the number of sequences from class j in design d, and hence∑J
j=1wdj = 1. Now we have

max
d

qd = max
d

min
x,y,z

Qd(x, y, z)

≤ min
x,y,z

max
d

Qd(x, y, z)

= min
x,y,z

max
h1,h2

max

d : rd0 = h1

r̃d0 = h2

n
J∑

j=1

wdjHj(x, y, z)−
η

t

((
r̃d0 −

n(p− 1)

t+ 1

)
z + rd0

)2

x2



= min
x,y,z

max
h1,h2


max

d : rd0 = h1

r̃d0 = h2

n

J∑
j=1

wdjHj(x, y, z)−
η

t

((
h2 −

n(p− 1)

t+ 1

)
z + h1

)2

x2


,

(3.11)

where

max
h1,h2

:= max
max(0,h1−n)≤h2≤h1≤np

By (3.4) and (3.11), we have

Theorem 3. For any n, t, p, and θ, the reciprocal of the right hand side of (3.11) is a lower

bound of Tr(M−1
d ) for any d ∈ Ωn,t+1,p

To implement Theorem 3, there are three levels of maximization/minimization: (I) Maxi-

mization over the designs in {d ∈ Ω|rd0 = h1, r̃d0 = h2} for given (h1, h2) and (x, y, z). (II)

Maximization over (h1, h2) for given (x, y, z). (III) Minimization over (x, y, z).
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For level (I) maximization, the problem could be reduced to the linear programming prob-

lem:

Maximize
∑J

j=1wjHj

Subject to n
∑

wjaj = h1;n
∑

wjbj = h2;
∑

wj = 1;wj ≥ 0, j = 1, 2, ..., J

Here aj (resp. bj) is the number of 0’s in the sequence (resp. the first p− 1 symbols of the

sequence) from class j. For example, when p = 3, t ≥ 3, we have J = 13 and

0 0 0 1 0 0 1 1 1 1 1 1 1

0 0 1 0 1 1 0 0 2 1 1 2 2

0 1 0 0 2 1 2 1 0 0 2 1 3

aj 3 2 2 2 1 1 1 1 1 1 0 0 0

bj 2 2 1 1 1 1 1 1 0 0 0 0 0

For level (II) maximization, we could reduce the amount of search for (h1, h2) by the

following procedure.

1. Find a rough lower bound ℓ1(rd0, r̃d0) ≤ Tr(M−1
d ), d ∈ Ω.

2. Calculate Tr(M−1
d0

) for a particular design d0 (e.g. TBTCI design).

3. If ℓ1(h1, h2) ≤ Tr(M−1
d0

), continue with the linear programming in level (I) maximization;

Otherwise, jump to next (h1, h2).
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Lemma 12. A lower bound of Tr(M−1
d ) is ℓ1(rd0, r̃d0) = t(t− 1)2/x1 + t/y1, where

x1 = t(1− λp)(np− rd0)− rd0 − ηnp(np− 2rd0) + λpχ1,

y1 = rd0 − ηr2d0 − λpχ1 − χ4/n,

χ4 = r̃d0 + (2r̃d0 − p+ 1)⌊r̃d0/(p− 1)⌋ − (p− 1)⌊r̃d0/(p− 1)⌋2 + (rd0 − r̃)2 − r2d0/p

and χ1 is defined as in Theorem 2 in Section 2.3.2.

Proof. By ignoring Fd in Cd, we have

Cd ≤ T ′
dV

−1/2pr⊥(1np|V −1/2P )V −1/2Td

= T ′
dV

−1/2pr⊥(1np)V
−1/2Td − T ′

dV
−1/2pr⊥(1np)V

−1/2PP−
0 PV −1/2pr⊥(1np)V

−1/2Td,

where P0 = PV −1/2pr⊥(1np)V
−1/2P = nBp, by choosing P−

0 = Ip/n, we have

V −1/2pr⊥(1np)V
−1/2PP−

0 PV −1/2pr⊥(1np)V
−1/2 = n−1Jn ⊗Bp.

By the S̃i argument as in Lemma 4 in Section 2.4, we can obtain

Tr(M−1
d ) ≥ t(t− 1)2/x̃1 + t/ỹ1, (3.12)
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where

x̃1 = t(1− λp)(np− rd0)− rd0 − ηnp(np− 2rd0) + λp

n∑
u=1

n2
d0u

ỹ1 = rd0 − ηr2d0 − λp

n∑
u=1

n2
d0u − n−1

p∑
k=1

(ld0k − rd0/p)
2.

In deriving (3.12), we used the fact
∑t

i=1(ldik − rdi/p) ≥ (ld0k − rd0/p)
2/t, k = 1, 2, ..., p. The

lemma is now concluded by noting
∑n

u=1 n
2
d0u ≥ χ1 and

∑p
k=1(ld0k − rd0/p)

2 ≥ χ4. ♢

For level (III), we could use Newton-type algorithm.

When n = 36, p = 3, t = 4, a TBTCI design d2 with rd0 = 36 would be constructed through

the method in Hedayat and Zheng (2010), also d3 = (1, 1) ⊗ d1 is the optimal design when

θ = 0. The corresponding lower bound ℓ(·) as specified by Theorem 3 could be calculated by

the methods mentioned above; Note that the screening procedure for level (II) maximization

saved the calculating time by 77.89%. The total time needed to calculate ℓ(θ) at one value of θ

is 386.50 seconds (CPU: Intel 2 Duo 1.80GHz; Software: R), while the direct search for optimal

designs would require 1.11× 1026 years.

d2 :

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 1 1 1 2 2 2 3 3 3 4 4 4

1 1 1 2 2 2 3 3 3 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 2 3 4 1 3 4 1 2 4 1 2 3

2 3 4 1 3 4 1 2 4 1 2 3 2 3 4 1 3 4 1 2 4 1 2 3 0 0 0 0 0 0 0 0 0 0 0 0
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Figure 1. LB represents ℓ(·), λ = θ/(1 + θ) transforms the range of θ from [0,∞] to [0, 1].

d3 :

1 1 1 2 2 2 3 3 3 4 4 4 0 0 0 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 0 0 0 0 0 0

1 2 3 2 3 4 3 4 0 4 0 0 0 0 1 0 1 2 1 2 3 2 3 4 3 4 0 4 0 0 0 0 1 0 1 2

4 0 0 0 1 2 2 1 2 3 4 0 3 3 0 4 0 1 4 0 0 0 1 2 2 1 2 3 4 0 3 3 0 4 0 1

Figure Figure 1 shows the performance of d2 and d3 with respective to ℓ(·). There should

not be any surprise in seeing that d3 is more efficient than d2 when θ is small (d3 is optimal when

θ = 0, and also Cd is continuous in θ). However, d3 becomes very inefficient when θ becomes

large. Instead, the TBTCI design d3, even though not optimal, is always highly efficient for

each θ. Also observe that the lower bound here is very tight since it is so close to the A-

criterion of an existing design when θ = 0 or ∞. Hence it is proper to use this lower bound to
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Figure 2. The TBTCI design d2 is quite robust with the efficiency ≥ 0.9.

calculate the efficiency of designs. Figure Figure 2 shows that their efficiencies calculated by

ℓ(θ)/Tr(M−1
di

), i = 2, 3, θ ∈ [0,∞].

By Lemma 4 in Section 2.4, the A-criterion of a TBTCI design d has the form Tr(M−1
d ) =

n−1gp,t(rd0/n, θ) for some function g which depends on the values of p and t. Hence the

A-criterion of a TBTCI design is proportional to n−1 as long as the ratio rd0/n and other

parameters are fixed. Actually, the lower bound ℓ(·) has a similar property. To see this, let ℓ∗(·)

be the reciprocal of the right hand of (3.11) when we allow h1 and h2 to be real numbers instead

of integers under the maximization. Then ℓ(·) should be very close to ℓ∗(·) especially when n

is large, and we have ℓ∗(θ) ≤ ℓ(θ) for any θ in general. Also, we have ℓ∗(θ) = n−1g̃p,t(θ), hence

ℓ∗(θ)/Tr(M−1
d ) only depends on the ratio rd0/n. Figure Figure 3 gives the more conservative
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Figure 3. Efficiency in Λ : minhf(h, θ)/Tr(M
−1
d ).

efficiencies of TBTCI designs with the ratio being 1, 0.95, 0.9 (if they exist) in both Ω and Λ

when p = 3 and t = 4. This figure gives the guidance regarding what kind of TBTCI design

should be chosen. Similar work could be carried out for other configurations of p and t. We

postpone the discussion of possible improvements on current results to Chapter 5.

To evaluate the MV-efficiencies of TBTCI designs and the type of designs proposed in

Theorem 1, it is useful to note that the matrix Md is completely symmetric for them. Hence by

Corollary 1 its MV-efficiency is at least as large as its A-efficiency regardless of the competing

class of designs.



CHAPTER 4

CONSTRUCTION OF TBTCI DESIGNS

4.1 Introduction

This chapter aims to introduce techniques for constructing two-way arrays of a special type,

which is very useful in the area of experimental design. In this chapter, a two-way array , say

d, would be called a design. Here is an example:

d1 :

1 2 3 3 2 0 1 3 0 2 1 0

2 ® 1 2 0 3 3 0 1 1 0 2

0 0 0 1 1 1 2 2 2 3 3 3

In d1, each column represents an ordered sequence of treatments for one subject to take. Along

the experiment, responses of interest like blood pressure will be measured at each of these

3 × 12 = 36 runs so that statistical inference could be carried out to estimate the effects of

the treatments on the responses. To do this, we need to understand what sources contribute

to the variation of the response measurements besides uncontrollable random errors. Here, the

response at the circled run could depend on the effect of treatment 3, the physical condition

of the 2nd subject, the time (period) of this run, and even the effect of treatment 2 from the

previous period when the washout time is not very long. Below is a reasonable model which

formulates the ideas.

Ydku = µ+ αk + βu + τd(k,u) + γd(k−1,u) + ϵku, k = 1, 2, ..., p, u = 1, 2, ..., n. (4.1)

53
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First, the design d : (k, u) 7→ i decides treatment i to be applied to subject u at period k, then

Ydku and ϵku are the corresponding response measurement and uncontrollable random error.

αk is the effect of period k; βu is the effect of subject u; τd(k,u) is the direct effect of treatment

d(k, u); and γd(k−1,u) is the carryover effect of treatment d(k − 1, u) from the previous period(by

convention γd(0,u) = 0). Typical works in finding designs under Model (4.1) include Cheng and

Wu (1980), Hedayat and Afarinejad (1975, 1978), Hedayat and Yang (2003, 2004), Kunert

(1984), Kunert and Martin (2000), Kushner (1997, 1998), and Stufken (1991, 1996) among

others.

Here, we assume ϵku and βu to be random with E(ϵku) = E(βu) = 0, V ar(ϵku) = σ2
ϵ < ∞,

and V ar(βu) = σ2
β < ∞. Any two of these random components are mutually independent.

Other factors in the right-hand side of the model are assumed to be non-random. By writing

Yd = (Yd11, Yd21, ..., Ydpn)
′ with the index arranged in colexicographical order, we can express

Model (1.1) in matrix notation as

E(Yd) = 1npµ+ Pα+ Tdτ + Fdγ,

var(Yd) = σ2(In ⊗ (Ip + θJρ)),

(4.2)

where θ = σ2
β/σ

2
ϵ ≥ 0, α = (α1, ..., αp)

′, τ = (τ0, ..., τt)
′, γ = (γ0, ..., γt)

′, P = 1n ⊗ Ip with

⊗ to be the Kronecker product, and Td and Fd denote the treatment and carryover incidence

matrices. Let Cd = T ′
dV

−1/2pr⊥(V −1/2[1np|P |Fd])V
−1/2Td, where pr⊥(A) = I − A(A′A)−A′

and V = In ⊗ (Ip + θJp). Then Cd would serve as the information matrix for τ in the sense

that V ar(Bτ̂ ) = σ2
ϵBC−1

d B′ for any matrix B of t + 1 columns with B1 = 0, where τ̂ is the
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generalized least square estimate of τ . Thus, Cd carries all the information about the design d

necessary to evaluate the accuracy of estimating the effects of treatments.

In the context of comparing test treatments, {1, 2, ..., t}, with a control treatment, {0}, the

most frequently used optimality criterion is A-optimality which minimizes
∑t

i=1 V ard(τ̂i − τ̂0).

Let Md = QCdQ
′, where Q = [0t×1|It]. Then, a design which minimizes Tr(M−1

d ) is A-optimal.

Another optimality criterion is MV-optimality which minimizes maxi=1,...,t V ard(τ̂i − τ̂0). It

is well known that an A-optimal design is also an MV-optimal design if Md is completely

symmetric.

Note that limθ→0Cd = T ′
dpr

⊥([1np|P |Fd])Td is the information matrix for τ when βu = 0

almost surely (everywhere) and limθ→∞Cd = T ′
dpr

⊥([1np|P |U |Fd])Td, where U = In⊗1p, is the

information matrix for τ when βu is non-random. Hence, specifying βu to be random enables

us to cover a wide range of models and θ will play a very important role in identifying optimal

designs. See Hedayat, Stufken, and Yang (2006) for detailed arguments.

For further discussion, we define ndiu =
∑p

k=1 I[d(k,u)=i], ñdiu =
∑p−1

k=1 I[d(k,u)=i], ldik =∑n
u=1 I[d(k,u)=i], mdij =

∑n
u=1

∑p−1
k=1 I[d(k,u)=i,d(k+1,u)=j], rdi =

∑n
u=1

∑p
k=1 I[d(k,u)=i], r̃di =∑n

u=1

∑p−1
k=1 I[d(k,u)=i], and Γi = {u : d(p, u) = i}. Let Ωt+1,n,p be the collection of all de-

signs with n subjects, p periods, t + 1 treatments. We also define Ω1
t+1,n,p = {d ∈ Ωt+1,n,p :

ld0k = rd0/p, k = 1, 2, ...p} and Λt+1,n,p = {d ∈ Ω1
t+1,n,p : mdii = 0, i = 0, 1, ..., t}. Ideally, we

want to find optimal designs in Ωt+1,n,p for comparing test treatments to the control. Unfortu-

nately, no such work has been carried out yet. Hedayat and Yang (2006), and Yang and Park

(2007) derived properties of A-optimal designs within Ω1
t+1,n,p when θ = ∞ and p, t satisfies (i)
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p = 3 and 3 ≤ t ≤ 20 or (ii) p ≥ 4, (p− 3)(p− 2) + 2 ≤ t ≤ (p− 2)(p− 1) + 1, n ≥ p(p− 1)/2.

For more general values of t, p, θ, Chapter 2 established both A- and MV- optimality of certain

type of designs within Λt+1,n,p. Concrete examples shows that optimal designs in Λt+1,n,p will

usually be highly A-efficient, sometimes even optimal, in Ωt+1,n,p. The following design first

proposed by Hedayat and Yang (2005) plays the central role in constructing optimal designs.

Definition 5. A design d ∈ Λt+1,n,p for comparing test treatments, {1, 2, ..., t}, with the control

treatment, {0}, is called a totally balanced test-control incomplete Crossover (TBTCI) design if

it satisfies

1. |nd0u − nd0v| ≤ 1 and |ñd0u − ñd0v| ≤ 1 for all 1 ≤ u, v ≤ n.

2. ndiu = 0 or 1 for all 1 ≤ i ≤ t and 1 ≤ u ≤ n.

3. ldik is a constant across all 1 ≤ i ≤ t and 1 ≤ k ≤ p

4. md0i,mdi0 and mdij are constants across all 1 ≤ i ̸= j ≤ t for all 0 ≤ i ≤ t.

5.
∑n

u=1 ñd0uñdiu,
∑

u∈Γ0
ñdiu,

∑
u∈Γi

ñd0u,
∑n

u=1 ñdiuñdju,
∑

u∈Γi
ñdju are constants across all

1 ≤ i ̸= j ≤ t.

Even though the conditions for a design to be a TBTCI seems complex, the existence of such

designs is not uncommon and note that d1 is a TBTCI design. For each design d ∈ Λt+1,n,p, we

define the function

l(t, n, p, θ, rd0) = t(t− 1)2(α1 − β2
1/γ1)

−1 + t(α2 − β2
2/γ2)

−1 (4.3)
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where

α1 =t(1− λp)(np− rd0)− η(np− rd0)
2 − rd0 + λpS1 + ηr2d0

β1 =λpt(n(p− 1)− r̃d0) + η(n(p− 1)− r̃d0)(np− rd0)− λpS2 − ηrd0r̃d0

γ1 =(t+ 1− 2/p− λpt)(n(p− 1)− r̃d0)− n(p− 1)2/p− η(n(p− 1)− r̃d0)
2 + ηr̃2d0 + λpS3.

α2 =rd0 − λpS1 − ηr2d0,

β2 =λpS2 + ηrd0r̃d0,

γ2 =r̃d0 − (np2 − np)−1r̃2d0 − λpS3 − ηr̃2d0.

with

λp =θ(1 + θp)−1, and η = λp(θpn)
−1

S1 =rd0 + 2(rd0 − n)⌊rd0/n⌋ − n⌊rd0/n⌋2

S2 ={r̃d0 + (rd0 + r̃d0 − n)⌊r̃d0/n⌋ − n⌊r̃d0/n⌋2}1{rd0/n−⌊r̃d0/n⌋<1}

+ {rd0 + r̃d0 − n+ (rd0 + r̃d0 − 2n)⌊r̃d0⌋ − n⌊r̃d0/n⌋2}1{rd0/n−⌊r̃d0/n⌋≥1}

S3 =r̃d0 + 2(r̃d0 − n)⌊r̃d0/n⌋ − n⌊r̃d0/n⌋2

Since r̃d0 = (p− 1)rd0/p for any d ∈ Λt+1,n,p, the function l depends on d only through rd0, the

total replication of the control treatment. Now we are ready to rewrite a result from Chapter

2 by the following theorem for the purpose of construction issue. The corollary follows easily

since Md is completely symmetric whenever d is a TBTCI design.
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Theorem 4. When t ≥ 3 and t + 1 ≥ p ≥ 3, for any given θ, Tr(M−1
d ) ≥ l(t, n, p, θ, rd0) for

any design d ∈ Λt+1,n,p. The equality holds whenever d is a TBTCI design. When p = 3 and

t = 2, the conclusion still holds but only within a subclass of Λt+1,n,p in which rd0/n ≥ 0.6306.

Corollary 2. When t ≥ 3 and t + 1 ≥ p ≥ 3, for any given θ, a design d∗ is simultane-

ously A- and MV-optimal among designs in Λt+1,n,p if it is a TBTCI and l(t, n, p, θ, rd∗0) =

mind∈Λt+1,n,p l(t, n, p, θ, rd0). When p = 3 and t = 2, the conclusion still holds but only within a

subclass of Λt+1,n,p in which rd0/n ≥ 0.6306.

Remark 2. Hedayat and Zhao (1990) discovered optimal designs for the special case of p = 2.

With respect to the criterion of A-optimality, we define the efficiency of a design d∗ ∈ Λt+1,n,p

to be mind∈Λt+1,n,p Tr(M
−1
d )/Tr(M−1

d∗ ). Automatically, the efficiency of an optimal design is 1.

Let It,n,p = {rd0 : d ∈ Λt+1,n,p}, then It,n,p = {mp : 1 ≤ m < n/2,m is an integer}. Also let

St,n,p,θ = {r ∈ It,n,p : l(t, n, p, θ, r) = mind∈Λt+1,n,p l(t, n, p, θ, rd0)}. For given t, n, p, θ, if we can

find a TBTCI design d with rd0 ∈ St,n,p,θ, this design is A- and MV-optimal by Corollary 2 and

the efficiency is 1. If there is no such design, a TBTCI design d∗ with rd∗0 close to elements

in St,n,p,θ would still be plausible. In this case, we could use the lower bound of the efficiency

l(t, n, p, θ, r)/Tr(M−1
d ), r ∈ St,n,p,θ instead to evaluate its efficiency.

Denote by |St,n,p,θ| the number of elements in St,n,p,θ. In this chapter, all values of t, n, p, θ

involved in calculation yields |St,n,p,θ| = 1. In general, we can define g(t, n, p, θ) = maxSt,n,p,θ.

However, the function g does not have a closed form due to the discrete nature of rd0. However,

we can visualize the function g by fixing values of t, p, θ and draw the equation of rd∗0 =

ht,p,θ(n) ≡ g(t, n, p, θ). We like to emphasize that in practice small values of p such as 3, 4 and 5
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Figure 4. The two curves: rd∗0 = h4,3,∞(n) (solid) and rd∗0 = h4,3,0(n) (dashed)

are used very frequently. In Figure 1, the bold straight line represents the reference line by the

equation of rd∗0 = n, the solid curve represents rd∗0 as a function of n when we fix p = 3, t = 4

and θ = ∞, and the dashed curve corresponds to the case of p = 3, t = 4 and θ = 0. For general

values of θ > 0, the corresponding curves would be between the solid and dashed curves. In

constructing a design, t, n, p are known, while θ is unknown. Thus, we don’t know whether

a design is optimal or how efficient it is. Instead, we could figure out its efficiency for each

value of θ. From the figure, a TBTCI design d with rd0/n equals to or slightly smaller than 1,

depending on values of t, p, θ, would behave reasonably well.
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Figure 5. rd∗0 = ht,3,∞(n) (solid) and rd∗0 = ht,3,0(n) (dashed), t = 2, 3, ..., 7
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Figure 6. rd∗0 = ht,4,∞(n) (solid) and
rd∗0 = ht,4,0(n) (dashed), t = 3, 4, 5, 10, 15, 30
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Figure 7. rd∗0 = ht,5,∞(n) (solid) and
rd∗0 = ht,5,0(n) (dashed), t = 4, 5, 10, 20, 30, 40

Similarly, we present Figure 2 for p = 3 and t = 2, 3, ..., 7. Notice that the curves become

flatter while t becomes larger, it’s because whenever new test treatments is introduced, they will

force other treatments including the control to reduce their replications since the total number

of the runs remain unchanged. This trend remains true for any other values of p. However,

from Figures 3-6, we can see one remarkable difference for the cases of p ≥ 4. That is, the

curves are somehow above the reference line of rd∗0 = n in the beginning (for small t) and go

below the line eventually when t is large enough.
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Figure 8. rd∗0 = ht,6,∞(n) (solid) and
rd∗0 = ht,6,0(n) (dashed), t = 5, 6, 15, 30, 40, 50

50 100 150 200

10
0

30
0

50
0

70
0

20
19

n

rd
*0

50 100 150 200

10
0

20
0

30
0

40
0

50
0

60
0

20
30

n

rd
*0

50 100 150 200

50
10

0
20

0
30

0

20
100

n

rd
*0

50 100 150 200
50

10
0

15
0

20
0

20
300

n

rd
*0

50 100 150 200

50
10

0
15

0
20

0

20
400

n

rd
*0

50 100 150 200

20
40

60
80

10
0

12
0

14
0

20
700

n

rd
*0

Figure 9. rd∗0 = ht,20,∞(n) (solid) and
rd∗0 = ht,20,0(n) (dashed),
t = 19, 30, 100, 200, 400, 700

4.2 Construction Tools

In this section, we will use terms of column, row, and symbol in normal meaning to replace

the terms of subject, period, and treatment in Section 4.1. We shall introduce a new class of

designs which would be very useful for the construction of TBTCI designs.

Definition 6. A p×n array with symbols from {1, 2, ..., t} is called a totally balanced incomplete

Crossover (TBIC) design denoted by TBIC(t, n, p) if it satisfies:

1. ndiu = 0 or 1 for all 1 ≤ i ≤ t and 1 ≤ u ≤ n.

2. ldik is a constant cross all 1 ≤ i ≤ t and 1 ≤ k ≤ p
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3. mdij is a constant across all 1 ≤ i ̸= j ≤ t for all 1 ≤ i ≤ t.

4.
∑n

u=1 ñdiuñdju,
∑

u∈Γi
ñdju are constants across all 1 ≤ i ̸= j ≤ t.

Note that Conditions (1) − (4) in Definition 6 is equivalent to Conditions (1) − (5) in

Definition 5 plus the condition of rd0 = 0. Also, A totally balanced design defined by Kunert

and Stufken (2002) reduces to a totally balanced incomplete Crossover design if and only if

p ≤ t. Note that in a TBIC design the symbol 0 is not included in labelling the treatments.

For a TBIC design d, we could let l = ldik and m = mdij for any i, j, k. By Condition (3) in

Definition 2.1, the existence of a TBIC design requires

l(p− 1) = m(t− 1). (4.4)

Since n = lt, a TBIC design is said to be of minimal size if the corresponding m and l are

relatively prime and satisfy (2.1).

A special class of TBIC designs, which is well known, is worth pointing out separately. A

Latin square L of order p is said to be column− complete, and is denoted by CCLS(p), if the

ordered pairs (Lij , Li+1,j) are all distinct for 1 ≤ i ≤ p− 1 and 1 ≤ j ≤ p. A TBIC design will

reduce to a column− complete Latin square when t = n = p. A CCLS(p) exists whenever p is

a composite number. In case p is prime, we could find two Latin squares L(1) and L(2) of order

p each, such that every ordered pair of distinct elements from {1, 2, ..., p} appears twice in the

collection of (L
(k)
ij , L

(k)
i+1,j), 1 ≤ i ≤ p − 1, 1 ≤ j ≤ p, k = 1, 2. Readers interested in the details
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of the argument is refered to Williams (1949), Gordon (1961) and Higham (1998). Now, it’s

convenient to introduce another well known type of designs.

A design is said to be a uniform balanced design if it satisfied Conditions (2) and (3) in

Definition 2.1 as well as the condition that ndiu is a constant across all 1 ≤ i ≤ t and 1 ≤ u ≤ n.

By the latter condition, both p and n have to be a multiple of t. It is easy to verify that a

uniform balanced design with p = t is a TBIC design. Thus, a uniform balanced design in

Ωt,αt,t could be obtained from α copies of a CCLS(t) whenever t is a composite number and

α is an integer, or from α/2 copies of L(1), L(2) described above whenever t is a prime integer

and α is an even number.

4.2.1 Construction of TBTCI Designs Using TBIC Designs

Note that the optimality of certain TBTCI designs established by Theorem 4 is only ap-

plicable when 3 ≤ p ≤ t + 1. According to Condition (3) in Definition 5 and the definition

of Λt+1,n,p, n ≥ t + 1 is necessary for the existence of TBTCI designs. Actually, there exists

TBTCI designs under the boundary condition of n = t+1. Therefore, the discussion concerning

the construction of TBTCI designs in the sequel always assumes the condition

3 ≤ p ≤ t+ 1 ≤ n. (4.5)

In reality, the choices for the numbers t, n, p are decided by the nature of experiments themselves,

and our job is to prepare TBTCI designs with proper values of rd0 as indicated by Corollary

2 for all possible configurations of t, n, p. Indeed, the value of rd0/n is more convenient for
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discussion than rd0 itself based on the figures presented earlier. It is obvious that not all triples

(t, n, p) admits the existence a TBTCI design. From the point of view of construction, we would

construct TBTCI designs with as many as possible different values of n for every configuration

of p and t. Based on Theorem 5 and Corollary 3 below, there are two ways to go for when t

and p are chosen: (i) Construct a TBTCI design d with the minimal possible n, say n0, and

desirable value of rd0 (ii) Construct a TBTCI design d with n not a multiple of n0 and desirable

value of rd0.

Theorem 5. The juxtaposition of any finite many TBTCI designs with the common number

of rows and treatments would still be a TBTCI design as long as |nd0u − nd0v| ≤ 1 and |ñd0u −

ñd0v| ≤ 1 where u and v represent two different columns in the resulting design.

Hereafter, we denote by TBTCIt,p(n, r) a TBTCI design with t test treatments, p rows, n

columns and rd0 = r. When only the number of rows (p) and the number of test treatments

(t) are specified, we will use TBTCIt,p to denote the design. Then, we have

Corollary 3. The juxtaposition of q copies of a TBTCIt,p(n, rd0) is a TBTCIt,p(qn, qrd0).

Now, we start with a simple way of constructing TBTCI designs. Given any TBIC(t +

1, n, p), we directly obtains a TBTCIt,p(n, np/(t+1)) design by relabelling the treatment t+1

by the control treatment 0. Thus, we have rd0/n = p/(t+ 1) ≤ 1 for this family of designs.

When n is a multiple of t, we can construct a TBTCIt,p(n, np/t) based on an arbitrary

TBIC(t, n/t, p). Denote by D(i), 1 ≤ i ≤ t the design obtained from the TBIC(t, n/t, p)

when treatment i is relabelled by the control treatment 0. The juxtaposition of D(1) to D(t)
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will give a TBTCI(n, p, t, np/(t + 1)). According to Condition (1) of Definition 6, the exis-

tence of a TBIC(t, n/t, p) mentioned earlier requires the condition of p ≤ t. Thus, for the

TBTCIt,p(n, np/t) constructed here, we have rd0/n = p/t ≤ 1. Hedayat and Yang (2005) used

the same idea of expansion based on uniform balanced designs with p = t, which is a special

type of TBIC designs. However, their method could only produce TBTCI designs in which the

number of test treatments is identical to the number of rows. With our generalization, we can

deal with any values of p and t satisfying p ≤ t.

The TBTCI designs constructed above all have the property that rd0 ≤ n. To construct

a TBTCIt,p design d with rd0 ≥ n, we first need to prepare a TBIC(t, n, p − 1) and a

TBIC(t, n, p − 2). Then we add one row of 0’s to the TBIC(t, n, p − 1), and denote the

resulting design by A(k), 1 ≤ k ≤ p if it has the 0’s in the kth row of itself. When adding two

rows of 0’s to the TBIC(t, n, p−2), we label the resulting design by B(k1, k2) if it has the 0’s in

the k1th and k2th rows. We need to construct a collection of those designs such that: (i) The

numbers 1, 2, ..., p appears exactly once in the parentheses of either A or B type designs, (ii)

the number p has to appear in the parentheses of a B type design. Then, by Theorem 5, the

resulting design obtained by juxtaposing this collection of designs will be a TBTCI design. The

number of columns of the resulting design is the product of n and the number of the smaller

designs of both A and B types. There are two extreme cases worth mentioning here. When all

of designs juxtaposed are A type designs, then we only need a TBIC(t, n, p−1) and will obtain

a TBTCI design with rd0 = n. When p is even and all of designs juxtaposed are B type designs,
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then we obtain a TBTCI design with rd0 = 2n. The value rd0/n for the designs constructed by

this method is between 1 and 2. Here is an example of a TBTCI3,4(12, 24):

d2 :

0 0 0 0 0 0 2 3 1 3 1 2

2 3 1 3 1 2 0 0 0 0 0 0

0 0 0 0 0 0 1 1 2 2 3 3

1 1 2 2 3 3 0 0 0 0 0 0

The design is derived from the trivial TBIC(3, 6, 2):

2 3 1 3 1 2

1 1 2 2 3 3

Currently, our methods of constructing TBTCI designs rely on using TBIC designs. Thus, the

issue of the number n would be extensively discussed during the construction of TBIC designs

in Subsections 4.2.2–4.2.4.

4.2.2 Method 1 of Constructing TBIC Designs

A type I orthogonal array OAI(n, p, t, s) is a p × n array based on t symbols, where the

columns of any s × n subarray contains all t!/(t − s)! permutations of s distinct symbols the

same number of times. Here s is said to be the strength of the type I orthogonal array. Suppose

the t symbols are {1, 2, ..., t}, then an OAI(n, p, t, 2) is a TBIC(t, n, p). Actually, a type I

orthogonal array imposes more structures than a TBIC design, however it is easier to construct

the former. We first illustrate our method of constructing this type of designs for p = 3, and

the method could be easily generalized to cases of p ≥ 4.

A transversal in a Latin square of order n is a collection of n positions which exhaust all

of the n different symbols, rows and columns. It is well known that a Latin square with a
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transversal always exists as long as the order is not 2. By permuting the rows and columns of

such a Latin square of order t with symbols from {1, ..., t}, we can always obtain an idempotent

Latin square L, in which Li,i = i. Now we label the rows of the newly obtained Latin square

by 1, ..., t from the first row to the last row respectively. We also label the columns in the same

manner. Each position in the Latin square could indicate a three-dimension column vector

with entries filled with the corresponding row label, column label, and the symbol. Then the

juxtaposition of these vectors corresponding to all of the off-diagonal positions will yield a type

I orthogonal array. Here is an example when t = 5:

¬ 5 4 3 2

4 ­ 5 1 3

5 3 2 ¯ 1

2 1 ® 5 4

3 4 1 2 °

7−→

¬ 5 4 3 2

4 ­ 5 1 3

2 1 ® 5 4

5 3 2 ¯ 1

3 4 1 2 °

7−→ d3 :

5 4 3 2 4 5 1 3 2 1 5 4 5 3 2 1 3 4 1 2 Symbol

2 3 4 5 1 3 4 5 1 2 4 5 1 2 3 5 1 2 3 4 Column

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 Row

Two Latin squares of the same order are said to be orthogonal if no pair of corresponding

elements occurs more than once when one square is superimposed onto the other. A set of

Latin squares of the same order is mutually orthogonal if every pair of Latin squares from

the set is orthogonal. In order to construct TBTCI designs with p ≥ 4 rows, we need p − 2
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mutually orthogonal Latin squares with a common transversal. In practical implementation, it

is more convenient to start with p − 1 mutually orthogonal Latin squares if they exist. Then

one of the Latin squares will be sacrificed to locate a common transversal of other p− 2 Latin

squares. Each position could produce a p-dimension column vector with entries filled with the

corresponding row label, column label, and p − 2 symbols. Then the juxtaposition of these

vectors corresponding to all of the off-diagonal positions will yield a type I orthogonal array.

Here is an example of constructing an OAI with p = t = 5, via the following 4 mutually

orthogonal Latin squares of order 5:

L1 :

1 2 3 4 5

2 3 4 5 1

3 4 5 1 2

4 5 1 2 3

5 1 2 3 4

L2 :

1 2 3 4 5

3 4 5 1 2

5 1 2 3 4

2 3 4 5 1

4 5 1 2 3

L3 :

1 2 3 4 5

4 5 1 2 3

2 3 4 5 1

5 1 2 3 4

3 4 5 1 2

L4 :

1 2 3 4 5

5 1 2 3 4

4 5 1 2 3

3 4 5 1 2

2 3 4 5 1

L4 has all of the positions of the main diagonal filled with symbol 1. Automatically, L1, L2

and L3 have the main diagonal as a common transversal and we could rename the symbols in

the first three squares in independent ways to obtain the following three mutually orthogonal

Latin squares of order 5 with a common transversal on the diagonal:

L′
1 :

1 4 2 5 3

4 2 5 3 1

2 5 3 1 4

5 3 1 4 2

3 1 4 2 5

L′
2 :

1 3 5 2 4

5 2 4 1 3

4 1 3 5 2

3 5 2 4 1

2 4 1 3 5

L′
3 :

1 5 4 3 2

3 2 1 5 4

5 4 3 2 1

2 1 5 4 3

4 3 2 1 5
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When we go through all of the off-diagonal positions, we obtain an OAI(20, 5, 5, 2):

d4 :

4 2 5 3 4 5 3 1 2 5 1 4 5 3 1 2 3 1 4 2 L′
1

3 5 2 4 5 4 1 3 4 1 5 2 3 5 2 1 2 4 1 3 L′
2

5 4 3 2 3 1 5 4 5 4 2 1 2 1 5 3 4 3 2 1 L′
3

2 3 4 5 1 3 4 5 1 2 4 5 1 2 3 5 1 2 3 4 Column

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 Row

Any q×20 subarray of the above array would consists of an OAI(20, q, 5, 2) for q < 5. Theorem

2.4 below and its related proof could be concluded from the above process of construction.

Theorem 6. We can always construct an OAI(t(t − 1), p, t, 2) for all p ≤ m + 1 when there

exits m mutually orthogonal Latin squares of order t.

Remark 3. The number of mutually orthogonal Latin squares of order t is at most t − 1 and

this upper bound could be reached whenever t is a prime power.

All of the designs constructed in this subsection will have the relationship of n = t(t − 1),

which means l = t − 1, and thus m = p − 1 by (4.4). Therefore, the designs constructed here

would be of minimal size if and only if t−1 and p−1 are relatively prime. When t−1 and p−1

have common factors, the following two methods will provide some answers for the constrution

of the designs of minimal size.

4.2.3 Method 2 of Constructing TBIC Designs

A design with t treatments, n columns (blocks) and p rows is said to be a balanced incomplete

block (BIB) design, denoted by BIB(t, n, p), if (i) p < t (ii) ndiu = 0 or 1 for 1 ≤ i ≤ t and
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1 ≤ u ≤ n (iii)
∑n

u=1 ndiundju is a constant, denoted by ν, across all 1 ≤ i ̸= j ≤ t. For the

treatment i, we have rdi(p− 1) = ν(t− 1), thus rdi = rdj for all i ̸= j. So we can denote rdi by

the same r for any i, and hence

r(p− 1) = ν(t− 1). (4.6)

Another equality we have is np = rt. One significant feature of BIB designs compared to

previous designs is that, these designs are invariant to rearranging the positions of treatments

within each column. However, columns of BIB(t, n, p) coupled with a CCLS(p) would give a

TBIC(t, np, p) as follows:

Without loss of generality, we assume the treatments of a BIB design are denoted by 1, 2, ...t.

Suppose the ith column of the BIB(t, n, p) contains treatments from {a1, ..., ap} ⊂ {1, 2, ...t}.

We use these symbols to construct a CCLS(p), denoted by LSi. Then the juxtaposition of LS1

to LSn will give a TBIC(t, np, p).

For the TBIC designs constructed above, we have m = ν and l = r according to the process

of construction. Then (4.4) holds either due to the fact that it is a TBIC design or based

on (4.6). Meanwhile, whenever there is a BIB(t, n, p) in which ν = np(p − 1)/(t(t − 1)) and

r = np/t are relatively prime, the corresponding TBIC design would be of minimal size. A

comprehensive list of the existence of BIB designs with different parameters could be found in

the Handbook of Combinatorial Designs edited by Colbourn and Dinitz (2007).

4.2.4 Method 3 of Constructing TBIC Designs

The following theorem gives a sufficient condition for the existence of one type of TBIC

designs of minimal size. The details of construction is included in the proof of the theorem.
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Theorem 7. A TBIC(t,n,p) of minimal size (i.e. m and l in (2.1) are relatively prime) exists

if there exists l vectors of the form (ai1, ai2, ..., ai,p−1), i = 1, 2, ..., l with aij ∈ {1, 2, ..., t − 1}

such that

1. 0 is not contained in the collection
∑j2

j=j1
aij (mod t), 1 ≤ j1 ≤ j2 ≤ p− 1 and 1 ≤ i ≤ l.

2. Each number from {1, 2, ..., t−1} appears m times in the collection aij, 1 ≤ j1 ≤ j2 ≤ p−1

and 1 ≤ i ≤ l.

3. Each number from {1, 2, ..., t − 1} appears the same number of times in the collection

±
∑j2

j=j1
aij (mod t), 1 ≤ j1 ≤ j2 ≤ p− 1 and 1 ≤ i ≤ l.

4. Each number from {1, 2, ..., t − 1} appears the same number of times in the collection

±
∑p−1

j=j1
aij (mod t), 1 ≤ j1 ≤ p− 1 and 1 ≤ i ≤ l.

Proof. Based on the ith vector (ai1, ai2, ..., ai,p−1), we can construct a p × t array, Bi = (bijk),

in which bijk is the entry in the jth row and the kth column of Bi, such that the first row

(bi11, b
i
12, ..., b

i
1t) is any permutation of {0, 1, ..., t − 1} and bijk = bi1k +

∑j−1
h=1 aih (mod t) for

2 ≤ j ≤ p. Then we can obtain a TBIC(t, lt, p) by juxtaposing B1 to Bl and map the

treatments in {0, 1, ..., t− 1} to {1, 2, ..., t} in any injective manner. Specifically, Condition (1)

here implies the Condition (1) in Definition 6; Condition (2) here implies the Condition (3) in
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Definition 6; Conditions (3) and (4) here imply the Condition (4) in Definition 6. The Condition

(2) therein is satisfied since each row of each Bi is simply a permutation of the treatments. ♢

Here we illustrate the idea of construction in Theorem 7 for the case of p = 4 and t = 7.

Since 2(p − 1) = t − 1, we can construct a TBIC of minimal size, i.e. m = 1 and l = 2, if

the sufficient conditions in the theorem exists. In fact, the vectors (a11, a12, a13) = (1, 2, 3) and

(a21, a22, a23) = (6, 5, 4) satisfies all the four conditions in the theorem. Based on those two

vectors, we will have the following arrays respectively:

0 1 2 3 4 5 6

1 2 3 4 5 6 0

3 4 5 6 0 1 2

6 0 1 2 3 4 5

0 1 2 3 4 5 6

6 0 1 2 3 4 5

4 5 6 0 1 2 3

1 2 3 4 5 6 0

It is easy to verify by Definition 6 that we will obtain a TBIC design if we juxtapose these

two designs and replace the symbol 0 by 7.

4.2.5 Examples

Since we could make the statistical inference as precise as possible by increasing the number

of runs, it is only fair when we compare Tr(M−1
d ) of designs with the same values of t, n, p.

Unfortunately, there may not be any design guaranteed to be optimal since different θ will

require different values of rd0 for a TBTCI design to be optimal. For given values of n, p, t and

θ, Figures 2-6 give some idea about what value of rd0 should a TBTCI design possess to be an

optimal design. Indeed, for a complete comparison between designs, we need to compare their

efficiencies at all values of θ.
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For each TBTCI design d constructed in this chapter, the conditions C1 : rd0 < n, C2 :

rd0 = n, and C3 : rd0 > n imply nd0u ≤ 1, nd0u = 1 and nd0u ≥ 1 respectively for 1 ≤ u ≤ n.

Based on Theorem 5, the juxtaposition of any two TBTCI designs would still be a TBTCI

design except when one of them satisfies Condition C1 and the other satisfies Condition C3.

In general, the juxtaposition of finite many TBTCI designs would still be a TBTCI design as

long as at least one of the conditions C1 and C3 is not satisfied by any of these designs.

Suppose now that we want to construct efficient designs with 4 periods and 3 test treatments.

Based on the first picture in Figure Figure 6, we need TBTCI designs with rd0/n slightly

greater than 1. d2 in Section 4.2.1 as a TBTCI3,4(12, 24) satisfies rd0/n = 2, and this number

is obviously too big. On the other hand, a CCLS(4) exists since 4 is a composite number.

By relabelling, we immediately obtain a TBTCI3,4(4, 4) with rd0/n = 1 from the CCLS(4),

and this number is ideal for some cases of t, n, p, θ, but too small for most of the cases. With

multiple copies of the latter design as well as 0, 1 and 2 copies of the former design, we can

have TBTCI3,4(224, 224), TBTCI3,4(224, 236) and TBTCI3,4(224, 248) respectively. Figure

Figure 10 gives a comparison of these three designs:

Since the range of θ is [0,∞) which is hard to cover in a figure, we use the monotone trans-

formation of λ ≡ λ1 = θ/(1 + θ) ∈ [0, 1]. As expected from Figure 3, TBTCI3,4(224, 224),

TBTCI3,4(224, 236) and TBTCI3,4(224, 248) wins in turn when θ is large, moderate, and

small respectively. By providing a complete comparison for all possible values of θ, practi-

tioners could decide which design to choose according to their priori knowledge of θ. If no

priori knowledge is available, robust criteria such as maxdminθ Eff(d, θ) with Eff(d, θ) =
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Figure 10. From left: TBTCI3,4(224, 248), TBTCI3,4(224, 236) and TBTCI3,4(224, 224)
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Figure 11. TBTCI4,3(180, 180) (solid curve) and TBTCI4,3(200, 192) (dashed curve)
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Figure 12. TBTCI4,3(360, 360) (solid curve) and TBTCI4,3(380, 272) (dashed curve)
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mind′∈Λt+1,n,p Tr(M
−1
d′ )/Tr(M−1

d ) could be proposed. Based on this robust criterion, TBTCI3,4(224, 236)

will be the best choice.

When p = 3 and t = 4, we can start with TBTCI4,3(20, 12) derived from d3 and TBTCI4,3(36, 36)

as given by Hedayat and Yang (2005). The juxtaposition of copies of these two designs will give

rise to a TBTCI4,3(180, 180) and a TBTCI4,3(200, 192). The comparison is given by Figure

Figure 11. Note that the two designs in comparison have different numbers of columns. In cal-

culating the efficiencies, the minimization in mind l(t, n, p, θ, rd0) should be taken within Λ5,180,3

and Λ5,200,3. However, this difference in n is small enough to make the comparison meaningful.

Similarly, using TBTCI4,3(20, 12) and TBTCI4,3(36, 36), we can construct TBTCI4,3(380, 372)

and TBTCI4,3(360, 360). Figure Figure 12 depicts the comparison.



CHAPTER 5

CONCLUSION

In mixed linear model with random subject effects, the ratio (θ) of the variance of the

subject effect to the variance of the error plays a crucial role in deciding which design should be

used. Note that in estimating the treatment effects, θ = 0 corresponds to the model without the

subject effects while θ = ∞ corresponds to the model with fixed subject effects. For the latter

model, Hedayat and Yang (2005) found optimal designs in the subclass Λ and conjectured that

Λ will not exclude too many good designs so that optimal designs in this subclass is still highly

efficient or even optimal in Ω. As for how efficient these designs will be, they didn’t carry out

the investigation.

In this thesis, I dealt with general θ ≥ 0 and found optimal designs in Λ, which naturally

covered the result in Hedayat and Yang (2005) as a special case when θ = ∞. Moreover, we

found optimal designs in Ω when θ = 0. Further, I gave the algorithm to calculate the lower

bound of Tr(M−1
d ), which turns out to be very close to the value of optimal designs. Hence it is

proper to use this lower bound to evaluate the efficiencies of the designs proposed. Specifically,

I evaluated the behavior of two types of designs. One is the optimal designs when θ = 0, whose

efficiency decreases dramatically as θ increases. The other is the TBTCI designs with properly

chosen value of rd0, which are shown to be robust across different values of θ. Since we usually

don’t know the value of θ in application, this robustness is critical. Also, it is gratifying that
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TBTCI designs commonly exist, while the optimal designs for θ = 0 is not so common to exist

due to the first condition of Theorem 1 in Section 2.3.1.

In studying universal optimality, Hedayat, Stufken, and Yang (2006) proved the high ef-

ficiency of the totally balanced designs, which is essentially a special type of TBTCI designs

with the property of rd0 = rd1. Particularly, they proved the universal optimality of the totally

balanced designs in Ω2 = {d ∈ Ω|ldip = n/(t + 1),mdii = 0, i = 0, 1, ..., t}, which is certainly

true for A- and MV- optimality. However, as pointed out by one of the referees, optimality

frameworks based on functions of Md result in placing overriding weight on the control and

hence higher control replication, which is shown in Section 2.3 and Chapter 3. Actually, the op-

timality of the totally balanced designs in Ω2 established by Hedayat, Stufken, and Yang (2006)

could be explained by the fact that the class Ω2 rules out any designs with unequal replications

of treatments. Also, the high efficiency of the totally balanced designs in Ω established therein

based on the trace approach could not be carried over to A- and MV- criteria.

At the same time, we observe from Figure Figure 3 that the gap between optimal designs

in Λ and Ω is more obvious for small values of θ. I conjecture that this is due to the restriction

of mdii = 0, i = 0, 1, ..., t in view of Condition 1 in Theorem 1 in Section 2.3.1. When θ = ∞,

Hedayat and Yang (2006) and Yang and Park (2007) extended the class of competing designs

from Λ to Ω1 = {d ∈ Ω|ld0k = rd0/p, k = 1, 2, ..., p} when either of the following conditions

satisfies (i) p = 3 and 3 ≤ t ≤ 20; or (ii) p ≥ 4, (p − 3)(p − 2) + 2 ≤ t ≤ (p − 2)(p − 1) + 1

and n ≥ p(p− 1)/2. They proposed designs allowing part of the subjects in the study to have

identical treatments in the last two periods, which are A-better than TBTCI designs. However,
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we note that Conditions (i) and (ii) here imposed on n, t, p are quite restrictive, therefore it

would be essential if we could find optimal designs in Ω1 or even Ω for wider ranges of the

parameters n, t, p. Another possible direction for future research is to study the case when

p > t + 1, for which we have not seen any work carried out yet. I believe some designs with

similar structures as TBTCI designs would be highly efficient in this case.

The class of totally balanced test-control incomplete (TBTCI) Crossover designs proved to

be an important class of designs for comparing two or more test treatments with a standard

control treatment. The author is the first to seriously consider the construction of these de-

signs. Our approach is to derive these designs from a simpler class of designs with no control

treatment involved, which is called totally balanced Crossover (TBIC) designs. TBIC designs

are equivalent to a special type of TBTCI designs. More importantly, TBIC designs could be

used as building blocks to construct TBTCI designs. Thus, various methods of constructing

TBIC designs were presented. In the process, it is shown that the concepts of type I orthogonal

arrays, complete column Latin squares, balanced incomplete block designs and finite group were

closely related to TBIC designs. Following is some future research topics to be investigated.

In this thesis, the construction of TBTCI designs relies heavily on the existence of TBIC

designs. We would like to point out that there is a lot of examples in Hedayat and Yang (2005)

which have nothing to do with TBIC designs. However, those examples are derived by computer

search and lack generalization to other configuration of t, n and p. The work on these designs

will have the advantage that n could be smaller. This is very important due to Theorem 5.

References related to this topic include Mendelsohn (1968), Dey (1986) and Linder and Rodger
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(1997) among others. In constructing TBIC designs, Theorem 6 gives sufficient conditions for

the existence of TBIC deigns of minimal size and the corresponding methods of construction.

However, these sufficient conditions are complex themselves and need to be further investigated

and simplified.

The optimality of TBTCI designs are established within Λt+1,n,p, a subclass of Ωt+1,n,p.

Though there is evidence to indicate that TBTCI designs are also highly efficient or optimal

among Ωt+1,n,p, alternative designs need to be investigated for two reasons. (1) TBTCI designs

do not exist for some configurations of t, n and p. Actually, the nonexistence is more common

than the existence. (2) There are better designs for some particular values of t, n and p in

terms of A-optimality or MV-optimality, and these designs are actually close to TBTCI designs

in structure. Correspondingly, we have two ways to go. One approach is to go for precise

mathematical discovery and an alternative approach is to apply some algorithms such as Genetic

Algorithm (GA) to search for desirable designs. Suppose a practitioner is in an immediate need

of a design under t, n, and p for which proper TBTCI designs does not exist or we do not

know the existence for these parameters. A prudent approach to help this practitioner will

be to find a TBTCI design d with number of columns n1(> n) and generate a population of

designs by using n columns of d in as many ways we want. Then we can use GA together with

judiciously selected genetic operations such as mating and mutation and select a good design

for the practitioner.
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Appendix A

PROOFS OMITTED IN SECTION 2.4

Proof of Lemma 4. Since (ii) is a direct result of (i), it is sufficient to prove (i) only. Let N = t!,

Q = (0|It)′ and M̄d =
∑N

i=1 S
′
iMdSi/N . By convexity of A-criterion, we have

Tr(M−1
d ) ≥ Tr(M̄−1

d ). (A.1)

Since S′
iMdSi = S′

iQ
′CdQSi = Q′S̃′

iCdS̃iQ, we have

NM̄d = Q′

(
N∑
i=1

S̃′
iCdS̃i

)
Q.

Then by Proposition 1 of Kunert and Martin (2000) and Lemma 3, we have

N∑
i=1

S̃′
iCdS̃i ≤

(
N∑
i=1

S̃′
iT

′
dV

−1/2pr⊥(1np)V
−1/2TdS̃i

)

−

(
N∑
i=1

S̃′
iT

′
dV

−1/2pr⊥(1np)V
−1/2FdS̃i

)

×

(
N∑
i=1

S̃′
iF

′
dV

−1/2pr⊥(1np)V
−1/2FdS̃i

)−

×

(
N∑
i=1

S̃′
iF

′
dV

−1/2pr⊥(1np)V
−1/2TdS̃i

)
, (A.2)

with the equalities in (A.1) and (A.2) both hold when
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(i) ldik = rdi/p, i = 0, 1, ..., t.

(ii) T ′
dV

−1/2pr⊥(1np)V
−1/2Td, T

′
dV

−1/2pr⊥(1np)V
−1/2Fd and F ′

dV
−1/2pr⊥(1np)V

−1/2Fd are in-

variant under any permutation of test treatments.

Using the equality

V −1/2pr⊥(1np)V
−1/2 = Inp −

θ

1 + θp
In ⊗ Jp×p −

1

(1 + θp)pn
Jnp×np, (A.3)

it’s easy to see that the matrices inside the last three parentheses in (A.2) have the same form

 am fm1′t

cm1t (bm − em)It + emJt

 ,m = 1, 2, 3.

For
∑N

i=1 S̃
′
iT

′
dV

−1/2pr⊥(1np)V
−1/2TdS̃i,

a1 = N

(
rd0 −

θ

1 + θp

n∑
u=1

n2
d0u − 1

(1 + θp)pn
r2d0

)

b1 =
N

t

(
np− rd0 −

θ

1 + θp

t∑
i=1

n∑
u=1

n2
diu − 1

(1 + θp)pn

t∑
i=1

r2di

)

c1 = f1 = −a1
t

e1 = − b1
(t− 1)

+
a1

t(t− 1)
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and for
∑N

i=1 S̃
′
iT

′
dV

−1/2pr⊥(1np)V
−1/2FdS̃i,

a2 = N

(
md00 −

θ

1 + θp

n∑
u=1

nd0uñd0u − rd0r̃d0
(1 + θp)pn

)

b2 =
N

t

(
t∑

i=1

mdii −
θ

1 + θp

t∑
i=1

n∑
u=1

ndiuñdiu − 1

(1 + θp)pn

t∑
i=1

rdir̃di

)

c2 = −a2
t

f2 =
N

t

(
rd0
p

− ld01 −md00 +
θ

1 + θp

n∑
u=1

nd0uñd0u +
rd0r̃d0

(1 + θp)pn

)

e2 = −b2 + f2
t− 1

and for
∑N

i=1 S̃
′
iF

′
dV

−1/2pr⊥(1np)V
−1/2FdS̃i,

a3 = N

(
r̃d0 −

θ

1 + θp

n∑
u=1

ñ2
d0u −

r̃2d0
(1 + θp)pn

)

b3 =
N

t

(
n(p− 1)− r̃d0 −

θ

1 + θp

t∑
i=1

n∑
u=1

ñ2
diu − 1

(1 + θp)pn

t∑
i=1

r̃2di

)

c3 = f3 =
N

t

(
−p− 1

p
r̃d0 +

θ

1 + θp

n∑
u=1

ñ2
d0u +

r̃2d0
(1 + θp)pn

)

e3 =
N

t(t− 1)

{
−n

p
(p− 1)2 +

2(p− 1)

p
r̃d0 +

θ

1 + θp

(
t∑

i=1

n∑
u=1

ñ2
diu −

n∑
u=1

ñ2
d0u

)

+
1

(1 + θp)pn

(
t∑

i=1

r̃2di − r̃2d0

)}
.
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Notice that if
∑t

i=1

∑n
u=1 ñ

2
diu is decreased by some amount, the increment for the matrix∑N

i=1 S̃
′
iF

′
dV

−1/2pr⊥(1np)V
−1/2FdS̃i is proportional to

 0 0

0 pr⊥(1t)



which is a nonnegative definite matrix. Thus we would like to minimize
∑t

i=1

∑n
u=1 ñ

2
diu over

d ∈ Ωt+1,n,p. The minimum is attained when ñdiu is binary for i > 0 and the corresponding

minimum is n(p − 1) − r̃d0. Similarly, we would like to replace
∑t

i=1

∑n
u=1 n

2
diu therein by its

own minimum over d ∈ Ωt+1,n,p. The minimum of the latter is np− rd0 and is obtained when

ndij is binary for i > 0. Four values with relevant adjustments are shown below:

b̃1 =
N

t

((
1− θ

1 + θp

)
(np− rd0)−

1

(1 + θp)pn

t∑
i=1

r2di

)

ẽ1 =− b̃1
(t− 1)

+
a1

t(t− 1)

b̃3 =
N

t

((
1− θ

1 + θp

)
(n(p− 1)− r̃d0)−

1

(1 + θp)pn

t∑
i=1

r̃2di

)

ẽ3 =
N

t(t− 1)

{
n

p
(p− 1)2 +

(
θ

1 + θp
− 2(p− 1)

p

)
(n(p− 1)− r̃d0)

−
r̃2d0

(1 + θp)pn
− θ

1 + θp

n∑
u=1

ñ2
d0u +

1

(1 + θp)pn

t∑
i=1

r̃2di

}
.

It can be verified that a3 > 0, b̃3 − ẽ3 > 0 and a3b̃3 + (t− 1)a3ẽ3 − tc23 > 0. So the updated∑N
i=1 S̃

′
iF

′
dV

−1/2pr⊥(1np)V
−1/2FdS̃i, with b3 and e3 replaced by b̃3 and ẽ3 respectively, is a
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positive definite matrix and its inverse has the same form as itself when a3, b̃3, c3, and ẽ3 are

replaced by a4, b4, c4, and e4. Here

a4 =
b̃3 + (t− 1)ẽ3

a3b̃3 + (t− 1)a3ẽ3 − tc23

b4 =
a3b̃3 + (t− 2)a3ẽ3 − (t− 1)c23

(b̃3 − ẽ3)(a3b̃3 + (t− 1)a3ẽ3 − tc23)

c4 =
−c3

a3b̃3 + (t− 1)a3ẽ3 − tc23

e4 =
c23 − a3ẽ3

(b̃3 − ẽ3)(a3b̃3 + (t− 1)a3ẽ3 − tc23)
.

The related inverse matrix can be expressed as D + c4Jt+1, where

D =

 a4 − c4 0

0 (b4 − e4)It + (e4 − c4)Jt

 .

Note that c4 ≥ 0 due to c3 ≤ 0, we have

(
N∑
i=1

S̃′
iT

′
dV

−1/2pr⊥(1np)V
−1/2FdS̃i

)

×

(
N∑
i=1

S̃′
iF

′
dV

−1/2pr⊥(1np)V
−1/2FdS̃i

)−( N∑
i=1

S̃′
iF

′
dV

−1/2pr⊥(1np)V
−1/2TdS̃i

)

≥

(
N∑
i=1

S̃′
iT

′
dV

−1/2pr⊥(1np)V
−1/2FdS̃i

)
D

(
N∑
i=1

S̃′
iF

′
dV

−1/2pr⊥(1np)V
−1/2TdS̃i

)
. (A.4)
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The equality in (A.4) will hold when ldi1 = rdi/p, i = 0, 1, ..., t. By (A.1),(A.2) and (A.4), we

have

Tr(M−1
d ) ≥ Tr(M̄−1

d ) ≥ Tr(M̃−1
d ) (A.5)

with both equalities hold when the three conditions in this lemma hold. Here M̃d = xI + yJ ,

where

x =
1

N

(
b̃1 − ẽ1 − (b2 − e2)

2(b4 − e4)
)

y =
1

N

(
ẽ1 − c22(a4 − c4)− e2(b2 − e2 − f2)(b4 − e4)− f2

2 (e4 − c4)
)
.

Since M̃d has eigenvalues of x with multiplicity t−1 and x+ ty with multiplicity 1, it is enough

to prove x0 = t(t− 1)x and y0 = t(x+ ty). By direct calculation, we have

b2 − e2 =(tb2 + f2)/(t− 1)

=
N

t(t− 1)

{
t

t∑
i=1

mdii +
rd0
p

− ld01 −md00 −
θt

1 + θp

t∑
i=1

n∑
u=1

ndiuñdiu

− t

(1 + θp)pn

t∑
i=1

rdir̃di +
θ

1 + θp

n∑
u=1

nd0uñd0u +
rd0r̃d0

(1 + θp)pn

}
, (A.6)
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x+ ty =
1

N

(
b̃1 + (t− 1)ẽ1 − tc22(a4 − c4)− tf2

2 (e4 − c4)− f2
2 (b4 − e4)

)
=

ã1
Nt

− tc22(b̃3 + (t− 1)ẽ3 + c3) + f2
2 (a3 + tc3)

N [a3b̃3 + (t− 1)a3ẽ3 − tc23]

=
1

t

(
rd0 −

θ

1 + θp

n∑
u=1

n2
d0u −

r2d0
(1 + θp)pn

)

− 1

t

{
(n(p− 1)− r̃d0)

(
md00 −

θ

1 + θp

n∑
u=1

nd0uñd0u − 1

(1 + θp)pn
rd0r̃d0

)2

+ r̃d0

(
rd0
p

− ld01 −md00 +
θ

1 + θp

n∑
u=1

nd0uñd0u +
1

(1 + θp)pn
rd0r̃d0

)2}

×

{
n(p− 1)

(
r̃d0 −

θ

1 + θp

n∑
u=1

ñ2
d0u −

r̃2d0
(1 + θp)pn

)
−

r̃2d0
p

}−1

. (A.7)

the lemma follows by noting b4 − e4 = 1/(b̃3 − ẽ3) and b̃1 − ẽ1 = (t2b̃1 − a1)/(t(t− 1)). ♢

The following propositions would be helpful in establishing (2.29) in Lemma 11. The nota-

tions in Lemmas 10 and 11 would be adopted.

Proposition 1. When ξ2 = ξ3 = r̃d0 and (2.29) holds for t0, (2.29) will still hold for any t > t0

while other parameters keep unchanged.

Proof. First of all, (2.29) is equivalent to the following two conditions:

x̃0 − (t− 1)y0 ≥ 0 (A.8)

x̃0Θ2 − (t− 1)y0Θ1 ≥ 0. (A.9)
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By direct calculation, we have

∂x̃0
∂t

=

(
1− θ

1 + θp

)
(np− rd0)− 2

θ

1 + θp
(n(p− 1)− r̃d0)

β̃1
γ̃1

+

(
1− θ

1 + θp

)
(n(p− 1)− r̃d0)

(
β̃1
γ̃1

)2

=

(
1− θ

1 + θp

)
(n(p− 1)− r̃d0)

( β̃1
γ̃1

− θ

1 + θp− θ

)2

−
(

θ

1 + θp− θ

)2

+
p

p− 1


≥ 0

and

∂Θ1

∂t
=

n(p− 1)− r̃d0
γ̃21

(
θ

1 + θp
γ̃1 −

(
1− θ

1 + θp

)
β̃1

)
=

((1 + θp)(θ + p)− θ)(n(p− 1)− r̃d0)(2r̃d0 − n(p− 1))

(1 + θp)2pγ̃21

≤ 0.

By observing that y0 and Θ2 are invariant with respect to t, the proposition is proved. ♢

Proposition 2. When 3 ≤ p ≤ t+ 1 and r̃d0 ≥ n, (2.30) holds for any value of θ.
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Proof. First of all, set ξ1 = r2d0/n, ξ2 = r̃d0 and ξ3 = r̃d0. In the following, the notation u ∝ v

stands for u = f(θ, t, n, p, rd0, r̃d0)v with f > 0 for any d ∈ Ωt+1,n,p and θ ≥ 0. Note that the

form of f may vary from line to line. Now, we have

∂α̃1

∂θ
∝ p− t− rd0

n
≤ 0

∂β̃1
∂θ

∝ (n(p− 1)− r̃d0)(t+
rd0
n

− p) + r̃d0(
rd0
n

− 1) ≥ 0

∂γ̃1
∂θ

∝ n(p− 1)(p− 1− t) + r̃d0(t− 2p+ 3) ≤ 0

∂α2

∂θ
= 0

∂β2
∂θ

∝ 1− rd0
n

≤ 0

∂γ2
∂θ

∝ r̃d0
n

− 1 ≥ 0.

Thus,

∂x̃0
∂θ ≤ 0 ∂y0

∂θ ≥ 0 ∂Θ1
∂θ ≥ 0 ∂Θ2

∂θ ≤ 0. (A.10)

Consequently,

∂2H(
r2d0
n , r̃d0, r̃d0, θ)

∂ξi∂θ
≤ 0, i = 1, 2, 3, (A.11)

for any value of θ. So it is enough to show

∂H(
r2d0
n , r̃d0, r̃d0,∞)

∂ξi
≥ 0, i = 1, 2, 3. (A.12)

Which is a direct result from Propositions A.3,A.4 and A.5 in Hedayat and Yang (2005). ♢
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Proposition 3. When p = t+ 1 ≥ 3, r̃d0 ≤ n and rd0 ≥ n, (2.30) holds for any value of θ.

Proof. First of all, set ξ1 = r2d0/n, ξ2 = r̃d0 and ξ3 = r̃d0 and let x = rd0/n, then x ∈ [1, p/(p−1)]

and we have

∂α̃1
∂θ ≤ 0, ∂β̃1

∂θ ≥ 0, ∂γ̃1
∂θ ≤ 0, ∂β2

∂θ ≤ 0. (A.13)

By setting θ to be 0 or ∞ according to (A.13), we have

α̃1 ≥t(1− 1

p
)(np− rd0)− rd0 +

r2d0
pn

=
n

p

(
(p− 1)2(p− x)− x(p− x)

)
,

β̃1 ≤
t

p
(n(p− 1)− r̃d0)−

r̃d0
p

=
n

p

(
(p− 1)2 − (p− 1)x

)
,

γ̃1 ≥(p− p+ 1

p
)(n(p− 1)− r̃d0)−

n

p
(p− 1)2 +

r̃d0
p

=
n

p

(
p(p− 1)(p− 2)− (p2 − 1)(p− 2)

p
x

)
,

β2 ≥
r̃d0
p

=
n

p

p− 1

p
x.

Also, it is obvious that

α2 =rd0 −
r2d0
pn

=
n

p
(p− x)x

γ2 ≤r̃d0 =
n

p
(p− 1)x.
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In the following, we try to prove the following sufficient conditions for the lemma

x̃0 − (t− 1)y0 ≥ 0 (A.14)

x̃0
Θ1

− (t− 1)
y0
Θ2

≥ 0 (A.15)

For (A.14), when p ≥ 4, we have

p

n
(x̃0 − (t− 1)y0) ≥(p− 1)(p− 1− x)(p− x) +

(p− 1)(p− 2)

p2
x− ((p− 1)2 − (p− 1)x)2

p(p− 1)(p− 2)− (p2−1)(p−2)
p x

≥(p− 1)(p− 1− x)(p− x− 5

2p
) +

(p− 1)(p− 2)

p2
x ≥ 0

In the above, we used the inequality p(p− 1− x)/(p2(p− 2)− (p2 − p− 2)x) ≤ 5/2p for p ≥ 4

and x ∈ [1, p/(p− 1)]. When p = 3, we have

p

n
(x̃0 − (t− 1)y0) ≥2(3− x)(2− x) +

2

9
x− (4− 2x)2

6− 8x/3

≥2(3− x)(2− x) +
2

9
x− 3

8
(4− 2x)

=10.5− 9x+ 2x2 − x

36
≥ 0
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For (A.15), when p ≥ 4, we have

p

n

(
x̃0
Θ1

− (t− 1)
y0
Θ2

)
≥2

5
p(p− 1)2(p− x)− (p− 1)(p− 1− x)

− p(p− 8

5
)(p− x)x+

(p− 1)(p− 2)

p
x

= : f(x)

Since

f ′(x) ≤− 2

5
p(p− 1)2 − p(p− 8

5
)(p− 8

3
)− 1 ≤ 0,

applying (p− 1)2 ≥ p(p− 2), we have

f(x) ≥ f(
p

p− 1
) ≥2

5
p2(p− 1)(p− 2)− p2(p− 8

5
)− (p− 1)2 + 2p− 2

≥p2

5
(2p2 − 11p+ 7) ≥ 0

for p ≥ 5. When p = 4, direct calculation gives f(p/(p − 1)) = 19/15 > 0. When p = 3, we

have

p

n

(
x̃0
Θ1

− (t− 1)
y0
Θ2

)
≥168− 274x+ 148x2 − 26x3

12− 6x
≥ 0

for x ∈ [1, 1.5]. ♢
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Proposition 4. When (i) 4 ≤ p = t+1 and rd0 ≤ n or (ii) p = 3, t = 2 and 0.6306 ≤ rd0/n ≤ 1,

(2.31) holds for any value of θ.

Proof. First of all, set ξ1 = rd0, ξ2 = r̃d0 and ξ3 = r̃d0 and let x = rd0/n, then x ∈ (0, 1] and we

have

∂α̃1
∂θ ≥ 0 ∂β̃1

∂θ ≤ 0 ∂γ̃1
∂θ ≤ 0 ∂α2

∂θ ≤ 0 ∂β2

∂θ ≥ 0 ∂γ2
∂θ ≤ 0 (A.16)

By setting θ to be 0 or ∞ according to (A.16), we have

α̃1 ≥t(np− rd0)−
(np− rd0)

2

pn
− rd0 +

r2d0
pn

=
n

p
p(p− 2)(p− x),

β̃1 ≤
(np− rd0)(n(p− 1)− r̃d0)

pn
− rd0r̃d0

pn

=
n

p
(p− 1)(p− 2x),

γ̃1 ≥(p− p+ 1

p
)(n(p− 1)− r̃d0)−

n

p
(p− 1)2 +

r̃d0
p

=
n

p

(
p(p− 1)(p− 2)− (p2 − 1)(p− 2)

p
x

)
,

α2 ≤rd0 −
r2d0
pn

=
n

p
(p− x)x,

β2 ≥
rd0r̃d0
pn

=
n

p

p− 1

p
x2,

γ2 ≤r̃d0 −
r̃2d0

n(p− 1)
=

n

p
(p− 1)

(
1− x

p

)
x ≤ n

p
(p− 1)x.
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When p ≥ 4, in view of p(p− 2x)/(p2(p− 2)− (p2 − p− 2)x) ≤ 2/p, we have

p

n
(x0 − (t− 1)y0) ≥p(p− 2)(p− x)− 2

p
(p− 1)(p− 2x)− (p− 2)(p− x)x+

(p− 1)(p− 2)

p2
x3

≥(p− 2)(p− x)2 − 2(p− 2x) ≥ 0.

Also,

p

n
(
x0
Θ1

− (t− 1)
y0
Θ2

) ≥p

2
p(p− 2)(p− x)− (p− 1)(p− 2x)− p(p− 2)(p− x) +

(p− 1)(p− 2)

p
x2

≥2p(p− x)− (p− 1)(p− 2x) ≥ 0.

When p = 3, we have

p

n
(x0 − (t− 1)y0) ≥(3− x)2 − 4(3− 2x)2

6− 8x/3
+

2

9
x3

≥(3− x)2 − 2(3− 2x) ≥ 0

for x ∈ (0, 1] and

p

n
(
x0
Θ1

− (t− 1)
y0
Θ2

) ≥
−36 + 78x− 34x2 + 4

3x
3

6− 4x
≥ 0

for x ∈ [0.6306, 1].

♢

Proposition 5. When p = t = 3 and rd0 ≤ n, (2.31) holds with any value of θ.
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Proof. First of all, set ξ1 = rd0, ξ2 = r̃d0 and ξ3 = r̃d0 and let x = rd0/n, then x ∈ (0, 1] and we

have

∂α̃1
∂θ ≤ 0, ∂β̃1

∂θ ≥ 0, ∂γ̃1
∂θ ≤ 0, ∂α2

∂θ ≤ 0, ∂β2

∂θ ≥ 0, ∂γ2
∂θ ≤ 0. (A.17)

By setting θ to be 0 or ∞ according to (A.17), we have

α̃1 ≥t(1− 1

p
)(np− rd0)− rd0 +

rd0
p

=
n

p
(18− 8x)

β̃1 ≤
t

p
(n(p− 1)− r̃d0)−

r̃d0
p

=
n

p

(
6− 8

3
x

)
γ̃1 ≥(t+ 1− t+ 2

p
)(n(p− 1)− r̃d0)−

n

p
(p− 1)2 +

r̃d0
p

=
n

p
(10− 4x)

α2 ≤rd0 −
r2d0
pn

=
n

p
(3x− x2)

β2 ≥
rd0r̃d0
pn

=
n

p

2

3
x2

γ2 ≤r̃d0 −
r̃2d0

n(p− 1)
=

n

p
(p− 1)

(
1− x

p

)
x ≤ n

p
2x.

Applying the inequalities, we have

p

n
(x̃0 − (t− 1)y0) ≥18− 8x− (6− 8x/3)2

10− 4x
− 2(3x− x2) +

4

9
x3

≥18− 8x− 3

5
(6− 8x/3)− 2(3x− x2) +

4

9
x3

=14.4− 12.4x+ 2x2 +
4

9
x3 ≥ 0
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for x ∈ (0, 1]. Also, we have

p

n

(
x̃0
Θ1

− (t− 1)
y0
Θ2

)
≥6− 6x+

8

3
x+

4

3
x2 ≥ 0

for x ∈ (0, 1].

♢
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