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SUMMARY

Humans constantly construct intentions and act on them, but neither the content of in-

tention nor the method of its construction are well-understood. We develop a series of tools

that enable us to inspect intention and its construction even when our subjects are confronted

with experimental disturbances. We then formed a predictive model of intent as a state tra-

jectory constructed by a stochastic process that minimizes the cost of action while maximizing

both reward and the rate of reward. This model appears to predict and explain the statistical

distributions of both the pieces composing intent and and whole motions that we observe.

xv



CHAPTER 1

INTRODUCTION

?? Human motion has been described as “repetition without repetition”: even as we re-

peatedly meet a goal subject to some constraints, other facets of the movement vary (7). While

this matches the intuition that many different movements can accomplish the same goal, the

brain appears to tune movement in various respects. Movements tend to minimize total jerk,

the rate at which acceleration changes (8). Moreover, the many joints and muscles of the arm

are redundant, which allows variability to be concentrated into some aspects of movement and

not others (9). Finally, movement can be described as minimizing an expected cost (10). While

these insights widely describe the movements humans produce, they do not make any falsifiable

predictions that have not been falsified already.

Despite lingering questions about how movement is planned and controlled, its physiology is

well-understood. The brain receives information about the state of the body and its environment

through vision, proprioception, and tactile sensation. After processing this information, the

brain can transmit signals that cause muscles to change their resting length. The elasticity of

muscle combined with its shortening can generate torques that in turn bring about structured

movement. Shortening muscles that oppose one another has the effect of stiffening the body, but

comes at the cost of having contracted addition muscles. Accurate modeling of the mechanics

underlying bone and muscle requires some mathematical complexity, but modern computer

hardware is capable of performing the necessary calculations in real-time.

1
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We extend these physical models to understand not the capacity of the brain to control

movement but rather its limitations. To successfully execute a plan, the plan must reflect

the body’s physiology and obey the laws of physics. Together, these restrictions allow us

to invert the planning process and examine each of a series of stages possibly used by the

brain to construct and control reaching movements. Understanding these steps is critical to

understanding movement disorders – such as stroke – as well as to potentially replicating human-

like movement planning in robotics.

Our inversion of the movement planning process begins with an observation by Feldman (11):

the elasticity of muscle implies the presence of a dynamic equilibrium underlying movement.

While Feldman’s muscle-centric formulation was eventually discredited (12), others took notice

of the arm’s dynamic equilibrium (13) and formulated an end-effector-centric model that enjoyed

great success (6). Chapter 2 introduces this model in more detail before showing how it can

be inverted and why the inversion is successful. Chapter 3 demonstrates that this dynamic

equilibrium is immediately recognizable to a person as their own intent and that they can

readily control it. These chapters allow us to conclude that movement planning takes the form

of a trajectory: a desired state that evolves in time.

Recovering an intent trajectory does not reveal by what process that arose. Early movement

research found evidence that movement is composed of more elemental pieces (14). These pieces

were later found to be evident during infant development (15) and following stroke (16) as well.

In chapter 4, we recover these pieces and describe their statistics. In chapter 5, we explain those

statistics by deriving them from first principles. In the process of this derivation, we uncover
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a potential-like quantity that bears a striking similarity to the concept of money. Much of the

discussion in chapter 7 focuses on the implications of the structures uncovered in chapter 6.



CHAPTER 2

DETERMINING MOVEMENT INTENT

??

2.1 Overview

This work, written in collaboration with my adviser, was published in the peer-reviewed

journal PLoS ONE on September 1st, 2015 (1). Subsequently, it received international press

coverage primarily due to the nickname I had given the project: “psychic robot.” While this

algorithm cannot read minds or predict the future, it does leverage physical and mathematical

relationships to reveal in real-time or after-the-fact what a person means to do even if they

are prevented from doing it. We built on a famous paper by a member of the committee

who demonstrated that if the desired trajectory of a movement and its mechanical equilibrium

point were the same this could explain how humans react to unexpected force disturbances.

We extend his result using a finding from nonlinear control theory to recover that intended

equilibrium point from force-disturbed movements.

2.2 Introduction

Disturbances, distractions, and pathologies can interfere in many situations and prevent our

actions from matching our intent. A pilot, for example, may fail to complete a maneuver because

of turbulence. Such challenges are broadly present in many human-machine interactions. One

may speculate on how we might use these very same machines to elucidate the underlying

4
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intention. Such a possibility would be broadly useful in any area where intended actions might

be thwarted by disturbances.

It is not necessary for the brain to represent intent explicitly to generate action. Instead

the nervous system might simply learn the relationship between muscle activations and the

accomplishment of goals. For example, one might simply evaluate a motion outcome and adjust

descending signals to the muscles. At the same time, one may not deny the fact that there

are tasks that require an explicit representation of a trajectory, such as performing a dance,

drawing a picture, or conducting an orchestra. For these tasks, intent is likely represented at

some level in the nervous system. Nevertheless, the mechanics of the body dictate the existence

of an equilibrium whether intent is explicitly represented or not. Here our goal was to answer a

modest question, “when movement intent is a changing equilibrium, can we recover it despite

external disturbances?”

The words intent and equilibrium are contentious because of the various definitions that

exist in the literature. Our simple definition here is that the intent is the path that would have

been taken had there been no external disturbances. In other words, action will match intent

in the absence of any unexpected disturbances. We take intent to be a dynamic equilibrium

when action approaches intent over time following any sufficiently small disturbance.

Dynamic models that strive to understand intent are wide ranging, and can include mathe-

matical models that range in application from swarm prediction to athletic performance. The

plant (such as the actions of a crowd of people or the motions of an opposing team) may be

too complex to model with simple linear transformations as we present above. However, by
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substituting any approximation or lookup table of input-outcome tendencies, it is possible in

a variety of applications to obtain the intent, even when disturbed. In other words, it may be

possible to intervene before a car crashes or an opposing team scores by knowing the intent

behind their action.

Here we propose a general method, intent extraction, which calculates the intended trajec-

tory even in the face of disturbances by relating environmental interaction and state to intent.

The method is a class of filters that can infer the intended trajectory from the disturbance

(turbulence), process (dynamic equations), actuator (muscles), and motion. The method af-

fords new ways to study models of motor control, understand the timing and composition of

intent, and how it might be altered by disturbances and injuries. Below we first present the

mathematics underlying intent extraction. Then, for simplicity in this initial study, we cre-

ate synthetic reaching data to examine the quality and uncertainty of this method. Finally,

we demonstrate its effectiveness extracting intended action from real human reaches that have

been disrupted by unpredictable disturbances. We demonstrate this effectiveness by testing the

hypothesis that disturbance does not change intended action for at least 120 milliseconds. This

early experiment also provides some new insights on how intended trajectories can change in

reaction to disturbances.

2.3 Methods

The sections below describe the theoretical method used and the means by which we eval-

uated it. First, we present an idealized system using synthetic data that demonstrated the

concept and provided an understanding of the computational process. Next, we present an



7

experimental study on humans that evaluated success in a simple test of the approach’s ability

to extract straight intentions even when disturbed.

2.3.1 Intent Extraction: Deducing the Desired Trajectory

We first demonstrate the intent extraction approach in human motor control, but we later

show that the process is applicable to any controlled process with an invertible highest order

plant term. The process begins by presuming a model of the controller. Here, we choose the well-

known motion control structure of Shadmehr and Mussa-Ivaldi (6) where the feedforward aspect

of the controller perfectly predicts the plant and linearizes the system through cancellation.

Additionally, linear feedback rejects position and velocity error. This model was chosen to help

illuminate the approach, but later we present how to generalize this approach to more complex

models without loss of generality. The equation governing the passive planar dynamics (plant)

of musculoskeletal structure is of the form,

Inertia︷ ︸︸ ︷
M(q)q̈+

Coriolis, Centripetal︷ ︸︸ ︷
G(q, q̇)︸ ︷︷ ︸

Plant

+E = 0 (2.1)

where M is the mass matrix, q is the joint angles, q̇ is joint angular velocity, q̈ is joint angular

acceleration, G contains both Coriolis and centripetal effects, and E is any externally-applied
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torque. The motion behavior changes with the addition of feedforward and/or feedback con-

trollers,

Inertia︷ ︸︸ ︷
M(q)q̈+

Coriolis, Centripetal︷ ︸︸ ︷
G(q, q̇)︸ ︷︷ ︸

Plant

+E =

Inertia︷ ︸︸ ︷
M̂(qd)q̈d +

Coriolis, Centripetal︷ ︸︸ ︷
Ĝ(qd, q̇d) +Ê︸ ︷︷ ︸

Feedforward Controller

+ Kp(qd − q) +Kd(q̇d − q̇)︸ ︷︷ ︸
Impedance, Feedback Controller

(2.2)

where terms with hats over them (M̂ , Ĝ, or Ê) indicate that they represent the nervous system’s

best estimate of the forces and dynamics it will encounter, which is also known as an internal

model (6). This portion of the system serves as an inverse-dynamics feedforward controller that

cancels out the dynamics of the arm in the torque balance. If the nervous system has sufficient

experience and is expecting E, it is included as part of the internal model, Ê; otherwise Ê is

set to zero. Kp and Kd are the lumped impedance and feedback terms that employ a moving

state equilibrium to accomplish the desired trajectory, qd. This qd has a dual meaning in that

it signifies both the unknown desired trajectory that we seek to discover and also the moving

equilibrium trajectory of the arm.

For typical dynamic simulations, in order to determine the trajectory of the system (i.e.,

the forward dynamics problem), this second-order differential equation is solved by numerical

integration to determine the solution to the initial value problem in time. This entails algebraic

manipulation to solve for q̈, followed by integration to determine the state trajectory. Intent

determination takes the novel approach of instead solving for q̈d,

q̈d = M̂(qd)
−1
{
M(q)q̈ +G(q, q̇) + E − [Ĝ(qd, q̇d) + Ê +Kp(qd − q) +Kd(q̇d − q̇)]

}
(2.3)
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such that q̈d can then be integrated numerically using a differential equation solver to determine

the intended state trajectory qd(t). This relies on many assumptions: The model of plant and

controller must be accurate and precise. The initial conditions must be available and accurate.

The mass matrix estimate, M̂ , must be invertible. Externally-applied force must be precisely

and accurately measured. If all of these conditions are met, then the system yields an accurate

estimate of the intent.

To explore the conditions under which this procedure for recovering the intent trajectory

can be generalized, we take a series of steps. First, we distinguish between joint space and

generalized space by introducing a generalized state variable, x. Second, we separate the plant

(arm) into its process (dynamics), P , and actuator (muscles), A, components. Third, we model

these components in a very general sense as operations,

Process︷ ︸︸ ︷
N∑
n=1

Pnx
(n) +

Actuator︷ ︸︸ ︷
M∑
m=1

Am(x− xe)(m)

︸ ︷︷ ︸
Plant

+E = 0 (2.4)

where xe is the equilibrium trajectory of the actuator. Fourth, we describe a control law

for the actuator using the same expansions,

Internal Model︷ ︸︸ ︷
N∑
n=1

P̂nx
(n)
d + Ê+

Actuator︷ ︸︸ ︷
M∑
m=1

Am(xd − xe)(m) = 0 (2.5)

where an internal model, P̂ and Ê, predicts system dynamics and external disturbances in

order to determine the actuator equilibrium xe such that x will track a desired path xd. The
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feedforward component must use the actuator and hence it shares the actuator’s equilibrium

with the plant. This allows us to finally relate the physical system and its control law by solving

for xe and substituting into Equation 2.4,

Process︷ ︸︸ ︷
N∑
n=1

Pnx
(n) +E =

Internal Model︷ ︸︸ ︷
N∑
n=1

P̂nx
(n)
d + Ê+

Feedback (Actuator)︷ ︸︸ ︷
M∑
m=1

Am(xd − x)(m) (2.6)

wherein xe vanishes recovering our familiar model. While a proper choice of xe is perhaps essen-

tial for control, our approach does not require a model relating this equilibrium and intended

trajectory. Note also that the actuator’s equilibrium xe is not the process’s equilibrium unless

all derivatives of xd are zero.

The fact that the actuator’s equilibrium xe is not the process’s equilibrium is important as

the actuator state (λ) has been claimed to be the intended movement (11) (see Section 2.6).

This upholds Gomi and Kawato’s finding that the arm muscles’ equilibrium does not represent

reaching intent (12). If the highest order coefficient of the dynamic model of the process P̂N

can be inverted, the impedances can be modeled, and the system is stable (e.g., the stiffness

and damping are positive), it is possible to solve for x
(N)
d and integrate for xd, revealing the

intended trajectory.

While we treat both the process and actuator as dynamic models in our derivation, it is

important to note that both the derivation and the technique are agnostic to the process model,

simply because any hypothesis can be modeled and used by our approach to determine where

the model would have gone had it not been disturbed.
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Note that instead of a dynamic model, any model may be possible, such as lookup table.

For instance, a switch is well-modeled as a lookup table or threshold without any consideration

of its underlying mechanism. In this case, our technique could be used to determine a person’s

intention to flip the switch and how it changes in the face of disturbance. As long as some

bidirectional relationship exists between state and outcome (even if determined empirically),

intended outcome can be determined. This allows determination of intent in many situations

of interest, even where the process is otherwise irreducibly complex.

2.3.2 Experimental Design

We chose 15 centimeter long simulated reaches of the right arm, beginning at 38 centimeters

out from and 5.7 centimeters left of the right shoulder and ending at 38 centimeters out from

and 10.7 centimeters right of the right shoulder. We used the following two types of perturbing

forces for each combination of distance and direction:

1. Pulse forces applied in one of the the two directions perpendicular to the direction of

movement began when the subject had moved either 10% or 50% of the distance to the

target and lasted for 150ms.

2. Noise forces began once the subject moved 3 millimeters, and lasted for the duration of

the motion. The forces were drawn from a white noise generator at 1000 Hz with flat

power spectral density of 1N, and then passed through a 4th order low-pass Butterworth

filter with cutoff 10π rad/s.

Our error metric was deviation in position, where unsigned error was calculated as the mean

magnitude of deviation from the straight-line nominal trajectory to the target. This was eval-
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uated across each of 150 bins measuring 1 millimeter in width and spaced evenly throughout

the 15 centimeter reach. Mean unsigned error (MUE) was also used to summarize the overall

error in each movement for sensitivity analysis. Mean and maximum signed error relative to

the direction of disturbance, also called perpendicular deviation, were used to measure reaching

accuracy in order to elucidate direction of any corrections.

2.3.3 Dynamic simulation of arm and intended trajectories

While the derivation of intent determination is general, testing its application to human

reaching requires choosing plant and actuator models, which themselves require physical pa-

rameters. Appropriate plant modeling is well-understood: measured arm segment lengths and

self-reported body mass are converted into the plant’s inertial, centripetal, and Coriolis terms.

Anatomical landmarks and values from Dempster (17) and Winter (18) relate body mass to limb

mass, limb length to limb center of mass, and limb mass and length to moment of inertia. For

the actuator, we choose the model and parameters of Burdet et al. (4). We fit a subject-specific

constant scale factor for impedance relative to this model to account for any task-dependence

of the subjects’ impedance (19) as described in the next section. Desired trajectory in time

was idealized as a typical minimum jerk, 5th order polynomial of duration 700 ms starting

and ending with zero velocity and acceleration (8). In this model, musculoskeletal stiffness was

linearly related to torque. Like Burdet et al. (4), we approximated muscle torque by looking

backward in time 500µs. Note that this backward look led to negligible (sub-micrometer mean

unsigned error) discrepancies in subsequent intent estimates.
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2.3.4 Torque Calculations for Intent Extraction

The impedance properties of the human arm are known to be task-dependent (19), but we

need to model them in the context of our task without assuming our conclusions in the premises.

We do so by scaling an established model (4) using an intermittently and unexpectedly presented

secondary task. This ensures that the model parameters are not in any sense tuned to our

primary task. Additionally, unpredictability enables us to leverage the ergodic assumption: our

tasks should at least initially share the same motor plan and impedance properties.

Calibrating the model requires several steps. First, we fit some expectation of the motor

plan, xd, by using a Gaussian weighted average (σ = 22 milliseconds) of each subject’s hand

trajectory as it evolves in time during undisturbed movement. Separate expectations were fit

for each pair of movement start and end points. We then use inverse kinematics to convert these

expected hand trajectories to expected joint angle trajectories, qd. Taking time derivatives of

qd then allows us to form an expectation of the feedforward torque, τff , that will be present

early in movement as in Equation 2.2,

τff = M̂(qd)q̈d + Ĝ(qd, q̇d) (2.7)

which then allows us to construct the full torque balance for the joints,

τP + E = τff + cτfb (2.8)
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where E is the measured force on the hand converted to joint torques via the Jacobian, τP

is calculated from the arm’s dynamics, τfb is calculated from the impedance model of Burdet

et al. (4), and c is a scalar constant to be fit. We calculate τP using measured limb segment

lengths, L1 and L2 and self-reported body mass, mg. Terms followed by a subscript 1 indicate

the upper arm or shoulder joint while terms followed by a subscript 2 indicate the forearm

or elbow joint. We converted from these gross measurements to specific parameters using the

nominal ratios provided in Table II,

m1 = 0.028mg Lm1 = 0.426L1 J1 = m1(0.322L1)2 (2.9)

m2 = 0.022mg Lm2 = 0.682L2 J2 = m2(0.468L2)2 (2.10)

where m1 and m2 are segment masses, Lm1 and Lm2 are limb centers of mass, and J1 and

J2 are mass moments of inertia. We then calculate M , G, and τP using these subject-specific
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parameters and measured values for the joint trajectory, q, and its time derivatives from reaches

that received the white noise force disturbance,

M =

J1 + J2 +m1L
2
m1 +m2(L2

1 + L2
m2 + 2L1Lm2 cos q2) J2 +m2(L2

m2 + L1Lm2 cos q2)

J2 +m2(L2
m2 + L1Lm2 cos q2) J2 +m2L

2
m2


(2.11)

G =

m2L1Lm2q̇2(2q̇1 + q̇2) sin q2

m2L1Lm2q̇
2
1 sin q2

 (2.12)

τP = M(q)q̈ +G(q, q̇) (2.13)

for the first 150 milliseconds following the onset of movement. τff was calculated in the same

fashion τff except that M̂ and Ĝ were calculated by replacing all instances of q with qd. We

then calculated τfb as in Burdet et al. (4) while additionally leveraging the dual identity of the

muscle torque, τm,

|τm| = |τff + τfb| = |τP + E| (2.14)

K =

10.8 + 3.18|τm1| 2.83 + 2.15|τm2|

2.51 + 2.34|τm2| 8.67 + 6.18|τm2|

 (2.15)

τfb(t) = K
(
qd(t)− q(t) +

q̇d(t)− q(t)
12

+
qd(t− φ)− q(t− φ) + 2(q̇d(t− φ)− q(t− φ))

50

)
(2.16)
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where φ is a delay of 60 milliseconds. Finally, constrained optimization is performed to find the

value of c that minimizes the expression,

τff + cτfb − τP − E (2.17)

for each subject as the sum of all torques acting on the joints should ideally be zero. The opti-

mization is constrained such that c > 0.15 both to avoid unphysiological values and numerical

instabilities during simulation. The value of c, reported in Table I, is then used when extracting

intended trajectories from pulse-disturbed movements as in Equation 2.3,

q̈d = M̂(qd)
−1
{
M(q)q̈ +G(q, q̇) + E − [Ĝ(qd, q̇d) + cτfb]

}
(2.18)

and integrated numerically as described. By scaling an established model using a force distur-

bance other than our disturbance of interest, we avoided presuming the intent trajectory we

hoped to recover.

2.3.5 Indices of variance-based sensitivity

To ensure a properly spaced and efficient evaluation of sensitivity, we employed Sobol-

distributed matrices, generated using MATLAB’s sobolset() function and converted to param-

eter distributions (see Table II) using inverse cumulative probability density. Nominal param-

eter values were mostly taken from Dempster (17) and Burdet et al. (4) with typical values

for subject-specific parameters (height and weight) and direct measurements for device-specific

parameters (force sensor noise and drift). Standard deviations reflect expected variation in
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Subject Number 1 2 3 4 5 6 7 8

Gross Body Mass (kg), mg 86.18 54.43 95.25 86.18 94.35 86.18 63.50 72.57
Upper Arm Length (cm), L1 28 28 31 33 34 37 28 29
Forearm Length (cm), L2 32 30 34 34.5 34 38 31 33

Shoulder Parallel Coordinate (cm) 0 -3 0 0 -2 -3 -5 0
Shoulder Perpendicular Coordinate (cm) 53 48 51 49 55 51 48 50

Feedback Torque Gain, c 0.15 0.15 0.36 0.15 0.94 0.77 0.48 0.86

TABLE I

SUBJECT-SPECIFIC PARAMETERS. GROSS BODY MASS WAS SELF-REPORTED.
UPPER ARM LENGTH, FOREARM LENGTH, AND SHOULDER POSITION IN THE

ROBOT’S COORDINATE SYSTEM WERE MEASURED IN SITU. FEEDBACK TORQUE
GAIN WAS FIT AS DESCRIBED IN OUR METHODS SECTION USING THE

INTERMITTENTLY PRESENTED WHITE NOISE FORCE DISTURBANCE. THIS GAIN
IS RELATIVE TO THE TOTAL FEEDBACK TORQUE OUTPUT (STIFFNESS,

DAMPING, AND REFLEXES) OF THE MODEL OF BURDET ET AL. (4).

repeated measurement (ie. height and weight) or measured variance (ie. trial-to-trial variation

in sensor noise or uncertainty in mass ratios reported by Dempster (17)). Distributions were

clamped to the range of ±3 standard deviations in order to limit parameters to a realistic range.

Combinations and calculations were made as prescribed by Saltelli et al. (5) to arrive at direct

and total sensitivity indices.

2.3.6 Human Subjects

The human data trajectories analyzed here are drawn from eight subjects who gave informed

consent in accordance with Northwestern University Institutional Review Board, which specif-

ically approved this study and follows the principles expressed in the Declaration of Helsinki.

Five male and three female right-handed subjects (ages 24 to 30) performed the reaches with
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their right arm and were not compensated. Subjects’ arm segment lengths were directly mea-

sured in situ while body mass was self-reported.

2.3.7 Apparatus

A planar manipulandum (described in Patton and Mussa-Ivaldi (20)) was programmed to

compensate and minimize any friction or mass. The MATLAB XPC-TARGET package (21)

was used to render this force environment at 1000 Hz and data were collected at 1000 Hz.

Visual feedback of hand position was performed at 60 Hz using OpenGL. Closed-loop data

transmission time (position measurement to completed rendering to recognition of rendering

by the position measurement system) was less than 8 milliseconds, ensuring a visual delay less

than one 60 Hz frame. Because force sensors tend to drift, we performed a linear re-zeroing

procedure between each motion to assure unbiased measurements.

2.3.8 Protocol

Subjects made 730 reaches in total, along a line parallel to their coronal plane and approx-

imately 45 centimeters from their shoulder. Reaches were either 15 or 30 centimeters long,

starting and ending at one of three points spaced 15 centimeters apart on the line. To prevent

any learning effect, forces were presented intermittently with random frequency, but never less

than 5 reaches apart. Any effects of exposure to pulse forces cannot be detected 5 reaches

later (22). Forces were chosen pseudorandomly such that each type, direction, and distance

combination mentioned above was presented 5 times. We used these disturbed, intermittent

trials for the analysis.
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2.3.9 Statistical Analysis

Our principal goal was to determine if and when disturbed trajectories departed from undis-

turbed trajectories. To detect this departure, we use the one-tailed Student’s t-Test (α = .05)

at 5 millisecond intervals to determine whether or not the deviation of the disturbed trajectories

had exceeded the maximum deviations of the undisturbed trajectories. The median time span

between departure of the hand and departure of the estimated intent was compared against

120 milliseconds using the nonparametric Sign Test. The MATLAB statistics toolbox package

(21) was used for all comparisons.

2.4 Results

As expected, the model was able to recover the original intended trajectory even when

disturbed (Figure 1). However this idealized analysis cannot reveal any vulnerabilities to un-

examined model parameters or to inaccuracy in the structure of the model itself as discussed

in the next sections.

2.4.1 Noise Robustness

While some inversion processes might be highly sensitive to noise, our process for recovering

intent from action did not appear to be vulnerable. Our position sensors are very accurate

(no detectable drift, RMS noise 1.1 micrometers), but the force sensors are less so. Even after

correcting for drift in our force measurements, the force measurements reported during reaching

can be expected to have noticeable bias and further noise on the order of that bias as reported

in Table II. Taken together, force measurement errors account for 12% of all sensitivity. We
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Figure 1. Simulated data illustrating tautology of extraction across pulse and filtered
Gaussian noise disturbance types. Intent is modeled as a minimum jerk, 5th order

polynomial. Forces experienced are combined with intent via Burdet et al.’s (4) model to
produce the simulated arm trajectory. Extraction to recover intention from arm and force

trajectory follows. Parameter errors are introduced into the extraction and varied according
to Table II to estimate sensitivity. Examining the distribution of deviation in trajectories
from this analysis reveals that sensitivity is not uniformly distributed throughout a reach.
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also examined noise in sensor signals explicitly in the more comprehensive sensitivity analysis,

discussed below.

2.4.2 Parameter Sensitivity

Variance in intended trajectories due to estimated uncertainty in model parameters was

lower than the natural variation in undisturbed motions. Simulated point-to-point reaches dis-

turbed by either filtered white noise forces or a pulse force perpendicular to the direction of

the reach (Figure 1) were extracted in the presence of 220,000 variations upon the parameters

(Table II) according to the methods of Saltelli et al. (5). Expected variance due to parame-

ter uncertainty was 2.24mm2 for pulse forces and .3mm2 for filtered white forces. Variance in

recorded undisturbed point-to-point reaching under the same time and reach distance condi-

tions was 2.93mm2. These variances describe mean unsigned error, but this uncertainty is not

distributed evenly in space or time.

Simulated error due to direct parameter uncertainty (Figure 2) reached the order of millime-

ters and revealed particular sensitivity to mis-estimation of stiffness and changes in shoulder

position from trial to trial. Direct sensitivity, which reveals the proportion of error that could

be removed by correcting inaccuracy of a parameter, was an order of magnitude lower than total

sensitivity, which reveals how much error would remain if all other parameters were accurate.

Both implicated stiffness estimation inaccuracy as a primary cause of extraction uncertainty.

Note that this sensitivity analysis does not provide information on whether models or parameter

estimates are accurate, only how sensitive the model would be if they were inaccurate.
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Figure 2. Model sensitivity testing (from the variance-based method of Saltelli et al. (5))
reveals that the model is mostly sensitive to stiffness. Parameter values are varied in a

Sobol-distributed fashion according to Table II. First order sensitivity, in purple, is the error
that would be removed if the parameter was fixed at its nominal value. Total sensitivity, in

teal, shows error that would remain if all other parameters were fixed at their nominal values.
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Parameter Name Units Nominal Source SD Source S ST
Upper Arm Length (L1) m 0.353 (17) 0.017 (17) 0.03 0.17

Forearm Length (L2) m 0.363 (17) 0.011 (17) 0 0.03

Upper Arm Center of Mass Ratio (Lm1
L1

) 1 0.436 (18) 0.0695 15% 0 0.02

Forearm Center of Mass Ratio (Lm2
L2

) 1 0.682 (18) 0.0431 15% 0.01 0.07

Gross Body Mass (mg) kg 88.4 (23) 3.1 (24) 0 0.02
Upper Arm Mass Ratio (m1

mg
) 1 0.028 (18) 0.0029 (17) 0 0.01

Forearm Mass Ratio (m2
mg

) 1 0.022 (18) 0.0025 (17) 0 0.06

Upper Arm Radius of Gyration Ratio 1 0.322 (18) 0.0161 15% 0.01 0.06
Forearm Radius of Gyration Ratio 1 0.468 (18) 0.0234 15% 0 0.04

Shoulder Parallel Coordinate m -0.057 RM 0.02 RM 0.01 0.14
Shoulder Perpendicular Coordinate m 0.88 RM 0.02 RM 0.02 0.06
Force Sensor Miscalibration x-axis N 0 RM 0.231 RM 0.01 0.05
Force Sensor Miscalibration y-axis N 0 RM 0.1067 RM 0.03 0.08

Force Sensor Gaussian Noise SD x-axis N 0 RM 0.1653 RM 0 0.01
Force Sensor Gaussian Noise SD y-axis N 0 RM 0.2869 RM 0 0.01

Torque-Invariant Impedance Mis-estimation Ratio 1 1 (4) 0.15 15% 0.05 0.19
Torque-Varying Impedance Mis-estimation Ratio 1 1 (4) 0.15 15% 0.05 0.19

Damping-to-Stiffness Ratio (kd) sec−1 0.0833 (4) 0.0125 15% 0.01 0.08
Reflex Impedance Scale Factor 1 0.02 (4) 0.003 15% 0.01 0.04

Reflex Damping to Stiffness Ratio (gd) sec−1 2 (4) 0.3 15% 0 0.04

TABLE II

SYNTHETIC MODEL PARAMETERS AND THEIR ASSOCIATED MEAN (NOMINAL)
VALUES AND STANDARD DEVIATIONS (SD) USED TO DETERMINE THE
SENSITIVITY INDICES OF SALTELLI ET AL. (5). ALSO SHOWN ARE THE
RESULTING SENSITIVITY INDICES. SENSITIVITY INDICES LESS THAN

ONE-THOUSANDTH WERE REPORTED AS ZERO. TOTAL VARIANCE WAS 1.56mm2,
SHOWING VERY SMALL AVERAGE DEVIATIONS WHEN USING THIS APPROACH.

FIRST-ORDER SENSITIVITY, S, CAN BE INTERPRETED AS FRACTION OF
VARIANCE REMOVABLE BY PERFECTLY CORRECTING A FACTOR. TOTAL
SENSITIVITY, ST , CAN BE INTERPRETED AS THE FRACTION LEFT AFTER

CORRECTING ALL OTHER FACTORS. MOST PARAMETER VALUES COME FROM
THE LITERATURE, BUT INSTRUMENT-SPECIFIC PARAMETERS WERE

DETERMINED EMPIRICALLY THROUGH REPEATED MEASUREMENTS (RM).
WHERE PARAMETER VALUES WERE UNAVAILABLE, 15% OF THE MEAN WAS

USED AS A CONSERVATIVE ESTIMATE.
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2.4.3 Human Intent Trajectories

Extraction of intent from human point-to-point reaching revealed straight-line movement

that persisted for hundreds of milliseconds after the onset of disturbing forces (Figure 3). If

intent can change following disturbance, it can only do so after some period of time due to

processing and communication delays in the sensorimotor system that produces new motor

commands. We hypothesized that intent should not diverge from the undisturbed intent path

even if the actual hand was disturbed within this window of delay. In both pulse timing

conditions, the intended trajectory remained straight for longer than the hypothesized 120

milliseconds (p < 0.001), even though the actual hand was dramatically deflected, supporting

our hypothesis and the approach.

These results suggested a reproducible approach for inspecting how individuals might al-

ter their intent in response to disturbances. Actual hand paths could no longer be explained

(p = 0.05) by deviation in undisturbed movement within 145 milliseconds after the onset of

disturbance. Despite the disturbance, three of the eight subjects’ intents did not depart signifi-

cantly from baseline (Figure 3, panel A). The remaining five subjects’ intents deviated between

150 and 255 milliseconds after the hand deviated (Figure 3, panel B). When disturbances oc-

curred early in reaching, intent showed some signs of correction mid-reach. When disturbances

occurred later, the intent continued to the target, but interestingly, it then corrected. Intention

showed systematic deflections that counteracted the direction of disturbance beginning about

200 milliseconds after the onset of the force disturbance; however, this counteraction did not

immediately depart from the range of undisturbed movements (Figure 3, bottom of panel B).



25

Figure 3. Subjects’ disturbed hand trajectories and extraction of intended trajectories from
them reveal that both variance and invariance of the motor plan can occur even in response to
very large disturbances. The hand path, in black, deviates from the blue baseline, as a force

pulse, gray arrows, is applied. Three of the eight subjects’ intent trajectories (orange) did not
significantly deviate from undisturbed movement (panel A) as observed by the intent region

not departing the undisturbed movement (blue) region. Five of the eight subjects’ intent
trajectories did significantly deviate from undisturbed movement (panel B). The summary
plots display whole-subject statistics as shaded regions (mean ± 95% confidence interval on

the mean). The time at which the hand region (black) first departed from undisturbed
movement (blue) is marked with a green dot for each subject. If the intent region (orange)
departed from undisturbed movement, the onset of departure is marked with a red dot for
each subject. Panel A subjects’ intent did not depart while panel B subjects’ intents did

depart.
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2.5 Discussion

We sought to test the suitability and robustness of an algorithm that determines a person’s

intent during reaching motion, even if there are disturbances. Sensitivity analysis on synthetic

data revealed that errors in response to parameter variations were smaller than the trial-to-trial

variance commonly observed in human reaching. Mis-estimation was largest if the stiffness was

inaccurately modeled. We tested this on human reaching and found that in spite of the hand

being disturbed by forces, the intended movement remained on-course to the target, possibly

changing after 150 milliseconds. This represents a new and accurate method for viewing intent

and how it changes when faced with a force disturbance.

While the derivation of intent determination required many steps, the outcome is a filter

whose use is straight-forward. Many filters for converting assumed intent into simulated hand

trajectories have been proposed and validated (6; 25; 4). Demonstrating the validity and plausi-

bility of mathematically transforming those filters to instead convert measured hand trajectories

to intent adds a novel method to the arsenal of analytic methods for exploring human motor

control.

Interestingly, the formulation leads to some implications on the expected behavior of this

moving equilibrium. Even if the muscle equilibrium jumped abruptly, this would be insufficient

to move the intended trajectory abruptly due to the presence of the mass term in the intention

formulation – reaching intent cannot jump abruptly. The intent trajectories certainly follow

this pattern, smoothly responding to disturbances at a latency of about 200 milliseconds. While

this work examines the tendencies of the onset of change, statistical testing cannot be used to
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detect the absence of change in an individual movement. Still, Figure 3 shows reaches that are

more compatible with intermittent control than with continuous optimal feedback control. In

classic optimal control, the system is always updating intent in response to error (10). While

most of our subjects displayed a latent response consistent with sensory feedback latencies (26),

three of our eight subjects showed no detectable response. The absence of response to a large

force disturbance is instead consistent with adherence to a trajectory planned (perhaps entirely)

before the disturbance. Control that is intermittent (27) with limited opportunities to change

intent can explain such observations. It remains to be seen if and how change in intent might

be triggered.

Determination of intent may facilitate motor training and stroke recovery. Error augmen-

tation, which presently relies on dictating the reaching intent, has demonstrated the capacity

to increase and speed up learning in healthy patients (20) and following stroke (28). Augmen-

tation of difference from static, dictated intent could be replaced with scaling of the magnitude

of the difference between the desired and realized trajectory. This makes error augmentation

during undirected reaching and exploration possible, including both error reduction and error

magnification. Partial error cancellation would allow learning to take place without harm to

task goals. As demonstrated by the success of the challenge-point framework (29), dynamic

variation of augmentation as task learning progresses can be beneficial. With this extraction,

error can be measured and augmented in real-time even without an explicit task, potentially

enabling wider utility and application.
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This novel determination of intended trajectories from force-disturbed movements allows

hypothesis testing that was not previously possible. This approach can take any “candidate

model” of the human arm and create a filter that estimates the intended trajectory. By using

tests such as the comparison with undisturbed straight line reaching employed in this paper,

one can evaluate which candidate produces the most plausible intended trajectory, supporting

one model over another. Instead of comparing two generative models to see which better

approximates movement, it is now possible to perform element-by-element fitting. Direct access

to the intended trajectory allows optimal feedback control models to better understand and

fit hypothesized cost functions and their parameters. In addition, mid-movement replanning

became falsifiable: we were able to show that intended trajectories from disturbed motions

differ from those of undisturbed motions and how they differed.

Nevertheless, there are some limitations to these methods. Accurate interface force mea-

surement (within a few tenths of a newton) is needed. Such instrumentation is available, but

must be used with great care in order to preserve the accuracy of the estimate. Our sensitivity

analysis on synthetic data revealed that slight error can lead to a trajectory that accumulates

a drift due to bias caused by the force term. More importantly, while modern force sensors can

be highly accurate with very high signal to noise ratios, they tend to drift over time, leading to

error that can grow if the device is not periodically tared. Our empirical approach used several

methods to mitigate these effects, and hence the errors became small. It remains to be seen

if there are methods to further reduce the mis-estimation due to force error or eliminate the
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need for force estimation altogether. It will be also interesting to determine whether relaxing

constraints and operating in 3D would produce the same levels of accuracy found here.

Since trajectories were not controlled experimentally, our tests rely heavily on the assump-

tion that disturbed intentions initially mirror undisturbed intentions. This study examined

straight line motions because it is well understood that people tend to repetitively attempt

to reach in a straight line towards a target (30). Also, even when subjects are persistently

perturbed by a force field, they recover their motions to a straight line with repetitive experi-

ence (6). Future studies might employ tasks with a more specific and/or explicit trajectory to

facilitate comparison with the estimate intent’s path. Unfortunately, even such an intended tra-

jectory may not be strictly invariant during external disturbance because some displacements

may cause intent to be recalculated by the nervous system.

Another key assumption in this study is that the joint impedance (stiffness) is linearly related

to torque. While other approaches tend to construct paradigms that indicate or presume that

the intention is static in order to derive impedance – the so called family of system identification

applications, this study makes a constrained assumption of stiffness in order to determine intent.

In a sense, this approach widens the scope to include movement. Sensitivity analyses showed

that approximation of stiffness is the most critical factor to accuracy in estimating intent. While

serious trial-to-trial stiffness mis-estimation is unlikely, co-contraction in response to disturbance

might plausibly double stiffness mid-reach. Even as the model is insensitive to normal variations,

a human can halve or double their stiffness (31) significantly reducing determination accuracy.

Our results also point to the possibility of the impedance changing during motion, perhaps as
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a function of time. This stiffening may even explain the reported deviation of intent from the

baseline trajectories. Of particular concern are the large hooks at the end of the motions. While

subjects might have preemptively stiffened in response to the possibility of disturbance, the

many reaches in between disturbances may have induced them to relax instead. These changes

in stiffness might be substantiated (or even corrected for) by detecting muscle co-contraction

using electromyography or using additional modeling assumptions to allow real-time estimation

of stiffness.

The simple linear scaling of Burdet et al.’s stiffness model (4) facilitated hypothesis testing,

but was inherently limiting. However, more accurate approaches would provide us with many

free parameters through which to determine the outcome of the eventual extraction and obtain a

spurious favorable result. Like others who have examined large force disturbances, we find lower

stiffnesses (our c parameter) than might be expected (32) (Table I). We explored the possibility

that both the hooks and the low stiffness resulted from underestimating the contribution of reflex

impedance, but using values more similar to those of Crevecouer and Scott(32) exacerbated the

hooks without increasing total stiffness. Differences in tasks studied (19) and/or the dependency

of muscle impedance on perturbation size (33) may explain these discrepancies.

The general intent extraction approach presented here reveals the conditions needed to solve

for the moving intent in an arbitrary dynamic process. Sensitivity analysis for this approach

applied to the human arm demonstrated favorable conditions for determination of intent during

force-disturbed reaching. Reaching intent became significantly different from baseline reaching

only after enough time had elapsed for the disturbance to be processed and descending motor
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commands to change. This window into intent should allow advances in arm modeling, motor

training, and human-machine interaction.

2.6 What is Intent

The word intent can be contentious and lead to confusion; and hence may be best placed

in the context of various literature that use related terminology. It is important to distinguish

intended action from motivation (34; 35), cost (10; 8), or goal selection decisions (36). In typical

motor control studies, subjects are motivated to complete an experiment in a timely fashion,

and are usually explicitly provided targets to reach to. Classification of intent is prevalent in

both lower (37; 38) and upper limb (39; 40) prosthetics where hybrid control algorithms select

from among a set of discrete actions (walking/standing/flexion/extension/etc). While subjects

may be motivated to complete experiments with minimal effort/cost and their goal may be

to reach a target, here we use intent to describe the course of action (i.e., the trajectory of

the arm) taken in service of goals and motives and not the goals nor the motives themselves.

Particularly of interest is the intended course of action (i.e, the intended trajectory), even when

the actual movement is disturbed and hence no longer matches the intent. In other words, we

operationally define intent as a subjunctive – where would the motion have gone had it not

been disturbed?

Attempts to deduce motor intent in the past have focused on the assumed spring-like prop-

erties of human muscles. Springs produce a force according to their impedance and stretch. By

measuring force, impedance, and position, Gomi and Kawato (12) were able to deduce stretch

and thereby infer the muscle’s equilibrium point. Supporters of the “λ model” (11) hypothe-
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sized that this muscle equilibrium point, and not the equilibrium of the whole arm, represented

the intent of a movement even though it did not compensate for the dynamics of the arm as a

feedforward controller would. Upon Gomi and Kawato’s inspection of the muscle equilibrium

point as it evolved in time, it was clear that it was highly complex and often not anatomically

realizable. Therefore, it could not well-represent the intent of a simple reaching movement.

Unlike the equilibrium point of muscle, the a pre-planned equilibrium point of the entire arm is

the path the arm will follow in the absence of disturbance (6). In the presence of disturbance,

the arm might be deflected from its equilibrium. We explored if or how this arm equilibrium

point might change due to disturbances.

Our findings could explain the discovery by Bizzi et al. (13) of a “virtual trajectory” (α)

in deafferented monkeys that progressed smoothly from the initial to final positions and how

that virtual trajectory is different from λ, the equilibrium point of muscles – intent and λ

are equivalent only when intent is unchanging; therefore, this muscle equilibrium cannot be the

intent of a movement. By deriving the technique in a general form, we discovered that our intent

is equivalent to the virtual trajectory and can be used to determine the muscle equilibrium of

a λ model (See Methods section).
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CHAPTER 3

REALTIME FEEDBACK OF MOVEMENT INTENT

??

3.1 Overview

This work, written in collaboration with my adviser and two summer interns, was published

in the peer-reviewed journal Frontiers in Behavioral Neuroscience on January 12th, 2016 (1).

While the previous paper established that if a path is intended it must be the path we recover,

it remained unclear whether that path was explicitly planned or merely arose from the physics of

the arm. To address this question, we allowed subjects to interact with their intent in real-time

to verify that they could recognize and control it.

3.2 Introduction

Humans often interact with machines in uncertain and complicated environments, such as

crowds and traffic, where they must contend with turbulence, moving obstacles, distractions,

and disturbances. Despite our capacity to learn and adapt, some environments evolve too

quickly or with too much uncertainty for meaningful learning. Human and animal nervous

systems intelligently solve many problems by planning ahead (41) and suppressing suboptimal

actions (42), yet in the face of uncertainties we often cannot adequately prevent errors. There

is the possibility, however, to exploit additional information from instruments – particularly

fast and accurate force sensors – that can measure human machine interactions. Combining

34
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sensors with filtering techniques makes it possible to determine a person’s underlying intent,

operationally defined as the motion they would have made had they not been disturbed. While

other components of a movement, such as its goal, are also intended (42), our work here

addresses only the intended trajectory. This intent provides new ways to understand the nature

of control and provide novel feedback.

Recent work in our laboratory has attempted to outline a methodology for obtaining esti-

mates of intent (1). This method assumes a model of the dynamics and control of the human

arm. Following manipulations of the equations of motion, the method integrates to find a unique

estimate of intent. The algorithm recovers the trajectory a person intended to take, even if

they were forced away from it due to environmental disturbances. This analysis has enabled us

to show how some subjects sometimes alter their intent following exposure to unexpected force

pulses.

A new question that arises is whether seeing one’s own intent, rather than what actually

happens, may be useful. The intent extraction method can be streamlined to allow for real-time

estimations of intent that can be presented to the subject as a cursor. Estimated intention may

outperform the movement accuracy in the presence of unexpected disturbances. If so, such a

method holds great promise in any situation where humans and machines interact as it enables

the machine to give the human operator what they want. This human-machine collaboration

could outperform what a person can do alone.

Displaying anything other than what truthfully happens is a distortion and a deceit. Like

many other visual distortion experiments (43; 44), intent feedback (IF) introduces a visuomo-
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tor discrepancy that may be confusing to the nervous system. Preplanning a specific route

may not be necessary, and instead the system might continuously react to any environmental

disturbances until it reaches the goal. If people try to achieve a goal while minimizing some

measure of cost, it is possible to compute a set of rules for reacting to the environment (10).

No specific intended route is needed when using optimal feedback control. While this modeling

strategy has been very successful at explaining data, it fundamentally assumes that corrective

actions will be taken in response to relevant disturbances. Goals can also be reached at min-

imal expected cost by constructing – and possibly updating – a specific intended route. If no

particular trajectory is intended, the nervous system could be unable to recognize IF.

While performance is the best indicator of IF’s worth, changes in arm stiffness can provide

supporting evidence that subjects are actually getting what they want. Arm stiffness is known

to increase during exposure to instability (25) and uncertainty (45). We anticipated that these

changes might also be modulated by the presence of IF. Reducing the effects of environmental

instability and presenting the subject with a signal already known to them should relax their

arm and make it more compliant. We hypothesized that any elevated arm stiffness from noisy

disturbances would decrease while subjects received IF.

In this paper, we describe our streamlined method for real-time IF to which we exposed

subjects in an unstable and unpredictable environment. Their ability to perform goal-directed

reaching using visual feedback of their hand position was compared against IF. We hypothe-

sized that IF should lead to better performance in the presence of force-based disturbances.
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Accordingly, we hypothesized that during random disturbances, the intent trajectory should

deviate less than the hand trajectory.

3.3 Materials & Methods

3.3.1 Intent Extraction

The well-known motion control structure of Shadmehr and Mussa-Ivaldi (6) relates arm

trajectory, q, to desired arm trajectory, qd, and any external disturbance, E using physical

parameters of the arm. To show how this model can be algebraically inverted to instead

describe desired arm trajectory as a function of arm trajectory and external disturbance, we

write it as a torque balance:

Inertia︷ ︸︸ ︷
M(q)q̈+

Coriolis, Centripal︷ ︸︸ ︷
G(q, q̇)︸ ︷︷ ︸

Plant

+E =

Feedforward︷︸︸︷
τff +

Feedback︷︸︸︷
τfb︸ ︷︷ ︸

Controller

(3.1)

Where M is the mass matrix, q is the joint angles, q̇ is joint angular velocities, q̈ is joint

angular accelerations, and G contains both Coriolis and centripetal effects. Typical applica-

tions solve this torque balance for q̈ and use a numerical differential equation solver to predict

arm trajectory in the context of a disturbance of interest, a feedback model, and feedforward

torques determined by inverse dynamics. Rather than test hypotheses regarding the learning,

production, or composition of this feedforward torque, we instead solved for it:

τff = M(q)q̈ +G(q, q̇) + E − τfb (3.2)
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Then we noted that feedforward torque can have a one-to-one correspondence with desired

acceleration, q̈d:

M̂(qd)q̈d + Ĝ(qd, q̇d) + Ê = τff (3.3)

Hats ( ˆ ) denote the nervous system’s best estimate of a physical quantity. Combining these

expressions, suppressing state dependencies, and solving for q̈d:

q̈d = M̂−1{Mq̈ +G− Ĝ+ E − Ê − τfb} (3.4)

In this form, a differential equation solver can determine qd as it evolves in time if a few

assumptions are made and conditions are met. First, Ê must be modeled or assumed, so we

chose Ê = 0. In the presence of a zero mean white noise force disturbance, its mean should

be zero, but it is unlikely to be exactly zero and may reflect an average of only the last few

exposures (46). Next, the matrix M̂(qd) must be invertible, but we ensured this through our

choice of workspace. Finally, feedback torque requires a model of arm impedance, which is

known to be task-dependent (19) and may vary over the course of a reach (47). With no prior

knowledge of arm impedance for this task-disturbance combination, we presumed the feedback

torque model of (6) anticipating that it is sufficiently accurate or easy to learn (experiment

1). The experiment was repeated with a lower stiffness estimate (experiment 2) to explore any

dependence on this assumption.
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3.3.2 Apparatus

A planar manipulandum (described in (20) and depicted in Figure 4) was programmed to

minimize any friction or mass. The MATLAB XPC-TARGET package (21) was used to render

this force environment at 1000 Hz and data was collected at 1000 Hz. Visual feedback of cursor

position was performed at 60 Hz using OpenGL. Closed-loop data transmission time (position

measurement to completed rendering to recognition of rendering by the position measurement

system) was less than 8 milliseconds, ensuring a visual delay less than one 60 Hz frame. Nu-

merical simulation was performed in real-time using the GNU Scientific Library’s odeiv2 driver

with Runge-Kutta-Fehlberg (4,5) stepping (48). Visual feedback was given using an opaque

screen that prevented subjects from seeing their arm during movement.

3.3.3 Human Subjects

The human data trajectories analyzed here are drawn from sixteen subjects who gave in-

formed consent in accordance with Northwestern University Institutional Review Board, which

specifically approved this study and followed the principles expressed in the Declaration of

Helsinki. Fourteen male and two female right-handed subjects (ages 21 to 30) performed the

reaches with their right arm and were not compensated. Subjects’ arm segment lengths were

directly measured in situ while body mass and handedness were self-reported.

3.3.4 Experimental Design

Subjects performed center-out reaches of the right arm to one of three visually-presented tar-

gets 15 centimeters from the center and chosen at 120◦ intervals. These targets were represented

as a red circle with a radius of 1 centimeter. Target selection was carried out pseudorandomly
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Figure 4. Subjects were seated at a planar manipulandum capable of measuring position and
force as well as rendering forces. The subject’s hand was positioned below an opaque screen
so the subject could not see their hand as they reached towards the targets. On the screen, a

red circle (the target to reach to) appeared on the screen and subjects were shown a blue
circle that either represented the actual position of their hand or their estimated intent as

they moved toward the target depending on the movement block.

such that each outer target was visited 16 times in all five blocks of 96 reaches each. During

blocks 2 through 4, subjects experienced filtered white noise forces drawn from a white noise

generator at 1000 Hertz with flat power spectral density of 1 Newton. Forces were then passed

through a 4th order low-pass Butterworth filter with cutoff 10π radians per second. In all

blocks, except block 3, cursor position (represented as a blue circle with a radius of 1 centime-

ter) indicated the subjects’ actual hand positions. In block 3, the cursor position indicated the

subjects’ estimated intents. Once the cursor (blue circle) made contact with the target (red

circle), a new target was immediately presented. Both actual hand position and intent were

recorded at all times, even though at any given moment only one was visible to the subject.
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3.3.5 Dynamic simulation of arm and intended trajectories

Anatomical landmarks and values from (17) and (18) were used to estimate relationships

between body mass, limb mass, limb length, limb center of mass, and moment of inertia.

Viscosity parameters, Kd, were taken from (6). Stiffness parameters were either taken from

(6) (KP1, experiment 1) or estimated (KP2, experiment 2). Expressed in Newton-meters per

radian:

KP1 =

15 6

6 16

 KP2 =

8 2

2 5

 (3.5)

To estimate this reduced stiffness, a pilot subject was asked to intend to remain still on the

center target, qd, while co-contracting as little as possible. KP2 was then calculated from one

minute of white noise forces, E, and joint angle traces, q as the least squares solution to the

system:

KP2

(
qd(t)− q(t)

)
= M

(
q(t)

)
q̈(t) +G(q(t), q̇(t)) + E(t) +KD q̇(t) (3.6)

where KP2 is a 2-by-2 matrix while the state difference and torque are 2-by-60000 matrices.

Feedback torque was calculated as the sum of viscous and elastic impedances

τfb = KD(q̇d − q̇)−KP (qd − q) (3.7)
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with KP chosen as described and KD taken from (6) as expressed below in Newton-meters per

radian-second.

KD =

 2.3 0.09

0.09 2.4

 (3.8)

3.3.6 Metrics and Statistical Analysis

Trajectories and forces were rotated such that movement and force parallel to the line

connecting the previous target (the reach origin) and the presented target were along a progress

axis, while perpendicular movement and force were along an error axis. Reach onset was

detected as the moment the cursor’s distance from the center of the previous target first exceeded

1 centimeter. Maximum perpendicular error for a trajectory was the largest error magnitude

within 250 milliseconds of reach onset. A scalar stiffness, k, was calculated for the error axis

during this same 250 milliseconds time span by linear regression:

Fe = më+ bė+ ke+ FO (3.9)

Force (Fe) and state (ë, ė, e) were known. Mass (m), viscosity (b), and stiffness offset (F0)

terms were calculated, but discarded. While joint stiffness is usually described as a matrix,

instantaneous endpoint stiffness in only the error direction is a scalar. This effective stiffness

metric isolated stiffness in the error direction and facilitated statistical comparison between

treatments and blocks. The paired t-test was used to detect differences in maximum perpen-

dicular error and stiffness between blocks and treatments at the 5% significance level using the

MATLAB statistics toolbox package (49).
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3.4 Results

As expected, the model was able to deduce an intended trajectory and all subjects were able

to use this estimate of their intent to perform targeted reaching while experiencing turbulent

forces (Figure 5). There were no obvious changes in performance using intent over time. We

also observe no after-effects of either IF or the forces. In block 3 where IF replaced visual

feedback of the hand, the intent significantly (p = 0.02) outperformed the hand itself. For this

intent estimate to be useful, subjects should perform better when using IF than when using

feedback of the hand. Comparing the hand’s performance in block 2 (Figure 6, panel B) to IF’s

performance in block 3, subjects performed significantly (p = 0.02) better using their estimated

intent. While subjects also performed better using IF in block 3 than using their hand in block

4, this difference was not significant (p = 0.07).

Interestingly, our measure of effective stiffness changed dramatically across the experimen-

tal conditions. Subjects stiffened significantly (p < 0.001) in response to white noise forces

(compare stiffness in blocks 1 and 2 of Figure 7, panel B). Next, subjects’ effective stiffness

significantly (p = 0.01) decreased when IF replaced the hand location as their cursor (compare

blocks 2 and 3 in Figure 7). This decrease did not return stiffness to undisturbed levels, and it

remained even after feedback of the hand resumed (comparing blocks 3 and 4). Subjects appear

to have adjusted their stiffness in response to the stiffness used by IF. Subject’s stiffness’s did

not significantly (p = 0.1) differ from the stiffness of the standard model when it was used by

IF. Finally, subjects reported that this IF treatment of the cursor feedback made it easier and

they felt more relaxed. Detailed statistics of these differences are summarized in Table III.
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Figure 5. Typical subjects (one from each experiment) made center-out targeted reaching
motions under experimentally varied force and feedback conditions. Subjects used feedback of

either hand motions (blue lines) or estimated intent (red lines) to complete these reaches.
Shown also are the measured hand motions in the third block, which were recorded even

though they were not visible to the subject (blue) to be compared to intent (red). Intent was
estimated using either the standard stiffness model of (6) or a reduced stiffness model to

explore any dependence of reaching stiffness or accuracy on this assumption. The white noise
force disturbance was designed to be unpredictable in order to minimize any effect of learning.
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Figure 6. Subjects’ reaching accuracy depended on the presence of force disturbance and the
contents of visual feedback (A). (B and C) Maximum deviation from straight-line reaching

calculated during the first 250 milliseconds after the onset of movement revealed that
turbulent force disturbance degraded reaching performance. Comparison across feedback
modalities revealed that IF (red) in block 3 alleviated performance error relative to hand

performance (blue) in blocks 2 and 4. Note that in block 3 we show blue dots indicating the
hand’s performance, although it was not visible to the subject. (D) Several comparisons

showing pairwise performance differences amongst blocks 2, 3, and 4. Comparisons between
hand performance in block N and IF performance in block 3 are abbreviated as HN − I3

(asterisks denote t-test significance at α = 0.05 level). Performance did not appear to depend
on the choice between the standard stiffness model of (6) (panel B, and “S” labels in D) or a

reduced stiffness (panel C, and “R” labels in D) to determine intent.
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Figure 7. Subjects’ effective stiffness depended on the presence of force disturbance and the
contents of visual feedback (A). (B and C) Effective stiffness, K, calculated by linear
regression during the first 250 milliseconds after the onset of movement revealed that

turbulent force disturbance increased this stiffness. (D) Comparisons between treatment
conditions revealed that exposure to turbulent forces caused significant stiffening, but IF

could significantly alleviate arm stiffness. As in Figure 6, the estimated arm stiffness in block
3 significantly depended on our choice of either the classic stiffness model of (6) (panel B, “S”
labels) or a reduced stiffness (panel C, “R” labels) to determine intent. Significant differences

were determined by paired t-test at the α = 0.05 significance level and is denoted by an
asterisk.
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As we found evidence of IF dramatically reducing effective arm stiffness, we next examined

whether we could reduce effective arm stiffness even more. We asked a second group of subjects

to perform the same experiment, except that the arm model used by IF was adjusted to assume

a greatly reduced stiffness of the arm. Surprisingly, we found the same performance benefits

(Figure 6, panel C), but effective stiffness reduced even more (Figure 7, panel C). Performance

using IF in block 3 again significantly outperformed the hand in block 3 (p < 0.001) and the

hand in block 2 (p = 0.02). We found the same beneficial effect relative to block 4, but this

difference was not significant (p = 0.06). Moreover, this reduced stiffness IF allowed subjects

to relax to approximately two-thirds the effective stiffness of (6) during block 3 (p = 0.004).

As before, stiffness increased following exposure to white noise forces (p < 0.001) that was

significantly (p = 0.01) alleviated by IF. Removal of IF was still associated with an increase in

arm stiffness, but this increase was not significant (p = 0.08). Subjects who received this lower

stiffness IF also reported that IF was easier and allowed them to greatly relax. In other words,

subjects reduced arm stiffness to accommodate the model.

3.5 Discussion

The work presented here highlights the use of a novel visual distortion of the cursor that

leads to superior performance in a hand-eye coordination task in the presence of random dis-

turbances. This real-time distortion marks the estimated intent of the subject rather than

the hand location in order to make movements easier. Although exposure to random forces

hindered subjects reaching accuracy and increased their arm stiffness, replacing the veridical

feedback with intent feedback (IF) improved accuracy and decreased stiffness. While other
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T (7) P Mean SEM

Error Comparisons, Experiment 1: Standard Stiffness cm cm
Hand (Block 3) - Intent (Block 3) 7.11 <0.01 0.33 0.05
Hand (Block 2) - Intent (Block 3) 3.00 0.02 0.36 0.13
Hand (Block 4) - Intent (Block 3) 2.15 0.07 0.40 0.15

Error Comparisons, Experiment 2: Reduced Stiffness cm cm
Hand (Block 3) - Intent (Block 3) 5.69 <0.01 0.34 0.06
Hand (Block 2) - Intent (Block 3) 2.80 0.03 0.40 0.15
Hand (Block 4) - Intent (Block 3) 2.26 0.06 0.28 0.13

Stiffness Comparisons, Experiment 1: Standard Stiffness N/cm N/cm
Hand Stiffness (Block 2) - Hand Stiffness (Block 1) 10.2 <0.01 1.17 0.12
Hand Stiffness (Block 3) - Hand Stiffness (Block 2) -3.24 0.01 -0.30 0.10
Hand Stiffness (Block 4) - Hand Stiffness (Block 3) 0.98 0.36 0.09 0.10
Hand Stiffness (Block 3) - Model Stiffness (KP1) -1.92 0.10 -0.37 0.21

Stiffness Comparisons, Experiment 2: Reduced Stiffness N/cm N/cm
Hand Stiffness (Block 2) - Hand Stiffness (Block 1) 5.53 <0.01 0.97 0.19
Hand Stiffness (Block 3) - Hand Stiffness (Block 2) -4.75 <0.01 0.33 0.07
Hand Stiffness (Block 4) - Hand Stiffness (Block 3) 2.03 0.08 0.25 0.13
Hand Stiffness (Block 3) - Model Stiffness (KP2) 3.69 <0.01 0.43 0.12

TABLE III

ERROR AND STIFFNESS CHANGE WITH FEEDBACK TYPE AND PRESENCE OF
DISTURBANCE.
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visual distortions typically degrade performance and require an adaptation period to overcome,

IF immediately enhanced performance. This type of feedback may be a new method for en-

hancing performance in human-machine interactions, and also sheds light on how the nervous

system uses visual feedback.

The most striking result is that although the nervous system sees an untruth about where the

end-effector is, it appears to be effective for improving performance. The IF presentation is one

of many visuomotor discrepancies in hand-eye coordination tasks, yet this one does not degrade

performance and does not require adaptation. Not all perceptual lies appear to be unwanted.

Two possibilities explain this result: either the central nervous system was able to adapt to

this new feedback within a single reach, or the means to make use of this signal were already

available. For instance, IF may mimic efference copy. The performance variability inherent in

white noise force disturbances complicated our observations of the learning process, but simple

examination showed there were no obvious differences in performance between the first and

final exposures to IF. There were also no obvious after-effects from exposure to IF (Figure 5,

rightmost panels). The simplest explanation for this is that IF approximates a signal already

known to the brain: the path planned for the hand. In addition to its promise in performance

enhancement, IF represents a novel means of revealing and studying the mechanisms of motor

planning and motor control.

While IF alleviated the increased stiffness caused by exposure to random forces, stiffness

remained significantly above baseline levels. Many explanations are reasonable. In particular,

we hypothesized that subjects would adapt their own arm stiffness to decrease conflict with
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the stiffness model used to estimate their intent and thereby increase the accuracy of the

estimate, and while the data did support this conclusion the effect was not strong. Alternatively,

inaccuracy and incompleteness of the simple models used might have resulted in an less accurate

estimate of intent. Since noise and performance inaccuracy can both lead to co-contraction, this

may account for the residual stiffness. Finally, as subjects were not cued regarding the onset or

removal of IF, the residual co-contraction may have been a precaution against the resumption

of veridical feedback.

The ease with which subjects could make use of their estimated intent provides strong pre-

liminary evidence that a specific intended trajectory was computed for the hand even when

reaching in a highly variable environment. While recent work has identified kinematic con-

straints unnecessary for a task (50), this is the first direct evidence that the entire trajectory

is controlled even in the absence of specific instructions or constraints. While portions of the

intended trajectory are surely computed before the onset of movement, movement intent is

not finalized before the onset of movement and is not strictly ballistic. There is mounting

evidence of multiple corrective actions formulated after movement onset in recent literature.

For example, Mirabella (51) compared onset and movement times during a task that could be

countermanded, and found that quicker onset times were compensated by longer movement

times, most likely due to the need for on-line proactive adjustments in anticipation of known

task demands. Such a context effect has also been recently replicated on Parkinsons patients

(52).
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It is important to distinguish the signal we are exploring from others that may use the word

“intent.” One source of complexity is that formation of actions is a multi-step process in which

several brain regions contribute. The intent we refer to here is not the goal-oriented intent that

might temporally precede the computation of the motor plan (53; 42). The intended trajectory

and goal remain malleable and can change (or be suppressed) even after execution (54). Work

by (52) showed that inhibition is important for quickly aborting, interrupting, and re-planning

motion after its onset. In contrast, our version of intent focuses on the final stage of planning

and hence the command at the present-time. This is after the nervous system has completed

any further checks and released the plan. In a sense, the intent we provide is in the present and

not pre-planned (for the future) or post-processed a posteriori (in the past).

It is also important to distinguish this from other methods that attempt to determine the

ultimate target of action (the goal). A number of human-computer approaches strive to identify,

for example, the final target of a movement (55). In our rather limited task with only three

possible reaching targets, identification was trivial. We analyzed this on our task and were

able to easily identify the target with 95% visuomotor efficiency (closely related to accuracy

(56)) within the first 80 milliseconds of motion, regardless of whether we used the hand or

IF. In contrast to these target-prediction methods, our approach allowed for the instantaneous

determination of the intended hand location. The novelty of such instantaneous detection

created the prospect of real-time feedback in human-machine interactions.

Intent Feedback might facilitate human-machine collaboration and artificial performance

augmentation by enabling the machine to preserve an operator’s intent while canceling un-
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expected disturbances from the environment. This should reduce the demand on the human

operator and increase performance – especially in environments with rapidly changing condi-

tions. This assistance goes beyond environment cancellation by also accounting for any errors

the operator might make based on their expectation of disturbance.

While IF holds promise, it also has strong limitations. IF is entirely dependent on the

accuracy of the models used. While we were able to leverage measurements of cadaver an-

thropometrics, average tendencies do not capture individual variability. Similarly, the model

of (6) appears to have accurately captured the mean tendencies (Figure 6, panel D’s rightmost

comparison) without accounting for variation among individuals or variation over time. Tech-

niques that could estimate changing stiffness, perhaps even in real-time, would greatly increase

the accuracy and utility of IF. While IF is limited by the accuracy of the models used, many

candidate models are available and may outperform the simple model we investigated here in

this preliminary study.

More broadly, this IF approach may be useful in any situation where some model of the dy-

namics is available and disturbances can be measured. For example, brain-computer interfaces

may need to address measurable common-mode electrical artifacts, such as the electromagnetic

disturbances that occur from lights being turned on. In cases where a disturbance can be

measured due to its similar effect across all sensors, IF allows the interface to respond in a

manner congruent with the user’s intent. This is especially important when simply canceling

the disturbance is not sufficient or practical, such as an exoskeleton’s user intending to crouch

down during an earthquake rather than trying to remain upright.
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In any case, intent feedback led to performance benefits for subjects moving in a changing,

uncertain environment. In addition to increasing subjects’ accuracy, IF may have allowed

subjects to reach their goals with less effort as arm stiffness decreased. IF provides a novel

form of feedback that may facilitate new insights into the nature of motor control and allows a

machine to collaborate more effectively with a human user.
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CHAPTER 4

DECOMPOSING INTENT INTO SUBINTENTS

??

4.1 Overview

This work, written in collaboration with my adviser and a lab mate, was submitted to

the peer-reviewed International Conference of the IEEE Engineering in Medicine and Biology

Society on March 14th, 2016. All of the previous works grew out of a simple question: if humans

modify their intended path mid-reach in response to force disturbances, when do they do so?

This simple question required two pieces of technology that did not exist. First, we needed the

capacity to recover the intended trajectory even though it is obscured by the force disturbance.

Second, we needed a tool that could determine when if and intent had changed. While the

literature addressing reaching during infant development and following stroke made clear that

motion was composed of more elemental subintents, it did not make clear was how to recover

those subintents from healthy adult reaches in a convincing way. This paper makes use of our

intent determination and large, unexpected forces to cause healthy reaching to break down and

expose its makeup. We then characterize that makeup to obtain preliminary insights into the

mechanisms of intent production.

54
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4.2 Introduction

Since the outset of human reaching research, it has been speculated that healthy, adult

reaching is composed of subintents (14). These subintents are distinct and easily recogniz-

able during infant development, but gradually blend together until their placement is mostly

indistinguishable by adulthood (15). Following a stroke, these subintents are again readily

recognizable (57) and their degree of blending reveals information about the severity of stroke

and progress towards recovery (16). Neural correlates of subintents have also been identified

(58). Attempts to identify and characterize subintents in healthy adults are thwarted by the

subintents’ shape: a sum of any variety of radial basis functions can be used to reproduce any

shape of interest (59). Attempts to identify subintents in undisturbed reaching are therefore

“doomed to succeed” and cannot support a rigorous and falsifiable hypothesis.

In order to claim that subintents have been accurately identified, we must show that they

can be accurately recovered from known sources. One test would be to show accurate recovery

of subintents from synthetic motions whose composition is known to us. As subintents’ shape is

not known, we must additionally show accurate recovery even when we intentionally differ the

shape of the subintents in the composition from the shape of the subintents in the decomposition.

Here, we seek to address these problems using three important techniques. First, we use very

large forces to disturb the limb and allow for easy identification of distinct corrections. Second,

because these forces are so large that they obscure the person’s contribution to their own reach,

we use a technique that can isolate that contribution – intent determination (1; 2). This algo-

rithm recovers the intended trajectory of a movement when the actual trajectory differs from
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intent due to external forces. This approach reveals how and when subjects modify their move-

ment intent. Third, we cluster data into subintents using the directional component of velocity

rather than seeking to maximize a goodness of fit that explicitly depends on subintents’ shape.

To support the subunit composition hypothesis, we should recover either a consistent pattern

of composition or a specific distribution underlying the stochastic composition we observe.

4.3 Methods

As it is not known when or how subintents are selected, it was not obvious what types

of disturbances might produce especially unblended intents. We designed an unusually large

disturbance consisting of a strong curl field followed by a pulse of force. We hoped that the com-

bination of these unexpected, strong forces with an abrupt, time-dependent transition would

interfere with learning (60) and instead cause subjects to adjust their intent. We then recov-

ered that intent (1) and decomposed it into subintents. Next, we verified the accuracy of the

decomposition. Finally, we examined the statistical properties of the subintents we recovered

in order to make some inferences about how they are planned.

4.3.1 Intent Determination

Intent determination is a filtering algorithm that combines an arm model with measurements

of the actual trajectory of the arm and the forces exerted on the arm to estimate the movement

intent (1) (Figure 8). First, the physical length of the upper arm and forearm are measured in

situ and the subject reports their body mass. Second, these physical properties are placed into

a model of the arm constructed from cadaver data (17; 18) and experimental observations (4)

to estimate the arm’s impedances. Third, the arm model is solved for the intended acceleration
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Figure 8. Using intent determination, an algorithm that recovers intent from force-disturbed
movements (1), we were to expose subjects to strong, abrupt forces and observe abrupt

corrections at harsh angles. This directional separation facilitated decomposition of those
intents into subintents.

and integrated numerically to find the intent trajectory: a time series of desired positions.

These steps and parameters differ from our earlier work only in that we did not take extra steps

in order to customize the stiffness model.
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4.3.2 Subintent Modeling

We define subintents as minimum-jerk, bell-shaped speed profiles based on work showing

that they best fit human movement data among symmetric subunit shapes (61). The intent

trajectory, ~y, is then a sum of scaled, translated versions of this profile κ,

~y(t) = ~ε+ ~y(0) +
∑
n

~Lnκ(t, Cn, Sn) (4.1)

κ(t, C, S) = 10τ3 − 15τ4 + 6τ5 (4.2)

τ =



0 if 0 > t−C
S + 1

2

t−C
S + 1

2 if 0 ≤ t−C
S + 1

2 ≤ 1

1 if 1 < t−C
S + 1

2

(4.3)

where t is time, Cn and Sn are the center and duration in time of the nth subunit, ~Ln is the

vector change in position due to the nth subunit, and ~ε combines all factors not explained by

subintents such as the inaccuracies due to imperfect recording and intent determination. The

cases used to define τ have the effect of limiting the contribution of a subunit such that it adds

smoothly to the trajectory within its span and has a constant contribution thereafter. In terms

of velocity,

~̇y(t) = ~̇ε+
∑
n

~Lnκ̇(t, Cn, Sn) (4.4)

κ̇(t, C, S) = (30τ2 − 60τ3 + 30τ4)S−1 (4.5)
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the contribution of a subunit is dramatically simpler as it makes no contribution at all outside

its span. It is for this reason that we perform our decomposition in the velocity space.

4.3.3 Subintent Decomposition

A decomposition method must overcome many challenges. The κ component can itself be

further decomposed into other radial basis functions. Worse, the decomposition can be depen-

dent on the shape of the basis function used. Others have tried to overcome these challenges by

invoking Occam’s Razor : minimizing the number of subintents used to decompose a movement

also minimizes the number of free parameters. They optimize the parameters of n subintents

and then increase n if a fit accuracy threshold has not yet been attained (59). Alternatively,

some groups have instead stopped at a point of diminishing returns (62). This is not a falsifiable

hypothesis as no threshold for n is obvious and quality of fit might be driven by factors other

than an insufficient number of subintents. In particular, it is not known how many subintents

might compose a typical motion. Subintents may also be very small as evidenced by miniature

art: humans are capable of freehand writing on a single grain of rice. Instead of asking how

many subintents we need to fit a movement, we instead examine how many directions are evi-

dent within a movement. Leveraging the distinctness of the subintents’ directions allows us to

avoid concerns of spurious decomposition without explicitly minimizing any cost function.

A decomposition borne of subunit distinctness is straightforward: if subintents are distinct

then their direction at peak speed is their direction. We need only identify peak speeds, record

their directions, and then use the dot product as an expedient means to identify when subintents
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start and end. This process is summarized graphically in Figure 9. Stated as a stepwise

algorithm that recovers a single subunit:

1. Identify the time at which the maximum speed occurs within a movement, C.

2. Note the movement direction at this time, v̂p = ~v(C)
|~v(C)| .

3. Construct a rate of change that depends only on direction, ψ = d
dt
~v(C)·~v(t)
|~v(t)| .

4. Take S as 2 times the distance from C to the nearest local maximum or minimum of ψ.

5. ~L = 1.875−1S~v(C) because κ̇(t = C) = 1.875S−1.

6. Subtract ~Lκ(t, C, S) from the velocity trajectory.

7. Repeat the algorithm on the remainder to recover additional subintents as desired.

Our algorithm terminated once the largest remaining peak in speed did not exceed ten

centimeters per second. These steps rely on the fundamentally restrictive assumption that the

direction observed at peaks in speed reflects a single subunit and not a sum of subintents.

Naively, this assumption is quite poor as it presumes a structure to movement composition

that is not founded in previous observations; however, our hypothesized subunit distinctness

appears to be upheld. Figure 11 (blue bars) demonstrates that this process does accurately

recover subunit parameters from synthetic data.

4.3.4 Synthetic Data

One unique way to test our approach is to artificially construct a motion from known

submovements, and then see if our approach can recover the original elements. As the subintent

composition of movement is not known, we construct two best estimates: one which adheres
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Figure 9. To demonstrate our decomposition method, we begin with a recorded intent (black
line, intent panel) and its speed trajectory (black line, speed panel). We have additionally
marked pastel-colored subintents in the intent, speed, and remainder panels to illustrate

typical properties. The largest subintent’s peak, C, is identified and marked with a red X. The
time derivative of velocity’s dot product with the direction at C is computed as ψ.

Submovement duration, S, is twice the distance in time from the red X to the red circle that
marks a maximum in the rate of change of direction. The velocity at C and the subintent’s
duration also define its magnitude L. We can then calculate the subintent’s contributions to

position and velocity and subtract them from the intent trajectory.
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to our assumptions regarding subintent shape and one which does not. Subject 1’s recovered

movement intent was decomposed by the algorithm described above, without any refinement

of S, and recomposed according to equation Equation 4.1. This recomposition was our naive

best estimate of the underlying subunit composition of healthy adult reaching. We additionally

recompose movement using the sin function as an alternative basis in order to test the robustness

of our extraction to our assumption that submovements are minimum jerk in shape. In this

case κ̇ = π
2S sin(πτ).

4.3.5 Experimental Design

Subjects made center-out reaching motions in three directions that were sometimes dis-

turbed by a large and difficult-to-learn curl-kick force. This disturbance was time-varying,

~F =



±


0 50

−50 0

~v if t0 ≤ t ≤ t0 + 400ms

15
~xf−~x
|~xf−~x| if t0 + 400ms ≤ t ≤ t0 + 800ms

0 elsewhere

(4.6)

and depended on velocity ~v, position ~x, and the position of the reach’s target ~xf . The direction

of the curl field is pseudo-random, which makes it very difficult to correct for even if it is

detected early. The kick portion was programmed to push the subject towards the target to

induce replanning. The onset of movement, t0, was detected as the moment the subject left the

previous reach’s target. These forces were not present during the first 100 reaches so subjects
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could familiarize themselves with the robot and any adjustments could be made. After the

hundredth reach, disturbances were presented pseudo-randomly such that each direction was

disturbed fifteen times. A total of 810 reaches were performed.

4.3.6 Human Subjects

Our human reaching trajectories were produced by eight healthy adults, two females and

six males, aged 21 to 34 years old who gave informed consent in accordance with Northwestern

University Institutional Review Board, which specifically approved this study and follows the

principles expressed in the Declaration of Helsinki. Subjects self-reported right-handedness,

performed the reaches with their right arm, and were compensated for their time. Subjects’

arm segment lengths were directly measured in situ while body mass was self-reported.

4.3.7 Apparatus

Subjects held the handle of the planar manipulandum depicted in Figure 10, which was

programmed to compensate and minimize any friction or mass. The MATLAB XPC-TARGET

package (49) was used to render the force force environment described above and collect data at

1000 Hz. Visual feedback of target and hand locations was performed at 60 Hz using OpenGL.

Force sensor drift was addressed using a linear re-zeroing procedure.

4.3.8 Statistics

In order to test for bias in our parameter recovery, we performed a Student’s T-Test to

determine whether or not the mean of the difference of the known composition’s parameters

and the decomposition’s parameters differed significantly from zero. Tests were conducted at

the α = 0.05 significance level.
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Figure 10. Subjects held the handle of a robotic device that rendered programmed forces and
recorded position and force information. Position was indicated to the subject with a blue

cursor and the target of a reach was indicated in red. The opaque, horizontal screen occluded
subjects’ vision of their hand.

The cumulative distribution function of the exponential distribution is defined as the proba-

bility that the random variable A takes on a value less than or equal to a: P (A ≤ a) = 1−e−λa.

Therefore we expect that if an empirical cumulative distribution, C(a), is generated by this dis-

tribution, ln(1 − C) should be linearly related to a as ln(1 − C) = −λa. We examine this

linearity using the coefficient of determination, R2.

4.4 Results

Parameter recovery from synthetic data was highly accurate. Student’s T-Test detected no

significant bias (n = 1352, p > 0.49) between the parameters recovered and their known values.

While peak location and position change had lower variance, duration and subintent count were

detected with much higher variance. Decomposition accuracy did decrease somewhat when sin-

based subintents were used to construct synthetic movement even though minimum jerk-based

subintents were still used in the decomposition, but this decrease in accuracy was not significant

(n = 1352, p > 0.09).
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Figure 11. Error in recovered subintent properties was not dependent on the subintent shape
used to compose synthetic data. Parameter recovery was accurate, despite a high variance, as
evidenced by mean error not significantly differing from zero as detected by Student’s T-Test.
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We failed to identify any structure or motifs in our subintent decompositions. Lacking

evidence of a recurring structure, we instead sought to identify the statistical properties of

subintents. The first pattern we noticed was that our residuals, which have units of veloc-

ity squared, appeared to be exponentially distributed (R2 = 0.94, Figure 12 upper-left plot).

One explanation for this observation is that the largest remaining subintent accounts almost

entirely for the residual and the subintents themselves are exponentially distributed in veloc-

ity squared. This hypothesis is supported as subintent peak kinetic energy, 1.8752L2S−2, is

indeed well-accounted for by an exponential distribution (R2 = 0.95, Figure 12 upper-right

plot). Seeking other exponentially distributed quantities, we also discovered that the duration

between subintent peaks and the number of subintents composing a movement also appear to

be exponentially distributed (R2 = 0.91 and R2 = 0.93 respectively, Figure 12 lower plots).

4.5 Discussion

This study provided support for a novel approach to decompose measured actions into

subintents in an improved manner that considers the underlying intent and does not depend

on assumptions of shape or number of elements. By capitalizing on a new intent extraction

technique (1) and exposing healthy adults to strong and lasting forces, midmovement replanning

became obvious. We found that our method could accurately recover subintent parameters and

that this accuracy was robust even when an incorrect subintent shape was assumed. This

method was not necessarily precise, however. While this imprecision is problematic, future

work might improve upon it it by using our unbiased estimate of subunit timing and duration

to recover subintents’ shape empirically by averaging a sufficient number of subintents.
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Figure 12. After discovering that the residuals of our decomposition appeared exponentially
distributed in velocity squared (upper-left), we tested other quantities for this distribution

and found that peak kinetic energy, subintent count, and the duration in between successive
subintent peaks was also well-explained by an exponential distribution. Colors represent
different subjects while dots represent individual subintents or reaches. Quantities were

normalized by their mean, which causes all regressions to have the same slope, in order to
facilitate comparison across subjects.
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Our finding that subintent counts and peak kinetic energy were exponentially distributed

means that subintent count will occasionally be very high and submovement magnitude will

occasionally be very small. This contrasts with previous work that explicitly avoids finding

small subintents (59; 62). Cost functions are usually constructed such that they maximize

quality of fit while minimizing the number of free parameters used to do so. Based on the

statistical distributions in our findings, we recommend that model likelihood be maximized

instead.

Finally, we found an interesting distribution of subintent parameters: most were exponen-

tially distributed. Interestingly, such distribution tendencies arise naturally as the maximum

entropy distribution supporting only positive numbers for a given mean. In physics, these are

termed Boltzmann or Gibbs Distributions and they describe many important phenomena such

as the motions of classical gases and the separation of charged particles by a semi-permeable

membrane. Since the statistical properties we observe for subintents are so similar to the sta-

tistical properties of particles in the physics of gases, this suggests the enticing possibility that

the same tools used to derive and understand the statistical mechanics of gases will also apply

to human reaching motions.
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CHAPTER 5

A STATISTIC MECHANICS OF SUBINTENTS

??

5.1 Overview

This work, written in collaboration with my adviser and a lab mate, will be submitted to

Nature as a presubmission inquiry. The decompositions of the previous work were completed

years ago and presented at a conference, but abandoned for a time as they had no obvious value.

During the time that the Patton lab was beginning to research an unconstrained movement

paradigm nicknamed “free exploration” (63), I was enrolled in a nanotechnology course that

included quantum and particle physics components. By luck, I noticed that hand speed during

this paradigm appeared to have the same statistics as noble gases. We noticed several other

superficial similarities and then turned to our then-abandoned subintent decomposition results.

Indeed, individual subintents behaved like the non-interacting particles of a noble gas. Though

we will derive an algorithm that explains and predicts human motion, little here is truly original.

Instead, this is a product of happenstance enabled by standing on the shoulders of giants.

5.2 Introduction

Although a body of evidence has shown that reaching movements are comprised from sep-

arate subintents, conclusions regarding how many subintents compose a movement, how they

might be distributed within the movement, or how they are chosen have been elusive (59).
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Subintents are distinct during childhood (15), but coalesce over the course of development into

the typical single, smooth, bell-shaped speed profile observed in healthy adults (14). Brain

injuries such as stroke may cause movement to regress back into separate, jerky subintents (57)

that again coalesce into a single smooth unit during recovery (16). One particularly important

confound to exploring the properties of subintents is that there is no unique decomposition,

since there are potentially multiple valid ways to decompose any individual movement (59).

One novel strategy for overcoming this problem might be to turn to the statistics of repetitive

movements.

We took a three-pronged approach to articulating and testing this subunit planning hypoth-

esis: movement is a series of overlapping subintents selected by a winner-takes-all process that

statistically pursues reward and avoids cost. First, we use energy balance and other first prin-

ciples to model how a system might behave if influenced by three quantities associated with the

transition to a new state: reward gained (64), rate of reward (65), and cost-to-go (10). Second,

we tested specific predictions of subintents from human reaches that were disturbed by robotic

forces (66). Third, we tested specific predictions regarding the statistics of whole-motion peak

speed across three different experiments. These statistical findings support our hypothesized

model of arm motion composition and planning.

5.3 Results

As an overview of what is to come, we begin with the simple assumption that subintents

exist and have a stochastic component. Consequently, we want to explore their statistical

properties, make predictions from first principles, and make use of energy arguments to ground
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our findings in the laws of physics. Once we assume that the system is Markov (memoryless)

we learn that this implies a potential energy component. Further, this potential component

allows us to explore distributions as a tool for understanding subintents. Because of this, we

show that it is possible to develop conditional relations describing state transitions, leading to

a hypothesis about the characteristics of distance and duration in subintents. We are also able

to make predictions about the how submovements are chained together, and can hypothesize

a specific distribution for the number of subintents that might make up a discreet action.

Finally, we make statistical predictions on the peak speed of whole, undisturbed motions by

combining our previous insights. Using these tools, predicting the statistical tendencies of any

given motion reduces to simple sampling from the distributions we have obtained. The sections

below describe these steps in detail.

5.3.1 Describing actions using the mechanics of energy

We begin by examining how the selection of a particular action might result in changes

in energy. The total work balance equation is ∆R = ∆J + ∆T , which conserves the total

energy among internal energy J , kinetic energy T , and work done by the environment ∆R.

We typically think of such balance equations in terms of an instantaneous interplay of energy,

but if movement is compromised of subintents we would not benefit from this extra analysis.

Instead, we might discretize time and only inspect the start and end of each subunit. Then we

could consider only the work across each subunit, the total changes in energy over the course of

the subunit, rather than the conservations of energy that occurred throughout. Note that this

aspect reflects the fact that all organisms might invest energy temporarily for a later return.
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Interestingly, if we assume that subintents make no contribution to motion at their endpoints,

the ∆T term vanishes and we can simplify the conservation to ∆R = ∆J . Internal energy now

entirely describes the net uptake in energy.

While the principles of muscle energetics are well-understood, measuring them (using oxygen

consumption, calorimetry, or other available tools) is noisy and slow relative to the time-scale

of most individual actions. In addition, it can give only global measures of whole body energy

consumption. Some research has successfully related behavior directly to effort (67; 68; 69).

Here, we model effort simply as proportional to the amount of kinetic energy converted to heat

(and hence lost) by the end of an subunit. This thermodynamic model is clearly incomplete

as the amount of energy consumed by movement depends on many factors such as the resting

length and velocity of muscle (70). Nonetheless, we hypothesize that the nervous system uses

this type of calculation to plan movement.

In the most abstract sense, we specify a subunit of motion as some function that maps time,

t, to state, x, and has a finite span in both: 0 ≤ t ≤ S and 0 ≤ x ≤ L. Only during this span of

time can velocity and acceleration be non-zero. Using this definition for a subunit, we can then

show that ∆J scales with L2S−2 when no other energy is exchanged. We begin by defining a

reference subunit, x1(t), for which S = L = 1. We can then define a version of this function

scaled in time and space, x( τS ) = Lx1(t), where τ = St. The chain rule relates how velocity

scales with these scaling factors:

dx

dτ
=
dx

dt

dt

dτ
=
L

S

dx1

dt
(5.1)
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Energy scales with the square of velocity and thus cost-to-go scales with L2S−2 relative to

the cost of x1(t), Q1. This homogeneous description of energy consumption is dependent on

a coordinate system’s inertial reference frame, but is otherwise independent of any choice of

coordinate system(s). This allows abstraction of planning to coordinate systems in which more

accurate muscle models may be prohibitively complicated to represent.

Next, our model abstracts the concept of potential energy as state appraisal, ∆U , defining

it as the portion of change in internal energy not accounted for by the cost-to-go, ∆U =

∆J + L2S−2Q1 + Q0. L2S−2Q1 is the cost of transitioning from one state to another while

Q0 corresponds to a cost common to all outcomes. This might include factors like cognitive

effort, resting metabolism, or finite opportunity to act. State appraisal is a conserved, state-

based change in inferred energy. It may not seem intuitive that state appraisal should be a

potential-like energy, but chemical energy expended is already accounted for by the cost-to-go

and kinetic energy is not present. State-based, conservative energy is all that remains. An

organism might have many options for its next behavior at any given point in time, each with

an associated net uptake composed of a cost-to-go state transition-defined component and a

conservative state-defined component.

5.3.2 First prediction: the distribution of subintent peak kinetic energy

Even the most over-practiced actions have variability (7), and we seek a model of that

variability that is purely dependent on internal energy. As change in internal energy depends
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only on the previous state and not on the history of states that proceeded it (i.e., Markov), this

implies that the distribution of states visited will satisfy an exponential probability of state,

p(x) ∝ e−βU(x) (5.2)

where β is a constant. Such a relation is known as a Gibbs measure (71), which describes the

distribution of states occupied over long spans of time if state appraisal is constant and the

environment does not intervene. As neither of these conditions are often satisfied in vivo, we

take additional steps to relate the Gibbs measure to reaching motions: given that we know the

endpoint of the prior subintent, where might we expect the next subintent to go? The proba-

bility of transitioning from a given state to any other is expressed as a conditional probability

that depends on both cost-go-go and potential (state-based) energy. To relate this conditional

probability to the unconditional probability (eq. Equation 5.2), we can leverage Bayes Theorem

as a ratio of probabilities,

p(xn|xn−1)

p(xn−1|xn)
=

p(xn)

p(xn−1)
= e−β

(
U(xn)−U(xn−1)

)
(5.3)

where subscripts denote the sequence of subintent end points. Since the ratio of the conditional

probabilities is an exponential distribution, this suggests that the conditional probability should

itself take that form,

p(xn|xn−1) ∝ eα∆J = eα(∆U−L2S−2Q1−Q0) (5.4)
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where α is a constant related to β. As the Q1-based term is statistically independent of the

∆U and Q0-based terms, this yields our first testable hypothesis: we expect an exponential

distribution of subintent distance squared over duration squared. A previous work of ours,

which examined subintent decomposition of intents from force-disturbed reaching, does indeed

support this prediction (R2 = 0.95) (66) (Figure 12, top right panel).

5.3.3 Second prediction: the distribution of the number of subintents within a goal-directed

reach

We next attempt to specify subintent duration utilizing the insight that humans adjust the

duration of their actions to maximize their rate of reward (65). The mean rate of reward, E[J̇ ],

is given by

E[J̇ ] = (∆U −Q0)S−1 − L2S−3Q1 (5.5)

which is maximized when

S−2 =
∆U −Q0

3L2Q1
(5.6)

This deterministic relationship between change in state appraisal and subintent duration allows

us to predict a relationship between two tangible measures: the ratio of the probability of

a subintent’s start and end points and the duration of a subintent between those points in

space. Unfortunately, this ratio of probabilities is only valid at steady state and our sole

method of investigating subintent properties requires disturbing movement. Therefore, we take

an additional step to relate this prediction to the properties of whole reaches. Consider a reach

that starts at some point x0, ends at some other point xf such that after N subintents xN = xf ,
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and is otherwise not constrained to follow any particular path between those endpoints. The

probability of such a reach following a specific path can be written as a Markov chain defined

by the subintent endpoints that describe the path,

P (xN |xN−1)P (xN−1|xN−2)P (xN−2|xN−3)...P (x1|x0) =
∏

eα∆J = eα
∑

∆J (5.7)

and then simplified by substituting the expression for S that we hypothesized earlier (Equa-

tion 5.6),
N∑
n=1

∆J =
2

3
(∆U0N −NQ0) (5.8)

This result reveals that the probability of a particular sequence of subintents depends only on

the total change in state appraisal and the number of subintents comprising the chain. Since the

change in state appraisal is roughly constant across all reaches that share the same origin and

target, we arrive at a strong prediction regarding the distribution of the number of subintents

within a reach: ln p(n) − ln p(n − 1) = 2
3αQ0. In our prior work, we did indeed find that p(n)

was well fit by a line on a log scale (R2 = 0.93) (66) (Figure 12, bottom right panel).

5.3.4 Third prediction: the distribution of peak speeds during point-to-point reaching

While the above predictions are consistent with measured subintents, we also wish to make

predictions about the statistics of whole, undisturbed movements independent of any need to

recover intent or decompose it. Not only are the statistics of whole, undisturbed reaches of

much wider interest, identifying the peak speed of a reach is simple and common. We begin



77

formulating our prediction by noting that fixed start and end points imply a fixed total change

in potential. The properties of the individual subintents are therefore no longer statistically

independent as their sum is fixed. We cannot simply examine the expected maximum of n

unrelated subintents. Rather, we must generate n subintents whose total change in potential

reflects this sum,

p(∆Un|∆U0N ) = ∆U0N
eα∆U∑
n e

α∆Un
(5.9)

By repeating this calculation for many simulated movements, we can generate an empirical

estimate of the probability of the maximum change in potential among the subunits composing

an N -subunit reach. N must also be generated for each simulated movement using Equation 5.7

and Equation 5.8. Through Equation 5.6 we learned that change in potential is proportional

to peak kinetic energy, which allows us to finally fit the cost-to-go terms Q1 and Q0 through

this relationship. The fitting procedure is straight-forward as simulated change in potential

and measured peak kinetic energies share a one-to-one relationship through their cumulative

density functions (Figure 13, top panels). After performing this fitting, we examined the quality

of the fit (Figure 13, bottom left panel) and its accuracy relative to the Gaussian distribution

(Figure 13, bottom right panel). We find across these experiments that fits are generally of

good quality (R2 = 0.9169 ± 0.1031, mean±standard deviation) and significantly outperform

the Gaussian distribution (sign test: n = 60 subjects, p < 0.0001).

5.4 Discussion

If human motion indeed arises from the process model we describe, human motion planning

is elegantly simple. Every parameter can be encoded using only an interspike interval. Every
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Figure 13. We relate the simulated cumulative probability of the maximum of a movement’s
subintents’ changes in potential energy (top left) to the measured cumulative probability of
the maximum of a movement’s kinetic energy (top right). These cumulative probabilities

provide a one-to-one relationship between the quantities (dashed red line). As we hypothesize
a linear relationship between them that is governed by key model parameters, we demonstrate
the linearity of this fit (bottom left) and its superiority to modeling these peaks as Gaussians

(bottom right).
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selection can be performed by a first-to-fire winner-takes-all. The behavior that results effi-

ciently spans the space of exploration while still statistically acting to minimize expected cost,

maximize expected reward, and maximize the rate of reward. No look-ahead is performed. No

accurate recollection of the past is needed. The environment and state transitions are repre-

sented only as heuristics, which makes the selection of these heuristics critically important to

performance.

Perhaps the most striking feature of this process is the central role of state appraisal. As the

probability of occupying a state depends logarithmically on its appraisal, we can hypothesize

that general satisfaction should depend logarithmically on the abstract capacity to change

states. Surprisingly, this hypothesis is supported by behavioral economics research showing

many measures of stress and well-being depend logarithmically on the most abstract form of

appraisal known to humankind: money (72). Conceptually, money does obey the key limitation

of a conservative potential: it is fungible. A dollar is a dollar no matter how it is earned or spent.

Moreover, taking an action for pay generally enables one to use that pay to obtain the same

action from others. Restated, money is a potential-like, state-dependent form of effort storage

that impacts state satisfaction logarithmically just as we would expect of our state appraisal.

These findings about the economy of movement may therefore extend to the economy of money.

While our findings may prove to be broad, our conclusions are limited by the nature of

our experiments. We examined particularly low-dimensional tasks wherein we could reasonably

assume that our subjects possess a complete and accurate understanding of their environment.

Day-to-day life occurs in a markedly high-dimensional social and physical environment that
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has evaded complete or accurate understanding. Moreover, we examined only point-to-point

reaching and not walking, tool-use, or verbal communication. Examining these contexts to

determine if our findings generalize to them is an important next step.

A process model for human movement may enable better understanding of movement dis-

orders and replication of human-like movement in robotics. Characterization in terms of the

quantities identified here holds the promise of identifying movement deficits and addressing

them directly. Similarly, robots have many advantages over the human body: more-accurate

sensors, faster processors, and more-powerful actuators. Despite these, we have struggled to

produce human-like handling of complex loads. Replication of the human movement strategy

may rectify this. Fortunately for the enterprise of science, markedly more study is needed.



CHAPTER 6

GENERAL DISCUSSION

All of the previous results flow from an attempt to address a deceptively simple question:

what is error? My original motivation came from the error augmentation learning enhancement

technology pioneered by my adviser (20). In order to use his technology, it is necessary to

first define an error signal such as the difference between a person’s movement and an ideal

movement. While the model of Flash and Hogan (8) suggests that a straight-line reach to the

target is ideal, very large disturbances might cause a subject to replan mid-movement. We

therefore used the model of Shadmehr and Mussa-Ivaldi (6) to produce many different possible

responses to a mid-movement force disturbance to determine which best-fit actual motions.

This method was computationally demanding, and worse, it did not provide any clear answers.

While presenting on the method and its results at the yearly Neuroscience conference in

2011, I realized that optimization could be used to determine the best equilibrium trajectory

to describe a particular motion rather than merely guessing at the forms that replanning might

take. This optimization step naively seemed necessarily: systems as nonlinear as the human arm

typically cannot be analytically inverted. As I examined the problem and made programming

improvements, I found that the arm model could be analytically inverted and this inverse could

be solved directly. My first step was to verify the tautology of this process, shown in Figure 1: if I

simulate movement with a specified equilibrium trajectory and disturbance, I should recover the

equilibrium through my inversion. Ultimately, the inversion also proved to be stable (Figure 2)

81
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and provided reasonable estimates of the arm’s equilibrium (Figure 3). Surprisingly, not all

subjects were modifying their equilibrium in response to a very large disturbance. This meant

that no general approximation could be used to replace the straight-line reach.

If a person intends any trajectory, it must be the equilibrium trajectory of the arm. However,

it was not clear that humans intend their trajectories. For example, the control scheme of

Todorov and Jordan only intends to reach a goal state while minimizing a measure of cost (10).

In order to firmly establish that the arm’s equilibrium is specifically intended, we next presented

subjects with their arm’s equilibrium as a cursor that they could control in realtime. We found

that all of our subjects could immediately recognize and control their equilibrium (Figure 5).

In the presence of disturbance, reaching with their intent caused our subjects’ performance

to increase (Figure 6) even as they were able to relax their arm (Figure 7). Taken together

these results strongly support the claim that humans explicitly plan their arm’s equilibrium

trajectory and that it is their intent.

To answer our original question, we still need to predict when and how intent might change.

We knew that infants (15) and stroke patients (16) show strong evidence of segmentation in

their movements. Traditionally, these submovement segments have been interpreted as potential

building blocks of movement. Our insight is that intent and movement can differ as seen in

Chapters 2 and 3. On this basis, we examine intent specifically when it is different from

movement to recover subintents. In addition, we use a clustering algorithm rather than explicit

optimization as it is not clear what should be optimized. The clustering produced accurate, but
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not precise, outcomes (Figure 11) that appeared to reveal exponential distributions in subintent

parameters.

The exponential distribution frequently arises in physics where it relates the energy of a

state to its probability. Since one of the exponentially distributed quantities has units of

velocity squared, which is proportional to kinetic energy, this was a tantalizing hint that perhaps

a relationship to statistical physics might be present. Ultimately, we were able to derive a

statistical mechanics from assumptions of conservation of energy and memorylessness that could

predict and explain the distributions of parameters we observed. As the laws of physics conserve

energy and are memoryless, it is unsurprising that biology would take advantage of this. Of

the quantities we find, perhaps the most interesting is the existence of a state-based energy

term that mirrors potential energy and seems to possess many of the same properties as money.

In addition, these quantities could be abstracted to predict distributions of whole-movement

measures such as duration and rectified work. Together, these chapters demonstrate a means

of viewing human intent, examining its construction, and predicting future intents.

6.1 Wide Applicability

I have no reason to believe that the algorithms of the previous paper are limited to reaching

movement. Many of the quantities known to psychology such as preference and values may

be understood in the framework of a potential field. This mirrors the findings of Weber’s Law

(73) that sensation is logarithmic as well as the findings of Kahneman that life satisfaction

depends logarithmically on income (72). On this basis, it appears possible that higher-order

human faculties are an abstraction of the mechanisms underlying motor control. Much of
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this discussion will focus on the implications if the equations of Chapter 5 were somehow

a complete description of human planning. This includes clinical applications of influencing

human behavior.

6.2 Clinical Implications

Characterizing deficits following stroke and other neurological injuries might be as simple as

taking the natural log of the probability of movement behaviors over some span of time. This is

straight-forward to move into clinical and even home settings as cell phones incorporate motion

censors and GPS. This makes the necessary tracking possible using only commodity hardware.

In addition, cell phone processors are fast enough to compute the equations we have uncovered

in real-time. This may enable real-time feedback in the spirit of Huang et al. (63) that can

address movement deficits and irregularities.

In addition to identifying spacial deficits that might be linked to state appraisal or the lack

of such appraisal, this approach may also be able to characterize differences in other parameters.

For example, the increased number of subintents following stroke (16) indicates an decrease in

product of the two parameters governing the distribution of the number of subintents, which we

model in Equation 5.7: αq0. We can relate this to the increased variability of movement that

follows stroke (74) as variability is proportional to α−2. An increase in α−2 implies a decrease

in α, which in turn implies a decrease in αq0 and an increase in the number of subintents. This

link not only provides a testable hypothesis that these two features should be correlated, but

in addition identifies a common mechanism underlying two key features of movement following

stroke.
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We can now design an intervention. As we should expect the spatial deficits following stroke

to arise from a difference in U(x) relative to healthy subjects, stroke patients may benefit from

experiencing either the healthy potential field of the difference between the healthy potential

field and their own rendered as a haptic environment. In addition, the high variability that

implies a high α−2 also implies a high mean subintent magnitude, which is proportional to α−1.

We can readily reduce subintent magnitude simply by directing subjects to keep their speed

below a threshold. This suggestion mimics the finding that slower movement at the outset of

training has been found to be correlated with a better change in clinical scores (75).

6.3 A Theory of Learning

For any state appraisal, U(x), we can re-represent this function without loss of generality

as a kernel inner product U(~x) =
∑

n anκ( ~pn, ~x) where a is an appraisal and p is a preferred

stimulus. Stated as a physiologically reasonable example, a rat’s appraisal of a position in a

water maze will be calculated in layers. First, state will be computed as the generalized inner

product of a preferred stimuli with an experienced stimulus by a place cell neuron’s firing.

Second, this firing rate will multiplied by a connection strength that depends on the number of

post-synaptic receptors. This representation is not only very general, it is also physiologically

realizable in an especially plain way.

We need not compute a new learning rule to see how the appraisals should adapt in the face

of new state-outcome pairs as changing the weights assigned to each kernel is already understood

(76). The change in a preferred stimulus’s appraisal is proportional to that state’s contribution

to an appraisal error: ∆an ∝ Ueanκ(pn, xe) where Ue denotes an error in appraisal and xe
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denotes the state at which at the error occurred. For large ∆an, a new preferred stimulus

is instead created such that pn+1 = xe and an+1 = Ue. This structure allows us to set the

appraisal of an experience or even erase it. To set the value of an experience, we need only

create new experiences completely surrounding it whose appraisal we control.

This strategy is evident in advertisement where experiences that include a product – but

primarily focus on extraordinary components – are used to modify the appraisal of the product.

These extraordinary components are needed to avoid conflicting first-hand experience. For

example, a basketball star might endorse a sports drink as tasty and energizing. As the viewer

of such a commercial is very unlikely to possess contradictory experience, such as viewing the

star selecting a different beverage when offered the drink in an actual game, this allows the

sports drink company to modify a person’s future appraisal of the product. While this effect

gradually diminishes with first-hand experience of the product, new advertisements that possess

small inner products with one another and first-hand experience can maintain a bias. This effect

is dependent on the ability of large discrepancies between experience and advertisement to create

new preferred stimuli instead of a mild adaption of existing appraisal. This allows us to make

a straight-forward prediction regarding advertisement effectiveness. The least effective form of

advertisement should be exposing the consumer directly to the product and informing them

that they like it. The most effective form of advertisement should be exposing the consumer to

a depiction of someone they idolize, but have not met, using and enjoying the product.
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6.3.1 Application to Rehabilitation Robotics

If this theory of learning is correct, it explains a central finding of rehabilitation robotics.

In a typical study, a chronic stroke survivor whose motor performance has plateaued is exposed

to a robotic device for a relatively short amount of time. Following this exposure, a small

but statistically significant improvement in both their performance and clinical assessments are

detected with the study’s intervention producing a somewhat larger improvement (20). Why

should every exposure produce approximately the same consequence? This is readily explained

if stroke has the effect of destroying preferred stimuli. Over time, experiences more or less

orthogonal to the remaining stimuli fill in many gaps, but not all. The novelty of robotic

rehabilitation and the increased novelty of experimental interventions create an opportunity for

additional learning. This implies a testable hypothesis: wearing an upper-arm exoskeleton that

does nothing more than compensate its own mass should cause improvement in chronic stroke

patients. Moreover, performance on clinical assessments should be higher while the exoskeleton

is worn as the boost comes from the novel context. If upheld, this hypothesis suggests a strategy

for using orthgonality to compute optimal novelty-based interventions from measured movement

deficits.

6.4 Conclusions

This thesis spans the construction and observation of human intent. We began by inverting

an established model to recover a person’s intent from their actions. Subjects could even control

their intent if presented with it. We were able to break apart intent into its building blocks

and find physics-based reasons for their properties. Finally, I extended these properties to a
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provisional theory of learning and some of its potential consequences for rehabilitation. Any

technology that can modify human behavior for medical purposes can likely be used to other

ends as well.
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Appendix A

COPYRIGHT POLICIES

Figure 14. My first paper (1) was published in PLOS ONE under a Creative Commons
license, which requires only that it be properly attributed and a link to the license

(http://creativecommons.org/licenses/by/4.0/) be provided.
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Appendix A (Continued)

Figure 15. My first paper (2) was published in Frontiers in Behavioral Neuroscience, which
requires only that it be properly attributed and a link to the license

(http://creativecommons.org/licenses/by/4.0/) be provided.
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