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SUMMARY

Breast cancer is the 2" most common cancer among US women, accounting for
approximately 30% of newly diagnosed cancers. The chances of surviving a breast
cancer diagnosis and the effectiveness of treatments rely on early detection of the
disease. Since mammography has been widely accepted as a screening tool for breast
cancer, the mortality rate was significantly reduced from 30 to 40% during the past
three decades. However, mammography projects 3D tissue structures of the breast
onto a 2D plane and which leads to superimposition resulting in low positive
predictive value of biopsies performed based on diagnostic mammography. As a result,
misdiagnoses on mammography ultimately drive up healthcare costs, as well as

unnecessary patient anxiety

Recently, researchers have been developing CT systems and automated 3D breast
ultrasound dedicated solely for breast imaging. Such imaging modalities generate 3D
image volumes that completely resolve breast tissue structures and avoid the
superimposition effect. However, it also produces large amount of image data that the
radiologists need to review. Such data explosion could make image interpretation task
even more difficult and time consuming. Therefore, CAD (computer-aided

detection/diagnosis) technology is expected to alleviate the burden.
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SUMMARY (continued)

Segmentation is an essential step in computer-aided diagnosis scheme. Accurate

computer-aided diagnosis often relies on correct segmentation. Thus, the purpose of

this work is to describe a segmentation algorithm for dedicated breast CT and

automated 3D breast ultrasound. The lesion segmentation algorithm was initially

developed on contrast-enhanced breast CT images by combining radial gradient index

segmentation and level set based active contour algorithm. Then the segmentation

algorithm was further optimized by modifying its corresponding energy functional,

and obtained satisfactory segmentation results on both contrast-enhanced and

unenhanced breast CT, as well as 3D breast ultrasound in terms of the measure of the

overlap of computer segmentation and manually-delineated lesion outlines.

To reach the goal of automated diagnosis, the segmentation results were

evaluated by feature analysis. The classification by using lesion shape features

(irregularity measures) showed that the proposed segmentation algorithm was able to

capture sufficient shape information (area under the receiver operating characteristic

curve, AUC = 0.81), which is considered one important factor for differentiating

tumors. In this study, we firstly developed a new 3D spiculation feature for dedicated

breast CT image volumes in order to further improve the classification performance.
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SUMMARY (continued)

This new spiculation feature utilizes the 3D structural information in the lesion

neighborhood to analyze the lesion surface and evaluate the degree of spiculation. By

adding the new spiculation feature, AUC was improved from 0.81 to 0.85

significantly, yielding promising lesion classification performance for our bCT

database. In addition, the results suggest that the development of such feature which

utilizes 3D information resolved by 3D imaging modalities should be further

investigated for future CAD application.
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I. INTRODUCTION

A. Breast Cancer and Breast Imaging

1. Breast Cancer and Mammography

Breast cancer is the 2" most common cancer among US women, accounting for
approximately 30% of newly diagnosed cancers. American Cancer Society estimated
that 232,340 of new invasive cases would be identified and 39,620 women were
expected to die from the disease in 2013 [1]. Since there is currently no cure for breast
cancer, early detection by screening plays an important role in reducing mortality [1].
By widely performing X-ray mammography in screening, the breast cancer mortality

rate has been decreased by 30% to 50% in the past 20 years [2].

Although X-ray mammography has achieved significant success, there are still
considerable limitations of this technique. The poor positive predictive values (4% to
9% in mammography screening, and 39.5% based on biopsy diagnostic
mammography) [3] result in a waste of medical resources and unnecessary patient
anxiety. Some researchers have even claimed that the reduction of mortality rate is
partly contributed by the overdiagnosis of screening [4]. This is due to a fundamental
shortcoming of X-ray mammography: X-ray mammography is a 2D projected

imaging technique; hence tissue superimposition occurs when 3D tissue structures



Figure 1. An example of a digital full-field mammography image. The spatial
resolution is 50 um x 50 pum. [5] (Open access online)

with similar X-ray attenuations are projected onto a 2D plane, including
fibroglandular tissues and tumor masses. In addition, when the lesion size is small and
is not associated with calcification, it is difficult to be visualized on mammaography by
the radiologists especially if presenting in a dense breast. In sum, mammograms only
provide projected anatomical information of the breast, which is inherently poorer

than that expected from 3D imaging.



To address this superimposition problem, investigators are developing 3D breast

imaging modalities such as magnetic resonance imaging (MRI), 3D breast ultrasound

(3D breast US), and dedicated breast computerized tomography (dedicated bCT).

Researchers expect that 3D imaging modalities could retain more anatomical structure

leading to more accurate interpretations and diagnoses. This dissertation work is

focused on dedicated breast CT and 3D breast ultrasound which are described in the

subsequent sections.

2. Dedicated Breast CT in Early Days

At the same time when screening mammography started to spread widely in the

US, the General Electric (GE) company began to construct a prototype of dedicated

breast CT scanner, which was called CT/M [2][6][7][8]. The GE CT/M scanner used

fan-beam geometry to acquire 1-cm-thick CT slices in approximately 10s. Women

were imaged in the prone position while lying on a table where there was an

opening for the breast. It is reported that the absorbed dose of the central 6 slices (6

cm) was 1.75 mGy [2]. However, compared to conventional mammography, the

resolution was very poor (1.56 mm x 1.56 mm X 1 cm for CT/M; <70 um X <70

um for mammography) which resulted in low specificity (70%) [7][5]. In addition, the

need of iodine contrast infusion was invasive and led to high costs. Ultimately, Chang



et al. [7] concluded that CT/M scanner for screening was not desirable, which

prompted GE to terminate the CT/M system in the market [2].

Figure 2. Example images of CT/M as facing the patient. Above row: both breasts
imaged before contrast material injected. Below: both breasts imaged after contrast
material injected. The bright area was diagnosed as grade 4 adenocarcinoma. [8]
(Open access online)

3. Imaging of the Breast with a Conventional Whole-body CT Scanner

After the prototype GE CT/M dedicated breast scanner, some studies were

conducted to investigate breast CT with a conventional whole-body CT scanner.

4



Patients were imaged in the prone position with the help of foam blocks to allow the

breast to hang freely. In the 1990°s, substantial improvements were made in CT

technology. Since then, researchers used multidetetor CT (MDCT) scanners with a

protocol involving intravenous infusion of nonionic iodine contrast media to evaluate

breast lesions. MDCT scanners can generate CT images in short time and thus provide

the possibility of using dynamic CT to aid in breast lesion differentiation based on the

uptake and washout rates of the contrast agent [2]. A recent study reported that the

reconstructed projection based on this technique had resolution 1 mm x 1 mm x 3

mm, and achieved sensitivity of 90% but with low specificity of 55% [9]. For this

reason, the primary application of MDCT in breast cancer has been a diagnostic tool

for staging malignant tumors. Because of the low specificity, the possibility of the use

of this imaging approach for differentiating breast lesions is very limited; especially

given that image-guided needle biopsy, an alternate approach, has been shown to be

very accurate in such tasks [2].

The radiation dose is another factor that limits this technique as a good screening tool.

Miyake et al. [9] measured a breast radiation dose of 23.5 mGy, which is about 10

times that of conventional mammography. Even though other researchers attempted to

use low-dose CT imaging as 6.51 mGy, 2.68 mGy, and 1.65 mGy, the results showed

a penalty in diagnostic accuracy with reduction of the radiation dose [10]. It should be



also noted that by imaging breast with a conventional whole-body CT scanner, X-ray

penetrates through the entire thorax, and thus a large amount of tissues other than

breast is exposed to radiation as well.

4. Dedicated Breast CT with Cone Beam X-ray

Recently, the advent of digital flat-panel detectors for mammography prompted

researchers to design and develop CT systems that are dedicated only for imaging the

breast. There are a number of academic groups and small start-up companies

investigating dedicated breast CT imaging with similar systems, including University

of California (UC) at Davis, University of Rochester, Duke University, University of

Massachusetts, University of Texas (UT) M.D. Anderson Cancer Center, Emory

University, etc. In our studies, the images were acquired from UC Davis under an

IRB(institution review board)-approved protocol. Hence here we use their system

setup to demonstrate the imaging concepts.

To image the breast, patients lie prone on a table with an opening for the breast

where the breast hangs in the pendant position through the hole in the table.

Underneath the table an X-ray tube and a flat panel is equipped on a gantry that

allows for rotation around the breast (Fig. 5) [11]. It should be noted that the X-rays



only penetrate the breast rather than the entire thorax as in conventional whole-body

CT scanner.

Conventional whole-body CT scanners use detector arrays that are arranged in an

arc. The arc usually spans an angle of about 60°, and the fan beam X-ray width in the

z-axis direction typically spans from 20 to 40 mm. Unlike conventional whole-body

CT scanners, dedicated breast CT systems generally use a flat panel detector with a

cone beam X-ray source. Such setup covers the full extent in the z-dimension and

allows for a complete CT dataset of the breast in one rotation (Fig. 6) [12]. The

UC-Davis system uses the PAXSCAN flat panel detector (Varian Imaging Systems,

Slat Like City, UT, USA), which has a 40 cm x 30 cm field of view and represents a

2048 x 1536 array of 194 um X 194 um detector elements. Effective pixel size is

388 um x 388 um due to projection images being acquired in a 2 X 2 acquisition

mode with a readout array of 1024 x 768. With 30 frames per second, the resulting

projection contains 500 frames acquired over about 16.6 seconds. The reconstruction

algorithm results in an isotropic 3D CT volume, consisting of 1 series of 512 x 512

images [12]. The radiation dose evaluated using a phantom showed that the dose is

equal to that of 2-view mammography [13], which is substantially lower than

conventional whole-body CT.



Figure 3. Example image of dedicated breast CT. The breast is viewed in 3
orthogonal directions. (A) is displayed in coronal plane, (B) Sagittal plane, (C)
Transverse plane. Red circle indicates a malignant tumor labeled by the radiologist.

The first comparison of dedicated bCT with screen-film mammography was

reported in 2008 [14]. This initial study showed that dedicated bCT was significantly

better than mammography for visualization of masses (p = 0.002) whereas

mammography outperformed dedicated bCT for visualization of microcalcifications

(p = 0.006). No significant differences were found in the diagnosis of malignant or



benign between mammography and dedicated bCT. Volunteers and patients who

participated in this study demonstrated a pronounced preference for dedicated bCT

over mammography in terms of comfort (p < 0.001).

In 2010, another clinical study of dedicated bCT was conducted done with the

use of contrast agent [15]. The patients were imaged both before and after the

injection of contrast material, which was 100 ml of intravenous iodixanol (Visipaque

320; GE Halthcare, Waukesja, WI, USA). Malignant lesions enhanced 55.9

Hounsfield Unit (HU) while benign lesions enhanced 17.6 HU. Thus malignant

lesions were seen significantly better at contrast-enhanced dedicated bCT than at

unenhanced dedicated bCT (p < 0.001), and it was also superior to mammography (p

< 0.001). Microcalcifications were seen better at contrast-enhanced dedicated bCT

than at unenhanced dedicated bCT (p < 0.001), and similar to mammography. These

results suggested that contrast-enhanced dedicated bCT may aid in detection and even

diagnosis of breast cancer.

Dedicated bCT is an emerging technology that has many advantages over current

breast imaging systems. The “perfect” breast imaging approach is required to meet

with the following demands: 1) full 3D capability, 2) good soft-tissue differentiation,



3) dynamic contrast-enhanced imaging, 4) high isotropic spatial resolution of 100 pum,

5) low patient dose with average glandular dose (AGD) below 5 mGy, 6) patient

comfort without breast compression, 7) integrated biopsy option, and 8) low cost [11],

and thus dedicated bCT is a good candidate. Full 3D capabilities are ensured by the

principle of this imaging technique. Dedicated bCT also provides good soft-tissue

differentiation and can offer accurate tissue density values, according to those

previous clinical reports. It is also noted that contrast-enhanced dedicated bCT may be

able to help assess contrast material enhancement kinetics [15]. The imaging cost is

considerably more reasonable than MRI [12]. With these potentials, dedicated bCT is

expected to play an important role in future screening.

Even though dedicated bCT is thought to be appealing, reading the 3D image

volumes will be a very challenging task due to the large amount of image data

generated. In a typical dedicated bCT image acquired in this study, there are often

over 300 slices in the z-dimension displayed in the coronal plane. Sagital and

transverse planes might also need to be reviewed. Therefore computer-aided

detection/diagnosis (CAD) technology, which has been successful in digital

mammography, is expected to provide benefit mitigating the radiologists’ interpreting

task on dedicated bCT.

10



5. 3D Breast Ultrasound

Although mammography has proved to be an effective tool, there are still a
number of cancers that may not be perceived. The rate of false-negative
mammograms has been reported to be 4% to 34% [16]. In clinical experience, these
mammographically-occult cancers are often 1) small in size and not associated with

calcifications, 2) presenting in dense breast where visualization is difficult [16][17].

Figure 4. Example image of ABUS. (A) the coronal view of a left breast. The red dot
is the nipple and the red circle indicates a cancer. (B) the cross section view as
conventional handheld ultrasound. The red circle indicates the same cancer as
indicated in (A).

Ultrasound (US), however, has been reported for its ability to depict occult

cancers in mammography which are small and early-stage [18]. A clinical report also

11



showed that in dense breast US can detect smaller and lower-stage than

mammographically-palpable cancers [18]. A number of studies have shown that by

combining US with mammography, the detection of small size and lower stage

cancers can be significantly increased by 7.4% than mammaography alone, especially

for dense breasts [19][20][21]. Thus, US has been recently indicated for use in breast

cancer screening as an adjunct to screening mammography for women with dense

breasts [22].

Nevertheless, US still has some disadvantages including operator-dependent

handheld ultrasound in screening, long examination time, and the inability to acquire

3D volumetric images of the breast. Recently, researchers have used an automated

scanning technique operated by technicians, generating 2D image sequences covering

the entire breast [23]. This technique, called “automated 3D breast ultrasound

(ABUS),” reconstructs 3D coronal breast ultrasound images providing not only

transverse or sagittal views as conventional ultrasound images but also can displaying

the coronal views of the breasts at different depths (Fig. 4).

Like dedicated bCT, interpreting 3D breast US can be very challenging. Not only

because of large amount of image data that needs to be reviewed, the noise and

12



distortion resulting from having different spatial resolutions in three dimensions make

the task even more difficult. Therefore, we expect CAD to also help alleviate the

interpretation burden for 3D breast US. The 3D breast US images in this study were

generated by an automatic breast ultrasound system which was developed by

U-Systems, Inc. (Sunnyvale, CA). All data was anonymized and acquired under an

IRB approved protocol.

B. Computer-Aided Detection/Diagnosis (CAD)

1. Introduction to CAD

In the mid 80s, a team at the University of Chicago started their research for

computer-aided detection/diagnosis. The aim of their study was to use the computer

output as an aid to radiologists, focusing on detection of lesions on chest radiographs

and mammograms. In such usage, CAD is defined as “second opinion,” or a

spellchecker in detecting lesions and making decisions [24]. Note that CAD’s role is

not to replace the radiologist but instead to aid their image interpretation task. In the

Joint FDA-MIPS Workshop on Methods for the Evaluation of Imaging and

Computer-Assist Devices held on July 14, 2010, it was a consensus that the

second-reader paradigm is the most appropriate way for using CAD systems in the

clinic [25][26]. That is, the radiologist first reviews an image without CAD, then
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immediately reviews the CAD output and finalizes the diagnosis. The schematic

diagram is shown in Fig. 5.

Medical Image
in Digital Format

CAD system
l

QOutput

Radiologist

Interpretation

Figure 5. Schematic diagram of a CAD system for medical images interpretation.
[24]

To understand images by digital computers is complicated. The process of a

CAD system can be broken into various components as a step by step recipe. The

flow chart of how CAD works is shown in Fig. 6. The first 4 boxes are considered

part of computer aided detection, and the last 3 boxes are computer aided diagnosis.
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Digital Image(s)

Segmentation of Organ Border

PreProcessing
{e.g., signal ephancement)

Lesion Extraction
(lesion segmentation)

1

Feature Extraction
(mathematical descriptors of the potential
abnormality)

Feature Analysis/Classifier
(lesion vs. non-lesion;
malignant vs. benign)

|

Computer Output
(e.e., location of lesion, lesion characteristics,
estimate of the probability of malignancy. risk
assessment index)

Figure 6. Components within a CAD system. [24]

a. Computer-Aided Detection (CADe)

In computer-aided detection, the computer output yields only the location of
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suspect lesions. Although computer-aided detection does not output characterization

and diagnosis of the abnormalities, such system is still useful for some clinical

purpose, like screening mammography, low-dose thoracic CT for smokers, and colon

cancer screening [24].

b. Computer-Aided Diagnosis (CADXx)

Once a lesion is detected, further step of justifying subsequent patient

management such as biopsy may be necessary. Computer-aided diagnosis aims to aid

in the characterization of an already-found lesion in terms of its attributes, and in the

estimation of disease state. The input to CADx system can be either a human-detected

or a computer-detected lesion or region. Such a system is expected to aid in a

radiologist’s differential diagnosis and increase the positive predictive value of the

image interpretation. Also it is expected to reduce variability between and within

radiologists [24].

Computer-aided diagnosis generates output by dividing feature space into

regions where normal and abnormal candidates are located with pattern recognition

techniques. The features used for such classification task can be texture features based

on image intensity, functional features such as contrast agent wash-out rate in MRI,
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morphological features based on lesion size, shape, and anatomical properties. Among

these features, morphological features highly rely on accurate segmentation. Only

successful segmentation can lead to correct measure of morphological features. Thus,

segmentation is an important step for computer aided diagnosis. In many cases, the

performance of computer aided diagnosis reflects how accurate the segmentation step

2. CAD and Breast Cancer

There is a wide variety of CAD systems. In 1998, The US Food and Drug

Administration (FDA) approved the first mammographic CAD device [26]. After then,

more than a dozen of CAD systems have been approved including lung nodules on

chest radiography and CT, colon polyps on CT colonography, and pulmonary emboli

on chest CT [27]. By far the most widely used CAD systems are those for

mammographic breast cancer screening. There are now about 10,000 CAD systems in

use in the United States. Mammography CAD systems detect both masses and

microcalcification clusters, and are doing well especially for the later. Clinical report

suggests that computer-aided diagnosis can potentially help radiologists improve the

diagnostic accuracy in breast cancer [28].
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In a review paper, Cheng et al [29] outlined a flow chart of mammographic CAD

procedure. The components are the same as shown in Fig. 11. They also listed and

compared different approaches that have been used in mammographic CAD systems

and studies for each component of the schematic flow chart.

In the image preprocessing step, commonly used techniques for enhancing image

contrast include histogram equalization and local histogram equalization [30]. Other

methods include enhancing digital mammograms with wavelet transform,

highlighting edges by using Sobel filters, and removing noise with Gaussian filters

[30].

In segmentation, many techniques have been investigated and developed. Global

thresholding is a commonly used simple segmentation method based on histogram

analysis [31]. Some researchers used local thresholding to refine the results of global

thresholding [32]. Pixel based approaches include Markov random field (MRF) which

seeks to maximize the posterior distribution of the given image [33], and a region

growing algorithm that grows a set of seed pixels and aggregate pixels with similar

properties [32]. Edge detection methods like Laplacian of Gaussian (LoG) filter and

Difference of Gaussian (DoG) filter [30] are widely used. Aside from identifying
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edges by applying operators, deformable model is another technique that has drawn

much attention in medial image segmentation [34]. Initially proposed by Kass et al

[35], the deformable model employs energy minimization to find the contour. Due to

low contrast in mammaography and lesion margin being vague, some studies presented

fuzzy techniques to segment masses [36]. The algorithm initially assigns a fuzzy

membership value to every pixel, and then an error value is calculated in each

iteration until the error reaches zero, indicating that the optimized partition has been

done.

The diagnostic stage of mammographic CAD contains feature extraction and

classification as shown in Fig. 11. Features used in mammographic CAD includes

intensity features, morphological features [37], and texture features [38]. To achieve

better classification rate, feature selection is an essential step to select best feature

combination for such goal. Step wise feature selection, which involves the analysis of

the effect caused by removing one feature at a time from the feature pool, is a

commonly used method [39]. Once the features are extracted and selected, the

features are input into a classifier for differentiation. Some classifiers often seen in

such task are 1) linear discriminant analysis (LDA) which classifies different

categories by constructing a decision boundary in the feature space [40]; 2) artificial
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neural networks which mimics biological nervous systems and uses many processing

elements highly interconnected with weighted links to function as adaptive learning

[40]; and 3) Bayesian network which uses probabilistic approach to divide a given

database [41].

3.  Future of CAD

Nowadays radiology is threatened by its own success: the number of images per

study rise drastically; the workload of radiologists increases dramatically; the number

of radiologists, however, is still limited; and health care costs related to imaging are

fast increasing [27]. Therefore, a new way to handle such data explosion is needed.

CAD might possess the key to solve the problem. Given that more new imaging

modalities are generating 3D image volumes such as dedicated breast CT and

automated 3D breast ultrasound, CAD holds the potential for speeding up the

diagnostic process, reducing diagnostic errors, and improving quantitative analysis.

With the continuing trend of growing computation power, CAD begins to be able to

handle intensive computation and huge training data set. In some area like breast

screening mammaography, CAD is on a breakthrough and can even rival radiologists’

performance. Although there are still some challenges that CAD development needs

to overcome before it can widely sit in the reading rooms, such as limited image data
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share for training software and insufficient readers for reader study [25][26], it is

expected that CAD is likely to become a standard in medical imaging, more and more

applications in the future.

C. Overview of Segmentation on Medical Images

As discussed in section B, segmentation is an important part both in CADe and

CADx. Here we give an overview of commonly used segmentation methods on

medical images.

1. Thresholding

The concept of thresholding is simple. Thresholding attempts to determine an

intensity value which to be called a hreshold, and then uses the threshold to separate

image pixels into different classes. This is often done by analyzing the histogram of a

given image. The threshold is often identified at the valleys on a histogram. Although

this method is simple and easy to be implemented, it can result in erroneous image

partition if the image is noisy, or lacks of homogeneity within the object to be

segmented. Due to medical images being often noisy and having vague boundaries for

objects, segmentation on medical images with thresholding generally needs to be

performed interactively [42] and thus becomes non-automatic.
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For those more homogeneous images like brain MRI, some researchers have
applied EM (expectation-maximization) algorithms to simulate an estimated
gray-level distribution [43]. In this way, the valleys and peaks become clearer to be

identified. Thus automatic segmentation with thresholding is more applicable.

2.  Region Growing

Region growing is a technique for segmenting an image region that has similar
predefined criteria. These criteria can be based on intensity and/or edge information.
In this method, the input of seed point is required where the segmented region can
start growing from. Like thresholding, region growing can be very sensitive to noise.
To solve these problems, some additional algorithms have been developed to combine
and refine region growing, such as fuzzy analogies [44]. Region growing is often used

to delineate small and simple tumors [45].

3. Classifiers and Clustering

Classifiers methods seek to partition a feature space derived from the image by
using data with known labels. This is a pattern recognition technique. A feature space

is a space of any function of the image. In many cases, the feature space is often the

22



image intensities themselves. Classifiers are supervised methods because they need

training data that are already labeled and then used as references for classifying

incoming new data. Some commonly-used classifiers include k-nearest-neighbor

classifier, Parzen window, and Bayes classifier [40].

Being noniterative, classifiers are more computationally efficient than region

growing. In addition, they can be easily applied to multichannel images, which makes

them superior to thresholding. However, the need of manual interaction to obtain

training data is time consuming. The selection of training set can often lead to bias

issues and result in errors.

In contrast with classifiers, clustering does not use training data and is termed an

unsupervised method. Without training data, clustering iteratively modifies based on

the change of properties of every class during each iteration. In sum, clustering uses

available data to train itself. Three commonly used clustering algorithms are the

K-means algorithm [40], the fuzzy c-means algorithm [46], and the EM algorithm

[40]. Clustering methods have shown success in segmenting brain MRI [47].
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4. Markov Random Field Models

Markov Random Field (MRF) model is not an actual segmentation model but

more of a statistical method that can be incorporated into segmentation to obtain

refined results. In principle, MRF analyzes the spatial interactions between

neighboring or nearby pixels to evaluate local correlations. Therefore MRF methods

are often incorporated into clustering methods, given that same cluster of pixels

aggregate together and have high spatial correlations. This property is typically used

in medical image segmentation since pixels from the same anatomical structure

generally demonstrate similar intensity and are adjacent.

The difficulty in using MRF to aid in segmentation is the determination of

parameters controlling the strength of spatial interactions. Also, MRF is usually

computationally intensive. However, MRF has success in aiding correct segmentation

on digital mammograms [33].

5. Artificial Neural Networks

Artificial neural networks (ANNSs) use parallel networks of processing elements

or nodes often called “perceptron” [30] to stimulate biological learning. Each

perceptron performs elementary computations. With weighted links assigned to
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connect different perceptrons, learning is achieved through the adaption of theses

links [30]. The most commonly used ANNSs in medical image segmentation is as a

classifier [48]. Due to that there are many interconnections in a neural network,

spatial information can be easily incorporated into the classification process. However,

the ordinary serial computer can reduce its computational advantage because ANNs

are inherently parallel.

6. Deformable Models

Deformable model is a type of dynamic segmentation. Kass et al [35] first

introduced such image segmentation technique in 1988. To segment an object in an

image, a closed contour defined within an image domain is driven by the sum of

external energy coming from image data and internal energy from the contour itself.

The internal energy is designed to maintain the smoothness of the evolving contour

during deformation. The external energy is defined to move the contour toward

desired locations, such as object margins.

Although the theory of deformable first appeared in late 80’s, there have been

many modifications and improvements done in this field to make deformable models

more applicable. Combining level set theory [49], deformable models nowadays can
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naturally handle topologic changes, achieve good accuracy, and be implemented on

the Cartesian coordinate system allowing for computation efficiency. Deformable

models have become one of the most active and successful research fields in image

segmentation. Because of its ability of handling complicated shapes, it is much

favored in medical image application. Segmentation with deformable models on

medical images can be widely seen on different image modalities on different organs,

such MRI, CT, and ultrasound [50].

7. Other Approaches

Some other approaches used in medical image segmentation includes 1)

atlas-guided approaches that could be a powerful tool when templates are available,

like brain MRI; and 2) watershed algorithms that partitions an image into different

homogeneous regions. However, watershed algorithm often suffers oversegmentation

and thus post-processing steps for merging separate regions are usually required.

D. Hypothesis and Specific Aims

As described in the previous sections, medical imaging has come to a new era.

The new imaging modalities which generate 3D images provide anatomical accuracy

and could lead to improvement of image interpretation and diagnosis. However, it
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also increases the amount of data that radiologists need to review. Such data explosion

produces huge burden for radiologists. Furthermore, reviewing a 3D image volume on

a 2D screen is difficult. One might need to construct the 3D structure in one’s mind by

reviewing many 2D slices. With the power of computation, CAD is expected to

alleviate the burden by automatically detecting and even diagnosing suspicious areas

embedded in the 3D image volumes.

Based on previous discussion, successful CAD relies much on accurate

segmentation. Therefore, the purpose of this study is to develop breast mass

segmentation technique that could be applied in dedicated bCT and 3D breast US.

There are four specific aims in this study: (1) Development of 3D lesion segmentation

techniques for dedicated Breast CT, (2) Optimization of 3D lesion segmentation for

Breast CT, (3) Task-based evaluation of lesion segmentation techniques, (4)

Preliminary investigation of segmentation techniques on 3D breast ultrasound

lesions.
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1. IMAGE DATABASE

The image database for this study contains contrast-enhanced bCT,

non-enhanced bCT, and 3D breast ultrasound.

Contrast-enhanced and non-enhanced bCT images were acquired from

University of California at Davis under an IRB approved protocol. The voxel

dimension is equal in coronal plane ranging from 190 to 390 um, and 200 to 700 um

in coronal slice spacing. Lesion centers were labeled by the radiologists, and lesion

outlines were manually drawn in the coronal, sagittal, and axial planes by a research

specialist with over 15 years of experience in mammography. Case numbers in the

dedicated breast CT image database is listed in TABLE 1.

TABLE I. IMAGE DATABASE OF DEDICATED BREAST CT

Malignant Benign All cases
Contrast-Enhanced 25 13 38
Unenhanced 80 49 129
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Figure 11. An example of dedicated breast CT image. (a) and (b) are the same
coronal slice of the same lesion with and without contrast agent, respectively. Note
that the breast lesion appears brighter in (a) than in (b). VOI size was 36x35x35.5
mm.

The 3D breast US dataset includes 98 images containing different views on 64
cancers from 55 patients with breast density BI-RADS (Breast Imaging-Reporting and
Data System) 3 or 4. They were imaged on an automatic breast ultrasound system
(ABUS) developed by U-Systems, Inc. (Sunnyvale, CA). All data was acquired under
an IRB approved protocol. Spatial resolution in the images was non-isotropic with
spatial resolution in the axial plane of ~ 250 to 300 um by ~ 150 um and slice spacing

of ~ 600 um. Lesion centers and margins were manually marked and outlined by an
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expert breast radiologist with experience in breast ultrasound. Cancers in US images
were divided into two groups: mammographically positive cancers and

mammographically occult (TABLE II).

TABLE Il. IMAGE DATABASE OF ABUS

Mammographically Mammographically All cases
positive occult
44 54 98

Figure 10. Example images of 3D breast ultrasound in the three central orthogonal
planes. From (a) to (b): coronal, transverse, sagittal. The breast lesion appears dark
region in the central area. Note that (b) and (c) demonstrate the depth (section) of the
breast as conventional US does, and shadow is shown in the images as it appears
under the lesion. In (b) and (c), and image size is larger than the depth of the breast,
and the region out of the skin is cut out.
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I11. DEVELOPMENT OF 3D LESION SEGMENTATION FOR DEDICATED

BREAST CT

The content of this chapter has been published on Proceedings of SPIE and
e-published ahead of print on Journal of Digital Imaging.

[68] H. Kuo, M. L. Giger, I. S. Reiser, J. M. Boone, K. K. Lindfors, K. Yang, and A.
Edwards, “Evaluation of stopping criteria for level set segmentation of breat
masses in contrast-enhanced dedicated breast CT,” in Proceedings of SPIE, 2012,
vol. 8315, pp. 83152C.

[74] H. Kuo, M. L. Giger, I. Reiser, J. M. Boone, K. K. Lindfors, K. Yang, and A.
Edwards, “Level Set Segmentation of Breast Masses in Contrast-Enhanced
Dedicated Breast CT and Evaluation of Stopping Criteria,” J. Digit. Imaging, vol.
27, pp. 237-247, 2014

A. Introduction

In an initial study, masses in bCT images were segmented using the radial gradient

index (RGI) algorithm [51][52]. For 93% of the masses, the automated segmentation

yielded an overlap ratio of 0.4 or greater. However, lesion segmentations tended to be

undergrown and too spherical. Ray et al developed a semi-automated segmentation for

masses in dedicated bCT based on the watershed algorithm [53][54]. Their method

requires the user to input several markers to initialize the segmentation. The algorithm

presented here requires only the lesion center as input, which is provided by a

radiologist but could alternatively result from the output of a lesion detection (computer

aided detection) algorithm. Other than Reiser et al’s initial study [52], to the best of our
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knowledge, this is the first algorithm for automated seeded lesion segmentation on

dedicated bCT.

In a previous clinical report, Prionas et al found that lesion conspicuity was greater

in contrast-enhanced bCT images than in unenhanced images due to higher HU for both

malignant and benign lesions [15]. In a subset of our cases for which non-contrast bCT

images were available, we found that the average lesion enhancement due to the

contrast agent was 31.4 HU. Therefore, the lesion margin is expected to be better

visualized in contrast-enhanced bCT images, and easier for the segmentation algorithm

to capture. Hence we used contrast-enhanced dedicated bCT images to develop the

segmentation algorithm. The strategy was to segment breast masses with a dual-stage

segmentation procedure. The first stage of segmentation was done by RGI, which

provided an initial contour for the second stage of segmentation -- active contour

model.

Active contour (or “snake”) segmentation was originally proposed by Kass et

al [35]. This model seeks an object margin that minimizes an energy functional

consisting of internal energy and external energy along the deformable contour. Active

contour segmentation has been used in medical imaging [55][56][57][58]. In breast
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imaging, Brake et al used a discrete active contour method to segment mammaographic

mass lesions [59]. Sahiner et al incorporated edge and region analysis to help minimize

the contour energy [60]. Both works express the contour as an N-points polygon,

making the handling of topology changes difficult, as seen in split and merge

segmentation methods. To solve this problem, Yuan et al [61] proposed a level set based

approach [62][63][64] that can handle splitting and merging in a natural way for

segmenting masses on mammogram. In this study, the level set approach was extended

to 3D. This 3D level set based active contour model uses the initial contour generated

by previously developed RGI and continues contour evolution until the desired lesion

margin has been reached.

Contour leaking is a problem in lesion segmentation on medical images that needs

to be addressed due to the presence of ambiguous margins. Therefore, a stopping

criterion is required to terminate the iterative contour evolution process at the lesion

margin. In this study, three stopping criteria were developed and compared: (1) the

change of segmented region volume at each iteration, (2) the average intensity in the

segmented region increase at every iteration, and (3) the rate of change of the average

intensity inside and outside the segmented region [61].
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B. Segmentation Methods

Figure 9 shows the flow chart of the proposed segmentation algorithm. The

segmentation is performed in two stages: contour initialization with the RGI algorithm

followed by a level set based active contour model.

Breast CT image with manually labeled seed point

Extracted VOI (volume of interest) with spatial smootlhing

RGI Segmentation

Adaptive morphological erosion

Initial contour

v

—_—F Level set segmentation

NO

Stopping criterion fulfilled?

Final lesion contour

Figure 9. Schematic of the seeded breast CT lesion segmentation algorithm.

Although the level set based active contour algorithm can handle topologic

changes in a natural way and is expected to be able to capture complicated
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morphologic details, the way it minimizes the energy functional is complex and can

result in errors on noisy and ambiguous images, such as medical images. Since breast

lesions tend to exhibit local intensity variations, and lesions occur in a wide variety of

sizes and shapes, it is not guaranteed that the active contour evolution equation always

finds the global minimum that represents the optimized image partition. As a result,

the evolving contour might become trapped in a local minimum of the energy

functional. One way to guide contour evolution towards the global minimum is to

initialize the active contour segmentation with an approximated lesion contour that is

sufficiently enough to the true lesion margin to avoid local minima.

Based on a previous study [52], RGI can produce an approximate contour in a very

short amount of time, with the limitation of the contours being too spherical and

sometimes undergrown. While these limitations can produce unsatisfactory lesion

outlines, they make the RGI algorithm well suited for contour initialization, which

requires the contour to be entirely contained within the lesion. Thus, in the proposed

segmentation algorithm, we used RGI segmentation to generate the initial approximate

lesion outline, and used an active contour model to evolve the lesion contour towards

the desired location and to capture morphologic details for greater segmentation

accuracy.
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Figure 10 shows the difference in segmentation results with and without use of a

RGI-approximated initial lesion contour. As shown in Fig. 10, RGI segmentation not

only increases the efficiency of the overall segmentation procedure, it also helps

improve the accuracy for the second stage of segmentation.
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Figure 10. Comparison of active contour segmentation with different initial
contours. (a) and (d): Coronal views of two dedicated breast CT lesions; (b) and (e):
The initial contour was a cubic surface of 3* voxels; (c) and (f): The initial contour
was, as included in our proposed overall segmentation method, an eroded RGI
segmentation. Thin lines: initial contour; thick lines: final segmentation.
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1. Contour Initialization

RGI segmentation is a seeded lesion segmentation technique [51]. Reiser et al
extended it into 3D and showed that it can be applied on dedicated breast CT images
[52]. For a given lesion contour dQ, the 3D RGI is given by

RGlyy= Ydo G(xy,2) -P(xy,2) (1.1

Yo G(xy,2) |

where G is the image gradient, and ? is a unit vector in the radial direction.

The volume of interest is multiplied by a 3D Gaussian constraint function, then a
series of contours dQ; are generated by applying multiple gray-level thresholds to the

constrained VOI. The resulting segmentation is the contour that maximizes RGI:

dQrg=arg rggazlx RGI{dQ;}, i=1,...,n (111.2)

In this algorithm, the standard deviation of the Gaussian constraint function was 10
mm, based on Reiser et al’s study [52]. Further, to ensure that the initial contour is
completely contained within the lesion before the second segmentation stage,

morphological erosion is applied to shrink the RGI segmented lesion contour by using
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the MATLAB function “imerode” with a cubic structuring element. The side length of

the structuring element was one ninth of the cube root of the RGI segmented lesion

volume. The resulting contour then served as the initial contour for the subsequent

active contour segmentation. Figure 11 shows an example of a mass with a RGI

segmented contour and the eroded contour, which is used to initialize the level set

segmentation. Details about the active contour model are described in the following

sections.

Figure 11. Demonstration of the RGI segmented contour (bold contour line) and the
subsequently-eroded contour (thin contour line), which serves as the initial contour
for input to the active contour segmentation stage.
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2. Original Level Set Model

The level set based propagating fronts theory for delineating shapes on an image
was introduced in 1988 [62]. The central idea of a level set method is to express the
contour as the zero level set of a higher-dimensional function, the so-called level set
function. The evolving contour is formulated through the evolution of the level set
function; i.e. dQ is the zero level set: dQ = {(x, Yy, 2) | o(X, t) = 0}, o(x, t) is the
evolving level set function and t is the iteration. Let x be a location vector € R* on
the evolving hypersurface and F(x) a speed function normal to the front at x, and thus,
the evolution equation for ¢ can be given as a basic formulation of a
“Hamilton-Jacobi type” equation [62][63][64]:

aa_‘f+ FIVol=0 (11.3)

In this classical level set front propagating equation, the level set function o,
however, can develop shocks, i.e., very sharp or flat shapes during evolution. Among
different approaches to resolve this problem, Li et al proposed a regularization term

given as [65]

6R_((p):lu [qu) - div (E)] (1n.4)
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where R(¢) is the regularization functional. The basic idea of this regularization term
is to maintain the evolving level set function as a signed distance function with its
intrinsic property |Vo| = 1. This regularization term avoids contour re-initialization,

which is computationally expensive [66][67].

Combining the Hamilton-Jacobi type equation (I111.3) and the regularizing term

(111.4) yields the level set evolution equation

15 \v4
a—(tPZ (pk+1- (pk: r{,u [Vz(p - div (—(P>] +vgF|Vo| } (11.5)

Vol
where F is the speed function normal to x; v is a scalar parameter that controls the
direction of front propagation (negative value if evolving outward and positive if
evolving inward); 7 is the iteration step size; k is the iteration number; and g is the

indicator function, given by

1

TG, @ 1

(111.6)

where G, is a Gaussian kernel and | is the image array. The indicator function was

introduced by Castelles et al and is often seen in level set based curve evolution in
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image processing and computer vision applications [63]. It incorporates geometrical
information into the level-set function and ensures that the contour stops evolving in

edge-like regions [63].

Since |Vop| = 1 is enforced by the regularizing term (i.e., the term in square
brackets on the right hand side of 111.5), the last, so-called fronts propagating term can
be simplified as vgF. In addition, by letting F be a delta function, the propagating

front uniformly expands:

0, IX|> &
HO0H fereos(D)]. b ()

where ¢ controls the sharpness of the delta function. Its value, € = 0.2, was based on

Li et al’s settings [65].

For large lesions in our dataset, active contour segmentation could be very time
consuming and therefore, the selection of z had to be larger than 1000 to complete
the segmentation task to reduce computation time for cases with large masses. For the
purpose of stability, Li et al suggested that the product of z and x should be less

than 0.25 [65]. To reach this, a small value of « is often chosen which in turn
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somewhat suppresses the effect of the regularization term. In this study, we found that

the need of a large value of 7 could yield undesired segmentation results even if zu

is less than 0.25 (Fig. 12(a) - 10(e)). This is because the strength of the regularization

term, which is multiplied by z, is comparatively larger than the fronts propagating

term when it is significantly suppressed by g around the lesion margin. As a result, the

regularization term can produce noise during contour evolution, cause erroneous

termination, and might enable the contour to cross over the barrier set up by g,

ultimately producing unsatisfying segmentation results. Figure 12(a) — 10(e) show

segmentations obtained with 7z = 1000 and different values of .

(a) (b) (c) (d) )

= 0.254 = 0.204 = 0.154 = 0.104 1= 0.03
(® (g) (h) (1) 0)

w=0254 u=0204 tu=0.154 = 0.104 = 0.03
Figure 12. (a) to (e): Dedicated breast CT lesion segmentations obtained for different
values of zu using Ill. 5. (f) to (j): Dedicated breast CT lesion segmentations

obtained for different values of zu using I1l. 9. The coronal plane is shown. The

dip dig

ot dt =0.

stopping criterion was
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3. Proposed Level Set Model

Since the purpose of the regularization term is to maintain the signed distance
function property only during the evolution process, the regularizing function
becomes redundant when the evolving contour approaches the lesion margin where Z—‘f
— 0. To solve this problem we propose to make the regularization term dynamic
along with the contour evolution by incorporating the geometrical information into

the regularization term using a “softened” indicator function g.:

1
RREX-Y] (19
Hence the level set evolution equation becomes
e [ro- () o)
P A g [0t Veo - div Vol +vg5,. () (111.9)

Note that compared to 111.6, the power of [VG,* I| in the denominator of g, is 1
rather than 2. From our experiments, we noticed that if g is used instead of g, the
level set function can still produce subtle instability around the lesion margin because
the regularization term is suppressed slightly too early. Fig. 12(f) - 10(j) show

segmentation results from the new model that incorporates g, with z = 1000 and
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different values of x and for the same case as shown in Fig. 12(a) - 10(e). Here we

suggest zu < 0.15 for 3D bCT images, because zu > 0.15 can still cause instabilities

as shown in Fig. 12(f) and 10(g).

Figure 13. (a) Human-delineated lesion outline of the bCT lesion. (b) Segmentation
result using Eqg. 5. (c) Corresponding regularization map. (d) Segmentation result
using 111.9. (e) Corresponding regularization map. Examples are displayed in the
coronal plane. Volume of interest size was 36mm x 36mm X 35.5mm.

Figure 13 shows a comparison of the segmentation results from the model
without and with the softened indicator function (Figs. 13(b) and 13(d)) and the
corresponding human-delineated outline (Fig. 13(a)). In Fig. 13(d) the evolution stops
automatically due to the stopping criterion, while the evolving contour shown in Fig.
13(b) has already crossed over the lesion margin at 60 iterations yielding poor
segmentation performance. Figures 13(c) and 13(e) show the corresponding

regularization term maps.
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4. Stopping Criteria

In this study, we developed and compared three stopping criteria [68]:

1. The first stopping criterion is the minimum of AV/V, and is based on the
change of segmented region volume. Given the segmented volume V and the
difference in region volume from the previous to the current iteration step AV,

contour evolution is terminated when AV/V reaches a global minimum.

2. The second stopping criterion is the minimum of dl,o/dt, and is based on the
average voxel intensity within the segmented region increase at each iteration. Here,
[] denotes the segmented region and AQ = Q4 - Q; is its increase in two consecutive
iteration steps, and 1, is the average voxel intensity in AQ. When the contour
approaches the lesion margin, I, is expected to decrease significantly. Therefore we
select the 3D contour that corresponds to the global minimum of the derivative

dlo/dt as the final lesion margin.

3. The third stopping criterion, dI_/dt - dlg/dt=0, is based on comparing the
rate of change (i.e., the slope) of the average voxel intensity as a function of iteration

number inside and outside the segmented region, and was initially proposed by Yuan
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et al [61]. Denoting the average voxel intensities inside the segmented region as I,
outside the segmentation as I, and along the contour as Ig4q, the difference of rates
of change of average intensities inside and outside the segmented region are given as
) ) o) 2 0 7, (1110)
where Vg is the volume of the VOI excluding the segmented lesion and t refers to
the iteration step. Note that parameters of this equation were adjusted for 3D bCT
images. When the evolving contour crosses the lesion margin, the rate of change of
the average intensity inside the segmented region increases, and will eventually match
that outside the segmentation. Therefore the contour evolution is terminated when the
rate difference, [dI, /dt - dlg/dt], reaches zero. Since a numerical comparison
against zero is difficult, for practical purposes, contour evolution was terminated

when [dl,_/dt - dIg/dt] was less than 0.5.

5. Evaluation
Manual lesion outlines on 3 orthogonal planes, drawn by a research specialist in
mammography, served as a reference for evaluating the segmentation algorithm.

Segmentation performance was assessed as the average overlap ratio (ORayg ),
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computed as

OR.. .= E((QZanman) _I_(QZmeman) + (QZanman> ) (111.11)
M3 QopU®man/ oy \22DU®man sag QopU®man/ '

where Q,p is a cut through the 3D computer-segmentation that includes the lesion
center, and (cor), (sag), and (ax) denote the orientation of the plane. wy,, IS the
human-delineated lesion outline in the same plane [52]. The computer outlines
produced by the three stopping criteria were compared in terms of OR,,, averaged
over all cases. A t-test [69] was used to compare the performances across the three

stopping criteria.

C. Results

Figure 14 shows examples of segmentation results by using the proposed active
contour model with the three stopping criteria, for four masses. The leftmost column
shows the manual outline of each mass. This figure also illustrates the variability of
size, shape, and intensity variations within and in the neighborhood of breast masses

imaged with 3D bCT.
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Figure 14. Segmentation examples for the three stopping criteria. tu = 0.10.
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Figure 15 plots the proportion of correctly segmented masses, as a function of
ORayq threshold. For all three stopping criteria, ORayy Was greater than 0.4 for 96% of
all masses. Overall, all stopping criteria produced similar curves, but for much of the
range of ORayq thresholds, the min(AV/V) criterion resulted in a smaller proportion of

correctly segmented masses, compared to the other two stopping criteria.
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i 4

)=0

0.2} it
- == min(AV/V)
o 2 min(dl,/dr) -
0 ' ; I o
0 0.2 0.4 0.6 08 L

Fraction of lesions with ORavg at or above overlap threshold

Average overlap ratio (ORav) threshold
Figure 15. Segmentation performance as a function of OR e threshold, for the three
stopping criteria.
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TABLE 11l presents the performance of the proposed automated segmentation
scheme for the three stopping criteria in terms of <OR,,>, where <-> indicates
average across all cases. For all stopping criteria, <ORa4> was 0.66 or greater. The
similarity of the lesion segmentations was assessed using a pairwise t-test. No

statistically significant differences were found.

TABLE I1l. SEGMENTATION PERFORMANCE IN TERMS OF
AVERAGE OVERLAP RATIO FOR THE THREE STOPPING CRITERIAAND
COMPARISON RESULTS IN TERMS OF P-VALUES FROM THE T-TEST.

Stopping criterion Average overlap ratio <OR, 4> p-values
Minimum of
0.66 + 0.14 )
(AVIV) 0.12
Minimum of
_ 0.68 + 0.14 > 0.06
(dl\/dt)
i dis 0.91
dip dig _
w o -0 0.68 + 0.14 )

D. Discussion and Conclusion

Figures 12 and 13 demonstrate the effect of multiplying the regularization term

with a “softened” indicator function (111.9), which not only ensures that |Vo| = 1

during contour evolution, but also prevents the regularization map from developing
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undesired results when the driving force is being suppressed and the evolving contour

approaches the stopping point (Fig. 13).

Overall, the proposed segmentation algorithm produces satisfactory lesion
outlines for all stopping criteria in the sense that surrounding glandular tissues are not
included in the segmented region (Fig. 14(i) - 12(1)). As shown in Figure 6, the active
contour model evolves contours smoothly without generating shocks. The
regularization term plays an important role in maintaining the stability. When |Vo| >
1, the regularization term [V2¢ - div(Vp/|Ve|)] becomes positive and tends to allow
for faster expansion of the evolving contour. If [Vo| < 1, then [V2¢ — div(Ve/|Vel)]
becomes negative and the contour evolves more slowly, bringing ¢ back toward
|[Ve| = 1. This mechanism ensures that the level set function maintains its intrinsic
property of a signed distance function during the evolution, |Ve| = 1, mitigating the

need for re-initialization.

Of the three stopping criteria that were investigated, min(dl,o/dt) was found to
be the least consistent. For small lesions, the average intensity within the grown
region, l,q, is reduced substantially during early iterations due to the small size of the

segmented region. This can cause contour evolution to be terminated prematurely, as
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shown in Fig. 14(c). For larger lesions, on the other hand, the min(dl,/dt) stopping
criterion tended to be satisfied at a higher iteration number, compared to the other
stopping criteria, producing slightly larger lesion segmentations. In turn, these
resulted in a higher overlap ratio because the manual outlines were also drawn loosely,
overestimating the lesion margin (see Figs. 14(g) and 14(e)). Thus, segmentations
resulting in a higher overlap ratio were not necessarily closer to the lesion margin,
judging by visual inspection. Furthermore, the “redundantly” grown parts (see
protuberances in Fig. 14(g)) occurred because a large portion of background needed to

be included in AQ to produce a global minimum in dlo/dt.

Although contours from stopping criteria based on min(AV/V) and
[dl,_/dt - dIg/dt=0] generated similar overlap ratios, min(AV/V) tended to produce
tighter lesion outlines than the other two criteria. This can be seen in Table 1, in which
min(AV/V) produces the smallest average overlap ratio. Also, the p-values of
comparisons between OR,yg from segmentations with the min(AV/V) criterion and

that using the other two stopping criteria might indicate such a trend as well.
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Figure 16. Stopping conditions as a function of iteration number, illustrated for two

different masses (top two rows, bottom two rows). (a,g) AV/V, (b,h) dl,/dt, and
(c,i) %% The segmentations corresponding to the termination point are shown
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A drawback of the stopping criteria min(AV/V) and min(dl,o/dt) is the need to
let the contour evolve for many iterations past the actual stopping point in order to
identify the minimum, as demonstrated in Figs. 16(a), 16(g) and 16(h). If the curve is
noisy, curve fitting can help to determine a reliable minimum. As shown in Fig. 16(a),
the segmentation will automatically cease at a local minimum if no curve fitting is
used similar to what is seen for the stopping criterion min(dl,o/dt). Due to curve
fluctuations, the global minima of AV/V and dl,o/dt were selected after monitoring
the contour evolution for many iterations beyond the actual stopping point (Fig. 16).
In contrast, [dI,/dt — dIg/dt] compares the average intensity inside the entire
segmented region and the background and is therefore less sensitive to the intensity
variations that might occur in a certain local region. As a result, [dl, /dt - dlg/dt] is a
monotonically decreasing curve that allows for easier identification of the stopping

point (Fig. 16(c) and 16(i)).

Some researchers tend to use Dice coefficient (DICE) to evaluate the computer

segmentation performance. DICE is defined as [70]:

2(QN
picg= 282N %nan) (111.12)
Q+®man

55



0.8+
=
E : : :
% U+6_ .............. R ..............................
g : :
O
S OR =04
A 04} DICE=057 |
0 ;

0 02 04 06 08 i
Overlap Ratio

Figure 17. The relationship between OR and DICE.

where Q is the computer-segmentation and o.,, IS the human-delineated lesion
outline. In terms of DICE, Zijdenbos et al suggested that a good overlap occurs when
DICE > 0.7 in their literature of image validation [71]. Kuo et al showed the
relationship between OR and DICE in their work of automated 3D breast ultrasound

segmentation, and accordingly, an OR of 0.66 is equivalent to a DICE of 0.79 [72],
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which is still well above 0.7. In fact, Sahiner et al compared classification of breast
masses in mammography based on outlines by radiologists, and computer
segmentations [60]. They found similar performance for an average overlap ratio of

0.62, which supports the use of overlap ratio to assess computer segmentations.

Limitations of this study are that the data set is small (33 patients; 38
contrast-enhanced masses). This might have affected the observed p-values when
comparing OR4e from the three stopping criteria. In a larger data set, one might
expect to see smaller p-values for the comparisons of min( A V/IV) -
[dI,_/dt - dIg/dt = 0] and min(AV/V) — min(dI,o/dt) in a larger data set, since the
results in Table | indicate such a trend. Further, manual outlines from one expert
served as “ground truth” for the evaluation of the computer segmentation. Automated
lesion segmentation is a central step in most CAD and quantitative analysis schemes
and therefore, the segmentation performance ultimately needs to be evaluated in that
context. However, as an intermediate step, lesion segmentation is often evaluated by
comparing computer segmentations to human outlines, particularly in mammography

[60][73].

To sum up, a two-stage 3D lesion segmentation method combining RGI
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segmentation with an active contour model is developed. The RGI segmentation
generates an approximate contour, which serves as initial contour for the subsequent
contour evolution. The automated lesion segmentation algorithm was evaluated by
computing the overlap ratio with manually drawn lesion outlines. Three stopping
criteria were evaluated, which all vyielded overlap ratios greater than 0.65
(corresponding to a Dice coefficient of 0.7). This suggests that the segmentation
algorithm proposed in this paper can be successfully applied to masses imaged with
contrast-enhanced dedicated breast CT. Among the stopping criteria that were
investigated, min(dl,/dt) was found to be the least consistent and the use of either
min(AV/V) or [d(I.)/dt — d(Ig)/dt = 0] is suggested, where the latter holds the

advantage of not requiring curve fitting to identify the stopping point.
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IV. APPLICATION OF THE PROPOSED SEGMENTATION MODEL ON

UNENHANCED bCT IMAGES

The content of this chapter has been published on IWDM 2012.

[75] H. Kuo, M. L. Giger, I. Reiser, J. M. Boone, K. K. Lindfors, K. Yang, and A.
Edwards, “Level Set Breast Mass Segmentation in Contrast-Enhanced and
Non-contrast-Enhanced Breast CT,” in 11th Internatoinal Workshop, IWDM,
2012, vol. LNCS 7361, pp. 697-704

A. Introduction

In the previous chapter, we have shown that the segmentation method proposed

in chapter 1l can be applied on contrast-enhanced dedicated bCT. However,

unenhanced dedicated bCT would be more favored in future screening application

because of no contrast agent injected into the patient body. Thus the purpose in this

chapter is to test the applicability of the proposed segmentation procedure for

unenhanced dedicated bCT.

B. Mateials and Methods

The dataset included 23 contrast/non-contrast breast CT image pairs (13
malignant masses and 10 benign masses, see chapter Il). The segmentation procedure

is the same as described in chapter Ill, and the stopping criterion is

[d(I.)/dt — d(Ig)/dt = 0].

59



C. Results

The average OR in contrast-enhanced bCT images was 0.69 (DICE = 0.82) while

the average OR in unenhanced bCT images was 0.62 (DICE = 0.77). Figure 18 shows

the cumulative overlap ratios for all lesions. Segmentation performance on contrast

images is better than on non-contrast images in terms of their respective OR.

1 o — T _~,,'_\ T T T
— T
non-contrast

— — —cantrast

0.
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0.4
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Fraction of lesions with OR at
or above overlap threshold
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a.1

a 0.2 0.4 0.6
Overlap threshold

Figure 18. Comparison of segmentation performance between contrast and
non-contrast images with radiologist’s outlines.
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Figure 19 shows the relationship between segmented lesion volumes in the
non-contrast and contrast-enhanced bCT images. Each data point represents one
lesion. Overall, lesion volume for both segmentations is similar except for two
outliners. Examining segmentation results for the two outliners, which are circled in
Fig. 18, revealed that segmentation in the unenhanced bCT images had failed. To
assess the differences in lesion volume, a paired t-test was performed. Excluding these

two failed segmentations, a p-value of 0.09 was found.
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D. Discussion and Conclusion

Shown in Fig. 20B and 20D, the overlap ratio of the human outlined regions is
0.99 (DICE = 1). When comparing with the computer segmentation, the ORgyq still

differs: 0.7 (DICE = 0.82) for contrast and 0.6 (DICE = 0.75) for non-contrast. This
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demonstrates that the proposed segmentation method might tend to stop evolving

earlier without contrast agent because the lesion is less emphasized. Although the

p-value of 0.09, yielded by t-test for contrast and non-contrast segmented volumes,

might not be strongly significant, this still indicates the trend that segmentation in

non-contrast bCT images tends to produce smaller lesion volumes than when

segmenting the lesion in contrast-enhanced images.

Overall, the similar results of segmentation between contast-enhanced and

unenhanced bCT images demonstrate that our segmentation method can be applied on

unenhanced images. However, this modified level set segmentation method might

need some modification due to the tendency of segmenting smaller volume on

unenhanced images. If the segmentation fails to segment the lesion completely, it will

lose important shape details, which is a significant feature for classifying malignancy.

Therefore, this examination suggests that the segmentation procedure proposed in

chapter 111 needs a further improvement in order to be able to segment shape details as

much as possible on unenhanced bCT images.
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Figure 20. Examples of lesion segmentation in contrast-enhanced bCT images (A,
B), and non-contrast-enhanced bCT images (C, D). Bold: human outline. Thin:
computer-segmented outlines.
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V. OPTIMIZATION OF THE SEGMENTATION MODEL

The content of this chapter has been accepted by Journal of Medical Imaging for
publication.

A. Introduction

In chapter 111, we present a two-stage 3D lesion segmentation model [74] which

combines the radial-gradient index (RGI) [51][52] and the level-set based active

contour algorithm [64][65]. This model yielded good segmentation performance of

lesions in contrast-enhanced bCT images based on the overlap ratio between

computer segmentation and human outline of 0.68, which is equivalent to a DICE

value of 0.80. (Note that a value for the Dice coefficient larger than 0.7 has been

suggested as indicative of a good overlap [71]). However, the resulting segmentations

tended to segment lesion volumes smaller on non-contrast images compared to

contrast-enhanced ones [75] as shown in chapter IV. Such conservative lesion

outlines could miss important morphological margin indicators, such as spiculations,

for diagnosis. Therefore, in this chapter, we address this problem on

non-contrast-enhanced bCT images with optimization to our previous model.

The optimized segmentation model is still a two-stage method that uses a radial
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gradient index segmentation method [51][52] to first delineate the initial contour of

the lesion, and an modified active contour model to evolve the initial contour toward

the lesion margins. As lesion margins are often ambiguous, we employed a dynamic

stopping criterion [61] suggested in chapter 111 which is based on global information

of the given image to terminate the segmentation procedure automatically. Moreover,

we also evaluated the relationship between the amount of presenting breast

fibroglandular tissues and the segmentation performance on bCT. This was conducted

in order to investigate whether the proposed method would yield acceptable results

when a lesion was surrounded by a large proportion of fibroglandular tissues, i.e.,

when a lesion was located in dense parenchyma.

B. Segmentation Methods

1. Contour Initialization

As introduced in chapter Ill, the initial contour was generated by using

RGI-segmentation, which finds the lesion margin that maximizes the average

proportion of gradients pointing radially outward from the lesion center [51][52]. In

addition, to ensure that the initial approximation of the lesion contour was entirely

inside the actual lesion, morphological erosion was performed with an adaptive cubic

structuring element, that had a side length of 1/9 of the cube root of the RGI
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segmented lesion volume. We have found RGI segmentation combined with the
erosion process to be a reliable and fast method to generate initial contours that serve
as input to the active contour model in order to speed up and increase the robustness

of the contour evolution. Details can be found in chapter 111 and Kuo et al [74].

Breast CT or 3D US images
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]
Extraction of VOI
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Image data smoothing
v

RGI segmentation &

morphological erosion

Proposed active contour
segmentation

Main driving force term
Regularization term
Region-fitting energy term

Stopping criterion fulfilled?

Figure 21. Flowchart of the optimized automated breast lesion segmentation Scheme.
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2.  Modified Active Contour Model wirh Local Energy Term

Active contour model (snake) was first proposed by Kass et al in 1988 [35]. The
basic idea is to seek an object margin that minimizes an energy functional consisting of
internal energy and external energy along the deformable contour. The internal energy
controls the smoothness of the contour under the influence of the external energy,
which attracts the contour to deform toward the object boundaries, e.g., the margin of

amass. The energy functional was calculated from a parameterized integral:

1 1
3snake:f Einternal (1(S)) ds +J- Eexternal (1(8))ds (V1)
0 0

where r is the location vector on the evolving contour that r(s) = (x(s), y(s)). This
classical model, however, has difficulty handling topology changes of the contour
[76], and the parameterization of the evolving contour also hinders implementation in
3D. In order to address topology problems, geometry-based level set active contour
methods [62] have been used because they allow for region splitting and merging in a
natural way. Moreover, they can be implemented on Cartesian grids, improving
numerical computation efficiency. Since then, active contour algorithms with level set
formulation have drawn much attention in image segmentation techniques. Malladi et

al [64] and Caselles et al [63] proposed a level set based active contour model driven
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by curvature-dependent speed functions, F, with an edge indicator g as a stopping

function. Caselles et al [77] later proposed the geodesic active contour model with a

level set formulation that merges the classical energy minimization concept with

geometric level set active contour models. They showed that the level-set based

contour evolution function can be derived from the contour energy functional by

calculating the corresponding Euler-Lagrange equation.

Figure 22. Shown in the figure is a contour generated by the proposed segmentation
model in chapter I1l. This model can fail to segment lesions that are embedded in
fibroglandular tissue, or lesions with a complex shape.

In chapter 111, the proposed active contour model is purely a level-set based

algorithm [74] modified from Malladi et al and Caselles et al’s approaches [64][63].
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The results show that this model can yield satisfying segmentation performance on

contrast-enhanced bCT when the lesions are highlighted and better visualized.

However, it tends to segment smaller lesion contours on non-contrast bCT, as shown

in chapter 1V. In addition, malignant masses often have irregular shapes and present

with vague lesion margins on breast CT (and other imaging modalities). The proposed

model in chapter 11l tended to yield a coarse outline if a breast lesion lacked a clear

margin (Fig. 22). In this chapter, we aim to solve this problem and capture more

lesion shape details by introducing a region-fitting energy term [78], which was

originally proposed by Li et al. We added the region-fitting energy term to the

corresponding energy functional of the active contour model proposed in chapter IlI,

and then calculated the associate Euler-Lagrange equation to derive the level-set

based contour evolution function.

a. Derivation of Leve-Set Evolution Function from the New Energy

Functional
The corresponding energy functional £,,,,, Of the level set active contour

model in chapter 111 is given as

5g|obaI:j

1
WgH() dr+ g5 [ (1Tpl-)2ar (v2)
[0) Q
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where v and u are parameters that controls the direction of evolving surface
(negative for evolving outward and positive for inward) and the strength of the second
term [74] in Eq. (V.1) (regularization term [65]), respectively; ¢ is the level set
function such that the evolving surface S = {r | ¢(r) = 0}; r is the location vector

(x,y,2), H is the Heaviside function:
1 X
H(x) = —arctan (—) (V.3)
T o

o is a parameter controlling the steepness of H. In Eq. (V.2), g is the edge indicator
function proposed by Caselles et al [63] same as shown in Eq. (111.6). g, the same as
shown in Eq. (111.8). The first term in Eq. (V.2) is the main driving term that expands
the surface uniformly. The second term in Eq. (V.2) is the regularization term first
introduced by Li et al [65]. This term allows for expression of the evolving surface as

a signed distance function without re-initialization, which is more efficient.

The new optimized contour energy functional is modified by adding a
region-fitting energy term, as originally proposed by Li et al [78]. The region-fitting
energy term is based on the approximated intensity inside and outside of the evolving

surface in a local region. In general, the region-fitting energy functional seeks optimal
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partitions of the lesion and background within the local region as determined by the

size of a kernel mask, G,. The region fitting energy is defined as:

2
= . | o@D I-H @M (o) (V4)
i=1

where G, is a Gaussian kernel with standard deviation o, and a is the location of
the kernel center. M; and M, are defined as (H(¢) + 0.5) and (0.5 - H(gp)),
respectively, where H is the Heaviside function given in Eq. (V.3) and f; are the
approximated intensities inside and outside the local region. The energy functional

Enake OF the optimized active contour model is the sum of Eq. (V.2) and (V.4):

Esnake = Egiobal T €local (V.5)

Now we provide the derivation of the corresponding level set evolution function from
Eq. (V.5). We start with the need to determine the level set function ¢ that
minimizes the energy functional by d&€gna./d @ = 0. For convenience, we denote the
main driving term (the first term of right hand side of Eq. (V.2)) as A, the
regularization term (the second term of right hand side of Eqg. (\V.2)) as B, and the
region fitting energy term (right hand side of Eq. (V.4)) as C. To derive the

corresponding level set evolution equation from Eg. (V.5), one needs to compute the
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associated Euler-Lagrange equation using the first variation of calculus [79]. The

minimum of Eq. (V.5) occurs when the following condition is satisfied:

d /[0(A+B+C)\ d [0(A+B+C)\ d [0(A+B+C)\ 0(A+B+C)
N\t \— |t - =0. (V.6)
dx o9, dy aq)y dz o9, op
We address A, B, and C separately. For term A:
d vgH(p) | d dvgH(p) | d dvgH(p) dvgH(y)
dx  Og, dy 6¢y dz  Op, op
(V.7)
=vgH'(p) = vgd(p)
where o is the derivative of H with respect to ¢:
1l «
5_;‘a2+xz (V)
For term B:
oug, (5 (10l-1?)
s\2 = O, (V9)
op
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1
d oug, (5 (19pl-0)?) d( o, ) V10)
& ap, e\l

and similarly using partial differentiation with respect to 9, and ¢,. Combining

together, we have

0,5 (o )+ 55 (o 7o) * 35 (o 7o)
W lax \" I oll) " ay \D IV ell) " dz\" [V gl

V.11
VA (V1)
=ug, | V20 - div (Z5)

For term C, we employ the steepest descent method [80] to derive the associated
Euler-Lagrange equation. By fixing the approximated intensity f (a) and f,(a), the
minimum of the region fitting energy term C occurs when

-0,(p)(a-22)=0 (V.12)
where

a= f ng(a-r)|l(r)-f1(a)|2dr ,i=1,2. (V.13)

Using steepest descent method and assembling Eq. (V.7), Eq. (V.11), and Eq. (V.13),

74



we reach the level set formulation of the contour evolution function Eq. (V.14) with

an added iteration step constant z on the first two terms:

[Vol

i_(f: Pl k= r{vgéa(go) + ug, (Vz(p - div (&)>}
(V.14)
-3,(0) (J G, (NI, @] dr- | G, (a-r)[1(n)-£,@) dr).

where k refers to iterations. Now we give the derivation of the approximated
intensities a; and a,. It is also obtained by using the steepest descent method to
minimize the region fitting energy functional with the level set function ¢ fixed.
Given this condition, one can find the minimum of the energy functional C with

respect to f, (a) and f,(a) when the following satisfies:

fG,,z(r-a)Mi(go(r))|I(r)-fi(a)|dr: 0,i=1, 2., (V.15)

From (Eg. (V.15)), we can obtain f,(a) as:

 Ca@O® (Mi(p)I()) 1 (V.16)
i G2 (@) @M;(p()

Throughout the remainder of this paper, we will refer to Eq. (V.2) as ‘the model
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proposed in chapter I’ and Eq. (V.5) as ‘the optimized model.” The parameter
settings are as follow: z =1000, v =-10, x =0.001, o = 0.2, maximum number of

iterations = 300. The parameter settings are listed in TABLE V.

TABLE IV. OPTIMIZED ACTIVE CONTOUR MODEL PARAMETER VALUES
FOR SEGMENTATION OF BCT LESIONS.

Maximum number of

T \ u a . .
Iterations

bCT 1000 -10 0.001 0.2 300

b. Dynamic Stopping Criterion

As mentioned in the previous chapters, lesion margins are often ambiguous in
medical images, it is necessary to use a stopping criterion for the active contour model.
In this chapter, we adopted the dynamic stopping criterion proposed by Yuan et al
[61], which is defined as (dI,_/dt - dlg/dt) = 0. For details, please refer to section

111.B.4.
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3. Segmentation Evaluation

a. Segmentation Performance in terms of DICE

The computer-segmented margins were evaluated on three orthogonal slices
through the lesion center in comparison to the manually-delineated lesions.
Segmentation performance was presented in terms of the Dice coefficient (DICE), an
overlap measure between the manually-delineated margins and computer-segmented

margins on the three orthogonal slices (Eq. (V.17))

DICE = %<<Z(Qn(’3man)> + (2(Qmwman)> + (2(Qn(’3man)> ) (V.17)
Xy yz Xz

Q+®man Q+Oman Q+®man

where Q is the computer-segmentation and (xy), (yz), (xz) denote the orientations of
each slice through the lesion center. ., IS the human-delineated lesion margin in
the same orthogonal slice. Note that the DICE value for a given lesion is the average
of the DICE values over the 3 orthogonal planes. According to Zijdenbos et al [71], a
Dice coefficient > 0.7 indicates ‘good’ overlap between computer and human

outlines for medical images.

We compared segmentation performance between the model Eq. (V.2) and the

optimized model Eq. (V.5) by assessing using paired t-tests of Dice coefficients.
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b. Segmentation Performance and Presenting Fibroglandular Tissue

on bCT

Since fibroglandular tissue has an x-ray attenuation coefficient similar to that of

tumor tissue, the presence of fibroglandular tissue adjacent to a lesion poses

challenges for segmentation. To investigate the dependence of lesion segmentation

quality on the presence of fibroglandular tissue in the immediate vicinity of lesions,

we used a fuzzy c-means-based segmentation scheme to identify fibroglandular tissue

[81]. The proportion of fibroglandular tissue in a lesion’s vicinity was calculated from

a 50 mm x 50 mm square region on each of the three central slices on which the

manual lesion delineations were performed, and was defined as the area of the

fibroglandular tissue (as identified by the fuzzy c-means method) relative to the area

of the 3 slices excluding the manually-outlined lesion area. Based on the work of

Yaffe et al [82], 95% of women have breast density of lower than 45% when imaged

with bCT, with mean glandular fraction of 19.3%. Therefore we used 20% and 40% as

thresholds to divide our database into three ‘local fibro-density classes’: < 20% as

the lower local density, 20% ~ 40% as medium local density, and > 40% as

extremely high local density.
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C. Results

1. Impact of the New Modification to the Active Contour Method: An

Example

In this study, a new term &,,.y (Eq. (V.4)) was added to the original active
contour model. To illustrate the impact of this term, Fig. 23 shows both
contrast-enhanced and non-contrast breast CT images, manual delineations, and
computer-determined segmentations (using the original model (Eq. (V.2)) and the

optimized model (Eq. (V.5))) of a lesion with a complicated shape.

For this example, the DICE values of the original model were satisfactory, but

improved by including the new term &, In the segmentation model for both
contrast and non-contrast images. As this example illustrates, the proposed

segmentation method was able to capture more shape detail.
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DICE = 0.90
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DICE = 0.85

DICE = 0.81 DICE = 0.86
® ® ® ®
Figure 23. (a)-(d): non-contrast-enhanced images. (e)-(h): contrast-enhanced images.

(b) and (f): research specialist’s outlines. (c) and (g) segmentations by our previous
model (d) and (h): segmentations by the proposed model. Note that these eight images
are of the same patient (case), and they are displayed in the central coronal plane
through the lesion seed point. For this case, the proportion of fibroglandular tissue in
the lesion neighborhood is 12%.

2. Comparison of Original and Optimized Segmentation Models

We compared the optimized segmentation model, Eq. (V.5), to the original model,
Eq. (V.2) (TABLE V). For the non-contrast bCT images, the optimized segmentation
model obtained significantly better segmentation with respect to our previous model,
(p < 0.05) for both malignant and benign lesions (TABLE V). It appeared to slightly
improve the performance for contrast bCT but this improvement failed to reach

statistical significance (p = 0.30). Figure 24 show the fraction of lesions correctly
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segmented at various overlap (Dice coefficient) thresholds in bCT with several

segmentation examples shown in Fig. 26, 27.
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Fraction of lesions with DICE at or above overlap threshold

Fraction of lesions with DICE at or above overlap threshold
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Figure 24. (a) is the comparison of segmentation between the proposed and
previous segmentation methods on contrast bCT images benign dataset (N = 13).
(b) is the comparison of segmentation between proposed segmentation and
previous segmentation contrast bCT images malignant dataset (N = 25). (c) is the
comparison of segmentation between proposed segmentation and previous
segmentation on non-contrast bCT images benign dataset (N = 49). (d) is the
comparison of segmentation between proposed segmentation and previous
segmentation on non-contrast bCT images malignant dataset (N = 80).
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3.

Segmentation Performance and Presenting Fibroglandular Tissue

The relationship between segmentation performance and the proportion of

fibroglandular tissue in the lesion vicinity on bCT images is shown in Fig. 25 and

TABLE VI. For non-contrast bCT, the segmentation performance decreases when the

proportion of fibroglandular tissue exceeds 40%, but the DICE is still above 0.7.

Segmentation examples for different ‘local fibro-density classes’ are shown in Fig. 26.

contrast-enhanced bCT
0.9 Fa
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Figure 25. Comparison of lesion DICE coefficients for the original and optimized

segmentation models.
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(e) (f) (g) (h)

DICE = 0.80

(1) ] (1

Figure 26. Three different Non-contrast bCT segmentation examples for each of the
fibroglandular density classes. (a)-(d): 8% of fibroglandular proportion (low
density). (e)-(h): 29% fibroglandular proportion (intermediate density; this lesion is
also depicted in Fig. 11). (i)-(l): 46% fibroglandular proportion (high density). (b),
(f) and (j): research specialist’s outlines. (c), (g) and (k): segmentation results by
original model. (d), (h) and (I): segmentation results by optimized model.
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DICE =065 DICE = 0:81
®) © @
Figure 27. A contrast-enhanced bCT image example. (a): original VOI. (b): research

specialist’s outline. (c): segmentation result by wusing original model. (d):
segmentation result by using optimized model. The proportion of fibroglandular tissue
in the lesion vicinity is 29%.

D. Discussion and Conclusion

In this chapter, we modified our original 2-stage 3D lesion segmentation

algorithm proposed in chapter 111 to allow for the inclusion of more shape detail. The

region-fitting energy term introduced in the new model not only improved the

delineation of shape detail, but also helped smooth the lesion contour and correct the

contour evolution if the main driving term caused errors.

The optimized model did obtain statistically improved segmentation performance

for the non-contrast bCT images (p <« 0.05). The original model often missed shape

details when a lesion presented with a complex margin (eg Fig. 27(c) and Fig. 26(g)).

The improved ability to capture shape and margin characteristics should be useful
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clinically since such morphological information plays an important role in diagnosis .

Improvement in diagnosis on non-contrast bCT images is important, since

contrast-enhanced bCT carries a risk of allergic reaction. Hence, the improved ability

of the proposed method to capture shape details may have an impact on future

implementations in CAD and allow for more accurate lesion classification. The

optimized segmentation model failed to yield significant improvement over our

original segmentation model on contrast-enhanced bCT images, likely because the

conspicuity of cancers is significantly higher on contrast enhanced bCT [15] and

reasonable segmentation performance with our original methods was facilitated by

this conspicuity.

Breast density is a risk factor for breast cancer [83][84][85]. The masking effect

of dense tissue reduces the sensitivity of imaging modalities in breast cancer diagnosis.

Therefore, it is important to successfully segment lesions within dense tissue. In

contrast-enhanced bCT, the segmentation performance appeared to decrease with

higher volume glandular fraction (TABLE VI). However, the DICE for higher density

breasts is still above 0.75 (TABLE VI, note that there are only 3 cases in the

high-density class for contrast-enhanced bCT). In non-contrast bCT, the segmentation

performance was affected when the proportion of fibroglandular tissues was
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extremely high, but the DICE was still above 0.7 for both segmentation models

(TABLE VI). According to TABLE VI, there is not much improvement for the > 40%

category. Due to the similar X-ray attenuation of tumor masses and fibroglandular

tissues, the optimized segmentation model could yield slightly oversegmented results

and lead to a decrease in DICE since the original model possesses better ability to

capture edge details (Fig. 26 (i)-(1)). Overall, both segmentation models behaved

similarly with respect to the volume glandular fraction.

There is a limitation to this study. For each imaging modality, only a single

expert outlined the lesions which defined the reference standard for segmentation. To

conclude, in this chapter we presented a 3-dimensional segmentation method adapted

and refined from our original model developed for contrast-enhanced breast CT [74],

and evaluated the methods on dedicated breast CT (both contrast-enhanced and

non-contrast bCT). We obtained promising results that warrant future implementation

within computer-aided diagnosis software platforms and quantitative imaging.
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V1. TASK-BASED EVALUATION OF LESION SEGMENTATION:

FEATURE ANALYSIS AND LESION CLASSIFICATION

A. Introduction

The diagnosis of masses in mammography relies on characterization of mass

shape, margin, and density [86][87]. D’Orsi and Kopans reported that masses with

irregular shapes, indistinct or spiculated margins, and higher density are considered

highly suspicious [86]. Among different morphological features, spiculation, defined

as fine lines radiating from its margins, is said to be the strongest sign for malignancy

[86]. Several types of breast cancer are associated with spiculations [88], including

infiltrating ductal carcinoma (IDC), tubular carcinoma, infiltrating lobular

carcinoma (ILC), and ductal carcinoma in situ (DCIS). Except for DCIS, most

spiculations indicate tumor infiltration. Computer-aided diagnosis (CADXx) can also

employ such criteria to extract features in distinguishing different lesion categories. In

CADx for mammaography, Brzakovic et al [31] classified detected abnormalities by

using size, shape, and intensity change. Kegelmeyer [89] analyzed edge orientation

histograms to detect stellate lesions. Kilday et al [90] measured circularity and

merged several shape-related features to classify fibroadenomas, cysts, and

carcinomas with linear discriminant analysis. Giger et al [91] calculated the standard
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deviation of the margin fluctuation to measure the degree of spiculation. Huo et al [92]

developed a spiculation-sensitive pattern-recognition technique by analyzing radial

edge-gradient. Sahiner et al [93] extracted spiculation feature with the analysis of the

gradient direction of the pixels on or close to the spiculation.

In mammography, where complex 3D tissue structures are being projected onto a

2D plane, the superimposition of fibroglandular tissues and tumor masses may hinder

the characterization of lesions. This is the main reason that the PPV (positive

predictive value) of biopsy performed based on diagnostic mammography is only

31.5% [94]. To address this limitation, dedicated breast CT (bCT) is being developed

to generate high-resolution 3D images of the breast. This emerging technology not

only retains 3D morphological details, but also provides higher tumor contrast with

improved conspicuity of masses, compared to mammography [14][15], and thus, is

likely to play an important role in future breast imaging [12]. On the other hand, large

amounts of image data are generated by bCT for the radiologist to review. In our

dataset, an image volume of one breast includes 512 slices in transverse and sagittal

directions. For coronal planes, there are over 300 slices. Slices in 3 views might all

need to be reviewed. Therefore, CADe is expected to improve the efficiency of the

bCT reading task.
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In chapter Il to V, we have developed and optimized an automated lesion

segmentation algorithm for dedicated bCT, which only requires labeled seed points as

the input (Note that the labeled seed points can be either manually labeled or

computer-labeled.). The segmentation algorithm yielded satisfactory results in terms

of DICE wvalue when measuring the overlap of manually-drawn and

computer-segmented lesion outlines. Here we aim to utilize the computer-outlined

lesion contours generated by our segmentation algorithm for feature extraction and

lesion classification.

By using both texture features and morphological features, Ray et al [53]

evaluated the performance of their CADx method on bCT and obtained area under the

ROC curve (AUC) of 0.80 for their non-contrast bCT dataset (N = 39). However, their

morphological features did not include a spiculation feature. To better utilize the

advantages provided by this 3D imaging modality, we evaluated the degree of

spiculation by analyzing the lesion surface and its relationship to the surrounding

fibroglandular tissues in a VOI (volume of interest), and developed a new 3D lesion

spiculation feature. In this chapter, we first compare the classification performance

between the original and optimized segmentation algorithms, and then we aim to

improve the CADx performance for breast masses on non-contrast bCT by including a
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new spiculation feature in a classifier with other morphological features and texture

features.

B. Methods

In this chapter, we used the unenhanced bCT image database for feature analysis
and lesion classification based on the segmentation results generated by the algorithm
proposed in chapter V. N = 129 masses, i.e., cases (80 benign, 49 malignant), from
116 image volumes. The median lesion size based on the optimized segmentation

results was approximately 756 mm? (effective diameter 11.3 mm).

1. Morphological and Texture Features

The mathematical descriptions of the morphological and texture features used in

this work are described in previously reported studies. We used 10 morphological

features [51][81][95] and 14 texture features [38][96] based on the gray level

co-occurrence matrix.. We calculated texture feature values both for the segmented

lesions and background and the differences between them. Thus the total number of

features was 63 (14 texture features for segmented lesions, 14 texture features for the

background, and 10 morphological features plus the proposed spiculation feature

“spiculation index”). Details for 3D texture features can be found in Chen et al [96].
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2. Feature Selection and Analysis

The most dominant feature set was selected from a leave-one-case-out loop. In

each step of the leave-one-case-out loop, stepwise feature selection was performed on

N - 1 cases using multilinear regression (’stepwisefit”, Matlab®, MathWorks, Inc) at

a significance level of 0.05. After completion of all N feature selection steps in the

leave-one-case-out loop, the most frequently selected feature combination was used in

another leave-one-case-out loop using linear discriminant analysis (LDA) [40] for

lesion classification [40]. LDA classifier output served as input to ROC analysis for

performance assessment [97]. In this study, we used a Metz ROC software package

(ROCKIT) to generate binormal ROC curves, with associated area under the curve,

and compare different ROC curves (http://metz-roc.uchicago.edu/).

In order to gain a better insight into the effect of lesion size, we also performed

the above analysis after dividing the lesion set in half, with lesions with a smaller

effective diameter than the median value (11.3 mm) in one set and lesions with a

larger diameter than the median in the other set.
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3. Development of the New Spiculation Feature

The basic idea of computing of the new proposed spiculation feature,

“spiculation index,” is to measure the number of connected regions of fibroglandular

tissue and lesion surface. Thus, to compute the spiculation index, one needs to

identify the fibroglandular tissues and adipose tissues first. Note that the identification

of fibroglandular tissues and the computation of spiculasion index were based on the

results of the optimized segmentation model.

a. Automated ldentification of Fibroglandular and Adipose Tissues

Identification of fibroglandular and adipose breast tissues was accomplished
using a previously-developed fuzzy-c-means (FCM) based tissue segmentation
scheme [81]. Tissue segmentation was performed in coronal slices of the breast
images individually. First, to remove non-uniformity, which might be caused by
incomplete scatter correction, a 3 order polynomial surface fit was subtracted from
each slice. Next, pixels were clustered into four FCM classes. The classes with the
lowest and the second lowest average gray values were classified as adipose. The
class with the highest average gray value was labeled as fibroglandular. The
remaining class, with the third highest average gray value, was labeled as

fibroglandular if its mean was more than 30 HU greater than that of the 2" class,

95



otherwise it was labeled as adipose. This tissue segmentation was performed on cubic

regions (50mm x 50mm x 50mm) centered on the lesion center.

b. Spiculation Index Computation

The scheme for extracting the proposed new feature from non-contrast bCT is

shown in Fig. 28. The computation of spiculation feature needs both results of lesion

segmentation and fibroglandular tissue identification.

Breast CT 1mages with
manually labeled lesion centers

VOI (volume of interest)
extraction with image smoothing

Fibroglandular tissue Lesion segmentation
identification

Spiculation feature

Figure 28. Flowchart of the computation of the spiculation feature for bCT
images. Note that all steps except the first one are completely automated.

In mammography, spiculations appear as several thin fine lines growing outward

from the lesion. In our dedicated breast CT image database, malignant lesions with

spiculations tend to have a similar appearance (Fig. 27).
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Figure 29. A cross section of a spiculated malignant mass imaged on breast CT.
The arrows indicate the spiculations.

The spiculation feature was developed based on the observation that, while
spiculations appear similar to fibroglandular tissue, there are differences in the
structure of spiculations and normal fibroglandular tissue. Normal fibroglandular
tissue tends to appear in larger regions, which could have any shape and occur in any
region of the breast (i.e., anywhere with respect to the tumor). We also observed that,
in our dataset, a large portion of the segmented lesion surface appeared connected to
neighboring fibroglandular tissues (Fig. 30). Unlike normal fibroglandular tissue,
spiculations are only associated with a tumor. If present, they appear as multiple,

either long or short thin lines growing from the lesion surface.
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Figure 30. Example of a malignant lesion partially surrounded by, and connected to,
fibroglandular tissue. (a) image, (b) tissue mask of fibroglandular tissue (including
lesion), and (c) image with computer segmentation superimposed (solid black line)

Thus, by inspecting the relationship of fibroglandular tissue to the segmented

lesion surface, we found that the intersection of fibroglandular tissue regions and the

segmented lesion surface tended to be a single compact connected region, even if the

lesion surface was connected to complex shaped fibroglandular tissues. On the other

hand, when the segmented lesion surface intersected with tissue regions

corresponding to spiculations, there tended to be multiple small separated regions that

appeared to be randomly distributed on the lesion surface. Based on this observation,

we counted the number of surface intersections of the segmented lesion surface with

tissue regions as an index of spiculation.For a given lesion, the total number of

connecting regions yields the spiculation index (Fig. 31).
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Figure 31. Illustration of the concept of the spiculation index feature. (a) 3D
rendering of lesion (red) and tissue mask (blue), (b) 2D slice (image) through lesion,
(c) 3D rendering of lesion (red) and the spiculations connected to fibroglandular
tissue (blue), and (d) tissue mask of (b) with segmented lesion outline. Gray planes
in (&) and (c) refer to the corresponding slice shown in (b) and (d). Arrows in (a) and
(b) indicate spiculations.
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C. Results

1. Comparison of Classification Performance between the Two

Segmentation Models

We first compare the classification performance between the original and

optimized segmentation algorithms without the new spiculation feature in the feature

pool. Among 62 features without spiculation index, there was only one single feature,

“difference of the sum average between the lesion and background” (termed as

“DSumAverage”, see “Sum Averge” in [38] ), selected as the most frequently selected

feature set for ROC analysis. For the optimized segmentation algorithm, the most

frequently selected feature set from the feature pool without spiculation index

included 5 features: irregularity2 [95], irregularityl [81], entropy [38], ellipsoid axes

ratio [81], and variance [38] (see TABLE VII). The AUC values of ROC analysis for

the original and optimized segmentation algorithms are 0.62 + 0.05 and 0.81 +

0.04, respectively. Figure 32 shows the comparison of each individual feature

performance between the original and optimized segmentation algorithms. Note that

the features shown in Fig. 32 are those included in the most dominant features set for

the original and optimized segmentation algorithms.
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Irregularityl Irregularity2

0.67 0.71

EntT'op}-’ DSumA\f§1'age

0.53 \W-o1 0.61

0.55

0.55 - Optimized model

- Or1ginal model

Ellipsoid axes ratio Variance

Figure 32. Comparison of individual feature classification performance in terms of
AUC values between the two segmentation algorithms. Note that features shown in
the figure are selected features contained in most dominant feature set for the

original and optimized segmentation model.
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2. Feature Analysis with and without Spiculation Index on the Optimized

Segmentation Model

Feature analysis with and without the new proposed spiculation feature was

performed on the segmentation results generated by the optimized segmentation

algorithm. Based on our studies, fibroglandular tissues connected to the segmented

lesion surface tend to result in a larger region, regardless of any shape. Identified

connected locations resulting from spiculation tend to present as multiple small

regions. For our dataset, the average spiculation index value was substantially smaller

for benign lesions than for malignant lesions. (TABLE VII). Other than the

spiculation index, only irregularity2 and irregularityl performed strongly as

individual features with p-values < 0.05 and AUC greater than 0.65. Note that

p-values of individual features are provided to illuminate trends rather than to provide

a statistical comparison of the performance of individual features (for which

correction for multiple comparisons would be necessary).
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TABLE VII shows the most dominant feature combinations. The most

frequently-selected combination occurred 48% of the time, and included a total of

seven features (labeled with * in TABLE VII). Note that the spiculation index was

part of all selected feature combinations, when it was included in the feature selection

process. The spiculation index demonstrated only weak correlation with the

irregularity features (TABLE VIII). The spiculation index differentiates malignant

from benign lesions even when they have similar irregularity measures (Fig. 33). It is

also interesting to note that, although both irregularity features (irregularityl and

irregularity2) were highly correlated, they were both selected in combination in the

leave-one-case-out feature selection loop (TABLE VIII). The LDA classifier using all

seven features yielded an AUC of 0.85 + 0.03 (Fig. 34) using leave-one-case-out

analysis.
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When the spiculation index was not included in the feature selection

leave-one-case-out analysis, the most dominant feature combination (appeared 72%)

included only six features (labeled t in TABLE VII), which were selected by

leave-one-case-out stepwise feature selection. The LDA classifier with these six

features, yielded an AUC of 0.81 + 0.04 (Fig. 34). The improvement in AUC value

upon including the spiculation feature, from AUC = 0.81 to 0.85, was statistically

significant with a p-value « 0.001.

We found that the classification performance was higher for larger lesions than

for smaller lesions with the features used in this study (Fig 35 and 36). Irregularity?

was selected for both lesion groups, but spiculation index and ellipsoid axes ratio

were only selected when analyzing the ‘larger lesion’ group.
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ROC Curves
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Figure 34. ROC curves indicating performance of merged selected features
with and without the spiculation index in the task of distinguishing between
malignant and benign bCT lesions. (The results are based on the optimized
segmentation)
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Figure 35. Examples of small lesions. (a) image of benign lesion, size: 79.1 mm?,
[irregularity2] = 0.49, (b) corresponding fibroglandular tissue mask, (c) image with
computer segmentation superimposed (solid black line), (d) image of malignant
lesion, size: 59.4 mm?, [irregularity2] = 0.46, (e) fibroglandular tissue mask, and (f)
image with computer segmentation superimposed (solid black line)
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Figure 36. The CAD performance in terms of AUC for lesions with effective diameter
d<11.3mmand d > 11.3 mm. Error bars are the standard errors of AUC.

D. Discussion and Conclusion

In this chapter, we evaluate the two segmentation models with feature analysis.
To further improve the classification performance, we investigated the features
extracted based on the lesion contour generated by our optimized segmentation
algorithm, and a new lesion spiculation feature, the ‘spiculation index’, which
measures the degree of spiculation on non-contrast-enhanced breast CT lesions by
taking advantage of the 3D structural details retained in bCT image volumes. As

shown in Fig. 32, the performances of irregularity features show that our optimized
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segmentation model can more successfully capture lesion shape details than the

original model. Thus irregularity features became the strongest among our feature

pool when the segmented lesions from the optimized model were used. When the

original segmentation model was used, none of the morphological features were

selected, indicating that the original model failed to capture sufficient shape details

for lesion classification.

The spiculation index measures the total number of connected regions, indicating

the connection of the segmented lesion surface with glandular tissue. The usefulness

of the new spiculation index was demonstrated in breast lesion classification — with

and without inclusion of the spiculation index — resulting in a statistically improved

performance when the spiculation index was included (p-value <« 0.001) (Fig. 34).

The issue masks of fibroglandular tissue (versus adipose tissue) were calculated

by a method originally developed for lesion detection in bCT [81]. The results in this

study indicate that the method to determine the fibroglandular tissue mask is robust

and useful for applications other than lesion detection. It may be possible to further

optimize this method for lesion classification in future studies.
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In our study, the LDA classifier obtained an AUC of 0.81 for lesion classification

without the spiculation index, which is consistent with the work of Ray et al [53].

Also consistent with the work of Ray et al. is that texture features did not appear to

contribute much to the classification performance. In their report, the area under the

curve for classification using only texture features was 0.64. For the two texture

features selected in our study (entropy and variance), we failed to demonstrate a

significant difference between benign and malignant lesions, suggesting that these

texture features, which are based on gray-level changes of voxels, might not be

appropriate for tumor mass classification on bCT.

As shown in Fig. 35, the lack of information within the limited number of voxels

in very small lesions might cause difficulties classifying lesions for ‘smaller’ lesion

group (Fig. 36). In Fig. 35(d), there are still some slight spiculations visualizable. The

performance for ‘smaller’ lesion group could be improved by increasing the

sensitivity of fibroblandular-identification algorithm.

There were several limitations to this study. The first limitation was the rather

modest size of the dataset and the fact that we developed and tested our new

spiculation feature on the same dataset. Another limitation of this study was that we
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performed a ‘double loop’ leave-one-case-out analysis: one leave-one-case-out

analysis for feature selection and another subsequent loop for classification using the

most frequently selected feature combination. This is expected to bias the overall

results somewhat in terms of achieved AUC value, Since we are comparing two

methods (with and without the new spicualtion index), however, this bias is expected

to cancel in the performance comparison.

In sum, the optimized segmentation model can capture essential shape details

which are important for lesion classification. It made irregularity2 and irregularityl

substantially contribute to lesion classification task. Since the texture features failed to

contribute to classification and is not so relevant to the segmented lesion shape, the

ability to capture the shape information makes the optimized segmentation model

much more favored, and is suggested as a desirable method for breast lesion

segmentation on bCT. In addition, we developed a new lesion feature that takes

advantage of the 3D structures retained in breast CT image volumes and measures the

degree of spiculation infiltrating into surrounding fibroglandular tissue. This

spiculation index proved very useful for the task of distinguishing between benign and

malignant breast lesions and significantly improved classification performance. Our

findings on the performance of the 3D quantitative spiculation feature, as an
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independent and strong discriminating characteristic, is consistent with clinical
observation. Given that breast CT, without the problem of superimposition, has
clearer 3D structural details over 2D mammograms of both the lesion and the
surrounding parenchymal background, further investigation and inclusion of
lesion-background characteristics may aid in developing new features for CADX on

breast CT.
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VIl. PRELIMINARY INVESTIGATION OF SEGMENTATION TECHNIQUES

ON 3D BREAST ULTRASOUND LESIONS

The content of this chapter has been accepted by Journal of Medical Imaging for
publication, and partially published on Proceedings of SPIE,
[72] H. Kuo, M. L. Giger, I. Reiser, K. Drukker, A. Edwards, and C. a. Sennett,
“Automatic 3D lesion segmentation on breast ultrasound images,” in
Proceedings of SPIE, 2013, vol. 8670, pp. 867025.

A. Introduction

Recently, interest in 3D automated breast ultrasound (ABUS) was revived after

initial attempts failed decades ago due to poor ultrasound technology. The advantage

of ultrasound in general is that it does not involve ionizing radiation, but for

hand-held ultrasound  disadvantages include operator dependency and

non-reproducibility. The advantages of ABUS over hand-held ultrasound are not only

that it is reproducible, but also that it can visualize images in the coronal plane in

addition to the traditional axial and sagittal planes. It was recently shown that ABUS

is capable of depicting small early stage mammographically-occult cancers

[18][98][19]. In a reader study [98][99], statistically significant improvement in

readers’ performance and reduction in interreader variability in the detection of

mammographically-occult cancers were demonstrated for a combination of screening

digital X-ray mammography and ABUS as compared to screening mammography
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alone.

It is likely that ABUS (as well as bCT) will play a crucial role in future breast

cancer diagnosis, screening of high risk populations, and perhaps even as an adjunct

screening modality for the general population. However, just like bCT, interpreting

these 3D image volumes could be a very challenging and time consuming task for

radiologists. As an initial and essential step towards developing a computer-aided

diagnosis (CADx) scheme for ABUS, a sufficient segmentation procedure is

necessary.

In this chapter we aim to test the two segmentation algorithms proposed in

chapter 11l and V on ABUS images. As an additional robustness analysis for 3D

ABUS, a comparison of segmentation performance on mammographically-positive

and mammaographically-occult lesions was conducted.

B. Methods

We separately segmented 98 images by using the segmentation model of Eqg.

(111.9) and Eqg. (V.14). Segmentation results were evaluated by Eq. (V.17). We also

assessed segmentation performance whether there were any differences in

performance between lesions that were occult on mammography and those that were
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visible on mammography. Note that all lesions in this 3D US dataset were malignant.
Since US is known for its ability to detect mammographically-occult cancers and has
recently been approved in the U.S. as an adjunct screening modality for women with
dense breasts, it is important to assess performance of our segmentation methods for

mammographically-negative and mammaographically-positive lesions separately.

C. Results

As shown in TABLE IX, the p-values suggest that there is no difference between
the two models. Fig. 37 show the fraction of lesions correctly segmented at various
overlap (Dice coefficient) thresholds in bCT and 3D ABUS, with several
segmentation examples shown in Fig. 38. The value of the correlation coefficient of

DICE and tumor size was also calculated and yielded a value of 0.038 [72].
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D. Discussion and Conclusion

Based on our results, there were even slightly more fraction of

mammogrpahically-occult cancers yielded sufficient segmentation with DICE > 0.7.

It is desirable for US segmentation since US is used as an adjunct to screening

mammography for the purpose of detecting mammography-occult lesions. And this

property is also consistent with that the US has the ability of detecting small-sized and

mammography-negative lesions [18]. The value of the correlation coefficient of DICE

value and tumor size (0.038) shows that the segmentation is not influenced by tumor

size and can also handle segmentation for small lesions on 3D ABUS images well.

The results showed similar performance for the original and optimized segmentation

models (TABLE 1X). Both models yielded sufficient segmentation results in terms of

DICE > 0.7 (average value), which is deemed ‘good’ [71], as a measure of the

overlap of manually-drawn and computer-segmented outline (TABLE 1X), The

presence of ultrasound speckle and anisotropic image resolution may be the cause of

the lack of improvement. It should be noted, however, that performance of both

models was quite satisfactory, demonstrating the robustness of our segmentation

methods across 3D imaging modalities, holding promise for potential future

application to other 3D breast images. The limitation includes that we did not attempt

to optimize our methods for the ABUS images, and further
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ultrasound-modality-specific improvements to the segmentation model may be

possible.
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VIII. DISCUSSION AND CONCLUSION
There were four aims to be achieved in this research project: 1) Development of
3D segmentation techniques for dedicated breast CT; 2) Optimization of 3D lesion
segmentation of dedicated breast CT; 3) Task-based evaluation of lesion segmentation;
4) Preliminary investigation of segmentation techniques on 3D automated breast

ultrasound lesions.

The first aim was completed by proposing a dual-stage segmentation procedure,
which combines RGI segmentation for lesion contour initialization and a modified
level set-based active contour algorithm for finalizing the segmentation task. This
technique was developed on dedicated breast CT, and the results were satisfactory in
terms of a measure of overlap of manually-drawn and comupter-segmented outline
[74]. In a test of this segmentation algorithm applying to unenhanced image pairs, the
results showed that the segmentation tend to be conservative which lead to be smaller
lesion contours. This suggested that, for unenhanced bCT, the originally developed
segmentation algorithm might lose important lesion shape details which are often
used as indicators for classifying malignant lesions form benign. Thus, the
optimization of the originally segmentation model was developed. By adding a local

region fitting energy term to the corresponding energy functional of the original
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segmentation model, the optimization was completed by computing the corresponding

Euler-Lagrange equation of this new energy functional. Although this optimized

segmentation model did not show significant improvement on contrast-enhanced bCT

(mainly because of sufficiently highlighted lesions in contrast-enhanced images), the

performance on unenhanced bCT images were significantly improved and was robust

for different fraction of fibroglandular tissues existing in the lesion neighborhood.

In order to reach the goal of CADx (computer-aided diagnosis), a task-based

evaluation of the optimized segmentation algorithm was also performed. A number of

texture features and morphologic features were extracted from the segmented lesions,

and the results showed that irregularity feature was the most dominant and strong

feature among the whole feature pool and yielded AUC > 0.7 for a single irregularity

feature. This also indicates that the optimized segmentation algorithm can

successfully capture essential shape information for classification task. Moreover, a

new independent spiculation feature that utilized 3D structural information and

fibroglandular tissue identification algorithm was developed. By adding this new

feature, the classification performance was significantly improved from 0.81 to 0.85

with p « 0.001. One limitation of this new feature is that we developed and tested

the spiculation feature on the same dataset due to that the size our image database is
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not very large. However, the results still indicate a new idea of developing features

not only based on the lesion but also utilizing the information gathered from the lesion

neighborhood. Since the 3D structure is well retained in emerging 3D imaging

modalities, 3D features such as spiculation features could have great potential for

future screening.

In our 3D ABUS images, all cases were cancers. Although this limited us to

proceed to classification on 3D ABUS, the segmentation results showed that our

segmentation models are robust for both dedicated bCT and 3D ABUS, indicating that

the segmentation on 3D ABUS images might only need minor adjustment to be

optimized. This also suggests that our segmentation algorithm could be cross imaging

modalities, and is worth further investigation for wider future applications.

Furthermore, the segmentation performance was not affected whether the lesion was

mammographically-occult or not, making it as a much favored property for potential

future screening application.

As conclusion, a segmentation algorithm that has the potential to be applied

across different 3D breast imaging modalities was developed. This segmentation

algorithm captures sufficient shape details of the lesion, which is an important
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indicator for differentiating malignant from benign. To further improve the
classification task, an independent feature that utilizes the 3D structural information in
lesion neighborhood was developed. With this new feature, the classification
performance was significantly improved. This result indicates that new features which
incorporate 3D structural information from the surrounding parenchymal patterns

should be further investigated for future CAD application.
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