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SUMMARY

In this thesis, electromagnetic scattering of a mode propagating inside a parallel plate waveguide by

posts of different cylindrical cross-sections is considered, in the phasor domain. The analysis is con-

ducted for both TM and TE modes and exact solutions are obtained for various cylindrical posts. In

particular, exact expressions for surface current densities on PEC surfaces and numerical results of the

same are provided.

For the case of both circular-cylinder and elliptic-cylinder post, solutions are first obtained when

the linear, homogeneous and isotropic material of the post is isorefractive to the surrounding medium.

The case of PEC posts is a special case of the previous solution and is obtained by considering intrinsic

impedance of the post to be zero, Z in = 0. It should be noted that the case of metal strip is the limiting

case of a post of elliptical cross section and is obtained when the elliptic-cylinder post collapses onto a

strip.

x



CHAPTER 1

INTRODUCTION

Electromagnetic scattering theory enables one to investigate and explain electromagnetic field be-

havior in the presence of material objects. The nature of electromagnetic fields, and especially of surface

currents and far fields is of interest in a myriad of applications. In general, scattering means re-radiation

of the incident field from an object, which is also known as scatterer. The re-radiated field may change

the properties of the incident field like amplitude, polarization and direction of propagation. The scat-

tered field carries the information about the properties of the object which interacts with the EM field

and this forms the basis of classical applications of electromagnetic scattering like remote sensing, radar

etcetera.

Historically, the boundary-value problem has been solved for diffraction from simple shapes such

as circular cylinders and spheres. The problem of diffraction of a normally incident plane wave by a

homogenous dielectric circular cylinder was solved by Rayleigh (1). A more general case of scatter-

ing of plane wave obliquely incident on homogenous and isotropic circular-cylinder was analyzed by

Wait (2), in which he proved that whether the incident field is E-polarized or H-polarized, the scattered

field contains a cross-polarized component which always vanishes in the particular case of normal inci-

dence. Uslenghi (3), extended Wait′s result to penetrable cylinders of arbitrary cross section, in which

he proved that polarization decoupling can be achieved if the cylinder is made of homogenous material,

1
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which is either isorefractive or anti-isorefractive to the surrounding medium.

In this work, scattering of a mode propagating inside a parallel plate waveguide by a cylindrical post

located inside the waveguide and oriented perpendicularly to the waveguide plates is analyzed , in the

phasor domain and with a time-dependence factor e+ j ω t omitted throughout. The analysis is conducted

for both TE and TM modes. The case of TEM mode is a trivial case and is similar to the case of scatter-

ing of a normally incident plane wave from the cylindrical post.

Three different shapes of the cross-sectional area of the post are considered: circular, elliptical, and

segment (corresponding to a flat strip as a limiting case of a post of elliptical cross section). The analysis

consists of three steps. First, a propagating mode is decomposed into the sum of two plane waves that

are obliquely incident on the cylindrical post. Second, the scattering of each plane wave by a post of

infinite length is determined. Finally, it is verified that the superposition of the two scattered fields yields

an overall scattered field which satisfies the boundary conditions on the two plates of the waveguide.

Exact solutions are presented for metallic posts of all three cross-sectional shapes. For circular

cylinder and elliptic cylinder posts, a solution is also given when the linear, homogeneous and isotropic

material of the post is isorefractive to the surrounding medium.
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The geometry of the problem can also be viewed as infinitely long cylindrical posts of different

shapes being perpendicularly truncated by two metal planes. In a similar work, Uslenghi (4) investigated

scattering by metallic cylinders perpendicularly truncated by a single metal plane.



CHAPTER 2

GENERAL THEORY

In this section, the general theory of the problem is developed. Considering a combination of two

plane waves traveling inside a parallel plate waveguide and obliquely incident on a cylindrical post, gen-

eral solutions are derived in curvilinear coordinates for both E- and H-polarizations. Curviliniear coor-

dinates are chosen over rectangular coordinates because solutions in case of cylindrical cross-sectional

posts are easier to express in curvilinear coordinate systems.

2.1 E-polarization

Consider the incident plane wave

E(e)i = (−x̂ cosθ0 cosφ0− ŷ cosθ0 sinφ0− ẑ sinθ0)e− j k k̂i· r (2.1a)

H(e)i = Y (−x̂ sinφ0 + ŷ cosφ0)e− j k k̂i· r (2.1b)

where,

k̂i =−x̂ cosθ0 cosφ0− ŷ cosθ0 sinφ0− ẑ sinθ0 (2.2a)

r = x x̂+ y ŷ+ z ẑ (2.2b)

k̂i · r =−x cosθ0 cosφ0− y cosθ0 sinφ0− z sinθ0 (2.2c)

4
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Solution in curvilinear coordinates

Consider a cylinder with generators parallel to the z-axis and truncated by a metal plane z = 0. In

Figure 1: Plane wave incident on a cylinder truncated by a flat surface

curvilinear orthogonal coordinates (u1,u2,z) with û1× û2 = ẑ, assume that the total field and the incident

field at normal incidence (θ0 = π

2 ) on the untruncated (infinite) cylinder are given by :

E(e)
z |2D = u(e) (u1,u2;k) (2.3a)

E(e) i
z |2D = e j k (x cos φ0+ y sin φ0) (2.3b)
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then the total field for E-polarization in the geometry of Fig. 1 is (4) :

E(e) =
2 cosθ0

k sinθ0
sin(k z cosθ0) ∇t u(e) (u1,u2;k sinθ0)+2 sinθ0 cos(k z cosθ0)ue (u1,u2;k sinθ0)ẑ

(2.4a)

H(e) =
−2 jY
k sinθ0

cos(k z cosθ0) (ẑ × ∇t)u(e) (u1,u2;k sinθ0) (2.4b)

where ∇t is the transverse gradient operator.

Parallel Plate Waveguide

Consider propagation inside the parallel plate waveguide of Fig. 2.

Figure 2: Side view of parallel plate waveguide
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In case of E-polarization and φ0 = π :

E(e) = E(e)
x x̂ + E(e)

z ẑ (2.5a)

H(e) = H(e)
y ŷ (2.5b)

where the exprssions of H(e)
y , E(e)

x and E(e)
z are as follows :

H(e)
y =−Y cos(β z) e− j kt x (2.6a)

E(e)
x = j

β

k
sin(β z) e− j kt x (2.6b)

E(e)
z =

kt

k
cos(β z) e− j kt x (2.6c)

with,

β
2 + k2

t = k2 (2.7a)

β =
m π

b
,m = 0,1,2,3, ...(m = 0 is the T EM mode) (2.7b)

Using Euler’s formulas

sin(β z) =
1

2 j
(e j β z− e− j β z) (2.8a)

cos(β z) =
1
2
(e j β z + e− j β z) (2.8b)
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in (2.6) we obtain,

H(e)
y =

Y
2

e− j ( kt x−β z )+
Y
2

e− j ( kt x+β z ) (2.9a)

E(e)
x =

−β

2 k
e− j ( kt x−β z )+

β

2 k
e− j ( kt x+β z ) (2.9b)

E(e)
z =

kt

2 k
e− j ( kt x−β z )+

kt

2 k
e− j ( kt x+β z ) (2.9c)

Figure 3: Two incident plane waves, (a) Plane wave 1 is propagating in the direction k̂i
1 and makes an angle θ01

with the negative z-axis. (b) Plane wave 2 is propagating in the direction k̂i
2 and makes an angle θ02 with the

negative z-axis.
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Equations (2.9) show that the electromagnetic field is a superposition of two plane waves, as shown in

Fig. 3, where :

k̂i
1 =

kt

k
x̂ − β

k
ẑ (2.10a)

k̂i
2 =

kt

k
x̂ +

β

k
ẑ (2.10b)

θ02 = π − θ01 (2.10c)

cosθ2 =− cosθ1 =−
β

k
(2.10d)

sinθ2 = sinθ1 =
kt

k
(2.10e)

Figure 4: Top view of parallel plate waveguide
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It follows that for an arbitrary φ0 the incident fields can be rewritten as,

E(e)i =
1
2

2

∑
l =1

(−x̂ cosθ0l cosφ0− ŷ cosθ0l sinφ0− ẑ sinθ0l)e− j k k̂i
l · r

=

[
− j β

k
(x̂ cosφ0 + ŷ sinφ0) sin(β z) +

kt

k
ẑ cos(β z)

]
e j kt ( x cosφ0 + y sinφ0)

(2.11a)

H(e)i =
Y
2
(− x̂ sinφ0 + ŷ cosφ0)

2

∑
l=1

e− j k k̂i
l · r

= Y cos(β z) (−x̂ sinφ0 + ŷ cosφ0) e j kt ( x cosφ0 + y sinφ0)

(2.11b)

At z = 0,b, the electric field becomes parallel to ẑ and the boundary conditions are satisfied.

At n = 0 (β = 0, TEM mode),

E(e)i|n=0 = ẑ e j kt ( x cosφ0 + y sinφ0) (2.12a)

H(e)i|n=0 = Y (−x̂ sinφ0 + ŷ cosφ0) e j kt ( x cosφ0 + y sinφ0) (2.12b)

If φ0 = π ,

E(e)i|φ0 =π =

[
j β

k
x̂ sin(β z) +

kt

k
ẑ cos(β z)

]
e− j kt x (2.13a)

H(e)i|φ0 =π =− ẑY cos(β z) e− j kt x (2.13b)

which coincide with (2.6).

In this case of E-polarization, the expressions for total incident fields (2.11), which are a combination
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of two plane waves are found by dividing the expressions of each plane wave by 2 and adding them.

In curvilinear coordinates the solution will be :

E(e) =− β

k kt
sin(β z)∇t u(e)(u1, u2; kt)+ ẑ

kt

k
2 cos(β z)u(e)(u1, u2; kt) (2.14a)

H(e) =−2 jY
kt

cos(β z)(ẑ × ∇t )u(e)(u1, u2; kt) (2.14b)



12

2.2 H-polarization

The incident plane wave for H-polarization is :

H(h)i = Y (−x̂ cosθ0 cosφ0− ŷ cosθ0 sinφ0− ẑ sinθ0)e− j k k̂i · r (2.15a)

E(h)i = (x̂ sinφ0− ŷ cosφ0)e− j k k̂i · r (2.15b)

Solution in curvilinear coordinates

We assume that the total field and the incident field at normal incidence on the untruncate (infinite)

cylinder are :

H(h)
z |2D = Y u(h) (u1,u2;k) (2.16a)

H(h) i
z |2D = Y e j k (x cos φ0+ y sin φ0) (2.16b)

then the total field for H-polarization in the geometry of Fig. 1 is (4) :

E(h) =
−2

k sinθ0
sin(k z cosθ0) (ẑ × ∇t)u(h) (u1,u2;k sinθ0) (2.17a)

H(h) =
2 jY cosθ0

k sinθ0
cos(k z cosθ0) ∇t u(h) (u1,u2;k sinθ0)

+2 jY sinθ0 sin(k z cosθ0)u(h) (u1,u2;k sinθ0)ẑ

(2.17b)
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Parallel Plate Waveguide

In case of H-polarization, for propagation inside the parallel plate waveguide of Fig. 2 :

H(h) = H(h)
x x̂ + H(h)

z ẑ (2.18a)

E(h) = E(h)
y ŷ (2.18b)

where the exprssions of E(h)
y , H(h)

x and H(h)
z are as follows :

E(h)
y = sin(β z) e− j kt x (2.19a)

H(h) =
jY
k

∇ ×
[
E(h)

y (x,y)ŷ
]

=
jY
k

∣∣∣∣∣∣∣∣∣∣∣∣

x̂ ŷ ẑ

∂

∂ x
∂

∂ y
∂

∂ z

0 Ey 0

∣∣∣∣∣∣∣∣∣∣∣∣
=

jY
k

[
x̂
(
− ∂ E(h)

y

∂ z

)
+ ẑ
(

∂ E(h)
y

∂ x

)]
(2.19b)

H(h)
x =− jY

β

k
cos(β z) e− j kt x (2.19c)

H(h)
z = Y

kt

k
sin(β z) e− j kt x (2.19d)
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β and kt are given by (2.7). Note that m = 0 yields zero fields (there is no TEM mode for H-polarization).

Hence :

β =
m π

b
(2.20a)

β b = m π, (m = 1, 2, 3, ...) (2.20b)

It can be easily verified that
E(h)

y |z=0,b = 0 (2.21)

Using Euler’s formulas in equation (2.19a), (2.19c) and (2.19d) we obtain,

E(h)
y =

1
2 j

e− j ( kt x−β z )− 1
2 j

e− j ( kt x+β z ) (2.22a)

H(h)
x =

1
2 j

Y
β

k
e− j ( kt x−β z )+

1
2 j

Y
β

k
e− j ( kt x+β z ) (2.22b)

H(h)
z =

1
2 j

Y
kt

k
e− j ( kt x−β z )− 1

2 j
Y

kt

k
e− j ( kt x+β z ) (2.22c)

Just like the E-polarization case, plane wave 1 propagates in the direction k̂i
1, makes an angle θ01 with

the negative z-axis and plane wave 2 propagates in the direction k̂i
2, makes an angle θ02 with the negative



15

z-axis. Equations (2.10) remain valid for H-polarization.

So, the incident fields can be rewritten as,

E(h)i =
1

2 j
(x̂ sinφ0− ŷ cosφ0)

[
e− j k k̂i

1 · r− e− j k k̂i
2 · r
]

=
1

2 j
(x̂ sinφ0− ŷ cosφ0)

[
e+ j kt ( x cosφ0 + y sinφ0)

(
e j β z− e− j β z)]

=
1

2 j
(x̂ sinφ0− ŷ cosφ0)2 j sin(β z)e+ j kt ( x cosφ0 + y sinφ0)

E(h)i = (x̂ sinφ0− ŷ cosφ0) sin(β z)e+ j kt ( x cosφ0 + y sinφ0)

(2.23a)

H(h)i =
Y
2 j

{[
− β

k
(x̂ cosφ0 + ŷ sinφ0) +

kt

k
ẑ
]

e− j k k̂i
1 · r

−
[

β

k
(x̂ cosφ0 + ŷ sinφ0) +

kt

k
ẑ
]

e− j k k̂i
2 · r

}

=
Y
2 j

e+ j kt ( x cosφ0 + y sinφ0)

{
− β

k
(x̂ cosφ0 + ŷ sinφ0)

[
e− j k k̂i

1 · r + e− j k k̂i
2 · r
]

+
kt

k
ẑ
[

e− j k k̂i
1 · r − e− j k k̂i

2 · r
]}

H(h)i = Y e+ j kt ( x cosφ0 + y sinφ0)

[
j β

k
cos(β z)(x̂ cosφ0 + ŷ sinφ0) +

kt

k
sin(β z) ẑ

]

(2.23b)

If φ0 = π ,

E(h)i|φ0 =π = ŷ sin(β z) e− j kt x (2.24a)

H(h)i|φ0 =π = Y
[
− j β

k
x̂ cos(β z) +

kt

k
ẑ sin(β z)

]
e− j kt x (2.24b)



16

In this case of H-polarization, the expressions for total incident fields (2.23), which are a combination of

two plane waves are found by dividing the expressions of each plane wave by 2j and subtracting them.

In curvilinear coordinates the solutions will be :

E(h) =
1

2 j

[
−2
kt

sin( k z cosθ0 1)( ẑ × ∇t)u(h)(u1,u2;kt)

]
− 1

2 j

[
−2
kt

sin( k z cosθ0 2)( ẑ × ∇t)u(h)(u1,u2;kt)

] (2.25a)

H(h) =
1

2 j

[
2 jY

kt
cosθ0 1 cos( k z cosθ0 1)∇t u(h)(u1,u2;kt)

+ 2 jY sinθ0 1 sin( k z cosθ0 1)u(h)(u1,u2;kt) ẑ
]

=− 1
2 j

[
2 jY

kt
cosθ0 2 cos( k z cosθ0 2)∇t u(h)(u1,u2;kt)

+ 2 jY sinθ0 2 sin( k z cosθ0 2)u(h)(u1,u2;kt) ẑ
]

(2.25b)

Using equations (2.10) in (2.25) we obtain,

E(h) =
2 j
kt

sin(β z )( ẑ × ∇t)u(h)(u1,u2;kt) (2.26a)

H(h) = Y
[

2 β

k kt
cos(β z)∇t u(h)(u1,u2;kt)

+
2 kt

k
sin(β z)u(h)(u1,u2;kt) ẑ

] (2.26b)



CHAPTER 3

SCATTERING BY A CIRCULAR-CYLINDER POST INSIDE A PARALLEL PLATE

WAVEGUIDE

Figure 5: Top view of a circular-cylinder post inside a parallel plate waveguide

In the section, exact solutions are obtained for the case of a circular-cylinder post inside a parallel

plate waveguide. The geometry of the problem is shown in Fig. 5, here a is the radius of cylinder and φ0

is the incidence angle. The problem is solved for both isorefractive and metallic circular-cylinder posts.

17



18

The procedure is detailed below, separately for E- and H-polarizations.

In case of a circular-cylinder post , we consider circular-cylinder coordinates (ρ,φ ,z) :

x = ρ cosφ (3.1a)

y = ρ sinφ (3.1b)

z = z (3.1c)

where 0 ≤ ρ < ∞, 0 ≤ φ ≤ 2 π, 0 ≤ z ≤ b

∇t = ρ̂
∂

∂ ρ
+

φ̂

ρ

∂

∂ φ
(3.2a)

ẑ × ∇t =−
ρ̂

ρ

∂

∂ φ
+ φ̂

∂

∂ ρ
(3.2b)

3.1 E-polarization

The general solution in case of E-polarization is :

u(e) (ρ,φ ;k) =
∞

∑
n=0

εn j n
ζ
(e)
n (k ρ ; k a) cos n(φ − φ0) (3.3)
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where ε0 = 1, εn>1 = 2.

In general,

ζ
(e)
n (k ρ ; k a) = Jn( k ρ ) + a(e)n H(2)

n ( k ρ ) for ρ ≥ a (3.4a)

ζ
(e)
n (k ρ ; k a) = b(e)n Jn( k ρ ) for ρ ≤ a (3.4b)

where Jn is the Bessel function of first kind, it represents oscillatory behavior of the fields and is anal-

ogous to sin( k ρ ). Jn is chosen over the second kind of Bessel function Yn, because it is non-singular

at ρ = 0, which is required in expressing finite fields inside the cylindrical post. H(2)
n is the Hankel

function of the second kind, this represents an outward-travelling wave and is analogous to e− j k ρ (5).

a(e)n and b(e)n are the modal expansion coefficients and the superscript (e) stands for E-polarization.

3.1.1 Isorefractive Post

We assume that the post is made of a material that is isorefractive to the surrounding space, i:e its

wavenumber is k but its intrinsic impedance Z in = Y −1
in is different from Z. The incident field is given

by (2.11) as follows :

E(e)i =

[
− j β

k
(x̂ cosφ0 + ŷ sinφ0) sin(β z) +

kt

k
ẑ cos(β z)

]
e j kt ( x cosφ0 + y sinφ0)

H(e)i = Y cos(β z) (−x̂ sinφ0 + ŷ cosφ0) e j kt ( x cosφ0 + y sinφ0)
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The z component of the incident and scattered electric fields and of the total electric field inside the post

take the following forms after transformation :

E(e) i
z =

2 kt

k
cos(β z)

∞

∑
n=0

εn j n Jn( k t ρ ) cos n(φ − φ0) (3.5a)

E(e) s
z =

2 kt

k
cos(β z)

∞

∑
n=0

εn j n a(e)n H(2)
n ( k t ρ ) cos n(φ − φ0) (3.5b)

E(e) in
z =

2 kt

k
cos(β z)

∞

∑
n=0

εn j n b(e)n Jn( k t ρ ) cos n(φ − φ0) (3.5c)

Since there is an impedance shift at the boundary of isorefractive circular-cylinder post, we use Maxwell’s

equations

∇ × H = j kY E (3.6a)

∇ × E =− j k Z H (3.6b)

to obtain:

H(e) i,s
φ

= j
Y
k

(
∂ E(e) i,s

ρ

∂ z
− ∂ E(e) i,s

z

∂ ρ

)
(3.7)

E(e) i,s
ρ =

1
j kY

(
1
ρ

∂ H(e) i,s
z

∂ φ
−

∂ H(e) i,s
φ

∂ z

)
(3.8)

Since Hz = 0 in the case of E-polarization, (3.8) reduces to the following form :

E(e) i,s
ρ =

j
kY

(
∂ H(e) i,s

φ

∂ z

)
(3.9)
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Substituting (3.9) in (3.7) we get,

H(e) i,s
φ

= j
Y
k

(
∂

∂ z

(
j

kY

∂ H(e) i,s
φ

∂ z

)
− ∂ E(e) i,s

z

∂ ρ

)
(3.10)

Considering that the z variation of all field components is such that ∂ 2

∂ z2 = −β 2, we obtain :

H(e) i,s
φ

=

(
β

k

)2

H(e) i,s
φ

− j
Y
k

∂ E(e) i,s
z

∂ ρ

hence :

H(e) i
φ

=− j
Y k
k2

t

∂ E(e) i
z

∂ ρ
, ρ ≥ a (3.11a)

H(e) s
φ

=− j
Y k
k2

t

∂ E(e) s
z

∂ ρ
, ρ ≥ a (3.11b)

and similarly :

H(e) in
φ

=− j
Yin k
k2

t

∂ E(e) in
z

∂ ρ
, ρ ≤ a (3.11c)

The modal expansion coefficients can be determined by imposing the continuity of tangential compo-

nents of electric and magnetic field across the interface ρ = a, such that :

E(e) in
z = E(e) i

z + E(e) s
z (3.12a)

H(e) in
φ

= H(e) i
φ

+ H(e) s
φ

(3.12b)
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the modal expansion coefficients are found to be :

a(e)n =
(χ−1) Jn( k t a ) J ′n( k t a )

Jn( k t a )H(2) ′
n ( k t a ) − χ J ′n( k t a )H(2)

n ( k t a )
(3.13a)

b(e)n =
−2 j

π kt a
(
Jn( k t a )H(2) ′

n ( k t a ) − χ J ′n( k t a )H(2)
n ( k t a )

) (3.13b)

where,

′ = ∂

∂ ρ

χ =
Z

Z in

If there is no post (Z = Zin) then,

(a(e)n )χ =1 = 0 (3.14a)

(b(e)n )χ =1 = 1 (3.14b)

Also, it should be noted that the case of a PEC circular cylinder (Zin = 0) is a particular case of an

isorefractive circular-cylinder :

(a(e)n )χ→∞ =− Jn( k t a )

H(2)
n ( k t a )

(3.15a)

(b(e)n )χ→∞ = 0 (3.15b)
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3.1.2 Metallic Post

For a PEC cylinder,

ζ
(e)
n (k ρ ; k a) = Jn( k ρ ) − Jn( k a )

H(2)
n ( k a )

H(2)
n ( k ρ ) (3.16)

Utilizing the general theory for E-polarization by substituting (3.2) in (2.14) we obtain,

E(e) =− 2 β

k
sin(β z )

{
ρ̂

∞

∑
n=0

εn j n
ζ
(e) ′
n (k t ρ ; k t a) cos n(φ − φ0)

−2 φ̂

kt ρ

∞

∑
n=1

n j n
ζ
(e)
n (k t ρ ; k t a) sin n(φ − φ0)

}

+
2 kt

k
cos(β z ) ẑ

∞

∑
n=0

εn j n
ζ
(e)
n (k t ρ ; k t a) cos n(φ − φ0)

(3.17a)

H(e) =−2 jY cos(β z )

{
ρ̂

2
kt ρ

∞

∑
n=1

n j n
ζ
(e)
n (k t ρ ; k t a) sin n(φ − φ0)

+ φ̂

∞

∑
n=0

εn j n
ζ
(e) ′
n (k t ρ ; k t a) cos n(φ − φ0)

} (3.17b)

where ′ represents ∂

∂ ( kt ρ)

Surface current densities

On the cylinder (ρ = a ),

J(e)|ρ =a = ρ̂× H(e)|ρ =a

=
4Y

π k t a
cos(β z) ẑ

∞

∑
n=0

εn j n

H(2)
n ( k t a )

cos n(φ − φ0)

(3.18)
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On the plates ( z = 0, b ),

J(e)| z=0,b = ± ẑ× H(e)| z=0,b

= ∓2 jY

 1

(−1)m


{
− ρ̂

∞

∑
n=0

εn j n
ζ
(e) ′
n (k t ρ ; k t a) cos n(φ − φ0)

+ φ̂
2

kt ρ

∞

∑
n=1

n j n
ζ
(e)
n (k t ρ ; k t a) sin n(φ − φ0)

}
(3.19)

where,

ζ
(e) ′
n (k t a ; k t a) =

J′n( k t a )H(2)
n ( k t a ) − Jn( k t a )H(2) ′

n ( k t a )

H(2)
n ( k t a )

=
2 j

π kt a H(2)
n ( k t a )

At the junction between post and plates ( ρ = a ; z = 0, b ),

J(e)|ρ =a, z→0,b =
4Y

π kt a

 1

(−1)m

 ẑ
∞

∑
n=0

εn j n

H(2)
n ( k t a )

cos n(φ − φ0) (3.20a)

J(e)| z=0,b,ρ→a = ±2 jY

 1

(−1)m

 ρ̂

∞

∑
n=0

εn j n 2 j

π kt a H(2)
n ( k t a )

cos n(φ − φ0)

= ∓ 4Y
π kt a

 1

(−1)m

 ρ̂

∞

∑
n=0

εn j n

H(2)
n ( k t a )

cos n(φ − φ0)

(3.20b)

therefore, J(e) is continuous across the junction. This continuity of surface currents is a verification of

the exact solution.
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3.2 H-polarization

The general solution in case of H-polarization,

u(h) (ρ,φ ;k) =
∞

∑
n=0

εn j n
ζ
(h)
n (k ρ ; k a) cos n(φ − φ0) (3.21)

where, ε0 = 1, εn>1 = 2

In general,

ζ
(h)
n (k ρ ; k a) = Jn( k ρ ) + a(h)n (k)H(2)

n ( k ρ ) for ρ ≥ a (3.22a)

ζ
(h)
n (k ρ ; k a) = b(h)n (k) Jn( k ρ ) for ρ ≤ a (3.22b)

3.2.1 Isorefractive Post

The incident field is given by (2.23) as follows :

E(h)i = (x̂ sinφ0− ŷ cosφ0) sin(β z)e+ j kt ( x cosφ0 + y sinφ0)

H(h)i = Y
[

j β

k
cos(β z)(x̂ cosφ0 + ŷ sinφ0) +

kt

k
sin(β z) ẑ

]
e+ j kt ( x cosφ0 + y sinφ0)
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The z component of the magnetic field takes the following form after transformation :

H(h) i
z =

2Y kt

k
sin(β z)

∞

∑
n=0

εn j n Jn( k t ρ ) cos n(φ − φ0) (3.23a)

H(h) s
z =

2Y kt

k
sin(β z)

∞

∑
n=0

εn j n a(h)n H(2)
n ( k t ρ ) cos n(φ − φ0) (3.23b)

H(h) in
z =

2Yin kt

k
sin(β z)

∞

∑
n=0

εn j n b(h)n Jn( k t ρ ) cos n(φ − φ0) (3.23c)

Using Maxwell’s equations we obtain :

E(h) i,s
φ

=
1

j kY

(
∂ H(h) i,s

ρ

∂ z
− ∂ H(h) i,s

z

∂ ρ

)
(3.24)

H(h) i,s
ρ =

jY
k

(
1
ρ

∂ E(h) i,s
z

∂ φ
−

∂ E(h) i,s
φ

∂ z

)
(3.25)

Since Ez = 0 in case of H-polarization, (3.25) reduces to the following form :

H(h) i,s
ρ =− jY

k

(
∂ E(h) i,s

φ

∂ z

)
(3.26)

Substituting (3.26) in (3.24) and considering that the z variation of all field components is such that

∂ 2

∂ z2 = −β 2, we obtain :

E(h) i
φ

=− 1
k2

∂ 2E(h) i
φ

∂ z2 − 1
j kY

∂ H(h) i
z

∂ ρ
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hence :

E(h) i
φ

=
j k

Y k2
t

∂ H(h) i
z

∂ ρ
, ρ ≥ a (3.27a)

E(h) s
φ

=
j k

Y k2
t

∂ H(h) s
z

∂ ρ
, ρ ≥ a (3.27b)

and similarly :

E(h) in
φ

=
j k

Yin k2
t

∂ H(h) in
z

∂ ρ
, ρ ≤ a (3.27c)

The modal expansion coefficients can be determined by imposing the continuity of tangential compo-

nents of electric and magnetic field across the interface ρ = a, such that :

H(h) in
z = H(h) i

z + H(h) s
z (3.28a)

E(h) in
φ

= E(h) i
φ

+ E(h) s
φ

(3.28b)

the modal expansion coefficients are found to be :

a(h)n =
(χ0−1) Jn( k t a ) J ′n( k t a )

Jn( k t a )H(2) ′
n ( k t a ) − χ0 J ′n( k t a )H(2)

n ( k t a )
(3.29a)

b(e)n =
−2 j χ0

π kt a
(
Jn( k t a )H(2) ′

n ( k t a ) − χ0 J ′n( k t a )H(2)
n ( k t a )

) (3.29b)



28

where,

′ = ∂

∂ ρ

χ0 =
Zin

Z

If there is no post (Z = Zin) then,

(a(h)n )χ0 =1 = 0 (3.30a)

(b(h)n )χ0 =1 = 1 (3.30b)

Also, it should be noted that the case of PEC circular cylinder (Zin = 0) is a particular case of the

isorefractive circular cylinder :

(a(h)n )χ0 =0 =− J ′n( k t a )

H(2) ′
n ( k t a )

(3.31a)

(b(e)n )χ0 =0 = 0 (3.31b)

3.2.2 Metallic Post

For a PEC cylinder,

ζ
(h)
n (k ρ ; k a) = Jn( k ρ ) − J ′n( k a )

H(2) ′
n ( k a )

H(2)
n ( k ρ ) (3.32)
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where ′ represents ∂

∂ ( kt ρ)

Utilizing the general theory for H-polarization by substituting (3.21) in (2.25) we obtain,

E(h) =
2 j
kt

sin(β z )
[
− ρ̂

ρ

∂

∂ φ
+ φ̂

∂

∂ ρ

]
∞

∑
n=0

εn j n
ζ
(h)
n (kt ρ ; kt a) cos n(φ − φ0)

= 2 j sin(β z )
[

2 ρ̂

k t ρ

∞

∑
n=1

n j n
ζ
(h)
n (kt ρ ; kt a) sin n(φ − φ0)

+ φ̂

∞

∑
n=0

εn j n
ζ
(h) ′
n (k t ρ ; k t a) cos n(φ − φ0)

] (3.33a)

H(h) = Y
[

2 β

k kt
cos(β z)

(
ρ̂

∂

∂ ρ
+

φ̂

ρ

∂

∂ φ

)
∞

∑
n=0

εn j n
ζ
(h)
n (kt ρ ; kt a) cos n(φ − φ0)

+
2 kt

k
sin(β z) ẑ

∞

∑
n=0

εn j n
ζ
(h)
n (kt ρ ; kt a) cos n(φ − φ0)

]
= Y

2 β

k
cos(β z)

[
ρ̂

∞

∑
n=0

εn j n
ζ
(h) ′
n (k t ρ ; k t a) cos n(φ − φ0)

− 2 φ̂

k t ρ

∞

∑
n=1

n j n
ζ
(h)
n (kt ρ ; kt a) sin n(φ − φ0)

]
+ Y

2 kt

k
sin(β z) ẑ

∞

∑
n=0

εn j n
ζ
(h)
n (kt ρ ; kt a) cos n(φ − φ0)

(3.33b)

Surface current densities

On the cylinder (ρ = a ),

J(h)|ρ =a = ρ̂× H(h)|ρ =a

=
4 jY
π ka

[
2 β

k2
t a

cos(β z) ẑ
∞

∑
n=1

n j n

H(2) ′
n ( k t a )

sin n(φ − φ0)

+ sin(β z) φ̂

∞

∑
n=0

εn j n

H(2) ′
n ( k t a )

cos n(φ − φ0)

] (3.34)
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where,

ζ
(h) ′
n (k t a ; k t a) =

−2 j

π kt a H(2) ′
n ( k t a )

On the plates ( z = 0, b ),

J(h)| z=0,b = ± ẑ× H(h)| z=0,b

= ±Y
2 β

k

 1

(−1)m

 [ φ̂

∞

∑
n=0

εn j n
ζ
(h) ′
n (k t ρ ; k t a) cos n(φ − φ0)

+ ρ̂
2

kt ρ

∞

∑
n=1

n j n
ζ
(h)
n (k t ρ ; k t a) sin n(φ − φ0)

]
(3.35)

At the junction between post and plates ( ρ = a ; z = 0, b ),

J(h)|ρ =a, z→0,b = Y
8 j β

π k k2
t a2

 1

(−1)m

 ẑ
∞

∑
n=1

n j n

H(2) ′
n ( k t a )

sin n(φ − φ0) (3.36a)

J(h)| z=0,b,ρ→a = ∓Y
8 j β

π k k2
t a2

 1

(−1)m

 ρ̂

∞

∑
n=1

n j n

H(2) ′
n ( k t a )

sin n(φ − φ0) (3.36b)

therefore, J(h) is continuous across the junction.



CHAPTER 4

SCATTERING BY AN ELLIPTIC-CYLINDER POST INSIDE A PARALLEL PLATE

WAVEGUIDE

Figure 6: Top view of an elliptic-cylinder post inside a parallel plate waveguide
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In this section, exact solutions are obtained for the case of an elliptic-cylinder post inside a parallel

plate waveguide. The geometry of the problem is shown in Fig. 6, here u0 is the surface of elliptic-

cylinder post and φ0 is the incidence angle. The problem is solved for both isorefractive and metallic

elliptic-cylinder posts. The procedure is detailed below separately for E- and H-polarizations. For an

elliptic-cylinder post, we introduce elliptic-cylinder coordinates (u, v, z) :

x =
d
2

coshu cosv (4.1a)

y =
d
2

sinhu sinv (4.1b)

z = z (4.1c)

where 0 ≤ u < ∞, 0 ≤ v ≤ 2 π and 0 ≤ z ≤ b.

Some authors use,

ξ = coshu (4.2a)

η = cosv (4.2b)
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where 1 ≤ ξ < ∞ and −1 ≤ η ≤ +1.

Note, however, that η is not a monotonic function of v, so that :

∂

∂ u
=
√

ξ 2 − 1
∂

∂ ξ
(4.3a)

∂

∂ v
=∓

√
1 − η 2 ∂

∂ η
,


− for 0 ≤ v ≤ π

+ for π ≤ v ≤ 2 π

(4.3b)

4.1 E-polarization

An E-polarized mode can be considered as a sum of two plane waves, whose projection of k̂i on any

plane z = constant forms the angle φ0 ( 0 ≤ φ0 ≤ π

2 ) with the negative x - axis, whereas k̂i forms the

angle θ0 = θ0 1 or θ0 = θ0 2 with the negative z - axis, where :

plane wave 1 : θ0 = θ0 1 = arccos
β

k
(4.4a)

plane wave 2 : θ0 = θ0 2 = π − θ0 1 (4.4b)

β =
m π

b
(m = 0,1,2,3, ...) (4.4c)

hence,

sinθ0 1 = sinθ0 2 = kt
k

cosθ0 1 =− cosθ0 2 = β

k

k is the wavenumber, β is the longitudinal wave number (in the direction of the z - axis) and kt is the
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transverse wave number.

In the absence of a post, the total field is the incident field, which is obtained from (2.11) :

E(e)i =

[
− j β

k
(x̂ cosφ0 + ŷ sinφ0) sin(β z) +

kt

k
ẑ cos(β z)

]
e j kt ( x cosφ0 + y sinφ0)

H(e)i = Y cos(β z) (−x̂ sinφ0 + ŷ cosφ0) e j kt ( x cosφ0 + y sinφ0)

where Z = Y−1 is the intrinsic impedance of medium inside the waveguide.

If the post is a circular cylinder, we have a rotational symmetry. So the expressions can be made simpler

by considering φ0 = 0, in which case :

E(e)i|φ0 =0 =

[
− j β

k
x̂ sin(β z) +

kt

k
ẑ cos(β z)

]
e j kt x (4.5a)

H(e)i|φ0 =0 = ŷY cos(β z) e j kt x (4.5b)

The incident field (2.11) can be written in terms of Mathieu functions :

E(e) i = 2
√

2 π
kt

k

[
cos(β z ) ẑ − β

kt γ
√

ξ 2 − η2
sin(β z )

(
û

∂

∂ u
+ v̂

∂

∂ v

)] i

∑ (4.6a)

H(e) i =
2 j
γ

√
2 π

ξ 2 − η2 Y cos(β z )
(

û
∂

∂ u
− v̂

∂

∂ v

) i

∑ (4.6b)
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where,

i

∑ =
∞

∑
m=0

[
jm

N (e)
m

Re(1)m ( γ,ξ )Sem ( γ,η )Sem ( γ,cosφ0 )

+
jm

N (o)
m

Ro(1)m ( γ,ξ )Som ( γ,η )Som ( γ,cosφ0 )

] (4.7)

γ =
kt d
2

, (d = interfocal distance) (4.8)

Re(1)m , Ro(1)m are the radial Mathieu functions of the first kind. Sem , Som are the angular Mathieu func-

tions; the subscripts e and o indicate the even and odd functions respectively. N (e), (o)
m are the normal-

ization coefficients. This notation used is from Stratton, 1941(6).

If an elliptic-cylinder post is present (with surface u = u0 or ξ = ξ0 ), then the total field inside the

waveguide and outside the post (u0 ≤ u < ∞) is the sum of incident field (4.6) and the scattered field

( Es , Hs ) :

E = E i + Es and H = H i + Hs.

The scattered field ( Es , Hs ) is given by (4.6) upon replacing ∑
i with ∑

s, where,

s

∑ =
∞

∑
m=0

jm
[

a (e)
m

N (e)
m

Re(4)m ( γ,ξ )Sem ( γ,η )Sem ( γ,cosφ0 )

+
a (o)

m

N (o)
m

Ro(4)m ( γ,ξ )Som ( γ,η )Som ( γ,cosφ0 )

] (4.9)
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and Re(4)m , Ro(4)m are the radial Mathieu functions of the fourth kind.

Solution in curvilinear coordinates

For ξ ≥ ξ0 :

u(e)(ξ , η , kt) =
∞

∑
m=0

[
jm

N (e)
m

(Re(1)m ( γ,ξ ) + a (e)
m Re(4)m ( γ,ξ ))Sem ( γ,η )Sem ( γ,cosφ0 )

]
+

∞

∑
m=1

[
jm

N (o)
m

(Ro(1)m ( γ,ξ ) + a (o)
m Ro(4)m ( γ,ξ ))Som ( γ,η )Som ( γ,cosφ0 )

]
(4.10)

For ξ ≤ ξ0 :

u(e)(ξ , η , kt) =
∞

∑
m=0

[
jm

N (e)
m

(b (e)
m Re(1)m ( γ,ξ ))Sem ( γ,η )Sem ( γ,cosφ0 )

]
+

∞

∑
m=1

[
jm

N (o)
m

(b (o)
m Re(1)m ( γ,ξ ))Som ( γ,η )Som ( γ,cosφ0 )

] (4.11)

4.1.1 Isorefractive Post

We assume that the post is made of a material that is isorefractive to the surrounding space, i.e. its

wavenumber is k but its intrinsic impedance Z in = Y −1
in is different from Z. The total field inside the

post is given by (4.6) upon replacing ∑
i with ∑

in and Y with Yin, where,

in

∑ =
∞

∑
m=0

jm
[

b (e)
m

N (e)
m

Re(1)m ( γ,ξ )Sem ( γ,η )Sem ( γ,cosφ0 )

+
b (o)

m

N (o)
m

Ro(1)m ( γ,ξ )Som ( γ,η )Som ( γ,cosφ0 )

] (4.12)
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Note that N (e), (o)
m are functions of γ , that has the same value inside and outside the isorefractive post.

Also, note that the radial functions of fourth kind are excluded in (4.12), because the terms of the series

must remain finite in the special case of a circular post.

The modal expansion coefficients can be determined by imposing the continuity of the tangential com-

ponents of electric and magnetic fields across the interface u = u0, such that :

E in
z = E i

z + Es
z (4.13a)

H in
v = H i

v + Hs
v (4.13b)

the modal expansion coefficients are found to be :

a(e)m =
(χ −1)Re(1)m (γ,ξ0) Re(1) ′m (γ,ξ0)

Re(1)m (γ,ξ0)Re(4) ′m (γ,ξ0) − χ Re(1) ′m (γ,ξ0)Re(4)m (γ,ξ0)
(4.14a)

a(o)m =
(χ −1)Ro(1)m (γ,ξ0) Ro(1) ′m (γ,ξ0)

Ro(1)m (γ,ξ0)Ro(4) ′m (γ,ξ0) − χ Ro(1) ′m (γ,ξ0)Ro(4)m (γ,ξ0)
(4.14b)

b(e)m =
− j

Re(1)m (γ,ξ0)Re(4) ′m (γ,ξ0) − χ Re(1) ′m (γ,ξ0)Re(4)m (γ,ξ0)
(4.14c)

b(o)m =
− j

Ro(1)m (γ,ξ0)Ro(4) ′m (γ,ξ0) − χ Ro(1) ′m (γ,ξ0)Ro(4)m (γ,ξ0)
(4.14d)

where,

′ = ∂

∂ u

χ =
Z

Z in
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In the case when there is no post (Z = Zin) :

(a(e) , a(o))χ =1 = 0 (4.15a)

(b(e) , b(o))χ =1 = 1 (4.15b)

Surface current densities on the parallel plates

On the plate z = 0+ :

J(e)
∣∣

z=0 = ẑ × H(e)
∣∣

z=0

=
2 j
γ

√
2 π

ξ 2 − η2

 Y

Yin

 (û ∂

∂ u
+ v̂

∂

∂ v

)∑
i + ∑

s

∑
in

 ,u ≥ u0

,u ≤ u0

(4.16)

i) Outside the post (u ≥ u0) :

J(e)u
∣∣

z=0 =
2 jY

γ

√
2 π

ξ 2 − η2

∞

∑
m=0

[
jm

N (e)
m

[
Re(1) ′m ( γ,ξ ) + a(e)m Re(4) ′m ( γ,ξ )

]
Sem ( γ,η )Sem ( γ,cosφ0 )

+
jm

N (o)
m

[
Ro(1) ′m ( γ,ξ ) + a(o)m Ro(4) ′m ( γ,ξ )

]
Som ( γ,η )Som ( γ,cosφ0 )

]
(4.17)
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J(e)v
∣∣

z=0 =
2 jY

γ

√
2 π

ξ 2 − η2

∞

∑
m=0

[
jm

N (e)
m

[
Re(1)m ( γ,ξ ) + a(e)m Re(4)m ( γ,ξ )

]
Se ′m ( γ,η )Sem ( γ,cosφ0 )

+
jm

N (o)
m

[
Ro(1)m ( γ,ξ ) + a(o)m Ro(4)m ( γ,ξ )

]
So ′m ( γ,η )Som ( γ,cosφ0 )

]
(4.18)

where ′ on the radial function means ∂

∂ u and ′ on the angular function means ∂

∂ v .
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ii) Inside the post (u ≤ u0) :

J(e)u
∣∣

z=0 =
2 jYin

γ

√
2 π

ξ 2 − η2

∞

∑
m=0

[
jm

N (e)
m

b(e)m Re(1) ′m ( γ,ξ )Sem ( γ,η )Sem ( γ,cosφ0 )

+
jm

N (o)
m

b(o)m Ro(1) ′m ( γ,ξ )Som ( γ,η )Som ( γ,cosφ0 )

] (4.19)

J(e)v
∣∣

z=0 =
2 jYin

γ

√
2 π

ξ 2 − η2

∞

∑
m=0

[
jm

N (e)
m

b(e)m Re(1)m ( γ,ξ )Se ′m ( γ,η )Sem ( γ,cosφ0 )

+
jm

N (o)
m

b(o)m Ro(1)m ( γ,ξ )So ′m ( γ,η )Som ( γ,cosφ0 )

] (4.20)

For the current densities on the plate z = b-, multiply the RHS of (4.17 - 4.20) by

−cos(β z ) = −cos(m π ) = −(−1)m,

where m is the integer in (4.4).
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4.1.2 Metallic Post

The case of a PEC post follows as a particular case of isorefractive post by considering Z in = 0.

Therefore, by substituting Z in = 0 in the equation (4.14), the modal expansion coefficients take the

following form :

a(e)m

∣∣∣∣
PEC

=− Re(1)m (γ,ξ0)

Re(4)m (γ,ξ0)
(4.21a)

a(o)m

∣∣∣∣
PEC

=− Ro(1)m (γ,ξ0)

Ro(4)m (γ,ξ0)
(4.21b)

b(e)m

∣∣∣∣
PEC

= 0 (4.21c)

b(o)m

∣∣∣∣
PEC

= 0 (4.21d)

Surface current density on surface u = u0 of the PEC elliptic-cylinder post

J(e)
∣∣

u=u0
= û × H(e)

∣∣
u=u0

=− ẑ
2 jY

γ

√
2 π

ξ 2
0 − η2 cos(β z)

∂

∂ u

( i

∑ +
s

∑
)∣∣

u=u0

=− ẑ
2 jY

γ

√
2 π

ξ 2
0 − η2 cos(β z)

×
∞

∑
m=0

[
jm

N (e)
m

[
Re(1) ′m ( γ,ξ ) + a(e)m Re(4) ′m ( γ,ξ )

]
Sem ( γ,η )Sem ( γ,cosφ0 )

+
jm

N (o)
m

[
Ro(1) ′m ( γ,ξ ) + a(o)m Ro(4) ′m ( γ,ξ )

]
Som ( γ,η )Som ( γ,cosφ0 )

]
(4.22)
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Note that at the junctions between the PEC cylinder and the plates, Jv = 0 and the current normal to the

junction is continuous in crossing the intersection line.
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4.2 H-polarization

Similar to the E-polarized mode, an H-polarized mode can also be considered as a sum of two plane

waves. So equations (4.4) are valid for this case as well. In absence of the post, the incident field can

obtained from (2.23) :

H(h)i = Y
[

j β

k
cos(β z)(x̂ cosφ0 + ŷ sinφ0) +

kt

k
sin(β z) ẑ

]
e+ j kt ( x cosφ0 + y sinφ0)

E(h)i = (x̂ sinφ0− ŷ cosφ0) sin(β z)e+ j kt ( x cosφ0 + y sinφ0)

where Z = Y−1 is the intrinsic impedance of medium inside the waveguide.

If the post is a circular-cylinder, we have a rotational symmetry. So the expressions can be made simpler

by considering φ0 = 0, in which case :

H(e)i|φ0 =0 = Y
[

j β

k
x̂ sin(β z) +

kt

k
ẑ cos(β z)

]
e j kt x (4.23a)

E(e)i|φ0 =0 =− ŷ cos(β z) e j kt x (4.23b)

The incident field ( 2.23 ) can be expressed in terms of Mathieu functions :

H(h) i = 2Y
√

2 π
kt

k

[
sin(β z ) ẑ +

β

kt γ
√

ξ 2 − η2
cos(β z )

(
û

∂

∂ u
+ v̂

∂

∂ v

)] i

∑ (4.24a)

E(h) i =
2 j
γ

√
2 π

ξ 2 − η2 sin(β z )
(
− û

∂

∂ v
+ v̂

∂

∂ u

) i

∑ (4.24b)
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If an elliptic-cylinder post is present ( with surface u = u0 or ξ = ξ0 ), then the total field inside the

waveguide and outside the post (u0 ≤ u < ∞) is the sum of incident field (4.24) and scattered field

( Es , Hs ) :

E = E i + Es and H = H i + Hs

The scattered field (Es , Hs ) is given by (4.24) upon replacing ∑
i with ∑

s. Where, ∑
i and ∑

s are defined

in the equations (4.7) and (4.9) respectively.

Solution in curvilinear coordinates

For ξ ≥ ξ0 :

u(h)(ξ , η , kt) =
∞

∑
m=0

[
jm

N (e)
m

(Re(1)m ( γ,ξ ) + a (e)
m Re(4)m ( γ,ξ ))Sem ( γ,η )Sem ( γ,cosφ0 )

]
+

∞

∑
m=1

[
jm

N (o)
m

(Ro(1)m ( γ,ξ ) + a (o)
m Ro(4)m ( γ,ξ ))Som ( γ,η )Som ( γ,cosφ0 )

]
(4.25)

For ξ ≤ ξ0 :

u(h)(ξ , η , kt) =
∞

∑
m=0

[
jm

N (e)
m

(b (e)
m Re(1)m ( γ,ξ ))Sem ( γ,η )Sem ( γ,cosφ0 )

]
+

∞

∑
m=1

[
jm

N (o)
m

(b (o)
m Re(1)m ( γ,ξ ))Som ( γ,η )Som ( γ,cosφ0 )

] (4.26)

4.2.1 Isorefractive Post

Assuming that the elliptic-cylinder post is made of isorefractive material, we can obtain the total

fields inside the post by replacing ∑
i with ∑

in in (4.24), where ∑
in is defined in (4.12). The modal
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expansion coefficients can be determined by imposing the continuity of the tangential components of

electric and magnetic fields across the interface u = u0, such that :

H in
z = H i

z + Hs
z (4.27a)

E in
v = E i

v + Es
v (4.27b)

where each field component is as follows :

H i
z = 2Y

√
2 π

kt

k
sin(β z )

i

∑ (4.28a)

Hs
z = 2Y

√
2 π

kt

k
sin(β z )

s

∑ (4.28b)

H in
z = 2Yin

√
2 π

kt

k
sin(β z )

in

∑ (4.28c)

E i
v =

2 j
γ

√
2 π

ξ 2 − η2 cos(β z )
∂

∂ u

i

∑ (4.28d)

Es
v =

2 j
γ

√
2 π

ξ 2 − η2 sin(β z )
∂

∂ u

s

∑ (4.28e)

E in
v =

2 j
γ

√
2 π

ξ 2 − η2 sin(β z )
∂

∂ u

in

∑ (4.28f)
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the modal expansion coefficients are found to be :

a(e)m =
(χ0 −1)Re(1)m (γ,ξ0) Re(1) ′m (γ,ξ0)

Re(1)m (γ,ξ0)Re(4) ′m (γ,ξ0) − χ0 Re(1) ′m (γ,ξ0)Re(4)m (γ,ξ0)
(4.29a)

a(o)m =
(χ0 −1)Ro(1)m (γ,ξ0) Ro(1) ′m (γ,ξ0)

Ro(1)m (γ,ξ0)Ro(4) ′m (γ,ξ0) − χ0 Ro(1) ′m (γ,ξ0)Ro(4)m (γ,ξ0)
(4.29b)

b(e)m =
− j χ0

Re(1)m (γ,ξ0)Re(4) ′m (γ,ξ0) − χ0 Re(1) ′m (γ,ξ0)Re(4)m (γ,ξ0)
(4.29c)

b(o)m =
− j χ0

Ro(1)m (γ,χ0)Ro(4) ′m (γ,ξ0) − χ0 Ro(1) ′m (γ,ξ0)Ro(4)m (γ,ξ0)
(4.29d)

where,

′ = ∂

∂ u

χ0 =
Z in

Z

In the case when there is no post (Z = Zin) :

(a(e) , a(o))χ0 =1 = 0 (4.30a)

(b(e) , b(o))χ0 =1 = 1 (4.30b)
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Surface current densities on the parallel plates

On the plate z = 0+:

J(h)
∣∣

z=0 = ẑ × H(h)
∣∣

z=0

=
2 β

k γ

√
2 π

ξ 2 − η2

 Y

Yin

 (v̂ ∂

∂ u
− û

∂

∂ v

)∑
i + ∑

s

∑
in

 ,u ≥ u0

,u ≤ u0

(4.31)

i) Outside the post (u ≥ u0) :

J(h)u
∣∣

z=0 =− 2 β Y
k γ

√
2 π

ξ 2 − η2

∞

∑
m=0

[
jm

N (e)
m

[
Re(1)m ( γ,ξ ) + a(e)m Re(4)m ( γ,ξ )

]
Se ′m ( γ,η )Sem ( γ,cosφ0 )

+
jm

N (o)
m

[
Ro(1)m ( γ,ξ ) + a(o)m Ro(4)m ( γ,ξ )

]
So ′m ( γ,η )Som ( γ,cosφ0 )

]
(4.32)

J(h)v
∣∣

z=0 =
2 β Y
k γ

√
2 π

ξ 2 − η2

∞

∑
m=0

[
jm

N (e)
m

[
Re(1) ′m ( γ,ξ ) + a(e)m Re(4) ′m ( γ,ξ )

]
Sem ( γ,η )Sem ( γ,cosφ0 )

+
jm

N (o)
m

[
Ro(1) ′m ( γ,ξ ) + a(o)m Ro(4) ′m ( γ,ξ )

]
Som ( γ,η )Som ( γ,cosφ0 )

]
(4.33)
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where ′ on the radial function means ∂

∂ u and ′ on the angular function means ∂

∂ v

ii) Inside the post (u ≤ u0) :

J(h)u
∣∣

z=0 =− 2 β Yin

k γ

√
2 π

ξ 2 − η2

∞

∑
m=0

[
jm

N (e)
m

b(e)m Re(1)m ( γ,ξ )Se ′m ( γ,η )Sem ( γ,cosφ0 )

+
jm

N (o)
m

b(o)m Ro(1)m ( γ,ξ )So ′m ( γ,η )Som ( γ,cosφ0 )

] (4.34)

J(h)v
∣∣

z=0 =
2 β Yin

k γ

√
2 π

ξ 2 − η2

∞

∑
m=0

[
jm

N (e)
m

b(e)m Re(1) ′m ( γ,ξ )Sem ( γ,η )Sem ( γ,cosφ0 )

+
jm

N (o)
m

b(o)m Ro(1) ′m ( γ,ξ )Som ( γ,η )Som ( γ,cosφ0 )

] (4.35)

For the current densities on the plate z = b-, multiply the RHS of (4.32 - 4.35) by

−cos(β z ) = −cos(m π ) = −(−1)m

where m is the integer in (4.4).
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4.2.2 Metallic Post

The case of a PEC post follows as the particular case of the isorefractive post by considering Z in = 0.

Therefore, by substituting Z in = 0 in (4.24), the modal expansion coefficients take the following form :

a(e)m

∣∣∣∣
PEC

=− Re(1) ′m (γ,ξ0)

Re(4) ′m (γ,ξ0)
(4.36a)

a(o)m

∣∣∣∣
PEC

=− Ro(1) ′m (γ,ξ0)

Ro(4) ′m (γ,ξ0)
(4.36b)

b(e)m

∣∣∣∣
PEC

= 0 (4.36c)

b(o)m

∣∣∣∣
PEC

= 0 (4.36d)
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Surface current density on the surface u = u0 of PEC elliptic-cylinder post

J(h)
∣∣

u=u0
= û × H(h)

∣∣
u=u0

=−v̂
2
√

2 π Y kt

k
sin(β z)

( i

∑ +
s

∑
)∣∣

u=u0
+ ẑ

2 β Y
k γ

√
2 π

ξ 2
0 − η2 cos(β z)

∂

∂ v

( i

∑ +
s

∑
)∣∣

u=u0

(4.37)

J(h)z
∣∣

u=u0
=

2 β Y
k γ

√
2 π

ξ 2
0 − η2 cos(β z)

∞

∑
m=0

[
jm

N (e)
m

[
Re(1)m ( γ,ξ ) + a(e)m Re(4)m ( γ,ξ )

]
Se ′m ( γ,η )Sem ( γ,cosφ0 )

+
jm

N (o)
m

[
Ro(1)m ( γ,ξ ) + a(o)m Ro(4)m ( γ,ξ )

]
So ′m ( γ,η )Som ( γ,cosφ0 )

]
(4.38)

J(h)v
∣∣

u=u0
= − 2

√
2 π Y kt

k
sin(β z)

∞

∑
m=0

[
jm

N (e)
m

[
Re(1)m ( γ,ξ ) + a(e)m Re(4)m ( γ,ξ )

]
Sem ( γ,η )Sem ( γ,cosφ0 )

+
jm

N (o)
m

[
Ro(1)m ( γ,ξ ) + a(o)m Ro(4)m ( γ,ξ )

]
Som ( γ,η )Som ( γ,cosφ0 )

]
(4.39)

Note that at the junctions between the PEC cylinder and the plates, Jv = 0 and the current normal to the

junction is continuous in crossing the intersection line.



CHAPTER 5

SCATTERING BY A METALLIC STRIP POST INSIDE A PARALLEL PLATE

WAVEGUIDE

An additional simplification occurs when the elliptic-cylinder post collapses onto a flat metal strip

of width d, i.e. when u0 = 0 (ξ0 = 1). In this section, exact solutions are obtained for the case of strip

post inside a parallel plate waveguide. The problem is solved for metallic strip post and the procedure

is detailed below separately for E- and H-polarizations.

5.1 E-polarization

In case of E-polarization, the modal expansion coefficients are found by substituting ξ0 = 1 in

(4.21). Furthermore, in this case :

Ro(1)m (γ,1) = 0 (5.1)

which implies that,

a(o)m

∣∣∣∣
strip

= 0 (5.2)

51
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Therefore, the modal expansion coefficients take the following form :

a(e)m

∣∣∣∣
strip

=− Re(1)m (γ, 1)

Re(4)m (γ, 1)
(5.3a)

a(o)m

∣∣∣∣
strip

= 0 (5.3b)

b(e)m

∣∣∣∣
strip

= 0 (5.3c)

b(o)m

∣∣∣∣
strip

= 0 (5.3d)

Surface current density on the surface of the metal strip

The expression of surface current density in the case of a metal strip is obtained by substituting (5.3) in

(4.22) and using (ξ0 = 1) :

J (e)
∣∣
u0 =0 =− ẑ

2 jY
γ

√
2 π

1 − η2 cos(β z)
∞

∑
m=0

[
j m+1

N (e)
m Re(4) ′m ( γ,1 )

Sem ( γ,η )Sem ( γ,cosφ0 )

+
jm

N (o)
m

[
Ro(1) ′m ( γ,ξ )Som ( γ,η )Som ( γ,cosφ0 )

]
(5.4)

Note that

Ro(1)m (γ,1) = 0 (5.5a)

Re(1) ′m (γ,1) = 0 (5.5b)

Re(1)m Re(4) ′m −Re(4)m Ro(1) ′m = − j (5.5c)

Ro(1)m Ro(4) ′m −Ro(4)m Ro(1) ′m = − j (5.5d)
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Figure 7: Metal strip of width d

Sem ( c,η )
∣∣
v=2π−v0

= Sem ( c,η )
∣∣
v=v0

(5.5e)

Som ( c,η )
∣∣
v=2π−v0

=−Som ( c,η )
∣∣
v=v0

(5.5f)
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5.2 H-polarization

In case of H-polarization, the modal expansion coefficients are found by substituting ξ0 = 1 in the

(4.36). Furthermore, in this case :

Re(1) ′m (γ,1) = 0 (5.6)

which implies that,

a(e)m

∣∣∣∣
strip

= 0 (5.7)

Therefore, the modal expansion coefficients take the following form :

a(e)m

∣∣∣∣
strip

= 0 (5.8a)

a(o)m

∣∣∣∣
strip

= − Re(1) ′m (γ, 1)

Re(4) ′m (γ, 1)
(5.8b)

b(e)m

∣∣∣∣
strip

= 0 (5.8c)

b(o)m

∣∣∣∣
strip

= 0 (5.8d)
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Surface current density on surface of the metal strip

The expression of surface current density in the case of a metal strip (ξ0 = 1) is obtained by substituting

(5.8) in (4.38) and (4.39) :

J(h)z
∣∣

u0 =0 =
2 β Y
k γ

√
2 π

1 − η2 cos(β z)
∞

∑
m=0

[
jm

N (e)
m

[
Re(1)m ( γ,ξ )

]
Se ′m ( γ,η )Sem ( γ,cosφ0 )

− jm+1

N (o)
m

[ 1

Ro(4) ′m ( γ,1 )

]
So ′m ( γ,η )Som ( γ,cosφ0 )

] (5.9)

J(h)v
∣∣

u0 =0 = − 2
√

2 π Y kt

k
sin(β z)

∞

∑
m=0

[
jm

N (e)
m

[
Re(1)m ( γ,ξ )

]
Sem ( γ,η )Sem ( γ,cosφ0 )

− jm+1

N (o)
m

[ 1

Ro(4) ′m ( γ,1 )

]
Som ( γ,η )Som ( γ,cosφ0 )

] (5.10)



CHAPTER 6

NUMERICAL RESULTS

The surface currents are computed from the exact solutions given in Chapters 3, 4 and 5 for E- and

H-polarization, respectively. The computation is carried out in MATLAB R2017a, with the aid of the

results for Mathieu functions calculation provided in (7) (8) (9).

For the case of a PEC circular-cylinder, the radius of the cylinder is a = 0.79 λ , the angles of inci-

dence are φ0 = π , θ01 = 38.2◦ and the plate separation is b = 1.27λ . The angle of incidence θ01 is such

that the quantization number is m = 2. Fig. 8 shows ρ and z directed surface currents on the parallel

plates and the cylinder respectively and Fig. 9 shows φ directed surface currents on both parallel plates

and the cylinder for the case of E-polarization. It is important to note that there is continuity between Jρ

on the parallel plates and Jz on the cylinder across the junctions. Also, it is noteworthy that in case of

E-polarization, Jφ on the cylinder completely vanishes. Fig. 10 shows ρ and z directed surface currents

on the parallel plates and the cylinder respectively and Fig. 11 shows φ directed surface currents on both

parallel plates and the cylinder for the case of H-polarization. Once again, we observe the continuity in

the currents Jρ and Jz on the parallel plates and the cylinder respectively, across the intersection lines.

But unlike the case of E-polarization, here Jφ 6= 0 on the cylinder.

For the case of a metal strip, the width of the strip is d = 0.47 λ , the angles of incidence are φ0 =

−π

2 , θ01 = 38.2◦ and the plate separation is b = 0.63 λ . The angle of incidence θ01 is such that the
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quantization number is m = 1. Fig. 12 shows ρ and z directed surface currents on the parallel plates

and the metal strip respectively and Fig. 13 shows φ directed surface currents on both parallel plates

and the strip for the case of E-polarization. It should be noted that there is a continuity between Jρ on

the parallel plates and Jz on the metal strip across the junctions. Also, Jφ on the plate vanishes in the

case of E- polarization, which is similar to the cylindrical case. Fig. 14 shows Jρ and Jz on the parallel

plates and the strip respectively. Fig. 15 shows Jφ on both parallel plates and the strip for the case of

H-polarization. Once again, we observe a continuity in the currents Jρ and Jz on the parallel plates and

the strip respectively, across the junctions. But unlike the case of E-polarization, here Jφ 6= 0 on the

strip.
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Figure 8: | Jρ/z | on PEC Surfaces in case of cylindrical post (E-polarization)
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Figure 9: | Jφ | on PEC Surfaces in case of cylindrical post (E-polarization)
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Figure 10: | Jρ/z | on PEC Surfaces in case of cylindrical post (H-polarization)
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Figure 11: | Jφ | on PEC Surfaces in case of cylindrical post (H-polarization)
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Figure 12: | Ju/z | on PEC Surfaces in case of metal strip post (E-polarization)
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Figure 13: | Jv | on PEC Surfaces in case of metal strip post (E-polarization)
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Figure 14: | Ju/z | on PEC Surfaces in case of metal strip post (H-polarization)
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Figure 15: | Jv | on PEC Surfaces in case of metal strip post (H-polarization)



CHAPTER 7

CONCLUSION

Exact analytical solutions have been derived for scattering of a mode propagating inside a parallel

plate waveguide by a cylindrical post located inside the waveguide. Three different shapes of the cross-

sectional area of the post are considered: circular, elliptical and strip. The solution is obtained when

the linear, homogeneous and isotropic material of the cylindrical or elliptical post is isorefractive to the

surrounding medium; hence, the solution for a PEC post is a particular case of the more general solution.

The analysis for both TE and TM modes with numerical results are presented for each one them.

Some of the results reported in this thesis were orally presented at two conferences (10) (11).
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