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SUMMARY

In this dissertation we study a shrinking target problem for the action of an arbitrary

subgroup of SLd(Z) on the d-torus. This can also be viewed as a non-commutative Diophantine

approximation problem. Main result establishes an analogue of Khintchine’s theorem from the

theory of Diophantine approximations for d = 2. Consider the action of SL2(Z) on the torus

T2. For arbitrary nonelementary subgroup of Γ < SL2(Z) we show that for α > δΓ(where δΓ is

the critical exponent of Γ) for any y ∈ T2, for Lebesgue a.e. x ∈ T2 there are infinitely many

g ∈ Γ satisfying

|g.x− y| ≤ ‖g‖−α (0.1)

This extends and improves previously known results in this setting, which were only established

for Γ = SL2(Z). Our methods are different from previous results concerning similar problems.

We use hyperbolicity of convex cocompact subgroups of SL2(Z) to obtain sharp spectral esti-

mates for certain Markov operators on `2(Γ) (which are better than the ones known from the

property of rapid decay, and similar to those obtained by Bader-Muchnik and Boyer). This

also leads to construction of optimal random walks on convex cocompact subgroups of SL2(Z)

and to an effective ergodic theorem for linear action on the 2-torus.

We develop a tool to approximate nonelementary subgroups in SL2(Z) by convex cocompact

subgroup, which allows us to transfer the results to non convex cocompact subgroups of SL2(Z).

We also address similar problem for specific points on the d−torus(d ≥ 2), where we prove

that M−Diophantine points on the torus also admit infinitely many solutions to (Equation 0.1)

vi



SUMMARY (Continued)

for some explicit(not sharp) α that depends only on the group and on M . This also allows to

obtain estimates of Hausdorff dimension of sets of points of the torus with certain approximation

properties. We use harmonic analysis and effective classification of Γ-stationary measures on

the d−torus.
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CHAPTER 1

INTRODUCTION AND STATEMENT OF MAIN RESULTS

Our motivation is to study a shrinking target problem for a group Γ < SLd(Z) with its

natural action by automorphisms on the torus Td = Rd/Zd. For g ∈ SLd(Z) and x ∈ Rd the

action is given by g.(x+Zd) = gx+Zd (where gx is just the multiplication of a d× d matrix g

by a column vector x). Specifically, given a subgroup Γ < SLd(Z) we are interested in finding

infinitely many solutions to

{g ∈ Γ : ‖g.x− y‖ < ψ(‖g‖)}

for a monotonically decreasing function ψ : R+ → R+, e.g. ψ(R) = R−α. Here, ‖x − y‖

is the distance coming from the Euclidean norm on Rd, and ‖g‖ is the corresponding operator

norm on SLd(R).

This problem is a noncommutative version of Diophantine approximation. Our goal is to

establish a number of results that resemble some of the classical theorems from Diophantine

approximation theory.

1.1 Diophantine Approximation Theory

We briefly recall some of the results in Diophantine approximation theory. The goal here is

not to survey the field, as it would be a long detour, but rather to focus on results analogues

to which we wish to prove in the noncommutative case. Additionally, most of the results below

are not stated in the most general known form.

1
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The first result associated with the theory of Diophantine approximations is due to Dirichlet.

He showed that for any x ∈ R and any N ∈ N there exist integers p and q with 1 ≤ q ≤ N

satisfying

|qx− p| < N−1 (Dirichlet’s inequality) (1.1)

which for irrational α implies the existence of infinitely many pairs p, q satisfying

|qx− p| < q−1

Following Dirichlet’s result, the basic question in Diophantine approximation theory asks

about the existence of infinitely many integer solutions q, p ∈ Z to the Diophantine inequality

|qx− p| < Ψ(q) (Diophantine inequality) (1.2)

where x ∈ R and a nonincreasing function Ψ : R+ → R+ are given. This was answered by

Khintchine in the following dichotomy.

Theorem 1.1.1 ([35], Khintchine)

Let Ψ : R+ → R+ be a nonincreasing function. Then, for Lebesgue a.e. x ∈ R, there are

infinitely many solutions to |qx− p| < Ψ(q) if and only if the series
∑∞

q=1 Ψ(q) diverges

We must point out here the difference between Dirichlet’s and Khintchine theorems. Having

a solution to (Equation 1.1) with q < N for each sufficiently large integer N implies that there

are infinitely many solutions to (Equation 1.2), but not vice versa. For example, Davenport and
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Schmidt([16]) showed that if we replace N−1 in (Equation 1.1) by εN−1 with any ε < 1, then

Lebesgue a.e. α does not satisfy Dirichlet’s theorem. On the other hand, the study of continued

fractions and their relation to Diophantine approximations ([34]) showed that (Equation 1.2)

has infinitely many solutions for a.e. x for Ψ(q) = εq−1 for any ε > 0.

Groshev ([26]) proved similar theorem for the simultaneous approximation problem (there

are also simultaneous appoximation versions of Dirichlet’s theorem due to Davenport and

Schmidt), establishing that for almost every α ∈ Rd there are infinitely many solutions q ∈

Zd, p ∈ Z to |〈q, α〉 − p| < Ψ(|q|∞) if and only if
∑∞

n=1 n
d−1Ψ(n) diverges. In the case d > 1,

the monotonicity assumption on Ψ is not necessary (due to Schmidt). The convergence case fol-

lows from an easy application of the Borel-Cantelli lemma, and the main difficulty is in proving

the divergence case.

Khintchine’s theorem gave rise to many questions. Firstly, one can introduce an extra

variable to make the approximation problem inhomogeneous. Namely, one can consider the

inequality

|qx− y − p| < Ψ(q) (1.3)

where x, y ∈ R and Ψ are fixed. In this case, Cassels ([13]) showed that an analogue of Dirichlet’s

theorem fails, i.e. for any function Ψ such that Ψ(n) →n→∞ 0 there exist x, y, such that for

infinitely many integers N , for any integers p and |q| ≤ N we have |qx− y − p| > Ψ(N). On

the other hand, inhomogeneous analogues of Khintchine-Groshev theorem are true ([13]).

Secondly, in the case when the series
∑∞

q=1 Ψ(q) convergences, there is still an infinite set

of points x ∈ R for which the Diophantine inequality (Equation 1.2) (or Dirichlet inequal-
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ity (Equation 1.1)) has infinitely many integer solutions. Although this set has measure 0, it

might still be quite large. For M ∈ R+, call x ∈ R an M-Diophantine number if there are

infinitely many integer solutions to |qx − p| < q−M . The set of M−Diophantine numbers is

large in some sense. Jarnik ([30]) and Besicovitch ([5]) showed that for M ≥ 1, the Hausdorff

dimension of the set of M−Diophantine numbers is 2/(M + 1). Levesley ([40]) proved an inho-

mogeneous version of the Jarnik-Besicovitch theorem. Call x ∈ R a Liouville number if it is not

M−Diophantine for any M > 0. In particular, the set of Liouville numbers has zero Hausdorff

dimension.

We should mention that from this point Diophantine approximation theory branches into

many different directions that have interconnections with numerous areas of mathematics. We

would like to explore its connection to the theory of shrinking targets, as explained below.

1.1.1 Diophantine approximation viewed as shrinking target problem

Classical Diophantine approximation problem can be viewed through a prism of the following

dynamical system. Consider multiplicative semigroup N acting on the unit circle T = R/Z by

n.(x + Z) = nx + Z. T has a natural metric, and inhomogeneous Diophantine approximation

is concerned with solutions to dT(q.x, y) < Ψ(q) for given x and y. We can now formulate

Diophantine approximation for actions of other semigroups(or groups). For abelian semigroups,

this is known as simultaneous approximation, and our main interest is in noncommutative case.

Consider a countable semigroup (or a group) Γ, with submultiplicative norm ‖·‖. Assume Γ

acts on a metric space (X, d). Denote by B(y, r) the open ball of radius r around y ∈ X. Given

nonincreasing Ψ : R+ → R+ and x, y ∈ X we would like to study whether the Diophantine
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inequality g.x ∈ B(y,Ψ(‖g‖)) has infinitely many solutions g ∈ Γ. Alternatively, we can

investigate the Dirichlet question, namely, whether for any sufficiently large integer N , there

exists g ∈ Γ with ‖g‖ ≤ N satisfying g.x ∈ B(y,Ψ(N)).

It should be obvious now how to restate most of the questions from classical Diophantine

approximation theory in the language of shrinking target problems. In fact, we can consider

a probability measure space (X,m), and replace the balls B(y, r) by a family of arbitrary

measurable targets Br, with m(Br) = Ψ(r). So, loosely speaking, our targets may not only be

shrinking with the time, but moving and changing their shapes as well.

We should list examples of the actions as above that were investigated in the past. Action

of N on the d−torus generated by an integer valued d × d matrix was studied by Hill and

Velani ([28]). There are quite a few examples of actions of noncommutative groups that were

studied in this context: actions of finitely generated subgroups of a Lie group acting on the Lie

group itself (SU(2) in ([21]), affine group of the line ([48]), nilpotent Lie groups ([1])), actions

of automorphism groups on Heisenberg nilmanifolds ([4]), actions of lattices in semisimple Lie

groups on suitable homogeneous spaces G/H ([23]). It is possible to translate results about

quantifying residual finiteness ([29]) as shrinking target results for the action of a group on its

profinite completion with a suitable metric.

This thesis focuses on the action of subgroups of SLd(Z) on the d−dimensional torus.
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1.2 Main results

1.2.1 Approximation by Lebesgue a.e. point on the two torus

We start with the discussion of the Γ-Diophantine properties of Lebesgue almost every point.

Our results have a sharp form in dimension d = 2. Recall that SL2(Z) acts on the hyperbolic

plane (H2, dH2). Fix a point x0 ∈ H2, and denote

Bn = {g ∈ Γ : dH2(g.x0, x0) ≤ n}, δΓ = lim sup
n→∞

1

n
· log #Bn.

Then δΓ is called the critical exponent of Γ. We say that a subgroup of SL2(R) is elementary

if it is virtually abelian, otherwise it is nonelementary. Now we are ready to state the main

result.

Theorem A

Let Γ < SL2(Z) be a non-elementary subgroup. For any y ∈ T2, for Lebesgue a.e. x ∈ T2,

the set {
g ∈ Γ : ‖g.x− y‖ < ‖g‖−α

}
is

1. finite for every α > δΓ,

2. infinite for every α < δΓ.

The proof proceeds via a reduction to subgroups of SL2(Z) whose action on the hyperbolic

plane is convex cocompact(i.e. groups that act properly discontinously and cocompactly by



7

isometries on some convex subset of the hyperbolic plane). For such groups we have even

sharper estimates below.

Let us now replace the balls around y ∈ T2 by an arbitrary family of targets {Targr}r>0 of

Lebesgue subsets of the torus with measure m(Targr) = πr2.

Theorem B

Let Γ < SL2(Z) be a subgroup whose action on the hyperbolic plane is convex cocompact.

Let {Targr}r>0 be a family of Lebesgue subsets of the torus of measure m(Targr) = πr2. Let

ψ : R+ → R+ be a decreasing function as r →∞. Then for Lebesgue-a.e. x ∈ T2 the set

{
g ∈ Γ : g.x ∈ Targψ(‖g‖)

}
is

1. finite, if
∞∑
n=1

n2δΓ−1ψ(n)2 <∞,

2. infinite if
∞∑
n=1

(log n)2n−2δΓ−1ψ(n)−2 <∞.

Remark 1.2.1 The rates in Theorem B are sharper than in Theorem A. For example, (1)

holds for ψ(n) = n−δΓ log−0.5−ε n, while (2) holds for ψ(n) = n−δΓ log1.5+ε n for any ε > 0.
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Remark 1.2.2 In fact, Theorem B can be stated as Dirichlet’s theorem, namely then for Ψ as

in part (2) and any y ∈ T2, for Lebesgue a.e. x ∈ T2, for any sufficiently large T , there exists

g ∈ Γ satisfying

‖g‖ ≤ T, ‖g.x− y‖ ≤ ψ(T ).

This can be seen immediately from the proof of Theorem B(see Remark 4.1.1).

The finiteness part follows from the first Borel-Cantelli lemma, which says that if Bn is

a sequence of measurable subsets in a probability space (X,m) such that
∑∞

n=1m(Bn) < ∞,

then m(lim supBn) = 0. Second Borel-Cantelli lemma states that the partial converse is true,

namely if the sets are independent and
∑∞

n=1Bn = ∞ then m(lim supBn) = 1. The classical

independence assumption in the second Borel-Cantelli lemma may be replaced by decay of

correlations conditions. In our case, this role is played by spectral estimates for the Γ-action

on the torus T2 as discussed in § 1.2.3.

1.2.2 Approximation by Diophantine points

For a subgroup Γ < SLd(Z), α > 0, and points x, y ∈ Td, we say that y admits (Γ, α)-fast

approximation by x if

{
g ∈ Γ : ‖g.x− y‖ < ‖g‖−α

}
is infinite.

Theorem A shows that every y ∈ T2 is (Γ, δΓ − ε)-fast approximable by Lebesgue a.e. x ∈ T2

for any ε > 0. In this section we try to analyze how large is the exceptional set of x ∈ T2,
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which fail to provide fast approximations for all points y on the torus. We work with subgroups

Γ < SLd(Z) acting on the d-torus Td with d ≥ 2.

For q ∈ N, denote by Rq ⊂ Td the set 1
q · Z

d + Zd of points with rational coordinates with

denominators dividing q, and by R =
⋃
Rq the set of all rational points. We say that a point

x ∈ Td is M -Diophantine if there are only finitely many q ∈ N so that x is q−M -close to a point

in Rq. Points that are not M -Diophantine for any M , are called Liouville.

Note that rational points x ∈ Td have finite Γ-orbits on the torus (because each Rq is

SLd(Z)-invariant), and so any y ∈ Td \R does not admit (Γ, ε)-fast approximation by x ∈ R for

any ε > 0.

We want to establish a relation between (Γ, α)−fast approximability by x ∈ Td and Dio-

phantine properties of x. We use the results of [8]. For d ≥ 3 we need to impose the following

conditions on Γ < SLd(Z):

(SI) Γ acts strongly irreducibly on Rd, i.e. every subgroup of finite index in Γ preserves no

non-trivial vector subspaces.

(PE) Γ has a proximal element, i.e. an element with a simple dominant eigenvalue.

For example, existence of a proximal element is guaranteed if Γ is Zariski dense ([45]). Both

conditions are automatically satisfied by any nonelementary subgroup of Γ < SL2(Z).

Theorem C

Let Γ < SLd(Z) satisfy (SI) and (PE). Then there exists CΓ > 0, such that for every M > 0,

every point y ∈ Td is (Γ, CΓ
M )-fast approximable by any M -Diophantine point x ∈ Td.
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We can deduce as a corollary an analogue of Jarnik-Besicovitch Theorem.

Corollary 1.2.3

Let Γ be as in Theorem C and let y ∈ Td. The set of points x ∈ Td that do not give (Γ, ε)-fast

approximation of y for any ε > 0 consists only of Liouville points and, in particular, has zero

Hausdorff dimension.

1.2.3 Spectral estimates

Let us now state the main spectral estimate needed for the proof of Theorems A and B.

Let Γ < SL2(Z) be a subgroup whose action on the hyperbolic plane is convex cocompact. Let

π : Γ → U(H) be a unitary Γ-representation on Hilbert space H, and µ a probability measure

on Γ. Define the Markov operator on H

π(µ) ≤
∑
g∈Γ

µ(g) · π(g).

Note that it always satisfies ‖π(µ)‖ ≤ 1 and if µ is symmetric, then π(µ) is self-adjoint. We

shall denote by π the unitary Γ-representation on L2(T2), and π0 the sub-representation on

L2
0(T2). In the proof of Theorem B we need the estimate provided in the following result.

Theorem 1.2.4

Let Γ < SL2(Z) be a convex cocompact subgroup. There exists a sequence of symmetric

probability measures µn on Γ with supp(µn) ⊂ Bn and

‖π0(µn)‖ ≤ e−
1
2
δΓ·n+logn+O(1).
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In fact, the above estimate holds for µn being uniform measures on the shells Sn = Bn \ Bn−k

for some fixed k, that depends only on Γ.

We can view the spectral estimates we obtained as a quantitative ergodic theorem for the

linear action on the 2−torus.

Corollary 1.2.5

Let Γ < SL2(Z) be a convex cocompact subgroup, and let Sn = Bn \ Bn−k ⊂ Γ be shells as

above. Then for any f ∈ L2(T2,m) we have

∥∥∥∥∥∥ 1

|Sn|
∑
g∈Sn

f(g.x)−
∫
T2

fdm

∥∥∥∥∥∥
2

≤ ne−
1
2
δΓ·n+O(1) · ‖f‖2.

The constant δΓ in the above rate of convergence cannot be improved by choosing a different

averaging family Sn, or different averaging weights (see § 6).

1.2.4 Spectrally optimal random walks

For weakly equivalent unitary Γ-representations π′ ∼ π′′, one has ‖π′(µ)‖ = ‖π′′(µ)‖ for any

probability measure µ on Γ. Hence π0 in the above theorem can be replaced by any weakly

equivalent unitary representation, and it is known (Proposition 2.2.7) that the left regular

representation λ : Γ → U(`2Γ) is such. So Theorem 1.2.4 is a special case of the following

more general result, in which convex cocompact subgroup of Isom(H2) is replaced by a group

Γ acting properly and cocompactly on a proper quasiruled hyperbolic space (X, d). The notion

of quasiruled hyperbolic spaces is defined in § 2. We remark that geodesic Gromov hyperbolic



12

spaces are examples of proper quasiruled hyperbolic spaces. We have the following general form

of Theorem 1.2.4:

Theorem D

Let (X, d) be a proper quasiruled hyperbolic space, Γ a finitely generated group, acting prop-

erly cocompacty by isometries on (X, d). Then for some k and all n, the uniform distributions

µn on the shells Sn = Bn \Bn−k satisfy

‖λ(µn)‖ ≤ e−
1
2
δΓ·n+logn+O(1)

where λ is the regular representation on `2(Γ).

In fact, in our proof we replace the regular representation λ by the quasi-regular representation

on the boundary of Γ endowed with the Patterson-Sullivan measure, which satisfies the same

estimate.

Let us put Theorem D in a broader perspective. Let Γ be a group with proper left invariant

metric d, and let us denote by Bn the ball of radius n in Γ. Given a unitary Γ-representation

π define the function ρπ : N→ R+ by

ρπ(n) := min {‖π(µ)‖ : supp(µ) ⊂ Bn},
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where ‖ · ‖ is the operator norm. Since Bn · Bm ⊂ Bn+m, and the operator norm is submulti-

plicative, one has ρπ(n+m) ≤ ρπ(n) · ρπ(m). Therefore the limit

lim
n→∞

1

n
· log ρπ(n)

exists. It might be of interest to investigate ρπ(n) for a given Γ, d, π as above.

For a finitely supported probability measure µ on Γ we recall the definitions of the drift

and the asymptotic entropy

`(µ) := lim
n→∞

1

n
·
∑
g∈Γ

d(g, e) · µ∗n(g),

h(µ) := lim
n→∞

1

n
·
∑
g∈Γ

− logµ∗n(g) · µ∗n(g).

Let λ be the left regular representation of Γ. The following inequalities are well known and

hold for any finitely supported symmetric probability measure

−2 log(‖λ(µ)‖) ≤ h(µ) ≤ δΓ · `(µ).

If supp(µ) ⊂ Bn, one has the trivial estimate `(µ) ≤ n, that gives the upper bound ≤ δΓ · n for

th right hand side above.
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Theorem D describes a situation that allows one to choose a symmetric µn supported in Bn

so that the above sequence of inequalities is asymptotically tight

δΓ · n− 2 log n+O(1) ≤ −2 log(‖λ(µn)‖) ≤ h(µn) ≤ δΓ · `(µn) ≤ δΓ · n.

1.3 Existing results

1.3.1 Diophantine properties of noncommutative groups

Similar shrinking target problems were previously studied by multiple authors.

Laurent and Nogueira in [39] considered the natural SL2(Z) action on R2. They showed (by

explicit construction) that for x ∈ R2 with irrational slope, there are infinitely many solutions

g ∈ SL2(Z) to |g.x− y| ≤ Ψ(‖g‖) in the following situations:

1. Ψ(R) = R−1, y = (0, 0)

2. Ψ(R) = cR−1/2, y = (y1, y2), where either y1/y2 is rational or y2 = 0, and c is explicit

constant depending on x, y.

3. Ψ(R) = c′R−1/3, y = (y1, y2), where either y1/y2 is irrational, and c′ is explicit constant

depending on x, y.

Recall that δSL2(Z) = 1, so Theorem A gives rate of Ψ(R) = R−1+ε for any y ∈ T2 and for a.e.

x ∈ T2

Similar results were given for cocompact lattices of SL2(R) (and SL2(Z) with extra Dio-

phantine conditions on starting points) acting on the plane by Maucourant and Weiss in [41]
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and for the SL2(C) action on the complex plane by Policott in [44] using effective equidistribu-

tion results. Both of those have explicit (but far from optimal exponents in the approximation

rates).

In contrast to Theorem A, the above results fix the starting point x and consider different

targets y that SL2(Z) can effectively approximate, whereas in our case, we fix the target y and

study the set of starting points which give successful approximation.

Ghosh, Gorodnik and Nevo in [23] considered a more general setting, where a lattice Γ < G

acts on a homogenous space G/H, with a dense Γ-orbit. As a corollary, they established

Theorem A for Γ = SL2(Z) for a.e. y ∈ T2.

All of the results listed above assume the acting group to be a lattice. So the main novelty in

our work is in treating arbitrary, in particular, thin subgroups Γ in SL2(Z)(i.e. discrete Zariski

dense subgroups wiht infinite covolume).

1.3.2 Solutions to Diophantine inequality in proper subsets

Even though, a lot is known about solutions to Diophantine inequality in the classical

setting, it seems a much harder problem if we require additional properties of the solutions.

For example, the only analogue to Theorem C in the classical Diophantine approximation

theory of which the author is aware is the following. Bourgain, Lindenstrauss, Michel and

Venkatesh were looking for solutions to classical Diophantine inequality that lie in multiplicative

semigroup of N generated by two elements. In ([10], Theorem 1.8) they proved that for any

multiplicatively independent integers a, b (i.e. not powers of the same integer) there exist
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k = k(a, b), N0 = N0(M,a, b) so that for any N > N0, y ∈ R/Z, and any M−Diophantine

x ∈ R/Z there exist s, t ≤ N satisfying

∣∣asbtx− y∣∣ ≤ (log logN)−k.

In the non-commutative case, Kirsebom in [36] considered orbits in Td of random walks of

general subgroups of SLd(Z), (subgroups that do not fix a proper subtorus). Using extreme

value theory, with un = n−de−r, he showed that for a.e. starting point x ∈ Td, the probability

of random walk not returning to un-neighborhood of x after less than n steps converges (as

n → ∞) to Ce−dr where the constant C > 0 is explicit and depends only on the dimension d.

In particular, this probability is bounded away from 1 for large n, hence it is easy to deduce

that in this case the Diophantine inequality has infinitely many solutions for Ψ(R) = log(R)−λ

(where λ > 0 depends on the subgroup Γ). Theorem A gives a much better rate Ψ(R) = R−α

for explicit and sharp exponent α.

1.3.3 Spectral estimates

Spectral estimates similar to ones we obtain in Theorem 3.0.9 can be deduced from Bader-

Muchnick in [3] and by Boyer in [11] for groups acting properly cocompactly by isometries on

CAT(-1) space. They were interested in the irreducibility of the boundary representation.

Slightly weaker estimates on the norm of λΓ(µn) can be obtained from the property of

Rapid Decay. Let Γ be a discrete group, and l a length function (i.e. l : Γ → R+, with

l(e) = 0, l(g) = l(g−1), and l(gh) ≤ l(g) + l(h) for any g, h ∈ Γ. We say that Γ has the property
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of Rapid Decay(RD) with respect to l if there exists a polynomial P such that for any f in

the complex group algebra CΓ supported on elements of length shorter than n, the following

inequality holds:

‖f‖∗ ≤ P (n)‖f‖2

where ‖f‖∗ denotes the operator norm of f acting by left convolution on l2(Γ).

If d is a left invariant pseudo-metric on Γ, one can consider l(g) = d(g, e) as the length

function. Property RD was first established for free groups by Haagerup (with respect to

word metric), and later Jollisant and de La Harpe ([31], [17]) proved it for geometrically finite

Kleinian groups without parabolic elements, with the length function coming from the action

on the hyperbolic space. In fact, in both of the above cases they also show that the polynomial

P in the definition is of degree 2. In particular, for convex cocompact subgroups of SL2(Z),

let f(g) = 1
#Sn

χSn(g), where χSn is the characteristic function of the shell Sn = Bn \ Bn−k.

The convolution by f is the operator λΓ(µn) where µn is the uniform distribution on Sn. Using

Coornaert’s estimate on the cardinality of Sn (Lemma 2.1.8), we have

‖f‖22 =
∑
g∈Bn

1

|Bn|2
=

1

|Bn|
≤ e−δΓn+O(1),

hence,

‖λΓ(µn)‖ = ‖f‖∗ ≤ Cn2‖f‖2 ≤ e−
1
2
δn+2 logn+O(1).

Note that Theorem D gives log n in the exponent, versus 2 log n obtained from property RD.



CHAPTER 2

BACKGROUND AND NOTATIONS

We will use Landau’s asymptotic notation: f(x) = O(g(x)) means that there exists constant

K > 0, so that |f(x)| ≤ Kg(x). For a function h : X → R(where X is a general space), we will

write h = O(1) meaning that h is a bounded function.

2.1 Quasi-ruled hyperbolic spaces

2.1.1 Basic definitions

Let (X, d) be a metric space. For x, y, z ∈ X the Gromov product is defined by

(x|y)z :=
1

2
(d(x, z) + d(y, z)− d(x, y))

The notion of hyperbolicity is usually studied in the setting of complete geodesic spaces. In

this paper we are interested to exploit the hyperbolicity of non-geodesic metric spaces. For our

purposes we want a notion for which the boundary theory and the theory of quasiconformal

measures still exist. We recall the theory of quasiruled hyperbolic spaces (see appendix of [6]

for more details)

Definition 2.1.1 Let X be a proper metric space.

(1) A (λ, c)-quasigeodesic curve (resp. ray, segment) is the image of R (resp. R+, a compact

interval of R) by a (λ, c)-quasi-isometric embedding.

18
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(2) A τ -quasiruler is a quasigeodesic g : R → X (resp. quasisegment g : I → X, quasiray

g : R+→ X) such that, for any s < t < u, we have

(g(s)|g(u))g(t) ≤ τ

(3) We say that X is quasi-ruled if there exist constants λ ≥ 1 and τ, c ≥ 0 such that any

two points in X can be joined by a (λ, c)-quasigeodesic, and every (λ, c)-quasigeodesic is

a τ -quasiruler.

(4) A quasitriangle is given by three points x, y, z ∈ X together with three quasirulers(edges)

joining them.

(5) A quasitriangle is δ−thin if any of its edges is in the δ-neighborhood of the union of two

other edges.

(6) A quasiruled metric space X is called hyperbolic if it satsifies the Rips condition for some

δ ≥ 0, i.e. every quasitriangle is δ−thin.

Example 2.1.2 An important example of quasiruled hyperbolic spaces is the class of convex

cocompact subgroups of Isom(Hn). They act properly cocompactly by isometries on their convex

core in (Hn, dHn). Fix x0 ∈ Hn a basepoint. We can define the left invariant metric on Γ:

for g, h ∈ Γ, d(g, h) := dHn(g.x0, h.x0). This might be a pseudo-metric, but properness of the

action ensures that a stabilizer of a point if finite, which will not matter for us for the purpose

of asymptotic computations. If the stabilizer is trivial, this is a honest metric, which is quasi-



20

isometric to the word metric on Γ, and with respect to this metric, Γ is itself a proper quasiruled

hyperbolic space.

One of the useful features of thin triangles is that they admit a centroid. More precisely,

given three points x, y, z, there is a tripod T (a tree with three leaves) and an isometric em-

bedding f : {x, y, z} → T such that the images are the endpoints of T . We denote by CT the

center of T . If x, y, z all lie on the same geodesic, the associated tripod T is degenerate (it has

only 2 leaves). In such a situation he center of T is one of the points x, y, z that is not a leaf.

Lemma 2.1.3 (Tripod lemma)([6]Lemma A.3)

Let ∆ be a δ-thin quasitriangle with vertices x, y, z in a quasiruled hyperbolic space X.

There is a (1, c0)-quasiisometry f∆ : ∆→ T , where T is the tripod associated with x, y, z and

c0 depends only on the data (δ, λ, c, τ).

We call f−1
∆ (CT ) a centroid of ∆. Of course, the map f∆, and thus the centroid are not unique,

but there exists a constant c1 depending on the space only, such that for every quasitriangle

∆ ⊂ X, every 2 centroids of ∆ are at most at distance c1.

2.1.2 Visual boundary and Patterson-Sullivan measures

Geodesic hyperbolic spaces admit a visual boundary and conformal densities on it. In a

similar fashion, proper quasiruled hyperbolic metric spaces admit a natural boundary, called

the visual boundary associated to (X, d, x0)

∂X :=

{
(xi)

∞
i=1 : xi ∈ X, lim

i,j→∞
(xi|xj)x0 =∞

}
/ ∼
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where

(xi) ∼ (yi)⇔ (xi|yi)x0 −→
i→∞

∞

The visual boundary is the set of equivalence classes of infinite quasiruler rays, where two rays

are equivalent if they are at bounded Hausdorff distance from each other. The boundary ∂X

doesn’t depend on the choice of basepoint x0.

Similarly to geodesic hyperbolic spaces, in a quasiruled hyperbolic space there exists a

quasiruled curve between any two points in the boundary.

The boundary ∂X may be equipped with the topology, whose basis is given by shadows.

For y ∈ X and C ≥ 0, the shadow OC(x0, y) is

OC(x0, y) :=

{
[(zi)] ∈ ∂X : lim inf

j→∞
(zj |y)x0 ≥ d(x0, y)− C

}

Alternatively, a point ξ ∈ ∂X belongs to the shadow OC(x0, y) if some quasiruler ray from x0

to ξ intersects the closed C-ball around y.

Sometimes we would like to think of shadows as subsets of X, in this case

ŌC(x0, y) := {z ∈ X|(y|z)x0 ≥ d(x0, y)− C}

For z ∈ X, the Busemann function at z, βz : X ×X → R is

βz(x, y) := d(z, x)− d(z, y)
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For ξ ∈ ∂X, we define Busemann function at ξ by

βξ(x, y) := sup
zt→ξ

lim sup
t→∞

{d(z(t), x)− d(z(t), y)}

The above sup should be taken along all possible quasiruler rays z(t) from y to ξ.

Recall that for Γ < Isom(X, d), with a chosen basepoint x0 ∈ X, the critical exponent for

Γ is given by

δΓ := lim sup
R→∞

log #{g ∈ Γ : d(g.x0, x0) ≤ R}
R

The Γ action on X induces natural action on ∂X and on the space of Busemann functions.

g.βξ(x, y) := βg.ξ(x, y) = βξ(g
−1.x, g−1.y)

The next theorem summarizes the main properties of quasiconformal measures on the

boundary of X. It was proved by Coornaert in [14] for geodesic hyperbolic spaces, and by

Blachere-Haissinsky-Mathieu in [6] for proper quasiruled hyperbolic spaces.

Theorem 2.1.4 ([6], Theorem 2.3)

Let Γ be a finitely generated group acting properly cocompactly by isometries on a pointed

proper quasiruled hyperbolic space (X, d, x0). For any small enough ε > 0

(1) There exists a visual metric dε on the boundary ∂X, its Hausdorff dimension is given by

dimH(∂X, dε) = δΓ/ε
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(2) There exists a Γ−equivariant family {ρx}x∈X of Radon probability measures on ∂X, i.e.

for any g ∈ Γ, x ∈ X we have g∗ρx = ρg.x. Moreover, the entire family ρx is in the same

measure class.

(3) The distortion of a measure by the Γ action is measured by the Busemann functions,

namely for any ξ ∈ ∂X

dρy
dρx

(ξ) = e−δΓβξ(y,x)+O(1)

(4) ρx are Ahlfors-regular of dimension δΓ/ε, i.e. for any ξ ∈ ∂X, for any r ∈ (0, diamε(∂X)),

we have

ρx(Bdε(a, r)) = rδΓ/ε+O(1)

(5) Γ action on (∂X, ρx) is ergodic for any x ∈ X

This class of measures is called the Patterson-Sullivan measure class. It does not depend

on the choice of ε. Denote ρ := ρx0 .

In fact, the metric dε is given in the following way. First one extends the Gromov product

to the boundary by defining

([xi]|[yi])x0 := lim sup
i→∞

(xi|yi)x0
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where lim sup is taken over all quasiruled rays in the equivaence classes. There exists ε0 > 0,

such that for any 0 < ε < ε0 there exists a metric on ∂X satisfying

dε(ξ, η) := O(1)e−ε(ξ|η)0

Such metric dε induces the boundary topology described above. Moreover, the shadows are

related to the balls in metric dε.

Proposition 2.1.5 ([6], Proposition 2.1)

There exists C0 ≥ 0, such that for any C ≥ C0 and any x ∈ X

diamε(OC(x0, x)) = e−εd(x,x0)+O(1)

Combining the fact that Patterson-Sullivan measures are Ahlfors regular with respect to

this metric and the description of shadows we can conlude the following corollary known as the

lemma of the shadow,

Corollary 2.1.6 (Lemma of the shadow, [6], Lemma 2.4)

There exists C ≥ 0, such that for any x ∈ X

ρ(OC(x0, x)) = e−δΓd(x,x0)+O(1)
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The Γ action on (X, d) induces the left invariant metric d0 := d(g.x0, h.x0). If the action is

proper and cocompact, (Γ, d0) is itself a proper quasiruled hyperbolic space. We denote by Bn

the n−ball in Γ with respect to d0 and define the k−shell:

Sn,k := Bn \Bn−k

The shadows of the shells Sn,k cover the boundary with finitely many overlaps (with the bound

uniform in n). More precisely,

Lemma 2.1.7 ([14], Lemma 6.5)

There exist C, k ≥ 0 such that for any n ∈ N

⋃
g∈Sn,k

OC(e, g) ⊇ ∂Γ

Moreover, there exists L(depending only on C and k) such that for any n and any ξ ∈ ∂G

#{g ∈ Sn,k : ξ ∈ OC(e, g)} ≤ L

i.e. every ξ ∈ ∂Γ is covered by at most L shadows of elements in the shell Sn,k

We also have precise asymptotics of the growth of balls and shells

Lemma 2.1.8 ([14], Theorem 7.2)

There exists k > 0, such that
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(1) #Sn,k = eδΓn+O(1)

(2) #Bn = eδΓn+O(1)

Two above lemmas are stated for geodesic hyperbolic spaces in [14], but the same proofs

will work for quasiruled hyperbolic spaces.

Definition 2.1.9 Fix k > 0 for which Lemmas 2.1.7 and 2.1.8 hold. Denote the shell Sn :=

Sn,k.

Definition 2.1.10 Let Γ as above. Let C ≥ 0 be large enough to satisfy Corollary 2.1.6 and

Lemma 2.1.7. For g ∈ Γ, the g−shadow in Γ is a subset of ∂Γ given by

O(g) := OC(e, g)

2.2 Some Unitary Representations

A discrete group Γ acts on itself by left multiplication which induces the left regular repre-

sentation λΓ : Γ→ U(l2(Γ)) given by:

λΓ(g)f(h) = f(g−1h) for f ∈ l2(Γ), g ∈ Γ

If Γ acts by measure preserving transformations on a probability space (X,m) we can associate

with the action the Koopman representation π : Γ→ U(L2(X,m)), which is given by

π(g)f(x) = f(g−1.x) for f ∈ L2(X), g ∈ Γ
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The constant functions are invariant, hence we denote by π0 the restriction of π to the orthogonal

complement of the constant functions L2
0(X,m) =

{
f ∈ L2(X,m) :

∫
X fdm = 0

}
.

If, however, the action only preserves the measure class, we can modify the Koopman

representaion to become a unitary representation πX : G→ U(L2(X, ν)):

πX(g)f(x) = f(g−1.x)

√
dg∗ν

dν
(x)

Such πX is called the quasi-regular representation.

For example, if Γ is as in § 2.1.2, Γ acts on its visual boundary equipped with Patterson Sul-

livan measure. We call the associated quasi-regular representation the boundary representation

and denote it by π∂Γ.

Given finitely supported probability measure µ on Γ and a unitary representation σ : Γ →

U(H) we can average the representation to get a Markov operator σ(µ) : H → H by

σ(µ) =
∑
g∈Γ

µ(g)σ(g)

Example 2.2.1 λΓ(µ) is the Markov operator associated with the random walk on Γ with law

µ. It is known that ‖λΓ(µ)‖ < 1 if and only if Γ is nonamenable.

Example 2.2.2 Let H < Γ a subgroup. Γ acts on Γ/H by left multiplication, which induces

the representation πΓ/H : Γ→ U(l2(Γ/H)).

Theorem 2.2.3 (Kesten, [33])



28

Let µ be a uniform measure on some generating set S of Γ. If H is amenable, then

‖λΓ(µ)‖ = ‖πΓ/H(µ)‖

In fact Kesten proved that, in the case where H is a normal subgroup, the converse is also true.

A generalized version of this is the following:

Theorem 2.2.4 (Kuhn, [38])

Let Γ be a discrete group, µ ∈ Prob(Γ), and let Γ act ergodically preserving the measure

class on a probability space (X, ν). Assume the action is amenable in the sense of Zimmer, and

let πX the corresponding quasi-regular representation. Then,

‖λΓ(µ)‖ ≥ ‖πX(µ)‖

This lemma by Shalom gives a useful condition for an opposite inequality

Lemma 2.2.5 ([46], Lemma 2.3)

Let π be a unitary Γ-representation, with a positive Γ-vector, that is nonzero vector v ∈ H,

such that 〈π(g)v, v〉 ≥ 0 for all g ∈ Γ. Then for any finitely supported probability measure µ on

Γ

‖λΓ(µ)‖ ≤ ‖πX(µ)‖

Example 2.2.6 An example of an ergodic amenable action is the action of convex cocompact

subgroup Γ < SL2(R) on its Poisson boundary (which can be identified with the visual boundary
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∂Γ) equipped with Patterson Sullivan measure([49]). Moreover, π∂Γ has a positive Γ-vector(e.g.

a constant function), thus we can deduce that for any probability measure µ on Γ we have

‖λΓ(µ)‖ = ‖π∂Γ(µ)‖

This also follows from spectral transfer principle(see [42], Theorem 1 or [43] for more general

statement)

The following proposition is well known, but doesn’t seem to appear in the literature. It

relates the left regular representation and the Koopman representation on the two torus.

Proposition 2.2.7

Let Γ < SL2(Z) act on the torus T2 equipped with Lebesgue measure m, π0 be the Koopman

representation on L2
0(T2). Then, for any probability measure µ on Γ

‖π0(µ)‖ = ‖λΓ(µ)‖

Proof:

Recall that the Fourier transform is an isometry between

̂ : L2
0(T2)→ `2(Z2 \ 0)



30

defined as following: for f ∈ L2
0(T2)

f̂(~n) =

∫
T2

f(x)e2πi〈~n,x〉dm(x)

Γ acts on Z2 \ 0 via left multiplication by transpose matrix. This induces a representation π̂0

on `2(Z2 \ 0) given by

π̂0(g)f̂(~n) = f̂
(
gT~n

)
The following diagram commutes

L2
0(T2) L2

0(Z2 \ 0)

L2
0(T2) L2

0(Z2 \ 0)

̂
π0(g) π̂0(g)

̂

The Fourier transform intertwines the representations. Hence, ‖π0(µ)‖ = ‖π̂0(µ)‖.

Pick representatives from each Γ−orbit of π̂0: D = {v1, v2, v3, ...}. Then,

Z2 \ 0 ∼=
⋃
i

Γ/Stab(vi)

and

π̂0 =
⊕
i

πΓ/Stab(vi)
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hence, ‖π̂0(µ)‖ = sup
i
‖πΓ/Stabvi

(µ)‖. The stabilizers of vectors in Z2\0 are amenable (conjugate

to the group of upper triangular matrices), thus by Kesten’s theorem we have ‖πΓ/Stab(vi)(µ)‖ =

‖λΓ(µ)‖ for every i, and hence ‖π0(µ)‖ = ‖π̂0(µ)‖ = ‖λΓ(µ)‖ �

Combining results from this section we have

Corollary 2.2.8

Let Γ < SL2(Z) be convex cocompact. Let λ be the left regular representation, π∂Γ the

boundary representation as described in § 2.1.2 and π0 the Koopman representation on the

torus. Let µ ∈ Prob(Γ) be a finitely supported measure, such that the support generates the

entire group, then

‖π∂Γ(µ)‖ = ‖π0(µ)‖ = ‖λ(µ)‖



CHAPTER 3

THE SPECTRAL ESTIMATE FOR THE BOUNDARY

REPRESENTATION

In this section we prove Theorem D. Consider a group Γ that acts by isometries properly

cocompactly on a proper quasiruled hyperbolic space (X, d). Fix x0 ∈ X a basepoint. We will

abuse the notation and use d as a metric on a group, i.e. d(g, h) := d(g.x0, h.x0). With this

metric, (Γ, d) is a proper quasiruled hyperbolic space. Let δΓ be the critical exponent of Γ. For

every n ∈ N, let µn be a uniform probability measure on the shell Sn (as defined in 2.1.9).

By Corollary 2.2.8, Theorem 1.2.4 and Theorem D follow immediately from the theorem

below.

Theorem 3.0.9

Let (Γ, d) and µn as above. Let ρ be Patterson-Sullivan measure on ∂Γ and π∂Γ : Γ →

U(L2(∂Γ), ρ) the corresponding quasiregular representation of Γ on the boundary. Then

‖π∂Γ(µn)‖ ≤ e−
1
2
δΓn+logn+O(1)

We will call π∂Γ(µn) the boundary operators. We fix n throughout the proof. We will bound

the operator norm of the boundary operator by testing it on a dense set of simple functions.

For each r ∈ N we will construct a finite dimensional operator Πr that mimics the application

32
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of π∂Γ(µn) to a step function f (the complexity of f will determine how large should be r). We

will then study Πr and relate their operator norms to the operator norm of π∂Γ(µn).

Let r ∈ N. Enumerate the elements {gj} in the shell Sr ⊂ Γ. Denote by Oj = O(gj) the

shadows as defined in 2.1.10, and their characteristic functions by χj = χOj . Define a |Sr|×|Sr|

matrix Πr(µn) by

(Πr(µn))ij := 〈π∂Γ(µn)χi, χj〉 =

∫
∂Γ

(π∂Γ(µn)χi) (ξ)χj(ξ)dρ(ξ)

The main step will be estimating the operator norms of finite dimensional operators Πr(µn)

Theorem 3.0.10

For Πr(µn) as above we have

‖Πr(µn)‖ ≤ e−δΓr−
1
2
δΓn+logn+O(1)

In § 3.1 we will show that Theorem 3.0.10 implies Theorem 3.0.9. In § 3.3 we will prove

Theorem 3.0.10

3.1 Reduction to linear algebra

Proof:

(Theorem 3.0.10 =⇒ Theorem 3.0.9)

Recall that

‖π∂Γ(µn)‖ = sup
‖f‖=1

〈π∂Γ(µn)f, f〉
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Since π∂Γ(µn) is an operator preserving the cone of positive functions, it is sufficient to take

the supremum only over non-negative functions(or a dense subset of it).

We fix a visual metric dε for some small enough ε > 0. Recall that the balls in the visual

metric generate the topology. We consider

H+ :=

{
f =

t∑
i=1

aiχIi : ai > 0, Ii ⊆ ∂Γ disjoint closed balls, ‖f‖ = 1

}

H+ is clearly dense in the set of non-negative functions of norm 1.

Our strategy will be to show that for each f ∈ H+ there exists r > 0 and a vector ~v ∈ R|Sr|

such that

(M1) 〈π∂Γ(µn)f, f〉 ≤ ~vTΠr(µn)~v

(M2) ‖~v‖2 ≤ eδΓr+O(1)

where ‖~v‖ is the Euclidean norm on R|Sr|.

This, combining with Theorem 3.0.10 will imply that for each f ∈ H+ we have some ~v and

r satisfying

〈π∂Γ(µn)f, f〉 ≤ eδΓr+O(1)~v
TΠr(µn)~v

‖~v‖2
≤ eδΓr+O(1)‖Πr(µn)‖ ≤

≤ e−
1
2
δΓn+logn+O(1)

Taking the supremum over f ∈ H+ will finish the proof of Theorem 3.0.9.
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We are left to construct v from f satisfying the properties (M1) and (M2). Fix an element

in H+ of the form f =
∑t

i=1 aiχIi with ‖f‖ = 1 . Denote by Ii+η the closed balls having the

same centers as Ii, but with radius larger by η. Fix η > 0 such that for every 1 ≤ i ≤ t we

have ρ(Ii+η) ≤ 2ρ(Ii) and so that Ii+η are pairwise disjoint for all i. Such η exists, since Ii is

a finite family. By Proposition 2.1.5 bounding the diameter of the shadows we can find r large

enough, so that two following conditions are satisfied:

(S1) for every gj ∈ Sr we have diam(Oj) ≤ 1
3 mini,i′ dε(Ii, Ii′)

(S2) for every gj ∈ Sr we have diam(Oj) ≤ η

For each 1 ≤ j ≤ |Sr| define

vj =


ai if ∃i s.t. Ii ∩Oj 6= ∅

0 otherwise

~v = (vj) is well defined since by condition (S1) each Oj intersects at most one of the sets from

the family {Ii}.

Let fv =
∑|Sr|

j=1 vjχj

By Theorem 2.1.7 there exists L ∈ N so that each point in the boundary is covered by at

most L different shadows of elements in Sr. Combining it with (S2) we have for each 1 ≤ i ≤ t

χIi ≤
∑

j:Oj∩Ii 6=∅

χj ≤ LχI+η (3.1)
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In particular from the left inequality in (Equation 3.1)

f ≤ fv

It follows now that ~v satisfies (M1), i.e.

〈π∂Γ(µn)f, f〉 ≤ 〈π∂Γ(µn)fv, fv〉 = ~vTΠr(µn)~v

To show (M2) we are left to estimate the of ~v

‖~v‖2 =
∑
i

∑
j:Oj∩Ii 6=∅

a2
i

(1)
= eδΓr+O(1)

∑
i

a2
i

∑
j:Oj∩Ii 6=∅

ρ(Oj)
(2)

≤

(2)

≤ eδΓr+O(1)
∑
i

a2
iLρ(Ii+η)

(3)

≤

(3)

≤ eδΓr+O(1)2L
∑
i

a2
i ρ(Ii) ≤

≤ eδΓr‖f‖2 = eδΓr+O(1)

The first equality follows from Corollary 2.1.6, which, if applied here, states ρ(Oj) = e−δΓr+O(1),

the second follows from integrating the right inequality in Equation 3.1, the third is obtained

from our choice of η(since ρ(Ii+η) ≤ 2ρ(Ii)). This finishes the proof. �

3.2 Hyperbolic geometry

The proof of Theorem 3.0.10 relies on the hyperbolicity of the metric d on Γ. We prove a

sequence of technical lemmas which will be necessary in § 3.3.
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Lemma 3.2.1

There exist R,∆ ≥ 0 depending only on (Γ, d), such that for any r > n+ ∆, for any g ∈ Sr,

ξ ∈ O(g) = OC(g, e) and h ∈ Sn we have

|βξ(h, e)− βg(h, e)| ≤ R (3.2)

Proof:

Let ∆ be the maximal thickness of quasi-triangles in Γ. We will show that R = 4(τ + C +

∆) + 1 suffices. Let r > n+ ∆ and choose g ∈ Sr and ξ ∈ O(g).

Let z(t) be a quasiruler from e to ξ s.t. for some large t0 we have βξ(h, 0) − d(z(t0), h) −

d(z(t0), e) ≤ 1. Note that by definition of O(g) there is some quasiruler from e to ξ, that passes

in a C−neighborhood of g. Using ∆-thinness of triangles, we can conclude that any quasiruler

from e to ξ must pass in a (C + ∆)−neighborhood of g. Let s ∈ R, so that z(s) is at distance

at most C + ∆ from g. We can assume t0 > s. Then,

0 ≤ d(e, z(s)) + d(z(s), z(t0))− d(e, z(t0)) ≤ 2τ

The right hand side of the above inequality holds since z(t) is a τ -quasiruler, and the left hand

side is the triangle inequality.
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Let z′(t) be a quasiruler between h, z(t0). Similarly, z′(t) has to pass through the C + ∆-

neighborhood of g. Let s′ such that z′(s′) is in the C + ∆ neighborhood of g. Similarly, by the

property of quasiruler for z′(t)

0 ≤ d(h, z′(s′)) + d(z′(s′), z(t0))− d(h, z(t0)) ≤ 2τ

Noting that z′(s′) and z(s) are (C + ∆)−close to g and z(t0) = z′(t′0), we can substract two of

the above inequalities to get

|βξ(h, e)− βg(h, e)| ≤ 4τ + 1 + 4(C + ∆) = R

�

Corollary 3.2.2

With ∆ as in Lemma 3.2.1, for any r > n + ∆ and for each g ∈ Sr, h ∈ Sn, ξ ∈ O(g) we

have

dh∗ρ

dρ
(ξ) = e−βg(h,e)δΓ+O(1)

Define

Xa(g, n) = {h ∈ Sn : n− 2a−R < −βg(h, e) ≤ n− 2a} (3.3)

where R is the constant from the Lemma 3.2.1. Without loss of generality we can take R enough

large, so that our estimate for the size of the shells Sn,R from Lemma 2.1.8 holds.

Lemma 3.2.3
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With n, r as above, for any 0 ≤ a ≤ n and g ∈ Sr we have

#Xa(g, n) ≤ eδΓa+O(1)

Proof:

Let g ∈ Sr. Fix a quasiruler between e, g. Given h ∈ Xa(g, n) complete it to the quasitriangle

e, g, h. By Lemma 2.1.3 it is (1, c0)-quasiisometric to a tripod (with c0 depending only on the

global quasiruled hyperbolic structure). Hence, the following equations carry on to the tripod

via the quaiisometry

d(e, g) = r +O(1)

d(e, h) = n+O(1)

d(g, e)− d(g, h) = n− 2a+O(1)

Let y(h) ∈ Γ be some preimage of the closest point to the centroid of the tripod(if it is not

unique, we can choose one). Solving in the tripod it is easy to see that d(y(h), e) = n−a+O(1)

for every h ∈ Xa(g, n). This will ensure that the location of the centroid y = y(h) doesn’t

depend on which quasitriangle we chose (up to bounded distance), i.e. it doesn’t depend on

h ∈ Xa(g, n). Also, d(y, h) = a+ O(1) for every h ∈ Xa(g, n), hence implying that Xa(g, n) ⊆

B(y, a+O(1)). By Lemma 2.1.8 we can estimate

#Xa(g, n) ≤ #B(y, a+O(1)) ≤ eδΓa+O(1)



40

�

Lemma 3.2.4

With n, r as above, enumerate the elements of Sr = {g1, g2, ..., g|Sr|}. Then for any i ∈

{1, ...,#Sr} and for any h ∈ Sn we have

#Sr∑
j

ρ(Oi ∩ hOj) ≤ e−δΓr+O(1) (3.4)

Proof:

Fix h ∈ Sn, gi ∈ Sr. We first characterize gj ∈ Sr for which Oi ∩hOj 6= ∅ and then estimate

the measures of the intersections.

Let 1 ≤ j ≤ |Sr| such that Oi ∩ hOj 6= ∅. We claim that there exist a constant D, that

depends only on the quasiruled hyperbolic structure, such that one of the following holds:

Case 1: hgj lies within distance D from a quasiruler between [e, gi]

Case 2: gi lies within distance D from a quasiruler between [e, hgj ]

Indeed, consider z(t) ∈ Oi ∩hOj a quasiruler ray from e. Since z(t) ∈ Oi, gi must lie within

bounded distance from z(t). Since (h−1yk) ∈ Oj , gj must lie within bounded distance from

h−1z(t), or equivalently hgj must lie within bounded distance from z(t), hence all e, hgj , gi lie

within bounded distance from z(t).
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By similar argument as above, e, h−1gi, gj all lie on the same quasiruled geodesic(consider

quasiruler z′(t) ∈ h−1Oi ∩Oj). Therefore,

d(hgj , gi) = d(gj , h
−1gi) = |r − d(h−1gi, e)|+O(1) = |βgi(h, e)|+O(1)

In particular, if an element gj produces nontrivial intersection Oi∩hOj , it has to be at distance

|βgi(h, e)|+O(1) from gi. Hence, we can count such elements gj .

In case 1, the number of elements in Γ lying in a bounded distance from a quasiruler [e, gi]

and being distance |βgi(h, e)|+ O(1) from gi is O(1). Thus there are at most O(1) possible gj

satisfying Oi ∩ hOj 6= ∅. In this case hOj ∩Oi ⊆ Oi. The contribution of ρ(hOj ∩Oi) = ρ(Oi)

for each such j to the sum in the equation (Equation 3.4) is e−δΓr+O(1) by Lemma 2.1.6, and

since the number of j contributing to the sum is O(1), we get the desired estimate.

In case 2, the number of gj producing nontrivial intersection is at most ed(hgj ,gi)δΓ+O(1), how-

ever for each such j, we haveOi∩hOj ⊂ hOj , and in particular ρ(Oi∩hOj) ≤ ρ(hOj)e
−δΓr−d(hgj ,gi)+O(1).

Therefore, the summation over j gives us the desired estimate. �

3.3 Estimating the operator norms of the finite dimensional operators

In this section we estimate the norms of ‖Πr(µn)‖ to prove Theorem 3.0.10. We will use

well known fact, known as the Gershgorin circle theorem. It states that the spectral radius of

a matrix is bounded by the maximum of the `1-norms of the columns ([22]).
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Proof:

(of Theorem 3.0.10) By Gershgorin circle theorem it is sufficient to show that sum of every

column in Πr(µn) is bounded by e−δΓr−
1
2
δΓn+logn+O(1).

Recall, in (Equation 3.3) we defined

Xa(gi, n) = {h ∈ Sn : n− 2a−R ≤ −βgi(h, e) ≤ n− 2a}

Note that for any fixed i we have

Sn =
n⋃
a=0

Xa(gi, n)

We now evaluate the sum of i−th column

#Sr∑
j=1

〈π∂Γ(µn)χj , χi〉 =
∑
h∈Sn

µn(h)

#Sr∑
j=1

〈π∂Γ(h)χj , χi〉 ≤

≤
n∑
a=0

∑
h∈Xa(gi,n)

µn(h)

#Sr∑
j=1

∫
∂Γ

√
dh∗ρ

dρ
(ξ)χj(h

−1ξ)χi(ξ)dρ(ξ) (3.5)

where µn is uniformly distributed on Sn, hence by Lemma 2.1.8 µn(h) = e−δΓn+O(1). Using

Corollary 3.2.2 for the Radon Nykodim derivative we continue Equation 3.5

≤ O(1)
n∑
a=0

e−δΓne
1
2
δΓ(n−2a)

∑
h∈Xa(gi,n)

#Sr∑
j=1

ρ(Oi ∩ hOj) ≤ (3.6)
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We use the upper bound for the innermost sum from Lemma 3.2.4, and the size of Xa(gi, n)

from Lemma 3.2.3. Hence , continuing (Equation 3.6)

≤ O(1)
n∑
a=0

e−δΓne
1
2
δΓ(n−2a)eδΓae−δΓr

gathering terms and summing over a we get

≤ e−
1
2
δΓn+logn−δΓr+O(1)

�



CHAPTER 4

DIOPHANTINE APPROXIMATION ON THE 2-TORUS

We first prove Theorem B. Then we show how to deduce Theorem A from B.

4.1 Toral Diophantine approximation for convex cocompact subgroups of SL2(Z)

Consider the natural SL2(Z) action on the torus T2, with the Lebesgue measure m. Fix a

family {Targr}r>0 of Lebesgue subsets of measure m(Targr) = πr2. After choosing a basepoint

x0 ∈ H2, we get a metric on Γ defined by d(g, h) := dH2(g.x0, h.x0). In this section we prove

Theorem B

Proof:

(of Theorem B) The first statement follows from the first Borel Cantelli lemma. Indeed,

∑
g∈Γ

m(g−1 Targψ(‖g‖)) ≤
∞∑
n=1

∑
{g∈Γ:en−1<‖g‖≤en}

πψ(‖g‖)2

≤ O(1)
∞∑
n=1

e2δn · ψ(en−1)2

= O(1)

∞∑
n=1

e2δn · ψ(en)2 < +∞

The last inequality follows from Lemma 2.1.8 giving the upper bound of the cardinality of balls

in convex cocompact groups, and the fact that d(g, e) = 2 log ‖g‖. The series
∑∞

n=1 e
2δn ·ψ(en)2

44
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converges if and only if ψ is as in (1)(by Cauchy condensation test). Therefore, m-a.e. x ∈ T2

belongs to at most finitely many of the sets g−1 Targψ(‖g‖), as claimed.

The main point is the second statement. Let π be the Koopman Γ-representation on

L2(T2,m), and π0 the restriction to L2
0(T2,m). Let µn be a sequence of probability measures

on Γ, as given in Theorem 3.0.9. Observe that

max {‖g‖ : g ∈ supp(µ2n)} ≤ en

We denote

Cn := Targψ(en), En = X \
⋃

g∈Γ,‖g‖≤en
g−1 Targψ(en) .

Cn represents the targets that we are supposed to hit by applying matrices g with ‖g‖ ≤ en(or

equivalently d(g, e) ≤ 2n). A point belongs to En if and only if none of its translates by g with

‖g‖ ≤ en hits the target Cn. Hence, we want to show that

m(E) = 0 where E = lim sup
n→∞

En.

The projections of characteristic functions of Cn and En to L2
0(X,m) are

hn = 1Cn −m(Cn), fn = 1En −m(En)

Note that

‖hn‖22 ≤ (1−m(Cn))m(Cn) ≤ m(Cn)
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Thus,

‖hn‖2 ≤ m(Cn)
1
2 = O(1)ψ(en).

Similarly,

‖fn‖2 ≤ m(En)
1
2

For any g ∈ Γ

〈π0(g)hn, fn〉 = m(Cn) ·m(En)−m(g−1Cn ∩ En).

Since any g ∈ supp(µ2n) satisfies ‖g‖ ≤ en, one has g−1Cn ∩ En = ∅ and

〈π0(g)hn, fn〉 = m(Cn) ·m(En)

and consequently

m(Cn) ·m(En) = 〈π0(µ2n)hn, fn〉 ≤ ‖π0(µ2n)‖ · ‖hn‖2 · ‖fn‖2

≤ ‖π0(µ2n)‖ ·m(Cn)
1
2 ·m(En)

1
2 .

By Corollary 2.2.8 and Theorem 3.0.9 we have

‖π0(µ2n)‖ ≤ e−δΓn+logn+O(1)

Therefore

m(En)
1
2 ≤ ‖π0(µ2n)‖ ·m(Cn)−

1
2 ≤ e−δΓn+logn+O(1) · ψ(en)−1 (4.1)
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Hence,
∞∑
n=1

m(En) ≤ O(1)
∞∑
n=1

n2e−2δΓn · ψ(en)−2 < +∞.

where the convergence of the above series is equivalent to convergence of
∑∞

n=1(log n)2n−2δΓ−1ψ(n)−2(by

Cauchy condensation test). Consequently, m(lim supEn) = 0. �

Remark 4.1.1 In fact, the statement we proved here is a bit stronger than the one that appears

in the theorem. We showed that for Lebesgue a.e. point in the torus x /∈ lim supEn, which means

that for some large N , x ∈ Ecn for every n > N . In other words, not only we have infinitely

many solutions for the problem g.x ∈ Targψ(‖g‖), but for any n > N , we have such a solution

g ∈ Γ with en−k ≤ ‖g‖ ≤ en, for some fixed k. This justifies Remark 1.2.2.

Remark 4.1.2 One might formulate a simultaneous approximation problem. Given a d−tuple

of monotonic target families {Targ1
r , ...,Targdr} as before and x1, ..., xd ∈ T2, can one find in-

finitely many g ∈ Γ with g.xi ∈ Targiψ(‖g‖) for each 1 ≤ i ≤ d? We remark that if one had

sharp spectral estimates for ‖π⊗d0 (µn)‖, a proof similar to Theorem B would provide the rates

for which the approximation is possible for a.e. d−tuple (x1, ..., xd).

4.2 Reduction to the convex cocompact case

In this section we prove Theorem A. The proof of the first statement is analogous to the

proof of Theorem B. Note, that since the group is not convex cocompact, we cannot use

Lemma 2.1.8 to obtain the precise asymptotics of the growth of balls. However, it is sufficient

for the proof to bound the cardinality of the balls of radius n in the group by e(δΓ+ε)n+O(1) for

arbitrarily small ε, and this is possible from the definition of the critical exponent.
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We now show that the second part follows from Theorem B. Let Γ < SL2(Z) be a non-

elementary subgroup. Fix y ∈ T2 and let ε > 0. We want to show that there are infinitely

many solutions g ∈ Γ to g.x ∈ Targψ(‖g‖) with ψ(n) = n−δΓ+ε, where Targr are the Euclidean

balls of radius r around y.

The goal is to construct a convex cocompact subgroup Γε < Γ, so that the δΓε > δΓ − ε.

Since for sufficiently large n we have ψ(n) = n−δΓ+ε > n−δΓε log1.5+ε n, we can apply Theorem B

to find infinitely many solutions g ∈ Γε < Γ to g.x ∈ Targψ(‖g‖). This proves Theorem A.

We are left to describe the construction of Γε. We are inspired by the example provided by

Bourgain and Kontorovich in [9](which they attribute to Sarnak). The following trick gives us

a way to remove parabolic elements from the group without losing the critical exponent.

Lemma 4.2.1 ([9] Remark 1.7, also follows from [15] Property 3.14)

Let G = SL2(Z). Let G(2) = Ker{G → SL2(Z/2Z)} be the congruence subgroup of G.

Then the commutator subgroup G(2)′ = [G(2), G(2)] does not have parabolic elements.

Proposition 4.2.2

Given Γ < SL2(Z) and ε > 0 there exists a convex cocompact subgroup Γε < Γ, with

δΓε > δΓ − ε

Proof:

By Sullivan([47], Corollary 6) we know that

δΓ = sup {δH : H < Γ finitely generated}
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Hence, we can find Γ0 < Γ finitely generated with δΓ0 > δΓ − 1
2ε. For Fuchsian groups being

finitely generated is equivalent to being geometrically finite (a group is geometrically finite if it

admits a finitely sided polygon as a fundamental domain in H2). Both G(2) and Γ0 are such.

Greenberg showed in [25] that the intersection of two finitely generated subgroups of a discrete

group in Isom(Hn) is finitely generated itself. Hence, Γ1 = G(2) ∩ Γ0 is geometrically finite.

Brooks([12],Theorem 1) proved that if Γ is geometrically finite Kleinian group acting on

Hn+1, N E Γ is a normal subgroup and Γ/N is amenable then the bottoms of the spectra of

Laplacians on Hn + 1/Γ and Hn+1/N are equal. In particular, this implies δΓ = δN , since

λ0(Hn+1/Γ) = δΓ(n − δΓ) for Γ with δΓ > n/2([47]). In case of Fuchsian groups, every non-

elementary Γ with parabolic elements has δΓ ≥ 1/2.

We can apply this observation to Γ1 = Ker {Γ0 → SL2(Z/2Z)}, and then to the commutator

subgroup Γ′1 < Γ1. Hence, δΓ′1
= δΓ1 = δΓ0 > δΓ − 1

2ε.

Now we apply Sullivan again, to extract a finitely generated subgroup Γε < Γ′1 with δΓε >

δΓ′1
− 1

2ε > δΓ − ε. Since Γε < G(2)′, by Lemma 4.2.1 it has no parabolic elements. This group

is convex cocompact, since in dimension 2 a subgroup is convex cocompact if and only if it is

finitely generated and contains no parabolic elements. �



CHAPTER 5

APPROXIMATION OF SPECIFIC POINTS IN THE TORUS

Theorems A and B only provide us information on approximation properties of Lebesgue

almost every point. In this section we wish to characterize Diophantine properties of specific

points. We consider Γ < SLd(Z) (with d ≥ 2) acting on a d-torus Td. For technical reasons we

rather use sup-norm on Td than the Euclidean one. Clearly, this does not affect the approxima-

tion properties. For y ∈ Td, r > 0 we denote by Box(y, r) the ball of radius 1
2r in the d−torus

in the sup−norm. Note that m(Box(y, r)) = rd

Naturally, we can not expect a uniform rate of approximation for all target points and all

origin points in the torus. Theorem C states that under mild assumptions on the acting group,

for given M , we can produce a uniform bound for the approximation rate for all targets and all

M−Diophantine origins. The proof of Theorem C relies on two results. First result controls the

Fourier coefficients of the measures obtained from a random walk µ on the torus. If the initial

distribution δx is concentrated on a Diophantine point x ∈ Td, then the Fourier coefficients of

the distribution after k steps have exponential decay in k. More precisely,

Theorem 5.0.3 [8]

Let Γ < SLd(Z) be a finitely generated group. satisfying (SI) and (PE). Let µ ∈ Prob(Γ)

be a finitely supported measure, s.t. the support generates Γ. Let x ∈ Td be M−Diophantine.

50
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Let νk = µ∗k ∗ δx. Then, there exist c2 > 0, depending only on Γ and µ, and K0 ∈ N s.t. for

k > K0 we have for any B ∈ N

max
b∈Zd\0,0<‖b‖∞<B

|ν̂k(b)| ≤ Be−c2k/M

Definition 5.0.4 Let ν be a probability measure on Td and m be the Lebesgue measure. The

discrepancy of ν is

D(ν) := sup
P∈J
|ν(P )−m(P )|

where J is the set of half-open boxes in Td

J :=

{
d∏
i=1

[xi, yi) : 0 ≤ xi < yi ≤ 1

}

The second ingredient of the proof is the Erdos-Turan-Koksma inequality. It relates the dis-

crepancy between the distribution ν and the Lebesgue measure on the torus to the Fourier

coefficients of ν .

Theorem 5.0.5 (Erdos-Turan-Koksma inequality) [37]

Let ν be an atomic probability measure on Td with rational values. Let B be an arbitrary

positive integer. Then

D(ν) ≤ Cd

 1

B
+

∑
0<‖b‖∞≤B

|ν̂(b)|
r(b)
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where Cd is some explicit constant depending on the dimension d.

r(b) =
d∏
i=1

max{1, |bi|} for b = (b1, . . . , bd) ∈ Zd.

Now we are ready to prove Theorem C

Proof:

(of Theorem C) Let µ be the uniform measure on the finite set of generators of Γ. Let

νk = µ∗k ∗ δx. Let λ = max{log ‖g‖ : g ∈ supp(µ)}. We will show that CΓ <
c2

d(d+2)λ satisfies

the theorem, where c2 is the constant from Theorem 5.0.3.

By submultiplicativity of matrix norm, for every k > 0

max
{
‖g‖ : g ∈ supp(µ∗k)

}
≤ eλk

Assume by contradiction that there exists a point y ∈ Td which is not (Γ, CΓ
M )-fast approximable.

Then, there exists K > 0, such that for all k > K we have

νk(Box(y, e−
λkCΓ
M )) = 0

This gives us a lower bound for the discrepancy of νk.

D(νk) ≥ m(Box(y, e−
λkCΓ
M )) = e−

λkCΓd

M (5.1)
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We will now estimate the upper bound for the discrepancy. By Theorem 5.0.5, for every B, k ∈ N

we have

D(νk) ≤ Cd

 2

B + 1
+

∑
0<‖b‖∞≤B

|ν̂k(b)|
r(b)


Using r(b) ≥ 1 and the bound of the Fourier coefficients from Theorem 5.0.3 for k large enough

we have

D(νk) ≤
2Cd
B

+ Cd(2B + 1)d ·Be−
c2k
M

Thus, combining with the lower bound from (Equation 5.1), we have

e−
λkCΓd

M ≤ 2Cd
B

+ 22dCdB
d+1 · e−

c2k
M (5.2)

The inequality (Equation 5.2) must hold for all B ∈ N and all k > max(K0,K), in particular

for B = B(k) = 4C ′d(k)e
λkCΓd

M (where we choose the smallest C ′d(k) ≥ Cd, such that B(k) is an

integer. Note that C ′d(k) ≤ 2Cd for large k. Then, inequality (Equation 5.2) becomes

e−
λkCΓd

M ≤ 1

2
e−

λkCΓd

M + 22dCd(4C
′
d(k))d+1e

λkCΓd(d+1)−c2k
M

Multiplying both sides by e
λkCΓd

M and using C ′d(k) ≤ 2Cd we get

1 ≤ 1

2
+ 25d+3(Cd)

d+2e
(λCΓd(d+2)−c2)k

M (5.3)
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The assumption CΓ < c2
d(d+2)λ implies that the exponent in the right hand side of inequal-

ity (Equation 5.3) is negative, so the above inequality does not hold for arbitrarily large k,

which gives us the contradiction. �



CHAPTER 6

SPECTRAL OPTIMALITY

6.1 Random walks

Let Γ be a countable group with a subadditive norm |gh| ≤ |g| + |h|. (e.g. |g| = log ‖g‖ for

Γ < GLd(R) ). One can also use a word metric on a finitely generated group, or a Green metric

on a non-amenable group equipped with a symmetric generating random walk (see below).

Definition 6.1.1 Let µ be a probability measure on a countable Γ. We say that µ

1. µ is symmetric if µ(g) = µ(g−1) for every g ∈ Γ

2. µ has finite entropy if

H(µ)
def
=
∑
g∈Γ

−µ(g) · logµ(g) < +∞.

3. µ has finite first moment if

Eµ(|g|) =
∑
g∈Γ

|g| · µ(g) < +∞.

55



56

4. µ has finite exponential moment, if for some a > 0 one has

Eµ(ea|g|) =
∑
g∈Γ

ea·|g| · µ(g) < +∞.

5. µ is finitely supported if supp(µ) is finite.

6. µ is generating if is not supported on a proper subgroup of Γ

The integrability conditions are not sensitive to bi-Lipschitz change of a norm. Clearly (5) =⇒

(4) =⇒ (3), and for groups with finite exponential) growth (3) =⇒ (2).

Definition 6.1.2 Let µ be a probability measure on a countable group Γ.

1. If µ is symmetric, define the spectral radius

ρ(µ)
def
= lim

n→∞

(
µ∗2n(e)

) 1
2n .

2. Assuming µ has finite entropy, define

h(µ)
def
= lim

n→∞

1

n
H(µ∗n).

3. Assuming µ has finite first moment, define

λ(µ)
def
= lim

n→∞

1

n

∑
g∈Γ

|g| · µ∗n(g).
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The above limits exist and equal to the inf of the corresponding sequences, by the classical

lemma about subadditve sequences

− logµ∗2n(e), H(µ∗n), Eµ∗n(|g|).

In fact, the last two sequences represent average values of certain subadditive cocycles, namely

functions fn : Ω→ R satisfying

fn+m(ω) ≤ fn(ω) + fm(θnω), f1 ∈ L1

over the Bernoulli system (Ω, P, θ) where

Ω = ΓN, P = µN, θ : (ω1, ω2, . . . ) 7→ (ω2, ω3, . . . ).

Here one takes

fn(ω) = |ωn · · ·ω1|, or fn(ω) = − logµ∗n(ωn · · ·ω1)

Applying Kingman’s subadditive ergodic theorem to these subadditive cocycles one obtains a

more refined information

Theorem 6.1.3 (Kaimanovich, Vershik [32], Derrienic [18])
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Let Γ be a countable group, µ a probability measure with finite entropy on Γ, and (Ω, P, θ)

as above. Then for P -a.e. ω ∈ Ω, and in L1(Ω, P )

lim
n→∞

− 1

n
logµ∗n(ωn · · ·ω1) = h(µ).

Consequently, convergence in measure gives

lim
n→∞

µ∗n
{
g ∈ Γ : e−(h(µ)+ε)·n < µ∗n(g) < e−(h(µ)−ε)·n

}
= 1.

Theorem 6.1.4 (Furstenberg, Kesten [20])

Let Γ be a countable group with some norm |g|, µ a probability measure with finite first

moment, and (Ω, P, θ) as above. Then for P -a.e. ω ∈ Ω, and in L1(Ω, P )

lim
n→∞

− 1

n
|ωn · · ·ω1| = λ(µ)

Consequently, convergence in measure gives

lim
n→∞

µ∗n {g ∈ Γ : (λ(µ)− ε) · n < |g| < (λ(µ) + ε) · n} = 1.

Theorem 6.1.5 (Kesten [33])
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Let λΓ denote the regular Γ-representation on `2(Γ). Then for a symmetric µ the spectral

radius of the Markov operator λΓ(µ) is

‖λΓ(µ)‖ = ρ(µ)

and ρ(µ) < 1 iff supp(µ) generates a non-amenable subgroup of Γ.

Proposition 6.1.6

Let µ be a probability measure on a countable group Γ.

1. (Avez, [2]) If µ is symmetric and has finite entropy then

ρ(µ) ≤ e−
1
2
h(µ).

2. (due to Guivarch, known as ”the fundamental inequality of random walks” in [32]) If µ

has finite first moment and Γ has finite growth δ, then

h(µ) ≤ δ · λ(µ).

Proof:

(1) Since µ is symmetric one has

µ∗2n(e) =
∑
g∈Γ

µ∗n(g)µ∗n(g−1) =
∑
g∈Γ

µ∗n(g)2.
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Convexity of − log(t) therefore implies

− logµ∗2n(e) = − log(
∑
g∈Γ

µ∗n(g) · µ∗n(g))

≤
∑
g∈Γ

µ∗n(g) · (− logµ∗n(g)) = H(µ∗n)

Therefore

1

2n
logµ∗2n(e) ≥ − 1

2n
H(µ∗n)

and taking n→∞

log ρ(µ) ≥ −1

2
h(µ).

(2) Given ε > 0 for large n the set

An = {g ∈ Γ : |g| < (λ(µ) + ε) · n}

has µ∗n-mass > 3/4, and has size

|An| ≤ (e(λ(µ)+ε)·n)δ+ε = e(λ(µ)+ε)(δ+ε)·n.

Also, the set

Bn = {g ∈ Γ : µ∗n(g) < e(−h(µ)−ε)·n}
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has µ∗n-mass > 3/4, hence Bn
⋂
An has µ∗n-mass > 1/2 and has size

|Bn ∩An| ≥
1

2
e(h(µ)+ε)·n

Since |Bn ∩An| ≤ |An|, after taking logarithms and dividing by n we have

h(µ) + ε− log 2

n
≤ (λ(µ) + ε)(δ + ε)

Since we can take ε arbitrarily small and n arbitrarily large, we have h(µ) ≤ λ(µ)δ

�

A unitary representation without invariant vectors π has spectral gap if there exist a constant

c < 1, such that for any finitely supported µ whose support generates the group we have

‖π(µ)‖ ≤ c. For groups with Kazhdan’s property (T) (e.g. SLd(Z) with d ≥ 3) every unitary

representation without invariant vectors admits spectral gap(with uniform constant c < 1). In

particular, ‖π(µ∗n)‖ ≤ cn, which gives us a spectral estimate similar to one in Theorem 1.2.4.

One might try to prove analogue of Theorem A for d ≥ 3 using the spectral gap from property

(T). Unfortunately, most subgroups of SLd(Z) do not inherit property (T). Additionally, there

is no hope that those estimates will lead to sharp results in the shrinking target problems. The

constant c is hard to compute, but even if we had a good estimate on it, the uniform measures

on the shells µn(as used in Theorem 1.2.4) are very different from µ∗n. Most of the support of

µ∗n is indeed located around the shells, however it is usually very far from uniformly distributed
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and might actually miss a big piece of the shell. Therefore, if elements, which are missed by µ∗n,

solved the Diophantine inequality, π(µ∗n) would not be able to see that using this argument.

The proof of the inequality (2) in Proposition 6.1.6(h(µ) ≤ δλ(µ)) suggests that the differ-

ence between the ”supports” of µ∗n and µn is reflected in the inequality being strict. If we were

to use spectral gap, in order to get the sharpest estimates we would like to choose a measure

µ, so that its n−convolutions closely resemble uniform measures, i.e. this inequality is as close

to equality as possible.

6.2 Optimality of random walks

Assume µ has its support in the ball of radius n with respect to corresponding metric. Using

Kesten’s Theorem(Theorem 6.1.5) the inequalities from Proposition 6.1.6 can be put together

in the following form

−2 log ‖λΓ(µ)‖
(1)

≤ h(µ)
(2)

≤ δΓl(µ)
(3)

≤ δΓn (6.1)

where (3) is immediate since the drift is not greater than the maximal length of the elements

in the support of µ.

It was shown by Blachere, Haissinsky and Mathieu([7]) that the fundamental inequality of

random walks becomes an equality for any measure with finite entropy(assuming the resulting

random walk is transient) for a special choice of metric, namely the Green metric. It is defined

using Martin kernel, but essentially means the following

dG(x, y) := − lnP( random walk starting from x will eventually pass through y)
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For this metric, δ = 1. The problem is that this metric depends on µ and it is very hard to

describe even for simplest measures µ.

Much work has been done to find µ that achieves equality in (2) of the inequality (Equation 6.1)

for more natural metrics. It was shown in [24] that in hyperbolic case one cannot achieve the

equality with a finitely supported measure, unless the group is virtually free, and the metric is

the word metric.

The proof of Theorem A confirms the inequality −2 log ‖π0(µ)‖ ≤ δΓn for Γ < SL2(Z)

and the Koopman representation on the torus for more natural metric on Γ coming from the

operator norm. If it were to fail, we would be able to achieve faster approximation rates in

Theorem A(2), contradicting part (1) of the theorem.

Since we fall short of achieving the equality in (2), one can ask if approaching the equality

asymptotically is possible. By this we mean finding a sequence of finitely supported measures

µn supported on ball of radius n, so that h(µn)
l(µn) → δΓ. When this happens, the random walks

µn are thought of as well spread in the group. Theorem D shows that one can approach the

equality asymptotically in a more general inequality −2 log ‖λΓ(µ)‖ ≥ δΓn, namely one can find

a sequence of measures µn supported on Bn, so that −2 log(‖λΓ(µn)‖)
n → δΓ.

We remark that the latter approximation is indeed stronger.

Remark 6.2.1 There exists sequence of measures µn on a free group on two generators, such

that h(µn)
l(µn) = δΓ, but −2 log(‖λΓ(µn)‖)

l(µn) → 0

To see this, consider the simple random walk on the free group on two generators Γ =〈
a±1, b±1

〉
with the corresponding word metric. It is an easy exercise that the equality is
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achieved in both inequalities simultaneously. We will perturb the law µ preserving one of the

equalities but not the other.

We use the Markov stopping time (see [19]). For each n ∈ N, we define the following cut

set:

C(n) = Can ∪ {a}

where Can is the set of all reduced words of length n that don’t start with a. Markov stopping

time creates a new law of random walk µn. Intuitively, one can think of sample paths in the

new random walk being the same paths as in the old one with the same distribution, but with

rescaled time. Each unit of time in the new path corresponds to starting the walk from identity

and hitting the cutting set. Forghani proved in [19] that both the entropy and the drift of the

new random walk are obtained by multiplication of the initial entropy and drift by the expected

value of the stopping time. Therefore for each µn the equality in the fundamental inequality

still holds.

It is easy to see that the spectral radius is bounded from below by 1
4 , regardless of n(test

πΓ(µn) against the characteristic function supported on powers of a), and since l(µn)→∞ the

claim follows.

6.3 Optimal ergodic theorem for linear actions on the 2-torus

Let Γ < SL2(Z), and π0 be the Koopman representation on the 2-torus. By Theorem 2.2.7

we have ρπ0(n) = ρλ(n). Since the measures µn in Theorem D are uniform measures on the shells

Sn in Γ, the operators π0(µn) can be viewed as averaging operators, and we can reformualte

Theorem D as a quantitative ergodic theorem.
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Corollary 6.3.1

Let Γ < SL2(Z). There exists k > 0, so that if we denote the shells Sn = Bn \ Bn−k ⊂ Γ.

Then for any f ∈ L2(T2,m) we have

∥∥∥∥∥∥ 1

|Sn|
∑
g∈Sn

f(g.x)−
∫
T2

fdm

∥∥∥∥∥∥
2

≤ ne−
1
2
δΓn+O(1)‖f‖2.

From the inequalities in (Equation 6.1) the convergence rate can’t be faster than e−
1
2
δΓn. This

suggests that averaging over shells in Γ produces the most optimal ergodic theorem for this

action.
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Journées Ergodiques, Rennes 1973/1974 (1976), 35–49.

[3] U. Bader and R. Muchnik, Boundary unitary representations - irreducibility and rigidity, Journal of Modern

Dynamics 5 (2011), no. 1, 49–69.

[4] B. Bekka and J.-R. Heu, Random products of automorphisms of Heisenberg nilmanifolds and Weils repre-

sentation, Ergodic Theory and Dynamical Systems 31 (2011), no. 5, 12771286.

[5] A. S. Besicovitch, Sets of fractional dimensions (IV): On rational approximation to real numbers, J. London

Math. Soc. 9 (1934), 126–131.

[6] S. Blachère, P. Häıssinsky, and P. Mathieu, Harmonic measures versus quasiconformal measures for hyper-

bolic groups, Annales scientifiques de l’Ecole Normale Superieure 44 (2011), no. 4, 683–721 (eng).

[7] , Asymptotic entropy and green speed for random walks on countable groups, Ann. Probab. 36 (2008),

no. 3, 1134–1152.

[8] J. Bourgain, A. Furman, E. Lindenstrauss, and S. Mozes, Stationary measures and equidistribution for orbits

of nonabelian semigroups on the torus, J. Amer. Math. Soc. 24 (2011), 231–280.

[9] J. Bourgain and A. Kontorovich, On Representations of Integers in Thin Subgroups of SL2(Z), Geometric

and Functional Analysis 20 (2010), no. 5, 1144–1174.

[10] J. Bourgain, E. Lindenstrauss, P. Michel, and A. Venkatesh, Some effective results for ×a × b, Ergodic

Theory and Dynamical Systems 29 (2009), no. 6, 1705–1722.

[11] A. Boyer, Equidistribution, ergodicity and irreducibility in CAT(-1) spaces, Geometry, Groups and Dynamics

(2016). to appear.

66



67

[12] R. Brooks, The bottom of the spectrum of a Riemannian covering, Journal für die reine und angewandte

Mathematik 357 (1985), 101–114.

[13] J. W. S. Cassels, An Introduction to Diophantine Approximation, Addison-Wesley, Reading, Massachusetts,

1984. Reprinted as Vol. A of Computers & Typesetting , 1986.

[14] M. Coornaert, Mesures de Patterson-Sullivan sur le bord d’un espace hyperbolique au sens de Gromov, Pacific

J. Math. 159 (1993), no. 2, 241–270.

[15] F. Dal’Bo, Geodesic and Horocyclic Trajectories, Universitext, Springer-Verlag London, 2011.

[16] H. Davenport and W. M. Schmidt, Dirichlets theorem on diophantine approximation. ii, Acta Arith. 16

(1969), 413–424.

[17] P. de la Harpe, Groupes Hyperboliques, algebres d’operateurs et un theoreme de Jolissaint, C. R. Acad. Sci.

Paris Ser. I 307 (1988), 771–774.

[18] Y. Derriennic, Quelques applications du théorème ergodique sous-additif, Astérisque 74 (1980), 183–210.

[19] B. Forghani, Asymptotic entropy of transformed random walks, Ergodic Theory and Dynamical Systems

FirstView (2016), 1–12.

[20] H. Furstenberg and H. Kesten, Products of Random Matrices, Ann. Math. Statist. 31 (196006), no. 2, 457–

469.

[21] A. Gamburd, D. Jakobson, and P. Sarnak, Spectra of elements in the group ring of SU(2), Journal of the

European Mathematical Society 1 (1999), no. 1, 51–85.
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