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SUMMARY 

 Breast cancer is the 2nd most common cancer among US women, accounting for 

approximately 30% of newly diagnosed cancers. The chances of surviving a breast 

cancer diagnosis and the effectiveness of treatments rely on early detection of the 

disease. Since mammography has been widely accepted as a screening tool for breast 

cancer, the mortality rate was significantly reduced from 30 to 40% during the past 

three decades. However, mammography projects 3D tissue structures of the breast 

onto a 2D plane and which leads to superimposition resulting in low positive 

predictive value of biopsies performed based on diagnostic mammography. As a result, 

misdiagnoses on mammography ultimately drive up healthcare costs, as well as 

unnecessary patient anxiety 

 

 Recently, researchers have been developing CT systems and automated 3D breast 

ultrasound dedicated solely for breast imaging. Such imaging modalities generate 3D 

image volumes that completely resolve breast tissue structures and avoid the 

superimposition effect. However, it also produces large amount of image data that the 

radiologists need to review. Such data explosion could make image interpretation task 

even more difficult and time consuming. Therefore, CAD (computer-aided 

detection/diagnosis) technology is expected to alleviate the burden.  
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SUMMARY (continued) 

Segmentation is an essential step in computer-aided diagnosis scheme. Accurate 

computer-aided diagnosis often relies on correct segmentation. Thus, the purpose of 

this work is to describe a segmentation algorithm for dedicated breast CT and 

automated 3D breast ultrasound. The lesion segmentation algorithm was initially 

developed on contrast-enhanced breast CT images by combining radial gradient index 

segmentation and level set based active contour algorithm. Then the segmentation 

algorithm was further optimized by modifying its corresponding energy functional, 

and obtained satisfactory segmentation results on both contrast-enhanced and 

unenhanced breast CT, as well as 3D breast ultrasound in terms of the measure of the 

overlap of computer segmentation and manually-delineated lesion outlines.  

 

To reach the goal of automated diagnosis, the segmentation results were 

evaluated by feature analysis. The classification by using lesion shape features 

(irregularity measures) showed that the proposed segmentation algorithm was able to 

capture sufficient shape information (area under the receiver operating characteristic 

curve, AUC = 0.81), which is considered one important factor for differentiating 

tumors. In this study, we firstly developed a new 3D spiculation feature for dedicated 

breast CT image volumes in order to further improve the classification performance.  
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SUMMARY (continued) 

This new spiculation feature utilizes the 3D structural information in the lesion 

neighborhood to analyze the lesion surface and evaluate the degree of spiculation. By 

adding the new spiculation feature, AUC was improved from 0.81 to 0.85 

significantly, yielding promising lesion classification performance for our bCT 

database. In addition, the results suggest that the development of such feature which 

utilizes 3D information resolved by 3D imaging modalities should be further 

investigated for future CAD application. 
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I. INTRODUCTION 

A. Breast Cancer and Breast Imaging 

 1. Breast Cancer and Mammography 

 Breast cancer is the 2nd most common cancer among US women, accounting for 

approximately 30% of newly diagnosed cancers. American Cancer Society estimated 

that 232,340 of new invasive cases would be identified and 39,620 women were 

expected to die from the disease in 2013 [1]. Since there is currently no cure for breast 

cancer, early detection by screening plays an important role in reducing mortality [1]. 

By widely performing X-ray mammography in screening, the breast cancer mortality 

rate has been decreased by 30% to 50% in the past 20 years [2]. 

 

 Although X-ray mammography has achieved significant success, there are still 

considerable limitations of this technique. The poor positive predictive values (4% to 

9% in mammography screening, and 39.5% based on biopsy diagnostic 

mammography) [3] result in a waste of medical resources and unnecessary patient 

anxiety. Some researchers have even claimed that the reduction of mortality rate is 

partly contributed by the overdiagnosis of screening [4]. This is due to a fundamental 

shortcoming of X-ray mammography: X-ray mammography is a 2D projected 

imaging technique; hence tissue superimposition occurs when 3D tissue structures  
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with similar X-ray attenuations are projected onto a 2D plane, including 

fibroglandular tissues and tumor masses. In addition, when the lesion size is small and 

is not associated with calcification, it is difficult to be visualized on mammography by 

the radiologists especially if presenting in a dense breast. In sum, mammograms only 

provide projected anatomical information of the breast, which is inherently poorer 

than that expected from 3D imaging. 

 

Figure 1. An example of a digital full-field mammography image. The spatial 
resolution is 50 μm × 50 μm. [5] (Open access online) 
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 To address this superimposition problem, investigators are developing 3D breast 

imaging modalities such as magnetic resonance imaging (MRI), 3D breast ultrasound 

(3D breast US), and dedicated breast computerized tomography (dedicated bCT). 

Researchers expect that 3D imaging modalities could retain more anatomical structure 

leading to more accurate interpretations and diagnoses. This dissertation work is 

focused on dedicated breast CT and 3D breast ultrasound which are described in the 

subsequent sections. 

 

2. Dedicated Breast CT in Early Days 

 At the same time when screening mammography started to spread widely in the 

US, the General Electric (GE) company began to construct a prototype of dedicated 

breast CT scanner, which was called CT/M [2][6][7][8]. The GE CT/M scanner used 

fan-beam geometry to acquire 1-cm-thick CT slices in approximately 10s. Women 

were  imaged in the prone position while lying on a table where there was an 

opening for the breast. It is reported that the absorbed dose of the central 6 slices (6 

cm) was 1.75 mGy [2]. However, compared to conventional mammography, the 

resolution was very poor (1.56 mm × 1.56 mm × 1 cm for CT/M; < 70 μm × < 70 

μm for mammography) which resulted in low specificity (70%) [7][5]. In addition, the 

need of iodine contrast infusion was invasive and led to high costs. Ultimately, Chang 
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et al. [7] concluded that CT/M scanner for screening was not desirable, which 

prompted GE to terminate the CT/M system in the market [2]. 

 

 

 

Figure 2. Example images of CT/M as facing the patient. Above row: both breasts 
imaged before contrast material injected. Below: both breasts imaged after contrast 
material injected. The bright area was diagnosed as grade 4 adenocarcinoma. [8] 
(Open access online) 

 

 

 

3. Imaging of the Breast with a Conventional Whole-body CT Scanner 

 After the prototype GE CT/M dedicated breast scanner, some studies were 

conducted to investigate breast CT with a conventional whole-body CT scanner. 
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Patients were imaged in the prone position with the help of foam blocks to allow the 

breast to hang freely. In the 1990’s, substantial improvements were made in CT 

technology. Since then, researchers used multidetetor CT (MDCT) scanners with a 

protocol involving intravenous infusion of nonionic iodine contrast media to evaluate 

breast lesions. MDCT scanners can generate CT images in short time and thus provide 

the possibility of using dynamic CT to aid in breast lesion differentiation based on the 

uptake and washout rates of the contrast agent [2]. A recent study reported that the 

reconstructed projection based on this technique had resolution 1 mm × 1 mm × 3 

mm, and achieved sensitivity of 90% but with low specificity of 55% [9]. For this 

reason, the primary application of MDCT in breast cancer has been a diagnostic tool 

for staging malignant tumors. Because of the low specificity, the possibility of the use 

of this imaging approach for differentiating breast lesions is very limited; especially 

given that image-guided needle biopsy, an alternate approach, has been shown to be 

very accurate in such tasks [2]. 

The radiation dose is another factor that limits this technique as a good screening tool. 

Miyake et al. [9] measured a breast radiation dose of 23.5 mGy, which is about 10 

times that of conventional mammography. Even though other researchers attempted to 

use low-dose CT imaging as 6.51 mGy, 2.68 mGy, and 1.65 mGy, the results showed 

a penalty in diagnostic accuracy with reduction of the radiation dose [10]. It should be 
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also noted that by imaging breast with a conventional whole-body CT scanner, X-ray 

penetrates through the entire thorax, and thus a large amount of tissues other than 

breast is exposed to radiation as well. 

 

4. Dedicated Breast CT with Cone Beam X-ray 

 Recently, the advent of digital flat-panel detectors for mammography prompted 

researchers to design and develop CT systems that are dedicated only for imaging the 

breast. There are a number of academic groups and small start-up companies 

investigating dedicated breast CT imaging with similar systems, including University 

of California (UC) at Davis, University of Rochester, Duke University, University of 

Massachusetts, University of Texas (UT) M.D. Anderson Cancer Center, Emory 

University, etc. In our studies, the images were acquired from UC Davis under an 

IRB(institution review board)-approved protocol. Hence here we use their system 

setup to demonstrate the imaging concepts. 

 

 To image the breast, patients lie prone on a table with an opening for the breast 

where the breast hangs in the pendant position through the hole in the table. 

Underneath the table an X-ray tube and a flat panel is equipped on a gantry that 

allows for rotation around the breast (Fig. 5) [11]. It should be noted that the X-rays 
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only penetrate the breast rather than the entire thorax as in conventional whole-body 

CT scanner. 

 

 Conventional whole-body CT scanners use detector arrays that are arranged in an 

arc. The arc usually spans an angle of about 60°, and the fan beam X-ray width in the 

z-axis direction typically spans from 20 to 40 mm. Unlike conventional whole-body 

CT scanners, dedicated breast CT systems generally use a flat panel detector with a 

cone beam X-ray source. Such setup covers the full extent in the z-dimension and 

allows for a complete  CT dataset of the breast in one rotation (Fig. 6) [12]. The 

UC-Davis system uses the PAXSCAN flat panel detector (Varian Imaging Systems, 

Slat Like City, UT, USA), which has a 40 cm × 30 cm field of view and represents a 

2048 × 1536 array of 194 μm × 194 μm detector elements. Effective pixel size is 

388 μm × 388 μm due to projection images being acquired in a 2 × 2 acquisition 

mode with a readout array of 1024 × 768. With 30 frames per second, the resulting 

projection contains 500 frames acquired over about 16.6 seconds. The reconstruction 

algorithm results in an isotropic 3D CT volume, consisting of 1 series of 512 × 512 

images [12]. The radiation dose evaluated using a phantom showed that the dose is 

equal to that of 2-view mammography [13], which is substantially lower than 

conventional whole-body CT. 



  
                                                                     

8 
 

 
Figure 3. Example image of dedicated breast CT. The breast is viewed in 3 
orthogonal directions. (A) is displayed in coronal plane, (B) Sagittal plane, (C) 
Transverse plane. Red circle indicates a malignant tumor labeled by the radiologist. 

 

 

The first comparison of dedicated bCT with screen-film mammography was 

reported in 2008 [14]. This initial study showed that dedicated bCT was significantly 

better than mammography for visualization of masses (p = 0.002) whereas 

mammography outperformed dedicated bCT for visualization of microcalcifications 

(p = 0.006). No significant differences were found in the diagnosis of malignant or 
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benign between mammography and dedicated bCT. Volunteers and patients who 

participated in this study demonstrated a pronounced preference for dedicated bCT 

over mammography in terms of comfort (p < 0.001). 

 

In 2010, another clinical study of dedicated bCT was conducted done with the 

use of contrast agent [15]. The patients were imaged both before and after the 

injection of contrast material, which was 100 ml of intravenous iodixanol (Visipaque 

320; GE Halthcare, Waukesja, WI, USA). Malignant lesions enhanced 55.9 

Hounsfield Unit (HU) while benign lesions enhanced 17.6 HU. Thus malignant 

lesions were seen significantly better at contrast-enhanced dedicated bCT than at 

unenhanced dedicated bCT (p < 0.001), and it was also superior to mammography (p 

< 0.001). Microcalcifications were seen better at contrast-enhanced dedicated bCT 

than at unenhanced dedicated bCT (p < 0.001), and similar to mammography. These 

results suggested that contrast-enhanced dedicated bCT may aid in detection and even 

diagnosis of breast cancer.  

 

Dedicated bCT is an emerging technology that has many advantages over current 

breast imaging systems. The “perfect” breast imaging approach is required to meet 

with the following demands: 1) full 3D capability, 2) good soft-tissue differentiation, 

(C)         
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3) dynamic contrast-enhanced imaging, 4) high isotropic spatial resolution of 100 μm, 

5) low patient dose with average glandular dose (AGD) below 5 mGy, 6) patient 

comfort without breast compression, 7) integrated biopsy option, and 8) low cost [11], 

and thus dedicated bCT is a good candidate. Full 3D capabilities are ensured by the 

principle of this imaging technique. Dedicated bCT also provides good soft-tissue 

differentiation and can offer accurate tissue density values, according to those 

previous clinical reports. It is also noted that contrast-enhanced dedicated bCT may be 

able to help assess contrast material enhancement kinetics [15]. The imaging cost is 

considerably more reasonable than MRI [12]. With these potentials, dedicated bCT is 

expected to play an important role in future screening.  

 

Even though dedicated bCT is thought to be appealing, reading the 3D image 

volumes will be a very challenging task due to the large amount of image data 

generated. In a typical dedicated bCT image acquired in this study, there are often 

over 300 slices in the z-dimension displayed in the coronal plane. Sagital and 

transverse planes might also need to be reviewed. Therefore computer-aided 

detection/diagnosis (CAD) technology, which has been successful in digital 

mammography, is expected to provide benefit mitigating the radiologists’ interpreting 

task on dedicated bCT. 
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5. 3D Breast Ultrasound 

 Although mammography has proved to be an effective tool, there are still a 

number of cancers that may not be perceived. The rate of false-negative 

mammograms has been reported to be 4% to 34% [16]. In clinical experience, these 

mammographically-occult cancers are often 1) small in size and not associated with 

calcifications, 2) presenting in dense breast where visualization is difficult [16][17].  

 

 
Figure 4. Example image of ABUS. (A) the coronal view of a left breast. The red dot 
is the nipple and the red circle indicates a cancer. (B) the cross section view as 
conventional handheld ultrasound. The red circle indicates the same cancer as 
indicated in (A). 

Ultrasound (US), however, has been reported for its ability to depict occult 

cancers in mammography which are small and early-stage [18]. A clinical report also 
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showed that in dense breast US can detect smaller and lower-stage than 

mammographically-palpable cancers [18]. A number of studies have shown that by 

combining US with mammography, the detection of small size and lower stage 

cancers can be significantly increased by 7.4% than mammography alone, especially 

for dense breasts [19][20][21]. Thus, US has been recently indicated for use in breast 

cancer screening as an adjunct to screening mammography for women with dense 

breasts [22].  

 

 Nevertheless, US still has some disadvantages including operator-dependent 

handheld ultrasound in screening, long examination time, and the inability to acquire 

3D volumetric images of the breast. Recently, researchers have used an automated 

scanning technique operated by technicians, generating 2D image sequences covering 

the entire breast [23]. This technique, called “automated 3D breast ultrasound 

(ABUS),” reconstructs 3D coronal breast ultrasound images providing not only 

transverse or sagittal views as conventional ultrasound images but also can displaying 

the coronal views of the breasts at different depths (Fig. 4). 

 

 Like dedicated bCT, interpreting 3D breast US can be very challenging. Not only 

because of large amount of image data that needs to be reviewed, the noise and 

(A)         

(B)         
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distortion resulting from having different spatial resolutions in three dimensions make 

the task even more difficult. Therefore, we expect CAD to also help alleviate the 

interpretation burden for 3D breast US. The 3D breast US images in this study were 

generated by an automatic breast ultrasound system which was developed by 

U-Systems, Inc. (Sunnyvale, CA). All data was anonymized and acquired under an 

IRB approved protocol. 

 

B. Computer-Aided Detection/Diagnosis (CAD) 

 1. Introduction to CAD 

 In the mid 80s, a team at the University of Chicago started their research for 

computer-aided detection/diagnosis. The aim of their study was to use the computer 

output as an aid to radiologists, focusing on detection of lesions on chest radiographs 

and mammograms. In such usage, CAD is defined as “second opinion,” or a 

spellchecker in detecting lesions and making decisions [24]. Note that CAD’s role is 

not to replace the radiologist but instead to aid their image interpretation task. In the 

Joint FDA-MIPS Workshop on Methods for the Evaluation of Imaging and 

Computer-Assist Devices held on July 14, 2010, it was a consensus that the 

second-reader paradigm is the most appropriate way for using CAD systems in the 

clinic [25][26]. That is, the radiologist first reviews an image without CAD, then 
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immediately reviews the CAD output and finalizes the diagnosis. The schematic 

diagram is shown in Fig. 5. 

 

 

Figure 5. Schematic diagram of a CAD system for medical images interpretation. 
[24] 

 

 

 

To understand images by digital computers is complicated. The process of a 

CAD system can be broken into various components as a step by step recipe. The 

flow chart of how CAD works is shown in Fig. 6. The first 4 boxes are considered 

part of computer aided detection, and the last 3 boxes are computer aided diagnosis. 
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Figure 6. Components within a CAD system. [24] 

 

 

 

 

  a. Computer-Aided Detection (CADe) 

 In computer-aided detection, the computer output yields only the location of 
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suspect lesions. Although computer-aided detection does not output characterization 

and diagnosis of the abnormalities, such system is still useful for some clinical 

purpose, like screening mammography, low-dose thoracic CT for smokers, and colon 

cancer screening [24]. 

 

  b. Computer-Aided Diagnosis (CADx) 

 Once a lesion is detected, further step of justifying subsequent patient 

management such as biopsy may be necessary. Computer-aided diagnosis aims to aid 

in the characterization of an already-found lesion in terms of its attributes, and in the 

estimation of disease state. The input to CADx system can be either a human-detected 

or a computer-detected lesion or region. Such a system is expected to aid in a 

radiologist’s differential diagnosis and increase the positive predictive value of the 

image interpretation. Also it is expected to reduce variability between and within 

radiologists [24].  

 

 Computer-aided diagnosis generates output by dividing feature space into 

regions where normal and abnormal candidates are located with pattern recognition 

techniques. The features used for such classification task can be texture features based 

on image intensity, functional features such as contrast agent wash-out rate in MRI, 
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morphological features based on lesion size, shape, and anatomical properties. Among 

these features, morphological features highly rely on accurate segmentation. Only 

successful segmentation can lead to correct measure of morphological features. Thus, 

segmentation is an important step for computer aided diagnosis. In many cases, the 

performance of computer aided diagnosis reflects how accurate the segmentation step 

is. 

 

2. CAD and Breast Cancer 

 There is a wide variety of CAD systems. In 1998, The US Food and Drug 

Administration (FDA) approved the first mammographic CAD device [26]. After then, 

more than a dozen of CAD systems have been approved including lung nodules on 

chest radiography and CT, colon polyps on CT colonography, and pulmonary emboli 

on chest CT [27]. By far the most widely used CAD systems are those for 

mammographic breast cancer screening. There are now about 10,000 CAD systems in 

use in the United States. Mammography CAD systems detect both masses and 

microcalcification clusters, and are doing well especially for the later. Clinical report 

suggests that computer-aided diagnosis can potentially help radiologists improve the 

diagnostic accuracy in breast cancer [28].  
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 In a review paper, Cheng et al [29] outlined a flow chart of mammographic CAD 

procedure. The components are the same as shown in Fig. 11. They also listed and 

compared different approaches that have been used in mammographic CAD systems 

and studies for each component of the schematic flow chart.  

 

 In the image preprocessing step, commonly used techniques for enhancing image 

contrast include histogram equalization and local histogram equalization [30]. Other 

methods include enhancing digital mammograms with wavelet transform, 

highlighting edges by using Sobel filters, and removing noise with Gaussian filters 

[30]. 

 

 In segmentation, many techniques have been investigated and developed. Global 

thresholding is a commonly used simple segmentation method based on histogram 

analysis [31]. Some researchers used local thresholding to refine the results of global 

thresholding [32]. Pixel based approaches include Markov random field (MRF) which 

seeks to maximize the posterior distribution of the given image [33], and a region 

growing algorithm that grows a set of seed pixels and aggregate pixels with similar 

properties [32]. Edge detection methods like Laplacian of Gaussian (LoG) filter and 

Difference of Gaussian (DoG) filter [30] are widely used. Aside from identifying 
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edges by applying operators, deformable model is another technique that has drawn 

much attention in medial image segmentation [34]. Initially proposed by Kass et al 

[35], the deformable model employs energy minimization to find the contour. Due to 

low contrast in mammography and lesion margin being vague, some studies presented 

fuzzy techniques to segment masses [36]. The algorithm initially assigns a fuzzy 

membership value to every pixel, and then an error value is calculated in each 

iteration until the error reaches zero, indicating that the optimized partition has been 

done.  

 

 The diagnostic stage of mammographic CAD contains feature extraction and 

classification as shown in Fig. 11. Features used in mammographic CAD includes 

intensity features, morphological features [37], and texture features [38]. To achieve 

better classification rate, feature selection is an essential step to select best feature 

combination for such goal. Step wise feature selection, which involves the analysis of 

the effect caused by removing one feature at a time from the feature pool, is a 

commonly used method [39]. Once the features are extracted and selected, the 

features are input into a classifier for differentiation. Some classifiers often seen in 

such task are 1) linear discriminant analysis (LDA) which classifies different 

categories by constructing a decision boundary in the feature space [40]; 2) artificial 



  
                                                                     

20 
 

neural networks which mimics biological nervous systems and uses many processing 

elements highly interconnected with weighted links to function as adaptive learning 

[40]; and 3) Bayesian network which uses probabilistic approach to divide a given 

database [41]. 

 

 3. Future of CAD 

 Nowadays radiology is threatened by its own success: the number of images per 

study rise drastically; the workload of radiologists increases dramatically; the number 

of radiologists, however, is still limited; and health care costs related to imaging are 

fast increasing [27]. Therefore, a new way to handle such data explosion is needed. 

CAD might possess the key to solve the problem. Given that more new imaging 

modalities are generating 3D image volumes such as dedicated breast CT and 

automated 3D breast ultrasound, CAD holds the potential for speeding up the 

diagnostic process, reducing diagnostic errors, and improving quantitative analysis. 

With the continuing trend of growing computation power, CAD begins to be able to 

handle intensive computation and huge training data set. In some area like breast 

screening mammography, CAD is on a breakthrough and can even rival radiologists’ 

performance. Although there are still some challenges that CAD development needs 

to overcome before it can widely sit in the reading rooms, such as limited image data 
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share for training software and insufficient readers for reader study [25][26], it is 

expected that CAD is likely to become a standard in medical imaging, more and more 

applications in the future. 

 

C. Overview of Segmentation on Medical Images 

 As discussed in section B, segmentation is an important part both in CADe and 

CADx. Here we give an overview of commonly used segmentation methods on 

medical images. 

 

1. Thresholding 

 The concept of thresholding is simple. Thresholding attempts to determine an 

intensity value which to be called a hreshold, and then uses the threshold to separate 

image pixels into different classes. This is often done by analyzing the histogram of a 

given image. The threshold is often identified at the valleys on a histogram. Although 

this method is simple and easy to be implemented, it can result in erroneous image 

partition if the image is noisy, or lacks of homogeneity within the object to be 

segmented. Due to medical images being often noisy and having vague boundaries for 

objects, segmentation on medical images with thresholding generally needs to be 

performed interactively [42] and thus becomes non-automatic. 
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 For those more homogeneous images like brain MRI, some researchers have 

applied EM (expectation-maximization) algorithms to simulate an estimated 

gray-level distribution [43]. In this way, the valleys and peaks become clearer to be 

identified. Thus automatic segmentation with thresholding is more applicable. 

 

 2. Region Growing 

 Region growing is a technique for segmenting an image region that has similar 

predefined criteria. These criteria can be based on intensity and/or edge information. 

In this method, the input of seed point is required where the segmented region can 

start growing from. Like thresholding, region growing can be very sensitive to noise. 

To solve these problems, some additional algorithms have been developed to combine 

and refine region growing, such as fuzzy analogies [44]. Region growing is often used 

to delineate small and simple tumors [45].  

 

3. Classifiers and Clustering 

 Classifiers methods seek to partition a feature space derived from the image by 

using data with known labels. This is a pattern recognition technique. A feature space 

is a space of any function of the image. In many cases, the feature space is often the 
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image intensities themselves. Classifiers are supervised methods because they need 

training data that are already labeled and then used as references for classifying 

incoming new data. Some commonly-used classifiers include k-nearest-neighbor 

classifier, Parzen window, and Bayes classifier [40].  

 

 Being noniterative, classifiers are more computationally efficient than region 

growing. In addition, they can be easily applied to multichannel images, which makes 

them superior to thresholding. However, the need of manual interaction to obtain 

training data is time consuming. The selection of training set can often lead to bias 

issues and result in errors. 

 

 In contrast with classifiers, clustering does not use training data and is termed an 

unsupervised method. Without training data, clustering iteratively modifies based on 

the change of properties of every class during each iteration. In sum, clustering uses 

available data to train itself. Three commonly used clustering algorithms are the 

K-means algorithm [40], the fuzzy c-means algorithm [46], and the EM algorithm 

[40]. Clustering methods have shown success in segmenting brain MRI [47].  
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 4. Markov Random Field Models 

 Markov Random Field (MRF) model is not an actual segmentation model but 

more of a statistical method that can be incorporated into segmentation to obtain 

refined results. In principle, MRF analyzes the spatial interactions between 

neighboring or nearby pixels to evaluate local correlations. Therefore MRF methods 

are often incorporated into clustering methods, given that same cluster of pixels 

aggregate together and have high spatial correlations. This property is typically used 

in medical image segmentation since pixels from the same anatomical structure 

generally demonstrate similar intensity and are adjacent. 

 

 The difficulty in using MRF to aid in segmentation is the determination of 

parameters controlling the strength of spatial interactions. Also, MRF is usually 

computationally intensive. However, MRF has success in aiding correct segmentation 

on digital mammograms [33]. 

 

5. Artificial Neural Networks 

 Artificial neural networks (ANNs) use parallel networks of processing elements 

or nodes often called “perceptron” [30] to stimulate biological learning. Each 

perceptron performs elementary computations. With weighted links assigned to 
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connect different perceptrons, learning is achieved through the adaption of theses 

links [30]. The most commonly used ANNs in medical image segmentation is as a 

classifier [48]. Due to that there are many interconnections in a neural network, 

spatial information can be easily incorporated into the classification process. However, 

the ordinary serial computer can reduce its computational advantage because ANNs 

are inherently parallel.  

 

 6. Deformable Models 

 Deformable model is a type of dynamic segmentation. Kass et al [35] first 

introduced such image segmentation technique in 1988. To segment an object in an 

image, a closed contour defined within an image domain is driven by the sum of 

external energy coming from image data and internal energy from the contour itself. 

The internal energy is designed to maintain the smoothness of the evolving contour 

during deformation. The external energy is defined to move the contour toward 

desired locations, such as object margins. 

  

Although the theory of deformable first appeared in late 80’s, there have been 

many modifications and improvements done in this field to make deformable models 

more applicable. Combining level set theory [49], deformable models nowadays can 
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naturally handle topologic changes, achieve good accuracy, and be implemented on 

the Cartesian coordinate system allowing for computation efficiency. Deformable 

models have become one of the most active and successful research fields in image 

segmentation. Because of its ability of handling complicated shapes, it is much 

favored in medical image application. Segmentation with deformable models on 

medical images can be widely seen on different image modalities on different organs, 

such MRI, CT, and ultrasound [50].  

 

 7. Other Approaches 

 Some other approaches used in medical image segmentation includes 1) 

atlas-guided approaches that could be a powerful tool when templates are available, 

like brain MRI; and 2) watershed algorithms that partitions an image into different 

homogeneous regions. However, watershed algorithm often suffers oversegmentation 

and thus post-processing steps for merging separate regions are usually required. 

 

D. Hypothesis and Specific Aims 

 As described in the previous sections, medical imaging has come to a new era. 

The new imaging modalities which generate 3D images provide anatomical accuracy 

and could lead to improvement of image interpretation and diagnosis. However, it 
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also increases the amount of data that radiologists need to review. Such data explosion 

produces huge burden for radiologists. Furthermore, reviewing a 3D image volume on 

a 2D screen is difficult. One might need to construct the 3D structure in one’s mind by 

reviewing many 2D slices. With the power of computation, CAD is expected to 

alleviate the burden by automatically detecting and even diagnosing suspicious areas 

embedded in the 3D image volumes. 

 

 Based on previous discussion, successful CAD relies much on accurate 

segmentation. Therefore, the purpose of this study is to develop breast mass 

segmentation technique that could be applied in dedicated bCT and 3D breast US. 

There are four specific aims in this study: (1) Development of 3D lesion segmentation 

techniques for dedicated Breast CT, (2) Optimization of 3D lesion segmentation for 

Breast CT, (3) Task-based evaluation of lesion segmentation techniques, (4) 

Preliminary investigation of segmentation techniques on 3D breast ultrasound 

lesions.  
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II. IMAGE DATABASE 

 The image database for this study contains contrast-enhanced bCT, 

non-enhanced bCT, and 3D breast ultrasound. 

 

 Contrast-enhanced and non-enhanced bCT images were acquired from 

University of California at Davis under an IRB approved protocol. The voxel 

dimension is equal in coronal plane ranging from 190 to 390 μm, and 200 to 700 μm 

in coronal slice spacing. Lesion centers were labeled by the radiologists, and lesion 

outlines were manually drawn in the coronal, sagittal, and axial planes by a research 

specialist with over 15 years of experience in mammography. Case numbers in the 

dedicated breast CT image database is listed in TABLE I. 

 

TABLE I. IMAGE DATABASE OF DEDICATED BREAST CT 

 Malignant Benign All cases 

Contrast-Enhanced 25 13 38 

Unenhanced 80 49 129 
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Figure 11. An example of dedicated breast CT image. (a) and (b) are the same 
coronal slice of the same lesion with and without contrast agent, respectively. Note 
that the breast lesion appears brighter in (a) than in (b). VOI size was 36×35×35.5 
mm. 

 

 

 

The 3D breast US dataset includes 98 images containing different views on 64 

cancers from 55 patients with breast density BI-RADS (Breast Imaging-Reporting and 

Data System) 3 or 4. They were imaged on an automatic breast ultrasound system 

(ABUS) developed by U-Systems, Inc. (Sunnyvale, CA). All data was acquired under 

an IRB approved protocol. Spatial resolution in the images was non-isotropic with 

spatial resolution in the axial plane of ~ 250 to 300 μm by ~ 150 μm and slice spacing 

of ~ 600 μm. Lesion centers and margins were manually marked and outlined by an 
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expert breast radiologist with experience in breast ultrasound. Cancers in US images 

were divided into two groups: mammographically positive cancers and 

mammographically occult (TABLE II).  

 

TABLE II. IMAGE DATABASE OF ABUS 
Mammographically 

positive 
Mammographically  

occult 
All cases 

44 54 98 
 

 

 

 

Figure 10. Example images of 3D breast ultrasound in the three central orthogonal 
planes. From (a) to (b): coronal, transverse, sagittal. The breast lesion appears dark 
region in the central area. Note that (b) and (c) demonstrate the depth (section) of the 
breast as conventional US does, and shadow is shown in the images as it appears 
under the lesion. In (b) and (c), and image size is larger than the depth of the breast, 
and the region out of the skin is cut out. 
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III. DEVELOPMENT OF 3D LESION SEGMENTATION FOR DEDICATED 

BREAST CT 

 

The content of this chapter has been published on Proceedings of SPIE and 
e-published ahead of print on Journal of Digital Imaging. 

[68] H. Kuo, M. L. Giger, I. S. Reiser, J. M. Boone, K. K. Lindfors, K. Yang, and A. 
Edwards, “Evaluation of stopping criteria for level set segmentation of breat 
masses in contrast-enhanced dedicated breast CT,” in Proceedings of SPIE, 2012, 
vol. 8315, pp. 83152C. 

[74] H. Kuo, M. L. Giger, I. Reiser, J. M. Boone, K. K. Lindfors, K. Yang, and A. 
Edwards, “Level Set Segmentation of Breast Masses in Contrast-Enhanced 
Dedicated Breast CT and Evaluation of Stopping Criteria,” J. Digit. Imaging, vol. 
27, pp. 237-247, 2014 

 

A. Introduction 

 In an initial study, masses in bCT images were segmented using the radial gradient 

index (RGI) algorithm [51][52]. For 93% of the masses, the automated segmentation 

yielded an overlap ratio of 0.4 or greater. However, lesion segmentations tended to be 

undergrown and too spherical. Ray et al developed a semi-automated segmentation for 

masses in dedicated bCT based on the watershed algorithm [53][54]. Their method 

requires the user to input several markers to initialize the segmentation. The algorithm 

presented here requires only the lesion center as input, which is provided by a 

radiologist but could alternatively result from the output of a lesion detection (computer 

aided detection) algorithm. Other than Reiser et al’s initial study [52], to the best of our 
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knowledge, this is the first algorithm for automated seeded lesion segmentation on 

dedicated bCT.  

 

In a previous clinical report, Prionas et al found that lesion conspicuity was greater 

in contrast-enhanced bCT images than in unenhanced images due to higher HU for both 

malignant and benign lesions [15]. In a subset of our cases for which non-contrast bCT 

images were available, we found that the average lesion enhancement due to the 

contrast agent was 31.4 HU. Therefore, the lesion margin is expected to be better 

visualized in contrast-enhanced bCT images, and easier for the segmentation algorithm 

to capture. Hence we used contrast-enhanced dedicated bCT images to develop the 

segmentation algorithm. The strategy was to segment breast masses with a dual-stage 

segmentation procedure. The first stage of segmentation was done by RGI, which 

provided an initial contour for the second stage of segmentation -- active contour 

model.  

 

 Active contour (or “snake”) segmentation was originally proposed by Kass et 

al [35]. This model seeks an object margin that minimizes an energy functional 

consisting of internal energy and external energy along the deformable contour. Active 

contour segmentation has been used in medical imaging [55][56][57][58]. In breast 
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imaging, Brake et al used a discrete active contour method to segment mammographic 

mass lesions [59]. Sahiner et al incorporated edge and region analysis to help minimize 

the contour energy [60]. Both works express the contour as an N-points polygon, 

making the handling of topology changes difficult, as seen in split and merge 

segmentation methods. To solve this problem, Yuan et al [61] proposed a level set based 

approach [62][63][64] that can handle splitting and merging in a natural way for 

segmenting masses on mammogram. In this study, the level set approach was extended 

to 3D. This 3D level set based active contour model uses the initial contour generated 

by previously developed RGI and continues contour evolution until the desired lesion 

margin has been reached.  

 

 Contour leaking is a problem in lesion segmentation on medical images that needs 

to be addressed due to the presence of ambiguous margins. Therefore, a stopping 

criterion is required to terminate the iterative contour evolution process at the lesion 

margin. In this study, three stopping criteria were developed and compared: (1) the 

change of segmented region volume at each iteration, (2) the average intensity in the 

segmented region increase at every iteration, and (3) the rate of change of the average 

intensity inside and outside the segmented region [61]. 
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B. Segmentation Methods 

Figure 9 shows the flow chart of the proposed segmentation algorithm. The 

segmentation is performed in two stages: contour initialization with the RGI algorithm 

followed by a level set based active contour model. 

 

 

Figure 9. Schematic of the seeded breast CT lesion segmentation algorithm. 

 

 

 

Although the level set based active contour algorithm can handle topologic 

changes in a natural way and is expected to be able to capture complicated 
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morphologic details, the way it minimizes the energy functional is complex and can 

result in errors on noisy and ambiguous images, such as medical images. Since breast 

lesions tend to exhibit local intensity variations, and lesions occur in a wide variety of 

sizes and shapes, it is not guaranteed that the active contour evolution equation always 

finds the global minimum that represents the optimized image partition. As a result, 

the evolving contour might become trapped in a local minimum of the energy 

functional. One way to guide contour evolution towards the global minimum is to 

initialize the active contour segmentation with an approximated lesion contour that is 

sufficiently enough to the true lesion margin to avoid local minima. 

 

Based on a previous study [52], RGI can produce an approximate contour in a very 

short amount of time, with the limitation of the contours being too spherical and 

sometimes undergrown. While these limitations can produce unsatisfactory lesion 

outlines, they make the RGI algorithm well suited for contour initialization, which 

requires the contour to be entirely contained within the lesion. Thus, in the proposed 

segmentation algorithm, we used RGI segmentation to generate the initial approximate 

lesion outline, and used an active contour model to evolve the lesion contour towards 

the desired location and to capture morphologic details for greater segmentation 

accuracy. 
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 Figure 10 shows the difference in segmentation results with and without use of a 

RGI-approximated initial lesion contour. As shown in Fig. 10, RGI segmentation not 

only increases the efficiency of the overall segmentation procedure, it also helps 

improve the accuracy for the second stage of segmentation. 
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Figure 10. Comparison of active contour segmentation with different initial 
contours. (a) and (d): Coronal views of two dedicated breast CT lesions; (b) and (e): 
The initial contour was a cubic surface of 33 voxels; (c) and (f): The initial contour 
was, as included in our proposed overall segmentation method, an eroded RGI 
segmentation. Thin lines: initial contour; thick lines: final segmentation. 
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1. Contour Initialization 

 RGI segmentation is a seeded lesion segmentation technique [51]. Reiser et al 

extended it into 3D and showed that it can be applied on dedicated breast CT images 

[52]. For a given lesion contour dΩ, the 3D RGI is given by 

 

 RGI3D= 
∑ G��⃑ (x,y,z)dΩ ∙r̂(x,y,z)

∑ |G��⃑ (x,y,z)dΩ |
 (III.1) 

 

where G��⃑  is the image gradient, and r̂ is a unit vector in the radial direction. 

 

 The volume of interest is multiplied by a 3D Gaussian constraint function, then a 

series of contours dΩi are generated by applying multiple gray-level thresholds to the 

constrained VOI. The resulting segmentation is the contour that maximizes RGI: 

 

 dΩRGI=arg max
dΩi

RGI{dΩi} , i=1,…, n  (III.2) 

 

In this algorithm, the standard deviation of the Gaussian constraint function was 10 

mm, based on Reiser et al’s study [52]. Further, to ensure that the initial contour is 

completely contained within the lesion before the second segmentation stage, 

morphological erosion is applied to shrink the RGI segmented lesion contour by using 
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the MATLAB function “imerode” with a cubic structuring element. The side length of 

the structuring element was one ninth of the cube root of the RGI segmented lesion 

volume. The resulting contour then served as the initial contour for the subsequent 

active contour segmentation. Figure 11 shows an example of a mass with a RGI 

segmented contour and the eroded contour, which is used to initialize the level set 

segmentation. Details about the active contour model are described in the following 

sections. 

 

 

 

Figure 11. Demonstration of the RGI segmented contour (bold contour line) and the 
subsequently-eroded contour (thin contour line), which serves as the initial contour 
for input to the active contour segmentation stage. 
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2. Original Level Set Model 

 The level set based propagating fronts theory for delineating shapes on an image 

was introduced in 1988 [62]. The central idea of a level set method is to express the 

contour as the zero level set of a higher-dimensional function, the so-called level set 

function. The evolving contour is formulated through the evolution of the level set 

function; i.e. dΩ is the zero level set: dΩ = {(x, y, z) | φ(x, t) = 0}, φ(x, t) is the 

evolving level set function and t is the iteration. Let x be a location vector ∈ ℝP

3 on 

the evolving hypersurface and F(x) a speed function normal to the front at x, and thus, 

the evolution equation for φ  can be given  as a basic formulation of a 

“Hamilton-Jacobi type” equation [62][63][64]: 

 

 ∂φ
∂t

+ F|∇φ|= 0 (III.3) 

 

In this classical level set front propagating equation, the level set function φ, 

however, can develop shocks, i.e., very sharp or flat shapes during evolution. Among 

different approaches to resolve this problem, Li et al proposed a regularization term 

given as [65]  

 

 ∂R(φ)
∂t

= μ �∇2φ - div �
∇φ
|∇φ|

��   (III.4) 
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where R(φ) is the regularization functional. The basic idea of this regularization term 

is to maintain the evolving level set function as a signed distance function with its 

intrinsic property |∇φ| = 1. This regularization term avoids contour re-initialization, 

which is computationally expensive [66][67].  

 

Combining the Hamilton-Jacobi type equation (III.3) and the regularizing term 

(III.4) yields the level set evolution equation 

 

 ∂φ
∂t

= φk+1- φk= τ �μ �∇2φ - div �
∇φ
|∇φ|

�� + νgF|∇φ| � (III.5) 

 

where F is the speed function normal to x; ν is a scalar parameter that controls the 

direction of front propagation (negative value if evolving outward and positive if 

evolving inward); τ is the iteration step size; k is the iteration number; and g is the 

indicator function, given by 

 

 
g =

1
1+ |∇Gσ ⊗ I|2

  (III.6) 

 

where Gσ is a Gaussian kernel and I is the image array. The indicator function was 

introduced by Castelles et al and is often seen in level set based curve evolution in 
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image processing and computer vision applications [63]. It incorporates geometrical 

information into the level-set function and ensures that the contour stops evolving in 

edge-like regions [63]. 

 

 Since |∇φ| = 1 is enforced by the regularizing term (i.e., the term in square 

brackets on the right hand side of III.5), the last, so-called fronts propagating term can 

be simplified as νgF. In addition, by letting F be a delta function, the propagating 

front uniformly expands: 

 

 
δε(x)= �

     0,                           |x|> ε 
1
2ε
�1+cos �

πx
ε
�� ,      |x|≤ ε

 �   (III.7) 

 

where ε controls the sharpness of the delta function. Its value, ε = 0.2, was based on 

Li et al’s settings [65]. 

 

 For large lesions in our dataset, active contour segmentation could be very time 

consuming and therefore, the selection of τ had to be larger than 1000 to complete 

the segmentation task to reduce computation time for cases with large masses. For the 

purpose of stability, Li et al suggested that the product of τ and μ should be less 

than 0.25 [65]. To reach this, a small value of μ is often chosen which in turn 
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somewhat suppresses the effect of the regularization term. In this study, we found that 

the need of a large value of τ could yield undesired segmentation results even if τμ 

is less than 0.25 (Fig. 12(a) - 10(e)). This is because the strength of the regularization 

term, which is multiplied by τ, is comparatively larger than the fronts propagating 

term when it is significantly suppressed by g around the lesion margin. As a result, the 

regularization term can produce noise during contour evolution, cause erroneous 

termination, and might enable the contour to cross over the barrier set up by g, 

ultimately producing unsatisfying segmentation results. Figure 12(a) – 10(e) show 

segmentations obtained with τ = 1000 and different values of μ. 

 

 

Figure 12. (a) to (e): Dedicated breast CT lesion segmentations obtained for different 
values of τμ using III. 5. (f) to (j): Dedicated breast CT lesion segmentations 
obtained for different values of 𝜏𝜇 using III. 9. The coronal plane is shown. The 

stopping criterion was dIL�

dt
- dIB�

dt
 = 0. 
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3. Proposed Level Set Model 

 Since the purpose of the regularization term is to maintain the signed distance 

function property only during the evolution process, the regularizing function 

becomes redundant when the evolving contour approaches the lesion margin where ∂φ
∂t

 

→ 0. To solve this problem we propose to make the regularization term dynamic 

along with the contour evolution by incorporating the geometrical information into 

the regularization term using a “softened” indicator function gs: 

 

 
gs= 

1
1+ |∇Gσ⊗ I|

 (III.8) 

 

Hence the level set evolution equation becomes 

 

 ∂φ
∂t

=φk+1- φk= τ �μgs �∇
2φ - div �

∇φ
|∇φ|

��+νgδε(φ) � (III.9) 

 

Note that compared to III.6, the power of |∇Gσ* I| in the denominator of gs is 1 

rather than 2. From our experiments, we noticed that if g is used instead of gs, the 

level set function can still produce subtle instability around the lesion margin because 

the regularization term is suppressed slightly too early. Fig. 12(f) - 10(j) show 

segmentation results from the new model that incorporates gs, with τ = 1000 and 
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different values of μ and for the same case as shown in Fig. 12(a) - 10(e). Here we 

suggest τμ < 0.15 for 3D bCT images, because τμ > 0.15 can still cause instabilities 

as shown in Fig. 12(f) and 10(g). 

 

Figure 13. (a) Human-delineated lesion outline of the bCT lesion. (b) Segmentation 
result using Eq. 5. (c) Corresponding regularization map. (d) Segmentation result 
using III.9. (e) Corresponding regularization map. Examples are displayed in the 
coronal plane. Volume of interest size was 36mm × 36mm × 35.5mm. 

 

 

 

Figure 13 shows a comparison of the segmentation results from the model 

without and with the softened indicator function (Figs. 13(b) and 13(d)) and the 

corresponding human-delineated outline (Fig. 13(a)). In Fig. 13(d) the evolution stops 

automatically due to the stopping criterion, while the evolving contour shown in Fig. 

13(b) has already crossed over the lesion margin at 60 iterations yielding poor 

segmentation performance. Figures 13(c) and 13(e) show the corresponding 

regularization term maps. 
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4. Stopping Criteria 

In this study, we developed and compared three stopping criteria [68]: 

 

 1. The first stopping criterion is the minimum of ∆V/V, and is based on the 

change of segmented region volume. Given the segmented volume V and the 

difference in region volume from the previous to the current iteration step ∆V, 

contour evolution is terminated when ∆V/V reaches a global minimum. 

 

 2. The second stopping criterion is the minimum of dIΔ̅Ω/dt, and is based on the 

average voxel intensity within the segmented region increase at each iteration. Here, 

 denotes the segmented region and ΔΩ = Ωt+1 - Ωt is its increase in two consecutive 

iteration steps, and IΔ̅Ω is the average voxel intensity in ΔΩ. When the contour 

approaches the lesion margin, IΔ̅Ω is expected to decrease significantly. Therefore we 

select the 3D contour that corresponds to the global minimum of the derivative 

dIΔ̅Ω/dt as the final lesion margin. 

 

 3. The third stopping criterion, dIL̅ dt - ⁄ dIB̅ dt⁄ = 0, is based on comparing the 

rate of change (i.e., the slope) of the average voxel intensity as a function of iteration 

number inside and outside the segmented region, and was initially proposed by Yuan 
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et al [61]. Denoting the average voxel intensities inside the segmented region as IL̅, 

outside the segmentation as IB̅, and along the contour as Id̅Ω, the difference of rates 

of change of average intensities inside and outside the segmented region are given as 

 

 
 d(I ̅L)

dt
-
d(IB̅)

dt
=

1
VB

∙(IL̅-I ̅B)∙[2∙Id̅Ω-0.7(IL̅+IB̅)]2 (III.10) 

 

where VB is the volume of the VOI excluding the segmented lesion and t refers to 

the iteration step. Note that parameters of this equation were adjusted for 3D bCT 

images. When the evolving contour crosses the lesion margin, the rate of change of 

the average intensity inside the segmented region increases, and will eventually match 

that outside the segmentation. Therefore the contour evolution is terminated when the 

rate difference,    [dIL̅ dt - ⁄ dI ̅B dt⁄ ], reaches zero. Since a numerical comparison 

against zero is difficult, for practical purposes, contour evolution was terminated 

when [dIL̅ dt - ⁄ dIB̅ dt⁄ ] was less than 0.5. 

 

5. Evaluation 

 Manual lesion outlines on 3 orthogonal planes, drawn by a research specialist in 

mammography, served as a reference for evaluating the segmentation algorithm. 

Segmentation performance was assessed as the average overlap ratio (ORavg ), 



  
                                                                     

48 
 

computed as 

 

 
ORavg= 

1
3
��

Ω2D∩ωman

Ω2D∪ωman
�

cor
+ �

Ω2D∩ωman

Ω2D∪ωman
�

sag
+ �

Ω2D∩ωman

Ω2D∪ωman
�

ax
� (III.11) 

 

where Ω2D is a cut through the 3D computer-segmentation that includes the lesion 

center, and (cor), (sag), and (ax) denote the orientation of the plane. ωman is the 

human-delineated lesion outline in the same plane [52]. The computer outlines 

produced by the three stopping criteria were compared in terms of ORavg, averaged 

over all cases. A t-test [69] was used to compare the performances across the three 

stopping criteria. 

 

C. Results 

 Figure 14 shows examples of segmentation results by using the proposed active 

contour model with the three stopping criteria, for four masses. The leftmost column 

shows the manual outline of each mass. This figure also illustrates the variability of 

size, shape, and intensity variations within and in the neighborhood of breast masses 

imaged with 3D bCT. 
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Figure 14. Segmentation examples for the three stopping criteria. τµ = 0.10. 
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Figure 15 plots the proportion of correctly segmented masses, as a function of 

ORavg threshold. For all three stopping criteria, ORavg was greater than 0.4 for 96% of 

all masses. Overall, all stopping criteria produced similar curves, but for much of the 

range of ORavg thresholds, the min(∆V/V) criterion resulted in a smaller proportion of 

correctly segmented masses, compared to the other two stopping criteria. 

 

 

 

Figure 15. Segmentation performance as a function of ORave threshold, for the three 
stopping criteria. 
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TABLE III presents the performance of the proposed automated segmentation 

scheme for the three stopping criteria in terms of <ORavg>, where <∙> indicates 

average across all cases. For all stopping criteria, <ORavg> was 0.66 or greater. The 

similarity of the lesion segmentations was assessed using a pairwise t-test. No 

statistically significant differences were found. 

 

 

 

 

D. Discussion and Conclusion 

 Figures 12 and 13 demonstrate the effect of multiplying the regularization term 

with a “softened” indicator function (III.9), which not only ensures that |∇φ| = 1 

during contour evolution, but also prevents the regularization map from developing 

TABLE III. SEGMENTATION PERFORMANCE IN TERMS OF 
AVERAGE OVERLAP RATIO FOR THE THREE STOPPING CRITERIA AND 

COMPARISON RESULTS IN TERMS OF P-VALUES FROM THE T-TEST. 

Stopping criterion Average overlap ratio <ORavg> p-values 

Minimum of 
(∆V/V) 

0.66 ± 0.14 
 
 

   

0.12  

Minimum of 
(dI ̅ΔΩ/dt) 

0.68 ± 0.14 
 

0.06 

 
 

dIL�

dt
- dIB�

dt
 = 0 0.68 ± 0.14 

0.91  
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undesired results when the driving force is being suppressed and the evolving contour 

approaches the stopping point (Fig. 13). 

 

 Overall, the proposed segmentation algorithm produces satisfactory lesion 

outlines for all stopping criteria in the sense that surrounding glandular tissues are not 

included in the segmented region (Fig. 14(i) - 12(l)). As shown in Figure 6, the active 

contour model evolves contours smoothly without generating shocks. The 

regularization term plays an important role in maintaining the stability. When |∇φ| > 

1, the regularization term [∇2φ – div(∇φ/|∇φ|)] becomes positive and tends to allow 

for faster expansion of the evolving contour. If |∇φ| < 1, then [∇2φ – div(∇φ/|∇φ|)] 

becomes negative and the contour evolves more slowly, bringing φ back toward 

|∇φ| = 1. This mechanism ensures that the level set function maintains its intrinsic 

property of a signed distance function during the evolution, |∇φ| = 1, mitigating the 

need for re-initialization. 

 

 Of the three stopping criteria that were investigated, min(dI ̅ΔΩ/dt) was found to 

be the least consistent. For small lesions, the average intensity within the grown 

region, IΔ̅Ω, is reduced substantially during early iterations due to the small size of the 

segmented region. This can cause contour evolution to be terminated prematurely, as 
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shown in Fig. 14(c). For larger lesions, on the other hand, the min(dI ̅ΔΩ/dt) stopping 

criterion tended to be satisfied at a higher iteration number, compared to the other 

stopping criteria, producing slightly larger lesion segmentations. In turn, these 

resulted in a higher overlap ratio because the manual outlines were also drawn loosely, 

overestimating the lesion margin (see Figs. 14(g) and 14(e)). Thus, segmentations 

resulting in a higher overlap ratio were not necessarily closer to the lesion margin, 

judging by visual inspection. Furthermore, the “redundantly” grown parts (see 

protuberances in Fig. 14(g)) occurred because a large portion of background needed to 

be included in ΔΩ to produce a global minimum in dI ̅ΔΩ/dt. 

 

 Although contours from stopping criteria based on min(∆V/V) and 

[dI ̅L dt - ⁄ dIB̅ dt=0⁄ ] generated similar overlap ratios, min(∆V/V) tended to produce 

tighter lesion outlines than the other two criteria. This can be seen in Table 1, in which 

min(∆V/V) produces the smallest average overlap ratio. Also, the p-values of 

comparisons between ORavg from segmentations with the min(∆V/V) criterion and 

that using the other two stopping criteria might indicate such a trend as well. 
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Figure 16. Stopping conditions as a function of iteration number, illustrated for two 
different masses (top two rows, bottom two rows). (a,g) ∆V/V, (b,h) dIΔ̅Ω/dt, and 

(c,i) dIL�

dt
- dIB�

dt
. The segmentations corresponding to the termination point are shown 

(d,j), (e,j), and (f,l), respectively. 
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A drawback of the stopping criteria min(∆V/V) and min(dI ̅ΔΩ/dt) is the need to 

let the contour evolve for many iterations past the actual stopping point in order to 

identify the minimum, as demonstrated in Figs. 16(a), 16(g) and 16(h). If the curve is 

noisy, curve fitting can help to determine a reliable minimum. As shown in Fig. 16(a), 

the segmentation will automatically cease at a local minimum if no curve fitting is 

used similar to what is seen for the stopping criterion min(dI ̅ΔΩ/dt). Due to curve 

fluctuations, the global minima of ∆V/V and dIΔ̅Ω/dt were selected after monitoring 

the contour evolution for many iterations beyond the actual stopping point (Fig. 16). 

In contrast, [dIL̅ dt − ⁄ dIB̅ dt ⁄ ] compares the average intensity inside the entire 

segmented region and the background and is therefore less sensitive to the intensity 

variations that might occur in a certain local region. As a result, [dIL̅ dt - ⁄ dIB̅ dt⁄ ] is a 

monotonically decreasing curve that allows for easier identification of the stopping 

point (Fig. 16(c) and 16(i)). 

 

 Some researchers tend to use Dice coefficient (DICE) to evaluate the computer 

segmentation performance. DICE is defined as [70]: 

 

 
DICE=

2(Ω∩ωman)
Ω+ωman

 (III.12) 
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Figure 17. The relationship between OR and DICE. 

 

 

 

where Ω is the computer-segmentation and ωman is the human-delineated lesion 

outline. In terms of DICE, Zijdenbos et al suggested that a good overlap occurs when 

DICE > 0.7 in their literature of image validation [71]. Kuo et al showed the 

relationship between OR and DICE in their work of automated 3D breast ultrasound 

segmentation, and accordingly, an OR of 0.66 is equivalent to a DICE of 0.79 [72], 
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which is still well above 0.7. In fact, Sahiner et al compared classification of breast 

masses in mammography based on outlines by radiologists, and computer 

segmentations [60]. They found similar performance for an average overlap ratio of 

0.62, which supports the use of overlap ratio to assess computer segmentations. 

 

 Limitations of this study are that the data set is small (33 patients; 38 

contrast-enhanced masses). This might have affected the observed p-values when 

comparing ORave from the three stopping criteria. In a larger data set, one might 

expect to see smaller p-values for the comparisons of min( ∆ V/V) – 

[dIL̅ dt - ⁄ dIB̅ dt⁄ = 0] and min(∆V/V) – min(dIΔ̅Ω/dt) in a larger data set, since the 

results in Table I indicate such a trend. Further, manual outlines from one expert 

served as “ground truth” for the evaluation of the computer segmentation. Automated 

lesion segmentation is a central step in most CAD and quantitative analysis schemes 

and therefore, the segmentation performance ultimately needs to be evaluated in that 

context. However, as an intermediate step, lesion segmentation is often evaluated by 

comparing computer segmentations to human outlines, particularly in mammography 

[60][73]. 

 

 To sum up, a two-stage 3D lesion segmentation method combining RGI 
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segmentation with an active contour model is developed. The RGI segmentation 

generates an approximate contour, which serves as initial contour for the subsequent 

contour evolution. The automated lesion segmentation algorithm was evaluated by 

computing the overlap ratio with manually drawn lesion outlines. Three stopping 

criteria were evaluated, which all yielded overlap ratios greater than 0.65 

(corresponding to a Dice coefficient of 0.7). This suggests that the segmentation 

algorithm proposed in this paper can be successfully applied to masses imaged with 

contrast-enhanced dedicated breast CT. Among the stopping criteria that were 

investigated, min(dIΔ̅Ω/dt) was found to be the least consistent and the use of either 

min(∆V/V) or [d(IL̅) dt − ⁄ d(IB̅) dt ⁄ =  0] is suggested, where the latter holds the 

advantage of not requiring curve fitting to identify the stopping point. 

 

 

 

 

 

 

 

 



  
                                                                     

59 
 

IV. APPLICATION OF THE PROPOSED SEGMENTATION MODEL ON 

UNENHANCED bCT IMAGES 

 

The content of this chapter has been published on IWDM 2012. 
[75] H. Kuo, M. L. Giger, I. Reiser, J. M. Boone, K. K. Lindfors, K. Yang, and A. 

Edwards, “Level Set Breast Mass Segmentation in Contrast-Enhanced and 
Non-contrast-Enhanced Breast CT,” in 11th Internatoinal Workshop, IWDM, 
2012, vol. LNCS 7361, pp. 697-704 

 

A. Introduction 

 In the previous chapter, we have shown that the segmentation method proposed 

in chapter III can be applied on contrast-enhanced dedicated bCT. However, 

unenhanced dedicated bCT would be more favored in future screening application 

because of no contrast agent injected into the patient body. Thus the purpose in this 

chapter is to test the applicability of the proposed segmentation procedure for 

unenhanced dedicated bCT. 

 

B. Mateials and Methods 

 The dataset included 23 contrast/non-contrast breast CT image pairs (13 

malignant masses and 10 benign masses, see chapter II). The segmentation procedure 

is the same as described in chapter III, and the stopping criterion is 

[d(IL̅) d𝑡 − ⁄ d(IB̅) d𝑡⁄ =  0]. 
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C. Results 

 The average OR in contrast-enhanced bCT images was 0.69 (DICE = 0.82) while 

the average OR in unenhanced bCT images was 0.62 (DICE = 0.77). Figure 18 shows 

the cumulative overlap ratios for all lesions. Segmentation performance on contrast 

images is better than on non-contrast images in terms of their respective OR. 

 

 

 

Figure 18. Comparison of segmentation performance between contrast and 
non-contrast images with radiologist’s outlines. 
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Figure 19 shows the relationship between segmented lesion volumes in the 

non-contrast and contrast-enhanced bCT images. Each data point represents one 

lesion. Overall, lesion volume for both segmentations is similar except for two 

outliners. Examining segmentation results for the two outliners, which are circled in 

Fig. 18, revealed that segmentation in the unenhanced bCT images had failed. To 

assess the differences in lesion volume, a paired t-test was performed. Excluding these 

two failed segmentations, a p-value of 0.09 was found. 
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Figure 19. Comparison of lesion volume obtained from lesion segmentation in 
non-contrast or contrast-enhanced breast CT images. Plotted here is the radius of the 
equivalent sphere. The 2 circled data points represent failed segmentation cases on 

non-contrast images. rCE = �3𝑉𝐶𝐸
4𝜋

3
 and r = �3𝑉𝑁𝐶𝐸

4𝜋
3

. (VCE: contrast-enhanced 

volume; VNCE: non-contrast-enhanced volume) 

 

 

 

D. Discussion and Conclusion 

 Shown in Fig. 20B and 20D, the overlap ratio of the human outlined regions is 

0.99 (DICE ≈ 1). When comparing with the computer segmentation, the ORavg still 

differs: 0.7 (DICE = 0.82) for contrast and 0.6 (DICE = 0.75) for non-contrast. This 
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demonstrates that the proposed segmentation method might tend to stop evolving 

earlier without contrast agent because the lesion is less emphasized. Although the 

p-value of 0.09, yielded by t-test for contrast and non-contrast segmented volumes, 

might not be strongly significant, this still indicates the trend that segmentation in 

non-contrast bCT images tends to produce smaller lesion volumes than when 

segmenting the lesion in contrast-enhanced images. 

 

Overall, the similar results of segmentation between contast-enhanced and 

unenhanced bCT images demonstrate that our segmentation method can be applied on 

unenhanced images. However, this modified level set segmentation method might 

need some modification due to the tendency of segmenting smaller volume on 

unenhanced images. If the segmentation fails to segment the lesion completely, it will 

lose important shape details, which is a significant feature for classifying malignancy. 

Therefore, this examination suggests that the segmentation procedure proposed in 

chapter III needs a further improvement in order to be able to segment shape details as 

much as possible on unenhanced bCT images. 
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Figure 20. Examples of lesion segmentation in contrast-enhanced bCT images (A, 
B), and non-contrast-enhanced bCT images (C, D). Bold: human outline. Thin: 
computer-segmented outlines. 
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V. OPTIMIZATION OF THE SEGMENTATION MODEL 

 

The content of this chapter has been accepted by Journal of Medical Imaging for 
publication. 

 

A. Introduction 

 In chapter III, we present a two-stage 3D lesion segmentation model [74] which 

combines the radial-gradient index (RGI) [51][52] and the level-set based active 

contour algorithm [64][65]. This model yielded good segmentation performance of 

lesions in contrast-enhanced bCT images based on the overlap ratio between 

computer segmentation and human outline of 0.68, which is equivalent to a DICE 

value of 0.80. (Note that a value for the Dice coefficient larger than 0.7 has been 

suggested as indicative of a good overlap [71]). However, the resulting segmentations 

tended to segment lesion volumes smaller on non-contrast images compared to 

contrast-enhanced ones [75] as shown in chapter IV. Such conservative lesion 

outlines could miss important morphological margin indicators, such as spiculations, 

for diagnosis. Therefore, in this chapter, we address this problem on 

non-contrast-enhanced bCT images with optimization to our previous model.  

 

 The optimized segmentation model is still a two-stage method that uses a radial 
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gradient index segmentation method [51][52] to first delineate the initial contour of 

the lesion, and an modified active contour model to evolve the initial contour toward 

the lesion margins. As lesion margins are often ambiguous, we employed a dynamic 

stopping criterion [61] suggested in chapter III which is based on global information 

of the given image to terminate the segmentation procedure automatically. Moreover, 

we also evaluated the relationship between the amount of presenting breast 

fibroglandular tissues and the segmentation performance on bCT. This was conducted 

in order to investigate whether the proposed method would yield acceptable results 

when a lesion was surrounded by a large proportion of fibroglandular tissues, i.e., 

when a lesion was located in dense parenchyma. 

 

B. Segmentation Methods 

 1. Contour Initialization 

 As introduced in chapter III, the initial contour was generated by using 

RGI-segmentation, which finds the lesion margin that maximizes the average 

proportion of gradients pointing radially outward from the lesion center [51][52]. In 

addition, to ensure that the initial approximation of the lesion contour was entirely 

inside the actual lesion, morphological erosion was performed with an adaptive cubic 

structuring element, that had a side length of 1/9 of the cube root of the RGI 
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segmented lesion volume. We have found RGI segmentation combined with the 

erosion process to be a reliable and fast method to generate initial contours that serve 

as input to the active contour model in order to speed up and increase the robustness 

of the contour evolution. Details can be found in chapter III and Kuo et al [74]. 

 

 

 

Figure 21. Flowchart of the optimized automated breast lesion segmentation Scheme. 
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2. Modified Active Contour Model wirh Local Energy Term 

 Active contour model (snake) was first proposed by Kass et al in 1988 [35]. The 

basic idea is to seek an object margin that minimizes an energy functional consisting of 

internal energy and external energy along the deformable contour. The internal energy 

controls the smoothness of the contour under the influence of the external energy, 

which attracts the contour to deform toward the object boundaries, e.g., the margin of 

a mass.  The energy functional was calculated from a parameterized integral: 

 

 εsnake=� εinternal(r(s))
1

0
ds +� εexternal(r(s))ds

1

0
 (V.1) 

 

where r is the location vector on the evolving contour that r(s) = (x(s), y(s)). This 

classical model, however, has difficulty handling topology changes of the contour 

[76], and the parameterization of the evolving contour also hinders implementation in 

3D. In order to address topology problems, geometry-based level set active contour 

methods [62] have been used because they allow for region splitting and merging in a 

natural way. Moreover, they can be implemented on Cartesian grids, improving 

numerical computation efficiency. Since then, active contour algorithms with level set 

formulation have drawn much attention in image segmentation techniques. Malladi et 

al [64] and Caselles et al [63] proposed a level set based active contour model driven 
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by curvature-dependent speed functions, F, with an edge indicator g as a stopping 

function. Caselles et al [77] later proposed the geodesic active contour model with a 

level set formulation that merges the classical energy minimization concept with 

geometric level set active contour models. They showed that the level-set based 

contour evolution function can be derived from the contour energy functional by 

calculating the corresponding Euler-Lagrange equation. 

 

 

Figure 22. Shown in the figure is a contour generated by the proposed segmentation 
model in chapter III. This model can fail to segment lesions that are embedded in 
fibroglandular tissue, or lesions with a complex shape. 

 

 

 

In chapter III, the proposed active contour model is purely a level-set based 

algorithm [74] modified from Malladi et al and Caselles et al’s approaches [64][63]. 
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The results show that this model can yield satisfying segmentation performance on 

contrast-enhanced bCT when the lesions are highlighted and better visualized. 

However, it tends to segment smaller lesion contours on non-contrast bCT, as shown 

in chapter IV. In addition, malignant masses often have irregular shapes and present 

with vague lesion margins on breast CT (and other imaging modalities). The proposed 

model in chapter III tended to yield a coarse outline if a breast lesion lacked a clear 

margin (Fig. 22). In this chapter, we aim to solve this problem and capture more 

lesion shape details by introducing a region-fitting energy term [78], which was 

originally proposed by Li et al. We added the region-fitting energy term to the 

corresponding energy functional of the active contour model proposed in chapter III, 

and then calculated the associate Euler-Lagrange equation to derive the level-set 

based contour evolution function. 

 

a. Derivation of Leve-Set Evolution Function from the New Energy 

Functional 

 The corresponding energy functional ℰ𝑔𝑙𝑜𝑏𝑎𝑙 of the level set active contour 

model in chapter III is given as 

 

 εglobal=� νgH(φ) d
φ

r + μgs∙
1
2
� (|∇φ|-1)2dr

Ω
   (V.2) 
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where ν  and μ  are parameters that controls the direction of evolving surface 

(negative for evolving outward and positive for inward) and the strength of the second 

term [74] in Eq. (V.1) (regularization term [65]), respectively; φ is the level set 

function such that the evolving surface S = {r | φ(r) = 0}; r is the location vector 

(x,y,z), H is the Heaviside function: 

 

 𝐻(x) = 
1
π

arctan �
x
α
�  (V.3) 

 

α is a parameter controlling the steepness of H. In Eq. (V.2), g is the edge indicator 

function proposed by Caselles et al [63] same as shown in Eq. (III.6). gs the same as 

shown in Eq. (III.8). The first term in Eq. (V.2) is the main driving term that expands 

the surface uniformly. The second term in Eq. (V.2) is the regularization term first 

introduced by Li et al [65]. This term allows for expression of the evolving surface as 

a signed distance function without re-initialization, which is more efficient.  

 

The new optimized contour energy functional is modified by adding a 

region-fitting energy term, as originally proposed by Li et al [78]. The region-fitting 

energy term is based on the approximated intensity inside and outside of the evolving 

surface in a local region. In general, the region-fitting energy functional seeks optimal 
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partitions of the lesion and background within the local region as determined by the 

size of a kernel mask, Gσ. The region fitting energy is defined as: 

 

 
ℰlocal = ��Gσ(a-r)�I(r)-fi(a)�

2
Mi

2

i=1

�φ(r)�dr (V.4) 

where Gσ is a Gaussian kernel with standard deviation σ, and a is the location of 

the kernel center. M1  and M2  are defined as (H(φ) + 0.5) and (0.5 - H(φ)), 

respectively, where H is the Heaviside function given in Eq. (V.3) and  fi are the 

approximated intensities inside and outside the local region. The energy functional 

ℰsnake of the optimized active contour model is the sum of Eq. (V.2) and (V.4): 

 

 ℰsnake = 𝜀𝑔𝑙𝑜𝑏𝑎𝑙 + 𝜀𝑙𝑜𝑐𝑎𝑙 (V.5) 

 

Now we provide the derivation of the corresponding level set evolution function from 

Eq. (V.5). We start with the need to determine the level set function φ  that 

minimizes the energy functional by dℰsnake/d φ = 0. For convenience, we denote the 

main driving term (the first term of right hand side of Eq. (V.2)) as A, the 

regularization term (the second term of right hand side of Eq. (V.2)) as B, and the 

region fitting energy term (right hand side of Eq. (V.4)) as C. To derive the 

corresponding level set evolution equation from Eq. (V.5), one needs to compute the 
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associated Euler-Lagrange equation using the first variation of calculus [79]. The 

minimum of Eq. (V.5) occurs when the following condition is satisfied: 

 

 
d
dx
�

∂(A+B+C)
∂φx

�+
d
dy
�

∂(A+B+C)
∂φy

�+
d
dz
�

∂(A+B+C)
∂φz

� -
∂(A+B+C)

∂φ
= 0. (V.6) 

 

We address A, B, and C separately. For term A: 

 

 
d
dx

∂νgH(φ)
∂φx

+
d
dy

∂νgH(φ)
∂φy

+
d
dz

∂νgH(φ)
∂φz

-
∂νgH(φ)

∂φ
 

 = νgH '(φ) = νgδ(φ) 
(V.7) 

 

where δ is the derivative of H with respect to φ: 

 

 δ =
1
π

∙
α

α2+x2 . (V.8) 

 

For term B: 

 

 ∂μgs �
1
2 (|∇φ|-1)2�

∂φ
= 0, (V.9) 
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 d
dx

∂μgs �
1
2 (|∇φ|-1)2�

∂φx
=μgs

d
dx
�φx-

φx
‖∇φ‖

�, (V.10) 

 

and similarly using partial differentiation with respect to φy and φz. Combining 

together, we have 

 

 μgs �
d
dx
�φx-

φx
‖∇φ‖� +

d
dy
�φy-

φy

‖∇φ‖�+
d
dz
�φz-

φz
‖∇φ‖�� 

   =μgs �∇
2φ - div � ∇φ|∇φ|�� 

(V.11) 

 

For term C, we employ the steepest descent method [80] to derive the associated 

Euler-Lagrange equation. By fixing the approximated intensity f1(a) and f2(a), the 

minimum of the region fitting energy term C occurs when 

 

 -δα(φ)(a1-a2)=0 (V.12) 

 

where 

 

 ai=�Gσ2(a-r)�I(r)-f1(a)�
2
dr , i=1,2. (V.13) 

 

Using steepest descent method and assembling Eq. (V.7), Eq. (V.11), and Eq. (V.13), 
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we reach the level set formulation of the contour evolution function Eq. (V.14) with 

an added iteration step constant τ on the first two terms: 

 

 ∂φ
∂t

= φk+1- φk = τ �νgδα(φ) + μgs �∇
2φ - div � ∇φ

|∇φ|���  

     - δα(φ) �∫Gσ�a-r��I(r)-f1(a)�
2
dr -∫Gσ�a-r��I(r)-f2(a)�

2
dr�. 

(V.14) 

 

where k refers to iterations. Now we give the derivation of the approximated 

intensities a1 and a2. It is also obtained by using the steepest descent method to 

minimize the region fitting energy functional with the level set function φ fixed. 

Given this condition, one can find the minimum of the energy functional C with 

respect to f1(a) and f2(a) when the following satisfies: 

 

 �Gσ2(𝐫-a)Mi�φ(r)��I(r)-fi(a)�dr = 0, i=1, 2.,  (V.15) 

 

From (Eq. (V.15)), we can obtain fi(a) as:   

 

 
fi(a)=

Gσ2(a)⊗�Mi�φ(r)�I(r)�

Gσ2(a)⊗Mi�φ(r)�
, i=1,2 . (V.16) 

 

Throughout the remainder of this paper, we will refer to Eq. (V.2) as ‘the model  
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proposed in chapter III’ and Eq. (V.5) as ‘the optimized model.’ The parameter 

settings are as follow: τ = 1000, ν = -10, μ = 0.001, α = 0.2, maximum number of 

iterations = 300. The parameter settings are listed in TABLE IV. 

 

 

 

 

 

 

b. Dynamic Stopping Criterion 

 As mentioned in the previous chapters, lesion margins are often ambiguous in 

medical images, it is necessary to use a stopping criterion for the active contour model. 

In this chapter, we adopted the dynamic stopping criterion proposed by Yuan et al 

[61], which is defined as (dIL�/dt - dIB�/dt) = 0. For details, please refer to section 

III.B.4. 

 

TABLE IV. OPTIMIZED ACTIVE CONTOUR MODEL PARAMETER VALUES 
FOR SEGMENTATION OF BCT LESIONS. 

 τ ν μ α 
Maximum number of 

iterations 

bCT 1000 -10 0.001 0.2 300 
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3. Segmentation Evaluation 

  a. Segmentation Performance in terms of DICE 

 The computer-segmented margins were evaluated on three orthogonal slices 

through the lesion center in comparison to the manually-delineated lesions. 

Segmentation performance was presented in terms of the Dice coefficient (DICE), an 

overlap measure between the manually-delineated margins and computer-segmented 

margins on the three orthogonal slices (Eq. (V.17))  

 

 
DICE = 

1
3
��

2(Ω∩ωman)
Ω+ωman

�
xy

+�
2(Ω∩ωman)

Ω+ωman
�

yz
+�

2(Ω∩ωman)
Ω+ωman

�
xz
� (V.17) 

 

where Ω is the computer-segmentation and (xy), (yz), (xz) denote the orientations of 

each slice through the lesion center. ωman is the human-delineated lesion margin in 

the same orthogonal slice. Note that the DICE value for a given lesion is the average 

of the DICE values over the 3 orthogonal planes. According to Zijdenbos et al [71], a 

Dice coefficient ≥ 0.7  indicates ‘good’ overlap between computer and human 

outlines for medical images. 

 

    We compared segmentation performance between the model Eq. (V.2) and the 

optimized model Eq. (V.5) by assessing using paired t-tests of Dice coefficients. 



  
                                                                     

78 
 

b. Segmentation Performance and Presenting Fibroglandular Tissue 

on bCT 

 Since fibroglandular tissue has an x-ray attenuation coefficient similar to that of 

tumor tissue, the presence of fibroglandular tissue adjacent to a lesion poses 

challenges for segmentation. To investigate the dependence of lesion segmentation 

quality on the presence of fibroglandular tissue in the immediate vicinity of lesions, 

we used a fuzzy c-means-based segmentation scheme to identify fibroglandular tissue 

[81]. The proportion of fibroglandular tissue in a lesion’s vicinity was calculated from 

a 50 mm × 50 mm square region on each of the three central slices on which the 

manual lesion delineations were performed, and was defined as the area of the 

fibroglandular tissue (as identified by the fuzzy c-means method) relative to the area 

of the 3 slices excluding the manually-outlined lesion area. Based on the work of 

Yaffe et al [82], 95% of women have breast density of lower than 45% when imaged 

with bCT, with mean glandular fraction of 19.3%. Therefore we used 20% and 40% as 

thresholds to divide our database into three ‘local fibro-density classes’: ≤ 20% as 

the lower local density, 20% ~ 40% as medium local density, and ≥ 40% as 

extremely high local density. 
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C. Results 

 1. Impact of the New Modification to the Active Contour Method: An 

Example 

 In this study, a new term ℰlocal (Eq. (V.4)) was added to the original active 

contour model. To illustrate the impact of this term, Fig. 23 shows both 

contrast-enhanced and non-contrast breast CT images, manual delineations, and 

computer-determined segmentations (using the original model (Eq. (V.2)) and the 

optimized model (Eq. (V.5))) of a lesion with a complicated shape. 

 

For this example, the DICE values of the original model were satisfactory, but 

improved by including the new term ℰlocal in the segmentation model for both 

contrast and non-contrast images. As this example illustrates, the proposed 

segmentation method was able to capture more shape detail. 
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Figure 23. (a)-(d): non-contrast-enhanced images. (e)-(h): contrast-enhanced images. 
(b) and (f): research specialist’s outlines. (c) and (g) segmentations by our previous 
model (d) and (h): segmentations by the proposed model. Note that these eight images 
are of the same patient (case), and they are displayed in the central coronal plane 
through the lesion seed point. For this case, the proportion of fibroglandular tissue in 
the lesion neighborhood is 12%. 

 

 

 

2. Comparison of Original and Optimized Segmentation Models 

We compared the optimized segmentation model, Eq. (V.5), to the original model, 

Eq. (V.2) (TABLE V). For the non-contrast bCT images, the optimized segmentation 

model obtained significantly better segmentation with respect to our previous model, 

(p ≪ 0.05) for both malignant and benign lesions (TABLE V). It appeared to slightly 

improve the performance for contrast bCT but this improvement failed to reach 

statistical significance (p = 0.30). Figure 24 show the fraction of lesions correctly 
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segmented at various overlap (Dice coefficient) thresholds in bCT with several 

segmentation examples shown in Fig. 26, 27. 
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Figure 24. (a) is the comparison of segmentation between the proposed and 
previous segmentation methods on contrast bCT images benign dataset (N = 13). 
(b) is the comparison of segmentation between proposed segmentation and 
previous segmentation contrast bCT images malignant dataset (N = 25). (c) is the 
comparison of segmentation between proposed segmentation and previous 
segmentation on non-contrast bCT images benign dataset (N = 49). (d) is the 
comparison of segmentation between proposed segmentation and previous 
segmentation on non-contrast bCT images malignant dataset (N = 80). 
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3. Segmentation Performance and Presenting Fibroglandular Tissue 

The relationship between segmentation performance and the proportion of 

fibroglandular tissue in the lesion vicinity on bCT images is shown in Fig. 25 and 

TABLE VI. For non-contrast bCT, the segmentation performance decreases when the 

proportion of fibroglandular tissue exceeds 40%, but the DICE is still above 0.7. 

Segmentation examples for different ‘local fibro-density classes’ are shown in Fig. 26. 

 

 

 

 

 

 

 

Figure 25. Comparison of lesion DICE coefficients for the original and optimized 
segmentation models. 
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Figure 26. Three different Non-contrast bCT segmentation examples for each of the 
fibroglandular density classes. (a)-(d): 8% of fibroglandular proportion (low 
density). (e)-(h): 29% fibroglandular proportion (intermediate density; this lesion is 
also depicted in Fig. 11). (i)-(l): 46% fibroglandular proportion (high density). (b), 
(f) and (j): research specialist’s outlines. (c), (g) and (k): segmentation results by 
original model. (d), (h) and (l): segmentation results by optimized model. 
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Figure 27. A contrast-enhanced bCT image example. (a): original VOI. (b): research 
specialist’s outline. (c): segmentation result by using original model. (d): 
segmentation result by using optimized model. The proportion of fibroglandular tissue 
in the lesion vicinity is 29%. 

 

 

 

D. Discussion and Conclusion 

 In this chapter, we modified our original 2-stage 3D lesion segmentation 

algorithm proposed in chapter III to allow for the inclusion of more shape detail. The 

region-fitting energy term introduced in the new model not only improved the 

delineation of shape detail, but also helped smooth the lesion contour and correct the 

contour evolution if the main driving term caused errors. 

 

 The optimized model did obtain statistically improved segmentation performance 

for the non-contrast bCT images (p ≪ 0.05). The original model often missed shape 

details when a lesion presented with a complex margin (eg Fig. 27(c) and Fig. 26(g)). 

The improved ability to capture shape and margin characteristics should be useful 
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clinically since such morphological information plays an important role in diagnosis . 

Improvement in diagnosis on non-contrast bCT images is important, since 

contrast-enhanced bCT carries a risk of allergic reaction. Hence, the improved ability 

of the proposed method to capture shape details may have an impact on future 

implementations in CAD and allow for more accurate lesion classification. The 

optimized segmentation model failed to yield significant improvement over our 

original segmentation model on contrast-enhanced bCT images, likely because the 

conspicuity of cancers is significantly higher on contrast enhanced bCT [15] and 

reasonable segmentation performance with our original methods was facilitated by 

this conspicuity. 

 

Breast density is a risk factor for breast cancer [83][84][85]. The masking effect 

of dense tissue reduces the sensitivity of imaging modalities in breast cancer diagnosis. 

Therefore, it is important to successfully segment lesions within dense tissue. In 

contrast-enhanced bCT, the segmentation performance appeared to decrease with 

higher volume glandular fraction (TABLE VI). However, the DICE for higher density 

breasts is still above 0.75 (TABLE VI, note that there are only 3 cases in the 

high-density class for contrast-enhanced bCT). In non-contrast bCT, the segmentation 

performance was affected when the proportion of fibroglandular tissues was 
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extremely high, but the DICE was still above 0.7 for both segmentation models 

(TABLE VI). According to TABLE VI, there is not much improvement for the > 40% 

category. Due to the similar X-ray attenuation of tumor masses and fibroglandular 

tissues, the optimized segmentation model could yield slightly oversegmented results 

and lead to a decrease in DICE since the original model possesses better ability to 

capture edge details (Fig. 26 (i)-(l)). Overall, both segmentation models behaved 

similarly with respect to the volume glandular fraction. 

 

There is a limitation to this study. For each imaging modality, only a single 

expert outlined the lesions which defined the reference standard for segmentation. To 

conclude, in this chapter we presented a 3-dimensional segmentation method adapted 

and refined from our original model developed for contrast-enhanced breast CT [74], 

and evaluated the methods on dedicated breast CT (both contrast-enhanced and 

non-contrast bCT). We obtained promising results that warrant future implementation 

within computer-aided diagnosis software platforms and quantitative imaging. 
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VI. TASK-BASED EVALUATION OF LESION SEGMENTATION:  

FEATURE ANALYSIS AND LESION CLASSIFICATION 

 

A. Introduction 

 The diagnosis of masses in mammography relies on characterization of mass 

shape, margin, and density [86][87]. D’Orsi and Kopans reported that masses with 

irregular shapes, indistinct or spiculated margins, and higher density are considered 

highly suspicious [86]. Among different morphological features, spiculation, defined 

as fine lines radiating from its margins, is said to be the strongest sign for malignancy 

[86]. Several types of breast cancer are associated with spiculations [88], including 

infiltrating ductal carcinoma (IDC), tubular carcinoma,  infiltrating lobular 

carcinoma (ILC), and ductal carcinoma in situ (DCIS). Except for DCIS, most 

spiculations indicate tumor infiltration. Computer-aided diagnosis (CADx) can also 

employ such criteria to extract features in distinguishing different lesion categories. In 

CADx for mammography, Brzakovic et al [31] classified detected abnormalities by 

using size, shape, and intensity change. Kegelmeyer [89] analyzed edge orientation 

histograms to detect stellate lesions. Kilday et al [90] measured circularity and 

merged several shape-related features to classify fibroadenomas, cysts, and 

carcinomas with linear discriminant analysis. Giger et al [91] calculated the standard 
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deviation of the margin fluctuation to measure the degree of spiculation. Huo et al [92] 

developed a spiculation-sensitive pattern-recognition technique by analyzing radial 

edge-gradient. Sahiner et al [93] extracted spiculation feature with the analysis of the 

gradient direction of the pixels on or close to the spiculation. 

 

 In mammography, where complex 3D tissue structures are being projected onto a 

2D plane, the superimposition of fibroglandular tissues and tumor masses may hinder 

the characterization of lesions. This is the main reason that the PPV (positive 

predictive value) of biopsy performed based on diagnostic mammography is only 

31.5% [94]. To address this limitation, dedicated breast CT (bCT) is being developed 

to generate high-resolution 3D images of the breast. This emerging technology not 

only retains 3D morphological details, but also provides higher tumor contrast with 

improved conspicuity of masses, compared to mammography [14][15], and thus, is 

likely to play an important role in future breast imaging [12]. On the other hand, large 

amounts of image data are generated by bCT for the radiologist to review. In our 

dataset, an image volume of one breast includes 512 slices in transverse and sagittal 

directions. For coronal planes, there are over 300 slices. Slices in 3 views might all 

need to be reviewed. Therefore, CADe is expected to improve the efficiency of the 

bCT reading task. 
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 In chapter III to V, we have developed and optimized an automated lesion 

segmentation algorithm for dedicated bCT, which only requires labeled seed points as 

the input (Note that the labeled seed points can be either manually labeled or 

computer-labeled.). The segmentation algorithm yielded satisfactory results in terms 

of DICE value when measuring the overlap of manually-drawn and 

computer-segmented lesion outlines. Here we aim to utilize the computer-outlined 

lesion contours generated by our segmentation algorithm for feature extraction and 

lesion classification. 

 

 By using both texture features and morphological features, Ray et al [53] 

evaluated the performance of their CADx method on bCT and obtained area under the 

ROC curve (AUC) of 0.80 for their non-contrast bCT dataset (N = 39). However, their 

morphological features did not include a spiculation feature. To better utilize the 

advantages provided by this 3D imaging modality, we evaluated the degree of 

spiculation by analyzing the lesion surface and its relationship to the surrounding 

fibroglandular tissues in a VOI (volume of interest), and developed a new 3D lesion 

spiculation feature. In this chapter, we first compare the classification performance 

between the original and optimized segmentation algorithms, and then we aim to 

improve the CADx performance for breast masses on non-contrast bCT by including a 
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new spiculation feature in a classifier with other morphological features and texture 

features. 

 

B. Methods 

 In this chapter, we used the unenhanced bCT image database for feature analysis 

and lesion classification based on the segmentation results generated by the algorithm 

proposed in chapter V. N = 129 masses, i.e., cases (80 benign, 49 malignant), from 

116 image volumes. The median lesion size based on the optimized segmentation 

results was approximately 756 mm3 (effective diameter 11.3 mm). 

 

1. Morphological and Texture Features 

 The mathematical descriptions of the morphological and texture features used in 

this work are described in previously reported studies. We used 10 morphological 

features [51][81][95] and 14 texture features [38][96] based on the gray level 

co-occurrence matrix.. We calculated texture feature values both for the segmented 

lesions and background and the differences between them. Thus the total number of 

features was 63 (14 texture features for segmented lesions, 14 texture features for the 

background, and 10 morphological features plus the proposed spiculation feature 

“spiculation index”). Details for 3D texture features can be found in Chen et al [96]. 
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2. Feature Selection and Analysis 

 The most dominant feature set was selected from a leave-one-case-out loop. In 

each step of the leave-one-case-out loop, stepwise feature selection was performed on 

N - 1 cases using multilinear regression (”stepwisefit”, Matlab®, MathWorks, Inc) at 

a significance level of 0.05. After completion of all N feature selection steps in the 

leave-one-case-out loop, the most frequently selected feature combination was used in 

another leave-one-case-out loop using linear discriminant analysis (LDA) [40] for 

lesion classification [40]. LDA classifier output served as input to ROC analysis for 

performance assessment [97]. In this study, we used a Metz ROC software package 

(ROCKIT) to generate binormal ROC curves, with associated area under the curve, 

and compare different ROC curves (http://metz-roc.uchicago.edu/). 

 

 In order to gain a better insight into the effect of lesion size, we also performed 

the above analysis after dividing the lesion set in half, with lesions with a smaller 

effective diameter than the median value (11.3 mm) in one set and lesions with a 

larger diameter than the median in the other set. 

 

 

 

http://metz-roc.uchicago.edu/


  
                                                                     

95 
 

 3. Development of the New Spiculation Feature 

 The basic idea of computing of the new proposed spiculation feature, 

“spiculation index,” is to measure the number of connected regions of fibroglandular 

tissue and lesion surface. Thus, to compute the spiculation index, one needs to 

identify the fibroglandular tissues and adipose tissues first. Note that the identification 

of fibroglandular tissues and the computation of spiculasion index were based on the 

results of the optimized segmentation model. 

 

  a. Automated Identification of Fibroglandular and Adipose Tissues 

 Identification of fibroglandular and adipose breast tissues was accomplished 

using a previously-developed fuzzy-c-means (FCM) based tissue segmentation 

scheme [81]. Tissue segmentation was performed in coronal slices of the breast 

images individually. First, to remove non-uniformity, which might be caused by 

incomplete scatter correction, a 3rd order polynomial surface fit was subtracted from 

each slice. Next, pixels were clustered into four FCM classes. The classes with the 

lowest and the second lowest average gray values were classified as adipose. The 

class with the highest average gray value was labeled as fibroglandular. The 

remaining class, with the third highest average gray value, was labeled as 

fibroglandular if its mean was more than 30 HU greater than that of the 2nd class, 
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otherwise it was labeled as adipose. This tissue segmentation was performed on cubic 

regions (50mm × 50mm × 50mm) centered on the lesion center. 

 

b.  Spiculation Index Computation 

 The scheme for extracting the proposed new feature from non-contrast bCT is 

shown in Fig. 28. The computation of spiculation feature needs both results of lesion 

segmentation and fibroglandular tissue identification. 

 

 

Figure 28. Flowchart of the computation of the spiculation feature for bCT 
images. Note that all steps except the first one are completely automated. 

 

In mammography, spiculations appear as several thin fine lines growing outward 

from the lesion. In our dedicated breast CT image database, malignant lesions with 

spiculations tend to have a similar appearance (Fig. 27). 
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Figure 29. A cross section of a spiculated malignant mass imaged on breast CT. 
The arrows indicate the spiculations. 

 

 

The spiculation feature was developed based on the observation that, while 

spiculations appear similar to fibroglandular tissue, there are differences in the 

structure of spiculations and normal fibroglandular tissue. Normal fibroglandular 

tissue tends to appear in larger regions, which could have any shape and occur in any 

region of the breast (i.e., anywhere with respect to the tumor). We also observed that, 

in our dataset, a large portion of the segmented lesion surface appeared connected to 

neighboring fibroglandular tissues (Fig. 30). Unlike normal fibroglandular tissue, 

spiculations are only associated with a tumor. If present, they appear as multiple, 

either long or short thin lines growing from the lesion surface. 
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Figure 30. Example of a malignant lesion partially surrounded by, and connected to, 
fibroglandular tissue. (a) image, (b) tissue mask of fibroglandular tissue (including 
lesion), and (c) image with computer segmentation superimposed (solid black line)  

 

 

 

Thus, by inspecting the relationship of fibroglandular tissue to the segmented 

lesion surface, we found that the intersection of fibroglandular tissue regions and the 

segmented lesion surface tended to be a single compact connected region, even if the 

lesion surface was connected to complex shaped fibroglandular tissues. On the other 

hand, when the segmented lesion surface intersected with tissue regions 

corresponding to spiculations, there tended to be multiple small separated regions that 

appeared to be randomly distributed on the lesion surface. Based on this observation, 

we counted the number of surface intersections of the segmented lesion surface with 

tissue regions as an index of spiculation.For a given lesion, the total number of 

connecting regions yields the spiculation index (Fig. 31). 
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Figure 31. Illustration of the concept of the spiculation index feature. (a) 3D 
rendering of lesion (red) and tissue mask (blue), (b) 2D slice (image) through lesion, 
(c) 3D rendering of lesion (red) and the spiculations connected to fibroglandular 
tissue (blue), and (d) tissue mask of (b) with segmented lesion outline. Gray planes 
in (a) and (c) refer to the corresponding slice shown in (b) and (d). Arrows in (a) and 
(b) indicate spiculations. 
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C. Results 

 1. Comparison of Classification Performance between the Two 

Segmentation Models 

 We first compare the classification performance between the original and 

optimized segmentation algorithms without the new spiculation feature in the feature 

pool. Among 62 features without spiculation index, there was only one single feature, 

“difference of the sum average between the lesion and background” (termed as 

“DSumAverage”, see “Sum Averge” in [38] ), selected as the most frequently selected 

feature set for ROC analysis. For the optimized segmentation algorithm, the most 

frequently selected feature set from the feature pool without spiculation index 

included 5 features: irregularity2 [95], irregularity1 [81], entropy [38], ellipsoid axes 

ratio [81], and variance [38] (see TABLE VII). The AUC values of ROC analysis for 

the original and optimized segmentation algorithms are 0.62 ± 0.05 and 0.81 ± 

0.04, respectively. Figure 32 shows the comparison of each individual feature 

performance between the original and optimized segmentation algorithms. Note that 

the features shown in Fig. 32 are those included in the most dominant features set for 

the original and optimized segmentation algorithms.  
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Figure 32. Comparison of individual feature classification performance in terms of 
AUC values between the two segmentation algorithms. Note that features shown in 
the figure are selected features contained in most dominant feature set for the 
original and optimized segmentation model.  
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2. Feature Analysis with and without Spiculation Index on the Optimized 

Segmentation Model 

 Feature analysis with and without the new proposed spiculation feature was 

performed on the segmentation results generated by the optimized segmentation 

algorithm. Based on our studies, fibroglandular tissues connected to the segmented 

lesion surface tend to result in a larger region, regardless of any shape. Identified 

connected locations resulting from spiculation tend to present as multiple small 

regions. For our dataset, the average spiculation index value was substantially smaller 

for benign lesions than for malignant lesions. (TABLE VII). Other than the 

spiculation index, only irregularity2 and irregularity1 performed strongly as 

individual features with p-values < 0.05 and AUC greater than 0.65. Note that 

p-values of individual features are provided to illuminate trends rather than to provide 

a statistical comparison of the performance of individual features (for which 

correction for multiple comparisons would be necessary). 
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TABLE VII shows the most dominant feature combinations. The most 

frequently-selected combination occurred 48% of the time, and included a total of 

seven features (labeled with * in TABLE VII). Note that the spiculation index was 

part of all selected feature combinations, when it was included in the feature selection 

process. The spiculation index demonstrated only weak correlation with the 

irregularity features (TABLE VIII). The spiculation index differentiates malignant 

from benign lesions even when they have similar irregularity measures (Fig. 33). It is 

also interesting to note that, although both irregularity features (irregularity1 and 

irregularity2) were highly correlated, they were both selected in combination in the 

leave-one-case-out feature selection loop (TABLE VIII). The LDA classifier using all 

seven features yielded an AUC of 0.85 ± 0.03 (Fig. 34) using leave-one-case-out 

analysis. 
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When the spiculation index was not included in the feature selection 

leave-one-case-out analysis, the most dominant feature combination (appeared 72%) 

included only six features (labeled † in TABLE VII), which were selected by 

leave-one-case-out stepwise feature selection. The LDA classifier with these six 

features, yielded an AUC of 0.81 ± 0.04 (Fig. 34). The improvement in AUC value 

upon including the spiculation feature, from AUC = 0.81 to 0.85, was statistically 

significant with a p-value ≪ 0.001. 

 

We found that the classification performance was higher for larger lesions than 

for smaller lesions with the features used in this study (Fig 35 and 36). Irregularity2 

was selected for both lesion groups, but spiculation index and ellipsoid axes ratio 

were only selected when analyzing the ‘larger lesion’ group. 
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Figure 34. ROC curves indicating performance of merged selected features 
with and without the spiculation index in the task of distinguishing between 
malignant and benign bCT lesions. (The results are based on the optimized 
segmentation) 
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Figure 35. Examples of small lesions. (a) image of benign lesion, size: 79.1 mm3, 
[irregularity2] = 0.49, (b) corresponding fibroglandular tissue mask, (c) image with 
computer segmentation superimposed (solid black line), (d) image of malignant 
lesion, size: 59.4 mm3, [irregularity2] = 0.46, (e) fibroglandular tissue mask, and (f) 
image with computer segmentation superimposed (solid black line) 
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Figure 36. The CAD performance in terms of AUC for lesions with effective diameter 
d < 11.3 mm and d ≥ 11.3 mm. Error bars are the standard errors of AUC. 

 

 

 

D. Discussion and Conclusion 

 In this chapter, we evaluate the two segmentation models with feature analysis. 

To further improve the classification performance, we investigated the features 

extracted based on the lesion contour generated by our optimized segmentation 

algorithm, and a new lesion spiculation feature, the ‘spiculation index’, which 

measures the degree of spiculation on non-contrast-enhanced breast CT lesions by 

taking advantage of the 3D structural details retained in bCT image volumes. As 

shown in Fig. 32, the performances of irregularity features show that our optimized 
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segmentation model can more successfully capture lesion shape details than the 

original model. Thus irregularity features became the strongest among our feature 

pool when the segmented lesions from the optimized model were used. When the 

original segmentation model was used, none of the morphological features were 

selected, indicating that the original model failed to capture sufficient shape details 

for lesion classification. 

 

The spiculation index measures the total number of connected regions, indicating 

the connection of the segmented lesion surface with glandular tissue. The usefulness 

of the new spiculation index was demonstrated in breast lesion classification – with 

and without inclusion of the spiculation index – resulting in a statistically improved 

performance when the spiculation index was included (p-value ≪ 0.001) (Fig. 34). 

 

 The issue masks of fibroglandular tissue (versus adipose tissue) were calculated 

by a method originally developed for lesion detection in bCT [81]. The results in this 

study indicate that the method to determine the fibroglandular tissue mask is robust 

and useful for applications other than lesion detection. It may be possible to further 

optimize this method for lesion classification in future studies. 
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 In our study, the LDA classifier obtained an AUC of 0.81 for lesion classification 

without the spiculation index, which is consistent with the work of Ray et al [53]. 

Also consistent with the work of Ray et al. is that texture features did not appear to 

contribute much to the classification performance. In their report, the area under the 

curve for classification using only texture features was 0.64. For the two texture 

features selected in our study (entropy and variance), we failed to demonstrate a 

significant difference between benign and malignant lesions, suggesting that these 

texture features, which are based on gray-level changes of voxels, might not be 

appropriate for tumor mass classification on bCT. 

 

 As shown in Fig. 35, the lack of information within the limited number of voxels 

in very small lesions might cause difficulties classifying lesions for ‘smaller’ lesion 

group (Fig. 36). In Fig. 35(d), there are still some slight spiculations visualizable. The 

performance for ‘smaller’ lesion group could be improved by increasing the 

sensitivity of fibroblandular-identification algorithm. 

 

 There were several limitations to this study. The first limitation was the rather 

modest size of the dataset and the fact that we developed and tested our new 

spiculation feature on the same dataset. Another limitation of this study was that we 
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performed a ‘double loop’ leave-one-case-out analysis: one leave-one-case-out 

analysis for feature selection and another subsequent loop for classification using the 

most frequently selected feature combination. This is expected to bias the overall 

results somewhat in terms of achieved AUC value, Since we are comparing two 

methods (with and without the new spicualtion index), however, this bias is expected 

to cancel in the performance comparison. 

 

In sum, the optimized segmentation model can capture essential shape details 

which are important for lesion classification. It made irregularity2 and irregularity1 

substantially contribute to lesion classification task. Since the texture features failed to 

contribute to classification and is not so relevant to the segmented lesion shape, the 

ability to capture the shape information makes the optimized segmentation model 

much more favored, and is suggested as a desirable method for breast lesion 

segmentation on bCT. In addition, we developed a new lesion feature that takes 

advantage of the 3D structures retained in breast CT image volumes and measures the 

degree of spiculation infiltrating into surrounding fibroglandular tissue. This 

spiculation index proved very useful for the task of distinguishing between benign and 

malignant breast lesions and significantly improved classification performance. Our 

findings on the performance of the 3D quantitative spiculation feature, as an 
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independent and strong discriminating characteristic, is consistent with clinical 

observation. Given that breast CT, without the problem of superimposition, has 

clearer 3D structural details over 2D mammograms of both the lesion and the 

surrounding parenchymal background, further investigation and inclusion of 

lesion-background characteristics may aid in developing new features for CADx on 

breast CT. 
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VII. PRELIMINARY INVESTIGATION OF SEGMENTATION TECHNIQUES 

ON 3D BREAST ULTRASOUND LESIONS 

 

The content of this chapter has been accepted by Journal of Medical Imaging for 
publication, and partially published on Proceedings of SPIE,  

[72] H. Kuo, M. L. Giger, I. Reiser, K. Drukker, A. Edwards, and C. a. Sennett, 
“Automatic 3D lesion segmentation on breast ultrasound images,” in 
Proceedings of SPIE, 2013, vol. 8670, pp. 867025. 

 

A. Introduction 

 Recently, interest in 3D automated breast ultrasound (ABUS) was revived after 

initial attempts failed decades ago due to poor ultrasound technology. The advantage 

of ultrasound in general is that it does not involve ionizing radiation, but for 

hand-held ultrasound disadvantages include operator dependency and 

non-reproducibility. The advantages of ABUS over hand-held ultrasound are not only 

that it is reproducible, but also that it can visualize images in the coronal plane in 

addition to the traditional axial and sagittal planes. It was recently shown that ABUS 

is capable of depicting small early stage mammographically-occult cancers 

[18][98][19]. In a reader study [98][99], statistically significant improvement in 

readers’ performance and reduction in interreader variability in the detection of 

mammographically-occult cancers were demonstrated for a combination of screening 

digital X-ray mammography and ABUS as compared to screening mammography 
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alone. 

It is likely that ABUS (as well as bCT) will play a crucial role in future breast 

cancer diagnosis, screening of high risk populations, and perhaps even as an adjunct 

screening modality for the general population. However, just like bCT, interpreting 

these 3D image volumes could be a very challenging and time consuming task for 

radiologists. As an initial and essential step towards developing a computer-aided 

diagnosis (CADx) scheme for ABUS, a sufficient segmentation procedure is 

necessary.  

 

In this chapter we aim to test the two segmentation algorithms proposed in 

chapter III and V on ABUS images. As an additional robustness analysis for 3D 

ABUS, a comparison of segmentation performance on mammographically-positive 

and mammographically-occult lesions was conducted. 

 

B. Methods 

 We separately segmented 98 images by using the segmentation model of Eq. 

(III.9) and Eq. (V.14). Segmentation results were evaluated by Eq. (V.17). We also 

assessed segmentation performance whether there were any differences in 

performance between lesions that were occult on mammography and those that were 
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visible on mammography. Note that all lesions in this 3D US dataset were malignant. 

Since US is known for its ability to detect mammographically-occult cancers and has 

recently been approved in the U.S. as an adjunct screening modality for women with 

dense breasts, it is important to assess performance of our segmentation methods for 

mammographically-negative and mammographically-positive lesions separately. 

 

C. Results 

 As shown in TABLE IX, the p-values suggest that there is no difference between 

the two models. Fig. 37 show the fraction of lesions correctly segmented at various 

overlap (Dice coefficient) thresholds in bCT and 3D ABUS, with several 

segmentation examples shown in Fig. 38. The value of the correlation coefficient of 

DICE and tumor size was also calculated and yielded a value of 0.038 [72]. 
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D. Discussion and Conclusion 

 Based on our results, there were even slightly more fraction of 

mammogrpahically-occult cancers yielded sufficient segmentation with DICE ≥ 0.7. 

It is desirable for US segmentation since US is used as an adjunct to screening 

mammography for the purpose of detecting mammography-occult lesions. And this 

property is also consistent with that the US has the ability of detecting small-sized and 

mammography-negative lesions [18]. The value of the correlation coefficient of DICE 

value and tumor size (0.038) shows that the segmentation is not influenced by tumor 

size and can also handle segmentation for small lesions on 3D ABUS images well. 

The results showed similar performance for the original and optimized segmentation 

models (TABLE IX). Both models yielded sufficient segmentation results in terms of 

DICE ≥ 0.7 (average value), which is deemed ‘good’ [71], as a measure of the 

overlap of manually-drawn and computer-segmented outline (TABLE IX), The 

presence of ultrasound speckle and anisotropic image resolution may be the cause of 

the lack of improvement. It should be noted, however, that performance of both 

models was quite satisfactory, demonstrating the robustness of our segmentation 

methods across 3D imaging modalities, holding promise for potential future 

application to other 3D breast images. The limitation includes that we did not attempt 

to optimize our methods for the ABUS images, and further 
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ultrasound-modality-specific improvements to the segmentation model may be 

possible. 
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VIII. DISCUSSION AND CONCLUSION 

 There were four aims to be achieved in this research project: 1) Development of 

3D segmentation techniques for dedicated breast CT; 2) Optimization of 3D lesion 

segmentation of dedicated breast CT; 3) Task-based evaluation of lesion segmentation; 

4) Preliminary investigation of segmentation techniques on 3D automated breast 

ultrasound lesions.  

 

 The first aim was completed by proposing a dual-stage segmentation procedure, 

which combines RGI segmentation for lesion contour initialization and a modified 

level set-based active contour algorithm for finalizing the segmentation task. This 

technique was developed on dedicated breast CT, and the results were satisfactory in 

terms of a measure of overlap of manually-drawn and comupter-segmented outline 

[74]. In a test of this segmentation algorithm applying to unenhanced image pairs, the 

results showed that the segmentation tend to be conservative which lead to be smaller 

lesion contours. This suggested that, for unenhanced bCT, the originally developed 

segmentation algorithm might lose important lesion shape details which are often 

used as indicators for classifying malignant lesions form benign. Thus, the 

optimization of the originally segmentation model was developed. By adding a local 

region fitting energy term to the corresponding energy functional of the original 
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segmentation model, the optimization was completed by computing the corresponding 

Euler-Lagrange equation of this new energy functional. Although this optimized 

segmentation model did not show significant improvement on contrast-enhanced bCT 

(mainly because of sufficiently highlighted lesions in contrast-enhanced images), the 

performance on unenhanced bCT images were significantly improved and was robust 

for different fraction of fibroglandular tissues existing in the lesion neighborhood.  

 

 In order to reach the goal of CADx (computer-aided diagnosis), a task-based 

evaluation of the optimized segmentation algorithm was also performed. A number of 

texture features and morphologic features were extracted from the segmented lesions, 

and the results showed that irregularity feature was the most dominant and strong 

feature among the whole feature pool and yielded AUC > 0.7 for a single irregularity 

feature. This also indicates that the optimized segmentation algorithm can 

successfully capture essential shape information for classification task. Moreover, a 

new independent spiculation feature that utilized 3D structural information and 

fibroglandular tissue identification algorithm was developed. By adding this new 

feature, the classification performance was significantly improved from 0.81 to 0.85 

with p ≪ 0.001. One limitation of this new feature is that we developed and tested 

the spiculation feature on the same dataset due to that the size our image database is 
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not very large. However, the results still indicate a new idea of developing features 

not only based on the lesion but also utilizing the information gathered from the lesion 

neighborhood. Since the 3D structure is well retained in emerging 3D imaging 

modalities, 3D features such as spiculation features could have great potential for 

future screening. 

 

 In our 3D ABUS images, all cases were cancers. Although this limited us to 

proceed to classification on 3D ABUS, the segmentation results showed that our 

segmentation models are robust for both dedicated bCT and 3D ABUS, indicating that 

the segmentation on 3D ABUS images might only need minor adjustment to be 

optimized. This also suggests that our segmentation algorithm could be cross imaging 

modalities, and is worth further investigation for wider future applications. 

Furthermore, the segmentation performance was not affected whether the lesion was 

mammographically-occult or not, making it as a much favored property for potential 

future screening application. 

 

 As conclusion, a segmentation algorithm that has the potential to be applied 

across different 3D breast imaging modalities was developed. This segmentation 

algorithm captures sufficient shape details of the lesion, which is an important 
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indicator for differentiating malignant from benign. To further improve the 

classification task, an independent feature that utilizes the 3D structural information in 

lesion neighborhood was developed. With this new feature, the classification 

performance was significantly improved. This result indicates that new features which 

incorporate 3D structural information from the surrounding parenchymal patterns 

should be further investigated for future CAD application. 
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