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SUMMARY

Over the years there has been an increasing interest in probabilistically oriented Evolu-

tionary Algorithms (EAs), but it has not been until recently that these innovative methods

have been collectively recognized and achieved an independent status. By eliminating the tra-

ditionally employed genetic operators, these probabilistic EAs have been forced to adopt an

alternative approach, and in the case of Estimation of Distribution Algorithms (EDAs), proba-

bilistic graphical models have become the favored substitute. In the first major contribution of

thesis, the proposal is made to utilize a probabilistic model that has been previously overlooked

in the EDA literature, namely Hidden Markov Models (HMMs). But preferring not to com-

pletely abandon the biologically inspired genetic operations, the classical learning algorithms

used to train HMMs are largely ignored, and instead, Differential Evolution (DE) is used to

evolve the underlying constrained numerical parameters of the chosen probabilistic model. The

evolved HMMs are then used to generate likely Prefix Gene Expression Programming (PGEP)

chromosomes which encode candidate solutions, and thus provide feedback to guide this pro-

posed evolutionary search process. After the algorithm is described in detail, benchmarking

results on a set of Symbolic Regression (SR) problems are reported and this novel approach is

compared to the original PGEP method.

Besides investigating probabilistic model driven representations for SR, one other problem

that has plagued Genetic Programming (GP) and its derivatives like PGEP, is also investigated

herein. That being, numerical Constant Creation (CC) in SR. Given a mathematical formula

xiv



SUMMARY (continued)

expressed as a tree structure, the leaf nodes are either variables or constants. Such constants

are usually unknown in SR problems, and GP, as well as many of its derivatives, lack the ability

to precisely approximate these values. This is due to the inherently discrete encoding of GP-like

methods which are more suited for combinatorial searches than real-valued optimization tasks.

Previously, several attempts have been made to resolve this issue, and the dominant solutions

have been to either embed a real-valued local optimizer or to develop additional numerically

oriented genetic operators. In the second and final major contribution of this thesis, an entirely

new and unified approach to SR with CC is proposed. Again, through the adoption of the

robust real-valued optimization algorithm known as DE, constants and PGEP programs will

be simultaneously evolved in such a way that the values of the leaf nodes will be approximated

as the tree structure is itself changing. Experimental results from several SR benchmarks are

presented and analyzed. The results demonstrate the feasibility of the proposed algorithm and

suggest that exotic or computationally expensive methods are not necessary for successful CC.

xv



1. INTRODUCTION

1.1 Symbolic Regression

1.2 Overview

Given a set of numerical inputs and the corresponding outputs, one frequently wants to

find a mathematical relationship that accurately models the provided data. This is the task of

regression in general, but Symbolic Regression (SR), which may also be referred to as Symbolic

Function Identification (SFI), stands in stark contrast to conventional regression analysis. It

extends the idea of regression to accommodate the estimation of a symbolic model. This type

of regression is distinct from classical parametric regression, which is only concerned with the

estimation of a fixed number of coefficients or parameters.

Moreover, Symbolic Regression (SR) may then be considered a non-parametric regression

technique, but it is of the most generalized form. That is, SR does not assume any particular

functional form (e.g., linear or non-linear) or fixed model structure (e.g., order). Further distin-

guishing SR from other non-parametric techniques is that it is derivative free and does not rely

on smoothing or kernels in any way. Therefore, in summary, the goal of SR is to regressively

estimate a symbolic model that fits the given data and models the unknown generative process

under few assumptions.

Some of the oldest and most widely used methods meant to discover SR models belong to

the paradigm of Evolutionary Algorithms (EAs). Due to several unique characteristics and its

1
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almost ubiquitous association with SR, Genetic Programming (GP) (Koza 1992) is probably

the most popular technique used to solve this interesting computational task. While several

competing non-evolutionary SR algorithms were introduced around the same time (Langley

et al. 1983; Barzdins and Barzdins 1993), they were primarily driven by heuristics, which made

them poorly suited for discovering innovative, novel, or insightful solutions. This also severely

limited these earlier alternative techniques to well established or highly understood domains.

Thus, it has been within the broad class of meta-heuristical algorithms where almost exclusively,

all advancements in the area of SR have occurred over the past two decades since GP was first

introduced and advocated by John Koza. Virtually all meta-heuristics for SR are inspired

by biological organisms, social dynamics, evolutionary processes, or other naturally occurring

phenomena (Koza 1992; Ryan et al. 1998; Ferreira 2001; Li et al. 2005; Spector 2001; Johnson

2003; Green et al. 2004).

Accordingly, any future reference to or comment about SR will be made within the broad

context of meta-heuristics, and should be applicable to most, if not all, variants of GP unless

explicitly stated otherwise. Nevertheless, before discussing any particular approach to SR in

greater detail, a more thorough understanding of and appreciation for SR is warranted. A brief

but comprehensive and up-to-date survey of SR now follows.

1.2.1 Model Interpretability, Understandability, and Transparency

The ability to accurately model data is obviously useful, but SR does offer an interesting

combination of advantages that makes it uniquely attractive. One benefit in particular is that

of human interpretability and understandability (Kotanchek et al. 2007). Although the same
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observations could be modeled using a non-SR technique, the fitted solutions are, from a human

perspective, potentially incomprehensible and untrustworthy “black boxes”. On the contrary,

expressions discovered by any SR compliant algorithm are more like “white boxes”, which are

completely transparent and open. This permits models to be interpreted and understood,

allowing for insights into a previously enigmatic process to be more easily gained. With the

exception of Decision Tree Learning (DTL) (Looks 2005; Liu 2007), which actually only deals

with classification problems and is thus not as generally applicable as SR (Kotanchek et al.

2007), few other Machine Learning (ML) algorithms can advertise such capabilities.

More specifically, insights are revealed through the size, shape, composition, and contexts

of the structured solution. For example, in the case of a multivariate process, each input may

be either completely ignored or freely reused. Conveniently, this permits for an automatic

reduction in dimensionality through the pruning of noisy, irrelevant, or confounding inputs

(Langdon and Buxton 2004; Poli et al. 2008). After determining the significant input variables,

more succinct1, comprehensible, and authentic solutions can be found with SR. A modeled

solution will not only expose the important inputs, but also reveal their contribution to or

influence on the sole output. Furthermore, interactions and relationships between the different

inputs are captured within this same structure.

However, just because a model can be mechanically understood, does not necessarily mean

that an explanation to the underlying phenomenon will be readily apparent. Initially, a model

1It is entirely possible that contrived solutions will be significantly more complex and overly bloated
in canonical GP unless known enhancements are employed to combat and reduce bloat.
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may not make sense or even be intuitive due the unorthodox practices employed by many

of the different SR algorithms. Tools like a Computer Algebra System (CAS) (Cohen 2002)

can make the analysis of evolved formulae easier and more convenient (Poli et al. 2008). The

formulae can be automatically simplified into some standardized form, manipulated into more

compact expressions, or rewritten using algebraic and trigonometric identifies. Substitutions

may also be used when repetitive or frequent terms appear throughout the expression and a

more readable formulation is desired. Furthermore, SR models may be subjected to common

statistical analyses or visualization techniques. It should now be evident that an SR model

is immensely flexible, and its universal form allows it to be easily combined with existing

techniques that are already widely available and universally accepted.

1.2.2 Human Intervention and Domain Knowledge

As mentioned above, a model which fits the data is discovered by the chosen technique.

Typically, this is accomplished with a moderate or even a limited amount of knowledge provided

by an external supervisor. Not surprisingly, this makes SR very useful when a problem is

initially poorly understood, certain assumptions are violated or cannot be confidently made,

exploratory research is being undertaken, certain doubts about conventional wisdom exist, or

details concerning a solution’s structural properties are scarce or even nonexistent. In SR, the

supervisor is generally relieved from these perplexing issues, and the determination is done in an

unbiased and inductive fashion. So, when compared to more conventional forms of regression

analysis, SR can automatically infer an authentic model, including both the structure and
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parameters, from the data alone. Thus, the data driven paradigm of SR can reduce or even

eliminate the possibility of accidental errors, mistaken prejudices, or empirical guesses.

Although most SR algorithms have parameters that can be fine-tuned, well established

conventions exist to significantly reduce the effort needed to select good parameters, e.g., Design

of Experiments (DOE) (Bartz-Beielstein 2006). Moreover, various enhancements have tried

to automate parameter selection by means of embedded adaptive processes (Angeline 1996;

Vafaee et al. 2007). While such parameters may be problem dependent, the parameters do not

necessarily require additional information about the problem itself. These parameters are more

concerned with how the SR algorithm traverses the infinitely large landscape of all possible

solutions.

Fully transparent solutions also allow for the seamless integration of domain specific knowl-

edge provided by an expert. This can be performed either a priori or a posteriori. In the former

case, the knowledge provided by an expert must first be manually converted into the form of a

seed (Poli et al. 2008). Then, the SR system may iteratively refine the seed through its progeny

or share its genetic material with its descendants. If deemed useful, the material will survive

and prosper, otherwise it will quickly become rare and eventually extinct. Alternatively, in the

latter case, the domain specific knowledge is integrated into the model by augmenting it with

any relevant information that could improve its prediction abilities. Both cases assume some

knowledge exists, is readily available, and can be converted into a compatible form. However,

not all SR practitioners have this luxury.



6

1.2.3 Model Ensembles

Since virtually all SR algorithms are actually random stochastic processes and thus non-

deterministic, multiple plausible solutions to a single problem will be discovered. Usually after

enough repeated attempts, a good enough model will be discovered. However, when more

difficult problems are encountered, individual models may perform less than satisfactory on

average. While individually, these solutions may be unacceptable, the models can be combined

together into an ensemble (Kotanchek et al. 2007). As the whole is greater than its parts,

higher confidence and more accurate predictions can be achieved with an ensemble of diverse

independent models.

Hypothetically, certain individual models may perform poorly over particular regions of the

input space. A piecewise combination of the models might be appropriate where each model is

responsible for the region in which it performs the best. Alternatively, a consensus among the

models might be preferred. In the case of SR, the consensus could be based on some measure

(e.g., standard deviation or inter-quartile range) and an aggregated value (e.g., mean, median

or mode) (Kotanchek 2010). Now, through the use of an ensemble, large deviations from the

middle can be easily detected with outliers being identified and suppressed.

Alternatively, instead of splitting up the input space after evolution, the input space may

be divided into subsets before evolution (Kotanchek et al. 2007). After the models have been

evolved, the best model for each region is responsible for estimating unseen points. Moreover,

different functional building blocks (e.g., variables and functions) can be used to increase the

diversity of the ensemble (Kotanchek et al. 2007). This means that various models with different
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degrees of linearity and levels of complexity can be included in the ensemble as well. Overall,

an ensemble can achieve greater consistency, promote mutual reinforcement, improve accuracy,

and prevent explosive failures.

1.2.4 Summary

As it should now be apparent, the paradigm of SR is accompanied by some loss of control.

This can be hard to accept and somewhat troubling at first. But as demonstrated, it can

alleviate the supervisor from considerable responsibility and even be applied in situations were

classical or even more modern regression techniques are not appropriate. While SR bestows

transparency and flexibility, it alone does not guarantee generalization and extrapolation, assure

regularity or reproducibility, prove correctness, or promise optimality.

The trustworthiness of SR models has therefore received much attention because untrust-

worthy models stifle greater adoption of SR and cast doubt on the practical usefulness of the

models. Trustable Symbolic Regression (TSR) (Kotanchek et al. 2007) attempts to address

some of these issues by building on earlier works like (Sánchez 2000; Keijzer 2003; Valigiani

et al. 2004). The aforementioned research increases the robustness and confidence of SR when

uncertainty is involved. Unfortunately, the adoption of such improvements appears to be slow

and limited at best.



2. BACKGROUND

2.1 Prefix Gene Expression Programming

Prefix Gene Expression Programming (PGEP) is a recently devised EA algorithm which

although extremely simple in structure and function, provides for an efficient yet powerful

approach to the synthesis of computer programs. Applied to areas such as Symbolic Regression

(SR) (Li 2006), text summarization (Xie et al. 2004), and classification rule mining (Zhou

et al. 2003), Prefix Gene Expression Programming (PGEP) has been reported to outperform

many traditional ML techniques and other existing EAs. Borrowing the fixed-length linear

encoding scheme from GAs and adopting the ramified non-linear tree structures of GP, PGEP

has successfully separated the genotype from the phenotype through a static process of ontogeny.

This precise translation from the linear genotype, or chromosome, to a hierarchical realization of

the phenotype, or Expression Tree (ET), permits PGEP to maintain the advantages of an easily

modifiable and unconstrained autonomous genome, while reaping the benefits of adaptable

structures that allow for sophisticated behavior (Ferreira 2006).

An example of a linear PGEP chromosome with a fixed-length of 14 can be seen in Fig-

ure 1C and the corresponding encoded mathematical expression is visible in Figure 1B. Each

chromosome is composed of uniquely indexed elements called genes, which belong to the gene

8
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(C) Linear chromosome

Figure 1. Shows a simple example of a PGEP computer program structured as an ET, the
linearized chromosome, and the encoded mathematical expression.

set G. In the case of Figure 1, where Q1 denotes the square root and %2 represents divi-

sion, G = {+,−, ∗,%, Q, 1, 2, 3, a, b, c, d}. Typically G can be divided into two disjoint subsets,

which in the case of Figure 1 are the terminal set T = {1, 2, 3, a, b, c, d} and the function set

F = {+,−, ∗,%, Q}. As just demonstrated, T usually consists of the input variables (attributes)

and selected constants, where F contains all the functional operators with an arity greater than

1In most works, including this one, the square root function is defined as simply taking the absolute
value of the sole argument to extend the domain of the function to the negative numbers without
introducing complex numbers.

2The protected division function guards against divisions by zero by returning the worst possible
fitness. The pathological behavior of the discontinuity at zero is also commonly handled by returning a
reasonable arbitrary value like zero or one. However, it was empirically shown in (Sprogar 2008) that
such arbitrary values promote bloat and more peculiarly structured models. More sophisticated and
mathematically appealing techniques like Interval Arithmetic (IA) (Keijzer 2003) and Affine Arithmetic
(AA) (Pennachin et al. 2010) can be used to detect such pathologies during evolution over the continuous
input space of the model and not just at discrete points.
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or equal to one. It can also be seen in Figure 1 that the encoded expression naturally termi-

nates within the provided bounds. This is the preferred behavior and only results in “junk” or

superfluous genes that are ultimately harmless and thus safely ignored.

Through the adoption of a prefix notation encoding scheme, PGEP allows for the seamless

and unambiguous translation between the chromosome and the ET (Li 2006). The chromosome

in Figure 1C may then be converted to the ET in Figure 1A by iterating over genes of the

chromosome and filling out the ET in a depth-first fashion. During this translation process, the

tree continually grows by branching out according to the arity of the encountered genes. Thus,

when any node of the terminal set is encountered it naturally terminates the appropriate branch

of the ET, resulting in trees of various sizes, shapes, and complexities. The inverse translation

is accomplished by performing a standard pre-order traversal of the ET, and the order in which

a gene is visited determines its position in the linear chromosome.

For those familiar with the original Gene Expression Programming (GEP) algorithm (Fer-

reira 2006), the most noteworthy difference between GEP and PGEP is the chosen encoding

scheme which dictates the organizational structure of linear chromosomes. In GEP, an alternate

scheme termed Karva notation is used and it necessitates a breadth-first style expansion of a

linear chromosome into an ET (Ferreira 2006). As a result, GEP chromosomes are composed

of two distinct parts, namely a head and a tail. Any gene may appear in the head, but only

terminal genes are permitted in the tail. Unlike GEP, PGEP obviously makes no distinction

between a head and a tail, and simply requires that the encoded expression naturally termi-

nates. By performing a simple arity check, incomplete expressions are detected and invalid
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chromosomes are identified (Li 2006). Once identified, an invalid chromosome is replaced with

a newly generated chromosomal offspring, which is in turn subjected to the same arity test.

Additional reproductions are carried out until a valid chromosome is born.

One additional consequence of the prefix notation encoding scheme is that the gene proximity

and hierarchy present in the expression tree is maintained by the linear PGEP chromosome

(Li 2006). This phenomenon is apparent in the relationship between the internal nodes of

Figure 1A and the braces in Figure 1C. That is, when the chromosome is expanded, the

number underneath a brace indicates the order in which the root of the corresponding non-

trivial sub-tree was visited. Compared to GEP, which adopts a layered approach and scatters

genes throughout the head and tail of a chromosome, PGEP preserves the branches as a whole

and is thus easier to interpret in its linearized form. PGEP is then considered to have a more

resilient encoding as disruptive linear operations are yielded less destructive. To gain an even

more thorough understanding of the PGEP algorithm and its purported benefits, the interested

reader may wish to consult the authority on PGEP, mainly (Li 2006).

2.2 Constant Creation

2.2.1 Motivation

Probably one of the most widely used applications of GP and its extensions like PGEP,

has been to that of SR. Given a training set consisting of several cases of inputs and the corre-

sponding output, the goal is to construct a symbolic expression for an unknown mathematical

function which adequately models the training data. PGEP attempts to solve such problems

by automatically synthesizing a computer program using an evolutionary inspired approach,
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e.g., survival of fittest and natural selection. Originally identified by Koza (Koza 1992) as a

weakness of GP, the inability to discover good numerical constants has in the past prevented

GP from being successfully applied to more complex, real-world SR problems. To demonstrate,

recall the trivial example in Figure 1. Unless it was known in advance that the two was needed,

GP and PGEP would both also have to evolve an approximate value to this constant. Without

explicitly including constants in the gene set, this particular constant might be synthesized

with an expression like (x÷ x) + (x÷ x). While this is not a very exciting case, real values

of higher precision like π or any other scientific constant are more difficult to evolve without

explicit Constant Creation (CC) mechanisms.

The first real attempt to deal with the problem of CC was appropriately presented in

(Koza 1992). Named the Ephemeral Random Constant (ERC) and denoted by <, this new

terminal was used to introduce a fixed-sized pool of randomly generated constants into the initial

population. By making many constants available to the evolutionary process, new constants

can be assembled with traditional arithmetic operators and exchanged between chromosomes.

That is, the values of constants are not explicitly manipulated, but instead, multiple constants

are combined. Thus, as the evolutionary process progresses, better constants are expected to

emerge while the less useful constants should disappear. Initially, similar rational was adopted

in PGEP, but instead of small random numbers, prime numbers were used. Other, more

sophisticated proposals have followed and most of these methods can be organized into three

broad categories.
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2.2.2 Embedded Optimizers

The first category employs a second optimization algorithm that is embedded inside the GP-

like environment for a localized search. This approach then uses the optimization algorithm

of choice to “tweak” the values of the constants. Probably the most relevant literature to the

work in this thesis is that of (Zhang et al. 2007). There, Differential Evolution (DE) was

shown to significantly improve the performance of GEP on two SR problems with real-valued

constants. An additional gene called the Random Number Gene (RNG) was included in the

terminal set and independent instances of this gene were introduced into a GEP population,

both initially and via mutation. For each chromosome in the GEP population, a fresh and

independent DE population was initialized with the constants in the chromosome as a seed.

The DE algorithm was then invoked for a fixed number of generations in order to improve the

constants. As anticipated, the number of times the RNG gene appeared in a chromosome would

vary, and this quantity conveniently defined the dimensions of the corresponding DE vectors.

Once optimized, the values would be inserted back into the GEP population where normal

GEP operators were randomly applied thereafter. Although the basic idea is the same, it will

be seen later on that the method proposed herein drastically differs in the details, particularly

with respect to the embedding.

A very similar technique is described in (Cagnoni et al. 2005), but instead of DE, a bit-based

Genetic Algorithm (GA) was used. Unlike the previous work, only SR problems with integer

coefficients were considered. Other embeddable alternatives include: a gradient based search

(Topchy and Punch 2001), a moving least squares algorithm (Raidl 1998), and a simulated
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annealing inspired algorithm (Fernandez and Evett 1998). To some degree, these types of

searches seem restrictive as the optimization of constants occurs within the context of a single

chromosome. Such techniques may produce overly specialized values where the constants are

optimal but the structure and makeup of the chromosome are not. This appears to stand in

stark contrast to the improvisational search that evolutionary algorithms are so well known

for. There is also reason for concern as none of the previous authors have demonstrated how

well the solutions generalize on testing sets. Finally, assuming that these methods are applied

at every generation and to all chromosomes in a population, they can quickly become rather

computationally expensive. But to be fair, (Zhang et al. 2007) and (Cagnoni et al. 2005)

explored various levels of interleaving and (Zhang et al. 2007) also presented the best and worst

solutions as proof.

2.2.3 Special Operators

The collection of research belonging to the second category primarily focuses on numerically

oriented operators. In (Ferreira 2006), each chromosome in a GEP population was given its

own fixed-sized set of real-valued constants and the constants are inserted into an expression

tree via indices, i.e., a single gene ci for the ith associated constant. In order to introduce some

variation into the constants, a numerical mutation operator was devised. Complementing this

new operator, transposition and recombination operators were also developed to respectively

“shuffle” constants about the chromosome and “circulate” constants throughout the population.

A similar mutation operator was introduced in (Lopes and Weinert 2004), but a local search

using a hill-climbing technique was conducted over the constant terminals instead.
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Assuming that small improvements in the fitness are caused by minor changes in the con-

stants, (Ryan and Keijzer 2003) introduced two different types of mutation, namely uniform

and creep. Adopting a global table of sorted constants, indices into this table were then allowed

to be mutated instead of the actual constants. That is, the number and value of constants were

fixed throughout the entirety of a run. Similar to the work in (Ryan and Keijzer 2003), (Li

et al. 2004) proposed greedy, elitist, and temporal extensions (e.g., the first n generations or

every nth generation) to the constant mutation operators of GEP.

2.2.4 Unconventional Methods

Much of the remaining attention given to the area of constant creation has focused on

methods which are best described as unconventional. For example, a novel digit concatenation

approach driven by Grammatical Evolution (GE) was evaluated in (O’Neill et al. 2003; Dempsey

2005; Byrne et al. 2009). Unlike all the other surveyed methods, this extension was the most

harmonious with SR. That is, it too is mostly concerned with symbolic, and not direct numerical

manipulations. As opposed to some of the other methods reviewed, the digit concatenation

approach promotes incremental improvements while still permitting the quick generation of

numerically distant and unrestricted constants, which is a weakness of some of the special

operators previously reviewed in Section 2.2.3. It also has the advantage of being extremely

easy to integrate into the GE algorithm since only the grammar must be edited.

Preferring to avoid the noise introduced by non-optimal numerical constants, (Keijzer 2003)

took a considerably different approach and focused on improving the general shape of a function.

This was accomplished by a Linear Scaling (LS) technique which performs a linear regression
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on the output of the evolved program with respect to the targets in the training set. This

only introduces two new constants, specifically one for the slope and another for the intercept.

Together, these two terms shift (e.g., upward or downward) and scale (e.g., reflect, amplify, or

shrink) the shape of a program. Neither of these two constants were persistent, i.e., the constants

were not integrated into the GP chromosome and did not transcend a generation. Unfortunately,

this last method does not appear to be universally applicable as a linear relationship is assumed.

However, LS appears to be a very simple, efficient, and elegant approach to CC. It is based on

a tested analytical algorithm that guarantees optimality and requires no additional pass over

the training data.

The preliminary empirical benchmarks of LS looked promising and (Pennachin et al. 2010)

independently confirmed the reported results. However, (Valigiani et al. 2004) tested LS on

a complex real-world problem and concluded that LS exhibited a strong tendency to overfit

the training data and was consistently shown to be the worst performing method therein.

While it was theoretically proven in (Keijzer 2004) that LS is guaranteed to reduce the training

error, (Costelloe and Ryan 2009) concluded that LS by itself does not significantly improve

performance in practice. However, when LS was paired with another enhancement named No

Same Mates (NSM), statistically significant improvements were in fact observed. It was also

shown in (Keijzer 2004) that LS may be generalized to Multiple Linear Scaling (MLS) through

the use of branches or multi-genic chromosomes like those proposed in (Ferreira 2006) for GEP.
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2.3 Estimation of Distribution Algorithms

Motivated by the solid mathematical foundations of probability theory and inspired by the

combination and perturbation of solutions in the population based searches of Evolutionary

Computation (EC), Estimation of Distribution Algorithms (EDAs) are innovative search tech-

niques which fundamentally differ from their predecessors. Instead of adopting the highly un-

predictable genetic operators traditionally employed within EC based approaches, EDAs utilize

probabilistic models to effectively explore the search space for promising solutions (Larrañaga

2002; Shan et al. 2006).

Starting with a randomly initialized population, an EDA builds or learns a probabilistic

model from the most promising solutions encountered in the initial population. Usually the

most promising solutions of the population are determined by one of the commonly used global

selection strategies and the remaining undesirable solutions are discarded. The constructed

model is then sampled to generate new and possibly improved solutions which exhibit the

useful interactions inferred from a subset of the previous generation’s population. Depending

on the desired behavior, the sampling may generate a completely new population or merely

generate a smaller number of likely individuals, which are then integrated into the population

according to some substitution scheme. Once the new population has been formed, promising

solutions are again identified and the preceding probabilistic model can be iteratively updated

or simply replaced with an entirely new model. The above procedure is then conducted in

generational manner until some pre-specified termination criterion is met.
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The most interesting idea demonstrated in the EDA paradigm is that of the indirect pursuit

of solutions. Since superior individual solutions are neither directly manipulated nor evolved,

the probabilistic model must maintain an accurate and structured representation of the rela-

tionships observed between genes in the selected solutions. To what degree or extent of the

relationship is captured is determined by the limitations of the chosen model (e.g., univariate,

bivariate, or multivariate), but as a model increases in complexity, so do the computational costs

associated with approximating the model’s parameters and or structure (Pelikan et al. 2002).

The idea of identifying, capturing, and exploiting interactions between genes is very similar

to that of the building block, linkage learning, or substructure phenomena which have been

extensively studied, both theoretically and empirically, in GAs (Goldberg 1989), GP (Langdon

and Poli 2002), GEP (Ferreira 2006), and PGEP (Li 2006). Instead of relying on various meta-

heuristics controlled by experimentally derived parameters which tend to drastically fluctuate

between domains and even problems, an EDA produces likely building blocks by assembling

combinations of the dominant dependencies encoded in the model.

One type of graphical probabilistic model that has received much attention in the EDA

research and is of particular interest to the research presented hereafter, is the Bayesian Network

(BN) (Neapolitan 2004). The inherent flexibility of BNs allows for various interpretations of

the random variables associated with each node in the model’s graphical representation. For

example, in Estimation of Distribution Programming (EDP) (Yanai and Iba 2006) the objective

is to accurately model the dependencies between directly connected parent and child nodes in

promising tree-based solutions. Extensive relationships like ancestral or sibling dependencies are
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assumed to be too distant or specific, and thus ignored in EDP. As a result, the structure of the

underlying BN in EDP is restricted to a complete and directed binary tree of a pre-determined

height, and each random variable is an estimated conditional probability distribution over the

children of the identical parental position in select tree-based solutions.

As previously mentioned, EDAs indirectly discover solutions through probabilistic models

and this unique approach was briefly illustrated through the introduction of EDP. Therefore at

this point, it should be somewhat clearer as to how this indirect search is conducted. Or more

precisely, instead of searching for promising solutions in a space of tree based representations,

EDP searches for desirable solution distributions in the space of tree distributions. A solu-

tion distribution may then be conveniently interpreted as a probabilistic generalization which

satisfactorily describes the actual solution to a problem (Shan et al. 2006).

2.4 Hidden Markov Models

2.4.1 Introduction and Example

A concise definition of a Hidden Markov Model (HMM) is a finite specification of a process

that assigns probabilities to sequences of symbols or observation sequences (Upper 1997). One

convenient method commonly used to depict HMMs is a directed graph. In the graph shown

in Figure 2, each node represents a distinct hidden state and every edge signifies a unique state

transition. An individual state exercises its ability to emit an observation symbol between

transitions, but the set of observable symbols may vary from state to state and normally only

one symbol is observed per visit.
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Figure 2. An example of a sparse, partially connected three state HMM with one initial state,
twelve probabilistically observable symbols, and seven probabilistic transitions.

For example, recall the PGEP chromosome in Figure 1C. Realizing that the genes may

be treated as observable symbols, this model could generate that chromosome by visiting the

sequence of states and observing the symbols as shown in Figure 3. But to be of more practical

use, the graphical representation must be augmented with some kind of probabilistic informa-

tion reflecting the behavior of the desired process. That is, there are conditional probability

distributions which dictate the observation of symbols and the occurrence of state transitions.

s1 → s1 → s1 → s1 → s2 → s1 → s3 → s3 → s3 → s3 → s2 → s2 → s2 → s2
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
% ∗ a Q b ∗ 2 + c d − 1 b 3

Figure 3. An illustration of the state transitions (→) and symbol observations (↓) that might
have generated the PGEP chromosome in Figure 1C using the HMM in Figure 2.
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Particularly important to the model under consideration is the notion of time. Like almost

all interesting processes, the state of a model may vary with time. But unlike reality where

time is continuous, the finite representation of the model forces a reduction in precision and

thus only discrete equidistant times are considered. As anticipated, the primary purpose of a

state transition is to cause a change in state and such transitions naturally occur at each instant

in time. It should be noted that a state transition does not always result in a distinguishable

change of state. That is, the actual state before and after a transition may remain the same.

This type of behavior is consistent with and essential for processes that can repeat a series of

actions over some period of time.

Limiting the scope to simpler HMMs of the first order in time, the probability of a particular

state transition is only influenced by two quantities, the probability of occupying the current

state at a certain time and the probability of being in some other state at the next instant in

time. Furthermore, the observance of a symbol is solely determined by the probability of being

in a particular state at a given time and the probability of emitting the symbol while at that

same state.

2.4.2 Formal Definition

More formally, a Hidden Markov Model (HMM) may be described as a quintuple λ =

(S, V,A,B,Π) of parameters, where S = {s1, . . . sm} is the set of states of size m, V =

{v1, . . . , vn} is the set of observable symbols of size n, A is the m×m state transition probability

distribution matrix, B is the m× n observation symbol probability distribution matrix, and Π

is the initial state probability distribution vector of length m. If qt denotes the state occupied at
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time t > 0, then the probability distributions A, B, and Π are defined according to Equation 2.1,

Equation 2.2, and Equation 2.3, respectively.

A = {ai,j = P (qt = sj |qt−1 = si)} 1 ≤ i, j ≤ m (2.1)

B = {bi,j = P (vj |qt = si)} 1 ≤ i ≤ m, 1 ≤ j ≤ n (2.2)

Π = {πi = P (q0 = si)} 1 ≤ i ≤ m (2.3)

However, A, B, and Π must also conform to the stochastic constraints expressed in Equa-

tion 2.4, Equation 2.5, and Equation 2.6, respectively.

ai,j ≥ 0 1 ≤ i, j ≤ m
m∑
j=1

ai,j = 1 1 ≤ i ≤ m (2.4)

bi,j ≥ 0 1 ≤ i ≤ m, 1 ≤ j ≤ n
n∑
j=1

bi,j = 1 1 ≤ i ≤ m (2.5)

πi ≥ 0 1 ≤ i ≤ m
m∑
i=1

πi = 1 (2.6)

2.4.3 Conventional Parameter Estimation

Although there are typically three canonical problems associated with HMMs (Rabiner

1989), the work in this thesis will only be concerned with one of the three. This particular

problem is certainly the most difficult and probably the most important, and it is that of

adjusting a model’s parameters in order to maximize the emission probabilities of a set of
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observation sequences Θ = {O1, O2, . . . , Ol}. In other words, given a model λ and the set Θ,

how can the parameters of λ be adjusted such that the probability of observing Θ is maximized?

The seminal technique used to deal with this challenging task is the Baum-Welch (BW) training

algorithm (Rabiner 1989). BW is an example of an Expectation-Maximization (EM) (Dempster

et al. 1977) algorithm, which iteratively updates and improves the parameters of an HMM

(Rabiner 1989). Although BW is extensively used to re-estimate a model’s parameters in

practice, it tends to get stuck in local optimums, is unable to infer the optimum number of

hidden states, and is sensitive to a model’s initial parameters. But in light of these drawbacks,

HMMs along with BW have been widely adopted and shown to work well in practice.

2.4.4 Biologically Inspired Parameter Estimation

The increased adoption of HMMs in a variety of scientific areas has lead to a resurgent

interest in the development of new and improved training methods. Some of the most recently

published research (Won et al. 2005; Volkert 2006; Nootyaskool and Kruatrachue 2006) has

focused on evolving the probabilistic parameters and topologies of HMMs. These approaches

use GAs with arbitrarily applied ad-hoc operators to add or delete states and transitions, swap

one or more parameters between models, or randomly disturb the parameters of a model. One

immediate advantage of these customized GAs is that the definitions of the operators are able to

explicitly consider and obey the stochastic constraints. While this is convenient, many highly

specialized operators can be invented and this may lead to an excessive number of control

parameters.



24

Other works (Rasmussen and Krink 2003; Aupetit et al. 2006; Xue et al. 2006) have also

investigated the feasibility of utilizing linear combinations for optimum model discovery. The

particular method by which these works obtain new models is through the use of the increasingly

popular Particle Swarm Optimization (PSO) algorithm (Kennedy and Eberhart 1995). While

inspired less by evolution and more by social dynamics, PSO adapts the social interactions

present in animal swarms to search spaces in optimization problems. But unlike the previously

introduced GAs, the surveyed PSOs constantly violate the strict constraints imposed by Equa-

tion 2.4, Equation 2.5, and Equation 2.6. Various penalty schemes and repair mechanisms have

therefore been developed in order to handle or enforce these known constraints. Furthermore,

the particles in PSO are generally of a fixed dimension and this quality makes the exploration

of the state space more difficult in practice.

Still, many of these previously mentioned works have not completely discarded BW as it has

been hypothesized (Volkert 2006) that an HMM search space induces a unique terrain which

cannot be easily navigated. This claim has been supported by the empirical investigations of

individual works, mainly (Volkert 2006). Similar in spirit to the works concerned with PSO,

the approach described herein uses a linear combination of multiple models in conjunction with

an embedded BW training algorithm. A closely related optimization algorithm known as DE

has also been investigated for HMM estimation in (Sá et al. 2008). Like PSO, DE relies on

scaled vector differences, but in all actuality, DE may be viewed as a more generalized vector

based search with PSO as a novel variant.
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2.5 Differential Evolution

Differential Evolution (DE) is an example of a global, derivative-free optimization algorithm

that combines a multi-point based search with a generate-and-test paradigm (Price et al. 2005).

Similar to other EAs, DE adopts a generational approach and maintains a constant sized popu-

lation of solutions encoded as fixed-length, real-valued vectors. Exploration of the search space

is conducted by means of innovative trial vectors which are the result of perturbations and com-

binations of other vectors. One noteworthy advantage of the DE algorithm is that the step-size

is dynamic in nature (Price et al. 2005). That is, the magnitude of movements throughout the

search space are free to increase or decrease.

In fact, since the step-size is determined with respect to a small subset of the population, it

is not abnormal for the step-size to vary between generations or even during a single generation.

This greatly decreases the likelihood that the DE algorithm will get stuck in a local optimum

as it has the ability to escape when the entire population has not yet completely converged.

Adopting the original notation and terminology from (Price et al. 2005), the classic version of

DE is now introduced in more detail.

At any given generation g, the Np sized population Px,g is defined according to Equation 2.7

where i denotes the ith vector xi,g of Px,g, j denotes the jth parameter xj,i,g of xi,g, and D is

the number of parameters in or the dimension of xi,g.
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Px,g = (xi,g) , g = 0, . . . , gmax, i = 0, . . . , Np− 1 (2.7)

xi,g = (xj,i,g) , j = 0, . . . , D − 1 (2.8)

When g = 0, the initial population Px,0 is randomly initialized according to Equation 2.9

where bj,L and bj,U respectively represent the initial lower and upper bounds of xj,i,0, and

randj(0, 1) returns a uniformly distributed random number from [0, 1).

xj,i,0 = randj (0, 1) (bj,U − bj,L) + bj,L (2.9)

For g > 0, an intermediate population Pv,g can be generated by one of the Differential Mutation

(DM) operators defined in Equation 2.10 or Equation 2.11.

vi,g = xr0,g + F · (xr1,g − xr2,g) (2.10)

vi,g = xe,g + F · (xr1,g + xr2,g − xr3,g − xr4,g) (2.11)

In Equation 2.10 and Equation 2.11, xr0,g and xe,g are known as the base vectors, and xr1,g,

xr2,g, xr3,g, and xr4,g are called the differencing vectors. The indices of these vectors are

randomly selected such that i 6= r0 6= r1 6= r2 6= r3 6= r4 as this avoids obvious degenerate

vector combinations, i.e., xi,g 6= vi,g. Unlike the other vectors, xe,g does not have an index and is
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called the elite vector, which is the best vector encountered up to the gth generation. Besides the

number of differences, the main distinction between Equation 2.10 and Equation 2.11 is that the

latter strategy is greedy, focusing the search in the general vicinity of the elite vector. Commonly

referred to as the scaling factor, F ∈ (0, 1+) and “amplifies” or “dampens” the perturbations by

relatively adjusting the step-size (Price et al. 2005). While F can be randomized, it is assumed

herein that F remains fixed throughout the duration of a run.
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d2,g

x1,g = [4, 3]
x2,g = [−3,−2]
x3,g = [−1, 2]
d1,g = [−2,−4]
d2,g = [−1,−2]
v1,g = [3, 1]

Figure 4. A concrete example of the DE/rand/1 DM strategy in two dimensional space with a
scaling factor of F = 0.5. The base vector is x1,g, the distinct vectors used for the
difference are x2,g and x3,g, the unscaled difference vector is d1,g, the scaled difference
vector is d2,g, and the resulting mutant vector is v1,g.
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Numerous other DM strategies have been developed (Price et al. 2005; Feoktistov 2006).

So many in fact, that certain notational conventions have emerged to succinctly refer to the

various strategies. For example, Equation 2.10 and Equation 2.11 are referred to as DE/rand/1

and DE/best/2, respectively. The best or rand part describes how the base vector is chosen

where the trailing number details the exact number of scaled differences.

After mutation, a trial population Pu,g is produced using the uniform crossover operator as

defined in Equation 2.12.

uj,i,g =


vj,i,g if randj (0, 1) ≤ Cr or j = jrand,

xj,i,g otherwise.

(2.12)

This operation combines xi,g with vi,g to yield ui,g by using the crossover probability Cr ∈ [0, 1]

to approximate the fraction of parameters that ui,g inherits from vi,g (Price et al. 2005). Similar

in purpose to the mutually exclusive indices in DM, jrand forces innovation by ensuring that

ui,g 6= xi,g. Cr may also be randomized, but like before, it is assumed that Cr is held constant

over all generations.

Finally, DE utilizes the local, greedy, and reproductionless selection strategy described in

Equation 2.13.

xi,g+1 =


ui,g if f(ui,g) ≤ f(xi,g),

xi,g otherwise.

(2.13)
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Here, f is the objective function and the optimization task is to find a vector x∗ such that

f(x∗) = 0.0, i.e., the goal is to find a global optimum x∗ which minimizes f(x∗). Although less

strict, it is often more convenient to establish an error threshold ε where any x∗ which satisfies

f(x∗) ≤ ε is also treated as optimal. An optimization task is then considered to be a success

when x∗ is found or a failure if gmax is reached.
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Figure 5. Demonstrates all possible trial vector combinations produced by uniformly crossing
over x1,g and v1,g in two dimensional space. The trial vector u1,g adopts both per-
turbations introduced by DE/rand/1 into the mutant vector v1,g where u2,g and u3,g

each only adopt a single but distinct mutational perturbation.



3. NUMERICAL OPTIMIZATION OF PROBABILISTIC MODELS FOR

PROGRAM SYNTHESIS

3.1 Overview

In this chapter, a novel combination of techniques which straddles the boundaries of two

divisionary camps is proposed. Admittedly, the mathematical assurances that the EDA (Shan

et al. 2006) philosophy offers is attractive, e.g., capturing relational and positional dependencies

between discrete elements in multiple sequences and then encoding this knowledge in a single

probabilistic graphical model. But at the same time, the complexity of learning optimal pa-

rameters and topologies for the most useful, and thus desirable probabilistic graphical models,

is intractable (Chickering 1996).

Still, preferring to avoid the consequences of local stagnation, which gradient and Newto-

nian based learning algorithms are highly susceptible to, the eligibility of biologically inspired

search algorithms for the purposes of optimum model discovery must be seriously considered.

Through the use of competition, mutation, and reproduction, probabilistic models are evolved

and assessed. One such model which has previously failed to make an appearance in the EDA

literature is the HMM, and thus its feasibility will be explored herein.

Well-suited to evolve the parameters of an HMM, the DE algorithm is recruited for the

purposes of global numerical optimization, which was previously described in Section 2.5. But

while not completely abandoning more classical parameter estimators for HMMs, the BW train-

30



31

ing algorithm mentioned back in Section 2.4.3 is selectively applied as a complimentary and

reinforcing local maximizer. Moreover, instead of using the evolved models in a sequence based

classification system, the probabilistic properties of the model are utilized to generate a sample

of likely linear PGEP chromosomes, which are then transformed into ET for fitness evaluations.

The fittest models, as determined by a sample of chromosomes, will survive, undergo vector-

based perturbations, and as the evolutionary process continues, hopefully generate fitter solu-

tions. This proposed approach then indirectly introduces chromosomal variation through the

direct application of genetic operators to the underlying probabilistic model’s representation.

Or in other words, a probabilistic model assumes the role of the genotype, the resulting tree

structures undertake the responsibilities of the phenotype, and the sampling of the model acts

as a dynamic ontological process. This algorithm has been called Probabilistically Guided Pre-

fix Gene Expression Programming (PG-PGEP) (Cerny et al. 2008a) and will now be more fully

described in detail.

3.2 Probabilistically Guided Prefix Gene Expression Programming Algorithm

The aim is to adopt an approach which employs a population of probabilistic models to

guide the search for a fit SR solution. In doing so, the direct application of genetic operators

to a symbolically encoded chromosome is abandoned, and a strictly generative methodology is

optimistically favored. The parameters of a probabilistic model which reside in the continuous,

but constrained real-valued domain are evolved, and subsequently utilized to influence the

generation of several solutions. Coincidentally, DE fulfills the evolutionary needs of a real-valued
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representation, HMMs are probabilistic models which can be easily and efficiently evolved, and

finally, PGEP is a generally applicable sequence based problem solving technique.

Due to the specific requirements of the intended application domain of SR, the task at hand

can best be described as finding a model that emits a sequence which adequately expresses

an unknown mathematical function. And thereby inferring the underlying hidden states of

the evolved HMM. This is attempted by only considering a set of numerical inputs and the

corresponding outputs of a training set. Compared to other common applications of HMMs,

this problem is quite different in that there is no readily available corpus of reliable example

observations. In fact, the usage of HMMs here is rather unconventional in that HMMs are used

in a generative fashion as opposed to assessing the probability of emitting a set of particular

observational sequences. Thus, it is inappropriate to favor models by more traditional criteria

like those appearing in (Won et al. 2005; Volkert 2006; Nootyaskool and Kruatrachue 2006;

Rasmussen and Krink 2003; Aupetit et al. 2006; Xue et al. 2006).

Nevertheless, there is also another source of difficulty inherit in the problem to be solved.

Despite strong similarities between two sequences or solutions, the actual outputs produced by

the encoded PGEP programs may be drastically different. For instance, consider what would

happen if the root node in Figure 1A was replaced with a different function of the same arity.

While this would fail to re-shape the ET it would, in most cases, significantly alter the outputs

of the encoded program when evaluated on the same data set.

Several crucial aspects of this algorithm will now be discussed in greater detail. This in-

cludes a description of the vectorized representation of HMMs, the generation and sampling
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schemes used in determining the quality of the evolved models, and additional details about

the hybridization of DE and BW. A complete outline of this proposed evolutionary search can

also be seen in Figure 6.

Randomly
Initialize
Models

Normalize
and Encode

Models

Build
Vectorized
Population

Randomly
Generate
Samples

Evaluate
Samples

Compete
and Select

Terminate? Improved?
No

Best Model
Evolved

Yes

Train
Model(s)

Yes

Update
Elite Vector

Mutate
Vectors

No

Combine
Vectors

Figure 6. A high-level overview describing the flow of the PG-PGEP algorithm. The first step
appears in the upper left-hand corner, the last step is located in the middle, and the
remaining steps belong to the main loop.

3.2.1 Hidden Markov Model Encoding Scheme

As is illustrated in Figure 7, any HMM can be easily encoded by arranging the rows of Π,

A, and B into a single real-valued vector x. The number of states in an HMM – as empirically

determined to be sufficiently complex to undertake a problem – is fixed amongst all individuals
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and between generations. Now due to the previously highlighted fact that DE has been chosen

as the mechanism to evolve the parameters of an HMM, it is wise to reexamine the definition

of the DM operators as they appear in Equation 2.10 and Equation 2.11. Clearly, there is

no guarantee that the trial vectors produced by this operator will respect the established con-

straints. Therefore, special techniques which avoid violating or explicitly enforce the constraints

of Equation 2.4, Equation 2.5, and Equation 2.6 must be considered first.

x = (π1, . . . , πm︸ ︷︷ ︸
Π

, a1,1, . . . , a1,m︸ ︷︷ ︸
A1

, . . . , am,1, . . . , am,m︸ ︷︷ ︸
Am︸ ︷︷ ︸

A

, b1,1, . . . , b1,n︸ ︷︷ ︸
B1

, . . . , bm,1, . . . , bm,n︸ ︷︷ ︸
Bm︸ ︷︷ ︸

B

)

Figure 7. The vectorized representation of an HMM with |x| = m + m2 + m × n real-valued
parameters or dimensions.

Constraint aware variants of DE have been previously proposed in (Price et al. 2005), but

these mainly rely on the imposition of harsh penalties or require the distinction between feasible

and infeasible models. Since even the slightest perturbation of a model can result in a violation

of a HMM’s complex and interdependent constraints, such techniques do not seem well suited for

PG-PGEP. Fortunately, a normalization procedure can both consistently produce valid HMMs

and not overly impede the search. Thus, in order to enforce the constraints imposed on Π,

A, and B, the appropriate parameters are repaired according to Equation 3.1, Equation 3.2,

and Equation 3.3, respectively. Interesting in its own right, the definition of normalization
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introduces a degree of flexibility into the search. That is, it is now possible to explore models

inside of the constrained search space Λ with points in the unconstrained super search space

R|x|.

Finally, since the formulations appearing in Equation 3.1, Equation 3.2, and Equation 3.3

do not default to zero and instead accommodate negative values by taking the absolute value,

it is not necessary to establish arbitrary lower bounds. Notice that it would otherwise be

possible for the summations in the denominators of Equation 3.1, Equation 3.2, and Equation 3.3

to be equal to zero, thus yielding undefined models, which would also need to be guarded

against. Furthermore, the use of arbitrary lower bounds could inadvertently and effectively

halt the optimization of certain parameters as zero valued differences may become frequent and

persistent.

πi =
|πi|∑m
j=1 |πj |

1 ≤ i ≤ m (3.1)

ai,j =
|ai,j |∑m
k=1 |ai,k|

1 ≤ i, j ≤ m (3.2)

bi,j =
|bi,j |∑n
k=1 |bi,k|

1 ≤ i ≤ m, 1 ≤ j ≤ n (3.3)

3.2.2 Fitness Evaluations

In most cases, the quality of an HMM is fully or partially determined by the Forward-

Backward Algorithm (FBA) (Rabiner 1989) on a given set of example observation sequences.

That is, HMMs of higher quality are more likely to produce the presented sequences than HMMs
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of lower quality. But unfortunately, when SR problems are considered, only the numerical inputs

and outputs of the training set are known. In fact, since an observation sequence encodes

a solution to a problem, any available observation sequence must only be a speculation as

otherwise a solution would have already been discovered. Therefore, it is nearly impossible to

evaluate the quality of an HMM in any conventional sense.

As SR is only concerned with discovering a single observation sequence – specifically a

sequence which encodes one of potentially many acceptable solutions – the quality of an HMM

will be solely characterized by the fitness of the best chromosome generated by a particular

model. With this in mind, the quality of an HMM can be interpreted as the expected optimal

fitness of a generated chromosome. For although it is possible that better chromosomes may be

produced, the corresponding sequences may either be very rare or transcend the fixed-length

observations. This definition has two major advantages. First, it allows for the incorporation

of a standard measurement of error, and second, it is still able to accurately reflect a model’s

likely performance through a winner-takes-all style proposition.

3.2.3 Prefix Gene Expression Programming Chromosome Sampling

Fortunately, the structure of an HMM promotes a straightforward and computationally

inexpensive means of sequence generation. Näıve in nature, but greedy in practice, the employed

generation scheme exploits the formal definition of an HMM to randomly traverse states and

observe symbols in an alternating fashion. Utilizing a casino style roulette wheel approach

entrenched in many selection strategies, 2m+ 1 roulette wheels are constructed from the rows

of Π, A, and B. That is, one roulette wheel Rα is built to choose the initial state, m additional
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roulette wheels Rβ1 , . . . , Rβm are constructed to pick an observation symbol at each state, and

another m roulette wheels Rγ1 , . . . , Rγm are assembled for each state to select the next state.

Attributable to the stochastic constraints imposed by the definition of an HMM, each of the

2m+ 1 roulette wheels has a circumference of exactly 1.0, implying that at least one symbol or

state will always be accessible. This conveniently guarantees that a sequence of any length may

be generated, but the composition of such a sequence is obviously dependent upon the path

traveled through the model. An illustration of the generation scheme is available in Figure 8

and the complimentary pseudocode is presented in Figure 9.
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3
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Figure 8. A illustration depicting how the roulette wheels are constructed from the matrices of
an HMM and the order in which the roulette wheels are spun to obtain a sequence
of genes. The initial state, observation symbol, and next state wheels are located on
the left, in the middle, and on the right, respectively.
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Sampling simply entails the generation of Z valid (naturally terminating) chromosomes

from a given model. Consequently, a sample may contain distinct sequences which encode the

same program. Such programs may be equivalent or identical, i.e., same behavior with different

makeups or exact duplicates. Initially, the decision to permit duplicates may seem problematic

as the diversity of the sample will suffer. But despite this concern, duplicates are actually

beneficial as it will reflect the model’s bias.

For now that a model’s true stochastic behavior is allowed to emerge, the quantification

of a model’s fitness as described in Section 3.2.2 makes intuitive sense. That is, the search

should not only pursue models which generate the best solutions, but also those which are more

likely to generate the best solutions. One final comment with regards to the implications of the

sampling and generation scheme is the lack of a well-behaved or deterministic1 fitness mapping.

That is, although the fitness function is not dynamic in nature2, identical models could produce

unique samples, and thus the assigned fitness values may be numerically distinct and possibly

distant.

3.2.4 Hybridized Training

Acknowledging the unanimous consensus conveyed throughout the evolvable HMM litera-

ture, this proposed evolutionary process has been hybridized with the previously discussed BW

1Although it is possible to use the Viterbi algorithm (Rabiner 1989) to determine the most-likely
state sequence given an observation, it is computationally prohibitive to to generate a complete and
exhaustive sample.

2PGEP chromosomes are always evaluated in a consistent and static manner, i.e., the training set is
fixed in size and composition for all generations and trials.
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inputs : length of a chromosome l
initial state vector Π
state transition matrix A
observation symbol matrix B

output: chromosome of genes v1 v2 . . . vl−1 vl

begin1

% loop until a valid chromosome has been generated2

repeat3

% select an initial state si by spinning Rα4

state← SpinWheel(Π)5

% randomly select l genes6

for j ← 1 to l do7

% transition to next state from current state si by spinning Rβi8

state ← SpinWheel (state, A)9

% emit symbolic gene vj based on current state si by spinning Rγi10

gene ← SpinWheel (state, B)11

% append gene vj to chromosome12

chromosome ← Append(chromosome, gene)13

end14

until Validate(chromosome)15

% valid chromosome with length l16

return chromosome17

end18

Figure 9. Pseudocode used to generate one fixed-length PGEP chromosome from an
HMM using a casino style roulette wheel inspired approach.
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training method. But since this variant of PGEP utilizes the structure of a probabilistic model

to conduct a search, an alternative approach that selectively applies BW has been devised. A

single iteration of BW is invoked only when an improved solution is encountered and it is only

applied to the model which emitted the improved sequence. Relative to the existing parameters

of the applicable model, the probability of observing the valid (non-junk) gene sequence of the

improved solution is then locally maximized. The newly trained model is then appointed the

elite rank, and will serve as the base vector xe,g+1 in all future vector innovations vi,g+1.

3.2.5 Experimental Setup

Due to its popularity and practicality as discussed in Section 1.1, SR will serve as the primary

benchmark for the proposed PG-PGEP algorithm. As a reminder, goal of this particular task

is to find a symbolically encoded mathematical expression to an unknown function, using only

a numerically oriented training set. Great difficulty lies within accomplishing this task as in

addition to finding an approximation, several other factors are unknown. For instance, to obtain

a good solution in a reasonable amount of time, a gene set which can sufficiently express the

target function is needed. But since the target function is itself unknown, the ideal composition

of the gene set is ambiguous at best. For low dimensional problems like those investigated here,

plots of the points might aid in the selection of a gene set. For example, noticeable oscillations

or periodicity indicate that common trigonometric functions should be included in the gene set

to accelerate the search.

As expected, multiple problems which exhibit distinctive behavior and are of varying de-

grees of complexity have been selected. The difficulty of such problems is anecdotal at best
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because there is no universally systematic way to quantify the difficultly of a problem without

exhaustively enumerating the entire search space. Among the investigated benchmarks are sev-

eral synthetic functions which have made an appearance in other research and are reproduced

in Equation 3.4 (Koza 1992; Ferreira 2001; Costelloe and Ryan 2009), Equation 3.5 (Koza 1992;

Ferreira 2001), Equation 3.6 (Yanai and Iba 2006), and Equation 3.7 (Keijzer 2003; Topchy and

Punch 2001; Keijzer 2003; Pennachin et al. 2010). To the left of each equation is a uniquely

identifying name (i.e., fn), which will be used to refer to that problem during the remainder of

this thesis. Since these functions are known in advance, it is possible to solve these problems

exactly. Attempts will be made with both the original PGEP algorithm and the proposed

PG-PGEP algorithm, and this will offer an opportunity to compare the two paradigms.

f1 (x) = x4 + x3 + x2 + x (3.4)

f2 (x) = 5x4 + 4x3 + 3x2 + 2x+ 1 (3.5)

f3 (x) = x cos(x) sin(x)
(
sin2(x) cos(x)− 1

)
(3.6)

f4 (x, y) = xy + sin
(
(x− 1)(y − 1)

)
(3.7)

Various aspects of the training and testing sets are described in Table I. This includes the

interval(s) on which the cases where sampled, what method was used to conduct the sampling

(e.g., randomly, arbitrarily, or incrementally with the specified step size), and some basic de-

scriptive statistics about the two sets like the mean (µ) and the standard deviation (σ) of the
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inputs. Figure 20 contains plots of the training and testing sets summarized in Table I. The

points belonging to the training and testing sets are displayed as big red and tiny blue dots,

respectively. In most cases, the general shape of the target functions should be distinguishable

from the test set because the points are more abundant and were randomly generated using a

uniform distribution.

TABLE I
SUMMARIES OF THE FOUR TRAINING AND TESTING SETS USED TO

BENCHMARK THE PG-PGEP ALGORITHM.

Training Set Testing Set

Space Size Method µ± σ Size Method µ± σ

f1 x ∈ [0, 20] 10 Arbitrary 10.623± 4.983 1000 Random 11.309± 5.073
f2 x ∈ [1, 10] 10 +1.0 5.5± 3.028 1000 Random 5.556± 2.634
f3 x ∈ [0, 5.8] 30 +0.2 2.9± 1.761 1000 Random 2.9± 1.643
f4 x ∈ [−3, 3] 20 Random 0.073± 1.978 2000 Random 0.027± 1.755

y ∈ [−3, 3] Random 0.226± 1.791 Random 0.02± 1.691

Arbitrary, yet sufficiently long PGEP chromosomes have been used and unless otherwise

noted, measure 64 genes in length. Also, problem specific gene sets appear in Equation 3.8

and Equation 3.9. Attempts for the quartic polynomial without integer coefficients (f1) and

quartic polynomial with integer coefficients (f2) are restricted to the minimalistic gene set G1.

No constants are included in G1 so all integer coefficients must be synthesized during a run in

order to achieve a perfect solution to f2. However, due to the presence of integer coefficients
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(A) Quartic polynomial without coefficients
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(B) Quartic polynomial with coefficients
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(C) Univariate trigonometric function
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Figure 10. The scatter plots, appearing in a clockwise direction from the top left to the bottom
left, are for the quartic polynomials without and with integer coefficients, and the
univariate and bivariate trigonometric functions summarized in Table I.
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in f2, longer chromosomes measuring 96 genes in length are warranted when paired with G1.

Solutions to the univariate sinusoide (f3) and multivariate sinusoide (f4) are constructed from

the expanded gene set G2, which includes two basic trigonometric functions, specifically sine

and cosine.

G1 = {x,+,−, ∗,%} (3.8)

G2 = {x, sin, cos,+,−, ∗,%} (3.9)

The columns PG-PGEP and PGEP in Table II group process specific control parameters.

Reviewing the control parameters for PG-PGEP: Np is the number of vectorized models in the

DE population, m is the number of states in an HMM, F is the differential mutation scaling

factor, Cr is the rate of uniform crossover, and Z is the sample size. In the case of the classic

PGEP algorithm, distinct notation is now introduced: Pop is the number of symbolically en-

coded chromosomes residing in the population of a single generation and Gens is the maximum

number of generations. Crs, Mut, and Rot are the probabilities of applying traditional PGEP

operators like linear crossover (both one-point and two-point), point mutation, and rotation,

respectively. Due to the radically different nature of each process, some of these quantities are

not truly comparable. Most notably are the population sizes (Np and Pop) and the generational

restrictions (gmax and Gens). But in spite of this, the total number of fitness evaluations are
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purposefully equal (Np× Z × gmax = Pop×Gens = 3.0× 106) as this provides a comparable

process independent quantity.

TABLE II
AN OVERVIEW OF THE CONTROL PARAMETERS USED ON ALL PROBLEMS FOR

THE SPECIFIED EVOLUTIONARY PROCESS

PG-PGEP PGEP

Np gmax F Cr Z m Pop Gens Crs Mut Rot

30 100 0.8 0.1 1000 6 1000 3000 0.7 0.02 0.02

Lastly, the Root Mean Squared Error (RMSE) will serve to evaluate the quality of a chro-

mosome and thus an HMM as well. A slightly modified version of the RMSE for PG-PGEP

appears in Equation 3.10 where f̂i is the fitness of the ith HMM in a population, Si is a sample

from the ith HMM, p is a program (chromosome) belonging to Si, n is the size of the training

set, pj is the actual output of p on the jth training case, and finally, tj is the target output for

the jth training case. But for ease of presentation, the remainder of the results will be expressed

in terms of a scaled and maximized fitness which is defined in Equation 3.11. Thus any fitness

f̂ ′i ∈ [0, 1000], and the extremes represent the worst and best attainable values, respectively.
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f̂i = min
p∈Si

√√√√ 1

n

n∑
j=1

(pj − tj)2 (3.10)

f̂ ′i = 1000

(
1

1 + fi

)
(3.11)

3.2.6 Empirical Results

An examination of Table III will reveal many of the commonly quoted end-of-run perfor-

mance measures. In order to capture the stochastic behavior of these two competing searches,

the quantities appearing in Table III have been determined from a total of 50 independent runs.

Each symbolic regression problem is identified by name and two sets of results are reported.

One for PGEP and the other for PG-PGEP, and such results appear in their own discernible

rows. In addition, process specific results are composed of two separate but related entries

identified by subscripts. Namely, those obtained during training and those which detail the

generalization performance over the testing set.

The Best Fitness header covers various quantities which describe the best end-of-run scaled

fitness values (f̂ ′). The f̂ ′max and f̂ ′min columns identify the overall fittest and least fit final

solutions when strictly evaluated on the training set. Since f̂ ′max is determined solely with

respect to the training set, the generalized performance on the testing set will reveal whether

or not the supposedly best solution is deceptive and overfits the training data. Moreover, f̂ ′

and σf̂ ′ represent the mean and standard deviation of all end-of-run fitness values. The Size

column lists select details about the sizes of the best end-of-run programs. Here, each quantity
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TABLE III
BEST END-OF-RUN RESULTS OBTAINED FOR PGEP AND PG-PGEP OVER 50
INDEPENDENT RUNS ON EACH OF THE FOUR SR BENCHMARK PROBLEMS.

Scaled Best Fitness (f̂ ′) Size (s)

f̂ ′max f̂ ′min f̂ ′ σf̂ ′ smax smin s̄ σs

f1 PGEPtrain 1000.0 1000.0 1000.0 0.0 13

64

27

64

16.04

64
4.062

PGEPtest 1000.0 1000.0 1000.0 0.0

PG-PGEPtrain 1000.0 1000.0 1000.0 0.0 13

64

51

64

19.12

64
7.604

PG-PGEPtest 1000.0 1000.0 1000.0 0.0

f2 PGEPtrain 1000.0 1.975 298.380 367.408 35

96

27

96

35.24

96
8.766

PGEPtest 1000.0 2.181 298.912 363.358

PG-PGEPtrain 1000.0 11.030 307.185 257.535 49

96

65

96

44.72

96
10.881

PG-PGEPtest 1000.0 12.558 307.659 257.067

f3 PGEPtrain 808.545 606.731 768.479 43.408 14

64

15

64

11.28

64
1.415

PGEPtest 814.309 605.806 769.950 43.548

PG-PGEPtrain 1000.0 691.321 869.308 96.675 18

64

10

64

25.40

64
11.701

PG-PGEPtest 1000.0 697.359 873.538 93.474

f4 PGEPtrain 724.178 613.746 641.529 14.855 8

64

13

64

12.80

64
5.307

PGEPtest 714.383 556.348 563.338 27.057

PG-PGEPtrain 1000.0 583.850 690.399 114.965 16

64

27

64

25.22

64
12.877

PG-PGEPtest 1000.0 596.912 593.672 197.874
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appears in fractional form and this indicates the fraction of a chromosome that was consumed

by the encoded expression. smax and smin are then the lengths of the programs associated with

the fittest (f̂ ′max) and least fit (f̂ ′min) end-of-run solutions, respectively. Also, s̄ and σs are the

mean and standard deviation of the sizes associated with all the end-of-run programs. The sizes

of the end-of-run programs are fixed and thus size specific entries in Table III span both the

train and test rows. If two or more fittest (least fit) solutions are encountered, then the most

(least) parsimonious solution is reported in Table III.

ENES =
1

SA
·
NA∑
k

Ek (3.12)

While Table III reports the quality of the evolved solutions, Table IV emphasizes the com-

putational effort needed to obtain those solutions. The primary measure used is the Expected

Number of Evaluations per Success (ENES) (Price et al. 2005). Equation 3.12 defines the ENES

where SA is the number of successful attempts achieved, NA is the total number of attempts,

and Ek is the number of evaluations incurred on the kth attempt. For the purposes of this work,

an attempt is considered successful when a maximized and scaled fitness of at least 999.999 (or

equivalently a RMSE of 1.0×10−6) has been achieved. If the problem is extremely difficult, too

few evaluations were used, not enough runs were attempted, or if the parameter settings were

ineffective, then the ENES may be undefined (Price et al. 2005). Lastly, Table IV also presents

the Ratio of Success (RS), which is defined as SA/NA and was recorded for each problem.

Complimenting the end-of-run results in Table III and Table IV are Figure 11, Figure 13,

Figure 15, and Figure 17, which contain the convergence curves. These curves are generated
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TABLE IV
LISTS THE RS AND THE ENES FOR BOTH PGEP AND PG-PGEP ON ALL FOUR SR

BENCHMARK PROBLEMS.

f1 f2 f3 f4

RS ENES RS ENES RS ENES RS ENES

PGEP
50

50
4.42× 105

8

50
1.85× 107

0

50
Undefined

0

50
Undefined

PG-PGEP
50

50
6.24× 104

3

50
4.91× 107

14

50
9.56× 106

2

50
7.36× 107

by plotting the mean of the best scaled fitness against the expended number of fitness evalu-

ations. These particular curves convey the mean rate of convergence to a perfect solution, for

a particular problem and algorithm combination. Taller and steeper curves indicate that, on

average, fitter solutions were achieved with fewer total fitness evaluations. Where as a conver-

gence curve which exhibits a shallower ascent suggests that smaller incremental improvements

were obtained. Depending on other reported statistics, vertically shorter curves could be the

result of many mediocre solutions or possibly a mix of very poor and very good solutions. The

standard deviation can help distinguish between these two scenarios.

Surrounding the convergence curves in Figure 11, Figure 13, Figure 15, and Figure 17 are

standard deviation ribbons for the scaled best fitness with respect to the number of fitness

evaluations incurred. The total height of the ribbon at any point is equal to two standard

deviations, plus one above and minus one below the mean curve. Such ribbons reveal the

volatility of each process over the duration of all attempts. Larger deviations from the centered

curve indicate a greater degree of inconsistency between runs and therefore the results at that
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point may be considered less predictable. Conversely, narrower ribbons which straddle the mean

curve suggest a greater degree of reproducibility over certain parts of the runs. Flatter edges

of the ribbons represent periods of stagnation where no or only negligible differences in fitness

were obtained. Following each convergence curve is its corresponding size curve. Figure 12,

Figure 14, Figure 16, and Figure 18 reveal the mean and standard deviation of the unsimplified

size of the best programs in terms of the number of genes.

3.3 Analysis and Discussion

3.3.1 First Symbolic Regression Problem

Given only the tabulated results in Table III, it does not appear that there is a significant

difference between the performance of PG-PGEP and PGEP on the trivial problem f1. But as

Figure 11 shows and Table IV confirms, PGEP requires many more evaluations on average to

achieve the same end-of-run performance. Unlike PG-PGEP which quickly achieves perfection,

PGEP has a more prolonged and gradual convergence. This is evident in the step-like shape of

PGEP’s convergence curve and the surrounding standard deviation ribbon in Figure 11. That

is, by recognizing that the narrowing of the ribbon in Figure 11 corresponds to the discovery

of one or more perfect solutions, it can be seen that PGEP has a comparatively delayed rate

of convergence. In addition, similar spreads in Figure 11 were temporarily observed, but PG-

PGEP recovers from this more chaotic period relatively quickly.

By considering the sizes of the encoded programs for f1, it is apparent from Figure 12

that PG-PGEP initially overcompensates with longer expressions but then quickly regulates

the sizes. Preferring instead to start off with shorter solutions, PGEP gradually increases sizes
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Figure 11. Convergence curves for both the PG-PGEP and PGEP algorithms on f1.
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Figure 12. Size curves for both the PG-PGEP and PGEP algorithms on f1.
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as necessary. These contrasting behaviors could easily be explained by the aforementioned

differences in the two methods. In the case of PGEP, a more resilient encoding is adopted and

this has the potential to hinder innovation causing more slowly growing programs. As for PG-

PGEP, the speed in which perfect solutions were obtained may be attributed to its tendency

to over represent solutions with a less parsimonious form. That is, PG-PGEP must exploit the

cyclic properties of an HMM to generate a perfect solution. Notice that the structure of f1 is

intuitively suited for PG-PGEP as the terms are simple, similar, and linked together with the

same function. This repetitive behavior, which although not necessarily optimal with respect

to size, seems particularly useful here.

3.3.2 Second Symbolic Regression Problem

Moving onto f2, Figure 13 reveals some similarities between the two convergence curves.

Both PG-PGEP and PGEP exhibit much shallower convergence curves, but also notice that

PGEP lags behind PG-PGEP for the first half of the search. However, once the midpoint is

passed, PGEP quickly catches up and almost mirrors the progress of PG-PGEP. Focusing on

the standard deviation ribbon, it can be seen that after initially stagnating, PGEP becomes

extremely innovative. Almost from the start, PGEP surpasses PG-PGEP in terms of volatility

and recovers from the initial disparity in fitness. This increased activity is then sustained

throughout the remainder of the runs as is shown in Figure 13.

Table III displays a minor improvement in the end-of-run average best fitness f̂ ′ obtained for

f2 with PG-PGEP. But Table IV also discloses that PG-PGEP produced a significantly worse

RS and thus a significantly larger ENES. In fact, when PGEP was recruited to solve f2, almost
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Figure 13. Convergence curves for both the PG-PGEP and PGEP algorithms on f2.
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Figure 14. Size curves for both the PG-PGEP and PGEP algorithms on f2.
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three times as many successful attempts were achieved. However, it should be noted that PGEP

had a significantly worse case overall best fitness f̂ ′min for f2. The simultaneous cause for both

PGEP’s improved and inferior results is the larger spread visualized by the standard deviation

ribbon in Figure 13 and the larger end-of-run standard deviation σf̂ ′ listed in Table III. It

therefore can be seen that in order to obtain peak performance on a more difficult problem

with a restricted gene set, some consistency must be sacrificed for the purposes of exploration.

Consequently, some abysmal performance will also be incurred.

As mentioned previously, PG-PGEP initially favors longer solutions. Such spiking behavior

is observed again in Figure 14, but like before a parsimonious pressure is naturally exerted later

on in the search. Also notice that PGEP’s increased volatility occurs as the mean size grows and

more innovations occur. While PGEP initially hesitates with poorly fit solutions, the observed

recovery reflects the spontaneous emergence of good integer coefficients. According to the RS

in Table IV, PG-PGEP had a much harder time synthesizing the proper integer coefficients

for this particular problem. Although the terms are similar to those of f1, the way in which

solutions must be synthesized is quite different. That is, alternations between multiplicative

and additive terms are needed to synthesize good expressions. It would then seem like the

synthesis of good integer coefficients is better handled by the existing mechanisms of PGEP.

To be more specific, PGEP’s ability to maintain exact solutions and manipulate those solutions

with crossover and mutation appears more suited for the task of CC. This was especially true

in the case of the trailing constant 1.0 in f2, which tended to have a very low probability of

being emitted by PG-PGEP compared to the other terms.



55

3.3.3 Third Symbolic Regression Problem

Compared to the convergence curves for f1 and f2 in Figure 11 and Figure 13, the conver-

gence curves for f3 in Figure 15 have a noticeably different shape. Here, both PG-PGEP and

PGEP quickly obtain mediocre solutions and then the two curves exhibit upward climbs that

slowly taper off. The lower end-of-run average f̂ ′, the fittest f̂ ′max and least fit f̂ ′min solutions,

and the zero valued RS in Table IV account for the poorer performance of PGEP. Now although

PG-PGEP realizes a similarly shaped convergence curve for f3, the vertically higher location

of PG-PGEP’s curve indicates an improved overall performance. This is apparent when the

end-of-run results of PG-PGEP and PGEP in Table III and Table IV are compared. PGEP’s

deviation ribbon in Figure 15 demonstrates increasing consistency as the runs progress, but this

behavior is premature as the rate of convergence in the associated curve of Figure 15 steadily

decreases and does not come close to reaching a maximal point. Furthermore, as Table IV

discloses, PGEP never encounters a perfect solution during any of the trials. PG-PGEP on

the other hand does not experience premature convergence and the greater degree of volatility

actually corresponds to the disparity in fitness which is revealed by the significantly higher RS

in Table IV.

Also quite different from the previous problems is how PG-PGEP now generates longer so-

lutions over most of the runs. But while this occurs, the size curve is also not nearly as smooth.

Possibly indicating that while the same inherent parsimonious pressure is being exerted, inno-

vative pressures are resisting and pushing back. The parsimony pressures in Figure 16 would

then appear to be weaker, allowing for more complex but better solutions to eventually prevail.
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Figure 15. Convergence curves for both the PG-PGEP and PGEP algorithms on f3.
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Figure 16. Size curves for both the PG-PGEP and PGEP algorithms on f3.
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Reconciling the behavior of PGEP in Figure 15 with the size curve in Figure 16, it appears

that throughout most of the attempts very little variety in solution size was experienced. This

suggests that PGEP prematurely converged and that future improvements were not nearly as

frequent as crossover was the primary innovator.

3.3.4 Fourth Symbolic Regression Problem

Upon an inspection of Figure 17, it can be seen that PG-PGEP and PGEP exhibit similar

behavior for the first half of the search. But in the latter half of the search, the convergence

curve for PGEP tapers off and PG-PGEP maintains its rate of convergence. This permits

PG-PGEP the opportunity to obtain the better end-of-run results shown in Table III. Except

for the worse least fit solution f̂ ′min, PG-PGEP achieves better end-of-run results in the form

of a higher average f̂ ′ and a superior fittest solution f̂ ′max. PG-PGEP also encounters multiple

perfect solutions as Table IV discloses and the larger end-of-run spread σf̂ ′ allows. In addition,

PGEP’s poorer end-of-run performance occurs with a significantly tighter spread σf̂ ′ . This is

also reflected in the smaller differences between all the end-of-run results (f̂ ′, f̂ ′max, and f̂ ′min)

in Table III.

As more evaluations are expended, an increasing disparity in best fitness between PG-PGEP

and PGEP is apparent. While PG-PGEP continues to find improved solutions, the convergence

curve for PGEP levels off. The ribbons in Figure 17 also reveals that PGEP almost but not

always completely stagnates. Similar to the behavior exhibited by PGEP in f3, the attempts

for f4 with PGEP indicate fewer successful innovations and suggest that PGEP has a tendency

to prematurely converge when undertaking problems which have wave-like shapes or oscillating
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Figure 17. Convergence curves for both the PG-PGEP and PGEP algorithms on f4.
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Figure 18. Size curves for both the PG-PGEP and PGEP algorithms on f4.
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surfaces. Another indicator which might also explain the differences in the end-of-run results in

the mean size of the best solutions. After PGEP initially experiences an increase in the mean

size it steadily decreases and then mostly stabilizes. This gradual decrease in mean size shown

in Figure 18 is inconsistent with the behavior of the previous problems. Also notice that the

sizes of PGEP’s solutions are about half of PG-PGEP’s, suggesting that PGEP cannot obtain

the longer and more complex programs needed to sufficiently express fitter solutions.

3.4 Summary

A novel evolutionary algorithm which abandoned a well-behaved ontological process in favor

a probabilistically oriented one has been proposed in this chapter. Promising preliminary results

were acquired on several artificial SR problems. This suggests that a much broader range

of problems must be considered as well, and such results would reveal a more complete and

diversified picture of PG-PGEP’s comparative performance. Interesting results were realized

in the form of an increased overall success rate, steeper convergence curves, and noticeable

performance gains on two problems, which were demonstrated to be very difficult for the original

PGEP algorithm.



4. NUMERICAL OPTIMIZATION OF CONTINUOUS

REPRESENTATIONS FOR PROGRAM SYNTHESIS

4.1 Overview

In light of the advantages of PGEP over GEP and GP that where mentioned in Section 2.1,

the discrete encoding adopted by PGEP is not well suited to accommodate unknown numerical

terms. In other words, given the essential components or minimalistic building blocks which can

include numbers, PGEP alone is unable to synthesize mathematical expressions which require

the approximation of numerical constants to a high precision. In this chapter, a new type

of genotype for PGEP is proposed. This new genotype maintains the linear and fixed-length

characteristics of the original PGEP, but replaces the original symbolic representation with a

continuous one.

But with this new encoding comes the need for an alternative approach to drive the com-

binatorial search of PGEP. The robust and powerful real-valued optimizer described back in

Section 2.5, namely DE, is recruited to be such a driver. Programs are evolved by interpreting

the real-valued parameters as discrete integer values which are in turn converted into linear

PGEP chromosomes, and finally, expanded into ETs for evaluation. Numerical constants exist

in the same representation, are stored after the encoded PGEP expression, extracted when

needed, and then incorporated into the ET. This algorithm has been appropriately called Dif-

60
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ferentially Evolved Prefix Gene Expression Programming (DE-PGEP) (Cerny et al. 2008b) and

will constitute the second and last major contribution of this thesis.

4.2 Motivation

The original motivation behind the development of the PGEP algorithm was to combat

the disruptive nature of crossover (Li 2006), i.e., crossover had the tendency to destroy good

building blocks. While PGEP mitigated the affects of this phenomenon through the adoption

of a prefix notation encoding scheme, which preserves both the hierarchy and proximity of

genes in the expression tree. This simple, but fundamental improvement was significant as

GEP almost exclusively relied on linear crossover operations to exchange contiguous segments

of genetic material between chromosomes (Ferreira 2006). Other independent operators like

mutation and rotation were still employed, but the importance of such operators was treated

as negligible. This view has been supported by past experiments (Li 2006) which suggest that

the probability of applying the mutation operator be less than 5%. In contrast, the total

probability of applying the crossover operator(s) was normally 70% or even greater. While

several tree-based schemata theorems have reinforced this position (Langdon and Poli 2002),

these conclusions have also been contested. It has been argued in (Luke and Spector 1998) that

the use of certain operators is dependent on the problem and even the control parameters. More

relevant to this work is that of (Ferreira 2002b), which contradictorily claims that mutation can

be the most powerful operator in GEP. So although unfortunate, the empirical investigations

may still be unavoidable and one cannot blindly assume that crossover will be the dominate

operator in any GP-like system.
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In Differentially Evolved Prefix Gene Expression Programming (DE-PGEP), the continu-

ous linear crossover and point mutation operators of PGEP are replaced with a weighted vector

based differencing approach that uses an interspersed crossover to blend mutational perturba-

tions. The mechanism by which programs will be automatically synthesized is DE and this will

also conveniently allow for the creation and refinement of numerical constants. Unlike PGEP,

where crossover and mutation are independent, in DE-PGEP these two operations are inti-

mately intertwined. That is, without crossover no mutations would be adopted and similarly,

without mutation crossover would be ineffective. Thus, instead of relying on arbitrarily defined

operators, each with their own unique control parameters, DE-PGEP only relies on two well

defined operators where the interactions between the pair are well studied (Zaharie 2002; 2007).

This proposed method is not exotic, does not introduce any new specialized operators, and

does not incur the overhead of an embedded optimizer. While the algorithm still requires that

an arbitrary number of constants be allotted to each chromosome, a simple heuristic is given

to estimate this quantity. Furthermore, previous research (Koza 1992; Ferreira 2002a; Zhang

et al. 2007) confirms that only a small number of unique constants are actually used in the best

end-of-run solutions. So the fixed number of constants is not considered a severe limitation that

is obtrusive or detrimental.

4.3 Related Research

Many researchers have investigated the feasibility of DE for problems that are discrete or

combinatorial in nature (Price et al. 2005). But to the author’s best knowledge, there are only

three other algorithms in the public domain that explore the feasibility of applying DE to the
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synthesis of symbolically encoded computer programs. Specifically, DE has been previously

recruited to drive the Grammatical Evolution (GE) and Analytic Programming (AP) (Zelinka

et al. 2004; 2005) algorithms with the former algorithm being appropriately named Grammatical

Differential Evolution (GDE) (O’Neill and Brabazon 2006). More recently though, Geometrical

Differential Evolution (GDE*) has been proposed in (Moraglio and Silva 2010) and is actually

a generalization of DE for general metric spaces.

The first two areas of research empirically focused on radically different problem domains.

While AP had depth and was mostly concerned with the Boolean k-even and k-symmetric

problems, GDE had breadth as four diverse problems were investigated. This included: the

“Santa Fe Ant Trail”, the “Mastermind”, the three Boolean multiplexer, and the easy quartic

SR function in Equation 3.4. Here, a similar approach is adopted, but various aspects of the

algorithm differ and the sole focus is on SR with CC. Moreover, GDE failed to utilize the

inherent numerical representation of DE for the purposes of CC. Although AP is used for SR

with dynamical systems in (Zelinka et al. 2008), the three CC mechanisms described therein

also do not use DE in a non-embedded fashion where programs and constants are symbiotically

co-evolved as in DE-PGEP.

Finally, both a theoretical and empirical approach to GDE* was taken in (Moraglio and

Silva 2010). Instead of reusing the existing DE operators, two new crossover operators were

introduced. These two special operators were specifically designed to search the space of GP

program trees with extension rays. The only SR benchmark in (Moraglio and Silva 2010) was
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the same quartic function as in Equation 3.4. Thus, GDE* also does not explicitly address the

problem of CC.

4.4 Differentially Evolved Prefix Gene Expression Programming Algorithm

4.4.1 Ontological Process

Any continuous DE trial vector ui,g can be easily and consistently constrained by a repair

operation. This is accomplished through the use of the simple formula described in Equation 4.1,

where the vector notation introduced back in Section 2.5 is used and the usual notational

conventions apply for the absolute value and set cardinality operations on the gene set G.

Furthermore, % is the common residue (or the modulus operation) over the real numbers.

uj,i,g = |xj,i,g|% |G| (4.1)

The repaired vector then undergoes a discretization operation and thus it can be safely assumed

that Equation 4.2 always yields valid indices but not necessarily a valid chromosome. Like in

PGEP, invalid chromosomes are themselves not repaired and instead replaced by performing

another round of random manipulations (Li 2006).

uj,i,g = bwj,i,gc (4.2)

Together, Equation 4.1 and Equation 4.2 effectively mirror and compress the entire search

space RD into ZD|G|. The repair applied in Equation 4.1 takes into account magnitude but not
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direction. Wrapping only happens when uj,i,g ≥ |G|, but the number of wraps is not limited

and it strictly occurs in a uni-directional manner, specifically from high to low.

Each parameter uj,i,g of ui,g may then be interpreted as the gene with the corresponding

zero-based index into G. This exactly defines a PGEP chromosome which can be expanded into

an ET using the methods previously described in Section 2.1. Therefore, if the user-defined

length of all PGEP chromosomes is l, the dimension D of all DE vectors will be equal to l.

As a result, a many-to-one mapping between DE vectors and a linear PGEP chromosome is

defined by DE-PGEP. To facilitate a better understanding of the ontological process, Figure 19

demonstrates the steps needed to repair and expand an invalid real-valued vector into a valid

PGEP ET through the use of a simple example.

4.4.2 Search Space Definition

Since the user-defined gene set G remains fixed throughout the entirety of a PGEP run, a

unique integer index from [0, |G| − 1] must be assigned to every gene belonging to G at the onset

of a DE-PGEP run. Obviously, many possible orderings exist, and the optimal ordering is in

and of itself a separate problem specific optimization problem entirely. Conceptually, the order

of the genes defines the terrain of the fitness landscape, which is something that is unheard of in

GEP or even PGEP. Therefore, a random mapping of genes to indices will affect reproducibility

as there are |G|! uniquely ordered permutations of G in all.

Conceivably, different orderings could ease or harden the difficulty of a problem. Or, in other

words, certain orderings could hasten or inhibit the evolution of fit solutions. For example, the

distance between certain genes could be minimized according to some hypothetical criteria such
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-6.01 18.25 2.90 0.78 -8.67 8.71 -15.31 1.45 0.39 9.63 . . . 7.98 -5.79 3.94 2.16 -1.45 0.73

6.01 8.25 2.90 0.78 8.67 8.71 5.31 1.45 0.39 9.63 . . . 7.98 -5.79 3.94 2.16 -1.45 0.73

6 8 2 0 8 8 5 1 0 9 . . . 7 -5.79 3.94 2.16 -1.45 0.73

+ ∗ c2 x ∗ ∗ c5 c1 x ÷ . . . − -5.79 3.94 2.16 -1.45 0.73

0 1 2 3 4 5 6 7 8 9 . . . 63 64 65 66 67 68

+

∗ ∗

c2 x ∗ x

c5 c10.73 −5.79

3.94

Figure 19. Demonstrates the steps involved in the ontological process of DE-PGEP. The original, repaired, discretized,
encoded, and constant vectors are colored red, green, orange, blue, and violet, respectively. The correspond-
ing ET is colored cyan and centered at the bottom. Gene indices are zero-based and determined by the
ordered gene set G = {x, c1, c2, c3, c4, c5,+,−, ∗,÷}, which has a cardinality of 10. Substitutions of numeri-
cal constants for the symbolic placeholders in the ET are depicted by arrows pointing at the applicable leaf
nodes. Specifically, c1, c2, and c5 are substituted with −5.79, 3.94, and 0.73, which are the values of the
vector parameters at positions 64, 65, and 68.
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that perturbations are more successful on average. If this were done adaptively during a DE-

PGEP run, then the fitness landscape would be characterized as dynamic. The arity of the

included genes should also be considered when constructing an ordered gene set. Since the

arity of genes determines the size and shape of the expanded ET, the neighboring genes could

determine whether exploration or exploitation is undertaken. Adjacent genes of similar arity

are more conducive to exploitation where genes of dissimilar arity would promote exploration

as the shape and size of an ET could be radically altered.

The same can also be said about the behavior of the terminals and functions contained

within the gene set. This has the potential to foster greater innovation, but could also produce

more volatile processes that are unable to find superior vectors. Due to the ramifications that

different orderings may pose on the fitness landscape, static orderings of genes are employed.

The arrangements used herein are grouped by arity and place genes with similar functional

behavior in smaller neighborhoods to ease and promote transitions between genes. That is, more

homogeneous as opposed to heterogeneous arrangements of genes are preferred in an attempt to

achieve a balance between exploration and exploitation. The exact orderings accompanying the

gene sets are divulged later on in Section 4.5 for the experimental results reported in Section 4.6.

4.4.3 Neutral Mutations

One more subtle, but interesting consequence of this mapping is that any value belonging

to the half-closed interval [b|xj,i,g|c , d|xj,i,g|e) is equivalent with respect to the final outcome.

That is, the same index is realized, the same gene is selected, and an identical ET is built. Rep-
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resentations like this have been termed redundant. With redundancy, new and fundamentally

different types of mutation are now possible.

Prevalent in nature, neutral mutations produce genotypical differences without affecting

phenotypical behavior (Ferreira 2002c; Rothlauf 2006). Or in other words, the genetic material

is manipulated without changing the exhibited behavior, and thus not adversely affecting the

quality of an individual. Extending this idea to artificial search spaces, formations termed

neutral ridges may appear and “drifting” along these ridges can allow access to previously

unreachable areas of the search space (Shipman et al. 2000). Conceivably preventing stagnation

and increasing performance as there are now more traversable paths to the abundance of optimal

solutions residing in the search space (Rothlauf 2006; Shipman et al. 2000).

4.4.4 Constant Creation

Next, in order to accommodate numerical constants, a predefined number of genes c1, . . . , cm

are added to T . Each such terminal will represent a distinct constant which resides at or near

the end of ui,g, meaning that D will now be equal to l +m. Therefore, the constant terminals

will have different values depending on the chromosomal context, i.e., constants are local, not

global, in scope. Furthermore, when a chromosome is expanded into an ET τi,g, the value of

each constant is retrieved from ui,g. Specifically, for k = 0, . . . ,m− 1, the value of each ck+1 in

τi,g is ul+k,i,g. That is, the terminals c1, . . . , cm are simply placeholders and the actual constants

are substituted into the ET at the time of evaluation. For clarity, Figure 19 also demonstrates

the substitution of constants into an ET based on the description given above. This scheme
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not only ensures that a local pool of reusable constants is readily available to each chromosome,

but it also allows for the specialization of constants within the context of a single chromosome.

By virtue of Equation 2.10 and Equation 2.12, constants with the same parameter index j

influence each other’s values. So even though the constants may appear in different positions

and quantities in their respective ETs, the interplay between incompatible constants is essential

for variation. That is, diverse constants are crucial to the efficient exploration and exploitation

of the constants sub-space. With this in mind, one can see that the positions of all genes are

determined in a similar manner, and while constants are local in value, the CC of DE-PGEP

also works at the global or population wide level.

For future reference, the two sub-vectors of ui,g will be denoted by wi,g and zi,g as these

respectively represent the expression vector and the associated vector of constants. The re-

lationship between ui,g and its two sub-vectors wi,g and zi,g is now more formally defined in

Equation 4.3.

wi,g = (uj,i,g) , j = 0, . . . , l − 1

zi,g = (uj,i,g) , j = l, . . . , l +m− 1 (4.3)

Consequentially, a DE-PGEP population will contain exactly Np×m evolvable constants. How-

ever, only wi,g is subjected to the mirroring and wrapping of Equation 4.1 and the truncation
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of Equation 4.1. Constants in zi,g are therefore not constrained in any manner and are free to

increase in magnitude in either the positive or negative directions.

4.4.5 Initialization Revisited

Recalling Equation 2.9, the task of vector initialization must also be revisited for CC. For

wi,g the bounds are simply defined by the user-defined gene set G, but for zi,g a good set of

upper and lower bounds is problem dependent and most likely unknown in advance. Therefore,

without any additional knowledge, the recommendation in (Price et al. 2005) is followed and

the complete and updated initialization bounds are defined in Equation 4.4.

wj,i,g = randj(0, 1)|G|

zj,i,g = randj(0, 1) (4.4)

In some cases, the initialization bounds just defined can be problematic. If the global optimum

is not contained inside the initialization bounds, far initialization has occurred and a great deal

of computational effort may be required just to reach the general vicinity of the optimum (Price

et al. 2005).

4.5 Experimental Setup

4.5.1 Benchmark Problems

In order to evaluate the performance of DE-PGEP, a collection of SR problems which

have become De facto benchmarks for CC have been assembled. The aim was to construct a
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diverse set of benchmarks which includes functions of varying complexity, shape, and type. In

addition, SR problems with different constants, both small and large were sought. The quadratic

polynomial (f5) in Equation 4.5 can be found in (Koza 1992; Ferreira 2006), the cubic polynomial

(f6) in Equation 4.6 has been previously investigated in (Zhang et al. 2007; Fernandez and Evett

1998; Li et al. 2004), and finally, the sinusodial function (f7) in Equation 4.7 has appeared in

(Ryan and Keijzer 2003; Keijzer 2003; Costelloe and Ryan 2009; Pennachin et al. 2010). Such

citations are far from exhaustive but serve to demonstrate that the selected problems are deeply

entrenched in both past and present GP literature.

f5(x) = 2.718x2 + 3.141636x (4.5)

f6(x) = x3 − 0.3x2 − 0.4x− 0.6 (4.6)

f7(x) = 0.3x sin (2πx) (4.7)

Of all the benchmarks, the quadratic polynomial in Equation 4.5 is anecdotally the easiest,

and its rational coefficients, from left to right, are similar to Euler’s number and π. Although

not exceedingly difficult, the cubic polynomial in Equation 4.6 may be considered slightly more

difficult than Equation 4.5 as it has a higher order and more constants need to be approximated.

Since it has been empirically shown in (Ryan and Keijzer 2003; Keijzer 2003; Pennachin et al.

2010) that Equation 4.7 is more difficult because it becomes increasingly unpredictable as
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the interval under consideration is widened, two distinct instances of this problem are also

investigated herein.

4.5.2 Fitness Functions

In order to facilitate the meaningful and fair comparisons of DE-PGEP to other existing

CC techniques, several common fitness functions have been adopted. Specifically, the Mean

Squared Error (MSE), Root Mean Squared Error (RMSE) and Normalized Root Mean Squared

Error (NRMSE) functions, which are defined in Equation 4.8, Equation 4.9, and Equation 4.10,

respectively.

f̂MSE(ui,g) =
1

n

n∑
j=1

(pj − tj)2 (4.8)

f̂RMSE(ui,g) =

√
f̂MSE(ui,g) (4.9)

f̂NRMSE(ui,g) =

√
n
n−1 f̂MSE(ui,g)

σ̂T
(4.10)

The terms in Equation 4.8 are as follows: fMSE(ui,g) is the MSE of ui,g, p is the program

(chromosome) which ui,g encodes, n is the size of the training or testing set, pj is the actual

output of p on the jth training or testing case, and tj is the target output for the jth case.

The MSE makes any error measurement independent of the data set size but the units are

still squared. The RMSE in Equation 4.9 is then used to express all errors in terms of the

same units as the data. It is also compatible with the selection strategy of DE as described in



73

Equation 2.13. Thus, the RMSE is used as the objective function for the minimization task at

hand in DE-PGEP.

Finally, σ̂T in Equation 4.10 represents the sample standard deviation of the output targets

in the training or testing sets. Since the training and testing sets are only samples and not

populations, a correction for an unbiased estimation with n − 1 degrees of freedom is needed.

Thus, the total error of the residuals must only be considered an estimate of the true error. The

denominator of σ̂T introduced in the formula of the NRMSE normalizes any error measurement,

making it independent of the data’s dynamic range (Jäske 1996). Consequently, the definition

in Equation 4.10 of the NRMSE can only be undefined when every point in the data set is the

same, which is extremely rare. Furthermore, compared to the MSE or the RMSE, the NRMSE

is more easily consumed when reported as percentage points (i.e., 100×NRMSE). In particular,

0% conveys that p is a perfect solution while 100% indicates that p always responds with the

mean of the data set (Keijzer 2003; Pennachin et al. 2010). The NRMSE is solely meant for

reporting purposes and should increase the comprehensibility of the presented results. In full

disclosure, the NRMSE was not used anywhere in DE-PGEP’s implementation.

4.5.3 Data Sets

Displayed in Table V are brief summaries of how the training and testing sets were sampled.

For future reference, Id. introduces an unique identifier for each training and testing set pair,

which is denoted by the subscripted lowercase Greek letter Alpha (α). The Interval, Size, and

Method columns respectively detail the input intervals on which the samplings occurred, the

size of the sampled sets, and the method in which the sets were sampled. In the case of the
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TABLE V
DESCRIPTIONS OF THE SAMPLING METHODS USED TO GENERATE THE

TRAINING AND TESTING SETS USED FOR BENCHMARKING THE DE-PGEP
ALGORITHM.

Training Set Testing Set

Id. Interval Size Method Size Sampling

α1 [−10, 10] 10 Randoma 1000 Random
α2 [−10, 10] 21 +1.0 1000 Random
α3 [−0.5, 0.5] 21 +0.05 1000 Random
α4 [−1, 1] 41 +0.05 2000 Random

a Exact training set is borrowed from (Ferreira 2006).

sampling method, Random denotes a uniform random sampling over the specified input interval

and a number indicates the increment between regularly spaced points over the input interval.

Accompanying Table V is Table VI, which uses descriptive statistics to summarize the

sampled training and testing sets. The Var. column identifies the independent (Ind.) or

dependent (Dep.) variable of the corresponding data set. Each row then summarizes one

particular variable for each of the training and testing sets. The Min. and Max. columns

report the extremes of the variable, respectively. The mean and sample standard deviation

also appear under the Mean and Std. Dev. columns, respectively. Upon a close inspection of

Table VI, it can be inferred that f5 must extrapolate well in order to minimize the residual

errors on the testing set. The remaining problems, specifically f6 and f7, are characterized

by interpolation because the independent variables of the testing set are entirely contained by
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those of the training set. Scatter plots of both the training and testing tests can be seen in

Figure 20.

Although there is no complete agreement or clear consensus with regards to the standardized

gene sets that should be used in each of the benchmark problems, the dominant operators

appearing in the respectively cited works are generally adopted. The ordered gene sets appearing

in Equation 4.11 and Equation 4.12 are those that will be utilized throughout the remainder of

this chapter.

G1 = {x, c1, . . . , cm,+,−, ∗,÷} (4.11)

G2 = {x, c1, . . . , cm, sin, cos, sqrt, ln, exp,+,−, ∗,÷} (4.12)

Besides the common mathematical operators, +, −, ∗, and ÷1, there are several new operators

which may require some clarification. First off, in Equation 4.12, sin and cos represent the

trigonometric sine and cosine operators. Furthermore, exp, sqrt, and ln in Equation 4.12 are

the operators which represent the exponential, square root2, and natural logarithm3 functions,

1The protected division function guards against divisions by zero by returning a special undefined
value which defines the output of the program and indicates that the chromosome should be assigned
the worst possible fitness.

2In order to avoid the use of imaginary numbers, the square root operator is protected and re-defined
as follows: for all x ∈ R,

√
x =

√
|x|.

3The protected natural logarithm operator guards against undefined behavior and is reasonably re-
defined as follows: for x 6= 0, ln(x) = ln(|x|) and for x = 0, ln(x) = −745.
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(B) Cubic polynomail
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(C) Narrow sinusoidal function
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(D) Wide sinusoidal function

Figure 20. The scatter plots, appearing in a clockwise direction from the top left to the bottom
left, are for the quadratic and cubic polynomials, and the two sinusoidal functions
summarized in Table VI.
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TABLE VI

STATISTICALLY SUMMARIZES THE TRAINING AND TESTING SETS USED FOR BENCHMARKING THE
DE-PGEP ALGORITHM.

Training Set Testing Set

Id. Var. Min. Max. Mean Std. Dev. Min. Max. Mean Std. Dev.

α1
Ind. −8.767 6.901 −1.175 5.567 −9.981 9.974 −0.202 5.819
Dep. −0.677 181.364 75.864 69.090 −0.901 301.726 91.411 82.800

α2
Ind. −10.000 10.000 0.000 6.205 −9.989 9.982 −0.126 5.748
Dep. −1026.600 965.400 −11.600 442.630 −1023.339 960.266 −23.176 373.389

α3
Ind. −0.500 0.500 0.000 0.310 −0.500 0.500 −0.006 0.292
Dep. 0.000 0.087 0.045 0.032 0.000 0.087 0.046 0.029

α4
Ind. −1.000 1.000 0.000 0.599 −0.999 0.996 0.004 0.588
Dep. −0.228 0.086 −0.046 0.111 −0.230 0.087 −0.049 0.111
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respectively. Finally, x is the only input variable, and c1, . . . , cm are the evolvable constant

terminals introduced back in Section 4.4.4 where m may vary between experiments.

In Table VII, various control parameters are presented and identified by the appropriate

column header. The first column, Id., contains an identifier that represents a unique control

parameter combination and is denoted by a subscripted lowercase Greek letter Beta (β). A few

of these parameters are problem specific (e.g., gene set), some are borrowed from other sources

(e.g., gene, training, or testing sets), but the rest are arbitrary and were determined with little

effort to be empirically good. In Table VII, the remaining columns, from left to right, correspond

to the following parameters: the gene set (G), the PGEP chromosome length (l), the number of

evolvable constants (m), the dimension of a DE vector (D), the DE population size (Np), the

Differential Mutation operator (DM Operator), the scaling factor (F ), the uniform crossover

probability (Cr), the error threshold (ε) expressed in terms of the RMSE, and the maximum

number of generations (gmax). All of these parameters have been previously introduced in

Section 2.5, Section 2.1, and Section 4.4.4, and thus should not require any further explanation.

TABLE VII
AN OVERVIEW OF THE CONTROL PARAMETER COMBINATIONS USED DURING

TRAINING FOR THE BENCHMARK TRIALS OF THE DE-PGEP ALGORITHM.

Id. G l m D Np DM Operator F Cr ε gmax

β1 G1 32 5 37 25 DE/rand/1 0.2 0.1 0.01 105

β2 G1 64 5 74 25 DE/rand/1 0.2 0.1 0.01 105

β3 G2 64 10 74 25 DE/rand/1 0.4 0.1 0.01 105
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4.6 Empirical Results

Table VIII contains an overview of the fitness results obtained from performing the described

experiments. Due to the stochastic nature of DE-PGEP, 40 independent attempts were made

per benchmark. Each row presents the results obtained for a single benchmark and it is divided

in half where the upper entries reflect the results obtained during training and the lower entries

express the generalization results over the testing set. The first column, Env., indicates the

environment of the experiments, i.e., a tuple of the target function, the training and testing

sets, and the control parameter combination. The Fitness of Best Chromosomes header spans

the remaining columns, which contain quantities describing the best fitness values obtained in

one or all attempts during training and testing. These columns are vertically partitioned into

two groups. The quantities on the left are expressed in terms of the RMSE and are useful

for making comparisons with many other works. On the right, quantities are expressed as

percentages in terms of the NRMSE as such measurements are more meaningful and easily

interpreted. Under the NRMSE, the rows of zeros for the quadratic and cubic polynomials are

correct and can be attributed to both the accuracy of the evolved expressions and the larger

sample standard deviations of the corresponding data sets reported in Table VI.

Any Min. column refers to the chromosome with the best fitness value obtained in and over

all trials during training, i.e., it had the lowest error on the training set thus indicating that

it was the fittest chromosome overall. Similarly, every Max. column refers to the chromosome

which achieved the worst overall fitness during training, but was still the best fitness obtained

in a single run, i.e., it was the chromosome with the highest error on the training set signifying
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TABLE VIII

AN OVERVIEW OF THE BEST END-OF-RUN FITNESS VALUES OBTAINED WITH DE-PGEP OVER ALL 40
INDEPENDENT EXPERIMENTAL TRIALS ON THE QUOTED BENCHMARK PROBLEM. ALL RESIDUAL

ERRORS ARE REPORTED IN TERMS OF AND GROUPED BY THE UNSCALED RMSE AND THE NRMSE AS
PERCENTAGE POINTS. SINCE DE-PGEP ATTEMPTS TO MINIMIZE THE RMSE, SMALLER VALUES IN

ALL COLUMNS (EXCEPT FOR STD. DEV.) INDICATE FITTER EXPRESSIONS ON THE CORRESPONDING
SR PROBLEM. TIGHTER STANDARD DEVIATIONS ARE A GOOD INDICATOR OF GREATER

REPRODUCIBILITY AND CONSISTENCY OVER ALL TRIALS.

Fitness of Best Chromosomes

Unscaled RMSE NRMSE in Percentage Points

Env. Min. Max. Mean Std. Dev. Min. Max. Mean Std. Dev.

(f5, α1, β1)
8.238× 10−4 9.907× 10−3 7.433× 10−3 2.452× 10−3 0 0 0 0
9.140× 10−4 1.494× 10−2 9.089× 10−3 3.534× 10−3 0 0 0 0

(f6, α2, β2)
1.866× 10−3 6.172× 10−2 9.952× 10−3 8.785× 10−3 0 0 0 0
1.658× 10−3 5.872× 10−2 1.675× 10−2 4.656× 10−2 0 0 0 0

(f7, α3, β3)
3.245× 10−3 2.475× 10−2 9.674× 10−3 3.028× 10−3 10 78 31 10
3.386× 10−3 4.477× 10−2 1.497× 10−2 1.099× 10−2 11 150 50 37

(f7, α4, β3)
9.253× 10−4 1.093× 10−1 1.355× 10−2 1.692× 10−2 1 100 12 15
9.018× 10−4 1.111× 10−1 2.203× 10−2 3.773× 10−2 1 100 20 34
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it was the least fit best end-of-run chromosome encountered. The two remaining columns, Mean

and Std. Dev., simply report the mean and sample standard deviation of the best fitness values

recorded at the end of and over all 40 independent trials. Since the entries in the Min. column

are based only on the training set, one will immediately be able to determine whether or not

the fittest chromosome has overfitted the training data.

Complementing the fitness oriented results in Table VIII, Table IX reports additional results

that are concerned with the structural complexity and composition of the best end-of-run ETs.

The first column, Env., has the same meaning as that in Table VIII. However, unlike Table VIII

the rows are not composed of training and testing parts because the quantities reported in

Table IX are data set agnostic. The Size of Expression Tree column presents the size(s) of the

corresponding expression tree(s). Min. and Max. are the sizes of the overall best and worst

end-of-run programs. Mean is the average size of the best end-of-run programs evolved over all

trials, and similarly, Std. Dev. is the sample standard deviation of this size.

Quantities representing the number of constants occurring in the ETs are also presented in

Table IX under the Ratio of Constants heading. That is, Min. and Max. divulge the ratios of

unique to total constants utilized in the ETs of the overall fittest and least fit best end-of-run

solutions, respectively. The remaining columns, specifically Mean and Std. Dev., respectively

report the mean and sample standard deviation of the unique constants and total constants of

the best end-of-run programs over all trials. These last two quantities are always displayed in

fractional form and are not simplified so that the numerator and denominator can be viewed

independently.
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TABLE IX
SUMMARIZES VARIOUS OTHER ASPECTS OF THE BEST END-OF-RUN

INDIVIDUALS FROM ALL 40 INDEPENDENT EXPERIMENTAL TRIALS INCLUDING:
THE SIZE OF EACH ET AND THE RATIOS OF UNIQUE CONSTANTS TO TOTAL

CONSTANTS.

Size of Expression Trees Ratio of Constants

Env. Min. Max. Mean Std. Dev. Min. Max. Mean Std. Dev.

(f5, α1, β1) 17 13 19.750 6.590
3

5

3

4

3.950

6.575

0.815

2.601

(f6, α2, β2) 43 55 32.950 12.702
5

16

5

24

4.250

11.350

0.781

5.147

(f7, α3, β3) 23 14 27.550 10.853
3

5

2

4

4.075

5.750

1.542

3.160

(f7, α4, β3) 10 1 29.900 14.317
2

2

1

1

4.725

6.850

1.797

3.534

4.7 Analysis

Even though DE-PGEP utilizes a uniform crossover operator, it is significantly different from

most crossover operators employed by GP, GEP, or PGEP. As a refresher, the GP crossover

operators typically swap sub-trees between two tree-based chromosomes, and both GEP and

PGEP linear crossover operators exchange consecutive segments of genes between two chromo-

somes. However, in DE-PGEP, the uniform crossover operator is discrete in nature and only

adopts neighboring parameters by chance if Cr is low. Furthermore, DE-PGEP does not always

swap unaltered genetic material. The genetic material swapped by uniform crossover is either

an unperturbed or perturbed version of itself. So, from a GP, GEP, or PGEP perspective,

the uniform crossover operator with a low application probability more closely resembles that
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of point mutation than traditional crossover. In some sense then, Cr can be viewed as the

probability of accepting a mutation and F can be seen as the magnitude of that mutation. Yet,

the magnitude of mutation has no real parallel in GP, GEP, or PGEP as point mutations are

traditionally restricted to genes with similar arity.

Additionally, the uniform crossover operator only manipulates one individual directly where

a single crossover in GP, GEP, or PGEP almost always produces two new offspring. The

product of a mutation and crossover operation here, in DE-PGEP, can be much more subtle

and not nearly as obvious. Due to the presence of neutral mutations, there is no guarantee

that any immediate affects of the operations will be noticeable. It may not be until several

generations in the future, after more and more perturbations have been compounded, that a

noticeable difference in the phenotype emerges (Rothlauf 2006). Finally, even though the real-

valued representation of DE increases the size of the search space, “flattening” occurs because

of redundancy and vast uniform plateaus may appear (Rothlauf 2006). The transformed land-

scapes, which have a “staircase” like shape, may then explain the viability of DM as a search

space operator for DE-PGEP.

Upon a close inspection of the control parameter combinations in Table VII, it can be seen

that Cr is always equal to 0.1 (i.e., 10%). This was empirically determined and anything

above 0.3 (i.e., 30%) was consistently useless. Thus, when D = 74, approximately only 7 to 8

parameters are independently adopted into the trial vector. With a Cr above 0.3, at least 23

parameters are mutated, which apparently yields too much instability. However, since a vector

encodes a variable length program, short programs will be affected less and possibly preserved
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in their entirety. In this case, the majority of mutations will then occur in the downstream non-

coding region, which is composed of introns. Intuitively, a higher Cr paired with a moderate

F , will generally yield more genotypical differences. Thus, as Cr increases, more phenotypical

differences can occur, presumably resulting in a more chaotic and less successful search. The

parameter combinations must then try to maintain a balance between chaos and order. If not,

the search will deteriorate and good results like those reported here will be illusive.

While introns do not directly contribute to the fitness of the vector, these parameters can be

used to alter other vectors by way of DM. That is, other vectors may encode longer programs

and therefore the introns can influence these other vectors without being explicitly enabled.

This is very different from GEP or PGEP where introns are present, but only activated or

deactivated when an actual crossover or mutation occurs. Together, the combination of introns

and discretization actually gives DE-PGEP a“doubly” redundant encoding. Also, it was contin-

uously observed that as the gene set increased in size, F needed to be increased to compensate

for the larger search space. This is understandable as a larger scaling factor is required to cycle

through the available genes and find useful or good innovations.

Through a close inspection of the results presented in Table VIII and Table IX, some very

interesting observations about the stochastic behavior of the DE-PGEP algorithm can be seen:

• From both a training and testing perspective, DE-PGEP is very consistent in the results

it produces. Combined with the large number of independent runs and the very small

sample standard deviations, one can conclude that the final results are reproducible and

not just coincidental.
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• Furthermore, the least fit solutions are generally not exceedingly bad by any means, i.e.,

the overall worst solutions are in most cases good approximations as well, but they are

still not as precise as the fittest solutions.

• As the number of employed operators increased, it was empirically determined that m

needed to be increased too. Although not conclusive, a simple heuristic based on such

experiences and these tabulated results is made: m should be approximately equal to

the number of operators plus the number of input variables. The additional diversity

afforded by a larger pool of constants seems helpful when more functionality distinct

operators are made available. However, significantly more runs with additional control

parameter combinations, possibly using DOE, must be undertaken in order to accept such

a hypothesis.

• On average, for the best end-of-run ETs, DE-PGEP consistently uses only about one-

half to five-eighths of the parameters in a DE vector. Furthermore, the sizes of the

fittest solutions in Table IX are quite compact and do not suggest the explosive growth of

bloat1, which is commonly experienced with GP. It is possible, due to the interspersed or

fragmented nature of the uniform crossover operator, that a bias against longer program

exists and naturally exerts a parsimonious pressure.

• The means reported in Table IX show that the best end-of-run results obtained with DE-

PGEP almost always reused the small number constants available to each member of the

1Bloat is characterized as the accumulation of useless operations, which are either eventually canceled
out (e.g., x− x) or do not alter the output of a program (e.g., 1 ∗ x)
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population. While not conclusive, other CC techniques, particularly (Ryan and Keijzer

2003), have reported similar results.

• Only a single anomalous program was evolved during one of the trials for (f7, α4, β3).

This is especially apparent in the last two rows of Table VIII where 100 is reported twice

in the Max. column under the NRMSE. The ET of size unity was composed of exactly

one constant as can be verified by examining Table IX. Consequentially, this program

always emitted the same value, which indicates that DE-PGEP evolved an approximation

to the arithmetic mean of the training set. This particular program was an exception and

it did not occur during any other trial. Poor initialization, as discussed in Section 4.4.5,

may have been the cause of this rather interestingly anomaly.

• While it was not explicitly reported anywhere in Table IX, the best end-of-sun solutions

always used at least one unique constant. In other words, none of the best end-of-run

solutions ignored the evolvable constants. Thus, in the problems studied herein, DE-

PGEP always utilizes the proposed CC technique.

• Irrespective of the benchmark problem’s difficulty and the other control parameters, Np

always remained the same. With DE-PGEP, surprisingly small population sizes were

used. Normally, in GP, GEP, or PGEP, population sizes vary but are at least between

500 and 1000 in order to avoid premature convergence. Coincidentally, the one-to-one

survivor selection strategy of DE is conveniently aligned with the NSM improvement

originally proposed in (Gustafson et al. 2005) for GP and revisited in (Costelloe and

Ryan 2009). While (Gustafson et al. 2005) showed a statistically significant improvement
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for NSM alone, (Costelloe and Ryan 2009) failed to corroborate those results. The results

in Table VIII clearly reveal that premature convergence was not experienced, possibly

because of this NSM-like selection strategy built-in to DE.

In addition to the end-of-run results presented in Table III, plots of the mean best results

obtained over all 40 independent experimental trials are presented in Figure 21, Figure 22,

Figure 23, and Figure 24 for the environments (f5, α1, β1), (f6, α2, β2), (f7, α3, β3), and (f7,

α4, β3), respectively. Fitness curves make an appearance in Figure 21A, Figure 22A, Figure 23A,

and Figure 24A, where the vertical axes are expressed in terms of the logarithmically scaled

mean of the best NRMSE in percentage points over all trials and generations. For easy reference,

dashed horizontal lines appear in each fitness curve and signify the logarithmically scaled mean

of the best NRMSE in percentage points on the testing set over all trials and for each particular

environment. Next, constant curves are presented in Figure 21B, Figure 22B, Figure 23B, and

Figure 24B. Two distinct constant curves appear in each figure where the blue and red curves

respectively represent the mean of the unique and total number of constants in the fittest

programs over and throughout the entirety of all trials. At any fitness evaluation the total

number of constants should always be greater than or equal to the unique number of constants.

Lastly, size curves reveal the mean of the fittest programs’ sizes and are shown in Figure 21C,

Figure 22C, Figure 23C, and Figure 24C. Surrounding each of the above mentioned curves are

standard deviation ribbons for each quoted quantity. One sample standard deviation appears

above each mean curve while another appears below it.
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4.8 Example Solutions

4.8.1 Quadratic Polynomial

Presented in its unsimplified form, Equation 4.13 is the best program evolved for Equa-

tion 4.5 with a size of 17 and training fitnesses of 8.238× 10−4 and 0% in terms of the RMSE

and NRMSE, respectively. Once simplified into Equation 4.14, it is immediately apparent that

this program is a very good approximation. In fact, it is almost a perfect solution even though

the testing fitness is slightly worse at 9.140× 10−4 in terms of the RMSE. However, a NRMSE

of 0% is still reported for the testing set, which confirms the goodness of fit.

Instead of evolving just two constants with exact values, DE-PGEP utilizes three out of

the five uniquely available constants and reuses one of these exactly three times. Although it

may not be the most intuitive solution, the idea of using many similar terms to build up good

solutions is reasonable and certainly achieves the desired result. For completeness, it should be

noted that this particular solution was obtained with (f5, α1, β1).

f5(x) ≈ f̂5(x) = (x/0.439254) +
(
(1.165761 + 1.165761)∗

(x ∗ 1.165761) ∗ x
)

+ (x ∗ 0.864893) (4.13)

= 2.717997 ∗ x2 + 3.141480 ∗ x (4.14)
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(A) Plot of the fitness evaluations against the log scaled mean of the best NRMSEs.
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(B) Plot of the fitness evaluations against the mean number of constants in the fittest ETs.
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(C) Plot of the fitness evaluations against the mean size of the fittest ETs.

Figure 21. Various plots reporting, from top to bottom, the NRMSE, constant counts, and ET
sizes over all 40 independent trials for the quadratic polynomial benchmark.
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(A) Plot of the fitness evaluations against the log scaled mean of the best NRMSEs.
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(B) Plot of the fitness evaluations against the mean number of constants in the fittest ETs.
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(C) Plot of the fitness evaluations against the mean size of the fittest ETs.

Figure 22. Various plots reporting, from top to bottom, the NRMSE, constant counts, and ET
sizes over all 40 independent trials for the cubic polynomial benchmark.
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4.8.2 Cubic Polynomial

Appearing in Equation 4.15 is the best solution attained with (f6, α2, β2). In its original

and unmodified form, the size of the expression tree is rather large, 43 to be exact, and the

composition of the expression is somewhat irregular. That is, instead of utilizing the available

constants in a strictly conservative manner, all five unique constants appear together a total

of 16 times throughout the entire ET. However, two of the five constants are used only once

and the rest are used at least three times and at most six. Still, by observing the simplified

solution in Equation 4.16, it can be easily seen that this solution is very good with a training

RMSE of 1.866× 10−3 and a training NRMSE of 0%. Interestingly enough, the testing RMSE

of 1.685× 10−3 is slightly better but only negligible as is shown by the testing NRMSE of 0%.

f6(x) ≈ f̂6(x) =
(
c4 ∗ x

)
+ c2 +

((
c1 +

((
c1 − x

)
∗ x
)

+ c4 + c1 + x+
(
c1 − c1

)
+

(
c5 ∗ c2

)
+ c3 +

((
c2/(c4 − c1)

)
− x
))
∗
(
c2 − x

))
− c4

where c1 = 0.349331, c2 = −0.049276, c3 = 0.017816,

c4 = 0.505355, c5 = 0.361927 (4.15)

= x3 − 0.300055 ∗ x2 − 0.400035 ∗ x− 0.598397 (4.16)
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4.8.3 Narrower Sinusoidal Function

Shifting attention to the next benchmark problem, the best solution discovered for Equa-

tion 4.7 is presented in Equation 4.17. Unmodified, the original solution has a size of 23, a

training RMSE of 3.245 × 10−3, and a training NRMSE of 10%. Initially, it appears that this

function does not even closely resemble that of the target function. But upon evaluation on the

testing set, a RMSE and NRMSE of 3.386 × 10−3 and 11% were achieved, respectively. Here

though, all five constants were used exactly once, which seems to suggest that the constants

were highly specialized, making them unusable in different contexts. No matter, this solution

is still a remarkably good approximation given its structure and composition. A simplified and

possibly more understandable version of this solution is presented in Equation 4.18.

f7(x) ≈ f̂7(x) =
√

sin(3.899029 ∗ 1084) ∗ ln(x+ x) ∗ sin (x ∗ x) ∗(
0.045098− exp

(√
x/ sin

(
cos(2.960171 ∗ 1072)

)))
(4.17)

=
(

0.998604 ∗ ln(2 ∗ x) ∗ sin
(
x2
))
∗
(

0.045098− exp
(
1.193832 ∗

√
x
))

(4.18)

Utilizing otherwise unnecessary operators like exp, ln, and sqrt, DE-PGEP is still able to

evolve good numerical constants given the most promising, if not ideal, chromosome. Besides

the convoluted appearance of this solution, the rather large values of the constants do however

demonstrate that the default initial bounds are not too restrictive, i.e., larger constants are still

attainable if needed. This particular solution was obtained with (f7, α3, β3).
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(A) Plot of the fitness evaluations against the log scaled mean of the best NRMSEs.
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(B) Plot of the fitness evaluations against the mean number of constants in the fittest ETs.
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(C) Plot of the fitness evaluations against the mean size of the fittest ETs.

Figure 23. Various plots reporting, from top to bottom, the NRMSE, constant counts, and ET
sizes over all 40 independent trials for the narrower sinusoidal function benchmark.
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It is possible, given the narrow interval over which training occurred, that DE-PGEP pro-

duced a contorted expression because the interval did not permit the target function to exhibit

more of its true behavior. But again, the fittest expression discovered by DE-PGEP performed

better on the testing set than it did on the training set, implying that solutions do not exhibit

overfitting and generalize quite well. As a reminder to the reader, the ln and sqrt functions are

protected and thus well-defined over the entire input domain of [−0.5, 0.5].

Unlike G1, which was used for the quadratic and cubic polynomials, the expanded gene

set G2 in Equation 4.12 contains several non-linear uni-arity functions that can be used to

aid the creation of good numerical constants. Both of the original example solutions shown

in Equation 4.17 and Equation 4.19 utilize these previously unavailable non-linear functions to

transform the evolvable constants. Such functions like the exp and ln can be used to amplify

or dampen a constant depending on its sign. The cos and sin instead restrict values to the

range of [−1, 1], and can squash constants that have exceedingly large and otherwise useless

magnitudes. Thus, it would seem that CC can be accelerated through the use of a functionally

diverse gene set. Furthermore, when considering CC in general, it is important to consider the

interplay between constants and functions as there are many ways to creatively synthesize good

numerical constants.

4.8.4 Wider Sinusoidal Function

When considering a wider window, Equation 4.7 supposedly becomes less predictable. But

surprisingly, even the unsimplified expression in Equation 4.19 is strikingly similar in structure

to that of the target function. More interestingly though, the simplified version in Equation 4.20
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is very different from that of Equation 4.18, which was trained with the exact same control

parameters, but on a narrower interval. That is, Equation 4.20 was discovered with (f7, α4,

β3) and not (f7, α3, β3). Given that both the RMSE and NRMSE for the mean and best

individuals reported in Table VIII for (f7, α4, β3) are lower than those reported for (f7, α3,

β3), these results seem to contradict the supposition that this sinusoide is more difficult with

a wider window. However, even wider intervals (e.g., [−2, 2] and [−3, 3]) have been considered

elsewhere.

f7(x) ≈ f̂ ′7(x) = −0.300998 ∗ x ∗ sin
(
x/ cos

(
ln(−5.645193)

))
(4.19)

= 0.300998 ∗ x ∗ sin(6.276440 ∗ x) (4.20)

4.9 Summary

A significantly different approach to Symbolic Regression (SR) with a seamlessly integrated

Constant Creation (CC) mechanism has been proposed. Abandoning the discrete representation

used by Prefix Gene Expression Programming (PGEP) and adopting a continuous representa-

tion, has permitted the use of a robust real-valued optimization algorithm known as Differential

Evolution (DE). This conveniently allows for expressions and constants to co-exist in the same

vector-based representation and to be simultaneously evolved. Impressive performance was con-

sistently obtained on four experimental benchmarks, the fittest solutions were presented and

critiqued, and various aspects of redundant representations and neutral mutations were briefly
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(A) Plot of the fitness evaluations against the log scaled mean of the best NRMSEs.
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(B) Plot of the fitness evaluations against the mean number of constants in the fittest ETs.
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(C) Plot of the fitness evaluations against the mean size of the fittest ETs.

Figure 24. Various plots reporting, from top to bottom, the NRMSE, constant counts, and ET
sizes over all 40 independent trials for the wider sinusoidal function benchmark.
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introduced and related to the proposed method, which has been called Differentially Evolved

Prefix Gene Expression Programming (DE-PGEP).



5. CONCLUSION

5.1 Summary of Contributions

The primary focus of this thesis was on numerical optimization as means to Symbolic Regres-

sion (SR) program synthesis. Two major contributions were presented and empirically studied.

Both contributions used similar mechanisms, but in different capacities, to synthesize com-

puter programs. These primary mechanisms were Differential Evolution (DE) and Prefix Gene

Expression Programming (PGEP), both of which are inspired by natural biological processes

and evolutionary concepts like survival of the fittest, random mutations, and the inheritance of

beneficial traits through sexual reproduction.

The first major contribution was named Probabilistically Guided Prefix Gene Expression

Programming (PG-PGEP) and used an indirect approach to SR program synthesis. That is,

instead of directly evolving individual programs, the constrained probabilistic parameters of

graphical models, namely Hidden Markov Models (HMMs), were evolved with DE. The HMMs

were then used to generate random samples of likely PGEP programs. This non-deterministic

sampling scheme of PG-PGEP constitutes a dynamic ontological process that although not

novel in design, is in its application.

The second major contribution adopted a complementary approach, which instead used DE

to directly evolve PGEP programs. The discrepancy between the discrete encoding of PGEP

chromosomes and the continuous vectorized representation of DE was reconciled through the

98
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development of a deterministic ontological process. A form of discretization, based on truncation

and modular arithmetic, was used to transform the continuous vector representation into a

discrete symbolic PGEP chromosome. The continuous representation of DE also conveniently

allowed for the development of an seamlessly integrated numerical Constant Creation (CC)

technique that is symbiotic in nature. Collectively, these changes warranted the introduction

of an entirely new evolutionary process, which has become to be known as the Differentially

Evolved Prefix Gene Expression Programming (DE-PGEP) algorithm.

5.2 Future Research

5.2.1 Harmonious Research Directions

Since PG-PGEP and DE-PGEP are very similar in many respects, both algorithms could

easily benefit from improvements or enhancements that apply to certain shared components.

In particular, this especially applies to the constraint handling techniques of DE. It would

be interesting to pursue the development of constrained mutation and crossover operations

that retain the spirit of DE’s canonical operations. Ideally, such operators would completely

avoid repair operations, penalties, and distinctions between feasible and infeasible vectors, while

simultaneously respecting the complex interdependent constraints present in the definition of

an HMM in PG-PGEP or the much simpler independent upper and lower bounds required

by DE-PGEP. Unfortunately, the number of times that the canonical operations resulted in

violations of the constraints was not recorded. Thus, it cannot be said with absolute certainty

how useful such an improvement might be for either PG-PGEP or DE-PGEP. In any case,
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the constraints in especially one circumstance are fragile and easily violated, so intuitively, this

seems like one promising and fruitful direction for future research.

Furthermore, the length limitations imposed by the vectors of DE are prohibitive in many

ways. An effective and efficient variable length implementation of the DE algorithm would be

greatly welcomed by both PG-PGEP and DE-PGEP. In PG-PGEP, variable length vectors

would allow the HMM topology space to be more fully explored. Of particular interest would

be the ability to vary the number of hidden states in the vectorized representation of an HMM,

both throughout populations and individual trials. A good starting point for this particular

improvement might be that of (O’Neill et al. 2006), where four unique versions of a variable

length Particle Swarm Optimization (PSO) algorithm were empirically studied. Variable length

vectors would also be beneficial to DE-PGEP since both the length of a chromosome and the

number of constants must be fixed at the beginning of a run. While these two settings were

mostly constant throughout all experiments conducted in this thesis, adaptive chromosome

lengths and constant counts could reduce or eliminate any biases that these settings might have

inadvertently introduced.

Similarly, the use of other exogenous control parameters like the DM scaling factor (i.e.,

F ) and the rate of crossover (i.e., Cr) requires both intuition and experience. Manually set-

tings these parameters is tedious, time consuming, and unproductive. Statistical approaches

to experimental design like Latin Hypercube Sampling (LHS) (Bartz-Beielstein 2006) are good

alternatives, but ideally, the exogenous parameters would be migrated to endogenous control

parameters through some embedded self-adaptive process. There is already much research alle-
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viating the supervisor from this task in DE (Teo 2005; Yang et al. 2008; Zhang and Sanderson

2009) and such work would only need to be integrated into either PG-PGEP or DE-PGEP to

realize any potential performance improvements. Such ideas might even be further extended to

the DM operators as numerous strategies exist and the same strategy might not always be the

best given certain initial populations or population configurations encountered during a run.

Finally, since both PG-PGEP and DE-PGEP were only evaluated on synthetic or artificial

toy benchmark problems, it would be prudent to evaluate the two algorithms on real-world

problems with still unknown or illusive solutions. More challenging problems like the Ocean

Color Inverse Problem (OCIP), which has been previously studied in (Valigiani et al. 2004)

using canonical and feature enhanced versions of GP, would be an interesting application of the

proposed algorithms. Another area of research closely related to SR is Time Series Prediction

(TSP). The results from applying GP and GEP to naturally occurring phenomena like the

sunspot times series have already been presented in (Ferreira 2002a; Luzia Vidal de Souza and

da Rosa 2009; Duan and Povinelli 2001; Lopes and Weinert 2004; Dolin et al. 2002), and it

would therefore constitute another candidate for a good real-world benchmark problem. In

addition, as a consequence of the nature of TSP, the extrapolation abilities of PG-PGEP and

DE-PGEP would be more thoroughly evaluated.

5.2.2 Dichotomous Research Directions

In addition to the shared directions elaborated upon above, PG-PGEP and DE-PGEP

both have unique aspects that can should be independently pursued in future research. For

PG-PGEP, the main concern is to reduce extraneous sampling and eliminate unnecessary and
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possibly expensive fitness evaluations. While a straightforward or rudimentary approach could

use hashing to detect duplicates, additional overhead would still be incurred during sampling.

Thus, any future research on PG-PGEP should really readdress the sampling scheme detailed

in Section 3.2.3. A more intelligence sampling scheme, possibly based on the “believability” of

sequence, is definitely worth pursing. While the concept of “believability” is still ambiguous,

it might be based on the probability of the model emitting a certain sequence as well as the

plausibility of the composition of the sequence. Most likely, any such improved sampling scheme

would use Dynamic Programming (DP) and might even be based on a modified or extended

version of the Viterbi algorithm (Rabiner 1989).

As for DE-PGEP, the two most promising as well as interesting avenues of research are

related to the“doubly”redundant encoding and the ability to redefine the search space or fitness

landscape of any problem. While redundancy and neutral mutations have been previously

studied in (Ferreira 2002c) for GEP, the uniform redundancy as induced by the ontological

process described back in Section 4.4.1 needs to be investigated more fully. That is, it needs to

be determined whether this redundancy has a statistically significant effect on DE-PGEP, and

if so, whether any such effect is either advantageous or disadvantageous. Furthermore, it may

also be worthwhile to investigate other ontological processes which result in non-uniform types

of redundancy.

Finally, the unique ability to redefine the search search space given a particular problem

and a unique gene set may further improve the results obtainable with DE-PGEP. Dynamically

altering the fitness landscape has already been studied, but this usually involves dynamically
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altering the composition of the training set (Gathercole and Ross 1994) or adapting the objective

function itself (Uchibe et al. 2002). The proposition being presented here is novel and is instead

concerned with the restructuring of the search space to be more conducive to exploration or

exploitation through adaptively redefining the mapping between indices and genes. Although

large numbers of trials would still be required if both directions were pursued, the use of

Common Random Numbers (CRNs) (Bartz-Beielstein 2006) should also be seriously considered

in order to induce a positive variance and synchronize all operations for truly comparable

results.
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hidden Markov models for protein secondary structure prediction. Proceedings of the 2005
IEEE Congress on Evolutionary Computation, 1(2-5):33–40, September 2005.

Zhuli Xie, Xin Li, Barbara Di Eugenio, Weimin Xiao, Thomas M. Tirpak, and Peter C. Nel-
son. Using Gene Expression Programming To Construct Sentence Ranking Functions For
Text Summarization. In Proceedings of the 20th International Conference on Computational
Linguistics (COLING 2004), pages 1381–1384, Geneva, Switzerland, August 2004.

Liping Xue, Junxun Yin, Zhen Ji, and Lai Jiang. A Particle Swarm Optimization for Hidden
Markov Model Training. In The 8th International Conference on Signal Processing, volume 1.
IEEE Press, 2006. ISBN 0-7803-9737-1.

Kohsuke Yanai and Hitoshi Iba. Estimation of Distribution Programming: EDA-based Ap-
proach to Program Generation. In Jose A. Lozano, Pedro Larrañaga, Iñaki Inza, and Endika
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