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SUMMARY

VLSI circuit designs are very challenging optimization problems in the electronic design

automation (EDA) domain. There are usually 100K’s to tens of millions of components in

such circuits, and a wide range of metrics that need to be considered. A post place-and-route

(P&R) phase called “physical synthesis” (PS) is a crucial stage where effective optimization of

VLSI circuits can be performed using accurate interconnect metrics. Many design transforms

have been developed to perform different types of optimizations in PS. These include cell re-

placement, cell sizing, cell replication, buffer insertion, supply voltage assignment and threshold

voltage assignment. We have developed a novel and efficient method called “discretized network

flow (DNF)” for the simultaneous application of multiple transforms on the entire circuit with

tractable runtimes. This enables us to achieve an average of 10% and 16% improvement for

delay and power, respectively, compared to the state-of-the-art academic or industry tools that

apply the transforms sequentially. Application of DNF to the timing yield PS problem resulted

in a relative yield improvement of about 16% over a state-of-the-art academic method.

DNF was also applied successfully to solve 0/1 integer linear programming problems, achiev-

ing an average speedup of 19X over the state-of-the-art academic tool SCIP with a similar

optimality gap. Besides DNF, we also developed a dynamic programming method using the

novel concept of weak domination for solving 0/1 integer non-linear programming problems

with a guaranteed optimality gap. Compared to a state-of-the-art academic tool Bonmin with

the same optimality gap, our method achieves a speedup of about 2X.

xiii



CHAPTER 1

INTRODUCTION

1.1 Physical Synthesis

As the sizes of cells in an integrated circuit keep shrinking and the number of cells keeps

increasing, the length of physical interconnects between cells on a chip are becoming much larger

than the dimensions of cells. Therefore, interconnects are taking more and more important roles

in determining many critical metrics for integrated circuits. As a result, a design that satisfies

various constraints after logic synthesis will not necessarily meet these constraints after place-

and-route due to wire delay and wire power. To handle this problem, physical synthesis has

emerged as a necessary tool for design closure. Physical synthesis begins with a placed or routed

netlist, in which more accurate interconnect info is available than in the logic synthesis stage.

It tries various optimization methods to the netlist, and the goal is to satisfy constraints on a

set of important metrics, and optimize another set of metrics. It uses the optimization methods

that are used in the logical synthesis stage as well as methods that are only applicable in place-

and-route stage like changing cell position. One main difference between physical synthesis

and logical synthesis is that physical synthesis will take available interconnect information into

account when performing optimization.

In current industry place-and-route flow, to ensure design closure of complex circuits, phys-

ical synthesis is usually performed multiple times, one after each major step that changes the

1



2

physical interconnects. Typical times that a physical synthesis is performed are after placement,

after clock tree synthesis, and after routing. Each time, the physical synthesis is performed to

eliminate the constraint violations produced in the previous stage.

In the next section, we will first go through the important design metrics that are usually

considered in physical synthesis.

1.2 Design Metrics

Modern integrated circuit is a very complex system. In order for it to function as expected,

many different metrics need to be considered. We will provide the definitions and calculation

methods for these metrics in this section.

1.2.1 Delay

The delay of a path in a circuit can be divided into two parts: the cell internal delay, and

the net delay. The cell internal delay is usually given in the library. For post-route design, the

net delay can be calculated using the Elmore delay model [2], or more accurately the Arnoldi [3]

delay model. In post-placement but pre-route design, the capacitance, resistance and length of

a net is usually estimated using the net’s bounding box, and usually simple lumped capacitance

and resistance model is used in delay calculation.

We have proposed a novel post-placement pre-route delay model called the γ net delay model

in [4] that has better correlation to the post-route delay. In this mode, for an unrouted net,

we assume the net routing pattern with a single trunk to the furthest sink with branches off

this trunk to the other sinks, as shown in Figure 1. For a net nj with driver ud, and k − 1 ≥ 1

sinks (k is the total number of pins in nj), let Rd be the driving resistance of ud, Cg the load
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Figure 1. The γ net delay model for post-placement unrouted nets; Ctotal is the total (net and
load) capacitance seen by the driver.

capacitance of a sink pin1, r (c) the unit wire resistance (capacitance), L(nj) the total WL of

nj , and ld,i the interconnect length connecting driver ud to sink ui; see Figure 1. Referring to

this figure and considering a sink ui in nj , the delay D(ui, nj) to it (using the Elmore delay

model) from the driver ud, consists of three parts:

D1(nj) = Rd(c · L(nj) + (k − 1)Cg) (1.1)

D2(ui, nj) =
rc

2
· l2d,i + r · ld,iCg (1.2)

D3(ui, nj) = r · (ld,i/2)((1− γ + γ/2)(c · L(nj) + (k − 2)Cg) (1.3)

1For simplicity of exposition, we assume uniform loads for all sink pins, though clearly our net-delay
model also applies to non-uniform loads.
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Circuit mac32 matrix vp2 mac64 %error

routed delay (ns) 3.4 3.8 4.3 6.7 0

γ delay model (ns) 3.4 4.3 4.5 7.0 5.6

TABLE I

THE CRITICAL PATH DELAY CALCULATED USING THE γ NET DELAY MODEL.

D(ui, nj) = D1(nj) +D2(ui, nj) +D3(ui, nj) (1.4)

where γ ≤ 1. Note that the D1(nj) delay component is common to all sinks of nj , which is due

to the driving resistance of the driver and total capacitance load of wire and sinks. D2(ui, nj) is

the wire RC delay from driver to a sink ui. The idea behind the 3rd delay component D3(ui, nj)

is that without an exact route, we estimate that if ui lies in the initial γ fraction of the HPBB

of nj starting from the driver position, then, on the average, half of the interconnect length ld,i

lies on the main trunk of the estimated route, and it “sees” the entire wire and sink capacitance

of the rest of the (1− γ) fraction of the net. Furthermore, this main trunk part of the (ud, ui)

interconnect can also see incremental portions of the γ fraction of the net capacitance, i.e., from

the branch point to ui, which ultimately results in this interconnect seeing a γ/2 fraction of the

total (load + net) capacitance Ctotal.

The comparison between the delay estimation using our γ-delay model, and the actual

routed delay is provided in Table I. The delay estimation error is only 5.6%, which shows the
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accuracy of our γ net delay model. Furthermore, our delay model shows 100% fidelity with

routed delay.

1.2.2 Power

The power consumption of a circuit mainly consists of dynamic power consumption and

leakage power consumption. The average dynamic power Pd(nj) consumed by a net nj with a

driving gate gd and a set of sink gates gi is given by:

Pd(nj) = 0.5f · psw(nj)(
∑

gi∈ip(nj)

C(gi)V
2
dd(gd) + V 2

dd(gd)C(nj)) (1.5)

where f is the clock frequency, psw(nj) is the switching probability of the net, ip(nj) is the set

of sink gates in nj , C(gi) is the input capacitance of sink gate gi, Vdd(gd) is the supply voltage

Vdd of drive gate gd and C(nj) is the total interconnect capacitance of nj . The leakage power

consumption Pl(gi) of a gate gi can be given as [5]:

Pl(gi) = Vdd(gi)WIs · e−Vth(gi)/Vo (1.6)

where W is the transistor width and is proportional to the gate size, Is is the zero-threshold

leakage current and a constant, Vth(gi) is the threshold voltage Vth of gi, and Vo is the constant

subthreshold slope. Hence, Pl(gi) is linearly proportional to the gate size and Vdd, and inversely

exponentially proportional to Vth.

It should be noted that when a low-Vdd gate gd drives a high-Vdd gate gi, a level shifter/converter

needs to be inserted between them to avoid deterioration of the noise margin. Adding a level
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shifter increases power consumption in three ways: 1) level shifters consume power, 2) the

charging voltage for the interconnect between the level shifter and the sink cell gi is increased,

and 3) the charging voltage for the sink cell is increased; the last two increases are due to the

charging voltage changing from Vdd(gd) to Vdd(gi)). The second effect can be eliminated by

putting the level shifter close to the sink cell so that the interconnect length between the level

shifter and the sink cell is almost 0. Let the Ps be the power consumption of a level shifter

given in the library. To account for the first and third effects, the power term for charging

a sink gate gi (C(gi)V
2
dd(gd)) in Equation 1.5 should be changed to the following formulation

denoted by Pc(gd, gi):

Pc(gd, gi) =


C(gi)V

2
dd(gd) if Vdd(gd) ≥ Vdd(gi)

Ps + C(gi)V
2
dd(gi) if Vdd(gd) < Vdd(gi)

(1.7)

1.2.3 Yield

With the shrinking feature sizes of integrated circuits, it is becoming increasingly difficult

to control critical device parameters during fabrication. Growing process variability has been

observed in gate lengths, oxide thicknesses and doping both across dies and within the same

die. Besides such process variations, temperature and supply voltage variability also causes

significant performance and power variations to arise between chips with the same design. The

yield of a design is the percentage of produced chips with the same design that can satisfy

all requirements. It is important to develop design optimization techniques in logic synthesis
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and physical synthesis that optimize critical metrics (e.g., timing and power) that take these

process/voltage/temperature based circuit parameter variations into account so that the yield

of resulting chips (the percentage of chips that meet the desired metric goals) is maximized.

To show the delay calculation when variation is considered, let us take a simple lumped

delay model. The delay do(g) at a gate g can be modeled as:

do(g) = d(g) + r(g)×
∑

fanoutsc(gfo) (1.8)

where d(g) is the intrinsic gate delay of g, r(g) is the driving resistance of g, and c(gfo) is

the input capacitance of a fanout gate gfo. When random variations in these parameters are

considered, the corresponding gate delay with variability dv(g) can be written as:

dv(g) = do(g) + ∆d(g) + ∆r(g)×
∑

fanoutsc(gfo) + r(g)×
∑

fanouts∆c(gfo) (1.9)

where ∆d(g), ∆r(g) and ∆c(gfo) are the random variations on parameters d(g), r(g) and c(gfo),

respectively. In this thesis, we assume all random variations have a Gaussian distribution.

Hence, the delay at a gate also assumes a Gaussian distribution, since according to the Central

Limit Theorem [6], the sum of Gaussian distributions is also a Gaussian distribution.

The delay of a design is the max of delays of all paths in the design, and, obviously, is

also a random value when the variation is considered. The technique for obtain the probability

distribution function (PDF) of the design delay is called the statistical timing analysis (SSTA).
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In this thesis we are using the SSTA method proposed in [7]. This method approximates

the distribution of the maximum of several Gaussian random variables as another Gaussian

distribution based on the work in [8]. The detail of the approximation is given below:

Let A and B be two Gaussian variables, and (µA, σA) and (µB, σB) be their (mean, standard

deviation). Also, let us define the following variables:

φ(x) =
1√
2
e−x

2/2

Φ(x) =

∫ y

− inf
φ(x)dx

θ = |σA − σB|

α = (µA − µB)/θ (1.10)

The mean and standard deviation for the approximating Gaussian distribution of max{A,B}

are:

µ(max{A,B}) = µAΦ(α) + µBΦ(−α) + θφ(α)

σ(max{A,B}) = (µ2A + σ2A)Φ(α) + (µ2B + σ2B)Φ(−α)

+(µA + µB)θφ(α)− µ2 (1.11)
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Hence, with the above approximation the delay of a circuit also becomes a Gaussian random

variable, whose µ and σ depend on gate parameters. Given a delay constraint Dc the following

yield objective function is used this thesis:

Yd = (Dc − µ)/σ (1.12)

It is proved in [7] that the actual yield percentage is a monotonically increasing function of Yd.

Hence, optimizing Yd accurately optimizes the final yield.

1.2.4 Area

The area of a design can be measured by either the total area of cells in the design or the

layout area of the design. The latter one also includes the area of whitespaces in the design that

are reserved to alleviate congestion. It is an important metric, since the chip cost is usually

proportional to its area.

1.3 Physical Synthesis Transforms

Physical synthesis is usually done through trying various changes on a target design. Through

out this thesis, we will call these changes transforms. The typical type of transforms include:

incremental placement, cell sizing, multiple threshold voltages (Vth) assignment, multiple supply

voltages (Vdd) assignment, two types of buffer insertion and cell replication.

Incremental Placement This method can reduce the critical and near critical path lengths by

changing the position of cells on these paths. It can also reduce the dynamic power by reducing

capacitive loads of high switching frequency wires. The advantage of incremental placement
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Figure 2. Two types of buffers. (a) Type 1 buffer for improving drive capability. (b) Type 2
buffer for isolating non-critical sinks.

is that by only focusing on cells connected to critical, near-critical paths or on high switching

frequency wires, the run time is greatly reduced compared to performing a new placement, and

the optimization is more controllable.

Cell Sizing. The size of a cell controls its input capacitance and driving resistance. Changing

input capacitances and driving resistances of cells are very effective in improving timing and

power. If we are able to implement cells of any size, then the problem of choosing optimal

cell sizes for timing can be solved by a convex programming approach. However, since in real

standard cell designs, the available cell sizes in a library are limited, the problem is actually

a discrete optimization problem, which can be solved by either a fastest descent method or

dynamic programming.

Driver Buffer Insertion. Optimal buffer insertion has to take routing information into

consideration. However, it is also useful to estimate the effect of buffers at the placement stage

so that proper white-spaces can be allocated for adding buffers, and we can know earlier whether
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the design can meet timing requirements. There are two types of buffer insertions as shown in

Figure 2. Type 1 buffer shown in Figure 2(a) is used for improving the drive capability of the

driving cell ud of a net, and thus is called driver buffer in this thesis.

Isolating Buffer Insertion The second type of buffers are shown in Figure 2 (b). Its purpose

is to isolating non-critical sinks from critical ones.

Cell Replication. In cell replication, the driving cell of a net is replaced by two identical

replicas, and the fanouts are partitioned into two groups for each replica. Its effect is similar to

doubling the driving cell size, but it can also achieve the purpose of separating the non-critical

fanouts of a net from its critical ones by connecting them to different replicas. This makes it

more effective in improving delay than up-sizing driving cells when a net has large non-critical

load.

Vth Assignment. Reducing the threshold voltage of a cell is very effective in reducing its

leakage power, as the leakage power is exponentially proportional(Equation 1.6) to the thresh-

old voltage. However, a cell with a high threshold voltage also suffers from the increase in

driver resistance and internal delay. Hence, in most current cell libraries, a set of different Vth

implementations is provided for each cell with certain type and size. Appropriate selection of

cells’ Vth’s can help satisfy the delay constraint with the least leakage power.

Vdd Assignment. Reducing the supply voltage of a cell reduces both its leakage power and

switching power efficiently. Since these powers are quadratically and linearly proportional to the

supply voltage(Equation 1.5,Equation 1.6). However, reducing the supply voltage also increases

the cells driver resistance. Furthermore, using multiple Vdd’s brings in the need for level shifters
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and the issue of forming voltage island (we will explain this in Chapter 4). This also causes

increase in delay, power and area. Hence, smart choices need to be made to satisfy the delay,

power and area requirements at the same time.

1.4 Previous Work in Physical Synthesis

1.4.1 Methods for Applying A Single Transform

Physical synthesis has been a critical research area in recent years. Many methods have

been proposed for efficiently using a single transform.

For cell sizing, it is used to optimize many different metrics like delay, power, area and

yield. There are mainly three different types of sizing algorithms: mathematical programming

based methods, e.g., [9], dynamic programming based methods, e.g., [10], and sensitivity based

techniques, e.g., [11]. The latter two are more suitable for discrete cell sizing. In a recent work,

Hu et. al. [10] proposed a dynamic programming method for discrete cell sizing. Their goal is to

optimize area under timing constraint. In order to reduce complexity, partial solutions generated

go through a similarity check. For each set of similar partial solutions, only a representative

partial solution is kept, and others are eliminated. Agarwal et. al. [12] proposed a sensitivity

based cell sizing method for yield optimization. The method adjusts cell sizes iteratively based

on the cells’ yield to area change ratios (sensitivities), and in each iteration the size of the

cell with the largest sensitivity is modified. The key issue in the methods is how to determine

sensitivity for each cell efficiently. [12] proves that the perturbation caused by a cell size change in

the delay CDF (cumulative distribution function) will keep decreasing as it propagates towards

the primary outputs. Thus, an upper bound on the sensitivity for a cell size change can be
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estimated without propagating its corresponding delay perturbation to the outputs. Then, the

upper bound is used to efficiently eliminate cells that cannot be the most sensitive cell.

For cell replication, [13] uses it to optimize the circuit delay. It proposed a method of dividing

fanouts between the original cells and replicas when the cell is duplicated. The division is based

on fanouts’ criticalities. It will try to put as many critical fanouts to a separate driver as possible

until the fanout load is too large and the delay is becoming worse.

For multiple Vdd assignment, it is usually used for power optimization. The two classic

methods for Vdd assignment are: CVS [14], which does not allow low Vdd cells to drive high

Vdd cells, and ECVS, which adds level shifters when low Vdd cells drive high Vdd cells. Wu et.

al. [15] proposed a slack allocation based method for dual Vdd assignment after placement, in

which slacks are assigned to adjacent cells in the layout that are physically distant from critical

paths with high Vdd cells in order to facilitate formation of low Vdd islands among these adjacent

cells.

For incremental placement, [1] proposed an incremental placement method for improving

delay. The method uses mathematic programming to find the best position for cells on the

critical path. Then these positions are refined in a detailed placement stage to ensure that

there is no cell overlap and that no cell falls between rows.

The two types of buffer insertion is usually used to improving delay. van Ginneken [16]

proposed a classical buffer insertion algorithm. It uses dynamic programming which finds the

optimal solution for a given Steiner tree. The assumption of the algorithm is that there is only
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a single kind of buffer cells. Lillis et al. [17] extends the algorithm to trade off solution quality

with buffering resources and use a buffer library with inverters and repeaters

There are not many works that address Vth assignment as a single transform for power

minimization, though a few [18–20] use this transform together with other transforms. For cell

replication, [13] proposed a method of dividing fanouts between the original cells and replicas

based on their criticality, so that the top critical fanouts use a separate driver.

1.4.2 Methods for Applying Multiple Transforms

In order to achieve better physical synthesis quality, it is desirable that all these trans-

forms be applied simultaneously rather than sequentially one after the other. Most combined

algorithms simply apply them in sequential order. However, it has been proven in [21] that

applying these methods sequentially will produce fairly non-optimal solutions. The simulta-

neous approach allows for a more globally optimal way of determining the transforms to be

used across all cells (the transforms for each cell interact in determining power consumption,

delay and other metrics), while the sequential approach, by definition, can at best obtain locally

optimal solutions.

Considering multiple transforms simultaneously can, however, significantly increase the

problem complexity. Hence, there have been few efforts along this approach, and most of those

that consider multiple transforms simultaneously do so for only two transforms. Dhillon [18]

and Liu [20] proposed two Lagrange relaxation based non-linear programming methods for

power optimization under delay constraint under timing constraint. Multiple Vdd’s and Vth’s

were applied in [18], and multiple Vth’s and cell sizing were used in [20]. Gao. et. al. [19] also
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employed multiple Vth’s and cell sizing for the same problem. In this technique, linear program-

ming is used, and the non-linear timing and power functions are approximated by piecewise

linear functions. To reduce time complexity, both [18] and [19] relax the discrete voltage level

and cell size constraints initially when solving the mathematical programming model of the

problems. After that, [18] clusters the continuous voltage solutions to several discrete values,

and [19] rounds the continuous solution to the nearest available discrete options provided by

the library. On the other hand, [20] solves the discrete optimization problem using dynamic

programming under the relaxation that different sizes and Vth’s can be selected for the same cell

to optimize delays at its different fanouts. Such conflicts are then solved heuristically. In [22],

the placement transform is applied, to some degree, simultaneously with other synthesis trans-

forms to improve circuit delay. This is done by incorporating synthesis transforms into different

intermediate partition levels of a partition based placement process according to the amount of

their potential perturbation to the placement.

To the best of our knowledge, there are only two works that consider more than two trans-

forms. They are both targeting power optimization. The three transforms employed by them

are cell sizing, dual Vdd’s, and dual Vth’s. Among them, [23] by Srivastava et al. essentially

applies these transforms sequentially rather than simultaneously. On the other hand Chinnery

et al. [24] formulated the problem as an ILP problem, with a 0-1 variable indicating whether to

switch a cell in the initial design to a possibly good alternative of different size, Vdd and/or Vth.

The alternative is chosen based on local incremental improvement, and the ILP is solved with
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simple rounding-like heuristic. In the industry side, even the state-of-the-art industry tool can

only handle these transforms one-by-one in certain sequential order

1.5 Contributions

In this thesis, we propose a novel discrete optimization algorithm called the discretized

network flow (DNF) for solving physical synthesis problems. DNF is developed from the tradi-

tional min-cost network flow algorithm. The min-cost network flow problem is a very interesting

problem. Though it is essentially a linear programming problem, it can be solved much faster

than general linear programming problems [25]. We added novel discretization techniques to

this continuous algorithm in order to satisfy various discrete constraints posed in the physical

synthesis problems.

The DNF method has the following advantages as far as physical synthesis problems are

concerned:

• It is a very general discrete optimization algorithm, and can be applied to solve the

physical synthesis problem with almost any known set of transforms.

• It is particularly suitable for solving option selection problems. In an option selection

problem, for each variable, a set of options a provided. The task is to chose one option for

each variable from the set that optimize a given objective function while satisfy another set

of constraint functions. Many EDA problems like physical synthesis, high level synthesis

and floor planning can be formulated as option selection problems.

• It can handle a wide range of circuit design metrics. The range includes linear metrics

like area, non-linear metrics like delay and power, and even metrics without closed form
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expression like voltage island number (which we will talk about in Chapter 4). DNF can

take these metrics as either an objective function or one of the constraints with upper or

lower bounds.

• Most importantly, it inherits the runtime efficiency of the min-cost network flow problem.

This enables DNF to tackle the very complex problem of simultaneous application of mul-

tiple transforms. We have successfully applied DNF to solve physical synthesis problem

using up to five transforms (e.g. for timing optimization, we have used cell replication,

two types of buffer insertion cell sizing and incremental placement). Note that previous

works use at most three transforms.

Besides physical synthesis problems, DNF can also be applied in many other areas like 0/1

integer linear/non-linear programming, the bioinformatics problem of selecting gene markers for

certain disease [26], traveling salesman problems [27] and Boolean satisfiability problems [28].

DNF has achieved high quality results for these problems, and its runtime is faster than the

traditional branch-and-bound and branch-and-cut methods. For example, when applied to

integer linear programming problem, we saw 1.3X to 86X speed compared to the state-of-the-

art solvers with similar solution qualities (we discuss the results further in Chapter 5 and 6).

The rest part of thesis is organized as follows. In Chapter 2, we discuss the basics of the

min-cost network flow, and how it can be used to solve the timing-driven incremental placement

problem. Timing-driven incremental placement is a typical problem in physical synthesis which

considers only the incremental placement transform. In Chapter 3, we gives a more detailed

explanation of DNF. The two major issues we discuss there are: 1) how to model a general
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physical synthesis problems as a network flow problem, and 2) how to satisfy various discrete

requirements in physical synthesis in the continuous network flow model. In Chapter 4, we

apply DNF to three different physical synthesis problems: timing optimization, power opti-

mization and yield optimization, in which multiple transforms are considered simultaneously.

In Chapter 5, we illustrate the application of DNF to solving the general 0/1 integer linear

programming (ILP) problems, and 0/1 integer non-linear programming (INLP) problems. In

Chapter 6, we propose an alternative way, dynamic programming using the novel concept of

weak domination, to solve 0/1 integer non-linear programming problems. The advantage of

this new method is that it can give a guaranteed near optimality bound.



CHAPTER 2

MIN-COST NETWORK FLOW BASED PLACEMENT ALGORITHMS

In this chapter, we will illustrate how to use the min-cost network flow to solve the timing

driven incremental placement problem.

2.1 Basics of Min-Cost Network Flow

The min-cost network flow problem is a classical network flow problem, which tries to send

a given amount of flow through a network graph with the minimum cost. In a network graph,

each directed arc has an associated unit flow cost and capacity. Flow on an arc cannot exceed

its capacity or become negative. The flow cost of each arc is the flow amount on the arc times

the unit flow cost of the arc. An example of the network flow graph and a flow in it is shown

in Figure 3

Min-cost flow has found a wide range of applications from traffic system design in the macro

scale to the signal routing in a NOC (network-on-chip) system. In practice, the commonly used

method for solving min-cost network flow problems is the network flow Simplex method. It is

not polynomial bounded in time, but gives the very good average run-time result [25].

The network flow Simplex method is an iterative improvement approach. It starts with

an initial flow with the required amount which is not optimal as shown by the example in

Figure 3(a). Then it will try to find cycles with negative cost in the graph and augment flows

in them as shown in Figure 3(b). After each augmentation, the cost of the flow will be improved.

19
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Figure 3. (a) An initial flow of 10 units from source (S) to sink (T ) is shown by curved dark
lines. Arc labels are arranged as (flow, capacity, cost). (b) The new flow after flow

augmentation in the negative cycle in [a].

It terminates when there is no cycle with negative cost, or no more flow can be augmented in

any of such cycles.

2.2 Timing Driven Incremental Placement

To illustrate how the min-cost network flow method can be applied in physical synthesis.

We will first look at the increment placement transform. The problem we tackle here is to use

the incremental placement to optimize the delay of a circuit. More details about this work can

be found in [4].

The TD incremental placement problem can be stated as:

Input: A placed circuit PC, a set moveC of new unplaced cells (the scenario of modified cells

is handled by deleting them from PC and adding them to moveC).

Output: A completely placed circuit PC′ in which: (1) there are minimal changes made to the

existing placement PC in terms of both movements of cells in PC and deterioration of placement
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  Perform STA & determine critical node set moveC

TD & WL−driven analyticalplacement (TAN) on moveC

New placement with improved performance and without 
significant WL deterioration

Initial placed circuit

(DFP) on moveC with WS satisfaction.
TD & WL−driven Detailed Flow−based Placement

Figure 4. The flow of our TD incremental placer FlowPlace. The detailed content of each
timing-driven step including WL consideration will be introduced in different sections.

metrics like total wire length (WL), (2) the critical path delay in PC′ is significantly improved

compared to the one in PC, and (3) the given WS constraint of ε% is satisfied—this means that

the maximum row width ≤ (1 + ε/100) × lavg, where lavg is the average total cell width in a

row and is defined as lavg = (total cell width in the circuit)/(the number r of rows).

Figure 4 shows the flow of our Timing-driven (TD) incremental placer. We start from a

placed circuit and identify all critical and near-critical paths using static timing analysis (STA).

Let this set of paths be P (we take paths with delay larger than 0.9 of the circuit delay as near-

critical paths in our experiments). After P is identified, we remove all cells in all nets that lie in

P from the layout. The removed cells form the cell set moveC that will be replaced by our TD

incremental placer with the goal of reducing the critical path delay. As in standard placement
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flows, our incremental placement method also consists of two stages, global and detailed. In

the global stage, our TD analytical placer TAN is used in which moveC constitutes the set of

moveable cells. TAN is essentially a sophisticated quadratic solver. It can find positions for

cells in moveC that minimize the length of the critical paths.

However, the positions found by TAN will generally be an illegal placement for cells in

moveC. The continuous solver of TAN cannot handle the discrete requirement on cell positions:

1) the position of a cell can not fall between rows, and 2) cells cannot overlap with each other.

This is where our network flow based detailed placer kicks into the picture. It is able to find

legal positions for cells moved in TAN, which minimizes the movement distance from the initial

position provided by TAN. In the following sections, we will explain in detail how our timing-

driven (TD) detailed flow-based placer (DFP) handles this discrete optimization problem

2.2.1 Network Structure

Once a cell is moved by TAN to between rows, it needs to be moved upward or downward to

adjacent rows. Once a cell is moved by TAN to a place with existing cells, to accommodate for

the new incoming cell, existing cells need to be moved minimally. In a TD detailed placement,

all cell movements are done based on the timing-driven costs. The timing-driven cost of moving

a cell u is: a) proportional to the delay sensitivity, which is the delay change of the most critical

nets with u per unit displacements of u, and b) inversely proportional to the allocated slack of

the most critical net that includes u; further details are in Sec. 2.2.3.

Figure 5(a) shows the network flow graph used in DFP with arc costs and capacities. There

is an arc from the source S to each new cell v (e.g. cells A1 and A2 in Figure 5(a)) that is
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moved by TAN. The capacity of the arc is equal to the width w(v) of v. For each such v, there

are also two “vertical” arcs from it directed towards cells in rows immediately above and below

it (there are more details to these “conceptual” arcs shown in Figure 5(c)); the capacity of each

vertical arc is also w(v). A total flow of f =
∑

v∈moveC w(v) emanates from S. This flow will

go through each new cell and one of its vertical arcs indicating it is moved in the corresponding

vertical direction to an adjacent row.

From each row cell (i.e., existing cell such as cell C 11 and C12 in Figure 5(a)), there are

four arcs, one in each of the 2D directions (this is easily extended to 6 arcs, one in each of the

3D dimensions in case of 3D VLSICs). The vertical arcs from u go to cells in adjacent rows

and model possible movement of u in the respective vertical directions; the capacity of these

arcs is w(u), since only u can move along these arcs. The horizontal arcs from u model possible

horizontal movement of u within its row, and are potentially of capacity equal to the width of

the row from u to the corresponding end of the row, since u could be moved up to either end

of the row. However, since arc cost estimates become more inaccurate for large displacements,

a capacity equal to the maximum of the widths of the cell in adjacent rows and new cells that

have vertical arcs into u is imposed on the horizontal arcs. This allows enough horizontal flow

through u that causes its required movement to remove overlaps with cells vertically moved

to its position (via vertical flows into u). There can be intermediate white space within rows

and these are also modeled as nodes with incoming horizontal and vertical arcs, but only one

outgoing arc to the total WS node Wi of the row; the arc’s cost is zero and capacity equal to

amount of the intermediate white space. When there is incoming flow to a row cell from new
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Figure 5. (a) The high-level network flow graph for placing cells A1, A2 in legal positions;
w(u) is the width of a cell u. (b) Details of flow graph structure for vertical flows between cell
pairs (C11, C21) and (C12, C21); (c) Similar details of the flow graph structure for flows from

the new cells into vertically adjacent row cells.
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cells or row cells adjacent to it, the flow will go through one of its outgoing arcs indicating

movement of the cell in the corresponding direction.

Finally, the total white space w(Wi) of row i (Ri) = (max row size constraint) - (
∑

[cell

widths in it]) is also modeled by a node Wi at the right end of the row with an incoming

horizontal arc from the rightmost cell and an outgoing arc to T of zero cost and capacity =

w(Wi).

2.2.2 Vertical Arc Structures

Figure 5(b-c) show the details of the simplified “vertical arcs” of Figure 5(a). The detailed

structures are needed to determine the vertical flow amount from a cell, say, C21, to cells in

rows above and below it that it would overlap if it is moved vertically up or down, respectively,

to the corresponding row. The total amount of flow emanating from C21 corresponding to its

vertical movement is w(C21), and enters its “outflow node” D out as shown in Figure 5(b). The

outgoing flow from Dout going to the row above C21’s (the structure is similar for the flow going

to the row below C21) splits into as many arcs as the number of cells C21 would overlap when

moved to the row above it. The amount of flow in the arc to cell C1j in this row is equal to the

overlap amount o(C21, C1j) between C21 and C1j when C21 is moved up; this is appropriate,

since this flow amount emanating horizontally from C1j would move it by an amount o(C21, C1j)

that removes the overlap (if the flow emanates vertically from C1j , then irrespective of the flow

amount, as we will see in Sec. 2.3.1, C1j is moved to the next row in the direction of the chosen

vertical arc, thus removing the overlap). Note that the sum of the o(C21, C1j)’s is equal to
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w(C21). Figure 5(c) shows similar structures for outgoing vertical flows from illegally placed

cells A1, A2 going down to row R3.

On the flip side, flows can vertically enter cell C21 from all cells in rows above and below it

as well as from illegally placed cells near its row that would overlap it when moved to its row.

However, a total flow of only w(C21) can be allowed to enter it, and this is ensured with vertical

flows from the above-mentioned cells entering the “inflow node” Din of C21 and from there

entering C21 via an arc of capacity w(C21); see Figure 5(b). Henceforth, for a more conceptual

discussion relating to vertical flows, we will represent vertical movements by the simple vertical

arcs of Figure 5(a); the detailed structures corresponding to these vertical arcs are not necessary

for subsequent discussions.

2.2.3 Timing-Driven Cost Functions

As mentioned earlier, the TD cost of an arc e emanating from cell u should be: i) propor-

tional to the delay sensitivity, which is the delay change of the most critical net nk through u

(i.e., the net through u with the minimum allocated slack) per unit displacements of u in the

direction of e, and ii) inversely proportional to the allocated slack of nk.

The delay sensitivity is the derivative of the delay function w.r.t. u’s displacement. Let nj

(nk) be the most critical net that has u as a sink cell (driver cell), and let v (w) be the most

critical sink in nj (nk). The sensitivity of nj is
d(D(v,nj))
d(ld,u)

, where D(v, nj) is the interconnect

delay on nj from its driver d to v given in Equation 1.1-Equation 1.4, and ld,u is the distance

between the driver d of nj and u. Similarly, the sensitivity of nk is d(D(w,nk))
d(lu,w) .
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Let ∆ld,u (∆lu,w) be the change of ld,u (lu,w) when u is moved by an unit length in e’s

direction. The sensitivity-based the timing-driven cost of e (i.e., its unit-flow cost) is:

costt(e) =
d(D(v, nj))

d(ld,u)
·

∆ld,u
Sa(nj)κ

+
d(D(w, nk))

d(lu,w)
· ∆lu,w
Sa(nk)κ

(2.1)

Sa(nj) is the allocated slack of the most critical path that passes through net nj . With Sa(nj)

at the denominator, delay increase in a more critical net will incur a larger cost than delay

increase in the non-critical net. The exponent κ is used to magnify or shrink cost differences

among arcs emanating from cells connected to critical and non-critical nets; κ = 2 gives us

the best overall results. The sensitivity based cost has high accuracy when cells are moved

by not-very-large displacements from known positions, as is the case in incremental detailed

placement.

2.3 Flow Discretization for Legal Incremental Placement Solution

As mentioned earlier, the core incremental detailed placement problem is a discrete opti-

mization problem (DOP) with discrete constraints, and thus certain illegalities are introduced

in it by using a continuous optimization method like network flow to solve it. We discuss two

main illegality issues and the in-processing discretization techniques that we have developed to

deal with them, i.e., techniques that work simultaneously with the network-flow algorithm. The

discretization techniques may require multiple iterations of the min-cost network flow process

to reach a final valid solution.
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Figure 6. (a) Initial placement. (b) “Regular” cost and capacity of vertical arc (u, v) and two
flows through cell u. (c) The physical translation of this flow leading to inaccurate

incremental placement of affected cells; disp(v) is the displacement distance of v. (d)-(h) New
cost, capacity structure of arc (u, v) with dynamic update, resulting in a flow more closely

mimicking the corresponding physical movement of cells, and the final accurate incremental
placement of affected cells in (h). The dashed arrows in (c) and (h) represent displacements of

cells at the end of the arrows.
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2.3.1 Discrete Flow Requirement in Vertical Arcs

Figure 6(b) shows a vertical arc (u, v) from cell u to v of capacity w(u) = 5 and unit-flow

cost of c1. This arc is used to model the possible movement of u to the row immediately above

it (and thus to the position of v). The physical interpretation of any flow along (u, v) has to be

that u is moved to v’s location, since any position in between its current position and that of v’s

is illegal. Thus the exact requirement of the flow amount through (u, v) should be either 0 (no

movement of u) or w(u) = 5. Furthermore, any flow of x < w(u) through (u, v) will also incur

an inaccurate lower cost of x · c1 rather than the “full cost” of w(u) · c1, incurred in actually

moving u to v′s position. The resulting inaccuracies in cell movements implied by these flows

is shown in Figure 6(c).

We rectify these inaccuracies, by initially having a capacity of 1 and cost = w(u) ·c1 (the full

cost) for (u, v) as illustrated in Figure 6(d). When a flow of 1 passes through (u, v) correctly

incurring the full cost of (u, v), we update (u, v)’s capacity to w(u) − 1 and cost to 0, thus

correctly allowing an additional flow of w(u) − 1 to pass through it at no cost. Note that any

flow entering u can exit from either the two horizontal arcs or the two vertical arcs including

(u, v) that emanate from u. Note also that even with a flow of 1 through (u, v), in the physical

interpretation we will move u to v’s position, and thus v will be shifted to its left or right

by a distance of w(u) to remove its overlap with u. The resulting costs of these movements

in the incremental placement of the cells affected by the flow of 1 through (u, v) will thus be

incurred, irrespective of whether or not there is any more flow on (u, v). Hence for the rest of

the flow coming into u, if any, we encourage w(u)− 1 of it to go through (u, v) by the following
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mechanism: (i) change arc (u, v)’s cost to 0 (this is correct since the entire cost of arc (u, v)

corresponding to a full flow has already been incurred); and (ii) maintain positive costs for the

two horizontal arcs from u (see Figure 6(e-f)), as well as for the other vertical arc out of u.

Only after a flow of w(u)− 1 passes through (u, v), do we make the cost of the horizontal arcs

0 (since u is no longer in this row) and their capacity ∞; see Figure 6(g). Figure 6(h) shows

the correct cell movements implied by the resulting flow of Figure 6(g).

As a final point, we note that whenever an arc e’s cost and capacity are updated, appropriate

updates are made to various entities so that the correct list of negative cycles are available for

cost reduction in the current max-flow.

2.3.2 Split Flows

Since a flow on a horizontal or vertical arc out of a cell u represents movement of u in the

direction of the arc, as far as the incremental placement problem is concerned, a flow into u

can come out of at most one outgoing arc from u. A 0/1 integer linear programming (ILP)

formulation is needed for satisfying such a constraint (e.g., a binary variable is needed for each

arc e that indicates if there is flow on e, and for each node, the sum of the binary variables of

its outgoing arcs needs to be ≤ 1). However, 0/1 ILP is NP-hard, and such a formulation of the

incremental placement problem would be intractable. The continuous optimization solution we

obtain to this problem via the network flow model is in P and much faster. Of course, it has no

restriction on how many outgoing arcs from a node can have flows, resulting in what we term

split flows when more than one output arc from a node has positive flows; see Figure 7(a).
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Figure 7. (a) Split flow through new cell A1. (b) Diverting flow from e1 to e2 in a split flow
situation.

If after one iteration of network flow there are split flows from node u, then u will not be

moved in this network flow iteration (as mentioned earlier, it can take multiple iterations to

obtain a legalized placement), and in subsequent iterations we allow only one branch of the

split flows from u and forbid all the other possible outgoing flows by changing the capacity

of all outgoing arcs from u to 0 except the arc carrying the allowed flow. We have used two

alternative heuristics to choose the allowed branch:

• Max-flow heuristic: For each cell u with outgoing split flows, choose the branch flow with

the largest flow amount to be the allowed branch.

• Min-cost heuristic: For each cell u with outgoing split flows, follow the path of each

branch flow up to a length of l, and choose the branch flow that has the min-cost path.

Note that due to run time consideration we cannot always follow each branch flow to the

sink, we thus set the limit l on the length of paths we follow. Setting l to be 100 arcs

doubles the runtime compared to using the max-flow heuristic.
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Ckt Max-flow Min-cost (with exploration up to a DAG of length L) Random
L = 3 L = 4 L = 5 L = 20 L = 50 L = 100 selection

%∆ T %∆ T %∆ T %∆ T %∆ T %∆ T %∆ T %∆ T

td-ibm01 15.0 12.7 12.8 14.2 14.7 14.9 14.9 12.3

td-ibm02 24.2 20.1 21.5 21.8 22.5 23.2 23.7 19.3

td-ibm09 13.3 9.9 10.1 10.2 10.5 10.6 10.5 6.0

td-ibm10 14.4 11.5 11.8 11.8 12.1 12.6 12.6 9.9

td-ibm17 27.1 26.0 26.0 26.1 26.2 26.2 26.2 21.8

td-ibm18 33.4 31.8 32.5 32.7 32.7 32.7 32.7 27.9

avg. 21.2 18.7 19.0 19.4 19.8 20.0 20.0 14.1

TABLE II

PERCENTAGE TIMING IMPROVEMENTS OF MAX-FLOW HEURISTIC, MIN-COST
HEURISTIC WITH DIFFERENT PATH LENGTH LIMITS AND THE RANDOM

SELECTION APPROACH FOR SPLIT FLOW PREVENTION.

The following theoretical result makes a simplifying assumption about the network graph

for the purpose of analytically gleaning the general superiority of the max-flow heuristic.

Claim 1 Suppose that in a network at any stage of the flow-augmentation process (passing of

some of the remaining flow through the n/w), the average unsaturated arc-cost per unit flow

is monotonically non-decreasing w.r.t. flow1, i.e., d(av cost)/df ≥ 0 and is the same (or very

similar) across the network, where av cost is the average cost among all currently unfilled arcs,

1This is a reasonable assumption, since the Simplex method augments flow in negative cycles in order
of decreasing magnitude of cost improvements yielded by the cycles, i.e., the flow will more or less be
first pushed through lower cost arcs and later through higher cost arcs.
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and f is the current amount of flow. Then the max-flow heuristic for split-flow prevention will

always give a solution cost that is smaller than or equal to that yielded by the min-cost heuristic.

Proof: We consider a split flow at any node u with the flow passing through two outgoing arcs

from u, e1, e2, with f(e1) > f(e2). If a flow of value 1 is diverted from e1 to e2 the additional cost

encountered by that flow will be [d(av cost)/df ]× lav(e1, e2), and vice versa, where l av(e1, e2) is

the average length across all nodes u of the subpath from u to the nearest common descendant

node C(e1, e2) of e1 and e2; see Figure 7(b). However, since there is more flow on e1, the total

cost of diverting all the flow from e1 to e2 will be more than the total cost of diverting all the

flow from e2 to e1. Thus if any other heuristic, including min-cost, chooses to divert flow from

e1 to e2, then it will result in a larger-cost split-flow prevention solution than that obtained

using the max-flow heuristic. On the other hand, if another heuristic chooses to divert flow

from e2 to e1, then its cost will be the same as that of the max-flow heuristic. ♦

Empirical results using the two heuristics shown in Table II support the above analytical

result. The percentage timing improvement of six representative incrementally placed circuits

in Table II for the TD-IBM benchmark [29] reveals that the max-flow heuristic performs consis-

tently better than the min-cost heuristic with path length limits of 3, 4, 5, 20, 50 and 100 arcs,

and has a relatively better performance in the range of 13.4-6.0%. Table II also shows results

for a randomized arc selection approach for split flow prevention; it performs significantly worse

than the above two heuristics. The max-flow heuristic is thus implemented in our algorithms.

Another very telling statistics that we have collected indicates the efficacy of both the

network-flow approach and the discretization technique of the max-flow heuristic for split-flow
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prevention for obtaining solutions to the TD incremental placement. On comparing the final

flow cost after the split-prevention discretization imposed on the necessary arcs via the max-

flow heuristic to the final flow cost of a solution with unrestrained splitting (and thus illegal for

our incremental placement problem), we find that the discretized flow is within only 2% of the

optimal (but illegal) continuous solution. These are strong empirical results for the efficacy of

our discretized network flow approach to the TD incremental placement problem.

2.3.3 Satisfying White Space Constraints

It would seem that row white space constraints are automatically satisfied due to the capac-

ities of outgoing arcs from white-space cells and the row WS node being equal to the amount

of WS they represent.

However, the problem arises due to the continuous nature of flows through vertical arcs,

whereas the requirement for the detailed placement problem is for discrete (2-value) flows

through them as discussed in Sec. 2.3. Referring to Figure 6(e-f), assume that u is in Ri, v in

Ri−1, and that the total WS in Ri−1, w(Wi−1), is 3. A total flow of f = 2 (note that a total

flow of 5 depicted in Figure 6(e-f) may not be available) coming from the left of Ri into u and

then to v and right into the WS node of Ri−1, and then to the sink T will be allowed. However,

if that is the only flow on arc (u, v), then the problem comes in the translation of this flow into

cell movements1—when u is actually moved up to Ri−1, since w(u) = 5, there will actually be

1Note that the overlap of u and v shown in Figure 6(c) is not the issue here, as given enough WS
in Ri−1, v and subsequent cells to its right can be moved to the right to remove all overlaps without
violating the WS constraint in Ri−1.
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a WS violation in Ri−1 of w(u)− w(Wi−1) = 2. In other words, the total flow into a row may

not always equal the total actual cell area moved into the row in the translation stage. In our

detailed placement technique, we dynamically track the change in the WS amount of each row

for every flow augmentation (in some cycle C) in order to detect WS violations.

In the rest of this section, we explain the network flow structure used for removing WS

constraint violations. Since the WS constraint violations is also due to the root cause of flow

discretization, purely network flow based method cannot completely solve the issue. In this

section, besides the arc cost and the flow cost/amount based approach to discretize continuous

flow solution, we propose another way of handling discretization: the policy based method. The

policy is an extra constraint that we will impose each time we augment flow in the network

flow simplex method. It will help to ensure the flow will finally converge to one that satisfies

the discrete requirement. For WS constraint satisfaction, we propose two flow control policies,

a violation control policy and a thrashing control policy to guide the WS constraint satisfaction

process. These two polices allow limited but necessary temporary WS violations while proceed-

ing towards a legal placement. With these two policies, we can guarantee the termination of

our WS constraint satisfaction process, while providing a large freedom for cell movement in

the process. The pseudo code for applying these two policies is given in Figure 8.

We first introduce the violation correction structure to remove a violation in a row. This

structure is shown in Figure 9. An arc is added between the source S and the rightmost cell of

each violated row Ri with violation violi. The capacity of the arc is violi, and an extra flow of

this amount, termed a violation correction flow, emanates from S in order to push the violated
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Algorithm Violation Policy Check

• For each flow augmentation in cycle C in the network

flow Simplex method.

Begin

• Identify the set of rows VR that becomes WS-violated.

• For each row R ∈ VR
Begin

• Check violation control policy on R;

• Check thrashing control policy on R;

• If any of the two policies is violated

• Reverse flow augmentation in C; then forbid flow augmen-
tation in C by putting C into a forbidden list until R is not violated.

End

End

Figure 8. Pseudo code of the violation policy check that is performed for each flow
augmentation in a cycle in each network flow iteration.

amount of cell size away from the row. As a result, the detailed flow graph will have a structure

that is a combination of that shown in Figure 5(a) for non-violating rows and Figure 9 for

violating rows.

In order to provide a richer solution space, we allow some intermediate WS violations so

that we can arrive at good WS-satisfying solutions. Intermediate WS violations are allowed in

a controlled manner using a violation control policy, described below, that guarantees that our

algorithm will terminate (see Theorem 1 given later). Under this violation control policy, we

fix WS violations through multiple iterations of the network flow process. WS violation can be

caused by legalizing cells in moveC or by flow discretizations, explained in the previous section,
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and is allowed or disallowed as per our violation control policy. If after an iteration, there are

rows with WS violation, we will attach a violation correction structure to these rows in the

network flow graph of the next iteration.

2.3.4 Violation and Thrashing Control Policies

Our violation control policy applies within each network flow iteration (i.e., violation pa-

rameters of the policy are reset at the beginning of each iteration), and is given as follows.

• A row that has a violation at the beginning of an iteration will not be allowed to have its

violation increase.

• For all other rows Ri, we allow a white space violation up to the maximum cell size among

Ri’s adjacent rows Ri+1 and Ri−1, and illegally placed cells adjacent to Ri; we denote this

amount by max viol(Ri).

• To compensate for the relaxed constraint, we make sure that once the white space constraint

of Ri is violated by flow from a certain direction (above or below Ri), the amount of

violation due to flows from that direction cannot increase until the row becomes violation-

free again during subsequent flow augmentations.

One problem of allowing temporary WS violation, even in a limited and controlled way as

stated in our violation control policy, is that it may cause infinite thrashing in the network flow

process, in which some cells may be moved between two rows repeatedly during consecutive

network process iterations for violation removal. We define a forbidden cell for row Ri to be a
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Figure 9. The violation correction structure; S is the source of the network graph.

cell that when moved into a non-violated Ri causes it to become violated. Our inter-iteration

thrashing control policy to cope with this problem is:

A forbidden cell for Ri is not allowed to move back to Ri after it is moved out.

This policy (unlike the violation control policy) is an inter-iteration policy, i.e., we retain

the cell and row states from one iteration to the next. A flow is allowed only if it passes both

the violation control policy and the thrashing control policy. Our method terminates either if in

the current network flow iteration there is no allowed flow (this is an unsuccessful termination),

or if all illegally-placed cells are legalized and if all WS violations are eliminated (a successful

termination). [30] provides a detailed proof that our WS satisfaction process have a very high

probability to satisfy the WS constraint for designs with large or normal sizes.

Theorem 1 [30] In a circuit with r rows and with each row having at least 128 cells, the

probability that our detailed placement techniques can successfully achieve WS satisfaction is at

least (0.9998)r.
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In our experiments our method terminates within 7-8 iterations for each of the 27 circuits

we have used, and successfully satisfies all WS constraints. Further, while our method is not

guaranteed to find a WS-satisfying solution if one exists, it will, however, find such a solution

with very high probability as we prove in [30].

2.4 Experimental Results

We used three benchmark suites in our experiments: 1) TD-IBM benchmark suite [29] with

circuit size ranging from 13k-210k cells, 2) Faraday benchmarks from [31] with circuit size

ranging from 12k-33k cells and 3) The TD-Dragon suite of [32] with circuit size ranging from

3k-26k cells. The third set of benchmarks has complete cell and timing information. The first

two sets have no cell delay information. Hence, cell delay is set to be zero for the first two sets.

All benchmarks are initially placed by Dragon 2.23 (the TD-Dragon benchmarks are also placed

by TD-dragon which can only place this suite); see [29] for more information of the benchmarks

like delay, total WL and initial placement run time. We then identify paths with delays of at

least 90% of the max-path delay as critical paths. The γ value (Equation 1.3) is set to 1. Except

for TD-Dragon benchmarks which are run with whitespace (WS) of 10% (since these circuits are

relatively small), all other benchmarks are allocated a 3% WS. We use typical values for Rd, Cg, r

and c for 0.18 µm technology1. The unit length for the TD-IBM benchmarks was taken as 0.1125

µm, and that for the Faraday ones as 0.0005 µm. Table III shows various characteristics of the

1These are r = 7.6 × 10−2 ohm/µm, c = 118 × 10−18f/µm, Cg = 10−15f , c = 36.4 × 10−18f/µm,
Rd = 1440 ohms; for TD-Dragon benchmarks, Rd and Cg are derived from their timing library files and
are similar to the above values.



40

initially placed benchmarks. Results were obtained on Pentium IV machines with 1GB of main

memory. In all tables, positive ∆, i.e., change, numbers indicate improvement, and negative ∆

numbers indicate deterioration.

Table IV shows that if the initial placement is done by a state-of-the-art WL-driven placer

(Dragon 2.23 in our experiments), our purely timing-driven method can achieve up to 33% and

an average of 17% delay improvement. The TD global placement (TAN) results, also given

in the table, show an average timing improvement of about 22%. Thus there is an absolute

deterioration of only 5% after detailed placement underscoring the efficacy of our network flow

based detailed placer. The table also shows the results when we are not only using the TD cost,

but use a wire length based cost also for arc cost. Compared to purely TD method, the WL

increase is reduced from 9.0% to 5.8% (a 35% relative reduction), while the delay improvement

is reduced by only 1.6% from 17.3% to 15.7% (a 9% relative reduction).

Table V and Table VI show that starting with circuits placed by a TD placer (TD-Dragon),

we can still improve results appreciably. Since the TD-Dragon benchmark circuits are relatively

small, we use a larger WS constraint of 10% here. With purely TD cost, we obtain up to 10%

and an average of 6.5% timing improvement over TD-Dragon results, while the average WL

increase is 6.1% (see Table V). However, as shown in the same table, the WL increase can

be reduced to 5.3% with the combined cost (an average relative reduction of 13.1% compared

to the purely TD cost), and the corresponding average timing improvement is about 6.3% (an

average relative reduction of only 3% compared to the purely TD cost).
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Ckt # cells # nets crit. avg. Init. pl delay HP
len. len. runtime (ns) BB

(secs) (105µ m)

td-ibm01 12506 13636 134 129 402 2.2 1.8

td-ibm02 19342 19325 147 140 864 1.8 4.2

td-ibm03 22853 27118 113 102 1283 1.2 5.5

td-ibm04 27220 31679 121 119 1501 1.7 6.7

td-ibm05 28146 27490 22 45 1594 1.1 10.1

td-ibm06 32332 34654 113 110 1800 2.6 5.6

td-ibm07 45639 47786 106 107 2216 2.3 9.3

td-ibm08 51023 50227 14 49 5973 1.1 9.7

td-ibm09 53110 60606 125 128 4032 3.0 11.0

td-ibm10 68685 74179 178 171 4578 2.2 18.1

td-ibm11 70152 81402 131 128 4415 2.0 16.2

td-ibm12 70439 76313 183 182 4850 5.4 23.5

td-ibm13 83709 99106 134 131 5189 1.8 19.6

td-ibm14 147088 152138 211 205 7432 3.0 38.1

td-ibm15 161187 186218 202 198 7629 3.8 50.0

td-ibm16 182980 189259 192 185 7714 3.8 53.1

td-ibm17 184852 188503 220 205 8259 4.5 79.1

td-ibm18 210341 201640 74 79 9454 2.0 50.2

Avg. 81750 86739 134 134 4232 2.5 22.9

TDmatrix 3083 3200 73 67 254 4.3 1.0

TDmac32 8902 9115 29 27 1634 3.4 4.0

TDmac64 25616 26017 39 37 6854 7.0 20.4

TDvp2 8714 8789 75 70 966 4.5 3.4

Avg. 11578 11780 54 50 2427 5.0 7.5

matrix 3083 3200 71 65 70 4.9 0.9

mac32 8902 9115 25 25 184 3.8 3.9

mac64 25616 26017 37 36 1364 7.7 17.8

vp2 8714 8789 69 66 161 5.1 3.2

Avg. 11578 11780 51 48 444 5.0 6.5

DMA 11734 11815 17 37 384 0.4 2.1

DSP1 26301 27590 24 57 1527 0.9 4.3

DSP2 26281 27574 25 56 1602 0.8 4.3

RISC1 32622 33186 12 58 1952 1.1 5.9

RISC2 32622 33186 12 59 1906 1.3 6.1

Avg. 25912 26070 18 53 1474 0.9 4.5

TABLE III

PLACED BENCHMARK CIRCUIT CHARACTERISTICS. “CRIT. LEN.” IS THE # OF
CELLS IN THE MOST CRITICAL PATH, AND ”AVG. LEN.” IS THE AVERAGE

NUMBERS OF CELLS AMONG ALL CRITICAL PATHS. THE BENCHMARK NAMES
WITH TD AS THE PREFIX WERE PLACED BY TD-DRAGON AND THE REST BY

DRAGON. THE “DELAY” COLUMN GIVES THE CRITICAL PATH DELAY.



42

Ckt # of # mv %∆WL %∆T %∆WL %∆T runtime %∆WL %∆T
cells cells (TAN) (TAN) (TD) (TD) (secs) (Comb.) (Comb.)

td-ibm01 13k 330 -4.1 21.0 -10.1 15.0 112 -5.9 12.5

td-ibm02 19k 662 -3.7 30.5 -11.4 24.2 102 -5.9 20.2

td-ibm03 23k 508 -3.3 32.3 -9.0 28.5 202 -7.0 27.7

td-ibm04 27k 652 -4.0 28.1 -10.9 24.1 242 -7.1 23.0

td-ibm05 28k 647 -1.6 21.2 -6.4 17.9 245 -3.2 15.4

td-ibm06 32k 704 -4.3 25.9 -9.1 21.0 305 -5.4 19.4

td-ibm07 46k 924 -2.8 18.0 -7.4 13.1 328 -4.2 12.2

td-ibm08 51k 886 -1.8 29.2 -5.3 27.1 288 -3.3 26.5

td-ibm09 53k 1154 -4.2 17.4 -10.7 13.3 524 -7.0 9.9

td-ibm10 69k 1200 -3.5 20.2 -10.6 14.4 514 -8.1 13.5

td-ibm11 70k 1174 -4.1 21.2 -10.7 14.4 603 -5.8 13.1

td-ibm12 70k 1308 -2.3 19.1 -7.8 13.2 424 -6.7 13.0

td-ibm13 84k 1128 -3.1 22.1 -9.0 18.3 472 -7.2 17.6

td-ibm14 147k 1443 -2.9 19.5 -8.9 14.8 699 -3.6 12.0

td-ibm15 161k 1426 -1.5 22.6 -5.1 18.5 754 -3.1 17.1

td-ibm16 183k 1699 -1.9 24.6 -5.1 18.5 924 -2.4 17.7

td-ibm17 185k 1984 -1.0 30.7 -3.1 27.1 957 -1.3 26.9

td-ibm18 210k 2332 -1.1 36.2 -2.8 33.4 1052 -1.3 32.7

Avg. 81k 1121 -2.7 24.5 -8.0 19.9 487 -5.0 18.3

DMA 12k 341 -4.7 25.1 -13.6 14.4 86 -9.3 10.5

DSP1 26k 390 -4.5 24.0 -11.9 16.1 99 -8.1 15.2

DSP2 26k 396 -4.5 23.0 -9.6 15.0 144 -6.9 15.0

RISC1 33k 671 -4.2 21.8 -10.7 16.2 166 -7.1 14.7

RISC2 33k 694 -4.1 19.9 -9.9 15 153 -7.2 14.3

Avg. 26k 498 -4.3 22.7 -11.1 15.4 130 -7.7 13.8

matrix 3k 290 -1.8 9.7 -10.3 7.1 123 -7.0 4.8

vp2 9k 311 -1.3 10.8 -10.5 6.0 194 -7.7 4.2

mac32 26k 352 -2.0 13.7 -8.7 9.3 172 -7.7 8.7

mac64 9k 400 -2.0 13.1 -7.0 10.2 198 -5.2 9.4

Avg. 11k 338 -1.8 11.8 -9.1 8.1 171 -6.9 6.8

Overall 889 -2.8 22.3 -9.0 17.3 374 -5.8 15.7
Avg.

TABLE IV

TIMING AND WL RESULTS OF OUR INCREMENTAL PLACER FOR A 3% WS
CONSTRAINT COMPARED TO INITIAL PLACEMENTS DONE BY DRAGON 2.23; SEE
Table III FOR INITIAL PLACEMENT RESULTS. THE 4’TH AND 5’TH COLUMNS ARE
THE GLOBAL PLACEMENT (TAN) RESULTS FOR A PURELY TD COST. THE 6’TH

AND 7’TH COLUMNS ARE THE FINAL RESULTS (AFTER DETAILED PLACEMENT)
FOR A PURELY TD A COST. THE LAST TWO COLUMNS ARE THE RESULTS WHEN

USING A COMBINED WIRE LENGTH AND TD COST. POSITIVE NUMBERS MEAN
IMPROVEMENT, AND NEGATIVE NUMBERS MEAN DETERIORATION.
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Ckt #of mv 10%WS (TD) 10%WS (Comb.)
(TD) cells runtime runtime

%∆T %∆WL (sec) %∆T %∆WL (sec)

matrix 271 5.01 -8.24 129 4.77 -6.81 139

mac32 300 8.25 -2.58 139 7.86 -2.38 150

mac64 360 10.08 -3.74 201 9.89 -3.26 223

vp2 377 2.76 -9.98 178 2.48 -8.6 182

Avg. 327 6.53 -6.14 162 6.25 -5.26 174

TABLE V

INCREMENTAL PLACEMENT RESULTS COMPARED TO INITIAL PLACEMENT BY
TD-DRAGON; SEE Table III FOR INITIAL TD PLACEMENT RESULTS. POSITIVE

NUMBERS MEAN IMPROVEMENT, AND NEGATIVE NUMBERS MEAN
DETERIORATION.

Ckt 10%WS (TD) 10%WS (Comb.) Results in [1]
(TD) w/ 10% WS

%∆T % ∆WL %∆T %∆WL %∆T %∆WL

matrix 0.10 -8.20 0.10 -7.63 no impr. N/A

mac32 4.77 -2.51 3.95 -2.33 3.8 -10.5

mac64 9.01 -4.05 8.35 -3.47 7.5 -10.9

vp2 4.12 -10.51 3.39 -8.7 no impr. N/A

Avg. 4.5 -6.32 4.0 -5.52 2.8 -10.7

TABLE VI

RESULTS USING THE SAME DELAY MODEL AS [1]. THE RUNTIME IS SIMILAR TO
USING OUR DELAY MODEL. POSITIVE NUMBERS MEAN IMPROVEMENT, AND

NEGATIVE NUMBERS MEAN DETERIORATION.
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Ckt WL-Driven Timing-Driven
%∆WL from Runtime %∆T from %∆WL from Runtime

NTU-GP (sec) NTU-DP NTU-DP (sec)

td-ibm 6.5% 6594 17.9% -6.2% 7029

Faraday 6.9% 2402 13.4% -8.3% 2585

Avg. 6.6% 5682 16.9% -6.7% 6063

TABLE VII

COMPARING DFP TO THE NTU PLACER. POSITIVE NUMBERS MEAN
IMPROVEMENT, AND NEGATIVE NUMBERS MEAN DETERIORATION.

For the TD-Dragon circuits, we also used the linear-delay model of [1] to compare our results

to them. The WS constraint is also set to 10% as in [1], and the results are listed in Table VI.

With a purely TD cost, under this delay model our technique obtains up to 9% and an average

of 4.5% timing improvement over TD-Dragon using purely TD cost, while the average WL

increase is about 6.3%. The WL increase can be reduced to about 5.5% with the combined

cost, and the corresponding average timing improvement is about 4.0%. For the same set of

benchmarks, an average of only 2.8% timing improvement is obtained with around 10% WL

increase in [1]. Thus our results are 43-60% relatively better in the timing metric than that

of [1], and 41-48% relatively better than it in the WL metric.

We also compare DFP to another state-of-the-art academic placer called NTU [33] in Ta-

ble VII. NTU placer consists of two parts, NTU-GP which is a global placer and NTU-DP

which is a detailed placer. For WL driven detailed placement, we measure the quality by the

WL reduction compared to NTU-GP. Our WL driven results show that DFP can reduce the
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Figure 10. (a) Run time versus total number of cells. (b) Run time versus total number of
movable cells

WL of NTU-GP results by 6.6%. NTU-DP obtains WL’s that are about 6.8% better than

those of NTU-GP; so our results are comparable to NTU-DP’s. The timing driven detailed

placement results are compared to the WL-driven results obtained by NTU-DP since it does

not have a timing-driven mode. The results show that in timing DFP is up to about 30% and

an average of 16.9% better than those of NTU-DP’s, with a WL increase of 6.7% compared to

NTU-DP’s WL. This seems to be a good tradeoff. The above results underscore the value of

our full detailed placer—having comparable WL results to the state-of-the-art NTU-DP, but,

more importantly, being able to achieve high-quality timing-optimized placements with only

a small deterioration in WL (compared to a high-quality WL-driven placement). To the best

of our knowledge, no other state-of-the-art standard-cell placers performs TD placement, let
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alone, effective TD placement as we do, on large circuits like those in the TD-IBM benchmark

suite.

Our methods are also quite fast compared to a full placement; we complete incremental

placement in about 10% of the initial placement time of Dragon 2.23 and in about 6% of the

time of TD-Dragon. Figure 10(a)-(b) show the empirical asymptotic time complexity of our

incremental placer w.r.t. both the number of cells and the number of moved cells. They show

that both run time plots best match linear functions, which underscores the timing efficiency

and scalability of our discretized network flow techniques.



CHAPTER 3

THE DISCRETIZED NETWORK FLOW METHOD

In the previous chapter, we explained how the min-cost network flow model can be used in

incremental placement problems. In order to satisfy the discrete requirements in incremental

placement, i.e., cells can not be moved between rows, and cells can only move in one direction,

we proposed three different techniques to adjust the min cost flow. These techniques are: arc

cost adjustment to ensure that the initial flow takes full cost and subsequent flow takes 0 cost,

the min-cost/max-flow heuristic, and the violation control policy and the thrashing control

policy.

In this chapter, we will explain in detail our DNF method. The DNF method is a further

improvement of the network flow model we introduced in the previous chapter. It has two major

changes: 1) A more general network flow structure is proposed that can be used for almost any

kind of physical synthesis transform. The network flow model for DFP is very suitable for

incremental placement, in which cell area can be modeled as flow amount, and movement in

different directions can be modeled as arcs. However, the movement directions are not a concern

for transforms other than incremental placement, and the area is not a concern for transforms

like Vdd and Vth assignment. Hence, mapping network flow structures to metrics or changes

that are specific to each transform will require different structures for different transforms.

This will prevent us from processing multiple transforms simultaneously. 2) We proposed a

single technique that can satisfy a wide range of discrete requirements in the physical synthesis

47
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problem. The DNF method can be used to solve the physical synthesis problem with any

single transform. It can also be used to tackle the problem of applying multiple transforms

simultaneously.

3.1 The Option Selection Problem

In order to process different transforms with a single method, we first generalize these

transforms as option selection problems. In general option selection problems, for each variable,

a set of possible values (called options) are given. We need to choose one value for each variable

so that the given objective function is optimized, and the given constraints are met. In physical

synthesis problems, the scenario is similar in that for each cell a set of options is provided by

each type of transforms, and we need to select and apply one option in each transform set for

each cell.

The options provided by different transforms are listed below:

(1) Cell Sizing. The options are different sized cells provided by the library.

(2) Driver Buffer Insertion. The options are the different sized buffers in the library as well

as not adding any driver buffer.

(3) Isolating Buffer Insertion. The options are also the different sized buffers in the library

as well as not adding any isolating buffer.

(4) Cell Replication. The options for this transform includes no replication and replications

with different partition schemes of the fanouts between the two replicas. However, if we provide

all possible partitions as options, the number of options will be huge, since we need to consider

the possibility that some fanout gates (sinks) may also be replicated. Hence, in our method,
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we pre-determine the three best timing-driven partitions based on the initial design using the

algorithm in [13], and incorporate these as options. We thus have a total of four replication

options for each cell: three replication options corresponding to the three chosen partitions and

the no-replication option.

(5) Incremental Placement. There are two possible situations for incremental placement.

First, multiple candidate positions for a cell can be provided by certain type of pre-processing

method. Each of these positions may have its own advantage or drawbacks. Such a case can

happen when there are multiple metrics that need to be considered at the same time, like delay

and wire length. For this situation, each position will be an option for the cell. The second

situation is that only one position is provided for a cell. In this case, we usually need to make

adjustment to this position, like we do in DFP for the initial position provided by the global

placer TAN. Then, the options will be the adjacent possible positions like the adjacent rows in

DFP.

(6) Vth Assignment. The options are different threshold voltage values provided in the

library.

(7) Vdd Assignment. The options are different supply voltage values provided in the library.

To solve the option selection problem, the network flow model in our DNF method contains

two coupled substructures: one for objective function optimization, and one for satisfying

various constraints. In both substructures, nodes represent options, and flow through a node

indicates selection and application of the corresponding option. In the option selection problem,

the discrete requirement is that only one option can be chosen for each transform for a cell. In
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our DNF model, this constraint is converted to a mutually exclusive arc (MEA) set constraint.

The MEA constraint on a set of arcs dictates that flow can only pass through at most one arc

among them. From here onwards, for easy of explanation, we will use the term “transform”

to refer to a transform for a single cell.

More details about our DNF method are provided in the following sections.

3.2 Discretized Network Flow Concepts

Given an option selection problem with a minimization objective function F , the DNF

method optimizes F in two major steps: 1) It constructs a network flow graph called the op-

timization graph (OG) for F . In the OG, available options for each transform are represented

by nodes. Option selection is done by flow through the graph, i.e., if an option node has flow

through it, then the corresponding option is selected for the associated cell. For power opti-

mization, the selection of an option means applying it to the corresponding cell (e.g., changing

the cell to the selected size or Vth or assigning the selected Vdd to the cell ). The flow cost

reflects the value of F corresponding to options selected by the flow. 2) It obtains the min-cost

flow in the graph that provides a valid option selection solution, i.e., one option is selected for

each transform. Due to the equivalence between flow cost and F ’s value corresponding to the

selected options, the min-cost flow selects options that minimize F .

In the rest of this section, we will describe in detail how the OG is constructed, as well as

introduce the fundamental concepts of DNF. The DNF modeling for constraint satisfaction is

presented in Sec. 3.3.
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3.2.1 The Network Flow Graph Substructure for DNF

If a term in a function cannot be decomposed further using the add operation (i.e., de-

composed into the sum of several other terms), it is called a p-term (for product term). Thus

a p-term of a function is a term that is atomic with respect to addition. Any minimization

objective function F can be expressed as the summation of linear or non-linear p-terms fk as

given below.

F =
∑
k

fk (3.1)

For example, the power consumption P of a circuit (Equation 1.5, Equation 1.6) is the sum

of three types of p-terms: (1) V 2
dd(gd)C(ni) for charging the wire capacitance of a net ni. (2)

Gate leakage power Pl(go) (Equation 1.6). (3) The power consumption Pc for level shifters and

charging sink cells (Equation 1.7). Recall that C(nj) is the interconnect capacitance of net nj ,

and Vdd(gd) is the supply voltage of gate gd. Though out this section, we will use the power

objective function as example in our illustration. Without loss of generality, we will consider

four types of transforms: multiple Vdd, multiple Vth, cell sizing and incremental placement.

A solution So to an option selection problem is a set of options with one option for each

transform. With a solution So, a unique value of the objective function F (denoted by F (So))

can be determined. We also define a partial solution sjk for a p-term fk as a set of options with

one option for each transform that fk is a function of. Similarly, for an sjk, a unique value of

fk denoted by fk(s
j
k) can be determined. For a p-term fk(Ti1 ,. . .,Tim) that is a function of m
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Figure 11. (a) The conceptual structure of ot-subgraphs for p-term Pl(gi). (b) Actual network
flow graph implementation of the conceptual subgraph in [a], in which hyperarcs are modeled

by star graphs.

transforms Ti1 ,. . .,Tim , there are totally Πm
t=1|Tit | possible partial solutions for fk, where |Tit |

is the number of available options for transform Tit .

The OG for minimizing objective function F has a top-down structure: it consists of sub-

graphs, each of which corresponds to one p-term in F ; these subgraphs are termed ot-subgraphs

(for optimization p-term subgraphs). In the ot-subgraph ot-G(fk) for a p-term fk, there is a

node for each option of transforms that fk is a function of. Henceforth, the term “option” will

be used to refer to both a transform option and its corresponding node in ot-subgraphs. There

is also a hyperarc in ot-G(fk) representing each possible partial solution sjk for fk. The hyperarc

corresponding to a partial solution sjk connects all the options in sjk. These hyperarcs are called

option selection hyperarcs.
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Take the leakage power p-term Pl(gi) of gate gi as an example. Its formulation (see Equa-

tion 1.6) is Vdd(gi)W (gi)Is · e−Vth(gi)/Vo . W (gi) is the transistor width of gi and is proportional

to the size s(gi) of gi. Hence, Pl(gi) is a function of Vdd(gi), s(gi), and Vth(gi). It is thus a

function of three transforms on gi: 1) Vdd assignment transform denoted by TVdd(gi), 2) cell

sizing transform on gi denoted by Ts(gi) and 3)Vth assignment transform denoted by TVth(gi).

The corresponding ot-subgraph (for Pl(gi)) is given in Figure 11(a). Two options are provided

for each transform, and they are represented as nodes in the ot-subgraph. Based on the con-

nected option nodes, the two hyperarcs shown correspond to two partial solutions (represented

as {size, threshold voltage, supply voltage}): {X, 0.2 V, 0.9 V} and {2X, 0.4 V, 0.9 V}.

When constructing ot-subgraphs, we determine hyperarc directions so that the union of all

ot-subgraphs (i.e., the OG) is acyclic. Specifically, if there are hyperarcs from transform Ti

to transform Tj in an ot-subgraph, there should not be any hyperarc in the reverse direction

(from Tj to Ti) in any other ot-subgraph. In order to ensure this, an arbitrary order R among

transforms is pre-determined. In an ot-subgraph, the transform whose option nodes are the

head of the hyperarcs is called the start transform (e.g., Ts(gi) in Figure 11(a)), and the other

transforms whose option nodes are “tails” of the hyperarcs are called fanout transforms (e.g.,

TVth(gi) and TVdd(gi) in Figure 11(a)). The start transform is chosen to be the one that precedes

the other transforms of the ot-subggraph in R. We should note here that the order among

transforms does not affect the final solution, i.e., a transform occurring earlier in R does not

have any priority over transforms that occur later in R. For any order R, our DNF model is

able to provide the optimal solution for the original option selection problem as established in
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Theorem 4 (Sec. 3.4). A simple way to understand this is that R only determines the topological

order of transforms in the OG (more details of the OG are given later in this section), and in a

network flow graph (e.g., the OG), even if we completely reverse the topological order of nodes,

i.e., reverse all arc directions and switch the source and the sink, the min-cost flow still passes

through the same set of nodes, i.e., for our problem, the same set of options is selected in the

reversed OG.

A hyperarc connecting m options is implemented in the network flow graph as a star graph

with a start arc from the corresponding option of the start transform, and ending in a center

node. This node has m−1 branches (called fanout arcs) from it to the other m−1 options of the

hyperarc (corresponding to the m−1 fanout transforms). The cost of a hyperarc representing a

partial solution sjk is fk(s
j
k) and is attached to the start arc of its star graph model. Figure 11(b)

is the star graph implementation of Figure 11(a) for p-term Pl(gi). Henceforth, we will use

the two terms, hyperarcs and star graphs, interchangeably to refer to the connections in ot-

subgraphs corresponding to partial solutions.

For our power optimization problem, the ot-subgraphs for the three types of p-terms in the

power consumption function P can be constructed as follows.

1. For the leakage power p-term Pl(gi) for each gate gi: the ot-subgraph is given in Fig-

ure 11(b).

2. For p-term V 2
dd(gd)C(ni) of charging net capacitance: gd is the driving cell of net ni. C(ni)

is the net capacitance of ni, and is proportional to the wire length of ni, which is in turn

a function of the bin position B(g)’s of all gates g on ni. Thus, C(ni) is determined by
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re-placement transforms TB(g) for all gates g in ni. Therefore, the ot-subgraph for this

p-term includes the following transforms: TVdd(gd), TB(gd) and TB(go) for all sink cells go

on ni. Therefore, for a net of degree k, the ot-subgraph includes one start transform and

k fanout transforms, and each hyperarc (star graph) in it connects k + 1 option nodes.

3. For p-term Pc(gd, go) of the level shifter power and the power for charging the input

capacitance C(go) of go (gd be the driving cell). Since C(go) is proportional to s(go), the

ot-subgraph for Pc includes three transforms: Ts(go), TVdd(gd) and TVdd(go). The structure

of the ot-subgraph is similar to that in Figure 11(b), and the option selection hyperarcs

in it form a complete tri-partite hypergraph between the three transforms.
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3.2.2 The Complete Optimization Graph

The complete OG for an objective function F is formed by combining the ot-subgraphs

for all p-terms in F . The combination is done by merging the common transforms between

ot-subgraphs. Figure 12(b) shows an example of merging ot-subgraphs of the three types of

power p-terms for a simple net given in Figure 12(a).ot-G1 is for p-term V 2
dd(gd)C(ni); ot-G2

is for p-term Pc of the level shifter power and charging power for the input capacitance of go;

ot-G3 is for p-term Pl(go)Transforms that are not fanout transforms in any ot-subgraph (e.g.,

TB(gd) in Figure 12(b)) should be connected to the source S in the OG, and transforms that

are not the start transform of any ot-subgraph should be connected to the sink T (e.g., TVth(go)

in Figure 12(b)).

We note here that the flow in the OG has a discrete meaning, i.e., flow > 0 indicates selection

of an option and flow = 0 indicates non-selection of an option; the actual flow amount does not

affect the option selection results. Matching this discrete flow semantics is the cost formulation

of flow f on an arc e with cost cost(e), which is a step function, as opposed to a linear one in

classical network flow. Specifically, the cost incurred is cost(e) if f > 0, and 0 otherwise, as

shown in Figure 12(c). The only flow amount requirement in the OG is that enough flow is sent

form the source S so that at least t units of flow go through an ot-subgraph with t transforms.

Since the OG is acyclic, the flow amount needed to be sent from S can be determined using a

recursive relationship; more details are provided in Sec. 3.3.1.
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3.2.3 Valid Flow and Flow Cost

A major difference between the DNF method and standard min cost flow is that DNF can

satisfy discrete constraints imposed by the target problem. For the option selection problem, a

valid option selection flow (termed as valid flow for short) in the OG should meet two discrete

requirements: (1) pass through only one option node for each transform so that only one option

is selected for each transform ( option exclusivity or OE ), and (2) pass though only one option

selection hyperarc in each ot-subgraph so that only one partial solution is selected for each p-

term ( partial solution exclusivity or PSE ). Note that these two requirements are independent.

Figure 13(a) shows an flow example in ot-G1 in Figure 12(b). The flow in the figure satisfies

OE, but violates the PSE requirement since it passes through two hyperarcs (i.e., through two

start arcs of their star graph models). On the other hand, Figure 13(b) shows an flow example

through transform Ts(go) in Figure 12(b). The flows in the two ot-subgraphs satisfy the PSE

requirement. However, they choose different options for the common transform Ts(go) between

them, and hence violates the OE requirement.

The OE and PSE requirements for a valid flow can be generalized as MEA constraints. For

the PSE requirement, the MEA constraint is applied on the set of start arcs in each ot-subgraph;

see Figure 11. On the other hand, the OE requirement is actually a mutually exclusive node

set constraint, which can be converted to the MEA constraint through the following structure

change. We replace each option node by a pair of dummy nodes connected by a “bridge” arc

as shown in Figure 13(c). Thus, a flow through an option node is equivalent to a flow through

the bridge arc that replaces the node. The MEA constraint is applied to the set of bridge arcs
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Figure 13. Flows violating PSE and OE requirements. All flows are shown by dark arcs. (a)
A flow in an ot-subgraph that satisfies the option exclusivity (OE), but violates the partial

solution exclusivity (PSE). (b) Flows in two ot-subgraphs ot-G2 and ot-G3 that select
different options for the common transform Ts(go). The PSE requirement is satisfied, but the

OE is violated. (c) Bridge arc structures and MEA constraints are used to satisfy the OE
requirement. The flow in [b] extended to the bridge arc structure of Ti3 violates the MEA

constraint on the bridge arcs, and therefore will never occur.

replacing the set of options for each transform, and a flow that satisfies this MEA also satisfies

the required OE; see Figure 13(c).

The approach to ensure the satisfaction of MEA constraints is as follows. For each arc e

in an MEA set, besides its original cost, termed C-cost (e.g. the p-term based cost on option

selection hyperarcs in ot-subgraphs), an extra cost of C ′ (termed C’-cost) is added. The idea

behind this approach is that since a valid flow passes through only one arc in each MEA set,

the C’-cost it incurs in each MEA set is exactly C ′. On the other hand, an invalid flow passes

through at least two arcs in one or more MEA set, and thus incurs a C’-cost of at least 2C ′

in at least one MEA set. Hence, the C’-cost of an invalid flow is larger than that of a valid
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flow by at least C ′. Therefore, if we set C ′ to be larger than the C-cost difference DC between

a valid flow Fv (which can be constructed according to an arbitrary or heuristic-based option

selection solution) and an invalid flow with minimum C-cost Cmin (which can be determined

using standard min-cost flow algorithm on the network graph with only C-costs and hence

without any MEA constraint), then any invalid flow will incur a larger total cost (C-cost +

C’-cost) than Fv. Correspondingly, the min-cost flow in the network flow graph with both C-

and C’-cost will always be a valid flow. Further, it will be the valid flow with minimum C-cost,

since the C’-cost incurred by any valid flow is a constant mC ′, where m is the number of MEA

sets in the OG. In our implementation, C ′ is set to be DC + 1. Hence, we have the following

theorem.

Theorem 2 By setting the C’-cost of each arc in MEA sets to be larger than the C-cost dif-

ference of a valid flow and a min-cost invalid flow, the min cost flow in the network flow graph

with C- and C’-costs is a valid flow with minimum C-cost. ♦

Proof: We can prove by contradiction. Assume the min-cost flow we select is a invalid flow

with C-cost Cinv. Obviously, Cinv > Cmin. Also from, previous analysis, for the C’-cost C ′inv

of this invalid flow, we have C ′inv >= C ′(Fv) + C ′. Therefore, the total cost of the invalid flow

Cinv + C ′inv > Cmin + C ′ > C(Fv) + C ′(Fv). This contradicts the assumption that the invalid

flow is a min-cost flow.♦

For the C-cost of a valid flow in the OG, we have the following lemma.
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Lemma 1 The cost of a valid flow in the OG for an objective function F selecting solution So

is equal to F (So).

Proof: Assume the valid flow selects a partial solution sjk for each p-term fk in its ot-subgraph

ot-G(fk). Clearly, So = ∪fk∈F s
j
k. Since a valid flow passes through only the option selection

hyperarc representing sjk in each ot-G(fk), the total incurred cost is
∑

fk∈F fk(s
j
k), which is

exactly F (So). ♦

Theorem 2 and Lemma 1 indicate that a min-cost valid flow in the OG selects the options

that minimize the objective function. Since the step cost function we use for arc costs is

a concave function, standard min-cost flow algorithms cannot be used for our network flow

graph. Instead, we use the concave min-cost algorithm of [34] that obtains a near optimal (i.e.,

near min-cost) flow solution.

3.3 Network Flow Graph for Constraint Satisfaction

In this section, we present network flow structures called constraint satisfaction graphs

(CGs) for satisfying multiple ≤ type linear and non-linear constraints in option selection prob-

lems, and use such structures to satisfy the cell area (i.e., bin capacity) and timing constraints

when optimizing power1. The main idea for constraint satisfaction is to use flow amounts in

CGs to represent the constraint function values, use arcs with capacities equal to the given

upper bounds to limit the flow amounts to be ≤ these capacities, and thereby satisfy the given

constraints.

1≥ type constraints can be converted to ≤ by negation.
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The CG is an extended version of the OG described in Sec. 3.2. For a constraint Hi ≤ bi,

where bi is a constant, the constraint function Hi, just like the optimization function F (see

Equation 3.1) can always be expressed as a sum of p-terms hi,k. Similar to the OG, the CG is

built hierarchically by combining constraint p-term subgraphs (ct-subgraphs) for each hi,k. As

an example, we construct below the CG for the delay constraint of the circuit with three cells

ga, gb, gc shown in Figure 14(a). For the (ni, nj) path in the circuit, where ni, nj are two nets,

the constraint can be expressed as D(ni) +D(nj) ≤ τ , where D(ni) is the delay on net ni, and

τ is the given delay upper bound.

Like ot-subgraphs, each ct-subgraph includes nodes that represent options, and hyperarcs

that represent partial solutions. A valid flow should pass through only one hyperarc in each ct-

subgraph (the PSE requirement), and one option node for each transform (the OE requirement).

An example ct-subgraph for the delay p-term Rd(gb)C(nj) for charging the capacitance of net

nj in the circuit of Figure 14(a) is given in Figure 14(b); Rd(gb) is the driving resistance of

driver cell gb. For simplicity, we only consider sizing and incremental placement transforms

here, and for incremental placement options we are consider the bin based option B(gb) for a

cell gd. Bin based placement option is usually used in the global placement stage where we

do not need to put a cell in a specific position, and only put cells in certain bins that are

divided from the layout area is sufficient. The above p-term is a function of s(gb) (determines

the driving resistance Rd(gb) of gb ), and the bin placement option B(gb) and B(gc) of gb and

gc (these determine the net length and thus capacitance C(nj) of nj). Hence, the ct-subgraph

includes three transforms and the complete tri-partite connection of hyperarcs among them. A
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structural difference between ct-subgraphs and ot-subgraphs is that an extra branch arc and

an extra complementary arc is attached to each option selection hyperarc; these arcs emanate

from the center node in the star graph model of the hyperarc.

The function of branch arcs is to output a flow of amount equal to the p-term value with

the selected partial solution. Specifically, if a valid flow passes through the hyperarc corre-

sponding to a partial solution sji,k in the ct-subgraph ct-G(hi,k) for a p-term hi,k, the branch

arc attached to the hyperarc should shunt out a flow of amount hi,k(s
j
i,k) from ct-G(hi,k). This

is accomplished by having the capacity of the branch arc = hi,k(s
j
i,k), and pushing a flow of at

least that amount into ct-G(hi,k); details on these issues are given in Sec. 3.3.1. An example

of an option selection flow in the ct-subgraph for p-term Rd(gb)C(nj) is given in Figure 14(c).

When flow passes through the star graph structure in Figure 14(c) corresponding to size X and

bin B2 for gb, and bin B1 for gc, the value of the p-term, and thus the branch flow amount, is

Rd(gb(X)) · c · l(B1, B2), where Rd(gb(X)) is the driving resistance of gb for size X, l(B1, B2) is

the distance between bins B1 and B2, and thus wire length of net nj connecting gb and gc, and

c is the unit distance wire capacitance.

Branch arcs from all ct-subgraphs for a constraint Hi ≤ bi are directed towards a constrain-

ing node, and the flows on branch arcs (called branch flows) are sent into a constraining arc

of capacity of the given upper bound bi of the constraint. An example of the constraining

node and the constraining arc for the delay constraint of circuit in Figure 14(a) is shown in

Figure 15. For a valid flow in the CG selecting a solution So = ∪hi,k∈Hi
{sji,k} for constraint

Hi ≤ bi, the total amount of branch flows =
∑

hi,k∈Hi
hi,k(s

j
i,k), which is exactly the value of
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Figure 14. (a) An example circuit. (b) The ct-subgraph for delay p-term Rd(gb)C(nj). (c)
The flow distribution in the ct-subgraph shown in [b].

Hi (denoted by Hi(So)) with the selected solution So. The capacity of the constraining arc is

bi, and this limits the flow amount through it to be ≤ bi. Thus the options selected by a valid

flow in the CG always constitute a feasible solution, i.e., satisfying the constraint Hi ≤ bi. On

the other hand, if a flow selects a solution that violates the constraint, it will be an invalid flow

that violates OE and/or PSE requirements as we will demonstrate in the next subsection.

Finally, as explained for ot-subgraphs ((Sec. 3.2.2), combining ct-subgraphs is also done by

merging common transforms among them. Figure 15 illustrates the CG for delay constraint

D(ni) +D(nj) ≤ τ of circuit in Figure 14(a). For clarity of exposition, here we consider only:

1) two types of delay p-terms: for charging the net capacitance, Rd(ga)C(ni) and Rd(gb)C(nj)),

and for charging the sink cell input capacitance, Rd(ga)C(gb) and Rd(gb)C(gc)); 2) two trans-

forms: re-placement and cell sizing.
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3.3.1 Flow Amount and Arc Capacity in Ct-subgraphs

In order to ensure the correct functioning of each ct-subgraph—outputting a flow amount

on a branch arc equal to the p-term value corresponding to the selected transform options—the

incoming flow amount and arc capacities in each ct-subgraph must be determined accordingly.

This is quite different from ot-subgraphs where we only care about the presence or absence of

a flow and the arc costs, while the flow amount does not matter. Conversely, in ct-subgraphs,

cost is irrelevant, and thus costs of arcs in ct-subgraphs are all 0.

The capacity of the branch arc attached to a hyperarc corresponding to sri,k in the ct-

subgraph ct-G(hi,k) is hi,k(s
r
i,k), i.e., the desired branch flow amount as explained in the previ-

ous sub-section. Further, as we can see in Figure 14(c), the incoming flow to a ct-subgraph is

distributed on the outgoing arcs in a star graph structure, i.e., the branch arc, the complemen-

tary arc and the fanout arcs. Hence, in order to ensure a full flow on the branch arc when sri,k

is selected, the incoming flow amount to ct-G(hi,k) should be equal to the total capacities of

the branch arc, the complementary arc and the fanout arcs in the star graph structure for sri,k.

Complementary arcs are arcs directed to the sink for balancing the branch flow amount

difference from different hyperarcs in a ct-subgraph so that irrespective of which option selection

hyperarc is chosen, the needed incoming flow amount for a ct-subgraph is fixed. In ct-G(hi,k), if

a valid flow passing through a hyperarc corresponds to a partial solution sri,k, the flow amount

sent on the complementary arc attached to the hyperarc should be hmax
i,k −hi,k(sri,k), where h max

i,k

is the maximum possible value of p-term hi,k over all possible partial solutions sri,k. Thus, the



65

ct−G3
ct−G4

TB(g   )a

Ts(g   )a

TB(g   )b

TB(g   )c

Ts(g   )b
Ts(g   )c

ct−G 2To T

Branch arc

To T

To TComplementary arc
ct−G1

T

S

To T

Complementary arc Constraining node

Constraining arc
cap=τ =7

Figure 15. The delay CG of the circuit in Figure 14(a) for the constraint D(ni) +D(nj) ≤ τ .
ct-G1 is for p-term Rd(ga)C(ni), ct-G2 is for p-term Rd(gb)C(nj) (ct-G2 is shown in detail in

Figure 14(b)), ct-G3 is for p-term Rd(ga)C(gb), and ct-G4 is for p-term Rd(gb)C(gc).

total flow amount on the pair of branch and complementary arcs of the chosen hyperarc (i.e.,

chosen partial solution) is always hmax
i,k , irrespective of which partial solution is chosen.

Let fin(hi,k) denote the needed incoming flow for ct-subgraph ct-G(hi,k), fin(Tj) denote the

incoming flow amount needed for a transform Tj , and din(Tj) be the number of ct-subgraphs

that have Tj as a fanout transform. fin(hi,k) can be expressed as follows.

fin(hi,k) = h max
i,k (si,k) +

∑
Tj∈fanout(hi,k)

fin(Tj)/din(Tj) (3.2)

where fanout(hi,k) is the set of fanout transforms of ct-G(hi,k). fin(Tj)/din(Tj) is the amount of

flow that needs to be sent to a fanout transform Tj in a ct-subgraph. For example, in the CG in
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Figure 15, Ts(gb) is a fanout transform of two ct-subgraphs, and TB(gc) is the fanout transform

of one ct-subgraph.

Furthermore, the flow fin(Tj) sent to a transform Tj (e.g., TB(gb) in Figure 15) is the incoming

flow to the set (denoted by ctout(Tj)) of ct-subgraphs that have Tj as the start transform (e.g.,

ot-G4 in Figure 15). Hence, we have the following equation:

fin(Tj) =
∑

ct-G(hi,k)∈ct out(Tj)

fin(hi,k) (3.3)

Equation 3.2 and Equation 3.3 constitute the recursive relationship for determining fin(Tj)

and fin(hi,k) for each transform and ct-subgraph. In the boundary case where a transform Tj is

directly connected to the sink node T , fin(Tj) becomes 1 since we still need a unit flow to perform

option selection in each of these fanout transforms. With Equation 3.2 and Equation 3.3, we

can determine each fin(hi,k) and fin(Tj). A transform Ts that is not a fanout transform in any

ct-subgraph is connected to the source S. Then, the flow amount that needs to be sent from S

is
∑
{Ts} fin(Ts).

After fin(hi,k) for each ct-subgraph ct-G(hi,k) and fin(Tj) for each transform Tj are deter-

mined, the capacities of arcs in the star graph structures in ct-G(hi,k) can be set accordingly.

The same settings are used for all star graph structures in ct-G(hi,k): the capacity of start arcs

is fin(hi,k), and the capacity of fanout arcs to transform Tj is fin(Tj)/din(Tj).

The recursive relationship in Equation 3.2 and Equation 3.3 can also be used to determine

the input flow amount fin(pk) for each ot-subgraph ot-G(pk) (pk is a p-term in the objective

function) and fin(Tj) for each transform Tj in an OG. However, since there are no branch or
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complementary arcs in an OG, the first term in Equation 3.2 becomes 0. The capacity of start

arcs in ot-G(pk) is fin(pk), and the capacity of fanout arcs to a transform Tj is fin(Tj)/din(Tj).

Lemma 2 In a CG, if the flow amount sent from S is
∑
{Ts} fin(Ts), then in any valid flow,

the incoming flow to each ct-subgraph ct-G(hi,k) has the correct amount fin(hi,k) determined by

the recursive relationship in Equation 3.2 and Equation 3.3.

Proof Outline: Besides branch arcs and complementary arcs, since the CG is constructed in

the same way as the OG, it is also an acyclic graph. The predetermined transform order R

is a topological order of transforms in the CG. We can then prove by induction on the rank

of transforms Tj in R that ct-subgraphs in ctout(Tj) have the correct incoming flow amount as

given Equation 3.2. A detailed proof is given in [35]. ♦

Theorem 3 In a CG for a feasible constraint Hi ≤ bi, a valid flow always selects a solution

that satisfies the constraint.

Proof: We prove this by contradiction. Assume a valid flow Fv selects a solution Vs that violates

the constraint. Then, the total branch flow amount Hi(Vs) is larger than the constraining arc

capacity bi. Thus, there exits at least one ct-subgraph ct-G(hi,k) in which part of the branch

flow is blocked due to the capacity limit of the constraining arc as shown in Figure 16. Assume

that in ct-G(hi,k), Fv passes through a hyperarc corresponding to a partial solution sji,k. The

branch flow amount fb is less than the branch arc capacity hi,k(s
j
i,k), and the constraining arc

is already full.
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Figure 16. A resulting invalid flow in a ct-subgraph when the selected options violates some
constraint Hi ≤ bi.

The non-full flow on the branch arc makes the total outgoing flow amount on the hyperarc

for sji,k less than fin(hi,k), while according to Lemma 2 the incoming flow amount to the ct-

subgraph is still fin(hi,k). This forces a flow amount of hi,k(s
j
i,k)−fb to be routed through other

hyperarc(s) in ct-G(hi,k), which obviously makes Fv an invalid flow, since the PSE requirement

is violated. Therefore, we reach a contradiction with our valid flow assumption. ♦

The above theorem also leads to the following corollary.

Corollary 1 If there is no valid flow possible in the CG, then the constraint is infeasible. ♦

The infeasibility condition can thus be detected if the min-cost flow in the CG with C’ costs

is an invalid flow (violates OE and/or PSE requirements).

In the following part, we will illustrate the CG graph for two common metrics: bin capacity

and delay. We will illustrate how to build CG or OG graphs for more complex special metrics

in later chapters when discussing the corresponding problems.
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3.3.2 Bin Capacity Constraints

Usually, in incremental placement, in order to avoid overlapping or make sure that the

overlap amount is acceptable, we will divide the whole layout area of a chip into bins, and

constraining that the total area of cells in a bin cannot exceeds the bin area. The bin capacity

constraints can be formulated as follows. Let to(Bi) be the set of cells that can be moved into a

bin Bi (including the current cells of Bi), {gd} be the set of gates that drive a gate g, al be the

area of a level shifter. We also define two binary variables: 1) b(g,Bi), which is 1 if we choose

to put a cell g in Bi, and 0 otherwise; 2) e(gd, g), which is 1 if a level shifter exists (is needed)

in the interconnect from gd to g, and 0 otherwise. To satisfy the capacity constraint of bin Bi,

we must ensure that:

∑
g∈to(Bi)

[s(g)b(g,Bi) +
∑
∀gd

al · e(gd, g)b(g,Bi)] < area(Bi)

where area(Bi) is the area of Bi. The second p-term in the above formulation is for level

shifter area, which should be put in the same bin as g. b(g,Bi) is a function of the position

B(g) for g, which is determined by the re-placement transform TB(g). Thus, each ct-subgraph

for the first p-term s(g)b(g,Bi) is a complete bipartite graph between two transforms Ts(g)

and TB(g) with branch and complementary arcs. The capacity of the branch arc attached to a

hyperarc connecting a sizing option Oks(g) is the cell area corresponding to the option. e(gd, g)

is determined by Vdd’s of gd and g. Hence, the corresponding ct-subgraph includes TVdd(gd),

TVdd(g) and TB(g). The branch arc capacity in the ct-subgraph is always al.
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P-term type Transforms in the ct-subgraph

Rd(nk)cL(nk) Ts(gi), TVdd(gi), TVth(gi) and TB(g) for g ∈ nk
Rd(nk)C(gk) Ts(gi), TVdd(gi), TVth(gi) and Ts(gk)

rc · l2i,j TB(gi) and TB(gk)

rl(i, j)C(gk) TB(gi), TB(gk) and Ts(gk)
rc · l(i, j)L(nk) TB(gi), TB(gk) and TB(g) for g ∈ nk

TABLE VIII

THE TRANSFORMS IN CT-SUBGRAPHS FOR DIFFERENT TYPES OF P-TERMS IN
THE TIMING CONSTRAINT FUNCTION.

3.3.3 Circuit Delay Constraint

To satisfy circuit delay constraint, we consider a set P of critical and near critical paths.

One constraint is set for each path P ∈ P as follows:

∑
(gi,gj)∈P

D(gi, gj) < τ (3.4)

where (gi, gj) is an interconnect between cells gi and gj , D(gi, gj) is the delay on (gi, gj), and τ

is the given circuit delay constraint. The formulation for D(gi, gj) is given in Equation 1.1. The

various types of p-terms, and the related transforms of each p-term is listed in Table VIII. Ct-

subgraphs can be constructed accordingly. A detailed example is given in Figure 14-Figure 15

and discussed in Sec. 3.3 for a subset of p-terms of D(gi, gj) and two transforms (for simplicity

of exposition).
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Figure 17. (a) A subcircuit with three nets and five gates. (b) A part of the COSG for the
subcircuit in [a] after combining the power OG and the circuit delay CG. For clarity we only
show supply voltage and cell sizing transforms. Each meta option node represents the set of

option nodes for a transform; each meta-hyperarc represents the set of hyperarcs in a
subgraph. The dashed meta-hyperarcs are delay ct-subgraphs for circuit delay p-terms of type
Rd(nk)C(gk) for the three nets in [a], where Rd(nk) is the driving resistance of nk and C(gk)
is the input capacitance of a sink cell in nk. The solid meta-arcs are power ot-subgraphs for

power p-terms Pc in Equation 1.7 for the three nets.

An alternative way of satisfying the circuit delay constraint when the number of critical

and near critical paths is large is using slack allocation, and setting a delay upper bound for

each interconnect, which is its original delay plus its allocated slack. As is well known, such a

net based constraint over-constrains the basic problem, which is essentially path-based. In our

implementation, we used the path based constraint (Equation 3.4).
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3.4 Complete Option Selection Network Flow Model

For an option selection problem with an objective function F and multiple constraints, the

complete option selection network flow graph (COSG) is formed by combining the OG for F and

the CGs for all the constraints. The combination is still done by merging common transforms

in these graphs. All MEA constraints in the OGs and the CGs are inherited in the complete

graph, i.e., a valid flow in the COSG has to satisfy all these MEA constraints. Hence, a valid

flow in the COSG consists of valid sub-flows in its constituent OG and CGs. Further, the MEA

constraint on bridge arcs ensures that only one option is selected for each transform by a valid

flow in the COSG, i.e., all valid sub-flows in the COSG’s constituent graphs select the same

set of options. Figure 17(b) illustrates part of the COSG after merging the power OG and the

delay CG for the subcircuit shown in Figure 17(a).

As described in Sec. 3.2.3, we use C’-costs on MEA arcs to ensure that for a feasible

problem, a min-cost flow is a valid flow. However, for simplicity of exposition, in the rest

of this subsection, by the cost of valid flows we only mean the C-cost part of the flow cost (i.e.,

the corresponding p-term values of the optimization function).

Lemma 3 A valid flow in the COSG selects a feasible solution of the corresponding option

selection problem, if one exists.

Proof: A valid flow in the COSG that selects a solution So consists of valid sub-flows in each

constituent CGs that together select So. Based on Theorem 3, this means that So satisfies all

the given constraints, and is a valid solution. ♦

The option selection problem can be solved according to the following theorem.
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Theorem 4 A min-cost valid flow in the COSG selects the optimal feasible solution for the

corresponding option selection problem, if the problem is feasible.

Proof: For a valid flow in the COSG that selects a solution So, based on Lemma 1, its cost in

the OG part in the COSG is F (So), where F is the objective function. Further, the arcs in

CGs all have 0 cost. Hence, the min-cost valid flow in the COSG selects the feasible solution

So that minimizes F . ♦

The problem of finding the min-cost valid flow is equivalent to the problem of finding the

min-cost flow in the COSG with C’ cost, according to Theorem 2. We solve the latter problem

near optimally using the algorithm in [34]. Also, similar to Corollary 1 for CGs, an invalid flow

in the COSG indicates that the option selection problem is infeasible. This condition can be

easily verified by checking if the min-cost flow in the COSG with C’ costs is a valid flow.

3.4.1 Timing Complexities

We analyze the worst and average time complexity of solving the power optimization prob-

lem with the four types of transforms mentioned earlier under cell area, critical path delay and

voltage island constraints. Given a circuit with N cells and E nets, the maximum number m

of transforms that a p-term is a function of, and the maximum number p of options of any

transform, it is easy to show that: a) the total number of ot- and ct-subgraphs in the COSG

is O(N + E), and b) the total number of arcs in the COSG is O(mpm(N + E)) = O(N + E)

as m and p are constants (and generally small ones) w.r.t. circuit size N +E; details are given

in [35].
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To solve the min-cost flow in the COSG with concave arc costs (see Figure 12(b)), we use the

method proposed in [34], which solves the standard (i.e. with linear arc costs) min-cost network

flow problems on the same network flow graph repeatedly with dynamically adjusted linear arc

costs to approximate the concave costs. The complexity of solving a standard min-cost flow

problem is O(U · A2) [36], where U is the amount of flow to be sent, and A is the number

of arcs. In the COSG model, the amount of flow has to be able to support all branch flow

amounts, and hence is proportional to the sum of the maximum possible values of all constraint

functions. This value is in turn proportional to the number of p-terms in constraint functions,

since the maximum value for each p-term (e.g., a maximum net delay or a maximum cell size)

is usually a small constant, and thus U = O(N + E). Therefore, the complexity of solving the

standard min-cost flow on the COSG is O((N +E) · (N +E)2) = O((N +E)3). Let It denote

the number of the standard network flow iterations needed when solving the DNF problem.

Then, the worst case complexity of our method is O(It(N + E)3). Since in ASIC circuits, the

number of nets and the number of cells are of the same order, the worst case complexity can

be simplified to O(N3It).

We now derive the average-case complexity of DNF. As shown in Table X, the number It

of standard network flow iterations increases much slower than the circuit size increase. Hence,

the average complexity of our technique is mostly determined by the average complexity of the

network simplex method. Despite the O(A2U) worst case complexity, the average complexity

of the network simplex method ranges only from O(A) to O(A2) [37]. This makes the average

complexity of our method range from O(N) to O(N2) This linear average-case complexity is
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Figure 18. Runtime plot of the DNF method versus the number of cells when applying four
transforms to perform power optimization.

borne out by empirical data shown in the runtime plot in Figure 18, which shows that a linear

function is the best fit for the runtime data points.



CHAPTER 4

APPLYING DNF TO VARIOUS PHYSICAL SYNTHESIS PROBLEMS

In this chapter, we will illustrate how to solve various physical synthesis problems with

DNF, and the corresponding results.

4.1 Solving the Timing-Driven Physical Synthesis Problem Using DNF

Given a placed circuit PC, to optimize timing, we are consider five types of timing improve-

ment physical synthesis transforms: cell sizing, incremental placement, cell replication and two

types of buffer insertion. The objective is to produce a new placed circuit with improved critical

path delay. The constraint we consider is the total area. We define Pα to be the set of paths

with a delay greater than a 1−α (α < 1) fraction of the most critical path delay. In our exper-

iments, α is set to be 0.1. In order to develop an efficient approach, we only consider applying

transforms on cells that are in Pα. This simplification does not limit the optimization potential

of our method, since our method can be used in an incremental way. Specifically, we can iterate

it several times to take more paths into consideration until a desired circuit performance under

the given constraints is reached (or failing which, the best possible performance under the given

constraints is obtained).

The options for cell sizing, cell replication and the two buffer insertion transforms are the

same as described in Chapter 1. For incremental placement, we pre-determine the timing opti-

mal positions of cells in Pα with timing-driven global placement TAN introduced in Chapter 2.
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We then set up two options for cell replacement for cells in Pα: remaining in the original po-

sition or being moved to the new position indicated by TAN. It should be noted that moving

cells to a global timing optimal but illegal placement position does not guarantee a timing im-

provement considering the detailed placement cost. Hence the original position can be a better

choice in some cases. In our algorithm, along with the choice of a placement option, a flow

through it will be sent to the corresponding position in the DFP graph (see Sec. 2.2.1) to find

a legal position, and estimate the legalization cost. Figure 19 shows an example of injection

arcs from the options of placement transform Opl(u) for a cell u to the DFP. posu(i) denotes

the global placement position of u determined by option i for transform Opl(u).

We define CS(nj) to be the set of critical sinks of nj , which is: 1) all sinks in Pα if the net

is in Pα, or 2) the sink with the minimum slack otherwise. We then have the following delay

objective functions Ft as the weighted summation of critical interconnect delay:

Ft =
∑
nj

∑
ui∈CS(nj)

D(ui, nj)/S
α
a (nj , ui) (4.1)

where D(ui, nj) is the delay of net nj to a sink ui, Sa(nj) is the allocated slack of nj to ui (slack

of the max-delay path through nj and ui divided by the number of nets in the path), and α is

the exponent of Sa(nj , ui) used to adjust the weight difference in Ft between critical and non-

critical paths. Since the weight is inversely proportional to the allocated slack, interconnects

on critical paths have larger weight. Based on experimental results, α is chosen as 1. By only

considering critical sinks in Ft, we reduce the effect of fairly non-critical paths when performing

timing optimization.
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Figure 19. Placement injection arcs from different placement options of a cell u.

4.1.1 Experimental Results

We used three benchmark suites in our experiments: 1) The TD-Dragon suite of [32], 2)

ISCAS’85 benchmarks and 3) TD-IBM benchmark suite from [4]. We consider five different

sizes of a cell for sizing transform: w/4, w/2, w, 2w and 4w where w is the original width of

the cell. Results were obtained on Pentium IV machines with 1GB of main memory.

The size of the benchmarks are shown in Table IX. The initial delay, area and WL metrics

are given in Table III in Sec 2.4. We obtain results for our method DNF that considers synthesis

transforms simultaneously, and for a method that applies transforms in a good sequential order.

In the latter case, we apply one transform at a time to all cells and nets in Pα in the order of

decreasing ratio of timing-improvement to area-increase of each transform. This provides the

maximal benefit-to-cost ratio for a sequential approach, and, as indicated by our experiments,
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Ckt # # cri. Our method (DNF) Seq. appl. of transforms
cells cells %∆T %∆A %∆WL runtime %∆T %∆A %∆WL runtime

(secs) (secs)

td-ibm01 12K 266 28.0 -2.2 -11.3 633 20.1 -2.2 -9.8 275

td-ibm02 19K 584 29.7 -2.4 -12.6 628 24.6 -2.4 -10.5 338

td-ibm03 23K 425 44.2 -1.9 -8.8 993 37.1 -2.4 -8.9 529

td-ibm04 27K 559 27.8 -1.9 -12.4 1151 28.7 -2.1 -11.0 684

td-ibm05 28K 593 31.9 -2.5 -8.0 1134 23.0 -2.0 -8.5 649

td-ibm06 32K 572 37.7 -2.2 -11.2 1649 24.5 -2.0 -8.6 1124

td-ibm07 46K 705 33.4 -2.6 -8.6 1697 17.0 -1.9 -7.5 1134

td-ibm08 51K 694 39.0 -1.9 -7.2 1827 31.5 -1.7 -8.0 1055

td-ibm09 53K 889 34.9 -1.8 -10.2 2985 23.6 -2.0 -11.0 1722

td-ibm10 69K 912 23.2 -2.4 -8.1 3028 17.2 -1.9 -8.0 1803

td-ibm11 70K 910 31.5 -1.6 -10.5 3417 32.4 -2.7 -9.8 2154

td-ibm12 70K 916 38.4 -1.6 -10.8 2158 29.9 -1.5 -9.3 1536

td-ibm13 84K 889 36.2 -1.7 -9.4 3338 26.0 2.6 -8.6 1689

td-ibm14 147K 1185 22.4 -1.5 -7.5 4028 15.8 -1.6 -7.0 2199

td-ibm15 161K 1201 37.5 -1.4 -5.9 4087 25.8 -1.3 -5.7 3318

td-ibm16 183K 1234 38.2 -1.3 -7.0 5847 21.2 -1.1 -7.9 3542

td-ibm17 185K 1687 48.0 -1.3 -3.3 5812 32.3 -1.3 -5.5 3914

td-ibm18 210K 1779 46.0 -0.9 -3.3 5993 36.6 -0.9 -4.8 4378

Avg. 888 34.8 -1.8 -8.7 2796 25.9 -1.7 -8.4 1780

matrix 3.0K 201 9.5 -9.5 -10.2 1124 6.1 -9.9 -13.0 992

vp2 8.9K 218 13.7 -9.0 -10.2 1347 6.9 -9.9 -12.9 1038

mac32 25K 257 18.6 -9.2 -9.8 1397 11.1 -9.8 -11.9 1134

mac64 8.7K 314 18.4 -8.9 -7.6 1319 11.3 -10.0 -12.4 1208

Avg. 248 15.1 -9.2 -9.5 1296 8.8 -9.9 -12.6 1093

C432 160 50 16.8 -9.7 -11.4 334 8.5 -10.0 -14.5 129

C499 202 51 17.8 -10.0 -12.5 276 9.1 -10.0 -12.7 211

C880 383 77 19.5 -10.0 -11.2 248 9.5 -10.0 -13.1 231

C1355 544 85 15.9 -9.5 -9.6 382 10.6 -10.0 -12.0 244

C1908 880 88 24.1 -9.8 -12.1 376 14.9 -9.5 -12.3 223

C2670 1.3K 91 15.1 -9.2 -8.4 357 10.5 -9.8 -10.1 241

C3540 1.7K 124 25.8 -9.2 -11.6 501 15.6 -10.0 -13.3 338

C5315 2.3K 138 25.8 -9.3 -8.9 772 17.2 -9.5 -8.9 361

C6288 2.4K 299 25.4 -9.0 -7.5 859 16.9 -9.7 -10.0 593

C7552 3.5K 199 18.1 -9.3 -8.8 724 12.2 -9.9 -8.5 674

Avg. 120 20.4 -9.5 -10.2 483 12.5 -9.8 -11.5 314

Overall 568 27.8 -5.1 -9.2 1885 19.6 -5.3 -9.9 1236
Avg.

TABLE IX

RESULTS FOR OUR METHOD DNF AND FOR A SEQUENTIAL APPLICATION OF
TRANSFORMS. THE COMPARISONS ARE TO INITIAL PLACEMENTS BY DRAGON

2.23 (SEE Table III FOR INITIAL PLACEMENT RESULTS). %∆T IS THE
PERCENTAGE TIMING IMPROVEMENT, %∆A AND %∆WL ARE THE PERCENTAGE
CHANGES OF TOTAL CELL AREA AND WL, RESPECTIVELY (A NEGATIVE VALUE

INDICATES DETERIORATION).
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also provides the best delay improvements compared to other orders like best delay improve-

ment. Thus we apply transforms in the order: (1) incremental placement, (2) type 2 buffer

insertion, (3) cell resizing, (4) type 1 buffer insertion, and (5) cell replication. After applying

all the transforms, we perform incremental detailed placement using the DFP to get a legal

solution. The algorithm for incremental placement is explained in Chapter 2, which, as men-

tioned earlier, is also used in DNF to perform incremental placement simultaneously with the

synthesis option selection process in the TSG. The algorithm for buffer insertion is from [21],

and the replication algorithm is from [13]. For cell resizing, we use a network flow technique

with only cell-sizing options [38]. We compare this technique to an exhaustive enumeration

sizing algorithm that gives the optimal solution. For small circuits on which we could perform

exhaustive enumeration, the results produced by our resizing technique is only an absolute of

1% off the optimal value at 1
60 ’th of its runtime [38], which establishes both the quality and

efficiency of our network flow based cell sizing algorithm.

The results for DNF and sequential transform applications are shown in Table IX. For

TD-IBM benchmarks, we allow an extra 3% layout area compared to the original layout so

that the total cell area increase is within 3%. For TD-dragon and ISCAS’85 benchmarks,

this parameter is set to be 10% since these circuits are relatively small. We obtain a timing

improvement of up to 48% and an average of 27.8% while satisfying the given area constraints.

Our method is consistently better than the sequential application of transforms. The average

timing margin between our method and the sequential application one is an absolute of 8.2%

(27.8% vs 19.6%) of the delays of the initial designs, and 40% relatively. Compared to the
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delay obtained by the sequential application one, DNF improves it further by 10.2% on average

(10.2% = 8.2%÷ (1− 19.6%)).

Furthermore, if we want to perform in-place physical synthesis, i.e., we do not want to change

the position of cells in order to preserve interconnect-related metrics of the initial placement such

as routability, WL and net switching power, then the placement option will not be considered.

The average timing improvements in this scenario for DNF and the sequential method are 18.9%

and 12.6%, respectively, which implies a 50% relatively better performance by our technique.

These results show that our algorithm is much better at finding global near-optimal choices

than the sequential method. The WL and cell area increases are similar for both approaches.

Our run time is only about 50% larger than that of the sequential approach.

4.2 Solving Power-Driven Physical Synthesis Problems Using DNF

We are solving the following problem in this section. Given a circuit C and an initial sizing,

Vdd, Vth assignment, and placement solution for C, we need to re-determine cell Vdd’s and Vth’s,

cell sizes and their possibly new placement positions in order to optimize dynamic and leakage

power consumption subject to circuit delay, cell area and voltage island shape and number

constraints. The final output is a new legal placement that optimizes power and satisfies the

given constraints.

Our algorithm is applied in the physical synthesis and placement stage, and produces a legal

placement at the end. Assigning Vdd in the physical synthesis and placement stage generates

another problem, that of voltage island formation. In order to facilitate an efficient power

distribution network, cells with the same Vdd should be clustered into several rectangular regions
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Figure 20. (a) Possible inter-bin movement options for a cell. (b) In our implementation, cell
movements are limited to adjacent bins.

called “voltage islands” in the layout. Due to design and routing cost considerations, there is

usually an upper bound on the total number of voltage islands [39]. Most current Vdd assignment

methods are designed for unplaced circuits, and hence do not take voltage island formation into

consideration. Wu et. al. [39] proposes a Vdd adjustment method after the placement stage

that modifies a Vdd assignment solution in order to help form voltage islands and satisfy the

island number constraint. Clearly, a post-processing adjustment method cannot give an optimal

solution. On the other hand, our proposed method will simultaneously perform Vdd assignment

as well as other power reduction transforms and satisfy the constraint of generating rectangular

voltage islands up to a given upper bound. Besides, the voltage island number and shape

constraint, we also consider the regular delay and area constraint.
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In order to satisfy the voltage island constraints, cells are usually needed to be moved close

to other cells with the same Vdd. Hence, we are providing more incremental placement options

in our DNF structures as follows. The layout area is divided into bins. In the incremental

placement transform, a cell in bin A in the initial placement can choose either to stay at its

current position A or to move to another bin, as shown in Figure 20(a). In our implementation,

we limit cell movement to only adjacent bins, i.e., only A and the eight bins around A as shown in

Figure 20(b) are available options for the cell. The rationale for our choice to make incremental

placement limited to adjacent bins is to prevent significant deteriorations in routability and

WL from the initial placement, which is usually a WL driven one.

4.3 Satisfying Voltage Island Constraints

The voltage island constraint states that the assigned cell Vdd’s and their positions must be

such that the cells are clustered into at most Nup
v iso-voltage rectangular regions (i.e., regions

which contain only cells with the same Vdd assignment); Nup
v is the given voltage island number

upper bound. The reason for the rectangular shape is that it is difficult to produce a high-

quality power distribution network for islands with irregular shapes [40]. The reason for limiting

the number of voltage island is that using more islands increases the design complexity and

occupies more routing resources to connect these islands to power inputs.

In this work, instead of using a post processing Vdd adjustment method as in [39], we

satisfy this constraint simultaneously with Vdd and other transform option selections. We

simultaneously generate bin-level voltage islands, and thus we additionally impose an auxiliary

constraint that all cells in a bin have to be assigned the same Vdd; we call this the iso-bin
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Figure 21. (a) A ct-subgraph and associated structure for satisfying the iso-bin-Vdd constraint.
The branch arcs here have cap=1. (b) Zigzag shaped region formed by voltage boundaries.

(c) Rectangular voltage islands generated in it. (d) Two concave corners at intersection points
u and v in natural islands that are collinear. (e) After partitioning the two concave corners,

two convex corners are generated.

Vdd constraint. With this extra constraint, we can generate voltage islands based on the Vdd’s

of bins. Note that cells are moved to their final bin positions by a part of the flow, as we

simultaneously determine the necessary number of bin-level voltage islands and constraint it to

be ≤ Nup
v .

4.3.1 Bin Based Vdd Assignment

The iso-bin-Vdd constraint is different from the area/delay constraints we dealt with pre-

viously (e.g., in Secs 3.3.2-3.3.3). For the latter, an upper bound is given on the constraint

metric, while the iso-bin-Vdd constraint is a mutual exclusiveness constraint as formulated next.
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We define a binary variable v(g, V j
dd), which is = 1 if a gate g is assigned a supply voltage V j

dd,

and = 0 otherwise. The possibility of a bin Bi using a supply voltage V j
dd can be represented

by the bin voltage selection variable BV (Bi, V
j
dd) defined as:

BV (Bi, V
j
dd) =

∑
g∈to(Bi)

v(g, V j
dd) · b(g,Bi) (4.2)

Recall from Sec. 3.3.2 that b(g,Bi) is a binary variable indicating if g is placed in Bi, and to(Bi)

is the set of gates that can be moved to Bi. BV (Bi, V
j
dd) = 0 when no gate moved to Bi is

assigned voltage V j
dd, and BV (Bi, V

j
dd) > 0 otherwise. However, for Bi to be contained in a

voltage island it is necessary that all gates moved to it be assigned the same Vdd. This gives

rise to the following mutual exclusiveness constraint: In set {BV (Bi, V
j
dd) | ∀ V

j
dd} only one

BV (Bi, V
q
dd) can be > 0.

In order to satisfy this constraint, we can use the previously described constraint satisfaction

graph structure, but with a small difference. Cell-centric ct-subgraphs are used to generate the

branch flows corresponding to p-terms v(g, V j
dd) · b(g,Bi) of Equation 4.2. But in each ct-

subgraph g is a constant, and V j
dd and Bi vary across all possible option nodes for the TVdd(g)

and TB(g) transforms; see Figure 21(a). Thus each such ct-subgraph has multiple p-terms (all

for gate g), and these p-terms are in Equation 4.2 of different BV (Bi, V
j
dd) variables of Bi’s to

which g can be moved. Such a ct-subgraph is shown in Figure 21(a), and includes TVdd(g) and

TB(g) of a gate g. The branch arc attached to an option selection arc (V j
dd, Bi) is responsible for

generating the branch flow for p-term v(g, V j
dd) · b(g,Bi). The flow amount on the branch arc

is 1 (equal to its capacity) when (V j
dd, Bi) is chosen, and 0 otherwise. This is exactly equal to
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Figure 22. Three possible intersection patterns of voltage boundaries (indicated by thick
lines) at a bin corner w. The four bins around w are shown.

the p-term value. The branch flow is sent to the “gathering” arc for the bin voltage selection

variable BV (Bi, V
j
dd) that the p-term belongs to.

For each BV (Bi, V
j
dd) there is a gathering arc (analogous to the constraining arc of Hi ≤ bi

type constraints) e(Bi, V
j
dd) that collects branch flows from p-terms across such ct-subgraphs

of gates g ∈ to(Bi); see Figure 21(a). Since there is no upper bound constraint on the value

of each BV (Bi, V
j
dd), the capacity of a gathering arc is infinite. To satisfy the aforementioned

mutual exclusiveness constraint, as shown in Figure 21(a), an MEA constraint is applied to the

set of gathering arcs each of Bi, i.e., to each set of arcs: {e(Bi, V j
dd) | ∀ V

j
dd}.

4.3.2 Satisfying Voltage Island Number and Shape Constraints

When a flow assigns a Vdd to each bin (as described in Sec. 4.3.1), voltage boundaries are

automatically generated between adjacent bins with dissimilar Vdd’s. A voltage boundary is

either a vertical or a horizontal bin boundary between two bins with different Vdd’s. Voltage

boundaries formed by the Vdd selection flows for each bin form natural voltage islands that



87

minimize power. Natural islands can have zigzag shapes (as opposed to rectangular ones) as is

the case for island 1 in Figure 21(b). To form rectangular islands, we further determine their

natural partitions into such regions as shown in Figure 21(c). Therefore, the key issues are

to determine in the DNF flow the number of natural partitions across all zigzag islands into

rectangular ones (for naturally occurring rectangular islands there will be no partitions), relate

this to the total number of all rectangular islands, and constrain this number to satisfy the

given upper bound Nup
v . A critical determination in this is to identify where at the boundaries

of zigzag regions’ partitions are needed to form maximal rectangular islands. Towards this end,

we define a concave (convex) corner on a natural island Ij as one whose internal angle in Ij is

270 degrees (90 degrees); see Figure 21(b). A partition is needed at each such corner, since a

rectangular island cannot have concave corners. The partition is done consistently horizontally

or consistently vertically from each concave corner until the opposite boundary of the zigzag

region is reached. Partitioning a zigzag island at each concave corner

Nv = (3N270 +N90)/4 (4.3)

where N270 is the number of concave corners and N90 is the number of convex corners in

the original (non-partitioned) natural islands. The division by 4 reflects the fact that each

rectangular island has 4 (unshared) convex corners.

Note that corners on natural islands can only occur when a horizontal voltage boundary

intersects a vertical boundary. There are three different intersection scenarios: 1) The inter-

section forms a convex corner in a natural island A and a concave corner in a natural island
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B as shown by Figure 22(a). 2) It forms two convex corners in two natural islands A and B

as shown in Figure 22(b); 3) It forms four convex corners in four different natural islands as

shown in Figure 22(c). The patterns shown in Figure 22(a-b) for scenarios 1 and 2 can be

rotated in multiples of 90 degrees to yield other isomorphic patterns of the same scenarios.

Based on Equation 4.3, each scenario i contributes to Nv by an a-prior known amount ∆Nv(i).

We should further note that the intersection of voltage boundaries can only happen at bin

corner points w, and that the different intersection patterns can be determined by the chosen

Vdd’s of the four bins Bw1, . . . , Bw4 around w as shown in Figure 22. Hence, we can construct

a ct-subgraph like structure for each bin corner point w (the total number of bin corners is

O(N), where N is the number of cells in the circuit) that allows a flow amount equal to the

∆Nv corresponding to the intersection pattern at w, simultaneously with the Vdd selection of

the four bins around w. This structure contains the Vdd options of the four bins around w,

and hyperarcs connecting all possible combinations of the four Vdd selections; if there are r

Vdd levels, then there are r4 combinations for the four bins’ Vdd’s, and thus as many hyperarcs

(generally r ∈ [2, 4], so this is not a large number). The capacity of the branch arc on a hy-

perarc connecting options is equal to the ∆Nv corresponding to that combination of bin Vdd’s

connected by the hyperarc. For example, for a hyperarc that connects those Vdd option nodes

for the 4 bins for which Vdd(w1) 6= Vdd(w2) = Vdd(w3) = Vdd(w4), we obtain the scenario-1

boundary intersection (Vdd(wi) denotes the Vdd chosen for bin Bwi). For this case, we know

from Equation 4.3 that it contributes a total count of 4 (3 due to one concave corner plus one

original convex corner) to Nv (∆Nv = 4); thus a branch arc from such hyperarcs will have a
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capacity of 4. Flows from all the branch arcs across all such structures of all 2× 2 bin regions

(the number of these regions are proportional to the number of bins and thus is O(N)) are

gathered and sent into a constraining arc with a capacity of Nup
v to ensure satisfying the upper

bound constraint on the number of rectangular islands.

Our aforementioned method works accurately in most cases. However, in some cases, con-

cave corners of a natural island at its opposite boundaries can be collinear as shown in Fig-

ure 21(d). This means that the partitions they engender are the same; see Figure 21(e). We thus

we double-count the number of voltage rectangles for these two concave corners, and thereby

over-constrain the problem.

The following result establishes the basic goodness vis-a-vis the power metric of our method

for rectangular voltage island determination and constraint satisfaction. The COSG contain-

s the ct-subgraphs for: a) the iso-bin-Vdd constraint (Sec. 4.3.1), and b) the voltage island

constraint discussed here.

Theorem 5 If there are no collinear concave corner pairs across the natural voltage islands

formed by our method, then the min-cost valid flow in the COSG determines a feasible optimal

solution. Otherwise, assuming that the probability of collinear pairs is very small, in the general

case a min-cost valid flow in the COSG provides a near-optimal solution 1.

Proof: Follows from the previous discussion; see [35] for details. ♦

1The other source of near-optimality in our technique, alluded to earlier, is not a modeling one, but
due to our use of the concave near-min-cost algorithm of [34]—the concave min-cost problem is NP-hard.
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Ckt # transf. 3 transf. transf.
cells DNF [19] DNF [23] DNF Seq-std Seq-nf

∆P ∆P ∆P ∆P ∆P t # It ∆P t ∆P t
% % % % % (sec) VI % (sec) % (sec)

s5378 2K 14 16 25 21 30 0.9h 12 288 18 0.4h 17 0.4h

s9234 3K 17 15 22 22 24 1.2h 15 241 21 0.8h 23 0.5h

s13207 6K 17 18 23 13 26 1.5h 13 229 23 1.2h 26 0.6h

s15850 6K 11 13 27 13 21 1.6h 16 195 14 0.9h 16 0.8h

s38417 10K 12 10 18 14 29 5.2h 16 315 14 1.7h 13 1.6h

s38584 11K 19 17 30 15 25 6.8h 16 317 17 1.8h 20 1.6h

s35932 14K 17 17 29 18 34 8.1h 16 344 20 1.9h 18 1.8h

Avg. 15 15 25 17 27 3.6h 15 18 1.1h 19 1.0h

DMA 12K 16 13 25 17 29 3.4h 16 297 16 1.7h 16 1.1h

DSP1 26K 12 10 19 11 21 6.9h 15 308 11 3.5h 14 2.4h

DSP2 26K 12 10 18 10 21 7.0h 16 303 12 3.7h 14 2.4h

RISC1 33K 19 16 27 18 25 9.7h 15 320 18 7.1h 17 3.6h

RISC2 33K 17 15 27 17 27 9.6h 16 316 22 6.9h 24 3.7h

Avg. 15 13 23 15 25 7.3h 16 16 4.6h 17 2.6h

Overall 15 14 24 16 26 5.1h 15 17 2.6h 18 1.7h
Avg.

TABLE X

RESULTS FOR OURS AND COMPETING METHODS FOR THREE DIFFERENT
CONFIGURATIONS WITH DUAL VDD’S USED FOR THE MULTIPLE VDD

TRANSFORM. THE INITIAL DESIGNS ARE OBTAINED THROUGH THE SYNTHESIS
TOOL SYNOPSYS’S “DESIGN COMPILER” WITH THE HIGHEST SUPPLY VOLTAGE

AND THE LOWEST THRESHOLD VOLTAGE FOR ISCAS’89 BENCHMARKS. FOR
FARADAY BENCHMARKS, THE INITIAL DESIGNS ARE GIVEN WITH THE

BENCHMARKS. ∆P IS THE % POWER IMPROVEMENT OVER THE INITIAL DESIGN.
A POSITIVE NUMBER INDICATES IMPROVEMENT. T IS THE CPU RUNTIME. IN
THE FOUR TRANSFORM CASE, WE ALSO SHOW THE NUMBER OF VOLTAGE

ISLAND GENERATED BY OUR METHOD (# VI COLUMN), AND THE NUMBER OF
STANDARD NETWORK FLOW PROCESSES IN SOLVING OUR DNF MODELS (IT
COLUMN). THE NUMBER OF VOLTAGE ISLANDS GENERATED BY SEQ-STD IS

ALWAYS 16.
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Empirical evidence on the number of rectangular voltage islands that we actually generate

(see Table X-Table XI) shows that on the average we are only 4% below the upper bound of

16, and in 58% of the cases we generate exactly 16 islands (meaning that in these cases there

are no collinear corner pairs). This provides empirical evidence for our assertion about the low

probability of the collinear concave-corner case.

4.4 Experimental Results

We used two standard-cell benchmark suites in our experiments: 1) ISCAS’89 benchmark

suite, and 2) Faraday benchmark suite from [31]; the macros in the Faraday benchmarks are

removed to yield standard-cell benchmarks. We use a 45nm standard cell library for the IS-

CAS’89 benchmarks, and a 180nm library for Faraday benchmark. Dual Vth’s 0.2V and 0.4V

are applied. Up to four Vdd’s are used: 0.9V, 1.2V, 1.5V and 1.8V. We use a bin size of ten rows

by ten average cell widths for Faraday benchmarks. The upper bound on the voltage island

number is 16, which is around the average number of voltage islands generated in [39]. Results

were obtained on Pentium IV machines with 1GB of main memory.

We obtain results for our method for three different configurations: simultaneously applying

two, three and four power reduction transforms. In each configuration, we also implement a

state-of-the-art method for comparison. For two transforms, we implement the algorithm in [19],

which applies cell sizing and dual Vth transforms. For three transforms, we implement the

algorithm in [23], which applies cell sizing, dual Vdd’s and dual Vth transforms. In [23], no level

shifter is considered, and hence a low Vdd gate is not allowed to drive a high Vdd gate. To make a

fair comparison, we also impose this constraint on our method when applying these 3 transforms.
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Voltage island constraints are not considered in the two and three-transform configurations,

since the competing methods do not address them. Furthermore, the two competing methods

in these cases can only tackle dual Vdd’s. Thus, in our method we also only use dual Vdd’s (0.9

V and 1.8 V) when comparing to them. For four transforms, since there is no prior published

work, for comparison purposes, we apply each transform in the best sequential order—the

decreasing order of the amount of power reduction afforded by each transform. To the best of

our knowledge, this is the approach used in current industry tools that apply multiple transforms

for design closure. The transform order we use is: dual Vdd, cell sizing, dual Vth. There are two

sequential approaches we use when applying the transforms sequentially in the aforementioned

order:

• For each individual transform, we use one of the most effective prior algorithms: [14] for

dual Vdd, [10] for cell sizing, [10] for dual Vth
1, and DNF for re-placement (implemented

with our DNF technique applied to a COSG with only the re-placement transform). This

sequential approach is called Seq-std (for standard sequential method).

• Use our DNF method for each transform in which the COSG only includes the options

provided by that transform. This sequential approach is called Seq-nf (for network-flow

based sequential) method.

1Since there is no recent work on Vth assignment only, we modified the cell sizing algorithm in [10]
to do Vth assignment. The Vth assignment problem is similar to a cell sizing problem in which the input
capacitance of all sizes is the same, and only the cell delay and driving resistance change.
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Benchmark 0% extra delay 5% extra delay
DNF Seq-std Seq-nf DNF Seq-std Seq-nf

∆P t # ∆P t ∆P t ∆P t # ∆P t ∆P t
% (sec) VI % (sec) % (sec) % (sec) VI % (sec) % (sec)

ISCAS’89 30 5.5h 15 22 1.3h 24 1.4h 35 5.1h 15 26 1.2h 27 1.5h

Faraday 31 12.9h 16 18 5.3h 19 3.7h 36 12.2h 16 20 5.2h 22 3.5h

Overall 30 8.6h 15 20 3h 22 2.4h 35 8.0h 15 23 3.5h 25 2.3h

TABLE XI

THE AVERAGE POWER IMPROVEMENTS WITH FOUR TRANSFORMS AND FOUR
VDD’S FOR THE MULTIPLE VDD TRANSFORM. THE COMPARISONS ARE TO AN
INITIAL DESIGN WITH SINGLE VDD AND VTH OBTAINED THROUGH “DESIGN

COMPILER” FOR ISCAS’89 BENCHMARKS (SEE CAPTION OF Table X FOR
DETAILS), AND GIVEN WITH THE BENCHMARKS FOR FARADAY BENCHMARKS.
A POSITIVE NUMBER INDICATES IMPROVEMENT. THE NUMBER OF VOLTAGE

ISLANDS GENERATED BY THE SEQ-STD IS ALWAYS 16.

We measure the power improvement from the initial WL-optimized placement and sizing

solution (the latter is provided with the benchmark where it was generated with a given delay

constraint using synthesis tools) along with the highest Vdd and the lowest Vth for each cell. The

delay constraint imposed is either 0% or 5% more than the initial placement’s delay; all relevant

constraints including delay were satisfied by all methods. We first discuss results for the 0%

extra delay constraint and dual Vdd case that are reported in Table X. Our method obtains up

to 34% and an average of 26% power improvement for the 4-transform case, which compares

very favorably to the 18% average power improvement of the beset sequential method Seq-nf.

DNF’s improvements are also better than the improvements of the other competing methods
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across the 2, 3 an 4 transform configurations by 7%, 50% and 44%, respectively. We also

note that for the two sequential methods in the four transform configuration, using our DNF

technique for each transform (Seq-nf ) obtains a better power improvement than using the prior

most effective methods (Seq-std). Thus this shows that the basic DNF formulation provides

higher quality solutions than state-of-the-art methods even for application to single transforms,

and establishes the efficacy of the general DNF formulation, whether for simultaneous multiple

transforms or single transforms.

We also obtained results with four Vdd’s and four transforms for our method as well as for the

best sequential order method (Table XI). With the 0% (5%) extra delay constraint, DNF obtains

up to 42% (45%) and an average of 30% (35%) power improvement, and this improvement is

36% (40%) better than that of the best sequential method ( Seq-nf ). These results also show

that our simultaneous method using DNF better explores the available optimization space than

either sequential method (going from the 0% to 5% extra delay relaxation, the gap between

DNF method’s power improvement and that of the best sequential method goes from 42% to

45%).

Finally, we compared our method to the popular industry tool Synopsys’s IC Compiler (ICC)

for ISCAS’89 benchmarks. In this comparison, we ran ICC in full power optimization mode (in

this mode, ICC uses all the four transforms that we do, and the congestion consideration in ICC

is turned off) with a timing constraint that corresponds to that of the timing obtained by ICC

run in full timing optimization mode (achieved by setting a very small, and thus unachievable,

timing constraint, and ICC returns the best possible timing result). The output of power-
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optimizing ICC is the input to the DNF technique, and the timing constraint for DNF is the

timing obtained by ICC. There are, however, some small differences between the configuration

and timing model of ICC and DNF that we would like to note:

1. Unlike DNF, ICC cannot automate voltage island formation from scratch, and requires

the designer to specify initial voltage islands that it may subsequently modify. To achieve

this, we partition each circuit into 16 subcircuits (the same number as the voltage island

number constraint for our method) using the min-cut partitioner hMetis, and assign a

Vdd to each subcircuit using the technique of [14] .

2. In general, industry tools use more complex delay and power models than those used

by academic tools including DNF. We do the following modifications in our delay/power

calculation which are employed in ICC to alleviate the inconsistencies: a) Using the

library’s delay/power lookup table. b) Considering the effect of rise and fall times on cell

delay. c) Using ICC’s “virtual routing” of the initial design to estimate net initial WL. We

also perform WL estimation for the cell placement transform using simple incremental

routing. However, some other features in the ICC models were not possible for us to

implement due to insufficient information. These include: a) considering various intra-

and inter-metal layer coupling capacitances (we consider an average coupling capacitance

given in the library lookup tables); and b) trying to place level-shifter cells on nets from

lower Vdd drivers to higher Vdd sinks at the “boundary positions” of their voltage islands

to facilitate power net routing (we put it close to the sink cell to lower the dynamic power

of such nets).
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The above inconsistencies, especially the one concerning detailed coupling capacitance in-

formation, result in our timing and power analysis numbers being about 5-10% below ICC’s

for the same designs. In Table XII, we report DNF’s power improvement results under both

our and ICC’s delay/power analysis to show the differences between them; however, the correct

improvement numbers to consider are those given by our analysis, as these are consistent with

the modeling of these metrics in DNF. Under our analysis, DNF achieves up to 16% and an

average of 13% power improvement compared to ICC. Under ICC’s analysis, DNF’s average

improvement over ICC is 12%, and there is a small amount (5%) of delay constraint violation.

These phenomena are understandable, since, as mentioned above, ICC’s evaluation models for

these metrics are a little different from those of DNF.

For the type of complex design that our method performs, and for its high efficacy in both

power optimization and multi-constraint satisfaction, DNF’s runtimes are reasonable, and only

about 3 times that of the much less conceptually complex sequential method Seq-nf (and only

2 times that of Seq-std). The empirical complexity of DNF w.r.t. the number of cells in a

circuit is linear as shown in Figure 23, which underscores the good scalability of our method.

In summary, all results clearly show the significantly greater efficacy of simultaneous appli-

cation of transforms compared to their sequential application. Also, our DNF-based techniques

for simultaneously applying all transforms have achieved this greater efficacy in a time-efficient

and scalable manner.
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Benchmark s13207 s15850 s38417 s38584 s35932 Avg.

ICC Power (µW) 306 311 498 544 682

Our %∆P 16 12 15 10 12 13
rep. %∆T 0 1 1 1 1 1

ICC’s %∆P 14 11 14 9 11 12
rep. %∆T -7 -4 -4 -5 -4 -5

ICC runtime(h) 0.2 0.25 0.34 0.41 0.5 0.34

DNF runtime(h) 3.5 3.0 4.4 7.8 13.4 6.4

TABLE XII

DNF’S POWER AND DELAY IMPROVEMENTS OVER SYNOPSYS’S IC COMPILER
(ICC) FOR LARGE ISCAS’89 BENCHMARKS USING DUAL VDD’S. BOTH SETS OF

RESULTS ARE FOR POST DETAILED-PLACEMENT BUT PRE-ROUTING DESIGNS.
NEGATIVE VALUES MEAN DETERIORATION. “OUR REP.” (“ICC’S REP.”) IS DNF’S
IMPROVEMENT CALCULATED USING OUR (ICC’S) DELAY/POWER MODELS. THE

RUN TIMES OF BOTH METHODS ARE ALSO GIVEN, THOUGH THEY ARE
PROBABLY NOT COMPARABLE FOR THE FOLLOWING REASON: ICC IS EVEN
FASTER THAN THE SEQUENTIAL METHODS CODED BY US BY A FACTOR OF
ABOUT 5, WHICH INDICATES THAT VARIOUS EFFICIENT DATA STRUCTURES

AND COMPILER OPTIMIZATIONS HAVE PROBABLY BEEN USED FOR ICC THAT
HAVE NOT BEEN USED IN OUR CODES, AND WHICH CAN POTENTIALLY REDUCE

THE RUNTIME OF DNF SIGNIFICANTLY.

Figure 23. Runtime plot of the DNF method versus the number of cells.
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4.5 Solving the Yield-Driven Physical Synthesis Problems Using DNF

For yield optimization, we only consider here the cell sizing transform. Given a placed

circuit and the variation of cells in a library, we want to size the cells in the design, so that the

percentage of produced chips that meet the delay requirement is maximized. Cell sizing is very

efficient in improve the yield. Generally speaking, the larger the size of a cell is, the smaller

its fractional or percentage variation will be. Of course, larger cells can sometimes increase the

delay of critical paths due to their increased input load (in other instances they can decrease

the delay due to their increased drive strength), and also increase both leakage and dynamic

power. Hence, as far as timing yield is concerned it is an optimal balancing act that is needed

to determine the “right” cell sizes that maximizes timing yield or meets a lower bound yield

requirement.

The Gaussian distribution of circuit delay can be derived by using SSTA in which Equa-

tion 1.11 is applied to each pin in a topological order to derive each pin’s arrival delay PDF.

However, obviously the µ and δ of the distribution will be a very complex function of µ and δ

of the variation of each cell in the circuit. We proposed two methods to simplify the objective

function, the full circuit delay PDF method and the critical path set delay PDF method.

4.5.1 The Full Circuit Delay PDF Method

To simplify objective function Yd (Equation 1.12) so that it can be handled efficiently by

DNF, we can take an order-k Taylor’s series expression of the Yd, where k ≤ 10. Note that

for order-k Taylor’s series expression, the highest order of product terms is k. An example of

order 2 Taylor’s series is given in Equation 4.4. In our experiments, we have tested Taylor’s
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series expansion of Yd for k=1,2,3. Our results show that we obtain very diminishing results

for k > 2—the yield improved by 1% but runtime increases by a factor of 40, when going from

k=2 to 3. Hence, in our implementation, we choose the second order Taylor’s series as the

simplified objective function.

The second order Taylor series for a function f that depends on a set of variables X is given

as:

T (f(X), Xs) = f(Xs) +
∑
x∈X

df(Xs)

dx
(x− xs)

+0.5
∑
x,y∈X

df(Xs)

dxdy
(x− xs)(y − ys) (4.4)

where Xs is an initial (starting) solution, and xs (ys) is the value for variable x (y) in the initial

solution. The key issue of obtaining the second order Taylor series for a complex function is,

of course, determining the various derivatives at the initial solution point. We use recursively

the chain rule given below to calculate the derivatives

df

dx
=
df

da
· da
dx

where a is an intermediate variable. The arrival time of each gate is used as the intermediate

variable in our case. Let Ai(g) (Ao(g)) denote the max arrival time (arrival time) at the input

(output) of each gate g. We define the derivative vector of a random variable u w.r.t. another
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random variable v (denoted by du
dv ) as the set of four derivatives {d(µ(u))d(µ(v)) ,

d(µ(u))
d(σ(v)) ,

d(σ(u))
d(µ(v)) ,

d(σ(u))
d(σ(v))}.

Correspondingly, the chain rule for derivative vectors can be written as:

du

dv
=
du

dw
· dw
dv

=

{ d(µ(u))

d(µ(w))
· d(µ(w))

d(µ(v))
+
d(µ(u))

d(σ(w))
· d(σ(w))

d(µ(v))
,

d(µ(u))

d(µ(w))
· d(µ(w))

d(σ(v))
+
d(µ(u))

d(σ(w))
· d(σ(w))

d(σ(v))
,

d(σ(u))

d(µ(w))
· d(µ(w))

d(µ(v))
+
d(σ(u))

d(σ(w))
· d(σ(w))

d(µ(v))
,

d(σ(u))

d(µ(w))
· d(µ(w))

d(σ(v))
+
d(σ(u))

d(σ(w))
· d(σ(w))

d(σ(v))
} (4.5)

The derivative vectors that need to be determined are dD
d(p(g)) for circuit delay D w.r.t. the

parameters p(g) (e.g., intrinsic delay, driving resistance and input capacitance) for each gate

g. As for the intermediate variables, we also calculate dD
d(Ai(g))

. We note that for each gate, we

can directly calculate three “local” derivative vectors
d(Ai(gfo))
d(Ao(g))

, d(Ao(g))
d(Ai(g))

and d(Ao(g))
d(p(g)) , where gfo

is a fanout gate of g. Since Ai(gfo) is the maximum Ao(g) of its fanin gates g,
d(Ai(gfo))
d(Ao(g))

can

be determined according to the max operation approximation (Equation 1.11). The rest two

derivative vectors can be calculated according to the relationship that Ao(g) = Ai(g) + dv(g),

where dv(g) is given in (Equation 1.9). The derivative determination for each gate is done in

the topological order. The recursive calculation steps are as follows:

1. At the boundary case, i.e., the primary output gate g, since there are no fanout gates, we

calculate dD
d(Ao(g))

instead of
d(Ai(gfo))
d(Ao(g))

for local derivatives. Then,
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dD

d(p(g))
=

dD

d(Ao(g))
· d(Ao(g))

d(p(g))
(4.6)

.

dD

Ai(g)
=

dD

d(Ao(g))
· d(Ao(g))

d(Ai(g))
(4.7)

.

2. For gates g that are not output gates. Assume we have obtained dD
d(Ai(gfo))

for all its fanout

gates gfo and local derivative vectors for g. Then,

dD

d(p(g))
=

∑
gfo

dD

d(Ai(gfo))
·
d(Ai(gfo))

d(Ao(g))
· d(Ao(g))

d(p(g))
(4.8)

.

dD

d(p(g))
=

∑
gfo

dD

d(Ai(gfo))
·
d(Ai(gfo))

d(Ao(g))
· d(Ao(g))

d(Ai(g))
(4.9)

.

Note that by determining a derivative, we mean calculating its numeric value—there is no

need to record the detailed expression for each derivative. The complexity of the recursive

method for determining the n partial derivatives of a function is O(n). After obtaining the
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Figure 24. (a) The local derivatives of each gate g. They are shown in the order: d(Ao(g))
d(p(g)) ,

d(Ao(g))
d(Ai(g))

,
d(Ai(gfo))
d(Ao(g))

. Note that the last element of this derivative vector is repeated for every
fanout gate gfo of g; thus z with 2 fanout gates has a 4-element derivative vector, while each

of the other gates (each with 1 fanout gate) has a 3-element vector. (b) The determined
derivatives for each gate g. They are shown in the order: dD

d(p(g)) ,
dD

d(Ai(g))
.

second order Taylor’s series for Yd, we solve this simplified objective function using DNF which

we describe in the Appendix.

An example for derivative determination is given in Figure 24. A simple circuit of four

gates w, x, y and z is shown. For clarity of exposition, we only consider one element in

the derivative vector instead of all four. Figure 24(a) lists the local derivative vectors. For

each gate, the first value is d(Ao(g))
d(p(g)) , the second value is d(Ao(g))

d(Ai(g))
, and the rest are

d(Ai(gfo))
d(Ao(g))

( dD
d(Ao(g))

for the output gates), for each fanout gate gfo. Figure 24(b) gives the derivative

vectors dD
d(p(g)) and dD

d(Ai(g))
for each gate. For the output gate z, according to Equation 4.6

and Equation 4.7, dD
d(p(z)) = 1 × 3 = 3 and dD

d(Ai(g))
= 1 × 2 = 2. For gate x (gate y is in a

similar position as x), according to Equation 4.8 and Equation 4.9, dD
d(p(z)) = 2 × 2 × 4 = 16
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and dD
d(Ai(g))

= 2 × 2 × 3 = 12. Finally for the input gate z, according to Equation 4.8 and

Equation 4.9, dC
d(p(z)) = 12× 1× 4 + 6× 2× 4 = 96 and dC

d(Ai(g))
= 12× 1× 3 + 6× 2× 3 = 72.

One property of T (f(X), Xs) is that it only has a small error (w.r.t f(X)) at solution points

close to Xs. Thus if T (f(X), Xs) is optimized and the optimal solution Xo for T (f(X), Xs) is

far from Xs, then T (f(X), Xs) may deviate from f(X) by a large amount at Xo. Thus Xo may

not be a near-optimal solution for f(X). We resolve the potential optimal solution inaccuracy

problem by iteratively adjusting the initial solution point. In each iteration, a new Taylor series

is generated for the original objective function at the optimal solution point obtained in the

last iteration. The pseudo code for the iterative algorithm Iter Taylor is given in Figure 25.

The rationale behind the termination condition of Iter Taylor is as follows. The idea of

optimizing a function f through iteratively optimizing f ’s Taylor expansion has been used in

continuous optimization (e.g., Newton’s method), and it has been shown both theoretically and

empirically that the iterative process converges well to either a global or local minima. Hence,

a good termination condition in continuous optimization can simply be: error e < ε, where ε is

a given error upper bound. However, in discrete optimization such as the cell sizing problem we

tackle here, the convergence to a particular minima is not established. Intuitively, this is mainly

because generally a non-infinitesimal distance exists between any two discrete solutions. Hence,

Taylor expansions at different solution points (even adjacent ones) cannot be similar enough

to have the same local minima. In our experiments we have observed that when the solution

is close to a local minima, in most cases the iterative process will jump around several close

discrete solutions, with one of them being the local minima. Such a ”thrashing” pattern can be
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Algorithm Iter Taylor

1. Obtain the static timing optimal gate sizing
solution Xt ignoring random variations. Use
Xt as the starting solution Xs.

2. Let Xg be the best solution, and emin be the
minimum error between Yd(X) and its Taylor
expansion. Initially, Xg=Xt, and emin =∞.

3. Repeat
4. Derive the Taylor series T (Yd(X), Xs) for
Yd(X) at Xs.

5. Optimize T (Yd(X), Xs), and get the op-
timal solution Xo.

6. if Yd(Xo) > Yd(Xg) then Xg = Xo.
7. Compute the % error e between
T (Yd(Xo), Xs) and Yd(Xo).

8. if e < emin then emin = e.
9. Xs = Xo.
10. Until emin does not decrease in r successive
iterations.

11. return(Xg).
End Algorithm

Figure 25. Yield optimization using iterative Taylor’s series approximation.
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Figure 26. The process for propagating Yo(g) to Yi(g). (a) The delay PDF at the output of g.
(b) The propagated Ti(g) and Yi(g) at the input of g.

detected (with high probability, as our experiments suggest) by examining emin in Iter Taylor.

Based on our experiments, we choose r = 3 so that in most cases no more improvement is

possible by continuing iterations beyond this termination condition.

4.5.2 The Critical-Path Set Delay PDF Method

In the first method (the full circuit method—FCM), the objective function Y d is a function

of the µ and σ of cell parameters for all cells in the circuit. Taking the parameters of all cells

into consideration, especially for those that has little impact on the final yield not only increases

the problem complexity a lot (note that the number of second order terms in the Taylor series

is proportional to O(n2), where n is the number of cells considered), but also distracts the

optimization focus (e.g., assign unnecessarily large cell area to cells with little impact, and not

leave enough area for critical cells). This is especially true in a practical scenario where there

is a cell area constraint on the yield optimization problem.
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Furthermore, in order to obtain the closed form objective function, the operation for deter-

mining the max arrival time’s PDF from multiple paths involves an approximation. The error

due to this approximation grows with the depth of the circuit, and thus for circuits of even

medium complexity, the obtained closed form expressions for the µ and σ of the circuit delay

can have an appreciable error from these parameters in the actual delay PDF of the circuit.

To remedy the above drawbacks, we propose to use a path based approach in which we

determine yield-critical paths, and focus on optimizing the yield of these paths only. Similar

approaches have been used to optimize circuit delays in the non-statistical domain [4]. They

usually involves three steps: (a) using STA to enumerate critical and near-critical paths (e.g.,

those paths with delays within, say, 15%, of the critical-path delay); (b) improve the delay of

these critical and near-critical paths by either minimizing a weighted summation of their delays

or satisfying a constraint that the delay of all these paths should be smaller than a given upper

bound (the latter problem is a delay constraint one, as opposed to the delay optimization one

that the former addresses); (c) repeat steps (a) and (b) to ensure convergence (e.g., no new

critical or near critical path appear).

Using such a path based approach in the statistical domain can avoid the two drawbacks of

the FCM method. Since the optimization is only performed for cells in critical and near critical

paths, the distraction from cells that have little impact on final yield is eliminated. Further,

there is no explicit max operation needed. Hence, the approximation error for max operation

can be avoided. However, in the statistical delay environment, the concept of critical and near

critical paths is not that obvious. For example, should the µ of the cell delay distribution be used
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to determine critical paths or should the worst-case delay of µ+3σ be used? Neither is actually

a good choice. The former is essentially useless since it does not capture the delay variability,

and the latter will only identify statistically worst-case critical paths which overconstrains the

problem (the probability of any path having a worst-case delays based on µ+ 3σ is extremely

small). In fact, the criticality measurement should be related to a required yield value. For

example, if the required yield is 100%, then the worst case delay of µ + 3σ is a good choice;

on the other hand, if the required yield is 50%, then the average delay µ is appropriate. Given

an yield requirement Y , we propose the following general way to obtaining yield-characterized

(YC) critical and near critical paths.

The YC critical path selection technique starts from an initial static timing optimized

solution, which can be obtained using any state-of-the-art method [38]. The PDF of arrival

time at the input and output of each cell is then determined using SSTA.

For a circuit with m output gates g1, . . . , gm, the yield of the circuit Yc can be written as1 :

Yc = Πm
k=1Yk, where Yk is the yield at the output of gk (i.e., for gk and its input cone). Hence,

optimizing Yc can be done by optimizing each Yk. However, the influences on Yc of different Yk’s

are different. Let Y ′c (Y ′k) denote the value of Yc (Yk) for the initial solution. If Yk is improved

by ∆y from the initial solution, then the improvement on Yc will be ∆y dYcdYk
|Yc=Y ′

c
= ∆y Y

′
c
Y ′
k
.

Thus, the smaller Y ′k is, the larger will be the influence of a change in Yk on Yc. Of course, this

1Note that we assume that the statistical delays of paths are independent. This assumption is, of
course, not accurate for re-converging paths. However, as shown in [7], such inaccuracy only causes a 1%
difference from Monte Carlo simulation results. On the other hand, the assumption greatly simplifies
the problem.
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derivative based analysis is accurate only for small changes. However, generally speaking, when

the circuit yield constraint Y is given, performing optimization on an output gate gk (as well

as its input cone) whose Y ′k is less than the average yield requirement Y 1/m at gk’s output, is

more effective than performing optimization on gk’s with Y ′k ≥ Y 1/m. Furthermore, we define

the yield characterized (YC) delay Ty(gk) for gk to be the delay on the delay PDF at the output

of gk for yield Y 1/m, and let D be the delay on the circuit delay PDF for the yield requirement

Y . Then the metric Ty(gk) −D indicates how much we can improve the timing of gk and its

input cone until the improvement becomes ineffective for improving circuit yield. Therefore,

since D is almost a constant w.r.t. the Ty(gk)’s, Ty(gk) is a good measure of the YC criticality

of gk. Large YC criticality (Ty(gk)) indicates that there is more yield optimization potential

for gk and its input cone.

The above YC criticality determination for output gates can be generalized for determining

the YC criticality of fanins of a multiple fanin gate v. Let Yi(v) denote the yield requirement at

the input of v, and (u, v) be a fanin to v from gate u. (Yi(v))1/k is the yield limit at the output

of u till which the optimization on u and its input cone is effective (called the effective yield

limit for short), where k is the number of fanin gates of v. The YC delay Ty(u, v) for (u, v) is

defined as the delay on the delay PDF at the output of u for yield (Yi(v))1/k. Then, the YC

criticality of (u, v) (i.e., the effectiveness of optimizing its input cone) is measured by Ty(u, v),

and the fanin with largest YC delay is the YC critical fanin to v. An example for determining

the YC critical fanin is given in Figure 27. The yield requirement Yi(v) can be propagated from

the circuit yield requirement Y according to the following rules.
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1. Propagate the yield requirement Yo(g) at the output of g to Yi(g) as follows:

• Determine the delay To(g) for the yield point Yo(g) on the delay PDF at g’s output.

Let dp(g) be the delay that satisfies P (dv(g) ≤ dp(g)) = Y
1/2
o (g), where dv(g) is the

delay of g including random variations as given in Equation 1.9. Then propagate the

delay point To(g) at the output to the delay point Ti(g) at the input as To(g)−dp(g).

The rationale behind this propagation will be explained shortly. An example of this

propagation is given in Figure 26.

• Yi(g) is the area on the delay PDF at the input of g with delay ≤ Ti(g).

2. Propagate Yi(g) to Yo(gfi) as follows, where gfi is the fanin gate of g: If there are q fanin

gates, then

Yo(gfi) = (Yi(g))1/q (4.10)

Thus, the propagated yield requirement at the output of gfi is its effective yield limit.

3. If a gate g has multiple fanout gates, multiple Yo(g)’s can be propagated from different

fanouts according to the above rule. Then, the maximum one among them is chosen as

Yo(g).

Note that if we add a zero-delay dummy cell gd to all circuit outputs, its Yi(gd) is the given

yield requirement Y for the circuit. Starting from Yi(gd), we can get Yi for each gate using the
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above rules. The rationale for choosing dp(g) as the delay propagation difference from To(g) to

Ti(g) is to ensure that the yields corresponding to these two delay points on the delay PDF of

the max-input and output of g is similar. Note that Yo(g) = Yi(g) ∗ P (dv(g) ≤ dp(g)). Then,

since P (dv(g) ≤ dp(g)) = (Yo(g))1/2, Yi(g) = (Yo(g))1/2. Hence, the yield related requirements

Yi(g) and P (dv(g) ≤ dp(g)) are well-balanced.

The YC critical path from the input to a cell w can be determined by iteratively identifying

the YC critical fanin in the input cone to w. Starting from w, we first identify the YC critical

fanin (v, w) to w; then the next YC critical fanin (u, v) is identified to v, and so on. This process

continues until the primary inputs of the circuit are reached, and all identified interconnects

consists the YC critical path to w. The YC critical path of the circuit is then the YC critical

path to gd.

To determine the YC near-critical paths, we first define the one-hop change on a path P .

The one-hop change on P will create a new path P ′ by switching a YC critical subpath in P to

a gate w to a YC non-critical subpath to w as follows. First change the interconnect (v, w) in

P to another interconnect (u,w) to w, and then replace the path to v in P by the YC critical

path to u. Hence, P and P ′ will have a common path after w, and branch at w. The distance

of the one-hop change is defined as Ty(v, w)− Ty(u,w).

The distance of a path Q from the YC critical path is defined as the sum of distances

of all one-hop changes needed to change the YC critical path to Q. We use a path’s yield

characterized (YC) delay to measure path criticalities. Given a yield constraint, we define the

YC delay (denoted by Ty(P )) of the YC critical path P as the delay value on its delay PDF that
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corresponds to the yield constraint. The YC delay Ty(Q) of a near critical path Q is defined as

Ty(P )− (the distance of Q from P ). Large YC delay indicates high criticality.

To identify YC critical and near critical paths, we can use a method similar to the Dijkstra’s

algorithm. The detailed steps of the method is as follows:

1. Identify the YC critical path.

2. Construct a candidate path set, which includes all paths that can be derived through a

single one-hop change (called one hop away) from the YC critical path. Then, the next

two steps are repeated until the next YC near-critical path’s YC delay is less than the

threshold set for near-critical paths (85% of the YC delay of the YC critical path).

3. Select the path Q from the candidate path set with the largest YC delay. Q is the next

YC near-critical path.

4. Remove Q from the candidate path set. Then, add all paths that are one hop away from

Q to the candidate path set.

The result below establishes the theoretical correctness of our near-critical path set deter-

mination method.

Theorem 6 The (i+ 1)’th (i ≥ 1) YC near-critical path is one hop away from one of the first

i YC near-critical paths, where the YC critical path is the 1’st YC near-critical path.

Proof Outline: If an fanin (u, v) is not the YC critical fanin to v, we call it a YC non-critical

fanin. In the (i + 1)’th YC near-critical path Q, since it is not the YC critical path, we can
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always identify a set of YC non-critical fanins on it. Let (u, v) be one of the YC non-critical

fanin on Q that is closest to the starting cell s of Q. This means the subpath from s to u on Q

is on the YC critical path through u (otherwise, at least one fanin/interconnect on this subpath

is YC non-critical and is closer to s than (u, v), and we reach a contradiction to our assumption

that (u, v) is the YC non-critical interconnect on Q that is closest to s). Assume (w, v) is the

YC critical fanin to v. Performing a one-hop change on Q by switching from (u, v) to (w, v)

generates a new path Q′. Obviously, Q′ has larger YC delay than Q, and thus must be one

of the first i YC near-critical paths. Further, by the definition of the aforementioned one-hop

change on Q, performing a reverse one hop change on Q′ by switching from (w, v) to (u, v) will

generate Q. Therefore, Q is one-hop away from Q′, and the theorem is true. ♦.

In our method for determining the set of YC near-critical paths, after determining the i’th

YC near-critical path, the candidate path set includes all paths that are one-hop away from

one of the first i YC near-critical paths. Therefore, the path with the largest YC delay in

the candidate path set will be the (i + 1)’th YC near-critical path for the circuit according to

Theorem 6.

To optimize the delay under a given yield constraint, we use an objective function that

is the weighted summation of critical and near critical path delays at the yield requirement

point (Y 1/m where m is the number of output gates). The weight is inversely proportional to

the yield-characterized delay slack of each path, which is defined as 1.1Ty(P ) − Ty(Q). The

coefficient of 1.1 is to ensure that all slacks are positive, and provides a relative measure of

criticality of the set of critical and near critical paths. The aforementioned objective function
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is also decomposed into quadratic terms using order-2 Taylor’s expansion (just as detailed for

the FCM method), and then solved using DNF.

By using the approach for the timing optimization under yield constraint problem as a sub-

routine, we can also solve the dual problem of optimizing yield under a given timing constraint

Dc. The subroutine can be used as a tester that determines, given a yield Y , if the near-optimal

delay that we have obtained for the yield point ≤ Dc. If it is not, the we need to test another

yield Y ′ < Y , otherwise we can test another yield Y ′ > Y . The choosing of the next yield

goal Y ′ can be determined in a binary search manner, and the entire process terminates if the

new Y ′ differs from Y by less than a predetermined amount δ. The pseudo code is given in

Figure 28.

4.6 Experimental Results

The proposed statistical optimization methods were implemented and tested on ISCAS’85

and Faraday benchmarks. A 180nm cell library is used, and for each cell type, there are six

different sized implementations in the library. The standard deviation (σ) of cell parameters is

21, 17, 13, 9, 5, 1% of the nominal value from the minimum sized implementation to the max-

imum sized one 1. Choosing such standard deviation values is consistent with the observation

that large cells should have smaller standard deviation [7]. The deterministic cell sizing is done

using a network flow based method from [38], and it optimizes the worst case delay at µ+ 3σ.

The yield evaluation is done using SSTA with the max approximation as given in [7]. The av-

1As predicted in [41], the standard deviation of variations can be over 14% of the nominal value for
technique below 90nm.
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erage delay obtained by SSTA for the deterministic solution is used as the timing constraint for

calculating yield. Hence, the yield for the deterministic solution is always 50%. For statistical

cell sizing, we use the same area constraint as the deterministic sizing (which means 0% area

increase). All programs are run on a machine with a 3GHz CPU and 1GB RAM.

Table XIII shows yield improvement compared to the deterministic method for three sta-

tistical methods, sensitivity based (Sen), non-path based (FCM), and path based (PBM). For

the sensitivity based method, we implemented one of the state-of-the-art algorithm proposed

in [12], which provides a sensitivity based technique for solving the problem of timing optimiza-

tion under a yield constraint. This algorithm is then used in our binary-search based algorithm

Yield Opt(Dc) to obtain a yield optimized design under a given timing constraint. For our

PBM method, the paths that are within 85% of the YC delay of the YC critical path are

determined as the set of near-critical paths.

The PBM method achieves a maximum of 43% and an average of 37% yield improvemen-

t. On average the yield improvement obtained by PBM is 6% relatively more than obtained

by FCM, and 19% relatively more than Sen’s. Further, PBM generates larger yield improve-

ments compared to the other two methods for most benchmark circuits, which illustrates the

consistently high quality of PBM. The table also shows that the leakage power change when

optimizing yield is minimal (1-2% on average) and comparable across the three methods.

Since PBM uses global optimization, it is expected that its runtime will be larger than the

sensitivity based local search method Sen. According to Table XIII, the run time of PBM is

about 6 times of that of Sen. However, our method still displays a linear complexity w.r.t.



115

Ckt # # Sen [12] FCM PBM
cells nets % Runtime % % Runtime % % Runtime %

∆ Y (sec) ∆PL ∆ Y (sec) ∆PL ∆ Y (sec) ∆PL
C432 160 196 18 8 4 18 44 2 20 66 6

C499 202 243 34 15 4 34 79 5 39 105 4

C880 383 443 23 29 7 26 142 7 27 184 1

C1355 544 587 35 27 -1 43 184 1 43 213 6

C1908 880 913 34 49 -5 42 510 -5 41 525 1

C2670 1.3K 1.5K 37 69 3 38 532 -4 39 380 -4

C3540 1.7K 1.7K 31 112 5 36 568 7 39 716 2

C5315 2.3K 2.5K 21 130 -2 25 811 1 24 1146 -6

C6288 2.4K 2.4K 36 110 -3 41 1005 -2 43 1295 0

C7552 3.5K 3.7K 36 130 4 40 948 5 41 1241 5

Avg. 30 68 1 34 482 2 36 587 2

DMA 12K 12K 33 362 5 37 1953 1 42 2411 6

DSP1 26K 28K 35 701 1 39 3438 3 39 4021 5

DSP2 26K 28K 34 710 -4 39 3216 6 38 4098 1

RISC1 33K 33K 29 751 5 34 4514 -1 35 5116 -1

RISC2 33K 33K 29 743 3 32 4503 5 34 5168 4

Avg. 32 653 2 36 3524 3 38 4162 3

Overall 31 263 1 35 1496 2 37 1778 2
Avg.

Norm. 1 1 1 1.13 6 2 1.19 7 2
Avg.

TABLE XIII

YIELD IMPROVEMENT RESULTS FOR THREE STATISTICAL METHODS OVER THE
DETERMINISTIC DESIGN (WHOSE YIELD IS 50%). THE DETERMINISTIC DESIGN
IS OBTAINED BY OPTIMIZING THE WORST CASE DELAY. THE %∆Y COLUMNS

GIVE THE PERCENTAGE YIELD IMPROVEMENTS. A POSITIVE NUMBER
INDICATES IMPROVEMENT. THE TOTAL CELL AREA INCREASE CONSTRAINT

FOR ALL METHODS IS 0%. THE LEAKAGE POWER CHANGE FROM THE
DETERMINISTIC DESIGN IS LISTED IN THE %∆PL COLUMNS.
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the number of cells in the circuit as shown in the plot in Figure 29. This enables PBM to be

used on large scale problems. Finally, Table XIII shows that PBM’s run time is a little larger

than FCM’s (by about 19%). This is mainly due to that fact that to solve the problem of

yield optimization under a timing constraint (the “yield optimization problem”), PBM needs

to iteratively solve the dual problem of timing optimization under a given yield constraint (the

“timing optimization problem”); see Figure 28. Given the fact that the number of iterations

is usually 6-8, the run time for each iteration, which is the run time for PBM to solve a

single timing optimization problem, is much less than the run time for FCM to solve an yield

optimization problem (though the complexities of the two problem are similar).
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Figure 27. The criticality comparison of three fanins to gate g. The delay PDFs at the three
inputs i/p1, i/p2 and i/p3 of g are shown. The middle input i/p2 has the largest delay at

yield point (Yi(g))1/3, and hence is critical.
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Algorithm Yield Opt(Dc) /* Dc is the delay con-
straint */

1. We start with an initial yield constraint of
Ys that can be arbitrarily chosen, e.g., 50%.

2. Initially, the upper bound for the yield con-
straint is 100%, and the lower bound is 0%

3. Repeat
4. Obtain the best possible delay Db and the
corresponding solution

Xb at Ys by solving the timing optimizing
under yield constraint

problem.
5. If Db ≤ Dc then update the lower bound
to Ys.

6. If Db > Dc then update the upper bound
to Ys.

7. The next Ys is determined as (up-
per+lower bound)/2.

8. Until upper bound − lower bound < δ
9. Return(Xb).

End Algorithm

Figure 28. Yield optimization using an iterative Taylor’s series approximation and
optimization approach in a binary-search framework.

Figure 29. Runtime plot of the PBM method versus the # of cells.



CHAPTER 5

DNF’S APPLICATION TO 0/1 ILP AND INLP PROBLEMS

In this chapter, we discuss the modeling of 0/1 integer programming problems as DNF

problems, and present experimental results for DNF solutions to these problems.

5.1 DNF Modeling

Due to its generality, our DNF method can also be applied to general discrete integer

linear/non-linear programming (ILP/INLP) problems. In particular, it is very suitable for

problems where each variable takes a binary value. For such cases, we can again view the

problem as an option selection problem, with each variable having two options value 0 and

value 1. The ot- and ct-subgraphs can be built for each p-term in the objective and constraint

functions. For a p-term that depends on k binary variables, the corresponding subgraph will

have 2k hyperarcs/arcs.

When applied to general 0/1 ILP/INLP problems, there are two issues that we need to

pay attention to. First, for the ILP problem, our optimization and constraining graphs can be

greatly simplified. Figure 30 shows an example of the DNF graph for a simple ILP problem

given below.

Min. − x1 − 3x2 − x3

s.t. 2x1 + 2x2 − 4x3 ≤ 1 (5.1)

119
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Figure 30. A DNF structure for the ILP problem given in Equation 5.1.

In the DNF graph, for each variable there is a selection node. Each selection node has two

outgoing MEA arcs to the two value nodes for the corresponding variable. Flow through one of

the value nodes indicating the corresponding value is chosen. The cost on the MEA arc to value

1 is equal to the coefficient of the corresponding variable in the objective function. For each

constraint, there is a constraining node that gathers flow from value 1 node of each variable,

and the flow amount is equal to the variable’s coefficient in the constraint.

The second issue we need to note is that when a variable has a negative coefficient in a

constraint, then we actually need to gather a negative flow amount from the variable’s value

1 node to the constraining node. Negative flow amount is not allowed in the network flow

graph. To handle this problem, we will add a constant to the terms with negative coefficients
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to form a new combined term. For example, in the constraint in Equation 5.1, we will change

the constraint to

2x1 + 2x2 + 4(1− x3) ≤ 5 (5.2)

In this way, value 0 node for x3 will be connected to the constraining node, and sending a flow

of amount 4 to the constraining node when it is selected. This indicates the combined p-term

4(1− x3)’s value when x3 = 0.

5.2 Experimental Results

We have tested our DNF method on various benchmarks. The integer non-linear program-

ming (INLP) problems are obtained from: AMPL MIQP [42] and MINLP [43]. The integer

linear programming problems (ILP) come from: MIPLIB [44] and Pseudo-Boolean Bench-

marks [45]. The cubic benchmarks (those starting with “c-” in their names) are constructed

artificially by us by multiplying each quadratic p-term in the objective function of a quadratic

benchmark with another 0-1 variable randomly chosen from that benchmark.

Table XIV gives results of our DNF method and compares them to results obtained by

state-of-the-art methods Couenne [46], Bonmin [47] and SCIP [48]. DNF solutions to 0/1 ILP

problems are solved using the model described in Sec 5.1, and the concave min-cost network flow

method described in Chapter 3. DNF modeling for 0/1 INLP problems is a combination of the

model of Sec 5.1 for 0/1 ILP’s, and the modeling of non-linear p-terms in ot- and ct-subgraphs

discussed in Sec. 3.2-Sec. 3.3; the optimization algorithm is again the aforementioned concave

min-cost network flow method.
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For non-convex and convex INLPs, we use Couenne to obtain optimal solutions. Since

Couenne does not provide the feature of solving problems near-optimally, we use Bonmin (which

handles only convex problems) for near-optimal results that are more directly comparable to our

DNF method. For ILPs, we use SCIP to solve these problems both optimally and near-optimally.

The near-optimality upper bound ε is set to 10% for Bonmin and SCIP (in near-optimality

mode). We note that the three competing solvers we use, Couenne, Bonmin and SCIP, are all

the most state-of-the-art and publicly available solvers in their respective areas: non-convex,

convex, and linear discrete optimization, respectively. All results, except the optimal result for

protfold (see below), were obtained on Pentium IV machines with 1GB of main memory. As

can be seen, the results for DNF are quite promising: (a) It obtains results that are on the

average only 14-15% from optimal for the non-linear problems. Optimal results are obtained by

Couenne with 5X-22X of the DNF method’s runtime. Compared to the near-optimal technique

Bonmin, the DNF method is 2.5X faster with a quality gap of 9% from Bonmin. (b) For ILPs,

DNF produces results that are obtained 19X faster than SCIP, run in near-optimal mode, with

comparable solution qualities. These are significant runtime improvements over comparable-

quality state-of-the-art solvers.
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Non-convex INLPs

Bench- # of # of Non-0 Couenne DNF method
marks var. constr. Coef. Val. Run- Val. Opt. Run- Spdup

time gap(%) time over opt

iran13x13 169 195 1014 3258 921s 3784 16 194s 4.7

imisc07 258 212 8620 2814 2928s 3275 16 340s 8.6

pb30235 600 50 1801 3.38 ·106 4h 3.74·106 11 648s 22.2

c-imod011 96 448 1404 1.84·10−4 1427s 2.1·10−4 14 162s 8.8

c-qap 225 31 954 2.7 · 105 3042s 3.1·105 13 242s 12.5

c-pb30235 600 50 1801 1.4·106 5.4h 1.6 ·106 16 1405s 14

Avg. 15 11.8

Convex INLPs

Bench- # of # of Non-0 Bonmin DNF method
marks var. constr. Coef. Val. Opt. Run- Val. Opt. Run Spdup

gap(%) time gap(%) time (10%)

ibell3a 31 104 150 9.2·105 4 10s 10.02·105 14 6s 1.7

imod011 96 448 1404 6.0·10−4 7 187s 6.54·10−4 17 80s 2.3

qap 225 31 954 4.1·105 5 508s 4.23·105 9 144s 3.5

Avg. 5.3 14 2.5

ILPs

Bench- # of # of Non-0 SCIP(10%) DNF method
marks var. constr. Coef. Val. Opt. Run- Val. Opt Run- Spdup

gap(%) time gap(%) time (10%)

frb53-24-1 1272 94227 189726 51 4 2.0h 51 4 794s 9

frb56-25-1 1400 109676 220752 51 9 2.6h 49 12 972s 11

frb59-26-1 1534 126555 254644 55 7 2.4h 52 12 1192s 7.2

protfold 1835 2111 23491 -27* 13 12h -27 13 249s 86

air5 7195 425 52121 28104 7 265 s 26643 1 358s 0.74

p2756 2756 754 8937 3212 3 344s 3462 11 254s 1.3

Avg. 7.1 8.8 19

*Manually terminated after 12h. The best feasible solution found is reported.

TABLE XIV

THE RESULTS OF OUR DNF METHOD AND SEVERAL COMPETING METHODS FOR
SOLVING VARIOUS 0/1 IP PROBLEMS. THE “OPT. GAP(%)” IS THE PERCENTAGE

DIFFERENCE COMPARED TO THE OPTIMAL SOLUTION VALUE. THE “SPDUP
OVER OPT” IS [THE RUN TIME FOR OPTIMAL SOLUTION]/[OUR RUN TIME], AND

THE “SPDUP(10%)” IS [THE RUN TIME FOR THE NEAR OPTIMAL
SOLUTION]/[OUR RUN TIME]. THE UPPER BOUND ε ON THE OPTIMALITY GAP

FOR (GUARANTEED) NEAR-OPTIMAL SOLUTIONS IS ALWAYS 10%.



CHAPTER 6

A NEW DYNAMIC PROGRAMMING METHOD WITH WEAK

DOMINATION FOR TACKLING MANY CONSTRAINTS

One important issue that often arises for general discrete optimization problems are the

guaranteed optimality gap. Many such problems cannot be solved optimally, but when a feasible

solution is generated, sometimes we want a guarantee that this solution is worse than the optimal

one by no more than certain percentage. The C’-based concave min-cost network flow cannot

produce such near-optimality guarantee, though generally good solution quality is obtained.

In this chapter, we will discusses our dynamic programming (DP) based method to solve the

0/1 integer programming problem that provides a near-optimality guarantee. It is especially

suitable for solving 0/1 integer non-linear programming problems.

6.1 Weak-Domination Based Dynamic-Programming

We propose a novel weak-domination based dynamic-programming (DP) type method to

solve 0-1 INLP problems1 near-optimally, i.e., obtain a solution that is guaranteed to be within

(1 + ε) of the optimal solution, where ε is the given optimality-gap bound. A strictly better

dominating condition usually becomes very ineffective in pruning solutions when the number

1One advantage of our DP method for solving INLPs is that the lower bound for the objective or
constraint function is calculated with min-cost network flow, while in most INLP solvers the bounding
is done by solving a more difficult non-linear optimization problem. However, this advantage is nullified
for ILPs , since the lower bounding there is naturally a linear programming problem, which is easy to
solve. Thus the current version of DP is most suitable for INLPs but no so much for ILPs.
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Figure 31. (a) The DP process: The DNF optimization graph Gopt shown at the level of MEA
meta-nodes and meta-arcs (see Chapter 3). Dashed arcs indicate the processing order of
variables. For each variable xi, the PS’s option vectors after combining options of xi are

shown. The pruned PS’s are crossed off. (b) The weak domination condition: Dark nodes are
the Fj values of PS’s pruned by PS p. (c) For p′ � p, its relaxation amount must cover the

pruning range of p.
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of constraints becomes large. Hence, we need a relaxed “weak dominating” condition that can

effectively pruning solutions for problems with many constraints, while maintaining required

near-optimality.

In the standard DP process, solutions are pruned based on domination. A solution domi-

nates the other if it is better in all objective and constraint metrics. However, when the number

of constraint metrics is large, it will be hard of a solution to dominate the other. Hence, the

pruning efficiency of the domination based pruning is low for problems with large number of

constraints, which results in long run time. Our weak-domination based pruning is a relaxed

pruning criterion compared to domination based pruning. It targets achieving a reasonable

pruning ratio even with large number of constraints. We will explain in more details in the

following sections.

This DP technique operates on the optimization DNF graph Gopt, and also uses classical

min-cost flow on parts of it to obtain certain lower bounds it needs to perform solution pruning.

The following definitions and notations will be used. A level-k partial solution is denoted by pik

(indicating the i’th level-k partial solution), and is a partial solution (PS) that includes options

selected for the first k variables X1,k = {x1, . . . , xk}. pik is represented by its option vector

[xi11 , . . . , x
ik
k ], where xtj is an option or value of xj (in 0/1 INLPs, there are only 2 options, 0 and

1, for each xj) . For pik, an objective or constraint function Fj can be divided into three parts:

1) the sum of dependent p-terms that are functions of X1,k. The value of this sum (denoted by

F dj (pik)) is fixed for a pik; 2) the sum (denoted by F uj (pik, Xk+1,n)) of undetermined p-terms that

are functions of variables Xk+1,n = {xk+1, . . . , xn}, where n is the total number of variables; 3)
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the sum of the boundary p-terms that are functions of variables in both X1,k and Xk+1,n. Given

a pik, the latter’s value (denoted by F bj (pik, Xk+1,n)) depends only on Xk+1,n. Finally, we will

use lbj(p
i
k) to denote a lower bound on F bj (pik, Xk+1,n) +F uj (pik, Xk+1,n) over all Xk+1,n. lbj(p

i
k)

can be determined by a standard/classical min-cost flow in the DNF graph for boundary and

undetermined p-terms.

The general flow of our method is as follows. We maintain a PS set P . Initially, P includes

all level-1 PS’s, each of which contains one option for x1. Full solutions are obtained by

alternatively applying two procedures on PS’s in P : 1) Partial solution expansion and 2) Partial

solution pruning. The expansion process will combine each level-k PS pik ∈ P with each option

xjk+1 for xk+1 to form a level-(k + 1) PS pik ∪ x
j
k+1. In the pruning process, we will delete from

P a subset of PS’s based on two criteria: 1) weak domination (wd) criterion and 2) constraint

violation criterion. An example of expansion and pruning is shown in Figure 31(a). Unlike many

“safe” domination based pruning methods which only prune out PS’s that cannot be expanded

to the final optimal solution, our wd criteria is more aggressive in order to achieve a significantly

higher pruning ratio. We will perform a near-optimality check after the final expansion and

pruning iteration to determine if we have found the solution that meets the near-optimality

requirement. If not, a restoration process will follow, in which we will iteratively restore pruned

solutions in a best-first manner until the near-optimality check identifies a desired solution.

6.1.1 Partial Solution Pruning

To compare the quality of two PS’s pak and pbk of the same level-k, we define the maximal

inferiority Ij(p
k
a, p

k
b ) of pak to pbk for metric Fj as



128

Ij(p
a
k, p

b
k) = max

Xk+1,n

(F dj (pak) + F bj (pak, Xk+1,n)− (F dj (pbk) + F bj (pbk, Xk+1,n))) (6.1)

Ij(p
a
k, p

b
k) is the maximal difference between pak and pbk for the sum of dependent and boundary

p-terms of Fj (note that the dependent and boundary p-terms for pak and pbk are the same—

though not necessarily of the same value—since they are at the same level). The undetermined

p-terms are not concerned here since their values are independent of pak and pbk.

The meaning of Ij(p
a
k, p

b
k) is that pak is at most Ij(p

a
k, p

b
k) worse than pbk for a metric Fj , i.e,

for any option (i.e., value) combination O for variables in Vk+1,n, Fj(p
a
k ∪ O) − Fj(pbk ∪ O) =

∆j

pak,p
b
k

(O) ≤ Ij(pak, pbk), where Fj(p
a
k∪O) denotes the value of Fj for options (i.e., variable values)

in pak ∪O are selected. The maximization problem in Equation 6.1 can be solved approximately

by first finding the maximal difference between pak and pbk for each boundary p-term through

enumeration. For example, in a boundary p-term T , we can enumerate all possible option

selection combinations for variables in T that are not determined in pak and pbk. For each such

combination OT we can determine the difference between T (pak ∪ OT ) and T (pbk ∪ OT ), where

T (pak ∪OT ) is the value of T with options selected in pak and OT . The maximal difference across

all OT is the maximal difference between pak and pbk for T . Ij(p
a
k, p

b
k) can be determined by

summing up the maximal differences for all boundary p-terms as well as (F dj,pak
− F d

j,pbk
).

Ij(p
a
k, p

b
k) will be used frequently in our following discussion of pruning criteria, and it

possesses several important properties.

Property 1: Ij(p
a
k, p

b
k) + Ij(p

b
k, p

c
k) ≥ Ij(pak, pck).
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Proof: This follows from the fundamental inequality property that max a+max b ≥ max(a+b).

Ij(p
a
k, p

b
k)+Ij(p

b
k, p

c
k) = maxVk+1,n

∆j

pak,p
b
k

(Vk+1,n)+maxVk+1,n
∆j

pbk,p
c
k

(Vk+1,n) ≥ maxVk+1,n
(∆j

pak,p
b
k

(Vk+1,n)+

∆j

pbk,p
c
k

(Vk+1,n)) = maxVk+1,n
∆j
pa,pc(Vk+1,n) = Ij(p

a
k, p

c
k). ♦

6.1.2 Weak Domination Criterion

Our weak domination (wd) condition for PS pruning can be stated as follows: a level-k PS

pak weak dominates another level-k PS pbk (denoted pak � pbk) if and only if for each metric Fj :

Ij(p
a
k, p

b
k) ≤ δj (6.2)

where δj ≥ 0 is a relaxation amount that is a function of the optimality gap bound ε. Unlike

a “strictly better” domination condition, this condition allows pak � pbk even if it is δj worse

than pbk in metric Fj . In this way, the wd probability between PS pairs is greatly increased.

Furthermore, we also keep track of a pruning range dj(p
a
k) for each PS pak and each metric Fj ,

which records the difference between pak and the best PS for Fj pruned due to weak domination

by pak (or pruned by pak for short); see Figure 31(b). Assume that a PS pbk has pruned some

partial solution pck that is better in Fj , i.e., dj(p
b
k) > 0. Then, for another PS pak to prune

pbk, we must ensure that it weak dominates both pbk and pck, so that the pruned PS pck is weak

dominated by at least one remaining (unpruned) PS. Accordingly, the wd condition for PS

pruning is modified to: pak � pbk if and only if for each metric Fj :

Ij(p
a
k, p

b
k) + dj(p

b
k) ≤ δj (6.3)



130

Figure 31(c) shows an example of weak domination considering the pruning range. We should

also note that with weak domination, we can have pak � pbk and pbk � pak at the same time. In

such a situation, out of pak, p
b
k we will keep that PS that weak dominates more PS’s (and thus

prune the other PS) since it gives us more pruning potential, and generally it also has higher

quality. To relate to the ε near-optimality requirement, δj can be determined as ε× [a lower

bound on the optimal solution value of Fj ].

Theorem 7 With the wd condition in Equation 6.3, there will be a full solution in P that is

at most ε times worse than the optimal solution for each metric .

Proof Outline: Let pok denote the level-k PS in the optimal solution. We can prove by induction

on k that there is a PS pik in P s.t. Ij(p
i
k, p

o
k) ≤ dj(p

i
k) and Ij(p

i
k, p

o
k) ≤ δj . Then, finally pin is

the stated solution. ♦

For the objective function, Theorem 7 establishes the near-optimality of the obtained full

solutions. However, pin being ε worse in the constraint metrics Fj than the optimal solution

may render pin infeasible. Hence, it is possible that among the final full solutions obtained,

there is no feasible solution that is ε near-optimal. Such a situation happens due to the over

pruning phenomenon, i.e, a PS that can be expanded to a feasible solution is pruned by a PS

that cannot be expanded to a feasible solution due to the relaxation allowed in the wd condition

on constraint functions. The method for tackling over pruning is discussed in Sec. 6.1.4.
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6.1.3 Constraint Violation Criterion

Let cj be the given upper bound on a constraint function Fj . For a PS pik of level-k, the

constraint violation based pruning criterion for pik has two parts: 1) pik cannot be expanded to

a feasible solution, i.e., F dj (pik)+ lbj(p
i
k) > cj , and 2) pik does not over-prune any other PS. Note

that if the second condition is not true, we need to keep pik for restoration of those over-pruned

PS’s (see Sec. 6.1.4). A necessary condition for pik to over prune is that for each constraint

function Fj :

F dj (pik) + lbj(p
i
k)− dj(pik) ≤ cj (6.4)

The rationale is that dj(p
i
k) is an upper bound on how much a pruned PS is better than pik for

Fj .

6.1.4 Over-Pruning Restoration

After expansion and pruning iterations, finally P contains a set Pf of feasible full solutions

and a set Pinf of infeasible full solutions with possible over pruning. Let B denote the lower

bound on the optimal F0 value, and can be determined as B = minS∈P (F0(S)− d0(S)), since,

according to the proof of Theorem 7 there is a solution in P , that is at most d0(S) worse than

the optimal solution. Let Sb be the best solution in Pf w.r.t. F0. Then, we can check whether

the near-optimality condition is satisfied by Sb, i.e., if F0(Sb) ≤ B · (1 + ε). If this check fails,
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Pruned PS
          (b1) is pruned by (a1)    
   (a1,b2) is pruned by (a1,a2)

(a1,a2,a3)

(b1,a2,a3)

by (b1)
Replace (a1,a2)

by (a1,b2)

(a1,b2,a3)

(a1,b2,a3) (b1,b2,a3)

Replace (a1) Replace (a1)
by (b1)

(a) (b) (c)

Figure 32. An example restoration process for a problem with three variables v1, v2, v3. Each
variable vi has two options ai and bi. (a) The pruned partial solutions that are recorded. (b)

The restoration process on solution (a1, a2, a3) with the pruned PS’s in [a]. (c) A further
restoration process on a solution (a1, b2, a3) generated from the restoration in [b].

we need to perform restoration on solutions in Pinf to recover more feasible solutions, as well

as tighten the bound B.

Let pSk (1 ≤ k ≤ n) be a level-k PS of an infeasible full solution S. Restoring the solution

pruned by S can be performed by replacing each PS pSk with each PS pruned by it. Note that

in order to do this restoration, we need to record for each PS the set of PS’s pruned by it.

An example of restoration is shown in Figure 32. After performing restoration on S, S can

be deleted from Pinf. Among the restored solutions, the feasible ones are added to Pf , the

infeasible ones with possible over pruning are added to Pinf, and then B and Sb are updated.

The restoration process terminates when the near-optimality check F0(Sb) ≤ B · (1 + ε) is

satisfied. In order to reduce the number of solutions restored before termination, we will follow

a best first order, i.e, each time we can choose S ∈ Pinf with the best objective function value

for restoration. We have the following result.
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Theorem 8 The aforementioned over-pruning restoration technique guarantees that our DP

method will find an ε near-optimal feasible solution of the given problem if one exists.

6.2 Results of Applying Dynamic Programming with WD to 0/1 INLP Problems

In Table XV, we also show results of our DP technique for INLPs for ε = 10% under “Our

DP method” column. Again, the results are very promising. The actual optimality gap achieved

is 6.3% for non-convex INLPs and 7% for convex INLPs. Compared to the optimal Couenne

method [46], DP achieves a speedup of almost 5X, and compared to near-optimal Bonmin [47]

which has a similar optimality gap, DP achieves a speedup of almost 2X. The tradeoffs between

DP and the DNF method are as follows. DP guarantees a given near-optimality, while the DNF

method obtains an empirically observed near-optimality—its average optimality gap is 9-15%.

However, the latter is faster than DP by about 2X, and is suitable for both ILPs and INLPs,

while DP is only suitable for INLPs.
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Non-convex INLPs

Bench- Couenne Our DP method
marks Val. Run- Val. Opt. Run- Spdup

time gap(%) time over opt

iran13x13 3258 921s 3516 8 200s 4.6

imisc07 2814 2928s 3010 7 963s 3.0

pb30235 3.38 ·106 4h 3.5 ·106 4 1.1h 3.6

c-imod011 1.84·10−4 1427s 1.9·10−4 4 618s 2.3

c-qap 2.7·105 3042s 2.9·105 8 269s 11

c-pb30235 1.4·106 5.4h 1.5 ·106 7 1.4h 3.8

Avg. 6.3 4.7

Convex INLPs

Bench- Couenne Bonmin Our DP method
marks Val. Run- Val. Opt. Run- Val. Opt. Run- Spdup Spdup

time gap(%) time gap(%) time over opt (10%)

ibell3a 8.79·105 18s 9.2·105 4 10s 9.4·105 6 6s 3 1.7

imod011 5.6·10−4 612s 6.0·10−4 7 187s 6.0·10−4 7 206s 2.5 0.9

qap 3.88·105 1716s 4.1·105 5 508s 4.2·105 8 195s 8.8 2.6

Avg. 5.3 7.0 4.8 1.7

*Manually terminated after 12h. The best feasible solution found is reported.

TABLE XV

THE RESULTS OF OUR METHOD, THE DP METHOD WITH WEAK DOMINATION,
AND SEVERAL COMPETING METHODS FOR SOLVING CONVEX AND

NON-CONVEX 0/1 INLP PROBLEMS.



CITED LITERATURE

1. Choi, W. and Bazargan, K.: Incremental placement for timing optimization. In
International Conference on CAD, pages 463–466, 2003.

2. Elmore, W. C.: The transient response of damped linear networks with particular regard
to wideband amplifiers. Journal of Applied Physics, 19:55–64, 1948.

3. Silveira, L. M., Kamon, M., and White, J.: Efficient reduced-order modeling of frequency-
dependent coupling inductances associated with 3-d interconnect structures. In
Design Automation Conference, pages 376–380, 1995.

4. Dutt, S. and Ren, H.: Discretized network flow techniques for timing and wire-length
driven incremental placement with white-space satisfaction. IEEE Transactions on
VLSI System, 19(7):1277–1290, 2011.

5. Kao, J., Chandrakasan, A., and Ch, A.: Dual-threshold voltage techniques for low-power
digital circuits. IEEE Journal of Solid-State Circuits, 35:1009–1018, 2000.

6. Billingsley, P.: Probability and measure. Wiley, 3 edition, 1995.

7. Sinha, D., Shenoy, N. V., and Zhou, H.: Statistical timing yield optimization by gate siz-
ing. IEEE Transactions on COMPUTER-AIDED DESIGN of Integrated Circuits
and Systems, 25:1140–1146, 2006.

8. Clark, C. E.: The greatest of a finite set of random variables. Operations Research, 9:145–
162, 1961.

9. Wang, J., Das, D., and Zhou, H.: Gate sizing by lagrangian relaxation revisited. IEEE
Trans. on CAD of Integrated Circuits and Systems, 28(7):1071–1084, 2009.

10. Hu, S., Ketkar, M., and Hu, J.: Gate sizing for cell library-based designs. In DAC, pages
847–852, 2007.

11. Wu, T. and Davoodi, A.: Pars: fast and near-optimal grid-based cell sizing for library-based
design. In ICCAD, pages 107–111, 2008.

135



136

CITED LITERATURE (Continued)

12. Agarwal, A., Chopra, K., Blaauw, D., and Zolotov, V.: Circuit optimization using statistical
static timing analysis. In DAC, pages 321–324, 2005.

13. Srivastava, A., Kastner, R., Chen, C., and Sarrafzadeh, M.: Timing driven gate duplication.
IEEE Trans. VLSI Syst., 12(1):42–51, 2004.

14. Usami, K. and Horowitz, M.: Clustered voltage scaling technique for low-power design. In
International Symposium on Low Power Design, pages 3–8, 1995.

15. Wu, H., Wong, M., and Liu, I.: Timing-constrained and voltage-island-aware voltage
assignment. In DAC, pages 429–432, 2006.

16. van Ginneken, L. P. P. P.: Buffer placement in distributed rc-tree networks for minimal
elmore delay. In IEEE International Symposium on Circuits and Systems, pages
865–868, 1990.

17. Lillis, J., Cheng, C., and Lin, T. Y.: Optimal wire sizing and buffer insertion for low
power and a generalized delay model. In International Conference on CAD, pages
138–143, 1995.

18. Dhillon, Y., Diril, A., Chatterjee, A., and Lee, H.: Algorithm for achieving minimum
energy consumption in cmos circuits using multiple supply and threshold voltages
at the module level. In ICCAD, pages 693–700, 2003.

19. Gao, F. and Hayes, J.: Total power reduction in cmos circuits via gate sizing and multiple
threshold voltages. In DAC, pages 31–36, 2005.

20. Liu, Y. and Hu, J.: A new algorithm for simultaneous gate sizing and threshold voltage
assignment. IEEE Trans. on CAD of Integrated Circuits and Systems, 29(2):223–
234, 2010.

21. Jiang, Y., Sapatnekar, S., Bamji, C., and Kim, J.: Interleaving buffer insertion and transis-
tor sizing into a single optimization. IEEE Trans. VLSI Syst., 6(4):625–633, 1998.

22. Donath, W., Kudva, P., Stok, L., Villarrubia, P., Reddy, L., Sullivan, A., and Chakraborty,
K.: Transformational placement and synthesis. In DATE, pages 194–201, 2000.

23. Srivastava, A., Sylvester, D., and Blaauw, D.: Power minimization using simultaneous gate
sizing, dual-vdd and dual-vth assignment. In DAC, pages 783–787, 2004.



137

CITED LITERATURE (Continued)

24. Chinnery, D. and Keutzer, K.: Linear programming for sizing, vth and vdd assignment. In
Proc. of ISLPED, pages 149–154, 2005.

25. Ahujaa, R. and Orlin, J.: Network flow: theory and application. Pretice Hall: Pretice Hall,
1991.

26. Dutt, S., Dai, Y., Ren, H., and Fontanarosa, J.: Selection of multiple snps in case-control as-
sociation study using a discretized network flow approach. In Proceedings of the 1st
International Conference on Bioinformatics and Computational Biology, BICoB,

pages 211–223, 2009.

27. Ren, H. and Dutt, S.: A discretized network flow based method for solving travelling
salesman problems. www.ece.uic.edu/~dutt/tech-reps/TSP_DNF.pdf, Tech. Re-
port, 2011. (Note: In case you cut and paste this URL please retype the tilde (~)
character portion of the URL from your keyboard.).

28. Dutt, S. and Ren, H.: Solving boolean satisfiability problems using discretized network flow.
www.ece.uic.edu/~dutt/tech-reps/SAT_DNF.pdf, Tech. Report, 2011. (Note: In
case you cut and paste this URL please retype the tilde (~) character portion of the
URL from your keyboard.).

29. Dutt, S., Ren, H., Yuan, F., and Suthar, V.: A network-flow approach to timing-driven
incremental placement for asics. In ICCAD, pages 375–382, 2006.

30. Ren, H. and Dutt, S.: A provably high-probability white-space satisfaction algorithm with
good performance for standard-cell detailed placement. IEEE Trans. VLSI Syst.,
19(7):1291–1304, 2011.

31. et. al., S. N. A.: Unification of partitioning, placement and floorplanning. In ICCAD, pages
550–557, 2004.

32. Yang, X., Choi, B., and Sarrafzadeh, M.: Timing-driven placement using design hierarchy
guided constraint generation. In ICCAD 2002, pages 177–184, 2002.

33. Chen, T., Jiang, Z., Hsu, T., Chen, H., and Chang, Y.: Ntuplace3: An analytical placer for
large-scale mixed-size designs with preplaced blocks and density constraints. IEEE
Trans. on CAD, 27(7):1228–1240, 2003.

34. Nahapetyan, A. and Pardalos, P.: Adaptive dynamic cost updating procedure for solving
fixed charge network flow problems. Comput. Optim. Appl., 39:37–50, 2008.



138

CITED LITERATURE (Continued)

35. Ren, H. and Dutt, S.: Effective power optimization under timing and voltage-island con-
straints via simultaneous vdd, vth assignments, gate sizing, and placement. IEEE
Trans. on CAD, 30(5):746–759, 2011.

36. Ahuja, R. K. and Orlin, J. B.: The scaling network simplex algorithm. Oper. Res., 40:5–13,
1992.

37. Bazaraa, M. S., Jarvis, J. J., and Sherali, H. D.: Linear Programming and Network Flows.
Wiley-Interscience, 2004.

38. Ren, H. and Dutt, S.: A network-flow based cell sizing algorithm. In Int’l Workshop on
Logic Synthesis, pages 7–14, 2008.

39. Wu, H., Liu, I., Wong, M. D. F., and Wang, Y.: Post-placement voltage island generation
under performance requirement. In International conference on Computer-aided
design, pages 309–316, 2005.

40. Kim, H., Matoglu, E., Choi, J., and Swaminathan, M.: Modeling of multi-layered power
distribution planes including via effects using transmission matrix method. In Asia
and South Pacific Design Automation Conference, page 59, 2002.

41. Nassif, S.: Delay variability: sources, impacts and trends. In Solid-State Circuits
Conference, pages 368–366, 2000.

42. Ampl miqp benchmarks. http://plato.asu.edu/ftp/ampl\_files/miqp\_ampl.

43. Minlp benchmarks. http://www.gamsworld.org/minlp/minlplib.htm.

44. Miplib benchmarks. http://miplib.zib.de/.

45. Pseudo-boolean benchmarks. http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/

pb-benchmarks.htm.

46. Couenne solver. https://projects.coin-or.org/Couenne.

47. Bonmin solver. http://www.coin-or.org/Bonmin/.

48. Scip solver. http://scip.zib.de/scip.shtml.



VITA

NAME Huan Ren

EDUCATION Ph.D., Electrical and Computer Engineering, University of Illinois at
Chicago, Chicago, Illinois, May, 2012

M.S., Electrical and Computer Engineering, University of Illinois at
Chicago, Chicago,Illinois, May, 2011

B.S., Electrical Engineering, Zhejiang University, Hangzhou, China, Jun,
2005

EXPERIENCE Research Assistant, DART Lab, Dept. of ECE, University of Illinois at
Chicago, 08/2005 - 2/2011

Teaching Assistant, Dept. of ECE, University of Illinois at Chicago,
08/2007 - 08/2008

PUBLICATIONS H. Ren and S. Dutt: Effective Power Optimization Under Timing and
Voltage-Island Constraints via Simultaneous Vdd, Vth Assignments, Cel-
l Sizing and Placement. IEEE Trans. on CAD, 30(5), 746-759, 2011.

H. Ren and S. Dutt: Provably High-Probability White-Space Satisfaction
Algorithm with Good Performance for Standard-Cell Detailed Placemen-
t. IEEE Trans. on VLSI Systems, 19(7), pp. 1291-1304, 2011.

S. Dutt and H. Ren: Discretized Network Flow Techniques for Timing
and Wire-Length Driven Incremental Placement with White-Space Sat-
isfaction. IEEE Trans. on VLSI Systems, 19(7), pp. 1277-1290, 2011.

S. Dutt and H. Ren, Timing Yield Optimization via Discrete Gate Sizing
using Globally-Informed Delay PDF Functions. Proceedings of
International Conference on CAD, San Jose, CA, 2010.

139



140

VITA (Continued)

S. Dutt, Y. Dai, H. Ren, and J. Fontanarosa: Selection of Multiple
SNPs in Case-Control Association Study Using a Discretized Network
Flow Approach. Lecture Notes in Computer Science, 5462, pp. 211-223,
2009.

H. Ren and S. Dutt: Algorithms for Simultaneous Consideration of Mul-
tiple Physical Synthesis Transforms for Timing Closure. Proceedings of
International Conference on CAD, San Jose, CA, 2008.

H. Ren and S. Dutt: A Network-Flow Based Cell Sizing Algorithm.
Proceedings of International Workshop on Logic and Synthesis, Lake Tahoe,
CA, 2008.

H. Ren and S. Dutt: Constraint Satisfaction in Incremental Placement
with Application to Performance Optimization under Power Constraints.
Proceedings of International Conference on Computer Design, Lake Tahoe,
CA, 2007.

S. Dutt, H. Ren, F. Yuan and V. Suthar: A Network-Flow Approach to
Timing-Driven Incremental Placement for ASICs. Proceedings of
International Conference on CAD, San Jose, 2006.

SERVICE Student member of the Institute of Electrical and Electronics Engineers
(IEEE).

Reviewer for 2009 IEEE International Conference on CAD (ICCAD
2009).

Reviewer for 2008 and 2009 Great Lakes Symposium on VLSI (GLSVLSI
2008, 2009).

Reviewer for 2010 Design Automation and Test in Europe Conference
(DATE 2010).


