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SUMMARY

Nonlinear models have been widely applied to explore the characteristics of data in bio-

logical, medical, environmental, and agricultural areas. Among them, the class of exponential

regression models is of particular interest attributable to their capabilities of handling data in

dynamic population, drugs in the bloodstream, temperature, and some biomedical problems.

A majority of work has been accomplished to identify the optimal designs for nonlinear models.

Recently Yang developed the strategy to determine the upper bounds of the cardinality of design

support for nonlinear models. Unlike the traditional approximate design, where measurements

are taken at a single design point, and the usual clinical design, where all the subjects start

from the same time point, a new design setup which allows different starting points for each

subject is proposed in this dissertation. Both autocorrelated covariance structure and intraclass

correlation structure are adopted to address the correlations among the consecutive observa-

tions for a single subject. Multi-exponential models, in particular, one-compartment PK model

and general bi-exponential model, are studied in this dissertation. Theoretical results for the

design supports under equally spaced designs are provided for different models. It is found that

the optimal design under one-compartment PK model is a saturated design, while the support

size of the optimal design under the bi-exponential model with 4 parameters is no more than

5. Numerical results for unequally spaced designs are also obtained. Comparisons of design

efficiencies are presented at the end of each model.

ix
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INTRODUCTION
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1.1 Introduction to Optimal Design

Experimentation is widely used in evaluating physical objects, chemical formulations, struc-

tures, components, and materials. Before any experiment is carried out, a well planned design is

necessary to ensure the right type of data is collected and the desired precision of the results is

achieved. For example, we may want to evaluate the efficacy of a certain drug in a clinical trial.

An experimental design in this case typically includes what type of design should be adopted,

how many subjects will be recruited, how to setup the inclusion or exclusion criteria in the

screening process, which time points should samples be collected, etc. These are all within the

domain of experimental designs.

Optimal design is a class of experimental design that is optimal with respect to some ju-

diciously selected statistical criteria, a majority of which are constructed based on the Fisher

information matrix. (We omit the word “Fisher” in the rest of this dissertation for simplicity.)

It is well known that the information matrix is approximately proportional to the inverse of the

variance covariance matrix of the parameter estimates. Roughly speaking, a design maximizing

the information matrix will equivalently provide the parameter estimates with minimum vari-

ances. Different information matrix based optimality criteria have been proposed, such as A-,

D-, E-, Ψp−, etc. The details can be found in Hedayat (1), Fedorov (2), and Silvey (3).

Linear models and nonlinear models are two major categories of classical models which have

aroused great interest to statisticians. Due to the appealing and relatively simple structures

of linear models in which parameters and explanatory variables are multiplicative, quite a few

theorems have been developed to obtain the optimal designs for the linear models. These
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theorems and approaches serve as the fundamental tools in the optimal design area and will be

discussed in detail.

1.1.1 Approximate Design Theory

The approximate design theory was proposed by Kiefer (4) (5) and was originally developed

for the linear regression models.

Let B be any Borel field of subsets of design space X which includes X and all sets which

consist of a finite number of points, and let Ξ = {ξ} be any class of probability measures on B

which includes all probability measures with finite support.

For the general linear model:

y = f(x)′θ + ε,

where y is a t× 1 vector of observations, x can be either a scalar or a vector which represents

the explanatory variable(s) dependent on X. f(x) = (f1(x), . . . , fp(x)), where f1(x), . . . , fp(x)

are linearly independent real functions on X, and the range R of f(x) is a compact set in the

p-dimensional Euclidean space. θ is a p × 1 vector of unknown parameters, and ε is a t × 1

random error vector.

Then the information matrix is defined as

M(ξ) =

∫
X
f(x)′f(x)ξ(dx) = Eξf(x)′f(x).
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Suppose we take a total of n observations, and the design space is (x1, x2, . . . , xt). The

exact design states that n1 observations are allocated at x1, n2 observations at x2, . . . , and nt

observations at xt, such that
∑t

i=1 ni = n. The information matrix is thus

M(ξ) =
t∑
i=1

nif
′(xi)f(xi).

Alternatively, let ωi = ni/n be the proportion of observations assigned at xi, the information

matrix is thus

M(ξ) = n
t∑
i=1

ωif
′(xi)f(xi),

here n is a constant pre-determined before the design, thus M(ξ) is only dependent on∑t
i=1 ωif

′(xi)f(xi).

To summarize, under the approximate design theory, we may consider the discrete design

measure ξ as:

ξ =

 x1 x2 · · · xt

ω1 ω2 · · · ωt

.
The optimal design problem is that given a total of n observations, how to choose x1, . . . , xt

and ω1, . . . , ωt in order to maximize M(ξ) under a certain criterion.

There are both advantages and disadvantages of the approximate design theory over the

exact design theory. One major advantage is the simplicity in optimization over probabilities

compared to that over integers. Also the approximate design theory is feasible for an arbitrary

number of n. However, there are cases when the optimal designs are not discrete. Under such
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circumstances, we need to show that for any design ξ, there exists a discrete design ξ+ such

that M(ξ) = M(ξ+). Even when ξ is discrete, by converting the probabilities pi to observations

ni, i.e, npi = ni, ni is not necessarily an integer. In such cases, we may resort to a “nearby”

design and do some approximations.

1.1.2 Design Criteria

Some of the optimality criteria are constructed based on the information matrix, while

others are based on the variances of predictions. The major criteria are listed below:

(a) L-optimality

Definition 1. A design ξ∗ ∈ Ξ is L-optimal if and only if M(ξ∗) is non-singular and

min
ξ∈Ξ

L(M(ξ)−1) = L(M(ξ∗)−1),

where L is a nonnegative linear function.

(b) A-optimality

A-optimality is a special form of L-optimality if we let

L(M(ξ)−1) = tr(M(ξ)−1).

Definition 2. A design ξ∗ ∈ Ξ is A-optimal if and only if M(ξ∗) is non-singular and

min
ξ∈Ξ

tr(M(ξ)−1) = tr(M(ξ∗)−1).
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An A-optimal design minimizes the average variance of the parameter estimates.

(c) G-optimality

Definition 3. A design ξ∗ ∈ Ξ is G-optimal if and only if

min
ξ∈Ξ

max
x∈X

varξ ˆEYx = max
x∈X

varξ∗ ˆEYx,

where ˆEYx is the best linear unbiased estimator of EYx.

(d) D-optimality

Definition 4. A design ξ∗ ∈ Ξ is D-optimal if and only if M(ξ∗) is non-singular and

min
ξ∈Ξ

det(M(ξ)−1) = det(M(ξ∗)−1).

This criterion has the following implications:

(i) When normality is assumed, D-optimal design will minimize the volume of the con-

fidence region for the parameters estimates, which is equivalent to minimizing the

variance covariance matrix of the parameter estimates.

(ii) If we are interested in the full set of the parameters, D-optimality and G-optimality

are equivalent.

(iii) D-optimality is scale invariant. If there exists a linear transformation between two

sets of parameters, D-optimal design for one set of the parameters is also feasible for

the other set.
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(e) E-optimality

Definition 5. Let λξ1 ≥ λξ2 ≥ . . . ≥ λξp be the eigenvalues of M(ξ), a design ξ∗ ∈ Ξ is

E-optimal if and only if

max
ξ∈Ξ

λξp = λξ∗p .

In other words, an E-optimal design maximizes the minimum eigenvalue of the information

matrix. There are some statistical interpretations for this optimality criterion.

(i) In hypothesis testing of θ = 0, where θ is a vector of parameters, under the normality

assumption, we have the F statistics as follows:

F =
(θ̂)′M(ξ)θ̂/v

σ̂2
,

where σ̂2 is the estimate of the mean square error.

The power of the F test is thus (θ′M(ξ)θ)/p
σ̂2 . We may want to choose a design ξ∗ ∈ Ξ

which is able to maximize the power of the test. Since σ̂2 and p are known, maxi-

mization of the power is the same as maximizing (θ′M(ξ)θ).

The value of (θ′M(ξ)θ) varies with different sets of θ, subject to θ′θ = 1. One strategy

of maximizing (θ′M(ξ)θ) is to maximize its minimum attained with a certain set of

θ. By matrix theory, we have

min
θ:θ′θ=1

(θ′M(ξ)θ) = λξp . (1.1)
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So maximizing the minimum eigenvalue of the information matrix λξp which is attained

by an E-optimal design will simultaneously maximize the power of F test.

(ii) Suppose we have a linear transformation c′θ, where c = (c1, . . . , cp)
′. A design ξ∗ ∈ Ξ

which minimizes the maximum variance of the best linear unbiased estimator (b.l.u.e.)

of c′θ under the constraint c′c = 1, i.e,

min
ξ∈Ξ

max
c:c′c=1

var(c′θ̂) = σ2 min
ξ∈Ξ

max
c:c′c=1

c′M(ξ)−1c

= σ2 min
ξ∈Ξ

1

λξp

= σ2λξ∗p ,

is E-optimal.

(iii) From the geometric point of view, the confidence region for θ is defined as follows:

(θ − θ̂)′M(ξ)−1(θ − θ̂). (1.2)

Therefore the maximum expected semi axis of this ellipsoid is proportional to 1/λξp ,

which is the largest eigenvalue of M(ξ)−1, and the minimum expected semi axis is

proportional to 1/λξ1 , which is the smallest eigenvalue of M(ξ)−1. Thus the idea of

E-optimality is to minimize the largest expected semi axis of the the ellipsoid.
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1.1.3 Equivalence Theorem

Kiefer and Wolfowitz (4) (6), Kiefer (7) established the well known equivalence theorem

which has widespread applications in identifying the optimal design or verifying the optimality

of a given certain design.

Under the approximate design theory, we have each element of M(ξ) as

mij(ξ) =

∫
X
fi(x)fj(x)ξ(dx), i, j = 1, . . . , p.

When M(ξ) is non-singular, we can define

d(x, ξ) = f(x)′M(ξ)−1f(x).

Theorem 6. (Kiefer and Wolfowitz) Suppose X is compact, the following three statements are

equivalent:

(I) ξ∗ maximizes det M(ξ),

(II) ξ∗ minimizes maxx∈X d(x, ξ),

(III) maxx∈X d(x, ξ∗) = p.

White (8) extended the general equivalence theorem to nonlinear models. For the nonlinear

model fYx(Y, x, θ1, . . . , θp), let

Iij(x) = EYx{(
∂

∂θi
log fYx)(

∂

∂θj
log fYx)}.
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Define

mij(ξ) =

∫
X
Iij(x)ξ(dx).

We can further define

d(x, ξ) = tr{I(x)M(ξ)−1}.

Theorem 7. (White) The following conditions for a design measure ξ∗ are equivalent:

(I) ξ∗ maximizes det M(ξ),

(II) ξ∗ minimizes maxx∈X d(x, ξ),

(III) maxx∈X d(x, ξ∗) = p.

1.1.4 Carathéodory’s Theorem

Definition 8. (Convex Hull) Let S be any set, then the convex hull of S is

con(s) = {x : x =
k∑
i=1

αixi, xi ∈ S, 0 ≤ αi ≤ 1,
k∑
i=1

αi = 1, k = 1, 2, . . .}.

Definition 9. (Dirac measure) ξx is Dirac if P (X = x) = 1 and P (X 6= x) = 0.

Theorem 10. (Carathéodory’s Theorem) Let S ⊂ Rn, then any point x in con(s) can be written

as x =
∑n+1

i=1 αixi, where xi ∈ S, αi ≥ 0,
∑n+1

i=1 αi = 1. Moreover if x is an extreme point of

con(s) then x =
∑n

i=1 αixi, where xi ∈ S, αi ≥ 0,
∑n

i=1 αi = 1.

An upper bound for the support size of a design measure can be given in Theorem 10.

Specifically, let M = con{M(ξx) : ξx is Dirac}. If M(ξ) ∈ M, and M(ξ) is a p × p matrix, it
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can be written as a linear combination of at most p(p+ 1)/2 + 1 information matrices of Dirac

designs. Thus the optimal design is based on at most p(p+ 1)/2 + 1 points.

1.2 On the de la Garza Phenomenon

Early works such as general equivalence theorem by Kiefer (4) (6) (7), geometric method

by Elfving (9) and the discussions of efficiency by Hoel (10) contain substantial contributions

for the optimal designs under linear models.

On the other hand, with the developing algorithms and numerical capabilities, one may be

more interested in determining the number of support points in the optimal design class instead

of theoretically obtaining the optimal design points. With some knowledge of the support size,

it is relatively easy to identify the optimal design using existing algorithms.

Given a linear model with p parameters, in order to have all the parameters estimable, the

number of support points is at least p. On the contrary, according to Carathéodory’s Theorem,

the upper bound is p(p+ 1)/2 + 1.

The theorem proposed by de la Garza (11) and later discussed in detail by Pukelsheim (12)

and named the de la Garza Phenomenon by Khuri et al (13) stated that given a (p − 1)th-

degree polynomial regression model (p parameters in total) with i.i.d random errors, for any

n point design where n > p, there exists a design with exactly p support points such that the

information matrix of the latter one is not inferior to that of the former one under the Loewner

ordering.

For nonlinear models with two parameters, Yang and Stufken (14) proposed an approach to

identify the subclass of design: for any design ξ which does not belong to this class, there is a
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design in the class with an information matrix that dominates ξ under the Loewner ordering. It

was then generalized to nonlinear models with an arbitrary number of parameters (Yang (15)).

The strategy is given as follows: suppose we have a nonlinear regression model with response

variables belonging to the exponential family. In the framework of the approximate design

theory, we can have ξ = {(ci, ωi), i = 1, . . . , n}, where ci is a one-to-one transformation of the

design point xi. Then the information matrix for θ can be written as

M(ξ) = P (θ)(
n∑
i=1

ωiC(θ, ci))(P (θ))T , (1.3)

where P (θ) is a p× p nonsingular matrix that only depends on θ and

C(θ, ci) =



Ψ11(ci) Ψ12(ci) · · · Ψ1p(ci)

Ψ12(ci) Ψ22(ci) · · · Ψ2p(ci)

...
...

. . .
...

Ψ1p(ci) Ψ2p(ci) · · · Ψpp(ci)


.

Suppose we have two designs ξ = {(ci, ωi), i = 1, . . . , n} and ξ∗ = {(c̃j , ω̃j), j = 1, . . . , ñ}.

Since P (θ) does not depend on ξ, M(ξ) ≤M(ξ∗) is equivalent to
∑n

i=1 ωiC(θ, ci) ≤
∑ñ

j=1 ω̃jC(θ, c̃j)

under the Loewner ordering.
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One sufficient condition to yield M(ξ) ≤ M(ξ∗) is that all the off-diagonal elements of the

two matrices are equal, while at least one diagonal element of one matrix is not greater than the

corresponding one of the other matrix. Specifically it is illustrated by the following equations:

n∑
i=1

ωiΨlt(ci) =
ñ∑
j=1

ω̃jΨlt(c̃j),

for 1 ≤ l ≤ t ≤ p except for some l = t

n∑
i=1

ωiΨll(ci) ≤
ñ∑
j=1

ω̃jΨll(c̃j).

The detailed approach is initiated by the definition of fl,t such that

fl,t(c) =


Ψ′l(c) t = 1, l = 1, . . . , k,

(
fl,t−1(c)
ft−1,t−1(c))′ 2 ≤ t ≤ k; t ≤ l ≤ k.

where Ψ1, . . . ,Ψk are functions assumed to be infinitely differentiable defined on [A,B] and all

fl,l have no zero value on [A,B].
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The structure of fl,t can be expressed as follows:



f1,1 = Ψ′1

f2,1 = Ψ′2 f2,2 =
(f2,1
f1,1

)′
f3,1 = Ψ′3 f3,2 =

(f3,1
f1,1

)′
f3,3 =

(f3,2
f2,2

)′
f4,1 = Ψ′4 f4,2 =

(f4,1
f1,1

)′
f3,3 =

(f4,2
f2,2

)′
f4,4 =

(f4,3
f3,3

)′
...

...
...

. . .


.

Theorem 11. (Yang) For a nonlinear regression model, suppose the information matrix can

be written as (1.3) and ci ∈ [A,B]. Rename all distinct Ψlt, 1 ≤ l ≤ t ≤ p, to Ψ1, . . . ,Ψk

such that (i) Ψk is one of Ψll, 1 ≤ l ≤ p and (ii) there is no Ψlt = Ψk for l < t. Let

F (c) =
∏k
l=1 fl,l(c), c ∈ [A,B]. For any given design ξ, there exists a design ξ∗ such that

M(ξ) ≤ M(ξ∗). The support size of ξ∗ varies with different values of k and F (c) and is

discussed in details here:

(a) when k is odd and F (c) < 0, ξ∗ is based on at most (k + 1)/2 points including point A.

(b) when k is odd and F (c) > 0, ξ∗ is based on at most (k + 1)/2 points including point B.

(c) when k is even and F (c) > 0, ξ∗ is based on at most k/2 + 1 points including points A and

B.

(d) when k is even and F (c) < 0, ξ∗ is based on at most k/2 points.
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We can illustrate this approach by a simple example. Consider the Emax model,

η(x, θ) = θ0 +
θ1x

x+ θ2
.

The information matrix can be decomposed as (1.3) with

P (θ) =


1 0 0

1
θ2
− 1
θ2

0

1
θ22
− 1
θ22

1
θ1θ2

 ,

and

C(θ, ci) =


1 ci c2

i

ci c2
i c3

i

c2
i c3

i c4
i

 ,

where ci = 1/(xi+ θ2). Let Ψ1 = c,Ψ2 = c2,Ψ3 = c3,Ψ4 = c4. We can find that f1,1 = 1, f2,2 =

2, f3,3 = 3, f4,4 = 4, thus F (c) = 24. By situation (c), we have at most 3 points in the optimal

design including the boundary points.

1.3 Literatures on Optimal Designs for Nonlinear Models

Nonlinear models have been extensively applied to explore the characteristics of data in

biological, medical, environmental, and agricultural areas, see Seber and Wild (16) for different

kinds of nonlinear models and their statistical inferences. In particular, a number of nonlin-

ear models have been acknowledged in pharmacokinetics (PK) and pharmacodynamics (PD)

analysis to model the time-concentration relationship after the administration of a drug, in
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order to characterize the pharmacological processes within the body, typically, the absorption,

distribution, metabolism, and excretion (ADME) of the drug. Comprehensive introductions to

PK/PD concepts and models can be found in a variety of books, see Gabrielsson and Weiner

(17), Bonate (18), and Rosembaum (19). Among them, the class of exponential regression mod-

els is of particular interest attributable to their capabilities of handling data in compartmental

systems.

Determinations of optimal designs for nonlinear models are not as well-established as those

for linear models due to the dependence of the information matrix on the unknown parameters.

As global optimization can hardly be obtained for nonlinear models, locally optimal designs have

been proposed which are optimal in the neighborhood of the given values of the parameters

(Chernoff (20)). Ford, Torsney and Wu (21) reduced the problem to a canonical form and

constructed the locally optimal designs for nonlinear models within the exponential family.

In addition to Theorem 6, 7, 10, 11, there are a lot of literatures which focus on derivations

of optimal designs for specific nonlinear models, see Hedayat, Zhong and Nie (22) for nonlinear

models with two parameters. Among all kinds of nonlinear models, PK/PD models are of

great interest due to their widespread applications in clinical studies. Li and Majumdar (23)

worked on the one-compartment PK model. Fang and Hedayat (24) identified the D-optimal

designs for the blending of Emax and one-compartment PK model. Ogungbenro et al (25)

considered the unbalanced designs under PK/PD models. Zocchi and Atkinson (26) explored

the multinomial logistic models in dose level experiments. Gueorguieva et al (27) studied

the multivariate response PK models. Some other models have also been addressed. Li and
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Majumdar (28) investigated the logistic models with three and four parameters. Konstantinou

et al (29) analyzed the two parameter survival models. Dette et al (30) discussed the D-optimal

designs for exponential regression models.
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2.1 Design Setup with Different Starting Points for Each Subject

The approximate design in which all subjects are measured once at a chosen design point

might not be suitable for some clinical studies. On the other hand, the appropriateness of the

usual clinical designs where measurements are taken at the same time points throughout the

study for each subject is also questionable. In such cases when some subjects are only available

at the early stages of the study, while others are available at the late stages, the data collected

under the usual clinical design setup will most likely end up with many missing values.

To address this problem, we propose a special design which allows different starting points

for each subject. In other words, after drug administration, the first sample of each subject can

be taken at an arbitrary time point. This design setup shares some extent of similarities with

the design used in growth curve models, see Abt et al (31) (32). But differently, we assume

that subsequent samples for each subject are drawn at the following k time points. Here k

is a constant chosen by the researcher which is assumed to be the same for all the subjects.

Observations from different subjects are assumed to be independent.

Here we consider the equally spaced design with the support

0, 1, 2, · · · , n,

which refers to the starting points of the subjects.

A simple example is presented here to illustrate the idea. Let k = 5, 50% of the subjects

will start to be measured from time 5, and then they are continuing to be measured at time 6,
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7, 8, 9, 10. 40% of the subjects will start from time 8, thus they are measured at time 8, 9, 10,

11, 12, 13. The remaining 10% will start from time 15, thus they are measured at time 15, 16,

17, 18, 19, 20. Overlapping is allowed under this design setup.

We assume that no distinctions is present among the subjects. After we come up with the

design with several starting points and the associated weights, the allocations of subjects to

different groups are entirely due to the preferences of the subjects or the researchers, which

have no statistical interpretations.

We now present the design in a statistical way. Suppose the total number of subjects is N ,

and ni is the number of subjects that start at time point ti, 0 ≤ ti ≤ n. Let ωi = ni/N , we

represent the design ξ by the measure

ξ =

 0 1 · · · n

ω0 ω1 · · · ωn

,
where

∑n
i=0 ωi = 1.

2.2 Covariance Structure

The autocorrelated covariance structure or the intraclass correlation structure is relevant

here since each subject is measured at k + 1 consecutive time points. We will assume that for

the observations taken from time ti through time ti + k, the covariance structure is given by

Σi = σ2((ρ|r−s|))ti≤r,s≤ti+k
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for the autocorrelated covariance structure, and

Σi = σ2[(1− ρ)I + ρJ ]

for the intraclass correlation structure, where I is the identity matrix, and J is a matrix of

ones.

Since Σi is assumed to be the same for all the subjects, we omit i in the later discussions.

The autocorrelated covariance structure assumes higher correlations between closer obser-

vations and lower correlations between farther observations, while the intraclass correlation

structure assumes that the same correlation is present between every two observations within

the same subject. We will study both in the later discussions.

2.3 Locally Optimal Design for General Nonlinear Model

Consider the general nonlinear model:

y = f(t, θ) + ε.

Here y is a vector of all observations. Take a design with 2 starting points as an example,

suppose ni subjects start at time ti and nj subjects start at time tj , then

y = (y1,ti , y1,ti+1, · · · , y1,ti+k, y2,ti , · · · , yni,ti+k, y1,tj , · · · , y1,tj+k, · · · , ynj ,tj+k)
′.
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t = (0, 1, · · · , n+ k) are the time points, θ = (θ1, · · · , θp) is a vector of p unknown parameters,

and ε is the corresponding random error vector.

Based on the locally optimal design theory, we can derive the information matrix for the

given nominal values of θ. To reduce the possibilities of misspecifications of θ, we may consult

historical data in order to obtain more accurate guesses. Alternatively, a pilot study can be

conducted to estimate the unknown parameters and the results will serve as the initial guesses.

2.4 Information Matrix for the Nonlinear Model with Covariance Structure

Let θ̃ = (θ̃1, . . . , θ̃p) and θ̃j be the initial guess of θj , j = 1, . . . , p, and Σ be the covariance

structure among observations for one single subject. Then the information matrix for one

subject from ti through ti + k is

Mi = GTi Σ−1Gi,

where

Gi =


∂f(ti,θ̃1)
∂θ1

· · · ∂f(ti,θ̃p)
∂θp

...
. . .

...

∂f(ti+k,θ̃1)
∂θ1

· · · ∂f(ti+k,θ̃p)
∂θp

 . (2.1)

For an exact design ξ with nonnegative integers ni, M(ξ) is given by

M(ξ) =
n∑
i=0

niMi.
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After dropping N , M(ξ) can be written as

M(ξ) =
n∑
i=0

ωiMi. (2.2)

In the following chapters, we will implement the design setup on mono-exponential model

and bi-exponential model.



CHAPTER 3

OPTIMAL DESIGNS FOR MONO-EXPONENTIAL MODEL
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3.1 Introduction and Application

There are various situations in which explanatory variables are nonlinearly related. Among

them, the class of exponential regression models is of particular interest due to their capabilities

of handling data in dynamic population, drugs in the bloodstream, temperature, and some

biomedical problems.

In biological science, the amount of a protein or substance usually follows an exponential

model. If there are more than one process in the lifetime, it will be modeled by a multi-

exponential model. For example, a single radioactive decay mode of a nuclide is described

by a mono-exponential model. If two decay modes exist, for the second decay mode, another

exponential term will be added, thus resulting in a bi-exponential model.

The simplest mono-exponential model is the one-compartment PK model with single dose

and first order elimination rate. In a PK study, researchers are often interested in the ADME

of the drug. ADME are often used to describe the disposition of a compound. In particular, all

of the four aspects affect the kinetics of the drug as well as the drug levels. As a result, they

will influence the performance and pharmacological activities of the drug.

Before the certain compound is taken up by the target cells, it has to reach a tissue through

the bloodstream - usually via the digestive tract. Absoption critically determines the bioavail-

ability of the compound. Oral administration of the drug is most preferable, but in case drugs

are absorbed poorly when taken orally, some less desirable ways will be adopted, such as intra-

venously or by inhalation. After the absoption, the compound has to be carried to its effector

site via the bloodstream. Distribution is defined as the reversible transfer of a drug between
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two compartments. Right after the drug enters the body, the compound starts to break down

to metabolites, and this process is called metabolism. Excretion is the final step when the

compound and its metabolites are removed from the body, usually through the kidneys or in

the feces.

Understanding of the ADME of a drug is critical in the early phase of a clinical trial, when

the toxicity of the compound is mainly studied. Therefore compartment models are important

in describing the pharmacokinetics of a drug, which depict and predict the concentration-time

curve.

One-compartment PK model makes the assumptions that the drug enters the central com-

partment (or compartment one) from somewhere outside of the body, then leaves the central

compartment at a constant rate. It regards the entire body as one entity, assuming that the

drug achieves instantaneous distribution throughout the body and equilibrates instantaneously

between tissues. Thus the drug concentration-time profile shows a monophasic response as in

Figure 1.
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Figure 1: Plasma concentration (Cp) versus time profile of a drug showing a one-compartment
model. (b) Time profile of a one-compartment model showing log Cp versus time.
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Suppose the amount of drug A is decreasing at a rate that is proportional to the amount of

drug A remaining in the body, denoted as A(t), where t refers to the time. Then the elimination

rate of drug A with respect to time t can be described by the following differential equation:

dA(t)

dt
= −λA(t).

Thus the solution of A(t) is

A(t) =
D

V
e−λt, (3.1)

where D is the dose of the drug administered, V is the volume of distribution, which is the

theoretical volume that a drug would have to occupy to provide the same concentration as it

currently is in blood plasma, and λ is the elimination rate.

3.2 Model Setup

As D represents the drug dose and thus can be considered as a constant, only V and λ are

of interest. It is more convenient to replace D
V by a single parameter a. Thus the model (3.1)

can be rewritten as

y = ae−λt + ε

where t = (0, 1, · · · , n+ k).

Theorem 12. Under model (3.1), a locally optimal design ξ has at most 2 starting points, and

0 is one of the starting points.
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We start proving the theorem for two measurements (k = 1) and then extend the proof to

the case of k + 1 measurements.

3.3 Case of Two Measurements

We first consider the case with only two subsequent measurements, i.e, k = 1. Therefore,

for each subject, samples will be taken at time ti and ti + 1.

In this case, both intraclass correlation structure and the autocorrelated covariance structure

are the same as follows:

Σ =

 1 ρ

ρ 1

.
According to (2.2), we have shown that M(ξ) is the weighted sum of Mi, where Mi =

GTi Σ−1Gi, i = 0, . . . , n. From (2.1) we have

GTi =

 e−λti e−λ(ti+1)

−atie−λti −a(ti + 1)e−λ(ti+1)

.

By substituting −λti by a single parameter ci, M(ξ) can be decomposed as

M(ξ) = P (θ)A

( n∑
i=0

ωiL1(ci)BΣ−1BTL1(ci)
T

)
(P (θ)A)T ,

with

A =

 λ 0

0 1

, L1(ci) =

 0 eci

eci cie
ci

, P (θ) =

 1 0

1 1
a


−1

, B =

 1 0

1
λ

1
λeλ

.
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Let C(θ, ci) = L1(ci)SL1(ci)
T , where S = BΣ−1BT . As S does not depend on ξ, it can be

regarded as a constant matrix and we can simply denote it as S =

 σ11 σ12

σ12 σ22

.

Further we denote E(ξ) =
∑n

i=1 ωiC(θ, ci). Accordingly, the elements of E(ξ) are repre-

sented by some functions of ωi and ci as shown below:

E11 = σ22

n∑
i=0

ωie
2ci ,

E12 = σ12

n∑
i=0

ωie
2ci + σ22

n∑
i=0

ωicie
2ci ,

E22 = σ11

n∑
i=0

ωie
2ci + 2σ12

n∑
i=0

ωicie
2ci + σ22

n∑
i=0

ωic
2
i e

2ci ,

here, E11, E12, E22 are elements of E(ξ).

We need to find a design ξ∗ = (ω̃i, c̃i) such that M(ξ) ≤ M(ξ∗), which is equivalent to

E(ξ) ≤ E(ξ∗). By the Loewner ordering, the sufficient conditions to prove the inequality are:

E11 = E∗11, E12 = E∗12, E22 ≤ E∗22, (3.2)

where E∗11, E∗12 and E∗22 are the elements of E(ξ∗).

As long as σ22 > 0 which is guaranteed by the nonnegative definite property of S, (3.2) is

equivalent to
n∑
i=1

ωie
2ci =

n∑
j=1

ω̃ie
2c̃i ,

n∑
i=1

ωicie
2ci =

n∑
j=1

ω̃ic̃ie
2c̃i ,
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n∑
i=1

ωic
2
i e

2ci ≤
n∑
j=1

ω̃ic̃
2
i e

2c̃i . (3.3)

Let Ψ1 = e2c,Ψ2 = ce2c,Ψ3 = c2e2c, thus F (c) = 4e2c. Clearly F (c) is positive. According to

situation (b) in Yang (15), the locally optimal design has at most 2 starting points, while 0 is

one of the starting points.

3.4 Case of k + 1 Measurements

We now consider the case of k + 1 consecutive measurements in which subjects starting at

time ti will be measured at each time point through time ti + k.

Generally we can denote the covariance structure as Σ. We have

GTi =

 e−λti e−λ(ti+1) · · · e−λ(ti+k)

−atie−λti −a(ti + 1)e−λ(ti+1) · · · −a(ti + k)e−λ(ti+k)

.

Again by substituting −λti by ci, M(ξ) can be decomposed as

M(ξ) = P (θ)A

( n∑
i=0

ωiLk(ci)DBΣ−1BTDTLk(ci)
T

)
ATP (θ)T ,

with

P (θ) =

 1 0

1 1
a


−1

, D =

 1 0 · · · 0

0 1 · · · 1

, A =

 λ 0

0 1

, Lk(ci) =

 0 eci

eci cie
ci

,
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B =



1 0 −e−2λ · · · (1− k)e−kλ

1
λ

1
λeλ

1
λe2λ

· · · 1
λekλ

...
...

. . .
...

...

1
λ

1
λeλ

1
λe2λ

· · · 1
λekλ


,

Let C(θ, ci) = Lk(ci)DBΣ−1BTDTLk(ci)
T and E(ξ) =

∑n
i=0 ωiC(θ, ci), despite some con-

stant coefficients, we still need to find a design ξ∗ = (ω̃i, c̃i) which satisfies (3.2) and thus the

three equations and inequalities in (3.3). Note that we have the same Ψl’s as those in the case

of k = 1, thus the result remains the same, i.e, the locally optimal design for case of k + 1

measurements has at most two starting points, and 0 is one of the starting points.

Remark. The correlation structure is treated as a constant matrix in our proof. Therefore

the specific structure and the choice of ρ will not impact our conclusions about the number of

support points. However, it will affect the actual design points and the associated weights, which

will be presented later.

3.5 Generalization to Equally Spaced Designs with Arbitrary Increments

We have discussed the equally spaced design with increment 1. However, when the design

space is relatively large compared to the number of measurements for each subject, the equally

spaced design with increment 1 is not capable of capturing all the information. For example,

given the design space [0, 240] and k = 5, we may come up with a design such that 30% of the

subjects are measured at 30, 31, 32, 33, 34, 35, while 70% of the subjects are measured at 180,

181, 182, 183, 184, 185. Obviously a great deal of information will be lost under this design.
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In this case, it is desirable to generalize the preceding result to equally spaced designs with

arbitrary increments.

Suppose the increment is denoted as d, here d is also treated as a constant and assumed to

be the same for each subject. Suppose the total number of measurements is still fixed at k+ 1,

then for subjects starting at time ti, samples will be collected at time ti, ti+d, ti+2d, · · · , ti+kd.

We have the following theorem.

Theorem 13. Under the equally spaced design with arbitrary increments, the locally optimal

design for model (3.1) has at most 2 starting points, and 0 is one of the starting points.

Proof. Under the design setup with increment d and measurements k + 1, we have

GTi =

 e−λti e−λ(ti+d) · · · e−λ(ti+kd)

−atie−λti −a(ti + d)e−λ(ti+d) · · · −a(ti + kd)e−λ(ti+kd)

.

By substituting −λti by ci, M(ξ) can be decomposed as

M(ξ) = P (θ)

( n∑
i=0

ωiLkd(ci)Σ
−1Lkd(ci)

T

)
P (θ)T ,

with

P (θ) =

 1 0

1 1
a


−1
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and

Lkd(ci) =

 eci eci−λd · · · eci−λkd

ci
λ e

ci ci
λ e

ci−λd − deci−λd · · · ci
λ e

ci−λkd − kdeci−λkd


2×(k+1)

.

Let C(θ, ci) = Lkd(ci)Σ
−1Lk(ci)

T and E(ξ) =
∑n

i=0 ωiC(θ, ci), despite some constant coef-

ficients, we need to find a design ξ∗ = (ω̃i, c̃i) which satisfies (3.2) and thus the three equations

and inequalities in (3.3). Note that we have the same Ψl’s and the result remains the same, i.e,

we have at most two starting points, and 0 is one of the starting points.

3.6 Numerical Results

3.6.1 Equally Spaced Designs

In real cases, studies are often designed with regard to the actual situations. It should be

taken into account the characteristics of the treatments, the recruiting of the study subjects,

the regulations, the side effects or adverse events that may occur, etc. Optimality is not always

a first priority in the real studies.

However, because of the superiority of optimal designs in providing the parameter estimates

with minimum variances, it is beneficial to have some knowledge of them. In effect, an optimal

design can serve as a gold standard for all other designs. In cases where optimal designs are

not conducted, we may want to have an idea of the performance of the selected design.

There is a widely accepted criterion in comparisons of different designs, which is the so

called “efficiency”. In the design theory, it is a measure of the performance of the design.

D− and A−optimality criteria are among the most popular optimality criteria. Under D-

optimality, efficiency is defined as ( |M(ξ)|
|M(ξ∗)|)

1/p, where ξ∗ is the optimal design, and p is the
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number of parameters to be estimated and studied. Under A-optimality, since it leads to the

design with minimum trace of the inverse of the information matrix, the efficiency is thus

defined as ( tr(M(ξ∗))
tr(M(ξ)) )1/p. In a geometric way, no matter which criterion we choose, essentially

the optimal design is to minimize the confidence region of the parameter estimates. All the

other designs are unable to reduce the confidence region to the extent that the optimal design

does. As a matter of fact, efficiency is a measure of the capability of the chosen design in

reducing the confidence region as a percentage of that for the optimal design. It is a value

which is always less than 1, and higher efficiency leads to a better design.

Under the one-compartment PK model, theoretically we have found that the number of

starting points in the optimal design class should not exceed 2.

The initial guesses of the parameters were pre-determined at ã = 1 and λ̃ = 0.2. The design

space was [0, 180]. We set increment d at 15 and the total number of measurements at 13

(k=12).

3.6.1.1 Autocorrelated Covariance Structure

We first adopt the autocorrelated covariance structure to address the correlations among

observations. According to the Remark, the values of ρ will not affect the support size but will

have an impact on the actual design points and the associated weights. In an attempt to give a

rough picture of the optimal design under a specific value of ρ, we obtain the following design

when ρ = 0.5 by numerical searching.

The referenced equally spaced design is arbitrarily chosen to be: 2, 17, 32, 47, 62, 77, 92,

107, 122, 137, 152, 167, 182, and the D-optimal design when ρ = 0.5 has two starting points,
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with 59% of the subjects starting at time 0 and 41% starting at time 5. Specifically, 59% of the

subjects will be measured at 0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180, and 41% of

the subjects will be measured at 5, 20, 35, 50, 65, 80, 95, 110, 125, 140, 155, 170, 185.

As a result of the influence of different ρ’s on the design points and their weights, the

efficiencies of the optimal designs with respect to the referenced design will also vary with

different values of ρ. The summary of the efficiencies under different values of ρ is given in

Table I.
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TABLE I: D-Efficiency of an Equally Spaced Design for One-Compartment PK Model with
Autocorrelated Covariance Structure

ρ Dopt Dref Efficiency((Dref/Dopt)
1
2 )

0.9 24.38 2.62 32.8%
0.8 6.93 0.75 32.9%
0.7 3.53 0.38 32.8%
0.6 2.29 0.25 33.0%
0.5 1.70 0.18 32.5%
0.4 1.38 0.15 33.0%
0.3 1.20 0.13 32.9%
0.2 1.10 0.12 33.0%
0.1 1.06 0.11 32.2%
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On average the referenced design is shown 33% efficiency of the optimal design. As we

know, the equally spaced designs with different starting points but with the same d and k

have different efficiencies compared with the optimal designs. If the starting point is by chance

chosen at 0 or 5, which is one of the starting points in the optimal design, the efficiency will be

much higher than the design in which the starting point is neither 0 nor 5.

The A-optimal design when ρ = 0.5 is chosen to be: all of the subjects will be measured at

0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180. The efficiencies under different values of

ρ are given in Table II.
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TABLE II: A-Efficiency of an Equally Spaced Design for One-Compartment PK Model with
Autocorrelated Covariance Structure

ρ Aopt Aref Efficiency((Aopt/Aref )
1
2 )

0.9 0.44 2.75 40%
0.8 0.82 5.51 38.6%
0.7 1.14 8.23 37.2%
0.6 1.41 10.89 36.0%
0.5 1.63 13.43 34.8%
0.4 1.81 15.80 33.8%
0.3 1.94 17.96 32.9%
0.2 2.04 19.86 32.0%
0.1 2.10 21.43 31.3%
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3.6.1.2 Intraclass Correlation Structure

We now adopt the intraclass correlation structure and study the efficiency. The D-optimal

design when ρ = 0.5 is chosen to be: 59% of the subjects will be measured at 0, 15, 30, 45, 60,

75, 90, 105, 120, 135, 150, 165, 180, and 41% of the subjects will be measured at 5, 20, 35, 50,

65, 80, 95, 110, 125, 140, 155, 170, 185. The efficiencies under different values of ρ are given in

Table III.



41

TABLE III: D-Efficiency of an Equally Spaced Design for One-Compartment PK Model with
Intraclass Correlation Structure

ρ Dopt Dref Efficiency((Dref/Dopt)
1
2 )

0.9 88.49 9.46 32.7%
0.8 22.17 2.37 32.7%
0.7 9.88 1.06 32.8%
0.6 5.57 0.60 32.8%
0.5 3.58 0.38 32.6%
0.4 2.50 0.27 32.9%
0.3 1.86 0.20 32.8%
0.2 1.44 0.15 32.3%
0.1 1.18 0.13 33.2%
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The A-optimal design when ρ = 0.5 is chosen to be: 75% of the subjects will be measured at

0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180, and 25% of the subjects will be measured

at 5, 20, 35, 50, 65, 80, 95, 110, 125, 140, 155, 170, 185. The efficiencies under different values

of ρ are given in Table IV.
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TABLE IV: A-Efficiency of an Equally Spaced Design for One-Compartment PK Model with
Intraclass Correlation Structure

ρ Aopt Aref Efficiency((Aopt/Aref )
1
2 )

0.9 0.23 2.37 31.2%
0.8 0.46 4.73 31.2%
0.7 0.69 7.10 31.2%
0.6 0.91 9.45 31.0%
0.5 1.14 11.80 31.1%
0.4 1.37 14.14 31.1%
0.3 1.59 16.46 31.1%
0.2 1.80 18.73 31.0%
0.1 2.00 20.89 30.9%
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3.6.2 Unequally Spaced Designs

In real studies, researchers may have more interest in the early stages of the study since

usually they will provide more information. Consequently more measurements are taken at the

early phases than the late phases. In this sense, it is prudent to apply the unequally spaced

designs rather than the equally spaced designs.

Although we don’t have theoretical results, we can use numerical methods to find unequally

spaced designs in which samples can be taken with different time increments.

The referenced design is chosen to be: 0, 2, 5, 10, 20, 30, 45, 60, 90, 120, 150, 180, 210, 240,

which comes from a real PK study (33). For simplicity, we reduce our search for the optimal

designs within the design space of [0, 19] so that we only identify the former 4 points between

0 and 19 while keeping the latter 10 points, i.e, 20, 30, 45, 60, 90, 120, 150, 180, 210, 240, the

same as the referenced design.

3.6.2.1 Autocorrelated Covariance Structure

We first adopt the autocorrelated covariance structure and study the efficiency. The D-

optimal design when ρ = 0.5 is chosen to be: 94% of the subjects are measured at 0, 4, 5, 6,

20, 30, 45, 60, 90, 120, 150, 180, 210, 240, and 6% of the subjects are measured at 0, 5, 6, 7,

20, 30, 45, 60, 90, 120, 150, 180, 210, 240. The summary of the efficiencies under different ρ is

given in Table V.
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TABLE V: D-Efficiency of an Unequally Spaced Design for One-Compartment PK Model with
Autocorrelated Covariance Structure

ρ Dopt Dref Efficiency((Dref/Dopt)
1
2 )

0.9 64.66 27.08 64.7%
0.8 18.82 9.67 71.7%
0.7 10.88 6.19 75.4%
0.6 8.34 5.05 77.8%
0.5 7.36 4.71 80.0%
0.4 7.10 4.78 82.1%
0.3 7.29 5.17 84.2%
0.2 7.84 5.84 86.3%
0.1 8.88 6.87 88.0%
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The A-optimal design when ρ = 0.3 is chosen to be: 96% of the subjects will be measured

at 0, 1, 6, 7, 20, 30, 45, 60, 90, 120, 150, 180, 210, 240, and 4% of the subjects will be measured

at 0, 6, 7, 8, 20, 30, 45, 60, 90, 120, 150, 180, 210, 240. The efficiencies under different values

of ρ are given in Table VI.
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TABLE VI: A-Efficiency of an Unequally Spaced Design for One-Compartment PK Model with
Autocorrelated Covariance Structure

ρ Aopt Aref Efficiency((Aopt/Aref )
1
2 )

0.9 0.37 0.67 74.3%
0.8 0.67 0.98 82.7%
0.7 0.88 1.12 88.6%
0.6 0.99 1.18 91.6%
0.5 1.04 1.20 93.1%
0.4 1.06 1.20 94.0%
0.3 1.05 1.19 93.9%
0.2 1.00 1.16 92.8%
0.1 0.95 1.11 85.6%
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3.6.2.2 Intraclass Correlation Structure

We now adopt the intraclass correlation structure and study its efficiency. The D-optimal

design when ρ = 0.5 is chosen to be: 31% of the subjects will be measured at 0, 4, 5, 6, 20, 30,

45, 60, 90, 120, 150, 180, 210, 240, and 69% of the subjects will be measured at 0, 1, 5, 6, 20,

30, 45, 60, 90, 120, 150, 180, 210, 240. The efficiencies under different values of ρ are given in

Table VII.
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TABLE VII: D-Efficiency of an Unequally Spaced Design for One-Compartment PK Model
with Intraclass Correlation Structure

ρ Dopt Dref Efficiency((Dref/Dopt)
1
2 )

0.9 735.04 582.62 89.0%
0.8 184.57 146.27 89.0%
0.7 82.48 65.35 89.0%
0.6 46.73 37.01 89.0%
0.5 30.19 23.90 89.0%
0.4 21.24 16.81 89.0%
0.3 15.92 12.59 89.0%
0.2 12.61 9.96 88.9%
0.1 10.66 8.40 88.8%
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The A-optimal design when ρ = 0.5 is chosen to be: all of the subjects will be measured at

0, 1, 6, 7, 20, 30, 45, 60, 90, 120, 150, 180, 210, 240. The efficiencies under different values of ρ

are given in Table VIII.
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TABLE VIII: A-Efficiency of an Unequally Spaced Design for One-Compartment PK Model
with Intraclass Correlation Structure

ρ Aopt Aref Efficiency((Aopt/Aref )
1
2 )

0.9 0.10 0.11 95.3%
0.8 0.20 0.23 93.3%
0.7 0.29 0.34 92.4%
0.6 0.39 0.45 93.1%
0.5 0.48 0.57 91.8%
0.4 0.58 0.68 92.4%
0.3 0.67 0.79 92.1%
0.2 0.76 0.89 92.4%
0.1 0.84 0.99 92.1%
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OPTIMAL DESIGNS FOR BI-EXPONENTIAL MODEL
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4.1 Introduction and Application

We now consider the general bi-exponential model. It is assumed that the two processes are

independent, or the two compartments have no exchange rate. Thus the two-compartment PK

model is not considered here. Figure 2 shows the graph of a general bi-exponential model.
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Figure 2: Response variable y versus explanatory variable x showing a bi-exponential model.
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A typical example of bi-exponential model with 4 parameters is provided by Wells et al

(34). The intention of their experiment is to measure bi-exponential transverse relaxation of

the arterial spin labeling (ASL) signal so as to estimate arterial oxygen saturation and the time

of exchange of labeled blood water into cortical brain tissue.

ASL is a non-invasive magnetic resonance imaging (MRI) technique in which blood water

is harnessed as an endogenous tracer to map quantitative cerebral blood flow. After labeling,

some of the labeled blood water enters the imaging volume and exchanges into the tissue

(extravascular (EV) space) and some remains in the vessels (intravascular (IV) space).

The mean ASL signal as a function of measurement time is fitted by a bi-exponential model:

4M(t) = 4MAe
−λ1t +4MBe

−λ2t,

where 4MA is the proportion of the signal in compartment EV with transverse decay rate λ1,

and 4MB is the proportion of the signal in compartment IV with transverse decay rate λ2,

and 4M is the mean cortical ASL signal. In this case, the two compartments (EV and IV)

are regarded as independent, and in each compartment, the amount of ASL signal is decaying

exponentially.

4.2 Model Setup

Consider the general bi-exponential model

y = a1e
−λ1t + a2e

−λ2t + ε (4.1)
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where a1, a2, λ1 and λ2 are the parameters of interest, and t = (0, 1, · · · , n+ k).

Theorem 14. Under model (4.1), a locally optimal design ξ has at most 5 starting points, and

0 is one of the starting points.

Again we start proving the theorem for two measurements (k = 1) and then extend the

proof to the case of k + 1 measurements.

4.3 Case of Two Measurements

According to (2.2), we have Mi = GTi Σ−1Gi, where

GTi =



e−λ1ti e−λ1(ti+1)

−a1tie
−λ1ti −a1(ti + 1)e−λ1(ti+1)

e−λ2ti e−λ2(ti+1)

−a2tie
−λ2ti −a2(ti + 1)e−λ2(ti+1)


.

After substituting −λ1ti by ci, M(ξ) can be decomposed as

M(ξ) = P (θ)

( n∑
i=0

ωiL1(ci)Σ
−1L1(ci)

T

)
P (θ)T ,

with

P (θ) =



1 0 0 0

2 1
a1

1 1
a2

1 0 1 0

1 1
a1

1 1
a2



−1
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and

L1(ci) =



eci eci−λ1

2eci + ci
λ1
eci + ci

λ1
e
λ2
λ1
ci + e

λ2
λ1
ci ci

λ1
eci−λ1 + eci−λ1 + ci

λ1
e
λ2
λ1
ci−λ2

eci + e
λ2
λ1
ci eci−λ1 + e

λ2
λ1
ci−λ2

eci + ci
λ1
eci + e

λ2
λ1
ci + ci

λ1
e
λ2
λ1
ci ci

λ1
eci−λ1 + ci

λ1
e
λ2
λ1
ci−λ2


,

Let C(θ, ci) = L1(ci)Σ
−1L1(ci)

T . Also Σ−1 can be regarded as a constant matrix.

Denote E(ξ) =
∑n

i=0 ωiC(θ, ci), we need to find a design ξ∗ = (ω̃i, c̃i) such that M(ξ) ≤

M(ξ∗), which is equivalent to E(ξ) ≤ E(ξ∗). By the Loewner ordering, it is sufficient to show

that

E11 = E∗11, E12 = E∗12, E13 = E∗13, E14 = E∗14,

E23 = E∗23, E24 = E∗24, E33 = E∗33, E34 = E∗34,

E22 ≤ E∗22, E44 ≤ E∗44. (4.2)

where Eij , 1 ≤ i ≤ j ≤ 4, are elements of E(ξ), and E∗ij , 1 ≤ i ≤ j ≤ 4, are elements of E(ξ∗).

The sufficient conditions for (4.2) are as follows:

n∑
i=0

ωie
2ci =

n∑
i=0

ω̃ie
2c̃i

n∑
i=0

ωie
(
λ2
λ1

+1)ci =

n∑
i=0

ω̃ie
(
λ2
λ1

+1)c̃i

n∑
i=0

ωie
2λ2
λ1

ci =
n∑
i=0

ω̃ie
2λ2
λ1

c̃i
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n∑
i=0

ωicie
2ci =

n∑
i=0

ω̃ic̃ie
2c̃i

n∑
i=0

ωicie
(
λ2
λ1

+1)ci =
n∑
i=0

ω̃ic̃ie
(
λ2
λ1

+1)c̃i

n∑
i=0

ωicie
2λ2
λ1

ci =
n∑
i=0

ω̃ic̃ie
2λ2
λ1

c̃i

n∑
i=0

ωic
2
i e

2ci ≤
n∑
i=0

ω̃ic̃
2
i e

2c̃i

n∑
i=0

ωic
2
i e

(
λ2
λ1

+1)c̃i ≤
n∑
i=0

ω̃ic̃
2
i e

(
λ2
λ1

+1)c̃i

n∑
i=0

ωic
2
i e

2λ2
λ1

c̃i ≤
n∑
i=0

ω̃ic̃
2
i e

2λ2
λ1

c̃i (4.3)

Denote Ψ1 = e2c,Ψ2 = ce2c,Ψ3 = c2e2c,Ψ4 = e
(
λ2
λ1

+1)c
,Ψ5 = ce

(
λ2
λ1

+1)c
,Ψ6 = c2e

(
λ2
λ1

+1)c
,Ψ7 =

e
2λ2
λ1

c
,Ψ8 = ce

2λ2
λ1

c
,Ψ9 = c2e

2λ2
λ1

c
, we can have

F (c) =
32e2c(λ1 − λ2)6(e

c(λ1−λ2)
λ2 )2λ1

λ7
2

.

Clearly F (c) is positive. According to situation (b) in Yang (15), the locally optimal design has

at most 5 starting points, while 0 is one of the starting points.
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4.4 Case of k + 1 Measurements

We now consider the case of k + 1 measurements. We have

GTi =



e−λ1ti e−λ1(ti+1) · · · e−λ1(ti+k)

−a1tie
−λ1ti −a1(ti + 1)e−λ1(ti+1) · · · −a1(ti + k)e−λ1(ti+k)

e−λ2ti e−λ2(ti+1) · · · e−λ2(ti+k)

−a2tie
−λ2ti −a2(ti + 1)e−λ2(ti+1) · · · −a2(ti + k)e−λ2(ti+k)


.

Again by substituting −λ1ti by ci, M(ξ) can be decomposed as

M(ξ) = P (θ)

( n∑
i=0

ωiLk(ci)Σ
−1Lk(ci)

T

)
P (θ)T ,

with

P (θ) =



1 0 0 0

2 1
a1

1 1
a2

1 0 1 0

1 1
a1

1 1
a2



−1

and

Lk(ci) =



eci eci−λ1d

(2 + ci
λ1

)eci + (1 + ci
λ1

)e
λ2
λ1
ci (1 + ci

λ1
)eci−λ1d + ci

λ1
e
λ2
λ1
ci−λ1d

eci + e
λ2
λ1
ci eci−λ1 + e

λ2
λ1
ci−λ2

(1 + ci
λ1

)eci + (1 + ci
λ1

)e
λ2
λ1
ci ci

λ1
eci−λ1 + ci

λ1
e
λ2
λ1
ci−λ2

· · · eci−λ1kd

· · · (2− k + ci
λ1

)eci−kλ1 + (1− k + ci
λ1

)e
λ2
λ1
ci−kλ2

· · · eci−kλ1 + e
λ2
λ1
ci−kλ2

· · · (1− k + ci
λ1

)eci−kλ1 + (1− k + ci
λ1

)e
λ2
λ1
ci−kλ2


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Let C(θ, ci) = Lk(ci)Σ
−1Lk(ci)

T and E(ξ) =
∑n

i=0 ωiC(θ, ci), and we also need to find a

design ξ∗ = (ω̃i, c̃i) which satisfies (4.2) and thus the nine equations and inequalities in (4.3).

Note that we have the same Ψl’s as in the case of k = 1 and the result remains the same.

4.5 Generalization to Equally Spaced Designs with Arbitrary Increments

We can generalize the preceding results to the equally spaced designs with arbitrary incre-

ments, thus we have the following theorem.

Theorem 15. Under the equally spaced designs with arbitrary increments, the locally optimal

design for model (4.1) has at most 5 starting points, and 0 is one of the starting points.

Proof. Under the design setup with increment d and measurements k + 1, we have

GTi =



e−λ1ti e−λ1(ti+d) · · · e−λ1(ti+kd)

−a1tie
−λ1ti −a1(ti + d)e−λ1(ti+d) · · · −a1(ti + kd)e−λ1(ti+kd)

e−λ2ti e−λ2(ti+d) · · · e−λ2(ti+kd)

−a2tie
−λ2ti −a2(ti + d)e−λ2(ti+d) · · · −a2(ti + kd)e−λ2(ti+kd)


.

By substituting −λ1ti by ci, M(ξ) can be decomposed as

M(ξ) = P (θ)

( n∑
i=0

ωiLkd(ci)Σ
−1Lkd(ci)

T

)
P (θ)T ,
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with

P (θ) =



1 0 0 0

2 1
a1

1 1
a2

1 0 1 0

1 1
a1

1 1
a2



−1

and

Lkd(ci) =



eci eci−λ1d

(2 + ci
λ1

)eci + (1 + ci
λ1

)e
λ2
λ1
ci (1 + ci

λ1
)eci−λ1d + ci

λ1
e
λ2
λ1
ci−λ1d

eci + e
λ2
λ1
ci eci−λ1d + e

λ2
λ1
ci−λ2d

(1 + ci
λ1

)eci + (1 + ci
λ1

)e
λ2
λ1
ci ci

λ1
eci−λ1d + ci

λ1
e
λ2
λ1
ci−λ2d

· · · eci−λ1kd

· · · (2− kd+ ci
λ1

)eci−λ1kd + (1− kd+ ci
λ1

)e
λ2
λ1
ci−λ2kd

· · · eci−λ1kd + e
λ2
λ1
ci−λ2kd

· · · (1− kd+ ci
λ1

)eci−λ1kd + (1− kd+ ci
λ1

)e
λ2
λ1
ci−λ2kd


.

Let C(θ, ci) = Lkd(ci)Σ
−1Lkd(ci)

T and E(ξ) =
∑n

i=0 ωiC(θ, ci), and we also need to find a

design ξ∗ = (ω̃i, c̃i) which satisfies (4.2) and thus the nine equations and inequalities in (4.3).

Note that we have the same Ψl’s as the previous cases and the result remains the same.

4.6 Numerical Results

4.6.1 Equally Spaced Designs

Under the bi-exponential model, theoretically we have found that the number of starting

points in the optimal design class should not exceed 5.

The initial guesses of the parameters were pre-determined at ã1 = 1.38, ã2 = 0.42, λ̃1 =

0.123, λ̃2 = 0.00673. The design space was [0, 180] and we set d = 15 and k = 12.
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4.6.1.1 Autocorrelated Covariance Structure

The referenced equally spaced design is arbitrarily chosen to be: 2, 17, 32, 47, 62, 77, 92,

107, 122, 137, 152, 167, 182. By numerical searching, we can find that the D-optimal design

when ρ = 0.5 is: for 88% of the subjects, measurements are taken at 0, 15, 30, 45, 60, 75, 90,

105, 120, 135, 150, 165, 180, and for 12% of the subjects, measurements are taken at 6, 21, 36,

51, 66, 81, 96, 111, 126, 141, 156, 171, 186. The summary of the efficiencies under different

values of ρ is given in Table IX.
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TABLE IX: D-Efficiency of an Equally Spaced Design for Bi-Exponential Model with Autocor-
related Covariance Structure

ρ Dopt Dref Efficiency((Dref/Dopt)
1
4 )

0.9 45498.0 16021.1 77.0%
0.8 12332.5 4323.7 77.0%
0.7 7559.5 2639.3 76.9%
0.6 6363.4 2213.5 76.8%
0.5 6339.1 2198.0 76.7%
0.4 7025.1 2429.3 76.8%
0.3 8406.6 2900.1 76.7%
0.2 10699.6 3683.7 76.6%
0.1 14382.1 4942.7 76.6%
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The A-optimal design when ρ = 0.5 is chosen to be: 38% of the subjects will be measured at

0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180, while 62% of the subjects will be measured

at 4, 19, 34, 49, 64, 79, 94, 109, 124, 139, 154, 169, 184. The efficiencies under different values

of ρ are given in Table X.
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TABLE X: A-Efficiency of an Equally Spaced Design for Bi-Exponential Model with Autocor-
related Covariance Structure

ρ Aopt Aref Efficiency((Aopt/Aref )
1
4 )

0.9 3.38 3.74 97.5%
0.8 5.12 5.70 97.3%
0.7 6.17 6.82 97.5%
0.6 6.72 7.37 97.7%
0.5 6.91 7.55 97.8%
0.4 6.86 7.50 97.8%
0.3 6.64 7.32 97.6%
0.2 6.28 7.07 97.1%
0.1 5.83 6.78 96.3%
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4.6.1.2 Intraclass Correlation Structure

By numerical searching, the D-optimal design when ρ = 0.9 is chosen to be: for 93% of the

subjects, measurements are taken at 0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180, and

for 7% of the subjects, measurements are taken at 6, 21, 36, 51, 66, 81, 96, 111, 126, 141, 156,

171, 186. The summary of the efficiencies under different values of ρ is given in Table XI.
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TABLE XI: D-Efficiency of an Equally Spaced Design for Bi-Exponential Model with Intraclass
Correlation Structure

ρ Dopt Dref Efficiency((Dref/Dopt)
1
4 )

0.9 2459444 851730.75 76.7%
0.8 318226.94 110728.44 76.8%
0.7 103675.5 36129.06 76.8%
0.6 49504.38 17262.67 76.8%
0.5 29467.12 10278.15 76.9%
0.4 20480.23 7143.47 76.8%
0.3 16209.11 5652.10 76.8%
0.2 14663.21 5109.31 76.8%
0.1 15912 5534.31 76.8%
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The A-optimal design when ρ = 0.5 is chosen to be: 64% of the subjects will be measured

at 0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180, 15% of the subjects will be measured at

4, 19, 34, 49, 64, 79, 94, 109, 124, 139, 154, 169, 184, and 21% of the subjects will be measured

at 3, 18, 33, 48, 63, 78, 93, 108, 123, 138, 153, 168, 183. The efficiencies under different values

of ρ are given in Table XII.
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TABLE XII: A-Efficiency of an Equally Spaced Design for Bi-Exponential Model with Intraclass
Correlation Structure

ρ Aopt Aref Efficiency((Aopt/Aref )
1
4 )

0.9 0.93 1.01 98.0%
0.8 1.43 1.60 97.2%
0.7 1.89 2.17 96.6%
0.6 2.34 2.74 96.1%
0.5 2.78 3.30 95.8%
0.4 3.23 3.86 95.6%
0.3 3.67 4.42 95.5%
0.2 4.12 4.98 95.4%
0.1 4.56 5.55 95.2%
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4.6.2 Unequally Spaced Designs

We also consider the unequally spaced designs for bi-exponential model. The referenced

design is 0, 2, 5, 10, 20, 30, 45, 60, 90, 120, 150, 180, 210, 240.

4.6.2.1 Autocorrelated Covariance Structure

The D-optimal design when ρ = 0.3 is chosen to be: 67% of the subjects will be measured

at 0, 6, 7, 8, 20, 30, 45, 60, 90, 120, 150, 180, 210, 240, and 33% of the subjects will be measured

at 0, 7, 8, 9, 20, 30, 45, 60, 90, 120, 150, 180, 210, 240. Efficiencies with respect to different

values of ρ are given in Table XIII.
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TABLE XIII: D-Efficiency of an Unequally Spaced Design for Bi-Exponential Model with Au-
tocorrelated Covariance Structure

ρ Dopt Dref Efficiency((Dref/Dopt)
1
4 )

0.9 76424.3 34405.8 81.9%
0.8 22630.8 11252.7 84.0%
0.7 16013.6 8750.0 86.0%
0.6 15974.3 9501.4 87.8%
0.5 19030.3 12273.6 89.6%
0.4 25213.0 17613.0 91.4%
0.3 35906.7 27137.7 93.2%
0.2 54888.1 44101.5 94.7%
0.1 90312.2 74934.9 95.4%
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The A-optimal design when ρ = 0.5 is chosen to be: 67% of the subjects are measured at

0, 3, 4, 19, 20, 30, 45, 60, 90, 120, 150, 180, 210, 240, 23% of the subjects are measured at 0, 3,

18, 19, 20, 30, 45, 60, 90, 120, 150, 180, 210, 240, and 10% of the subjects are measured at 0,

2, 3, 19, 20, 30, 45, 60, 90, 120, 150, 180, 210, 240. Efficiencies with respect to different values

of ρ are given in Table XIV.
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TABLE XIV: A-Efficiency of an Unequally Spaced Design for Bi-Exponential Model with Au-
tocorrelated Covariance Structure

ρ Aopt Aref Efficiency((Aopt/Aref )
1
4 )

0.9 2.31 3.01 93.6%
0.8 3.49 4.70 92.9%
0.7 4.26 5.63 93.3%
0.6 4.67 5.93 94.2%
0.5 4.79 5.81 95.3%
0.4 4.66 5.44 96.2%
0.3 4.38 4.95 97.0%
0.2 4.02 4.41 97.7%
0.1 3.60 3.87 98.2%
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4.6.2.2 Intraclass Correlation Structure

The D-optimal design when ρ = 0.5 is chosen to be: all of the subjects are measured at 0,

1, 7, 8, 20, 30, 45, 60, 90, 120, 150, 180, 210, 240. Efficiencies with respect to different values

of ρ are given in Table XV.
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TABLE XV: D-Efficiency of an Unequally Spaced Design for Bi-Exponential Model with Intr-
aclass Correlation Structure

ρ Dopt Dref Efficiency((Dref/Dopt)
1
4 )

0.9 1875981 1583664 95.9%
0.8 2120688.6 1788842.3 95.8%
0.7 654415.87 551820.12 95.8%
0.6 303596.25 255949.59 95.8%
0.5 177601.21 149709.32 95.8%
0.4 122096.49 102912.39 95.8%
0.3 96017.28 80925.54 95.8%
0.2 86683.92 73055.02 95.8%
0.1 94566.34 79680.28 95.8%
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The A-optimal design when ρ = 0.5 is chosen to be: 39% of the subjects are measured at

0, 3, 4, 19, 20, 30, 45, 60, 90, 120, 150, 180, 210, 240, 38% of the subjects are measured at 0,

1, 4, 5, 20, 30, 45, 60, 90, 120, 150, 180, 210, 240, and 23% of the subjects are measured at 0,

1, 4, 19, 20, 30, 45, 60, 90, 120, 150, 180, 210, 240. Efficiencies with respect to different values

of ρ are given in Table XVI.
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TABLE XVI: A-Efficiency of an Unequally Spaced Design for Bi-Exponential Model with Intr-
aclass Correlation Structure

ρ Aopt Aref Efficiency((Aopt/Aref )
1
4 )

0.9 0.62 0.64 99.2%
0.8 0.97 1.01 99.0%
0.7 1.27 1.32 99.0%
0.6 1.55 1.62 98.9%
0.5 1.83 1.92 98.8%
0.4 2.10 2.21 98.7%
0.3 2.37 2.50 98.7%
0.2 2.64 2.78 98.7%
0.1 2.90 3.07 98.6%
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