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SUMMARY

Current wireless networks are designed to accommodate a fixed and finite number of active

users at any point in time with a centralized controlling mechanism. Recent years however

have witnessed an exponential growth in the number of wireless services and users, especially

machine-to-machine communications, also known as the Internet of Things (IoT). IoT drasti-

cally differs from human-initiated communications, not only because of the massive number of

devices that will potentially need access to the network at the same time, but also because of

the type of traffic they are expected to generate (i.e., very bursty, low payload, and requiring

both mission-critical reliability and latency). Next generation of IoT wireless networks must

therefore to be able to serve a massive number of users where

1. each user demonstrates a bursty traffic pattern in which it transmits short packets of data

infrequently to an access point, hence the conventional synchronicity assumption in the

network is distorted; and

2. arbitrarily large number of users among a massive number of users may be active at each

time, which need to be reliably identified and decoded; and

3. devices have strict energy consumption limits due to their characteristics; and

4. devices have strict latency requirements.

These innate features and requirements of the devices in IoT requires a general reconsideration of

the conventional information theoretic assumptions such as frame synchronization. This thesis

is mostly focused on investigating challenges 1 and 2. More specifically we investigate the
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SUMMARY (Continued)

(information theoretic) fundamental technology-independent performance of a novel channel

model that captures the essence of IoT communications. This thesis mainly consists of two

parts. The first part is dedicated to the study of a single bursty user which demonstrates

a random-access traffic pattern–challenge 1. We propose a strongly asynchronous bursty user

model based on the on-off uplink transmission pattern where the user may transmit sporadically

within a large asynchronous window. In this model we do not assume the use of pilot signals

and hence the receiver does not have a priori knowledge of the codeword transmission time.

We therefore study the tradeoff between the size of the asynchronous window, the rate of

transmission and the burstiness of the user.

The second part is mostly focused on the study of the effects of the number of bursty users

in IoT–challenge 2. In this regard, we propose a strongly asynchronous massive access model

in which we allow the number of users to grow exponentially with the codeword blocklength.

In this problem, we do not assume the use of pilot signals for either user identification nor

synchronization purposes. We study the tradeoff between the number of users, their rate and

the length of the asynchronous window.

This thesis is organized into five chapters. Chapter 1 presents the motivation and contribu-

tions of our work with a detailed list of prior related work. In Chapter 2, we study the strongly

asynchronous capacity of a single bursty user. Chapter 3 presents our result in massive iden-

tification problem, which we will use in the following chapter. In Chapter 4, we introduce the

Strongly Asynchronous Massive Access channel model and study its capacity region. Finally,

ix
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Chapter 5 concludes the thesis and introduces some future research topics. Some of the proofs

can be found in the Appendix.
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CHAPTER 1

INTRODUCTION

Parts of this chapter has been previously published in [1–3].

1.0.1 Background

For the past few decades, wireless services were mostly utilized by Human-type Communi-

cations (HTC) subscribers with a centralized resource allocation policy. With the evolution of

telecommunication technologies a new class of Machine-type communications (MTC) is emerg-

ing. Unlike the HTC, which need human intervention, the new Machine-type Devices (MTD)

are fully automated and can be utilized over a wide class of devices such as sensors, actuators,

tracking devices and meters.

The emerging new paradigms like Internet of Things (IoT) and Smart Cities also consist of

many interconnected heterogenous objects which are equipped with MTDs. As a result of the

wide range of applications for the MTDs, their population is steadily increasing. In 2016, there

have been 6.4 Billion connected things worldwide and is forecasted to increase to 20.4 Billion

connected things in 2020 [4].

The MTC have inherently different features and requirements in terms of number of devices,

control signaling, subscriber traffic load and diverse delay, reliability and energy constraints from

that of HTC [5], [6]. Most MTDs exhibit a sporadic on-off transmission pattern which is due

to their intrinsic objective. For example, they may transmit to a base station only when some

1
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incident has taken place such as in an advanced metering infrastructure and vending machines.

More specifically, the traffic in a MTC network usually features small packets of infrequent data

generated from a mass of MTDs which result in high uplink traffic volume [7]. Moreover, these

networks rely on the massive deployment of MTDs to achieve their goals.

With the massive number of MTD deployments, most of which introduce a short length

sporadic random-access type of traffic to the network, a novel modeling and investigation of the

MTC networks is essential. The next generation of wireless network should therefore provide

a solution for coexistence of a massive number of infrequently communicating devices in the

same frequency band. This problem is respectively known as mMTC (massive machine-type

communication) and LP-WANs (low-power wide-area networks) in the licensed spectrum (3GPP

and 5G-PPP) and unlicensed spectrum communities.

As a first step in providing a solution, one must exactly define and formulate the problem.

Several different approaches to the problem exist in the literature which include

• Compressed sensing: By exploiting the scarcity of the user activity, one can define the

problem as a compressed sensing or sparse recovery problem whose goal is to detect the

user identity and channel estimation. [8–11].

• Protocol design: By focusing on the fact that a large number of users transmit short

packets of data, one may be challenged to propose reliable massive access protocols [12–15].

• Information theoretic analysis: By modeling and analyzing the communication system

(from an information theoretic point of view) to capture the random traffic pattern and

the massive deployment of users [16–19].
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In this thesis, we investigate this problem from an information theoretic view point. The

main contributions and structure of this thesis are as follows.

1.0.2 Objective and Contribution: Asynchronous capacity of a bursty user

Parts of this subsection was previously published in [1].

Motivated by the innate nature of the sensor networks, and their bursty on-off communica-

tion pattern, we introduce the model of a bursty user in a strongly asynchronous channel and

we study its fundamental information theoretic limits.

In [20], the authors considered a user who transmits once and only once within a strong

asynchronous window. The goal was to locate and decode the user transmission time and

message. In our work, the user transmits exponentially many times in blocklength (or arbitrary

number of times in our second model). Moreover our error metric is the global / joint probability

of error (i.e., an error is declared if any of the user’s transmissions is in error, and we have an

exponential number of transmissions) and we require the exact recovery of the transmission

time and codeword in all transmissions. The approach in [20] does not extend to the global

probability of error criterion for exponential number of transmission in blocklength n (where

the number of transmissions is equal to Kn = enν, ν > 0). This is due to the fact that their

achievability relies on the typicality decoder and the derived error bounds do not decay fast

enough with blocklength n.

In [21], the authors considered the special case of the problem considered here where a user

transmits one synchronization pattern of length n (hence the rate R = 0) only once (hence

Kn = 1) in a window of length An = enα of n channel uses each. They showed that for any α
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below the synchronization threshold, α0, the user can detect the location of the synchronization

pattern. In addition they showed that a synchronization pattern consisting of the repetition

of a single symbol which induces an output distribution with the maximum divergence from

the noise distribution, suffices. The typicality decoder introduced in [21] however, even in a

slotted channel model, only retrieves one of the trade-off points that we obtain in this Thesis

that corresponds to a sub-exponential number of transmissions. We propose new achievability

and converse techniques to support an exponential number of transmissions (Kn = enν, ν > 0).

Interestingly, we show that the symbol used for synchronization may change for different values

of α and ν.

The single user strongly asynchronous channel was also considered in [22], where it was

shown that the exact transmission time recovery, as opposed to the error criterion in [20]

(which allows a sub-exponential delay in n), does not change the capacity.

Recently, the synchronous Gaussian massive multiple access channel with random access has

been modeled in [23] where the number of users is let to grow linearly in the code blocklength

and a random subset of users may try to access the channel. In [23], the authors took ad-

vantage of the Gaussian channel structure to exactly derive matching upper and lower bounds

on the capacity. Since then, other versions of “massive number of users” have been proposed

in [17], [24].

In our model, we consider a slotted strongly asynchronous channel with An = enα blocks

of n channel uses each. We also consider two scenarios to capture the essence of sporadic



5

communication. Our models, objective and contributions in this problem is summarized as

follows.

• For the first bursty communication model we assume that the user transmits a randomly

selected message among Mn = enR different ones in exactly Kn = enν randomly selected

but distinct blocks in the window. The receiver must locate and decode, with vanishing

error probability in n, each and every one of the transmitted messages. Our ultimate goal

is to characterize the capacity region (R, α, ν). In this regard, we show:

1. For synchronization and data transmission (R ≥ 0), we propose novel bounding

techniques to find upper (converse) and lower (achievability) bounds on the capacity

region of (R, α, ν). Our bounds are tight for R = 0 (synchronization only) and ν = 0

(sub-exponential number of transmissions).

2. For synchronization only (R = 0), we propose a sequential synchronization scheme

which achieves the optimal tradeoff between (α, ν). We show that using a repeti-

tion pattern for synchronization is optimal. Surprisingly, we show that the optimal

synchronization pattern is not fixed and it may change depending on the considered

value of asynchronization level α and burstiness level ν.

3. For certain values of R, which are small enough, the achievability and converse bounds

match.

• For the second bursty communication model we assume that the number of transmissions

of the user is not fixed and the user may randomly with probability pn = e−nβ access
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a block of n channel uses and transmit a randomly selected message among Mn = enR

different ones. In this case, we find:

4. The achievability and converse bounds on the capacity region (R, α, β) is derived.

Our achievability result shows that the asynchronous window length An = enα can

increases with the increase of β since the number of transmissions to be detected

decreases. Moreover, for β = α and R = 0 the achievability and converse bound

match.

1.0.3 Objective and contribution: Identifying a massive number of distributions

Information theory has close ties with statistical hypothesis testing and we can use the

latter to solve information theoretic problems. In conventional data transmission schemes, an

overhead signal is sent at the beginning of the data packets to act as user’s identifier. However,

the user’s statistics at the receiver itself can be potentially used as the users identifier.

One of the main areas in hypothesis testing is identification and ranking problems. In the

classical identification problem, a finite number of distinct sources each generates a sequence of

i.i.d samples. The problem is to find the underlying distribution of each sample sequence, given

the constraint that each sequence is generated by a distinct distribution. With this constraint

the number of hypothesis is exponential in the number of distributions. If one neglects the fact

that the sequences are generated by distinct distributions, the problem boils down to multiple



7

M-ary hypothesis testing problems. This approach is suboptimal as it fails to exploit some of

the (possibly useful) constraints.

Comprehensive studies on identification and ranking problems can be found in [25, 26].

In [27–30], the authors study the Logarithmically Asymptotically Optimal (LAO) Testing of

identification problem for a finite number of distributions. In particular, the identification of

only several different objects has been studied in detail and one can find the reliability matrix,

which consist of the error exponents of all error types. Their optimality criterion is to find the

largest error exponent for a set of error types for given values of the other error types’ error

exponents. The same problem with a different optimality criterion was also studied in [31],

where multiple, finite, sequences were matched to the source distributions. More specifically,

they proposed a test for a generalized Neyman-Pearson-like optimality criterion to minimize

the rejection probability given that all other error probabilities decay exponentially with a pre-

specified slope. The identification problem is also closely related to anomaly detection [32–35].

In here, we assume A sequences of length n are generated i.i.d according to A distinct

distributions; i.e., random vectors Xni
i.i.d
∼ Pσi , i ∈ [A], for some unknown permutation σ of the

distributions. The goal is to reliably identify the permutation σ with vanishing error probability

as n goes to infinity, from an observation of [Xn1 , . . . , X
n
A]. This problem has close ties with

de-anonymization of anonymized data [31, 36]. A different motivation is the identification of

users using only channel output sequences, without the use of pilot / explicit identification

signals [1]. In both scenarios, the problem’s difficulty increases with the number of users. In

addition, in modeling the systems with a massive number of users (such as the Internet of
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Things), it may be reasonable to assume that the number of users grow with the transmission

blocklength [1], [16], and that the user’s identities must be distinguished from the received

data. As a result, it is useful to understand exactly how the number of distributions affects the

system performance, in particular for the case that the cardinality of the distributions grows

with the blocklength. Notice that in this scenario, the number of hypotheses, would be doubly

exponential in blocklength and the analysis of the optimal decoder becomes much harder than

the classical (with constant number of distributions) identification problems.

We consider the identification problem for the case that the number of distributions grow

with the observation blocklength n as motivated by the massive user identification problem in

the Internet of Things paradigm. The key novel element in this work consist of analyzing and

reducing the complexity of the optimal maximum likelihood decoder, with doubly exponential

number of hypothesis, using a graph theoretic result. In particular, we show

1. Find a novel approach to analyze the probability of error in the ML decoder. In particu-

lar, we are able to transform the probability of identification error into a graph theoretic

problem. By doing so, we are able to obtain matching upper and lower bounds on the

probability of error. This result specifies the relation between the growth rate of the

number of distributions and the pairwise distance of the distributions for reliable identi-

fication.

2. We show that the probability that more than two distributions are incorrectly identified

is dominated by the probability of the event that only two distributions are incorrectly

identified.
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3. We also derive a novel graph theoretic result on the sum of the graph cycles. More

specifically we show that the arithmetic mean of the cycles gains (where we define the

cycle gain as the product of the edge weights within the cycle) in a graph can be upper

bounded by a function of the sum of the squares of the edge weights.

1.0.4 Objective and contribution: Massive asynchronous communication

In the literature, different levels of asynchronism have been studied. The level of asyn-

chronism in a system is defined by the length of a window An, with respect to the codeword

blocklength n, within which the transmission can initiate. Mildly asynchronous MAC was first

introduced in [37], where An = o(n) and the capacity region was proved to remain the same as

that of the classical synchronous MAC. A totally asynchronous MAC was also defined in [38]

where An = n and users continuously send their messages after transmission initiation. In this

setting, the authors proved that the time sharing is no longer feasible; as a result, the capacity

region lacks the convex hull operation seen in the capacity region of the synchronous MAC.

More recently, strongly asynchronous communication was studied in [21, 39–42] with An =

enα for some α ≥ 0 where users only transmit once within each window. In [21] it was shown

that reliable communication is indeed possible for 0 < α < α0; α0 being the synchronization

threshold. In [42] the suboptimality of preamble based synchronization schemes was shown.

The capacity of a strong-asynchronous point-to-point (SA-P2P) channel is [40]

CSA-P2P = max
PX:D([PXQ]‖Q?)>α

I(PX, Q), (1.1)
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where the maximum is is defined to be zero for α > α0 = maxx∈X D(Qx||Q?) (please refer

to 4.0.1 for special notation convention).

The capacity in (Equation 1.1) may be interpreted as follows: while in the synchronous

point-to-point channel the maximization is over all input distributions PX, the maximization is

now restricted to those input distributions that induce output distributions PY = [PXQ] that

are sufficiently different from the ‘idle output distribution’ Q?.

After the introduction of the strong asynchronous point to point channel, several different

studies has been dedicated to this channel model. In [42] the strong asynchronous point to

point channel capacity was evaluated under the requirement of correct decoding only (and not

necessarily synchronization); in [22] the author showed that imposing exact transmission time

recovery does not change the capacity in (Equation 1.1). The authors in [43] extended the

achievability of proof of [42] on discrete channels (which was based on method of types) to

continuous channels. In [44, 45] the authors studied the capacity of the same channel model

with delay and sampling constraint. Improved second order statistics was later studied in [46].

In [47–49] also, the authors studied the same model with the emphasize on “channel detection”

and provided random coding error exponents for different error types.

In addition, while [41] mainly focussed on point-to-point communication per unit cost, the

authors briefly discussed in [41, Remark 3] the capacity of the strong-asynchronous collision

MAC with exponentially many users and with a per-user probability of error (though their

parametrization is different from ours). In this model, simultaneous transmission of two or more

users results in a ‘collision’ that produces as output distribution the same as if all users where
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idle, regardless of the number of colliding users. The probability of error at the MAC receiver

is evaluated for each user individually, as opposed to the classical (stronger) requirement that

all messages are jointly reliably decoded. In the proposed achievability scheme for Kn = enν

number of users with ν < α/2, all users employ the same codebook and thus users are not

distinguishable unless an identifier is sent along with the message.

A related line of work, but not dealing with asynchronism, is the so-called many-user MAC.

In [50] the authors considered a synchronous MAC with random user activity where the number

of users increases linearly with the blocklength. This many-user model, while different from

ours, faces some challenges, as we do in here, which arise from the fact that the number of users

increases with the blocklength. In [50] one of these challenges is that the number of possible

error events is exponential (in the blocklength), which prevents them from using a simple union

bound for bounding the probability of error. Here we encounter the same problem as the

number of possible error events scales faster than exponentially in blocklength n. In [17] the

authors studied the massive random access channel where the total number of users increases

linearly with blocklength n. They however restricted the users to use the same codebook and

required only recovering the transmitted messages (as opposed to recovering the messages and

transmitters identity) and employed the per user probability of error in their model.

We propose a strongly asynchronous massive access model which consist of a strongly asyn-

chronous window of An = enα blocks of length n and Kn = enν different users. We allow the

number of users to also increase exponentially in n to capture the massive number of users.

Each user selects a message among Mn = enR possible ones and a transmission block among An



12

possible blocks, both uniformly at random. Our goal is to find the trade off between (R, α, ν).

In characterizing the capacity of this model, we require its global probability of error to be

vanishing. We show

1. Model Strongly Asynchronous Slotted Massive Access Channel (SAS-MAC) with global

probability of error constraint. More specifically, in our modeling we require the decoder

to correctly identify the users identity and decode their messages.

2. We show that for a sub exponential number of users Kn with logKn = o(n), each user

can achieve its point-to-point strong-asynchronous capacity.

3. We show that when ν ≥ α, users can not even be synchronized when transmitting a single

codeword.

4. We propose a sequential decoder for the case that users can potentially have different

channels. We show that strictly positive (R, α, ν) is achievable.

5. We propose a non-sequential achievability scheme for the case that users have identical

channels. This proves strictly positive values of (R, α, ν) is achievable. We show, by means

of an example, that this new non-sequential scheme will result in larger achievability region

than the one in item 4.

6. We propose a new non-sequential achievability scheme for the case that the channels

of different users is chosen from a set of conditional distributions of polynomial size in

blocklength n. In this case, the channel statistics itself, can be used for user identification.

7. We find a new converse bound on capacity of general SAS-MAC.
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.

1.1 Notation

Throughout the following chapters, we will adopt the following notation convention.

• Capital lettes represent random variables that take on lower case letter values in calli-

graphic letter alphabets.

• The space of all distributions on X is denoted by PX .

• A stochastic kernel / transition probability from X to Y is denoted by Q(y|x), ∀(x, y) ∈

X × Y.

• The output marginal distribution induced by P ∈ PX through the channel Q is denoted

as [PQ](y) :=
∑
x∈X P(x)Q(y|x), ∀y ∈ Y.

• The empirical / joint empirical distribution of a sequence xn/ (xn, yn) are respectively

defined as

P̂xn(a) :=
1

n
N (a|xn) =

1

n

n∑
i=1

1{xi=a}, ∀a ∈ X , (1.2)

P̂xn,yn(a, b) :=
1

n
N (a, b|xn, yn) =

1

n

n∑
i=1

1{xi=a
yi=b

}, ∀a, b ∈ X × Y, (1.3)

where N (a|xn) and N (a, b|xn, yn) denotes the number of occurrences of letter a ∈ X

in sequence xn and the number of joint occurrences of (a, b) in the pair of sequences

(xn, yn). When the sequence xn is clear from the context, we may drop the subscript xn

from P̂xn(a).
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• The P-type set and the V-shell of the sequence xn are respectively defined as

T(P) := {xn : N (a|xn) = nP(a),∀a ∈ X } , (1.4)

TV(x
n) :=

{
yn :
N (a, b|xn, yn)

N (a|xn)
= V(b|a), ∀(a, b) ∈ (X ,Y)

}
. (1.5)

• We say that (xn, yn) are jointly strongly ε-typical according to PX,Y , and write (xn, yn) ∈

Tnε (PX,Y), if

| P̂xnyn(a, b) − PX,Y(a, b) |≤ εPX,Y(a, b), ∀(a, b) ∈ X × Y.

• I(P,Q) is used to denote the mutual information between random variable (X, Y) ∼

(P, [PQ]) coupled via PY|X(y|x) = Q(y|x),

• D(P1 ‖ P2) is used to denote the Kullback Leibler divergence between distribution P1 and

P2. The conditional Kullback Leibler divergence is also denoted by

D(Q1 ‖ Q2|P) :=
∑

x,y∈X×Y
P(x)Q1(y|x) log

Q1(y|x)

Q2(y|x)
.

• The Bhatcharrya distance between P1, P2 is also denoted by

B(P1, P2) := − log

(∑
x∈X

√
P1(x)P2(x)

)
.

• ynj := [yj, . . . , yn] is a vector of length n− j+ 1 and we simply use yn instead of yn1 .
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• The indicator function of event A is denoted by 1A.

• We also use the notation an
.
= enb when

lim
n→∞ logan

n
= b.

• [m : n] for m ≤ n is used to denote the set {m,m + 1, . . . , n},m, n ∈ R. We also use

[m] := [1 : m].

• When all elements of the random vector Xn are generated i.i.d according to distribution

P, we denote it as Xn
i.i.d
∼ P.

• bxcr is used to denote the remainder of x divided by r.

• We use the notation [a]+ to represent

[a]+ :=


a, a > 0

0, a ≤ 0
.

• We use standard big-O notation and we write

f(n) = o(g(n)) : lim
n→∞ f(n)g(n)

= 0,

f(n) = Og(n)) : lim sup
n→∞

|f(n)|

g(n)
<∞.

• We write f(n) = poly(n) when ∃0 < k <∞ such that f(n) = O(nk).



CHAPTER 2

ASYNCHRONOUS CAPACITY OF A SINGLE BURSTY USER

Parts of this chapter has been previously published in [2].

It is widely believed that Machine-type Communications and Internet of Things are going

to be the next dominant paradigm in wireless technology. The traffic pattern imposed by

the devices within these networks have unique features different from the ones in human-type

communication networks. The communications that take place within these networks are often

sporadic and bursty, but must nonetheless be reliably detected and decoded. For example, each

sensor node may want to transmit a signal to the base station only when some incident has

taken place.

In this chapter, we consider the problem of both detecting and decoding asynchronous

data bursts of a single user. In conventional methods the user transmits a pilot signal at

the beginning of each data burst to notify the decoder of the upcoming data; the decoding

phase may be performed using any synchronized decoding method. The loss in this approach

is negligible when synchronization is done once and the cost of acquiring synchronization is

absorbed into the lengthy data stream that follows. For sparse / bursty transmission, as in

the problem considered here, this approach is not suitable as the training based schemes are

known to be sub-optimal [42]. In this work we do not enforce the usage of pilot symbols, and

the codebook serves the dual purpose of synchronization and data transfer. This Chapter’s

16



17

central goal is to characterize the trade-off between the reliable transmission rate between one

transmitter and one receiver, the burstiness of that transmitter, and the level of asynchronism.

In section 2.1 we introduce the slotted bursty and strongly asynchronous channel model with

fixed number of transmissions and derive its capacity region. We also find an equivalent capacity

region expression for the special case with zero rate (synchronization only). In section 2.2 we

introduce a model for slotted bursty and strongly asynchronous channel with random number

of transmissions and find its capacity region. Section 4.2 concludes this chapter.

2.1 System model for fixed number of transmissions and main results

We consider a discrete memoryless channel with transition probability matrixQ(y|x) defined

over all (x, y) in the finite input and output alphabets (X ,Y). We also define a noise symbol

? ∈ X for which Q?(y) > 0, ∀y ∈ Y.

Let M be the number of messages, A be the number of blocks, and K be the number

of transmissions. An (M,A,K, n, ε) code for the slotted bursty and strongly asynchronous

discrete memoryless channel with transition probability matrix Q(y|x) with fixed number of

transmissions consists of:

• A message set [M], from which messages are selected uniformly at random.

• Encoding functions fi : [M] → X n, i ∈ [A], where we define xni (m) := fi(m). The

transmitter chooses uniformly at random one set of K blocks for transmission out of the

(
A
K

)
possible ones, and a set of K messages from MK possible ones, also uniformly at

random, and sends xnνi(mi) in block νi for i ∈ [K] and ?n in every other block. We denote

the chosen blocks and messages as ((ν1,m1), . . . , (νK,mK)).
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• A destination decoder function

g(YnA) = ((ν̂1, m̂1), . . . , (ν̂K, m̂K)) ,

such that the average probability of error associated to it, given by

P
(n)
e :=

1

MK
(
A
K

)
∑

(ν1,m1),...,(νK,mK)

P[g(ynA) 6= ((ν1,m1), . . . , (νK,mK)) |H((ν1,m1),...,(νK,mK))],

satisfies P
(n)
e ≤ ε, where H((ν1,m1),...,(νK,mK)) is the hypothesis that user transmits message

mi at block νi with the codebook xnνi(mi), for all i ∈ [K].

A tuple (R, α, ν) is said to be achievable if there exists a sequence of codes (enR, enα, enν, n, εn)

with εn going to zero as n goes to infinity. The capacity region is the set of all possible achievable

(R, α, ν) triplets.

We now introduce our main result. In Theorem 1 we show that an exponential number

of transmissions for a single user is possible at the expense of a reduced rate and/or reduced

asynchronous window length compared to the case of only one transmission Kn = 1 (or more

generally ν = 0).
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Theorem 1. Achievable and impermissible regions for the capacity region of a slotted bursty and

strongly asynchronous discrete memoryless channel with transition probability matrix Q(y|x) are

given by

Rin :=
⋃

λ∈[0,1],P∈PX



ν ≤ α

α+ R < D(Qλ ‖ Q?|P)

ν < D(Qλ ‖ Q|P)

R < I(P,Q)


, (2.1)

and

Rout :=
⋃

λ∈[0,1],P∈PX

{ν > α} ∪


α > D([PQλ] ‖ Q?) + [I(P,Qλ) − R]

+

ν > D(Qλ ‖ Q|P)

 ∪ {R > I(P,Q)}

 ,
(2.2)

where

Qλ(.|x) :=
Qλx(.)Q

1−λ
? (.)∑

y ′∈Y Q
λ
x(y
′)Q1−λ? (y ′)

. (2.3)

Proof. Achievability. Codebook generation. The user generates An constant composition

codebooks, of rate R and blocklength n, by selecting each message’s codeword uniformly and

independently from the P-type set of sequences in X n, one codebook for each available block.

Decoder. We perform a two-stage decoding. First, the decoder finds the location of the

transmitted codewords (first stage, the synchronization stage) and it decodes the messages
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(second stage, the decoding stage). The probability of error for this two-stage decoder is given

by

P
(n)
e ≤ P[synchronization error] + P[decoding error|no synchronization error].

For the first stage, fix

T : −D(Q? ‖ Q|P) ≤ T ≤ D(Q ‖ Q?|P),

which can be changed for different trade-off points. At each block j ∈ [An], if there exists any

message m ∈ [Mn] such that the Log Likelihood Ratio (LLR)

L
(
ynj , x

n
j (m)

)
:=
1

n
log

Q
(
ynj |x

n
j (m)

)

Q?n(ynj )
≥ T, (2.4)
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declare a codeword transmission block and a noise block otherwise. Given the hypothesis

H1 := H((1,1),...,(Kn,1)) the probability of the synchronization error in the first stage is given by

P [synch error|H1]

≤ P



Kn⋃

j=1

Mn⋂

m=1

L
(
Ynj , x

n
j (m)

)
< T |H1




+ P




An⋃

j=Kn+1

Mn⋃

m=1

L
(
Ynj , x

n
j (m)

)
≥ T |H1




≤
Kn∑
j=1

P
[
L
(
Ynj , x

n
j (1)

)
< T |H1

]
+ enR

An∑
j=Kn+1

P
[
L
(
Ynj , x

n
j (1)

)
≥ T |H1

]

≤ enν
∑
Q̂:

D(Q̂||Q?|P)−D(Q̂||Q|P)<T

P
[
Yn ∈ T

Q̂
(xn(1)) |H1

]

+ en(R+α)
∑
Q̂:

D(Q̂||Q?|P)−D(Q̂||Q|P)≥T

P
[
Yn ∈ T

Q̂
(xn(1))|H1

]
(2.5)

≤ enνe−nD(Qλ‖Q|P) + en(α+R)e−nD(Qλ‖Q?|P), (2.6)

where Qλ is defined in (Equation 2.3) and

λ : D(Qλ ‖ Q?|P) −D(Qλ ‖ Q|P) = T.

The expression in (Equation 2.6) is the result of finding the minimum exponent in (Equation 2.5)

using the Lagrangian method as in [51, Sec. 11.7].
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By (Equation 2.6), the probability of error in the synchronization goes to zero as n goes to

infinity when

ν < D(Qλ ‖ Q|P), (2.7a)

α+ R < D(Qλ ‖ Q?|P). (2.7b)

Conditioning on the ‘no synchronization error’ and having found all Kn ‘not noisy’ blocks,

we can use a Maximum Likelihood (ML) decoder for random constant composition codes,

introduced and analyzed in [52], on the super-block of length nKn to distinguish among enKnR

different message combinations. If R < I(P,Q), the probability of the error of the second stage

also vanishes as n goes to infinity.

Converse. The main technical difficulty and innovation in the proof relies on analyzing

the probability of error in a ML decoder. In this regard, we boil down the problem to finding

an exponentially decaying ‘lower’ bounds on the probability of the missed detection (where the

likelihood ratio defined in (Equation 2.4) of an active block is less than a threshold) and false

alarm (where the likelihood ratio defined in (Equation 2.4) of an idle block is larger than the

threshold) error events. By the type counting argument and the fact that we have polynomially

many types in blocklength at the expense of a small reduce in rate [53] we can restrict our

attention to constant composition codes. In other words, we assume the use of codewords xni (.)

with constant compositions Pi in each block i ∈ [An]. Given the hypothesis H1 := H((1,1)...(Kn,1)),
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with a ML decoder (which achieves the minimum average probability of error) and for any T ∈ R,

the error events are given by

{error|H1} =
⋃

((l1,m̃1)...,(lKn ,m̃Kn ))
6=((1,m1),...,(Kn,mKn ))

{
Kn∑
i=1

L (Yni , x
n
i (mi)) ≤

Kn∑
i=1

L
(
Ynli , x

n
li
(m̃i)

)
}
, (2.8)

where (Equation 2.8) the union of the events that the sum of the LLRs of the true hypothesis

((1,m1), . . . , (Kn,mKn)) is less than the sum of the LLRs of the wrong hypothesis

((l1, m̃1) . . . , (lKn , m̃Kn)) 6= ((1,m1), . . . , (Kn,mKn)) ,

where wrong means that we have at least one decoding or one synchronization error. We now

focus our attention on a subset of these events which have a single synchronization error. i.e.,

{error|H1} ⊇
⋃

i∈[Kn]
j∈[Kn+1:An]
m∈[Mn]

{
L (Yni , x

n
i (mi)) ≤ L

(
Ynj , x

n
j (m)

)}
(2.9)

⊇

 ⋃

i∈[Kn]

{L (Yni , x
n
i (mi)) ≤ T }

⋂


⋃

j∈[Kn+1:An]
m∈[Mn]

{
L
(
Ynj , x

n
j (m)

)
≥ T
} . (2.10)
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In other words, (Equation 2.9) is the union over the events that (any message, any noisy block) is

selected instead of one of the (correct message, correct block)s; with the underlying assumption

that the rest of the blocks are chosen correctly. We also further restrict

T ∈ [−D(Q? ‖ Q|Pi?), D(Q ‖ Q?|Pi?)],

where i? is chosen such that

i? := arg max
i,λi:

D(Qλi‖Q?|Pi)−D(Qλi‖Q|Pi)=T

D(Qλi ‖ Q|Pi). (2.11)

The reason for this choice of i∗ will be become clear later (see (Equation 2.13) and (Equation 2.14)).

By (Equation 2.10) we have

P
[
error

∣∣∣H1
]

≥ P


 ⋃

i∈[Kn]

L (Yni , x
n
i (m)) ≤ T |H1


 · P




⋃

j∈[Kn+1:An]
m∈[Mn]

L
(
Ynj , x

n
j (m)

)
≥ T |H1


 (2.12)

≥
(
1− e−n[ν−D(Qλi? ‖Q|Pi?)]

)
(2.13)

·


1− e

−n

[
α+R1

{R<I(P,Qλi∗ )}
−D(Qλi∗ ‖Q?|Pi∗ )

]
 , (2.14)

where (Equation 2.12) is due to the independence of Ynj , j ∈ [An] and where (Equation 2.13)

and (Equation 2.14) are proved in Appendix A and B, respectively.
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The lower bound on the probability of error given in (Equation 2.13) and (Equation 2.14),

would be bounded away from zero if

ν > D
(
Qλi? ‖ Q|Pi?

)
,

α+ R1{R<I(P,Qλi∗ )}
> D

(
Qλi? ‖ Q?|Pi?

)
= I(P,Qλi? ) +D([Pi∗Qλi? ] ‖ Q?),

which can be equivalently be written as

ν > D
(
Qλi? ‖ Q|Pi?

)
, (2.16a)

α > D([Pi∗Qλi? ] ‖ Q?) +
[
I(P,Qλi? ) − R

]+
, (2.16b)

and hence this region is impermissible.

Any asynchronous channel can be reduced to a synchronous channel by providing the de-

coder with side information about the transmission time. Hence, the same bound on the rate

of a synchronous channel, i.e. R < I(Pi? , Q) also applies to the asynchronous channel. By the

symmetry of the hypothesis, the same lower bound on probability of error holds for the average

probability of error and hence we retrieve the bounds given in (Equation 2.2).

Remark 1. We note that for all those λ : R < I(P,Qλ), the achievability and the converse

bounds match.

The main novelty in this problem is to find exponentially decaying upper and lower bounds

on the probability of error. The achievability scheme analysis is easier as we can easily pose it
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as a hypothesis testing problem. However, in the converse, we have to deal with the optimal

ML decoder. As a first step in reducing the complexity of the ML decoder, we considered a set

of error events with single synchronization errors (which we believe is the major error set and

many other events are its subsets). Next, we had to find the probability that the LLRs of the

active blocks are smaller than a threshold. This again, would be easy to calculate for a single

LLR; its probability is a function of the (imaginary) channel Qλ defined in (Equation 2.3).

However, we have to deal with unions of such events as in (Equation 2.12). Calculation of these

unions is also easy for ν = 0. In this case the optimal λ = 1 and hence Qλ=1 = Q and one can

leverage the fact that the probability of decoding error for channel Q is small to transform the

union into a summation. If however ν 6= 0 and hence λ 6= 1, probability of error for channel Qλ

(for the same code as channel Q) would be dependent on the rate R. Transformation of a union

to a summation is not straightforward anymore and hence we had to provide several additional

steps (in Appendix B and C) to do so.

For a fixed λ, a comparison between the bounds given by (Equation 2.16b) and (Equation 2.7b)

is shown in Fig. Figure 1. It is easy to see that the bounds given in (Equation 2.1) and (Equation 2.2)

will coincide (i.e., complement one another) for the case ν = 0 (λ = 1) and retrieve the capacity

region previously derived in [20].

Remark 2. It is worth noting that the region specified in Figure 1, need not be convex since α

is a channel parameter and can not be chosen by user.

We now concentrate our attention to the synchronization case only.

Remark 3. By specializing Theorem 1 for R = 0, we can see that Rin|R=0 = Rout|R=0 = R|R=0.
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α

RD(Qλ ‖ Q⋆|P )I(P, Q)

D(Qλ ‖ Q⋆|P )

I(P, Qλ)

Figure 1. Comparison of Impermissible region given in (Equation 2.16b) (red region) and

achievable region given by (Equation 2.7b) (green region) for fixed λ.

It can be easily seen in Fig. Figure 2 that by taking the union over λ ∈ [0, 1], the achievability

and converse regions match for R = 0.

In the following example, we consider a Binary Symmetric Channel and plot its achievable

region.

Example 1. To illustrate the capacity region in Theorem 1, we consider a Binary Symmetric

Channel (BSC) Q with cross over probability δ as it is shown in Fig. Figure 3. We also assume

? = 0. For the channel Qλ in (Equation 2.3) we have

Qλ(0|0) = 1− δ,

ελ := Qλ(0|1) =
δλ(1− δ)(1−λ)

δλ(1− δ)(1−λ) + (1− δ)λδ(1−δ)
.
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D(Qλ ‖ Q⋆|P )

D(Qλ ‖ Q|P )

(D(Qλ ‖ Q|P ), D(Qλ ‖ Q⋆|P ))

(a) Impermissible region

D(Qλ ‖ Q⋆|P )

D(Qλ ‖ Q|P )

(D(Qλ ‖ Q|P ), D(Qλ ‖ Q⋆|P ))

(b) Achievable region

Figure 2. The union of the regions over different values of λ will result in matching

achievability and converse bounds for R = 0.

By changing p = P[X = 0] ∈ [0, 12 ] and λ ∈ [0, 1], we obtain the achievability region shown in

Fig. 4(a). In addition, the (optimal) trade off for (R, α, ν = 0) can be seen in Fig. 4(b) which

resembles the one in [22, Fig. 1]. The trade off between (α, ν) can be seen in Fig. 4(c) which

has the curvature we expect to see, like the one in Fig. Figure 10 in the Appendix.

Theorem 2 provides another form for the trade-off between (R = 0, α, ν) which implies that

using a repetition pattern for synchronization pattern is optimal.

Theorem 2. For R = 0, the capacity region R|R=0 in Remark 3 is equivalent to

Rsynch :=
⋃

x∈X ,λ∈[0,1]



ν < α

α < D(Qλ ‖ Q?)

ν < D(Qλ ‖ Qx)


. (2.17)
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0 = ⋆ 0 = ⋆

11 111

00 0

Q Q⋆ Qλ

δ

1− δ

1− ǫλ

ǫλδ

δ

δ

1− δ

1− δ 1− δ 0 = ⋆

Figure 3. Strongly synchronous binary symmetric channel

Proof. Rsynch ⊆ R|R=0 is trivial since we can restrict the set of distributions P ∈ PX in R|R=0

to the distributions with weight one on a single symbol x and zero weight on all other symbols.

We also proveR|R=0 ⊆ Rsynch by contradiction and by means of the following Lemma proved

in Appendix D.

Lemma 3. The curve (D(Qλ ‖ Q?|P), D(Qλ ‖ Q|P)) characterized by λ ∈ [0, 1] is the lower

envelope of the set of curves

⋃

x∈X

{
(D(Qλx ‖ Q?|P), D(Qλx ‖ Q|P))

}
,

which are each characterized by λx ∈ [0, 1].
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(a) (R, α, ν) trade-off

(b) (R, α) trade-off for ν = 0

(c) (α, ν) trade-off for different rates, specified by

the color

Figure 4. Achievability bound on capacity region of slotted bursty and strongly asynchronous

BSC with fixed number of transmissions with cross over probability δ = 0.11.
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We continue the proof by assuming R|R=0 6⊆ Rsynch. Then there exists an element

(r1, r2, 0) = (D(Qλ ‖ Q|P), D(Qλ ‖ Q|P), 0) ∈ R|R=0,

(r1, r2) 6∈ Rsynch,

that is, which lies above all the {D(Qλ ‖ Q?), D(Qλ ‖ Qx)} curves for all x ∈ X . Hence, for any

x ∈ X , there exists a λx such that

r1 = D(Qλ ‖ Q|P) > D(Qλx ‖ Q?),

r2 = D(Qλ ‖ Q|P) > D(Qλx ‖ Qx).

As a result

D(Qλ ‖ Q|P) > D(Qλx ‖ Q?|P),

D(Qλ ‖ Q|P) > D(Qλx ‖ Q|P),

which contradicts Lemma 3 that (D(Qλ ‖ Q|P), D(Qλ ‖ Q|P)) is the lower envelope of the set

of
⋃
x∈X {(D(Qλx ‖ Q?|P), D(Qλx ‖ Q|P))} curves and hence the initial assumption that R|R=0 6⊆

Rsynch is not feasible.

Note that by adapting the achievability scheme to synchronize only (R = 0), we do not need

a different synchronization pattern for each block. Using the same synchronization pattern in
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every block suffices to drive the probability of error in the synchronization stage to zero and

since it matches the converse, it is optimal.

Theorem 2 also implies that depending on the value of α and ν, using a repetition synchro-

nization pattern with a single symbol is optimal. This symbol may change depending on the

considered value of α and ν. For the ternary channel in Fig. 5(a), for example, the resulting

curves by using symbol x = 1 and x = 2 are shown in Fig. 5(b). As it is clear, for the regime

α > 0.356, symbol x = 1 has to be used whereas in the regime α ≤ 0.356 symbol x = 2 has to

be used in the synchronization pattern.

11

00 = ⋆

22
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Figure 5. Channel with different synchronization pattern symbols for different (α, ν) regimes.
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2.2 System model for random transmissions and main results

We consider again a discrete memoryless channel with transition probability matrix Q(y|x)

defined over all (x, y) in the finite input and output alphabets (X ,Y). We also define a noise

symbol ? ∈ X for which Q?(y) > 0, ∀y ∈ Y.

An (M,A, p, n, ε) code for the slotted bursty and strongly asynchronous discrete memoryless

channel with transition probability matrix Q(y|x) with random access is defined as follows.

• A message set [M], from which messages are selected uniformly at random.

• Encoding functions fi : [M] → X n, i ∈ [A], where we define xni (m) := fi(m). For each

block i ∈ [A], the transmitter chooses a message among M possible ones and transmit

xni (mi) through the channel with probability p or remains idle and transmits ?n with

probability 1− p.

• A destination decoder function

g(YnA) =
(
(ν̂1, m̂1), . . . , (ν̂k̂, m̂k̂)

)
,

such that the average probability of error associated to it, given by

P
(n)
e :=

A∑
k=1

∑
(ν1,m1),...,(νk,mk)

1

Mk
pk(1− p)A−kP[g(ynA) 6= ((ν1,m1), . . . , (mk, νk)) |H((ν1,m1),...,(νk,mk))],

satisfies P
(n)
e ≤ ε, where H((ν1,m1),...,(νk,mk)) is the hypothesis that user transmits message

mi at block νi with the codebook xnνi , for all i ∈ [k].
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A tuple (R, α, β) is said to be achievable if there exists a sequence of codes (enR, enα, e−nβ, n, εn)

with limn→∞ εn = 0. The capacity region is the set of all possible achievable (R, α, β) triplets.

Theorem 4. Achievable and impermissible regions for the capacity region of a slotted bursty

and strongly asynchronous random access channel with transition probability matrix Q(y|x) are

given by

Rin :=
⋃

λ∈[0,1],P∈PX



α+ R < D(Qλ ‖ Q?|P)

α− β < D(Qλ ‖ Q|P)

R < I(P,Q)


, (2.18)

and

Rout :=
⋃

λ∈[0,1],P∈PX




α > D(Qλ ‖ Q?|P) + [I(P,Qλ) − R]
+

α− β > D(Qλ ‖ Q|P)

 ∪ {R > I(P,Q)}

 . (2.19)

Proof. Achievability. The encoder and decoder are the same as the one given for the

achievability proof of Theorem 1, except that the number of active blocks is not fixed. We

denote pn := e−nβ and Ĥk to be the hypothesis that the user is active in k blocks. By the
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symmetry of the probability of error among hypotheses with the same number of occupied

blocks, we can write

P
(n)
e =

An∑
k=0

(
An

k

)
pkn(1− pn)

An−k P[Error|Ĥk]

≤
An∑
k=0

(
An

k

)
pkn(1− pn)

An−kP[Synchronization error|Ĥk] (2.20)

+

An∑
k=0

(
An

k

)
pkn(1− pn)

An−kP[Decoding error|Ĥk,No synchronization error].

With similar steps as those in the proof of Theorem 1, we obtain

P[synchronization error|Ĥk] ≤ k e−nD(Qλ‖Q|P) + enR (enα − k) e−nD(Qλ‖Q?|P), (2.21)

where

λ : D(Qλ ‖ Q?|P) −D(Qλ ‖ Q|P) = T.

By (Equation 2.21), we can upper bound (Equation 2.20) as

An∑
k=0

(
An

k

)
pkn(1− pn)

(An−k)P[synchronization error|Ĥk]

≤ enαe−nβe−nD(Qλ‖Q|P) + en(α+R)e−nD(Qλ‖Q?|P),



36

which goes to zero for

α− β < D(Qλ ‖ Q|P),

α+ R < D(Qλ ‖ Q?|P).

For the decoding stage, with the same strategy as the one in Theorem 1 we obtain the third

bound in (Equation 2.18).

Converse. The converse argument is also similar to the converse proof of Theorem 1. It

can be shown that

P
[
error

∣∣∣Ĥk
]
≥
(
1−

eD(Qλi? ‖Q|Pi?)

k

)
·


1−

e
−n

[
R1
{R<I(P,Qλi∗ )}

−D(Qλi? ‖Q?|Pi?)

]

An − k


 .

Hence

P[error] ≥
An−1∑
k=1

(
An

k

)
(e−nβ)k(1− e−nβ)An−k

(
1−

enD1

k

)

1−

e
n

(
D2−R1{R<I(P,Qλi∗ )}

)

An − k




≥ 1− (1− e−nβ)An − e−nβAn −
2enD1

e−nβenα
−
2e
n

(
D2−R1{R<I(P,Qλi∗ )}

)

(1− e−nβ)enα
, (2.22)
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where

D1 := D
(
Qλi? ‖ Q|Pi?

)
,

D2 := D
(
Qλi? ‖ Q?|Pi?

)
,

and where (Equation 2.22) is proved in Appendix E. This retrieves the first two bounds in (Equation 2.19).

The third bound in (Equation 2.19) is by the usual bound on the reliable rate of a synchronous

channel.

It is easy to see that (Equation 2.18) and (Equation 2.19) match for the cases that R = 0

or β = α. The latter case corresponds to λ = 1.

Example 2. We consider the same BSC channel defined in Example 1 and illustrate its achiev-

ability region for the slotted bursty and strongly asynchronous channel with random access in

Fig. 6(a). For values of β > D(Q ‖ Q?|P) = 2.3527, the achievable region is similar to the to the

case β = 2.3527 and the surface remains unchanged. This is also apparent in Fig. 6(b) where

the trade-off between (α,β) is depicted. This is in fact obvious in Theorem 4 since for values of

β > D(Q ‖ Q?|P) the achievability (Equation 2.18) and converse bound (Equation 2.19) match

and are equal to the capacity region for one for only one transmission as the one in [22, Fig.

1].

2.3 Conclusion

In this Chapter we studied a slotted bursty and strongly asynchronous discrete memoryless

channel where a user transmits a randomly selected message among Mn = enR messages in
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(a) (R, α, β) trade-off (b) (α, β) trade-off for different rates, specified by colors

Figure 6. Capacity region of slotted bursty and strongly asynchronous BSC with random

access with cross over probability δ = 0.11.

each one of the Kn = enν randomly selected blocks of the available An = enα blocks. We

derive the upper and lower bounds on the trade-off among (R, α, ν) by finding achievability and

converse bounds where we analyze an optimal Maximum Likelihood decoder in the converse.

For the case that the number of transmissions of the user is not fixed and the user may access

the channel with probability e−nβ, we again provide upper and lower bounds on the trade-off

between (R, α, β).



CHAPTER 3

IDENTIFICATION OF A MASSIVE NUMBER OF DISTRIBUTIONS

Parts of this chapter has been previously published in [3].

Hypothesis testing is a classical problem in statistics where in its simplest form one has

to make a decision in favor of one of the two possible hypothesis based on some observations.

More specifically, given a random observation vector, one seeks to identify the distribution

from a given set of distributions that generated it. Pioneering work in classical hypothesis

testing include the proof of the optimality of likelihood ratio tests under certain criteria in the

Neyman-Pearson Theorem [54]. Derivation of error exponents of different error types and their

trade-offs for binary and M-ary hypothesis testing in [55] and [56] and the analysis of sequential

hypothesis testing in [57].

One of the main areas in hypothesis testing is the identification and ranking problems. The

classical identification problem is consist of a finite number of distinct sources, each generating

a sequence of i.i.d samples. The problem is to find the underlying distribution of each sample

sequence, given the constraint that each sequence is generated by a distinct distribution.

In here, we assume A sequences of length n are generated i.i.d according to A distinct

distributions; in particular random vectors Xni
i.i.d
∼ Pσi , i ∈ [A], for some unknown permutation

σ of the distributions. The goal is to reliably identify the permutation σ with vanishing error

probability as n goes to infinity from an observation of [Xn1 , . . . , X
n
A]. A motivation is the

identification of users using only channel output sequences, without the use of pilot / explicit

39



40

identification signals [1]. In this scenario, the problem’s difficulty increases with the number

of users. In addition, in modeling the systems with a massive number of users (such as the

Internet of Things), it may be reasonable to assume that the number of users grow with the

transmission blocklength [1], [16], and that the user’s identities must be distinguished from the

received data. As the result, it is useful to understand exactly how the number of distributions

affects the system performance, in particular for the case that the cardinality of the distributions

grows with the blocklength. Notice that in this scenario, the number of hypothesis, would be

doubly exponential in blocklength and the analysis of the optimal decoder becomes much harder

than the classical (with constant number of distributions) identification problems.

In this chapter, we consider the identification problem for the case that the number of distri-

butions grow with the observation blocklength n as motivated by the massive user identification

problem in the Internet of Things paradigm. The key novel element in this work consist of an-

alyzing and reducing the complexity of the optimal maximum likelihood decoder, with double

exponential number of hypothesis, using a graph theoretic result.

We first introduce a set of special notations. In section 3.2, we introduce the problem

formulation and the main result of this chapter. The main theorem proof consist of achievability

and converse bounds.

3.1 Special notation

The special notation used in this chapter is as follows.

• We use Sn, where |Sn| = n!, to denote the set of all possible permutations of a set of n

elements.
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• For a permutation σ ∈ Sn, σi denotes the i-th element of the permutation.

• Kk
(
a1, . . . , a(k2)

)
is the complete graph with k nodes with edge index i ∈ [

(
k
2

)
] and edge

weights ai, i ∈ [
(
k
2

)
]. We may drop the edge argument and simply write Kk when the

edge specification is not needed.

• A cycle c of length r in Kk may be interchangeably defined by a vector of vertices as

c(v) = [v1, . . . , vr] or by a set of edges c(e) = {a1, . . . , ar} where ai is the edge between

(vi, vi+1), ∀i ∈ [r − 1] and ar is that between (vr, v1). With this notation, c(v)(i) is then

used to indicate the i-th vertex of the cycle c.

• C(r)
k is used to denote the set of all cycles of length r in the complete graph Kk

(
a1, . . . , a(k2)

)
.

• The cycle gain, denoted by G(c), for cycle c = {a1, . . . , ar} ∈ C(r)
k is the product of the

edge weights within the cycle c, i.e.,

G(c) =

r∏
i=1

ai, ∀ai ∈ c.

3.2 Problem formulation

Let P := {P1, . . . , PA}, Pi ∈ PX , ∀i ∈ [A] consist of A distinct distributions and also let Σ be

uniformly distributed over SA, the set of permutations of A elements. In addition, assume that

we have A independent random vectors {Xn1 , X
n
2 , . . . , X

n
A} of length n each. For σ, a realization

of Σ, assign the distribution Pnσi to the random vector Xni , ∀i ∈ [A]. After observing a sample

xnA = [xn1 , . . . , x
n
A] of the random vector XnA = [Xn1 , . . . , X

n
A], we would like to identify Pσi , ∀i ∈
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[A]. More specifically, we are interested in finding a permutation σ̂ : X nA → SA to indicate

that Xni
i.i.d
∼ Pσ̂i , ∀i ∈ [A]. Let Σ̂ = σ̂(XnA).

The average probability of error for the set of distributions P is given by

P
(n)
e = P

[
Σ̂ 6= Σ

]

=
1

(A)!

∑
σ∈SA

P
[
Σ̂ 6= σ|Xni

i.i.d
∼ Pσi , ∀i ∈ [A]

]

= P
[
Σ̂ 6= [A]

∣∣Xni
i.i.d
∼ Pi, ∀i ∈ [A]

]
.

We say that a set of distributions P is identifiable if limn→∞ P(n)e → 0.

3.2.1 Condition for Identifiability

In Theorem 5 we characterize the relation between the number of distributions and the

pairwise distance of the distributions for reliable identification.

Theorem 5. A sequence of distributions P = {P1, . . . , PAn} is identifiable iff

lim
n→∞

∑
1≤i<j≤An

e−2nB(Pi,Pj) = 0. (3.1)

Proof. The rest of this section contains the proof. To prove Theorem 5, we provide upper and

lower bounds on the probability of error in the following subsections.
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3.2.2 Upper bound on the probability of identification error

We use the optimal Maximum Likelihood (ML) decoder, which minimizes the average prob-

ability of error, given by

σ̂(xn1 , . . . , x
n
An) := arg max

σ∈SAn

An∑
i=1

log (Pσi (x
n
i )) , (3.2)

where Pσi (x
n
i ) =

∏n
t=1 Pσi (xi,t). The average probability of error associated with the ML

decoder can also be written as

P
(n)
e = P

[
Σ̂ 6= [An]

∣∣Ĥ
]

= P


 ⋃

σ̂6=[An]

Σ̂ = σ̂
∣∣Ĥ




= P




An⋃

r=2

⋃

σ̂:
{
∑An
i=1 1{σ̂i 6=i}=r}

Σ̂ = σ̂
∣∣Ĥ


 (3.3)

= P

[
An⋃

r=2

⋃

σ̂:
{
∑An
i=1 1{σ̂i 6=i}=r}

An∑
i=1

log
Pσ̂i (X

n
i )

Pi
(
Xni
) ≥ 0

∣∣Ĥ
]

(3.4)

where Ĥ :=

{
Xni

i.i.d
∼ Pi, ∀i ∈ [An]

}
and where (Equation 3.3) is due to the requirement that

each sequence is distributed according to a distinct distribution and hence the number of in-

correct distributions ranges from [2 : An]. In order to avoid considering the same set of error

events multiple times, we incorporate a graph theoretic interpretation of
{∑An

i=1 1{Σ̂i 6=i} = r
}
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in (Equation 3.4) which is used to denote the fact that we have identified r distributions incor-

rectly. Consider the two sequences [i1, . . . , ir] and [σ̂i1 , . . . , σ̂ir ] for which we have


An∑
i=1

1{σ̂i 6=i} =

r∑
j=1

1{σ̂ij 6=ij}
= r

 .
These two sequences in (Equation 3.4) in fact indicate the event that we have (incorrectly)

identified Xnij
i.i.d
∼ Pσ̂ij instead of the (true) distribution Xnij

i.i.d
∼ Pij , ∀j ∈ [r]. For a complete

graph KAn , the set of edges between ((i1, σ̂i1), . . . , (ir, σ̂ir)) in KAn would produce a single cycle

of length r or a set of disjoint cycles with total length r. However, we should note that in the

latter case where the sequence of edges construct a set of (lets say of size L) disjoint cycles (each

with some length r̃l for r̃l < r such that
∑L
l=1 r̃l = r), then those cycles and their corresponding

sequences are already taken into account in the (union of) set of r̃l error events.

As an example, assume An = 4 and consider the error event

log
P2(X

n
1 )

P1(X
n
1 )

+ log
P1(X

n
2 )

P2(X
n
2 )

+ log
P4(X

n
3 )

P3(X
n
3 )

+ log
P3(X

n
4 )

P4(X
n
4 )
≥ 0,

which corresponds to the (error) event of choosing [σ̂1, σ̂2, σ̂3, σ̂4] = [2, 1, 4, 3] over [1, 2, 3, 4]

with r = 4 errors. In the graph representation, this gives two cycles of length 2 each, which

correspond to

{
log

P2(X
n
1 )

P1(X
n
1 )

+ log
P1(X

n
2 )

P2(X
n
2 )
≥ 0
}
∩
{

log
P4(X

n
3 )

P3(X
n
3 )

+ log
P3(X

n
4 )

P4(X
n
4 )
≥ 0
}
,
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and are already accounted for in the events

{[σ̂1, σ̂2, σ̂3, σ̂4] = [2, 1, 3, 4]} ∪ {[σ̂1, σ̂2, σ̂3, σ̂4] = [1, 2, 4, 3]}

with r = 2.

As the result, in order to avoid double counting, in evaluating (Equation 3.4) for each r we

should only consider the sets of sequences which produce a single cycle of length r.

Before proceeding further, we define the edge weights for a complete weighted graph

KAn(a(1,2), . . . a(Kn,1)).

In particular, we define a(i,j) := e−nB(Pi,Pj) to be the edge weight between vertices (i, j) in the

complete graph KAn shown in Fig. Figure 7.

Hence, we can upper bound the probability of error in (Equation 3.4) as

P
(n)
e ≤

An∑
r=2

∑
c∈C(r)

An

P




r∑
i=1

log
Pbc(v)(i+1)cr

(
Xn
c(v)(i)

)

Pc(v)(i)

(
Xn
c(v)(i)

) ≥ 0|Ĥ




≤
An∑
r=2

∑
c∈C(r)

An

e
−n
∑r
i=1 B(Pc(v)(i),Pc(v)(bi+1cr)

)
(3.5)

=

An∑
r=2

∑
c∈C(r)

An

G(c), (3.6)

where r enumerates the number of incorrect matchings and where c(i) is the i-th vertex in the

cycle c. In (Equation 3.6), we have leveraged the fact that e−nB(Pi,Pj) is the edge weight between
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i

j

1

e−nB(Pi,Pj)

2

e−nB(P1,P2)

An

Figure 7. Complete graph KAn with edge weight e−nB(Pi,Pj) for every pair of vertices

i 6= j ∈ [Kn].

vertices (i, j) in the complete graph KAn and hence G(c) = e
−n
∑r
i=1 B(Pc(v)(i),Pc(v)(bi+1cr)

)
is the

gain of cycle c. The inequality in (Equation 3.5) is by

P




r∑
i=1

log
Pbc(v)(i+1)cr

(
Xn
c(v)(i)

)

Pc(v)(i)

(
Xn
c(v)(i)

) ≥ 0|Ĥ




≤ exp

n inf
t

logE




r∏
i=1



Pc(v)(bi+1cr)

(
Xnc(i)

)

Pc(v)(i)

(
Xn
c(i)

)



t




≤ exp

n
r∑
i=1

logE






Pc(v)(bi+1cr)

(
Xnc(i)

)

Pc(v)(i)

(
Xn
c(i)

)



1/2



 (3.7)

= exp

{
−n

r∑
i=1

B(Pc(v)(i), Pc(v)(bi+1cr))

}
.
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The fact that we used t = 1/2 in (Equation 3.7) instead of finding the exact optimizing t,

comes from the fact that t = 1/2 is the optimal choice for r = 2 and as we will see later, the

rest of the error events are dominated by the set of only 2 incorrectly identified distributions.

This can be seen as follows for Xn1
i.i.d
∼ P1, X

n
2

i.i.d
∼ P2

P
[
log

P1(X
n
2 )

P2(X
n
2 )

+ log
P2(X

n
1 )

P1(X
n
1 )
≥ 0
]

=
∑
P̂1,P̂2:∑

x∈X P̂1(x) log
P2(x)

P1(x)
+

P̂2(y) log
P1(x)

P2(x)
≥0

exp
{
nD

(
P̂1 ‖ P1

)
−nD

(
P̂2 ‖ P2

)}

.
= e−nD(P̃‖P1)−nD(P̃‖P2) = e−2nB(P1,P2), (3.8)

where P̃ in the first equality in (Equation 3.8), by using the Lagrangian method, can be shown

to be equal to P̃(x) =

√
P1(x)P2(x)∑

x ′
√
P1(x ′)P2(x ′)

and subsequently the second inequality in (Equation 3.8)

is proved.

In order to calculate the expression in (Equation 3.6), we use the following graph theoretic

Lemma, the proof of which is given in the Appendix F.

Lemma 6. In a complete graph Kk (a1, . . . , ank) and for the set of cycles of length r, C(r)k =

{c1, . . . cNr,k} we have

1

Nr,k
(G(c1) + . . . G(cNr,k)) ≤

(
a21 + . . .+ a

2
nk

nk

) r
2
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where Nr,k, nk are the number of cycles of length r and the number of edges in the complete

graph Kk, respectively.

By Lemma 6 and (Equation 3.6) we prove in Appendix G that the upper bound on the

probability of error P
(n)
e goes to zero if

lim
n→∞

∑
1≤i<j≤An

e−2nB(Pi,Pj) = 0. (3.9)

As a result of Lemma 6, it can be seen from (Equation G.1) that the sum of probabilities that

r ≥ 3 distributions are incorrectly identified is dominated by the probability that only r = 2

distributions are incorrectly identified. This shows that the most probable error event is indeed

the error events with two wrong distributions.

3.2.3 Lower bound on the probability of identifiability error

For our converse, we use the optimal ML decoder, and as a lower bound to the probability

of error in (Equation 3.4), we only consider the set of error events with only two incorrect

distributions, i.e., the set of events with r = 2. In this case we have

P
(n)
e ≥ P


 ⋃

1≤i<j≤An

log
Pi(X

n
j )

Pj(X
n
j )

+ log
Pj(X

n
i )

Pi(X
n
i )
≥ 0|Ĥ




≥

(∑
1≤i<j≤An P [ξi,j]

)2∑
(i,j),(j,k)
(i,j) 6=(l,k)
i6=j,l6=k

P[ξi,j, ξk,l]
, (3.10)
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where (Equation 3.10) is by [58] and where

ξi,j :=

{
log

Pi
Pj
(Xnj ) + log

Pj

Pi
(Xni ) ≥ 0|Ĥ

}
. (3.11)

We prove in Appendix H that lower bound on P
(n)
e is given by

P
(n)
e ≥

(∑
1≤i<j≤An e

−2nB(Pi,Pj)
)2

∑
i,j,k

e−nB(Pi,Pj)−nB(Pi,Pk)−nB(Pk,Pj)+

(∑
i,j

e−2nB(Pi,Pj)

)2 (3.12)

≥

(∑
i,j e

−2nB(Pi,Pj)
)2

8

( ∑
1≤i<j≤An

e−2nB(Pi,Pj)

)3
2

+

( ∑
1≤i<j≤An

e−2nB(Pi,Pj)

)2 (3.13)

=

√∑
1≤i<j≤An e

−2nB(Pi,Pj)

8+
√∑

1≤i<j≤An e
−2nB(Pi,Pj)

, (3.14)

where (Equation 3.13) is by Lemma 6. As it can be seen from (Equation 3.14), if

lim
n→∞

∑
1≤i<j≤An

e−2nB(Pi,Pj) 6= 0,

the probability of error is bounded away from zero. As a result, we have to have

lim
n→∞

∑
1≤i<j≤An

e−2nB(Pi,Pj) = 0,

which also matches our upper bound on the probability of error in (Equation G.2).
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As it is clear from the result of Theorem 5, when An is a constant or grows polynomially

with n, the sequence of distributions in P are always identifiable and the probability of error in

the identification problem decays to zero as the blocklength n goes to infinity. The interesting

aspect of Theorem 5 is in the regime that An increases exponentially with the blocklength.

3.3 Conclusion

In this Chapter, we generalized the identification problem to the case that the number of

distributions grows with the blocklength n. By analyzing the optimal Maximum Likelihood

decoder we found matching upper and lower bounds on the probability of identification error.

We also derived and used some graph theoretic results in order to calculate the probability of

error in the Maximum Likelihood decoder. This result characterizes the relation between the

number of distributions and the pairwise distance of the distributions for reliable identification.

Having proved the criterion for identifiability of massive number of distributions in Theorem 5,

we move on to the SAS-MAC problem. We use the result of Theorem 5 to identify the massive

number of users, by their induced probability distribution at the receiver.



CHAPTER 4

STRONGLY ASYNCHRONOUS SLOTTED MASSIVE ACCESS

CHANNEL

Parts of this chapter has been previously published in [1].

One assumption used in much of the network information theoretic analysis is that the num-

ber of users, even though large, is a constant. More specifically, in conventional studies, the

number of users is let to go to infinity only after performing asymptotic analysis on probability

of error for large coding blocklengths. By allowing the number of users and the blocklength to

be functions of one another and to go to infinity simultaneously, lots of previously developed

tools in analysis of probability of error fails. Another unrealistic information theoretic assump-

tion is that of block and symbol synchronism between transmitters and receivers. It is often

assumed that the receiver knows the starting point of the codeword and is only concerned about

correctly decoding the received symbols. In practice, this synchronization is usually achieved

by transmitting a pilot signal before the data signal. The pilot signal does not carry any infor-

mation and has negligible impact (as the blocklength goes to infinity) on the achievable rates

for streams of data where synchronization is done once, or for finitely many users. In large

decentralized networks, however, the use of pilot signals for synchronization may cause an un-

acceptable amount of overhead. This motivates us to find the channel capacity of a network

consisting of massive number of users without an a priori assumption of synchronization.

51
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In this work the usage of pilot symbols is not assumed, and the codebook may in theory serve

the purpose of synchronization as well as of data transfer. For example, one could imagine that

the codebook is sufficiently different in idle and busy time blocks so as to achieve synchronization

at the receiver.

In addition, we do not assume preambles in our codebook design to distinguish the users.

Each user’s codebook should be sufficiently different so as to allow the receiver to identify both

the message and its transmitter. These tasks become harder to achieve as the length of the

possible transmission window as well as the number of users increases, in particular if they

increase exponentially with the blocklength.

We first mention the special notation convention that we use within this chapter and after

introducing our channel model we state our main results.

4.0.1 Special Notation.

• A vector of length n with a subscript refers to Yns := [Y(s−1)n+1, . . . , Ysn]; the subscript

could also indicate a user; its meaning should be clear from the context.

• For the SAS-MAC we use the shorthand notation

QS(y|xS) := Q(y|xS, ?Sc), ∀S ⊆ [K], (4.1)

to indicate that the users indexed by S transmit xi, and users indexed by Sc := [K] \ S

transmit their idle symbol.
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• When |S| = 1, we use

Qi(y|xi) := Q{i}(y|xi) = Q(y|?1, . . . , ?i−1, xi, ?i+1, . . . , ?K),

and when |S| = 0, we use

Q?(y) := Q(y|?1, . . . ?K).

4.1 System Model

The discrete memoryless classical MAC with K-user, denoted as (X1 × . . .× XK, Q(.|.),Y),

consists of K+1 finite sets (X1, . . . ,XK,Y) and a collection of conditional distributionsQ(y|x1, . . . , xK)

on Y, one for each input (x1, . . . , xK). This MAC is memoryless since we assume

Q(yn|xn1 , . . . , x
n
K) =

n∏
t=1

Q(yt|x1,t, . . . , xK,t), ∀n ∈ N.

Let M be the number of messages, A be the number of blocks, and K be the number of users.

An (M,A,K, n, ε) code for the asynchronous multiple access channel consists of:

• A message set [M], for each user i ∈ [K], from which messages are chosen uniformly at

random.

• An encoding function fi : [M] → X ni , for each user i ∈ [K]. We define xni (m) := fi(m);

Each user choses a message mi ∈ [M], to convey to the receiver, and a block index

ti ∈ [A], both uniformly at random and independent of one another. It then transmits

[?
n(ti−1)
i xni (mi)?

n(A−ti)
i ] ∈ X nAi , where ?i ∈ Xi is the designated ‘idle’ symbol for user i.
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• A destination decoding function

g(YnA) =
(
(t̂1, m̂1), . . . , (t̂K, m̂K)

)
,

such that its associated average probability of error, P
(n)
e , satisfies

ε ≥ p(n)e :=
1

AKMK

∑
(t1,m1),...,(tK,mK)

P
[
g(Yn) 6= ((t1,m1), . . . , (tK,mK)) |H((t1,m1),...,(tK,mK))

]
.

The hypothesis that user i, i ∈ [K] has chosen message mi and block ti is denoted by

H((t1,m1),...,(tK,mK)).

For the SAS-MAC with asynchronism level α, a code is defined over an asynchronous

MAC channel with A increasing exponentially with blocklength n as An = enα. For both

exponential number users Kn : log(Kn) = O(n), and subexponential number of users Kn :

log(Kn) = o(n), a tuple (R1, . . . , RKn , α) is said to be achievable if there exists a sequence of

codes (enR, enα, enν, n, εn) with εn vanishing to zero as n goes to infinity.

The capacity region is the closure of all such achievable tuples.

We now consider the performance of the SAS-MAC for three different scalings of the number

of users.
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Figure 8. Extended codebook.

4.1.1 Exponential regime: case log(Kn) = nν : ν > α

The following theorem provides a converse bound on ν. More specifically, it provides an

upper bound for feasible values of ν.

Theorem 7. For a SAS-MAC with asynchronism level α and log(Kn) = nν : ν > α, reliable

synchronization is not possible, i.e., even with Mn = 1, ∀i ∈ [Kn], one has strictly positive error

probabilities P
(n)
e > 0.

Proof. User i ∈ [Kn] has a codebook with Mn = enR codewords of length n. Define for i ∈ [Kn]

an ‘extended codebook’ consisting of AnMn codewords of length nAn constructed such that

∀mi ∈ [Mn] and ∀ti ∈ [An]

X̃nAni (mi, ti) :=
[
?
n(ti−1)
i xni (mi) ?

n(An−ti)
i

]
,
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as depicted in Fig. Figure 8. By using Fano’s inequality, i.e., H(XnAn1 , . . . , XnAnKn
|YnAn) ≤ nεn :

εn → 0 as n goes to infinity, for any codebook of length nAn we have

H(XnAn1 , . . . , XnAnKn
) = H(m1, t1, . . . ,mKn , tKn)

= nαKn +
∑
i∈[Kn]

logMn

= H(XnAn1 , . . . , XnAnKn
|YnAn) + I(XnAn1 , . . . , XnAnKn

; YnAn)

≤ nεn + nenα |Y | ⇐⇒
ν+

log
(
1+ R

α

)

n
≤ α+

log
(
1+ εn

enα|Y |

)

n
,

where
log(1+ Rα)

n ≥ 0 and
log(1+ εn

enα|Y| )

n ≥ 0 vanish as n goes to infinity. This implies that ν ≤ α

is a necessary condition for reliable communications. In other words, for ν > α not even

synchronization, i.e., Mn = 1, ∀i ∈ [Kn], is possible.

4.1.2 Sub-exponential regime: case log(Kn) = o(n)

For ν < α
2 the probability δn that more than one user transmits a codeword in each block

is:

δn = 1−
An(An − 1) . . . (An − Kn + 1)

AKnn
, (4.2)

which goes to zero as n goes to infinity for ν < α
2 . Hence one may analyze the probability of error

conditioned on the fact that users are transmitting in different blocks, i.e., no collision. This
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assumption reduces the number of different hypotheses for each block that must be considered

in the error analysis.

Theorem 8. For a SAS-MAC with asynchronous level α and log(Kn) = o(n), the capacity re-

gion is the Cartesian product of the corresponding strong asynchronous point-to-point capacities

given by

R < max
Pi:D([PiQi]‖Q?)>α

I(Pi, Qi), ∀i ∈ [Kn]. (4.3)

Proof. Each user generates an i.i.d. random codebook according to the distribution Pi on

X , ∀i ∈ [Kn]. The decoder uses the following ‘slot by slot’ strong typicality decoder: for every

block s ∈ [A] it finds the empirical distribution of the output sequence Yns and codeword xni (mi)

for every mi ∈ [enR], i ∈ [Kn]; it announces that mi was the sent codeword in block s if mi is

the unique message index such that (xni (mi), Y
n
s ) ∈ Tnε (PiQi); if no codeword passes the test,

the decoder declares that no user was active on block s and moves forward to block s + 1; if

more than one codeword passes the test, the decoder picks one uniformly at random and moves

forward to block s+ 1.
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Assuming no collision, since all hypotheses are equally likely, and by averaging over all

random codes C, we have that the average probability of error is the same as that obtained by

conditioning over H(1) := H(1,1)...(Kn,1). By the union bound we can write

P
(n)
e ≤ P

[
error|H(1)

]
+ δn

≤ δn +
∑
i∈[Kn]

P
[
(xni (1), Y

n
i ) /∈ Tnε (PiQi)|H(1)

]
(4.4)

+
∑
i∈[Kn]

∑
mi∈[2:enR]

P
[
(xni (m), Yni ) ∈ Tnε (PiQi)|H(1)

]
(4.5)

+
∑

s∈[Kn+1:A]

∑
i∈[Kn]

∑
mi∈[enR]

P
[
(xni (mi), Y

n
s ) ∈ Tnε (PiQi)|H(1)

]
(4.6)

+
∑
i∈[Kn]

∑
j∈[Kn]
j6=i

∑
mj∈[enR]

P
[
(xnj (mj), Y

n
i ) ∈ Tnε (PjQj)|H(1)

]
(4.7)

≤ δn +
∑
i∈[Kn]

e−nε
2

+
∑
i∈[Kn]

e−n(I(Pi,Qi)−R) (4.8)

+
∑
i∈[Kn]

e−n(I(Pi,Qi)+D([PiQi]‖Q?)−α−R) (4.9)

+
∑
i∈[Kn]

∑
j∈[Kn]
j 6=i

e−n(I(Pj,Qj)+D([PjQj]‖[PiQi])−R) (4.10)

where δn is the probability of collision given in (Equation 4.2) which goes to zero as n goes to

infinity, the term (Equation 4.4) is the probability that the true codeword is not typical with

its corresponding output, the term in (Equation 4.5) is the probability of classical synchronous

point-to-point error, the term in (Equation 4.6) is the probability that a noise block, or a block

where no user was active, mimics any of the codewords, and finally the term in (Equation 4.7)
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is the probability that users are confused with one another. The bound in (Equation 4.8) is

due to the typicality decoder and those in (Equation 4.9) and (Equation 4.10) are proved in

Appendix I. All together, by assuming Kn to be sub-exponential in n, so that Kne
−nε2 → 0, we

get

R < I(Pj, Qj), (4.11)

R+ α < I(Pj, Qj) +D([PjQj] ‖ Q?), (4.12)

R < I(Pj, Qj) +D([PjQj] ‖ [PiQi]), ∀i 6= j, (4.13)

where the bound in (Equation 4.13) is redundant due the more restrictive bound in (Equation 4.11).

The achievable rates obtained above match the converse bound given by the Cartesian prod-

uct of the corresponding point-to-point capacities in (Equation 4.3). Finally, (Equation 4.11)

– (Equation 4.12) are equivalent to (Equation 4.3) as proven in [22] and hence the theorem is

proved.

Remark 4. As it can be seen in (Equation 4.8), this typicality decoder imposes the condition

enνe−nε
2 → 0 for exponential number of users which corresponds to ν = 0 when ε → 0.

This begs the question of whether indeed it is possible to support exponentially many users

(ν > 0). Next subsections affirmatively answer this question. Also note that in calculating

the per-user probability of error, all the summations over users i ∈ [Kn] in (Equation 4.8),

(Equation 4.9), (Equation 4.10) are eliminated and hence would relax the requirement ν = 0

for this typicality decoder.
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4.1.3 Exponential regime: case log(Kn) = nν : 0 < ν < α
2

Now we investigate a SAS-MAC with an exponential number of users. This regime is

the hardest to deal with as the typicality decoder seems to fail as the number of users grow

exponentially fast. For example, if we apply the previously introduced strong typicality decoder

to this case, error events as in (Equation 4.4) would restrict ν to be zero. In the following

Subsections, we investigate achievability results for different assumptions on the users channels.

4.1.4 Users with Identical Channels

The following theorem is an achievable region for the SAS-MAC for the case that different

users have identical channels toward the base station when they are the sole active user. In this

scenario, users’ identification and decoding can be merged together.

Theorem 9. For a SAS-MAC with asynchronous level α, occupancy level ν and rate R, assume

that Q{i}(y|x) = Q(y|x) (recall definition (Equation 4.1)) for all users. Then, the following

(R, α, ν) region is achievable

⋃

P∈PX
λ∈[0,1]



ν < α
2

ν < D(Qλ ‖ Q|P)

α+ R+ ν < D(Qλ ‖ Q?|P)

R+ ν < I(P,Q)


, (4.14)



61

where

Qλ(y|x) :=
Q(y|x)λQ?(y)

1−λ∑
y′∈Y Q(y′|x)λQ?(y′)1−λ

, ∀(x, y) ∈ X × Y. (4.15)

Proof. Before starting the proof, we note that for ν < α
2 (first bound in (Equation 4.14)), with

probability approaching to one as the blocklength n grows to infinity, the users transmit in

distinct blocks. Hence, in analyzing the joint probability of error of our achievability scheme,

we can safely condition on the hypothesis that users do not collide. The probability of error

given the hypothesis that collision has occurred, which may be large, is then multiplied by the

probability of collision and hence is vanishing as the blocklength goes to infinity, regardless of

the achievability scheme. The probability of error for this two-stage decoder can be decomposed

as

P [Error] = P [Synchronization error] (4.16)

+ P [Decoding error|No synchronization error] . (4.17)

Codebook generation

Let Kn = enν be the number of users, An = enα be the number of blocks, and Mn = enR be

the number of messages. Each user i ∈ [Kn] generates a constant composition codebook with

composition P by drawing each message’s codeword uniformly and independently at random

from the P-type set T(P) (recall definition in (Equation 1.4)). The codeword of user i ∈ [Kn]

for message m ∈ [Mn] is denoted as xni (m).



62

Probability of error analysis

A two-stage decoder is used, to first synchronize and then decode (which also identifies

the user’s identities) the users’ messages. We now introduce the two stages and bound the

probability of error for each stage.

Synchronization step. We perform a sequential likelihood test as follows. Fix a threshold

T ∈ [−D(Q? ‖ Q|P), D(Q ‖ Q?|P)]. (4.18)

For each block j ∈ [An] if there exists any message m ∈ [Mn] for any user i ∈ [Kn] such that

L(xni (m), ynj ) :=
1

n
log

Q(ynj |x
n
i (m))

Q?(ynj )
≥ T, (4.19)

then declare that block j is an ‘active’ block, and an ‘idle’ block otherwise. Let

H(1) := H((1,1),(2,1),...,(Kn,1)), (4.20)
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be the hypothesis that user i ∈ [Kn] is active in block i and sends message mi = 1. The average

probability of synchronization error, averaged over the different hypotheses, is upper bounded

by

P [Synchronization error] = P
[
Synchronization error|H(1)

]
(4.21)

≤
Kn∑
j=1

P

[
Kn⋂

i=1

Mn⋂

m=1

L(xni (m), Ynj ) < T |H
(1)

]
+

An∑
j=Kn+1

P

[
Kn⋃

i=1

Mn⋃

m=1

L(xni (m), Ynj ) ≥ T |H(1)

]
(4.22)

≤
Kn∑
j=1

P
[
L(xnj (1), Y

n
j ) < T |H

(1)
]
+

An∑
j=Kn+1

Kn∑
i=1

Mn∑
m=1

P
[
L(xni (m), Ynj ) ≥ T |H(1)

]
(4.23)

≤ enνe−nD(Qλ‖Q|P) + en(α+ν+R)e−nD(Qλ‖Q?|P), (4.24)

where (Equation 4.21) is by the symmetry of different hypothesis and (Equation 4.24) can be

derived as in [51, Chapter 11]. The upper bound on the probability of error for the synchro-

nization error in (Equation 4.24) vanishes as n goes to infinity if the second and third bound

in (Equation 4.14) hold.

Decoding stage. In this stage, by conditioning on no synchronization error, we have a

superblock of length nKn, for which we have to distinguish between Kn!(Mn)
Kn .

= enKn(R+ν)

different messages. We note that all the codewords for this superblock also have constant

composition P (since they are made by the concatenation of constant composition codewords).

We can hence use a Maximum Likelihood (ML) decoder for random constant composition

codes, introduced and analyzed in [52], on the super-block of length nKn to distinguish among
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enKn(R+ν) different messages with vanishing probability of error if R+ν < I(P,Q). This retrieves

the last bound in (Equation 4.14).

This concludes the proof.

4.1.5 Users with Different Choice of Channels

We now move on to a more general case in which we remove the restriction that the channels

of all users are the same. Theorem 10 finds an achievable region when we allow the users channels

to be chosen from a set of conditional distributions of polynomial size in the blocklength.

Theorem 10. For a SAS-MAC with asynchronous level α, occupancy level ν and rate R,

assume that Qi(y|x) = Wc(i)(y|x) is the channel for user i ∈ [Kn], for some c(i) ∈ [Sn] where

Sn = poly(n). Then, the following region is achievable

⋃

n≥1

⋃

Pj∈PX
λj∈[0,1]

⋂

j∈[Sn]



νj < α
2

νj < D([PjWj]λj ‖ [PjWj])

α < D([PjWj]λj ‖ Q?)

R+ νj < I(Pj,Wj)


, (4.25)

where

νj :=
1

n
log(Nj), (4.26)

Nj :=
Kn∑
i=1

1{Qi=Wj} :

Sn∑
j=1

Nj = Kn. (4.27)
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Proof. Before starting the proof, we should note that with similar arguments as the ones in

Theorem 9, by imposing the first bound in (Equation 4.25), different users transmit in distinct

blocks with a probability which goes to one as blocklength goes to infinity; thus we can assume

no user collision in the following. We now propose a three-stage achievability scheme. The

three stages perform the task of synchronization, identification and decoding, respectively. The

joint probability of error for this three-stage achievability scheme can be decomposed as

P [Error] = P [Synchronization error] (4.28)

+ P [Identification error|No synchronization error] (4.29)

+ P [Decoding error|No synchronization and No identification error] . (4.30)

Codebook generation

Let Kn = enν be the number of users, An = enα be the number of blocks, Mn = enR be

the number of messages, and Sn = poly(n) be the number of channels. Each user i ∈ [Kn]

generates a random i.i.d codebook according to distribution Pc(i) where the index c(i) ∈ [Sn] is

chosen based on the channel Qi =Wc(i). For each user i ∈ [Kn], the codeword for each message

m ∈ [Mn] is denoted as xni (m).

Probability of error analysis

A three-stage decoder is used. We now introduce the three stages and bound the probability

of error for each stage.
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Synchronization step. We perform a sequential likelihood ratio test for synchronization

as follows. Recall Qi(·|·) =Wc(i)(·|·) for all user i ∈ [Kn]. Fix thresholds

Tc(i) ∈
[
−D

(
Q? ‖ [Pc(i)Wc(i)]

)
, D
(
[Pc(i)Wc(i)] ‖ Q?

)]
, i ∈ [Kn]. (4.31)

For each block j ∈ [An] if there exists any user i ∈ [Kn] such that

Li(y
n
j ) :=

1

n
log

[Pc(i)Wc(i)](y
n
j )

Q?(ynj )
≥ Tc(i), (4.32)

then declare that block j is an ‘active’ block. Else, declare that block j is an ‘idle’ block.

Note that were able to calculate the probabilities of error corresponding to (Equation 4.19)

by leveraging the constant composition construction of codewords in Theorem 9. In here,

we can leverage the i.i.d constructure of the codewords and calculate the probability of error

corresponding to (Equation 4.32).

We now find an upper bound on the average probability of error for this scheme over different

hypothesis. Before doing so, we should note that by the symmetry of different hypotheses, the

average probability of error over different hypothesis is equal to probability of error given the

hypothesis that user i ∈ [Kn] transmits in block i; this hypotheses is denoted by

H(2) := H((1,.),(2,.),...,(Kn,.)), (4.33)
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where (.) is used instead of specifying the messages to emphasize that the decoder finds the

location of the users, irrespective of their transmitted messages.

The average probability of synchronization error, averaged over the different hypotheses, is

upper bounded by

P [Synchronization error] = P
[
Synchronization error|H(2)

]
(4.34)

≤ P

[
Kn⋃

i=1

Li(Y
n
i ) < Tc(i)|H

(2)

]
+ P




An⋃

j=Kn+1

Kn⋃

i=1

Li(Y
n
j ) ≥ Tc(i)|H(2)


 (4.35)

≤
Kn∑
i=1

P
[
Li(Y

n
i ) < Tc(i)|H

(2)
]
+ (An − Kn)P

[
Kn⋃

i=1

Li(Y
n) ≥ Tc(i)|H(2)

]
(4.36)

≤
Kn∑
i=1

e−nD([Pc(i)Wc(i)]λi‖[Pc(i)Wc(i)]) + enα
Sn∑
j=1

e
−nD

(
[PjWj]λj‖Q?

)
(4.37)

=

Sn∑
j=1

Nje−nD
(
[PjWj]λj‖[PjWj]

)
+ enαe

−nD
(
[PjWj]λj‖Q?

)
, (4.38)

where

[PjQj]λ(y) :=
([PjQj](y))

λ (Q?(y))
1−λ∑

y′∈Y ([PjQj](y
′))λ (Q?(y′))

1−λ
. (4.39)

The probability of error in this stage will decay to zero if for all j ∈ [Sn]

νj :=
1

n
log(Nj) < D

(
[PjWj]λj ‖ [PjWj]

)
, (4.40)

α < D
(
[PjWj]λj ‖ Q?

)
. (4.41)

This retrieves the second and third bounds in (Equation 4.25).
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Identification step. Having found the location of the ‘active’ blocks, we move on to the

second stage of the achievability scheme to identify which user is active in which block. We

note that, by the random codebook generation and the memoryless property of the channel,

the output of the block occupied by user i ∈ [Kn] is i.i.d distributed according to the marginal

distribution

[Pc(i)Qc(i)](y) :=
∑
x∈X

Pc(i)(x)Qc(i)(y|x). (4.42)

We leverage this property and customize the result in Theorem 5 to identify the different

distributions of the different users. In Theorem 5, assumed that all the distributions are distinct,

while in here, our distributions are not distinct. The only modification that is needed in order to

use the result of Theorem 5 is as follows. We need to consider a graph in which the edge between

every two similar distributions have edge weights equal to zero (as opposed to eB(P,P) = e0 = 1).

By doing so, we can easily conclude that the probability of identification error in our problem

using an ML decoder goes to zero as blocklength n goes to infinity since

P[Identification error|No synchronization error] ≤
∑

1≤i<j≤Sn

e−2nB([PiQi],[PjQj]) → 0, (4.43)

and since Sn = poly(n) by assumption.

Decoding stage. After finding the permutation of users in the active blocks, we can go

ahead with the third stage of the achievability scheme to find the transmitted messages of the

users. In this stage, we can group the users who have similar channel Qj to get superblocks of
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length nNj, j ∈ [Sn]. For each superblock, we have to distinguish (Mn)
Nj (Nj)Nj ≈ enNj(R+νj)

different message permutation. By using a typicality decoder, we conclude that the probability

of decoding error for each superblock will go exponentially fast (in blocklength) to zero if

R+ νj < I(Pj,Wj), ∀j ∈ [Sn]. (4.44)

This retrieves the last bound in (Equation 4.25) and concludes the proof.

Remark 5. The achievability proof of Theorem 9 relies on constant composition codes whereas

the achievability proof of Theorem 10 relies on i.i.d codebook. The reason for these restrictions

is that in 10 we also need to distinguish different users and in order to use the result of [3], we

focused our attention on i.i.d codebooks.

4.1.6 Users with no restriction on their channels

Now we investigate a SAS-MAC with no restriction on the channels of the users. The

key ingredient in our analysis is a novel way to bound the probability of error reminiscent

of Gallager’s error exponent. We show an achievability scheme that allows a positive lower

bound on the rates and on ν. This proves that in fact reliable transmission with an exponential

number of users with an exponential level of asynchronism is possible. We use a ML decoder

sequentially in each block to identify the active user and its message.
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In our results, we use the following notation. The Chernoff distance between two distribu-

tions is defined as

C(P,Q) := sup
0≤t≤1

− log

(∑
x

P(x)tQ(x)1−t

)
. (4.45)

We extend this definition and introduce the quantity

C(Pi, Qi, Pj, Qj) := sup
0≤t≤1

µi,j(t), (4.46)

where

µi,j(t) := − log
∑
xi,xj,y

Pi(xi)Pj(xj)Qi(y|xi)
1−tQj(y|xj)

t (4.47)

is a concave function of t. We also define

C(., Q?, Pj, Qj) := sup
0≤t≤1

− log


∑
xj,y

Pj(xj)Q?(y)
1−tQj(y|xj)

t




to address the special case with i = 0 and hence all users are idle.
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Theorem 11. For a SAS-MAC with asynchronous level α, occupancy level ν and rate R, the

following region is achievable

⋃

n≥1

⋃

Pi∈PX

⋂

i∈[Kn]



ν < α
2

ν+ R < B(Pi, Qi),

2ν+ R < inf j6=iC(Pj, Qj, Pi, Qi),

α+ ν+ R < C( . , Q?, Pi, Qi),


. (4.48)

Proof. Codebook generation

Each user i ∈ [Kn] generates an i.i.d. random codebook according to the distribution Pi.

Probability of error analysis:

The receiver uses the following block by block decoder: for each block s ∈ [An], the decoder

outputs

i∗ ∈ arg max
i∈[0:Kn],m∈[Mn]

Qi(y
n
s |x

n
i (m)) ,

where xn0 = ∅.
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We now find an upper bound on probability of error given the hypothesisH(1) in (Equation 4.20)

for this decoder as follows

P
(n)
e ≤

∑
i∈[Kn]

∑
m∈[2:Mn]

P
[
log

Qi(Y
n
i | xni (m))

Qi(Y
n
i | xni (1))

> 0|H(1)

]

+
∑
i∈[Kn]

∑
j∈[0:Kn]
j 6=i

∑
m∈[Mn]

P
[
log

Qj(Y
n
i |x

n
j (m))

Qi(Y
n
i |x

n
i (1))

> 0|H(1)

]

+
∑

s∈[Kn+1:An]

∑
j∈[Kn]

∑
m∈[Mn]

P
[
log

Qj(Y
n
s |x

n
j (m))

Q?(Yns )
> 0|H(1)

]

≤
∑
i∈[Kn]

enRe
−n supt − logE

[(
Qi(Yi|Xi)

Qi(Yi|Xi)

)t]

+
∑
i∈[Kn]

∑
j∈[0:Kn]
j 6=i

enRe
−n supt − logE

[(
Qj(Yi|Xj)

Qi(Yi|Xi)

)t]

+ enα
∑
j∈[Kn]

enRe
−n supt − logE

[(
Qj(Ys|Xj)

Q?(Ys)

)t]
,

where PX,X(x, x
′) = PX(x)PX(x

′). The last inequality is due to the Chernoff bound. In order for

each term in the probability of error upper bound to vanish as n grows to infinity, we find the

conditions stated in the theorem.
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Remark 6. Note that (see Appendix J):

B(P,Q) := C(P,Q, P,Q) = − log
∑
x,x′,y

P(x)P(x′)
√
Q(y|x)Q(y|x′), (4.49a)

C( . , Q?, Pj, Qj) ≤ I(Pj, Qj) +D ([PjQj] ‖ Q?) , (4.49b)

C(Pi, Qi, Pj, Qj) ≤ I(Pj, Qj) +D (Pi[PjQj] ‖ PiQi) , (4.49c)

where, due to symmetry, in C(P,Q, P,Q) the supremum is achieved at the midpoint t = 1
2 ,

and hence B(P,Q) = C(P,Q, P,Q) = µ( 12). The bounds in (Equation 4.49) show that in the

achievable rates in Theorem 11 are less than the corresponding point-to-point bounds.

Example 3. Consider the SAS-MAC with asynchronism level α, occupancy level ν, and rate

R with input-output relationship Y =
∑
i∈[Kn] Xi ⊕ Z with Z ∼ Ber(δ) for some δ ∈ (0, 1/2). In

our notation

Q(y|x) = P[Xi ⊕ Z = y|Xi = x] = P[Z = x⊕ y] (4.50)

=


1− δ x⊕ y = 0 (i.e., x = y)

δ x⊕ y = 1 (i.e., x 6= y)
. (4.51)
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Assume that the input distribution used is P = Ber(p) for some p ∈ (0, 1/2). The achievability

region of this example, based on Theorem 9, includes the following region

⋃

p∈[0, 1
2
]

λ∈[0,1]



ν < α/2

ν < p · d(ελ ‖ δ)

α+ R+ ν < p · d(ελ ‖ 1− δ)

R+ ν < h(p ∗ δ) − h(p)


, (4.52)

where

d(p ‖ q) := p log
p

q
+ (1− p) log

1− p

1− q
,

ελ :=
δλ(1− δ)(1−λ)

δλ(1− δ)(1−λ) + (1− δ)λδ(1−δ)
,

p ∗ q := p(1− q) + (1− p)q.

Moreover, by assuming Pi = Ber(pi) for all i ∈ [Kn], we can show that the optimal t in

C(Pi, Qi, Pj, Qj) = supt µi,j(t) is equal to t = 1/2 and hence the achievability region for this

channel based on Theorem 11 is given by

⋃

n≥1

⋃

Pi∈PX

⋂

i∈[Kn]



ν < α
2

ν+ R < B(Pi, Q) = g(pi ∗ pi, δ),

2ν+ R < inf j6=iC(Pj, Q, Pi, Q) = infi 6=j g(pi ∗ pj, δ),

α+ ν+ R < C( . , Q?, Pi, Q) = g(pi, δ), ,
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where

g(a, b) := − log
(
1− a+ 2a

√
b(1− b)

)
.

Finally, by symmetry, we can see that the optimal pi = 1
2 , ∀i ∈ [Kn] and hence g( 12 , δ) =

− log
(
1/2+

√
δ(1− δ)

)
> 0. So on the BSC(δ) strictly positive rates and ν are achievable. In

this regrard, the region in Theorem 11 reduces to

α+ ν+ R < − log
(
1/2+

√
δ(1− δ)

)
. (4.53)

The achievable region in (Equation 4.52) for (α, ν, R) is shown in Fig. 9(a). In addition,

the achievable region for (α, ν, R) with the achievable scheme in Theorem 11 is also plotted in

Fig. 9(b) for comparison. Fig. 3 shows that the achievable scheme in Theorem 9 indeed results

in a larger achievable region than the one in Theorem 11.

Note that the fact that the achievability region for Theorem 9 is larger than the achievability

region of Theorem 11 for identical channels, is not surprising. In Theorem 9 we separated

the synchronization and decoding steps whereas in Theorem 11 we sequentially (in blocks)

synchronize and decode at the same time. The sequential decoding step is a restrictive factor

in the derived bounds.

Thus far, we have provided two achievability regions for SAS-MAC for the case that dif-

ferent users have identical channels; the case that their channels belong to a set of size that

grows polynomially in blocklength, and the case without any restriction on the users’ channels.
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(a) Achievable region in (Equation 4.52).
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(b) Achievable region in (Equation 4.53).

Figure 9. Comparison of the achievable region in Theorem 9 and Theorem (11), for the

Binary Symmetric Channel with cross over probability δ = .11.

Theorem 12 on the other hand, provides a converse to the capacity region of SAS-MAC that

holds for any choice of uesers channels. This theorem can be easily generalized to SAS-MAC

as well.

Theorem 12. For the SAS-MAC with asynchronous level α, occupancy level ν and rate R,

such that ν < α/2, the following region is impermissible

⋃

n≥1

⋃

i∈[Kn]
Pi∈PX
λi∈[0,1]



ν > 1

Kn

∑Kn
i=1D(Qiλi ‖ Qi|Pi),

α > 1
Kn

∑Kn
i=1D(Qiλi ‖ Q?|Pi) − (1− r̄n)(ν+ R)


⋃

{R > I(Pi, Qi)}

 , (4.54)
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where r̄n is the infimum (over all estimators T) probability of error in distinguishing different

hypothesis Qiλi(y
n|xni (m)), i ∈ [Kn],m ∈ [Mn], i.e.,

r̄n := inf
T

1

KnMn

Kn∑
i=1

Mn∑
m=1

Qiλi(T 6= i,m|xni (m))). (4.55)

Proof. We first define the following special shorthand notations that we will use throughout

this proof

Fn :=MnKn, Qni,m(y
n) := Qi(y

n|xni (m)), (4.56)

PYn(y
n) :=

1

Fn

Kn∑
i=1

Mn∑
m=1

Qni,m(y
n), Qni,mλi(y

n) :=
(Qni,m(y

n))λi (Qn? (y
n))1−λi∑

yn

(
Qni,m(y

n)
)λi (Qn? (yn))1−λi

, (4.57)

P
(λ)
Yn (y

n) :=
1

Fn

Kn∑
i=1

Mn∑
m=1

Qni,mλi(y
n),

(
PYn
)
t
(yn) :=

(
PYn(y

n)
)t
(Qn? (y

n))1−t∑
yn

(
PYn(yn)

)t
(Qn? (y

n))1−t
, (4.58)

Qn? (y
n) :=

n∏
i=1

Q?(yi). (4.59)

We use the optimal Maximum Likelihood (ML) decoder to find the location of the ‘active’

blocks. In this stage, we are not concerned about the identity or the message of the users. In

this regard, the decoder output is determined via

arg max
(l1,...,lKn )
li 6=lj,∀i 6=j

li∈[An],i∈[Kn]

Kn∑
i=1

log
PYn(Y

n
li
)

Qn? (Y
n
li
)
. (4.60)
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Given the hypothesis that the users are active in blocks [Kn], denoted by H(2) in (Equation 4.33),

the corresponding error events to the ML decoder are given by

{
error|H(2)

}
=

⋃

(l1,...,lKn )
6=(1,...,Kn)

{
Kn∑
i=1

log
PYn(Y

n
li
)

Qn? (Y
n
li
)
>

Kn∑
i=1

log
PYn(Y

n
i )

Qn? (Y
n
i )

}

⊇
⋃

i∈[Kn]
j∈[Kn+1:An]

{
log

PYn(Y
n
j )

Qn? (Y
n
j )
≥ log

PYn(Y
n
i )

Qn? (Y
n
i )

}

⊇

 ⋃

j∈[Kn+1:An]

log
PYn(Y

n
j )

Qn? (Y
n
j )
≥ T

⋂
 ⋃

i∈[Kn]

T ≥ log
PYn(Y

n
i )

Qn? (Y
n
i )

 , (4.61)

for any T ∈ R. We restrict ourselves to a subset of T ’s and we take T to be

T :=
1

Fn

Kn∑
i=1

Mn∑
m=1

(
D
(
Qni,mλi ‖ Q

n
?

)
−D

(
Qni,mλi ‖ PYn

))
, (4.62)

for different λi ∈ [0, 1], i ∈ [Kn].

We also find the following lower bounds, which are proved in the Appendix K,

Qn?

[
log

PYn

Qn?
(Yn) ≥ T

]
≥ e−

n
Kn

(∑Kn
i=1D(Qiλi

‖Q?|Pi)−(R+ν)(1−rn)+
h(rn)
n

)
, (4.63)

PYn

[
log

PYn

Qn?
(Yn) ≤ T

]
≥ e−

n
Kn

∑Kn
i=1D(Qiλi

‖Qi|Pi). (4.64)
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By using the inequalities in (Equation 4.63) and (Equation 4.64), we find a lower bound on the

probability of (Equation 4.61) as follows:

P


 ⋃

j∈[Kn+1:An]

log
PYn(Y

n
j )

Qn? (Y
n
j )
≥ T ∩

⋃

i∈[Kn]

T ≥ log
PYn(Y

n
i )

Qn? (Y
n
i )

|H(2)


 (4.65)

= P


 ⋃

j∈[Kn+1:An]

log
PYn(Y

n
j )

Qn? (Y
n
j )
≥ T |H(2)


P


 ⋃

i∈[Kn]

T ≥ log
PYn(Y

n
i )

Qn? (Y
n
i )

|H(2)


 (4.66)

=: P [Z1 ≥ 1]P[Z2 ≥ 1] (4.67)

≥
(
1−

Var[Z1]

E2[Z1]

)(
1−

Var[Z2]

E2[Z2]

)
(4.68)

≥
(
1−

1∑An
j=Kn+1

P[ξj = 1]

)(
1−

1∑Kn
i=1 P[ζi = 1]

)
(4.69)

≥
(
1− e

−nα+ n
Kn

(∑Kn
i=1D(Qiλi

‖Q?|Pi)−(R+ν)(1−rn)+
h(rn)
n

))(
1− e−nν+

n
Kn

∑Kn
i=1D(Qiλi

‖Qi|Pi)
)
,

(4.70)

where (Equation 4.66) follows by independence of Yni and Ynj whenever i 6= j, ∀i, j ∈ [An] and

the inequality in Equation 4.68 by Chebyshev’s inequality, where we have defined

Z1 :=

An∑
j=Kn+1

ξj, ξj := Ber

(
Qn?

[
log

PYn

Qn?
(Ynj ) ≥ T

])
, (4.71)

Z2 :=

Kn∑
i=1

ζi, ζi := Ber

(
PYn

[
log

PYn

Qn?
(Yni ) ≤ T

])
, (4.72)
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where {ξj, ζi} are mutually independent. We can see from (Equation 4.70) that if

ν >
1

Kn

Kn∑
i=1

D(Qiλi ‖ Qi|Pi), (4.73)

α >
1

Kn

Kn∑
i=1

D(Qiλi ‖ Q?|Pi) − (1− r̄n)(ν+ R), (4.74)

then the probability of error is strictly bounded away from zero and hence it is impermissible.

Moreover, the usual converse bound on the rate of a synchronous channel also applies to any

asynchronous channel and hence the region where R > I(P,Q) is also impermissible. This

concludes the proof.

It should be noted that even though the expression (Equation 4.54) involves a union over

all blocklengths n, in order to compute this bound, we only need to optimize with respect to

Pi, i ∈ [Kn] (as opposed to Pn in the conventional n-letter capacity expressions). However, since

we still have exponential (in blocklength n) number of users, and in theory we have to optimize

all of their distributions, we need to take the union with respect to all blocklengths.

4.2 Discussion and conclusion

In this chapter we studied a Strongly Asynchronous and Slotted Massive Access Channel

(SAS-MAC) where Kn := enν different users transmit a randomly selected message among

Mn := enR ones within a strong asynchronous window of length An := enα blocks of n channel

uses each. We found inner and outer bounds on the (R, α, ν) tuples. Our analysis is based

on a global probability of error in which we required all users messages and identities to be

jointly correctly decoded. Our results are focused on the region ν < α
2 , where the probability
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of user collisions in vanishing. We proved in Theorem ?? that for the region ν > α, even

synchronization is not possible. Hence, we would like to take this chance to discuss some of the

difficulties that one may face in analyzing the region α
2 ≤ ν ≤ α.

As we have mentioned before, for the region ν < α
2 , with probability

(AnKn)
(An)Kn

which ap-

proaches to one as blocklength n goes to infinity, the users transmit in distinct blocks. Hence,

in analyzing the probability of error of our achievable schemes, we could safely condition on

the hypothesis that users are not colliding. For the region α
2 ≤ ν ≤ α, we lose this simplifying

assumption. In particular, based on Lemma 13 (proved in the Appendix L), for the region

α
2 ≤ ν ≤ α, the probability of every arrangement of users is itself vanishing in the blocklength.

Lemma 13. For the region α
2 ≤ ν ≤ α the non-colliding arrangement of users has the highest

probability among all possible arrangements, yet, the probability of this event is also vanishing

as blocklength n goes to infinity.

As a consequence of Lemma 13, one needs to propose an achievable scheme that accounts

for every possible arrangement and collision of users and drives the probability of error in all (or

most) of the hypothesis to zero. It is also worth noting that the number of possible hypotheses

is doubly exponential in the blocklength. Finally, it is worth emphasizing the reason why the

authors in [59] can get to ν ≤ α. In [59] the authors require the recovery of the messages of a

large fraction of users and they also require the per-user probability of error to be vanishing.

To prove whether or not strictly positive (R, α, ν) are possible in the region α
2 ≤ ν ≤ α, with

vanishing global probability of error, is an open problem.



CHAPTER 5

CONCLUSION AND FUTURE DIRECTION

In this thesis, motivated by the new emerging Internet of Things paradigm, we investigate

a novel Strongly Asynchronous Slotted Massive Access Channel model. In this model the

users are bursty and transmit sporadically within a large time window. Moreover, we allow

the number users to grow exponentially with the transmission blocklength. In this model,

many conventionally developed information theoretic tools (such as a priori synchronization

assumption and typicality arguments) fail. Hence the study of this model requires new technical

tools.

In this work we first introduced two models to capture the sporadic transmission of messages

of a single bursty user in a network. In both models we assumed that the user may transmit in

an asynchronous window An = enα blocks of n channel uses each. In the first model the user

transmits a randomly selected message among Mn = enR messages in each one of the Kn = enν

randomly selected blocks of the available An = enα blocks where as in the second model the

user may transmit with each block with probability pn = e−nβ. In the former model we studied

the tradeoff between (R, α, ν) and in the latter we investigated the tradeoff between (R, α, β).

Moreover, in conventional information theoretic studies of multiuser networks, the number

of users (even for many users) is assumed to be fixed and the capacity results are derived

by letting the codeword blocklength n to go to infinity. In an internet of things paradigm

however, we have a massive deployment of devices with sensing facilities and the number these

82
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interconnected devices may be even comparable with the coding blocklength. As a result, in

the second part of our thesis, we allow the number of users within a network to grow with

the coding blocklength. More specifically, each user can transmit a random message among

Mn = enR possible ones only once at random among a window of length An = enα. In addition,

we also allow the number of users to grow exponentially with blocklength such that we have

Kn = enν users within a network. We also require the receiver to distinguish noise from the

codewords and the users identity without the use of pilot signals.

What renders the single user version of the problem – a single user transmitting multiple

times rather than multiple users transmitting once each – more tractable is that one is guaran-

teed that in each block there is at most one transmitted message and we do not need to detect

the user’s identity.

There are still several unexplored paths in this topic, some of which we present here.

5.0.1 SAS-MAC analysis for the regime ν ≥ α
2

In this thesis, we restricted ourselves to the regime ν < α
2 . By doing so, we could easily

assume that in each block we have at most one active user with high probability. For the regime

ν ≥ α
2 this is no longer true. In this regime, arbitrary subsets of users may be active (where

probability of each hypothesis is itself vanishing with blocklength) and one should develop new

achievability/converse results do deal with this problem.

5.0.2 Finite blocklength analysis

One of the main reasons for allowing the number of users to grow with the blocklength

is that the number of users can be comparable with the coding blocklenth. The asymptotic
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analysis of probability of error is a good first step in finding the information theoretic limits of

this channel model. However, infinite coding blocklength is not be accommodated and hence

the analysis would be more realistic if done for the regime of finite blocklength.

5.0.3 Removing the slot synchronism assumption

In our analysis, we constraint the users to be block synchornous. i.e., their transmission

times (even though random) was an integer multiple of the blocklength n and hence users where

either non colliding or completely colliding. In a more realistic scenario, there is no coordination

between users and their transmission times can start any time within the asynchronous window.

It is interesting to understand how this relaxing assumption can change the analysis.

5.0.4 Massive identification problem with a subset of distributions

In our massive identification problem, we assumed that all of the distributions will generate

a distinct i.i.d sequence. The main problem was to find the permutation of the distributions that

generated the samples. A more general case would be to allow only a subset of the distributions

to generate i.i.d samples (with an exponential number of distribution in blocklength in total).

The main question to answer is to find the subset and to find the permutation of this subset.
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Appendix A

Proof of (Equation 2.13)

The main trick in the proof of (Equation 2.13) is to find an equivalent event and lower

bound the probability of that event instead. In this regard we have

P


 ⋃

i∈[Kn]

1

n
log

Q(Yni |x
n
i (mi))

Q?n(Yni )
≤ T


 (A.1)

= P[Z1 ≥ 1] (A.2)

≥ 1− Var[Z1]

E2[Z1]
= 1−

∑Kn
i=1 pi(1− pi)(∑Kn

i=1 Pi

)2 ≥ 1− 1∑Kn
i=1 pi

(A.3)

≥ 1− e−n
(
ν−D

(
Qλ?
i
‖Q|Pi?

))
, (A.4)

where we define

Z1 :=

Kn∑
i=1

ξi, ξi ∼ Bernoulli(pi),

pi := Qxni (mi)

[
1

n
log

Q(Yni |x
n
i (mi))

Q?n(Yni )
≤ T

]

pi ≥ Qxni (mi)
[
Yni ∈ TQλi (x

n
i (mi))

]
= e−nD(Qλi‖Q|Pi). (A.5)

The equality in (Equation A.2) is due to the equivalence of the events to the ones in (Equation A.1)

and (Equation A.3) is by Chebyshev’s inequlity. The inequality in (Equation A.4) is by the
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Appendix A (Continued)

choice of i? in (Equation 2.11) and finally (Equation A.5) is true because of the special choice

of T = D(Qλi ‖ Q?|Pi) −D(Qλi ‖ Q|Pi).
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Appendix B

Proof of (Equation 2.14)

To find a lower bound on the term in (Equation 2.12), we proceed as before by writing

P


 ⋃

j∈[Kn+1:An]

⋃

m∈[Mn]

1

n
log

Q
(
Ynj |x

n
i?(m)

)

Q?n(Ynj )
≥ T


 (B.1)

= P [Z2 ≥ 1] (B.2)

≥ 1− Var[Z2]

E2[Z2]
= 1−

∑An
j=Kn+1

qj(1− qj)
(∑An

j=Kn+1
qj

)2 ≥ 1− 1∑An
j=Kn+1

qj
(B.3)

≥ 1− exp
{
−n

(
α+ R1{R<I(P,Qλi∗ )}

−D(Qλi∗ ‖ Q?|Pi∗)
)}
,

where we have defined

Z2 :=
∑

j∈[Kn+1:An]

ζj, ζj ∼ Bernoulli(qj),

qj := Q?n


 ⋃

m∈[Mn]

1

n
log

Q(Ynj |x
n
j (m))

Q?n(Ynj )
≥ T


 , (B.4)

qj ≥ exp

{
n

(
R1{

R<I(P,Qλj )
} −D(Qλj ‖ Q?|Pj)

)}
. (B.5)

The equality in (Equation B.2) is true because the two events in the probabilities are the

same and the first inequality in (Equation B.3) is by Chebyshev inequality. The inequality
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Appendix B (Continued)

in (Equation B.5) is proved in Appendix C. We should note that ζj, j ∈ [Kn + 1 : An], are

independent since Ynj , j ∈ [Kn + 1 : An] are independent.
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Appendix C

Proof of (Equation B.5)

We first define a new typical set T δQnλ+ε
as follows.

Definition 7. For ε and δ define

T δQnλ+ε
(xn) :=

{
yn :
∑
a,b

1

n
N (a, b|xn, yn) log

Q(b|a)

Q?(b)
≥ T,

∣∣∣∣
1

n
N (a, b|xn, yn) − P(a)Qλ+ε(b|a)

∣∣∣∣ < δ,∀(a, b) ∈ X × Y
}
.

The new constraint
∑
a,b

1
nN (a, b|xn, yn) log Q(b|a)

Q?(b)
≥ T that we included in the typical set

definition ensures that all the sequences yn that belong to T δQnλ+ε
will also satisfy 1

n log Q(yn|xn)
Q?n (y

n) ≥

T . In addition, define

∆ :=
∑
a,b

P(a)Qλ+ε(b|a) log
Q(b|a)

Q?(b)
− T,

where ∆ > 0 since T =
∑
a,b P(a)Qλ(b|a) log Q(b|a)

Q?(b)
is decreasing in λ [60]. By the Law of Large

Numbers

Qnλ+ε

[∣∣∣∣
1

n
N (a, b|xn, Yn) − P(a)Qλ+ε(b|a)

∣∣∣∣ > δ|xn
]→ 0
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and

Qnλ+ε

[∑
a,b

1

n
N (a, b|xn, Yn) log

Q(b|a)

Q?(b)
≥ T |xn

]→ 0

and hence for any δ1 > 0 there exists n1 such that for all n ≥ n1 we have

Qnλ+ε

[
T δQλ+ε(x

n)|xn
]
> 1− δ1. (C.1)

Moreover, assume that DQnλ+ε(m) is the optimal (and disjoint) decoding region for message m,

whose codeword is passed through the channel Qnλ+ε. We also denote the average probability

of decoding error associated with channel Qnλ+ε to be

P
(n)
e (Qλ+ε) :=

1

enR

enR∑
m=1

∑
yn∈Dc

Qn
λ+ε

(m)

Qnλ+ε(y
n).

Now, if we drop half of the codewords in (xn(1), . . . , xn(Mn)) with the largest probability of

the error, the remaining half must must all satisfy

Qnλ+ε

[
Yn 6∈ DQnλ+ε(m)|xn(m)

]
< 2P

(n)
e (Qλ+ε); (C.2)

otherwise, the average probability of error for the decoding regions DQnλ+ε(m) will be larger

than P
(n)
e (Qλ+ε) and we reach a contradiction. Henceforth we restrict our attention to this half

of the codebook (which without loss of generality we assume is the first Mn
2 codewords).
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As the result for the channelQnλ+ε and its optimal decoding regionsDQnλ+ε(m), by (Equation C.1)

and (Equation C.2) we have

Qnλ+ε

[
T δQnλ+ε

(xn(m)) ∩DQnλ+ε(m)|xn(m)
]
≥ 1− δ1 − 2P(n)e (Qλ+ε). (C.3)

In addition, we can conclude from [22, Lemma 10] that for any two distributions Pn1 , P
n
2 and

any event A such that

Pn1 (A) ≥ α,

we have

Pn2 (A) ≥ βα(Pn1 , Pn2 ) ≥
α

2
exp {−nD(P1 ‖ P2)} . (C.4)
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In case the lower bound given in (Equation C.3), i.e. 1− δ1− P
(n)
e (Qλ+ε), is positive (which we

discuss shortly) and by (Equation C.4) we can write

Q?n


 ⋃

m∈[Mn]

1

n
log

Q(Yni |x
n(m))

Qn? (Y
n
i )

≥ T


 ≥ Q?n




⋃

m∈[Mn
2

]

T δQnλ+ε
(xn(m))




≥ Q?n




⋃

m∈[Mn
2

]

T δQnλ+ε
(xn(m)) ∩DQnλ+ε(m)




=

Mn
2∑

m=1

Q?n

[
T δQnλ+ε

(xn(m)) ∩DQnλ+ε(m)
]

≥
Mn
2∑

m=1

1− δ1 − 2P
(n)
e (Qλ+ε)

2
e−nD(Qλ+ε‖Q?|P)

.
= enRe−nD(Qλ+ε‖Q?|P). (C.5)

In addition, due to continuity of the divergence, as ε vanishes to zero, we have

D(Qλ+ε ‖ Q?|P)→ D(Qλ ‖ Q?|P).

We now disccus the cases that 1 − δ1 − P
(n)
e (Qλ+ε) is positive. A sufficient condition for 1 −

δ1− P
(n)
e (Qλ+ε) to be positive is that P

(n)
e (Qλ+ε) be vanishing as n goes to infinity. This would

be true if

R < I(P,Qλ+ε).
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If, on the other hand R ≥ I(P,Qλ+ε), we still can lower bound (Equation B.4) by

Q?n


 ⋃

m∈[Mn]

1

n
log

Q(Ynj |x
n(m))

Q?n(Ynj )
≥ T


 ≥ Q?n

[
1

n
log

Q(Ynj |x
n(1))

Q?n(Ynj )
≥ T

]

≥ Q?n

[
Ynj ∈ T δQλ(x

n(1))
]

≥ e−nD(Qλ‖Q?|P).
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Proof of Lemma 3

We provide the proof for a binary alphabet X = {a, b} in a proof by contradiction. The

proof for the general |X | > 2 is a straightforward generalization. For x = a, b define

E
(x)
0 (λx) := D (Qλx ‖ Q?) ,

E
(x)
1 (λx) := D (Qλx ‖ Qx) .

Assume that the claim of the Lemma 3 is not valid and hence there exists (λa, λb, λ̃) ∈ [0, 1]3

such that

D(Qλx ‖ Q|P) < D(Q
λ̃
‖ Q|P),

D(Qλx ‖ Q?|P) < D(Q
λ̃
‖ Q?|P),

or equivalently

ρE
(a)
1 (λa) + ρ̄E

(b)
1 (λb) < ρE

(a)
1 (̃λ) + ρ̄E

(b)
1 (̃λ), (D.1a)

ρE
(a)
0 (λa) + ρ̄E

(b)
0 (λb) < ρE

(a)
0 (̃λ) + ρ̄E

(b)
0 (̃λ), (D.1b)
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where ρ := P(x = a) and ρ̄ = 1 − ρ = P(x = b). By [60, Theorem 2] we can exclude the cases

where λa, λb < λ̃ and λa, λb > λ̃ and assume λa < λ̃ < λb, which implies

E
(x)
1 (λa) > E

(x)
1 (̃λ) > E

(x)
1 (λb),

E
(x)
0 (λa) < E

(x)
0 (̃λ) < E

(x)
0 (λb),

for x ∈ {a, b}. Hence, by rearranging (Equation D.1) and by dividing the two equations, we get

(
E
(a)
1 (λa) − E

(a)
1 (̃λ)

)

(
E
(a)
0 (λa) − E

(a)
0 (̃λ)

) >

(
E
(b)
1 (̃λ) − E

(b)
1 (λb)

)

(
E
(b)
0 (̃λ) − E

(b)
0 (λb)

) . (D.2)

Note since the
(
E
(x)
0 (λ), E

(x)
1 (λ)

)
curve is convex and strictly decreasing, we have

∂E
(a)
1

(
E
(a)
0 (λ)

)

∂λ

∣∣
λ=λ̃
≥

(
E
(a)
1 (λa) − E

(a)
1 (λ)

)

(
E
(a)
0 (λa) − E

(a)
0 (λ)

) , (D.3)

(
E
(b)
1 (λ) − E

(b)
1 (λb)

)

(
E
(b)
0 (λ) − E

(b)
0 (λb)

) ≥
∂E

(b)
1

(
E
(b)
0 (λ)

)

∂λ

∣∣
λ=λ̃
, (D.4)

where
∂E

(x)
1

(
E
(x)
0 (λ)

)
∂λ is the slope of the

(
E
(x)
0 (λ), E

(x)
1 (λ)

)
, which can be visually seen in Fig. Fig-

ure 10. However, according to [60, Theorem 6], the slope of the
(
E
(x)
0 (λ), E

(x)
1 (λ)

)
curve at λ = λ̃

is equal to λ̃−1

λ̃
and is independent of x.

Putting (Equation D.2), (Equation D.3) and (Equation D.4) together, we reach a contra-

diction and the proof is complete.
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E
(x)
0

E
(x)
1

e�

�a

Figure 10. Slope at λ = λ̃ is larger than the slope of the line between λa and λ̃.
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Proof of (Equation 2.22)

Note that

An−1∑
k=1

(
An

k

)
pk(1− p)An−k

1

k
=

1

An + 1

An−1∑
k=1

(
An + 1

k+ 1

)
pk(1− p)An−k

k+ 1

k

≤ 2

An + 1

An−1∑
k=1

(
An + 1

k+ 1

)
pk(1− p)An−k

≤ 2

p(An + 1)

An+1∑
j=0

(
An + 1

j

)
pj(1− p)An+1−j

=
2

p(An + 1)
≤ 2

pAn
,

and similarly

An−1∑
k=1

(
An

k

)
pk(1− p)An−k

1

An − k
≤ 2

(1− p)An
.
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Proof of Lemma 6

We first consider the case that r is an even number and then prove

r(nk)
r
2
−1 (G(c1) + . . . G(cNr,k))≤

Nr,kr

nk

(
a21 + . . .+ ank

2
) r
2
. (F.1)

We may drop the subscripts and use N := Nr,k and n := nk in the following for notational ease.

Our goal is to expand the right hand side (RHS) of (Equation F.1) such that all elements have

coefficient 1. Then, we parse these elements into N different groups (details will be provided

later) such that using the AM-GM inequality (i.e., n (
∏n
i=1 ai)

1
n ≤∑n

i=1 ai) on each group, we

get one of the N terms on the LHS of (Equation F.1). Before stating the rigorous proof, we

provide an example of this strategy for the graph with k = 4 vertices shown in Fig. Figure 11.

In this example, we consider the Lemma for r = 4 cycles (for which N = 3).
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a1

a2

a3

a4

a5 a6

Figure 11. A complete graph with 4 vertices

We may expand the RHS in (Equation F.1) as

2
(
a21 + . . .+ a

2
6

)2
= Θ1 +Θ2 +Θ3,

Θ1 =
{
a41 + a

4
2 + a

4
3 + a

4
4 + a

2
1a
2
3 + a

2
1a
2
3 + a

2
2a
2
4 + a

2
2a
2
4

+ a21a
2
2 + a

2
1a
2
2 + a

2
1a
2
2 + a

2
1a
2
2 + a

2
1a
2
4 + a

2
1a
2
4 + a

2
1a
2
4 + a

2
1a
2
4

+ a22a
2
3 + a

2
2a
2
3 + a

2
2a
2
3 + a

2
2a
2
3 + a

2
3a
2
4 + a

2
3a
2
4 + a

2
3a
2
4 + a

2
3a
2
4

}
Θ2 =

{
a41 + a

4
6 + a

4
3 + a

4
5 + a

2
5a
2
6 + a

2
5a
2
6 + a

2
1a
2
3 + a

2
1a
2
3

+ a21a
2
6 + a

2
1a
2
6 + a

2
1a
2
6 + a

2
1a
2
6 + a

2
1a
2
5 + a

2
1a
2
5 + a

2
1a
2
5 + a

2
1a
2
5

+ a23a
2
6 + a

2
3a
2
6 + a

2
3a
2
6 + a

2
3a
2
6 + a

2
3a
2
5 + a

2
3a
2
5 + a

2
3a
2
5 + a

2
3a
2
5

}
Θ3 =

{
a44 + a

4
5 + a

4
2 + a

4
6 + a

2
5a
2
6 + a

2
5a
2
6 + a

2
2a
2
4 + a

2
2a
2
4

+ a24a
2
5 + a

2
4a
2
5 + a

2
4a
2
5 + a

2
4a
2
5 + a

2
4a
2
6 + a

2
4a
2
6 + a

2
4a
2
6 + a

2
4a
2
6

+ a22a
2
5 + a

2
2a
2
5 + a

2
2a
2
5 + a

2
2a
2
5 + a

2
2a
2
6 + a

2
2a
2
6 + a

2
2a
2
6 + a

2
2a
2
6

}
.
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It can be easily seen that if we use the AM-GM inequality on Θ1, Θ2 and Θ3, we can get

the lower bound equal to 24(a1a2a3a4), 24(a1a6a3a5) and 24(a4a5a2a6), respectively where

rn
r
2
−1 = 24 and hence (Equation F.1) holds in this example.

We proceed to prove Lemma 6 for arbitrary k and (even) r ≥ 2. We propose the following

scheme to group the elements on the RHS of (Equation F.1) and then we prove that this

grouping indeed leads to the claimed inequality in the Lemma.

Grouping scheme: For each cycle ci = {ai1 . . . , air}, we need a group of elements, Θi,

from the RHS of (Equation F.1). In this regard, we consider all possible subsets of the edges

of cycle ci with 1 : r2 elements (e.g.
{
{ai1}, . . . {ai1 , ai2}, . . . {ai1 . . . , air/2}, . . .

}
). For each one of

these subsets, we find the respective elements from the RHS of (Equation F.1) that is the mul-

tiplication of the elements in that subset. For example, for the subset {ai1 , ai2 , ai3}, we consider

the elements like a
ni1
i1
a
ni2
i2
a
ni3
i3

for all possible ni1 , ni2 , ni3 > 0 from the RHS of (Equation F.1).

However, note that we do not assign all such elements to cycle ci only. If there are l cycles of

length r that all contain {ai1 , ai2 , ai3}, we should assign 1
l of the elements like

a
ni1
i1
a
ni2
i2
a
ni3
i3
, ni1 , ni2 , ni3 > 0

to cycle ci (so that we can assign the same amount of elements to other cycles with similar

edges).

We state some facts, which can be easily verified:

Fact 1. In a complete graph Kk, there are N = Nr,k =
(
k
r

) (r−1)!
2 cycles of length r.
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Fact 2. By expanding the RHS of (Equation F.1) such that all elements have coefficient 1,

we end up with
(
Nr
n

)
n
r
2 elements.

Fact 3. Expanding the RHS of (Equation F.1) such that all elements have coefficient 1,

and finding their product yields

(a1 × . . .× an)(
Nr
n )rn

r
2
−1

.

Fact 4. In above grouping scheme each element on the RHS of (Equation F.1) is summed

in exactly one group. Hence, by symmetry and Fact 2, each group is the sum of rn
r
2
−1 elements.

Now, consider any two cycles c
(e)
i = {ai1 , . . . , air}, c

(e)
j = {aj1 , . . . , ajr}. Assume that using

the above grouping scheme, we get the group of elements Θi, Θj (where by fact 3 each one is

the sum of rn
r
2
−1 elements). If we apply the AM-GM inequality on each one of the two groups,

we get

Θi ≥ rn
r
2
−1
(
a
ni1
i1
× . . .× an1rir

)
(

1

rn
r
2
−1

)
,

Θj ≥ rn
r
2
−1
(
a
nj1
j1
× . . .× anjrjr

)
(

1

rn
r
2
−1

)
,

where
∏r
t=1 a

nit
it

is the product of the elements in Θi. By symmetry of the grouping scheme for

different cycles, it is obvious that ∀t ∈ [r], nit = njt . Hence nit = njt = pt, ∀i, j ∈ [N]. i.e., we

have

Θi ≥ rn
r
2
−1
(
a
p1
i1
× . . .× aprir

)
(

1

rn
r
2
−1

)
. (F.2)
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By symmetry of the grouping scheme over the elements of each cycle, we also get that

nik = nil = qi, ∀k, l ∈ [r]. i.e.

Θi ≥ rn
r
2
−1
(
a
qi
i1
× . . .× aqiir

)
(

1

rn
r
2
−1

)
. (F.3)

It can be seen from (Equation F.2) and (Equation F.3) that all the elements of all groups have

the same power nit = p, ∀i ∈ [N], t ∈ [r]. i.e.,

Θi ≥ rn
r
2
−1
(
a
p
i1
× . . .× apir

)
(

1

rn
r
2
−1

)
.

Since each element on the RHS of (Equation F.1) is assigned to one and only one group and

since
∏r
t=1 a

nit
it

=
∏r
t=1 a

p
it

is the product of the elements of each group Θi, the product of all

elements in Θ1 + . . . + ΘN (which is equal to product of the elements in the expanded version

of the RHS of (Equation F.1)) is
∏N
i=1

∏r
t=1 a

p
it

.

In addition, since each ai appears in exactly Nr
n of the cycles, by Fact 3 and a double

counting argument, we have

p× Nr
n

=

(
Nr

n

)
rn

r
2
−1,

and hence p = rn
r
2
−1. Hence, the lower bound of the AM-GM inequality on the Θ1+ . . .+ΘN,

will result in

rn
r
2
−1G(c1) + . . .+ rn

r
2
−1G(cNr),

and the Lemma is proved for even r.
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For odd values of r, the problem that may arise by using the grouping strategy in its current

form, is when r < k
2 . In this case, some of the terms on the RHS of (Equation F.1) may contain

multiplication of ai’s that are not present in any of the G(ci)’s. To overcome this, take both

sides to the power of 2m for the smallest m such that rm > k
2 . Then the RHS of (Equation F.1)

is at most the multiplication of rm different ai’s and on the LHS of (Equation F.1), there are

2m cycles of length r multiplied together. By our choice of 2m, now, all possible combinations

of ai’s on the RHS are present in at least one cycle multiplication in the LHS. Hence, we can

now continue the proof with the same strategy as even values of r for the odd values of r.
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Proof of (Equation 3.9)

By Lemma 6 and (Equation 3.6) we can write

P
(n)
e ≤

An∑
r=2

∑
c∈C(r)

An

G(c)

≤
An∑
r=2

Nr,An

(nAn)
r
2

(
a21 + . . .+ a

2
nAn

)r/2

≤
An∑
r=2

4r


 ∑
1≤i<j≤An

e−2nB(Pi,Pj)



r/2

(G.1)

≤
16
(∑

1≤i<j≤An e
−2nB(Pi,Pj)

)

1− 4
√∑

1≤i<j≤An e
−2nB(Pi,Pj)

, (G.2)

where (Equation G.1) is by Fact 1 (see Appendix F) and

Nr,An

(nAn)
r/2

=

(
An
r

)
(r− 1)!/2

((
An
2

))r/2 ≤ 4r.

As the result, (Equation G.2) will go to zero as n goes to infinity if

lim
n→∞

∑
1≤i<j≤An

e−2nB(Pi,Pj) = 0.
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Proof of (Equation 3.12)

We upper bound the denominator of (Equation 3.10) by

P[ξi,j, ξi,k] = P

[
log

Pi(X
n
j )

Pj(X
n
j )

+ log
Pj(X

n
i )

Pi(X
n
i )
≥ 0 ∩ log

Pi(X
n
k )

Pk(X
n
k )

+ log
Pk(X

n
i )

Pi(X
n
i )
≥ 0
]

≤ P

[
log

Pi(X
n
j )

Pj(X
n
j )

+ log
Pj(X

n
i )

Pi(X
n
i )

+ log
Pi(X

n
k )

Pk(X
n
k )

+ log
Pk(X

n
i )

Pi(X
n
i )
≥ 0
]

≤ exp

{
n inf

t
log


E



(
Pi(X

n
j )

Pj(X
n
j )
· Pj(X

n
i )

Pi(X
n
i )
· Pi(X

n
k )

Pk(X
n
k )
· Pk(X

n
i )

Pi(X
n
i )

)t



}

≤exp

n logE



(
Pi(X

n
j )

Pj(X
n
j )
· Pj(X

n
i )

Pi(X
n
i )
· Pi(X

n
k )

Pk(X
n
k )
·Pk(X

n
i )

Pi(X
n
i )

) 1
2





= exp {−nB(Pi, Pj) − nB(Pj, Pk) − nB(Pi, Pk)} . (H.1)

An upper bound for P [ξi,j, ξk,l] can be derived similarly.
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Proof of (Equation 4.10)

For any joint empirical distribution J defined on Xj × Y, 1 ≤ i ≤ Kn

P[(xnj (mj), Y
n
i ) ∈ Tnε (PjQj)|H(1)] ≤

∑
J:J∈Tnε (PjQj)

P
[
P̂(xnj (mj),Y

n
i )

= J|H(1)
]

(a)
=

∑
J:J∈Tnε (PjQj)

e−nD(J‖Pj[PiQi])

≤
∑

J:J∈Tnε (PjQj)

e−n
(
D(PjQj‖Pj[PiQi])−δε

)

(b)

≤ poly(n) e−n
(
D(PjQj‖Pj[PiQi])−δε

)

= poly(n) e−n
(
I(Pj,Qj)+D([PjQj]‖[PiQi])−δε

)
,

where δε can be made arbitrary small with the choice ε. Equality in (a) is due to [53, Lemma

2.6] and (b) is by [53, Lemma 2.2]. With similar reasoning, (Equation 4.9) can be proved.
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Proof of (Equation 4.49b)

We find an upper bound on C( . , Q?, Pj, Qj) by noting that µ0,j(t) in (Equation 4.47) is

concave in t with µ0,j(1) = 0 and

∂µ0,j(t)

∂t
|t=1= −I(Pj, Qj) −D([PjQj] ‖ Q?) ≤ 0.

Hence µ0,j(t) is always less than (I(Pj, Qj) +D([PjQj] ‖ Q?))(1− t) and that for 0 ≤ t ≤ 1 it is

always less than I(Pj, Qj) +D([PjQj] ‖ Q?).

The inequality in (Equation 4.49c) follows similarly.
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Proof of (Equation 4.63) and (Equation 4.64)

Before moving on to calculation of lower bounds on (Equation 4.63) and (Equation 4.64),

we note that at the expense of a small decrease in the rate, [22, Eq. 137], we may further restrict

our attention to constant composition codewords. Henceforth, we assume that the composition

of the codewords for user i, i ∈ [Kn] is given by Pi, i ∈ [Kn]. Moreover, to make this thesis

self-contained, we restate the following Lemmas that we use in the rest of the proof.

Lemma 14 (Compensation Identity). For arbitrary πi :
∑K
i=1 πi = 1 and arbitrary probability

distribution functions Pi ∈ PX , i ∈ [K], we define P̄(x) =
∑K
i=1 πiPi(x). Then for any probability

distribution function R we have:

D
(
P̄ ‖ R

)
+

K∑
i=1

πiD
(
Pi ‖ P̄

)
=

K∑
i=1

πiD(Pi||R). (K.1)

Lemma 15 (Fano). Let F be an arbitrary set of size N. For P̄ =
∑
θ∈F Pθ
N we have

1

N

∑
θ∈F

D
(
Pθ ‖ P̄

)
≥ (1− r̄) log (N(1− r̄)) + r̄ log

(
Nr̄

N− 1

)
, (K.2)
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where

r̄ := inf
T

1

N

∑
θ∈F

Pθ {T 6= θ} (K.3)

in which the infimum is taken over all possible estimators T .

We now continue with the proof of (Equation 4.63). Using the Chernoff bound we can write

Qn?

[
log

PYn

Qn?
(Yn) ≥ 1

Fn

Kn∑
i=1

Mn∑
m=1

D
(
Qni,mλi ‖ Q

n
?

)
−D

(
Qni,mλi ‖ PYn
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The Chernoff bound exponent, suptA(t), is expressed and simplified as follows

A(t) :=
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where (Equation K.4) is the result of constant composition structure of the codewords. As the

result

sup
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Note that P
(λ)
Yn is the average of Qni,mλi over different m, i’s and hence based on Lemma 15, we

have
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where h(.) is the binary entropy function. As the result

sup
t
A(t) ≤ 1

Kn

Kn∑
i=1

nD(Qiλi ‖ Q?|Pi) − n(R+ ν)(1− rn) + h(r̄n).

Now we continue with the proof of (Equation 4.64). Again, using the Chernoff bound we have
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=
1
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nD
(
Qiλi ‖ Q|Pi

)
, (K.6)

and where the inequality in (Equation K.5) is by Log-Sum inequality.
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Proof of Lemma 13

We will prove the Lemma by contradiction.

Define

ti , Number of users in block i.

Assume that the arrangement with highest probability (lets call it A) has at least two blocks,

say blocks 1, 2, for which t1 − t2 > 1. This assumption means that the arrangement with the

highest probability is not the non-overlapping arrangement.

The probability of this arrangement, P(A), is proportional to

P(A) ∝
(
Kn

t1

)(
Kn − t1
t2

)
=

Kn!

t1!(Kn − t1)!

(Kn − t1)!

t2!(Kn − t1 − t2)!

=
Kn!

t1!t2!(Kn − t1 − t2)!
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We now consider a new arrangement, Anew, in which t1,new = t1− 1 and t2,new = t2+ 1 and

all other blocks remain unchanged. This new arrangement is also feasible since we have not

changed the number of users. Probability of this new arrangement is proportional to

P(Anew) ∝
(
Kn

t1 − 1

)(
Kn − t1 − 1

t2 + 1

)

=
Kn!

(t1 − 1)!(Kn − t1 + 1)!

(Kn − t1 + 1)!

(t2 + 1)!(Kn − t1 − t2)!

=
Kn!

(t1 − 1)!(t2 + 1)!(Kn − t1 − t2)!
.

Comparing P(A) and P(Anew) we see that P(A) < P(Anew) which is a contradiction to our

primary assumption that A has the highest probability among all arrangements. Hence there

do not exist two blocks which differ more than one in the number of active user within them

in the arrangement with the highest probability.
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