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SUMMARY

Annually, across the world, 250,000 to 500,000 individuals suffer an injury at the level of

the spinal cord [1]. These injuries could lead to a variety of debilitating conditions, such as

tetraplegia, which is the paralysis of all the four limbs. Individuals living with these extreme

conditions are no longer able to voluntary control muscles movement, and are therefore unable to

communicate with others, or use external devices. For these individuals, assistive technologies

are utilized to allow, or ease, communication and mobility. One example of such assistive

technologies are Brain-Computer Interfaces. In this work, we present the development of a

wearable and cost-effective BCI assistive device. This device serves as a proof of concept that

cost-effective EEG acquisition systems along with robust classification techniques can be used

in the field of assistive technologies.

The proposed assistive device functions based on the P300 response of the human brain.

The P300 response is an innate response of the brain, therefore no training for the subject is

required to use a P300 based BCI. In the proposed device, electroencephalography (EEG) signal

is acquired using the OpenBCI Cyton board [2]. The user needs to wear a 3D printed headset

which houses the electrodes. Flashing symbols on a grid are employed as stimuli to elicit a

P300 response. Online detection of the P300 response is performed using logistic regression,

and the genetic algorithm developed by Dal Seno et al. [3] is used to perform automatic feature

extraction for P300 detection.

xi



SUMMARY (continued)

The device allows the disabled individual to type words on a computer screen and to con-

trol a 4 Degrees of Freedom robotic arm. Two modes of operation could be used to control

the robotic arm. One mode (cartesian control) consists of controlling the robotic arm with

discrete movements. The second control mode (high level control) consists of sending high level

commands to the robotic arm, that would move autonomously according to the selected action.

Therefore, the presented assistive device augments communication capabilities and allows for

the control of external devices.

The presented assistive device was validated on two healthy male subjects (20 and 23 years

old). Offline and online experiments were performed for all the modes of use. Amongst the two

subjects, average maximum information transfer rate for the speller mode is 12.56 bits/min,

for the cartesian control of the robotic arm is 9.95 bits/min, and for the high level control

of the robotic arm is 2.93 bits/min. Results show that our wearable and cost-effective device

is comparable to previously published studies utilizing clinical grade EEG acquisition systems

[4; 5; 6].

In this work, a wearable and cost-effective BCI device is presented. Future improvements

are necessary to transition from laboratory setting to in-home use, allowing many disabled

individuals to improve their quality of life.

xii



CHAPTER 1

INTRODUCTION

Annually, across the world 250,000 to 500,000 people suffer an injury at the level of the spinal

cord [1]. These injuries can lead to a variety of debilitating conditions, such as tetraplegia,

which is a paralysis of all the four limbs. Other than spinal cord injury, there are several

disorders which may affect the neural paths normally used by the brain to communicate with

the peripheral muscles of the body, and some examples of these disorders are multiple sclerosis,

stroke at the level of the brainstem and brain injuries in general [7]. Individuals who suffer

from these conditions are affected with various degrees. Those with extreme condition are no

longer able to voluntary control muscles, therefore being unable to communicate with others

and express their feeling, or use any external device. For these people, assistive technology is

required to allow, or ease, mobility, communication and domestic activities.

In order to restore the original functions affected by these conditions, different options can

be exploited:

• the first option would be to increase the functioning of the unaffected pathways. If there

are muscles that are still under voluntary control, it is possible to use them in order

to substitute the injured muscles. Damper et al. presented a system for the non-vocal

disabled, allowing them to use their hands to answer questions [8] . Kubota et al. presented

an ocular movement detector that disabled patients can use to communicate [9];

1
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• the second option would be to detour around the breaks in the damaged neural pathways.

Individuals who are suffering from spinal cord injury can use the electromyographic signal

generated by muscles , which are controlled by nerves situated above the spinal lesion, to

electrically stimulate the injured muscles, which are controlled by nerves below the lesion.

Kobetic et al. developed an hybrid system able conjugate an exoskeletal bracing together

with a device for functional electrical stimulation [10];

• the last option would be to provide to the brain a new channel for communication and

control, not based on muscular pathways. Brain monitoring techniques (the electroen-

cephalography signal (EEG), optical imaging techniques, and more traditional imaging

techniques such as positron emission tomography (PET) and functional Magnetic Reso-

nance Imaging (fMRI) can serve as a way to analyze the brain activity and detect the

user’s intent. With these techniques, a Brain-Computer Interface (BCI) can be created.

With the created BCI, the user would then be able to transmit messages or other com-

mands to the external world, even if neural pathways are damaged. Chaudhary et al.

developed a BCI for advanced ALS subjects [26]. In this study, the involved subjects,

that live without any available mean of communication, managed to learn how to answer

some questions, requiring a ”yes” or ”no” by means of measurements of frontocentral oxy-

genation changes. These signals were obtained with functional near-infrared spectroscopy.

Among all the possible methods to monitor the brain activity, EEG is the one that has a

the shortest time constant and that requires simple and inexpensive acquisition devices.
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So, this type of brain activity monitoring is the only one who offers the possibility, for

the locked-in subject, to use the brain signal to communicate and control devices.

Among all the possibilities EEG based BCI is the best choice. They offer to the impaired

subject the possibility to communicate with the external world in a fast and non-invasive way.

Luo et al. developed a smart house system with an EEG based BCI [11] . This device makes it

possible to open or close curtains, turn light switches on and off and control the air-conditioning

by simply focusing on images flashing on the screen.

The goal of our study was to develop a wearable and cost-effective BCI system, with the

idea of allowing the end-user to spell words on a screen and to control a robotic arm. Building

an affordable but, at the same time, reliable system means that it could be used by the majority

of the disabled people. Today, thanks to the advances in the technology, EEG equipment is

not as expensive as it was years ago, so it is possible to have good quality recording without

having to rely on high - level and expensive technology. Tetraplegic subjects have no absolute

control of voluntary muscles, so there is no residual movement of the upper limbs. For this

reason, providing them a way of interaction with the external environment and with people can

improve their quality of life.

1.1 The Cerebrum

The encephalon, that is commonly referred to as the brain, is divided in two main parts: the

telencephalon and the diencephalon [57]. These parts have different functions: the telencephalon

is responsible of high-level functions, as thinking, planning and storing, while the diencephalon
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Figure 1: Broodman areas of the brain. Image taken from: OpenStax Anatomy and Physiology,
licensed under CC-BY-4.0.

works on low-level functions, as maintaining the homeostasis and controlling the circadian

rhythm.

The cerebral cortex represents the outside layer of the telencephalon. In humans, the

cerebral cortex is folded, so that it provides a very high amount of surface area in the confined

volume of the skull [57]. The cerebral cortex is separated into two cortices by the longitudinal

fissure, that divides the brain into the right and left hemispheres. It is possible to identify, in the

cerebral cortex, areas in which the neurons share the same function [29]: these are generally

referred to as Brodmann areas, and the current number of identified areas is 52. Examples

of Brodmann areas, shown in Figure 1, are the motor cortex, which is responsible of all the

voluntary movements in the body, the sensory cortex, that receives and processes the signals
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Figure 2: Basic structure of a neuron. Licensed under GNU Free Documentation License 1.2.

coming from the sensory neurons of the body, and the visual cortex, which receives the signals

of the receptors of the retina.

The cerebral cortex is mainly made up of gray matter, which is constituted by neuron bodies.

The underlying white matter consists of the axons of the neurons. The neurons, characterized

by the basic structure shown in Figure 2, are connected through long fibers, the axons. The

origin of the axon is in the cell body, and they represent the output terminals of the neuron. The

dendrites, instead, are those parts of the neurons that receive the input from other neurons. A

synapse is a junction present between the end tip of a neuron axon and the dendrites of another

neuron. The synapse is used by the neurons to communicate [57]. The neuronal signal coming

from the presynaptic cell crosses the junction thanks to the release of chemical substances,
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called the neurotransmitters. The neurotrasmitters, when bonding with the receptors present

on the membrane of the postsynaptic cell, cause a variation of the membrane potential of the

postsynaptic cell. If the membrane potential goes above a certain threshold, an action potential

is generated, and this potential will be transmitted along the axon and will reach other neurons

to transmit the neuronal activity. The threshold for the generation of the action potential

depends on the considered type of neuron [57].

Among all the possible methods used to monitor the activity of the cerebrum, two main

groups can be identified: methods which measure directly the activity of the brain (for example,

the EEG), and methods which estimate the neuronal activity in an indirect way (with a measure

of the blood flow, as an example). When using the direct methods, the measurement of the

electrical activity of the brain is a nonlinear, spatial and temporal combination of the action

potentials of all the present neurons.

1.1.1 The EEG Signal

The electroencephalographic signal (EEG) was discovered in 1929 by Hans Berger [30].

Since then, it has been used for multiple purposes. Today main applications are: diagnoses

of diseases (epilepsy, for example); development of BCI; analysis of the patient status during

anesthesia.

In order to record the EEG signal in a noninvasive way, it is possible to use electrodes placed

outside the brain and directly on the scalp. These electrodes are able to detect the variation of

the electric potential, generated by the presence of action potentials and by the basal activity

of the neurons.
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(a)

F Frontal Lobe
C Central Lobe
P Parietal Lobe
T Temporal Lobe

(b)

Figure 3: The 10-20 international standard for electrodes positioning [31].

Electrodes are typically made of materials such as gold or silver, so that their impedance

is low (ideally, below 10 kOhm). Regarding the positions of the electrodes, a standard was

defined: the 10-20 system [31]. The electrodes locations defined in the 10 - 20 system are

shown in Figure 3a. In this standard, four fixed points are defined. The first point is the nasion,

which is situated between the forehead and the nose. The second point is the inion, which can

be located as the lowest point of the skull from the back of the head, and situated along the

antero-posterior plane as the nasion. The last two points are the preauricular points, situated

in the anterior part of each ear. The number ’10’ and ’20’ were chosen because the distance

between each electrode is equal to the 10 or 20% of the nasion-inion or right preaurical point -

left preaurical point distances on the skull.
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Each electrode position is identified with a letter and a number. The meaning of each letter

is shown in Table 3b (note that the letter C, which stands for central lobe, is used only for

identification purposes, since there is no central lobe in the brain). To identify electrodes of

the right hemisphere, even numbers are used. Left hemisphere electrodes are marked with odd

numbers.

With this standard, it is possible to identify a total number of 21 electrodes positions, as

shown in Figure 3a. Additional positions can be added by using the 10 - 10 standard, in

which the distance between each electrode is always equal to the 10% of the total back-front or

left-right distances of the skull.

The aim of EEG is to record the variation of the electric potential on the scalp. In order

to do this, it is necessary to have a reference level for these measurements. There are several

possible ways to define a reference level. One way is to choose an electrode that acts as a fixed

reference for all the other electrodes, and that is typically positioned at the level of the mastoid

or on the earlobe: this technique is called common reference. Another way is to compute the

average value of all the signal recorded from each channel and then, subtract this value from

the signal recorded at each channel (average reference). The reference can also be defined for

each couple of electrodes, so that each channel has its own reference (bipolar configuration).

1.2 BCI

1.2.1 Definition

Wolpaw et al. define BCI as: “A BCI is a communication system in which messages or

commands that an individual sends to the external world do not pass through the brain’s
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normal output pathways of peripheral nerves and muscles” [7]. An individual who makes use of

a BCI is able to maintain an interaction with the external world even if his/her neural pathways

are severely injured.

1.2.2 Classification

According to Wolpaw et al. [7] BCI can be classified as follows:

• Dependent and independent BCI: a dependent BCI doesn’t use the normal output

pathways of the brain to carry the command or the message. At the same time, to generate

the required brain activity it is necessary to have residual activity in these pathways. To

understand what a dependent BCI is, consider a BCI based on Visual Evoked Potentials

(VEP). To elicit a response from the subject, he is presented with a matrix of flashing

letters. Then, he has to gaze at a specific letter in order to have a VEP that is greater

when that letter flashes in comparison to the others that are recorded when other letters

flash. So, the output channel of the brain is the electric signal recorded with EEG, but

its generation still depends on the gaze direction, which is dependent on the eye muscles.

For the mentioned reasons, a dependent BCI is another method to detect messages that

are present in output paths of the brain (in the described example, the direction of the

gaze isn’t monitored by observing the position of the eye, but rather by recording EEG

signal). Instead, an independent BCI is completely independent, as the name suggests,

on the normal output pathways of the cerebrum, and for this reason no activity in those

paths is necessary for the generation of the brain signal of interest. To better understand

how an independent BCI works, consider a BCI that is based on the P300 response.
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The P300 response is an event related potential, that is elicited when stimuli, which are

significant from the subject’s point of view, are presented to him/her. and that presents

the user with flashing letters. When the letter the user is focusing on flashes, a P300 will

be elicited. No P300 response will be present when other letters flash. The EEG signal

that is measured is not dependent on the gaze direction of the eyes, but rather on the

user’s intent. As it is possible to understand from the provided examples, independent

BCIs are of much more interest, because they provide completely new channels to the

brain.

• BCI employing invasive or non-invasive techniques for brain monitoring: An

example of a non-invasive technique is the EEG recording, that can be recorded from the

scalp without requiring surgery or invasive procedures. Invasive techniques require the

placement of matrices of electrodes directly on the brain, and for this reason surgeries are

necessary.

There are both advantages and disadvantages for the two methods. The most important

advantage of non-invasive BCI is that the end-user is not required to undergo surgeries.

The disadvantage of non-invasive BCIs, which represents an advantage of invasive BCIs,

is the quality of the electric signal recorded. Ball et al. compared invasive and non-

invasive EEG measurements [12] . The main goal of the study was to determine if blink

related artifacts, which are always present in non-invasive recordings, were also present

in invasive recordings. As expected, eye blinks caused artifacts in non-invasive recordings

and, unexpectedly, these artifacts were also present in the invasive recordings, particularly
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in the prefrontal region. After this analysis,by computing the ratio between the amplitude

of the artifacts and the amplitude of the background brain activity, it was possible to

determine that the quality of the invasive EEG signal was from 20 to 100 times better

than the non-invasive EEG recorded simultaneously.

Reduction in noise and eye-blink artifacts would allow to improve the quality of the EEG

signal and to obtain a better implementation of a BCI system, since classification of EEG

signal can be performed easily.

Despite of the advantages in using invasive techniques, the majority of researchers consider

the non-invasive techniques as more appropriate that the invasive ones, since they have

an advantage that overcomes all the potential advantages of the invasive techniques: they

do not require a complex and dangerous surgery for the subject. [7].

1.2.3 Components

In Figure 4 several components of a generic BCI system are shown. A BCI can be described

as a generic control system. It has an input and components that process and transform the

input signal into the output signal. In the represented system, the output signal consists of

commands sent to a robotic arm or by letters shown on a screen.

Signal acquisition

In Section 1.2.2, we discussed the difference between invasive and non-invasive recordings of

the brain activity. What we would like to highlight here is that it is of utmost importance that

the quality of the recording is the best possible. The introduction of noise and artifacts could
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Signal Acquisition Feature Extraction
Translation
Algorithm

Signal Processing

Device Commands

Figure 4: Basic design of a BCI system. In this diagram, the different parts of a BCI are shown:
(1) Signal acquisition, (2) Signal processing (3) Output Device.

affect and greatly reduce the overall performance of the BCI. For non-invasive EEG recording,

there are some entities that need to be defined: the number of channels to be used, the position

of the electrodes on the scalp, the EEG acquisition device and so on. Not only these entities

affect the ability of the BCI to extract features from the EEG signal, but they also have an

effect on the portability of the system. If a bulky EEG system is chosen for the recording, then

it would be difficult for the subject to use the BCI outside of a hospital/laboratory.

Signal Processing

As visible in Figure 4, the signal processing block is composed of two methods: feature

extraction and translation algorithm. In the feature extraction method, the signals are subjected

to a feature extraction procedure. Example of feature extraction procedures are filtering or
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spectral analysis. Hopefully, this analysis determines the features representing what the user

wants to communicate. Features that are commonly extracted are related to specific brain

waves or rhythms that mirror events currently happening in the brain.

The translation algorithm method converts the previously extracted features into device

commands. Effective translation algorithms must adapt to the user’s signals characteristics

[7]. Three different levels of adaptation can be identified. At the first BCI access of each user,

the algorithm has to adapt to him/her by analyzing the features of the signal. EEG signals

typically display variability on both short and long term. A translation algorithm that only

has the first level of adaption would be completely ineffective on the short and long term usage

of the BCI. An additional level of adaptation, with periodic modifications aimed at reducing

the impact of these variations, is required. The third and last level of adaptation is the most

challenging one. When a signal feature that has always been a reflection of the brain function

starts to be an output signal encoding the user’s intent, it is then subjected to the adaptive

capabilities of the brain. So, the outcome of the BCI will also affect the input signal of the

BCI, and an effective translation algorithm should take this into consideration.

The Output Device

For the majority of BCI systems, the output device is a screen and the real output is the

result of the selection of symbols presented on the screen. These symbols can be letters, icons,

or any other type of stimuli. According to the choice that is selected, a letter is displayed on

the screen, or the action of an external device (wheelchair, . . . ), correspondent to the selected

icon, is performed.
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1.2.4 Non - Invasive BCI

Any of the following techniques to monitor the cerebral activity can serve to build a non-

invasive BCI:

1. Magneto - Encephalography (MEG): MEG is a technique that makes use of magnetic

fields to monitor the brain activity. Intracellular currents occur in a natural way in the

brain. Magnetic fields are produced by these currents. In order to detect these magnetic

fields, sensitive magnetometers have to be used [32]. With this technique, areas that

are active during cerebral processes can be identified. Problems related to MEG are

sensitivity to external sources of noise (other magnetic fields) and expensive, cumbersome

and unportable equipment;

2. Functional Magnetic Resonance Imaging (fMRI): fMRI is an imaging technique

that makes use of the magnetic resonance to evaluate the status of the brain. This imaging

technique is complementary to the morphologic imaging, which is focused on analyzing the

morphology of the organ. The signal that is measured with fMRI-based BCI is the BOLD

signal (Blood Oxygenation Level Dependent signal) [33]. This measure is an indirect

measure of the activity level of a cerebral area. A greater amount of oxygen consumption

corresponds to a higher level cerebral activity. The problems associated with fMRI-based

BCI are the same as the one described for the MEG. In addition to these, a delay of ∼3-6

seconds, between the cerebral activity and the recorded signal, could be present;

3. Slow Cortical Potentials (SCP): SCPs are low-frequency (DC-2Hz) voltage changes

recorded at the level of the scalp. These voltage changes are associated to cognitive and
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sensorimotor events. Negative SCPs are related to functions that cause an activation

at the level of the cortex. Positive SCPs are associated with a reduction in the cortical

activation [7]. SCPs - based BCI depend on the ability of people to learn how to control

these voltage changes. Birbaumer et al. developed a BCI in which subjects could use

SCPs for movement control (upwards, downwards) of a cursor displayed on a screen [34].

4. Mu Rhythms: in awake people, motor cortex displays an activity in the frequency range

of 8-12 Hz. This activity is called mu rhythm, and is comprised of a variety of different

rhythms. Each rhythm can be distinguished according to the location, frequency and

relationship to a contemporaneous motor output. The prior preparation to the movement

and the movement itself correspond to a decrease in the mu rhythm in a controlateral

way (event-related desynchronization). An increase of the rhythm occurs after movement

and during relaxation. For the mentioned reasons, a pattern visible in the mu rhythms

can be associated to a specific movement. The identification of this pattern can then be

used to control external devices. No real movement is necessary, since mu rhythms are

also present with motor-imagery [15].

1.3 P300 Event-Related Potential

Event Related Potentials (ERPs) are stereotyped electrophysiological responses that happen

after a sensory stimulation. ERPs are visible in the EEG signal and can be distinguished from

the background electric activity of the brain [57]. Evoked potentials can be classified in two

main categories. Those dependent on the nature of the stimulus are defined as exogenous



16

potentials. Those dependent on the meaning of the stimulus, rather than on its nature, are

defined as endogenous potentials.

One of the most known ERP is the P300 response. A P300 response is elicited when an

auditory, visual, or somatosensory stimulus, which is significant for the subject, is presented to

him/her infrequently and interlarded with insignificant stimuli. The P300 response is visible in

the EEG trace as a positive peak at about 300 ms after the stimulus onset [16]. The reason

why this ERP is called P300 is that it is a positive deflection (P) that happens 300ms after

the stimulus onset. The P300 response is commonly referred to as the ”oddball” response. As

shown in Figure 5, it can be noticed that P300 response is predominant in responses elicited by

the stimulus representing the user’s intent (so, when the stimulus is the target one). Instead,

no P300 response is present when the provided stimulus does not reflect the user’s intent (so,

when the stimulus is not the target one).

Duncan et al. showed that the amplitude of the peak of the P300 response is inversely

proportional to the frequency of the target stimulus [35] . Therefore, the higher the frequency

of the presentation of the target stimulus, the lower is the amplitude of the wave. This makes

it clear that the frequency of the stimulation affects the resulting generated response.

Ruchkin et al. showed that the latency of the P300 response is related to the time necessary

for the subject to fully recognize and understand the presented stimulus [36]. So, the latency

depends on the complexity of the stimulus and on the amount of information carried by the

stimulus.
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Figure 5: Left: EEG signal when a desired stimulus is presented. Right: EEG signal when an
undesired stimulus is presented. Time 0 represents the stimulus onset.
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Figure 6: Grid used by Farwell and Donchin for the first P300 - based BCI [17].

The P300 response has a great potential in the BCI field. Farwell and Donchin [17] described

the development of the first P300 based BCI. In this BCI, the user is presented with a 6 by

6 grid, with letters and one-word commands. A 100 ms flash of a row or a column happens

every 125 ms, and in each repetition, composed of 12 flashes, each letter/number/command

flashes twice. For the user, it is possible to make a selection by focusing on the desired input.

Counting how many times the symbol flashes helps the user to stay focused on the task. In

order to identify the presence of a P300 response in the EEG trace, the authors used stepwise

discriminant analysis as a classification technique. This procedure yields to a score measuring

the distance between each epoch, composed of 1200 ms of EEG signal extracted in a symmetric

way around the time at which the stimulus is provided, and the average of a group of epochs

known to include a P300. With the value of this measure, it is possible to determine if that

epoch contains a P300, and so if that stimulus is the one on which the user was focusing his/her

intent.
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The greatest advantage of employing the P300 response in BCI field is that subject training

is not required. This is due to the fact that the P300 response is an innate response of the

human brain. Slow cortical potentials and mu rhythms instead, require training of the subject

to be successfully used in a BCI.

The P300 response, as other event related potentials, changes over time. Periodic adaptation

of the translation algorithm to the current characteristic of the wave is required in order to have

a constant good performance. When employing the P300 response in BCI, the communication

rate is low. In fact, the response of the subject is time-locked to the presentation of the

stimulus: for this reason, it is necessary to define a value of inter-stimulus interval (ISI) that

allows to increase the transfer rate of information but, at the same time, allows to obtain a

good performance in the identification of the P300 response [37].

One of the goals of our wearable BCI device is to control a robotic arm. In order to perform

this control through a BCI, the choice of the P300 response as the electrophysiological signal to

be used to control the arm was the best one. Using a stimulation grid similar to the one employed

by Farwell and Donchin in [17] and presenting a predetermined set of possible movements the

robotic arm can perform, the user would be able to select the movement he would like the

robotic arm to perform. We also wanted to develop a system that doesn’t require any training

of the subject. The P300 response is an innate response of the brain, and so no training of the

subject is required.

Our goal was to develop a wearable and cost effective BCI assistive device. To do this, we

analyzed possible choices of cost-effective EEG acquisition devices, to reduce the overall cost
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of the device. We designed a BCI software, which records and processes the EEG signal while

presenting a stimulation grid to the user. Other than controlling the robotic arm, with our

software it is possible for the user to type characters and words, using a grid similar to the one

used by Farwell and Donchin in [17].

Our aim is that this work will be useful in helping the definitive transition of BCI from

hospital or laboratories to patients’ houses. Using wearable and affordable EEG equipment, a

small robotic arm and a computer screen, the disabled could make use of a reliable method for

communicating and interacting with other people.

1.4 Related Works

Several BCI based assistive devices were developed. As we mentioned earlier, Farwell and

Donchin were the first group who presented a P300 based BCI to type words [17]. Other

examples of BCI spellers can be found in Donchin et al. and Krusienski et al. [61; 62].

Assistive devices for the control of electric wheelchairs were developed. Iturrate et al and

Rebsamen et al. both presented P300 based BCI systems that could be used to control electric

wheelchairs [18; 19].

Congedo et al. presented a prototype of a P300-based video game working, using the

OpenVIBE platform [20; 63]. Finke et al. were able to develop a P300 video-game obtaining a

classification accuracy of 65% on single trials [21].

In this section, we review three studies related to BCI control of external devices. In two

of them, P300 is employed. In one of them, steady state visual evoked potentials are used.
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1.4.1 P300 Based Wheelchair-Mounted Robotic Arm Control

Palankar et al. developed a system they developed to control a 9 DoF wheelchair mounted

robotic am using a P300 based BCI [22]. The robotic arm used in this system was designed to

fulfill the specifications necessary to perform daily tasks. They used a relatively expensive and

powerful robotic arm. The most widely used robotic arms, similar to this one, such as the Jaco

Kinova [40], typically cost around $ 30000 to $ 40000 [23] . Using a more cost effective robotic

arm would allow more people to use such a system at home too.

In this study, the control of the robotic arm was achieved with a P300 based BCI. The

authors used the BCI2000 software [24] to stimulate the user, record and process the EEG

signal. In this case, the application presented to the user a grid, very similar to the one used

by Farwell and Donchin [17], showing letters from A to 0. The stimuli grid presented to the

user is shown in Figure 7. The cells are arranged in a 5 x 3 matrix. A 75 ms intensification of a

column or a row happens every 125 ms. So, each sequence of flashes, equal to 8 intensifications,

lasted for a total time of 1 second. Each letter is mapped to a movement of the robotic arm.

However, the subject is not presented with movements of the robotic arm directly, but with

letters that are associated to these movements. The mapping between letters and movements

is shown in Figure 7.

Other than the head cap used for EEG recording, no information about the EEG acquisition

system is provided in the paper.

The authors report an important issue related to safety. Since the complete process of

scanning the matrix and detecting the selected stimulus takes about 15 seconds, a delay in the
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Figure 7: Left: mapping between letters and robotic arm movements. Right: The grid presented
to the user with flashing letters [22].
©[2011] IEEE.

response of the robotic arm is introduced. Should a dangerous situation arise, the robotic arm

wouldn’t be able to respond in time, and a possible crash could take place.

After summarizing this study, it is possible to identify three main improvements that need

to be done in order to build a cost effective P300 - based BCI system for the control of a

robotic arm. It is necessary to present to the user stimuli visually representing movements of

the robotic arm; then, a cost effective robotic arm should be used; last, safety issues have to

be solved. It would be relatively difficult for locked-in individuals to use such system in the

daily life, because the user would have to always remember the mapping between letters and

movements of the robotic arm.
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1.4.2 P300 Based BCI Control of a Humanoid Robot

Bell et al. developed a P300 BCI to control a small humanoid robot [25]. This robot was

programmed in a way so that it could be controlled with high-level commands. No low level

commands had to be used to control the robot.

To develop the system, the authors used a dynamic image-based BCI. The user is presented

with flashing images, recorded from cameras mounted on the robot, and the P300 response is

utilized to determine the image that the user is focusing on. Thus, enabling the robot to pick

up the correspondent object.

EEG signal was recorded using a BiosemiActiveTwo system, which is an acquisition system

designed for electro physiology research [67]. This acquisition system is both expensive ($

16000) for the 16 channels version): and unportable too.

During a generic selection, the border of each image is intensified in a random sequence;

the flashing happens every 250 ms, and each intensifications lasts for 125 ms. The subject has

to focus attention on the image of interest. After 10 flashes per image, a classification on EEG

is performed. This classification is used to determine, according to the selected image, where

the humanoid robot should direct and which object it should pick up. Average classification

accuracy was 98.4% amongst subjects.

The main outcome of this study is that non-invasive BCI can be used to control complex

devices, such as humanoid robots. The authors state that this system could be potentially

used in the field of helper robots for disabled patients. These robots could move in a home

environment, performing actions that the paralyzed individuals are no longer able to do.
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The authors also suggest that other types of EEG responses, such as SSVEPs and mu

rhythms, could be used for command selection and for the control of devices with better results

than P300 response. However, these approaches require more training data and show wider

variation across subjects, which are not true for the P300 response.

1.4.3 SSVEP Based BCI to control a Hand Orthosis

Ortner et al. developed a system to control an orthosis using Steady State Visual Evoked

Potentials [27]. These potentials are natural responses to visual stimulations occurring at a

fixed frequency f0. The eye, when excited with a visual stimulus at frequency f0 generates an

electrical activity in the brain at the same frequency or at multiples of the stimulation frequency.

SSVEP signals can be used in the BCI field for many tasks, ranging from games to the

control of hand orthosis [28]. In general, the use of SSVEP in the BCI field requires a lower

amount of training than other types of potentials. In fact, the subject is required to only gaze

at a light source, without performing any complex task. The drawback of SSVEP control is

that the user is required to maintain and focus attention on the blinking lights, and this may

cause fatigue.

The hand orthosis used in this study shown in Figure 8. For the development of this system,

two LEDs flashing at 8 and 13 Hz were positioned on the orthosis. If the subject gazed at the

LED mounted on the left part of the orthosis, the hand would open gradually. Gazing at the

LED mounted on the right part of the orthosis caused the hand to close gradually.

To record the EEG signal, the authors used the g.bBSamp EEG amplifier [41] with only one

bipolar channel placed in a position close to O1 and the ground electrode placed on Fz. EEG
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Figure 8: The hand orthosis used for the development of the SSVEP-based BCI [27].
©[2011] IEEE.

signal was sampled at 256 Hz. This acquisition system is very powerful and used in hospital

and medical clinics, but it is very expensive.

The results that the authors obtained in these studies were good, with a positive predicted

value of 79% ± 21%. The advantage of this type of control is that the end-users can send

information whenever they want to, without waiting for a specific stimulus to be presented, as

it happens with synchronous BCIs. One of the problem that were highlighted in this study is

that the number of false positive detection (i.e. the number of times an SSVEP was identified

even if the subject was not focusing on any LED) was high. According to the authors, this

could be due to the fact that, even without focusing on the light sources, the subjects still had

the light sources in their visual fields.



CHAPTER 2

MATERIALS AND METHODS

Three main goals of the proposed wearable and cost-effective BCI assistive device can be

identified:

1. stimulate the user with an oddball paradigm, presenting to him/her a grid with letters

and numbers (BCI speller), movements or actions of the robotic arm (BCI control of a

robotic arm);

2. classify the recorded EEG signal and determine the presence of P300 responses, necessary

to detect the stimulus on which the subject was focusing

3. display the detected letter/number on the screen, or make the robotic arm perform the

selected movement or action.

In this chapter, we will describe in detail the full development of the BCI device. We

will discuss the hardware components, the software and the classification method employed to

determine the presence of a P300 response in the EEG signal.

2.1 Hardware

The hardware consists of two modules: the EEG acquisition system and the robotic arm.

2.1.1 EEG Acquisition System

The goal of our team was to build a wearable and cost-effective BCI assistive device. For

this reason, we compared two cost effective EEG recording devices available on the market.

26
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TABLE I: TECHNICAL SPECIFICATIONS OF THE EMOTIV EPOCH EEG DEVICE [39]
AND OF THE OPENBCI BOARD [2].

(a) Emotiv Epoch

Property Value

Channels Up to 14
Sampling rate 256 Hz
Resolution(bit) 14
Filtering Built - in [0.2 - 43Hz]

(b) OpenBCI

Property Value

Channels Up to 16
Sampling rate 250 Hz
Resolution(bit) 24
Filtering None

The two devices we compared are: Emotiv Epoch [39] and OpenBCI [2]. Emotiv Epoch is a

14 channels wireless (Bluetooth communication) EEG acquisition device. The electrodes are

saline based wet sensors. The technical specifications of Emotiv Epoch are described in Table

Ia. The market price of the device is of 800$. OpenBCI is an open-source electronic board

with a variable number of channels (up to 16). OpenBCI is compatible with any electrodes.

The technical specifications of OpenBCI are described in Table Ib. The price of the 8 channel

board is of 499$. Recently, a new version of the OpenBCI board was released: the Ganglion

Board. The Ganglion board has 4 channels, and the market price is of 199$. The Ganglion

board features Bluetooth 4.0 communication protocol.

The Emotiv Epoch is a commercial product that is sold together with a proprietary software.

With this proprietary software, there is no easy way to access the raw EEG data. Electrodes

in Emotiv Epoch are embedded in a pre-assembled headset. So, using this device means being

completely locked to the electrode locations of the pre-assembled headset. These locations are,

according to the 10-20 system notation, the following ones: AF3, F7, F3, FC5, T7, P7, O1,
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Figure 9: The OpenBCI board used as the EEG acquisition system in the proposed device [2].

O2, P8, T8, FC6, F4, F8, AF42. Since one of the most important components in detecting the

P300 response is the electrodes locations, Emotiv Epoch would allow to choose other electrodes

locations to be used.

For the above mentioned reasons, after this preliminary analysis we decided to use the

OpenBCI board. The company which produces OpenBCI board bases its philosophy on open-

source technology. So, complete specifications of the board, including the firmware and the

protocol used for Bluetooth communication are available. The access to this information allowed

us to read EEG raw data in an easy way. Then, it was also possible to develop a custom firmware

for the board. Last but not least, we could decide which set of electrodes locations to use.

The OpenBCI board is based on the MicroChip PIC microcontroller model PIC32MX250F128B

[45]. This microcontroller uses the ADS1299 [46] as the circuitry for analog to digital conversion.
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OpenBCI board transmits the data using Bluetooth communication. A USB dongle plugged in

into a computer is necessary in order to retrieve the data sent by the board.

The electronic board that we used is the Cyton board version 3, 32 - bit. The board is

shown in Figure 9. One channel is used as reference for all the others, and another channel is

used as the bias channel, that is similar to the ground channel on medical EEG devices. This

channel makes use of destructive interference waveform techniques to eliminate the common

mode noise of all the active recording channels.

One of the questions that we wanted to answer was if the OpenBCI signal quality is com-

parable to the one of a medical device. The quality of the signal is a fundamental component

of a BCI. Frey [38] presented a study in order to fully address this question. In the study,

the OpenBCI board was compared to a medical grade EEG system, the g.tec g.USBamp [41].

To perform the comparison, the EEG signals were contemporaneously recorded from the two

devices in the same locations of the 10-20 systems. The main outcome of this study was that

the OpenBCI board represents a good alternative to the most traditional EEG devices. Cor-

relation computed both in time and frequency domain showed that the signals acquired by the

g.USBamp and by the OpenBCI board were very closely related. The Pearson R score was

higher than 0.99 for all the channels tested.

It is important to underline here that the OpenBCI board is not a medical device, and is

not intended for that use: in fact, it has no certification.

Another important aspect is that the board uses a battery as a power source. Using a

battery, hazards caused by the power supply can be avoided. Establishing a connection be-
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Figure 10: The 3D printed Mark III EEG headset that was utilizied as a support for the
electrodes. The chin strap that we included to add more stability to the headset is visible [49].

tween the human body and the power lines requires protection and isolation circuits, fulfilling

international standards for safety. The battery that we used to power the OpenBCI board is a

500mAh lithium battery.

EEG Headset

In order to record the EEG signal with the OpenBCI board, electrodes need to be precisely

positioned on the scalp with an harness that limits motion artifacts. OpenBCI is an electronic

board designed to record any type of biological signal (EEG, EKG, EMG,...) and therefore no

EEG electrodes harness is supplied with the board.

For this reason, we had to determine which type of support to use. In order to do this, we

identified three possible options:
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• Gold cup electrodes with harness: OpenBCI comes with gold-cup electrodes. These

electrodes typically have a low impedance, below 20 kOhm, and allow to obtain high

quality EEG recordings. Conductive paste is required to be used with these electrodes.

This paste has to be placed on the scalp, on the positions correspondent to the chosen

electrodes locations. From the end-user point of view this is not a good solution, because

it would require the constant presence of a care-giver who takes charge of the application

of the paste and of the subsequent positioning of the electrodes. Furthermore, electrodes

have to be fixed on the user’s scalp using elastic bands. These elastic bands are not, in

our opinion, suitable for long term recording. They may cause involuntary movements of

the electrodes, decreasing the quality of the EEG signal;

• Electro-caps: these caps are head caps specifically designed for EEG recordings. They

are used in hospital/laboratory recording of EEG, and allow to obtain high quality signals

over long-term recordings. There are three main problems with these caps when designing

a cost effective device: first of all, the market price associated to them ranges from 250 $

to 400 $, according to the chosen model; they also require an adapter, which costs around

100%, in order to be used with the OpenBCI board; lastly, they also require the use of a

conductive gel to be applied between the cap and the scalp;

• 3D printed headset: the last option was to use a 3D printed headset, acting as a

support for the electrodes. Files for 3D printing are released by the OpenBCI company

[2]. This headset can be easily 3D printed with adjustable sizes according to the user’s

head circumference. This headset makes use of dry electrodes, that don’t require any
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Figure 11: The available electrodes locations of the 3D printed EEG headset. The utilized
locations are: C3,C4,P7,P3,Pz,P4,P8, Oz. Image from: http://docs.openbci.com/Headware/02-
Ultracortex-Mark-III-Nova-Revised.

specific paste or gel to be applied on the scalp. Furthermore, printing and purchasing the

material to build this headset costs around 100$, which is far less than the cost necessary

to buy an electro-cap. Therefore, we used the 3D printed headset model Mark III [49] for

our wearable and cost effective device.

An image of the headset that we built and used to test our device is shown in Figure 10.

With this headset, it is possible to place the electrodes in the following locations of the 10-20

system: Fp1, Fp2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3, Pz, P4, P8, O1, Oz, O2.

These locations are shown in Figure 11.

The P300 response is mostly predominant on the parietal region and along the central line

of the scalp [16]. For this reason, we choose the following electrodes locations: C3, C4 on the
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Property Value

Shoulder to Elbow 4.75”
Elbow to Wrist 5”

Wrist to Tip 3.375”
Height (reaching up) 15.75 ”

Weight 23 oz

Figure 12: Left : picture of the Lynxomotion AL5B. Right : technical specifications of the AL5B
Robotic Arm [42].

“central lobe; P7, P3, Pz, P4, P8 on the parietal lobe; Oz on the occipital lobe. As reference

and ground, we used two ear clip electrodes placed on the right and left earlobes.

2.1.2 Robotic Arm

One application of BCI our device is to control a robotic arm. We choose to use a robotic arm

produced by Lynxmotion: the AL5B arm [42]. The technical specifications of the robotic arm

are shown in Figure 12b. A picture of the complete setup for the robotic arm is shown in Figure

12a. The robotic arm has 4 degrees of freedom. One DoF is due to the rotation of the base, and

the other three are due for three joints that act as shoulder, elbow and wrist. An additional

DoF can be added with a servo motor for the rotation of the wrist.
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Figure 13: The HCSR04 ultrasound sensor.

The movement of each joint is obtained by setting the angle of the correspondent servo

motor. In order to achieve this, the servo motors have to controlled with an electronic board.

The electronic board that we used to control the servos is the BotBoarduino microcontroller

[43]. This board is based on the Arduino Duemilanove [44], and allows to control a set of servo

motors in an easy way.

We powered the board directly from the USB port of a laptop, and we used a 6V power

supply to power the 5 servo motors of the robotic arm. This distinction in the power supply

was necessary because the servo motors could take away the current necessary for the electronic

board to function properly.

In order to enhance the functionality of the robotic arm, we added ultrasonic and force

sensors. Two ultrasonic sensors are used to avoid crashes of the robotic arm with close objects,

while two force sensors are used to detect the width of the object being grabbed.
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The ultrasonic sensors are shown in Figure 13. Each ultrasonic sensor is placed on one side

of the robotic arm, in a position close to the gripper. These sensors are used to detect the

presence of any object in proximity of the robotic arm. The chosen proximity threshold is 4”.

The principles behind ultrasonic sensors is very simple. An ultrasonic sensor sends high

frequency sound pulses at a regular time interval. If the sound wave strikes an object, the pulse

is reflected back. By determining the time difference between the sent and received signal, one

can compute the distance of the object, according to this equation:

d =
t · v
2

(2.1)

where d is our unknown variable (distance), t is the measured time and v is sound speed in the

air, which is approximately 767 mph. The 2 in the denominator is necessary because the sound

wave was has to travel back and forth in the air in order to be detected.

On the gripper of the robotic arm, we added two force sensing resistors. These sensors was

necessary to detect the width of the object being grabbed, in order to avoid crashing the object.

This technique prevents the servo motor to overheat, that could happen when the servo motor

keeps moving while an object has already been grasped by the gripper.

A software was developed by our team in Processing [50] to control the robotic arm. This

software communicates via a serial port with the BotBoarduino board controlling the servo

motors of the robotic arm. A screenshot of the software is visible in Figure 14 This software

was designed with the following idea: each icon corresponds to a discrete movement of the
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Figure 14: The interface of the software developed for robotic arm control. Buttons for discrete
movements, sliders for setting increment values, sliders for setting a specific position can be
used to tune the parameters in an optimal way.
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robotic arm, such as up, left, . . . . A complete description of the discrete movements that can

be performed by the robotic arm is reported in Appendix (Table XI).

When a button is clicked, the updated X, Y , Z coordinates and the value of the wrist angle

are sent to the robotic arm, and the arm would move accordingly. The current position of the

robotic arm is always displayed and updated with the current position of the robotic arm. The

software also allows to control the incremental value for the discrete movement along the three

axis and for the angle of the wrist. So, it was possible for us to identify the best set of values

to be used in the BCI control of the robotic arm. In fact, a small increment value would have

resulted in the possibility of performing finer movements, but at the expense of a longer time.

A large increment, instead, would resulted in a smaller amount of time necessary to cover the

same distance, but at the expense of movement resolution. Experiments were performed in

order to identify the set of increment values leading to the best trade off between time and

movement resolution.

Some locations in the three-dimensional space may not be accessible to the robotic arm,

since reaching that location may be obstructed by close objects. Therefore, it is important to

read back the correct values of X,Y , Z coordinates and the wrist angle, which are sent by the

BotBoarduino board.

Furthermore, the software allows to directly specify the X, Y , Z coordinates and the wrist

angle the robotic arm should reach. This resulted useful to us to determine the extreme locations

that can be reached by the robotic arm.
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2.2 Software

After setting up the EEG acquisition system and the robotic arm, we implemented the BCI

software. The main goals of the software are the following ones:

• present to the user visual stimuli using a flashing grid of options. When the stimulus

representing the user’s intent flashes, a P300 is elicited;

• acquire EEG signal streamed by the OpenBCI board;

• process the EEG signal. In particular, classification is aimed at the identification of the

P300 response;

• communicate with the robotic arm, sending commands to it and receive information back

from it.

We analyzed several programming languages and software solutions that could be employed

to develop our BCI application. After this analysis, we decided to use Processing [50], the same

software that we used for the robotic arm control application. According to Processing website,

“Processing is a flexible software sketchbook and a language for learning how to code within the

context of the visual arts” [50]. Processing is mainly used to develop graphic-based application.

With Processing, it is also possible to use tools to communicate with external hardware through

serial communication. The combination of these factor leads us into choosing Processing as the

software to develop our BCI application.

Some screenshots of the developed BCI software are presented in Figure 15. These windows

are as follows:
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(a) Main menu of the BCI. (b) Possible modes of BCI use.

(c) Settings. (d) Settings for speller mode.

(e) Settings for robotic arm mode. (f) Impedance Check.

Figure 15: Screenshots of the developed BCI software.
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A. Main Menu Window

The main menu is shown in Figure 15a. This is the first screen presented to the user. The

user can choose to start the system or to enter the menu to set some settings related to the

parameters for the stimulation, to the robotic arm control, . . . . Furthermore in the bottom

left corner it is possible to check if the USB Dongle, the OpenBCI board and the robotic are

connected or not.

B. Start Menu Window

If the start button is chosen in the main menu, the screen visible in Figure 15b appears.

This window presents to the user two modes of operation: Speller and Robotic Arm Control.

If the Speller mode is chosen, the user can use a P300 speller similar to the one developed by

Farwell and Donchin in [17]. The speller mode is also used for the training phase of the EEG

classifier. This will be discussed in Section 2.3.2.1. The second possible option is the Robotic

Arm Control. When chosen, the user gains access to a P300 based control of the robotic arm.

So, according to the user’s needs, it is possible to choose between the control of the robotic arm

and the use of the speller.

C. Settings Window

When entering the settings page, shown in Figure 15c, it is possible set some options. These

options are related to: stimulation parameters, such as inter stimulus interval, intensification

duration, number of repetitions; properties for the training of the classifier done with the speller,

such as the number of words to be used for the training; subject ID, which is necessary to save

the data and to load the parameters for classification; test signal on the board, which is useful
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to verify that the communication with the board is working; properties for the control of the

robotic arm, such as the incremental values for the discrete movements.

D. Speller Mode Window

Speller mode window is shown in Figure 15d. When entering speller mode, the user can

set stimulation parameters, among these parameters there is the number of repetitions. When

dealing with evoked potentials, it is important to know that it is very difficult to identify the

presence of an evoked potential after only one presentation of the stimuli. In order to identify the

presence of evoked potential with a great accuracy, multiple repetitions of the same stimuli need

to be presented to the user, since detection of an evoked potential with just one presentation of

the stimulus is extremely difficult. In our case, the term repetition refers to a complete set of

flashes: this means that, if the stimulation grid has 6 rows and 6 columns, a repetition would

be made of the total 12 flashes (i.e., stimuli). In a single repetition, each column and each

row flashes, so it is not possible for a column or a row to flash multiple times during the same

repetition. By increasing the number of repetitions used, and a result increasing the number

of stimuli presented to the user, a P300 response can be identified in a more accurate manner,

but this comes at the expense of more time required. The possible choices for the number of

repetitions to be used range from 1 to 14.

For the speller mode, it is possible to choose between the training and the test phase. During

the training phase, the user is asked to spell predetermined letters. This is used in order to

perform the training of the classifier, and will be explained in detail later in the chapter. While

during the test phase, the user can spell any desired word.
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E. Robotic Arm Mode Window

The robotic arm mode window is shown in Figure 15e. When entering the robotic arm mode,

the user is presented with the options to set some parameters, such as number of repetitions

and subject ID. Then, the user is also provided with an option to choose between high level

control and cartesian control of the robotic arm. The difference between the two modes will be

explained later in the chapter.

F. Impedance Control Window

The last screenshot, visible in Figure 15f, shows the electrodes impedance check. It is very

important to have good quality signals obtain good accuracy in P300 detection. One way to

check if the electrodes are placed correctly on the scalp is to measure the electrode-to-skin

impedance. In order to measure the impedance, a small, and known, current is injected in the

electrode, and the resulting voltage is measured. Since both voltage and current are known, it

is then possible to compute the electrode-to-skin impedance as:

R =
V

I
(2.2)

By using a color-based legend, the user can determine which electrodes have to be adjusted

before starting to use the OpenBCI for recording.

Now we’ll discuss in detail how we implemented the visual stimulation, both for speller and

robotic arm mode.
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Figure 16: Left : speller stimulation grid without symbols. Right : speller stimulation grid with
symbols.

2.2.1 Visual Stimulation

To elicit a P300 response an oddball paradigm is frequently used. With this paradigm,

various stimuli are presented to the user. From the user’s point of view, one stimulus represents

the target, i.e. the one the user is focused on. All the other stimuli are non-target. Considering

all the stimuli presented to the user, the target stimulus occurs infrequently. When presented

with this stimulus, a P300 response is elicited [16].

For our wearable BCI device, we employed visual stimulation. Stimuli are arranged in a n×m

grid. For speller mode and cartesian control of the robotic arm, we decided to flash columns

and rows, instead of single cells, in order to reduce the time required to perform a complete

stimulation. With this paradigm, the generation of a P300 response would be associated to the

flashing of a row or of a column, rather than to the specific cell.
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In the speller mode, it is possible to use two different types of grids: one grid is a 6× 6 grid

containing only letters and numbers; the other one is a 6×7, grid which, other than letters and

numbers, also has 4 symbols ( . , - ? - ! ), a symbol to delete the last letter ( < ), and the

space character (-). These two grids are visible in Figure 16.

For the robotic arm mode, two different control modes can be used, cartesian control and

high level control. For the cartesian control, the grid a 4 × 4 grid, in which 16 movements are

represented. The 16 movements are the same as shown in the robotic arm control software, and

allow to perform discrete movements with the arm. A screenshot of the flashing grid is shown

in Figure 17. Also in this case, columns and rows flash, and a single repetition is composed of

8 flashes.

In the high level control, instead, the subject is not asked to perform a series of discrete

movements to complete the task. The idea behind the implementation of this mode is that

the subject can directly perform a complete, and predefined, action with a single command.

These commands are represented in Figure 17, and are as follows:

• Grab a glass of water: the robotic arm will move to a location, already defined in the

firmware, in which a glass of water is expected to be present. After grabbing the glass, it

will move towards the subject mouth;

• Grab food: as above, the robotic arm will perform a complete movement to a location

where food is expected to be present. After picking up the food, the robotic arm will

move towards the subject;
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(a) The grid for cartesian robotic arm control. (b) The grid for high level robotic arm control. Single cell flashing
is used.

Figure 17: The two stimulation grids that can be used in the robotic arm control mode.

• Grab an object on the left: the idea behind this high level command is that if a person

wants to give to the user an object, the robotic arm will move to a defined location on

the left, and wait until an object is grabbed;

• Grab an object in central position: this movement is the same as above, but the robotic

arm will move to a central location;

• Grab an object on the right: as above, but on the right.

Regarding the stimulation in high level robotic arm control, single cell flash one at the time,

instead of rows and columns. So, a single repetition is composed of a single flash of each cell.

While the robotic arm is performing one of these high level actions, the stimulation is stopped

until the movement is complete.
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Figure 18: The default flashing pattern used in both speller and robotic arm mode.

With the current implementation of the robotic arm firmware, it is required that the objects

are in a position already defined in the firmware: otherwise, the robotic arm won’t know where

it has to move to find the glass of water, the food, . . . .

A visual representation of the flashing is shown in Figure 18. As a default, stimuli are

presented with this flashing pattern: a random column, row or cell intensifies with a white color

for 120 ms. This intensification happens every 240 ms. These two parameters (intensification

duration and inter stimulus interval) can be adjusted in the settings page . A study on the

effect of the stimulus rate on P300 response was done by McFarland et al.. They showed that

the optimal inter stimulus interval is between 62.5 and 250 ms.

2.2.2 EEG Data Retrieval

The 32 bit OpenBCI board that we used for our wearable BCI device makes use of bluetooth

connection to communicate EEG data. A USB dongle plugged in the laptop to retrieve the
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TABLE II: DESCRIPTION OF THE DATA PACKET SENT BY THE OPENBCI BOARD
[2].

Byte(s) Value

1 0xA0
2 1 - 255

3 - 5 Channel 1
6 - 8 Channel 2
9 - 11 Channel 3
12 - 14 Channel 4
15 - 17 Channel 5

Byte(s) Value

18 - 20 Channel 6
21 - 23 Channel 7
24 - 26 Channel 8
27 - 28 Auxiliary
29 - 30 Auxiliary
31 - 32 Auxiliary

33 0xC0

data. Then, in our software we implemented a serial communication with the USB dongle with

a baud rate of 115200. Each data packet sent by the board is composed of 33 bytes. Table II

provides the complete description of the data packet.

In order to parse the data contained in the data packet, the start and stop bytes, respectively

0xA0 and 0xC0, are used. Throughout all of our tests, we’ve never experienced any data loss

or incorrect retrieval.

2.2.3 Synchronization Protocol

Synchronization between the recorded EEG and the stimulation time is a fundamental

component for analyzing evoked potentials. If this condition is not met, then it would be

impossible to correctly detect the evoked potential in the EEG signal, because time information

would be misleading. As an example, with P300 responses we expect a positive deflection in

the EEG signal at around 300 ms. It is easy to understand that, if time information about
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Figure 19: Signals recorded simultaneously from the flashing square and column. Photoresistor
signals are normalized between 0 and 1.

stimulation is incorrect, then it would be impossible to correctly identify the presence of a P300

response in the EEG trace.

A synchronization protocol had to be set up. In our application, the synchronization proto-

col uses one of the available analog channels on the board to read the light activity generated

by the flashing stimulation. In order to implement this, we added a small square in the bottom

right corner of the grid flashing at the same frequency of the columns and rows flash. This

square is visible both in Figure 16 and Figure 17. Using a simple photoresistor and an analog

pin on the board, the photoresistor signal can be read directly with the board together with

the EEG signal, and in this way synchronization between stimulation and EEG is established.
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In order to assure that the square flashed at the same frequency of the columns and rows,

we performed the following test: we simultaneously recorded, using two photoresistors, the light

signal of the square and of a flashing column of the matrix. The result is visible in Figure 19.

The two signals overlap, meaning that the square and column are flashing exactly with the

same frequency. So, this method represents a reliable technique to synchronize the EEG signal

with the visual stimulation provided to the user.

2.3 Classification

Detection of P300 event-related potentials with high accuracy is a fundamental component

of any BCI system. In order to do so, classification of the EEG signal is required to detect

the P300 responses. A classifier is a function that maps generic input data to a category. In

our case, the input data are EEG signals, and the categories are presence or absence of P300

response. A training set is a set of data previously classified into categories. Using the training

set, the classification models generate predictive rules that would be used to determine the

category of future unclassified data [51]. This process is referred to as training of the classifier.

After the training phase, the classifier is tested on a validation data set. The validation data

set is composed of classified examples that were not used during the training of the classifier.

In mathematical terms, for a classification problem the training set is made up of m pre-

viously classified examples, (xi, yi), i ∈ M . The elements of the vector xi ∈ <n represent the

values of the n predictive attributes for the ith example; yi ∈ H defines the category corre-

spondent to the vector xi. Let us define the hypotheses function F as the class of functions

f(x) : <n 7→ H. This class of functions F represents possible relationships between yi and xi.
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In a generic classification problem, the aim is to define an appropriate hypothesis space F and

an algorithm Af , that ,together, would allow to determine a function f∗ ∈ F that specifies the

relationship between the value of the n predictive attributes and the corresponding categories

[51].

If we define α as a parameter, or a vector of parameters, the function f is dependent on,

the optimal classifier is the function f∗(x, α0), where α0 is the parameter or the vector of

parameters that minimizes the loss function:

R(α) = E[|y − f((x, α))|] =

∫
|y − f(x, α)|dp(x, y)

=

∫ ∫
|y − f(x, α)|p(x, y)dxdy

(2.3)

This loss function depends on the parameter or the vector of parameters α, but also on the

distribution p(x, y), which is a prior unknown. Therefore, the loss function is approximated

with the expected mean value of the error on the training set. Equation 2.3 then becomes:

Remp(α) =
1

N

N∑
i=1

|yi − f(xi, α)| (2.4)

We can see from Equation 2.3 and Equation 2.4 that Remp(α)
N→∞−−−−→ Rα, so it could be a

good choice to approximate R(α) with Remp(α). However, for a finite number N, the difference

between the terms Remp(α) and R(α) can be very high. This could lead to a phenomenon
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referred to as overfitting, that occurs when the chosen classifier has a perfect performance on

the training set, but it is not able to generalize and correctly classify future examples of x.

To avoid the problem of overfitting, k -fold cross validation is typically used. With k -fold

cross validation, it is guaranteed that each observation xi is used the same number of times

in the training set and only one time in the test set. The complete dataset is divided into k

disjoint subsets, and at the jth iteration of the procedure, one of the kth subsets is used as

the test set, while the union of the other subsets is used as the training set. At the end of the

cross-validation procedure, the accuracy of the classifier is estimated with the average value of

the accuracy on the k test sets [52].

2.3.1 Logistic Classifier

In our application, we use logistic regression as the classification technique to detect P300

responses in the EEG signal. In logistic regression, the binary response y to a vector x (of n

values) is explained using a Bernoulli distribution with E(y) = P (y = 1) = p. Considering

the ith example, E(yi|X = xi) = P (yi = 1|X = xi) = pi is a number between 0 and 1.

Therefore, considering a cumulative distribution function (CDF), F , it is possible to model pi

as F (β0 + βxi). Any F can establish a relationship between p and xi. In the case of logistic

regression, the used CDF is the logistic distribution. For logistic regression, the operator log p
1−p

is called the logit operator.



52

Therefore, for logistic regression the followings are valid:

yi ∼ Ber(pi) (2.5)

logit(pi) = log
pi

1− pi
= β0 + βxi (2.6)

Upon estimating the parameters β0 and β, the probability pi can be computed as:

pi = P (y = 1|X = xi) =
1

1 + eβ0+βxi
(2.7)

1− pi = P (y = 0|X = xi) = 1− P (y = 1|X = xi)

=
eβ0+βxi

1 + eβ0+βxi

(2.8)

Therefore, it is possible to assign the vector xi to category 0 or 1 according to the value of

the computed probabilities.

The vector β can be found by maximizing its log likelihood:

L(β) =
N∑
i=1

logP (yi|xi, β) (2.9)

In practice, Equation 2.9 is rarely used, and a penalty term is added to avoid high values

of β. Equation 2.9 then becomes:

L(β) =

N∑
i=1

logP (yi|xi, β)− λ‖β‖2 (2.10)
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2.3.2 Genetic Algorithms

The first step in applying classification is feature selection. Performing feature selection by

hand can be sub-optimal, and cumbersome. For this reason, we used the genetic algorithm

presented by Dal Seno et al. in [3] to perform automatic feature selection for P300 response

detection.

In this section, we’ll introduce genetic algorithms in a general terms, explaining the required

terminology, and in the following section we’ll describe the specific genetic algorithm that we

have used for automatic feature extraction. In this description, we will refer to the generic

structure of genetic algorithms, represented in Figure 20.

In nature, survival of the fittest happens as a result of selection, crossover, and mutation

among the individuals of the population. Genetic algorithms, which belong to the family of

evolutionary algorithms, mimic this natural process in order to identify an optimal solution to

a presented problem starting form a population of candidate solutions.

In a genetic algorithm, a solution is represented as a fixed-length string of values, describing

an individual in a population. Each value of the string is related to a specific characteristic

of the individual, and the overall combination of the characteristics determines the solution

to a problem. The key elements in a genetic algorithm are individuals and populations, that

represent a collection of individuals.

Individuals

In nature, an individual (i.e., an organism) is characterized by a set of rules that describe

completely the individual. These rules are encoded in the genes of the organism, and these
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Figure 20: Generic structure of a genetic algorithm.

genes are connected together to form the chromosomes of the organism. The genes are typically

referred to as the genotype of the organism, while the physical expression of the genotype, which

represents the organism, is referred to as the phenotype [54].

In a genetic algorithm, candidate solutions to the presented problem are represented by

individuals. Each individual is characterized by two representations of the solution:

1. chromosome, that describe the solution in terms of bit or values;

2. phenotype, that represent the solution in the correct terms as defined by the problem.

The phenotype space is linked to the solution space by a morphogenesis function, that

associates the genotype to the phenotype.
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Genes

The genes represent the basic building block in the development of a genetic algorithm. A

gene describes a possible solution to the problem as an arbitrary length string of values. The

structure of this string defined in terms of parameters that are necessary to map the genotype

to the phenotype.

Fitness

In genetic algorithms, fitness measure is used to evaluate each chromosome (i.e., each solu-

tion). To do so, a chromosome must be firstly decoded, and then an objective function has to

be defined to compute the fitness value.

Population

A population is made up of individuals, that are tested in order to find the optimal solution

to the presented problem. Two important characteristics of the population have to be taken

into consideration: the initial population and the size of the population. The population size

depends on the complexity of the problem.The larger the population is, the easier it is for

the genetic algorithm to explore the solution space. But, having a very large population,

even though it helps in reaching global optimum, results in more computational cost, memory

and time. The typical value of population size is around 100 individuals [54]. Regarding the

initial population, that is often randomly initialized at the beginning of the genetic algorithm as

visible in Figure 20, it should present a large gene pool so that it is possible to explore the whole

solution space. For this reason, the population is typically chosen using random techniques. If

an heuristic method is used to seed the initial population, the resulting average fitness of the
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population is already high, and the genetic algorithm will converge to an optimal solution in a

faster way.

Breeding

The breeding process represents the fundamental component of the genetic algorithm. Dur-

ing this process, new individuals, ideally with a better fitness, are created. The main steps for

the breeding process are shown in Figure 20:

• Selection of parents;

• Crossover of parents to generate the children individuals and mutation of the new indi-

viduals;

• Replacement of the old individuals with the newly generated ones

We describe here in detail these steps:

1. Selection: it is the process of picking two parents from the old population in order to

recombine them. The idea at the basis of selection is to choose individuals with a high

fitness, with the hope that the generated children will have, in turn, an higher fitness than

their parents. Typically, the higher the fitness of an individual, the higher the probability

of that individual to be chosen. We can define as selection pressure the degree to which

the fitter individuals are favored in the selection process. The selection pressure drives

the convergence rate of the genetic algorithm: higher selection pressure results in higher

convergence rate. A problem, that could result when choosing a high selection pressure,

is that it is more probable that the genetic algorithm will converge to a local optimum



57

Parents Children

Figure 21: Crossover process in genetic algorithms.

[54]. Instead, if a low selection pressure is chosen, then the resulting convergence rate

would be very low. Elitism is a process that takes part in the selection. It represents

the practice of keeping the best chromosomes from the old generation, and transfer them

to the new generation. In fact, if these individuals are not selected, or if crossover or

mutation destroy them, they would get lost.

2. Crossover: after selection is performed, crossover takes place. Selection makes clones of

the fitter individuals, but doesn’t create new ones. With crossover, recombination of the

individuals is performed in order to generate children with higher fitness. The simplest

way to perform crossover is with single point crossover, which is shown in Figure 21. Three

steps can be identified in this crossover operation: firstly, two individuals are chosen at

random from the mating pool; secondly, two random points in the genes’ strings are

chosen; thirdly, the resulting parts are recombined together to form two children, by

exchanging the sections after the cut point. An important parameter in the crossover
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Figure 22: Mutation process in genetic algorithms.

operation is the probability that an individual would be selected to undergo crossover: if

this value is 0%, then the new population would result in a copy of the old generation; if

it is equal to 100%, then all the old individuals undergo crossover. An intermediate value

helps in having a good diversity in the population, by creating new individuals as well as

keeping some of the old ones.

3. Mutation: after crossover is performed, mutation, shown in Figure 22, occurs. The

purpose of mutation is to help the genetic algorithm to explore the solution space, by

recovering lost genetic material and, also, to disturb the genetic information. Due to

the process of mutation, the genetic algorithm is prevented from being stuck in a local

minimum. Mutation works by changing the value of each gene with a predetermined, and

typically small, probability.

4. Replacement: the last stage of the breeding process is the replacement. Replacement

is necessary because, since the population size is constant, it’s not possible that both

parents and children take part in the new population. Therefore, a criterion to determine

which individuals will proceed to the new generation has to be identified. The two main

techniques that can be used in the replacement process are generational updates and
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steady state updates. In the case of generational updates, N children are produced

from a population of size N , and so the new population completely replaces the old

one. There are also derived forms of generational updates, that may consider the fittest

individuals from both the children and the parents. In the case of steady state updates

new individuals enter the new population as soon as they are created. This is different

from the generational update, since in that case an entire new generation is produced

at each generational step. In order to perform a steady state update, it is necessary

to determine which individual has to be deleted. The individual to be deleted can be

chosen as the worst or the oldest one, but these methods are typically drastic. For this

reason, a tournament method is typically set up. A tournament between a fixed number

of individuals takes place, and the individual with the highest fitness is chosen as the one

who will proceed to the next generation.

Stop Criterion

An important parameter that has to be defined for genetic algorithms is the stop criterion.

There are several possibilities that can be employed to determine when the algorithm will stop:

• maximum generations: the evolution of the algorithm will stop when the defined maximum

number of generations is reached;

• no change in fitness: if no change in the population’s fitness values is observed, the

algorithm will stop;
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• maximum time: the algorithm will finish its search for the best solution if the defined

maximum time is reached.

2.3.2.1 Genetic Algorithm for Automatic Feature Extraction

As already underlined at the beginning of the previous section, we used the genetic algo-

rithm described by Dal Seno et al. in [3] to perform automatic feature extraction for P300

identification. In this approach, a genetic algorithm operates on simple feature extractors, and

through the evolution orocess it allows to find the optimal set of feature extractors to be used in

logistic regression classification. The only preprocessing that is done on the signal is bandpass

filtering with cutoff frequencies of 0.5 and 30 Hz. In their work, the authors took inspiration

from previous studies, where genetic algorithms were used to find the best combination between

features and classifier for motor-imagery task [55] or to find suitable features for P300 detection

[56].

Feature encoding

In this genetic algorithm, the structure of a chromosome is shown in Figure 23. A chromo-

some represents a possible solution to the defined problem. In this case, the problem is finding

the best set of features to be extracted from the signal to perform classification. A chromosome

encodes, through its genes, a set of features. A chromosome is made up of a certain number of

genes, and each gene has the same identical structure with five elements. As shown in Figure 23,

the first three elements of a gene allow to define a function that acts as a feature extractor. The

first integer in the gene (Func.) defines one function for feature extraction, while the following

two arguments (Arg.1 and Arg.2 ) are two parameters for that function, that lie in the range
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Gene #2 Gene #n

Func. Arg 1 Arg 2 Chan. Active

Chromosome

Gene #1

Figure 23: Structure of a chromosome in the genetic algorithm for automatic feature extraction
[3] . ©[2011] IEEE

[0, 1). The fourth element of a gene determines the EEG channel from which that feature has

to be extracted from. The last element of the gene determines if that gene is active or inactive.

Inactive genes are not considered for fitness computation. The role of inactive genes is of genetic

reserve, since they can be turned on later during the evolution. The feature extractors all share

the same basic structure. For each feature extractor, the input signal is cross-correlated with a

weight function. The operation performed by the feature extractor is the following:

x =
T∑
t=1

u(t)s(t) (2.11)

where x is the resulting feature, u(t) is the weight function and s(t) is the EEG signal at the

input. So, the resulting feature can be seen as the correlation between the input signal s(t)

and the weight function u(t). For our implementation of the genetic algorithm, an epoch is
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Figure 24: Weight functions used in the genetic algorithm.

considered 1 second long. Since the sampling frequency of the OpenBCI board is equal to 250

Hz, an epoch is made up of 250 samples. Every epoch is extracted in the time interval around

the stimulus onset. In particular, an epoch goes from 200 ms prior to the stimulation to 800ms

after the stimulation.

The four weights function that we used are represented in Figure 24. The top left weight

function computes the average value of the input signal on the interval determined by param-

eters A1 and A2, while the top right weight function computes the average of the signal by

considering the values in the central portion of the interval with a greater weight. The bottom

functions compute the differences in the signal of two adjacent intervals.

Fitness

The fitness measure of each chromosome is chosen as the performance of a logistic classifier

using the set of features encoded by the genes of the chromosome. To consider a better measure
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(a) Choice of words for the training session. (b) The letter the subject has to focus on is shown
in red. In this case, the letter is letter “S”

Figure 25: The training setup in the speller mode.

of the performance, a cross validation scheme using a number of folds equal to 4 is employed.

The resulting performance on the 4 test sets is used to compute the fitness measure. In order

to perform the training of the logistic classifier, a training set has to be built. For our BCI

system, the training was done using the speller mode. The subject, during the training phase,

is provided with a series of words to spell. Before the stimulation starts, the letter or number

the subject has to focus on is highlighted in red. This process is shown in Figure 25. During

the training phase, together with an EDF file [58] containing the EEG data, a text file with

information about stimulation is saved. This file is necessary to determine, during the training

of the classifier, which epochs have to be labeled as target and which ones have to be labeled

as non target.

The performance measure is not considered on the single epoch classification, but rather on

the number of letters correctly predicted, with a bonus for those letters that can be predicted
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with a number of repetitions that is less than the maximum. If we call l the number of correctly

predicted letters out of the total number of letters n, I the set of correctly predicted letters.

R the maximum number of repetitions for the session, and ri, i = 1, . . . , n, the number of

repetitions needed to correctly predict letter i, the fitness measure is defined as:

f =
1

n

(
l +

1

l

∑
i∈I

R− ri
R+ 1

)
(2.12)

The second term of the parentheses represents the bonus term. Considering only the set

of correctly predicted letters, it computes an index that is inversely proportional to ri. This

index is always strictly less than 1, so its contribution to the measure of fitness is lower than

that of the one obtained with an additional letter correctly predicted. For this reason, having

a higher number of correctly predicted letters is always better than having a lower number of

repetitions necessary to perform a correct prediction.

ri is considered as the number of repetitions such that, if a letter is correctly predicted after

ri repetitions, then it has to be predicted in a correct way also for the following repetitions,

i.e. for ri + 1, . . . , R. repetitions. For example, if a letter is correctly predicted after only 2

repetitions, wrongly after 5, correctly when using 6 or more repetitions, then the value of ri

would be 6 and not 2.

Selection

Once the fitness of each chromosome is known, it is used to determine which chromosomes

should proceed to the next generation. The employed selection mechanism is the tournament

selection with elitism. In tournament selection, represented in Figure 26, each new chromo-
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f = 0.81

Chromosome for
new generation

k = 4

Figure 26: Process of tournament selection employed in the genetic algorithm.

some is chosen by setting up a competition between chromosomes of the old generation: in this

competition, the winner is the chromosome with the highest fitness. The number of individuals

considered for the tournament is typically small, in order not to favor the fittest individuals.

In this implementation, we choose 4 as the number of individuals participating in the tourna-

ment. Elitism is another common practice in genetic algorithms. When employed, the fittest

chromosome or chromosomes are kept in the new generation even if selection discarded them,

or if crossover or mutation modified them. In our case, the number of chromosomes considered

for elitism is equal to 1.

Crossover

Once selection is performed, the selected individuals undergo the crossover operation. This

operator allows to create new individuals starting from a pair of parents chromosomes. For

each chromosome, crossover is applied with a probability of 0.7. Two chromosomes are divided
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in a random manner at a gene boundary, and then the resulting four sections are recombined

together, as shown in Figure 21. As shown in the figure, one section of a chromosome can

be coupled to one of the two section of the other chromosome, and the way to do this is

decided randomly each time. Since the crossover operation can be applied to chromosomes

which share a common ancestor, in the children chromosomes duplicate genes may be present.

These duplicate genes are not considered for fitness measure.

Mutation

After selection and crossover, mutation operator, shown in Figure 22, is applied on the

chromosomes. As already explained, mutation operator works on gene elements, rather than on

chromosomes. For each element of each gene, mutation is applied with a probability of 0.005.

For discrete elements in the gene (function for feature extraction, channel and boolean flag),

another admissible value is chosen. For continuous elements (the parameters for the feature

extraction function), a perturbation is added with a Gaussian distribution. Since it may happen

that the new value is outside of the admissible range of [0, 1), the new value is wrapped around.

Population Size

The number of chromosomes constituting the population is constant throughout the evolu-

tion of the genetic algorithm. For our implementation of the genetic algorithm, the population

is composed of 100 chromosomes. The initial population is randomly initialized. In particular,

a geometric distribution (µ = 20) is used to determine the number of features (i.e, genes) for

each chromosome of the population. The values of each gene element are chosen from uniform

distribution over the whole range of admissible values for that element.
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Stop Criterion

The criterion used to stop the evolution of the algorithm is the maximum number of gener-

ations. We used a number of generations equal to 15, decreasing it to 12 for the runs that were

very high time-consuming. A check on the growth of the fitness value is done after each run,

so that the evolution can be stopped if no growth of the fitness is present.

Feature Interpretation

Due to the fitness measure, which depends on the performance of the logistic classifier,

feature extraction and training of the logistic classifier are tightly linked. Therefore, a deeper

interpretation of the selected features is possible.

A single feature xj is extracted as:

xj =
T∑
t=1

uj(t)s(t) (2.13)

where j stands for the feature encoded in the j − th gene of the chromosome. T is the number

of samples of the epoch. uj is the specific weight function encoded by the parameters of the

j − th gene. s(·) is the EEG epoch extracted from a single channel.

A logistic classifier estimates the probability of s(·) belonging to the target class with the

following formula:

P (y = +1|x) =
1

1 + ew0+
∑n

j=1 wjxj
(2.14)

The exponent in the denominator of Equation 2.14 can be rearranged as:
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w0 +

n∑
j=1

wjxj = w0 +

n∑
j=1

wj

(
T∑
t=1

uj(t)s(t)

)

= w0 +

T∑
t=1

(
n∑
j=1

wjuj(t)

)
s(t)

(2.15)

Vector v(t) is defined as:

v(t) =

n∑
j=1

wjuj(t) (2.16)

As shown in Equation 2.16The vector v(t) depends only on the features set and on the classifier.

Since u(·) and w don’t depend on the value of the signal itself, vector v(t) is the same for all

the considered epochs. Equation 2.14 can be rewritten as:

P (y = +1|s(·)) =
1

1 + ew0+
∑T

t=1 v(t)s(t)

=
1

1 + ew0+〈v,s〉

(2.17)

If all channels are considered, the precedent equations can be readjusted as follows:

xj =
T∑
t=1

uj(t)sc(j)
(t) (2.18)
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where C is the number of channels, sc(·) is the EEG signal recorded on channel c, c(j) it the

channel from which the j − th has to be extracted from. Equation 2.15 becomes:

w0 +
n∑
j=1

wjxj = w0 +
n∑
j=1

wj

(
T∑
t=1

uj(t)sc(j)
(t)

)

= w0 +
T∑
t=1

(
n∑
j=1

wjuj(t)sc(j)
(t)

) (2.19)

Then, we group together features related to the same channels, and Equation 2.19 becomes:

w0 +

T∑
t=1

(
n∑
j=1

wjuj(t)sc(j)(t)

)

= w0 +

T∑
t=1

(
C∑
c=1

∑
j:c(j)=c

wjuj(t)sc(t)

)

= w0 +
C∑
c=1

T∑
t=1

( ∑
j:c(j)=c

wjuj(t)

)
sc(t)

(2.20)

The term

vc(t) =
∑

j:c(j)=c

wjuj(t) (2.21)

is the same for all the epochs, and depends only on the considered channel.

Considering all the above equations, the final formula for computing the probability of the

signal s(·) pertaining to class y = 1 is:

P (y = 1|s1, . . . , sc) =
1

1 + ew0+
∑C

c=1〈vc,sc〉
(2.22)
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Equation 2.22 allows to compute the probability for the target class by using directly the signals

s1, . . . , sc. The dot product results in a correlation between vector vc and the signal. Therefore

this classification is based on the similarity between the epoch signals and channel templates,

expressed by the vectors vc.

2.3.3 Online Classification

Now that we have explained the topics of classification with logistic regression and of auto-

matic feature extraction performed with a genetic algorithm, in this section we cover the topic

of online classification. Online classification works in the same way for our three possible BCI

applications (speller mode, cartesian control of the robotic arm, high level control of the robotic

arm), with the only difference that in the high level control of the robotic arm single cells flash,

rather than columns and rows,

In the software interface, the number of repetitions and stimulation parameters (presence of

symbols in the case of the speller matrix, duration of column/row intensification, inter stimulus

interval,. . . ) are set and impedance of the electrodes is checked prior to the beginning of visual

stimulation.

At the conclusion of the visual stimulation for each trial, the classification process begins.

Using the photoresistor signal, the EEG signal is segmented into epochs.

After the epochs are extracted, they are filtered with a sixth-order Butterworth bandpass

filter with cut off frequencies of 0.5 and 30 Hz, and they’re ready to be classified. We imple-

mented two different classification modalities, to compare the results obtained with them, and

we will refer to them as probability averaging and epochs averaging.
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Probability Averaging Method

In the probability averaging method, data are averaged in the classification score space. For

each extracted epoch, the probability of the presence of a P300 is computed with the Equa-

tion 2.22. Since information about which stimuli are presented is saved during the stimulation

process, it is possible to determine which row and column elicited a P300 response with the

highest probability.

If we consider row i of the matrix, for each repetition of the stimulation, row i flashes one

time. For each repetition, the probability of the presence of the P300 in the epoch extracted

around the time at which row i flashed is calculated. The average probability is computed as:

P i,P300 =

∑R
j=1 Pi,j

R
(2.23)

where Pi,j is the probability of the P300 response being present in the epoch associated to row

i at the j − th repetition, and R IS THE .

This process is done for all the rows and for all the columns. So, at the conclusion of the

probability computation, we will have the following vectors:

P rows =

[
P r,1 P r,2 P r,3 P r,... P r,rowsMAX

]

P cols =

[
P c,1 P c,2 P c,3 P c,... P c,colsMAX

]
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The target symbol is found by determining the intersection between the row and the column

for which the average value of probability is maximized:

rowP300 = arg maxi Pr,i

columnP300 = arg maxi Pc,i

This classification process is the same for speller and cartesian robotic arm control. The

only difference between these two modalities is the dimension of the stimulation matrix. For the

high level control of the robotic arm the cell with the highest probability is directly determined.

Epochs averaging method

In the epochs averaging method for the classification, EEG epochs are averaged in the data

space. The basic difference in respect to the probability averaging method is that, instead of

computing the average probability, we compute the average epoch associated to the flashing of

each row and column. Then, we compute the probability of this average signal.

As an example, the average EEG epoch associated to row i of the matrix is:

si =

∑R
j=1 si,j

R
(2.24)

where si,j is the epoch associated to the flashing of row i at repetition j − th, and R

repetitions is the maximum number of repetitions. After computing the averages for all rows

and columns, the following vectors are defined:

srows =

[
sr,1 sr,2 sr,... sr,rowsMAX

]
scols =

[
sc,1 sc,2 sc,... sc,colsMAX

]
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Then, the probability associated to each of these average signals is computed, and the

following vectors are obtained:

Prows =

[
Pr,1 Pr,2 Pr,3 Pr,... Pr,rowsMAX

]

Pcols =

[
Pc,1 Pc,2 Pc,3 Pc,... Pc,colsMAX

]

Once the probability values are known for each average epoch, the target symbol is de-

termined by computing the row and column for which probability is the highest. Similar the

probability averaging method, we have that:

rowP300 = arg maxi Pr,i

columnP300 = arg maxi Pc,i

Similar to epochs averaging method, in the high level control of the robotic arm, an indi-

vidual cell, instead of a column and row, is identified as the one which generated the P300

response.

Software Summary

In Figure 27, we show a graphic summary of the software part of the system, including the

classification process. In this block diagram, all the different phases and modalities are shown.

The process of filtering, segmentation and classification during live use requires 100 - 300

ms to be performed, depending on the number of repetitions used.
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TABLE III: SUBJECTS PARTICIPATING IN THE STUDY.

Subject ID Age BCI Experience

S1 23 No
S2 20 No

2.3.4 Experimental Protocol

Two subjects (Table III) participated in evaluating the device. None of the subjects had

prior experience with EEG recording or BCI. Each subjects was required to participate to

three EEG recording sessions. In session one P300 elicitation was valuated and data to train

the classifier were recorded. In the second session experimental data for classifier validation

was collected. In the last session, tests on online use of the BCI system in speller and robotic

arm mode were carried out.
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Figure 27: The software component of the assistive device.



CHAPTER 3

RESULTS

In this chapter, we will discuss the results obtained from two subjects participating in

evaluating the device. Firstly, initial experiments on P300 elicitation will be described. Then,

data related to the genetic algorithm and to the classifier validation will be provided. Lastly,

online performance of the device will be evaluated.

3.1 Initial Evaluation Phase

In the first stage of the study, our goal was to evaluate the presence of P300 response for

each individual subject using the standard settings of the device.

The subjects were asked to focus on a specific letter of the speller grid shown on the monitor.

EEG data were recorded, synchronized offline with the visual stimulation, and epochs were

extracted. The epochs were then filtered with a using a sixth order bandpass Butterworth

filter with cutoff frequencies of 0.5 and 30 Hz, and labeled as target or non-target according to

the associated stimulus. If the associated stimulus was the column or the row containing the

letter the subjects had to focus on, the epoch would have been labeled as target, otherwise it

would have been labeled as non-target. The averages of the target and non-target epochs for

the two subjects were computed considering all the 8 EEG channels. The results are shown in

Figure 28.

76
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Figure 28: Average target and non-target epochs for the two subjects during the initial eval-
uation of the device. In the average target epochs for the two subjects, it is possible to see a
positive peak at 300 ms.
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TABLE IV: DESCRIPTION OF THE TRAINING SET OF THE TWO SUBJECTS.

Subject Letters Epochs Hours Repetitions

S1 555 66600 5 10
S2 127 7620 1 5

3.2 Classifier Training Phase

Upon completing the initial phase, the subjects participated in a training session. As we

already shown in Figure 25, during the training session the subjects were asked to spell a series

of words. Before each trial, the letter the subject had to focus on was highlighted in red for

2 seconds. During each trial, flashing of the row or the column that contained the letter of

interest elicited a P300 response . The spelling process lasted until the sequence of chosen

letters was completed. Each epoch was then be labeled as target, if extracted around a target

stimuli, or non-target.

The training set of target and non-target epochs was then used to perform automatic feature

extraction and training of the logistic classifier. Both of these tasks were accomplished using

the genetic algorithm described in Section 2.3.2.1. Information about the training set used for

each subject is shown in Table IV. Subject S2 preferred 5 repetitions instead of 10, finding it

easier to focus on shorter length sessions.

In Figure 29 the average of targets and non-targets epochs obtained from the training set

for each subject.
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Figure 29: Average target and non-target epochs of the training set.
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Figure 30: Left: Fitness value of each of the 100 chromosomes at each generation is shown in
blue. Mean fitness value is shown in red. Right: Box plots of fitness values as a function of
genetic algorithm generation. [Data obtained with training set of subject S2].

Fitness values of the population of 100 chromosomes across the generations of the genetic

algorithm, computed using Equation 2.12, are shown in Figure 30a. The value of fitness for each

chromosome is reported, together with the mean value of fitness for each generation. Fitness

values,as expected, increase as the evolution proceeds. As selection, crossover, and mutation

modify the population of chromosomes, the set of features encoded by the chromosomes improve.

Therefore, the average performance of the logistic classifier on the 4 fold cross validation scheme

increases.

In Figure 30b, the same information about fitness evolution is represented trough box plots.

As expected, the mean fitness values converges to high values, close to 1, and the variation in
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Figure 31: Time required to complete a run of the genetic algorithm as a function of the size
of the training set. This set was performed on a 64 bit laptop.

fitness across chromosomes reduces. A plateau in the fitness values is typically reached after

approximately 12 generations. Therefore, we limited the maximum number of generations to

15. For the biggest training sets, we limited it to 12.

Figure 31 represents the time required to complete a run of the genetic algorithm as a

function of the number letters spelled by the subjects during the training session. In the

presented data, the runs were completed after 12 generations of the GA. As expected, larger

sizes of the training set requires greater amount of time. For the largest training set, composed

of 555 letters, the GA took 11 hours to complete the evolution process on a 64 bit laptop.

The training procedure needs to be performed the very first time the subject uses the BCI

system. Upon successfully completing the training, the subject would be able to use the BCI

live.
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Figure 32: Fitness values as a function of number of features and of genetic algorithm generation.
[Data were obtained with subject S2 training set].

In Figure 32 we evaluate the fitness values and the number of features encoded by only active

and unique genes across generations. Greater number of features encoded by the chromosome

results in a higher fitness value. The plot reaches a plateau at ∼ 200 features, close to generation

12. As shown in the Figure, even if chromosomes increase in size, and encode more features for

classification, there is minimal to no improvement in the fitness value after generation 12th.

3.3 Classifier Validation Phase

After performing automatic feature extraction and training the logistic regression classifier,

the obtained classifier was validated on a validation data set never used before by the genetic

algorithm. For both subjects, the validation set was composed of data recorded on various

days. It is important to evaluate the classifier using data recorded on various sessions, to

assure performance independence from external variations that could be be present in recording

sessions.
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TABLE V: DESCRIPTION OF THE VALIDATION SET OF THE TWO SUBJECTS.

Subject ID Sessions Letters) Epochs
Maximum

(Repetitions)

Subject S1 6 62 7440 10
Subject S2 4 57 3420 5

Later in the chapter, we will refer to a measure of accuracy of our BCI device. Accuracy is

computed in terms of correctly predicted symbols (letters, robotic arm movements, high level

actions). If l represents the number of correctly predicted symbols in a session, and n the total

number of symbols spelled, accuracy is computed as:

ACC =
l

n
(3.1)

Three analysis were performed on the validation set. First analysis, accuracy as a function

of the number of repetitions. Second analysis, accuracy as a function of the size of the training

set. Third analysis, inter - subjects dependence.

3.3.1 Accuracy vs Repetitions

In this section we evaluate accuracy changes as a function of the number of repetitions. This

evaluation is done on both classification methods: probability averaging and epochs averaging

method.

In Figure 33, accuracy measured with probability averaging and the epochs averaging meth-

ods as a function of the number of repetitions is represented.
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Figure 33: Average accuracy as a function of the number of repetitions for the validation set.
In the first two rows, individual sessions are considered. In the last row, average accuracy is
reported.
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As expected, for both classification methods accuracy increases when the number of rep-

etitions is increased. Regarding the two different classification methods, probability averaging

and epochs averaging, they both perform well. Throughout our experiments,we noticed that

for a noisy signal, the epochs averaging method perform better than the probability averaging

method. Since, by averaging the epochs, the amount of noise present in the signal is reduced.

This is not true for the probability averaging method, since the averaging is performed on the

classification score space and not on the data space.

For subject S1, accuracy greater than 80% is reached when using 7 repetitions (83.87% with

probability averaging method, 85.48% with epochs averaging method). For subject S2, accu-

racy greater than 80% is reached when using 4 repetitions (84.21% with probability averaging

method, 80.7% with epochs averaging method).

3.3.2 Accuracy vs Training Set Size

Another analysis we performed was related to how accuracy changes as a function of the

size of the training set. The training set, as already explained, is used to perform automatic

feature extraction and training of the logistic regression classifier. Therefore, an increase in the

accuracy is expected when increasing the size of the training set. To perform this analysis, the

accuracy on the same test set was computed by gradually increasing the size of the training set.

In Figure 34, the result of this analysis is shown. The training set size is shown as a percentage

of the total training set size for each subject.

For subject S1, accuracy reaches above 80% around 32% of the total training set size. This

corresponds to a training set composed of 180 letters, equal to 21600 epochs when using 10
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Figure 34: Average accuracy on the validation set as a function of the training set size. The
maximum number of repetitions was used to compute the accuracy.

repetitions per trial. For subject S2, accuracy reaches above 80% around 70% of the total

training set size. This corresponds to a training set composed of 89 letters, equal to 5340

epochs when using 5 repetitions per trial. As suggested by the plots, depending on the desired

accuracy tolerance, the training set size could be decreased, therefore decreasing the training

time for the user.

3.3.3 Inter-Subjects Dependence

The last analysis that we performed on the validation set is related to inter-subjects depen-

dence. In Figure 35 the average target and non-target epochs of the validation set for subject

S1 and S2 are shown. Visually comparing the two signals, a clear difference is visible among
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Figure 35: Average target and non-target epochs of the validation set for subject S1 and S2.

the two subjects. Therefore, emphasizing the fact that subject specific features have to be

extracted with the genetic algorithm for each subject. To underline again the importance of

subject specific training, we performed classification on the validation set of one subject using

P300 templates extracted from the training set of the other subject. Results are shown in

Table VI. In this table, the value of each cell represents the accuracy on the validation set of

one subject (row) when tested with the templates of the other subject (column).

TABLE VI: INTER-SUBJECT DEPENDENCE: ACCURACY WAS COMPUTED USING
THE MAXIMUM NUMBER OF REPETITIONS OF THE VALIDATION SET.

(a) Probability Averaging

P300 Templates
S1 S2

S1 90.32 1.61
S2 12.28 92.98

(b) Epochs Averaging

P300 Templates
S1 S2

S1 91.35 1.61
S2 10.35 87.71
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TABLE VII: NUMBER OF CHOICES N AND MAXIMUM NUMBER OF FLASHES FOR
THE THREE POSSIBLE MODES OF USE.

Mode of use N MAX FLASH

Speller 36 12
Cartesian robotic

arm control
16 8

High level robotic
arm control

5 5

As expected, classification performance is low when not using the subject specific templates,

emphasizing that the fact that even though P300 responses are innate response of the brain,

they are different among individuals. Therefore, each subject has to participate in a training

session, otherwise it would be impossible to obtain good performance.

3.4 Online Classification

After performing classifier training and validation for each subject, we tested the online

classification accuracy for the three modes of use: speller, cartesian control of the robotic arm,

and high level control of the robotic arm.

Other than accuracy, that is computed using Equation 3.1, a common measure of perfor-

mance in the BCI field is the bit rate. The bit rate can be expressed also in terms of bits/min

[7], and is commonly called Information Transfer Rate (ITR). ITR contains information about

communication speed and accuracy.
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Figure 36: Protocol used to compute Ttot.

The formula used to compute bit rate is:

B = log2N + P log2 P + (1− P ) log2

(
1− P
N − 1

)
(3.2)

where N represents the possible choices per trial (values of N for the different modes are shown

in Table VII), and P represents the probability that the choice on which the subject is focusing

on is selected. Therefore, P represents the accuracy of the system. The assumed hypothesis is

that each choice has the same probability of being selected.

ITR can be computed as follow:

ITR = B · N

min
= B · 60

Ttot

= log2N + P log2 P + (1− P ) log2

(
1− P
N − 1

)
· 60

Ttot

(3.3)
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Figure 37: Time to complete a trial, Ttot, as a function of the number of repetitions for three
BCI modes of use.

To compute the bits/min index, it is necessary to determine the total number of trials per

minute, N/min. Therefore, we computed the time required by the software to complete a trial,

Ttot. A graphical representation on how the computation of this value of time is computed is

shown in Figure 36. The measurement of time starts from the beginning of the stimulation,

and ends until the following stimulation starts.

The results of the time computation are shown in Figure 37.

3.4.1 Speller

In order to compute the online classification accuracy in the speller mode, the subjects

informed us on the letters they were focusing on during the online test session.
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Figure 38: Online classification accuracy as a function of the number of repetitions for the
speller mode. Accuracy on the validation set is shown with dashed lines.

Results of the online classification for both subjects are shown in Figure 38. For subject

S1 online performance is comparable to the validation set results. For subject S2, up until five

repetitions, online performance is lower than the validation test results.

After computing the online classification accuracy, we computed the performance of the

speller mode in terms of bits/min. The values of bits/min as a function of the number of rep-

etitions are shown in Figure 39. Bit rate takes into consideration both speed and accuracy of

the system. Therefore, in order to increase communication speed, a lower number of repeti-

tions is favorable. Versus, high number of repetitions results in higher classification accuracy.
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Figure 39: Information transfer rate as a function of the number of repetitions for the speller
mode.

Therefore, the optimal number of repetitions should be chosen in order to maximize speed and

accuracy.

For subject S1, an accuracy of 79.49% is reached after 7 repetitions using probability av-

eraging method. When using epochs averaging method, 8 repetitions are necessary to achieve

an accuracy of 84.62%. The correspondent ITR are 8.83 and 8.68 bits/min. The maximum

value of ITR for subject S1 is 12.11 bits/min, reached using 2 repetitions for both probability

averaging and epochs averaging.

For subject S2, when using 7 repetitions and probability averaging method, an accuracy

of 83.33% is reached. With epochs averaging method, 6 repetitions are necessary to reach an
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Figure 40: Online classification accuracy as a function of the number of repetitions for the
cartesian control of the robotic arm.

accuracy of 80.95%. The correspondent ITR are 9.56 and 10.47 bits/min. Maximum values of

ITR for subject S2 are 13.54 bits/min (3 repetitions, probability averaging) and 13.76 bits/min

(2 repetitions, epochs averaging).

3.4.2 Robotic Arm Cartesian Control

Online classification accuracy for the robotic arm in cartesian control mode was tested.

Similar to the speller mode, the subject had to focus on symbols of the stimulation rather than

on letters or numbers. The subject would then communicate the target symbol he focused on

during the session. As a feedback to the user, the detected symbol is shown in green on the top

of the screen. The additional feedback provided to the user is represented by the movement of
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Figure 41: Information transfer rate as a function of the number of repetitions for the cartesian
control of the robotic arm.

the robotic arm. Results for the cartesian control of the robotic arm in terms of accuracy and

bits/min are shown in Figure 40 and Figure 41, respectively.

For subject S1, 7 repetitions were necessary to obtain an accuracy above 80% (precisely,

83.3%) with both probability averaging and epochs averaging method. The resulting ITR is

10.12 bits/min, that is also the highest value of ITR reached by subject S1. The highest value

of accuracy was reached using 9 repetitions and the probability averaging method, leading to

an accuracy of 90%.

For subject S2, 7 repetitions were necessary to achieve an accuracy of 81.82%, with both

probability averaging and epochs averaging method. The correspondent ITR is 9.77 bits/min.

The highest value of ITR was reached using 5 repetitions: 10.75 bits/min. This ITR corresponds
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Figure 42: Online classification accuracy as a function of the number of repetitions for the high
level control of the robotic arm.

to an accuracy of 75%. The highest value of accuracy, 88.64%, was reached with probability

averaging method after 9 repetitions, and at 10 repetitions by the epochs averaging method.

3.4.3 Robotic Arm High Level Control

The final test was performed with the high level control of the robotic arm. To compute

online classification accuracy, the subjects would communicate the target symbols they focused

on during the trial. We remind in this section that, for the high level control of the robotic arm,

in a single repetition one cell flashes one time. For the speller and the cartesian control of the

robotic arm, that employ row/column flashing, in a single repetition each cell flashes two times

(one when the correspondent row flashes, and one when the correspondent column flashes).
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Figure 43: High level control of the robotic arm: information transfer rate as a function of the
number of repetitions.

Results for the high level control of the robotic arm in terms of accuracy and ITR are shown

in Figure 42 and Figure 43, respectively.

For subject S1, 9 repetitions are necessary to reach an accuracy of 83.08% when using

probability averaging or epochs averaging method. The resulting ITR is 3.46 bits/min, which

represents also the maximum value of ITR achieved by subject S1. The maximum value of

accuracy achieved by the subject is 84.62%, reached at 10 repetitions and employing the epochs

averaging method.

For subject S2, lower accuracy, in comparison to speller and cartesian control of the robotic

arm, was obtained. 6 repetitions were necessary to achieve an accuracy of 72%, both with proba-

bility averaging method and epochs averaging method. The correspondent ITR is 2.85bits/min.
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Maximum value of accuracy, 76%, was achieved with 10 repetitions and probability averaging

method. Maximum ITR, 3.11 bits/min, was reached with 3 repetitions and epochs averaging

method.

Values of ITR in the high level control of the robotic arm may seem low in comparison to

the ones achieved with both speller and cartesian control of the robotic arm. What has to be

taken into consideration is that, during high level control of the robotic arm, no stimulation

happens when the robotic arm is moving, since the action is not immediate. Therefore, as

shown in Figure 37, time required to complete a trial for the high level control of the robotic

arm is higher. As a consequence, the ITR is lower.
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3.4.4 Average Performance

Average accuracy and ITR amongst the two subjects, for three modes of use (speller, carte-

sian control of the robotic arm, high level control of the robotic arm), are reported in Table VIII

and in Table IX for probability averaging and epochs averaging method, respectively. The cor-

respondent plots are shown in Figure 44a and Figure 44b. As it is possible to notice from both

Tables and Figures, information transfer rate for the robotic arm in high level control is low if

compared to the speller and the cartesian control of the robotic arm. This is due to the fact

that the stimulation is stopped when the robotic arm is moving, and for this reason Ttot, which

is used in Equation 3.3 to compute the ITR, is higher.

Using the probability averaging method and considering the maximum number of repetitions,

equal to 10, the average accuracy is of 88.92% for the speller mode (7.45 bits/min), 88.48%

for the robotic arm in cartesian control mode (8.28 bits/min), 79.54% for the robotic arm in

high level control mode (2.91 bits/min). With 5 repetitions, half of the maximum value of

repetitions, the average accuracy is reduced to 72.62% for the speller mode (10.35 bits/min),

65.23% for the robotic arm in cartesian control mode (9.37 bits/min), 61.77% for the robotic

arm in high level control mode (2.02 bits/min).

If the epochs averaging method is employed, for the speller mode the values of accuracy

are 86.45% (7.1 bits/min, 10 repetitions) and 72.62% (10.35 bits/min, 5 repetitions). For the

cartesian control of the robotic arm, the results are 87.65% (8.12 bits/min, 10 repetitions) and

64.09% (9.06 bits/min, 5 repetitions). Last, for the robotic arm in high level control mode,
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the obtained values are 79.31% (2.91 bits/min, 10 repetitions) and 67.54% (2.42 bits/min, 5

repetitions).

For all the modes of use, reducing the number of repetitions is fundamental, because a

large number of repetitions could result in a low communication speed. In order to determine

the number of repetitions to be used, it is possible to choose the number of repetitions that

maximizes either ITR or accuracy, according to the user’s preference. A user may want to

communicate at high rate, at the expense of a lower accuracy, or to communicate at low rate,

but with higher accuracy.
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TABLE VIII: AVERAGE VALUES OF ACCURACY AND ITR FOR PROBABILITY
AVERAGING METHOD.

[R = REPETITIONS, ACC. = ACCURACY]

(a) Speller

R Acc. (%) ITR

1 28.30 9.53
2 45.70 11.91
3 57.88 12.19
4 62.91 10.69
5 72.62 10.35
6 76.56 9.55
7 81.41 9.20
8 85.35 8.84
9 87.64 7.99
10 88.92 7.45

(b) Cartesian Control

R Acc.(%) ITR

1 25.53 5.48
2 34.77 6.34
3 50.53 9.17
4 54.77 8.26
5 65.23 9.37
6 70.23 8.39
7 82.58 9.95
8 83.71 9.08
9 89.32 9.28
10 88.48 8.28

(c) High Level Control

R Acc.(%) ITR

1 46.08 1.20
2 54.15 1.80
3 58.38 2.11
4 60.08 2.06
5 61.77 2.02
6 68.31 2.49
7 73.69 2.84
8 72.46 2.66
9 75.54 2.75
10 79.54 2.92

TABLE IX: AVERAGE VALUES OF ACCURACY AND ITR FOR EPOCHS AVERAGING
METHOD.

[R = REPETITIONS, ACC. = ACCURACY]

(a) Speller

R Acc. (%) ITR

1 28.30 9.53
2 48.08 12.93
3 55.49 11.38
4 66.48 11.72
5 72.62 10.35
6 77.66 9.79
7 82.51 9.44
8 85.16 8.78
9 82.69 7.24
10 86.45 7.10

(b) Cartesian Control

R Acc.(%) ITR

1 25.53 5.48
2 35.30 6.67
3 47.42 8.17
4 53.94 8.03
5 64.09 9.06
6 72.73 8.96
7 82.58 9.95
8 86.52 9.68
9 86.52 8.71
10 87.65 8.12

(c) High Level Control

R Acc.(%) ITR

1 46.08 1.20
2 55.15 1.91
3 59.38 2.23
4 59.08 1.98
5 64.00 2.25
6 67.54 2.42
7 74.69 2.94
8 74.23 2.76
9 77.54 2.91
10 79.31 2.91
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Figure 44: Average values of the accuracy and ITR amongst the two subjects as a function of
the number of repetitions for the three modes of use.
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Figure 45: Left) Overall average accuracy among the two subjects for the three modes of use
as a function of the number of repetitions. Right) Ratio between classification accuracy of
probability averaging and epochs averaging method as a function of the number of repetitions.

3.4.5 Comparison between Classification Methods.

In this section, a comparison between the probability averaging method and the epochs

averaging method is performed using the data shown in Table VIII and Table IX.

The ratio between between classification accuracy of the probability averaging method and

classification accuracy of the epochs averaging is shown in Figure 45. In order to compute the

ratio, the overall average accuracy between the two subjects and across the three modes of use

was considered. A plot showing the difference between the overall average accuracy for the two

methods is also shown in Figure 45. The mean ratio is µ = 0.998 and the standard deviation
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is σ = 0.018. This results in a mean difference between classification accuracy of probability

averaging method and epochs averaging method of −0.08± 1.20%.

As expected when designing the two classification methods, the two methods result in the

same outcome. Data show that the maximum difference in accuracy (1.91%) happens when

considering 9 repetitions. Furthermore, when using an intermediate range of repetitions (4 to

8), the difference between the two methods is negligible (∼1%).

The classifier is trained using probability averaging method. Therefore, using probability

averaging method to perform online classification would be more suitable. However, in particu-

lar cases when a lot of noise is present in the EEG signal, epochs averaging methods should be

employed. By averaging the epochs associated to the same stimulus, epochs averaging method

would reduce the noise in the signal, leading to better results in terms of classification accuracy.



CHAPTER 4

CONCLUSIONS

In this work, a wearable and cost-effective BCI assistive device was presented. This assistive

device is based on the P300 response of the human brain. Since the P300 response is an innate

response of the brain, no training for the subject is required to use a P300 based BCI.

In the proposed device, EEG signal is recorded using the OpenBCI Cyton board [2]. The

user wears a 3D printed headset that houses the electrodes. Due to portability of the system,

the user can use the device wherever he/she desires. Furthermore, the hardware components

of the system are cost effective, bringing the total cost of the device to $ 900. Therefore, the

developed device is both wearable and cost-effective. As a consequence, it could be used by

many disabled individuals as an assistive technology device, helping to improve their quality of

life by augmenting communication capabilities and allowing for the control of external devices.

Flashing symbols on a grid are employed as stimuli to elicit a P300 response. By analyzing

the P300 responses in the recorded EEG signal, the device allows the disabled to type words

on a computer screen and to control a robotic arm. Two modalities can be used to control

the robotic arm. One modality (cartesian control) consists of controlling the robotic arm with

discrete movements. The other modality (high level control) consists of sending high level

commands to the robotic arm, which will move autonomously according to the selected action.

Flashing grids are used as a form of visual stimulation. Dimensions of the grids are 6 × 6 for

the speller mode, 6×7 for the speller mode including additional symbols, 4×4 for the cartesian

104
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control of the robotic arm, 2×3 for the high level control of the robotic arm. Single cell flashing

paradigm is used for the high level control of the robotic arm, while columns and rows flashing

is employed for all the other modes.

EEG classification aimed at P300 detection is a fundamental component of the device. The

genetic algorithm presented by Dal Seno et al. [3] is used to perform automatic feature ex-

traction for P300 detection. Logistic regression is employed for online detection of the P300

response. Two classification methods, both based on logistic regression, were employed: prob-

ability averaging and epochs averaging method. The difference between the two methods is

as follows: with probability averaging method, an average on the classification score space is

performed; with epochs averaging method an average on the data space is performed. Even

though training of the subject is not required, training of the classifier is necessary. Therefore,

prior to being able to use the BCI live, the subject has to go through a training session which

lasts approximately one hour. The training of the logistic regression classifier is performed by

the genetic algorithm along with the feature extraction, and takes approximately 2 hours.

The device was validated on two male healthy subjects (20 and 24 years old). Results in

terms of accuracy and information transfer rate (ITR), when using 5 and 10 repetitions, are

shown in Table X. Amongst the two subjects, the average maximum ITR for the speller mode

is 12.56 bits/min, for the cartesian control of the robotic arm is 9.95 bits/min and for the high

level control of the robotic arm is 2.93 bits/min. No significant difference was found between

the two employed classification methods.
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TABLE X: ONLINE CLASSIFICATION RESULTS IN TERMS OF ACCURACY AND IN-
FORMATION TRANSFER RATE. RESULTS OBTAINED USING PROBABILITY AVER-
AGING METHOD.

Accuracy ITR (bits/min)
Repetitions 5 10 5 10

Speller 72.62% 88.92% 10.35 7.45

Cartesian robotic
arm control

65.23% 88.48% 9.37 8.28

High level robotic
arm control

61.77% 79.54% 2.02 2.92

The achieved results are comparable to other BCI studies. The comparison we performed

was limited to the online speller performance, since no other studies were done with the same

setup we used for the control of the robotic arm. The comparison was done with Dal Seno et

al., because the same genetic algorithm employed in our system was used, and with Thulasidas

and Cecotti et al. because exact values of accuracy as a function of the number of repetitions

were reported in the studies [6; 4; 5]. In our study, amongst the two subjects the average values

of accuracy were 72.62% when using 5 repetitions and 88.92 % when using 10 repetitions.

Dal Seno reported the results of a P300 speller used online by two subjects [6]. EEG signal

was acquired with BE Light by EBNeuro [47]. The software used for EEG signal acquisition

and processing was BCI2000 [24]. One subject achieved 68% online accuracy when using 4

repetitions. The other subject achieved 68% online performance with 5 repetitions. Thulasidas

et al. presented a robust classification method for P300 detection [4]. For this study, EEG
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signal was acquired using Neuroscan SynAmps2 [48]. The software for the P300 speller was

developed by the authors. Average accuracy across 9 subjects when using 5 repetitions was

79.2%. Cecotti et al. developed seven convolutional neural network based classifiers for P300

detection [5]. To test the classifiers, dataset from the third BCI competition was employed

[69]. This data set contains a record of P300 evoked potentials from two subjects. The signals

was recorded in five sessions with the BCI2000 software [24]. Average accuracy across the 7

classifiers between the two subjects, when using 5 repetitions, was 62.57%. In this study, data

about ITR were also reported. When using 5 repetitions, average ITR amongst the two subjects

is in the range of 8 - 13 bits/min, according to the chosen classifier. Kronegg et al. reported

the average value of ITR for several BCI systems, which is equal to 11 bits/min [64] .

In all the above studies, clinical instrumentation for EEG acquisition was used. Our results

on two subjects show that it is possible to obtain comparable results in terms of accuracy and

ITR when using cost-effective hardware for EEG acquisition. More advanced techniques for

classification could be employed to improve the functionality of the device by increasing the

ITR. Speier et al. [59] implemented techniques of natural language processing and dynamic

classification for a P300 speller. The use of these methods lead to a great increase in ITR when

compared to a standard classification technique, SWLDA (33.15 b/m and 27.69 b/m vs 22.07

b/m). Krusienski et al. compared the effects of spatial channel selection, EEG referencing,

decimation of channel data, and maximum number of features in order to improve P300 speller

classification methods [62].
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Figure 46: Comparison between the present study and Thusulasidas et al. [4], Cecotti et al.
[5], Dal Seno [6] for online classification accuracy as a function of the number of repetitions in
the speller mode.

In conclusion, in the present work we demonstrated that P300 response detection with cost-

effective EEG acquisition devices is comparable to results obtained with clinical grade EEG

equipment. Furthermore, using a P300 BCI, the control of a complex device, a 4 DoF robotic

arm, was achieved.

According to the Amyotrophic Laterals Sclerosis Association, only one BCI device, the

Intendix system, is commercially available at the moment [68; 66]. As stated by Kübler, low

cost EEG acquisition devices render translational studies increasingly feasible [65]. We believe

that our work will help to transition from BCI use to in-home use, allowing more and more

individuals to improve their quality of life.
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4.1 Future Improvements

Improvements of the device were identified during the device validation phase, and are as

follows.

1. Improved EEG headset: the current 3D printed EEG headset may not be comfortable

for long term-use. A new design is necessary to improve the comfort of the headset. The

new design should take into account the high electrode-to-skin impedance values often

obtained with the current version. Decreasing the impedance would allow for recording

higher quality signals, and to improve classification accuracy.

2. Flashing of menu buttons: since selection of menu items has to be performed with

a mouse, the BCI software cannot be initialized by the disabled without the help of

the caregiver. Employing automatic flashing menu buttons, an updated version of the

software interface would improve upon the existing device.

3. High level control of the robotic arm: with the current firmware of the robotic arm,

when using the high level control the robotic arm expects objects to be in predefined

locations. An updated version of both firmware and hardware of the arm, would allow

the robotic arm to automatically recognize where objects are located, thus improving the

functionality of the system.

4. Validation by disabled users: for this work, test on healthy subjects were performed.

Test on disabled individuals are necessary to discover possible key issues present when

the device is used by disabled individuals.
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APPENDIX A

DESCRIPTION OF ROBOTIC ARM MOVEMENTS

TABLE XI: DETAILED DESCRIPTION OF THE SYMBOL USED FOR THE STIMULA-
TION IN THE CARTESIAN CONTROL OF THE ROBOTIC ARM..

Movement X Y Z Description

- + Move up and to the left

+ + Move up and to the right

+ Move up

- - Move down and to the left

+ - Move up and to the right

- Move down

- Move to the left

+ Move to the right

+ Move forwards

- Move backwards

Rotate wrist up

Rotate wrist down

Exit cartesian control

Back to start position

Open the gripper

Close the gripper

Gripper

x

y

z
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APPENDIX B

COPYRIGHT INFORMATION



113

APPENDIX B (continued)
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APPENDIX B (continued)
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