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SUMMARY

Over the past two decades, we have been witnessing the evolution of the web applications from

simple static pages into complex, interactive platforms. With increasing demand to have more features

added to the applications, we also have observed an increase in the frequency and significance of data

breaches due to web application vulnerabilities. The need to secure the applications, however, has not

been met promptly. The current practice of web application development does not address security

concerns even against known vulnerabilities, let alone new unknown attacks.

The goal of the thesis is to improve the security of web applications. To achieve this goal, we would

like to detect, and retrofit vulnerabilities. In studying the cyber threat landscape, we observed common

web development practices and mistakes, which cause security flaws in design and implementation of

web applications. By examining the existing security analysis tools, we identify their capabilities and

their limitations. Most of these tools require some program specifications to be available to generate

sound reports. However, specifications are often missing in web applications due to market demands for

fast releases.

The lack of program specification in web applications makes it challenging to analyze and verify

web applications. In the absence of program specifications, the only source of information about the

web developer’s design intentions with respect to security policies in the application source code. While

this source code obscures the high-level logic of the application among so many low-level details, there

still are some development patterns available to us to infer the intention of the developers. Based on

this belief, it is very much possible to infer program specifications from low-level artifacts and leverage

ix



SUMMARY (Continued)

them in order to detect and retrofit vulnerabilities in legacy applications. We are also able to use this

knowledge to build newer development frameworks for automated synthesis of secure code.

This thesis develops techniques to infer security specifications from the web application source. As

a result of using the inferred specifications, we can improve the security of the applications in numerous

ways. First, we are able to examine the inferred authentication and authorization policies to find autho-

rization inconsistencies. Such inconsistencies are the main source of privilege escalation vulnerabilities

in web applications. To present the effectiveness of our approach, we evaluated it on various web ap-

plications. The results suggest that we are able to detect previously unknown vulnerabilities by precise

inference of access control policies.

Secondly, we are able to generate security patches for the reported vulnerabilities in web appli-

cations. Traditionally, the applications were being patched manually due to the poor quality of the

automated generated patches. Using specification inference techniques, we can generate correct secu-

rity patches for the vulnerable applications and suggest suitable placement of these patches in complex

applications, reducing the effort of developers and security analysts.

Lastly, we examine how inferred security specification can be used for synthesis of secure code in

web development frameworks. We believe that by automated synthesis of security policies, we reduce

the possibility of redundancy and human-error.

Our results in each of the areas mentioned above show that inferring security specifications from the

application source code is not only possible but also practical and scalable.
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CHAPTER 1

INTRODUCTION

Since the emerge of the World Wide Web in the early 90s, it had a tremendous effect on how people

live, work and interact with each other. There are over 1 billion websites on the Web today including

websites which deal with our economy, healthcare and education systems, and around 40% of the world

population (3.5 billion people) has an Internet connection today. (1)

A website is typically a set of web pages, usually powered by web applications hosted on one or

more web servers. Web applications allow a website owner (publisher) to provide dynamic content and

interactive user experience. A web application is a client/server application in which a web browser is

used as the client. At the client side, users retrieve data and interact with webpage components through

the web browser.

Figure 1 shows a typical web application design in three layers. The layered architecture of web

applications allows the developers and users to be able to communicate with a broad range of technolo-

gies and frameworks. While the web servers can manage the static content (such as static HTML files

and images), the underlying application servers use more dynamic technologies (e.g., PHP and JSP)

to create more flexible, scalable web applications. With dynamic web applications, the content can be

updated and customized much faster than in static web applications.

While the data is imported to the storage layer, the application layer manages to retrieve and store

the data. The workflow of the application, written in a dynamic scripting language such as PHP, reflects

the high-level logic of the interactions between application entities. Although this data-centric view of

1
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Figure 1: Typical Web Application Architecture

the web applications leads to more interactive and attractive websites, the dynamic web makes it much

more difficult to pin down the defect logic in the applications.

The complexity in the applications, along with their dominance in the market share lure hackers to

exploit these technologies. More than half of all breaches involve web applications in organizations and

about 89% of the breaches had a financial or espionage motive. (2) This year, Yahoo confirmed that

user data associated with at least 500 million user accounts have been stolen, including names, email

addresses, telephone numbers, dates of birth, hashed passwords, and encrypted or unencrypted security

questions and answers. (3)

Although traditional applications are also prone to insider and outsider attacks, there are some prop-

erties associated with web applications which make them particularly unique in the area of computer

security. (4) The reasons as to why web application security concerns stand out in software security is

twofold:
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Rapid Development of Web Applications Over the past decade, it has become easier and simpler for

users to generate content and customize websites for their purposes. Newer web application platforms

facilitate the development and maintenance of new web applications. The market demands make web

developers want to release their products faster, using rapid building and frequent update deliveries.

Although there has been a tremendous effort toward security education, most web developers are still

unaware of improper programming habits which can lead to severe attacks.

Stateless Web Protocols For performance reasons, the web protocols have been developed to be state-

less, meaning that the web server and the underlying operating system do not keep any connection

information and each request is treated independently.

However, most distributed applications, including web applications, are stateful. Therefore, the bur-

den of design and implementation of a stateful application is entirely on the web application developers.

In such design, both the client and the server should be able to share a common state in each session.

Each request also should have sufficient information about the session and the user in it so that the server

can distinguish the users and sessions. If the web developers do not design session management thor-

oughly and based on guidelines (5), their applications can be vulnerable to numerous attacks, including

session hijacking and session fixation attacks.

These two factors, rapid cycles of development along with de facto standards used in web protocols,

lead to defects in the design and implementation of web applications. This, in turn, lures attackers

to exploit various vulnerabilities. To prevent such attacks, session management libraries have been

developed for various platforms, which are used to develop new web applications. For vulnerable legacy
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web applications, however, fundamental security flaws often require a re-architecture, which can be

quite expensive for website owners.

Alternatively, there are other measures cyber security teams can take to protect flawed applications.

Prevention and retrofitting efforts are among the security measures one can take to safeguard vulnerable

legacy applications. To be able to prevent attacks and retrofit the vulnerable applications, we first need to

identify the vulnerabilities. As the applications become larger and more sophisticated, manual detection

of the vulnerabilities become more time-consuming and tedious. The complexity and the size of web

applications direct the security analysts to find automated or semi-automated approaches to speed up

the detection procedure as well as to make the analysis process more precise.

1.1 Automated Security Analysis of Web Applications

To prevent security attacks in web applications, developers and website publishers (publisher in

short) need to actively maintain their websites. This maintenance includes testing, regularly updating

and generating patches for security vulnerabilities. A developer or a publisher needs a deep under-

standing of the design of the application and the security concepts, to be able to perform this security

maintenance. However, a web developer without proper security knowledge may eventually re-use cus-

tom libraries or code snippets for fast development.

Although manual inspection of the code by a security expert can lead to precise results, the growing

size of web application code base due to added new features to websites has made the manual inspection

challenging. The complexity of application - usually expressed in the number of possible execution

paths - grows exponentially with the number of conditions in the application code. It has become a
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tedious - if not impossible - task to inspect medium- to large-sized applications without using automated

analysis tools.

Program analysis tools facilitate the detection of security bugs. These tools usually inspect the code

against the design artifacts (e.g., class diagrams, interface models) and detect implementation vulner-

abilities. The documentations about the expected behavior of the program are called program speci-

fications. These specifications are usually developed in design stages and before the implementation

cycles.

However, the rapid development of web applications leads to the release of these programs with

almost no specification documentations. Without program specifications, it is challenging to reason

about the expected functionality of the application versus its deviant behavior which may result in data

breaches. Most of the security analysis tools are not fully automated and they use some annotations

provided by the analysts. But even in these cases, analysis of medium to large applications may lead to

the need for a considerable amount of annotation efforts. Therefore, automated analysis of applications

with minimal knowledge about the program is desirable for both developers and security analysts.

Using the inferred security policies from the applications, we are able to reason about the overall

security of the application and its users. Not only we can detect the vulnerabilities due to implementation

bugs and faulty policies, but also we would be able to synthesize code to secure the application.

1.2 Thesis Goals

In the web applications context, vulnerabilities may manifest in one of two categories: 1) as an

error in a computation (data dependent) or 2) as an error in program control, i.e., a vulnerability caused

by a missing or an incorrect control check in the program. Web applications often do not come with
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correctness specifications – properties that attest behavior at various program points. The lack of such

program specifications makes it very difficult to identify original functional requirements and validate

their correctness. Therefore, fixing the first category, i.e., computation errors is challenging, as the true

intention of the computation is unknown to the analysis tools. However, the second category of logic

vulnerabilities is relatively easier to generate patches for, given that this subset of logic vulnerabilities

are detectable through inconsistency analyses on applications.

We term this set of vulnerabilities as application inconsistency vulnerabilities (AIVs), the type of

logic vulnerability that arises from inconsistent design and implementation of security checks in an ap-

plication. We believe that despite the challenges involved in the automatic analysis of web applications,

there are still some clues in the source code which can help us to detect security vulnerabilities and

synthesize secure patches for them. Software patterns and language-based constructs used in programs,

designed schemas and interfaces are examples of such clues which can be used to build abstract models

of the programs. It is important to take advantage of the available artifacts, such as the source code,

the database schemas, as much as possible in order to build more precise models. We are especially

interested in the inference of specifications for legacy applications which are already ubiquitously in

use.

Furthermore, we believe that although the analysis tools are unaware of the true intention of the

developers, they can still build proper abstract models of the security policies to detect inconsistent

policies implemented in the source code and retrofit them. Although these inconsistencies may be

intentional, most of them lead to actual vulnerabilities in the code which can have severe impacts on the

security of the whole application and its users. Existing analysis tools for AIVs can not only detect that
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something is missing or is incorrect, but also infer what exactly is missing and suggest ways to correct

it.

We categorize the top web application vulnerabilities and reason about their common causes. For

each of these categories, we define the vulnerability at a high level and then build an abstract model of

the vulnerabilities and the program. We believe that this approach helps us in a thorough understanding

of the vulnerabilities which lead to more effective detection methods and secure code synthesis. We also

believe that this categorization based on the common causes of vulnerabilities can help us in detecting

newer vulnerabilities. It also helps us in focusing on fixing the vulnerabilities with common causes for

security holes rather than fixing them individually.

Chapter 2 provides a detailed background of the vulnerabilities that can be detected through au-

tomated analysis. We discuss the abstraction interpretations and the challenges involved in building

abstract models about the programs. We also go over the challenges and the limitations of automated

tools.

In Chapter 3 we present MACE, an automated tool for detection of authorization vulnerabilities in

web applications. MACE detects these vulnerabilities with minimum information about the applica-

tion’s authorization policies. MACE uses static code analysis to build authorization models for each

application resource (such as files, and database tables). It then checks each resource access in the code

against the built models to detect vulnerabilities. MACE is the first tool reported in the literature to iden-

tify a new class of web application vulnerabilities called Horizontal Privilege Escalation vulnerabilities.

MACE works on large codebases and discovers serious, previously unknown vulnerabilities
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Chapter 4 presents LOGICPATCHER, an automated tool for retrofitting logic vulnerabilities in web

applications. Given a vulnerability description, LOGICPATCHER generates candidate security patches

for a web application. LOGICPATCHER focuses on logic vulnerabilities due to inconsistent security

checks in programs and works across a broad variety of application types, including e-commerce servers,

news servers, wikis etc. By using path profiling, LOGICPATCHER emphasizes on correct patch place-

ment, i.e., identifying the precise location in the code where the patch code can be introduced without

interfering with existing functionalities.

In Chapter 5 we take a step further and discuss our research on the synthesis of secure code in

web applications. Our tool WAVES generates client-side input validation code for PHP applications.

Not only our tool reduces the possibility of inconsistency vulnerabilities due to human error, it also

saves developers’ time and energy on software upgrades. We believe that this new paradigm of secure

code generation is a scalable new solution to securing under-develop web applications as well as legacy

applications.

In Chapter 6 we discuss the related work and compare our research to similar projects. We conclude

our work in Chapter 7. Technical details related to our security mechanisms are provided in Appen-

dices.
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BACKGROUND

Parts of this chapter have been published as Maliheh Monshizadeh, Prasad Naldurg, V.

N. Venkatakrishnan. MACE - Detecting Privilege Escalation Vulnerabilities in Web Applica-

tions. In Proceedings of 21st ACM Conference on Computer and Communications Security

(CCS’14), Scottsdale, AZ, 2014.

The 2011 CWE/SANS (6) ranked the 25 most dangerous software errors. Vulnerabilities in Web

were and have remained among the top 10 vulnerabilities identified in this list. In order to address these

vulnerabilities, we first need to understand them and identify why they happen. We also need to examine

the associated risk with their exploitation and educate the web developers about this risk.

Among various type of vulnerabilities, we set our focus to the top vulnerabilities which occur at the

server-side and in the web application source code; rather than vulnerabilities in the back-end databases

or client-side or browser vulnerabilities.

In Section 2.1 we discuss these vulnerabilities and the reason for their ubiquity. We then categorize

these vulnerabilities based on the amount of program specifications needed in order to detect and fix

them. Each subsection explains the vulnerability in more detail along with the underlying programming

challenges that may lead to the vulnerability. In Section 2.2 we will discuss different approaches to

9
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inferring program specifications. We explain our choice to use static analysis and abstraction as the

high-level approach.

2.1 Web Application Vulnerabilities

Due to Web’s open nature and wide deployment, they make appealing targets to criminals who want

to gain access to users’ data and resources. No one on the Internet is immune from the threat of security

breaches. Security of web applications therefore has become an important concern.

However, the Web protocols and many legacy applications have been deployed and widely used

before the web security becomes a crucial must. This leads to fundamental design defects in the web

and puts the burden on web developers to protect their application and its users from security threats.

Stateless Protocol For performance reasons, the HTTP protocol is designed to be stateless, meaning

that each request is processed independently by the web server. Therefore, the underlying operating

system and the web server do not establish any connection for each request and they don not hold any

state related to them.

However, many of the transactions (e.g., shopping transactions) in web applications are stateful.

Hence, the task of keeping the history and the sequence of this connection, the state, is on the web

applications and each request should contain enough state information on its own in order to be pro-

cessed. Web applications use cookies, sessions, special URLs, and hidden field values to keep the state

information.

Untrusted Input Similar to all application which deal with data entering the system, web applications

need to validate the data before performing any operation on it. Proper input validation minimizes the

risk of many attacks as well as application malfunction.
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Input validation becomes extremely crucial when it affects the application’s security decisions or

its internal state. For instance, session management decisions based on cookie and hidden field values

should be performed carefully. Both of these values come from the client-side and as far as the server-

side is concerned, no data from the server-side should be trusted. Poor session management leads to

severe attacks which we will discuss in the following sections.

2.1.1 Injection Vulnerabilities

An injection attack happens when input data has not been validated properly. In an injection attack,

the attacker will provide some form of input and attach additional malicious data to perform some other

or additional command. By especially crafting the input, the attacker is able to break the confidentiality

and integrity of resources, gain control over the application, or abrupt the application service.

SQL Injection This attack is ranked first in the top 25 most dangerous vulnerabilities. In this attack,

the malicious user manipulates the input data in order to craft new SQL queries and affect their execu-

tion. Based on the type of query execution, this attack may lead to breaches in confidentiality and data

integrity as well as authorization.

The reason for this attack is that the data entering the application is not validated properly before

using them in sensitive database operations. To avoid SQLI, developers use prepared statements, as well

as standard sanitization functions to validate the data before sensitive operations.

Cross-Site Scripting (XSS) Cross-site scripting occurs when the attacker can successfully inject mali-

cious scripts into a webpage, in order to read users’ sensitive information or perform malicious activity

on behalf of the victim webpage on the users.
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XSS is ranked fourth in the top 25 vulnerabilities and is caused by improper validation of the user

input which then is going to be reflected in the webpages. By injecting malicious data and scripts, the

attacker is able to take control of how to attacker the users of the victim webpage.

Proper sanitization of the data can prevent these attacks. There are well-established, standard li-

braries developed in each web development kit to validate the data against XSS attacks.

2.1.2 Logic Vulnerabilities

Logic vulnerabilities are a special category of security vulnerabilities that cause a program to operate

incorrectly or exhibit unexpected behavior. In contrast with injection vulnerabilities (such as Cross-

Site Scripting, or SQL Injection) which are generic type of vulnerabilities, logic vulnerabilities are

application-specific and caused by faulty logic in the application. It means that the generic sanitization

procedures and libraries cannot be used arbitrarily to fix these vulnerabilities. We will explain this issue

in more details in Chapters 3 and 4.

Parameter Tampering Vulnerabilities Lack of input validation in web applications cause a type of

logic exploits called Parameter tampering attacks. These type of attacks are based on crafting the input

to the server in order to modify the application data and usual control flow of the application. Modifying

cookies, query strings, quantities and hidden values in web forms are examples of such attacks.

The following line of HTML code shows that the developer used a hidden HTML field to store the

cost of the item in the shopping cart:

1 <input type="hidden" id="1008" name="cost" value="70.00">



13

Although the field is hidden from in rendered page, an attacker can tamper this value and submit it

back to the server. A vulnerable application relies on this tampered value provided from the untrusted

client-side to perform sensitive computations on the shopping cart cost amount.

Not only the web developers should validate the client-side data thoroughly, but also they should

not trust the state information that comes from the client-side. In this example, the cost value should

not be sent back to the server, as the server-side already has the cost information.

Authorization Vulnerabilities (Privilege Escalation) The problem of privilege escalation in web ap-

plications has roots in the way a web application is being authenticated/authorized to the application

Database Management System (DBMS). In a typical web server, the whole web application is au-

thenticated through a single pair of credentials, giving the application the maximum set of privileges

(administrative privileges). In addition, this authenticated session is usually persistent.

Figure 2: Active Sessions in Web Applications
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To protect from these threats, web applications implement access control (a.k.a. authorization) poli-

cies. A typical authorization check in a web application involves verifying whether a given authenticated

user with an associated functional role has the required privilege to access a given resource such as a

database table. Since authorization is expected to be performed before every resource access, it therefore

forms the basis for security of the web application.

However, web developers often fail to use proper techniques to minimize the privileges of the users.

There are several reasons why such authorization errors are numerous. First, unlike conventional oper-

ating systems, web applications (such as those written using PHP) do not come with built-in support for

access control. The access control policy is often coded by a developer into the application. Developers

often focus on other key functionalities of the applications, and often make errors in programming au-

thorization code, as illustrated by the 2011 CWE / SANS report (6), in which missing authorization and

improper authorization are ranked 6th and 15th in the top 25 most dangerous software errors. Second,

a web application (such as one written using PHP and SQL) often connects directly to the database

resource as a superuser who enjoys all administrative privileges on the database, and any flaws in the

authorization logic often lead to catastrophic data breaches. Further, web application developers often

implement roles (7) as a privilege management solution. However, the unavailability of a standard

framework, and the lack of developer’s knowledge of access control design, have led to buggy and

inconsistent role implementations in applications (8).

Several high-profile data breaches were caused due to the privilege escalation attacks in web applica-

tions. A most notable one is the Citibank data breach (9), wherein more than 360k credit card numbers

were stolen. Such breaches suggest that web application authorization errors could be disastrous for
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organizations. Furthermore, such vulnerabilities appear to be widespread, as a recent Cenzic technical

report (10) listed that authorization vulnerabilities occurred in 56% of the applications that were tested

in the 2013 study.

There are two types of privilege escalation: 1) Vertical Privilege Escalation (VPE), in which users

can gain access to higher level role privileges, and 2) Horizontal Privilege Escalation (HPE) which

happens when the user has the same level of privileges, but she can gain access to resources of users

within the same group. In a banking website, a malicious customer may be able to forge requests and

access other customers accounts, which is a type of HPE.

Figure 3: Privilege Escalation Types

The academic and industrial communities have identified several solutions to the problem. Virtual

private databases (11) provide a way for applications to execute queries on behalf of users, and pro-

vide effective privilege separation. Web application frameworks such as Rails (12) provide software
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engineering solutions to structure the access control logic of an application effectively. Despite these

advances, a vast majority of web applications continue to be developed in languages such as ASP, Java

and PHP where the onus of developing and enforcing the access control policy largely falls on develop-

ers. In Chapter 3, we will discuss privilege escalation vulnerabilities in more detail and discuss how we

detect these vulnerabilities in legacy web applications.

2.2 Program Specification Inference

The problem of identifying whether an existing web application contains vulnerabilities is often

exacerbated by lack of program documentations. It is indeed possible for a vulnerability analyst to

look for errors by understanding the functionality of the application, inspecting the source for missing

security checks and measures. However, manual inspection of the application source code in detail can

be time-consuming and tedious for large web applications. Therefore, automated solutions that identify

errors are desirable.

Such solutions usually need some input about the application’s logic. Unfortunately, most of the

open source web applications come with almost no documentation (except their source code) of their

functionality. Security policies implemented, as a component of the overall functionality of the appli-

cation is therefore obscure to the analysis tools. Thus, use of analysis tools which infer partial program

specifications is a must.

Program specifications are useful, since they are the only detailed documentations beside the source

code. While the application source code sheds light on the implementation decisions, the program

specification defines the design of the application. Program specification is the description of what the

program is expected to do, and is more high-level than the source code.
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A program specification is often defined in terms of program invariants which are some properties

which hold at particular program points. These properties are usually defined as relations between

program data structures.

There are three approaches to defining the specifications.

1. Annotation: Developers often use annotation tools (e.g., Houdini (13) for ESC/Java applications)

or instructions while developing their code, to explicitly define the program invariants. For in-

stance, java developers can use assert instructions to define pre-conditions and post-conditions

for verifying the correctness of different operations. The following code asserts that by incre-

menting the lower bound also increases:

1 assert x > 0;
2 x++;
3 assert x > 1;

2. Dynamic Detection of Invariants: In this method, the program gets executed over a set of sample

inputs and the execution traces are being recorded. By statistically analyzing the values at each

program location, one can infer the likely program invariants from the execution traces.

In Daikon (14), program invariants are detected from program executions by instrumenting the

source code to trace the variables of interest, running the program over a set of test cases and

inferring invariants over both the instrumented variables and over derived variables that are not

manifested in the original program. The key idea is that those invariants that are tested to a

significant degree without falsification should be reported with more confidence.
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Although this approach is very helpful in finding the likely invariants, it is not complete. To be

confident of the results of such approaches, we should be able to reason about the coverage of the

inputs, and the we have executed the program for enough times. That is why these likely program

invariants need to be verified to be actual invariants.

3. Static Analysis: In this approach we analyze the program without actually executing the code.

Using techniques such as symbolic execution, we are able to reason about almost all possible

executions of the program. The key idea in using static analysis is to generalize the testing cases

by using symbolic formulas rather than actual values.

Rather than designing new tools for each vulnerability type, we like to be able to detect several

classes of vulnerabilities, including new vulnerabilities (e.g., privilege escalation), with the same tech-

niques. Static analysis techniques can lead us to detection of general classes of vulnerabilities as they

can detect underlying cause of vulnerabilities in the source-code.

In this dissertation we focus on static analysis of web applications as we are interested in detec-

tion and retrofitting of vulnerabilities by inspecting the underlying causes for vulnerabilities. In the

remaining part of this chapter, we will discuss static analysis and abstraction techniques in more detail.

2.2.1 Static Analysis and Predicate Abstraction

Static analysis techniques try to reason about the specific properties of the program without actually

running the program. To reason about the properties of each program, we have to reason about the

semantics of the program first. According to Cousot & Cousot: (15)

The (concrete) semantics of a program P is a computation (execution) model describing the

effective executions [[P]] of the program in all possible environments.
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But the challenge is that in practice, [[P]] is infinite or large enough not to be computable (16). It is

not possible to write a program able to represent and to compute all possible executions of any program

in all its possible execution environments. According to Rice’s theorem, all non-trivial properties of

programs written in common programming languages are mathematically undecidable. (17)

Alternatively, we have the option of building abstract models of possible execution traces, by ignor-

ing some details in concrete semantics. Since we are ignoring some details and use generalization, the

abstract models are supersets of the concrete semantics.

Abstract Interpretation formalizes the idea that a semantics can be more or less precise according to

the considered observation level. The challenge then becomes to find a suitable abstraction model of our

program semantics. In other words, we want to extract semantics of the code, but the extent to which we

need these detailed semantics and how we model it are important questions. A good abstraction avoids

state space explosion problem and leads to more efficient models in practice.

For an abstract semantics model to be acceptable it should have three properties: 1) soundness so

that no possible error can be forgotten (false negatives); 2) precision (to avoid false positives); and 3)

scalability (to avoid combinatorial explosion). However, in practice these properties may not be achiev-

able all at once. We have a trade-off between scalability and precision while choosing an acceptable

abstraction. If the approximation is coarse, the abstraction model of the semantics provides a model

which is less precise (and therefore less questions can be answered) but is scalable and computable.

Therefore, in choosing a suitable level for abstraction, we can examine the questions or the properties

we want to verify in our program, dealing only with those elements in the semantics which are related

to the considered property.
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As an instance, we can consider a case of verifying a safety property in a computer program. In

a safety property, we define what the unsafe condition is, highlighted in red areas in Figure 4 (18).

The green zone in the figure, the abstract semantics, is a superset of all possible executions shown by

trajectories. Since the abstraction model is a superset of the semantics of the program, if the abstraction

model is safe, then the semantics is also safe.

Graphic example: A more refined abstraction
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Figure 4: Precise Abstraction of a Safety Property (18)

There are several approaches to abstract semantics of a program. Model checking, deductive meth-

ods and static analysis are among these methods. Static analysis is particularly interesting for us since

the abstract semantics is computed automatically from the program source based on predefined abstrac-

tions. According to Cousot & Cousot (19) abstract interpretation provides a general theory behind all
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programs analyzers, which only differ in their choice of considered programming languages, program

properties and their abstractions. By effective computation of the abstract semantics models (such as

data-flow, data types and control-flow models), the analyzer tools can examine the behavior of programs

before executing them.

In practice, Predicate Abstraction (20) is one the most popular and widely used techniques for se-

mantic abstraction. In predicate abstraction we only keep track of certain predicates on data. Instead of

tracking program variables of various types we then need to track the predicates of boolean type. Static

analysis based on predicate abstraction of programs works based on finding approximate predicates

(conditions) at each program location via a predicate transformer. These predicates, similar to asser-

tions, define the properties which hold at that particular point in the program. A predicate transformer

describes how the execution of different instructions changes these predicates. (21) According to Hoare

logic (22), there are three components in predicate transformation:

{P}C {Q}

P is the set of pre-conditions, Q is the set of post-conditions and C is the command (instruction).

Hoare logic provides the axioms to infer the relationship between these three components. Follow-

ing the axioms and tracing the predicates as pre-conditions, one can determine what would be the

post-conditions after symbolically executing an instruction. Similarly, assuming some predicates as

post-conditions, one can reason about the pre-conditions which must hold, so that after execution of

an instruction, the predicates are true. The following example shows an axiom schema for a simple

assignment instruction:

{x+1≤ N} x := x+1 {x≤ N}
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Based on the direction of the analysis to find the predicates, program analyses can be categorized into

two classes: 1) forward semantics analysis, and 2) backward semantics analysis. Either way, the main

challenge is to define the transformation function precisely to identify and capture sound predicates.

Standard data- and control-flow analyses, and type checking systems adapt Hoare axioms in generating

the predicates. The combination of these predicates can then be abstracted to define more high-level

properties.

In practice, static analysis may lose its precision when encountering complex language commands,

such as for-loops. However, as we will discuss in the following chapters, some properties (e.g., autho-

rization properties) are generally independent of the loop invariants and they are generally not affected

by the number of iterations of the loops.

In the following chapters we will discuss our approach in building abstraction models for web appli-

cations with more depth. To reason about security vulnerabilities in web applications, we need to find

an appropriate abstract definition of the problem and an acceptable abstraction model for the program

states. We will show that by using a proper abstraction, we are able to categorize and solve various

security vulnerabilities in the same problem scope.
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DETECTION OF AUTHORIZATION VULNERABILITIES IN WEB APPLICATIONS

Previously published as Maliheh Monshizadeh, Prasad Naldurg, V. N. Venkatakrishnan.

MACE - Detecting Privilege Escalation Vulnerabilities in Web Applications. In Proceedings

of 21st ACM Conference on Computer and Communications Security (CCS’14), Scottsdale,

AZ, 2014.

As discussed in Chapter 1, authorization vulnerabilities are a subset of logic vulnerabilities. In a

privilege escalation attack, the attacker or the malicious insider targets the security holes in the autho-

rization logic of the application. To be able to detect these vulnerabilities, we first need to understand

the authorization policy of the application. Lacking the program specification, we do not know exactly

what the correct authorization policy is. However, we can find the inconsistencies in such policies which

lead us to detection of authorization vulnerabilities.

In order to find authorization inconsistencies in applications, we define a notion of authorization

context for web applications, that associates an authorization state to every program point in the ap-

plication. We then develop a notion called authorization context consistency, which is satisfied when

the application uses the same authorization context in order to access the same resource along different

paths of a web application. When there is a mismatch in authorization contexts along two different

paths, we flag that as an potential access control violation.

23
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Employing the authorization context, we use one level of abstraction, in which we do not trace

whether the user is authenticated at all times. Alternatively, we build a tuple of authorization related

properties and we only examine them at the resource accesses. Using the static analysis framework, we

only track these authorization contexts throughout the program.

We develop algorithms for computing authorization contexts and checking for authorization context

consistency. These algorithms involve a variety of program analysis techniques that include control

flow analysis, data flow analysis and symbolic evaluation. These algorithms are implemented in a tool

that we call MACE (Mining Access Control Errors). These algorithms are bootstrapped by a small set

of annotations provided by the vulnerability analyst, and we show that the effort for providing these

annotations is small.

Using our approach, we are able to detect two kinds of privilege escalation vulnerabilities: the

conventional (1) Vertical Privilege Escalation (VPE) when an attacker (outsider) or a malicious user

(insider) tries to change her privilege level (access more than they are entitled to, say according to

their role) and (2) Horizontal Privilege Escalation (HPE) when a malicious user tries to access the

system resources of other users. In particular, our modeling of authorization context and our detection

algorithms facilitate the detection of the latter kind of privilege escalation, thus making MACE the first

tool in the literature that is capable of identifying HPE vulnerabilities in web applications.

In this chapter, we will demonstrate the evidence of the usability and usefulness of MACE is demon-

strated by showing introductory examples, explaining the approach and running it against a large number

of open-source code-bases.
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3.1 Introductory Example

We illustrate the key aspects of the authorization problem for web applications with the help of an

extended example. The traditional authorization or privilege escalation problem is tied to the functional

role of a user in this context. If this user can exercise privileges that are not usually associated with

their functional role, a vertical privilege escalation vulnerability is detected. In addition, as described in

CWE-639 (23) the horizontal authorization problem describes a situation where two users may have the

same role or privilege level, and must be prevented from accessing each other’s resources.

Listings 1 to 7 present the source of a running example that illustrates these authorization vulnera-

bilities. The example is a simplified version of real-world code samples and describes typical vulnera-

bilities that were reported. The particular web application here is a blog that permits its registered users

to insert, edit, delete, or comment on blog articles. There are two functional roles: admin and user, with

the admin having control over all posts in the blog, whereas the individual users should only be able to

insert, edit, or delete their own blog, and comment on other blogs.

Listings 3.1, 3.2 and 3.3 refer to a secure implementation of the application. Function verifyUser,

shown in Listing 3.1, checks if the request is coming from an authenticated user. In Listing 3.2, an ar-

ticle is being added to the articles table in the database. The user name of the current logged-in

user specifies the owner of the article, and the request includes the article text that is inserted into the

database. Note that this insert implementation is secure, as the user is verified, and is found to have the

required permission. Listing 3.3 refers to the delete operation, where the user can delete any post that

she owns. Additionally, an admin user, as specified by the role userLevel, can delete all entries in a

blog as shown by the second DELETE operation.
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Listings 3.4, 3.5, 3.6 and 3.7 show example PHP files that implement the delete operation. Each

implementation of the delete operation is vulnerable as described below:

• No authorization In Listing 3.4, the application performs a delete without checking if the user is

authorized.

• Improper permissions. In Listing 3.5, the application does not check if the user has the appropriate

permissions to delete an article.

• Improper Delete-all In Listing 3.6, the application does not check if the user trying to delete-all

belongs to the Admin role, and therefore permits a privilege escalation attack.

• Improper Delete In Listing 3.7, the application does not check whether the user requesting the

delete is the owner of the article, and is authorized to delete it. It therefore allows the currently

logged in user to delete articles owned by any other user in the system, as long as the (public)

article-ID is supplied as query argument.

The last two examples in the above list deserve special mention. Listing 3.6 is the conventional

form of privilege escalation allowing an ordinary user to assume admin privileges, i.e., vertical privilege

escalation (VPE). In contrast, Listing 3.7 allows for an ordinary user to assume privileges of any other

ordinary user in the system, a form of privilege escalation known as horizontal privilege escalation

(HPE) (24). To the best of our knowledge, this research was the first to discuss an approach for detecting

HPE vulnerabilities automatically, in addition to detecting VPEs.

1 function verifyUser(){
2 if(!isset($_SESSION[’userID’]))
3 header(’Location: /login.php’);
4 else $userID = $_SESSION[’userID’];
5 return;
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6 }

Listing 3.1: verifyUser.php

1 verifyUser();
2 if($permission[’canWrite’]&&$action == ’insert’)
3 query("INSERT INTO tbl_articles VALUES (
4 sanit($_GET[’article_code’]),
5 $_SESSION[’userID’],
6 sanit($_GET[’article_msg’]))");

Listing 3.2: insert.php

1 verifyUser();
2 if($permission[’canWrite’]&&$action==’delete’)
3 query("DELETE FROM tbl_articles WHERE
4 article_ID = ’" + sanit($_GET[’article_ID’]) + "’ and
5 author_ID = ’" + $userID + "’");
6 else if($_SESSION[’userLevel’] == ’Admin’ && $action == ’deleteAll’)
7 query("DELETE FROM tbl_articles");

Listing 3.3: delete.php

2.a if($action == ’delete’)
3.a query("DELETE FROM tbl_articles WHERE article_ID = ’" +

sanit($_GET[’article_ID’]) + "’");

Listing 3.4: delete1.php (vulnerable version)

1.b verifyUser();
2.b if($action == ’delete’)
3.b query("DELETE FROM tbl_articles WHERE article_ID = ’" +

sanit($_GET[’article_ID’]) + "’");

Listing 3.5: delete2.php (vulnerable)

1.c verifyUser();
... ...

6.c if($permission[’canWrite’] && $action == ’deleteAll’)
7.c query("DELETE FROM tbl_articles");

Listing 3.6: delete3.php (vulnerable)
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1.d verifyUser();
2.d if($permission[’canWrite’] && $action == ’delete’)
3.d query("DELETE FROM tbl_articles WHERE article_ID = ’" +

sanit($_GET[’article_ID’]) + "’");

Listing 3.7: delete4.php (vulnerable)

TABLE I: The Authorization Context for different queries in Running Example

Query Authorization Context
Listing 3.2 $_SESSION[’userID’], $permission[’canWrite’],

Column<$_SESSION[’userID’]>
Listing 3.3 Line 3 $_SESSION[’userID’], $permission[’canWrite’],

Column<author_ID>==$_SESSION[’userID’]
Listing 3.4 /0
Listing 3.5 $_SESSION[’userID’]
Listing 3.7 $_SESSION[’userID’],$permission[’canWrite’]

Listing 3.3 Line 8 $_SESSION[’userID’], $userLevel == ’Admin’
Listing 3.6 $_SESSION[’userID’],$permission[’canWrite’]

Lack of Policy Specification Note that our techniques are designed to work directly on the source

code of our target applications, without relying on the existence of a well-articulated policy manifest to

clarify these functional roles. In order to know whether the web application is implementing its access

control correctly, one needs to know what access control policy is implemented. Unfortunately, the only

documentation of this policy is in fact the source code of the web application. Furthermore, we also face

the problem that this policy implementation can be incomplete or incorrect. This makes the problem of

checking for access control errors quite challenging.
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3.2 Approach

To reason about a web application’s authorization correctness, one must examine each sensitive

operation (e.g., each SQL query execution) of the program and examine the authorization information

required to perform that operation. Recall from Section 3.1, the running example identifies what can

go wrong in the implementation of access control, including the absence of any authorization checks,

improper ownership or privileges corresponding to user role, and untrusted session variables.

Authorization state Applications should ideally have a well-defined policy manifest of what authoriza-

tions should be granted to what users, taking into account the session context, but unfortunately this is

not always explicit. Even in applications that manage to have policy documents, the implementation

may not match the specification. The best understanding of access policy therefore is the operating

context of each access request in the implementation. For each access request in a user session, cor-

responding to a particular control and data-flow in the program execution, we argue that the four tuple

〈U,R,S,P〉 represents the associated access control rule explicitly, with U the set of authenticated users,

R the set of roles defined over the users, capturing different authorizations, S the set of session identi-

fiers or session variables, and P the permissions defined on the resources (e.g., read, write). This set

〈U,R,S,P〉 is our authorization state. We illustrate this in our running example:

• In Listing 3.4 the identity of user is not checked. The value of $action (i.e., delete) comes from

the input form and therefore is controllable by the user, and cannot be trusted. We infer that the

access rule checked here is 〈−,−,−,−〉, which means any user in any role can actually execute

this DELETE query providing any article if they know the corresponding article_id, which is a

placeholder for session context.
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• In Listing 3.5, the following access rule is being checked 〈user,non_admin,−,−〉. Access is

allowed to any user, and it is not checked if they are an admin or not.

• In Listing 3.6 the appropriate role is not being checked, the incorrect (inferred) access rule here

is 〈user,−,−,canWrite〉 whereas the actual rule needs to include a check that the user is admin.

• In Listing 3.7 the correct ownership information, corresponding to the user who created the

article_id is missing in the access check. Instead, the rule inferred here is 〈user,non_admin,−,canWrite〉.

From these examples, we now see that the correct access rule associated with the delete query on

tbl_articles, depending on the role of the user, should be:

• 〈user,non_admin,−,canwrite〉 and

• 〈user,admin,−,−〉

However, determining that this is the access rule, and that this is correct is not at all obvious. As

mentioned earlier, all we have is the implementation, where the access rule is both control and data

sensitive. Depending on whether the user is admin or not, different rules apply, indicating dependence

on control. The ability to delete an article also depends on whether the same user had created the article,

or had permissions to create it, requiring knowledge of data variables using data-flow analysis. Also

implicit is the notion of the underlying access model. In this example, though the admin user may

not be the owner of the article, an implicit role hierarchy lets her delete items and use the permission

canWrite. Unfortunately, if the implementation is incorrect, the task of finding authorization errors

becomes even more difficult.



31

Authorization Context One of the main ideas in our approach is the notion of matching what we call

the authorization context, across related or complementary security sensitive operations, in terms four-

tuple we have identified. We have no prior assumption about the authorization policy used by the web

application authors. This authorization context is garnered by examining the code and trying to fill

out the four-tuple at a given program point automatically. To do this we will first need to annotate

the code to identify some of these fields manually. We populate our analysis by tagging the variables

corresponding to user-ids, roles, session identifiers (i.e., those sets of variables that change every session)

and permissions.

With each security sensitive operation identified, our goal is to try to infer what access rule is being

enforced by the code. Using the annotated variables and the clauses in the query, we can now compute

the actual authorization context at a given program point using a combination of control flow and data

flow analysis. More details of these techniques are presented in Section 3.3. In Table I we show the

actual context from a correct program from Listings 2 and 3 for INSERT and DELETE, and the actual

context inferred from each of the incorrect inserts and deletes from Listings 4 through 8. Independent

of what is correct, we observe that there are missing gaps in the conditions checked for access, across

INSERTs and DELETEs to the same rows in the same table. Once we construct the authorization context,

this acts as a specification for the access policy as implemented by the developer. The obvious question

now is whether this policy is correct. However, we do not have any information about whether this is

the case or not. It is possible for us to take this actual context to the developers and ask them to establish

its validity, but this may not be always possible.
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Authorization Context Consistency We observe that we can also compare the authorization context for

different, but matching queries on the same tables. When the application uses the same authorization

context in order to access the same resource along different paths of a web application, we term its

authorization contexts to be consistent across the application. Any inconsistencies identified in this

manner could indicate a potential problem with the access control implementation. Note that we do not

know the correct access policy here, what we are trying to do is detect inconsistencies across related

operations. We illustrate this idea with an example:

INSERT queries in a database are a good example of code segments that contain rich authorization

information. For example, during creation of a row in a database table, we can expect to find some

information about the owner of the row. Consider table articles with columns (article_id,

article_author, article_text). The following query adds an entry to this table:

INSERT INTO articles (article_author, article_text) VALUES
($_SESSION[’userID’], sanitize($_GET[’post’]));

The variable article_id is incremented automatically. The ownership information, as to who can

insert into this table can be inferred from article_author and the value for this column comes from

$_SESSION[’userID’]. This ownership information is being checked on access, the authorization

column tuple being 〈$_SESSION[′userID′],−,−,−〉.

Let us now examine the corresponding DELETE query on the same table article. Here, the only

parameter for delete comes from the user input (via GET).

DELETE FROM article WHERE article_id = $_GET[’post_ID’];
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From the listing, it is clear that the authorization context for the delete does not check ownership,

i.e., the inferred context is 〈−,−,−,−〉. If any user can guess the range of the current IDs in the table,

she can delete any row owned by any other user. This simple example now suggests that it is useful

to make the constraints or authorization states for these queries consistent and add the userID to the

authorization context of DELETE as:

DELETE FROM article WHERE article_id = $_GET[’post_ID’] AND article_author =
$_SESSION[’userID’];

The notion of computing the actual context and comparing it with those obtained from matching

rules as discussed, using the authorization state four-tuple is both powerful and general. It accom-

modates a variety of different application access control models, being agnostic to the actual models

directly. No a priori definitions or models are required, and the violations detected can encompass sce-

narios such as dynamic authorization and separation of duty (SoD), and the DAC model as shown. In

fact, the DAC model is implied with the ownership information in the INSERT query. As long as the

attributes that determine access can be captured by the authorization state abstraction, rich context vari-

ables such as time of day, location, integrity constraints, keys and shared secrets, etc., can all fit easily

with the techniques discussed.

Note that normal sanitization of the user input, without associating it with the current session token

is not sufficient. Of course, there are many challenges associated with this kind of matching. The

obvious one is that this could be intended behavior, i.e., DELETES may have different permissions from

Inserts. The actual context on the INSERT could be incorrect. Further, there could be more than one

insert, corresponding to different roles or different session characteristics and the corresponding delete
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has to be matched up accurately. Nevertheless, searching for inconsistencies in matching operations

helps us resolve errors in real applications. The question is how often they lead to false positives or

negatives and we explore this in detail in Section 3.4.

Algorithm Overview We now describe our algorithm to compute the authorization context, and com-

pare contexts across matching requests to discover inconsistencies. To start the analysis, we need to

find all the queries in the code, and proceed to compute the context at these query locations. Next, we

compare the contexts of similar access locations (i.e., query locations). Inconsistency in the contexts or

in the way the authorization tokens are used in accessing the DB, e.g., using where clauses can lead to

detecting vulnerabilities as described.

Algorithm 1: Algorithm Overview
input : Application source, Authorization variables, Possible values for role variables

1 cfg := ControlFlowAnalysis();
2 dda := createDependencyGraphs(cfg);
3 sinkPaths := enumeratePaths(dda);
4 foreach sp ∈ sinkPaths do
5 AuthzContextAnalysis(sp);
6 if sink ∈ {INSERT, UPDATE, DELETE} then
7 queries += <symbolicQuery(sink), authz-c(sink)>;
8 analyzeInserts();
9 analyzeDeletes();

10 analyzeUpdates();

As shown in Algorithm 1, the main input to our analysis is the application source code (PHP code),

annotated variables that correspond to user ids, roles, session specific attributes and permissions appro-
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Figure 5: System Architecture. The numbers shown refer to outputs produced during various compo-
nents, which are used as inputs for subsequent components.

priately. Once we have these annotations we perform a control flow analysis to identify paths involving

these authorization sensitive variables. Next, we construct a data dependency graph using the annotated

control flow graph to capture data-flows between the identified variables. A source-sink graph corre-

sponding to entry points (sources) in web applications to particular sensitive queries (sinks) is now ready.

On this graph, we gather the constraints at each sink as well as the annotated information flow context

and construct our query context (lines 4-8). Context for different queries is computed in Algorithms 2

and 3 and checked for consistency to find errors. Further details are presented in Section 3.3.

3.3 Implementation

Figure 5 shows the architecture of MACE, identifying the various components of our tool, with

(numbered) outputs produced by each component that are subsequently used as (numbered) inputs to

other components.

Inputs. There are two sets of inputs to MACE: (1) source files and (2) annotations or hints provided by

the developer / end user. Specifically, the set of hints provided by the developer is a small set of super
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global variables that constitute the various components of the authorization 4-tuple as described earlier.

In PHP, typically these annotations are on super-global variables such as SESSION. In our running

example, the hint provided to the tool is that the super-global userID constitutes the specification of

the user component of our 4-tuple. In our experience, the effort required to specify these hints is not

high, as it took only a few minutes for each application that we tested (as discussed in our evaluation).

With this information, together with the source code, MACE is able to identify potential privilege

escalation errors.

Control Flow Analysis To identify authorization errors in the program, MACE uses static analysis

methods to analyze the code. The advantage of using static analysis is that it can identify all sensitive

accesses to important resources of a given type (e.g., SQL queries), and analyze all execution paths that

lead to them. MACE includes a front-end to parse source files (in PHP). Subsequently a control-flow

analysis is performed that results in a CFG (numbered output 3 in the figure) for the application, which

explicitly identifies control flows throughout the whole application. In addition, this component also

identifies a set of sensitive sinks in the application. Currently, sink identification in MACE is performed

for SQL query locations (as identified by calls to mysql_query).

Data Dependency Analysis The next step in MACE is to compute a data dependency analysis. To illus-

trate the need for data dependency analysis, let us consult the running example. In Listing 3.1, the vari-

able $userID holds the user information, which it receives from the super-global $_SESSION[’userID’].

$userID is subsequently used, and we need to capture these types of dataflows to reason about autho-

rization. This requires a data dependency analysis, which is done by constructing data dependence

graphs (DDGs) for each procedure.
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In addition, MACE’s analysis is inter-procedural. To see the need for inter-procedural analysis, let

us consult the running example again. The assignment of $userID happens in procedure verifyUser

(Listing 3.3), whereas the use of $userID happens in another file (delete.php). Since this analysis

requires us to see such data-flows across all procedures, MACE also builds a system dependence graph

(SDG) (25), which is essentially an inter-procedural DDG. The output of this step is a SDG (numbered

output 5) in Figure 5.

Slicing In order to look for authorization errors at a particular sink, MACE analyzes paths that lead from

the sources (entry points in a web application) to that sink. Such analysis needs to be path sensitive.

Consider the running example in Listing 3.1. In this function, there are two paths, one that successfully

checks if the user ID has been set (through a prior authentication step, not shown in the example for

brevity), and the other that exits the application. The authorization context therefore exists in only one

of the paths, and our analysis must be able to select such paths for further analysis, as well as ignore the

other path, as it would not lead to a sink. Therefore we require a path sensitive analysis.

In order to analyze each path, we perform inter-procedural slicing using the SDG (System Depen-

dence Graph) (25). Intuitively, for a given sink such as a SQL query, the corresponding SDG captures

all program statements that construct these queries (data dependencies) and control flows among these

statements. MACE performs backward slicing for the sinks such that each slice represents a unique

control path to the sink. Each of these control paths is therefore an instance of sensitive resource-access.

A number of steps are performed during the slicing operation. Loops are expanded by unrolling, either 0

or 1 or 2 times. Expanding the loops for more scenarios is not necessary in our approach, as we observed

that authorization context is generally not modified in loops. In addition, the conditional expressions
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are preserved in the SDG by NOP (No Operation) nodes, so that the information that is checked by

these conditional expressions can be used in computing the authorization context. For instance, in our

running example, the condition isset($_SESSION[’userID’]) is stored along each control path.

Paths that do not reach a sensitive sink are omitted from subsequent analysis. At the end of this slicing

step, MACE outputs a list of source-sink paths (numbered 6 in Figure 5. For our running example

involving Listings 3.1, 3.2 and 3.3, we have three, one that reaches the INSERT query, another that

reaches the DELETE query, and a third that reaches the same query but corresponds to deleteAll.

Authorization Context Analysis Using the paths computed during the slicing step, MACE computes

the authorization state along each such path from the source to the sink. To do this, it starts with the

super-globals identified from the user provided annotations (numbered by 2 in Figure 5) and checks

if they (or other program variables that get receive values from these super-globals through data-flows)

are consulted in conditions along the path from the source to the sink. If so, that information is sym-

bolically represented in the authorization context 4-tuple. For instance, for our running example in-

volving Listings 3.1 and 3.3, deleting (Line 3) involves an authorization context that checks both the

user has logged on, the permission (canWrite) and therefore the corresponding context is inferred:

〈userID,_,_,{canWrite}〉 whereas Listing 3.1 and 3.5 involve the following authorization context:

〈userID,_,_,_〉. This step is computed using our sliced SDGs, which provide the data-flow informa-

tion. At the end of this step, MACE outputs source-sink paths with annotated authorization context at

each location along the path.

Resource Access Analysis Having computed the authorization context at all program points in any

given path, the next step in MACE is to see how these are used towards accessing application resources.
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The main resources in web application are DB tables, and we need to check whether the authorization

contexts across all resources are consistent. However, the access control context at the query location

may still be incomplete in capturing the access restrictions the application places along the current path

being analyzed. To see this, we refer to Listing 3.3. In the first DELETE operation, the query is con-

strained by two WHERE clauses: (1) the specific article to be deleted and (2) the author_ID field from

postAuthor of the table restricted to the current userID. The latter constrains the authorization context

by way of row restriction: i.e., each article can be deleted only by a user who has her userID stored

in the same row of the table. This happens only when the corresponding INSERT query for the same

row (shown in Listing 3.2) inserts the userID in the field author_ID. This implicit form of “own-

ership” needs to be captured by MACE in the authorization context. Thus, the relationship between

author_ID and userID that is implicit in the code needs to become explicit. The tool captures this

information as Authorization Columns for each table. Each authorization column element captures the

column name and the symbolic value used to constrain the query. Returning to our running example, the

authorization columns for the table tbl_articles is: [author_ID = $_SESSION[’userID’]]

Note that, in cases where the developer did not specify column names in INSERT queries, MACE

uses DB schemas, which are automatically generated by parsing database creation files (CREATE TABLE

queries) to mark the authorization columns.

For this purpose, MACE symbolically evaluates the source-to-sink path that leads to the query

so that the relationship between the super-global variables that eventually reach the query becomes

explicit. Symbolically executing the path that leads to the first DELETE query in Listing 3.3 makes this

relationship explicit. For instance, we obtain the following symbolic query for the above example.
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Algorithm 2: Analysis of INSERT Queries
input : List of queries and their authorization contexts
output: List of Tables, Tables’ authorization contexts, Tables’ authorization columns

1 sortSymbolicQueries();
// based on Table names

2 foreach table t do
3 foreach ins-q ∈ getInsertQueries(t) do
4 authzContexts(t)+=getAuthzContext(ins-q); authzCols+=getAuthzColumns(ins-q);
5 if AuthzContext(t).size > 1 then
6 diff := compare(authzContexts(t));
7 if diff then
8 raiseWarning(INSERT_Conflict);
9 if authzCols(t).size > 1 then

10 diff := compare(authzCols(t));
11 if diff then
12 raiseWarning(INSERT_AuthzColumn_Conflict);
13 return authzCols, authzContexts;

DELETE FROM tbl_articles WHERE article_id = $_GET[’article_ID’] AND author_ID
= $_SESSION[’userID’];

Notice that the query is now entirely expressed in terms of symbolic super-globals such as user

inputs $_GET[’post_id’] and $_SESSION[’userID’]. Having the symbolic query for each query

location allows us to compare similar accesses to the column authorID in the DB, and compare the

authorization contexts for similar accesses to the same table.

In addition to identifying inconsistencies, the previous steps allow one to see if there is a possibility

of privilege escalation due to insecure use of user-supplied parameters in authorization decisions. User

supplied parameters such as $_COOKIE can be tampered, and therefore authorization decisions must

not refer to them. Having a symbolic query that makes any such use explicit also facilitates MACE to

identify these types of errors. At the end of this step, MACE outputs a set of symbolic queries. These
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queries contain the resources (tables) and together with the authorization context at each resource along

every path that leads to the resource. The specific type of access (INSERT, UPDATE, DELETE) is also

available through the symbolic query. As mention earlier, paths that lead to SELECT queries or those

that do not lead to sensitive resources are discarded.

Context Comparison The goal of this step is to compare the authorization context at each resource

access and identify inconsistencies. To this point, we have gathered two sets of information with respect

to authorization in previous steps: 1) the authorization contexts for query locations and 2) the resource

access parameters (authorization columns) for each table.

The first step in context comparison is to group the query-path pairs based on the table names in

the query (Line 1 in Algorithm 2. During symbolic execution analysis done in the previous phases, we

are able to resolve the table names for static and dynamic queries in each possible sink-path pair. Then,

for each table, we gather the authorization context and authorization columns, which are used in table

accesses. The number of distinct authorization contexts and authorization columns may be more than

one, for different queries in different program locations. Therefore, we need to resolve these differences

and in any case report these conflicts. Lines 7-11 in Algorithm 2 compare the contexts for INSERT

queries on a given table. The discussion about the analysis of these conflicts comes in Section 3.3.1.

After finishing all INSERT queries, we proceed to analyze DELETE and UPDATE queries. The reason

we start this way is because ownership information is added to the resources at their creation time, in

a DAC model, which is typical of such applications. INSERT queries show us where the ownership

information comes from in the program and in which column of the table they are going to be stored.
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Algorithm 3: Analysis of DELETE Queries
input : authzCols, authzContexts

1 foreach table t do
2 foreach del-q ∈ getDeleteQueries(t) do

// Compare Authorization Contexts
3 if getAuthzContext(del-q) == getAuthzContext(t) then

// Compare Authorization Cols

4 authzClause = getAuthz(getWhereClauseCols(del-q));
5 if authzClause != getAuthzColumns(t) then
6 raiseWarning(HORIZONTAL_ESC);
7 else if getRole(getAuthzContext(q)) < getRole(getAuthzContext(t)) then
8 raiseWarning(VERTICAL_ESC);
9 else

// Other inconsistencies may have various authorization
vulnerabilities

10 raiseWarning(INCONSISTENCY);

In the next step, to analyze the rest of the queries (i.e., DELETE and UPDATE queries) we compare

their authorization contexts shown by 1) the resource accesses (where clauses in queries) and 2) the

authorization context annotations, with the information we gathered from INSERT queries. Algorithm

3 shows the analysis of delete queries. The analysis of UPDATE queries is done in the same way.

The data in database tables should be changed exclusively with a privilege level equal or more than

the level specified in their authorization context so that the integrity of these tables remains intact. Lines

9 and 10 in Algorithm 3 show how we check for vertical privilege escalation vulnerabilities in our tool.

In addition to the authorization context, we check table access parameters (lines 4-6 in Algorithm

3) to detect horizontal privilege escalation vulnerabilities. These attacks happen in the same privilege

level as the legitimate users, however, a malicious insider can manipulate the data stored in DB tables

owned by other users. This additional check of accesses tries to prevent such attacks.
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Lines 12-15 in Algorithm 3 detect any other inconsistency in the authorization contexts. These

inconsistencies are also reported back to the user for further analysis.

3.3.1 Conflicting Contexts

During the comparison phase, both for authorization contexts and the resource access comparisons,

there may be scenarios in which the contexts or access parameters do not match entirely. In these cases,

the authorization context or WHERE clause with more restrictions is viewed as the stronger context /

clause. This is intuitive – quite often, the more restrictive the context, the more specific (or precise) it

is about the access rules regarding the resource being referred to. Below, we discuss different conflict

scenarios and how MACE addresses these conflicts.

In the case of one INSERT query present in the application for a given resource, we assume that

the authorization information extracted from the query must be present in the authorization context of

further accesses (UPDATEs or DELETEs). In case of any conflict after the comparison, if the authorization

context of the INSERT query is stronger than the other query’s context, we raise a warning. Depending

on the missing element in the authorization 4-tuple, the type of the warning may vary. A missing or

weaker role information is generally an indication of a vertical privilege escalation vulnerability caused

by the current privilege role level being less than what was present in the INSERT query’s context. A

missing user element in the context, while it was present at the time of the insert, indicates a horizontal

privilege escalation vulnerability. Relying on user provided inputs (such as GET, POST or COOKIE

variables) in the 4-tuple is an indication of a general mismanagement of sessions and authorization in

the application.
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3.3.2 Precision and minimizing warnings

MACE is a ‘best effort’ tool to detect missing or inconsistent authorization information. It is based

on the intuition that developers aim to get most cases right, and some occasional cases wrong. In the

rare case that the developer gets none of the cases right, then MACE’s approach cannot detect errors.

To have a more effective tool with a better confidence rate, there are a few general steps we took in

order to improve the overall precision and lower the false positive rate.

INSERT queries with missing authorizations So far, we set authorization contexts in INSERT queries

as the base for consistency analysis. If an INSERT query misses some crucial authorization information,

then our tool may not report faulty DELETE or UPDATE queries (as long as they are consistent with the

faulty INSERT), causing possible false negatives.

User-controllable query parameters. There are some applications that permit user-controlled parame-

ter (such as those of GET, POST, COOKIE) values in authorization decisions. Since MACE uses data

flow analysis, it is able to observe these incorrect authorizations and reports them (we identify and report

10 such errors in our evaluation). In such cases of vulnerabilities, MACE does not further proceed to

analyze the queries that are impacted by these flaws, so that the number of warnings reported by the tool

is minimized. After fixing these vulnerabilities, the user can re-run MACE to identify if there are still

missing authorizations.

SELECT queries. Technically speaking, it is possible for MACE to include SELECT queries and an-

alyze them for inconsistencies, as the analysis required to identify authorization for a SELECT query

(e.g., dataflow analysis) is no different compared to an INSERT. However, including SELECT queries is
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primarily a question of the user’s tolerance of the signal / noise ratio for an policy-agnostic tool such as

MACE. To see this, let us consider an example of a news article website. The news articles are pub-

licly viewable and so at the corresponding SELECT query there would be no authorization information,

whereas the users of the website often have to authenticated and authorized to be able to post news arti-

cles. Comparing such SELECT queries with INSERT queries often will lead to false alarms. Therefore,

in order to eliminate such false alarms, a user might decide to omit analyzing SELECT queries, as we did

in the evaluation of MACE. Another choice that a user has, which involves additional manual effort, is

to provide additional annotations that identify the tables that store sensitive data (and therefore require

authorization on SELECT queries).

3.3.3 Other Issues

Unsupported PHP features MACE is implemented for PHP, and makes use of the Pixy (26) tool for

control flow analysis. A small set of features in PHP language are not handled by Pixy and therefore

MACE does not deal with them. For instance, dynamic inclusions and certain object-oriented features

of PHP are not handled entirely. However, these have not limited the applicability of MACE to the

application suite that used in our evaluation. Note that, while MACE works in the context of PHP, which

is widely used, our technique (using authorization context differentials, symbolic execution, dataflow

analysis) is independent of any platform.

Counting the number of vulnerabilities. Many vulnerable queries might be fixed by a single common

authorization check at a shared program location. However, MACE treats each query location as an

independent operation and reports and counts vulnerable queries separately. We prefer to do so because

we think each of the reported vulnerable queries might lead to a different instance of attack. By treating
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TABLE II: PHP APPLICATIONS
Application SLOC # php files # of query locations # of DB tables Analysis times
phpns 2.1.1alpha 4224 30 40 13 8220
DCPPortal 5.1.44 89074 362 308 34 982
DNScript 1322 60 27 7 35093
myBloggie 2.1.3 6261 59 24 5 373
miniBloggie 1.1 1283 11 5 2 35
SCARF 1.0 978 19 13 7 54
WeBid 1.0.6 27803 266 687 47 1492

the queries in isolation, we can identify the vulnerability type with more precision. As we see in Section

3.4, we may report large number of vulnerable locations because of one single missing authorization

check, but in each such case of multiple vulnerabilities due to a single reason, we explicitly indicate so.

3.4 Evaluation

Implementation MACE is designed to analyze PHP Web applications. MACE is implemented in Java

and is about 10K lines of code. We use an open-source tool and library (TAPS (27)) to get the control

flow graphs and enumerate execution paths for PHP applications. The experiments described in this

section were performed on a MacBook Pro (2.4 GHz Intel, 4.0 GB RAM).

3.4.1 Effectiveness

Experiments. We ran our tool to analyze the effectiveness of MACE on a suite of seven small to

large PHP free and open-source Web applications. As shown in Table II, the applications range from

approximately 1k to 89k source lines of code (SLOC). These applications were used as benchmarks in

previous research studies (28; 29; 8). The results of our evaluation fall under the following categories:

(1) vulnerabilities identified by MACE and detailed statistics about the vulnerabilities identified in our
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experiments, (2) performance, scalability of MACE and (3) the annotation effort required from the

developers. We have verified by hand all of the authorization vulnerabilities in the applications, which

were reported by the tool.

For each application, we annotate the authorization tuple variables and then run MACE with given

annotations and the source code. MACE then lists all of the conflicts, the vulnerabilities, their locations

in the source code and the values, which cause the inconsistencies.

Results summary. Table III presents the summary of our experiments. The table lists the number of

conflict reports, and also shows how many of these were indeed vulnerabilities (true positives - TP)

and how many of them were reported incorrectly (false positives -FP) by our tool. Furthermore, the

breakdown of the vulnerabilities (true positives) between the two types of privilege escalations namely

HPEs and VPEs is presented in columns 4 and 5. The last column in this table gives the breakdown

of the identified vulnerabilities were known (i.e., previously reported in CVEs or by previous studies)

versus unknown (i.e., zero-day vulnerabilities).

As reported in the last column of the table, MACE is able identify zero-day authorization vulnera-

bilities in the following applications: phpns, DCP-Portal, mybloggie and SCARF. In the following

subsection, we will go through the details of these vulnerabilities.

3.4.2 Vulnerabilities Identified

phpns The phpns application is an open-source news system. The application allows three roles in the

system for the users: 1) guest users (unauthenticated users) who can only view the news articles; 2)

normal users who must be logged into the system and use the article management panels and 3) admin

user who also must be logged into the system and can access both article and user management panels.
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TABLE III: OVERVIEW OF VULNERABILITIES

Application # query conflicts VPE HPE Known/UnknownTP FP
phpns 7 0 X X 0, 7
DCPPortal 46 0 X X 0, 46
DNScript 0 0 - - -
myBloggie 6 0 X X 3,3
miniBloggie 1 0 X - 1, 0
SCARF 11 0 X X 1, 10
WeBid 0 0 - - -

Basic permissions such as adding, deleting and updating articles are set by default for the new users of

the system.

1 $new_res = general_query(’INSERT INTO articles
2 (article_title, artcle_sbtitle,
3 article_author, article_cat,
4 article_text,...)
5 VALUES(’.$data[’article_title’].’,’
6 .$data[’article_subtitle’].’,’
7 .$_SESSION[’username’].’,’
8 .$data[’article_cat’].’,’
9 .$data[’article_text’]’’);

Listing 3.8: Inserting an article item in in inc/function.php, phpns

1 $items = $_POST; //get vars
2 ...
3 $sql = general_query("DELETE FROM ".$databaseinfo[’prefix’]."".’articles’."

WHERE id IN (".$items.")");

Listing 3.9: Deleting an article item in article.php, phpns

Using MACE, we found seven vulnerabilities in this application, all of which are previously un-

known, two of which we describe below. Consider the actual code for the inserting and deleting users,

shown in Listings 3.8 and 3.9 respectively. The first vulnerability allows an unauthenticated user can

delete any comment without any authorization checks. MACE was able to identify this because the

relevant authorization context is not consulted at the delete operation. The implication of this vulner-
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TABLE IV: DETAILS OF WARNINGS

Application Number of violations
insert-insert insert-update insert-delete

phpns 0 5 2
DCPPortal 0 21 25
DNScript 0 0 0
myBloggie 0 3 3
miniBloggie 0 0 1
SCARF 1 8 3
WeBid 0 0 0

ability is that an outside attacker (who has no credentials in a given installation of phpns) can delete

any comment item in the application. This is an example of a vertical privilege escalation attack (VPE).

Another detected vulnerability is found in manage.php that allows for an authenticated user to delete

other users’ news articles by providing arbitrary article IDs (which are available to all users through

inspection of URLs). This vulnerability is a horizontal privilege escalation (HPE). We have reported

these and other vulnerabilities in phpns.

dcp-portal The dcp-portal application is an open-source content management system. This applica-

tion allows two authenticated roles: admin user and non-admin user (normal user). Consider Listings

3.10, 3.11, and 3.12, which refer to the authorization operation, insertion and deletion of agenda items

in a calendar table. Variable $_COOKIE["dcp5_member_admin"] is being used to determine whether

the user is an admin user or not. While inserting an item in the agenda, this variable is consulted, and the

agenda item is entered in the table t_agenda. However, while deleting the item, while the authoriza-

tion function is consulted, the deletion is based on a (user supplied) value $_REQUEST["agid"], thus

making the requests inconsistent. The implication of this vulnerability is that it allows any user in the
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system to delete another user’s agenda entries, thus making it a HPE, which was a previously unknown

vulnerability.

1 if (UserValid($_COOKIE["dcp5_member_id"])) {
2 ...}

Listing 3.10: Authorization function in lib.php, dcp-portal

1 if ((isset($_REQUEST["action"])) && ($_REQUEST["action"] == "add") &&
($_REQUEST["mode"] == "write")) {

2 $sql = "INSERT INTO $t_agenda (user_id,
3 subject, message, date) VALUES ($_COOKIE[’dcp5_member_id’] ," .
4 htmlspclchars($_REQUEST[’subject’]).",".
5 htmlspclchars($_REQUEST[’aktivite’]).",
6 $date)";
7 $result = mysql_query($sql);}

Listing 3.11: Inserting an agenda in calendar.php, dcp-portal

1 if ((isset($_REQUEST["action"])) && ($_REQUEST["action"]=="delete")) {
2 $sql = "DELETE FROM $t_agenda WHERE id = ’".$_REQUEST["agid"]."’";
3 $result = mysql_query($sql);}

Listing 3.12: Deleting an agenda in calendar.php, dcp-portal

We also found 44 other VPEs due to the incorrect implementation of UserStillStillAdmin func-

tion in dcp-portal. The first argument of this function takes the value of $_COOKIE["dcp5_member_id"]

and determines whether the user with this userID is an admin. The value for the userID comes from a

cookie variable and not from an established authorization state at the server side, which makes all 44

distinct queries in the admin path vulnerable to VPE.

myBloggie The MyBloggie application is an open-source blogging software. When we ran MACE

on this application, we found six privilege escalation vulnerabilities. In three of these vulnerabilities,

the validity of a session is not checked in many instances as the check shown in Listing 3.13 does not

appear in del.php, delcat.php, deluser.php files. Even in the files that do check this constraint, MACE

found horizontal escalation attacks. The parameters used to delete rows do not check for authorization

information. For instance, the parameter used to access and delete the rows in POST_TBL is coming
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from user-supplied values such as GET["post_id"] and is prune to HPE. MACE found three such

unreported vulnerabilities in this application.

1 if (!isset($_SESSION[’username’]) && !isset($_SESSION[’passwd’])) //go to
login;

Listing 3.13: authorization Check in addcat.php, MyBloggie

miniBloggie The miniBloggie application is also a blogging Web application. In this application,

there is no role or privilege level defined for the users. Thus, users are either authenticated ($_SESSION[’user’]

is set) or not. Even with this simple authorization rule, the application is vulnerable to privilege escala-

tion as detected by MACE. These scenarios involved missing checks that need to be present in order to

ensure the user is a valid one before access to table rows is granted. In del.php (Listing 3.15), function

verifyuser() is omitted, making way for the vulnerability, which was previously unknown.

1 session_start();
2 if (!verifyuser()){
3 header( "Location: ./login.php" );
4 }else {...
5 if (isset($_POST["submit"])) {
6 $sql = "INSERT INTO blogdata SET
7 user_id=’$id’,
8 subject=’$subject’,
9 message=’$message’"...";

Listing 3.14: Inserting a blog user in add.php, miniBloggie

1 session_start();
2 if (isset($_GET[’post_id’])) $post_id = $_GET[’post_id’];
3 if (isset($_GET[’confirm’])) $confirm = $_GET[’confirm’];
4 if ($confirm=="yes") {
5 dbConnect();
6 $sql = "DELETE FROM blogdata WHERE post_id=$post_id";

Listing 3.15: Deleting a blog user in del.php, miniBloggie

SCARF The SCARF application is an open-source conference management software which helps the

user to submit and review papers. The possible roles in SCARF are admin and normal user. Both roles
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must be authenticated to interact with the software. Variable $_SESSION[’privilege’] indicates

whether a user is an admin or not.

MACE detects several types of authentication and authorization bypass vulnerabilities in SCARF.

For example, in generaloptions.php, the admin can delete users and modify the option table.

The page has no authorization check before it proceeds to performing admin tasks. As a result of this

vulnerability, a normal user of the system who is legitimately authenticated can delete other users. To

fix the problem this method, require_admin(), should be added at the beginning of the file which

verifies whether the current session is the admin session or not. If it is not the admin session, the program

exits.

1 if (isset($_GET[’delete_email’])) {
2 query("DELETE FROM users WHERE email=’" . escape_str($_GET[’delete_email’]) .

"’");
3 }

Listing 3.16: Deleting a user in generaloptions.php, SCARF

1 function require_admin() {
2 if (!is_admin()) {
3 die ("...");}
4 }
5 function is_admin() {
6 if ($_SESSION[’privilege’] == ’admin’) return TRUE;
7 else return FALSE;
8 }

Listing 3.17: Missing Authorization in generaloptions.php, SCARF

Ten other vulnerabilities reported by MACE in this application can be attributed to a single rea-

son. The reason for these vulnerabilities being reported is that the constraining parameter used in cer-

tain UPDATE or DELETE queries derives it value from $_GET[’session_id’], which is an untrusted

source (i.e., the HTTP client). The corresponding INSERT query uses the $_SESSION[’user_id’]

which is an authorization variable as shown in the following code snippets. The column session_id
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in table sessions is an auto-increment key. Since untrusted values are never part of server autho-

rization state, the authorization contexts for these queries were reported empty. Since the parame-

ter $_GET[’session_id’] is provided by the user, and the values are guessable (auto-incremented

value), an attacker can impose himself on any guessable session.

INSERT INTO sessions (name, user_id, starttime, duration) VALUES
(mysql_real_escape_string($_POST[’name’]), $_SESSION[’user_id’], $date,
$duration)

Listing 3.18: Inserting a session addsession.php, SCARF

UPDATE sessions SET user_id=$_POST[’chair’] WHERE
session_id=$_GET[’session_id’]

Listing 3.19: Updating a session in editsession.php, SCARF

Webid and DNScript MACE did not report any conflicts in these two applications.

Vulnerability & Inconsistency Reports. Table IV shows the breakdown of the number of inconsis-

tencies reported by our tool. The inconsistencies between various types of query pairs (insert-insert,

insert-update and insert-delete). Together with Table III, we see that MACE is precise and produces

no false positives. This low FP rate is due to the use of authorization 4-tuple to model the authorization

state of sessions at the server. Using the reports generated by the tool (including the locations of the

queries and the missing authorization), a developer can proceed to fix the application.

3.4.3 Performance & Scalability

We evaluated MACE on a suite of Web applications with different sizes ranging from 1K to 90K.

Columns 2-3 in Table II show the size and number of php files in the applications, and column 4 gives

an estimation of the number of query (insert-update-delete) locations (in source).
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TABLE V: ANALYSIS OF QUERIES

Application # query-path pairs # query-authzInfoinsert update delete pairs
phpns 2564 222 920 78

DCPPortal 56 60 58 158
DNScript 8 2 13 26

myBloggie 5 0 2 40
miniBloggie 3 9 1 3

SCARF 4 26 12 19
WeBid 131 22 7 323

Table II (column 6) shows the total analysis time for each Web application ranging from 35 seconds

to 35093 seconds. About %95 of the analysis time has been spent to create the dependency graphs and

enumerate execution paths.

The increase in the number of possible paths increases the number of created symbolic queries.

However, the number of distinct symbolic queries may still remain relatively low as shown in the last

column of Table V, where we present the number of unique symbolic queries and their authorization

information 4-tuple. Currently, MACE analyzes each file separately and builds the aggregated contexts

when all the queries are gathered. The performance of MACE can be improved, especially if we sum-

marize recurring contexts for basic user-defined functions. Since MACE is a static tool, the analysis

times are quite acceptable for the benefits provided by the tool.

3.4.4 Annotation Effort

To run MACE, we manually identify the 4-tuple variables for each of the applications as hints for

our tool. Developers typically use global and super-global variables (e.g., in SESSION or COOKIE) to

represent user roles, user IDs, and the possible permissions for the logged-in users. These variables
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are further used to hold the authentication and authorization-related values throughout the program.

Table XI in Appendix A shows the variables we identified as hints for our programs.

The manual annotations are developed by observing the session management functions in login

procedures. In our experience, developing these annotations is not hard for users familiar with the ap-

plication, and certainly for developers who coded the application. To objectively measure the annotation

effort, we performed a user-study experiment. To assist this experiment, MACE was extended to auto-

matically generate a list of global and superglobal variables, which are used in if-statements, which is a

superset of authorization variables. This list is then refined to exclude user input variables (such as GET

and POST superglobals), and is provided as a starting point to the user.

To measure the effort needed to identify the 4-tuple, we asked a graduate student who had basic

knowledge about Web applications to develop these annotations. We provided the application sources

and the globals list generated by MACE. The student was provided the mybloggie and phpns appli-

cations, which are mid-tier applications in our benchmark suite. She was able to produce annotations

that matched our own annotations for both the applications, and took about 50 minutes for generating

and verifying the annotations. This experiment lends evidence that only modest efforts are required in

providing annotations. We also note that our experience with providing such annotations is consistent

with prior work in web access control that makes use of similar annotations (30; 31). Given the number

of unknown vulnerabilities identified by MACE, we believe such annotation-assisted automated bug

finding is an attractive alternative to weeks of human effort and manual code inspection.
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3.5 Summary

This Chapter presents MACE, a static analysis tool to detect authentication and authorization vul-

nerabilities in web applications. By analyzing the resource access operations and building an access

model for each resource, MACE is able to find inconsistencies in access control logic throughout the

web application.

We have shown the MACE is scalable and effective in detecting privilege escalation vulnerabilities

precisely. MACE is also the first tool reported in the literature to identify a new class of web application

vulnerabilities called Horizontal Privilege Escalation (HPE) vulnerabilities. MACE works on large

codebases, and discovers serious, previously unknown, vulnerabilities in 5 out of 7 web applications

tested. Without MACE, a comparable human-driven security audit would require weeks of effort in

code inspection and testing.
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RETROFITTING LOGIC VULNERABILITIES IN WEB APPLICATIONS

Previously published as Maliheh Monshizadeh, Prasad Naldurg, V. N. Venkatakrishnan.

Patching Logic Vulnerabilities for Web Applications using LogicPatcher. In Proceedings of

The 6th ACM Conference on Data and Application Security and Privacy (CODASPY) 2016,

New Orleans, LA, 2016.

Logic vulnerabilities cause a program to operate incorrectly or exhibit unexpected behavior. The

ability to fix security-sensitive logic vulnerabilities in web applications, caused by incorrect control

checks or improper data computation, is an important requirement in the SANS Critical Security Control

(CSC) (32) for effective cyber-defenses.

Application Inconsistency Vulnerabilities (AIVs) - as a subset of logic vulnerabilities - are caused

by lack of consistency in the design or implementation of security checks. Some of them include:

- E-commerce logic inconsistencies These vulnerabilities result from inconsistent checking of busi-

ness validation logic in the application code. Prior work on detecting these vulnerabilities include

using model checking (33), modeling correct payment logics combined with static analysis (34),

and invariant generation and blackbox testing (35). In all these cases, the vulnerability analysis

tools report inconsistencies in checks, and these inconsistencies are subsequently verified for the

presence of vulnerabilities.

57
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- Client-server inconsistencies The validation performed by client-side JavaScript can be used as a

specification to check the server-side for vulnerabilities. (36; 29; 37) take this approach towards

vulnerability detection. In this case, the vulnerability is a client-side check that must have been

performed by the server.

- Access control inconsistencies Inconsistency in application authorization logic along different

execution paths result in application vulnerabilities. (38; 39; 40; 41) look for these types of

inconsistencies, which are subsequently confirmed for the presence of actual vulnerabilities.

To fix these vulnerabilities, we have designed and implemented LOGICPATCHER (42), a static anal-

ysis tool that takes a patch condition, i.e., a reported vulnerability and a path descriptor as input, and

suggests optimal or near-optimal candidate path placement locations. Using our automated tool, appli-

cation customers or system administrators can confirm and test the candidate patches instead of going

through the arduous work of manual code inspection.

4.1 High-level Goals and Challenges

The problem of fixing errors automatically is not straightforward, as it requires a thorough analysis

of large amount of source code. In the case of legacy web applications, if the vendor or the developer

of a web application is no longer in business, or simply failed to fix the problem, the burden is on the

customers of the application to either change their application or patch the vulnerabilities themselves.

Patching an application requires a thorough understanding of the application and the error, something

that deployment professionals do not have time for.

Detected vulnerabilities may be embedded deeply in the code, beyond such easily analyzable or

stand-alone constructs such as user interfaces or end-user communication modules. Manually locating
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these errors may require rigorous analysis of the source-code, with many interdependencies. Modifying

or adding code snippets to fix these errors will now imply we take extra care not to change the logic

and the functionality of the interdependent code, and only fix the vulnerable path(s). Therefore, the

requirements for a successful patch is twofold: 1) generating correct conditions for missing security

checks, and 2) the correct placement of these conditions.

At a high level, we need to identify the candidate patch locations for the application while preserving

the logic of the program. This goal becomes challenging as we do not know much about the functionality

of the program in the first place. The only information we have aside from the source code of the

application, is the reported vulnerabilities and their locations in the code.

Patch Generation: In order for the generated patch to work, it should first have the necessary instruc-

tions which will prevent the exploits. While the generated patch should work, it should not interfere

with the main functionality of the program.

Patch Placement: We need to find the proper location for the patch, which assures that the patch will

not change the logic or the functionality of the application along other execution paths. For patch gen-

eration, we rely on outputs from AIV detection tools such as Rolecast and MACE (38; 39). Our work

in patch placement is related to FixMeUp (43), a static analysis tool that suggests patches for access

control vulnerabilities. Our research finds a wider scope for solving this problem. We believe that

we can generate security patches for any type of logic vulnerability caused by missing or inconsistent

checks, with minimal guidelines about the vulnerability, and find optimal or near optimal placement of

the suggested changes directly. We summarize the contributions of our research: 1) Precise formulation

of logic vulnerabilities in order to patch the applications, 2) Design and implementation of an analysis
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tool called LOGICPATCHER, 3) Finding candidate placements of the generated patches along the vulner-

able path(s), and 4) Generation of security patches for reported logic vulnerabilities for 9 open-source

applications.

4.1.1 Vulnerabilities to Be Patched

To patch logic vulnerabilities, the developer needs to have some basic knowledge about the vulner-

ability to be able to patch it effectively. In particular three different items affect the patching process:

<C,P,E > in which C is the missing condition which needs to be added to vulnerable paths, P is the par-

ticular vulnerable path, and E is the exception handling policy the developer considers if the condition

failed at execution time.

The Conditions Set The set of missing conditions C is expressed in terms of variables, values and con-

ditional operators. For example, {strlen($password),8,>=} defines a condition on the length of the

variable $password. The variables used in C can be functions of input variables (e.g.,strlen($password))

or they can be internal variables related to server-state (e.g.,$_SESSION[’username’]). The values

also can be constants or derived from some server-state (e.g., the result of a DB query).

The Vulnerable Path(s) P is the path from the source to the sensitive operation (sink). Security analysis

tools can usually generate execution traces which shows the possibility of the exploiting the vulnerabil-

ity.

The Exception Handling Policy Set The set E defines the set of actions which are allowed to be

executed if the conditions C do not hold. For example, the developer may choose to use exit() or

die("message") or she may choose to log the failed operation in the system. The semantics of the

actions specified in E depends on the application, the usage and developer’s choice.
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4.1.2 High-level Challenges

There are some high-level challenges involved in the process of generating security patches for vul-

nerable web applications. Given that most web applications lack program specifications, our approach

should be able to work on the source code with minimal input from the developers/application admins.

That is, the patch generation and placement modules should rely on the extracted logic of program and

inferred security policies.

Missing Check Dependencies A security patch is basically a generated code snippet which is going

to be placed somewhere along the vulnerable path(s). The code snippet may contain variables which

should have semantical and syntactic values at the location they are going to be placed. Therefore, the

data dependencies for these variables should be kept intact and meaningful. Forward and backward data

dependencies of the variables used in the code snippet will assure that the dependencies are correct and

consistent along different paths and throughout the application.

The following example, derived from a real-world vulnerable application, shows a sink (the DELETE

query) in which the variables used in the query are dependent on some previous instructions. Although

the value used in the sink depends on the user input (e.g.,$_POST[’username’]), it also depends on

some server state (e.g., the data stored in users table which determines if the username is valid in the

application). If the sink missed the authentication, along with the check in Line 2, other instructions (on

validation of the username and password) should accompany the check in the patch. Therefore, we need

analysis to determine the instructions with dependencies on the input values and the server-state.

1 session_start();
2 if(isset($_POST[’username’]) && isset($_POST[’password’])){
3 $result = mysql_query("SELECT userid FROM users
4 WHERE username = " + $_POST[’username’] + " AND password = " +

$_POST[’password’]);
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5 if ($result) {
6 $_SESSION[’username’] = $_POST[’username’];
7 if($action == ’delete’){
8 $res = mysql_query("DELETE FROM posts WHERE author=" +

$_SESSION[’username’] + "AND post_ID=" + $_POST[’post_id’]);
9 if($res) echo("Deleted post successfully");}}}

Listing 4.1: Sink Control and Data Dependency

Overprotecting The patching process includes adding some code snippets (patches) to the source code

which will retrofit certain vulnerable sinks. Inserting instructions to a code will change the state of the

program (the post-conditions) from that point forward:

{P}C {Q}⇒ {P}C′ {Q′}

Changing the conditions after the security patch may affect the current functionality of the program.

Therefore, we need to make sure that the changes made to the application source code do not in any way

affect the functionality and logic of the program in the execution paths which were not vulnerable. In

particular, we need to assure that the logic of the program in other non-vulnerable paths is not changed

due to the insertion of the patch.

The path-sensitivity of the patching problem requires us to know which path it is going to retrofit.

Our analysis can gain this information about the vulnerable path from the vulnerable location (sink) and

can use this information to distinguish execution paths.

Optimization Although the main goal of automatic retrofitting of the web application against logic

vulnerabilities is to make sure that the vulnerabilities are correctly patched, but we also prefer that the

resulting web application source remains optimized in terms of both time and space. That is, we prefer to

add one patch at a location where it prevents several vulnerable locations than adding multiple patches

into multiple locations in the code. To place the patches to optimal locations in an application, our
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approach considers various scenarios with different candidate places, it then identifies which candidate

place is optimal for an application with one or multiple vulnerable sinks. More detailed discussion about

optimization of the patching process is in Subsection 4.2.4.

4.2 Approach

Figure 6 shows the overview of our approach. There are two two main steps: 1) generate the

appropriate patch, 2) place the patch in an appropriate location in the original code.

Figure 6: LOGICPATCHER Overview

Input Our approach uses general information about the vulnerability to start its analysis. This informa-

tion includes: 1) the missing condition, C, 2) the path to the vulnerable sensitive operation (sink), P, and

3) the exception policy E.

Error Handling Policy LOGICPATCHER requires an (optional) exception handling logic E as input.

If no inputs are provided, the default exception handling strategy is to terminate of the program. This

way if the placed security condition C is not met by the program state, the program terminates without

entering in a non-secure state. Though termination is one option, the developers may want to take other
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actions if a malicious input is given to the program. Logging and sending alerts to system administrators

are among popular actions that one may take after a malicious attack. To better help users of the tool

in deciding the exception handling methods, LOGICPATCHER provides an option to analyze exception

handling options in the source code (see Appendix B).

4.2.1 Patch Generation

The Missing Conditions Automatic detection tools usually report AIVs in terms of the missing condi-

tions as well as the details about the location of the vulnerability. They express these conditions in terms

of conditions on 1) user inputs or 2) conditions on the internal server state. A condition is a tuple of

<Var,Val,Rel > in which Var is the variable, Val is the value for the variable which may be a constant

value or a dynamic one, and Rel is the relational operator. Our approach can use the missing conditions

C and the vulnerable execution trace (path) P to compute the program slice for these constraints. This

program slice is called the patch.

The security conditions to be added to the patch include variables which specify the available infor-

mation context. This information context defines the type of the patch as well as the instructions which

need to be added to patch.

Program Slicing A missing condition, when inserted in code, may need to be accompanied by some

other data- and control-dependent instructions if necessary. To preserve the data dependencies, we may

add other instructions to the patch. That is, given a condition < Var,Val,Rel >, we perform back-

ward program slicing so that the variables Var and values Val involved in the condition set C will be

meaningful and valid at the patch location.
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4.2.2 Patch Placement

The problem of patch placement may seem to be trivial at first glance. However, the location of

the vulnerability is not necessarily the location where the security patch should be placed. A logic

vulnerability patch is basically a constraint written as an conditional statement. To insert an conditional

statement we need to find the starting point and the ending point for the conditional statement block.

An important challenge in patching an execution paths is to ensure that the patch does not affect

other execution paths, an occurrence we call overprotection, since adding a security condition to a path

which was not vulnerable may make that execution path unavailable, and prevent it from being executed

under legitimate circumstances. To place the generated patch, the approach should find candidate places

in the code where it can insert the beginning and ending of the conditional statement block without

interfering with other execution paths and other sinks.

Multiple Paths to one Vulnerable Sink When only some of the execution paths to a sink are vulner-

able, we need to make sure that we are fixing those vulnerable paths only and are not changing other

paths. When there are multiple execution paths to a vulnerable sink, our approach must assure that the

vulnerable(s) path is patched, as well as ensure other non-vulnerable paths remain intact. Based on this

goal, we categorize different scenarios when placing the patch.

To show these scenarios, we provide an example of a sink (a DELETE query). The code example

deletes some records from the table $table. This example derived from a real-world example in phpNS

application (simplified for more clarity). The main command to delete is executed in function.php.

1 function delete_item($table,$where) {
2 $res = mysql_query("DELETE FROM ".$table ." ".$where);
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3 log_this(’delete’,’User <i>’.$_SESSION[’username’].’</i> has
<strong>deleted</strong> a tables contents. Table: ’.$table.’
’.$where);}

Listing 4.2: Delete Query phpNS, function.php

Analysis shows that this query is vulnerable to authorization bypass in some of the paths, for in-

stance it lets the authenticated normal users to delete any comment in the system if they can guess the

comment ID (which is an incremental integer value and not hard to guess). The missing condition is to

check whether the current user is the owner (the author) of the comments and if so, she can delete the

comments. Now let us consider different scenarios where the other execution paths in the application

affect our decision about patch placement. For code in Listing 4.3, all of the paths leading to the sink

are vulnerable since both paths allow authenticated users to delete any comments.

1 if ($do == "comments") {
2 if ($_GET[’action’] == ’delete’) {
3 $where = "WHERE id =".$_POST[’id’];
4 delete_item(’comments’,$where);
5 log_this(’delete_comments’,’User <i>’.$_SESSION[’username’].’</i> has

<strong>deleted</strong> the comments: "’.$where"’);}}
6 else if($do == "all") {
7 if ($_GET[’action’] == ’delete’) {
8 delete_item(’comments’,"");
9 log_this(’delete all comments’,’User <i>’.$_SESSION[’username’].’</i>

has <strong>deleted</strong> all comments’);}}

Listing 4.3: Deleting a comment, article.php

An abstract control flow graph of this example is depicted in Figure 7 (a) where both paths to the sink

are vulnerable and therefore we can simply place the patch at the sink location. Since all of the paths

to a sink are vulnerable, then patching the query or patching the path to the query is straightforward: it

can insert the patch just before sink location. We can place the patch, which is a check for the author of
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Figure 7: a) Execution paths for Listing 4.3, b) Execution paths for Listing 4.5

the comment (users should be able to delete their own comments), in the delete_item function if this

function is used only for deleting comments. Listing 4.4 shows the candidate place for the patch.

1 function delete_item($table,$items) {
2 XXXX: placing the Patch here : XXXX
3 $res = general_query("DELETE FROM ".$table." WHERE id IN (".$items.")");
4 log_this(’delete’,’User <i>’.$_SESSION[’username’].’</i> has

<strong>deleted</strong> a tables contents. Table: ’.$table.’. Items:
’.$items);}

Listing 4.4: Patching scenario 1, phpNS, function.php

Another scenario is shown in Listing 4.5 in which only some of the paths to the query are vulnerable.

The path to deleting a comment is the vulnerable one but the other path to delete an article is not since

it restricts the query to the author of the article.

Figure 7 (b) shows the control flow representation of Listing 4.5. If we place the patch inside

delete_item function, then we are adding code to non-vulnerable paths, in which we will check for

the author of comments, and so we are injecting an irrelevant check to the code which makes the query

unavailable for those non-vulnerable paths.
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1 if ($do == "comments") {
2 if ($_GET[’action’] == ’delete’) {
3 $where = "WHERE id =".$_POST[’id’];
4 delete_item(’comments’,$where);}}
5 else if($do == "articles") {
6 if ($_GET[’action’] == ’delete’) {
7 $where = "WHERE id =".$_POST[’id’] "AND author=".$_SESSION[’userID’];
8 delete_item(’articles’,$where}}

Listing 4.5: Non-vulnerable Paths to the Sink, article.php, phpNs application

Unlike the earlier scenario, in these case, we certainly cannot patch the path at query location. To

patch the vulnerable path, we must ensure that the patch is only accessible along the vulnerable path.

Our approach finds the nearest location from the sink where the patch would not interfere with other

paths. The candidate location for this example is shown in Listing 4.6.

1 if ($do == "comments") {
2 if ($_GET[’action’] == ’delete’) {
3 $where = "WHERE id =".$_POST[’id’];
4 XXXX: placing the patch here XXXX
5 delete_item(’comments’,$where);}}
6 else if($do == "articles") {
7 if ($_GET[’action’] == ’delete’) {
8 $where = "WHERE article_ID = " .$_POST[’id’]." AND

author=".$_SESSION[’userID’];
9 delete_item(’articles’,$where);}}

Listing 4.6: Patching scenario 2, phpNS, article.php

Other Paths to Other Sinks Now consider a scenario in which some paths to the sink are vulnerable,

but the vulnerable paths are not entirely disjoint from other non-vulnerable paths to other sinks. Listing

4.7 shows the example where the code is shared with other users in the system (in this case admin

user(s)). Based on the previous solution, we may place the patch before calling function delete_item,

however, we are restricting the admin users from deleting comments of other users, where there is no

such policy in the application demanding that.
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1 if($_SESSION[’group’] == "admin"){
2 $admin = true;}
3 if ($do == "comments") {
4 if ($_GET[’action’] == ’delete’) {
5 $where = "WHERE id =".$_POST[’id’];
6 delete_item(’comments’,$where);}}
7 else if($do == "articles") {
8 if ($_GET[’action’] == ’delete’) {
9 delete_item(’articles’,"WHERE article_ID = " .$_POST[’id’]." AND

author=".$_SESSION[’userID’]);}}

Listing 4.7: Other Execution Paths in article.php

Figure 8 (a) shows this scenario. Although the nearest node to sink1 is node x, we cannot place

the the patch right after this node, because it will interfere with the non-vulnerable path.

Figure 8: a) Interference with Other Execution Paths: CFG representation of Listing 4.7, b) Interfering
Execution Paths: Non-disjoint Paths

The above example, or even the one shown in Figure 8 (b)), where two or more non-vulnerable paths

are not entirely disjoint from the vulnerable path, show that in some cases the overlap between the paths
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make it impossible to place the patch along the vulnerable path without interfering with non-vulnerable

ones.

In order to uniquely patch the vulnerable path, we need to be able to uniquely identify it. There-

fore, our approach uses Path Profiling techniques (44) to uniquely identify the execution paths in the

instrumented application. Path Profiling algorithm assigns a unique state to each execution path and

instruments the program with state transitions on each path. The changes in the transition state should

be in a way that by reaching the end of each path, we reach the same state which was assigned to the

path. Path Profiling algorithm introduced in (44) computes the state transitions efficiently.

After identifying the path, and checking for interfering paths, if inserting the condition C alone

results in interference between vulnerable and non-vulnerable paths, then the path id (hash ids generated

in path profiling) will be merged with condition C, to make it non-interfering, as shown in Listing 4.8.

1 if(C && PATH == <hash_path_x>){
2 /*vulnerable sink and its dependent instructions*/}

Listing 4.8: Merging Path Profiling info

4.2.3 Algorithm

A high-level overview of our algorithm is shown in Algorithm 4. We start our analysis by parsing

and generating the control-flow graph (CFG) of the source code. After creating the CFG, we should

identify the CFGNodes which are data- or control-dependent on the sink. This is a crucial step since we

are going to wrap the sink inside an introduced security condition C; therefore we need to also include

these dependent instructions inside the condition block so that the program executes consistently during
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Algorithm 4: Overview of the Patching Algorithm on a Single File
input : C: Missing Check
input : P: Vulnerable Path to the Vulnerable Sink
input : E: Security Exception Handling Policy

// Step 1: Generating the Patch
1 CFG := getCFG(sourceFile);
2 foreach Condition cond ∈ C do
3 instructions_before_sink,Vars, Vals := /0;
4 Vars.add(getVar(cond));
5 Vars.add(getVal(cond));

// non-constant values
// Step 1.1: Backward Program Slicing

6 for cfgNode ∈ CFG do
// Starting from sink backward

7 foreach Variable newVar ∈ cfgNode do
8 if newVar is data-control dependent on Vars then
9 Vars.add(newVar);

10 if cfgNode.include(Vars) then
11 instructions_before_sink.add(cfgNode);

// Step 2: Finding the Patch Scope: Algorithm 5
// Step 3: Patch Placement
// Step 3.1: Forward Live Variable Analysis

12 instructions_after_sink := /0;
13 for cfgNode ∈ CFG do

// Starting from sink forward
14 foreach Variable v ∈ cfgNode do
15 if v is data-control dependent on sink operation then
16 instructions_after_sink.add(cfgNode);
17 break;
18 return instructions_be f ore_sink, instructions_a f ter_sink, functionScope;

run-time. Sets instructions_before_sink and instructions_after_sink are used to gather

these dependent instructions.

Finding the right Scope The previous scenarios show that it is important to reason about the patch

and the placement of the patch with respect to other execution paths in the application.Our approach

uses static analysis techniques to generate and place the patch in a proper location and it also reasons
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about the possibility of multiple vulnerabilities and how LOGICPATCHER should generate and place the

patches so that they would also not interfere with each other.

Recall that the input to LOGICPATCHER is a vulnerable sink location P, the missing (authorization)

condition C, and the security exception handling policy E. LOGICPATCHER generate 1) the patch S

which is a set of instructions; 2) the candidate location L for the patch to be inserted in. L consists of the

patch context (i.e., filename where the patch introduced), and two candidate locations to insert the start

and ending of the missing condition.

First our approach needs to identify the function context where we should inject the missing condi-

tion. Since the execution paths are intra- and inter-procedural according to where in path we inject the

missing condition, LOGICPATCHER may work with different function contexts.

Consider this sequence of function calls f() − > g() − > h() where function fcalls function g

and also function g can call function h and function h includes the vulnerable sink. The first challenge is

identify the proper function context; that is, whether LOGICPATCHER should add the missing condition

to function h(), g() or f().

To answer this question we should think about our second goal: not to overprotect the application,

which means that we should not add the condition to the execution paths which were not vulnerable in

the first place. So we first examine the number of function calls to each of this functions – starting from

the innermost function h() and going backward to f() – and if the sequence of such function calls

includes paths which are not vulnerable we go one step backward.

After this step, the location of the function is found and the scope of the variables involved in the

patch is identified. Now LOGICPATCHER needs to find the start and end block for the condition itself.
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Algorithm 5: Finding the candidate file and scope
input : CFGNode vuln_sink, List vulnerablePaths, missingAuthzCheck
input : Candidate file name, Candidate start point, candidate end point

1 Function(findFunction(h)) currentFunction := h;
2 callerFunctions := all callGraphNodes who call currentFunction;
3 if callerFunctions.size == 1 then

// only one path
4 candidate patch function := currentFunction;
5 else if callerFunctions are all in vulnerable paths then

// all paths leading to the currentFunction are vulnerable
// so we can patch the current function

6 candidate patch function := currentFunction;
7 else

// traverse backward
// and put the check before calling the currentFunction

8 foreach function f ∈ callerFunctions do
9 findCandidatePatchFunction(f);

The start point for the condition can come just before the vulnerable sink inside the candidate function

f.

For the end point of the check, we first need to analyze the data dependencies after the sink. To

address this problem, we do an inter-procedural Live Variable Analysis (LVA) on the output of the

sink operation to find the scope of the code where the output is still live. This analysis may add other

variables to the set due to data dependencies.

Live Variable Analysis A patch puts the vulnerable sink inside an conditional statement block with the

condition C. If we simply put only the sink inside a conditional statement, we may change the original

semantics of the application. Merely including the sink instruction to the conditional statement block

may make other instructions after the sink invalid. Listing 4.9 shows an example where the result of the

query is used to other operations.
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1 result = execute_query(...);
2 if(result){ echo("successful transaction.");}
3 else{ handle_exception();}

Listing 4.9: Result of sink is used for another operation

Now one only puts the sink (the query) inside the condition block, then the result value would not

be accessible for paths which do not execute the true branch of condition C. Therefore, our approach

needs to reason about a candidate location for ending the condition block.

1 if(missing_condition {\mytt C}){
2 result = execute_query(...);}
3 if(result){
4 do_something();}

Listing 4.10: Wrongly patched version of 4.9

The correct patch for Listing 4.9 is shown in Listing 4.11.

1 if(missing_condition {\mytt C}){
2 result = execute_query(...);
3 if(result){
4 do_something();}}

Listing 4.11: The correct patch for 4.9

What is changed in Listing 4.11 is that every instruction which is control- or data-dependent on the

value of the sink operation is now also contained by the condition block. To find all of the instructions

which are dependent on the sink value, we should first find the variables which are dependent on the

value of the sink. Each instruction which includes such variables, will be added to the instruction list

which is going to be added to the condition block.

To find the sink-dependent variables LOGICPATCHER performs forward data-control dependency

analysis starting from the sink location and put the ending of the block where the result of the sink is
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no longer used. LOGICPATCHER uses similar ideas for Live Variable Analysis to find which variables

are dependent on the sink. The implementation details of this algorithm is shown in the implementation

Section.

4.2.4 Discussion

Patching the Sink Based on the type of vulnerability and the information context available in the

execution paths, there may be two options to patch the application at the source level: 1) patching the

execution paths leading to the sensitive operations (sinks), and 2) patching the sink itself by changing

the access parameters of the sensitive operation.

For example, when the sink type is a DB query, to patch the vulnerability we may be able to augment

the query where clause if the columns in the DB table hold the condition variables. This way the query

becomes more restrictive. However, it is not always the case that the values are available for access

parameters. For example, when the missing authorization information is not available in the query or in

any of the columns of the table, we need to add the missing conditions to the execution paths leading to

the vulnerable sink.

As an example, consider the following query. This query is accessible for all logged-in users of a

blog application. The following query is detected as vulnerable because it lets the authenticated user to

delete any blog post if she can provide a valid post ID.

1 $sql = "DELETE FROM blogdata WHERE post_id=$post_id";

Listing 4.12: Query to be Patched

To patch the vulnerability, we may have the option to place the condition authorID == $_SESSION[’userID’]

in the WHERE clause in the query as shown in Listing 4.13 if the blogdata table contains the column



76

author_ID . Alternatively, we can place the condition in the path leading to the query as shown in

Listing 4.14.

1 $sql = "DELETE FROM blogdata WHERE post_id=$post_id AND author_ID=$author_id";

Listing 4.13: Patched Query

1 if(getAuthor($post_id) == $author_id || $author_id=="admin"){
2 $sql = "DELETE FROM blogdata WHERE post_id=$post_id";}

Listing 4.14: Patched Path

Patching Multiple Vulnerabilities In real world, it is often the case that an application may have more

than one logic vulnerability. It is because some logic vulnerabilities go together, i.e., they may have the

same or similar root cause(s). In patching logic vulnerabilities therefore we should examine how we can

patch the application in a way that is both 1) correct and 2) efficient. Reasoning about patching multiple

vulnerabilities is crucial because we do not want to repeat the patch(es) firstly because it may change

the logic of the program and secondly because repeating the patch at multiple locations is not time- and

space-efficient. In finding the optimal location for patching multiple vulnerabilities in an application

several scenarios may occur:

1) Vulnerabilities of the same type: A patch consists some security checks which would control values

on some variables or some server-side state. Vulnerabilities of the same type may share these checks

entirely or partially. In this scenario, we should place the checks if they are being added previously.

2) Vulnerabilities with various types, but the same root cause: In another scenario, the vulnerabilities

may be of various type and therefore they do not share the security checks in the patch, however, they

share a common prefix in the code. i.e., they share paths.



77

In this case, even though the checks themselves are not shared, but the patch may change data-

dependencies for the variables used in the patch or they may change the server-side state. Hence, we

must watch out for the instructions included in each patch to make sure they do not interfere with each

other.

3) Independent Vulnerabilities: Vulnerabilities are independent when they do not share a common

prefix in the code or they do not have the same cause. These vulnerabilities can be patch independently.

Our approach takes each vulnerability one by one and generated the candidate patch for it.

4.2.5 Limitations

LOGICPATCHER is a ’best effort’ tool which suggest security patches to developers/system admin-

istrators. A separate formal verification or manual effort must be made to verify the correctness of the

generated patches and the resulting source code. This is because of some high-level limitations which

are involved in using automated tools to patch security vulnerabilities which we discuss in the rest of

this subsection.

Lack of Program Specification The main reason that our approach cannot assure the correctness of

the patches is that our approach does not require specifications on the functionality of the program,

functions and program statements in the source code. For instance, during the patch generation, our tool

must decide which instructions should be wrapped by the security condition C. This would be much

easier if the tool had more knowledge about the sensitive instructions rather than performing static data-

and control-dependency analyses.

Although we do not verify the correctness of the patches automatically, we believe that the proposed

approach by design minimizes undesirable side-effects on the functionality of the applications. For
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instance, in the presence of interfering execution paths, as discussed in Section 4.2, we use path profiling

to prevent the introduction of new control instructions in non-vulnerable paths.

The generated patch consists of the missing condition, and its control and data dependencies. Thus,

the correctness of the generated patch depends on the correctness of the data and control dependency

analysis. We use backward program slicing and live variable analysis techniques to create the patch.

These data and control dependency techniques are performed statically and therefore they may be im-

precise. However, we use a very conservative approach to analyzing the dependencies along the execu-

tion paths and so we do not miss any dependent instructions. For instance, in backward program slicing,

even though the dependencies of DB query instructions are not available statically, our tool adds those

instructions in the patch if condition C is dependent on the result of the query and also it adds the query

string variables to the set of variables of interest. This may seem to cause overprotection problems,

however, the path profiling procedures ensure that the instructions protected by C are going to be used

only in the vulnerable path.

Cascading Sinks There are some complications involved with patching applications in which the de-

velopers use cascading sinks. Assume that the developers perform two sensitive operations (reading

and writing to db tables, or files) in the same execution path, and one of these sensitive operations is

vulnerable. The decision to whether include both sinks in the missing condition statement block or just

include the vulnerable sink depends on whether the data- and control-dependency analyses detect the

two operations as related or not. The problem may cause some side effects (as we will see in Section

4.4 under correctness discussion) on the generated patch and correctness of the code.
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4.3 Implementation

We have designed and implemented a tool which, given a list of application vulnerabilities in a

web application, it will generate security patches for the vulnerabilities and will place them in the

source-code of the application so that each sink is no longer vulnerable to that particular vulnerability.

Figure 9 shows the architecture of LOGICPATCHER in two major steps: 1) patch generation and 2) patch

placement. As shown in this figure, each phase has various analysis components. In this section we go

over the implementation of each of these components.

Figure 9: Patch Generation and Patch Placement in LOGICPATCHER

4.3.1 Inputs to LOGICPATCHER

LOGICPATCHER starts the analysis with two sets of inputs:(1) source files and (2) list of detected

vulnerabilities which is expressed as the tuple <C,P,E > (ref Sec 4.1.1) . In our experience, providing

such input does not need any additional effort. Security tools usually report the vulnerabilities with

these details.
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4.3.2 Patch Generation

To generate the security patch, LOGICPATCHER uses static data- and control-flow analysis to pre-

serve the original semantics of the program in the presence of a new security condition C. A security

condition has a set of variables and values which should be have the same semantics as other consistent

paths while used in the security condition. Therefore LOGICPATCHER uses static analysis to identify

the instructions which include these variables and values. These instruction then are then added to the

patch.

LOGICPATCHER starts with using a PHP parser and Control Flow Graph (CFG) generator to get the

CFG of the application. It then traverses the CFG of one of the consistent paths backward from the sink

location to find the related instructions to condition C’s variables and values. This analysis is intra- and

inter-procedural which enables LOGICPATCHER to reason about consistency of the patch throughout

the entire application. After adding all the related instructions to the patch, LOGICPATCHER compares

these instructions to the instructions which are in the vulnerable path P. The reason for this comparison

is that our approach avoids the insertion of instructions to a path twice as it may cause side-effects.

4.3.3 Patch Placement

As discussed in Section 4.2, along the execution path leading to the vulnerable query, there are

several candidate locations to put the patch. If we put the patch at the beginning of the entry point, we

may cause so many side-effects because other instructions are going to be affected by the patch. So the

best choice is to put it as close as possible to the query itself to minimize the side-effects.
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To find a correct place for the patch to be inserted in the code, LOGICPATCHER uses several code

analysis techniques. These techniques assure that LOGICPATCHER inserts a patch into the vulnerable

path and it does not affect other execution paths.

Path Enumeration To enumerate all of the execution paths, LOGICPATCHER uses Pixy (26) to parse

all of the PHP files in the source code and build the Control Flow Graph (CFG) of the application.

LOGICPATCHER then traverses the CFG nodes in the graph and lists all of the paths for each entry

point. It finally gathers all of the execution paths for all of the entry points in the application. Our path

enumeration is intra- and inter-procedural.

LOGICPATCHER starts uses one entry point at a time to enumerate all of the paths starting from that

entry point. For non-control instructions LOGICPATCHER adds the CFG node for the instruction to the

current path to be constructed. Each time LOGICPATCHER visits a control instruction (i.e., if-statement,

function call, function return) it changes the list which holds the paths.

For if-statements it clones a path into two different paths and puts the paths back into the list of

paths. For a function call instruction, LOGICPATCHER first saves the return address (the next instruction

to be executed after the function return) in a hash structure and then traverses the CFG for the function.

By visiting a function return, LOGICPATCHER searches the hash and adds the CFG node for the return

address to the current path.

Path Profiling As discussed in Listing 4.5, there may be cases where placement of the patch in a vulner-

able path interferes with other execution paths since it is not disjoint from the other paths and therefor

we may need to introduce extra control flags to assure that the patch is going to be added to the vul-
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nerable path only. In order to patch the vulnerable path and only the vulnerable path, LOGICPATCHER

needs to keep track of the vulnerable path and uses some criteria to uniquely identify it.

Path profiling techniques (44) enable LOGICPATCHER to achieve this goal. The path profiling con-

cept first enumerates all of the paths and assigns a unique number to paths to each sink or exit location. It

then computes the transition numbers and instruments the application. At execution time, by each transi-

tion, the computed value for the transition is going be added to the state of application. Eventually when

it reaches the sink or exit location it arrives to the same assigned number to the path. LOGICPATCHER

uses the same ideas to keep track of the vulnerable path and for efficiency it uses an abstracted version

of the path which only includes control-instructions: conditions, loops, exit, return, and function calls.

Live Variable Analysis As discussed in Section 4.2, there are instructions after the sink which need to

be included in the condition block during the patching. Since we need to know the last location where

the dependent variables are used (the result value of the sink operation is still alive), we need to perform

a backward dependency analysis, which is going to show the last location where the variables are used.

LOGICPATCHER uses Live Variable Analysis (LVA) (45) ideas to keep track of the variables which are

data- or control-dependent on the result of the sink operation.

To perform the analysis, LVA algorithm takes the current context (i.e., the current file which the

patch is going to be inserted in) as input and performs a backward analysis to compute the In, Out,

Def and Used sets. The last instruction where all sink-dependent variables are still alive is going to be

marked. The end of the condition block will be just after the marked instruction. Since the value of the

sink operation may be used in return statements and be variables in other file contexts may be dependent

on the sink, LOGICPATCHER performs intra- and inter-procedural LVA. Note that the end block will
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be inserted to the file context where the condition is going to be added, therefore the block syntax is

preserved by LOGICPATCHER.

Output LOGICPATCHER generates a candidate security patch which includes the missing condition C.

It also gives out the candidate location to place the patch which is somewhere along path P. In cases

where path profiling is needed, LOGICPATCHER produces an instrumented version of the code along

with new control conditions, which assure that the patch is only executable along the vulnerable path.

4.3.4 Discussion

There are some technical limitations associated with static analysis of programs for patching PHP

applications with current open-source tools. These problems however are not derived from the design

of LOGICPATCHER, and they do not limit the applicability of our approach for patching applications.

Object-Oriented PHP features LOGICPATCHER uses Pixy (26) for parsing and creating the control

flow graph of the application. Some complex features in PHP such as object-oriented features are not

handled by Pixy.

Path enumeration in the presence of loops Path enumeration is the most crucial component of our

approach. It is used by both for patch placement and path profiling algorithms. Therefore the precision

of path enumerates affects the precision of our tool. However, with static analysis of PHP code and

limitations in the libraries we use, there are some cases where enumerating the paths statically is a

challenge. Currently our path enumeration approach treats loops similar to if-statements and therefore

each loop is treated in two different branches: 1) it is not going to be executed and 2) it is going to be

executed once.
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TABLE VI: PHP APPLICATIONS
Application SLOC # PHP Files # of Sink locations # of Resources Vulnerability Type
phpns 2.1.1alpha 4224 30 40 13 Authz/Authc
DCPPortal 5.1.44 89074 362 308 34 param tampering/Authc/Authz
myBloggie 2.1.3 6261 59 24 5 param tampering/Authc/Authz
miniBloggie 1.1 1283 11 5 2 Authc/Authz
SCARF 1.0 978 19 13 7 Authc/Authz
SnipeGallery 9.1k 37 25 3 param tampering
SPHPBlog 26.5k 125 122 11 param tampering
PHPNews 6.4k 20 57 6 param tampering
Landshop 15.4k 88 541 9 param tampering

4.4 Evaluation

LOGICPATCHER, designed for patching PHP web applications, is implemented in Java in about 1.5K

lines of code. We use open-source tools and libraries (TAPS (27) and Pixy (26)) to get the control flow

graphs for PHP applications. The experiments described in this section were performed on a MacBook

Pro (2.4 GHz Intel, 4.0 GB RAM).

We examine 9 open-source PHP applications which are summarized in Table VI. The test suite

was picked from reported logic vulnerabilities (39; 38; 43) in PHP web applications from previous

research studies, which also gave missing conditions and path locations. The results of our evaluation are

categorized into three subsections: (1) the generated patches by LOGICPATCHER and sample patch and

patch locations suggested by our tool, (2) the precision of LOGICPATCHER on generation and placement

of the patches, and (3) scalability of our approach.

4.4.1 Candidate Patch Locations

myBloggie is a simple blogging application which lets users add, delete and update blog posts to/from

a database. The application has two types of security issues: access control and parameter tampering
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vulnerabilities. There are six privilege escalation problems in myBloggie, which allow an unauthenti-

cated user to delete and update blog posts. LOGICPATCHER generated a patch which checks the validity

of the session variables and the level of the user $userid[’level’]. The patch includes termination

instructions if the security check is not met.

miniBloggie is a blogging software with standard features such as adding, deleting, and updating blog

posts and comments. This application has one vertical privilege escalation(i.e., access to privileges in

higher role) vulnerability. LOGICPATCHER fixed miniBloggie by adding the following constraint:

1 if (isset($_SESSION[’user’]) && isset($_SESSION[’pwd’])){
2 $sql = "DELETE FROM blogdata WHERE post_id=$post_id";
3 $query = mysql_query($sql) or die("Cannot query the database.<br>" .

mysql_error());}
4 else{ header( "Location: ./login.php" );}

Listing 4.15: Patch generated for del.php, miniBloggie

SCARF is an open-source conference management software. This application is vulnerable to both ver-

tical and horizontal privilege escalation(same role different user). The vertical escalation vulnerability

is caused by lack of authorization checks in certain files. For example, in generaloptions.php the check

for administrative role is omitted which lets other users to gain access to operations in this file. Our tool

generated the following patch for the file, and placed the patch before the first sensitive operation (DB

query) in the file.

1 if ($_SESSION[’privilege’] == ’admin’){...}
2 else{ exit();}

Listing 4.16: Patch generated for generaloptions.php, SCARF
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Several horizontal escalation vulnerabilities found in SCARF are caused by use of $_GET[’session_id’]

instead of $_SESSION[’user_id’]. This vulnerability happens at the query location in the access

parameters used in the WHERE clause. Therefore, for the database columns which were identified to

hold the $_SESSION[’user_id’], LOGICPATCHER augmented the WHERE clause in the vulnerable

queries with the necessary constraints on the column values. For the WHERE clauses in which the

column was present but the value was set to $_GET[’session_id’], LOGICPATCHER replaced the

value with $_SESSION[’user_id’].

DCPPortal is an open-source content management system which is vulnerable to both vertical and

horizontal privilege escalation. The reason for vertical privilege escalation vulnerabilities is the use of

cookies from untrusted sources. LOGICPATCHER suggested using session variables instead of cookies,

preserving a one-to-one correspondence between the cookie and the session variables (username, role,

permissions, etc). We also generated the program slices with necessary computations for each of the

new session variables. For example, for checking the admin role we added:

1 session_start();
2 if($_SESSION"dcp5_member_id"] == 5){...}

Listing 4.17: Patch generated for DCPPortal

SnipeGallery a photo album application, allows users to arrange albums hierarchically by selecting a

parent category for each new album from a drop down list. By selecting a value not in that list, the

new album becomes invisible. LOGICPATCHER generated the patch to check for the availability of the

values in the list, before performing any sensitive operations, preventing the vulnerability.
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SPHPBlog is a blog system. It uses files to store blog posts, comments, rating, etc. This application

is vulnerable to parameter tampering as it does not check if the user selects values from the drop-down

list, or if it is an arbitrary value. Entered values are stored in various files, which is a security threat to

the server LOGICPATCHER generated the patch to check the values for the drop-down lists.

PHPNews is a news management software and is vulnerable to parameter tampering attacks. In ad-

min.php, the application allows administrators to modify certain files through a form which contains

name of the file as a hidden field. The server-side code fails to validate that the file name is not tam-

pered and as a result attackers can update existing files, create arbitrary files and / or corrupt files of

other applications deployed on the same web server.

Landshop is a real estate application which is vulnerable to both parameter tampering and horizontal

privilege escalation attacks. This application includes a form with a hidden field not relevant to that

form. When the value of this field is set to the ID of an existing listing (which are displayed prominently

on the site), that listing is deleted from the application whether the user is the owner or not. LOGIC-

PATCHER patched this application by 1) augmenting the WHERE clause query to include the ownership

constraints and 2) generate the program slice to create the ownership value.

phpns, In phpns, application, we have a case of non-disjoint paths because of the existence of a generic

function delete_item. This function is used to delete rows from any table in the DB and the ta-

ble (the resource) name depends on the path leading to this function. That is, in manage.php and

article.php we have:

1 delete_item(’articles’,$items_f);

Listing 4.18: manage.php, phpns
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1 delete_item(’comments’,$items_f);

Listing 4.19: article.php before the patch, phpns,

However, only one of these execution paths is vulnerable to vertical privilege escalation, and there-

fore only one of these function calls should be patched by an authorization check. In this case, we use

path profiling to restrict the path which deletes comments (Listing 4.19) to authenticated users. The

generated candidate patch is shown in Listing 4.20:

1 if($_SESSION[’username’]){//added security check, checks if the a valid
username exists in the session

2 delete_item(’comments’,$items_f);}

Listing 4.20: article.php after the patch, phpns,

4.4.2 Effectiveness

We evaluated the effectiveness of our tool by manually inspecting the generated patches. We also

compare the newer versions of applications in our test suite (if available) with our the patches. There

are two aspects to the effectiveness of LOGICPATCHER: correctness of the patches and optimizing patch

placement.

Correctness The correctness of the patching depends on: 1) the correctness of the generated patch,

and 2) the correctness of the scope and location of the patch. We have confirmed that LOGICPATCHER

could correctly patch 27 of 29 vulnerable files in 9 web applications in our test suite. As discussed in

the Limitations subsection in Section 4.2, cascading sinks are one of the reasons LOGICPATCHER might

generate incorrect or inconsistent patches. The following example in Scarf application shows the code

before and after the patch:
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TABLE VII: APPLICATION COMPLEXITY

Application # of paths # of Vulnerable
Files # of Entry-point Locations Analysis time (s)

phpns 2.1.1alpha 709 1 21 3759
DCPPortal 5.1.44 588 12 210 2452
myBloggie 2.1.3 98 7 45 1620
miniBloggie 1.1 14 1 6 732
SCARF 1.0 86 3 16 250
SnipeGallery 530 1 32 2415
SPHPBlog 251 1 76 5613
PHPNews 36 2 10 179
Landshop 362 1 44 1205

1 if (isset($_POST[’paper_id’])) {
2 query("UPDATE papers SET title=’$title’, abstract=’$abstract’, $pdfSetString

session_id=’$session’ WHERE paper_id=’$id’");
3 query("DELETE FROM authors WHERE paper_id=’$id’");}

Listing 4.21: editpaper.php, Scarf Application before the patch

1 if (isset($_POST[’paper_id’])) {
2 if($_POST[’authors’] == $_SESSION[’user’] && PATH == <hash-path1>){
3 query("UPDATE papers SET title=’$title’, abstract=’$abstract’,

$pdfSetString session_id=’$session’ WHERE paper_id=’$id’");}
4 if($_POST[’authors’] == $_SESSION[’user’] && PATH == <hash-path2>){
5 query("DELETE FROM authors WHERE paper_id=’$id’");}}

Listing 4.22: editpaper.php, Scarf Application after applying the candidate patch

As it is shown in Listing 4.22, because two different sinks exist in the same path and they are not

disjoint, the path profiling procedure will create two different hash values for the functions, and each

sink is wrapped in a different set of conditions. However, these two queries should come together to

preserve the consistency of the DB data.
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Optimization The second aspect of the effectiveness of our tool is to check whether the patch placement

was optimal. For the same missing condition C, our tool should be able to find the best location to inject

C so that multiple vulnerabilities are prevented. Currently, the path enumeration and path profiling

procedures use the information about vulnerable paths and missing conditions one at a time. If the same

missing condition causes multiple vulnerabilities and paths are disjoint from correct paths, optimal

patches are generated. However, if any interference exists in the code, then the path profiling procedure

may suggest several patch locations for multiple vulnerabilities for the same cause. We plan to address

optimizing of multiple patch placement in future work.

4.4.3 Scalability

We evaluate LOGICPATCHER on variety of web applications with sizes ranging from 1K to 90K.

as shown in Columns 2-3 in Table VI show the size and number of PHP files in the applications, and

column 4 gives an estimation of the number of sink locations (query locations, file operations, etc) in the

source-code of the applications. Column 5 in Table VI shows number of resources to be analyzed. By

resources, we mean the number of DB queries in case the vulnerabilities are related to DB operations

and number of different files when the sink type is file operation.

Table VII shows statistics about the complexity of each application. In particular, it shows the total

number of paths (column 2), the number of files which are vulnerable and need to be patched (column

3). Column 4 shows the number of program entry points, which together with the number of paths affect

the patch placement process. That is, if the number of paths increase while the number of entry points

remain the same, the number of disjoint paths would decrease. This in turn will increase the analysis

times which are shown in column 5 of Table VII. About 90% of the analysis time is spent on path
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enumeration which is used by the patch placement module. This analysis is only needed once and it

does not add any overhead to the application execution at run-time.

4.5 Summary

This Chapter discussed retrofitting of logic vulnerabilities, which are an important class of pro-

gramming flaws in web applications. The challenge in retrofitting vulnerabilities in web applications

is to patch the vulnerable locations without changing the functionality of other components in the ap-

plications. We address this challenge by developing an approach and tool called LOGICPATCHER for

patching of logic vulnerabilities. We focus on correct patch placement, i.e., identifying the precise loca-

tion in code where the patch code can be introduced, based on path profiling. We showed that identifying

the appropriate patch location as well as generating the right patch can get complicated and require deep

code analysis. We demonstrated the utility of LOGICPATCHER by testing it on large vulnerable web

applications, and we were able to successfully patch 27 of the 29 vulnerabilities.
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SYNTHESIZING SECURE CODE FOR WEB APPLICATIONS

Previously published as Nazari Skrupsky, Maliheh Monshizadeh, Prithvi Bisht, Timothy

Hinrichs, V.N. Venkatakrishnan, and Lenore Zuck. "WAVES: Automatic Synthesis of Client-

side Validation Code for Web Applications". In ASE Science Journal Vol. 1, Issue 3, pp.

121-136, Dec. 2012.

Current practices in mainstream web development isolate the construction of the client component of

an application from the server component. Not only are the two components developed independently,

but they are often developed by different teams of developers. The client component is often written

using a different programming language and platform (HTML and JavaScript in a web browser) than

the server (e.g., PHP, Java, ASP), therefore necessitating developers with different skill sets. When the

client and server are supposed to share application logic but do not, an “impedance mismatch" occurs.

In this chapter we are concerned with a specific kind of application logic: the input validation logic.

Input validation logic is the set of predicates, which are related to the input values, and should hold

during computation and storage operations. Examples of input validation include input character vali-

dation (“username does not contain special characters”), required fields (“phone number is required”)

and logical checks (“credit card expiry date in past”).

92
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Input validation on the client improves the user experience because it provides the user immediate

feedback about errors; furthermore, it often reduces network and server load. Input validation on the

server is necessary for security. For if the server assumes all the data it has been sent has been validated

by the client, a malicious user can circumvent the client, submit invalid data to the server, and exploit the

lack of server-side validation, leading to Cross-site Scripting (XSS) and SQL Injection (SQLI) attacks.

has uncovered impedance-mismatch vulnerabilities that enable takeovers of accounts and unauthorized

financial transactions in commercial and open-source websites as well as third-party cashiers (such as

PayPal and Amazon Payments).

Existing web application frameworks offer some support for client code synthesis. For example,

Google web toolkit (46) offers a way by which programmers can write new applications with a common

module (in Java) for the server and client, and client JavaScript code is automatically generated from

this common module specification. However, the burden of identifying validation logic rests entirely on

the programmer.

Compared to frameworks, a more challenging problem exists for legacy applications. In this case,

we are aware of no methodologies or tools that provide automatic support for automatic client code

synthesis or validation logic identification. Augmenting such a legacy application therefore involves

manual effort by the programmer, and often leads to independent development and therefore has the

potential to lead to security vulnerabilities.

For legacy applications manually retrofitting them with extensive client-side and server-side valida-

tion is error-prone and expensive, especially since the client and server validation must be synchronized

every time the application is updated.
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In this Chapter, we would like to address the impedance mismatch problem for legacy web applica-

tions that have no interactive client-side input validation. Our approach is to automatically examine the

source code of a web application, identify the server-side input validation logic (predicates), and repli-

cate that logic on the client. While designed for legacy applications, our approach can also be deployed

in modern web development frameworks, thereby enabling a developer writing a new application to au-

thor only the server-side validation code while the framework automatically installs the corresponding

client-side validation code. While such technology is most obviously beneficial because it simplifies a

web developer’s job, it can also help to improve the security of newly written applications. Thus our

approach has several high-level benefits:

• Improved Security. The development team can devote more resources to the design and implemen-

tation of the server code, thereby being more likely to include all the input validation necessary

for the application’s security.

• Improved Usability. Applications whose client input validation has been automatically generated

provide end users with all the input validation expected of today’s web apps.

• Greater Development Efficiency. Developers no longer write the same validation code twice since

the client code is automatically synthesized from the server code.

Our realization of this approach, WAVES (103; 102), uses program analysis to automatically extract

a logical representation of the input validation checks on the server and then synthesizes efficient client-

side input validation routines. Of particular note is that WAVES also generates code for validation

checks that involve server-side state by utilizing asynchronous requests (AJAX) to perform the required
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validation. Because such validation routines can increase server and network load, WAVES allows a

developer to choose the extent to which such validation checks are generated.

This chapter is organized as follows: Section 5.1 presents the problem by means of a running ex-

ample and the challenges our approach must overcome. In Section 5.2 we present a high level overview

of our approach. In Section 5.3 we present a detailed description of the different components of our

approach. Section 5.4 presents an evaluation. We evaluate our approach and tool over three real-world

web applications, and in Section 5.5 we conclude. Our experience indicates that our approach offers a

promising improvement to current mainstream web development practices

5.1 Running Example and Challenges

Figure 10 presents the client side interface of a simple user registration application. We will use this

application as the running example throughout the chapter. In this application, a user supplies her user

ID and her password twice (for confirmation purposes). There are three validation checks performed by

this application:

1. The characters in user ID belong to a specified character set, which in this case is all alphanumeric

characters along with a hyphen and underscore.

2. The two supplied passwords match.

3. The user ID is available for creating an account (i.e., it is not already taken by another user).

Suppose the developer authors the server component of the application and implements these checks

in server code. Our goal is to automatically synthesize the corresponding client side input validation

routines. The high-level challenges in achieving our goal include:
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Figure 10: Running Example of A Registration Form

• Automatic inference of server-side constraints. While the client side validation constraints are

expressed in terms of form fields, the server side validation may be performed in terms of server-

side variables within deeply nested control flows of the application. The server-side constraints

must be extracted and expressed in terms of the form fields.

• Validation involving the server. Sometimes validation involves server-side state (such as the

database), but moving that data to the client is often impractical because of performance, se-

curity, privacy, and/or staleness issues. For example, when a user ID is submitted to the server,

the server checks if the ID is unique in the database. Moving all the user IDs to the client is

impractical; thus, some clients asynchronously contact the server to check if the ID is unique.

The code that is generated must allow the client to asynchronously contact the server (and for the

developer to control which asynchronous validations are performed).

• Preservation of application logic and security. The code that is generated must neither compro-

mise the security of the application nor disable existing functionality.
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$userId = $_POST['uid'];
$paswd1 = $_POST['pwd1'];
$paswd2 = $_POST['pwd2'];
if (! alphanumeric( $userId ) ) 
    exit (" invalid set of chars ")
if( userInDB ( $userId ) ) 
    exit (" userid already taken")  
if(  $paswd1 != $paswd2 )
    exit (" passwords mismatch")
...
mysql_query("insert...");

register.php

<form action="register.php">
    <input id='uid'> 
    <input id='pwd1'> 
    <input id='pwd2'>

register.html

Non-interactive 
Web Application

Interactive 
Web Application

WAVES

Client-side 
code

Server-side 
code

<form action="register.php">
   <input id='uid' onchange=valUid(uid)> 
   <input id='pwd1' onchange=valPwd(pwd1, pwd2)> 
   <input id='pwd2' onchange=valPwd(pwd1, pwd2)>

register.html

register.php

$userId = $_POST['uid'];

if ( !alphanumeric ( $userId )) 
   exit("error");

if ( userInDB( $userId ) )
   exit("error");       

exit ("noerror");

ajaxStub.php
$userId = $_POST['uid'];
$paswd1 = $_POST['pwd1'];
$paswd2 = $_POST['pwd2'];
if (! alphanumeric( $userId ) ) 
    exit (" invalid set of chars ")
if( userInDB ( $userId ) ) 
    exit (" userid already taken")  
if(  $paswd1 != $paswd2 )
    exit (" passwords mismatch")
...
mysql_query("insert...");

Developer

Figure 11: WAVES: Synthesizing Client-side Validation Code.

5.2 Approach

We present an approach for improving the web application development process that alleviates

the problem of inconsistent client and server input validation: WAVES (Web Application Validation

Extraction and Synthesis). WAVES requires developers to only maintain the input validation code on

the server. WAVES then automatically synthesizes the corresponding validation code for the client.

Figure 11 shows the desired transformation of the running example1.

1For concreteness, the example shows the client implemented in JavaScript, and AJAX, and the server imple-
mented in PHP. While these languages are the ones addressed by our current prototype, the underlying techniques
used by our approach are agnostic to programming languages. Our implementation can be easily extended to
other server platforms (e.g., JSP, .NET) and client platforms (e.g., ActionScript).
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The non-interactive version of the web application is shown on the left and is comprised of the

client-side code ( register.html) and server-side code ( register.php). Guided by validation

checks in register.php, WAVES generates the interactive version of this application shown on the

right (newly added code in bold font). The retrofitted client validates each of its three fields as soon

as the data in any field changes. For instance, when the user changes uid, the client checks that only

alphanumeric characters, hyphens, and underscores appear in the user ID; additionally, the client asks

the server if the user ID is unique in the database.

WAVES breaks this transformation into four conceptually distinct phases:

(1) Server analysis WAVES performs dynamic program analysis–submitting form inputs to the server

and inspecting the sequence of instructions that the server executes. The key insight is that when the

server is given an input it accepts, the sequence of if-statements it executes contain all the input vali-

dation constraints it checks. So after submitting form field inputs that the server accepts and rewriting

the if-statements in terms of the original form field inputs, we have a list of potential input validation

constraints. We then analyze each one to determine if it is truly an input validation constraint –a con-

straint that when falsified causes the server to reject the input . Once the list has been reduced to the

set of actual input validation constraints, we identify which constraints are dependent on the server’s

environment (the dynamic constraints) and which are not (the static constraints).

In our running example, we first submit legitimate values for uid and the two passwords. The server

checks if the uid contains only the permitted characters, that the uid is unique in the database, and that

the passwords match. Finally, we separate the static constraints (the alphanumeric constraint on uid
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and the password equivalence constraint) from the dynamic constraints (the fact that the uid is unique

in the database).

(2) Client-side code generation In WAVES, once the static and dynamic constraints have been ex-

tracted from the server, we synthesize client-side code to check those constraints. The static constraints

can be checked directly by JavaScript code, but the dynamic constraints can only be checked after com-

municating with the server. So for each form field, we generate code that performs two tasks: checking

if any errors arise because of static constraints and if not, checking if any errors arise because of dynamic

constraints by asynchronously contacting the server.

(3) Server-side code generation The asynchronous messages sent by the client to check the dynamic

constraints for a form field can only be responded to by special-purpose server-side code. (The original

code assumes the user provided values for all form fields, but the client’s asynchronous messages aim

to check constraints even before the user completes the form.) These server stubs behave the same as

the original server code but operate properly when data for only one or two form fields is provided.

Different techniques can be used to generate server stubs, but we recommend code slicing. To minimize

server communication, we also recommend checking all of the dynamic constraints for a form field via

one asynchronous message.

(4) Integration Once the new client and server code has been generated, it must be integrated into the

existing client and server codebases. In this step, the developers can choose to disallow some gener-

ated code parts to be integrated into the application since there are some constraints which may reveal

information about the server state or data. How the integration is done depends on the programming
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languages for client and server, but ideally regenerating client and server code to reflect changes in the

application will require minimal additional integration effort.

5.3 Technical Description

In this section we describe each of the four phases of our approach in more detail.

5.3.1 Server Analysis

The server analysis phase of WAVES aims to discover all of the constraints on form fields that the

server enforces (Algorithm 15). Besides the URL of the web form, WAVES is given inputs for the

form that the web server accepts, i.e., a single error-free input. WAVES begins by submitting this initial

input (the success input) to the server, which returns a trace of the instructions that the server executed in

response (Algorithm 15 Line 1). Instrumenting the server to return such a trace is done offline and was

described in prior work (29). Since the success input is accepted by the server, those inputs satisfy all

of the constraints the server enforces, and consequently all the input validation constraints will appear

as if-statements in the resulting server trace. By rewriting those if-statements in terms of the original

inputs (using taint analysis of (29)), WAVES extracts the set of conditions that were true of the form

field inputs: {C1, . . . ,Cn} (Line 2).

Not each of the resulting conditions, if falsified, leads to an error. Thus, WAVES next identifies

which of the conditions (Ci) if falsified lead to an error. For each Ci, WAVES constructs inputs that

satisfy ¬Ci using a string solver (47) (Line 5) but is otherwise as similar to the original success input as

possible (Line 6). The intent is that this failure input, if rejected by the server, demonstrates that ¬Ci is

an error condition. If the server rejects a failure input, we know that the conjunction of conditions in that

trace (after rewriting them in terms of the original form field inputs) is an error condition: D1∧·· ·∧Dm
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Algorithm 6: WAVES(url, suc_input, indep)
input : url, suc_input, indep
output: Client validation code in JavaScript and server stubs in PHP.

1 trace := SUBMIT(url, suc_input);
2 C1∧·· ·∧Cn := CONSTRAINTS(trace);
3 safe := PARTITION(C1∧·· ·∧Cn, indep);
4 foreach Ci ∈ C do
5 bl := SOLVER(¬Ci);
6 bl := bl ∪ ELIMINATEVARS(suc_input, VARS(bl));
7 trace := SUBMIT(url, bl);
8 D1∧·· ·∧Dm := CONSTRAINTS(trace);
9 P = PARTITION(D1∧·· ·∧Dm, indep);

10 if SERVERACCEPTED(trace) then
11 safe := safe ∪ P;
12 else
13 errors := errors ∪ (P − safe);
14 (static, dynamic) := SPLITSTATICDYNAMIC(errors);
15 return (GENCLIENT(static),GENSERVER(dynamic));

(Line 7-8). That is, every input satisfying D1∧ ·· ·∧Dm contains at least one error. The constraints that

WAVES extracts is a collection of such error conditions (Algorithm 15 Line 13).

Simplification The algorithm described above is sound by construction (proof in Appendix C) : if

WAVES finds an error condition, then any input satisfying that condition will cause an error. But in

practice each of these error conditions is usually too weak to be useful because it includes checks on

all of the form fields. The only time the error condition is satisfied is therefore when all of the form

fields have values. One of the design goals of WAVES is to give the user real-time feedback each

time she enters a new form field value, a goal that the error conditions described so far fail to achieve.

To illustrate the issue, consider a failure input where the user ID satisfies the necessary conditions but

where the two passwords are unequal. The above algorithm would identify the following conjunction

as an error condition.
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(uid ∈ [0−9a− zA−Z_−]∗)∧

isUnique( uid )∧

(pwd1 6= pwd2)

The problem is that this constraint can only be evaluated once there are values for all three form fields.

Moreover, this constraint only ensures that if uid is alphanumeric and not already present in the database

then the passwords must be equal. While the correct simplification of this example is obvious from our

description of the application (pwd1 6= pwd2), in general we cannot soundly eliminate conjuncts from

an error condition.

The basic premise behind our simplification routine is that we have two kinds of server traces:

those with errors and those without errors. The conjunction of conditions in a trace with errors is an

error condition: any input that satisfies all the constraints is rejected by the server. The conjunction of

conditions in a trace without errors is a safe condition: no input that satisfies a safe condition is rejected

by the server. Thus, we can simplify an error condition by removing all safe conditions contained within

it (Algorithm 15 Line 13).

Unfortunately, it is just as important and difficult to simplify a safe condition as it is to simplify an

error condition. All we know is that no input satisfying all the conjuncts together causes an error. But

if WAVES knows which form fields are independent of which others in terms of all control paths (the

indep argument to Algorithm 15), it can break large safe conditions and error conditions into indepen-

dent conjunctions of constraints (Lines 3, 9). WAVES then records each independent conjunction of

constraints as either a safe condition (Line 11) or as an error condition (Line 13). Any error condition
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that is also a safe condition is eliminated as an error condition (Line 13). We found this independence

information crucial to generating practically useful error conditions.

Static and Dynamic Constraints The constraints WAVES extracts from the server are one of two

kinds: static or dynamic. Dynamic constraints depend on the server’s environment (e.g., file system

or database), while static constraints do not. The difference is important because static constraints will

never change and hence can easily be synthesized on the client, but dynamic constraints change each

time the server’s environment changes and hence for correctness can only be checked by the server. The

way WAVES identifies dynamic constraints is straightforward: any constraint referencing the server’s

environment (e.g., the database, files, sessions, global variables, time, etc.) is a dynamic constraint; all

others are static (Algorithm 15 Line 14).

Discussion One of the limitations of server-side analysis is that if the constraints enforced by the server

are complex enough, it may be that a single success input is insufficient to extract all of the constraints

enforced by the server. While we did not encounter this limitation in the applications we evaluated, to

address such forms we would apply the algorithms we developed in prior work to construct additional

success inputs automatically (29).

5.3.2 Client-side Code Generation

Generating the client code to check a collection of static and dynamic constraints is broken into two

distinct components: generating code that checks the static constraints and generating code that checks

the dynamic constraints. Recall that the static constraints can be checked directly on the client, and the

dynamic constraints require communicating with the server. For each form field, WAVES generates an



104

event handler that first checks the static constraints for an error and if none is found then checks the

dynamic constraints.

Static constraints Each static constraint is basically a conditional test on form fields that can include any

number of string and integer manipulation functions (e.g., len(trim(x))> 6 ensures the length of field x

after removing whitespace from both ends is greater than 6). Formally, each constraint is represented in

the logic of strings and integer arithmetic.

Given the static constraints that must hold of the form, we must identify which constraints are

pertinent to each form field so that each time that form field changes we can check the right constraints.

Choose too many, and the user may see error warnings for form fields that she has not even filled in;

choose too few, and she will not be warned of errors when they exist. This identification is quite simple

after converting the constraints to a canonical form (conjunctive normal form): for form field f collect

all those constraints where f occurs.

There are some static constraints which may reveal secret information about the server. For example,

the constraint password == "secret" (revealing the hard-coded password “secret”, which is a poor

security practice) should not be added to client-side code. These constraints occur rarely, and we have

not encountered any warnings of this type. The string solver can recognize constraints in which a form

field value is checked against a constant value, however it cannot identify whether this constant value

is a server-related secret. Therefore, the developer should choose to allow these type of static checks to

appear on the client-side or not.

Generating client-side code that checks the constraints for a given form field is a linear time and

space procedure, assuming the client has implementations of all the string and integer functions.
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Dynamic constraints A dynamic constraint is essentially a static constraint, which is additionally

deemed to be volatile. More precisely, constraints which directly involve the server’s environment (e.g.,

session data, database and file operations) are classified dynamic. Nested constraints are also considered

dynamic when present within the scope of a dynamic condition. Because the server’s environment may

change from the time a form is generated to the time it is submitted (e.g., the set of available user names

changes), dynamic constraints can only be checked by consulting the server.

To this end, WAVES generates and makes use of server-side stubs, which check dynamic con-

straints on the server (described in §5.3.3). When the client needs to check a form field with a dynamic

constraint, it communicates with the server asynchronously. The client-side code for checking dynamic

constraints consists of sending requests with form field values to the server and processing status changes

from the server’s responses into real-time feedback for the user.

Triggering Validation Once the client-side code is generated, we must instruct the client to execute

that code at the appropriate time and inform users when constraints have been violated. For modern

web clients, it is usually a simple matter to provide snippets of code to be executed for each of a fixed

number of events (e.g., each time the user changes the uid). Thus it is a simple matter to tell the client

to run the code that checks the appropriate constraints each time a form field changes and provide error

messages when appropriate.

5.3.3 Server-side Code Generation

The main goal in this step is to create server code that responds to an asynchronous client request to

check the dynamic constraints for a given form field. That code invokes a stub for each of the dynamic
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constraints extracted by WAVES. If any of the stubs produces an error, the server returns an error. Stub

generation is a three-step process, which we explain below with our running example.

Dependency Analysis Given a dynamic constraint in the server code, WAVES first performs a data and

control dependency analysis to compute the set of all program variables (not just form fields) on which

the dynamic constraint depends (either implicitly or explicitly). We call these the related variables.

We do this via backward analysis, starting from the dynamic constraints and working backwards in the

server code. In the running example for the dynamic constraint userInDB( $userId ), the set of

related program variables includes $userId and $_POST[‘uid’].

Program Slicing WAVES then employs off-the-shelf program slicing techniques (48) to generate the

server stubs. More precisely, we begin at the top of the code and prune out any instructions not relevant

to the related variables, stopping once we reach the dynamic constraint. The efficiency of the resulting

stubs is a direct consequence of how effective our pruning of the server code is. Prune too little, and

the stub is inefficient; prune too much, and the stub is unsound. Our pruning process was guided by the

following three criteria.

First, the server stub includes all those instructions that the result of the dynamic constraint depends

on. All assignments that have a related variable on the left hand side are retained in the server stub. For

our running example, this ensures the assignment $userId = $_POST[’uid’]; is not pruned from

the stub. Second, the server stub includes environment variables and functions that affect these vari-

ables, such as functions that read or write session values. These functions and variables may indirectly

change the control flow of the server code. Third, some instructions change the state of the server while

executing, e.g., inserts and updates in database operations, database schema changes, writing to files, as
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well as changing and setting session and cookie variables. Including statements with side-effects can

lead to inconsistent server state, since the user has not actually submitted the form, but excluding such

statements can lead to security vulnerabilities (e.g., an application outfitted to defend against denial-of-

service attacks by logging IP addresses and dropping large bursts of requests from a single IP). Thus,

WAVES allows a developer to choose whether statements with side-effects are allowed in stubs or not.

If side-effects are not allowed, and a stub includes a side-effect after pruning, that stub is eliminated and

the dynamic constraint is not checked. Note that failure to check a dynamic constraint is a source of

incompleteness, not unsoundness. In addition, none of our test applications (§5.4) required allowing the

use of side effects.

Simplification and Optimization There are some cases in which constraints on unrelated form fields

may appear in a server stub. This happens because of control dependencies introduced by if-else con-

structs in the server code, which will cause unwanted errors. As discussed in Section 5.3.1, we can

alleviate this problem by using independence information for the form fields.

5.3.4 Integration

WAVES is designed to incorporate client side validation code in new as well as legacy applica-

tions. In the previous steps, WAVES generated the code necessary to enable client-side validation of

user inputs. The integration of this generated code in an application requires minimal changes to the

application’s codebase. Installing the server code only requires uploading it to application’s directory

on the server. Installing the client code is almost as easy—it simply requires augmenting the client’s

source code to include the JavaScript file containing the generated code. Thus when that file is loaded

by the browser, it attaches all the event handlers to appropriate fields to perform validation.
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5.4 Evaluation

Implementation. The server-side analysis is implemented in Java and Lisp and builds upon our

prior work WAPTEC (29) as well as the state-of-the-art SMT solver Kaluza (47). The client-side code

generation is implemented in LISP and Java and builds on Plato (49) (a web form generator), php.js (50)

(a library of PHP functions implemented in JavaScript), and the jQuery validation module (51). The

server-side code generation is implemented in Java and builds on Pixy (26) (a tool for PHP dependency

analysis).

Test suite. We selected three medium to large and popular PHP applications. The application test

suite was deployed on a Mac Mini (1.83 GHz Intel, 2.0 GB RAM) running the MAMP application suite,

and the WAVES prototype was deployed on an Ubuntu virtual machine (2.4 Ghz single core Intel, 2.0

GB RAM).

Experiments We chose one form in each of the three applications. Two of the chosen forms ( B2Evolution

and WeBid) do not contain any client-side validation; the other form ( WebSubRev) already includes

client-side validation. The first two forms allowed end-to-end testing of our prototype tool while the

third form allowed us to compare WAVES synthesized code with validation code written manually by

developers. We discuss our experiments and experiences below.

5.4.1 Effectiveness

For each of the selected forms, we first manually analyzed the server-side code for processing the

chosen form and identified the constraints being checked — we call this the “ideal" synthesis and use

it to assess effectiveness of WAVES. For each application, Column 2 of Table VIII shows the ideal

number of constraints (static + dynamic). Static constraints, those that do not rely on server-side state,



109

Application Ideal WAVES False False Existing
Synthesis Synthesis Negatives Positives Validation

B2Evolution 10+1 7+1 3 0 0
WeBid 17+8 16+6 3 0 0
WebSubRev 5+1 4+1 1 0 5+0

TABLE VIII: WAVES SYNTHESIZED OVER 83% CONSTRAINTS SUCCESSFULLY.

dominated the total number of constraints synthesized by WAVES (27 / 35). As shown in the next

column, WAVES was able to synthesize over 83% of the constraints identified by the ideal synthesis.

False Negatives WAVES suffered from a small number of false negatives due to missed constraints

(Column 4 of Table VIII). Constraints that WAVES failed to synthesize were those it failed to extract

during the server analysis phase. One of the problems encountered was that WAVES generated form

field inputs intended to detect whether or not a particular constraint leads to an error, but the form field

inputs happened to falsify a different constraint, hence WAVES never inferred the original constraint

that caused an error. For example, a constraint in WeBid required the e-mail field to include the @

character while another constraint required the e-mail field to satisfy a regular expression. WAVES

was unable to uncover the regular expression constraint, because the input used to test if the regular

expression constraint was actually an error condition so happened to include no @, therefore, the server

rejected due to the first constraint and not the second. We attempted to avoid this problem by generating

inputs that satisfy the combination of the two constraints, where one was negated and the other was not,

but found that such constraint sets were often too complex for Kaluza to solve efficiently.



110

The second reason for missing constraints was a fundamental mismatch between the constraints

we needed to solve and the language supported by Kaluza. For example, the PHP function explode

takes a string and splits that string into an array of strings. Since Kaluza does not implement the theory

of arrays, we could not encode explode into its constraint language, and hence simply ignored any

constraint with explode. We expect that as SMT solvers that support the theory of strings mature

(there have only been two developed to date), many of these issues will be overcome, and the results for

WAVES will improve as a consequence.

False Positives Cases where the synthesized client ends up rejecting inputs that the server actually ac-

cepts are considered to be false positives (Column 5 of Table VIII). In our experiments, we did not

encounter any false positives; however, we discuss at least one conceivable case that could cause false

positives. When input validation is performed inside a loop, the number of iterations can influence the

constraint that gets extracted from a particular trace. For example, the constraint extracted from a loop

that iterates over the characters of an input of length n will check exactly n characters each time regard-

less of the subsequent lengths. In this case, any input whose length is not the same would be rejected

by the client. Properly handling this type of validation contained within loops would require assistance

from developers in the form of loop invariants. An automatable approach is to discard constraints that

are derived from within loops. We would like to note that such a solution would decrease false positives

at the expense of increasing false negatives – an advantageous tradeoff which would produce all the

benefits of client validation without any impedance of usability.

Form Interactivity One of the benefits from using WAVES is that forms retrofitted with interactivity

should improve the overall usability of the application. A synthesized client provides instant feedback
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as the user interacts with the form. For example, when the user inputs valid data, a green check mark

will appear next to the form field; conversely, invalid data will appear next to a red X, and an error

message will convey the mistake.

Applications that rely solely on the server to validate form input can be discouraging for the end-

user. For example, in the WeBid application, we noticed that the server sends a single error message

at a time. This particular form contains 25 constraints, so the user may need to resubmit that many

times–correcting a single invalid value each time. This problem is eliminated when WAVES introduces

validation into the client, because by the time the user submits the form, the values will already be

error-free.

Improved Performance The above WeBid example also illustrates that insufficient client-side valida-

tion can cause repeat submissions, which result in additional server workload and bandwidth use. In the

original form submission logic, whenever the user commits an error she needs to retransmit all form data

to the server, and the server needs to reprocess the input. Since WAVES effectively offloads validation

onto the client, the server spends less resources on form processing, and the overall performance of the

application improves. In general, the reduction of resource consumption at the server is expected when

most of the constraints are static, but if there are many dynamic constraints, our approach could have the

opposite effect. In our experiments, we observed over 75% of form fields have no dynamic constraints;

moreover, WAVES allows the developer to choose which form fields to outfit with dynamic constraint

checks.
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Application Formula Time (sec) Average Average
Complexity Stub Size(KB) Stub RT(ms)

B2Evolution 52+9 522 0.7k 23
WeBid 17+18 281 1.1k 104
WebSubRev 25+0 12921 0.9k 117

TABLE IX: PERFORMANCE MEASURES

5.4.2 Synthesized Code vs. Developer Written Code

We also compared the code WAVES synthesized with code written manually by application de-

velopers. The third application in our test suite, WebSubRev, rejected invalid inputs by employing

JavaScript. For this form, the server-side code checked 6 constraints (Column 2 in Table VIII), and the

developer written client-side code checked 5 constraints (all of which were static). WAVES generated

4 static constraints and 1 dynamic constraint, therefore synthesizing 80% of the static constraints and

100% of the dynamic constraints.

The one static constraint that WAVES could not synthesize was a regular expression check on an

array obtained from the explode function, which as described previously was problematic for Kaluza.

The one dynamic constraint discovered by WAVES but not included in the manually written client

dictates which filename extensions are accepted by the server. This constraint was not included in the

manually written client because (i) the list of permitted extensions is stored in the database and (ii) the

constraint is only checked by the server when the administrator has configured the application so that

the file field is mandatory. Checking this constraint dynamically can yield a potentially large savings

since before a potentially large file is transmitted to the server, the form can warn the user about an
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improper file type, thereby saving a potentially lengthy wait for the user while the file is transmitted

over the network. The server and network also benefit from decreased loads.

5.4.3 Other Experimental Details

We evaluated WAVES prototype on our test suite and recorded various performance measures dur-

ing execution (Table IX). In the offline phase, when WAVES performs code analysis, client and server

code generation, and installation, we measured the formula complexity of static and dynamic con-

straints. The second and third columns show static and dynamic formula complexities, which are the

total number of boolean operators and atomic constraints. The total time taken by WAVES to extract

the formula and synthesize the client is shown by the fourth column. We noted that WAVES spent most

time in either analyzing traces or solving constraints. Because WAVES is designed as an offline pro-

gram transformation tool, even if these numbers are not reduced via additional system engineering, they

should be acceptable in many situations. For each dynamic constraint, WAVES synthesized an AJAX

stub. As shown in the fifth column, the generated stubs were much smaller in size than the portion

of the application relevant to validation – in most cases less than 25% of the original LOC (stub sizes

measured in effective Lines of Code using CLOC (52)).

Once WAVES finishes execution and the results are installed, the application is ready for production.

The seventh column of Table IX shows average round trip time taken by stubs in responding to AJAX

requests. The round trip time averaged in the range of 43 to 164 milliseconds. For comparison, the sixth

column shows the average round trip time taken between client and server when users submit the full

form. We believe that in real deployment scenarios such overheads are acceptable as user interactions

typically last in the order of a few seconds and will overshadow delays associated with AJAX requests.
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5.5 Summary

The current practice of web application development treats the client and server components of the

application as two separate but interacting pieces of software. Each component is written independently,

usually in distinct programming languages and development platforms — a process known to be prone

to errors when the client and server share application logic. When the client and server are out of sync,

an “impedance mismatch" occurs, often leading to software vulnerabilities as demonstrated by recent

work on parameter tampering.

This chapter outlines the groundwork for a new software development approach, WAVES, where

developers author the server-side application logic and rely on tools to automatically synthesize the

corresponding client-side application logic. WAVES employs program analysis techniques to extract a

logical specification from the server, from which it synthesizes client code. WAVES also synthesizes

interactive client interfaces that include asynchronous callbacks whose performance and coverage rival

that of manually written clients while ensuring no new security vulnerabilities are introduced. The

effectiveness of WAVES is demonstrated and evaluated on three real-world web applications.
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PREVIOUS WORK

Parts of this chapter have been published as:

–Maliheh Monshizadeh, Prasad Naldurg, V. N. Venkatakrishnan. MACE - Detecting Privilege

Escalation Vulnerabilities in Web Applications. In Proceedings of 21st ACM Conference on

Computer and Communications Security (CCS’14), Scottsdale, AZ, 2014.

–Maliheh Monshizadeh, Prasad Naldurg, V. N. Venkatakrishnan. Patching Logic Vulnerabili-

ties for Web Applications using LogicPatcher. In Proceedings of The 6th ACM Conference on

Data and Application Security and Privacy (CODASPY) 2016, New Orleans, LA, 2016.

–Nazari Skrupsky, Maliheh Monshizadeh, Prithvi Bisht, Timothy Hinrichs, V.N. Venkatakrish-

nan, and Lenore Zuck. "WAVES: Automatic Synthesis of Client-side Validation Code for Web

Applications". In ASE Science Journal Vol. 1, Issue 3, pp. 121-136, Dec. 2012.

This chapter covers the related research in the area of web application security. We categorize previ-

ous work into three broad approaches: 1) techniques for prevention of the vulnerabilities, 2) techniques

for detection of vulnerabilities, and 3) techniques for synthesizing secure code for web applications.

While we concentrate on web applications, we also discuss similar generic software security solutions

outside the realm of web applications if necessary.
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6.1 Techniques for Prevention of Vulnerabilities

Rather than trying to find and fix the vulnerabilities, the prevention techniques focus on the enforce-

ment of the security policies at runtime.

Nemesis (30) enforces authorization properties at runtime by using Dynamic Information Flow

Tracking (DIFT) to establish a shadow authentication system that tracks user authentication state. Ac-

cess control lists can be specified by programmers, which help the system in enforcing them at runtime.

Ganapathy et al. (53), add checks to enforce authorization rules in legacy software systems, such as X

SERVER. They use a reference monitor for enforcing defined authorization policies at runtime.

CLAMP (54) uses virtual web servers to prevent authorization vulnerabilities in web applications:

by migrating the user authentication module of a web application into a separate, trusted virtual machine

(VM). All database access requests (queries) are mediated by a trusted VM that enforces defined access

control rules and restricts the queries if necessary. Diesel (55) provides a proxy-based framework to

limit database accesses at runtime. It uses the principle of least-privilege to secure the database through

developer-defined policies.

Capsules (56) develops a language-based technique which uses Object-Capability languages to iso-

late objects from each other, in order to separate web applications into components. All application state,

including capabilities to application-specific resources, are stored in a per-session data store. Compo-

nent isolation in Capsules ensures that application components are not able to tamper with each other

and a component is not able to escalate its privilege by invoking functionality provided by another com-

ponent. Capsules encourages using this capability model in developing new applications. In contrast to
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MACE, these techniques seek to re-engineer web server code, maintaining separate components/VMs

and changing trust assumptions.

Swaddler (57) is a dynamic anomaly detection tool which is able to detect several types of bugs

including workflow bugs. Swaddler has a Daikon-based invariant learning phase (14) followed by an

analysis phase which checks the invariants against the application state model. Although the Swaddler

tool uses the notion of session and checks for the presence of session variables in execution paths, it

does not take into account the access control model of the application with respect to various resources.

While these works are focused on dynamic prevention of vulnerabilities, MACE is focused on static

detection of access control vulnerabilities, and LOGICPATCHER uses static analysis of the execution

paths to precisely retrofit the vulnerabilities.

6.2 Techniques for Detection of Vulnerabilities in Legacy Web Applications

The problem of finding vulnerabilities in web applications has been studied originally in the context

of e-commerce validation logic. Vulnerability detection is a crucial step in the security analysis of an

application, whether we use detection to prevent or to retrofit the application.

Based on the program specification provided to detection tools, prior work towards detecting of

vulnerabilities can be categorized into two categories: 1) model checking techniques in which, given

pre-defined patterns and program invariants, the tool finds the anomalies; and 2) inconsistency analysis

techniques in which a differential analysis is performed on two software components to find the potential

vulnerabilities.

In the first category, we have Waler (33), which uses modeling checking combined with static anal-

ysis (34) to detect a wide range of logic vulnerabilities. Waler (33) uses a combination of static and
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dynamic analysis techniques to extract program specifications in terms of likely invariants and then uses

model checking to verify the extracted invariants. MACE is similar in its objectives to Waler as both

approaches aim to work with source code as the only specification. However, Waler is more focused on

logic errors. This limits its ability to identify access control discrepancies that require global reasoning

across the entire web application, especially related to how a particular resource is accessed in various

operations. MACE computes a more precise authorization contexts and is able to detect horizontal

privilege escalation vulnerabilities.

Engler et al. (58) also try to extract program specifications, through behavioral patterns called

beliefs. They use static analysis techniques to infer these patterns and rank them using statistical analysis

of the patterns. The patterns specified can be used to detect certain types of vulnerabilities caused by

inconsistency in the programs, such as pointer dereference and use of locks on resources.

Application Inconsistency Vulnerabilities (AIVs), as a subset of logic vulnerabilities, exist because

of inconsistent development of applications. The inconsistencies may arise from different origins,

whether it is caused by a mismatch between client and server-side code, or whether it occurs because of

dissimilarities between developer’s specified policies.

Inconsistency analysis approaches detect vulnerabilities (AIVs) by finding inconsistent design or

implementation components. RoleCast (38), Srivastava et al. (59), (39) and (40) are among the research

projects which use these techniques. Table X summarizes the research tools based on their approach

and type of vulnerability they find.

In terms of finding security logic errors, RoleCast (38) is one of the first works for web applications,

using patterns to model authorization requirements and check if any sensitive operations are performed
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TABLE X: INCONSISTENCY CHECKING ANALYSIS TOOLS
Tool Description
JIGSAW (60) Detection of resource access inconsistencies
MACE (39) Detection of authorization & authentication inconsistencies
RoleCast (38) Detection of authorization & other logic inconsistencies within authorization roles
WAPTEC (29) Detection of client and server input validation inconsistencies
NoTamper (36) Black-box detection of client and server input validation inconsistencies
Viewpoints (37) Detection of client and server input validation inconsistencies
AutoISES (40) Detection of bugs in C libraries by finding security pattern inconsistencies
Srivastava et al. (59) Detection of vulnerabilities in Java APIs by finding inconsistent API implementations

after authorization. Relatedly, MACE and AutoISES (39; 40) look at conditions along program paths

to detect inconsistencies. MACE (39) employs a precise and fine-grained authorization model that is

supported by user annotations, comparing the consistency of checking conditions across different re-

quests to the same resources along different code paths, giving it the ability to detect a larger class

of vulnerabilities. AutoISES (40) can detect bugs in standard C libraries through mining for common

security-related patterns and identifying deviations from these as vulnerabilities. Srivastava et al. (59)

detect security vulnerabilities through comparing different implementations of the same API using se-

curity policies as inputs. Any inconsistency between the security policy and any of the implementations

or between different implementations are reported as errors.

Blackbox approaches (NoTamper (36) and the approach proposed by Pellegrino et al. (61)) have

some potential to reason about access control vulnerabilities in an application, but they are inherently

limited in their ability to reason about authorization errors that manifest as a result of missing checks

along specific paths present in source code which can only be effectively gleaned through access to the

application source code.
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Input validation inconsistency detection approaches (36; 29; 37), try to find the injection attacks

(e.g., SQLI, XSS) through comparison of the client and server side sanitization logic. While NoTamper

(36) is a black-box approach to finding vulnerabilities, WAPTEC(29) and Viewpoints(37) are white-box

analysis tools which analyze PHP and Java web applications respectively.

RoleCast (8) uses common software engineering patterns to model authorization requirements and

develops techniques to check if any sensitive operation is performed after authorization. While the

advantage of using patterns is that it frees the need for developer annotations, we have noticed that the

RoleCast patterns do not hold consistently across all web applications. The approach proposed by Sun

et al. (62) detects vertical escalation vulnerabilities using static analysis. This approach builds a sitemap

of the web application, modeling the accesses to privileged webpages per role. It then checks if forced

browsing causes the privileged pages to be accessed.

Both approaches ((8) and (62)) use coarse-grained modeling of authorization requirements through

grouping the roles. They only accommodate detection of vertical escalation vulnerabilities. In contrast,

MACE employs a precise and fine-grained authorization model that is supported by user annotations of

modest effort, giving it the ability to detect a larger class of vulnerabilities, including horizontal privilege

escalation.

Doupe et al. (63) present an analysis of Execution after Redirect (EAR) vulnerabilities in web

applications. They discuss a static control flow analysis for web applications that detect EAR attacks.

While MACE is not built to detect EARs, the analysis infrastructure of MACE could be extended in a

straightforward way to detect EAR vulnerabilities. In addition, the context inference for sinks in MACE

could form the basis for automatically distinguishing benign EARs from vulnerable EARs.
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6.3 Techniques for Synthesis of Secure Code

We broadly divide the secure code generation work related to WAVES and LOGICPATCHER into

three categories: a) patching logic vulnerabilities applicable to legacy applications, b) input validation

synthesis for legacy applications, and c) applicable to newly written code. For each category, we discuss

the introduction of interactivity and its security implications.

6.3.1 Retrofitting Vulnerabilities in Legacy Applications

The problem of fixing security errors has received less attention than detection and prevention tech-

niques. Ganapathy et al. (64) study correct enforcement of authorization rules in legacy applications,

such as X SERVER using a reference monitor for authorization policies. Also, static analysis tools have

been used to generate patches in vulnerable software automatically, including repair by generating in-

variants from correct executions statically (65), placement of sanitization functions by taint analysis

(66), and searching for violations in pre-defined patterns (67), requiring to a few lines of edits in the

source code, or restricted to specific code transformations within a single procedure (68).

The work closest in spirit to LOGICPATCHER is FixMeUp(43), for fixing access control bugs in

web applications due to incorrect conditions. At a high level, LOGICPATCHER is tackling a problem of

broader scope, that of fixing logic vulnerabilities caused by missing or inconsistent checks, with min-

imal guidelines about the vulnerability. FixMeUp requires an explicit and correct high-level specifica-

tion of access control checks to generate a low-level policy specification and a program transformation

template, computed using inter-procedural backward slicing similar to LOGICPATCHER. In LOGIC-

PATCHER work, the focus is on correct patch placement in existing code, different from their statement

matching and replacement semantics. Also, we do not require explicit roles or a specification of cor-
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rect access control check in advance. LOGICPATCHER works using only correct conditions and path

identifiers as input, and optimizes patch placement directly.

6.3.2 Retrofitting Input Validation in Legacy Applications

Improper input validation, where the server fails to reject malicious inputs, allows for the possibility

of well-known security vulnerabilities such as SQL-injection, Cross-site scripting, etc. Many existing

works try to reason about missing and/or insufficient validation to detect as well as prevent these prob-

lems e.g., (69; 70; 71; 72; 73; 74). The goal of WAVES is orthogonal to these prior works because it

allows the developer to devote the entirety of her input validation development to the server and rest

assured that the client validation code will be correct by construction.

Inconsistent Client- and Server-side Validation Inconsistent client and server validation can lead to

problems, such as the parameter tampering vulnerabilities (inputs the client rejects but the server ac-

cepts) that our recent work (36; 29) established as pervasive in open source and commercial applica-

tions.

WAVES avoids these inconsistencies for applications where the server validation code is correct

by simply generating that code for the client. Two related works Ripley (75) and (76) also avoid these

inconsistencies but for applications where the client validation is correct. These two classes of work are

therefore complementary for legacy applications. Some prior works have made advances in the direction

of offering analysis that spans multiple modules (77), including the application code and database layers.

6.3.3 Synthesis of Input Validation for New Applications

The key goal of WAVES is to enable developers to write input validation routines once (on the

server) and have them replicated elsewhere (on the client). The most germane work, Ripley (75) and
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(76), could seemingly be used to meet the same objective: write validation code once (on the client)

and allow the system to automatically replicate it elsewhere (on the server). However, there is a crucial

benefit to writing validation code on the server instead of the client: all constraints, whether static (not

dependent on the server’s database, file system, etc.) or dynamic (dependent on the server’s state) can

uniformly be written on the server, but only the static constraints can easily be written on the client.

Implementing dynamic constraints on the client requires AJAX and server-side support; thus, dynamic

constraints cannot be implemented solely on the client. Furthermore, even if they could be implemented

on the client there may be privacy or security reasons to avoid doing so.

Outside the research arena, the most sophisticated tools to aid web development are found within

web development frameworks like Ruby on Rails (RoR) (78), Google Web Toolkit (GWT) (46), and

Django (79). Google Web Toolkit allows a programmer to specify which code is common to the client

and the server. However, it offers no support for a programmer in the problem of identifying and

extracting static or dynamic checks that can be performed by the client. We are only aware of the

following two tools that allow a developer to write validation in one place and have it enforced in other

places: (a) Ruby on Rails with the SimpleForm plugin (80), and (b) Prado (81). With RoR, a developer

writes the constraints that data should satisfy on the server, and SimpleForm enforces those constraints

on the client. The limitation, however, is that the constraints extracted are limited to a handful of built-

in validation routines and are implemented on the client using built-in validation of HTML5. Prado’s

collection of custom HTML input controls allows a developer to specify required validation at server-

side which is also replicated in the client using JavaScript. However, it also allows developers to specify

custom validation code for server and client thus introducing avenues for inconsistencies in client and
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server validation. WAVES, in contrast, extracts any constraints checked by the server and implements

them on the client using custom-generated JavaScript code.
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CONCLUSION

This dissertation highlights the importance of program specification inference in maintaining the

security of web applications. Current practices in web development require publishers and web ap-

plication server administrators to actively and frequently test their applications and their updates for

vulnerabilities. Lack of web development knowledge of the publishers and admins, along with the

growing complexity of current web applications calls for automated techniques in prevention, detection

and retrofitting of vulnerabilities. Traditional approaches to achieve this goal require some type of pro-

gram specification to be available to test the applications. Lack of program specifications in most of the

free web applications today, demands security analysis tools which are capable of reasoning about the

security state of the programs, and require minimal information about the functionality of the applica-

tions.

In Chapter 3, we presented MACE, a program analysis tool for automatic detection of authorization

vulnerabilities in Web applications. The tool is based on our study and characterization of different

authorization attacks and the underlying vulnerabilities. We find privilege escalation vulnerabilities by

finding inconsistencies in the authorization contexts at access request points without knowing the correct

access control policies. While the analysis is best-effort, the greatest value of MACE is in identifying

flaws in these applications using fundamental abstractions, in the absence of any authorization policy

specifications, with the benefit of finding important vulnerabilities that were not discovered earlier.
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Chapter 4 discussed LOGICPATCHER, a tool for automatically patching application inconsistency

vulnerabilities in web applications. LOGICPATCHER focuses on logic errors due to inconsistent security

checks in programs and works across a broad variety of application types, including e-commerce servers,

news servers, wikis etc. LOGICPATCHER takes a vulnerability description as input, which includes the

conditions that need to be fixed and the associated context, a description of the path in the program

where the vulnerability was found, as well as expected exception handling details. Using a combination

of backward program slicing and inter-procedural live variable analysis, in addition to standard control

and data flow analysis, LOGICPATCHER preserves data dependencies and finds the right scope to insert

the patches, without changing the logic in other non-vulnerable paths in the program.

Though LOGICPATCHER is best-effort and works without explicit functional or policy specifica-

tions, we were able to generate near-optimal patches and fix important vulnerabilities on 9 open source

PHP web applications that were previously studied in literature from the point of view of vulnerability

detection, in spite of inherent limitations such as cascading sinks. Verifying the correctness of these

patches by hand demonstrates that LOGICPATCHER works well in identifying the correct scope and

placing the patch in optimal code locations.

In Chapter 5, we introduced a new methodology for developing client validation code for web ap-

plications. Our approach, WAVES, allows the developer to improve the security of the web application

by focusing only on the server side development of validation. We developed novel techniques for auto-

matic synthesis of the client side validation. Our experimental results are promising: they indicate that

automated synthesis can result in highly interactive web applications that are competitive in terms of

performance and rival human-generated code in terms of coverage.
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Appendix A

ANNOTATION EFFORT FOR MACE

Table XI shows the set of input information (hints) we provided for our tool MACE. Gathering this

information about each application requires minimal effort and some familiarity with the applications,

as discussed in Section 3.4.4.

TABLE XI: PROVIDED ANNOTATIONS TO MACE
Application Input Variables Role Values
phpns $globalvars[’rank’],

$_COOKIE[’cookie_auth’],
$_SESSION[’auth’],
$_SESSION[’username’],
$_SESSION[’userID’],
$_SESSION[’permissions’],
$_SESSION[’path’]

(dynamic)

DCPPortal $_COOKIE["dcp5_member_id"],
$_COOKIE["dcp5_member_admin"],
$HTTP_COOKIE_VARS-
-["dcp5_member_admin"]

(dynamic)

DNScript $_SESSION[’admin’],
$_SESSION[’member’]

1for admin,
0 for non-admin

myBloggie $_SESSION[’username’],
$userid[’level’],
$_SESSION[’user_id’]

1(for admin),
2 (for normal)

miniBloggie $_SESSION[’user’] -
SCARF $_SESSION[’privlege’],

$_SESSION[’user_id’]
’admin’, ’user’

WeBid $_SESSION[’WEBID_LOGGED_IN’],
$user_data[’groups’],
$_SESSION[’WEBID_ADMIN_USER’],
$_SESSION[’WEBID_ADMIN_IN’],
$group[’can_sell’],
$group[’can_sell’],
$group[’auto_join’]

admin role flag,
user groups have
dynamic values
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Appendix B

ERROR HANDLING

As described in Section 4.3 LOGICPATCHER mines the security exception handling information

from source-code. This pre-processing step helps the user of LOGICPATCHER to consistently handle

exceptions throughout the whole application. LOGICPATCHER users can decide which of the mined

instructions should be included in E. Table XII shows some sample handling methods used by different

applications.

TABLE XII: MINED SECURITY EXCEPTIONS BY LOGICPATCHER

Application Security Exception Handling
Method

DCPPortal
no else branch
Termination
Redirect to Login page

SCARF Termination
Redirect to Login page

SPHPBlog Redirect to Login page
SnipeGallery Redirect to Login page

PHPNews Termination
Redirect to Login page

MiniBloggie Termination
Redirect to Login page

MyBloggie Termination

PHPNS Termination
Redirect to Login page

Landshop Termination
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Appendix C

PROOFS

Definition 1 (Constraint Semantics). Each constraint over variables X describes a possibly infinite set

of variable assignments to X. If C is the constraint, we denote the set of variables appearing in C

as Vars(C) and the set of assignments described by C as VA(C). The semantics of a conjunction of

constraints (which we also consider a constraint) is defined as usual.

VA(C1(x̄, ȳ)∧C2(x̄, z̄)) =

{x̄/ā, ȳ/b̄, z̄/c̄ | x̄/ā, ȳ/b̄ ∈VA(C1(x̄, ȳ)),

x̄/ā, z̄/c̄ ∈VA(C2(x̄, z̄))}

Definition 2 (Input Semantics). The input semantics for a form is the (possibly infinite) set of variable

assignments permitted by that form. A variable assignment X/A is consistent with the input semantics

∆ if there is an extension of X/A that belongs to ∆. A variable assignment X/A is inconsistent if there is

no extension of X/A belonging to ∆.

Definition 3 (Error and Safe Conditions). A constraint C is an error condition for input semantics ∆ if

every v ∈ VA(C) is inconsistent with ∆. A constraint C is a safe condition for ∆ if every v ∈ VA(C) is

consistent with ∆.

Definition 4 (Success and Failure Traces). The conjunction of constraints checked on a success trace is

a safe condition, and the conjunction of constraints checked on a failure trace is an error condition.
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Appendix C (Continued)

Definition 5 (Independence). A set of variables X is independent of the set of variables Y (where X and

Y are assumed disjoint) for input semantics ∆ if whenever the variable assignment X/A is consistent with

∆ and the variable assignment Y/B is consistent with ∆ then the assignment {X/A,Y/B} is consistent

with ∆. We say that a partitioning of variables X1 ∪ ·· · ∪Xn is independent if Xi is independent for X j

for every i 6= j. We say a partitioning is strongly independent if Xi is independent of
⋃

j 6=i X j.

Note that not all independent partitionings are strongly independent. Consider 3 variables x,y,z

where ∆ is all variable assignments except {x/a,y/b,z/c}. Then {x},{y},{z} is an independent par-

titioning because any variable assignment for x,y can be extended to an assignment in ∆; any vari-

able assignment for x,z can be extended; and any variable assignment for y,z can be extended, but

{x/a,y/b,z/c} cannot be extended to an assignment in Delta.

Theorem 1. Suppose ∆ is the input semantics for a web form. Suppose D1∧ ·· · ∧Dk ∧Ck+1∧ ·· · ∧Cn

is the conjunction of constraints for some failure trace for that form, where Vars(D1)∪·· ·∪Vars(Dk)∪

Vars(Ck+1)∪ ·· · ∪Vars(Cn) is a strongly independent partitioning for ∆ and for VA(D1 ∧ ·· · ∧Dk ∧

Ck+1∧·· ·∧Cn). Suppose that for each Di there is some Ei where (i) Ei∧F1∧·· ·∧Fm are the constraints

checked on a success trace, (ii) Vars(Ei) is independent of the rest of the variables in the conjunction

for VA(Ei∧F1∧·· ·∧Fm), and (iii) VA(Di) intersects VA(Ei). Then Ck+1∧·· ·∧Cn is an error condition

for ∆.

Proof. Let X = Vars(D1 ∧ ·· · ∧Dk ∧Ck+1 ∧ ·· · ∧Cn). Since D1 ∧ ·· · ∧Dk ∧Ck+1 ∧ ·· · ∧Cn is the con-

junction of constraints for a failure trace, D1∧ ·· ·∧Dk ∧Ck+1∧ ·· ·∧Cn is an error condition, ensuring

that each X/A in VA(D1∧·· ·∧Dk∧Ck+1∧·· ·∧Cn) is inconsistent with ∆.
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Appendix C (Continued)

Consider an assignment Vars(D1)/B such that Vars(D1)/B is in the intersection of VA(D1) and

VA(E1). Since E1∧F1∧·· ·∧Fm is on a success trace, it is a safe condition, ensuring that each assignment

in VA(Ei∧F1∧·· ·∧Fm) is consistent with ∆. Since Vars(D1)/B∈VA(Ei) and Vars(Ei) is independent of

the variables in F1∧·· ·∧Fm, we know that Vars(D1)/B ∈VA(Ei∧F1∧·· ·∧Fm) and hence Vars(D1)/B

is consistent with ∆.

By strong independence of Vars(D1) and Vars(D2∧·· ·∧Dk∧Ck+1∧·· ·∧Cn), we know that we can

combine Vars(D1)/B and any assignment (X −Vars(D1))/C in VA(D2∧ ·· · ∧Dk ∧Ck+1∧ ·· · ∧Cn) to

produce an assignment in VA(D1∧ ·· · ∧Dk ∧Ck+1∧ ·· · ∧Cn); thus, {Vars(D1)/B,(X −Vars(D1))/C}

must be inconsistent with ∆. By strong independence with respect to ∆, we see that either Vars(D1)/B

or (X −Vars(D1))/C or both must therefore be inconsistent (since if both were individually consistent,

their combination would be consistent. Since Vars(D1)/B is consistent by construction, we know that

(X −Vars(D1))/C must be inconsistent, i.e., every element of VA(D2 ∧ ·· · ∧Dk ∧Ck+1 ∧ ·· · ∧Cn) is

inconsistent, and thus D2∧·· ·∧Dk∧Ck+1∧·· ·∧Cn is an error condition. Since we chose D1 arbitrarily,

the argument applies to all Di and hence by straightforward induction we conclude that Ck+1∧ ·· ·∧Cn

is an error condition.
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 Country: 

3. Reserved Rights and Permitted Uses. 

(a) All rights and permissions the author has not granted to ACM in Paragraph 2 are
reserved to the Owner,  including without l imitation the ownership of the copyright
of the Work and al l  other proprietary r ights such as patent  or  trademark rights.  

(b) Furthermore, notwithstanding the exclusive rights the Owner has granted to ACM
in Paragraph 2(a), Owner shall have the right to do the following:

(i) Reuse any portion of the Work, without fee, in any future works written or
edited by the Author,  including books,  lectures and presentations in any and all



media .

(ii) Create a "Major Revision" which is wholly owned by the author

(iii) Post the Accepted Version of the Work on (1) the Authors home page, (2) the
Owner's institutional repository, or (3) any repository legally mandated by an
agency funding the research on which the Work is based.

(iv) Post an "Author-Izer" link enabling free downloads of the Version of Record in
the ACM Digital Library on (1) the Author's home page or (2) the Owner's
institutional repository; 

(v) Prior to commencement of the ACM peer review process, post the version of the
Work as submitted to ACM ("Submitted Version" or any earlier versions) to
non-peer reviewed servers;

(vi) Make free distributions of the final published Version of Record internally to the
Owner's employees, if applicable;

(vii) Make free distributions of the published Version of Record for Classroom and
Personal Use; (viii) Bundle the Work in any of Owner's software distributions; and 

(xi) Use any Auxiliary Material independent from the Work. 

Authors should understand that consistent with ACMs policy of encouraging
dissemination of information, each work published by ACM appears with the ACM
copyright and the following notice:

When preparing your paper for submission using the ACM templates,  you will  need to
include the r ights management and bibstrip text  blocks below to the lower left  hand
portion of the first  page. As this text will  provide rights information for your paper,
please make sure that  this  text  is  displayed and posit ioned correctly when you submit
your manuscript  for  publicat ion.

"Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions@acm.org."  

4. ACM Citation and Digital Object Identifier. 

(a) In connection with any use by the Owner of the Definitive Version, Owner shall
include the ACM citation and ACM Digital Object Identifier (DOI).
(b) In connection with any use by the Owner of the Submitted Version (if accepted)
or the Accepted Version or a Minor Revision, Owner shall use best efforts to display



the ACM citation, along with a statement substantially similar to the following: 

"© [Owner] [Year]. This is the author's version of the work. It is posted here for
your personal use. Not for redistribution. The definitive version was published
in {Source Publication}, http://dx.doi.org/10.1145/{number}." 

5. Audio/Video Recording

I  hereby grant permission for ACM to include my name, l ikeness,  presentation and
comments in any and all  forms, for the Conference and/or Publication.  

I  further  grant  permission for  ACM to record and/or  t ranscribe and reproduce my
presentation as part of the ACM Digital Library, and to distribute the same for sale in
complete or partial form as part of an ACM product on CD-ROM, DVD, webcast, USB
device,  streaming video or any other media format now or hereafter  known.

I understand that  my presentation will  not be sold separately by i tself  as a
stand-alone product without my direct consent.  Accordingly, I  give ACM the right to
use my image, voice,  pronouncements,  l ikeness,  and my name, and any biographical
material  submitted by me, in connection with the Conference and/or Publication,
whether used in excerpts or in full ,  for distribution described above and for any
associated advertising or exhibition.

A. Do you agree to the above Audio/Video Release? Yes N o

B. Auxiliary Materials, not integral to the Work

Do you have any Auxiliary Materials? Yes No 

I hereby grant ACM permission to serve files named below containing my Auxiliary
Material from the ACM Digital Library. I hereby represent and warrant that my
Auxiliary Material contains no malicious code, virus, trojan horse or other software
rout ines  or  hardware components  designed to  permit  unauthorized access  or  to
disable,  erase or otherwise harm any computer systems or software,  and I  hereby
agree to indemnify and hold harmless ACM from all liability, losses, damages,
penalties,  claims, actions, costs and expenses (including reasonable legal expense)
arising from the use of such files.

Do you agree to the above Auxiliary Materials permission statement? Yes No 

6. Third Party Materials 
In the event that any materials used in my presentation or Auxiliary Materials
contain the work of third-party individuals or organizations ( including copyrighted
music or movie excerpts or anything not owned by me),  I  understand that  i t  is  my
responsibi l i ty  to secure any necessary permissions and/or  l icenses for  print  and/or
digital publication, and cite or attach them below. 

We/I  have not  used third-party material .  
We/I  have used third-party materials  and have necessary permissions.  

7. Artistic Images
If  your paper includes images that  were created for  any purpose other than this  paper
and to which you or your employer claim copyright,  you must complete Part  IV and



be sure to include a notice of copyright with each such image in the paper.  
We/I do not have any artistic images. 
We/I have any artistic images. 

8. Representations, Warranties and Covenants 

The undersigned hereby represents,  warrants and covenants as fol lows: 

(a) Owner is the sole owner or authorized agent of Owner(s) of the Work;

(b) The undersigned is  authorized to enter  into this  Agreement and grant  the
rights included in this license to ACM;

(c) The Work is original and does not infringe the rights of any third party; all
permissions for  use of  third-party materials  consis tent  in  scope and durat ion with
the rights granted to ACM have been obtained, copies of such permissions have
been provided to ACM, and the Work as submitted to ACM clearly and accurately
indicates the credit  to the proprietors of  any such third-party materials  ( including
any applicable copyright notice), or will be revised to indicate such credit;

(d)  The Work has not  been published except  for  informal postings on non-peer
reviewed servers, and Owner covenants to use best efforts to place ACM DOI
pointers  on any such prior  post ings;  

(e) The Auxiliary Materials, if any, contain no malicious code, virus, trojan horse or
other  sof tware  rout ines  or  hardware components  designed to  permit  unauthor ized
access or to disable,  erase or otherwise harm any computer systems or software;
a n d

(f) The Artistic Images, if any, are clearly and accurately noted as such (including
any applicable copyright notice) in the Submitted Version.

I agree to the Representations, Warranties and Covenants.  

9. Enforcement. 

At ACM's expense, ACM shall have the right (but not the obligation) to defend and
enforce the rights granted to ACM hereunder,  including in connection with any
instances of plagiarism brought to the attention of ACM. Owner shall notify ACM in
writ ing as promptly as practicable upon becoming aware that  any third party is
infringing upon the rights granted to ACM, and shall reasonably cooperate with ACM
in i ts  defense or enforcement.  

10. Governing Law 



This Agreement shall  be governed by, and construed in accordance with,  the laws of
the state of New York applicable to contracts entered into and to be fully performed
therein.  
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1. Glossary

2. Grant of Rights

(a) Owner hereby grants to ACM an exclusive, worldwide, royalty-free, perpetual,
irrevocable,  transferable and sublicenseable l icense to publish,  reproduce and
distribute all  or any part  of the Work in any and all  forms of media,  now or hereafter
known, including in the above publication and in the ACM Digital Library, and to
authorize third part ies  to  do the same.  

(b) In connection with software and "Artistic Images and "Auxiliary Materials, Owner
grants ACM non-exclusive permission to publish,  reproduce and distr ibute in any
and all  forms of media,  now or hereafter known, including in the above publication
and in the ACM Digital Library.

(c) In connection with any "Minor Revision", that is, a derivative work containing less
than twenty-five percent (25%) of new substantive material,  Owner hereby grants to
ACM all rights in the Minor Revision that Owner grants to ACM with respect to the
Work, and all terms of this Agreement shall apply to the Minor Revision. 

A. Grant of Rights.  I  grant the rights and agree to the terms described above.

B. Declaration for Government Work. I am an employee of the national government
of my country and my Government claims rights to this work, or i t  is  not
copyrightable (Government work is classified as Public Domain in U.S. only)

 Are any of the co-authors,  employees or contractors of a National Government? 
Yes N o

Country: 

3. Reserved Rights and Permitted Uses. 

(a) All rights and permissions the author has not granted to ACM in Paragraph 2 are
reserved to the Owner,  including without l imitation the ownership of the copyright
of the Work and al l  other proprietary r ights such as patent  or  trademark rights.  

(b) Furthermore, notwithstanding the exclusive rights the Owner has granted to ACM
in Paragraph 2(a), Owner shall have the right to do the following:

(i) Reuse any portion of the Work, without fee, in any future works written or
edited by the Author,  including books,  lectures and presentations in any and all



media .

(ii) Create a "Major Revision" which is wholly owned by the author

(iii) Post the Accepted Version of the Work on (1) the Authors home page, (2) the
Owner's institutional repository, or (3) any repository legally mandated by an
agency funding the research on which the Work is based.

(iv) Post an "Author-Izer" link enabling free downloads of the Version of Record in
the ACM Digital Library on (1) the Author's home page or (2) the Owner's
institutional repository; 

(v) Prior to commencement of the ACM peer review process, post the version of the
Work as submitted to ACM ("Submitted Version" or any earlier versions) to
non-peer reviewed servers;

(vi) Make free distributions of the final published Version of Record internally to the
Owner's employees, if applicable;

(vii) Make free distributions of the published Version of Record for Classroom and
Personal Use;

(viii) Bundle the Work in any of Owner's software distributions; and 

(ix) Use any Auxiliary Material independent from the Work. 

When preparing your paper for submission using the ACM TeX templates,  the rights
and permissions information and the bibl iographic s tr ip must  appear  on the lower
left  hand portion of the f irst  page.

The new Authorized ACM TeX template .cls version 2.8,  automatically creates and
posit ions these text  blocks for you based on the code snippet which is
system-generated based on your  r ights  management  choice and this  par t icular
conference.

Please copy and paste the following code snippet into your TeX file
between \begin{document} and \maketitle, either after or before CCS
codes.

\CopyrightYear{2016} 
\setcopyright{acmlicensed}
\conferenceinfo{CODASPY'16,}{March 09 - 11, 2016, New Orleans, LA,
USA}
\ isbn{978-1-4503-3935-3/16/03}\acmPrice{\$15.00}
\doi{ht tp: / /dx.doi .org/10.1145/2857705.2857727}

If you are using the ACM Microsoft Word template, or still using an older
version of the ACM TeX template, or the current versions of the ACM
SIGCHI, SIGGGRAPH, or SIGPLAN TeX templates, you must copy and



paste the following text block into your document as per the instructions
provided with the templates you are using:

Permission to make digital  or hard copies of all  or part  of this work for
personal  or  classroom use is  granted without  fee provided that  copies
are not  made or  distr ibuted for  profi t  or  commercial  advantage and
that copies bear this notice and the full  citation on the first  page.
Copyrights  for  components  of  this  work owned by others  than the
author(s) must be honored. Abstracting with credit  is  permitted.  To
copy otherwise,  or republish,  to post  on servers or to redistr ibute to
lists,  requires prior specific permission and/or a fee.  Request
permissions from Permissions@acm.org.
CODASPY'16, March 09 - 11, 2016, New Orleans, LA, USA
Copyright is held by the owner/author(s).  Publication rights l icensed to
ACM.
ACM 978-1-4503-3935-3 /16 /03…$15 .00  
DOI:  ht tp: / /dx.doi .org/10.1145/2857705.2857727

NOTE: Make sure to include your article's DOI as part of the bibstrip data; DOIs will be
registered and become active shortly after publication in the ACM Digital Library

4. ACM Citation and Digital Object Identifier. 

(a) In connection with any use by the Owner of the Definitive Version, Owner shall
include the ACM citation and ACM Digital Object Identifier (DOI).
(b) In connection with any use by the Owner of the Submitted Version (if accepted)
or the Accepted Version or a Minor Revision, Owner shall use best efforts to display
the ACM citation, along with a statement substantially similar to the following: 

"© [Owner] [Year]. This is the author's version of the work. It is posted here for
your personal use. Not for redistribution. The definitive version was published
in {Source Publication}, http://dx.doi.org/10.1145/{number}." 

5. Audio/Video Recording

I  hereby grant permission for ACM to include my name, l ikeness,  presentation and
comments in any and all  forms, for the Conference and/or Publication.  

I  further  grant  permission for  ACM to record and/or  t ranscribe and reproduce my
presentation as part of the ACM Digital Library, and to distribute the same for sale in
complete or partial form as part of an ACM product on CD-ROM, DVD, webcast, USB
device,  streaming video or any other media format now or hereafter  known.

I  understand that  my presentat ion wil l  not  be sold separately as  a  s tand-alone
product without my direct consent. Accordingly, I give ACM the right to use my
image, voice,  pronouncements,  l ikeness,  and my name, and any biographical material
submitted by me, in connection with the Conference and/or Publication,  whether
used in excerpts or in full ,  for distribution described above and for any associated
advertising or exhibition.



advertising or exhibition.

Do you agree to the above Audio/Video Release? Yes N o

6. Auxiliary Material 

Any additional materials,  including software or other executables that are not
submitted for review and therefore not an integral  part  of  the work,  but  are included
for publication.

Do you have any Auxiliary Materials? Yes No 

I hereby grant ACM permission to serve files containing my Auxiliary Material from
the ACM Digital Library. I hereby represent and warrant that my Auxiliary Materials
do not knowingly and surrepti t iously incorporate malicious code,  virus,  trojan horse
or  other  sof tware  rout ines  or  hardware components  designed to  permit  unauthorized
access or to disable,  erase or otherwise harm any computer systems or software.

I agree to the above Auxiliary Materials permission statement.

This software is knowingly designed to i l lustrate technique(s) intended to defeat a
system's security.  The code has been explicit ly documented to state this fact.

7. Third Party Materials 
In the event that any materials used in my presentation or Auxiliary Materials
contain the work of third-party individuals or organizations ( including copyrighted
music or movie excerpts or anything not owned by me),  I  understand that  i t  is  my
responsibi l i ty  to secure any necessary permissions and/or  l icenses for  print  and/or
digital publication, and cite or attach them below. 

We/I  have not  used third-party material .  
We/I  have used third-party materials  and have necessary permissions.  

8. Artistic Images
If  your paper includes images that  were created for  any purpose other than this  paper
and to which you or your employer claim copyright,  you must complete Part  IV and
be sure to include a notice of copyright with each such image in the paper.  

We/I do not have any artistic images. 
We/I have any artistic images. 

9. Representations, Warranties and Covenants 

The undersigned hereby represents,  warrants and covenants as fol lows: 

(a) Owner is the sole owner or authorized agent of Owner(s) of the Work;

(b) The undersigned is  authorized to enter  into this  Agreement and grant  the
rights included in this license to ACM;



(c) The Work is original and does not infringe the rights of any third party; all
permissions for  use of  third-party materials  consis tent  in  scope and durat ion with
the rights granted to ACM have been obtained, copies of such permissions have
been provided to ACM, and the Work as submitted to ACM clearly and accurately
indicates the credit  to the proprietors of  any such third-party materials  ( including
any applicable copyright notice), or will be revised to indicate such credit;

(d)  The Work has not  been published except  for  informal postings on non-peer
reviewed servers, and Owner covenants to use best efforts to place ACM DOI
pointers  on any such prior  post ings;  

(e) The Auxiliary Materials, if any, contain no malicious code, virus, trojan horse or
other  sof tware  rout ines  or  hardware components  designed to  permit  unauthor ized
access or to disable,  erase or otherwise harm any computer systems or software;
a n d

(f) The Artistic Images, if any, are clearly and accurately noted as such (including
any applicable copyright notice) in the Submitted Version.

I agree to the Representations, Warranties and Covenants.  

10. Enforcement. 

At ACM's expense, ACM shall have the right (but not the obligation) to defend and
enforce the rights granted to ACM hereunder,  including in connection with any
instances of plagiarism brought to the attention of ACM. Owner shall notify ACM in
writ ing as promptly as practicable upon becoming aware that  any third party is
infringing upon the rights granted to ACM, and shall reasonably cooperate with ACM
in i ts  defense or enforcement.  

11. Governing Law 

This Agreement shall  be governed by, and construed in accordance with,  the laws of
the state of New York applicable to contracts entered into and to be fully performed
therein.  
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