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SUMMARY

This work centers around the design, manufacturing, analysis, and experimental use of

hydrogel phantoms in magnetic resonance elastography. The first chapter is an introduction

to some basic concepts in engineering math and medical imaging that the reader might find

useful to understand the rest of the work. In the second chapter, the solution to a concentric

cylindrical body undergoing harmonic oscillations is derived. Then the phantom construction,

experimental procedure, parameter estimation, and the forward problem are described. To

validate the model, the shear moduli estimates are used as inputs to solve the forward problem

with a finite element model (FEM) which is compared with experimental results. The immediate

consequences of this work as well its implications for future research are considered. In the third

chapter, the scattering and diffraction of a cylindrically converging transverse shear wave in a

viscoelastic isotropic medium by a spherical heterogeneity is analytically solved. The wave field

is determined for a hydrogel bead suspended in a different hydrogel that fills a glass test tube.

Numerical examples showing the effect on displacement fields of varying the stiffness of the

inclusion are presented. The fourth chapter is very similar to the second chapter, save that

the phantom has a spherical heterogeneity rather than a concentric cylinder. Further, only the

results of the forward problem are compared to the experiment to validate the mathematical

model. The concluding chapter re-states what has preceded it, ending with some remarks on

future work. The works cited section includes every source referenced in this document. Finally,

my vita describes my educational history as well as my publications.

xiv



CHAPTER 1

PRELUDE

The natural world is a vast and mysterious place that could be described, not incorrectly, as

having an infinite complexity on all levels, domains, scales, ranges, aspects, times, perspectives,

etc. Those who call themselves scientists, engineers, mathematicians–philosophers, in short–

have taken on the charge of solving these mysteries and then communicating these knowledges

that all may benefit and that some may even follow suit, building on what spoke to their

individual passions. I wish to join the august society of natural philosophers. I offer, then, this

document as proof of my ability to do good science, and to contribute to the body of work that

is the collective knowledge of all humanity. My favorite subjects in grade school were math,

biology, chemistry, and physics. Bioengineering and imaging in particular seemed to encapsulate

all four most equally. The three studies herein center around the art of mathematical modeling

the dynamic behavior of materials designed to be not unlike living tissue. Through these pen-

and-paper analyses we glean insights about the composition and interaction of these tissue-

mimicking substances and, by extension, our own flesh and blood. The first study is about

an object made of two concentric cylinders of different composition and stiffness. The second

study is the mathematical framework for a sphere encased in a cylinder. The third study is

the experimental work that uses the analyses of the second study. Before all that, though, is

some background information about the math, imaging techniques, and materials used in all

the studies. Those already familiar with the vector wave equation, magnetic resonance imaging

1
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and elastography, and hydrogels can probably skip the rest of this chapter, going straight to

the novel work. And now let us begin.

1.1 Mathematic Preliminaries

All too often I found a paper on vibrations that relied heavily on math that the reader was

just assumed to have known. I never want to be such an author. At the very least, I won’t

start now. What follows is a description with some derivations, of the math used in this work.

It is not meant to be a rigorous treatment, but a general summary with an intuitive tone, that

you may understand the tool used throughout.

1.1.1 The Wave Equation

In the vibrations of solids let us define the displacement vector, ~U , as

~U = ux̂1 + vx̂2 + wx̂3 (1.1)

where u, v, and w are the magnitudes along three orthogonal unit vectors, x̂i. In this work,

we focus on the cylindrical (ρ, φ, z) and spherical coordinates (r, θ, φ), depicted in Figure 1 and

Figure 2, respectively. In cylindrical coordinates, Equation 1.1 becomes

~U(ρ, θ, z) = uρρ̂+ uφφ̂+ uz ẑ, (1.2)

and, in spherical coordinates,

~U(r, θ, φ) = urr̂ + uθθ̂ + uφφ̂. (1.3)
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Suppressing time dependence, the governing equation for a homogeneous isotropic elastic solid

is a linear, second-order, partial, differential equation, given, in terms of displacement, in vector

notation as (1)

α2∇∇ · ~U − β2∇×∇× ~U + ω2~U = 0. (1.4)

Here α and β are, respectively, the longitudinal and transverse wave speeds, given, in terms of

the elastic material constants (the Lamé constants), λ and µ, as

α2 =
λ+ 2µ

γ
(1.5)

and

β2 =
µ

γ
, (1.6)

where γ, due to obvious notational constraints, is the material density. The second Lamé con-

stant, µ, is also called the shear modulus, and ω is the angular frequency of vibrations. To solve

for ~U , we turn to the fundamental theorem of vector calculus, also called Helmholtz decom-

position, which states that a vector field may be decomposed into longitudinal and transverse

components (1), called vector potential functions, and given as

~U = ∇Φ +∇× êΨ + β−1
i ∇×∇× êX. (1.7)
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The first term on the right side of Equation 1.7 is the longitudinal component and the second

and third terms are the transverse components. The constant vector, ê, in Equation 1.7 depends

on the coordinate system, as do the gradient and curl operators.

Let there be given a scalar function of three orthogonal coordinates, f(x1, x2, x3), and vector

function, also of three orthogonal coordinates, ~F(x1, x2, x3). In cylindrical coordinates the

gradient and curl operations on f and ~F, respectively, are given as

∇f(ρ, φ, z) =
∂f(ρ, φ, z)

∂ρ
ρ̂+

1

ρ

∂f(ρ, φ, z)

∂φ
φ̂+

∂f(ρ, φ, z)

∂z
ẑ, (1.8)

and

∇× ~F(ρ, φ, z) =

(
1

ρ

∂fz
∂φ
−
∂fφ
∂z

)
ρ̂+

(
∂fρ
∂z
− ∂fz
∂ρ

)
φ̂+

(
1

ρ

∂

∂φ
(ρfφ)− 1

ρ

∂fρ
∂φ

)
ẑ. (1.9)

In spherical coordinates, Equation 1.8 and Equation 1.9 become

∇f(r, θ, φ) =
∂f(r, θ, φ)

∂r
r̂ +

1

r

∂f(r, θ, φ)

∂θ
θ̂ +

1

r sin(θ)

∂f(r, θ, φ)

∂φ
φ̂, (1.10)

and

∇× ~F(r, θ, φ) =
1

r sin(θ)

(
∂

∂θ
(fφ sin(θ))− ∂fθ

∂φ

)
r̂ +

(
1

r sin(θ)

∂fr
∂φ
− 1

r

∂

∂r
(rfφ)

)
θ̂

+
1

r

(
∂

∂r
(rfθ)−

∂fr
∂θ

)
φ̂. (1.11)
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The scalar potentials, Φ, Ψ, and X, each solves the scalar helmholtz equation (1), i.e.

(
∇2 +

ω

α2

)
Φ = 0 (1.12a)

(
∇2 +

ω

β2

)
Ψ = 0 (1.12b)

(
∇2 +

ω

β2

)
X = 0. (1.12c)

Like the gradient and curl operations, the Laplacian operation depends on the coordinate

system. Using, once again, the example of the scalar function, f, expressions for the Laplacian

are given, respectively, in cylindrical and spherical coordinates (2) as

∇2f(ρ, φ, z) =
∂2f(ρ, φ, z)

∂ρ2
+

1

ρ

∂f(ρ, φ, z)

∂ρ
+

1

ρ2

∂2f(ρ, φ, z)

∂φ2
+
∂2f(ρ, φ, z)

∂z2
(1.13a)

∇2f(r, θ, φ) =
1

r2

∂

∂r

(
r2∂f(r, θ, φ)

∂r

)
+

1

r2 sin(θ)

∂

∂θ

(
sin(θ)

∂f(r, θ, φ)

∂θ

)
+

1

r2 sin2(θ)

∂2f(r, θ, φ)

∂φ2
.

(1.13b)

1.1.2 Scalar Helmholtz Equation

Continuing with our sample function, f(ρ, φ, z), in cylindrical coordinates, the scalar helmholtz

equation is given as (
∇2 +

ω

c2

)
f(ρ, φ, z) = 0, (1.14)

where c stands for the appropriate–longitudinal or transverse–wave speed. The circular cylin-

drical coordinate system is separable in the helmholtz equation (2) which means that we may



8

solve Equation 1.14 by the method of separation of variables (3), wherein we assume that the

function, in this case f(ρ, φ, z), is a product of three functions, each of only one coordinate, i.e.

f(ρ, φ, z) = P (ρ)Φ(φ)Z(z). (1.15)

The method of separation of variables is a powerful tool because it allows us to transform a

partial differential equation into multiple ordinary differential equations. All systems in this

work are assumed to be axially symmetric so we will neglect any dependence on φ, making

Equation 1.15

f(ρ, z) = P (ρ)Z(z). (1.16)

Putting Equation 1.16 into Equation 1.14 gives us

1

P (ρ)

∂2P (ρ)

∂ρ2
+

1

ρP (ρ)

∂P (ρ)

∂ρ
+

1

Z(z)

∂2Z(z)

∂z2
+
ω2

c2
= 0. (1.17)

We can isolate terms based on their variable, introducing a constant of separation, ν, which we

square for analytic convenience,

1

P (ρ)

∂2P (ρ)

∂ρ2
+

1

ρP (ρ)

∂P (ρ)

∂ρ
+
ω2

c2
= − 1

Z(z)

∂2Z(z)

∂z2
= ν2. (1.18)

We now have two linear, second order, ordinary differential equations. The radial equation is

∂2P (ρ)

∂ρ2
+

1

ρ

∂P (ρ)

∂ρ
− ν2P (ρ) = 0, (1.19)
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and the axial equation is

∂2Z(z)

∂z2
+

(
ω2

c2
+ ν2

)
Z(z) = 0. (1.20)

Equation 1.19 is the cylindrical Bessel equation, the solution to which is called the cylindrical

Bessel function (4) and given as

P (ρ) = Jν

(ω
c
ρ
)

=
∞∑
m=0

(−1)m
1

m!Γ(ν +m+ 1)

( ω
c ρ

2

)2m+ρ

, (1.21)

where Γ is the Gamma function (4). It is conventional to use Jν to indicate the cylindrical

Bessel function of the first kind of order ν. Because we get Bessel’s equation when dealing with

cylindrical coordinates, Bessel functions are sometimes referred to as cylindrical functions. The

solution to Equation 1.20 is given as

Z(z) = sin(νz) + cos(νz). (1.22)

In spherical coordinates, Equation 1.16 becomes

f(r, θ) = R(r)Θ(θ), (1.23)

and, after separating variables, we get a radial equation and an angular equation,

∂

∂r

(
r2∂R(r)

∂r

)
+
ω2

c2
r2R(r)− ν(ν + 1)R(r) = 0, (1.24)
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and

∂

∂θ

(
sin(θ)

∂Θ(θ)

θ

)
+ ν(ν + 1)Θ(θ) sin(θ) = 0, (1.25)

respectively. For analytic convenience we chose ν(ν + 1) as the separation constant. Equa-

tion 1.24 is the spherical Bessel equation whose solution is defined in terms of the cylindrical

Bessel function,

R(r) = jν

(ω
c
r
)

=

√
π

2ωc r
Jν+ 1

2

(ω
c
r
)
. (1.26)

Conventionally, the spherical Bessel function is written with a lower case, j. The solution to

Equation 1.25 is called the Legendre polynomial of order ν,

Θ(θ) = Pν(cos(θ)) =

ν
2∑

m=0

(−1)m
(2ν − 2m)

2νm!(ν −m)!(ν − 2m)!
cos(θ)ν−2m. (1.27)

1.2 Imaging

The dynamic analysis of this work is for validation and other use in medical imaging. The

modalities concerned are magnetic resonance imaging and a specialized technique thereof called

magnetic resonance elastography. I’ll, very briefly, describe them here. Much more thorough

treatments can easily be found in the literature. I recommend the text by Smith and Webb (5).

1.2.1 Magnetic Resonance Imaging

A magnetic resonance imaging (MRI) scanner has one super-conducting magnet surrounding

a cylindrical bore that produces the main magnetic field, B0, that has a magnitude of 1.5 − 3

tesla in most clinical scanners (we used a 9.4 tesla animal scanner for our data collection).



11

 

 

 
 

z 

y 
x 

 M 

Figure 3. Vector model

There are two more magnetic fields induced by coils, the radio frequency (RF) and gradient.

Once an object in question is in the field, it’s protons begin to precess around the main field,

according to the Bloch equation (5). Summing the vectors of all the magnetic moments of

the protons we get one vector oriented along the B0 vector, shown in Figure 3. RF coils

apply another magnetic field whose principal components are perpendicular to the B0 field and

the induced torque tips the magnetization vector to the transverse plane, shown in Figure 4.

The RF field is stopped and the protons begin to relax, first de-phasing and then re-aligning
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Figure 5. Dephasing

with the B0. The view of vectors in Figure 3 and Figure 4 assumed a rotating reference frame,

allowing us to visualize the dephasing. The magnetization vector is comprised of all the protons’

magnetizations. They are not all spinning at the same frequency. From the rotating view it

appears that the vectors spread out, the higher frequency vectors gaining phase, the angle, φ,

with the y axis, and the lower frequency vectors losing phase, shown in Figure 5. As the

vectors dephase, the magnetic resonance signal decays exponentially, with a rate constant, T2,
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and is much faster than T1, the rate constant at which the magnetization vector returns to

the z axis. In pure water, T1 = T2. As it requires energy to tip the magnetization, so energy

is released when it relaxes. This energy is the signal recorded by the RF coils. Before that,

though, the gradient coils apply yet another field such that only the particular plane, or slice,

of interest will be relaxing at the same frequency as the RF coils. This is how specific slices are

selected. This can take mere seconds but must be repeated for all phases of the protons. The

inverse Fourier transform is applied to the raw data to get the final image. The subject must

remain motionless during the scan (5).

1.2.2 MR Elastography

In magnetic resonance elastography (6), a conventional MRI scan is modified. A harmonic

shear wave is introduced in the tissue by an internal or external actuator. The scanner’s motion-

encoding gradient coils are synchronized with the mechanical actuator. The protons in water in

these oscillating magnetic field accrue a phase shift corresponding to their displacement. The

phase depends on the strength of the magnetic field surrounding it by the integral relationship,

φ = g

∫
G(t) · ~r(t)dt, (1.28)

where φ is the phase, g is the gyromagnetic ratio, G(t) is the magnetic field strength, and ~r(t)

is the position of the nuclear spins. The gradient coils create an oscillating field such that

protons in certain parts of the material–peaks at t = 0 and troughs at t = 1/2T , where T is the

period–are always in the strong part of the magnetic field, acquiring a larger phase shift than
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Displacement and Magnetic field at t=(1/2)T 

Displacement and Magnetic field at t=0 

Figure 6. Displacement profile superimposed on a magnetic gradient

the oppositely displaced material. Figure 6 is a simplified illustration of the displacement in

a magnetic gradient. The peaks at t = 0 are in the dark part of the field. Half a period later,

there are troughs where there were peaks and the gradient has reversed, keeping those protons

in the dark part of the field. Meanwhile, the protons on the other side of the wave–troughs at

t = 0 and peaks at t = 1/2T–have remained in the light part of the field. The phase contrast

image is analogous to a wave image from which the mechanical properties of the tissue, i.e.

shear modulus, µ, can be calculated using the relationship,

µ = γ (lf)2 , (1.29)

where γ is the material density, l is the wavelength, and f is the frequency of the applied

vibrations.
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1.3 Hydrogels

Before clinical use, before clinical trials, before even animal studies, medical imaging, at least

nowadays, is tested on non-living objects called phantoms. Phantoms should ideally behave as

would the objects for which the imaging is being considered. Out phantoms need to move and

squeeze and bounce and shake like soft tissue. The best choice for our work, considering cost

and ease of use, are solidified suspensions of colloids in water called hydrogels.

1.3.1 Colloids

The term colloid comes from the Greek kolla which means glue. It refers to substances of

large molecular weight, e.g. collagen, the primary component of gelatin. The solution of a colloid

dispersed in a fluid medium is called a sol. When a colloid dispersion solidifies it is called a gel.

So diffusing e.g. gelatin or agarose into hot water will yield a hydrosol which, upon cooling,

will solidify into a hydrogel (7). The mechanism by which a colloidal dispersion transitions

from sol to gel, i.e. the particular attractive interaction between the elements of the disperse

phase, depends on the type of colloid and may include electrostatic, Van der Waals, or chemical

bonding (8). To make our phantoms, we combined two colloids, agarose and gelatin. Agarose

is a neutral polysaccharide derived from seaweek whose gel rheologic properties, specifically

dynamic Young’s modulus, go linearly with concentration in water in the range used herein (9).

Gelatin, whose dynamic Young’s modulus also linearly correlates with concentration in water,

is made from collagen derived from beef and pork hydes and bones (10).
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1.3.2 Properties

Hydrogels are useful because they have essentially tunable viscoelastance. The higher the

concentration of colloid in the hydrogel, the stiffer it will be. Watase et al showed that gelatin

and agarose will interfere with each others’ gelling abilities (11), but this was at concentrations

much higher than those used in this work. Hydrogels offer us the opportunity to investigate how

different colloids will behave alone, together, and in various ratios. Modifying these parameters

would allow for the testing of different types of tissues in the body as well as mathematical

models, e.g. fractional vs. integer order calculus (12).

1.3.3 Other Phantom Materials

While I have used hydrogels throughout these studies, I would be remiss not to mention what

also has been used to great effect and what could still be of use. The first is a poly(dimethyl

siloxane) (13; 14) called Ecoflex. It has rheologic properties similar to soft tissue. It has a

longer curing time than hydrogels, but it lasts much longer. Water will evaporate from the

hydrogels which will not only increase the concentration of colloid thus stiffening the phantom,

but also change the shape. Ecoflex does not have this problem though it is also nowhere near

as easy to use as gelatin. The other polymer that, to my knowledge, has yet to be used for

magnetic resonance elastography phantoms, but shows great promise with regard to tenability

is poly(ethylene glycol)-dimethacrylate (PEGDMA) (15). It is rather expensive, though, which

is probably why it is not used.



CHAPTER 2

CONCENTRIC CYLINDERS

Magnetic resonance elastography (MRE) is an imaging technique that allows for the non-

invasive visualization of the displacement field throughout an object from externally driven

harmonic motion. Assuming linear elasticity, the stiffness of the material being scanned can be

calculated by directly measuring the wavelength from the wave field images. This has been used

to estimate the mechanical properties of soft tissue. Validation is attained by making certain

assumptions about the material properties as well as the geometry of the wave fields and the

region through which they are propagating, i.e. a plane wave traveling through an infinite

medium. This is necessary because the actual geometry of e.g. an entire liver is not amenable

to an analytic solution of the linear vector Helmholtz equation. Recent studies, however, have

extended the scale of MRE, even down to the microscopic (16). And on a small enough scale

much of physiology can be mathematically modeled with basic geometric shapes, e.g. a cylinder

representing a blood vessel. In principal, then, MRE can be used to carefully study models

of pathology with specifically designed phantoms. One very important benefit of MRE is the

ability to collect information from any plane throughout the object which, coupled with the

geometric focusing technique pioneered by Yaşar et al. (16), overcomes the loss of viscous

damping, allowing for detection of high frequency waves deep in a highly viscous material, e.g.

agarose. That is the focus of this paper: the design and analysis of a phantom for use in MRE

and inverse modeling with a closed-form analytic solution.

18
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2.1 Introduction

The mechanical properties of biologic tissue are informed by their relative states of health.

A Malignant tumor in, e.g. breast, liver, pancreas, etc., tissue is noticeably stiffer than the sur-

rounding healthy regions of that tissue. Further, the progression of disease can be characterized

by the degree to which the mechanical properties veer from normal as in, e.g. the maturity

of a blood clot in deep vein thrombosis (17). This phenomenon makes the ancient art of pal-

pation, the manual pressured probing of a patient’s body, to this day an invaluable method

to detect maladies. Though inexpensive and universally applicable, noninvasive palpation is

limited to the periphery of a patient’s body. A small tumor deeply embedded in tissue could be

missed, and allowed to grow, reducing a patient’s chance of survival. Moreover, a doctor’s tac-

tile sensitivity to variations in tissue stiffness is, by nature, a subjective trait, prone to error in

disease detection and characterization. The broad engineering challenge is centered around the

noninvasive, high resolution, characterization of soft tissues through their mechanical behavior.

Linear elastic theory defines a mechanical system through a plethora of parameters though an

imaging modality need not consider them all to be clinically relevant. The complex shear mod-

ulus, in particular, has received scrutiny in the literature of late as a biomarker for pathologies

in magnetic resonance (MR) elastography (6; 18; 19; 20; 21). In MR elastography an object is

perturbed with harmonic oscillations from a mechanical actuator. The displacement through-

out the material, i.e. the wave field, is encoded in the phase of the MR signal by synchronizing

the gradient coils of the MRI scanner with the oscillatory frequency of the actuator. The shear

modulus can be estimated from these wave data with various inverse modeling techniques (22).
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Medical imaging requires phantom studies for validation. Hydrocolloid suspensions are afford-

able and easily made so they have seen considerable use as tissue-mimicking phantoms in all

manner of elastographic studies.

2.1.1 Homogeneous Material

To validate a novel technique or model in elastographic imaging it is sometimes necessary

that the samples being studied be homogeneous to eliminate artifacts from, e.g. scattering.

Perriñez et al used a bean curd, tofu, to mimic soft poroelastic tissue in MR elastography (23),

estimating shear modulus from simulated data with a finite-element-based nonlinear inversion

scheme. Othman et al used agarose gel phantoms to extend MR elastography to the micro scale

(16; 24; 25). Homogeneous gelatin phantoms have also been used in ultrasound elastography.

Amador et al validated their shearwave dispersion ultrasound vibrometry technique with a

hydrocolloid mixture of gelatin, glycerol and cellulose by comparing the results to those of

indentation tests (26), while Zhang et al validated their surface wave method in a similar study

(27).

2.1.2 Heterogeneities and Connectedness

Some researchers deliberately introduce heterogeneities in their phantoms to more closely

mimic a biologic system. Henni et al did ultrasound elastography on a cuboidal gelatin phantom

that had a soft cylindrical region running through it to validate their elegant analytic model

of scattering and diffraction of a plane shear wave by an infinite cylinder (28). Schmitt et al

used Henni’s model to solve the inverse problem of characterizing vascular behavior with ultra-

sound elastography (29; 30). Doyley et al constructed elastically heterogeneous phantoms by
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embedding hydrogel spheres in a hydrogel spheres in a hydrogel medium of a different stiffness

than the spheres to show that more sophisticated mathematical assumptions, i.e. nonlinearity,

anisotropy, and viscoelasticity should be made when reconstructing elastograms from MR elas-

tography data (31). Qin et al immersed spandex fibers in a polyvinyl alcohol hydrogel to test

a combined MR elastography and diffusion tensor imaging technique (32). Yin et al designed a

ball-in-tube phantom to demonstrate their novel technique for simultaneous acquisition of diffu-

sion and MR elastography data (33). As the geometry of the phantoms increases in complexity,

e.g. being multiply connected as opposed to simply connected or mixing geometry, so do the

analytic solutions describing their dynamic mechanical behavior. Certainly a phantom that

accurately models the geometry of a brain would necessitate a technique like local frequency

estimation to infer its mechanical properties, but there are many geometric configurations with

clinical or academic relevance that are amenable to analytic solutions. Khan et al modeled

a corneal phantom as a thin viscoelastic plate (34). They obtained an elastogram by fitting

their closed form analytic solution to displacement data. Yaşar et al used the solution to a

longitudinally vibrating, homogeneous, infinite circular cylinder to obtain shear stiffnesses of

cylindrical phantoms over a wide range of frequencies (35). Okamoto et al conducted a similar

study but varied their phantoms’ composition (36). Also, they had a different mathematic so-

lution because their actuation came from within their phantom, whereas Yaşar et al perturbed

their phantom’s outer surface.
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2.1.3 Objective

Of all the works mentioned, Okamoto et al is the only MR elastography study to obtain

estimates of the complex shear modulus of a multiply connected body by inverse modeling with

a closed form analytic solution. There has been no such modeling of a multiply connected

heterogeneous body in MR elastography and this is what is presented now. The solution to

a concentric cylindrical body undergoing harmonic oscillations is derived from first principles.

The phantom construction, experimental procedure, parameter estimation, and the forward

problem are then described. To validate the model, the shear moduli estimates as inputs to

solve the forward problem with a finite element model (FEM) are used and compared with

experimental results. Finally the immediate consequences of this work as well its implications

for future research are considered.

2.2 Theory

2.2.1 Problem Formulation

Let there be given an infinitely long, rigid, circular cylindrical tube on inner radius, b,

filled with an elastic solid, medium 1. Concentrically embedded therein is a circular cylindrical

elastic solid, medium 2, with mechanical properties different from medium 1. This system is

described by cylindrical coordinates (ρ,φ,z) (2), and shown in Figure 7. The rigid tube

harmonically oscillates along the z axis and it is assumed that medium 1 is in intimate contact
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Figure 7. The cylindrical media are referred to a cylindrical coordinate system (ρ, φ, z) with
the z axis coinciding with the axes of the media.
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with both medium 2 and the oscillating wall. The displacement of both media satisfy the vector

Helmholtz equation (1),

α2
i∇∇ · ~U − β2

i∇×∇× ~U + ω2~U = 0 (2.1)

where

α2
i = (λi + 2µi) γ

−1
i (i = 1, 2) (2.2a)

and

β2
i = µiγ

−1
i (i = 1, 2). (2.2b)

The constants, λi and µi, are the Lame constants, and γi is the density of the material. It is

held that λi = (2µiν) / (1− 2ν), where the Poisson ratio is ν = 0.4999998 for both media. Here

the index i is 1 or 2 to denote the medium, i.e.

i =


1, if a < ρ ≤ b

2, if 0 < ρ ≤ a

. (2.3)

The harmonic time dependence, eiωt, is suppressed throughout this study. The boundary

condition at the outer surface of medium 1 is equality of tangential displacement of the wall

and elastic medium,

u1(ρ, z)|ρ=b = G (2.4)
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where G is the amplitude of the forced oscillations. At the interface between media 1 and 2,

the boundary conditions are equality of the tangential displacement and stress,

u1(ρ, z)|ρ=a = u2(ρ, z)|ρ=a (2.5a)

σ1(ρ, z)|ρ=a = σ2(ρ, z)|ρ=a. (2.5b)

The solution of Equation 2.1 can be given as the sum of the vector wave functions, ~L, ~M , and

~N given as

~L = ∇Φ (2.6a)

~M = ∇× êΨ (2.6b)

~N = β−1
i ∇×∇× êX (2.6c)

where Φ, Ψ, and X each solves the scalar Helmholtz equation,

(
∇2 + α−2

i

)
Φ = 0, (2.7a)

(
∇2 + β−2

i

)
Ψ = 0, (2.7b)

(
∇2 + β−2

i

)
X = 0, (2.7c)

and ê is a constant vector (1). The displacement in medium 1 is the sum of the incidental

and scattered wave fields, ~U (i) and ~U (s), respectively, while the displacement in medium 2 is
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from the refracted wave field only, ~U (r). One can write, then, the displacement as a piecewise

continuous function throughout the entire domain, i.e.

u(ρ, z) =


u1(ρ, z) = ~U (i) + ~U (s), if a < ρ ≤ b

u2(ρ, z) = ~U (r), if 0 < ρ ≤ a

. (2.8)

Due to the axial and longitudinal symmetry of this system, one need be concerned with only

the vertically-polarized transverse waves, i.e. ~L = ~M = 0 for all wave fields. The wave fields

are, then, simply given as

~U (i) = ~N (i). (2.9a)

~U (s) = ~N (s). (2.9b)

~U (r) = ~N (r). (2.9c)

In cylindrical coordinates, the constant vector is the unit vector, ẑ, making the vector function

(37)

~N (i) =
1

qiρ

∂

∂ρ

(
ρ
∂X(i)

∂ρ

)
ẑ. (2.10a)

~N (s) =
1

qiρ

∂

∂ρ

(
ρ
∂X(s)

∂ρ

)
ẑ. (2.10b)

~N (r) =
1

qiρ

∂

∂ρ

(
ρ
∂X(r)

∂ρ

)
ẑ. (2.10c)
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One can calculate the relevant components of the stress tensor, σρz, directly from the displace-

ment, given here as

σi = µi
∂ui(ρ, z)

∂ρ
(i = 1, 2). (2.11)

2.2.2 Solutions

The potential functions are given by

X(i) = AJ0(q1ρ) (2.12a)

X(s) = BH0(q1ρ) (2.12b)

X(r) = CJ0(q2ρ) (2.12c)

where

qi =
ω

βi
(i = 1, 2) (2.13)

and A, B, and C are the unknown coefficients determined by satisfying the boundary conditions.

Here J0 and H0 are the 0th order cylindrical Bessel and Hankel functions (4), respectively.
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2.2.3 Boundary Conditions

Considering Equation 2.12, Equation 2.10, Equation 2.9, and Equation 2.8, the boundary

conditions, Equation 2.4 and Equation 2.5, become three equations through three unknowns,

given in matrix form as 
ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33




A

B

C

 =


G

0

0

 . (2.14)

After considerable algebraic simplification, the elements of Equation 2.14, εmn, are given here

as

ε11 = ε21 = −q1J0(bq1), (2.15a)

ε13 = 0, (2.15b)

ε12 = ε22 = −q1H0(bq1), (2.15c)

ε23 = −q2J0(bq2), (2.15d)

ε31 = −µ1q
2
1J1(aq1), (2.15e)

ε32 = −µ1q
2
1H1(aq1), (2.15f)

ε33 = −µ2q
2
2J1(aq2). (2.15g)
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Solving for A, B, and C, completely determines all wave fields, concluding the mathematical

analysis. The expansion coefficients A, B, and C are too cumbersome to write out completely.

Instead, they are given here in parametric from, i.e.

A =
Gq1µ1c

q1d
, (2.16a)

B =
Gq2µ2e

q1d
, (2.16b)

C =
2iGµ1

πaq2f
, (2.16c)

where

d = q1µ1J0(aq1)c+ q2µ2J1(aq2)g, (2.17a)

f = q1µ1J0(aq2)h+ q2µ2J1(aq2)j, (2.17b)

and where

c = H1(aq1)J0(aq2)−H0(aq1)J1(aq2), (2.18a)

e = J0(aq1)J1(aq2)− J1(aq1)J0(aq2), (2.18b)

g = H0(aq1)J0(bq1)− J0(aq1)H1(bq1), (2.18c)

h = H1(aq1)J0(bq1)− J1(aq1)H0(bq1), (2.18d)

j = J0(aq1)H0(bq1)−H0(aq1)J0(bq1). (2.18e)
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TABLE I

Concentrations of polymers, in percent by weight, in the two hydrocoloid media

Medium % by weight gelatin % by weight agarose

1 4 0.75

2 1 0.4

2.3 Method

2.3.1 Phantom Construction

2.3.1.1 Matrix Preparation

The matrices of the inner and outer cylinders are hydrocoloids made from a mixture of

agarose (SeaKem LE Agarose, Lonza, Rockland, ME) and food grade gelatin (Knox Original

Unflavored Gelatine, Kraft Foods Group Inc., Northfield, IL) in water. The concentrations of

the separate media are summarized in Table I. Each hydrocoloid was prepared by first

sprinkling granulated gelatin into room temperature DI water which was then heated while

stirred constantly. Once all the gelatin dissolved, agarose was then added. Heating and stirring

continued until clarification, at 90 ◦C. The molten gel was allowed to cool to about 40 ◦C before

being poured into the molding.
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2.3.1.2 Molding

To ensure concentricity between the two hydrocoloid solids a moldwas designed and custom-

built, depicted as a cut-away view in Figure 8, and as it exists in the laboratory in Figure 9.

On the bottom is a stage made of poly(methyl methacrylate) (PMMA) (Plexiglas R©, Rohn and

Haas Company, Philadelphia, PA) with an annular dais, in whose center a removable PMMA

rod tightly fits. Encircling the dais is the cylindrical container made of an acetyl resin (Delrin,

DSM Engineering Plastic Products, Inc., Reading, PA). All components were manufactured

at the University of Illinois at Chicago. The PMMA components were manufactured by the

machine shop of the College of Liberal Arts and Sciences, and the acetyl resin component was

manufactured by the machine shop of the College of Engineering.

2.3.1.3 Phantom Assembly

The final assembly of the phantom is basically a two step process: Step 1. the outer cylinder

(medium 1), Step 2. the inner cylinder (medium 2). For medium 1, the delrin container

is mounted on the dais and the acrylic rod is inserted in the depression. Then the 40 ◦C

molten medium 1 is poured into the space between the delryn and PMMA, with particular

attention payed for any bubbles that might form. It is important that there be no bubbles–or

any heterogeneity–within each medium as they would cause scattering and diffraction of the

mechanical waves for which there is no account in our mathematical model. Air, especially,

would be disruptive to the waves because fluids do not support shear waves, guaranteeing a

mode conversion. Once the mold is filled, it is set aside and allowed to cool. No sealant was

found to be necessary between the cylindrical container and dais. It is at this point when the
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Figure 8. Cut-away view of the assembly.
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Figure 9. Molding
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hydrocoloid for medium 2 is prepared, (section 2.3.1.1). Medium 1 will stick to the acetyl resin

but not the PMMA, so, once it has solidified, the cylindrical container was vertically pulled

off the dais, sliding the medium 1 off the rod. Now begins step 2. First the rod is removed

from the dais. To ensure that the media are flush with each other, a piece of plastic paraffin

film (Parafilm ”M” R©, Bemis Flexible Packaging, Neenah, WI) was stretched over the dais to

cover the depression before replacing the cylindrical container and medium 1 on the dais. Once

affixed, the molten medium 2 was poured into the vacancy left by the rod. The entire body

was then allowed to cool to room temperature before removing from the dais for scanning.

2.3.2 Experimental Setup

MR elastography experiments were performed at 9.4 T using a horizontal bore Agilent small-

animal MR scanner (310/ASR, Agilent Technologies, Santa Clara, CA) (33). A 39 mm diameter

quadrature RF coil was used inside a 60 mm diameter gradient coil with a maximum gradient

of 1000 G/m. The gel-filled container was placed horizontally inside the center of the RF coil.

the container was attached to a pre-loaded piezo-actuator (p-840.1, PhysikInstrumente (PI)

GmbH & Co. KG, Germany), which generates the transverse vibration motion. All phantoms

were scanned at the excitation frequencies of 250, 500, and 750 Hz. This experimental setup

establishes concentric wave patterns within the gel.

2.3.3 Data Acquisition

A customized spin-echo (SE) based MR elastography sequence with a sinusoidal motion-

sensitizing gradient (MSG) was used for data acquisition, obtaining one axial slice and one

coronal slice. The acquisition parameters, summarized in Table II, were as follows: repetition
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TABLE II

Parameters for data acquisition

TR 1 s

TE 28 ms

FOV 4 cm × 4 cm

Matrix size 128 × 128

Slice thickness 1 mm

MSG 30 G/cm

time (TR) = 1 s, echo time (TE) = 28 ms, field of view (FOV) = 4 cm × 4 cm, matrix size =

128 × 128, slice thickness = 1 mm, MSG = 30 G/cm. The number of MSG cycles varied with

the actuation frequency from 2 to 6 to accommodate constant TR/TE imaging parameters. In

all scans, the MSG was applied along the principle direction of vibration in our experimental

setup. Phase difference images were made from two acquisitions by inverting the polarity of

the MSG. Four time steps were acquired per actuation cycle.

2.3.4 Estimation of Shear Moduli, µi

To estimate the complex moduli of the two media, the analytic solution for displacement,

u(ρ), was fit to the displacement data. A fitting algorithm was written in MatLab (Math-Works,

Inc., Natick, MA) called Data Analysis and Visualization Toolbox (DeVIANT). It is described

in detail in (35). Briefly, the data to which the model is fit is a linear profile, un, taken from

the experimental complex wave images. Some parameters were added to the model to take into
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account phase, θ, bias from compression wave, η, magnitude scale, s, and off-centering, δ. This

is expressed as

MIN
Ψ

{
N∑

n=−N
‖un − û (ρn) ‖2

}
(2.19)

where

û(ρ) = s× eiθ × u(ρn + δ) + η, (2.20)

and the set of parameters is Ψ = {µ1, µ2, θ, η, s, δ}. The chief difference in DeVIANT for

this study is that the complex shear moduli of two different regions are being found with a

piecewise-continuous function, Equation 2.8.

2.3.5 The Forward Problem

The analytic model assumes that the cylinders are infinitely long, i.e. it neglects edge

effects from the top and bottom of the phantom. To validate the estimates, then, a two-

dimensional, axisymmetric FEM in ANSYS (12.1 v, ANSYS, Inc. Pittsburg, PA) was created.

A quadrilateral mesh of 12496 elements was used and with a maximum element size of 0.3 mm,

and degree of freedom of 50586. The forward problem was solved using as inputs the parameters

of the experimental procedures (ω = 2πf , where f = 250, 500, 750, and 1000 Hz., a = 0.75 cm,

b = 1.5 cm, height= 3 cm) and fitting results (section 2.4), summarized in Table III.

2.4 Results

The scanning was at four frequencies, 250, 500, 750, and 1000 Hz. These seem like reasonable

upper and lower limits. Vibrations at frequencies less than 250 Hz would yield wavelengths

longer than the diameter of the phantom, making it difficult to see the agreement between
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TABLE III

Parameters for FEM

a 0.75 cm

b 1.5 cm

height 3 cm

degree of freedom 50586

no. of elements 12496

max. element size 0.3 mm

model and experiment. Going higher then 1000 Hz would also obscure any agreement between

theory and data because the attenuation of the mechanical waves would overcome the benefical

effect even of geometric focusing, i.e. there would be no discernible displacement save for at

the radial periphery of the phantom. At each frequency the displacement was fit to ten linear

profiles taken from the displacement, getting complex moduli from each profile. In Figure 10

and Figure 12 the mean ± one standard deviation of the real and imaginary components of µ1

were plotted, respectively. The components of µ2 are shown in Figure 11 and Figure 13. The

numeric values of all µi are summarized in Table IV. A frequency dependence

can be seen wherein the complex shear moduli of both media increase as does the frequency

of the applied vibrations, in keeping with previously reported trends of hydrocolloids of gelatin

(38) and agarose-gelatin mixtures (36). The experimental (left) and simulated (right) wave

images in the plane parallel to the z axis and containing the origin for the scans at 250, 500,
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Figure 10. Storage shear modulus of Medium 1. The error bars are one standard deviation
from the mean.

750, and 1000 Hz are shown in Figure 14, Figure 15, Figure 16, and Figure 17, respectively.

Close agreement can be seen between theory and data in all four frequencies.

A more profound understanding of how the model matches the data is realized when their

linear profiles are plotted together, shown in Figure 18, Figure 18, Figure 18, and Figure 18 for

frequencies, 250, 500, 750, and 1000 Hz respectively.

2.5 Discussion

The connectedness of a mechanical system is central to its internal operation as well as

its response to external stimuli. In the context of MR elastography, the behavior of biologic

materials through which mechanical energy is propagating is of concern. Ultimately this is a
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Figure 11. Storage shear modulus of Medium 2. The error bars are one standard deviation
from the mean.

medical device, to be used on an organismic scale, e.g. human beings, and so the biomaterials

in question will be found in a very complex network of interacting systems connected on many

levels, e.g. electrically, chemically, hæmodynamically, and, of course, mechanically. The elasto-

dynamic behavior of a material depends on its surroundings and biomaterials are no exception.

It behooves researchers, then, to investigate not only the behavior of tissue-mimicking materi-

als, but the behavior of said materials ensconced in a system-mimicking setting. To that end

a multiply connected hydrogel phantom was modeled, designed, built, and tested. The results

are addressed in turn, and their implications considered.
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Figure 12. Loss shear modulus of Medium 1. The error bars are one standard deviation from
the mean.

From the model fitting it is found that the complex shear moduli of the materials increase

with the oscillatory frequency of the mechanical actuator. While, as noted in section 2.4, this

does generally follow reported trends of hydrogels, it is not clear how the specific composition of

the gels informed the results. Obviously increasing the total colloid concentration increased the

stiffness, but it is not clear what role the individual colloids had. The mathematical model does

not distinguish between the types of colloids or their chemical interactions or their molecular

interconnectedness. Employing fractal models of polymers (39) might shed light here as could

generalizing the calculus operations (40) (41).
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Figure 13. Loss shear modulus of Medium 2. The error bars are one standard deviation from
the mean.

In the forward modeling close agreement was found between theory and experiment. The

noteworthy discrepancies seem to be toward the top and bottom of the phantom. In the

experimental images of Figure 14, Figure 15, Figure 16, and Figure 17, there appears to be a

distortion in the wave field at the axial extremes. It is more pronounced in the upper three

frequencies than in the lowest one. Given the location, it is assumed that this is an edge effect,

and, thus, why a FEM was used for the forward problem. This highlights the major flow with

the closed form analytic model, i.e. the assumption that the cylinders are infinite in length.

The FEM seems to capture the apparent edge effects but not perfectly, implying that there

is more at work than yet described mathematically. One very real possibility is the existence
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TABLE IV

Complex shear moduli, µ1 and µ2, ± one standard deviation in units of Pa. The frequency, f ,
is in Hz.

f Reµ1 Imµ1 Reµ2 Imµ2

250 5108± 90 133± 11 2888± 14 311± 11

500 5560± 22 219± 22 3137± 5 356± 8

750 5949± 78 414± 6 3210± 9 384± 4

1000 6219± 62 620± 15 3246± 13 411± 4

of a third cylindrical layer. Switching the two media was tried, i.e. make the inner cylinder

out of the stiffer medium 1 and vice versa, but the softer hydrocolloid would not stick at all

the resin shell. This is likely due to the reduced gelatin content, because the two media still

stuck to each other. Perhaps also the interface between the two media is not as stark as the

mathematical model assumes. It is speculated that mixing or, at least, diffusion happens while

the second hydrocolloid cools, transitioning from sol to gel. Immediately upon touching the first

medium, the heat of the second will melt a thin layer of the first, forming an intermediate later.

Having a different colloid concentration from the layers on either side, this layer would have

different mechanical properties from the other layers, ergo its own two wave fields and unknown

coefficients as well as change the expressions for the waves of the original media. This speaks

to the point of this work, that the increasing precision of imaging modalities demands more
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Figure 14. Experimental (left) and theoretic (right) wave field through a plane parallel to the
z axis, containing the origin. The excitation frequency is 250 Hz. The estimated complex

moduli are µ1 = 5108.82− 132.8i Pa and µ2 = 2888.37− 311.478i

careful and precise tools of validation and verification. This study features novel mathematical

modeling but also deigned to showcase the phantom construction techniques and the exceptional

care required in such highly determined systems.

Finally, it is noticeable in the planar images and very clear in the linear profiles that,

despite the best phantom construction efforts, perfect axial symmetry was not achieved at all

frequencies. It is most apparent in the linear profile of 1000 Hz, Figure 21. Note, however, that

the amplitude seems to be equal but opposite across the origin, i.e. it is very high on the left

side and very low on the right side. It is possible that this is due to the experimental setup

and not actually the phantom construction. The same protocol was used as that described
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Figure 15. Experimental (left) and theoretic (right) wave field through a plane parallel to the
z axis, containing the origin. The excitation frequency is 500 Hz. The estimated complex

moduli are µ1 = 5560.08− 219.378i Pa and µ2 = 3137.43− 356.238i

in (33). The asymmetric displacement is likely due to the horizontal positioning (depicted in

figure 2 of that article) of the phantom, causing unequal contact force between the gel and resin

container. The gel on the side facing down would be under the weight of the entire phantom

pushing it down as well as the cohesion of the gel to create a shear force, while the side facing

up would have merely the cohesion of the gel. Still, the results are generally what was expected,

confirming the methods and, hopefully, leading to further developments in this field.
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Figure 16. Experimental (left) and theoretic (right) wave field through a plane parallel to the
z axis, containing the origin. The excitation frequency is 750 Hz. The estimated complex

moduli are µ1 = 5948.72− 414.337i Pa and µ2 = 3210.72− 383.932i
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Figure 17. Experimental (left) and theoretic (right) wave field through a plane parallel to the
z axis, containing the origin. The excitation frequency is 1000 Hz. The estimated complex

moduli are µ1 = 6219.57− 620.777i Pa and µ2 = 3246.19− 411.058
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Figure 18. Comparison of the theoretic (dashed) to experimental (solid) displacements along a
horizontal line through the fields in Figure 14
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Figure 19. Comparison of the theoretic (dashed) to experimental (solid) displacements along a
horizontal line through the fields in Figure 15



49

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0

r HcmL

D
is

p
la

ce
m

en
t

Ha.
u
.L

Figure 20. Comparison of the theoretic (dashed) to experimental (solid) displacements along a
horizontal line through the fields in Figure 16
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Figure 21. Comparison of the theoretic (dashed) to experimental (solid) displacements along a
horizontal line through the fields in Figure 17



CHAPTER 3

SPHERICAL INCLUSION: THEORY

In this chapter, the scattering and diffraction of a cylindrically converging transverse shear

wave in a viscoelastic isotropic medium by a spherical heterogeneity is analytically solved. The

spherical inclusion is located at the radial center of the cylinder and differs from the cylindrical

material only in its shear elastic constant. Small amplitude motion is assumed, such that linear

system theory is valid. By employing multi-pole expansions, the incidental and scattered wave

fields are each defined in both cylindrical and spherical coordinates allowing for the satisfaction

of the boundary conditions at the surfaces of these multiply-connected bodies. The solution

involves an infinite sum of improper integrals, which are evaluated numerically. The wave field

is determined for a hydrogel (alginate) bead suspended in a different hydrogel (agarose) that

fills a glass test tube. Numerical examples showing the effect on displacement fields of varying

the stiffness of the inclusion are presented.

3.1 Introduction

With the goal of non-destructively monitoring the growth of engineered tissue in beads of

hydrogel scaffolding, Yaşar et al (35; 42) pursued magnetic resonance (MR) elastography on the

microscopic scale (µMRE), wherein high frequency displacements in the medium are discernible

due to geometric focusing of the radially-converging circular cylindrical, shear waves. Briefly,

a glass cylindrical tube is filled with a viscoelastic solid and harmonically vibrated along its

51
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axis. Assuming a ”welded” contact between the solid and rigid tube wall, the mechanical

oscillations of the latter induce radially convergent circular cylindrical shear waves in the former.

The analytic solution to that problem is generally straight forward. Such is not the case if a

different elastic solid is embedded in the cylindrical medium that is a shape other than an

infinite circular cylinder, e.g. a sphere. Over the past eight decades many researchers have

studied mechanical problems involving a finite spherical heterogeneity centrally embedded in,

or proximally external to, a cylindrical medium. Using Laplace’s equation, Knight (43) studied

the potential in a conducting cylinder with a spherical cavity. Kubenko et al. adopted this

approach to solve the problems of pulsating (44) and potential (45) flow past a sphere in a rigid

tube and thin elastic cylindrical shell, respectively, while Linton’s work covers potential and

Stokes flow around, and acoustic scattering by, a sphere in a cylinder (46). Smythe solved for

the velocity field of the flow around a sphere (47) and a spheroid (48) in a tube, starting with

the vector potential functions to insert into the governing Laplace equation. Cai and Wallis

(49) extended Smythe’s work to include an infinite row of spheres in a tube.

Several authors have studied the phenomenon of waves that travel along the length of the

cylinder. Ursell (50) considered a rigid tube filled with an acoustic medium and a centrally-

placed rigid sphere to demonstrate the existence of so-called trapped modes, where normal

velocity vanishes on the surfaces. Linton (51) extended this to include both soft and hard

cylinders and spheres, while Zhuk et al. (52) considered the radiation force on the sphere. Lee

(53) examined the scattering of torsional waves down an elastic cylinder by a central spherical

cavity though Golovchan (54) had solved that problem for infinitely many stacked spherical
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cavities. Kubenko and Dzyuba wrote several papers where the spherical heterogeneity was the

wave source, varying the type of cylindrical container and spherical inclusion. They include an

oscillating and pulsating sphere in a rigid cylinder (55), a thin elastic cylindrical shell (56), and a

thin elastic cylindrical shell immersed in an elastic medium (57; 58). Hasheminejad and Hosseini

(59; 60) solved for the case when the acoustic medium fills a cylindrical cavity in an infinite

poroelastic medium. Hosseiniand Namazi (61) applied the same coordinate transformations as

above to solve for the case when the spherical wave source is external to an infinite circular

cylindrical poroelastic cylinder, i.e a ball outside of a tube. Earlier, though, Li and Ueda (62)

solved a very similar problem but assumed that the spherical waves could be modeled as a plane

wave while Piquette (63) simplified matters by neglecting the radial component of the scattered

wave. Adopting the integral equation formulation given by Ström (64), using the so-called T

matrix method of Waterman (65), Olsson solved for a spherical cavity scattering a longitudinal

wave propagating down a cylinder(66), waves from a perturbation at some point on the surface

of the cylinder (67), as well as the scattering of elastic waves by a non-axisymmetric spherical

cavity in a thick-walled pipe (68). Finally, it is worth mentioning that this ball in a tube

formalism extends far beyond acoustics, having been used by Kim et al. (69) to solve for the

quantum scattering potential of atomic matter waves and by Otey and Fan (70) to solve for the

electromagnetic heat transfer between a sphere and a plate. Presently, we will cast the problem

in terms of differential, rather then integral, equations. Whereas Linton and Kubenko used

the scalar Helmholtz equation, the elastic nature of our problem calls for the vector Helmholtz

equation. Golovchan (54) and Lee (53) both studied problems of elastic waves in cylinders with
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spherical obstacles, but they include only transverse, torsional waves, parallel to the boundaries.

This produced no mode conversion, leaving only one type of wave to comprise the wave field.

The present study, then, is the first to use differential equations to solve the problem of elastic

wave diffraction, in this particular geometry, under conditions that involve both longitudinal

and transverse wave fields.

3.2 Problem Formulation

Let there be given an infinitely long, rigid, circular cylindrical tube of inner radius b, filled

with an elastic solid. Embedded therein is an elastic sphere (ball) whose center is on the axis

of the tube. The tube and the embedded ball are respectively described by cylindrical (ρ, φ, z)

and spherical (r, θ, φ) coordinates (71), shown in Figure 22. The ẑ axis is aligned with the

axis of the tube and contains the center of the spherical inclusion. The rigid tube harmonically

oscillates along the cylindrical z axis and it is assumed that the embedding material (medium

1) is in intimate contact with both the spherical inclusion (medium 2) and the oscillating wall.

The displacement of both media satisfy the vector Helmholtz equation,

α2
i∇∇ · ~U − β2

i∇×∇× ~U + ω2~U = 0 (3.1)

where

α2
i = (λi + 2µi)γ

−1
i (i = 1, 2), (3.2a)

β2
i = µiγ

−1
i (i = 1, 2). (3.2b)
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Figure 22. The cylindrical medium, medium 1, is referred to a cylindrical coordinate system, r
and z, with the z axis coinciding with the axis of medium 1. The spherical coordinates, r and

θ, are assigned to the center of the spherical inclusion, medium 2.
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The constants, λi, and µi, are the Lame constants, and γi is the density of a material. It is

held that λi = (2µiν)/(1− 2ν) for both media, where ν is the Poisson ratio. Here the index i is

1 or 2 to denote the medium. The harmonic time dependence, e−iωt, is suppressed throughout

this study. The boundary conditions of the cylindrical surface, due to the welded contact, are

equality of the normal and axial displacements of the elastic medium and wall

u1ρ(ρ, z)|ρ=b = 0, (3.3a)

u1z(ρ, z)|ρ=b = G (3.3b)

where G is the amplitude of the forced oscillations. At the spherical surface, the boundary

conditions, also due to the welded contact, are equality of the radial and polar displacements

of the two media,

u1r(r, θ)|r=a = u2r(r, θ)|r=a , (3.4a)

u1θ(r, θ)|r=a = u2θ(r, θ)|r=a , (3.4b)

and equality of the stresses between the two media,

σ1rr(r, θ)|r=a = σ2rr(r, θ)|r=a , (3.5a)

σ1rθ(r, θ)|r=a = σ2rθ(r, θ)|r=a . (3.5b)
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The solution of (Equation 3.1) can be given as the sum of the vector wave functions, ~L, ~M ,

and ~N given as

~L = ∇Φ, (3.6a)

~M = ∇× êΨ, (3.6b)

~N = β−1
i ∇×∇× êX, (3.6c)

where Φ, Ψ, and X each solves the scalar Helmholtz equation,

(
∇2 + α−2

i

)
Φ = 0, (3.7a)

(
∇2 + β−2

i

)
Ψ = 0, (3.7b)

(
∇2 + β−2

i

)
X = 0, (3.7c)

and ê is a constant vector (1). The displacement in medium 1 is the sum of the incidental and

scattered wave fields, ~U (i) and ~U (s), respectively, while the displacement in medium 2 is from

the refracted wave field only, ~U (r). Due to the axial symmetry of the system, of concern are

only the longitudinal and vertically-polarized transverse waves, i.e. ~M = 0 for all wave fields.

The wave fields are, then, given as

~U (i) = ~L(i) + ~N (i), (3.8a)
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~U (s) = ~L(s) + ~N (s), (3.8b)

~U (r) = ~L(r) + ~N (r). (3.8c)

In cylindrical coordinates, the constant vector is the unit vector, ẑ. The vector functions are

then given as (37)

~Lcyl =
∂Φcyl

∂ρ
ρ̂+

∂Φcyl

∂z
ẑ, (3.9a)

~Ncyl =
1

qi

∂2Xcyl

∂ρ∂z
ρ̂+

1

qir

∂

∂r

(
r
∂Xcyl

∂r

)
ẑ, (3.9b)

from which can be written the displacement components,

uρ =
∂Φcyl

∂ρ
+

1

qi

∂2Xcyl

∂ρ∂z
, (3.10a)

uz =
∂Φcyl

∂z
+

1

qir

∂

∂r

(
r
∂Xcyl

∂r

)
. (3.10b)

In spherical coordinates the constant vector is rr̂ and the vector functions are given as (72)

~Lsph =
∂Φsph

∂r
r̂ +

1

r

∂Φsph

∂θ
θ̂, (3.11a)

~Nsph =
1

qi

(
∂2rXsph

∂r2
− 1

r2

∂

∂r

(
r2∂Xsph

∂r

)
− 1

r2 sin(θ)

∂

∂θ

(
sin(θ)

∂Xsph

∂θ

))
r̂ +

1

r

∂2rXsph

∂r∂θ
θ̂,

(3.11b)
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whence

ur =
∂Φsph

∂r
+

1

qi

(
∂2rXsph

∂r2
− 1

r2

∂

∂r

(
r2∂Xsph

∂r

)
− 1

r2 sin(θ)

∂

∂θ

(
sin(θ)

∂Xsph

∂θ

))
, (3.12a)

uθ =
1

r

∂Φsph

∂θ
+

1

r

∂2rXsph

∂r∂θ
. (3.12b)

The relevant components of the stress tensor, σrr and σrθ, can be calculated directly from the

displacement, given here as

σrr = λ

(
∂ur
∂r

+
1

r

∂uθ
∂θ

+ 2
ur
r

+
cot (θ)

r
uθ

)
+ 2µ

∂ur
∂r

, (3.13a)

σrθ = µ

(
1

r

∂ur
∂θ
− uθ

r
+
∂uθ
∂r

)
. (3.13b)

3.3 Solutions

For the incidental wave, the scalar potential functions, Φ
(i)
cyl and X

(i)
cyl, are given as

Φ
(i)
cyl(ρ, z) =

∫ ∞
−∞

A(ξ)J0 (gρ) eiξzdξ, (3.14a)

X
(i)
cyl(ρ, z) =

∫ ∞
−∞

B(ξ)J0 (hρ) eiξzdξ, (3.14b)
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where g =
√
p2

1 − ξ2, h =
√
q2

1 − ξ2, p1 = ω/α1, q1 = ω/β1, and A(ξ) and B(ξ) are unknown

functions. The scattered and refracted scalar potential functions, Φ
(s)
sph, Φ

(r)
sph, X

(s)
sph and X

(r)
sph,

are given as

Φ
(s)
sph(r, θ) =

∞∑
n=0

Cnhn(p1r)Pn (cos(θ)) , (3.15a)

Φ
(r)
sph(r, θ) =

∞∑
n=0

Enjn(p2r)Pn (cos(θ)) , (3.15b)

X
(s)
sph(r, θ) =

∞∑
n=0

Dnhn(q1r)Pn (cos(θ)) , (3.15c)

X
(r)
sph(r, θ) =

∞∑
n=0

Fnjn(q2r)Pn (cos(θ)) , (3.15d)

where Cn, Dn, En, and Fn are unknown coefficients. To satisfy the boundary condition, thereby

determining all unknown functions and coefficients, the incidental and scattered wave fields

must be defined in terms of both cylindrical and spherical coordinates. To do this the following

transformations are used (73; 74; 75):

~Lsph(ρ, z) = (in2k)−1
∫ ∞
−∞

Pn

(
ξ

k

)
~Lcyldξ, (3.16a)

~Nsph(ρ, z) =
(
in−12k

)−1
∫ ∞
−∞

sin(α)
∂

∂α
Pn (cos(α)) ~Ncyldξ, (3.16b)
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where α = arccos(ξ/k). Considering (Equation 3.15), one can write the scalar potential func-

tions of the scattered wave in cylindrical coordinates,

Φ
(s)
sph(ρ, z) =

∫ ∞
−∞

C(ξ)H0 (gρ) eiξzdξ, (3.17a)

X
(s)
sph(ρ, z) =

∫ ∞
−∞

D(ξ)H0 (hρ) eiξzdξ, (3.17b)

where

C(ξ) = (2p1)−1
∞∑
n=0

Cmi
−mPn

(
ξ

k

)
, (3.18a)

D(ξ) = (2q1)−1
∞∑
n=0

Dmi
1−m(m+ 1)

(
q1Pm+1

(
ξ

q1

)
− ξPm

(
ξ

q1

))
. (3.18b)

To write cylindrical waves in spherical coordinates the following transformations are used (73;

74; 75):

~Lcyl(r, θ) =

∞∑
n=0

in(2n+ 1)Pn

(
ξ

k

)
~Lsph, (3.19a)

~Ncyl(r, θ) =
∞∑
n=0

2n+ 1

n(n+ 1)
in+1 sin(α)

∂

∂α
Pn (cos(α)) k ~Nsph. (3.19b)

One may now write the scalar potential functions of the incidental wave as

Φ
(i)
cyl(r, θ) =

∞∑
n=0

Anjn (p1r)Pn (cos(θ)) , (3.20a)

X
(i)
cyl(r, θ) =

∞∑
n=0

Bnjn (q1r)Pn (cos(θ)) , (3.20b)
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where

An = in(2n+ 1)

∫ ∞
−∞

A(ξ)Pn

(
ξ

k

)
dξ, (3.21a)

Bn =
2n+ 1

n(n+ 1)
in+1

∫ ∞
−∞

B(ξ)y(ξ)dξ, (3.21b)

and

y(ξ) =
1

q1
(m+ 1)

(
ξPm

(
ξ

q1

)
− q1Pm+1

(
ξ

q1

))
. (3.22)

Here, Jn and jn are the cylindrical and spherical Bessel functions of the first kind of order

n, respectively, while Pn is the Legendre polynomial of order n. Also, Hn and hn are the

cylindrical and spherical Hankel functions of the first kind of order n, respectively (4). Finally,

as the spherical refracted wave does not contact the cylindrical boundary, the potential functions

need only be given in spherical coordinates. The first kind of cylindrical and spherical Bessel

functions are chosen for the incidental and refracted wave fields, respectively, because those

functions are not singular when their argument is zero and those wave fields contain the radial

origin of their respective coordinate systems. Let there be introduced dimensionless variables

ρ̄ =
ρ

b
, r̄ =

r

b
, Ū =

U

b
, p̄i = pib, q̄i = qib, z̄ =

z

b
. (3.23)

Hereafter, only use dimensionless variables will be used; so, the over-bar will be omitted.
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3.4 Boundary Conditions

Let first be considered the cylindrical boundary conditions. It is convenient to work in the

frequency domain so let the Fourier transform be applied in z,

f(ξ) =

∫ ∞
−∞

f(z)e−iξzdz, (3.24)

to (Equation 3.3), and taking into account (Equation 3.10), (Equation 3.14b), and (Equation 3.17b),

one obtains expressions relating the axial and radial displacements of medium 1 and the oscil-

lating wall:

gq1 (A(ξ)J1(gr) + C(ξ)H1(gr)) + ihξ (D(ξ)H1(hr) +B(ξ)J1(hr)) = 0 (3.25a)

iξq1 (A(ξ)J0(gr) + C(ξ)H0(gr))− h2 (D(ξ)H0(hr) +B(ξ)J0(hr)) = Gq1. (3.25b)

From Equation 3.25 one can write the unknown functions of the incidental wave, A(ξ) and

B(ξ), in terms of the unknown coefficients of the scattered wave, Cm and Dm, i.e.

A(ξ) =
∞∑
m=0

(Cmam(ξ) +Dmbm(ξ))− c(ξ), (3.26a)

B(ξ) =

∞∑
m=0

(Cmdm(ξ) +Dmem(ξ))− f(ξ), (3.26b)
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where

am(ξ) =
i−mPm (ξ/p1)

(
ξ2J1(bh)H0(bg)− ghJ0(bh)H1(bg)

)
(2p1x(ξ))

, (3.27a)

bm(ξ) =
i1−my(ξ)hξ(
bπq2

1x(ξ)
) , (3.27b)

c(ξ) =
iGξJ1(bh)

x(ξ)
, (3.27c)

dm(ξ) =
ξPm (ξ/p1) q1

(imbπhp1x(ξ))
, (3.27d)

em(ξ) =
i1−my(ξ)

(
ghJ1(bg)H0(bh)− ξ2J0(bh)H1(bh)

)
(2q1x(ξ))

, (3.27e)

f(ξ) =
gGJ1(bg)

(hx(ξ))
, (3.27f)

and

x(ξ) = ghJ0(bh)J1(bg)− ξ2J0(bg)J1(bh). (3.28)

From Equation 3.20 and Equation 3.26, then, one has

An =

∞∑
m=0

(Cmamn +Dmbmn)− cn, (3.29a)
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Bn =
∞∑
m=0

(Cmdmn +Dmemn)− fn. (3.29b)

When m+ n is even, one has

amn = in (2n+ 1)

∫ ∞
−∞

am(ξ)Pn(ξ/p1) dξ, (3.30a)

bmn = in (2n+ 1)

∫ ∞
−∞

bm(ξ)Pn(ξ/p1) dξ, (3.30b)

dmn =
2n+ 1

n(n+ 1)
in+1

∫ ∞
−∞

dm(ξ)y(ξ) dξ, (3.30c)

emn =
2n+ 1

n(n+ 1)
in+1

∫ ∞
−∞

em(ξ)y(ξ) dξ, (3.30d)

otherwise amn = bmn = dmn = emn = 0. When m+ n is odd, one has

cn = in (2n+ 1)

∫ ∞
−∞

c(ξ)Pn(ξ/p1) dξ, (3.31a)

fn =
2n+ 1

n(n+ 1)
in+1

∫ ∞
−∞

f(ξ)y(ξ) dξ, (3.31b)

otherwise cn = fn = 0. At the spherical boundary (r = a) one has expressions that relate the

displacements and stresses of the two media,

Tn (AnBnCnDnEnFn)T = 0 (n = 0,∞), (3.32)
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where Tn is a four-by-six matrix whose elements, τij (i = 1, 4 and j = 1, 6), are determined from

Equation 3.4, Equation 3.5, Equation 3.12, Equation 3.13, Equation 3.15, and Equation 3.20,

and given here as (76)

τ11 = njn(ap1)− p1ajn+1(ap1), (3.33a)

τ12 = −n(n+ 1)jn(aq1), (3.33b)

τ13 = p1ahn+1(ap1)− nhn(ap1), (3.33c)

τ14 = n(n+ 1)hn(aq1), (3.33d)

τ15 = njn(ap2)− p2ajn+1(ap2), (3.33e)

τ16 = −n(n+ 1)jn(aq2), (3.33f)

τ21 = jn(ap1), (3.33g)

τ22 = (n+ 1)jn(aq1)− q1ajn+1(aq1), (3.33h)

τ23 = hn(ap1), (3.33i)

τ24 = (n+ 1)hn(aq1)− q1ahn+1(aq1), (3.33j)

τ25 = jn(ap2), (3.33k)

τ26 = (n+ 1)jn(aq2)− q2ajn+1(aq2), (3.33l)
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τ31 =
(
n2 − n− 0.5q2

1a
2
)
jn(ap1) + 2p1ajn+1(ap1), (3.33m)

τ32 = n(n+ 1)((1− n)jn(aq1) + q1ajn+1(aq1)), (3.33n)

τ33 =
(
n2 − n− 0.5q2

1a
2
)
hn(ap1) + 2p1ahn+1(ap1), (3.33o)

τ34 = n(n+ 1)((1− n)hn(aq1) + q1ahn+1(aq1)), (3.33p)

τ35 =
(
n2 − n− 0.5q2

2a
2
)
jn(ap2) + 2p2ajn+1(ap2), (3.33q)

τ36 = n(n+ 1)((1− n)jn(aq2) + q2ajn+1(aq2)), (3.33r)

τ41 = (n− 1)jn(ap1)− p1ajn+1(ap1), (3.33s)

τ42 =
(
1− n2 + 0.5q2

1a
2
)
jn(aq1)− q1ajn+1(aq1), (3.33t)

τ43 = (n− 1)hn(ap1)− p1ahn+1(ap1), (3.33u)

τ44 =
(
1− n2 + 0.5q2

1a
2
)
hn(aq1)− q1ahn+1(aq1), (3.33v)

τ45 = (n− 1)jn(ap2)− p2ajn+1(ap2), (3.33w)

τ46 =
(
1− n2 + 0.5q2

2a
2
)
jn(aq2)− q2ajn+1(aq2). (3.33x)
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Inserting Equation 3.29 into Equation 3.32, the following infinite system of equations are ob-

tained in the unknowns Cn, Dn, En, and Fn,

εi3Cn +

∞∑
m=1

xmnCm + εi4Dn +

∞∑
m=1

ymnDm − εi5En − εi6Fn = zi (n = 1,∞), (3.34)

where

xmn = amnεi1 + dmnεi2, (3.35a)

ymn = bmnεi1 + emnεi2, (3.35b)

zi = εi1cn + εi2fn. (3.35c)

The expressions for Cn and Dn may then be inserted in to Equation 3.26, thereby completely

determining all wave fields.

3.5 Numeric Examples and Discussion

The behavior of our model is demonstrated with some numeric examples. To solve Equa-

tion 3.34 numerically, the method of truncation is used (77), wherein the infinite system of

equations is reduced to a system of N equations, i.e. m = 1, N and n = 1, N . The order of

truncation was determined by trial so that the boundary conditions were satisfied with ade-

quate accuracy. Hosseini et al (61) report that they require N = p+ 5 where p is the maximum

nondimensional wave number on the graphs. This is true here, too, but for the transverse wave

number q, rather than the longitudinal wave number p. This speaks to the motivation of this

study. Microscale MRE (24) is concerned with transverse wave propagation through tissues,
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i.e. viscoelastic media, because the longitudinal wavelength exceeds the physical dimensions of

the phantoms in the studies of e.g. Yaşar et al. (35) and Okamoto et al. (36).

To evaluate the integrals in Equation 3.30 and Equation 3.31 the upper infinite limit is

replaced with a finite limit such that the value stabilized to, at least, the sixth decimal place.

All of the integrands in these equations have singular points at the zeroes of Equation 3.28

as well as branch points when ξ = p1 and ξ = q1. In other studies, e.g. the works of Olsson

(66; 67; 68), these singularities have required that the contour of integration be deformed such

that it passes into the second and fourth quadrants of the complex plane. One need not make

use of such techniques because the materials in the examples of the present study are modeled

as having complex, i.e. viscoelastic, moduli. This moves all singularities and branch points off

of the real axis (78), simplifying numeric integration.

In the following examples our attention is confined to varying the stiffness of the spherical

inclusion, µ2, recognizing, though, that this formulation allows analysis of the effects of the

changes of all parameters, e.g. the ratio of radii (a/b) or the damping ratio (Imµi/Reµi), on

the displacement of the wave field. In all examples, a/b = 0.5, Imµi/Reµi = 0.2, the densities

are γ1 = γ2 = 1000 kg/m3, the excitation frequency is ω = 2πf , where f = 500 Hz, and

µ1 = 7500 − 1500i Pa. Those material properties were chosen because they have been shown

to characterize hydrogels (36) used in MRE phantoms. One assumes that, like water, they

are nearly incompressible and have a finite bulk modulus. To satisfy these assumptions the

Poisson ratio, ν, is held to be 0.4999998 in both media. The parameters are summarized in

Table V. Experimental considerations inform the frequency choice. As an imaging tool,
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TABLE V

Summary of the mechanical parameter values for the numeric examples.

Poisson ratio, ν 0.4999998

Spherical radius, a (cm) 0.75

Clyndrical radius, b (cm) 1.5

Displacement amplitude, G (µm) 1

Density, γ1,2 (kg/m3) 1000

Excitation frequency, f (Hz) 500

Medium 1 shear stiffness, µ1 (kPa) 7.5− i1.5

Truncation limit, N 38

MRE needs to clearly and easily show a researcher exactly where a heterogeneity sits in a field

of view. This is impossible if the frequency is so low that the wavelength is longer than the field

of view. There is a practical upper limit to the frequency, too. In soft tissue high frequency

vibrations are preferentially attenuated and would eventually overcome the effect of geometric

focusing in our system. Additionally, as more wavelengths are visible in the field of view, the

higher is the degree of truncation which would, in turn, increase the computation time. All

analytic computations were done with Mathematica 9 (Wolfram Research, Champaign, Illinois)

on a desktop computer running Windows 7 Ultimate. The processor was an Intel R©CoreTMi5-

2500K central processing unit at 3.30 GHz, with 7.71 usable GB of installed memory, and a

64-bit operating system. Every displacement calculation took approximately 3.1 seconds, which
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meant that each planar image took about 8 hours to render. Figure 23, Figure 24, Figure 25,

Figure 26, and Figure 27 show the stationary displacement field for five different moduli of

medium 2, i.e µ2 = 2.5− 0.5i kPa, µ2 = 5− 1i kPa, µ2 = 7.5− 1.5i kPa, µ2 = 10− 2i kPa, and

µ2 = 12.5− 2.5i kPa, respectively.

In those displacement figures, the left top image is the coronal plane with the cylindrical axis

and containing the spherical center, and the left bottom image is the axial plane, perpendicular

to the cylindrical axis and also containing the spherical center. The axial views is at z = 0,

indicated by a white line on the coronal views. The dotted gray circle indicates the orthodrome

of the spherical inclusion. As expected, the region occupied by medium 2 can easily be distin-

guished from the surrounding medium 1 when the former is stiffer (Figure 23 and Figure 24) or

softer (Figure 26 and Figure 27) than the latter. Figure 25 shows the limiting case of a sphere

whose modulus equals that of medium 1. When µ1 = µ2 the system is effectively homogeneous,

having an identical wavefield to those studied by Yaşar et al. (35). The right image shows the

displacement as a function of the radius, corresponding to the white line on the coronal and

axial views, for the analytic solution.
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Figure 23. Wave field through a plane, containing the origin, parallel (top left) and
perpendicular (bottom right) to the cylindrical axis. The line profile on the right comes from
the white line on the wave fields. The complex shear moduli of the embedding medium and

spherical inclusion are µ1 = 7.5− 1.5i kPa and µ2 = 2.5− 0.5i kPa, respectively.
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Figure 24. Wave field through a plane, containing the origin, parallel (top left) and
perpendicular (bottom right) to the cylindrical axis. The line profile on the right comes from
the white line on the wave fields. The complex shear moduli of the embedding medium and

spherical inclusion are µ1 = 7.5− 1.5i kPa and µ2 = 5− 1i kPa, respectively.
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Figure 25. Wave field through a plane, containing the origin, parallel (top left) and
perpendicular (bottom right) to the cylindrical axis. The line profile on the right comes from
the white line on the wave fields. The complex shear moduli of the embedding medium and

spherical inclusion are µ1 = 7.5− 1.5i kPa and µ2 = 7.5− 1.5i kPa, respectively.



75

Figure 26. Wave field through a plane, containing the origin, parallel (top left) and
perpendicular (bottom right) to the cylindrical axis. The line profile on the right comes from
the white line on the wave fields. The complex shear moduli of the embedding medium and

spherical inclusion are µ1 = 7.5− 1.5i kPa and µ2 = 10− 2i kPa, respectively.
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Figure 27. Wave field through a plane, containing the origin, parallel (top left) and
perpendicular (bottom right) to the cylindrical axis. The line profile on the right comes from
the white line on the wave fields. The complex shear moduli of the embedding medium and

spherical inclusion are µ1 = 7.5− 1.5i kPa and µ2 = 12.5− 2.5i kPa, respectively.
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3.6 Concluding Remarks

The scattering and diffraction of a radially-converging cylindrical elastodynamic harmonic

wave on a finite elastic sphere is investigated in this chapter. An analytic solution is found by

describing spherical and cylindrical waves in each others’ coordinates, allowing satisfaction of the

mixed boundary conditions. The expansion coefficients are expressed in terms of infinite sums of

improper integrals. Both the sphere and embedding medium are modeled as being viscoelastic,

i.e. their shear moduli have both real and imaginary components. Beside accurately describing

the behavior of soft tissue, the assumption of viscoelasticity simplified the numeric evaluation

of the improper integrals by moving the singularities and branch points off of the real axis, out

of the path of integration.

This formalism need not be limited to biologic applications, or the integer-ordered calculus.

Perhaps this work could be extended to enrich seismologic investigations of heterogeneities in

the Earth, or cosmological studies of the interaction between black holes and gravitational fields

of celestial bodies, or even the behavior of carbon nanotubes and cellular organelles. The other

obvious extension is to generalize the orders of the calculus operators (79) used in the wave

equation (80; 81) or the material properties (35), or both, to include the set of all complex

numbers, C, not just real integers, N. There has been a non-trivial surge in interest in the

fractional calculus of late, particularly in the biomedical sciences (41). It follows that the work

presented in this article, given its underlying motivations, should be amenable to these calculus

generalizations, that material properties and interactions may be similarly explored.



CHAPTER 4

SPHERICAL INCLUSION: EXPERIMENT

The increasing use of magnetic resonance (MR) elastography in biomedical research and

clinical medicine has spurred much effort to optimize the sensitivity and specificity of the

technique. Improvement in pulse sequence and actuator design have greatly reduced the overall

imaging time and now provide multi-dimensional and multi-frequency data for elastographic

reconstruction. One remaining question is the absolute accuracy of the material elasticity data

(typically, the real and complex part of the elastic shear modulus). Cylindrical phantoms

provide one way to validate system performance, but the simplified geometry and boundary

conditions can cloak complexity arising at tissue interfaces. In an effort to develop a more

realistic gel tissue phantom for MRE, a ball in tube gel phantom was constructed that allows

one to vary the relative dimensions, elastic properties and water diffusion coefficient. The

phantom was imaged and its stiffness determined using a 9.4 T horizontal MRE with a custom

build piezo-elastic shear wave actuator (50-5,000 Hz). The resulting shear wave images were first

compared with the theoretical model of chapter 3, and then used to reconstruct material stiffness

maps for thin (1 mm) axial and transverse slices. The overall accuracy of the measurement

process was assessed by comparing theory with experiment for selected values of the shear

modulus (real and imaginary parts). The results validate the utility of this new phantom for

use in animal and human MR elastography for system optimization and quality control.

78
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4.1 Introduction

Many pathologies can be characterized by the changes they induce in the mechanical prop-

erties of tissue, e.g. cirrhotic liver is stiffer than healthy liver. This phenomenon has been

exploited by physicians, since antiquity, to diagnose disease through the technique of palpation,

wherein the physician manually feels for heterogeneities in a region of a patient’s body by ap-

plying pressure thereupon. The obvious limitations of this are that an abnormally stiff region

can be missed if it is too deep in the body and that the sense of touch of a doctor is highly

subjective. Dynamic elastography seeks to answer this need, allowing for the non-invasive vis-

coelastic description of soft tissues by measuring the displacement fields from an applied stress

(82). In MR elastography (6; 18; 19; 21) a harmonic shear wave is introduced in the tissue by

an internal or external actuator. The scanner’s motion-encoding gradient coils are synchronized

with the mechanical actuator. The protons in these oscillating magnetic field accrue a phase

shift corresponding to their displacement. The phase contrast image is analogous to a wave

image from which the mechanical properties of the tissue, i.e. shear modulus, can be calculated.

As with any imaging modality, phantom studies have been used to optimize MR elastography

in terms of specificity and sensitivity.

4.1.1 Approximate Methods

Madsen et al showed how to construct agar/gelatin phantoms for long term stability of

physical properties for use in both ultrasound and MR elastography studies. They were multiply

connected, a cylinder through a cube (83), with the cylindrical inclusion being stiffer than the

surrounding medium, and several evenly suspended spheres (84), also in a softer medium.
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Perriñez et al made rectangular and cylindrical phantoms out of tofu (23), a bean curd made

from soy, modeling the material as being poroelastic. Their finite element model (FEM), based

on the theory of M. A. Biot (85), showed that poroelastic effects are non-trivial and should

be considered when studying deformation of biomaterials, particularly in the context of MR

elastography. The phantom study of Doyley et al (86) served to explore the use of the subzone

inversion technique of Van Houten et al (87; 88) wherein the complex shear elastance of a

material is obtained by solving the inverse problem from the displacement data using a FEM.

Sack et al (89) used a simply connected heterogeneous phantom to demonstrate the effect

of elastic heterogeneity on shear wave amplitudes. Though the two media are in intimate

contact, they are in simple connection because one medium is not completely encased in the

other as in those of Madsen et al (83; 84). Qin et al (32) used a phantom of several cylinders

embedded throughout a disk parallel to its axis to demonstrate the possibility of acquiring

MR elastography and diffusion tensor imaging simultaneously, while Yin et al (33) used a ball

in tube phantom for combining MR elastography with diffusion-weighted imaging in a novel

technique called Diffusion MRE (dMRE). Using the same type of phantom as Yin et al, Yaşar et

al (42) compared wave images alone to show that it is possible to produce, with multifrequency

MR elastography, wave images comparable to those obtained with conventional monofrequency

scans, reducing, then, the scan time by a factor of 3.

4.1.2 Analytic Modeling

All of the above studies estimated the material parameters from the elastography data either

with local frequency estimation of solving the inverse problem with a FEM. Yaşar et al (35)
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used a closed form analytic solution to inverse model a tissue-mimicking simply connected,

homogeneous, cylindrical phantom over a wide range of vibrational frequencies, showing that

fractional order models capture best the complicated nature of viscoelastic material. Though

Okamoto et al (36) used a closed form analytic solution to inverse model multiply connected

soft gel phantoms, they were homogeneous. The actuator in their MR elastography set up was

immersed in their cylindrical phantom whereas the phantoms used by Yaşar et al and Yin et al

were vibrated by the very container holding them. There has been no study, then, of forward

or inverse modeling of a heterogeneous multiply connected body in MR elastography using an

analytic mathematical model. And, so, that is what is here now present in this chapter.

4.1.3 Objective

The entire derivation, solution, and numeric examples of the analytic solution of a sphere

centrally embedded in an infinite circular cylinder can be found in chapter 3. The solution takes

the form of an infinite sum of improper integrals, which is why it is only analytic, not closed

form. The phantom construction, image acquisition, and parameter estimation techniques are

then described. Experimental and theoretic results are compared, validating the model. Future

research direction are then considered, including the relevance of this work in the context

of medical imaging, tissue engineering, and mathematical modeling of complex physiologic

systems.

4.2 Theory

The derivation, solution, and numeric examples of the problem of a ball in a tube can

be found in chapter 3. Here the solution to just a tube is presented. Let there be given an
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infinitely long, rigid, circular cylindrical tube on inner radius, b, filled with an elastic solid. This

system is described by cylindrical coordinates (ρ,φ,z) (71), and shown in Figure 28. The

rigid tube harmonically oscillates along the z axis and it is assumed that the elastic solid is in

intimate contact with the oscillating wall. The displacement of the solid, ~U , satisfies the vector

Helmholtz equation (1),

α2∇∇ · ~U − β2∇×∇× ~U + ω2~U = 0 (4.1)

where

α2 = (λ+ 2µ) γ−1, (4.2a)

and

β2 = µγ−1. (4.2b)

The constants, λ and µ, are the Lame constants, and γ is the density of the material. It is

held that λ = (2µν) / (1− 2ν), where the Poisson ratio is ν = 0.4999998 for both media. The

harmonic time dependence, eiωt, is suppressed throughout this study. The boundary condition

at the radius, ρ = b, is equality of tangential displacement of the wall and elastic medium,

u(ρ, z)|ρ=b = G (4.3)

where G is the amplitude of the forced oscillations. The solution of Equation 4.1 can be given

as the sum of the longitudinal, ~L, and transverse components, ~M and ~N . The motion is only
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Figure 28. The cylindrical medium, medium 1, is referred to a cylindrical coordinate system, r
and z, with the z axis coinciding with the axis of medium 1.
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in the axial direction and there are no boundaries, e.g. a sphere, where mode conversion might

occur, and, as before, this is an axially symmetric system, so, only ~N is of concern, given here,

for convenience, as

~N = β−1∇×∇× êX. (4.4)

As before, X solves the scalar Helmholtz equation,

(
∇2 + β−2

)
X = 0, (4.5)

and ê is a constant vector (1). There is only an incidental field that cancels itself out at the

origin. Again, for convenience and a sense of finality, ~U = ~N is given as

~U = ~N =
1

qρ

∂

∂ρ

(
ρ
∂X

∂ρ

)
ẑ. (4.6)

The solution to the scalar Helmholtz equation is achieved by the separation of variables,

X = AJ0(qρ), (4.7)

where

q =
ω

β
(4.8)

and A is the expansion coefficients, determined by the boundary condition, and J0 is the Bessel

function of the first kind of order zero (4). This analysis is restricted to the first kind because the
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second kind and third kind (also call the Hankel function) are singular at the origin. Okamoto

et al. made their solution unnecessarily complicated by not just starting with the Hankel

function (36). Their domain didn’t contain the origin while the domain here does. It is in the

separation of variables where it becomes clear why the axial symmetry means always going to

the cylindrical function of order zero. Putting Equation 4.7 in Equation 4.6 and setting ρ = b,

one gets

−qJ0(bq)A = G, (4.9)

which is solved for A to get

A = − G

qJ0(bq)
, (4.10)

making the closed form analytic solution for displacement

~U(ρ) =
G

qJ0(bq)
J0(qρ). (4.11)

4.3 Methods

4.3.1 Phantom Preparation

For a general frame of reference, magnitude MR images of the two phantoms used in this

study are shown in Figure 29. The slight curvature on the bottom of the coronal images of

both phantoms are imaging artifacts due to heterogeneities in the main magnetic field of the

MRI scanner. The phantoms are actually flat in those regions.
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4.3.1.1 Cylindrical Phantom

The phantom matrix was made from a mixture of agarose (SeaKem LE Agarose, Lonza,

Rockland, ME) 0.75% by weight, and food grade gelatin (Knox Original Unflavored Gelatine,

Kraft Foods Group Inc., Northfield, IL), 4% by weight, in water. The solution was heated until

clarification occurred at 90 . The molten gel was poured into a cylindrical container made of

an acetyl resin (Delrin, DSM Engineering Plastic Products, Inc., Reading, PA), and allowed to

solidify at room temperature for 12 hours before being scanned.

4.3.1.2 Ball in Tube Phantom

The ball in tube phantom is identical to the cylindrical phantom save for the inclusion

of a 1.7 cm diameter soft spherical inclusion (33). The procedure for making the surrounding

agarose/gelatin gel (medium 1) is the same as presented above. The spherical inclusion (medium

2) was formed from dehydrated beads (Rainbow Water Beads, Greenville, SC) by immersion in

distilled water for 8 hours. The are composed of a liquid crystalline polymer that absorbs water

to form spherical beads of a hydrated gel. An individual bead was embedded in the center of

the agarose/gelatin gel in the cylindrical container and allowed to gel at room temperature for

12 hours prior to the start of scanning.

4.3.2 Experimental Setup

MR elastography experiments were performed at 9.4 T using a horizontal bore Agilent small-

animal MR scanner (310/ASR, Agilent Technologies, Santa Clara, CA) (33). A 39 mm diameter

quadrature RF coil was used inside a 60 mm diameter gradient coil with a maximum gradient

of 1000 G/m. The gel-filled container was placed horizontally inside the center of the RF coil.
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TABLE VI

Parameters for data acquisition.

TR 1 s

TE 28 ms

FOV 4 cm × 4 cm

Matrix size 128 × 128

Slice thickness 1 mm

MSG 30 G/cm

the container was attached to a pre-loaded piezo-actuator (p-840.1, PhysikInstrumente (PI)

GmbH & Co. KG, Germany), which generates the transverse vibration motion. All phantoms

were scanned at the excitation frequencies of 250, 500, and 750 Hz. This experimental setup

establishes concentric wave patterns within the gel.

4.3.3 Data Acquisition

A customized apin-echo (SE) based MR elastography sequence with a sinusoidal motion-

sensitizing gradient (MSG) was used for data acquisition, obtaining one axial slice and one

coronal slice. The acquisition parameters, summarized in Table VI, were as follows: repetition

time (TR) = 1 s, echo time (TE) = 28 ms, field of view (FOV) = 4 cm × 4 cm, matrix size =

128 × 128, slice thickness = 1 mm, MSG = 30 G/cm. The number of MSG cycles varied with
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the actuation frequency from 2 to 6 to accommodate constant TR/TE imaging parameters. In

all scans, the MSG was applied along the principle direction of vibration in our experimental

setup. Phase difference images were made from two acquisitions by inverting the polarity of

the MSG. Four time steps were acquired per actuation cycle.

4.3.4 Data Processing

The raw phase images were unwrapped if wrapping artifacts were present, and Fourier

transformed along the time axis over four time steps. The resulting complex wave images for

each driving frequency were spatially filtered for noise reduction using a Gaussian filter. The

wavelengths, li, were estimated using a 2D local frequency estimation (LFE) algorithm applied

to the wave images (90). The shear stiffness maps were calculated from the following relation

(91)

µi = γi (lif)2 . (4.12)

Here γi is assumed to be to be the same as water, i.e. 1000 kg/m3. At each frequency, the

shear stiffness values were spatially averaged over regions of interest (ROIs) prescribed by the

boundaries of the spherical inclusion visible in the MR elastography magnitude image or, in

the case of the cylindrical phantom, by selection the region over the entire sample.

To compare the experimental to theoretic wave images, the forward problem had to be

solved, i.e. calculate the displacement fields given certain mechanical inputs. The storage

modulus, Reµi, was obtained from the LFE while the loss modulus, Imµi, was determined by

trial-and-error comparisons of theoretic and experimental images. The estimated values of µ1

and µ2 were 7.5 − i0.5 kPa and 1.9 − i0.5 kPa, respectively. These inputs were used for all
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frequencies in the forward modeling. All theoretic calculations were done on the computational

software, Mathematica (Version 9, Wolfram Research, Inc., Champaign, IL). For comparison,

the normalized analytic linear profiles were taken out of the experimental MR elastography

wave image and the corresponding simulated wave image.

4.4 Results

The experimentally determined behavior of our phantoms is validated by comparing the

experimental and theoretic displacement wave fields. Three excitations frequencies were cho-

sen, 250, 500, and 750 Hz, to demonstrate validity. These frequencies were chosen for both

experimental and computational reasons. The dimensions of the phantom and the dampen-

ing behavior of the viscoelastic material are limiting factors, experimentally. If the excitation

frequency were too low, the wavelength would exceed the diameter of the cylinder. On the

other hand, vibrating the cylinder too quickly would yield no discernible waves because of the

preferential attenuation of high frequency mechanical waves. From a computational point of

view, there is only an upper limit with regard to excitation frequency. The analytic solution of

the ball in tube takes the form on an infinite sum of improper integrals which are truncated.

The computation time required to evaluate the displacement goes with the degree of truncation,

N , and N goes with the shear wave number, qi. With the Mathematica code it took around 2

hours to render a 250 Hz wave field using a desktop computer running Windows 7 Ultimate–the

processor was an Intel R©CoreTMi5-2500K central processing unit at 3.30 GHz, with 7.71 usable

GB of installed memory, and a 64-bit operating system–while a 750 Hz image took over 8 hours.

The cylindrical and ball in tube phantoms are considered in turn.
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4.4.1 Cylindrical Phantom

Figure 30 shows the analytic and experimental normalized displacements as seen in in the

coronal plane through the center of the cylinder, i.e. parallel to the ẑ axis and containing the

origin. Close correspondence is seen between experimental and computed images, though there

are differences between them. Most noticeably, it seems that the wave field is not perfectly

uniform along the cylindrical ẑ axis. For a more thorough comparison of theory to experiment

the displacement field is examined through the axial plane, along the dashed lines in Figure 31.

Figure 30 shows the analytic and experimental normalized displacements as seen in the ax-

ial plane through the center of the cylinder, i.e. perpendicular to the ẑ axis and containing

the origin. In Figure 32 the theoretic displacements along the dashed lines in Figure 30 are

superimposed on the experimental displacements.

4.4.2 Ball in Tube Phantom

The results of the cylindrical phantom which contains a spherical heterogeneity that are

analogous to those for the simple cylindrical phantom, i.e. coronal images, axial images, and

linear profiles, are shown in Figure 34, Figure 33, and Figure 35, respectively. As with the

simple cylindrical phantom, good agreement is found between the theoretic and experimental

wave fields.

4.5 Discussion

While there is an obvious agreement between model and experiment it is not total and the

differences are important to consider for they speak to the whole point of this study. The simple



91

Figure 29. Magnitude images of the cylindrical (top) and ball in tube (bottom) phantoms.
The left column is the axial plane through the center while the right column is the coronal

plane, also through the center.
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Figure 30. Theoretic (left) and experimental (right) wave field through the coronal plane,
parallel to the cylindrical axis. The top, middle, and bottom rows correspond to excitation

frequencies of 250, 500, and 750 Hz, respectively.
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Figure 31. Theoretic (left) and experimental (right) wave field through the axial plane,
perpendicular to the cylindrical axis. The top, middle, and bottom rows correspond to

excitation frequencies of 250, 500, and 750 Hz, respectively.
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Figure 32. Comparison of the theoretic simulation and experimental displacements along the
dotted white line indicated in Figure 30 and Figure 31.
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Figure 33. Theoretic (left) and experimental (right) wave field through the coronal plane,
parallel to the cylindrical axis and containing the orthodrome of the spherical inclusion. The
top, middle, and bottom rows correspond to excitation frequencies of 250, 500, and 750 Hz,

respectively.
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Figure 34. Theoretic (left) and experimental (right) wave field through the axial plane,
perpendicular to the cylindrical axis and containing the orthodrome of the spherical inclusion.
The top, middle, and bottom rows correspond to excitation frequencies of 250, 500, and 750

Hz, respectively.



97

Figure 35. Comparison of the theoretic simulation and experimental displacements along the
dotted white line indicated in Figure 33 and Figure 34.
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cylindrical phantom is first discussed as that comparative analysis will inform the ball in tube

discussion.

In the coronal view of the simple cylinder phantom (Figure 31) the vertically polarized waves

are seen to be not perfectly straight up and down as the closed form analytic solution predicts

they should be. This is more pronounced at the lower frequency, 250 Hz, than at 500 and 750

Hz. However, as the frequency goes up, the edge effects seem to play a larger role, i.e. the waves

become distorted at the top and bottom of the cylinder. That highlights the key shortcoming

of this model. It is assumed that the cylinder is infinitely long in the modeling. This limits

the region, in which the models are of any predictive value, to the central region, clearly shown

by the agreement found in the axial view (Figure 30) and the linear profiles (Figure 32). Even

in that region, though, there isn’t perfect consensus between theory and experiment. This is

probably due to errors in estimation of the material’s shear moduli, which are the inputs for the

forward problem. Still, though, the discrepancy is toward the radial periphery of the phantom

in all the frequencies. This is true in the multiply connected phantom, too.

As with the simple cylinder, in the case of the multiply connected ball in tube good agree-

ment is found between the predicted wave field of the analytic solution and the experimentally

obtained one, in the axially and radially central region. Again, the axial images and line pro-

files show this phenomenon (Figure 33 and Figure 35, respectively). Edge effects likely play

a role in distorting the wave from the ideal, but in the ball in tube phantom there are two

opportunities for miss-characterizing the shear moduli inputs, namely the embedding gel and

the spherical heterogeneity. Adjusting, for instance, Imµ2, when solving the forward problem
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to better match the experimental data will change the entire linear profile for the displacement

of each region depends on the shear moduli of both regions. The next research step is to for-

mulate the model of chapter 3 that it may be used to solve the inverse problem. For now we

have validated the chapter 3 model with a custom built multiply connected hydrogel phantom.

This is a non-trivial task. The chapter 3 model accounts for all wave fields through the interior

of the viscoelastic solid, predicting very intricate wave patterns that were able to have been

largely replicated. This opens the door to a new level of precision with regard to fine tuning

all aspects of MR elastography, e.g. hardware, pulse sequences, etc.

This work also has the potential to enrich the field of tissue engineering. Spheres of sodium

alginate are used as a scaffold on which to grow engineered cartilage and have already been

successfully used to treat osteoarthritis (92). Magnetic resonance imaging parameters, e.g. T1

and T2, have shown promise as biomarkers to non-invasively monitor the grown and development

of engineered tissue (93). Yet another was sought, i.e. the complex shear moduli.

4.6 Concluding Remarks

In this study the construction, testing, and analysis of an axially symmetric, heterogeneous,

multiply connected hydrogel phantom was described in the context of MR elastography. The

results were validated by comparison of the analytic solution of a similar albeit idealized geom-

etry. Future work will include formulating the math that this phantom may be used for inverse

modeling, investigating the behavior of a wider range of viscoelastic materials as etiher the ball

or the tube, and generalizing the assumptions in the analytic solution to include all orders of

the calculus operators (79; 41)



CHAPTER 5

CLOSING

We have reached the end of my original contributions to the fields of MR elastography and

imaging in general. It certainly is not all there is to say on the matter nor indeed all that I

have learned, but demonstrates my ability as a scientists, researcher, engineer.

5.1 Recapitulation

In the first study I designed, modeled, built, and tested a hydrogel phantom made of two

centric cylinders of differing complex shear moduli. I showed that my mathematical analysis is

useful for inverse modeling despite not perfectly modeling the phantom. In the second study I

used multiple expansions to describe cylindrical and spherical waves in each others coordinate

systems, that the problem of a ball in a tube may be solved analytically. This is the first time

anyone has bothered with such a tedious mathematical analysis but probably will not be the

last. In the third study we put the ball-in-tube model to work, solving the forward problem to

validate the images we collected with out carefully designed ball-in-tube phantom.

5.2 Looking Forward

Let us now turn our gaze forward, and consider future work. It is true that more theory

papers can be written by changing the ball-in-tube’s boundary conditions, e.g. making the ball

a spherical air pocket, but we can also change the shape of the inclusion from sphere to prolate

or oblate spheroid (48; 94). The math would be not trivially different. I’ve only found two or so

100
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papers relating cylinders and spheroids and they were in acoustic settings, so shear mechanical

waves were not covered. Still, it is worth doing, I think. Another contribution stemming

directly from this work is to add a vacuous third cylinder in the central cylinder in chapter 2.

It could model a blood vessel and the surround tissue. Brinker et al have designed a concentric

cylindrical phantom that allows for pre-stressing the elastic materials. I hope to adapt the work

of Chapter 2 to include pre-stressed materials (95; 96; 97; 98). This work has many potential

avenues to explore the effect of fractionalizing the calculus. At first I had wanted to analyze

the growth of engineered tissue–spherical alginate beads seeded with chrondocites–and that is

still a viable option. We can also apply fractional models to those tissues’ rheological models

as was done by Siegmar et al (99), Posnansky et al (100), and Guo et al (101). We could

also investigate the effects of fractionalizing the dimensional space as it pertains to spheres and

cylinders (102; 103).

5.3 Coda

I never though that I would be writing the end of a dissertation. I hope you liked it, my

gentle floyds. I hope that you leaned something, that maybe you can take what is on these

pages and apply it to your own work. I love to do science and I hope I have communicated at

least that much. I hope to engender in others the sense of wonder and amazement I feel when

I consider the fantastic mechanisms that govern the universe. Above all, I hope that I have

contributed to the healing arts. That is, may this and all my work to follow be solely for the

good of humankind.
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